WorldWideScience

Sample records for nodal endoplasmic reticulum

  1. Endoplasmic reticulum stress in lung disease

    Directory of Open Access Journals (Sweden)

    Stefan J. Marciniak

    2017-06-01

    Full Text Available Exposure to inhaled pollutants, including fine particulates and cigarette smoke is a major cause of lung disease in Europe. While it is established that inhaled pollutants have devastating effects on the genome, it is now recognised that additional effects on protein folding also drive the development of lung disease. Protein misfolding in the endoplasmic reticulum affects the pathogenesis of many diseases, ranging from pulmonary fibrosis to cancer. It is therefore important to understand how cells respond to endoplasmic reticulum stress and how this affects pulmonary tissues in disease. These insights may offer opportunities to manipulate such endoplasmic reticulum stress pathways and thereby cure lung disease.

  2. Studies on the Endoplasmic Reticulum

    Science.gov (United States)

    Porter, Keith R.; Machado, Raul D.

    1960-01-01

    Cells of onion and garlic root tips were examined under the electron and phase contrast microscopes after fixation in KMnO4. Special attention was focused on the distribution and behavior of the endoplasmic reticulum (ER) during the several phases of mitosis. Slender profiles, recognized as sections through thin lamellar units of the ER (most prominent in KMnO4-fixed material), are distributed more or less uniformly in the cytoplasm of interphase cells and show occasional continuity with the nuclear envelope. In late prophase the nuclear envelope breaks down and its remnants plus cytoplasmic elements of the ER, which are morphologically identical, surround the spindle in a zone from which mitochondria, etc., are excluded. During metaphase these ER elements persist and concentrate as two separate systems in the polar caps or zones of the spindle. At about this same time they begin to proliferate and to invade the ends of the spindle. The invading lamellar units form drape-like partitions between the anaphase chromosomes. In late anaphase, their advancing margins reach the middle zone of the spindle and begin to fray out. Finally, in telophase, while elements of the ER in the poles of the spindle coalesce around the chromosomes to form the new envelope, the advancing edges of those in the middle zone reticulate at the level of the equator to form a close lattice of tubular elements. Within this, which is identified as the phragmoplast, the earliest signs of the cell plate appear in the form of small vesicles. These subsequently grow and fuse to complete the separation of the two protoplasts. Other morphological units apparently participating in mitosis are described. Speculation is provided on the equal division or not of the nuclear envelope and the contribution the envelope fragments make to the ER of the new cell. PMID:14434278

  3. Glycoprotein folding in the endoplasmic reticulum

    NARCIS (Netherlands)

    Braakman, L.J.; Benham, A.M.

    2000-01-01

    Our understanding of eukaryotic protein folding in the endoplasmic reticulum has increased enormously over the last 5 years. In this review, we summarize some of the major research themes that have captivated researchers in this field during the last years of the 20th century. We follow the path of

  4. Protein transport into the human endoplasmic reticulum

    NARCIS (Netherlands)

    Dudek, Johanna; Pfeffer, Stefan; Lee, Po-Hsien; Jung, Martin; Cavalié, Adolfo; Helms, Volkhard; Förster, Friedrich; Zimmermann, Richard

    2015-01-01

    Protein transport into the endoplasmic reticulum (ER) is essential for all eukaryotic cells and evolutionary related to protein transport into and across the cytoplasmic membrane of eubacteria and archaea. It is based on amino-terminal signal peptides in the precursor polypeptides plus various trans

  5. Association of immunoproteasomes with the endoplasmic reticulum

    DEFF Research Database (Denmark)

    Brooks, P.; Murray, R.Z.; Mason, G.G.F.;

    2000-01-01

    pathway. Two of the gamma-interferon inducible subunits, LMP2 and LMP7, are encoded within the MHC class II region adjacent to the two TAP (transporter associated with antigen presentation) genes. We have investigated the localization of immunoproteasomes using monoclonal antibodies to LMP2 and LMP7...... that immunoproteasomes are strongly enriched at the endoplasmic reticulum, where they may be located close to the TAP transporter to provide efficient transport of peptides into the lumen of the endoplasmic recticulum for association with MHC class I molecules....

  6. Endoplasmic Reticulum Stress and Associated ROS

    Directory of Open Access Journals (Sweden)

    Hafiz Maher Ali Zeeshan

    2016-03-01

    Full Text Available The endoplasmic reticulum (ER is a fascinating network of tubules through which secretory and transmembrane proteins enter unfolded and exit as either folded or misfolded proteins, after which they are directed either toward other organelles or to degradation, respectively. The ER redox environment dictates the fate of entering proteins, and the level of redox signaling mediators modulates the level of reactive oxygen species (ROS. Accumulating evidence suggests the interrelation of ER stress and ROS with redox signaling mediators such as protein disulfide isomerase (PDI-endoplasmic reticulum oxidoreductin (ERO-1, glutathione (GSH/glutathione disuphide (GSSG, NADPH oxidase 4 (Nox4, NADPH-P450 reductase (NPR, and calcium. Here, we reviewed persistent ER stress and protein misfolding-initiated ROS cascades and their significant roles in the pathogenesis of multiple human disorders, including neurodegenerative diseases, diabetes mellitus, atherosclerosis, inflammation, ischemia, and kidney and liver diseases.

  7. Endoplasmic reticulum stress and diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Toshiyuki Oshitari

    2008-02-01

    Full Text Available Toshiyuki Oshitari1,2, Natsuyo Hata1, Shuichi Yamamoto11Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba City, Chiba, Japan; 2Department of Ophthalmology, Kimitsu Central Hospital, Kisarazu City, Chiba, JapanAbstract: Endoplasmic reticulum (ER stress is involved in the pathogenesis of several diseases including Alzheimer disease and Parkinson disease. Many recent studies have shown that ER stress is related to the pathogenesis of diabetes mellitus, and with the death of pancreatic β-cells, insulin resistance, and the death of the vascular cells in the retina. Diabetic retinopathy is a major complication of diabetes and results in death of both neural and vascular cells. Because the death of the neurons directly affects visual function, the precise mechanism causing the death of neurons in early diabetic retinopathy must be determined. The ideal therapy for preventing the onset and the progression of diabetic retinopathy would be to treat the factors involved with both the vascular and neuronal abnormalities in diabetic retinopathy. In this review, we present evidence that ER stress is involved in the death of both retinal neurons and vascular cells in diabetic eyes, and thus reducing or blocking ER stress may be a potential therapy for preventing the onset and the progression of diabetic retinopathy.Keywords: endoplasmic reticulum stress, diabetic retinopathy, vascular cell death, neuronal cell death

  8. Endoplasmic Reticulum (ER) Stress and Endocrine Disorders

    Science.gov (United States)

    Ariyasu, Daisuke; Yoshida, Hiderou; Hasegawa, Yukihiro

    2017-01-01

    The endoplasmic reticulum (ER) is the organelle where secretory and membrane proteins are synthesized and folded. Unfolded proteins that are retained within the ER can cause ER stress. Eukaryotic cells have a defense system called the “unfolded protein response” (UPR), which protects cells from ER stress. Cells undergo apoptosis when ER stress exceeds the capacity of the UPR, which has been revealed to cause human diseases. Although neurodegenerative diseases are well-known ER stress-related diseases, it has been discovered that endocrine diseases are also related to ER stress. In this review, we focus on ER stress-related human endocrine disorders. In addition to diabetes mellitus, which is well characterized, several relatively rare genetic disorders such as familial neurohypophyseal diabetes insipidus (FNDI), Wolfram syndrome, and isolated growth hormone deficiency type II (IGHD2) are discussed in this article. PMID:28208663

  9. Endoplasmic Reticulum (ER) Stress and Endocrine Disorders.

    Science.gov (United States)

    Ariyasu, Daisuke; Yoshida, Hiderou; Hasegawa, Yukihiro

    2017-02-11

    The endoplasmic reticulum (ER) is the organelle where secretory and membrane proteins are synthesized and folded. Unfolded proteins that are retained within the ER can cause ER stress. Eukaryotic cells have a defense system called the "unfolded protein response" (UPR), which protects cells from ER stress. Cells undergo apoptosis when ER stress exceeds the capacity of the UPR, which has been revealed to cause human diseases. Although neurodegenerative diseases are well-known ER stress-related diseases, it has been discovered that endocrine diseases are also related to ER stress. In this review, we focus on ER stress-related human endocrine disorders. In addition to diabetes mellitus, which is well characterized, several relatively rare genetic disorders such as familial neurohypophyseal diabetes insipidus (FNDI), Wolfram syndrome, and isolated growth hormone deficiency type II (IGHD2) are discussed in this article.

  10. Targeting endoplasmic reticulum stress in insulin resistance.

    Science.gov (United States)

    Salvadó, Laia; Palomer, Xavier; Barroso, Emma; Vázquez-Carrera, Manuel

    2015-08-01

    The endoplasmic reticulum (ER) is involved in the development of insulin resistance and progression to type 2 diabetes mellitus (T2DM). Disruption of ER homeostasis leads to ER stress, which activates the unfolded protein response (UPR). This response is linked to different processes involved in the development of insulin resistance (IR) and T2DM, including inflammation, lipid accumulation, insulin biosynthesis, and β-cell apoptosis. Understanding the mechanisms by which disruption of ER homeostasis leads to IR and its progression to T2DM may offer new pharmacological targets for the treatment and prevention of these diseases. Here, we examine ER stress, the UPR, and downstream pathways in insulin sensitive tissues, and in IR, and offer insights towards therapeutic strategies.

  11. Endoplasmic reticulum stress and cardiovascular diseases

    Institute of Scientific and Technical Information of China (English)

    Xiaohui Duan; Yongfen Qi; Chaoshu Tang

    2009-01-01

    The endoplasmic reticulum (ER) serves several important functions, mainly post-translational modification, folding and assembly of newly synthesized secretary proteins, synthesizing lipids and cellular calcium storage. Various factors can disrupt ER homeostasis and disturb its functions, which leads to the accumulation of unfolded and misfolded proteins and to potential cellular dysfunction and pathological consequences, collectively termed ER stress. Recent progress suggests that ER stress plays a key role in the immune response, diabetes, tumor growth, and some neurodegenerative diseases. In particular, ER stress is involved in several processes of cardiovascular diseases, such as ischemia/reperfusion injury, cardiomyopathy, cardiac hypertrophy, heart failure, and atherosclerosis. Further research on the relation of ER stress to cardiovascular diseases will greatly enhance the understanding of these pathological processes and provide novel avenues to potential therapies.

  12. Endoplasmic reticulum: ER stress regulates mitochondrial bioenergetics

    Science.gov (United States)

    Bravo, Roberto; Gutierrez, Tomás; Paredes, Felipe; Gatica, Damián; Rodriguez, Andrea E.; Pedrozo, Zully; Chiong, Mario; Parra, Valentina; Quest, Andrew F.G.; Rothermel, Beverly A.; Lavandero, Sergio

    2014-01-01

    Endoplasmic reticulum (ER) stress activates an adaptive unfolded protein response (UPR) that facilitates cellular repair, however, under prolonged ER stress, the UPR can ultimately trigger apoptosis thereby terminating damaged cells. The molecular mechanisms responsible for execution of the cell death program are relatively well characterized, but the metabolic events taking place during the adaptive phase of ER stress remain largely undefined. Here we discuss emerging evidence regarding the metabolic changes that occur during the onset of ER stress and how ER influences mitochondrial function through mechanisms involving calcium transfer, thereby facilitating cellular adaptation. Finally, we highlight how dysregulation of ER–mitochondrial calcium homeostasis during prolonged ER stress is emerging as a novel mechanism implicated in the onset of metabolic disorders. PMID:22064245

  13. Endoplasmic Reticulum (ER Stress and Endocrine Disorders

    Directory of Open Access Journals (Sweden)

    Daisuke Ariyasu

    2017-02-01

    Full Text Available The endoplasmic reticulum (ER is the organelle where secretory and membrane proteins are synthesized and folded. Unfolded proteins that are retained within the ER can cause ER stress. Eukaryotic cells have a defense system called the “unfolded protein response” (UPR, which protects cells from ER stress. Cells undergo apoptosis when ER stress exceeds the capacity of the UPR, which has been revealed to cause human diseases. Although neurodegenerative diseases are well-known ER stress-related diseases, it has been discovered that endocrine diseases are also related to ER stress. In this review, we focus on ER stress-related human endocrine disorders. In addition to diabetes mellitus, which is well characterized, several relatively rare genetic disorders such as familial neurohypophyseal diabetes insipidus (FNDI, Wolfram syndrome, and isolated growth hormone deficiency type II (IGHD2 are discussed in this article.

  14. Endoplasmic Reticulum Stress and Ethanol Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Fanmuyi Yang

    2015-10-01

    Full Text Available Ethanol abuse affects virtually all organ systems and the central nervous system (CNS is particularly vulnerable to excessive ethanol exposure. Ethanol exposure causes profound damages to both the adult and developing brain. Prenatal ethanol exposure induces fetal alcohol spectrum disorders (FASD which is associated with mental retardation and other behavioral deficits. A number of potential mechanisms have been proposed for ethanol-induced brain damage; these include the promotion of neuroinflammation, interference with signaling by neurotrophic factors, induction of oxidative stress, modulation of retinoid acid signaling, and thiamine deficiency. The endoplasmic reticulum (ER regulates posttranslational protein processing and transport. The accumulation of unfolded or misfolded proteins in the ER lumen triggers ER stress and induces unfolded protein response (UPR which are mediated by three transmembrane ER signaling proteins: pancreatic endoplasmic reticulum kinase (PERK, inositol-requiring enzyme 1 (IRE1, and activating transcription factor 6 (ATF6. UPR is initiated to protect cells from overwhelming ER protein loading. However, sustained ER stress may result in cell death. ER stress has been implied in various CNS injuries, including brain ischemia, traumatic brain injury, and aging-associated neurodegeneration, such as Alzheimer’s disease (AD, Huntington’s disease (HD, Amyotrophic lateral sclerosis (ALS, and Parkinson’s disease (PD. However, effects of ethanol on ER stress in the CNS receive less attention. In this review, we discuss recent progress in the study of ER stress in ethanol-induced neurotoxicity. We also examine the potential mechanisms underlying ethanol-mediated ER stress and the interaction among ER stress, oxidative stress and autophagy in the context of ethanol neurotoxicity.

  15. Development of Endoplasmic Reticulum Stress during Experimental Oxalate Nephrolithiasis.

    Science.gov (United States)

    Motin, Yu G; Lepilov, A V; Bgatova, N P; Zharikov, A Yu; Motina, N V; Lapii, G A; Lushnikova, E L; Nepomnyashchikh, L M

    2016-01-01

    Morphological and ultrastructural study of the kidney was performed in rats with oxalate nephrolithiasis. Specific features of endoplasmic reticulum stress were evaluated during nephrolithiasis and treatment with α-tocopherol. We observed the signs of endoplasmic reticulum stress with activation of proapoptotic pathways and injury to the cell lining in nephron tubules and collecting ducts. Ultrastructural changes were found in the organelles, nuclei, and cell membranes of epitheliocytes. A relationship was revealed between endoplasmic reticulum stress and oxidative damage, which developed at the early state of lithogenesis.

  16. Regulation of endoplasmic reticulum turnover by selective autophagy

    NARCIS (Netherlands)

    Khaminets, Aliaksandr; Heinrich, Theresa; Mari, Muriel; Grumati, Paolo; Huebner, Antje K.; Akutsu, Masato; Liebmann, Lutz; Stolz, Alexandra; Nietzsche, Sandor; Koch, Nicole; Mauthe, Mario; Katona, Istvan; Qualmann, Britta; Weis, Joachim; Reggiori, Fulvio; Kurth, Ingo; Huebner, Christian A.; Dikic, Ivan

    2015-01-01

    The endoplasmic reticulum (ER) is the largest intracellular endomembrane system, enabling protein and lipid synthesis, ion homeostasis, quality control of newly synthesized proteins and organelle communication(1). Constant ER turnover and modulation is needed to meet different cellular requirements

  17. An endoplasmic reticulum (ER)-directed fusion protein comprising a ...

    African Journals Online (AJOL)

    An endoplasmic reticulum (ER)-directed fusion protein comprising a bacterial subtilisin ... which are used for the commercial production of therapeutic proteins. ... expression platforms) to purify recombinant proteins in crude plant extracts.

  18. Regulation of endoplasmic reticulum turnover by selective autophagy

    NARCIS (Netherlands)

    Khaminets, Aliaksandr; Heinrich, Theresa; Mari, Muriel; Grumati, Paolo; Huebner, Antje K; Akutsu, Masato; Liebmann, Lutz; Stolz, Alexandra; Nietzsche, Sandor; Koch, Nicole; Mauthe, Mario; Katona, Istvan; Qualmann, Britta; Weis, Joachim; Reggiori, Fulvio; Kurth, Ingo; Hübner, Christian A; Dikic, Ivan

    2015-01-01

    The endoplasmic reticulum (ER) is the largest intracellular endomembrane system, enabling protein and lipid synthesis, ion homeostasis, quality control of newly synthesized proteins and organelle communication. Constant ER turnover and modulation is needed to meet different cellular requirements and

  19. Regulation of endoplasmic reticulum turnover by selective autophagy

    NARCIS (Netherlands)

    Khaminets, Aliaksandr; Heinrich, Theresa; Mari, Muriel; Grumati, Paolo; Huebner, Antje K.; Akutsu, Masato; Liebmann, Lutz; Stolz, Alexandra; Nietzsche, Sandor; Koch, Nicole; Mauthe, Mario; Katona, Istvan; Qualmann, Britta; Weis, Joachim; Reggiori, Fulvio; Kurth, Ingo; Huebner, Christian A.; Dikic, Ivan

    2015-01-01

    The endoplasmic reticulum (ER) is the largest intracellular endomembrane system, enabling protein and lipid synthesis, ion homeostasis, quality control of newly synthesized proteins and organelle communication(1). Constant ER turnover and modulation is needed to meet different cellular requirements

  20. Endoplasmic Reticulum Stress and Diabetic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Jiancheng Xu

    2012-01-01

    Full Text Available The endoplasmic reticulum (ER is an organelle entrusted with lipid synthesis, calcium homeostasis, protein folding, and maturation. Perturbation of ER-associated functions results in an evolutionarily conserved cell stress response, the unfolded protein response (UPR that is also called ER stress. ER stress is aimed initially at compensating for damage but can eventually trigger cell death if ER stress is excessive or prolonged. Now the ER stress has been associated with numerous diseases. For instance, our recent studies have demonstrated the important role of ER stress in diabetes-induced cardiac cell death. It is known that apoptosis has been considered to play a critical role in diabetic cardiomyopathy. Therefore, this paper will summarize the information from the literature and our own studies to focus on the pathological role of ER stress in the development of diabetic cardiomyopathy. Improved understanding of the molecular mechanisms underlying UPR activation and ER-initiated apoptosis in diabetic cardiomyopathy will provide us with new targets for drug discovery and therapeutic intervention.

  1. Endoplasmic reticulum stress in periimplantation embryos.

    Science.gov (United States)

    Michalak, Marek; Gye, Myung Chan

    2015-03-01

    Stress coping mechanisms are critical to minimize or overcome damage caused by ever changing environmental conditions. They are designed to promote cell survival. The unfolded protein response (UPR) pathway is mobilized in response to the accumulation of unfolded proteins, ultimately in order to regain endoplasmic reticulum (ER) homeostasis. Various elements of coping responses to ER stress including Perk, Ask1, Bip, Chop, Gadd34, Ire1, Atf4, Atf6, and Xbp1 have been identified and were found to be inducible in oocytes and preimplantation embryos, suggesting that, as a normal part of the cellular adaptive mechanism, these coping responses, including the UPR, play a pivotal role in the development of preimplantation embryos. As such, the UPR-associated molecules and pathways may become useful markers for the potential diagnosis of stress conditions for preimplantation embryos. After implantation, ER stress-induced coping responses become physiologically important for a normal decidual response, placentation, and early organogenesis. Attenuation of ER stress coping responses by tauroursodeoxycholate and salubrinal was effective for prevention of cell death of cultured embryos. Further elucidation of new and relevant ER stress coping responses in periimplantation embryos might contribute to a comprehensive understanding of the regulation of normal development of embryonic development and potentiation of embryonic development in vitro.

  2. Lipid Transport between the Endoplasmic Reticulum and Mitochondria

    Science.gov (United States)

    Flis, Vid V.

    2013-01-01

    Mitochondria are partially autonomous organelles that depend on the import of certain proteins and lipids to maintain cell survival and membrane formation. Although phosphatidylglycerol, cardiolipin, and phosphatidylethanolamine are synthesized by mitochondrial enzymes, phosphatidylcholine, phosphatidylinositol, phosphatidylserine, and sterols need to be imported from other organelles. The origin of most lipids imported into mitochondria is the endoplasmic reticulum, which requires interaction of these two subcellular compartments. Recently, protein complexes that are involved in membrane contact between endoplasmic reticulum and mitochondria were identified, but their role in lipid transport is still unclear. In the present review, we describe components involved in lipid translocation between the endoplasmic reticulum and mitochondria and discuss functional as well as regulatory aspects that are important for lipid homeostasis. PMID:23732475

  3. Structural plasticity of the nuclear envelope and the endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Sheval E. V.

    2014-09-01

    Full Text Available The nuclear envelope is a double membrane structure, continuous with endoplasmic reticulum, and the morphological organization of both these structures is quite conservative. However, nuclear envelope and endoplasmic reticulum demonstrate distinct structural plasticity, i. e., based on common organization, cells may form various non-canonical membrane structures that are observed only in specialized types of cells or appear in different pathologies. In this review, we will discuss the mechanisms of the biogenesis of such non-canonical structures, and the possible role of this plasticity in the development of pathological processes.

  4. Folding of viral envelope glycoproteins in the endoplasmic reticulum

    NARCIS (Netherlands)

    Braakman, L.J.; Anken, E. van

    2000-01-01

    Viral glycoproteins fold and oligomerize in the endoplasmic reticulum of the host cell. They employ the cellular machinery and receive assistance from cellular folding factors. During the folding process, they are retained in the compartment and their structural quality is checked by the quality con

  5. A luminal flavoprotein in endoplasmic reticulum-associated degradation

    DEFF Research Database (Denmark)

    Riemer, Jan; Appenzeller-Herzog, Christian; Johansson, Linda

    2009-01-01

    The quality control system of the endoplasmic reticulum (ER) discriminates between native and nonnative proteins. The latter are degraded by the ER-associated degradation (ERAD) pathway. Whereas many cytosolic and membrane components of this system are known, only few luminal players have been id...

  6. Sel1L is indispensable for mammalian endoplasmic reticulum-associated degradation, endoplasmic reticulum homeostasis, and survival

    NARCIS (Netherlands)

    Sun, S.; Shi, Guojun; Han, X.; Francisco, A.; Ji, Y.; Kersten, A.H.

    2014-01-01

    Suppressor/Enhancer of Lin-12-like (Sel1L) is an adaptor protein for the E3 ligase hydroxymethylglutaryl reductase degradation protein 1 (Hrd1) involved in endoplasmic reticulum-associated degradation (ERAD). Sel1L’s physiological importance in mammalian ERAD, however, remains to be established. Her

  7. Endoplasmic Reticulum Stress and Insulin Biosynthesis: A Review

    OpenAIRE

    2012-01-01

    Insulin resistance and pancreatic beta cell dysfunction are major contributors to the pathogenesis of diabetes. Various conditions play a role in the pathogenesis of pancreatic beta cell dysfunction and are correlated with endoplasmic reticulum (ER) stress. Pancreatic beta cells are susceptible to ER stress. Many studies have shown that increased ER stress induces pancreatic beta cell dysfunction and diabetes mellitus using genetic models of ER stress and by various stimuli. There are many re...

  8. Fluoride induced endoplasmic reticulum stress and calcium overload in ameloblasts.

    Science.gov (United States)

    Zhang, Ying; Zhang, KaiQiang; Ma, Lin; Gu, HeFeng; Li, Jian; Lei, Shuang

    2016-09-01

    The aim of the study was to evaluate the involvement of endoplasmic reticulum stress and intracellular calcium overload on the development of dental fluorosis. We cultured and exposed rat ameloblast HAT-7 cells to various concentrations of fluoride and measured apoptosis with flow cytometry and intracellular Ca2+ changes using confocal microscopy, investigated the protein levels of GRP78, calreticulin, XBP1 and CHOP by western blotting, and their transcriptional levels with RT-PCR. We also created an in vivo model of dental fluorosis by exposing animals to various concentrations of fluoride. Subsequently, thin dental tissue slices were analyzed with H&E staining, immunohistochemical staining, and transmission electron microscopy, TUNEL assay was also performed on dental tissue slices for assessment of apoptosis. High fluoride concentration was associated with decreased ameloblast proliferation, elevated ameloblast apoptosis, and increased intracellular Ca2+ in vitro. The translation and transcription of the proteins associated with endoplasmic reticulum stress were significantly elevated with high concentrations of fluoride. Based on immunohistochemical staining, these proteins were also highly expressed in animals exposed to high fluoride concentrations. Histologically, we found significant fluorosis-like changes in tissues from animals exposed to high fluoride concentrations. Transmission electron microscopy cytology indicated significant apoptotic changes in tissues exposed to high concentrations of fluoride. These results indicate that exposure to high levels of fluoride led to endoplasmic reticulum stress which induced apoptosis in cultured ameloblasts and in vivo rat model, suggesting an important role of calcium overload and endoplasmic reticulum stress triggered by high concentrations of fluoride in the development of dental fluorosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Prediction of endoplasmic reticulum resident proteins using fragmented amino acid composition and support vector machine

    Directory of Open Access Journals (Sweden)

    Ravindra Kumar

    2017-09-01

    Full Text Available Background The endoplasmic reticulum plays an important role in many cellular processes, which includes protein synthesis, folding and post-translational processing of newly synthesized proteins. It is also the site for quality control of misfolded proteins and entry point of extracellular proteins to the secretory pathway. Hence at any given point of time, endoplasmic reticulum contains two different cohorts of proteins, (i proteins involved in endoplasmic reticulum-specific function, which reside in the lumen of the endoplasmic reticulum, called as endoplasmic reticulum resident proteins and (ii proteins which are in process of moving to the extracellular space. Thus, endoplasmic reticulum resident proteins must somehow be distinguished from newly synthesized secretory proteins, which pass through the endoplasmic reticulum on their way out of the cell. Approximately only 50% of the proteins used in this study as training data had endoplasmic reticulum retention signal, which shows that these signals are not essentially present in all endoplasmic reticulum resident proteins. This also strongly indicates the role of additional factors in retention of endoplasmic reticulum-specific proteins inside the endoplasmic reticulum. Methods This is a support vector machine based method, where we had used different forms of protein features as inputs for support vector machine to develop the prediction models. During training leave-one-out approach of cross-validation was used. Maximum performance was obtained with a combination of amino acid compositions of different part of proteins. Results In this study, we have reported a novel support vector machine based method for predicting endoplasmic reticulum resident proteins, named as ERPred. During training we achieved a maximum accuracy of 81.42% with leave-one-out approach of cross-validation. When evaluated on independent dataset, ERPred did prediction with sensitivity of 72.31% and specificity of 83

  10. Endoplasmic reticulum stress in spinal and bulbar muscular atrophy: a potential target for therapy.

    Science.gov (United States)

    Montague, Karli; Malik, Bilal; Gray, Anna L; La Spada, Albert R; Hanna, Michael G; Szabadkai, Gyorgy; Greensmith, Linda

    2014-07-01

    Spinal and bulbar muscular atrophy is an X-linked degenerative motor neuron disease caused by an abnormal expansion in the polyglutamine encoding CAG repeat of the androgen receptor gene. There is evidence implicating endoplasmic reticulum stress in the development and progression of neurodegenerative disease, including polyglutamine disorders such as Huntington's disease and in motor neuron disease, where cellular stress disrupts functioning of the endoplasmic reticulum, leading to induction of the unfolded protein response. We examined whether endoplasmic reticulum stress is also involved in the pathogenesis of spinal and bulbar muscular atrophy. Spinal and bulbar muscular atrophy mice that carry 100 pathogenic polyglutamine repeats in the androgen receptor, and develop a late-onset neuromuscular phenotype with motor neuron degeneration, were studied. We observed a disturbance in endoplasmic reticulum-associated calcium homeostasis in cultured embryonic motor neurons from spinal and bulbar muscular atrophy mice, which was accompanied by increased endoplasmic reticulum stress. Furthermore, pharmacological inhibition of endoplasmic reticulum stress reduced the endoplasmic reticulum-associated cell death pathway. Examination of spinal cord motor neurons of pathogenic mice at different disease stages revealed elevated expression of markers for endoplasmic reticulum stress, confirming an increase in this stress response in vivo. Importantly, the most significant increase was detected presymptomatically, suggesting that endoplasmic reticulum stress may play an early and possibly causal role in disease pathogenesis. Our results therefore indicate that the endoplasmic reticulum stress pathway could potentially be a therapeutic target for spinal and bulbar muscular atrophy and related polyglutamine diseases.

  11. Mitochondria-endoplasmic reticulum choreography: structure and signaling dynamics.

    Science.gov (United States)

    Pizzo, Paola; Pozzan, Tullio

    2007-10-01

    Mitochondria and endoplasmic reticulum (ER) have different roles in living cells but they interact both physically and functionally. A key aspect of the mitochondria-ER relationship is the modulation of Ca(2+) signaling during cell activation, which thus affects a variety of physiological processes. We focus here on the molecular aspects that control the dynamics of the organelle-organelle interaction and their relationship with Ca(2+) signals, also discussing the consequences that these phenomena have, not only for cell physiology but also in the control of cell death.

  12. Connections between microtubules and endoplasmic reticulum in mitotic spindle

    Directory of Open Access Journals (Sweden)

    J. A. Tarkowska

    2015-01-01

    Full Text Available Dividing endosperm cells of Haemanthus katherinae Bak. were treated with an 0.025 per cent aqueous solution of an oleander glycosides mixture which produces severe disturtaances in the mitotic spindle and high hypertrophy of the endoplasmic reticulum (ER in the whole cells. There appear between the kinetochore microtubules (MTs numerous elongated and narrow ER cisterns, particularly well visible when the number of kinetochore MTs is reduced. Both these structures (MTs and ER are frequently connected by cross-bridges. The presumable role of these connections is discused.

  13. CDIP1-BAP31 Complex Transduces Apoptotic Signals from Endoplasmic Reticulum to Mitochondria under Endoplasmic Reticulum Stress

    OpenAIRE

    Takushi Namba; Fang Tian; Kiki Chu; So-Young Hwang; Kyoung Wan Yoon; Sanguine Byun; Masatsugu Hiraki; Anna Mandinova; Sam W. Lee

    2013-01-01

    Resolved endoplasmic reticulum (ER) stress response is essential for intracellular homeostatic balance, but unsettled ER stress can lead to apoptosis. Here, we show that a proapoptotic p53 target, CDIP1, acts as a key signal transducer of ER-stress-mediated apoptosis. We identify B-cell-receptor-associated protein 31 (BAP31) as an interacting partner of CDIP1. Upon ER stress, CDIP1 is induced and enhances an association with BAP31 at the ER membrane. We also show that CDIP1 binding to BAP31 i...

  14. Endoplasmic Reticulum Protein Quality Control Failure in Myelin Disorders

    Science.gov (United States)

    Volpi, Vera G.; Touvier, Thierry; D'Antonio, Maurizio

    2017-01-01

    Reaching the correct three-dimensional structure is crucial for the proper function of a protein. The endoplasmic reticulum (ER) is the organelle where secreted and transmembrane proteins are synthesized and folded. To guarantee high fidelity of protein synthesis and maturation in the ER, cells have evolved ER-protein quality control (ERQC) systems, which assist protein folding and promptly degrade aberrant gene products. Only correctly folded proteins that pass ERQC checkpoints are allowed to exit the ER and reach their final destination. Misfolded glycoproteins are detected and targeted for degradation by the proteasome in a process known as endoplasmic reticulum-associated degradation (ERAD). The excess of unstructured proteins in the ER triggers an adaptive signal transduction pathway, called unfolded protein response (UPR), which in turn potentiates ERQC activities in order to reduce the levels of aberrant molecules. When the situation cannot be restored, the UPR drives cells to apoptosis. Myelin-forming cells of the central and peripheral nervous system (oligodendrocytes and Schwann cells) synthesize a large amount of myelin proteins and lipids and therefore are particularly susceptible to ERQC failure. Indeed, deficits in ERQC and activation of ER stress/UPR have been implicated in several myelin disorders, such as Pelizaeus-Merzbacher and Krabbe leucodystrophies, vanishing white matter disease and Charcot-Marie-Tooth neuropathies. Here we discuss recent evidence underlying the importance of proper ERQC functions in genetic disorders of myelinating glia. PMID:28101003

  15. Mitochondria and endoplasmic reticulum crosstalk in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Manfredi, Giovanni; Kawamata, Hibiki

    2016-06-01

    Physical and functional interactions between mitochondria and the endoplasmic reticulum (ER) are crucial for cell life. These two organelles are intimately connected and collaborate to essential processes, such as calcium homeostasis and phospholipid biosynthesis. The connections between mitochondria and endoplasmic reticulum occur through structures named mitochondria associated membranes (MAMs), which contain lipid rafts and a large number of proteins, many of which serve multiple functions at different cellular sites. Growing evidence strongly suggests that alterations of ER-mitochondria interactions are involved in neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), a devastating and rapidly fatal motor neuron disease. Mutations in proteins that participate in ER-mitochondria interactions and MAM functions are increasingly being associated with genetic forms of ALS and other neurodegenerative diseases. This evidence strongly suggests that, rather than considering the two organelles separately, a better understanding of the disease process can derive from studying the alterations in their crosstalk. In this review we discuss normal and pathological ER-mitochondria interactions and the evidence that link them to ALS. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Cell Death and Survival Through the Endoplasmic Reticulum-Mitochondrial Axis

    Science.gov (United States)

    Bravo-Sagua, R.; Rodriguez, A.E.; Kuzmicic, J.; Gutierrez, T.; Lopez-Crisosto, C.; Quiroga, C.; Díaz-Elizondo, J.; Chiong, M.; Gillette, T.G.; Rothermel, B.A.; Lavandero, S.

    2014-01-01

    The endoplasmic reticulum has a central role in biosynthesis of a variety of proteins and lipids. Mitochondria generate ATP, synthesize and process numerous metabolites, and are key regulators of cell death. The architectures of endoplasmic reticulum and mitochondria change continually via the process of membrane fusion, fission, elongation, degradation, and renewal. These structural changes correlate with important changes in organellar function. Both organelles are capable of moving along the cytoskeleton, thus changing their cellular distribution. Numerous studies have demonstrated coordination and communication between mitochondria and endoplasmic reticulum. A focal point for these interactions is a zone of close contact between them known as the mitochondrial–associated endoplasmic reticulum membrane (MAM), which serves as a signaling juncture that facilitates calcium and lipid transfer between organelles. Here we review the emerging data on how communication between endoplasmic reticulum and mitochondria can modulate organelle function and determine cellular fate. PMID:23228132

  17. Advances in the mechanisms of atherosclerosis vulnerable plague and endoplasmic reticulum stress

    Institute of Scientific and Technical Information of China (English)

    Zhong Zhang; Ruo-Lan Huang; Ru Mo; Ling Wang; Xiao Chang; Mu-Juan Xu

    2016-01-01

    Objective:Ischemic stroke and coronary heart disease occupy the first two place of world health economic burden, atherosclerotic vulnerable plaque rupture as the common factor of these diseases, is thought to be a key target of ischemic cardiovascular and cerebrovascular disease control. Endoplasmic reticulum stress is one of the classical pathway of cell apoptosis. More and more studies have indicated that the endoplasmic reticulum stress pathway was involved in the development of atherosclerotic plaque rupture. In this paper, the three main signal pathways of endoplasmic reticulum stress, including Protein kinase RNA-like ER kinase (PERK), Activating transcription factor 6 (ATF6) and Inositol-requiring protein 1αα(IRE1α) were reviewed. The relationship between the risk factors of atherosclerosis (including hyperlipidemia, hypertension and hyperglycemia) and endoplasmic reticulum stress, and the relationship between major cellular components (macrophages, vascular endothelial cells, vascular smooth muscle cells and vascular smooth muscle cells) of vulnerable plaque and endoplasmic reticulum stress were reviewed.

  18. From endoplasmic reticulum to mitochondria: absence of the Arabidopsis ATP antiporter endoplasmic Reticulum Adenylate Transporter1 perturbs photorespiration.

    Science.gov (United States)

    Hoffmann, Christiane; Plocharski, Bartolome; Haferkamp, Ilka; Leroch, Michaela; Ewald, Ralph; Bauwe, Hermann; Riemer, Jan; Herrmann, Johannes M; Neuhaus, H Ekkehard

    2013-07-01

    The carrier Endoplasmic Reticulum Adenylate Transporter1 (ER-ANT1) resides in the endoplasmic reticulum (ER) membrane and acts as an ATP/ADP antiporter. Mutant plants lacking ER-ANT1 exhibit a dwarf phenotype and their seeds contain reduced protein and lipid contents. In this study, we describe a further surprising metabolic peculiarity of the er-ant1 mutants. Interestingly, Gly levels in leaves are immensely enhanced (26×) when compared with that of wild-type plants. Gly accumulation is caused by significantly decreased mitochondrial glycine decarboxylase (GDC) activity. Reduced GDC activity in mutant plants was attributed to oxidative posttranslational protein modification induced by elevated levels of reactive oxygen species (ROS). GDC activity is crucial for photorespiration; accordingly, morphological and physiological defects in er-ant1 plants were nearly completely abolished by application of high environmental CO(2) concentrations. The latter observation demonstrates that the absence of ER-ANT1 activity mainly affects photorespiration (maybe solely GDC), whereas basic cellular metabolism remains largely unchanged. Since ER-ANT1 homologs are restricted to higher plants, it is tempting to speculate that this carrier fulfils a plant-specific function directly or indirectly controlling cellular ROS production. The observation that ER-ANT1 activity is associated with cellular ROS levels reveals an unexpected and critical physiological connection between the ER and other organelles in plants.

  19. Assembly of MHC class I molecules within the endoplasmic reticulum.

    Science.gov (United States)

    Zhang, Yinan; Williams, David B

    2006-01-01

    MHC class I molecules bind cytosolically derived peptides within the endoplasmic reticulum (ER) and present them at the cell surface to cytotoxic T cells. A major focus of our laboratory has been to understand the functions of the diverse proteins involved in the intracellular assembly of MHC class I molecules. These include the molecular chaperones calnexin and calreticulin, which enhance the proper folding and subunit assembly of class I molecules and also retain assembly intermediates within the ER; ERp57, a thiol oxidoreductase that promotes heavy chain disulfide formation and proper assembly of the peptide loading complex; tapasin, which recruits class I molecules to the TAP peptide transporter and enhances the loading of high affinity peptide ligands; and Bap31, which is involved in clustering assembled class I molecules at ER exit sites for export along the secretory pathway. This review describes our contributions to elucidating the functions of these proteins; the combined effort of many dedicated students and postdoctoral fellows.

  20. Quality Control System of the Endoplasmic Reticulum and Related Diseases

    Institute of Scientific and Technical Information of China (English)

    Jun-Chao WU; Zhong-Qin LIANG; Zheng-Hong QIN

    2006-01-01

    The quality control (QC) system of the endoplasmic reticulum (ER) is an important monitoring mechanism in the protein maturation process, which ensures export of properly folded proteins from the ER.Incorrectly or incompletely folded proteins are retained in the ER for refolding or degradation by the ER-residing proteasome. The calnexin/calreticulin cycle and ER-associated degradation are the key elements in QC. These two mechanisms work together to allow incorrectly folded proteins have additional opportunities to achieve their native conformations. The QC dysfunction is involved in many diseases caused by mutant proteins, many of which are causes of neurodegenerative disorders. A better understanding of molecular regulation in the QC system will uncover the molecular pathogenic mechanisms of many diseases caused by protein misfolding and help discover novel strategies for preventing or treating these diseases.

  1. Endoplasmic Reticulum Stress and Insulin Biosynthesis: A Review

    Directory of Open Access Journals (Sweden)

    Mi-Kyung Kim

    2012-01-01

    Full Text Available Insulin resistance and pancreatic beta cell dysfunction are major contributors to the pathogenesis of diabetes. Various conditions play a role in the pathogenesis of pancreatic beta cell dysfunction and are correlated with endoplasmic reticulum (ER stress. Pancreatic beta cells are susceptible to ER stress. Many studies have shown that increased ER stress induces pancreatic beta cell dysfunction and diabetes mellitus using genetic models of ER stress and by various stimuli. There are many reports indicating that ER stress plays an important role in the impairment of insulin biosynthesis, suggesting that reduction of ER stress could be a therapeutic target for diabetes. In this paper, we reviewed the relationship between ER stress and diabetes and how ER stress controls insulin biosynthesis.

  2. Endoplasmic reticulum stress and insulin biosynthesis: a review.

    Science.gov (United States)

    Kim, Mi-Kyung; Kim, Hye-Soon; Lee, In-Kyu; Park, Keun-Gyu

    2012-01-01

    Insulin resistance and pancreatic beta cell dysfunction are major contributors to the pathogenesis of diabetes. Various conditions play a role in the pathogenesis of pancreatic beta cell dysfunction and are correlated with endoplasmic reticulum (ER) stress. Pancreatic beta cells are susceptible to ER stress. Many studies have shown that increased ER stress induces pancreatic beta cell dysfunction and diabetes mellitus using genetic models of ER stress and by various stimuli. There are many reports indicating that ER stress plays an important role in the impairment of insulin biosynthesis, suggesting that reduction of ER stress could be a therapeutic target for diabetes. In this paper, we reviewed the relationship between ER stress and diabetes and how ER stress controls insulin biosynthesis.

  3. WLS retrograde transport to the endoplasmic reticulum during Wnt secretion.

    Science.gov (United States)

    Yu, Jia; Chia, Joanne; Canning, Claire Ann; Jones, C Michael; Bard, Frédéric A; Virshup, David M

    2014-05-12

    Wnts are transported to the cell surface by the integral membrane protein WLS (also known as Wntless, Evi, and GPR177). Previous studies of WLS trafficking have emphasized WLS movement from the Golgi to the plasma membrane (PM) and then back to the Golgi via retromer-mediated endocytic recycling. We find that endogenous WLS binds Wnts in the endoplasmic reticulum (ER), cycles to the PM, and then returns to the ER through the Golgi. We identify an ER-targeting sequence at the carboxyl terminus of native WLS that is critical for ER retrograde recycling and contributes to Wnt secretory function. Golgi-to-ER recycling of WLS requires the COPI regulator ARF as well as ERGIC2, an ER-Golgi intermediate compartment protein that is also required for the retrograde trafficking of the KDEL receptor and certain toxins. ERGIC2 is required for efficient Wnt secretion. ER retrieval is an integral part of the WLS transport cycle.

  4. Plant transducers of the endoplasmic reticulum unfolded protein response

    KAUST Repository

    Iwata, Yuji

    2012-12-01

    The unfolded protein response (UPR) activates a set of genes to overcome accumulation of unfolded proteins in the endoplasmic reticulum (ER), a condition termed ER stress, and constitutes an essential part of ER protein quality control that ensures efficient maturation of secretory and membrane proteins in eukaryotes. Recent studies on Arabidopsis and rice identified the signaling pathway in which the ER membrane-localized ribonuclease IRE1 (inositol-requiring enzyme 1) catalyzes unconventional cytoplasmic splicing of mRNA, thereby producing the active transcription factor Arabidopsis bZIP60 (basic leucine zipper 60) and its ortholog in rice. Here we review recent findings identifying the molecular components of the plant UPR, including IRE1/bZIP60 and the membrane-bound transcription factors bZIP17 and bZIP28, and implicating its importance in several physiological phenomena such as pathogen response. © 2012 Elsevier Ltd.

  5. Homotypic fusion of endoplasmic reticulum membranes in plant cells

    Directory of Open Access Journals (Sweden)

    Junjie eHu

    2013-12-01

    Full Text Available The endoplasmic reticulum (ER is a membrane-bounded organelle whose membrane comprises a network of tubules and sheets. The formation of these characteristic shapes and maintenance of their continuity through homotypic membrane fusion appears to be critical for the proper functioning of the ER. The atlastins (ATLs, a family of ER-localized dynamin-like GTPases, have been identified as fusogens of the ER membranes in metazoans. Mutations of the ATL proteins in mammalian cells cause morphological defects in the ER, and purified Drosophila ATL mediates membrane fusion in vitro. Plant cells do not possess ATL, but a family of similar GTPases, named root hair defective 3 (RHD3, are likely the functional orthologs of ATLs. In this review, we summarize recent advances in our understanding of how RHD3 proteins play a role in homotypic ER fusion. We also discuss the possible physiological significance of forming a tubular ER network in plant cells.

  6. Induction of Apoptosis by Hypertension Via Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Yingying Sun

    2015-02-01

    Full Text Available Background/Aims: Endoplasmic reticulum (ER stress is one of the intrinsic apoptosis pathways, and cardiac apoptosis can occur in cardiovascular diseases, such as hypertension. However, the mechanisms by which ER stress leads to apoptosis remain enigmatic, particularly in the progression from cardiac hypertrophy to diastolic heart failure due to hypertension. Methods: We used spontaneously hypertensive rats (SHRs to investigate possible signalling pathways for ER stress. Results: We found that cardiac protein and mRNA levels of glucose-regulated protein 78 were up-regulated. In addition, the CHOP- and caspase-12-dependent pathways, but not that of JNK, were activated in the SHR rats. Conclusions: These results suggest that ER stress can contribute to myocardial apoptosis during hypertensive disease.

  7. ANALYSIS OF ENDOPLASMIC RETICULUM OF TOBACCO CELLS USING CONFOCAL MICROSCOPY

    Directory of Open Access Journals (Sweden)

    Barbora Radochová

    2011-05-01

    Full Text Available Image analysis techniques for preprocessing, segmentation and estimation of geometrical characteristics of fiber-like structures from 2-D or 3-D images captured by a confocal microscope are presented. Methods are demonstrated on fiber-like biological structure: endoplasmic reticulum (ER of tobacco cells. In the presented analysis of 2-D images of ER before and after the treatment of latrunculin B, ER and ER tubules were segmented and the area density of ER as well as the length density of ER tubules in the cell cortical layer were estimated by automatic image analysis algorithms. Images of 3-D arrangement of ER were reconstructed and rendered by various visualization techniques.

  8. Maternal obesity alters endoplasmic reticulum homeostasis in offspring pancreas.

    Science.gov (United States)

    Soeda, Jumpei; Mouralidarane, Angelina; Cordero, Paul; Li, Jiawei; Nguyen, Vi; Carter, Rebeca; Kapur, Sabrina R; Pombo, Joaquim; Poston, Lucilla; Taylor, Paul D; Vinciguerra, Manlio; Oben, Jude A

    2016-06-01

    The prevalence of non-alcoholic fatty pancreas disease (NAFPD) is increasing in parallel with obesity rates. Stress-related alterations in endoplasmic reticulum (ER), such as the unfolded protein response (UPR), are associated with obesity. The aim of this study was to investigate ER imbalance in the pancreas of a mice model of adult and perinatal diet-induced obesity. Twenty female C57BL/6J mice were assigned to control (Con) or obesogenic (Ob) diets prior to and during pregnancy and lactation. Their offspring were weaned onto Con or Ob diets up to 6 months post-partum. Then, after sacrifice, plasma biochemical analyses, gene expression, and protein concentrations were measured in pancreata. Offspring of Ob-fed mice had significantly increased body weight (p < 0.001) and plasma leptin (p < 0.001) and decreased insulin (p < 0.01) levels. Maternal obesogenic diet decreased the total and phosphorylated Eif2α and increased spliced X-box binding protein 1 (XBP1). Pancreatic gene expression of downstream regulators of UPR (EDEM, homocysteine-responsive endoplasmic reticulum-resident (HERP), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP)) and autophagy-related proteins (LC3BI/LC3BII) were differently disrupted by obesogenic feeding in both mothers and offspring (from p < 0.1 to p < 0.001). Maternal obesity and Ob feeding in their offspring alter UPR in NAFPD, with involvement of proapoptotic and autophagy-related markers. Upstream and downstream regulators of PERK, IRE1α, and ATF6 pathways were affected differently following the obesogenic insults.

  9. The overexpression of nuclear envelope protein Lap2β induces endoplasmic reticulum reorganisation via membrane stacking

    Directory of Open Access Journals (Sweden)

    Ekaterina G. Volkova

    2012-06-01

    Some nuclear envelope proteins are localised to both the nuclear envelope and the endoplasmic reticulum; therefore, it seems plausible that even small amounts of these proteins can influence the organisation of the endoplasmic reticulum. A simple method to study the possible effects of nuclear envelope proteins on endoplasmic reticulum organisation is to analyze nuclear envelope protein overexpression. Here, we demonstrate that Lap2β overexpression can induce the formation of cytoplasmic vesicular structures derived from endoplasmic reticulum membranes. Correlative light and electron microscopy demonstrated that these vesicular structures were composed of a series of closely apposed membranes that were frequently arranged in a circular fashion. Although stacked endoplasmic reticulum cisternae were highly ordered, Lap2β could readily diffuse into and out of these structures into the surrounding reticulum. It appears that low-affinity interactions between cytoplasmic domains of Lap2β can reorganise reticular endoplasmic reticulum into stacked cisternae. Although the effect of one protein may be insignificant at low concentrations, the cumulative effect of many non-specialised proteins may be significant.

  10. Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for Apoptosis

    OpenAIRE

    Jintao Zhang; Man Yi; Longying Zha; Siqiang Chen; Zhijia Li; Cheng Li; Mingxing Gong; Hong Deng; Xinwei Chu; Jiehua Chen; Zheqing Zhang; Limei Mao; Suxia Sun

    2016-01-01

    Purpose Butyrate, a short-chain fatty acid derived from dietary fiber, inhibits proliferation and induces cell death in colorectal cancer cells. However, clinical trials have shown mixed results regarding the anti-tumor activities of butyrate. We have previously shown that sodium butyrate increases endoplasmic reticulum stress by altering intracellular calcium levels, a well-known autophagy trigger. Here, we investigated whether sodium butyrate-induced endoplasmic reticulum stress mediated au...

  11. Placental endoplasmic reticulum stress and acidosis: relevant aspects in gestational diabetes.

    Science.gov (United States)

    Jawerbaum, Alicia

    2016-10-01

    In this issue, Yung and colleagues (doi: 10.1007/s00125-016-4040-2 ) report endoplasmic reticulum stress in the placenta of patients with gestational diabetes mellitus. With the use of a trophoblast-like cell line, these authors identify putative mechanisms involved in, and treatments to prevent the induction of endoplasmic reticulum stress. Here, the relevance and possible implications of these findings and areas for further research are discussed.

  12. Reduction of endoplasmic reticulum Ca2+ levels favors plasma membrane surface exposure of calreticulin.

    Science.gov (United States)

    Tufi, R; Panaretakis, T; Bianchi, K; Criollo, A; Fazi, B; Di Sano, F; Tesniere, A; Kepp, O; Paterlini-Brechot, P; Zitvogel, L; Piacentini, M; Szabadkai, G; Kroemer, G

    2008-02-01

    Some chemotherapeutic agents can elicit apoptotic cancer cell death, thereby activating an anticancer immune response that influences therapeutic outcome. We previously reported that anthracyclins are particularly efficient in inducing immunogenic cell death, correlating with the pre-apoptotic exposure of calreticulin (CRT) on the plasma membrane surface of anthracyclin-treated tumor cells. Here, we investigated the role of cellular Ca(2+) homeostasis on CRT exposure. A neuroblastoma cell line (SH-SY5Y) failed to expose CRT in response to anthracyclin treatment. This defect in CRT exposure could be overcome by the overexpression of Reticulon-1C, a manipulation that led to a decrease in the Ca(2+) concentration within the endoplasmic reticulum lumen. The combination of Reticulon-1C expression and anthracyclin treatment yielded more pronounced endoplasmic reticulum Ca(2+) depletion than either of the two manipulations alone. Chelation of intracellular (and endoplasmic reticulum) Ca(2+), targeted expression of the ligand-binding domain of the IP(3) receptor and inhibition of the sarco-endoplasmic reticulum Ca(2+)-ATPase pump reduced endoplasmic reticulum Ca(2+) load and promoted pre-apoptotic CRT exposure on the cell surface, in SH-SY5Y and HeLa cells. These results provide evidence that endoplasmic reticulum Ca(2+) levels control the exposure of CRT.

  13. Unique defense strategy by the endoplasmic reticulum body in plants.

    Science.gov (United States)

    Yamada, Kenji; Hara-Nishimura, Ikuko; Nishimura, Mikio

    2011-12-01

    The endoplasmic reticulum (ER) is a site for the production of secretory proteins. Plants have developed ER subdomains for protein storage. The ER body is one such structure, which is observed in Brassicaceae plants. ER bodies accumulate in seedlings and roots or in wounded leaves in Arabidopsis. ER bodies contain high amounts of the β-glucosidases PYK10/BGLU23 in seedlings and roots or BGLU18 in wounded tissues. These results suggest that ER bodies are involved in the metabolism of glycoside molecules, presumably to produce repellents against pests and fungi. When Arabidopsis roots are homogenized, PYK10 formed large protein aggregates that include other β-glucosidases (BGLU21 and BGLU22), GDSL lipase-like proteins (GLL22) and cytosolic jacalin-related lectins (PBP1/JAL30, JAL31, JAL33, JAL34 and JAL35). Glucosidase activity increases by the aggregate formation. NAI1, a basic helix-loop-helix transcription factor, regulates the expression of the ER body proteins PYK10 and NAI2. Reduced expression of NAI2, PYK10 and BGLU21 resulted in abnormal ER body formation, indicating that these components regulate ER body formation. PYK10, BGLU21 and BGLU22 possess hydrolytic activity for scopolin, a coumaroyl glucoside that accumulates in the roots of Arabidopsis, and nai1 and pyk10 mutants are more susceptible to the symbiotic fungus Piriformospora indica. Therefore, it appears that the ER body is a unique organelle of Brassicaceae plants that is important for defense against pests and fungi.

  14. Stress responses from the endoplasmic reticulum in cancer

    Directory of Open Access Journals (Sweden)

    Hironori eKato

    2015-04-01

    Full Text Available The endoplasmic reticulum (ER is a dynamic organelle that is essential for multiple cellular functions. During cellular stress conditions, including nutrient deprivation and dysregulation of protein synthesis, unfolded/misfolded proteins accumulate in the ER lumen, resulting in activation of the unfolded protein response (UPR. The UPR also contributes to the regulation of various intracellular signalling pathways such as calcium signalling and lipid signalling. More recently, the mitochondria-associated ER membrane (MAM, which is a site of close contact between the ER and mitochondria, has been shown to function as a platform for various intracellular stress responses including apoptotic signalling, inflammatory signalling, the autophagic response, and the UPR. Interestingly, in cancer, these signalling pathways from the ER are often dysregulated, contributing to cancer cell metabolism. Thus, the signalling pathway from the ER may be a novel therapeutic target for various cancers. In this review, we discuss recent research on the roles of stress responses from the ER, including the MAM.

  15. Chemical chaperones mitigate experimental asthma by attenuating endoplasmic reticulum stress.

    Science.gov (United States)

    Makhija, Lokesh; Krishnan, Veda; Rehman, Rakhshinda; Chakraborty, Samarpana; Maity, Shuvadeep; Mabalirajan, Ulaganathan; Chakraborty, Kausik; Ghosh, Balaram; Agrawal, Anurag

    2014-05-01

    Endoplasmic reticulum (ER) stress and consequent unfolded protein response (UPR) are important in inflammation but have been poorly explored in asthma. We used a mouse model of allergic airway inflammation (AAI) with features of asthma to understand the role of ER stress and to explore potential therapeutic effects of inhaled chemical chaperones, which are small molecules that can promote protein folding and diminish UPR. UPR markers were initially measured on alternate days during a 7-day daily allergen challenge model. UPR markers increased within 24 hours after the first allergen challenge and peaked by the third challenge, before AAI was fully established (from the fifth challenge onward). Three chemical chaperones-glycerol, trehalose, and trimethylamine-N-oxide (TMAO)-were initially administered during allergen challenge (preventive regimen). TMAO, the most effective of these chemical chaperones and 4-phenylbutyric acid, a chemical chaperone currently in clinical trials, were further tested for potential therapeutic activities after AAI was established (therapeutic regimen). Chemical chaperones showed a dose-dependent reduction in UPR markers, airway inflammation, and remodeling in both regimens. Our results indicate an early and important role of the ER stress pathway in asthma pathogenesis and show therapeutic potential for chemical chaperones.

  16. Endoplasmic reticulum localization and activity of maize auxin biosynthetic enzymes.

    Science.gov (United States)

    Kriechbaumer, Verena; Seo, Hyesu; Park, Woong June; Hawes, Chris

    2015-09-01

    Auxin is a major growth hormone in plants and the first plant hormone to be discovered and studied. Active research over >60 years has shed light on many of the molecular mechanisms of its action including transport, perception, signal transduction, and a variety of biosynthetic pathways in various species, tissues, and developmental stages. The complexity and redundancy of the auxin biosynthetic network and enzymes involved raises the question of how such a system, producing such a potent agent as auxin, can be appropriately controlled at all. Here it is shown that maize auxin biosynthesis takes place in microsomal as well as cytosolic cellular fractions from maize seedlings. Most interestingly, a set of enzymes shown to be involved in auxin biosynthesis via their activity and/or mutant phenotypes and catalysing adjacent steps in YUCCA-dependent biosynthesis are localized to the endoplasmic reticulum (ER). Positioning of auxin biosynthetic enzymes at the ER could be necessary to bring auxin biosynthesis in closer proximity to ER-localized factors for transport, conjugation, and signalling, and allow for an additional level of regulation by subcellular compartmentation of auxin action. Furthermore, it might provide a link to ethylene action and be a factor in hormonal cross-talk as all five ethylene receptors are ER localized.

  17. Endoplasmic-reticulum-mediated microtubule alignment governs cytoplasmic streaming.

    Science.gov (United States)

    Kimura, Kenji; Mamane, Alexandre; Sasaki, Tohru; Sato, Kohta; Takagi, Jun; Niwayama, Ritsuya; Hufnagel, Lars; Shimamoto, Yuta; Joanny, Jean-François; Uchida, Seiichi; Kimura, Akatsuki

    2017-04-01

    Cytoplasmic streaming refers to a collective movement of cytoplasm observed in many cell types. The mechanism of meiotic cytoplasmic streaming (MeiCS) in Caenorhabditis elegans zygotes is puzzling as the direction of the flow is not predefined by cell polarity and occasionally reverses. Here, we demonstrate that the endoplasmic reticulum (ER) network structure is required for the collective flow. Using a combination of RNAi, microscopy and image processing of C. elegans zygotes, we devise a theoretical model, which reproduces and predicts the emergence and reversal of the flow. We propose a positive-feedback mechanism, where a local flow generated along a microtubule is transmitted to neighbouring regions through the ER. This, in turn, aligns microtubules over a broader area to self-organize the collective flow. The proposed model could be applicable to various cytoplasmic streaming phenomena in the absence of predefined polarity. The increased mobility of cortical granules by MeiCS correlates with the efficient exocytosis of the granules to protect the zygotes from osmotic and mechanical stresses.

  18. Mechanisms of CFTR folding at the endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Soo Jung Kim

    2012-12-01

    Full Text Available In the past decade much has been learned about how CFTR folds and misfolds as the etiologic cause of cystic fibrosis (CF. CFTR folding is complex and hierarchical, takes place in multiple cellular compartments and physical environments, and involves several large networks of folding machineries. Insertion of transmembrane (TM segments into the endoplasmic reticulum (ER membrane and tertiary folding of cytosolic domains begin cotranslationally as the nascent polypeptide emerges from the ribosome, whereas posttranslational folding establishes critical domain-domain contacts needed to form a physiologically stable structure. Within the membrane, N- and C-terminal TM helices are sorted into bundles that project from the cytosol to form docking sites for nucleotide binding domains, NBD1 and NBD2, which in turn form a sandwich dimer for ATP binding. While tertiary folding is required for domain assembly, proper domain assembly also reciprocally affects folding of individual domains analogous to a jigsaw puzzle wherein the structure of each interlocking piece influences its neighbors. Superimposed on this process is an elaborate proteostatic network of cellular chaperones and folding machineries that facilitate the timing and coordination of specific folding steps in and across the ER membrane. While the details of this process require further refinement, we finally have a useful framework to understand key folding defect(s caused by ∆F508 that provides a molecular target(s for the next generation of CFTR small molecule correctors aimed at the specific defect present in the majority of CF patients.

  19. Regulation of endoplasmic reticulum turnover by selective autophagy.

    Science.gov (United States)

    Khaminets, Aliaksandr; Heinrich, Theresa; Mari, Muriel; Grumati, Paolo; Huebner, Antje K; Akutsu, Masato; Liebmann, Lutz; Stolz, Alexandra; Nietzsche, Sandor; Koch, Nicole; Mauthe, Mario; Katona, Istvan; Qualmann, Britta; Weis, Joachim; Reggiori, Fulvio; Kurth, Ingo; Hübner, Christian A; Dikic, Ivan

    2015-06-18

    The endoplasmic reticulum (ER) is the largest intracellular endomembrane system, enabling protein and lipid synthesis, ion homeostasis, quality control of newly synthesized proteins and organelle communication. Constant ER turnover and modulation is needed to meet different cellular requirements and autophagy has an important role in this process. However, its underlying regulatory mechanisms remain unexplained. Here we show that members of the FAM134 reticulon protein family are ER-resident receptors that bind to autophagy modifiers LC3 and GABARAP, and facilitate ER degradation by autophagy ('ER-phagy'). Downregulation of FAM134B protein in human cells causes an expansion of the ER, while FAM134B overexpression results in ER fragmentation and lysosomal degradation. Mutant FAM134B proteins that cause sensory neuropathy in humans are unable to act as ER-phagy receptors. Consistently, disruption of Fam134b in mice causes expansion of the ER, inhibits ER turnover, sensitizes cells to stress-induced apoptotic cell death and leads to degeneration of sensory neurons. Therefore, selective ER-phagy via FAM134 proteins is indispensable for mammalian cell homeostasis and controls ER morphology and turnover in mice and humans.

  20. Selective export of autotaxin from the endoplasmic reticulum.

    Science.gov (United States)

    Lyu, Lin; Wang, Baolu; Xiong, Chaoyang; Zhang, Xiaotian; Zhang, Xiaoyan; Zhang, Junjie

    2017-04-28

    Autotaxin (ATX) or ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2) is a secretory glycoprotein and functions as the key enzyme for lysophosphatidic acid generation. The mechanism of ATX protein trafficking is largely unknown. Here, we demonstrated that p23, a member of the p24 protein family, was the protein-sorting receptor required for endoplasmic reticulum (ER) export of ATX. A di-phenylalanine (Phe-838/Phe-839) motif in the human ATX C-terminal region was identified as a transport signal essential for the ATX-p23 interaction. Knockdown of individual Sec24 isoforms by siRNA revealed that ER export of ATX was impaired only if Sec24C was down-regulated. These results suggest that ATX is selectively exported from the ER through a p23, Sec24C-dependent pathway. In addition, it was found that AKT signaling played a role in ATX secretion regulation to facilitate ATX ER export by enhancing the nuclear factor of activated T cell-mediated p23 expression. Furthermore, the di-hydrophobic amino acid motifs (FY) also existed in the C-terminal regions of human ENPP1 and ENPP3. Such a p23, Sec24C-dependent selective ER export mechanism is conserved among these ENPP family members. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Altered localization of amyloid precursor protein under endoplasmic reticulum stress.

    Science.gov (United States)

    Kudo, Takashi; Okumura, Masayo; Imaizumi, Kazunori; Araki, Wataru; Morihara, Takashi; Tanimukai, Hitoshi; Kamagata, Eiichiro; Tabuchi, Nobuhiko; Kimura, Ryo; Kanayama, Daisuke; Fukumori, Akio; Tagami, Shinji; Okochi, Masayasu; Kubo, Mikiko; Tanii, Hisashi; Tohyama, Masaya; Tabira, Takeshi; Takeda, Masatoshi

    2006-06-02

    Recent reports have shown that the endoplasmic reticulum (ER) stress is relevant to the pathogenesis of Alzheimer disease. Following the amyloid cascade hypothesis, we therefore attempted to investigate the effects of ER stress on amyloid-beta peptide (Abeta) generation. In this study, we found that ER stress altered the localization of amyloid precursor protein (APP) from late compartments to early compartments of the secretory pathway, and decreased the level of Abeta 40 and Abeta 42 release by beta- and gamma-cutting. Transient transfection with BiP/GRP78 also caused a shift of APP and a reduction in Abeta secretion. It was revealed that the ER stress response facilitated binding of BiP/GRP78 to APP, thereby causing it to be retained in the early compartments apart from a location suitable for the cleavages of Abeta. These findings suggest that induction of BiP/GRP78 during ER stress may be one of the regulatory mechanisms of Abeta generation.

  2. Homocysteine inhibits hepatocyte proliferation via endoplasmic reticulum stress.

    Directory of Open Access Journals (Sweden)

    Xue Yu

    Full Text Available Homocysteine is an independent risk factor for coronary, cerebral, and peripheral vascular diseases. Recent studies have shown that levels of homocysteine are elevated in patients with impaired hepatic function, but the precise role of homocysteine in the development of hepatic dysfunction is unclear. In this study, we examined the effect of homocysteine on hepatocyte proliferation in vitro. Our results demonstrated that homocysteine inhibited hepatocyte proliferation by up-regulating protein levels of p53 as well as mRNA and protein levels of p21(Cip1 in primary cultured hepatocytes. Homocysteine induced cell growth arrest in p53-positive hepatocarcinoma cell line HepG2, but not in p53-null hepatocarcinoma cell line Hep3B. A p53 inhibitor pifithrin-α inhibited the expression of p21(Cip1 and attenuated homocysteine-induced cell growth arrest. Homocysteine induced TRB3 expression via endoplasmic reticulum stress pathway, resulting in Akt dephosphorylation. Knock-down of endogenous TRB3 significantly suppressed the inhibitory effect of homocysteine on cell proliferation and the phosphorylation of Akt. LiCl reversed homocysteine-mediated cell growth arrest by inhibiting TRB3-mediated Akt dephosphorylation. These results demonstrate that both TRB3 and p21(Cip1 are critical molecules in the homocysteine signaling cascade and provide a mechanistic explanation for impairment of liver regeneration in hyperhomocysteinemia.

  3. Endoplasmic reticulum stress in adipose tissue augments lipolysis.

    Science.gov (United States)

    Bogdanovic, Elena; Kraus, Nicole; Patsouris, David; Diao, Li; Wang, Vivian; Abdullahi, Abdikarim; Jeschke, Marc G

    2015-01-01

    The endoplasmic reticulum (ER) is an organelle important for protein synthesis and folding, lipid synthesis and Ca(2+) homoeostasis. Consequently, ER stress or dysfunction affects numerous cellular processes and has been implicated as a contributing factor in several pathophysiological conditions. Tunicamycin induces ER stress in various cell types in vitro as well as in vivo. In mice, a hallmark of tunicamycin administration is the development of fatty livers within 24-48 hrs accompanied by hepatic ER stress. We hypothesized that tunicamycin would induce ER stress in adipose tissue that would lead to increased lipolysis and subsequently to fatty infiltration of the liver and hepatomegaly. Our results show that intraperitoneal administration of tunicamycin rapidly induced an ER stress response in adipose tissue that correlated with increased circulating free fatty acids (FFAs) and glycerol along with decreased adipose tissue mass and lipid droplet size. Furthermore, we found that in addition to fatty infiltration of the liver as well as hepatomegaly, lipid accumulation was also present in the heart, skeletal muscle and kidney. To corroborate our findings to a clinical setting, we examined adipose tissue from burned patients where increases in lipolysis and the development of fatty livers have been well documented. We found that burned patients displayed significant ER stress within adipose tissue and that ER stress augments lipolysis in cultured human adipocytes. Our results indicate a possible role for ER stress induced lipolysis in adipose tissue as an underlying mechanism contributing to increases in circulating FFAs and fatty infiltration into other organs.

  4. Hyperhomocysteinemia,endoplasmic reticulum stress,and alcoholic liver injury

    Institute of Scientific and Technical Information of China (English)

    Cheng Ji; Neil Kaplowitz

    2004-01-01

    Deficiencies in vitamins or other factors (B6, B12, folic acid,betaine) and genetic disorders for the metabolism of the non-protein amino acid-homocysteine (Hcy) lead to hyperhomocysteinemia (Hhcy). Hhcy is an integral component of several disorders including cardiovascular disease, neurodegeneration, diabetes and alcoholic liver disease. Hhcy unleashes mediators of inflammation such as NFκB, IL-1β, IL-6, and IL-8, increases production of intracellular superoxide anion causing oxidative stress and reducing intracellular level of nitric oxide (NO), and induces endoplasmic reticulum (ER) stress which can explain many processes of Hcy-promoted cell injury such as apoptosis,fat accumulation, and inflammation. Animal models have played an important role in determining the biological effects of Hhcy. ER stress may also be involved in other liver diseases such as α1-antitrypsin (α1-AT) deficiency and hepatitis C and/or B virus infection. Future research should evaluate the possible potentiative effects of alcohol and hepatic virus infection on ER stress-induced liver injury, study potentially beneficial effects of lowering Hcy and preventing ER stress in alcoholic humans,and examine polymorphism of Hcy metabolizing enzymes as potential risk-factors for the development of Hhcy and liver disease.

  5. Coordination of Endoplasmic Reticulum (ER) Signaling During Maize Seed Development

    Energy Technology Data Exchange (ETDEWEB)

    Boston, Rebecca S.

    2010-11-20

    Seed storage reserves represent one of the most important sources of renewable fixed carbon and nitrogen found in nature. Seeds are well-adapted for diverting metabolic resources to synthesize storage proteins as well as enzymes and structural proteins needed for their transport and packaging into membrane bound storage protein bodies. Our underlying hypothesis is that the endoplasmic reticulum (ER) stress response provides the critical cellular control of metabolic flux required for optimal accumulation of storage reserves in seeds. This highly conserved response is a cellular mechanism to monitor the protein folding environment of the ER and restore homeostasis in the presence of unfolded or misfolded proteins. In seeds, deposition of storage proteins in protein bodies is a highly specialized process that takes place even in the presence of mutant proteins that no longer fold and package properly. The capacity of the ER to deposit these aberrant proteins in protein bodies during a period that extends several weeks provides an excellent model for deconvoluting the ER stress response of plants. We have focused in this project on the means by which the ER senses and responds to functional perturbations and the underlying intracellular communication that occurs among biosynthetic, trafficking and degradative pathways for proteins during seed development.

  6. Arachidonoyl-specific diacylglycerol kinase ε and the endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Tomoyuki Nakano

    2016-11-01

    Full Text Available The endoplasmic reticulum (ER comprises an interconnected membrane network, which is made up of lipid bilayer and associated proteins. This organelle plays a central role in the protein synthesis and sorting. In addition, it represents the synthetic machinery of phospholipids, the major constituents of the biological membrane. In this process, phosphatidic acid (PA serves as a precursor of all phospholipids, suggesting that PA synthetic activity is closely associated with the ER function. One enzyme responsible for PA synthesis is diacylglycerol kinase (DGK that phosphorylates diacylglycerol (DG to PA. DGK is composed of a family of enzymes with distinct features assigned to each isozyme in terms of structure, enzymology and subcellular localization. Of DGKs, DGKε uniquely exhibits substrate specificity toward arachidonate-containing DG and is shown to reside in the ER. Arachidonic acid, a precursor of bioactive eicosanoids, is usually acylated at the sn-2 position of phospholipids, being especially enriched in phosphoinositide. In this review, we focus on arachidonoyl-specific DGKε with respect to the historical context, molecular basis of the substrate specificity and ER-targeting, and functional implications in the ER.

  7. A Molecular Web: Endoplasmic Reticulum Stress, Inflammation and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Namrata eChaudhari

    2014-07-01

    Full Text Available Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded protein response (UPR through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS. Toxic accumulation of ROS within ER and mitochondria disturb fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways has been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease and others. In this review we have discussed the UPR signaling pathways, and networking between ER stress induced inflammatory pathways, oxidative stress and mitochondrial signaling events which further induce or exacerbate ER stress.

  8. Endoplasmic reticulum stress, diabetes mellitus, and tissue injury.

    Science.gov (United States)

    Huang, Liu; Xie, Hong; Liu, Hao

    2014-01-01

    Endoplasmic reticulum (ER) stress is characterized by the accumulation of unfolded and misfolded proteins in the ER lumen. Unfolded and misfolded protein accumulation interferes with the ER function and triggers ER stress response. Thus, ER stress response, also called unfolded protein response (UPR), is an adaptive process that controls the protein amount in the ER lumen and the downstream protein demand. In normal conditions, the role of ER stress is to maintain ER homeostasis, restore ER function, and protect stressed cells from apoptosis, by coordinating gene expression, protein synthesis, and accelerating protein degradation through several molecular pathways. However, prolonged ER stress response plays a paradoxical role, which leads to cell damage, apoptosis, and concomitant tissue injuries. A number of tissue alterations are involved with diabetes mellitus progress and its comorbidities via ER stress. However, certain pharmacological agents affecting ER stress have been identified. In this review, we summarized the relationship between ER stress and insulin resistance development. Moreover, we aim to explain how ER stress influences type 2 diabetes mellitus (T2DM) development. In addition, we reviewed the literature on ER stress and UPR in three kinds of tissue injuries induced by T2DM. Finally, a retrospective analysis of the effects of anti-diabetes medications on ER stress is presented.

  9. Heme oxygenase-1 comes back to endoplasmic reticulum

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong Pyo [School of Biological Sciences, Ulsan University (Korea, Republic of); Pae, Hyun-Ock [Department of Immunology, Wonkwang University School of Medicine (Korea, Republic of); Back, Sung Hun; Chung, Su Wol [School of Biological Sciences, Ulsan University (Korea, Republic of); Woo, Je Moon [Department of Opthalmology, Ulasn University Hospital (Korea, Republic of); Son, Yong [Department of Anesthesiology and Pain Medicine, Wonkwang University School of Medicine (Korea, Republic of); Chung, Hun-Taeg, E-mail: chung@ulsan.ac.kr [School of Biological Sciences, Ulsan University (Korea, Republic of)

    2011-01-07

    Research highlights: {yields} Although multiple compartmentalization of HO-1 has been documented, the functional implication of this enzyme at these subcellular organelles is only partially elucidated. {yields} HO-1 expression at ER is induced by a diverse set of conditions that cause ER stressors. {yields} CO may induce HO-1 expression in human ECs by activating Nrf2 through PERK phosphorylation in a positive-feedback manner. {yields} ER-residing HO-1 and its cytoprotective activity against ER stress is discussed. -- Abstract: Originally identified as a rate-limiting enzyme for heme catabolism, heme oxygenase-1 (HO-1) has expanded its roles in anti-inflammation, anti-apoptosis and anti-proliferation for the last decade. Regulation of protein activity by location is well appreciated. Even though multiple compartmentalization of HO-1 has been documented, the functional implication of this enzyme at these subcellular organelles is only partially elucidated. In this review we discuss the endoplasmic reticulum (ER)-residing HO-1 and its cytoprotective activity against ER stress.

  10. Small GTPases and Brucella entry into the endoplasmic reticulum.

    Science.gov (United States)

    de Bolle, Xavier; Letesson, Jean-Jacques; Gorvel, Jean-Pierre

    2012-12-01

    A key determinant for intracellular pathogenic bacteria to ensure their virulence within host cells is their ability to bypass the endocytic pathway and to reach a safe niche of replication. In the case of Brucella, the bacterium targets the ER (endoplasmic reticulum) to create a replicating niche called the BCV (Brucella-containing vacuole). The ER is a suitable strategic place for pathogenic Brucella. Indeed, bacteria can be hidden from host cell defences to persist within the host, and they can take advantage of the membrane reservoir delivered by the ER to replicate. Interaction with the ER leads to the presence on the BCV of the GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and the small GTPase Rab2 known to be located on secretory vesicles that traffic between the ER and the Golgi apparatus. GAPDH and the small GTPase Rab2 controls Brucella replication at late times post-infection. A specific interaction between the human small GTPase Rab2 and a Brucella spp. protein named RicA was identified. Altered kinetics of intracellular trafficking and faster proliferation of the Brucella abortus ΔricA mutant was observed compared with the wild-type strain. RicA is the first reported effector with a proposed function for B. abortus.

  11. The Endoplasmic Reticulum: A Social Network in Plant Cells

    Institute of Scientific and Technical Information of China (English)

    Jun Chen; Caitlin Doyle; Xingyun Qi; Huanquan Zheng

    2012-01-01

    The endoplasmic reticulum (ER) is an interconnected network comprised of ribosome-studded sheets and smooth tubules.The ER plays crucial roles in the biosynthesis and transport of proteins and lipids,and in calcium (Ca2+) regulation in compartmentalized eukaryotic cells including plant cells.To support its well-segregated functions,the shape of the ER undergoes notable changes in response to both developmental cues and outside influences.In this review,we will discuss recent findings on molecular mechanisms underlying the unique morphology and dynamics of the ER,and the importance of the interconnected ER network in cell polarity.In animal and yeast cells,two family proteins,the reticulons and DP1/Yop1,are required for shaping high-curvature ER tubules,while members of the atlastin family of dynamin-like GTPases are involved in the fusion of ER tubules to make an interconnected ER network.In plant cells,recent data also indicate that the reticulons are involved in shaping ER tubules,while RHD3,a plant member of the atlastin GTPases,is required for the generation of an interconnected ER network.We will also summarize the current knowledge on how the ER interacts with other membrane-bound organelles,with a focus on how the ER and Golgi interplay in plant cells.

  12. Endoplasmic Reticulum-Mediated Protein Quality Control in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Jianming eLi

    2014-04-01

    Full Text Available A correct three-dimensional structure is crucial for the physiological functions of a protein, yet the folding of proteins to acquire native conformation is a fundamentally error-prone process. Eukaryotic organisms have evolved a highly conserved endoplasmic reticulum-mediated protein quality control (ERQC mechanism to monitor folding processes of secretory and membrane proteins, allowing export of only correctly folded proteins to their physiological destinations, retaining incompletely/mis-folded ones in the ER for additional folding attempts, marking and removing terminally-misfolded ones via a unique multiple-step degradation process known as ER-associate degradation (ERAD. Most of our current knowledge on ERQC and ERAD came from genetic and biochemical investigations in yeast and mammalian cells. Recent studies in the reference plant Arabidopsis thaliana uncovered homologous components and similar mechanisms in plants for monitoring protein folding and for retaining, repairing, and removing misfolded proteins. These studies also revealed critical roles of the plant ERQC/ERAD systems in regulating important biochemical/physiological processes, such as abiotic stress tolerance and plant defense. In this review, we discuss our current understanding about the molecular components and biochemical mechanisms of the plant ERQC/ERAD system in comparison to yeast and mammalian systems.

  13. Protein bodies in leaves exchange contents through the endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Reza eSaberianfar

    2016-05-01

    Full Text Available Protein bodies (PBs are organelles found in seeds whose main function is the storage of proteins that are used during germination for sustaining growth. PBs can also be induced to form in leaves when foreign proteins are produced at high levels in the endoplasmic reticulum (ER and when fused to one of three tags: Zera®, elastin-like polypeptides (ELP, or hydrophobin-I (HFBI. In this study, we investigate the differences between ELP, HFBI and Zera PB formation, packing, and communication. Our results confirm the ER origin of all three fusion-tag-induced PBs. We show that secretory pathway proteins can be sequestered into all types of PBs but with different patterns, and that different fusion tags can target a specific protein to different PBs. Zera PBs are mobile and dependent on actomyosin motility similar to ELP and HFBI PBs. We show in vivo trafficking of proteins between PBs using GFP photoconversion. We also show that protein trafficking between ELP or HFBI PBs is faster and proteins travel further when compared to Zera PBs. Our results indicate that fusion-tag-induced PBs do not represent terminally stored cytosolic organelles, but that they form in, and remain part of the ER, and dynamically communicate with each other via the ER. We hypothesize that the previously documented PB mobility along the actin cytoskeleton is associated with ER movement rather than independent streaming of detached organelles.

  14. Methods to Study PTEN in Mitochondria and Endoplasmic Reticulum.

    Science.gov (United States)

    Missiroli, Sonia; Morganti, Claudia; Giorgi, Carlotta; Pinton, Paolo

    2016-01-01

    Although PTEN has been widely described as a nuclear and cytosolic protein, in the last 2 years, alternative organelles, such as the endoplasmic reticulum (ER), pure mitochondria, and mitochondria-associated membranes (MAMs), have been recognized as pivotal targets of PTEN activity.Here, we describe different methods that have been used to highlight PTEN subcellular localization.First, a protocol to extract nuclear and cytosolic fractions has been described to assess the "canonical" PTEN localization. Moreover, we describe a protocol for mitochondria isolation with proteinase K (PK) to further discriminate whether PTEN associates with the outer mitochondrial membrane (OMM) or resides within the mitochondria. Finally, we focus our attention on a subcellular fractionation protocol of cells that permits the isolation of MAMs containing unique regions of ER membranes attached to the outer mitochondrial membrane (OMM) and mitochondria without contamination from other organelles. In addition to biochemical fractionations, immunostaining can be used to determine the subcellular localization of proteins; thus, a detailed protocol to obtain good immunofluorescence (IF) is described. The employment of these methodological approaches could facilitate the identification of different PTEN localizations in several physiopathological contexts.

  15. Endoplasmic reticulum-mitochondria calcium signaling in hepatic metabolic diseases.

    Science.gov (United States)

    Rieusset, Jennifer

    2017-06-01

    The liver plays a central role in glucose homeostasis, and both metabolic inflexibility and insulin resistance predispose to the development of hepatic metabolic diseases. Mitochondria and endoplasmic reticulum (ER), which play a key role in the control of hepatic metabolism, also interact at contact points defined as mitochondria-associated membranes (MAM), in order to exchange metabolites and calcium (Ca(2+)) and regulate cellular homeostasis and signaling. Here, we overview the role of the liver in the control of glucose homeostasis, mainly focusing on the independent involvement of mitochondria, ER and Ca(2+) signaling in both healthy and pathological contexts. Then we focus on recent data highlighting MAM as important hubs for hormone and nutrient signaling in the liver, thus adapting mitochondria physiology and cellular metabolism to energy availability. Lastly, we discuss how chronic ER-mitochondria miscommunication could participate to hepatic metabolic diseases, pointing MAM interface as a potential therapeutic target for metabolic disorders. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Endoplasmic reticulum-mitochondria junction is required for iron homeostasis.

    Science.gov (United States)

    Xue, Yong; Schmollinger, Stefan; Attar, Narsis; Campos, Oscar A; Vogelauer, Maria; Carey, Michael F; Merchant, Sabeeha S; Kurdistani, Siavash K

    2017-08-11

    The endoplasmic reticulum (ER)-mitochondria encounter structure (ERMES) is a protein complex that physically tethers the two organelles to each other and creates the physical basis for communication between them. ERMES functions in lipid exchange between the ER and mitochondria, protein import into mitochondria, and maintenance of mitochondrial morphology and genome. Here, we report that ERMES is also required for iron homeostasis. Loss of ERMES components activates an Aft1-dependent iron deficiency response even in iron-replete conditions, leading to accumulation of excess iron inside the cell. This function is independent of known ERMES roles in calcium regulation, phospholipid biosynthesis, or effects on mitochondrial morphology. A mutation in the vacuolar protein sorting 13 (VPS13) gene that rescues the glycolytic phenotype of ERMES mutants suppresses the iron deficiency response and iron accumulation. Our findings reveal that proper communication between the ER and mitochondria is required for appropriate maintenance of cellular iron levels. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. CDIP1-BAP31 Complex Transduces Apoptotic Signals from Endoplasmic Reticulum to Mitochondria under Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Takushi Namba

    2013-10-01

    Full Text Available Resolved endoplasmic reticulum (ER stress response is essential for intracellular homeostatic balance, but unsettled ER stress can lead to apoptosis. Here, we show that a proapoptotic p53 target, CDIP1, acts as a key signal transducer of ER-stress-mediated apoptosis. We identify B-cell-receptor-associated protein 31 (BAP31 as an interacting partner of CDIP1. Upon ER stress, CDIP1 is induced and enhances an association with BAP31 at the ER membrane. We also show that CDIP1 binding to BAP31 is required for BAP31 cleavage upon ER stress and for BAP31-Bcl-2 association. The recruitment of Bcl-2 to the BAP31-CDIP1 complex, as well as CDIP1-dependent truncated Bid (tBid and caspase-8 activation, contributes to BAX oligomerization. Genetic knockout of CDIP1 in mice leads to impaired response to ER-stress-mediated apoptosis. Altogether, our data demonstrate that the CDIP1/BAP31-mediated regulation of mitochondrial apoptosis pathway represents a mechanism for establishing an ER-mitochondrial crosstalk for ER-stress-mediated apoptosis signaling.

  18. CDIP1-BAP31 complex transduces apoptotic signals from endoplasmic reticulum to mitochondria under endoplasmic reticulum stress.

    Science.gov (United States)

    Namba, Takushi; Tian, Fang; Chu, Kiki; Hwang, So-Young; Yoon, Kyoung Wan; Byun, Sanguine; Hiraki, Masatsugu; Mandinova, Anna; Lee, Sam W

    2013-10-31

    Resolved endoplasmic reticulum (ER) stress response is essential for intracellular homeostatic balance, but unsettled ER stress can lead to apoptosis. Here, we show that a proapoptotic p53 target, CDIP1, acts as a key signal transducer of ER-stress-mediated apoptosis. We identify B-cell-receptor-associated protein 31 (BAP31) as an interacting partner of CDIP1. Upon ER stress, CDIP1 is induced and enhances an association with BAP31 at the ER membrane. We also show that CDIP1 binding to BAP31 is required for BAP31 cleavage upon ER stress and for BAP31-Bcl-2 association. The recruitment of Bcl-2 to the BAP31-CDIP1 complex, as well as CDIP1-dependent truncated Bid (tBid) and caspase-8 activation, contributes to BAX oligomerization. Genetic knockout of CDIP1 in mice leads to impaired response to ER-stress-mediated apoptosis. Altogether, our data demonstrate that the CDIP1/BAP31-mediated regulation of mitochondrial apoptosis pathway represents a mechanism for establishing an ER-mitochondrial crosstalk for ER-stress-mediated apoptosis signaling.

  19. Targeted induction of endoplasmic reticulum stress induces cartilage pathology.

    Directory of Open Access Journals (Sweden)

    M Helen Rajpar

    2009-10-01

    Full Text Available Pathologies caused by mutations in extracellular matrix proteins are generally considered to result from the synthesis of extracellular matrices that are defective. Mutations in type X collagen cause metaphyseal chondrodysplasia type Schmid (MCDS, a disorder characterised by dwarfism and an expanded growth plate hypertrophic zone. We generated a knock-in mouse model of an MCDS-causing mutation (COL10A1 p.Asn617Lys to investigate pathogenic mechanisms linking genotype and phenotype. Mice expressing the collagen X mutation had shortened limbs and an expanded hypertrophic zone. Chondrocytes in the hypertrophic zone exhibited endoplasmic reticulum (ER stress and a robust unfolded protein response (UPR due to intracellular retention of mutant protein. Hypertrophic chondrocyte differentiation and osteoclast recruitment were significantly reduced indicating that the hypertrophic zone was expanded due to a decreased rate of VEGF-mediated vascular invasion of the growth plate. To test directly the role of ER stress and UPR in generating the MCDS phenotype, we produced transgenic mouse lines that used the collagen X promoter to drive expression of an ER stress-inducing protein (the cog mutant of thyroglobulin in hypertrophic chondrocytes. The hypertrophic chondrocytes in this mouse exhibited ER stress with a characteristic UPR response. In addition, the hypertrophic zone was expanded, gene expression patterns were disrupted, osteoclast recruitment to the vascular invasion front was reduced, and long bone growth decreased. Our data demonstrate that triggering ER stress per se in hypertrophic chondrocytes is sufficient to induce the essential features of the cartilage pathology associated with MCDS and confirm that ER stress is a central pathogenic factor in the disease mechanism. These findings support the contention that ER stress may play a direct role in the pathogenesis of many connective tissue disorders associated with the expression of mutant

  20. Endoplasmic reticulum stress is chronically activated in chronic pancreatitis.

    Science.gov (United States)

    Sah, Raghuwansh P; Garg, Sushil K; Dixit, Ajay K; Dudeja, Vikas; Dawra, Rajinder K; Saluja, Ashok K

    2014-10-03

    The pathogenesis of chronic pancreatitis (CP) is poorly understood. Endoplasmic reticulum (ER) stress has now been recognized as a pathogenic event in many chronic diseases. However, ER stress has not been studied in CP, although pancreatic acinar cells seem to be especially vulnerable to ER dysfunction because of their dependence on high ER volume and functionality. Here, we aim to investigate ER stress in CP, study its pathogenesis in relation to trypsinogen activation (widely regarded as the key event of pancreatitis), and explore its mechanism, time course, and downstream consequences during pancreatic injury. CP was induced in mice by repeated episodes of acute pancreatitis (AP) based on caerulein hyperstimulation. ER stress leads to activation of unfolded protein response components that were measured in CP and AP. We show sustained up-regulation of unfolded protein response components ATF4, CHOP, GRP78, and XBP1 in CP. Overexpression of GRP78 and ATF4 in human CP confirmed the experimental findings. We used novel trypsinogen-7 knock-out mice (T(-/-)), which lack intra-acinar trypsinogen activation, to clarify the relationship of ER stress to intra-acinar trypsinogen activation in pancreatic injury. Comparable activation of ER stress was seen in wild type and T(-/-) mice. Induction of ER stress occurred through pathologic calcium signaling very early in the course of pancreatic injury. Our results establish that ER stress is chronically activated in CP and is induced early in pancreatic injury through pathologic calcium signaling independent of trypsinogen activation. ER stress may be an important pathogenic mechanism in pancreatitis that needs to be explored in future studies.

  1. Disulfide Mispairing During Proinsulin Folding in the Endoplasmic Reticulum.

    Science.gov (United States)

    Haataja, Leena; Manickam, Nandini; Soliman, Ann; Tsai, Billy; Liu, Ming; Arvan, Peter

    2016-04-01

    Proinsulin folding within the endoplasmic reticulum (ER) remains incompletely understood, but it is clear that in mutant INS gene-induced diabetes of youth (MIDY), progression of the (three) native disulfide bonds of proinsulin becomes derailed, causing insulin deficiency, β-cell ER stress, and onset of diabetes. Herein, we have undertaken a molecular dissection of proinsulin disulfide bond formation, using bioengineered proinsulins that can form only two (or even only one) of the native proinsulin disulfide bonds. In the absence of preexisting proinsulin disulfide pairing, Cys(B19)-Cys(A20) (a major determinant of ER stress response activation and proinsulin stability) preferentially initiates B-A chain disulfide bond formation, whereas Cys(B7)-Cys(A7) can initiate only under oxidizing conditions beyond that existing within the ER of β-cells. Interestingly, formation of these two "interchain" disulfide bonds demonstrates cooperativity, and together, they are sufficient to confer intracellular transport competence to proinsulin. The three most common proinsulin disulfide mispairings in the ER appear to involve Cys(A11)-Cys(A20), Cys(A7)-Cys(A20), and Cys(B19)-Cys(A11), each disrupting the critical Cys(B19)-Cys(A20) pairing. MIDY mutations inhibit Cys(B19)-Cys(A20) formation, but treatment to force oxidation of this disulfide bond improves folding and results in a small but detectable increase of proinsulin export. These data suggest possible therapeutic avenues to ameliorate ER stress and diabetes.

  2. Klotho Ameliorates Chemically Induced Endoplasmic Reticulum (ER Stress Signaling

    Directory of Open Access Journals (Sweden)

    Srijita Banerjee

    2013-05-01

    Full Text Available Background: Both endoplasmic reticulum (ER stress, a fundamental cell response associated with stress-initiated unfolded protein response (UPR, and loss of Klotho, an anti-aging hormone linked to NF-κB-induced inflammation, occur in chronic metabolic diseases such as obesity and type 2 diabetes. We investigated if the loss of Klotho is causally linked to increased ER stress. Methods: We treated human renal epithelial HK-2, alveolar epithelial A549, HEK293, and SH-SH-SY5Y neuroblastoma cells with ER stress-inducing agents, thapsigargin and/or tunicamycin. Effects of overexpression or siRNA-mediated knockdown of Klotho on UPR signaling was investigated by immunoblotting and Real-time PCR. Results: Elevated Klotho levels in HK-2 cells decreased expression of ER stress markers phospho-IRE1, XBP-1s, BiP, CHOP, pJNK, and phospho-p38, all of which were elevated in response to tunicamycin and/or thapsigargin. Similar results were observed using A549 cells for XBP-1s, BiP, and CHOP in response to thapsigargin. Conversely, knockdown of Klotho in HEK 293 cells using siRNA caused further thapsigargin-induced increases in pIRE-1, XBP-1s, and BiP. Klotho overexpression in A549 cells blocked thapsigargin-induced caspase and PARP cleavage and improved cell viability. Conclusion: Our data indicate that Klotho has an important role in regulating ER stress and that loss of Klotho is causally linked to ER stress-induced apoptosis.

  3. Lipolysis Response to Endoplasmic Reticulum Stress in Adipose Cells*

    Science.gov (United States)

    Deng, Jingna; Liu, Shangxin; Zou, Liangqiang; Xu, Chong; Geng, Bin; Xu, Guoheng

    2012-01-01

    In obesity and diabetes, adipocytes show significant endoplasmic reticulum (ER) stress, which triggers a series of responses. This study aimed to investigate the lipolysis response to ER stress in rat adipocytes. Thapsigargin, tunicamycin, and brefeldin A, which induce ER stress through different pathways, efficiently activated a time-dependent lipolytic reaction. The lipolytic effect of ER stress occurred with elevated cAMP production and protein kinase A (PKA) activity. Inhibition of PKA reduced PKA phosphosubstrates and attenuated the lipolysis. Although both ERK1/2 and JNK are activated during ER stress, lipolysis is partially suppressed by inhibiting ERK1/2 but not JNK and p38 MAPK and PKC. Thus, ER stress induces lipolysis by activating cAMP/PKA and ERK1/2. In the downstream lipolytic cascade, phosphorylation of lipid droplet-associated protein perilipin was significantly promoted during ER stress but attenuated on PKA inhibition. Furthermore, ER stress stimuli did not alter the levels of hormone-sensitive lipase and adipose triglyceride lipase but caused Ser-563 and Ser-660 phosphorylation of hormone-sensitive lipase and moderately elevated its translocation from the cytosol to lipid droplets. Accompanying these changes, total activity of cellular lipases was promoted to confer the lipolysis. These findings suggest a novel pathway of the lipolysis response to ER stress in adipocytes. This lipolytic activation may be an adaptive response that regulates energy homeostasis but with sustained ER stress challenge could contribute to lipotoxicity, dyslipidemia, and insulin resistance because of persistently accelerated free fatty acid efflux from adipocytes to the bloodstream and other tissues. PMID:22223650

  4. Lipolysis response to endoplasmic reticulum stress in adipose cells.

    Science.gov (United States)

    Deng, Jingna; Liu, Shangxin; Zou, Liangqiang; Xu, Chong; Geng, Bin; Xu, Guoheng

    2012-02-24

    In obesity and diabetes, adipocytes show significant endoplasmic reticulum (ER) stress, which triggers a series of responses. This study aimed to investigate the lipolysis response to ER stress in rat adipocytes. Thapsigargin, tunicamycin, and brefeldin A, which induce ER stress through different pathways, efficiently activated a time-dependent lipolytic reaction. The lipolytic effect of ER stress occurred with elevated cAMP production and protein kinase A (PKA) activity. Inhibition of PKA reduced PKA phosphosubstrates and attenuated the lipolysis. Although both ERK1/2 and JNK are activated during ER stress, lipolysis is partially suppressed by inhibiting ERK1/2 but not JNK and p38 MAPK and PKC. Thus, ER stress induces lipolysis by activating cAMP/PKA and ERK1/2. In the downstream lipolytic cascade, phosphorylation of lipid droplet-associated protein perilipin was significantly promoted during ER stress but attenuated on PKA inhibition. Furthermore, ER stress stimuli did not alter the levels of hormone-sensitive lipase and adipose triglyceride lipase but caused Ser-563 and Ser-660 phosphorylation of hormone-sensitive lipase and moderately elevated its translocation from the cytosol to lipid droplets. Accompanying these changes, total activity of cellular lipases was promoted to confer the lipolysis. These findings suggest a novel pathway of the lipolysis response to ER stress in adipocytes. This lipolytic activation may be an adaptive response that regulates energy homeostasis but with sustained ER stress challenge could contribute to lipotoxicity, dyslipidemia, and insulin resistance because of persistently accelerated free fatty acid efflux from adipocytes to the bloodstream and other tissues.

  5. Endoplasmic reticulum-plasma membrane junctions: structure, function and dynamics.

    Science.gov (United States)

    Okeke, Emmanuel; Dingsdale, Hayley; Parker, Tony; Voronina, Svetlana; Tepikin, Alexei V

    2016-06-01

    Endoplasmic reticulum (ER)-plasma membrane (PM) junctions are contact sites between the ER and the PM; the distance between the two organelles in the junctions is below 40 nm and the membranes are connected by protein tethers. A number of molecular tools and technical approaches have been recently developed to visualise, modify and characterise properties of ER-PM junctions. The junctions serve as the platforms for lipid exchange between the organelles and for cell signalling, notably Ca(2+) and cAMP signalling. Vice versa, signalling events regulate the development and properties of the junctions. Two Ca(2+) -dependent mechanisms of de novo formation of ER-PM junctions have been recently described and characterised. The junction-forming proteins and lipids are currently the focus of vigorous investigation. Junctions can be relatively short-lived and simple structures, forming and dissolving on the time scale of a few minutes. However, complex, sophisticated and multifunctional ER-PM junctions, capable of attracting numerous protein residents and other cellular organelles, have been described in some cell types. The road from simplicity to complexity, i.e. the transformation from simple 'nascent' ER-PM junctions to advanced stable multiorganellar complexes, is likely to become an attractive research avenue for current and future junctologists. Another area of considerable research interest is the downstream cellular processes that can be activated by specific local signalling events in the ER-PM junctions. Studies of the cell physiology and indeed pathophysiology of ER-PM junctions have already produced some surprising discoveries, likely to expand with advances in our understanding of these remarkable organellar contact sites. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  6. Sertraline induces endoplasmic reticulum stress in hepatic cells.

    Science.gov (United States)

    Chen, Si; Xuan, Jiekun; Couch, Letha; Iyer, Advait; Wu, Yuanfeng; Li, Quan-Zhen; Guo, Lei

    2014-08-01

    Sertraline is used for the treatment of depression, and is also used for the treatment of panic, obsessive-compulsive, and post-traumatic stress disorders. Previously, we have demonstrated that sertraline caused hepatic cytotoxicity, with mitochondrial dysfunction and apoptosis being underlying mechanisms. In this study, we used microarray and other biochemical and molecular analyses to identify endoplasmic reticulum (ER) stress as a novel molecular mechanism. HepG2 cells were exposed to sertraline and subjected to whole genome gene expression microarray analysis. Pathway analysis revealed that ER stress is among the significantly affected biological changes. We confirmed the increased expression of ER stress makers by real-time PCR and Western blots. The expression of typical ER stress markers such as PERK, IRE1α, and CHOP was significantly increased. To study better ER stress-mediated drug-induced liver toxicity; we established in vitro systems for monitoring ER stress quantitatively and efficiently, using Gaussia luciferase (Gluc) and secreted alkaline phosphatase (SEAP) as ER stress reporters. These in vitro systems were validated using well-known ER stress inducers. In these two reporter assays, sertraline inhibited the secretion of Gluc and SEAP. Moreover, we demonstrated that sertraline-induced apoptosis was coupled to ER stress and that the apoptotic effect was attenuated by 4-phenylbutyrate, a potent ER stress inhibitor. In addition, we showed that the MAP4K4-JNK signaling pathway contributed to the process of sertraline-induced ER stress. In summary, we demonstrated that ER stress is a mechanism of sertraline-induced liver toxicity.

  7. Full-length Ebola glycoprotein accumulates in the endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Bhattacharyya Suchita

    2011-01-01

    Full Text Available Abstract The Filoviridae family comprises of Ebola and Marburg viruses, which are known to cause lethal hemorrhagic fever. However, there is no effective anti-viral therapy or licensed vaccines currently available for these human pathogens. The envelope glycoprotein (GP of Ebola virus, which mediates entry into target cells, is cytotoxic and this effect maps to a highly glycosylated mucin-like region in the surface subunit of GP (GP1. However, the mechanism underlying this cytotoxic property of GP is unknown. To gain insight into the basis of this GP-induced cytotoxicity, HEK293T cells were transiently transfected with full-length and mucin-deleted (Δmucin Ebola GP plasmids and GP localization was examined relative to the nucleus, endoplasmic reticulum (ER, Golgi, early and late endosomes using deconvolution fluorescent microscopy. Full-length Ebola GP was observed to accumulate in the ER. In contrast, GPΔmucin was uniformly expressed throughout the cell and did not localize in the ER. The Ebola major matrix protein VP40 was also co-expressed with GP to investigate its influence on GP localization. GP and VP40 co-expression did not alter GP localization to the ER. Also, when VP40 was co-expressed with the nucleoprotein (NP, it localized to the plasma membrane while NP accumulated in distinct cytoplasmic structures lined with vimentin. These latter structures are consistent with aggresomes and may serve as assembly sites for filoviral nucleocapsids. Collectively, these data suggest that full-length GP, but not GPΔmucin, accumulates in the ER in close proximity to the nuclear membrane, which may underscore its cytotoxic property.

  8. Endoplasmic reticulum stress: key promoter of rosacea pathogenesis.

    Science.gov (United States)

    Melnik, Bodo C

    2014-12-01

    Recent scientific interest in the pathogenesis of rosacea focuses on abnormally high facial skin levels of cathelicidin and the trypsin-like serine protease kallikrein 5 (KLK5) that cleaves the cathelicidin precursor protein into the bioactive fragment LL-37, which exerts crucial proinflammatory, angiogenic and antimicrobial activities. Furthermore, increased expression of toll-like receptor 2 (TLR2) has been identified in rosacea skin supporting the participation of the innate immune system. Notably, TLRs are expressed on sensory neurons and increase neuronal excitability linking TLR signalling to the transmission of neuroinflammatory responses. It is the intention of this viewpoint to present a unifying concept that links all known clinical trigger factors of rosacea such as UV irradiation, heat, skin irritants and special foods to one converging point: enhanced endoplasmic reticulum (ER) stress that activates the unfolded protein response (UPR). ER stress via upregulation of transcription factor ATF4 increases TLR2 expression, resulting in enhanced production of cathelicidin and KLK5 mediating downstream proinflammatory, angiogenic and antimicrobial signalling. The presented concept identifies rosacea trigger factors as environmental stressors that enhance the skin's ER stress response. Exaggerated cutaneous ER stress that stimulates the TLR2-driven inflammatory response may involve sebocytes, keratinocytes, monocyte-macrophages and sensory cutaneous neurons. Finally, all antirosacea drugs are proposed to attenuate the ER stress signalling cascade at some point. Overstimulated ER stress signalling may have evolutionarily evolved as a compensatory mechanism to balance impaired vitamin D-driven LL-37-mediated antimicrobial defenses due to lower exposure of UV-B irradiation of the northern Celtic population.

  9. Transcriptional analysis implicates endoplasmic reticulum stress in bovine spongiform encephalopathy.

    Directory of Open Access Journals (Sweden)

    Yue Tang

    Full Text Available Bovine spongiform encephalopathy (BSE is a fatal, transmissible, neurodegenerative disease of cattle. To date, the disease process is still poorly understood. In this study, brain tissue samples from animals naturally infected with BSE were analysed to identify differentially regulated genes using Affymetrix GeneChip Bovine Genome Arrays. A total of 230 genes were shown to be differentially regulated and many of these genes encode proteins involved in immune response, apoptosis, cell adhesion, stress response and transcription. Seventeen genes are associated with the endoplasmic reticulum (ER and 10 of these 17 genes are involved in stress related responses including ER chaperones, Grp94 and Grp170. Western blotting analysis showed that another ER chaperone, Grp78, was up-regulated in BSE. Up-regulation of these three chaperones strongly suggests the presence of ER stress and the activation of the unfolded protein response (UPR in BSE. The occurrence of ER stress was also supported by changes in gene expression for cytosolic proteins, such as the chaperone pair of Hsp70 and DnaJ. Many genes associated with the ubiquitin-proteasome pathway and the autophagy-lysosome system were differentially regulated, indicating that both pathways might be activated in response to ER stress. A model is presented to explain the mechanisms of prion neurotoxicity using these ER stress related responses. Clustering analysis showed that the differently regulated genes found from the naturally infected BSE cases could be used to predict the infectious status of the samples experimentally infected with BSE from the previous study and vice versa. Proof-of-principle gene expression biomarkers were found to represent BSE using 10 genes with 94% sensitivity and 87% specificity.

  10. PARM-1 is an endoplasmic reticulum molecule involved in endoplasmic reticulum stress-induced apoptosis in rat cardiac myocytes.

    Directory of Open Access Journals (Sweden)

    Koji Isodono

    Full Text Available To identify novel transmembrane and secretory molecules expressed in cardiac myocytes, signal sequence trap screening was performed in rat neonatal cardiac myocytes. One of the molecules identified was a transmembrane protein, prostatic androgen repressed message-1 (PARM-1. While PARM-1 has been identified as a gene induced in prostate in response to castration, its function is largely unknown. Our expression analysis revealed that PARM-1 was specifically expressed in hearts and skeletal muscles, and in the heart, cardiac myocytes, but not non-myocytes expressed PARM-1. Immunofluorescent staining showed that PARM-1 was predominantly localized in endoplasmic reticulum (ER. In Dahl salt-sensitive rats, high-salt diet resulted in hypertension, cardiac hypertrophy and subsequent heart failure, and significantly stimulated PARM-1 expression in the hearts, with a concomitant increase in ER stress markers such as GRP78 and CHOP. In cultured cardiac myocytes, PARM-1 expression was stimulated by proinflammatory cytokines, but not by hypertrophic stimuli. A marked increase in PARM-1 expression was observed in response to ER stress inducers such as thapsigargin and tunicamycin, which also induced apoptotic cell death. Silencing PARM-1 expression by siRNAs enhanced apoptotic response in cardiac myocytes to ER stresses. PARM-1 silencing also repressed expression of PERK and ATF6, and augmented expression of CHOP without affecting IRE-1 expression and JNK and Caspase-12 activation. Thus, PARM-1 expression is induced by ER stress, which plays a protective role in cardiac myocytes through regulating PERK, ATF6 and CHOP expression. These results suggested that PARM-1 is a novel ER transmembrane molecule involved in cardiac remodeling in hypertensive heart disease.

  11. Alginate Oligosaccharide Prevents Acute Doxorubicin Cardiotoxicity by Suppressing Oxidative Stress and Endoplasmic Reticulum-Mediated Apoptosis.

    Science.gov (United States)

    Guo, Jun-Jie; Ma, Lei-Lei; Shi, Hong-Tao; Zhu, Jian-Bing; Wu, Jian; Ding, Zhi-Wen; An, Yi; Zou, Yun-Zeng; Ge, Jun-Bo

    2016-12-20

    Doxorubicin (DOX) is a highly potent chemotherapeutic agent, but its usage is limited by dose-dependent cardiotoxicity. DOX-induced cardiotoxicity involves increased oxidative stress and activated endoplasmic reticulum-mediated apoptosis. Alginate oligosaccharide (AOS) is a non-immunogenic, non-toxic and biodegradable polymer, with anti-oxidative, anti-inflammatory and anti-endoplasmic reticulum stress properties. The present study examined whether AOS pretreatment could protect against acute DOX cardiotoxicity, and the underlying mechanisms focused on oxidative stress and endoplasmic reticulum-mediated apoptosis. We found that AOS pretreatment markedly increased the survival rate of mice insulted with DOX, improved DOX-induced cardiac dysfunction and attenuated DOX-induced myocardial apoptosis. AOS pretreatment mitigated DOX-induced cardiac oxidative stress, as shown by the decreased expressions of gp91 (phox) and 4-hydroxynonenal (4-HNE). Moreover, AOS pretreatment significantly decreased the expression of Caspase-12, C/EBP homologous protein (CHOP) (markers for endoplasmic reticulum-mediated apoptosis) and Bax (a downstream molecule of CHOP), while up-regulating the expression of anti-apoptotic protein Bcl-2. Taken together, these findings identify AOS as a potent compound that prevents acute DOX cardiotoxicity, at least in part, by suppression of oxidative stress and endoplasmic reticulum-mediated apoptosis.

  12. Endoplasmic reticulum stress in pathogenesis of diabetic retinopathy and effect of calcium dobesilate

    Institute of Scientific and Technical Information of China (English)

    Yu-Min Gui; Ming Zhao; Jie Ding

    2016-01-01

    Objective:To study the mechanism of endoplasmic reticulum stress in the pathogenesis of diabetic retinopathy and effect of calcium dobesilate.Methods:A total of 120 diabetic retinopathy patients treated in our hospital from January 2010 to September 2015 were enrolled in this article. The serum endoplasmic reticulum stress protein and interleukin protein expression levels were analyzed before and after calcium dobesilate treatment. A total of 55 cases of healthy subjects receiving physical examination in our hospital during the same period were taken as control group.Results:Serum endoplasmic reticulum stress proteins PERK, CHOP and IRE as well as interleukin proteins IL1, IL2, IL6 and IL10 expression significantly increased, serum MDA level significantly increased while SOD, CAT and GSHpx levels significantly decreased in diabetic retinopathy patients, and compared with control group (P<0.01); after calcium dobesilate treatment, above factors were significantly restored (P<0.01).Conclusions: Diabetic retinopathy is closely related to endoplasmic reticulum stress and calcium dobesilate treatment may improve diabetic retinopathy by inhibiting endoplasmic reticulum stress.

  13. Fructus Broussonetae extract improves cognitive function and endoplasmic reticulum stress in Alzheimer's disease models

    Institute of Scientific and Technical Information of China (English)

    Yinghong Li; Li Hu; Zhengzhi Wu; Zhiling Yu; Meiqun Cao; Kehuan Sun; Yu Jin; Anmin Wu; Andrew CJ Huang

    2011-01-01

    This study investigated the effects and possible targets of Fructus Broussonetiae extract, a traditional Chinese medicinal herb, on a model of Alzheimer's disease induced by beta-amyloid peptide 25-35 and D-galactose. The results revealed that intragastric administration of Fructus Broussonetiae significantly increased the expression of immunoglobulin-binding protein, a key factor in the endoplasmic reticulum stress-signaling pathway in rat hippocampus. In contrast, the treatment significantly decreased expression levels of PKR-like endoplasmic reticulum kinase and C/EBP homologous protein, and substantially improved learning, memory and spatial recognition dysfunction in rats. This evidence indicates that Fructus Broussonetiae extract improves spatial learning and memory abilities in rats by affecting the regulation of hippocampal endoplasmic reticulum stress and activation of the apoptosis pathway.

  14. Role of endoplasmic reticulum stress in the loss of retinal ganglion cells in diabetic retinopathy

    Institute of Scientific and Technical Information of China (English)

    Liping Yang; Lemeng Wu; Dongmei Wang; Ying Li; Hongliang Dou; Mark OMTso; Zhizhong Ma

    2013-01-01

    Endoplasmic reticulum stress is closely involved in the early stage of diabetic retinopathy. In the present study, a streptozotocin-induced diabetic animal model was given an intraperitoneal injection of tauroursodeoxycholic acid. Results from immunofluorescent co-localization experiments showed that both caspase-12 protein and c-Jun N-terminal kinase 1 phosphorylation levels significantly in-creased, which was associated with retinal ganglion celldeath in diabetic retinas. The C/ERB ho-mologous protein pathway directly contributed to glial reactivity, and was subsequently responsible for neuronal loss and vascular abnormalities in diabetic retinopathy. Our experimental findings in-dicate that endoplasmic reticulum stress plays an important role in diabetes-induced retinal neu-ronal loss and vascular abnormalities, and that inhibiting the activation of the endoplasmic reticulum stress pathway provides effective protection against diabetic retinopathy.

  15. The endoplasmic reticulum:A dynamic and well-connected organelle

    Institute of Scientific and Technical Information of China (English)

    Chris Hawes; Petra Kiviniemi; Verena Kriechbaumer

    2015-01-01

    The endoplasmic reticulum forms the first compart-ment in a series of organel es which comprise the secretory pathway. It takes the form of an extremely dynamic and pleomorphic membrane-bounded network of tubules and cisternae which have numerous different cel ular functions. In this review, we discuss the nature of endoplasmic reticulum structure and dynamics, its relationship with closely associated organel es, and its possible function as a highway for the distribution and delivery of a diverse range of structures from metabolic complexes to viral particles.

  16. Management of the endoplasmic reticulum stress by activation of the heat shock response in yeast

    DEFF Research Database (Denmark)

    Hou, Jin; Tang, Hongting; Liu, Zihe

    2014-01-01

    In yeast Saccharomyces cerevisiae, accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and activates the unfolded protein response (UPR), which is mediated by Hac1p. The heat shock response (HSR) mediated by Hsf1p, mainly regulates cytosolic processes and protects...

  17. Full length RTN3 regulates turnover of tubular endoplasmic reticulum via selective autophagy

    NARCIS (Netherlands)

    Grumati, Paolo; Morozzi, Giulio; Hölper, Soraya; Mari, Muriel; Harwardt, Marie-Lena I. E.; Yan, Riqiang; Müller, Stefan; Reggiori, Fulvio; Heilemann, Mike; Dikic, Ivan

    2017-01-01

    The turnover of endoplasmic reticulum (ER) ensures the correct biological activity of its distinct domains. In mammalian cells, the ER is degraded via a selective autophagy pathway (ER-phagy), mediated by two specific receptors: FAM134B, responsible for the turnover of ER sheets and SEC62 that

  18. Grab a Golgi: Laser trapping of golgi bodies reveals in vivo Interactions with the endoplasmic reticulum

    NARCIS (Netherlands)

    Sparkes, I.A.; Ketelaar, T.; Ruijter, de N.C.A.; Hawes, C.

    2009-01-01

    In many vacuolate plant cells individual Golgi bodies appear to be attached to tubules of the pleiomorphic cortical endoplasmic reticulum (ER) network. Such observations culminated in the controversial mobile secretory unit hypothesis to explain transport of cargo from the ER to Golgi via Golgi atta

  19. Ceramide transport from endoplasmic reticulum to Golgi apparatus is not vesicle-mediated

    NARCIS (Netherlands)

    Kok, JW; Babia, T; Klappe, K; Egea, G; Hoekstra, D

    1998-01-01

    Ceramide (Cer) transfer from the endoplasmic reticulum (ER) to the Golgi apparatus was measured under conditions that block vesicle-mediated protein transfer. This was done either in intact cells by reducing the incubation temperature to 15 degrees C, or in streptolysin O-permeabilized cells by mani

  20. Ethanol stress impairs protein folding in the endoplasmic reticulum and activates Ire1 in Saccharomyces cerevisiae.

    Science.gov (United States)

    Miyagawa, Ken-Ichi; Ishiwata-Kimata, Yuki; Kohno, Kenji; Kimata, Yukio

    2014-01-01

    Impaired protein folding in the endoplasmic reticulum (ER) evokes the unfolded protein response (UPR), which is triggered in budding yeast, Saccharomyces cerevisiae, by the ER-located transmembrane protein Ire1. Here, we report that ethanol stress damages protein folding in the ER, causing activation of Ire1 in yeast cells. The UPR likely contributes to the ethanol tolerance of yeast cells.

  1. Endoplasmic Reticulum Stress and Unfolded Protein Response in Cartilage Pathophysiology; Contributing Factors to Apoptosis and Osteoarthritis.

    Science.gov (United States)

    Hughes, Alexandria; Oxford, Alexandra E; Tawara, Ken; Jorcyk, Cheryl L; Oxford, Julia Thom

    2017-03-20

    Chondrocytes of the growth plate undergo apoptosis during the process of endochondral ossification, as well as during the progression of osteoarthritis. Although the regulation of this process is not completely understood, alterations in the precisely orchestrated programmed cell death during development can have catastrophic results, as exemplified by several chondrodystrophies which are frequently accompanied by early onset osteoarthritis. Understanding the mechanisms that underlie chondrocyte apoptosis during endochondral ossification in the growth plate has the potential to impact the development of therapeutic applications for chondrodystrophies and associated early onset osteoarthritis. In recent years, several chondrodysplasias and collagenopathies have been recognized as protein-folding diseases that lead to endoplasmic reticulum stress, endoplasmic reticulum associated degradation, and the unfolded protein response. Under conditions of prolonged endoplasmic reticulum stress in which the protein folding load outweighs the folding capacity of the endoplasmic reticulum, cellular dysfunction and death often occur. However, unfolded protein response (UPR) signaling is also required for the normal maturation of chondrocytes and osteoblasts. Understanding how UPR signaling may contribute to cartilage pathophysiology is an essential step toward therapeutic modulation of skeletal disorders that lead to osteoarthritis.

  2. Water-mediated interactions influence the binding of thapsigargin to sarco/endoplasmic reticulum calcium adenosinetriphosphatase

    DEFF Research Database (Denmark)

    Paulsen, Eleonora S.; Villadsen, Jesper; Tenori, Eleonora;

    2013-01-01

    A crystal structure suggests four water molecules are present in the binding cavity of thapsigargin in sarco/endoplasmic reticulum calcium ATPase (SERCA). Computational chemistry indicates that three of these water molecules mediate an extensive hydrogen-bonding network between thapsigargin...

  3. IRE1alpha is an endogenous substrate of endoplasmic reticulum-associated degradation

    NARCIS (Netherlands)

    Sun, Shengyi; Shi, Guojun; Sha, Haibo; Ji, Yewei; Han, Xuemei; Shu, Xin; Ma, Hongming; Takamasa, Inoue; Gao, Beixue; Bu, Pengcheng; Guber, Robert D.; Shen, Xiling; Lee, Ann H.; Iwawaki, Takao; Paton, Adrienne W.; Paton, James C.; Fang, Deyu; Tsai, Billy; Yates III, John R.; Wu, Haoquan; Kersten, Sander; Long, Qiaoming; Duhamel, Gerald E.; Simpson, Kenneth W.; Qi, Ling

    2015-01-01

    Endoplasmic reticulum-associated degradation (ERAD) represents a principle quality control (QC) mechanism to clear misfolded proteins in the ER; however, its physiological significance and the nature of endogenous ERAD substrates remain largely unknown. Here we discover that IRE1alpha, the sensor of

  4. Respiratory metabolism and calorie restriction relieve persistent endoplasmic reticulum stress induced by calcium shortage in yeast

    DEFF Research Database (Denmark)

    Busti, Stefano; Mapelli, Valeria; Tripodi, Farida

    2016-01-01

    Calcium homeostasis is crucial to eukaryotic cell survival. By acting as an enzyme cofactor and a second messenger in several signal transduction pathways, the calcium ion controls many essential biological processes. Inside the endoplasmic reticulum (ER) calcium concentration is carefully regula...

  5. Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for Apoptosis.

    Directory of Open Access Journals (Sweden)

    Jintao Zhang

    Full Text Available Butyrate, a short-chain fatty acid derived from dietary fiber, inhibits proliferation and induces cell death in colorectal cancer cells. However, clinical trials have shown mixed results regarding the anti-tumor activities of butyrate. We have previously shown that sodium butyrate increases endoplasmic reticulum stress by altering intracellular calcium levels, a well-known autophagy trigger. Here, we investigated whether sodium butyrate-induced endoplasmic reticulum stress mediated autophagy, and whether there was crosstalk between autophagy and the sodium butyrate-induced apoptotic response in human colorectal cancer cells.Human colorectal cancer cell lines (HCT-116 and HT-29 were treated with sodium butyrate at concentrations ranging from 0.5-5mM. Cell proliferation was assessed using MTT tetrazolium salt formation. Autophagy induction was confirmed through a combination of Western blotting for associated proteins, acridine orange staining for acidic vesicles, detection of autolysosomes (MDC staining, and electron microscopy. Apoptosis was quantified by flow cytometry using standard annexinV/propidium iodide staining and by assessing PARP-1 cleavage by Western blot.Sodium butyrate suppressed colorectal cancer cell proliferation, induced autophagy, and resulted in apoptotic cell death. The induction of autophagy was supported by the accumulation of acidic vesicular organelles and autolysosomes, and the expression of autophagy-associated proteins, including microtubule-associated protein II light chain 3 (LC3-II, beclin-1, and autophagocytosis-associated protein (Atg3. The autophagy inhibitors 3-methyladenine (3-MA and chloroquine inhibited sodium butyrate induced autophagy. Furthermore, sodium butyrate treatment markedly enhanced the expression of endoplasmic reticulum stress-associated proteins, including BIP, CHOP, PDI, and IRE-1a. When endoplasmic reticulum stress was inhibited by pharmacological (cycloheximide and mithramycin and genetic

  6. CSB ablation induced apoptosis is mediated by increased endoplasmic reticulum stress response

    Science.gov (United States)

    Caputo, Manuela; Balzerano, Alessio; Arisi, Ivan; D’Onofrio, Mara; Brandi, Rossella; Bongiorni, Silvia; Brancorsini, Stefano; Frontini, Mattia; Proietti-De-Santis, Luca

    2017-01-01

    The DNA repair protein Cockayne syndrome group B (CSB) has been recently identified as a promising anticancer target. Suppression, by antisense technology, of this protein causes devastating effects on tumor cells viability, through a massive induction of apoptosis, while being non-toxic to non-transformed cells. To gain insights into the mechanisms underlying the pro-apoptotic effects observed after CSB ablation, global gene expression patterns were determined, to identify genes that were significantly differentially regulated as a function of CSB expression. Our findings revealed that response to endoplasmic reticulum stress and response to unfolded proteins were ranked top amongst the cellular processes affected by CSB suppression. The major components of the endoplasmic reticulum stress-mediated apoptosis pathway, including pro-apoptotic factors downstream of the ATF3-CHOP cascade, were dramatically up-regulated. Altogether our findings add new pieces to the understanding of CSB mechanisms of action and to the molecular basis of CS syndrome. PMID:28253359

  7. RING finger palmitoylation of the endoplasmic reticulum Gp78 E3 ubiquitin ligase.

    Science.gov (United States)

    Fairbank, Maria; Huang, Kun; El-Husseini, Alaa; Nabi, Ivan R

    2012-07-30

    Gp78 is an E3 ubiquitin ligase within the endoplasmic reticulum-associated degradation pathway. We show that Flag-tagged gp78 undergoes sulfhydryl cysteine palmitoylation (S-palmitoylation) within the RING finger motif, responsible for its ubiquitin ligase activity. Screening of 19 palmitoyl acyl transferases (PATs) identified five that increased gp78 RING finger palmitoylation. Endoplasmic reticulum (ER)-localized Myc-DHHC6 overexpression promoted the peripheral ER distribution of Flag-gp78 while RING finger mutation and the palmitoylation inhibitor 2-bromopalmitate restricted gp78 to the central ER. Palmitoylation of RING finger cysteines therefore regulates gp78 distribution to the peripheral ER. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  8. An Involvement of Oxidative Stress in Endoplasmic Reticulum Stress and Its Associated Diseases

    Directory of Open Access Journals (Sweden)

    Bidur Bhandary

    2012-12-01

    Full Text Available The endoplasmic reticulum (ER is the major site of calcium storage and protein folding. It has a unique oxidizing-folding environment due to the predominant disulfide bond formation during the process of protein folding. Alterations in the oxidative environment of the ER and also intra-ER Ca2+ cause the production of ER stress-induced reactive oxygen species (ROS. Protein disulfide isomerases, endoplasmic reticulum oxidoreductin-1, reduced glutathione and mitochondrial electron transport chain proteins also play crucial roles in ER stress-induced production of ROS. In this article, we discuss ER stress-associated ROS and related diseases, and the current understanding of the signaling transduction involved in ER stress.

  9. Neuroprotective effects of atorvastatin against cerebral ischemia/reperfusion injury through the inhibition of endoplasmic reticulum stress

    Institute of Scientific and Technical Information of China (English)

    Jian-wen Yang; Zhi-ping Hu

    2015-01-01

    Cerebral ischemia triggers secondary ischemia/reperfusion injury and endoplasmic reticulum stress initiates cell apoptosis. However, the regulatory mechanism of the signaling pathway remains unclear. We hypothesize that the regulatory mechanisms are mediated by the protein kinase-like endoplasmic reticulum kinase/eukaryotic initiation factor 2α in the endoplasmic reticulum stress signaling pathway. To verify this hypothesis, we occluded the middle cere-bral artery in rats to establish focal cerebral ischemia/reperfusion model. Results showed that the expression levels of protein kinase-like endoplasmic reticulum kinase and caspase-3, as well as the phosphorylation of eukaryotic initiation factor 2α, were increased after ischemia/reperfusion. Administration of atorvastatin decreased the expression of protein kinase-like endoplasmic reticulum kinase, caspase-3 and phosphorylated eukaryotic initiation factor 2α, reduced the infarct volume and improved ultrastructure in the rat brain. After salubrinal, the speciifc inhibitor of phosphorylated eukaryotic initiation factor 2α was given into the rats in-tragastrically, the expression levels of caspase-3 and phosphorylated eukaryotic initiation factor 2α in the were decreased, a reduction of the infarct volume and less ultrastructural damage were observed than the untreated, ischemic brain. However, salubrinal had no impact on the expression of protein kinase-like endoplasmic reticulum kinase. Experimental ifndings indi-cate that atorvastatin inhibits endoplasmic reticulum stress and exerts neuroprotective effects. The underlying mechanisms of attenuating ischemia/reperfusion injury are associated with the protein kinase-like endoplasmic reticulum kinase/eukaryotic initiation factor 2α/caspase-3 pathway.

  10. The quality control of glycoprotein folding in the endoplasmic reticulum, a trip from trypanosomes to mammals

    Directory of Open Access Journals (Sweden)

    A.J. Parodi

    1998-05-01

    Full Text Available The present review deals with the stages of synthesis and processing of asparagine-linked oligosaccharides occurring in the lumen of the endoplasmic reticulum and their relationship to the acquisition by glycoproteins of their proper tertiary structures. Special emphasis is placed on reactions taking place in trypanosomatid protozoa since their study has allowed the detection of the transient glucosylation of glycoproteins catalyzed by UDP-Glc:glycoprotein glucosyltransferase and glucosidase II. The former enzyme has the unique property of covalently tagging improperly folded conformations by catalyzing the formation of protein-linked Glc1Man7GlcNAc2, Glc1Man8GlcNac2 and Glc1Man9GlcNAc2 from the unglucosylated proteins. Glucosyltransferase is a soluble protein of the endoplasmic reticulum that recognizes protein domains exposed in denatured but not in native conformations (probably hydrophobic amino acids and the innermost N-acetylglucosamine unit that is hidden from macromolecular probes in most native glycoproteins. In vivo, the glucose units are removed by glucosidase II. The influence of oligosaccharides in glycoprotein folding is reviewed as well as the participation of endoplasmic reticulum chaperones (calnexin and calreticulin that recognize monoglucosylated species in the same process. A model for the quality control of glycoprotein folding in the endoplasmic reticulum, i.e., the mechanism by which cells recognize the tertiary structure of glycoproteins and only allow transit to the Golgi apparatus of properly folded species, is discussed. The main elements of this control are calnexin and calreticulin as retaining components, the UDP-Glc:glycoprotein glucosyltransferase as a sensor of tertiary structures and glucosidase II as the releasing agent.

  11. Endoplasmic Reticulum Stress and the Related Signaling Networks in Severe Asthma

    OpenAIRE

    2014-01-01

    The endoplasmic reticulum (ER) is a specialized organelle that plays a central role in biosynthesis, correct protein folding, and posttranslational modifications of secretory and membrane proteins. Loss of homeostasis in ER functions triggers the ER stress response, resulting in activation of unfolded protein response (UPR), a hallmark of many inflammatory diseases. These pathways have been reported as critical players in the pathogenesis of various pulmonary disorders, including pulmonary fi...

  12. Endoplasmic reticulum stress is induced in the human placenta during labour

    OpenAIRE

    Veerbeek, J.H.W.; Tissot Van Patot, M.C.; Burton, G.J.; Yung, H.W.

    2015-01-01

    This is the final published version. It originally appeared online at http://www.sciencedirect.com/science/article/pii/S0143400414008340#. Placental endoplasmic reticulum (ER) stress has been postulated in the pathophysiology of pre-eclampsia (PE) and intrauterine growth restriction (IUGR), but its activation remains elusive. Oxidative stress induced by ischaemia/hypoxia-reoxygenation activates ER stress in vitro. Here, we explored whether exposure to labour represents an in vivo model for...

  13. Thapsigargin-induced transport of cholera toxin to the endoplasmic reticulum.

    OpenAIRE

    Sandvig, K.; Garred, O; van Deurs, B.

    1996-01-01

    Cholera toxin is normally observed only in the Golgi apparatus and not in the endoplasmic reticulum (ER) although the enzymatically active A subunit of cholera toxin has a KDEL sequence. Here we demonstrate transport of horseradish peroxidase-labeled cholera toxin to the ER by electron microscopy in thapsigargin-treated A431 cells. Thapsigargin treatment strongly increased cholera toxin-induced cAMP production, and the formation of the catalytically active A1 fragment was somewhat increased. ...

  14. The Endoplasmic Reticulum Stress Protein Calreticulin in Diabetic Chronic Kidney Disease

    Science.gov (United States)

    2016-07-01

    TECHNOLOGY? These studies identify a new target for the treatment of diabetic nephropathy . Studies with the NFAT inhibitor 11R- VIVIT will provide further...cells. In Aim 2, we will determine the role of CRT in mouse models of diabetic nephropathy . In year 2, we developed stably transduced HK-2 cells using...by western blot for fibronectin. 15. SUBJECT TERMS Diabetic nephropathy , calreticulin, TGF-beta, endoplasmic reticulum stress, fibrosis 16. SECURITY

  15. Ultrafast glycerophospholipid-selective transbilayer motion mediated by a protein in the endoplasmic reticulum membrane.

    Science.gov (United States)

    Buton, X; Morrot, G; Fellmann, P; Seigneuret, M

    1996-03-22

    A relatively rapid transbilayer motion of phospholipids in the microsomal membrane seems to be required due to their asymmetric synthesis in the cytoplasmic leaflet. Marked discrepancies exist with regard to the rate and specificity of this flip-flop process. To reinvestigate this problem, we have used both spin-labeled and radioactively labeled long chain phospholipids with a new fast translocation assay. Identical results were obtained with both types of probes. Transbilayer motion of glycerophospholipids was found to be much more rapid than previously reported (half-time less than 25 s) and to occur identically for phosphatidylcholine, phosphatidylserine, and phosphatidylethanolamine. Such transport is nonvectorial and leads to a symmetric transbilayer distribution of phospholipids. In contrast, transverse diffusion of sphingomyelin was 1 order of magnitude slower. Phospholipid flip-flop appears to occur by a protein-mediated transport process displaying saturable and competitive behavior. Proteolysis, chemical modification, and competition experiments suggest that this transport process may be related to that previously described in the endoplasmic reticulum for short-chain phosphatidylcholine (Bishop, W. R., and Bell, R. M. (1985) Cell 42, 51-60). The relationship between phospholipid flip-flop and nonbilayer structures occurring in the endoplasmic reticulum was also investigated by 31P-NMR. Several conditions were found under which the 31P isotropic NMR signal previously attributed to nonbilayer structures is decreased or abolished, whereas transbilayer diffusion is unaffected, suggesting that the flip-flop process is independent of such structures. It is concluded that flip-flop in the endoplasmic reticulum is mediated by a bidirectional protein transporter with a high efficiency for glycerophospholipids and a low efficiency for sphingomyelin. In vivo, the activity of this transporter would be able to redistribute all changes in phospholipid composition due

  16. Disruption of calpain reduces lipotoxicity-induced cardiac injury by preventing endoplasmic reticulum stress

    Science.gov (United States)

    Li, Shengcun; Zhang, Lulu; Ni, Rui; Cao, Ting; Zheng, Dong; Xiong, Sidong; Greer, Peter A.; Fan, Guo-Chang; Peng, Tianqing

    2016-01-01

    Diabetes and obesity are prevalent in westernized countries. In both conditions, excessive fatty acid uptake by cardiomyocytes induces cardiac lipotoxicity, an important mechanism contributing to diabetic cardiomyopathy. This study investigated the effect of calpain disruption on cardiac lipotoxicity. Cardiac-specific capns1 knockout mice and their wild-type littermates (male, age of 4 weeks) were fed a high fat diet (HFD) or normal diet for 20 weeks. HFD increased body weight, altered blood lipid profiles and impaired glucose tolerance comparably in both capns1 knockout mice and their wild-type littermates. Calpain activity, cardiomyocyte cross-sectional areas, collagen deposition and triglyceride were significantly increased in HFD-fed mouse hearts, and these were accompanied by myocardial dysfunction and up-regulation of hypertrophic and fibrotic collagen genes as well as pro-inflammatory cytokines. These effects of HFD were attenuated by disruption of calpain in capns1 knockout mice. Mechanistically, deletion of capns1 in HFD-fed mouse hearts and disruption of calpain with calpain inhibitor-III, silencing of capn1, or deletion of capns1 in palmitate-stimulated cardiomyocytes prevented endoplasmic reticulum stress, apoptosis, cleavage of caspase-12 and junctophilin-2, and pro-inflammatory cytokine expression. Pharmacological inhibition of endoplasmic reticulum stress diminished palmitate-induced apoptosis and pro-inflammatory cytokine expression in cardiomyocytes. In summary, disruption of calpain prevents lipotoxicity-induced apoptosis in cardiomyocytes and cardiac injury in mice fed a HFD. The role of calpain is mediated, at least partially, through endoplasmic reticulum stress. Thus, calpain/endoplasmic reticulum stress may represent a new mechanism and potential therapeutic targets for cardiac lipotoxicity. PMID:27523632

  17. Caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress.

    Science.gov (United States)

    Zhang, Qiang; Liu, Jianing; Chen, Shulan; Liu, Jing; Liu, Lijuan; Liu, Guirong; Wang, Fang; Jiang, Wenxin; Zhang, Caixia; Wang, Shuangyu; Yuan, Xiao

    2016-04-01

    It is well recognized that mandibular growth, which is caused by a variety of functional appliances, is considered to be the result of both neuromuscular and skeletal adaptations. Accumulating evidence has demonstrated that apoptosis plays an important role in the adaptation of skeletal muscle function. However, the underlying mechanism of apoptosis that is induced by stretch continues to be incompletely understood. Endoplasmic reticulum stress (ERS), a newly defined signaling pathway, initiates apoptosis. This study seeks to determine if caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress in myoblast and its underlying mechanism. Apoptosis was assessed by Hochest staining, DAPI staining and annexin V binding and PI staining. ER chaperones, such as GRP78, CHOP and caspase-12, were determined by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Furthermore, caspase-12 inhibitor was used to value the mechanism of the caspase-12 pathway. Apoptosis of myoblast, which is subjected to cyclic stretch, was observed in a time-dependent manner. We found that GRP78 mRNA and protein were significantly increased and CHOP and caspase-12 were activated in myoblast that was exposed to cyclic stretch. Caspase-12 inhibition reduced stretch-induced apoptosis, and caspase-12 activated caspase-3 to induce apoptosis. We concluded that caspase-12 played an important role in stretch-induced apoptosis that is associated by endoplasmic reticulum stress by activating caspase-3.

  18. Endoplasmic Reticulum Stress Mediates Methamphetamine-Induced Blood-Brain Barrier Damage.

    Science.gov (United States)

    Qie, Xiaojuan; Wen, Di; Guo, Hongyan; Xu, Guanjie; Liu, Shuai; Shen, Qianchao; Liu, Yi; Zhang, Wenfang; Cong, Bin; Ma, Chunling

    2017-01-01

    Methamphetamine (METH) abuse causes serious health problems worldwide, and long-term use of METH disrupts the blood-brain barrier (BBB). Herein, we explored the potential mechanism of endoplasmic reticulum (ER) stress in METH-induced BBB endothelial cell damage in vitro and the therapeutic potential of endoplasmic reticulum stress inhibitors for METH-induced BBB disruption in C57BL/6J mice. Exposure of immortalized BMVEC (bEnd.3) cells to METH significantly decreased cell viability, induced apoptosis, and diminished the tightness of cell monolayers. METH activated ER stress sensor proteins, including PERK, ATF6, and IRE1, and upregulated the pro-apoptotic protein CHOP. The ER stress inhibitors significantly blocked the upregulation of CHOP. Knockdown of CHOP protected bEnd.3 cells from METH-induced cytotoxicity. Furthermore, METH elevated the production of reactive oxygen species (ROS) and induced the dysfunction of mitochondrial characterized by a Bcl2/Bax ratio decrease, mitochondrial membrane potential collapse, and cytochrome c. ER stress release was partially reversed by ROS inhibition, and cytochrome c release was partially blocked by knockdown of CHOP. Finally, PBA significantly attenuated METH-induced sodium fluorescein (NaFluo) and Evans Blue leakage, as well as tight junction protein loss, in C57BL/6J mice. These data suggest that BBB endothelial cell damage was caused by METH-induced endoplasmic reticulum stress, which further induced mitochondrial dysfunction, and that PBA was an effective treatment for METH-induced BBB disruption.

  19. The involvement of SMILE/TMTC3 in endoplasmic reticulum stress response.

    Directory of Open Access Journals (Sweden)

    Maud Racapé

    Full Text Available BACKGROUND: The state of operational tolerance has been detected sporadically in some renal transplanted patients that stopped immunosuppressive drugs, demonstrating that allograft tolerance might exist in humans. Several years ago, a study by Brouard et al. identified a molecular signature of several genes that were significantly differentially expressed in the blood of such patients compared with patients with other clinical situations. The aim of the present study is to analyze the role of one of these molecules over-expressed in the blood of operationally tolerant patients, SMILE or TMTC3, a protein whose function is still unknown. METHODOLOGY/PRINCIPAL FINDINGS: We first confirmed that SMILE mRNA is differentially expressed in the blood of operationally tolerant patients with drug-free long term graft function compared to stable and rejecting patients. Using a yeast two-hybrid approach and a colocalization study by confocal microscopy we furthermore report an interaction of SMILE with PDIA3, a molecule resident in the endoplasmic reticulum (ER. In accordance with this observation, SMILE silencing in HeLa cells correlated with the modulation of several transcripts involved in proteolysis and a decrease in proteasome activity. Finally, SMILE silencing increased HeLa cell sensitivity to the proteasome inhibitor Bortezomib, a drug that induces ER stress via protein overload, and increased transcript expression of a stress response protein, XBP-1, in HeLa cells and keratinocytes. CONCLUSION/SIGNIFICANCE: In this study we showed that SMILE is involved in the endoplasmic reticulum stress response, by modulating proteasome activity and XBP-1 transcript expression. This function of SMILE may influence immune cell behavior in the context of transplantation, and the analysis of endoplasmic reticulum stress in transplantation may reveal new pathways of regulation in long-term graft acceptance thereby increasing our understanding of tolerance.

  20. Endoplasmic reticulum stress-induced apoptosis in the penumbra aggravates secondary damage in rats with traumatic brain injur y

    Institute of Scientific and Technical Information of China (English)

    Guo-zhu Sun; Fen-fei Gao; Zong-mao Zhao; Hai Sun; Wei Xu; Li-wei Wu; Yong-chang He

    2016-01-01

    Neuronal apoptosis is mediated by intrinsic and extrinsic signaling pathways such as the membrane-mediated, mitochondrial, and endo-plasmic reticulum stress pathways. Few studies have examined the endoplasmic reticulum-mediated apoptosis pathway in the penumbra after traumatic brain injury, and it remains unclear whether endoplasmic reticulum stress can activate the caspase-12-dependent apoptotic pathway in the traumatic penumbra. Here, we established rat models of lfuid percussion-induced traumatic brain injury and found that protein expression of caspase-12, caspase-3 and the endoplasmic reticulum stress marker 78 kDa glucose-regulated protein increased in the traumatic penumbra 6 hours after injury and peaked at 24 hours. Furthermore, numbers of terminal deoxynucleotidyl transferase-mediat-ed dUTP nick end labeling-positive cells in the traumatic penumbra also reached peak levels 24 hours after injury. These ifndings suggest that caspase-12-mediated endoplasmic reticulum-related apoptosis is activated in the traumatic penumbra, and may play an important role in the pathophysiology of secondary brain injury.

  1. Melatonin Induces Anti-Inflammatory Effects to Play a Protective Role via Endoplasmic Reticulum Stress in Acute Pancreatitis.

    Science.gov (United States)

    Chen, Yina; Zhang, Jie; Zhao, Qian; Chen, Qinfen; Sun, Yangjie; Jin, Yin; Wu, Jiansheng

    2016-01-01

    Melatonin, which is mainly secreted by the pineal gland and released into blood, has anti-inflammatory properties in acute pancreatitis. Many studies show that melatonin can relieve inflammation in taurocholate-induced acute pancreatitis. However, the mechanisms of its anti-inflammatory effects are still undefined, especially the relationship between melatonin and endoplasmic reticulum stress. We explored the anti-inflammatory activity of melatonin in AR42J and rat models. The CCK-8 assay was used to assess effects of melatonin on AR42J cell viability. Inflammatory degree and the expressions of endoplasmic reticulum stress related molecules were examined by quantitative RT-PCR and western blotting. The degree of inflammation in the tissue was also accessed by pathological grading. Finally, we used the western blotting method to verify apoptosis and autophagy. Endoplasmic reticulum stress was obviously activated in early stage inflammation in AR42J and rat models. Melatonin could induce anti-inflammatory effects via endoplasmic reticulum stress. Melatonin significantly inhibited inflammatory cytokines and the expression of ERS-related molecules. Finally, it played a protective role by promoting apoptosis and autophagy of the cells, which were damaged in the process of inflammatory reaction. Melatonin induces anti-inflammatory effects via endoplasmic reticulum stress in acute pancreatitis to play a protective role. © 2016 The Author(s) Published by S. Karger AG, Basel.

  2. Melatonin Induces Anti-Inflammatory Effects to Play a Protective Role via Endoplasmic Reticulum Stress in Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Yina Chen

    2016-12-01

    Full Text Available Background/Aims: Melatonin, which is mainly secreted by the pineal gland and released into blood, has anti-inflammatory properties in acute pancreatitis. Many studies show that melatonin can relieve inflammation in taurocholate-induced acute pancreatitis. However, the mechanisms of its anti-inflammatory effects are still undefined, especially the relationship between melatonin and endoplasmic reticulum stress. We explored the anti-inflammatory activity of melatonin in AR42J and rat models. Methods: The CCK-8 assay was used to assess effects of melatonin on AR42J cell viability. Inflammatory degree and the expressions of endoplasmic reticulum stress related molecules were examined by quantitative RT-PCR and western blotting. The degree of inflammation in the tissue was also accessed by pathological grading. Finally, we used the western blotting method to verify apoptosis and autophagy. Results: Endoplasmic reticulum stress was obviously activated in early stage inflammation in AR42J and rat models. Melatonin could induce anti-inflammatory effects via endoplasmic reticulum stress. Melatonin significantly inhibited inflammatory cytokines and the expression of ERS-related molecules. Finally, it played a protective role by promoting apoptosis and autophagy of the cells, which were damaged in the process of inflammatory reaction. Conclusion: Melatonin induces anti-inflammatory effects via endoplasmic reticulum stress in acute pancreatitis to play a protective role.

  3. Analysis of site-specific N-glycan remodeling in the endoplasmic reticulum and the Golgi

    Science.gov (United States)

    Hang, Ivan; Lin, Chia-wei; Grant, Oliver C; Fleurkens, Susanna; Villiger, Thomas K; Soos, Miroslav; Morbidelli, Massimo; Woods, Robert J; Gauss, Robert; Aebi, Markus

    2015-01-01

    The hallmark of N-linked protein glycosylation is the generation of diverse glycan structures in the secretory pathway. Dynamic, non-template-driven processes of N-glycan remodeling in the endoplasmic reticulum and the Golgi provide the cellular setting for structural diversity. We applied newly developed mass spectrometry-based analytics to quantify site-specific N-glycan remodeling of the model protein Pdi1p expressed in insect cells. Molecular dynamics simulation, mutational analysis, kinetic studies of in vitro processing events and glycan flux analysis supported the defining role of the protein in N-glycan processing. PMID:26240167

  4. The metabolomic signature of Leber's hereditary optic neuropathy reveals endoplasmic reticulum stress.

    Science.gov (United States)

    Chao de la Barca, Juan Manuel; Simard, Gilles; Amati-Bonneau, Patrizia; Safiedeen, Zainab; Prunier-Mirebeau, Delphine; Chupin, Stéphanie; Gadras, Cédric; Tessier, Lydie; Gueguen, Naïg; Chevrollier, Arnaud; Desquiret-Dumas, Valérie; Ferré, Marc; Bris, Céline; Kouassi Nzoughet, Judith; Bocca, Cinzia; Leruez, Stéphanie; Verny, Christophe; Miléa, Dan; Bonneau, Dominique; Lenaers, Guy; Martinez, M Carmen; Procaccio, Vincent; Reynier, Pascal

    2016-09-15

    Leber's hereditary optic neuropathy (MIM#535000), the commonest mitochondrial DNA-related disease, is caused by mutations affecting mitochondrial complex I. The clinical expression of the disorder, usually occurring in young adults, is typically characterized by subacute, usually sequential, bilateral visual loss, resulting from the degeneration of retinal ganglion cells. As the precise action of mitochondrial DNA mutations on the overall cell metabolism in Leber's hereditary optic neuropathy is unknown, we investigated the metabolomic profile of the disease. High performance liquid chromatography coupled with tandem mass spectrometry was used to quantify 188 metabolites in fibroblasts from 16 patients with Leber's hereditary optic neuropathy and eight healthy control subjects. Latent variable-based statistical methods were used to identify discriminating metabolites. One hundred and twenty-four of the metabolites were considered to be accurately quantified. A supervised orthogonal partial least squares discriminant analysis model separating patients with Leber's hereditary optic neuropathy from control subjects showed good predictive capability (Q(2)cumulated = 0.57). Thirty-eight metabolites appeared to be the most significant variables, defining a Leber's hereditary optic neuropathy metabolic signature that revealed decreased concentrations of all proteinogenic amino acids, spermidine, putrescine, isovaleryl-carnitine, propionyl-carnitine and five sphingomyelin species, together with increased concentrations of 10 phosphatidylcholine species. This signature was not reproduced by the inhibition of complex I with rotenone or piericidin A in control fibroblasts. The importance of sphingomyelins and phosphatidylcholines in the Leber's hereditary optic neuropathy signature, together with the decreased amino acid pool, suggested an involvement of the endoplasmic reticulum. This was confirmed by the significantly increased phosphorylation of PERK and eIF2α, as well as

  5. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization

    OpenAIRE

    2009-01-01

    We report here the identification and characterization of a protein, ERIS, an endoplasmic reticulum (ER) IFN stimulator, which is a strong type I IFN stimulator and plays a pivotal role in response to both non–self-cytosolic RNA and dsDNA. ERIS (also known as STING or MITA) resided exclusively on ER membrane. The ER retention/retrieval sequence RIR was found to be critical to retain the protein on ER membrane and to maintain its integrity. ERIS was dimerized on innate immune challenges. Coume...

  6. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization.

    Science.gov (United States)

    Sun, Wenxiang; Li, Yang; Chen, Lu; Chen, Huihui; You, Fuping; Zhou, Xiang; Zhou, Yi; Zhai, Zhonghe; Chen, Danying; Jiang, Zhengfan

    2009-05-26

    We report here the identification and characterization of a protein, ERIS, an endoplasmic reticulum (ER) IFN stimulator, which is a strong type I IFN stimulator and plays a pivotal role in response to both non-self-cytosolic RNA and dsDNA. ERIS (also known as STING or MITA) resided exclusively on ER membrane. The ER retention/retrieval sequence RIR was found to be critical to retain the protein on ER membrane and to maintain its integrity. ERIS was dimerized on innate immune challenges. Coumermycin-induced ERIS dimerization led to strong and fast IFN induction, suggesting that dimerization of ERIS was critical for self-activation and subsequent downstream signaling.

  7. Endoplasmic reticulum (ER) stress-suppressive compounds from scrap cultivation beds of the mushroom Hericium erinaceum.

    Science.gov (United States)

    Ueda, Keiko; Kodani, Shinya; Kubo, Masakazu; Masuno, Kazuhiko; Sekiya, Atsushi; Nagai, Kaoru; Kawagishi, Hirokazu

    2009-08-01

    Four compounds were isolated from scrap cultivation beds of the mushroom, Hericium erinaceum. Compounds 1-4 were identified as methyl 4-hydroxy-3-(3-methylbutanoyl) benzoate, 2-chloro-1,3-dimethoxy-5-methylbenzene, methyl 4-chloro-3,5-dimethoxybenzoate, and 4-chloro-3,5-dimethoxybenzaldehyde by an interpretation of the NMR and MS data, respectively. This is the first reported isolation of 1 from a natural source. All the compounds showed protective activity against endoplasmic reticulum stress-dependent cell death.

  8. Calcium Flux between the Endoplasmic Reticulum and Mitochondrion Contributes to Poliovirus-Induced Apoptosis▿

    Science.gov (United States)

    Brisac, Cynthia; Téoulé, François; Autret, Arnaud; Pelletier, Isabelle; Colbère-Garapin, Florence; Brenner, Catherine; Lemaire, Christophe; Blondel, Bruno

    2010-01-01

    We show that poliovirus (PV) infection induces an increase in cytosolic calcium (Ca2+) concentration in neuroblastoma IMR5 cells, at least partly through Ca2+ release from the endoplasmic reticulum lumen via the inositol 1,4,5-triphosphate receptor (IP3R) and ryanodine receptor (RyR) channels. This leads to Ca2+ accumulation in mitochondria through the mitochondrial Ca2+ uniporter and the voltage-dependent anion channel (VDAC). This increase in mitochondrial Ca2+ concentration in PV-infected cells leads to mitochondrial dysfunction and apoptosis. PMID:20861253

  9. [From endoplasmic reticulum to Golgi apparatus: a secretory pathway controlled by signal molecules].

    Science.gov (United States)

    Wang, Jiasheng; Luo, Jianhong; Zhang, Xiaomin

    2013-07-01

    Protein transport from endoplasmic reticulum (ER) to Golgi apparatus has long been known to be a central process for protein quality control and sorting. Recent studies have revealed that a large number of signal molecules are involved in regulation of membrane trafficking through ER, ER-Golgi intermediate compartment and Golgi apparatus. These molecules can significantly change the transport rate of proteins by regulating vesicle budding and fusion. Protein transport from ER to Golgi apparatus is not only controlled by signal pathways triggered from outside the cell, it is also regulated by feedback signals from the transport pathway.

  10. Comparative ultrastructural study of endoplasmic reticulum in colorectal carcinoma cell lines with different degrees of differentiation

    Institute of Scientific and Technical Information of China (English)

    Shu Feng; Jin Dan Song

    2000-01-01

    The endoplasmic reticulum (ER) consists of a complex system of tubules, lamellae, and flattened vesicles, and has a variety of morphologies in different cells. It is believed to play a central role in the biosynthesis of cholesterol, phospholipids, steroids, prostaglandins, membrane and secretory proteins[1]. Cancer cells have different functions and ultrastmcture from their original cells[2-4]. The studies on ER membrane system of cancer cells are of great significance in understanding their malignant behavior. In the present work, the ultrastructural characteristics of ER in human colorectal carcinoma cell lines with different differentiation degrees were investigated.

  11. Survival and death of endoplasmic-reticulum-stressed cells:Role of autophagy

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Accumulation of unfolded proteins in the endoplasmic reticulum (ER) results in ER stress, which subsequently activates the unfolded protein response that induces a transcriptional program to alleviate the stress. Another cellular process that is activated during ER stress is autophagy, a mechanism of enclosing intracellular compo- nents in a double-membrane autophagosome, and then delivering it to the lysosome for degradation. Here, we discuss the role of autophagy in cellular response to ER stress, the signaling pathways linking ER stress to autophagy, and the possible implication of modulating autophagy in treatment of diseases such as cancer.

  12. The endoplasmic reticulum exerts control over organelle streaming during cell expansion.

    Science.gov (United States)

    Stefano, Giovanni; Renna, Luciana; Brandizzi, Federica

    2014-03-01

    Cytoplasmic streaming is crucial for cell homeostasis and expansion but the precise driving forces are largely unknown. In plants, partial loss of cytoplasmic streaming due to chemical and genetic ablation of myosins supports the existence of yet-unknown motors for organelle movement. Here we tested a role of the endoplasmic reticulum (ER) as propelling force for cytoplasmic streaming during cell expansion. Through quantitative live-cell analyses in wild-type Arabidopsis thaliana cells and mutants with compromised ER structure and streaming, we demonstrate that cytoplasmic streaming undergoes profound changes during cell expansion and that it depends on motor forces co-exerted by the ER and the cytoskeleton.

  13. Dialogue between endoplasmic reticulum and mitochondria as a key actor of vascular dysfunction associated to metabolic disorders.

    Science.gov (United States)

    Safiedeen, Zainab; Andriantsitohaina, Ramaroson; Martinez, M Carmen

    2016-08-01

    Metabolic syndrome due to its association with increased risk of cardiovascular diseases and cardiac mortality, comprises a cluster of metabolic abnormalities such as central obesity, hyperglycemia, dyslipidemia, and hypertension. Recent studies have shown that metabolic syndrome patients exhibit impaired nitric oxide-mediated vasodilatation leading to endothelial dysfunction in addition to insulin resistance. Interestingly, development and maintenance of the unfolded protein response of the endoplasmic reticulum stress revealed a surprisingly direct link with metabolic syndrome and endothelial dysfunction. On the other hand, in metabolic disorders, interaction between endoplasmic reticulum and mitochondria is mandatory for the generation of mitochondrial oxidative stress and perturbation of mitochondrial function accounting, at least in part, for vascular dysfunction. Herein, we review the impact of the dialogue between endoplasmic reticulum and mitochondria in modulating the cellular signals governing vascular alterations associated to metabolic disorders.

  14. DSCR2, a Down syndrome critical region protein, is localized to the endoplasmic reticulum of mammalian cells

    Directory of Open Access Journals (Sweden)

    PA Possik

    2009-06-01

    Full Text Available We used immunocytochemical and fluorescence assays to investigate the subcellular location of the protein encoded by Down syndrome critical region gene 2 (DSCR2 in transfected cells. It was previously suggested that DSCR2 is located in the plasma membrane as an integral membrane protein. Interestingly, we observed this protein in the endoplasmic reticulum (ER of cells.We also studied whether the truncated forms of DSCR2 showed different subcellular distributions. Our observations indicate that DSCR2 probably is not inserted into the membrane of the endoplasmic reticulum since the fragments lacking the predicted transmembrane (TM helices remained associated with the ER. Our analyses suggest that, although DSCR2 is associated with the endoplasmic reticulum, it is not an integral membrane protein and it is maintained on the cytoplasmic side of the ER by indirect interaction with the ER membrane or with another protein.

  15. The endoplasmic reticulum and casein-containing vesicles contribute to milk fat globule membrane.

    Science.gov (United States)

    Honvo-Houéto, Edith; Henry, Céline; Chat, Sophie; Layani, Sarah; Truchet, Sandrine

    2016-10-01

    During lactation, mammary epithelial cells secrete huge amounts of milk from their apical side. The current view is that caseins are secreted by exocytosis, whereas milk fat globules are released by budding, enwrapped by the plasma membrane. Owing to the number and large size of milk fat globules, the membrane surface needed for their release might exceed that of the apical plasma membrane. A large-scale proteomics analysis of both cytoplasmic lipid droplets and secreted milk fat globule membranes was used to decipher the cellular origins of the milk fat globule membrane. Surprisingly, differential analysis of protein profiles of these two organelles strongly suggest that, in addition to the plasma membrane, the endoplasmic reticulum and the secretory vesicles contribute to the milk fat globule membrane. Analysis of membrane-associated and raft microdomain proteins reinforces this possibility and also points to a role for lipid rafts in milk product secretion. Our results provide evidence for a significant contribution of the endoplasmic reticulum to the milk fat globule membrane and a role for SNAREs in membrane dynamics during milk secretion. These novel aspects point to a more complex model for milk secretion than currently envisioned.

  16. Lipotoxicity-Induced PRMT1 Exacerbates Mesangial Cell Apoptosis via Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Min-Jung Park

    2017-07-01

    Full Text Available Lipotoxicity-induced mesangial cell apoptosis is implicated in the exacerbation of diabetic nephropathy (DN. Protein arginine methyltransferases (PRMTs have been known to regulate a variety of biological functions. Recently, it was reported that PRMT1 expression is increased in proximal tubule cells under diabetic conditions. However, their roles in mesangial cells remain unexplored. Thus, we examined the pathophysiological roles of PRMTs in mesangial cell apoptosis. Treatment with palmitate, which mimics cellular lipotoxicity, induced mesangial cell apoptosis via protein kinase RNA-like endoplasmic reticulum kinase (PERK and ATF6-mediated endoplasmic reticulum (ER stress signaling. Palmitate treatment increased PRMT1 expression and activity in mesangial cells as well. Moreover, palmitate-induced ER stress activation and mesangial cell apoptosis was diminished by PRMT1 knockdown. In the mice study, high fat diet-induced glomerular apoptosis was attenuated in PRMT1 haploinsufficient mice. Together, these results provide evidence that lipotoxicity-induced PRMT1 expression promotes ER stress-mediated mesangial cell apoptosis. Strategies to regulate PRMT1 expression or activity could be used to prevent the exacerbation of DN.

  17. Spike, a novel BH3-only protein, regulates apoptosis at the endoplasmic reticulum.

    Science.gov (United States)

    Mund, Thomas; Gewies, Andreas; Schoenfeld, Nicole; Bauer, Manuel K A; Grimm, Stefan

    2003-04-01

    We have isolated Spike, a novel and evolutionary conserved BH3-only protein. BH3-only proteins constitute a family of apoptosis inducers that mediate proapoptotic signals. In contrast to most proteins of this family, Spike was not found to be associated with mitochondria. Furthermore, unlike the known BH3-only proteins, Spike could not interact with all tested Bcl-2 family members, despite its BH3 domain being necessary for cell killing. Our findings indicate that Spike is localized to the endoplasmic reticulum. The endoplasmic reticulum is an organelle that has only recently been implicated in regulation of apoptosis. At this locale, Spike interacts with Bap31, an adaptor protein for pro-caspase-8 and Bcl-XL. In doing so, Spike is able to inhibit the formation of a complex between Bap31 and the antiapoptotic Bcl-XL protein. Furthermore, Spike transmits the signal of specific death receptors. Its down-regulation in certain tumors suggests that Spike may also play a role in tumorigenesis. Our findings add new insight for how BH3-only and antiapoptotic Bcl-2 proteins regulate cell death.

  18. Involvement of Endoplasmic Reticulum Stress in Capsaicin-Induced Apoptosis of Human Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Shengzhang Lin

    2013-01-01

    Full Text Available Capsaicin, main pungent ingredient of hot chilli peppers, has been shown to have anticarcinogenic effect on various cancer cells through multiple mechanisms. In this study, we investigated the apoptotic effect of capsaicin on human pancreatic cancer cells in both in vitro and in vivo systems, as well as the possible mechanisms involved. In vitro, treatment of both the pancreatic cancer cells (PANC-1 and SW1990 with capsaicin resulted in cells growth inhibition, G0/G1 phase arrest, and apoptosis in a dose-dependent manner. Knockdown of growth arrest- and DNA damage-inducible gene 153 (GADD153, a marker of the endoplasmic-reticulum-stress- (ERS- mediated apoptosis pathway, by specific siRNA attenuated capsaicin-induced apoptosis both in PANC-1 and SW1990 cells. Moreover, in vivo studies capsaicin effectively inhibited the growth and metabolism of pancreatic cancer and prolonged the survival time of pancreatic cancer xenograft tumor-induced mice. Furthermore, capsaicin increased the expression of some key ERS markers, including glucose-regulated protein 78 (GRP78, phosphoprotein kinase-like endoplasmic reticulum kinase (phosphoPERK, and phosphoeukaryotic initiation factor-2α (phospho-eIF2α, activating transcription factor 4 (ATF4 and GADD153 in tumor tissues. In conclusion, we for the first time provide important evidence to support the involvement of ERS in the induction of apoptosis in pancreatic cancer cells by capsaicin.

  19. Methods for monitoring endoplasmic reticulum stress and the unfolded protein response.

    LENUS (Irish Health Repository)

    Samali, Afshin

    2010-01-01

    The endoplasmic reticulum (ER) is the site of folding of membrane and secreted proteins in the cell. Physiological or pathological processes that disturb protein folding in the endoplasmic reticulum cause ER stress and activate a set of signaling pathways termed the Unfolded Protein Response (UPR). The UPR can promote cellular repair and sustained survival by reducing the load of unfolded proteins through upregulation of chaperones and global attenuation of protein synthesis. Research into ER stress and the UPR continues to grow at a rapid rate as many new investigators are entering the field. There are also many researchers not working directly on ER stress, but who wish to determine whether this response is activated in the system they are studying: thus, it is important to list a standard set of criteria for monitoring UPR in different model systems. Here, we discuss approaches that can be used by researchers to plan and interpret experiments aimed at evaluating whether the UPR and related processes are activated. We would like to emphasize that no individual assay is guaranteed to be the most appropriate one in every situation and strongly recommend the use of multiple assays to verify UPR activation.

  20. The delicate balance between secreted protein folding and endoplasmic reticulum-associated degradation in human physiology.

    Science.gov (United States)

    Guerriero, Christopher J; Brodsky, Jeffrey L

    2012-04-01

    Protein folding is a complex, error-prone process that often results in an irreparable protein by-product. These by-products can be recognized by cellular quality control machineries and targeted for proteasome-dependent degradation. The folding of proteins in the secretory pathway adds another layer to the protein folding "problem," as the endoplasmic reticulum maintains a unique chemical environment within the cell. In fact, a growing number of diseases are attributed to defects in secretory protein folding, and many of these by-products are targeted for a process known as endoplasmic reticulum-associated degradation (ERAD). Since its discovery, research on the mechanisms underlying the ERAD pathway has provided new insights into how ERAD contributes to human health during both normal and diseases states. Links between ERAD and disease are evidenced from the loss of protein function as a result of degradation, chronic cellular stress when ERAD fails to keep up with misfolded protein production, and the ability of some pathogens to coopt the ERAD pathway. The growing number of ERAD substrates has also illuminated the differences in the machineries used to recognize and degrade a vast array of potential clients for this pathway. Despite all that is known about ERAD, many questions remain, and new paradigms will likely emerge. Clearly, the key to successful disease treatment lies within defining the molecular details of the ERAD pathway and in understanding how this conserved pathway selects and degrades an innumerable cast of substrates.

  1. [Effect of endoplasmic reticulum stress in trophocytes on the pathogenesis of intrahepatic cholestasis of pregnancy].

    Science.gov (United States)

    Yu, Y; Zhou, C L; Yu, T T; Han, X J; Shi, H Y; Wang, H Z; Shen, J J; He, J

    2017-06-25

    Objective: To evaluate the effect of endoplasmic reticulum stress in trophocytes, in patients with intrahepatic cholestasis of pregnancy (ICP). Methods: Sixty-one pregnant women who were hospitalized in Women's Hospital, School of Medicine, Zhejiang University from January to December 2015 were recruited. Thirty-one women who were diagnosed as ICP were defined as the ICP group and 30 healthy pregnant women were defined as the control group. The localization and expression intensity of glucose regulated protein 78 (GRP-78) in placental tissues were detected by immunohistochemistry technique. Electronic microscope was used to observe ultra-microstructure change of the endoplasmic reticulum in trophocytes and cell line Swan71. Reverse transcription (RT)-PCR and western blot were used to investigate the expression of GRP-78 mRNA and protein in Swan 71 cell. Results: (1) GRP-78 protein was mainly expressed in the cytoplasm of cytotrophoblasts and syncytiotrophoblasts. The protein expression of GRP-78 in placentas of the ICP group (13.2±2.4) was significantly higher than that in the control group (7.8±1.3, Pstress of trophocytes may be involved in the pathogenesis of ICP.

  2. Mechanisms for exporting large-sized cargoes from the endoplasmic reticulum.

    Science.gov (United States)

    Saito, Kota; Katada, Toshiaki

    2015-10-01

    Cargo proteins exported from the endoplasmic reticulum to the Golgi apparatus are typically transported in coat protein complex II (COPII)-coated vesicles of 60-90 nm diameter. Several cargo molecules including collagens and chylomicrons form structures that are too large to be accommodated by these vesicles, but their secretion still requires COPII proteins. Here, we first review recent progress on large cargo secretions derived especially from animal models and human diseases, which indicate the importance of COPII proteins. We then discuss the recent isolation of specialized factors that modulate the process of COPII-dependent cargo formation to facilitate the exit of large-sized cargoes from the endoplasmic reticulum. Based on these findings, we propose a model that describes the importance of the GTPase cycle for secretion of oversized cargoes. Next, we summarize reports that describe the structures of COPII proteins and how these results provide insight into the mechanism of assembly of the large cargo carriers. Finally, we discuss what issues remain to be solved in the future.

  3. Respiratory metabolism and calorie restriction relieve persistent endoplasmic reticulum stress induced by calcium shortage in yeast.

    Science.gov (United States)

    Busti, Stefano; Mapelli, Valeria; Tripodi, Farida; Sanvito, Rossella; Magni, Fulvio; Coccetti, Paola; Rocchetti, Marcella; Nielsen, Jens; Alberghina, Lilia; Vanoni, Marco

    2016-06-16

    Calcium homeostasis is crucial to eukaryotic cell survival. By acting as an enzyme cofactor and a second messenger in several signal transduction pathways, the calcium ion controls many essential biological processes. Inside the endoplasmic reticulum (ER) calcium concentration is carefully regulated to safeguard the correct folding and processing of secretory proteins. By using the model organism Saccharomyces cerevisiae we show that calcium shortage leads to a slowdown of cell growth and metabolism. Accumulation of unfolded proteins within the calcium-depleted lumen of the endoplasmic reticulum (ER stress) triggers the unfolded protein response (UPR) and generates a state of oxidative stress that decreases cell viability. These effects are severe during growth on rapidly fermentable carbon sources and can be mitigated by decreasing the protein synthesis rate or by inducing cellular respiration. Calcium homeostasis, protein biosynthesis and the unfolded protein response are tightly intertwined and the consequences of facing calcium starvation are determined by whether cellular energy production is balanced with demands for anabolic functions. Our findings confirm that the connections linking disturbance of ER calcium equilibrium to ER stress and UPR signaling are evolutionary conserved and highlight the crucial role of metabolism in modulating the effects induced by calcium shortage.

  4. Relevance of Endoplasmic Reticulum Stress Cell Signaling in Liver Cold Ischemia Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Emma Folch-Puy

    2016-05-01

    Full Text Available The endoplasmic reticulum (ER is involved in calcium homeostasis, protein folding and lipid biosynthesis. Perturbations in its normal functions lead to a condition called endoplasmic reticulum stress (ERS. This can be triggered by many physiopathological conditions such as alcoholic steatohepatitis, insulin resistance or ischemia-reperfusion injury. The cell reacts to ERS by initiating a defensive process known as the unfolded protein response (UPR, which comprises cellular mechanisms for adaptation and the safeguarding of cell survival or, in cases of excessively severe stress, for the initiation of the cell death program. Recent experimental data suggest the involvement of ERS in ischemia/reperfusion injury (IRI of the liver graft, which has been considered as one of major problems influencing outcome after liver transplantation. The purpose of this review is to summarize updated data on the molecular mechanisms of ERS/UPR and the consequences of this pathology, focusing specifically on solid organ preservation and liver transplantation models. We will also discuss the potential role of ERS, beyond the simple adaptive response and the regulation of cell death, in the modification of cell functional properties and phenotypic changes.

  5. Insulin Dissociates the Effects of Liver X Receptor on Lipogenesis, Endoplasmic Reticulum Stress, and Inflammation.

    Science.gov (United States)

    Sun, Xiaowei; Haas, Mary E; Miao, Ji; Mehta, Abhiruchi; Graham, Mark J; Crooke, Rosanne M; Pais de Barros, Jean-Paul; Wang, Jian-Guo; Aikawa, Masanori; Masson, David; Biddinger, Sudha B

    2016-01-15

    Diabetes is characterized by increased lipogenesis as well as increased endoplasmic reticulum (ER) stress and inflammation. The nuclear hormone receptor liver X receptor (LXR) is induced by insulin and is a key regulator of lipid metabolism. It promotes lipogenesis and cholesterol efflux, but suppresses endoplasmic reticulum stress and inflammation. The goal of these studies was to dissect the effects of insulin on LXR action. We used antisense oligonucleotides to knock down Lxrα in mice with hepatocyte-specific deletion of the insulin receptor and their controls. We found, surprisingly, that knock-out of the insulin receptor and knockdown of Lxrα produced equivalent, non-additive effects on the lipogenic genes. Thus, insulin was unable to induce the lipogenic genes in the absence of Lxrα, and LXRα was unable to induce the lipogenic genes in the absence of insulin. However, insulin was not required for LXRα to modulate the phospholipid profile, or to suppress genes in the ER stress or inflammation pathways. These data show that insulin is required specifically for the lipogenic effects of LXRα and that manipulation of the insulin signaling pathway could dissociate the beneficial effects of LXR on cholesterol efflux, inflammation, and ER stress from the negative effects on lipogenesis.

  6. Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic beta-cells

    DEFF Research Database (Denmark)

    Cardozo, Alessandra K; Ortis, Fernanda; Storling, Joachim

    2005-01-01

    , beta-cells showed marked sensitivity to apoptosis induced by SERCA blockers, as compared with fibroblasts. Cytokine-induced ER Ca(2+) depletion was paralleled by an NO-dependent induction of CHOP protein and activation of diverse components of the ER stress response, including activation of inositol......Cytokines and free radicals are mediators of beta-cell death in type 1 diabetes. Under in vitro conditions, interleukin-1beta (IL-1beta) + gamma-interferon (IFN-gamma) induce nitric oxide (NO) production and apoptosis in rodent and human pancreatic beta-cells. We have previously shown......, by microarray analysis of primary beta-cells, that IL-1beta + IFN-gamma decrease expression of the mRNA encoding for the sarcoendoplasmic reticulum pump Ca(2+) ATPase 2b (SERCA2b) while inducing expression of the endoplasmic reticulum stress-related and proapoptotic gene CHOP (C/EBP [CCAAT/enhancer binding...

  7. Quercetin attenuates the effects of H2O2 on endoplasmic reticulum morphology and tyrosinase export from the endoplasmic reticulum in melanocytes.

    Science.gov (United States)

    Guan, Cuiping; Xu, Wen; Hong, Weisong; Zhou, Miaoni; Lin, Fuquan; Fu, Lifang; Liu, Dongyin; Xu, Aie

    2015-06-01

    Swollen endoplasmic reticulum (ER) is commonly observed in the melanocytes of vitiligo patients; however, the cause and proteins involved in this remain to be elucidated. Oxidative stress has been reported to be involved in the pathogenesis of vitiligo and previous studies have demonstrated that hydrogen peroxide (H2O2) induced melanocyte apoptosis, whereas quercetin exhibited cytoprotective activities against the effects of H2O2. The aim of the present study was to further investigate the role of H2O2 in the ER of melanocytes as well as its role in the export of tyrosinase from ER; in addition, the present study aimed to determine the mechanism by which quercetin protects against the effects of H2O2. The results demonstrated that melanocyte cells treated with H2O2 presented with swollen ER; however, a normal ER configuration was observed in untreated cells as well as quercetin/H2O2‑treated cells. Furthermore, H2O2 inhibited tyrosinase export from the ER and decreased expression levels of tyrosinase; however, quercetin was found to attenuate the effects induced by H2O2. In conclusion, the results of the present study confirmed the hypothesis that H2O2 induced ER dilation and hindered functional tyrosinase export from the ER of melanocytes. It was also found that quercetin significantly weakened these effects mediated by H2O2, therefore it may have the potential for use in the treatment of vitiligo.

  8. Uterine endoplasmic reticulum stress and its unfolded protein response may regulate caspase 3 activation in the pregnant mouse uterus.

    Directory of Open Access Journals (Sweden)

    Arvind Suresh

    Full Text Available We have previously proposed that uterine caspase-3 may modulate uterine contractility in a gestationally regulated fashion. The objective of this study was to determine the mechanism by which uterine caspase-3 is activated and consequently controlled in the pregnant uterus across gestation. Utilizing the mouse uterus as our gestational model we examined the intrinsic and extrinsic apoptotic signaling pathways and the endoplasmic reticulum stress response as potential activators of uterine caspase-3 at the transcriptional and translational level. Our study revealed robust activation of the uterine myocyte endoplasmic reticulum stress response and its adaptive unfolded protein response during pregnancy coinciding respectively with increased uterine caspase-3 activity and its withdrawal to term. In contrast the intrinsic and extrinsic apoptotic signaling pathways remained inactive across gestation. We speculate that physiological stimuli experienced by the pregnant uterus likely potentiates the uterine myocyte endoplasmic reticulum stress response resulting in elevated caspase-3 activation, which is isolated to the pregnant mouse myometrium. However as term approaches, activation of an elevated adaptive unfolded protein response acts to limit the endoplasmic reticulum stress response inhibiting caspase-3 resulting in its decline towards term. We speculate that these events have the capacity to regulate gestational length in a caspase-3 dependent manner.

  9. Uterine endoplasmic reticulum stress and its unfolded protein response may regulate caspase 3 activation in the pregnant mouse uterus.

    Science.gov (United States)

    Suresh, Arvind; Subedi, Kalpana; Kyathanahalli, Chandrashekara; Jeyasuria, Pancharatnam; Condon, Jennifer C

    2013-01-01

    We have previously proposed that uterine caspase-3 may modulate uterine contractility in a gestationally regulated fashion. The objective of this study was to determine the mechanism by which uterine caspase-3 is activated and consequently controlled in the pregnant uterus across gestation. Utilizing the mouse uterus as our gestational model we examined the intrinsic and extrinsic apoptotic signaling pathways and the endoplasmic reticulum stress response as potential activators of uterine caspase-3 at the transcriptional and translational level. Our study revealed robust activation of the uterine myocyte endoplasmic reticulum stress response and its adaptive unfolded protein response during pregnancy coinciding respectively with increased uterine caspase-3 activity and its withdrawal to term. In contrast the intrinsic and extrinsic apoptotic signaling pathways remained inactive across gestation. We speculate that physiological stimuli experienced by the pregnant uterus likely potentiates the uterine myocyte endoplasmic reticulum stress response resulting in elevated caspase-3 activation, which is isolated to the pregnant mouse myometrium. However as term approaches, activation of an elevated adaptive unfolded protein response acts to limit the endoplasmic reticulum stress response inhibiting caspase-3 resulting in its decline towards term. We speculate that these events have the capacity to regulate gestational length in a caspase-3 dependent manner.

  10. BODIPY-Coumarin Conjugate as an Endoplasmic Reticulum Membrane Fluidity Sensor and Its Application to ER Stress Models.

    Science.gov (United States)

    Lee, Hoyeon; Yang, Zhigang; Wi, Youngjin; Kim, Tae Woo; Verwilst, Peter; Lee, Yun Hak; Han, Ga-In; Kang, Chulhun; Kim, Jong Seung

    2015-12-16

    An endoplasmic reticulum (ER) membrane-selective chemosensor composed of BODIPY and coumarin moieties and a long alkyl chain (n-C18) was synthesized. The emission ratio of BODIPY to coumarin depends on the solution viscosity. The probe is localized to the ER membrane and was applied to reveal the reduced ER membrane fluidity under ER stress conditions.

  11. The endoplasmic reticulum stress/unfolded protein response in gliomagenesis, tumor progression and as a therapeutic target in glioblastoma

    NARCIS (Netherlands)

    Peñaranda Fajardo, Natalia; Meijer, Coby; Kruyt, Frank A. E.

    2016-01-01

    Endoplasmic reticulum (ER) stress disrupts among others protein homeostasis in cells leading to the activation of the unfolded protein response (UPR) that is crucial for restoring this balance and cell survival. Hypoxia, reactive oxygen species and nutrient deprivation, conditions commonly present i

  12. Initiation of GalNAc-type O-glycosylation in the endoplasmic reticulum promotes cancer cell invasiveness

    DEFF Research Database (Denmark)

    Gill, David J; Tham, Keit Min; Chia, Joanne

    2013-01-01

    Invasiveness underlies cancer aggressiveness and is a hallmark of malignancy. Most malignant tumors have elevated levels of Tn, an O-GalNAc glycan. Mechanisms underlying Tn up-regulation and its effects remain unclear. Here we show that Golgi-to-endoplasmic reticulum relocation of polypeptide N...

  13. Endoplasmic reticulum stress in complex atypical hyperplasia as a possible predictor of occult carcinoma and progestin response.

    Science.gov (United States)

    Tierney, Katherine E; Ji, Lingyun; Dralla, Shannon S; Yoo, Eunjeong; Yessaian, Annie; Pham, Huyen Q; Roman, Lynda; Sposto, Richard; Mhawech-Fauceglia, Paulette; Lin, Yvonne G

    2016-12-01

    Glucose-regulated protein (GRP)-78, the key regulator of endoplasmic reticulum (ER) stress, is associated with endometrial cancer (EC) development and progression. However, its role in the continuum from complex atypical hyperplasia (CAH) to EC is unknown and the focus of this study.

  14. GRP94: An HSP90-like protein specialized for protein folding and quality control in the endoplasmic reticulum

    DEFF Research Database (Denmark)

    Marzec, Michal; Eletto, Davide; Argon, Yair

    2012-01-01

    Glucose-regulated protein 94 is the HSP90-like protein in the lumen of the endoplasmic reticulum and therefore it chaperones secreted and membrane proteins. It has essential functions in development and physiology of multicellular organisms, at least in part because of this unique clientele. GRP94...

  15. Endoplasmic reticulum stress inhibits collagen synthesis independent of collagen-modifying enzymes in different chondrocyte populations and dermal fibroblasts

    NARCIS (Netherlands)

    Vonk, Lucienne A.; Doulabi, Behrouz Zandieh; Huang, Chun-Ling; Helder, Marco N.; Everts, Vincent; Bank, Ruud A.

    2010-01-01

    Chondrocytes respond to glucose deprivation with a decreased collagen synthesis due to disruption of a proper functioning of the endoplasmic reticulum (ER): ER stress. Since the mechanisms involved in the decreased synthesis are unknown, we have investigated whether chaperones and collagen-modifying

  16. Cis-element of the rice PDIL2-3 promoter is responsible for inducing the endoplasmic reticulum stress response.

    Science.gov (United States)

    Takahashi, Hideyuki; Wang, Shuyi; Hayashi, Shimpei; Wakasa, Yuhya; Takaiwa, Fumio

    2014-05-01

    A protein disulfide isomerase (PDI) family oxidoreductase, PDIL2-3, is involved in endoplasmic reticulum (ER) stress responses in rice. We identified a critical cis-element required for induction of the ER stress response. The activation of PDIL2-3 in response to ER stress strongly depends on the IRE1-OsbZIP50 signaling pathway.

  17. Microtubules as key coordinators of nuclear envelope and endoplasmic reticulum dynamics during mitosis.

    Science.gov (United States)

    Schlaitz, Anne-Lore

    2014-07-01

    During mitosis, cells comprehensively restructure their interior to promote the faithful inheritance of DNA and cytoplasmic contents. In metazoans, this restructuring entails disassembly of the nuclear envelope, redistribution of its components into the endoplasmic reticulum (ER) and eventually nuclear envelope reassembly around the segregated chromosomes. The microtubule cytoskeleton has recently emerged as a critical regulator of mitotic nuclear envelope and ER dynamics. Microtubules and associated molecular motors tear open the nuclear envelope in prophase and remove nuclear envelope remnants from chromatin. Additionally, two distinct mechanisms of microtubule-based regulation of ER dynamics operate later in mitosis. First, association of the ER with microtubules is reduced, preventing invasion of ER into the spindle area, and second, organelle membrane is actively cleared from metaphase chromosomes. However, we are only beginning to understand the role of microtubules in shaping and distributing ER and other organelles during mitosis. © 2014 WILEY Periodicals, Inc.

  18. Interaction between Mitochondria and the Endoplasmic Reticulum: Implications for the Pathogenesis of Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Jaechan Leem

    2012-01-01

    Full Text Available Mitochondrial dysfunction and endoplasmic reticulum (ER stress are closely associated with β-cell dysfunction and peripheral insulin resistance. Thus, each of these factors contributes to the development of type 2 diabetes mellitus (DM. The accumulated evidence reveals structural and functional communications between mitochondria and the ER. It is now well established that ER stress causes apoptotic cell death by disturbing mitochondrial Ca2+ homeostasis. In addition, recent studies have shown that mitochondrial dysfunction causes ER stress. In this paper, we summarize the roles that mitochondrial dysfunction and ER stress play in the pathogenesis of type 2 DM. Structural and functional communications between mitochondria and the ER are also discussed. Finally, we focus on recent findings supporting the hypothesis that mitochondrial dysfunction and the subsequent induction of ER stress play important roles in the pathogenesis of type 2 DM.

  19. Hyperactivity of the Ero1α Oxidase Elicits Endoplasmic Reticulum Stress but No Broad Antioxidant Response

    DEFF Research Database (Denmark)

    Hansen, Henning Gram; Schmidt, Jonas Damgard; Soltoft, Cecilie Lutzen

    2012-01-01

    Oxidizing equivalents for the process of oxidative protein folding in the endoplasmic reticulum (ER) of mammalian cells are mainly provided by the Ero1α oxidase. The molecular mechanisms that regulate Ero1α activity in order to harness its oxidative power are quite well understood. However......, the overall cellular response to oxidative stress generated by Ero1α in the lumen of the mammalian ER is poorly characterized. Here we investigate the effects of overexpressing a hyperactive mutant (C104A/C131A) of Ero1α. We show that Ero1α hyperactivity leads to hyperoxidation of the ER oxidoreductase ERp57...... the cellular glutathione redox buffer, we conclude that the observed effects of Ero1α-C104A/C131A overexpression are likely caused by an oxidative perturbation of the ER glutathione redox buffer. In accordance, we show that Ero1α hyperactivity affects cell viability when cellular glutathione levels...

  20. Impact of high cholesterol and endoplasmic reticulum stress on metabolic diseases: An updated mini-review

    Directory of Open Access Journals (Sweden)

    Erdi Sozen

    2017-08-01

    Full Text Available Endoplasmic reticulum (ER is the major site of protein folding and calcium storage. Beside the role of ER in protein homeostasis, it controls the cholesterol production and lipid-membrane biosynthesis as well as surviving and cell death signaling mechanisms in the cell. It is well-documented that elevated plasma cholesterol induces adverse effects in cardiovascular diseases (CVDs, liver disorders, such as non-alcoholic fatty liver disease (NAFLD, non-alcoholic steatosis hepatitis (NASH, and metabolic diseases which are associated with oxidative and ER stress. Recent animal model and human studies have showed high cholesterol and ER stress as an emerging factors involved in the development of many metabolic diseases. In this review, we will summarize the crucial effects of hypercholesterolemia and ER stress response in the pathogenesis of CVDs, NAFLD/NASH, diabetes and obesity which are major health problems in western countries.

  1. Endoplasmic reticulum aminopeptidase 2 is highly expressed in papillary thyroid microcarcinoma with cervical lymph node metastasis

    Directory of Open Access Journals (Sweden)

    Woo Young Kim

    2015-01-01

    Full Text Available Background: The cervical lymph node metastasis (CLNM of papillary thyroid microcarcinoma (PTMC is not uncommon. However, prophylactic cervical lymph node dissection in all PTMC is debatable. Molecular markers of predicting CLNM would help to decide to either do or not do cervical lymph node dissection which might increase morbidities. Aims: We aimed to characterize gene expression profiles and molecular markers of CLNM in PTMC. Settings and Design: The thyroid frozen tissues were obtained with from six PTMC patients, who underwent total thyroidectomy. Methods: We performed oligonucleotide microarray analysis with three PTMCs with CLNM and three without CLNM. Real-time quantitative reverse transcription-polymerase chain reaction was used to validate the gene. Statistical Analysis Used: We used linear models for microarray data. Results: We identified 12 differentially expressed gene, and most one is endoplasmic reticulum aminopeptidase 2 (ERAP2. Conclusion: ERAP2 might be associated with CLNM in PTMC.

  2. Trafficking of endoplasmic reticulum-retained recombinant proteins is unpredictable in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Thomas eDe Meyer

    2014-09-01

    Full Text Available A wide variety of recombinant proteins has been produced in the dicot model plant, Arabidopsis thaliana. Many of these proteins are targeted for secretion by means of an N terminal endoplasmic reticulum (ER signal peptide. In addition, they can also be designed for ER retention by adding a C terminal H/KDEL-tag. Despite extensive knowledge of the protein trafficking pathways, the final protein destination, especially of such H/KDEL-tagged recombinant proteins, is unpredictable. In this respect, glycoproteins are ideal study objects. Microscopy experiments reveal their deposition pattern and characterization of their N-glycans aids in elucidating the trafficking. Here, we combine microscopy and N glycosylation data generated in Arabidopsis leaves and seeds, and highlight the lack of a decent understanding of heterologous protein trafficking.

  3. Endoplasmic reticulum stress-induced autophagy determines the susceptibility of melanoma cells to dabrafenib

    Science.gov (United States)

    Ji, Chao; Zhang, Ziping; Chen, Lihong; Zhou, Kunli; Li, Dongjun; Wang, Ping; Huang, Shuying; Gong, Ting; Cheng, Bo

    2016-01-01

    Melanoma is one of the deadliest skin cancers and accounts for most skin-related deaths due to strong resistance to chemotherapy drugs. In the present study, we investigated the mechanisms of dabrafenib-induced drug resistance in human melanoma cell lines A375 and MEL624. Our studies support that both endoplasmic reticulum (ER) stress and autophagy were induced in the melanoma cells after the treatment with dabrafenib. In addition, ER stress-induced autophagy protects melanoma cells from the toxicity of dabrafenib. Moreover, inhibition of both ER stress and autophagy promote the sensitivity of melanoma cells to dabrafenib. Taken together, the data suggest that ER stress-induced autophagy determines the sensitivity of melanoma cells to dabrafenib. These results provide us with promising evidence that the inhibition of autophagy and ER stress could serve a therapeutic effect for the conventional dabrafenib chemotherapy. PMID:27536070

  4. Salubrinal Alleviates Pressure Overload-Induced Cardiac Hypertrophy by Inhibiting Endoplasmic Reticulum Stress Pathway

    Science.gov (United States)

    Rani, Shilpa; Sreenivasaiah, Pradeep Kumar; Cho, Chunghee; Kim, Do Han

    2017-01-01

    Pathological hypertrophy of the heart is closely associated with endoplasmic reticulum stress (ERS), leading to maladaptations such as myocardial fibrosis, induction of apoptosis, and cardiac dysfunctions. Salubrinal is a known selective inhibitor of protein phosphatase 1 (PP1) complex involving dephosphorylation of phospho-eukaryotic translation initiation factor 2 subunit (p-eIF2)-α, the key signaling process in the ERS pathway. In this study, the effects of salubrinal were examined on cardiac hypertrophy using the mouse model of transverse aortic constriction (TAC) and cell model of neonatal rat ventricular myocytes (NRVMs). Treatment of TAC-induced mice with salubrinal (0.5 mg·kg−1·day−1) alleviated cardiac hypertrophy and tissue fibrosis. Salubrinal also alleviated hypertrophic growth in endothelin 1 (ET1)-treated NRVMs. Therefore, the present results suggest that salubrinal may be a potentially efficacious drug for treating pathological cardiac remodeling. PMID:28152298

  5. Structural reorganization of the fungal endoplasmic reticulum upon induction of mycotoxin biosynthesis

    Science.gov (United States)

    Boenisch, Marike Johanne; Broz, Karen Lisa; Purvine, Samuel Owen; Chrisler, William Byron; Nicora, Carrie Diana; Connolly, Lanelle Reine; Freitag, Michael; Baker, Scott Edward; Kistler, Harold Corby

    2017-01-01

    Compartmentalization of metabolic pathways to particular organelles is a hallmark of eukaryotic cells. Knowledge of the development of organelles and attendant pathways under different metabolic states has been advanced by live cell imaging and organelle specific analysis. Nevertheless, relatively few studies have addressed the cellular localization of pathways for synthesis of fungal secondary metabolites, despite their importance as bioactive compounds with significance to medicine and agriculture. When triggered to produce sesquiterpene (trichothecene) mycotoxins, the endoplasmic reticulum (ER) of the phytopathogenic fungus Fusarium graminearum is reorganized both in vitro and in planta. Trichothecene biosynthetic enzymes accumulate in organized smooth ER with pronounced expansion at perinuclear- and peripheral positions. Fluorescence tagged trichothecene biosynthetic proteins co-localize with the modified ER as confirmed by co-fluorescence and co-purification with known ER proteins. We hypothesize that changes to the fungal ER represent a conserved process in specialized eukaryotic cells such as in mammalian hepatocytes and B-cells. PMID:28287158

  6. VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation.

    Science.gov (United States)

    Shih, Yu-Tzu; Hsueh, Yi-Ping

    2016-03-17

    Imbalanced protein homeostasis, such as excessive protein synthesis and protein aggregation, is a pathogenic hallmark of a range of neurological disorders. Here, using expression of mutant proteins, a knockdown approach and disease mutation knockin mice, we show that VCP (valosin-containing protein), together with its cofactor P47 and the endoplasmic reticulum (ER) morphology regulator ATL1 (Atlastin-1), regulates tubular ER formation and influences the efficiency of protein synthesis to control dendritic spine formation in neurons. Strengthening the significance of protein synthesis in dendritic spinogenesis, the translation blocker cyclohexamide and the mTOR inhibitor rapamycin reduce dendritic spine density, while a leucine supplement that increases protein synthesis ameliorates the dendritic spine defects caused by Vcp and Atl1 deficiencies. Because VCP and ATL1 are the causative genes of several neurodegenerative and neurodevelopmental disorders, we suggest that impaired ER formation and inefficient protein synthesis are significant in the pathogenesis of multiple neurological disorders.

  7. Mechanisms of Alcohol-Induced Endoplasmic Reticulum Stress and Organ Injuries

    Directory of Open Access Journals (Sweden)

    Cheng Ji

    2012-01-01

    Full Text Available Alcohol is readily distributed throughout the body in the blood stream and crosses biological membranes, which affect virtually all biological processes inside the cell. Excessive alcohol consumption induces numerous pathological stress responses, part of which is endoplasmic reticulum (ER stress response. ER stress, a condition under which unfolded/misfolded protein accumulates in the ER, contributes to alcoholic disorders of major organs such as liver, pancreas, heart, and brain. Potential mechanisms that trigger the alcoholic ER stress response are directly or indirectly related to alcohol metabolism, which includes toxic acetaldehyde and homocysteine, oxidative stress, perturbations of calcium or iron homeostasis, alterations of S-adenosylmethionine to S-adenosylhomocysteine ratio, and abnormal epigenetic modifications. Interruption of the ER stress triggers is anticipated to have therapeutic benefits for alcoholic disorders.

  8. Endoplasmic reticulum stress is induced in the human placenta during labour.

    Science.gov (United States)

    Veerbeek, J H W; Tissot Van Patot, M C; Burton, G J; Yung, H W

    2015-01-01

    Placental endoplasmic reticulum (ER) stress has been postulated in the pathophysiology of pre-eclampsia (PE) and intrauterine growth restriction (IUGR), but its activation remains elusive. Oxidative stress induced by ischaemia/hypoxia-reoxygenation activates ER stress in vitro. Here, we explored whether exposure to labour represents an in vivo model for the study of acute placental ER stress. ER stress markers, GRP78, P-eIF2α and XBP-1, were significantly higher in laboured placentas than in Caesarean-delivered controls localised mainly in the syncytiotrophoblast. The similarities to changes observed in PE/IUGR placentas suggest exposure to labour can be used to investigate induction of ER stress in pathological placentas. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Endoplasmic reticulum stress contributes to acetylcholine receptor degradation by promoting endocytosis in skeletal muscle cells.

    Science.gov (United States)

    Du, Ailian; Huang, Shiqian; Zhao, Xiaonan; Zhang, Yun; Zhu, Lixun; Ding, Ji; Xu, Congfeng

    2016-01-15

    After binding by acetylcholine released from a motor neuron, a nicotinic acetylcholine receptor at the neuromuscular junction produces a localized end-plate potential, which leads to muscle contraction. Improper turnover and renewal of acetylcholine receptors contributes to the pathogenesis of myasthenia gravis. In the present study, we demonstrate that endoplasmic reticulum (ER) stress contributes to acetylcholine receptor degradation in C2C12 myocytes. We further show that ER stress promotes acetylcholine receptor endocytosis and lysosomal degradation, which was dampened by blocking endocytosis or treating with lysosome inhibitor. Knockdown of ER stress proteins inhibited acetylcholine receptor endocytosis and degradation, while rescue assay restored its endocytosis and degradation, confirming the effects of ER stress on promoting endocytosis-mediated degradation of junction acetylcholine receptors. Thus, our studies identify ER stress as a factor promoting acetylcholine receptor degradation through accelerating endocytosis in muscle cells. Blocking ER stress and/or endocytosis might provide a novel therapeutic approach for myasthenia gravis.

  10. Cell biology of the endoplasmic reticulum and the Golgi apparatus through proteomics.

    Science.gov (United States)

    Smirle, Jeffrey; Au, Catherine E; Jain, Michael; Dejgaard, Kurt; Nilsson, Tommy; Bergeron, John

    2013-01-01

    Enriched endoplasmic reticulum (ER) and Golgi membranes subjected to mass spectrometry have uncovered over a thousand different proteins assigned to the ER and Golgi apparatus of rat liver. This, in turn, led to the uncovering of several hundred proteins of poorly understood function and, through hierarchical clustering, showed that proteins distributed in patterns suggestive of microdomains in cognate organelles. This has led to new insights with respect to their intracellular localization and function. Another outcome has been the critical testing of the cisternal maturation hypothesis showing overwhelming support for a predominant role of COPI vesicles in the transport of resident proteins of the ER and Golgi apparatus (as opposed to biosynthetic cargo). Here we will discuss new insights gained and also highlight new avenues undertaken to further explore the cell biology of the ER and the Golgi apparatus through tandem mass spectrometry.

  11. Plasma membrane domains enriched in cortical endoplasmic reticulum function as membrane protein trafficking hubs.

    Science.gov (United States)

    Fox, Philip D; Haberkorn, Christopher J; Weigel, Aubrey V; Higgins, Jenny L; Akin, Elizabeth J; Kennedy, Matthew J; Krapf, Diego; Tamkun, Michael M

    2013-09-01

    In mammalian cells, the cortical endoplasmic reticulum (cER) is a network of tubules and cisterns that lie in close apposition to the plasma membrane (PM). We provide evidence that PM domains enriched in underlying cER function as trafficking hubs for insertion and removal of PM proteins in HEK 293 cells. By simultaneously visualizing cER and various transmembrane protein cargoes with total internal reflectance fluorescence microscopy, we demonstrate that the majority of exocytotic delivery events for a recycled membrane protein or for a membrane protein being delivered to the PM for the first time occur at regions enriched in cER. Likewise, we observed recurring clathrin clusters and functional endocytosis of PM proteins preferentially at the cER-enriched regions. Thus the cER network serves to organize the molecular machinery for both insertion and removal of cell surface proteins, highlighting a novel role for these unique cellular microdomains in membrane trafficking.

  12. Transcription Factor ATF4 Induces NLRP1 Inflammasome Expression during Endoplasmic Reticulum Stress.

    Directory of Open Access Journals (Sweden)

    Andrea D'Osualdo

    Full Text Available Perturbation of endoplasmic reticulum (ER homeostasis triggers the ER stress response (also known as Unfolded Protein Response, a hallmark of many pathological disorders. However the connection between ER stress and inflammation remains largely unexplored. Recent data suggest that ER stress controls the activity of inflammasomes, key signaling platforms that mediate innate immune responses. Here we report that expression of NLRP1, a core inflammasome component, is specifically up-regulated during severe ER stress conditions in human cell lines. Both IRE1α and PERK, but not the ATF6 pathway, modulate NLRP1 gene expression. Furthermore, using mutagenesis, chromatin immunoprecipitation and CRISPR-Cas9-mediated genome editing technology, we demonstrate that ATF4 transcription factor directly binds to NLRP1 promoter during ER stress. Although involved in different types of inflammatory responses, XBP-1 splicing was not required for NLRP1 induction. This study provides further evidence that links ER stress with innate.

  13. Brain death is associated with endoplasmic reticulum stress and apoptosis in rat liver.

    Science.gov (United States)

    Cao, S; Wang, T; Yan, B; Lu, Y; Zhao, Y; Zhang, S

    2014-12-01

    Cell death pathways initiated by stress on the endoplasmic reticulum (ER) have been implicated in a variety of common diseases, such as ischemia/reperfusion injury, diabetes, heart disease, and neurodegenerative disorders. However, the contribution of ER stress to apoptosis and liver injury after brain death is not known. In the present study, we found that brain death induces a variety of signature ER stress markers, including ER stress-specific X box-binding protein 1 and up-regulation of glucose-regulated protein 78. Furthermore, brain death causes up-regulation of C/EBP homologous protein and caspase-12. Consistent with this, terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick-end labeling assay and transmission electron microscopy confirmed apoptosis in the liver after brain death. Taken together, the present study provides strong evidence supporting the presence and importance of ER stress and response in mediating brain death-induced apoptosis and liver injury.

  14. Endoplasmic Reticulum Glucosidase II Is Required for Pathogenicity of Ustilago maydisW⃞

    Science.gov (United States)

    Schirawski, Jan; Böhnert, Heidi U.; Steinberg, Gero; Snetselaar, Karen; Adamikowa, Lubica; Kahmann, Regine

    2005-01-01

    We identified a nonpathogenic strain of Ustilago maydis by tagging mutagenesis. The affected gene, glucosidase1 (gas1), displays similarity to catalytic α-subunits of endoplasmic reticulum (ER) glucosidase II. We have shown that Gas1 localizes to the ER and complements the temperature-sensitive phenotype of a Saccharomyces cerevisiae mutant lacking ER glucosidase II. gas1 deletion mutants were normal in growth and mating but were more sensitive to calcofluor and tunicamycin. Mutant infection hyphae displayed significant alterations in the distribution of cell wall material and were able to form appressoria and penetrate the plant surface but arrested growth in the epidermal cell layer. Electron microscopy analysis revealed that the plant–fungal interface between mutant hyphae and the plant plasma membrane was altered compared with the interface of penetrating wild-type hyphae. This may indicate that gas1 mutants provoke a plant response. PMID:16272431

  15. Endoplasmic reticulum glucosidase II is required for pathogenicity of Ustilago maydis.

    Science.gov (United States)

    Schirawski, Jan; Böhnert, Heidi U; Steinberg, Gero; Snetselaar, Karen; Adamikowa, Lubica; Kahmann, Regine

    2005-12-01

    We identified a nonpathogenic strain of Ustilago maydis by tagging mutagenesis. The affected gene, glucosidase1 (gas1), displays similarity to catalytic alpha-subunits of endoplasmic reticulum (ER) glucosidase II. We have shown that Gas1 localizes to the ER and complements the temperature-sensitive phenotype of a Saccharomyces cerevisiae mutant lacking ER glucosidase II. gas1 deletion mutants were normal in growth and mating but were more sensitive to calcofluor and tunicamycin. Mutant infection hyphae displayed significant alterations in the distribution of cell wall material and were able to form appressoria and penetrate the plant surface but arrested growth in the epidermal cell layer. Electron microscopy analysis revealed that the plant-fungal interface between mutant hyphae and the plant plasma membrane was altered compared with the interface of penetrating wild-type hyphae. This may indicate that gas1 mutants provoke a plant response.

  16. Pekinenin E Inhibits the Growth of Hepatocellular Carcinoma by Promoting Endoplasmic Reticulum Stress Mediated Cell Death

    Directory of Open Access Journals (Sweden)

    Lu Fan

    2017-06-01

    Full Text Available Hepatocellular carcinoma (HCC is a malignant primary liver cancer with poor prognosis. In the present study, we report that pekinenin E (PE, a casbane diterpenoid derived from the roots of Euphorbia pekinensis, has a strong antitumor activity against human HCC cells both in vitro and in vivo. PE suppressed the growth of human HCC cells Hep G2 and SMMC-7721. In addition, PE-mediated endoplasmic reticulum (ER stress caused increasing expressions of C/EBP homologous protein (CHOP, leading to apoptosis in HCC cells both in vitro and in vivo. Inhibition of ER stress with CHOP small interfering RNA or 4-phenyl-butyric acid partially reversed PE-induced cell death. Furthermore, PE induced S cell cycle arrest, which could also be partially reversed by CHOP knockdown. In all, these findings suggest that PE causes ER stress-associated cell death and cell cycle arrest, and it may serve as a potent agent for curing human HCC.

  17. Signaling networks converge on TORC1-SREBP activity to promote endoplasmic reticulum homeostasis.

    Directory of Open Access Journals (Sweden)

    Miguel Sanchez-Alvarez

    Full Text Available The function and capacity of the endoplasmic reticulum (ER is determined by multiple processes ranging from the local regulation of peptide translation, translocation, and folding, to global changes in lipid composition. ER homeostasis thus requires complex interactions amongst numerous cellular components. However, describing the networks that maintain ER function during changes in cell behavior and environmental fluctuations has, to date, proven difficult. Here we perform a systems-level analysis of ER homeostasis, and find that although signaling networks that regulate ER function have a largely modular architecture, the TORC1-SREBP signaling axis is a central node that integrates signals emanating from different sub-networks. TORC1-SREBP promotes ER homeostasis by regulating phospholipid biosynthesis and driving changes in ER morphology. In particular, our network model shows TORC1-SREBP serves to integrate signals promoting growth and G1-S progression in order to maintain ER function during cell proliferation.

  18. Endoplasmic reticulum stress as a primary pathogenic mechanism leading to age-related macular degeneration.

    Science.gov (United States)

    Libby, Richard T; Gould, Douglas B

    2010-01-01

    Age-related macular degeneration (AMD) is a multi-factorial disease and a leading cause of blindness. Proteomic and genetic data suggest that activation or de-repression of the alternate complement cascade of innate immunity is involved in end-stage disease. Several lines of evidence suggest that production of reactive oxygen species and chronic oxidative stress lead to protein and lipid modifications that initiate the complement cascade. Understanding the triggers of these pathogenic pathways and the site of the primary insult will be important for development of targeted therapeutics. Endoplasmic reticulum (ER) stress from misfolded mutant proteins and other sources are an important potential tributary mechanism. We propose that misfolded-protein-induced ER stress in the retinal-pigmented epithelium and/or choroid could lead to chronic oxidative stress, complement deregulation and AMD. Small molecules targeted to ER stress and oxidative stress could allow for a shift from disease treatment to disease prevention.

  19. Dysfunctional tubular endoplasmic reticulum constitutes a pathological feature of Alzheimer's disease.

    Science.gov (United States)

    Sharoar, M G; Shi, Q; Ge, Y; He, W; Hu, X; Perry, G; Zhu, X; Yan, R

    2016-09-01

    Pathological features in Alzheimer's brains include mitochondrial dysfunction and dystrophic neurites (DNs) in areas surrounding amyloid plaques. Using a mouse model that overexpresses reticulon 3 (RTN3) and spontaneously develops age-dependent hippocampal DNs, here we report that DNs contain both RTN3 and REEPs, topologically similar proteins that can shape tubular endoplasmic reticulum (ER). Importantly, ultrastructural examinations of such DNs revealed gradual accumulation of tubular ER in axonal termini, and such abnormal tubular ER inclusion is found in areas surrounding amyloid plaques in biopsy samples from Alzheimer's disease (AD) brains. Functionally, abnormally clustered tubular ER induces enhanced mitochondrial fission in the early stages of DN formation and eventual mitochondrial degeneration at later stages. Furthermore, such DNs are abrogated when RTN3 is ablated in aging and AD mouse models. Hence, abnormally clustered tubular ER can be pathogenic in brain regions: disrupting mitochondrial integrity, inducing DNs formation and impairing cognitive function in AD and aging brains.

  20. Presenilin 2 Modulates Endoplasmic Reticulum-Mitochondria Coupling by Tuning the Antagonistic Effect of Mitofusin 2

    Directory of Open Access Journals (Sweden)

    Riccardo Filadi

    2016-06-01

    Full Text Available Communication between organelles plays key roles in cell biology. In particular, physical and functional coupling of the endoplasmic reticulum (ER and mitochondria is crucial for regulation of various physiological and pathophysiological processes. Here, we demonstrate that Presenilin 2 (PS2, mutations in which underlie familial Alzheimer’s disease (FAD, promotes ER-mitochondria coupling only in the presence of mitofusin 2 (Mfn2. PS2 is not necessary for the antagonistic effect of Mfn2 on organelle coupling, although its abundance can tune it. The two proteins physically interact, whereas their homologues Mfn1 and PS1 are dispensable for this interplay. Moreover, PS2 mutants associated with FAD are more effective than the wild-type form in modulating ER-mitochondria tethering because their binding to Mfn2 in mitochondria-associated membranes is favored. We propose a revised model for ER-mitochondria interaction to account for these findings and discuss possible implications for FAD pathogenesis.

  1. Glucose-6-phosphate reduces calcium accumulation in rat brain endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Jeffrey Thomas Cole

    2012-04-01

    Full Text Available Brain cells expend large amounts of energy sequestering calcium (Ca2+, while loss of Ca2+ compartmentalization leads to cell damage or death. Upon cell entry, glucose is converted to glucose-6-phosphate (G6P, a parent substrate to several metabolic major pathways, including glycolysis. In several tissues, G6P alters the ability of the endoplasmic reticulum to sequester Ca2+. This led to the hypothesis that G6P regulates Ca2+ accumulation by acting as an endogenous ligand for sarco-endoplasmic reticulum calcium ATPase (SERCA. Whole brain ER microsomes were pooled from adult male Sprague-Dawley rats. Using radio-isotopic assays, 45Ca2+ accumulation was quantified following incubation with increasing amounts of G6P, in the presence or absence of thapsigargin, a potent SERCA inhibitor. To qualitatively assess SERCA activity, the simultaneous release of inorganic phosphate (Pi coupled with Ca2+ accumulation was quantified. Addition of G6P significantly and decreased Ca2+ accumulation in a dose-dependent fashion (1-10 mM. The reduction in Ca2+ accumulation was not significantly different that seen with addition of thapsigargin. Addition of glucose-1-phosphate or fructose-6-phosphate, or other glucose metabolic pathway intermediates, had no effect on Ca2+ accumulation. Further, the release of Pi was markedly decreased, indicating G6P-mediated SERCA inhibition as the responsible mechanism for reduced Ca2+ uptake. Simultaneous addition of thapsigargin and G6P did decrease inorganic phosphate in comparison to either treatment alone, which suggests that the two treatments have different mechanisms of action. Therefore, G6P may be a novel, endogenous regulator of SERCA activity. Additionally, pathological conditions observed during disease states that disrupt glucose homeostasis, may be attributable to Ca2+ dystasis caused by altered G6P regulation of SERCA activity

  2. The Herbal Medicine Cordyceps sinensis Protects Pancreatic Beta Cells from Streptozotocin-Induced Endoplasmic Reticulum Stress.

    Science.gov (United States)

    Liu, Hong; Cao, Diyong; Liu, Hua; Liu, Xinghai; Mai, Wenli; Lan, Haitao; Huo, Wen; Zheng, Qian

    2016-08-01

    Our previous work found that Cordyceps sinensis (CS) improves the activity and secretory function of pancreatic islet beta cells. The objective was to observe a further possible role of CS in the protection of insulin-secreting cells. A rat model of type 2 diabetes mellitus was developed with streptozotocin (STZ) and a high-energy fat diet (HFD). CS was administered in the successful model of rats with type 2 diabetes. After 4 weeks, the biochemistry index of blood samples was measured, and pathologic observation was performed by immunohistochemistry. In the rats with type 2 diabetes induced by a HFD and STZ, the levels of fasting blood glucose and fasting insulin were elevated, and the insulin sensitivity index was decreased. Pathologic examination found an increased number of apoptotic cells, an elevated protein expression of pro-apoptotic C/EBP homologous protein (CHOP) and an increased c-Jun level by means of JNK phosphorylation, responsive to the endoplasmic reticulum stress of islet beta cells. With treatment by CS for 4 weeks, the elevated levels of both fasting blood glucose and fasting insulin in the rats with type 2 diabetes were significantly lower, and the decreased insulin sensitivity index was reversed. Compared to the control rats with type 2 diabetes, CS application significantly reduced the number of apoptotic cells and decreased protein expression of both CHOP and c-Jun. The herbal compound CS could protect pancreatic beta cells from the pro-apoptotic endoplasmic reticulum stress induced by HFD-STZ. This suggests an alternative approach to treating type 2 diabetes. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  3. Depletion of cyclophilins B and C leads to dysregulation of endoplasmic reticulum redox homeostasis.

    Science.gov (United States)

    Stocki, Pawel; Chapman, Daniel C; Beach, Lori A; Williams, David B

    2014-08-15

    Protein folding within the endoplasmic reticulum is assisted by molecular chaperones and folding catalysts that include members of the protein-disulfide isomerase and peptidyl-prolyl isomerase families. In this report, we examined the contributions of the cyclophilin subset of peptidyl-prolyl isomerases to protein folding and identified cyclophilin C as an endoplasmic reticulum (ER) cyclophilin in addition to cyclophilin B. Using albumin and transferrin as models of cis-proline-containing proteins in human hepatoma cells, we found that combined knockdown of cyclophilins B and C delayed transferrin secretion but surprisingly resulted in more efficient oxidative folding and secretion of albumin. Examination of the oxidation status of ER protein-disulfide isomerase family members revealed a shift to a more oxidized state. This was accompanied by a >5-fold elevation in the ratio of oxidized to total glutathione. This "hyperoxidation" phenotype could be duplicated by incubating cells with the cyclophilin inhibitor cyclosporine A, a treatment that triggered efficient ER depletion of cyclophilins B and C by inducing their secretion to the medium. To identify the pathway responsible for ER hyperoxidation, we individually depleted several enzymes that are known or suspected to deliver oxidizing equivalents to the ER: Ero1αβ, VKOR, PRDX4, or QSOX1. Remarkably, none of these enzymes contributed to the elevated oxidized to total glutathione ratio induced by cyclosporine A treatment. These findings establish cyclophilin C as an ER cyclophilin, demonstrate the novel involvement of cyclophilins B and C in ER redox homeostasis, and suggest the existence of an additional ER oxidative pathway that is modulated by ER cyclophilins.

  4. Identification and functional characterization of an endoplasmic reticulum oxidoreductin 1-α gene in Litopenaeus vannamei.

    Science.gov (United States)

    Zhang, Ze-Zhi; Yuan, Kai; Yue, Hai-Tao; Yuan, Feng-Hua; Bi, Hai-Tao; Weng, Shao-Ping; He, Jian-Guo; Chen, Yi-Hong

    2016-04-01

    In the current study, full-length sequence of endoplasmic reticulum oxidoreductin 1-α (LvERO1-α) was cloned from Litopenaeus vannamei. Real-time RT-PCR results showed that LvERO1-α was highly expressed in hemocytes, gills, and intestines. White spot syndrome virus (WSSV) challenge was performed, and the expression of LvERO1-α and two other downstream genes of the double-stranded RNA-activated protein kinase-like ER kinase-eIF2α (PERK-α) pathway, namely, homocysteine-induced endoplasmic reticulum protein (LvHERP) and acylamino-acid-releasing enzyme (LvAARE), strongly increased in the hemocytes. Flow cytometry assay results indicated that the apoptosis rate of L. vannamei hemocytes in the LvERO1-α knockdown group was significantly lower than that of the controls. Moreover, shrimps with knockdown expression of LvERO1-α exhibited decreased cumulative mortality upon WSSV infection. Downregulation of L. vannamei immunoglobulin-binding protein (LvBip), which had been proven to induce unfolded protein response (UPR) in L. vannamei, did not only upregulate LvERO1-α, LvHERP, and LvAARE in hemocytes, but also increased their apoptosis rate, as well as the shrimp cumulative mortality. Furthermore, reporter gene assay results showed that the promoter of LvERO1-α was activated by L. vannamei activating transcription factor 4, thereby confirming that LvERO1-α was regulated by the PERK-eIF2α pathway. These results suggested that LvERO1-α plays a critical role in WSSV-induced apoptosis, which likely occurs through the WSSV-activated PERK-eIF2α pathway.

  5. Tributyltin-induced endoplasmic reticulum stress and its Ca{sup 2+}-mediated mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Isomura, Midori; Kotake, Yaichiro, E-mail: yaichiro@hiroshima-u.ac.jp; Masuda, Kyoichi; Miyara, Masatsugu; Okuda, Katsuhiro; Samizo, Shigeyoshi; Sanoh, Seigo; Hosoi, Toru; Ozawa, Koichiro; Ohta, Shigeru

    2013-10-01

    Organotin compounds, especially tributyltin chloride (TBT), have been widely used in antifouling paints for marine vessels, but exhibit various toxicities in mammals. The endoplasmic reticulum (ER) is a multifunctional organelle that controls post-translational modification and intracellular Ca{sup 2+} signaling. When the capacity of the quality control system of ER is exceeded under stress including ER Ca{sup 2+} homeostasis disruption, ER functions are impaired and unfolded proteins are accumulated in ER lumen, which is called ER stress. Here, we examined whether TBT causes ER stress in human neuroblastoma SH-SY5Y cells. We found that 700 nM TBT induced ER stress markers such as CHOP, GRP78, spliced XBP1 mRNA and phosphorylated eIF2α. TBT also decreased the cell viability both concentration- and time-dependently. Dibutyltin and monobutyltin did not induce ER stress markers. We hypothesized that TBT induces ER stress via Ca{sup 2+} depletion, and to test this idea, we examined the effect of TBT on intracellular Ca{sup 2+} concentration using fura-2 AM, a Ca{sup 2+} fluorescent probe. TBT increased intracellular Ca{sup 2+} concentration in a TBT-concentration-dependent manner, and Ca{sup 2+} increase in 700 nM TBT was mainly blocked by 50 μM dantrolene, a ryanodine receptor antagonist (about 70% inhibition). Dantrolene also partially but significantly inhibited TBT-induced GRP78 expression and cell death. These results suggest that TBT increases intracellular Ca{sup 2+} concentration by releasing Ca{sup 2+} from ER, thereby causing ER stress. - Highlights: • We established that tributyltin induces endoplasmic reticulum (ER) stress. • Tributyltin induces ER stress markers in a concentration-dependent manner. • Tributyltin increases Ca{sup 2+} release from ER, thereby causing ER stress. • Dibutyltin and monobutyltin did not increase GRP78 or intracellular Ca{sup 2+}.

  6. Sequestered endoplasmic reticulum space for sequential metabolism of salicylamide. Coupling of hydroxylation and glucuronidation.

    Science.gov (United States)

    Tirona, R G; Pang, K S

    1996-08-01

    The metabolic disposition of simultaneously delivered [14C]salicylamide (SAM) (100 microM) and a tracer concentration of its hydroxylated metabolite [3H]gentisamide (GAM) was studied with single-pass followed by recirculating rat liver perfusion (10 ml/min). The use of dual radiolabeling of precursor-product pairs in single-pass and recirculating perfusions allowed for characterization of the differential metabolism of preformed [3H]GAM and formed [14C]GAM, which arose in situ in the liver with [14C]SAM single-pass perfusion, and the behavior of circulating [14C]GAM, which behaved as a preformed species in recirculation. In both modes of perfusion, [14C]SAM was mainly sequentially metabolized to [14C]GAM-5-glucuronide, whereas [3H]GAM predominantly formed [3H]GAM-5-sulfate. The steady-state and time-averaged clearances of SAM were identical and approached the value of flow, yielding a high hepatic extraction ratio (E = 0.98). The apparent extraction ratio of formed GAM [E(mi) = 0.96] was greater than that of the preformed species [E(pmi) approximately 0.7]. Because the coupling of (SAM) oxidation and (GAM) glucuronidation was a plausible explanation for the observation, a novel physiological pharmacokinetic model was developed to interpret the data. In this model, the liver was divided into three zonal units, within which acinar distribution of enzymatic activities was considered, namely periportal sulfation, evenly distributed glucuronidation, and perivenous hydroxylation. Each zonal region was subdivided into extracellular, cytosolic, and endoplasmic reticulum compartments, with cytosolic (sulfotransferases) and microsomal (cytochromes P-450 and UDP-glucuronosyltransferase) enzymes being segregated intracellularly into the cytosolic compartment and endoplasmic reticulum compartment, respectively. The simulations provided a good prediction of the present experimental data as well as previously obtained data with increasing SAM concentration and retrograde flow and

  7. Excessive training is associated with endoplasmic reticulum stress but not apoptosis in the hypothalamus of mice.

    Science.gov (United States)

    Pinto, Ana Paula; da Rocha, Alisson Luiz; Pereira, Bruno Cesar; Oliveira, Luciana da Costa; Morais, Gustavo Paroschi; Moura, Leandro Pereira; Ropelle, Eduardo Rochete; Pauli, José Rodrigo; da Silva, Adelino Sanchez Ramos

    2017-04-01

    Downhill running-based overtraining model increases the hypothalamic levels of IL-1β, TNF-α, SOCS3, and pSAPK-JNK. The aim of the present study was to verify the effects of 3 overtraining protocols on the levels of BiP, pIRE-1 (Ser724), pPERK (Thr981), pelF2α (Ser52), ATF-6, GRP-94, caspase 4, caspase 12, pAKT (Ser473), pmTOR (Ser2448), and pAMPK (Thr172) proteins in the mouse hypothalamus. The mice were randomized into the control, overtrained by downhill running (OTR/down), overtrained by uphill running (OTR/up), and overtrained by running without inclination (OTR) groups. After the overtraining protocols (i.e., at the end of week 8), hypothalamus was removed and used for immunoblotting. The OTR/down group exhibited increased levels of all of the analyzed endoplasmic reticulum stress markers in the hypothalamus at the end of week 8. The OTR/up and OTR groups exhibited increased levels of BiP, pIRE-1 (Ser724), and pPERK (Thr981) in the hypothalamus at the end of week 8. There were no significant differences in the levels of caspase 4, caspase 12, pAKT (Ser473), pmTOR (Ser2448), and pAMPK (Thr172) between the experimental groups at the end of week 8. In conclusion, the 3 overtraining protocols increased the endoplasmic reticulum stress at the end of week 8.

  8. ILDR2: an endoplasmic reticulum resident molecule mediating hepatic lipid homeostasis.

    Directory of Open Access Journals (Sweden)

    Kazuhisa Watanabe

    Full Text Available Ildr2, a modifier of diabetes susceptibility in obese mice, is expressed in most organs, including islets and hypothalamus, with reduced levels in livers of diabetes-susceptible B6.DBA mice congenic for a 1.8 Mb interval of Chromosome 1. In hepatoma and neuronal cells, ILDR2 is primarily located in the endoplasmic reticulum membrane. We used adenovirus vectors that express shRNA or are driven by the CMV promoter, respectively, to knockdown or overexpress Ildr2 in livers of wild type and ob/ob mice. Livers in knockdown mice were steatotic, with increased hepatic and circulating triglycerides and total cholesterol. Increased circulating VLDL, without reduction in triglyceride clearance suggests an effect of reduced hepatic ILDR2 on hepatic cholesterol clearance. In animals that overexpress Ildr2, hepatic triglyceride and total cholesterol levels were reduced, and strikingly so in ob/ob mice. There were no significant changes in body weight, energy expenditure or glucose/insulin homeostasis in knockdown or overexpressing mice. Knockdown mice showed reduced expression of genes mediating synthesis and oxidation of hepatic lipids, suggesting secondary suppression in response to increased hepatic lipid content. In Ildr2-overexpressing ob/ob mice, in association with reduced liver fat content, levels of transcripts related to neutral lipid synthesis and cholesterol were increased, suggesting "relief" of the secondary suppression imposed by lipid accumulation. Considering the fixed location of ILDR2 in the endoplasmic reticulum, we investigated the possible participation of ILDR2 in ER stress responses. In general, Ildr2 overexpression was associated with increases, and knockdown with decreases in levels of expression of molecular components of canonical ER stress pathways. We conclude that manipulation of Ildr2 expression in liver affects both lipid homeostasis and ER stress pathways. Given these reciprocal interactions, and the relatively extended time

  9. HMGB1 induces an inflammatory response in endothelial cells via the RAGE-dependent endoplasmic reticulum stress pathway

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Ying [Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha 410078 (China); Li, Shu-Jun [Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410078 (China); Yang, Jian [Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha 410078 (China); Qiu, Yuan-Zhen [Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha 410078 (China); Chen, Fang-Ping, E-mail: xychenfp@163.com [Department of Hematology, Xiangya Hospital, Central South University, Changsha 410078 (China)

    2013-09-06

    Highlights: •Mechanisms of inflammatory response induced by HMGB1 are incompletely understood. •We found that endoplasmic reticulum stress mediate the inflammatory response induced by HMGB1. •RAGE-mediated ERS pathways are involved in those processes. •We reported a new mechanism for HMGB1 induced inflammatory response. -- Abstract: The high mobility group 1B protein (HMGB1) mediates chronic inflammatory responses in endothelial cells, which play a critical role in atherosclerosis. However, the underlying mechanism is unknown. The goal of our study was to identify the effects of HMGB1 on the RAGE-induced inflammatory response in endothelial cells and test the possible involvement of the endoplasmic reticulum stress pathway. Our results showed that incubation of endothelial cells with HMGB1 (0.01–1 μg/ml) for 24 h induced a dose-dependent activation of endoplasmic reticulum stress transducers, as assessed by PERK and IRE1 protein expression. Moreover, HMGB1 also promoted nuclear translocation of ATF6. HMGB1-mediated ICAM-1 and P-selectin production was dramatically suppressed by PERK siRNA or IRE1 siRNA. However, non-targeting siRNA had no such effects. HMGB1-induced increases in ICAM-1 and P-selectin expression were also inhibited by a specific eIF2α inhibitor (salubrinal) and a specific JNK inhibitor (SP600125). Importantly, a blocking antibody specifically targeted against RAGE (anti-RAGE antibody) decreased ICAM-1, P-selectin and endoplasmic reticulum stress molecule (PERK, eIF2α, IRE1 and JNK) protein expression levels. Collectively, these novel findings suggest that HMGB1 promotes an inflammatory response by inducing the expression of ICAM-1 and P-selectin via RAGE-mediated stimulation of the endoplasmic reticulum stress pathway.

  10. New insights in the role of Bcl-2 Bcl-2 and the endoplasmic reticulum.

    Science.gov (United States)

    Rudner, J; Jendrossek, V; Belka, C

    2002-10-01

    The oncogenic protein Bcl-2 which is expressed in membranes of different subcellular organelles protects cells from apoptosis induced by endogenic stimuli. Most of the results published so far emphasise the importance of Bcl-2 at the mitochondria. Several recent observations suggest a role of Bcl-2 at the endoplasmic reticulum (ER). Bcl-2 located at the ER was shown to interfere with apoptosis induction by Bax, ceramides, ionising radiation, serum withdrawal and c-myc expression. Although the detailed functions of Bcl-2 at the ER remain elusive, several speculative mechanisms may be supposed. For instance, Bcl-2 at the ER may regulate calcium fluxes between the ER and the mitochondria. In addition, Bcl-2 is able to interact with the endoplasmic protein Bap31 thus avoiding caspase activation at the ER. Bcl-2 may also abrogate the function of ER located pro-apoptotic Bcl-2 like proteins by heterodimerization. Current data on the function of Bcl-2 at the ER, its role for the modulation of calcium fluxes and its influence on caspase activation at the ER are reviewed.

  11. Z α-1 antitrypsin deficiency and the endoplasmic reticulum stress response

    Institute of Scientific and Technical Information of China (English)

    Catherine; M; Greene; Noel; G; McElvaney

    2010-01-01

    The serine proteinase inhibitor α-1 antitrypsin(AAT) is produced principally by the liver at the rate of 2 g/d.It is secreted into the circulation and provides an antiprotease protective screen throughout the body but most importantly in the lung,where it can neutralise the activity of the serine protease neutrophil elastase.Mutations leading to def iciency in AAT are associated with liver and lung disease.The most notable is the Z AAT mutation,which encodes a misfolded variant of the AAT protein in which the glutamic acid at position 342 is replaced by a lysine.More than 95% of all individuals with AAT def iciency carry at least one Z allele.ZAAT protein is not secreted effectively and accumulates intracellularly in the endoplasmic reticulum(ER) of hepatocytes and other AAT-producing cells.This results in a loss of function associated with decreased circulating and intrapulmonary levels of AAT.However,the misfolded protein acquires a toxic gain of function that impacts on the ER.A major function of the ER is to ensure correct protein folding.ZAAT interferes with this function and promotes ER stress responses and inflammation.Here the signalling pathways activated during ER stress in response to accumulation of ZAAT are described and therapeutic strategies that can potentially relieve ER stress are discussed.

  12. Distribution of an Ankyrin-repeat Protein on the Endoplasmic Reticulum in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Liqin Wei; Yan Li

    2009-01-01

    There are many ankyrin-repeat proteins in plant cells. However, the distribution and function of these proteins are mostly unclear. By reverse transcription-polymerase chain reaction, a gene encoding an ankyrin-like protein was cloned from Arabidopsis and named AtANK1 (GenBank accession no. NM_120340). The 6-His-tagged AtAnk1-N fusion protein was affinity-purified and its rabbit polyclonal antibody was obtained. Immuno-blotting with the purified anti-AtAnk1-N polyclonal antibody revealed that the relative molecular weight of the AtANK1 protein was about 76 kDa. By immunofluorescence labeling and immuno-gold labeling with the purified anti-AtAnk1-N polyclonal antibody, coupled with confocal and transmission electron microscopy observation, AtANK1 was found to be distributed on the membrane of the endoplaamic reticulum in Arabidopsis cells. Based on these results, we suggested that AtANK1 might be involved in endoplasmic reticulum-related protein localization and sorting in plant cells.

  13. Mitochondrial and endoplasmic reticulum stress pathways cooperate in zearalenone-induced apoptosis of human leukemic cells

    Directory of Open Access Journals (Sweden)

    Chokchaichamnankit Daranee

    2010-12-01

    Full Text Available Abstract Background Zearalenone (ZEA is a phytoestrogen from Fusarium species. The aims of the study was to identify mode of human leukemic cell death induced by ZEA and the mechanisms involved. Methods Cell cytotoxicity of ZEA on human leukemic HL-60, U937 and peripheral blood mononuclear cells (PBMCs was performed by using 3-(4,5-dimethyl-2,5-diphenyl tetrazolium bromide (MTT assay. Reactive oxygen species production, cell cycle analysis and mitochondrial transmembrane potential reduction was determined by employing 2',7'-dichlorofluorescein diacetate, propidium iodide and 3,3'-dihexyloxacarbocyanine iodide and flow cytometry, respectively. Caspase-3 and -8 activities were detected by using fluorogenic Asp-Glu-Val-Asp-7-amino-4-methylcoumarin (DEVD-AMC and Ile-Glu-Thr-Asp-7-amino-4-methylcoumarin (IETD-AMC substrates, respectively. Protein expression of cytochrome c, Bax, Bcl-2 and Bcl-xL was performed by Western blot. The expression of proteins was assessed by two-dimensional polyacrylamide gel-electrophoresis (PAGE coupled with LC-MS2 analysis and real-time reverse transcription polymerase chain reaction (RT-PCR approach. Results ZEA was cytotoxic to U937 > HL-60 > PBMCs and caused subdiploid peaks and G1 arrest in both cell lines. Apoptosis of human leukemic HL-60 and U937 cell apoptosis induced by ZEA was via an activation of mitochondrial release of cytochrome c through mitochondrial transmembrane potential reduction, activation of caspase-3 and -8, production of reactive oxygen species and induction of endoplasmic reticulum stress. Bax was up regulated in a time-dependent manner and there was down regulation of Bcl-xL expression. Two-dimensional PAGE coupled with LC-MS2 analysis showed that ZEA treatment of HL-60 cells produced differences in the levels of 22 membrane proteins such as apoptosis inducing factor and the ER stress proteins including endoplasmic reticulum protein 29 (ERp29, 78 kDa glucose-regulated protein, heat shock

  14. Mitochondrial and endoplasmic reticulum stress pathways cooperate in zearalenone-induced apoptosis of human leukemic cells

    Science.gov (United States)

    2010-01-01

    Background Zearalenone (ZEA) is a phytoestrogen from Fusarium species. The aims of the study was to identify mode of human leukemic cell death induced by ZEA and the mechanisms involved. Methods Cell cytotoxicity of ZEA on human leukemic HL-60, U937 and peripheral blood mononuclear cells (PBMCs) was performed by using 3-(4,5-dimethyl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Reactive oxygen species production, cell cycle analysis and mitochondrial transmembrane potential reduction was determined by employing 2',7'-dichlorofluorescein diacetate, propidium iodide and 3,3'-dihexyloxacarbocyanine iodide and flow cytometry, respectively. Caspase-3 and -8 activities were detected by using fluorogenic Asp-Glu-Val-Asp-7-amino-4-methylcoumarin (DEVD-AMC) and Ile-Glu-Thr-Asp-7-amino-4-methylcoumarin (IETD-AMC) substrates, respectively. Protein expression of cytochrome c, Bax, Bcl-2 and Bcl-xL was performed by Western blot. The expression of proteins was assessed by two-dimensional polyacrylamide gel-electrophoresis (PAGE) coupled with LC-MS2 analysis and real-time reverse transcription polymerase chain reaction (RT-PCR) approach. Results ZEA was cytotoxic to U937 > HL-60 > PBMCs and caused subdiploid peaks and G1 arrest in both cell lines. Apoptosis of human leukemic HL-60 and U937 cell apoptosis induced by ZEA was via an activation of mitochondrial release of cytochrome c through mitochondrial transmembrane potential reduction, activation of caspase-3 and -8, production of reactive oxygen species and induction of endoplasmic reticulum stress. Bax was up regulated in a time-dependent manner and there was down regulation of Bcl-xL expression. Two-dimensional PAGE coupled with LC-MS2 analysis showed that ZEA treatment of HL-60 cells produced differences in the levels of 22 membrane proteins such as apoptosis inducing factor and the ER stress proteins including endoplasmic reticulum protein 29 (ERp29), 78 kDa glucose-regulated protein, heat shock protein 90 and

  15. Type 2 diabetes mellitus induces congenital heart defects in murine embryos by increasing oxidative stress, endoplasmic reticulum stress, and apoptosis

    Science.gov (United States)

    Wu, Yanqing; Reece, E. Albert; Zhong, Jianxiang; Dong, Daoyin; Shen, Wei-Bin; Harman, Christopher R.; Yang, Peixin

    2017-01-01

    BACKGROUND Maternal type 1 and 2 diabetes mellitus are strongly associated with high rates of severe structural birth defects, including congenital heart defects. Studies in type 1 diabetic embryopathy animal models have demonstrated that cellular stress-induced apoptosis mediates the teratogenicity of maternal diabetes leading to congenital heart defect formation. However, the mechanisms underlying maternal type 2 diabetes mellitus–induced congenital heart defects remain largely unknown. OBJECTIVE We aim to determine whether oxidative stress, endoplasmic reticulum stress, and excessive apoptosis are the intracellular molecular mechanisms underlying maternal type 2 diabetes mellitus–induced congenital heart defects. STUDY DESIGN A mouse model of maternal type 2 diabetes mellitus was established by feeding female mice a high-fat diet (60% fat). After 15 weeks on the high-fat diet, the mice showed characteristics of maternal type 2 diabetes mellitus. Control dams were either fed a normal diet (10% fat) or the high-fat diet during pregnancy only. Female mice from the high-fat diet group and the 2 control groups were mated with male mice that were fed a normal diet. At E12.5, embryonic hearts were harvested to determine the levels of lipid peroxides and superoxide, endoplasmic reticulum stress markers, cleaved caspase 3 and 8, and apoptosis. E17.5 embryonic hearts were harvested for the detection of congenital heart defect formation using India ink vessel patterning and histological examination. RESULTS Maternal type 2 diabetes mellitus significantly induced ventricular septal defects and persistent truncus arteriosus in the developing heart, along with increasing oxidative stress markers, including superoxide and lipid peroxidation; endoplasmic reticulum stress markers, including protein levels of phosphorylated-protein kinase RNA-like endoplasmic reticulum kinase, phosphorylated-IRE1α, phosphorylated-eIF2α, C/EBP homologous protein, and binding immunoglobulin

  16. The role of cholesterol in the association of endoplasmic reticulum membranes with mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Michiko [Cellular Stress Signaling Unit, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224 (United States); Hayashi, Teruo, E-mail: thayashi@mail.nih.gov [Cellular Stress Signaling Unit, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224 (United States); Su, Tsung-Ping, E-mail: tsu@intra.nida.nih.gov [Cellular Pathobiology Section, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224 (United States)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer The endoplasmic reticulum subdomain termed MAM associates with mitochondria. Black-Right-Pointing-Pointer The biophysical role of lipids in the MAM-mitochondria association is unknown. Black-Right-Pointing-Pointer The in vitro membrane association assay was used to examine the role of lipids. Black-Right-Pointing-Pointer Cholesterol was found to negatively regulate the association. -- Abstract: The unique endoplasmic reticulum (ER) subdomain termed the mitochondria-associated ER membrane (MAM) engages the physical connection between the ER and the mitochondrial outer membrane and plays a role in regulating IP{sub 3} receptor-mediated Ca{sup 2+} influx and the phospholipid transport between the two organelles. The MAM contains certain signaling and membrane-tethering proteins but also lipids including cholesterol. The biophysical role of lipids at the MAM, specifically in the physical interaction between the MAM of the ER and mitochondria, remains not totally clarified. Here we employed the in vitro membrane association assay to investigate the role of cholesterol in the association between MAMs and mitochondria. The purified MAMs and mitochondria were mixed in vitro in a test tube and then the physical association of the two subcellular organelles was quantified indirectly by measuring the presence of the MAM-specific protein sigma-1 receptors in the mitochondria fraction. Purified MAMs contained free cholesterol approximately 7 times higher than that in microsomes. We found that depletion of cholesterol in MAMs with methyl-{beta}-cyclodextrin (M{beta}C) significantly increases the association between MAMs and mitochondria, whereas M{beta}C saturated with cholesterol does not change the association. {sup 14}C-Serine pulse-labeling demonstrated that the treatment of living cells with M{beta}C decreases the level of de novo synthesized {sup 14}C-phosphatidylserine (PtSer) and concomitantly increases greatly the synthesis of

  17. Prodigiosin activates endoplasmic reticulum stress cell death pathway in human breast carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Mu-Yun [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Shen, Yuh-Chiang [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); National Research Institute of Chinese Medicine, Taipei, Taiwan (China); Lu, Chien-Hsing [Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Yang, Shu-Yi [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Ho, Tsing-Fen [Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan (China); Peng, Yu-Ta [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Chang, Chia-Che, E-mail: chia_che@dragon.nchu.edu.tw [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China)

    2012-12-15

    Prodigiosin is a bacterial tripyrrole pigment with potent cytotoxicity against diverse human cancer cell lines. Endoplasmic reticulum (ER) stress is initiated by accumulation of unfolded or misfolded proteins in the ER lumen and may induce cell death when irremediable. In this study, the role of ER stress in prodigiosin-induced cytotoxicity was elucidated for the first time. Comparable to the ER stress inducer thapsigargin, prodigiosin up-regulated signature ER stress markers GRP78 and CHOP in addition to activating the IRE1, PERK and ATF6 branches of the unfolded protein response (UPR) in multiple human breast carcinoma cell lines, confirming prodigiosin as an ER stress inducer. Prodigiosin transcriptionally up-regulated CHOP, as evidenced by its promoting effect on the CHOP promoter activity. Of note, knockdown of CHOP effectively lowered prodigiosin's capacity to evoke PARP cleavage, reduce cell viability and suppress colony formation, highlighting an essential role of CHOP in prodigiosin-induced cytotoxic ER stress response. In addition, prodigiosin down-regulated BCL2 in a CHOP-dependent manner. Importantly, restoration of BCL2 expression blocked prodigiosin-induced PARP cleavage and greatly enhanced the survival of prodigiosin-treated cells, suggesting that CHOP-dependent BCL2 suppression mediates prodigiosin-elicited cell death. Moreover, pharmacological inhibition of JNK by SP600125 or dominant-negative blockade of PERK-mediated eIF2α phosphorylation impaired prodigiosin-induced CHOP up-regulation and PARP cleavage. Collectively, these results identified ER stress-mediated cell death as a mode-of-action of prodigiosin's tumoricidal effect. Mechanistically, prodigiosin engages the IRE1–JNK and PERK–eIF2α branches of the UPR signaling to up-regulate CHOP, which in turn mediates BCL2 suppression to induce cell death. Highlights: ► Prodigiosin is a bacterial tripyrrole pigment with potent anticancer effect. ► Prodigiosin is herein identified

  18. Nucleocapsid protein from fig mosaic virus forms cytoplasmic agglomerates that are hauled by endoplasmic reticulum streaming.

    Science.gov (United States)

    Ishikawa, Kazuya; Miura, Chihiro; Maejima, Kensaku; Komatsu, Ken; Hashimoto, Masayoshi; Tomomitsu, Tatsuya; Fukuoka, Misato; Yusa, Akira; Yamaji, Yasuyuki; Namba, Shigetou

    2015-01-01

    Although many studies have demonstrated intracellular movement of viral proteins or viral replication complexes, little is known about the mechanisms of their motility. In this study, we analyzed the localization and motility of the nucleocapsid protein (NP) of Fig mosaic virus (FMV), a negative-strand RNA virus belonging to the recently established genus Emaravirus. Electron microscopy of FMV-infected cells using immunogold labeling showed that NPs formed cytoplasmic agglomerates that were predominantly enveloped by the endoplasmic reticulum (ER) membrane, while nonenveloped NP agglomerates also localized along the ER. Likewise, transiently expressed NPs formed agglomerates, designated NP bodies (NBs), in close proximity to the ER, as was the case in FMV-infected cells. Subcellular fractionation and electron microscopic analyses of NP-expressing cells revealed that NBs localized in the cytoplasm. Furthermore, we found that NBs moved rapidly with the streaming of the ER in an actomyosin-dependent manner. Brefeldin A treatment at a high concentration to disturb the ER network configuration induced aberrant accumulation of NBs in the perinuclear region, indicating that the ER network configuration is related to NB localization. Dominant negative inhibition of the class XI myosins, XI-1, XI-2, and XI-K, affected both ER streaming and NB movement in a similar pattern. Taken together, these results showed that NBs localize in the cytoplasm but in close proximity to the ER membrane to form enveloped particles and that this causes passive movements of cytoplasmic NBs by ER streaming. Intracellular trafficking is a primary and essential step for the cell-to-cell movement of viruses. To date, many studies have demonstrated the rapid intracellular movement of viral factors but have failed to provide evidence for the mechanism or biological significance of this motility. Here, we observed that agglomerates of nucleocapsid protein (NP) moved rapidly throughout the cell, and we

  19. Fluoride-elicited developmental testicular toxicity in rats: Roles of endoplasmic reticulum stress and inflammatory response

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shun [Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei (China); Jiang, Chunyang [Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei (China); Department of Thoracic Surgery, Tianjin Union Medicine Centre, 190 Jieyuan Road, Hongqiao District, Tianjin 300121, Tianjin (China); Liu, Hongliang [Tianjin Center for Disease Control and Prevention, Huayue Road 6, Hedong Region, Tianjin 300011, Tianjin (China); Guan, Zhizhong [Department of Pathology, Guiyang Medical College, Guiyang 550004, Guizhou (China); Zeng, Qiang [Tianjin Center for Disease Control and Prevention, Huayue Road 6, Hedong Region, Tianjin 300011, Tianjin (China); Zhang, Cheng; Lei, Rongrong; Xia, Tao; Gao, Hui; Yang, Lu; Chen, Yihu; Wu, Xue; Zhang, Xiaofei [Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei (China); Cui, Yushan; Yu, Linyu [Tianjin Center for Disease Control and Prevention, Huayue Road 6, Hedong Region, Tianjin 300011, Tianjin (China); Wang, Zhenglun [Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei (China); Wang, Aiguo, E-mail: wangaiguo@mails.tjmu.edu.cn [Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei (China)

    2013-09-01

    Long-term excessive fluoride intake is known to be toxic and can damage a variety of organs and tissues in the human body. However, the molecular mechanisms underlying fluoride-induced male reproductive toxicity are not well understood. In this study, we used a rat model to simulate the situations of human exposure and aimed to evaluate the roles of endoplasmic reticulum (ER) stress and inflammatory response in fluoride-induced testicular injury. Sprague–Dawley rats were administered with sodium fluoride (NaF) at 25, 50 and 100 mg/L via drinking water from pre-pregnancy to gestation, birth and finally to post-puberty. And then the testes of male offspring were studied at 8 weeks of age. Our results demonstrated that fluoride treatment increased MDA accumulation, decreased SOD activity, and enhanced germ cell apoptosis. In addition, fluoride elevated mRNA and protein levels of glucose-regulated protein 78 (GRP78), inositol requiring ER-to-nucleus signal kinase 1 (IRE1), and C/EBP homologous protein (CHOP), indicating activation of ER stress signaling. Furthermore, fluoride also induced testicular inflammation, as manifested by gene up-regulation of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in a nuclear factor-κB (NF-κB)-dependent manner. These were associated with marked histopathological lesions including injury of spermatogonia, decrease of spermatocytes and absence of elongated spermatids, as well as severe ultrastructural abnormalities in testes. Taken together, our results provide compelling evidence that ER stress and inflammation would be novel and significant mechanisms responsible for fluoride-induced disturbance of spermatogenesis and germ cell loss in addition to oxidative stress. - Highlights: • We used a rat model to simulate the situations of human fluoride (F) exposure. • Developmental F exposure induces testicular damage related with oxidative stress.

  20. The exocyst affects protein synthesis by acting on the translocation machinery of the endoplasmic reticulum.

    Science.gov (United States)

    Lipschutz, Joshua H; Lingappa, Vishwanath R; Mostov, Keith E

    2003-06-01

    We previously showed that the exocyst complex specifically affected the synthesis and delivery of secretory and basolateral plasma membrane proteins. Significantly, the entire spectrum of secreted proteins was increased when the hSec10 (human Sec10) component of the exocyst complex was overexpressed, suggestive of post-transcriptional regulation (Lipschutz, J. H., Guo, W., O'Brien, L. E., Nguyen, Y. H., Novick, P., and Mostov, K. E. (2000) Mol. Biol. Cell 11, 4259-4275). Here, using an exogenously transfected basolateral protein, the polymeric immunoglobulin receptor (pIgR), and a secretory protein, gp80, we show that pIgR and gp80 protein synthesis and delivery are increased in cells overexpressing Sec10 despite the fact that mRNA levels are unchanged, which is highly indicative of post-transcriptional regulation. To test specificity, we also examined the synthesis and delivery of an exogenous apical protein, CNT1 (concentrative nucleoside transporter 1), and found no increase in CNT1 protein synthesis, delivery, or mRNA levels in cells overexpressing Sec10. Sec10-GFP-overexpressing cell lines were created, and staining was seen in the endoplasmic reticulum. It was demonstrated previously in yeast that high levels of expression of SEB1, the Sec61beta homologue, suppressed sec15-1, an exocyst mutant (Toikkanen, J., Gatti, E., Takei, K., Saloheimo, M., Olkkonen, V. M., Soderlund, H., De Camilli, P., and Keranen, S. (1996) Yeast 12, 425-438). Sec61beta is a member of the Sec61 heterotrimer, which is the main component of the endoplasmic reticulum translocon. By co-immunoprecipitation we show that Sec10, which forms an exocyst subcomplex with Sec15, specifically associates with the Sec61beta component of the translocon and that Sec10 overexpression increases the association of other exocyst complex members with Sec61beta. Proteosome inhibition does not appear to be the mechanism by which increased protein synthesis occurs in the face of equivalent amounts of m

  1. Effect of inositol requiring enzyme 1-mediated endoplasmic reticulum stress in liver cell apoptosis of experimental fulminant hepatic failure and its significance

    Institute of Scientific and Technical Information of China (English)

    甄真

    2013-01-01

    Objective To study the role of inositol requiring enzyme 1(IRE1)-mediated endoplasmic reticulum stress on hepatocyte apoptosis of experimental fulminant hepatic failure(FHF). Methods Thirty male depuratory Wistar

  2. Glucosamine-induced endoplasmic reticulum stress affects GLUT4 expression via activating transcription factor 6 in rat and human skeletal muscle cells

    DEFF Research Database (Denmark)

    Raciti, G A; Iadicicco, C; Ulianich, L

    2010-01-01

    Glucosamine, generated during hyperglycaemia, causes insulin resistance in different cells. Here we sought to evaluate the possible role of endoplasmic reticulum (ER) stress in the induction of insulin resistance by glucosamine in skeletal muscle cells....

  3. Disturbance of hippocampal H2S generation contributes to CUMS-induced depression-like behavior: involvement in endoplasmic reticulum stress of hippocampus

    National Research Council Canada - National Science Library

    Huiying Tan Wei Zou Jiamei Jiang Ying Tian Zhifang Xiao Lili Bi Haiying Zeng Xiaoqing Tang

    2015-01-01

    .... Excessive and prolonged endoplasmic reticulum (ER) stress triggers cell death. Hydrogen sulfide (H2S), the third endogenous signaling gasotransmitter, plays an import- ant role in brain functions as a neuromodulator and a neuroprotectant...

  4. ERdj5 Reductase Cooperates with Protein Disulfide Isomerase To Promote Simian Virus 40 Endoplasmic Reticulum Membrane Translocation

    OpenAIRE

    Inoue, Takamasa; Dosey, Annie; Herbstman, Jeffrey F.; Ravindran, Madhu Sudhan; Skiniotis, Georgios; Tsai, Billy

    2015-01-01

    The nonenveloped polyomavirus (PyV) simian virus 40 (SV40) traffics from the cell surface to the endoplasmic reticulum (ER), where it penetrates the ER membrane to reach the cytosol before mobilizing into the nucleus to cause infection. Prior to ER membrane penetration, ER lumenal factors impart structural rearrangements to the virus, generating a translocation-competent virion capable of crossing the ER membrane. Here we identify ERdj5 as an ER enzyme that reduces SV40's disulfide bonds, a r...

  5. The Hypothermic Influence on CHOP and Ero1-α in an Endoplasmic Reticulum Stress Model of Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Gagandip K. Poone

    2015-05-01

    Full Text Available Hypoxia induced endoplasmic reticulum stress causes accumulation of unfolded proteins in the endoplasmic reticulum and activates the unfolded protein response, resulting in apoptosis through CCAAT-enhancer-binding protein homologous protein (CHOP activation. In an in vitro and in vivo model of ischemic stroke, we investigated whether hypothermia regulates the unfolded protein response of CHOP and Endoplasmic reticulum oxidoreductin-α (Ero1-α, because Ero1-α is suggested to be a downstream CHOP target. The gene expression of CHOP and Ero1-α was measured using Quantitative-PCR (Q-PCR in rat hippocampi following global cerebral ischemia, and in hypoxic pheochromocytoma cells during normothermic (37 °C and hypothermic (31 °C conditions. As a result of ischemia, a significant increase in expression of CHOP and Ero1-α was observed after three, six and twelve hours of reperfusion following global ischemia. A stable increase in CHOP expression was observed throughout the time course (p < 0.01, p < 0.0001, whereas Ero1-α expression peaked at three to six hours (p < 0.0001. Induced hypothermia in hypoxia stressed PC12 cells resulted in a decreased expression of CHOP after three, six and twelve hours (p < 0.0001. On the contrary, the gene expression of Ero1-α increased as a result of hypothermia and peaked at twelve hours (p < 0.0001. Hypothermia attenuated the expression of CHOP, supporting that hypothermia suppress endoplasmic reticulum stress induced apoptosis in stroke. As hypothermia further induced up-regulation of Ero1-α, and since CHOP and Ero1-α showed differential regulation as a consequence of both disease (hypoxia and treatment (hypothermia, we conclude that they are regulated independently.

  6. The Endoplasmic Reticulum-Mitochondrion Tether ERMES Orchestrates Fungal Immune Evasion, Illuminating Inflammasome Responses to Hyphal Signals

    OpenAIRE

    Tucey, Timothy M.; Jiyoti Verma-Gaur; Julie Nguyen; Hewitt, Victoria L.; Lo, Tricia L.; Miguel Shingu-Vazquez; Robertson, Avril A. B.; Hill, James R.; Pettolino, Filomena A.; Travis Beddoe; Cooper, Matthew A.; Thomas Naderer; Ana Traven; Mitchell, Aaron P.

    2016-01-01

    ABSTRACT The pathogenic yeast Candida albicans escapes macrophages by triggering NLRP3 inflammasome-dependent host cell death (pyroptosis). Pyroptosis is inflammatory and must be tightly regulated by host and microbe, but the mechanism is incompletely defined. We characterized the C. albicans endoplasmic reticulum (ER)-mitochondrion tether ERMES and show that the ERMES mmm1 mutant is severely crippled in killing macrophages despite hyphal formation and normal phagocytosis and survival. To und...

  7. The caveolae-mediated sv40 entry pathway bypasses the golgi complex en route to the endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Kuksin Dmitry

    2005-04-01

    Full Text Available Abstract Background Simian virus 40 (SV40 enters cells via an atypical caveolae-mediated endocytic pathway, which delivers the virus to a new intermediary compartment, the caveosome. The virus then is believed to go directly from the caveosome to the endoplasmic reticulum. Cholera toxin likewise enters via caveolae and traffics to caveosomes. But, in contrast to SV40, cholera toxin is transported from caveosomes to the endoplasmic reticulum via the Golgi. For that reason, and because the caveosome and Golgi may have some common markers, we revisited the issue of whether SV40 might access the endoplasmic reticulum via the Golgi. Results We confirmed our earlier finding that SV40 co localizes with the Golgi marker β-COP. However, we show that the virus does not co localize with the more discriminating Golgi markers, golgin 97 and BODIPY-ceramide. Conclusion The caveolae-mediated SV40 entry pathway does not intersect the Golgi. SV40 is seen to co localize with β-COP because that protein is a marker for caveosomes as well as the Golgi. Moreover, these results are consistent with the likelihood that the caveosome is a sorting organelle. In addition, there are at least two distinct but related routes by which a ligand might traffic from the caveosome to the ER; one route involving transport through the Golgi, and another pathway that does not involve the Golgi.

  8. The caveolae-mediated sv40 entry pathway bypasses the golgi complex en route to the endoplasmic reticulum.

    Science.gov (United States)

    Norkin, Leonard C; Kuksin, Dmitry

    2005-04-19

    Simian virus 40 (SV40) enters cells via an atypical caveolae-mediated endocytic pathway, which delivers the virus to a new intermediary compartment, the caveosome. The virus then is believed to go directly from the caveosome to the endoplasmic reticulum. Cholera toxin likewise enters via caveolae and traffics to caveosomes. But, in contrast to SV40, cholera toxin is transported from caveosomes to the endoplasmic reticulum via the Golgi. For that reason, and because the caveosome and Golgi may have some common markers, we revisited the issue of whether SV40 might access the endoplasmic reticulum via the Golgi. We confirmed our earlier finding that SV40 co localizes with the Golgi marker beta-COP. However, we show that the virus does not co localize with the more discriminating Golgi markers, golgin 97 and BODIPY-ceramide. The caveolae-mediated SV40 entry pathway does not intersect the Golgi. SV40 is seen to co localize with beta-COP because that protein is a marker for caveosomes as well as the Golgi. Moreover, these results are consistent with the likelihood that the caveosome is a sorting organelle. In addition, there are at least two distinct but related routes by which a ligand might traffic from the caveosome to the ER; one route involving transport through the Golgi, and another pathway that does not involve the Golgi.

  9. Selective modulation of endoplasmic reticulum stress markers in prostate cancer cells by a standardized mangosteen fruit extract.

    Science.gov (United States)

    Li, Gongbo; Petiwala, Sakina M; Pierce, Dana R; Nonn, Larisa; Johnson, Jeremy J

    2013-01-01

    The increased proliferation of cancer cells is directly dependent on the increased activity of the endoplasmic reticulum (ER) machinery which is responsible for protein folding, assembly, and transport. In fact, it is so critical that perturbations in the endoplasmic reticulum can lead to apoptosis. This carefully regulated organelle represents a unique target of cancer cells while sparing healthy cells. In this study, a standardized mangosteen fruit extract (MFE) was evaluated for modulating ER stress proteins in prostate cancer. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells (PrECs) procured from two patients undergoing radical prostatectomy were treated with MFE. Flow cytometry, MTT, BrdU and Western blot were used to evaluate cell apoptosis, viability, proliferation and ER stress. Next, we evaluated MFE for microsomal stability and anti-cancer activity in nude mice. MFE induced apoptosis, decreased viability and proliferation in prostate cancer cells. MFE increased the expression of ER stress proteins. Interestingly, MFE selectively promotes ER stress in prostate cancer cells while sparing PrECs. MFE suppressed tumor growth in a xenograft tumor model without obvious toxicity. Mangosteen fruit extract selectively promotes endoplasmic reticulum stress in cancer cells while sparing non-tumorigenic prostate epithelial cells. Furthermore, in an in vivo setting mangosteen fruit extract significantly reduces xenograft tumor formation.

  10. Endoplasmic Reticulum Exit of Golgi-resident Defective for SREBP Cleavage (Dsc) E3 Ligase Complex Requires Its Activity.

    Science.gov (United States)

    Raychaudhuri, Sumana; Espenshade, Peter J

    2015-06-01

    Layers of quality control ensure proper protein folding and complex formation prior to exit from the endoplasmic reticulum. The fission yeast Dsc E3 ligase is a Golgi-localized complex required for sterol regulatory element-binding protein (SREBP) transcription factor activation that shows architectural similarity to endoplasmic reticulum-associated degradation E3 ligases. The Dsc E3 ligase consists of five integral membrane proteins (Dsc1-Dsc5) and functionally interacts with the conserved AAA-ATPase Cdc48. Utilizing an in vitro ubiquitination assay, we demonstrated that Dsc1 has ubiquitin E3 ligase activity that requires the E2 ubiquitin-conjugating enzyme Ubc4. Mutations that specifically block Dsc1-Ubc4 interaction prevent SREBP cleavage, indicating that SREBP activation requires Dsc E3 ligase activity. Surprisingly, Golgi localization of the Dsc E3 ligase complex also requires Dsc1 E3 ligase activity. Analysis of Dsc E3 ligase complex formation, glycosylation, and localization indicated that Dsc1 E3 ligase activity is specifically required for endoplasmic reticulum exit of the complex. These results define enzyme activity-dependent sorting as an autoregulatory mechanism for protein trafficking.

  11. Selective modulation of endoplasmic reticulum stress markers in prostate cancer cells by a standardized mangosteen fruit extract.

    Directory of Open Access Journals (Sweden)

    Gongbo Li

    Full Text Available The increased proliferation of cancer cells is directly dependent on the increased activity of the endoplasmic reticulum (ER machinery which is responsible for protein folding, assembly, and transport. In fact, it is so critical that perturbations in the endoplasmic reticulum can lead to apoptosis. This carefully regulated organelle represents a unique target of cancer cells while sparing healthy cells. In this study, a standardized mangosteen fruit extract (MFE was evaluated for modulating ER stress proteins in prostate cancer. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells (PrECs procured from two patients undergoing radical prostatectomy were treated with MFE. Flow cytometry, MTT, BrdU and Western blot were used to evaluate cell apoptosis, viability, proliferation and ER stress. Next, we evaluated MFE for microsomal stability and anti-cancer activity in nude mice. MFE induced apoptosis, decreased viability and proliferation in prostate cancer cells. MFE increased the expression of ER stress proteins. Interestingly, MFE selectively promotes ER stress in prostate cancer cells while sparing PrECs. MFE suppressed tumor growth in a xenograft tumor model without obvious toxicity. Mangosteen fruit extract selectively promotes endoplasmic reticulum stress in cancer cells while sparing non-tumorigenic prostate epithelial cells. Furthermore, in an in vivo setting mangosteen fruit extract significantly reduces xenograft tumor formation.

  12. Myopathy in Marinesco-Sjögren syndrome links endoplasmic reticulum chaperone dysfunction to nuclear envelope pathology.

    Science.gov (United States)

    Roos, Andreas; Buchkremer, Stephan; Kollipara, Laxmikanth; Labisch, Thomas; Gatz, Christian; Zitzelsberger, Manuela; Brauers, Eva; Nolte, Kay; Schröder, J Michael; Kirschner, Janbernd; Jesse, Christopher Marvin; Goebel, Hans Hilmar; Goswami, Anand; Zimmermann, Richard; Zahedi, René Peiman; Senderek, Jan; Weis, Joachim

    2014-05-01

    Marinesco-Sjögren syndrome (MSS) features cerebellar ataxia, mental retardation, cataracts, and progressive vacuolar myopathy with peculiar myonuclear alterations. Most MSS patients carry homozygous or compound heterozygous SIL1 mutations. SIL1 is a nucleotide exchange factor for the endoplasmic reticulum resident chaperone BiP which controls a plethora of essential processes in the endoplasmic reticulum. In this study we made use of the spontaneous Sil1 mouse mutant woozy to explore pathomechanisms leading to Sil1 deficiency-related skeletal muscle pathology. We found severe, progressive myopathy characterized by alterations of the sarcoplasmic reticulum, accumulation of autophagic vacuoles, mitochondrial changes, and prominent myonuclear pathology including nuclear envelope and nuclear lamina alterations. These abnormalities were remarkably similar to the myopathy in human patients with MSS. In particular, the presence of perinuclear membranous structures which have been reported as an ultrastructural hallmark of MSS-related myopathy could be confirmed in woozy muscles. We found that these structures are derived from the nuclear envelope and nuclear lamina and associate with proliferations of the sarcoplasmic reticulum. In line with impaired function of BiP secondary to loss of its nucleotide exchange factor Sil1, we observed activation of the unfolded protein response and the endoplasmic-reticulum-associated protein degradation-pathway. Despite initiation of the autophagy-lysosomal system, autophagic clearance was found ineffective which is in agreement with the formation of autophagic vacuoles. This report identifies woozy muscle as a faithful phenocopy of the MSS myopathy. Moreover, we provide a link between two well-established disease mechanisms in skeletal muscle, dysfunction of chaperones and nuclear envelope pathology.

  13. Influence of resveratrol on endoplasmic reticulum stress and expression of adipokines in adipose tissues/adipocytes induced by high-calorie diet or palmitic acid.

    Science.gov (United States)

    Chen, Li; Wang, Ting; Chen, Guanjun; Wang, Nuojin; Gui, Li; Dai, Fang; Fang, Zhaohui; Zhang, Qiu; Lu, Yunxia

    2017-03-01

    This study aimed to determine whether resveratrol treatment alleviates endoplasmic reticulum stress and changes the expression of adipokines in adipose tissues and cells. 8-week-old male C57BL/6 mice were fed a high-calorie diet (HCD group) or high-calorie diet supplemented with resveratrol (high-calorie diet  + resveratrol group) for 3 months. Insulin resistance, serum lipids and proinflammatory indices, the size and inflammatory cell infiltration in subcutaneous and visceral adipose tissues were analyzed. The gene expressions of endoplasmic reticulum stress, adipokines, and inflammatory cytokines were determined. The induced mature 3T3-L1 cells were pretreated with resveratrol and then palmitic acid, and the gene expressions of endoplasmic reticulum stress, adipokines, and inflammatory cytokines were determined. Subcutaneous and visceral adipose tissues in the high-calorie diet-fed mice exhibited adipocyte hypertrophy, inflammatory activation, and endoplasmic reticulum stress. Resveratrol alleviated high-calorie diet-induced insulin resistance and endoplasmic reticulum stress, increased expression of SIRT1, and reversed expression of adipokines in varying degrees in both subcutaneous and visceral adipose tissues. The effects of resveratrol on palmitic acid-treated adipocytes were similar to those shown in the tissues. Resveratrol treatment obviously reversed adipocyte hypertrophy and insulin resistance by attenuating endoplasmic reticulum stress and inflammation, thus increasing the expression of SIRT1 and inverting the expression of adipokines in vivo and in vitro.

  14. Role of Mitochondria and Endoplasmic Reticulum in Taurine-Deficiency-Mediated Apoptosis.

    Science.gov (United States)

    Jong, Chian Ju; Ito, Takashi; Prentice, Howard; Wu, Jang-Yen; Schaffer, Stephen W

    2017-07-25

    Taurine is a ubiquitous sulfur-containing amino acid found in high concentration in most tissues. Because of its involvement in fundamental physiological functions, such as regulating respiratory chain activity, modulating cation transport, controlling inflammation, altering protein phosphorylation and prolonging lifespan, taurine is an important nutrient whose deficiency leads to severe pathology and cell death. However, the mechanism by which taurine deficiency causes cell death is inadequately understood. Therefore, the present study examined the hypothesis that overproduction of reactive oxygen species (ROS) by complex I of the respiratory chain triggers mitochondria-dependent apoptosis in hearts of taurine transporter knockout (TauTKO) mice. In support of the hypothesis, a 60% decrease in mitochondrial taurine content of 3-month-old TauTKO hearts was observed, which was associated with diminished complex I activity and the onset of mitochondrial oxidative stress. Oxidative damage to stressed mitochondria led to activation of a caspase cascade, with stimulation of caspases 9 and 3 prevented by treatment of 3-month-old TauTKO mice with the mitochondria specific antioxidant, MitoTempo. In 12 month-old, but not 3-month-old, TauTKO hearts, caspase 12 activation contributes to cell death, revealing a pathological role for endoplasmic reticulum (ER) stress in taurine deficient, aging mice. Thus, taurine is a cytoprotective nutrient that ensures normal mitochondrial and ER function, which is important for the reduction of risk for apoptosis and premature death.

  15. KUS121, a VCP modulator, attenuates ischemic retinal cell death via suppressing endoplasmic reticulum stress

    Science.gov (United States)

    Hata, Masayuki; Ikeda, Hanako O.; Kikkawa, Chinami; Iwai, Sachiko; Muraoka, Yuki; Hasegawa, Tomoko; Kakizuka, Akira; Yoshimura, Nagahisa

    2017-01-01

    Ischemic neural damages cause several devastating diseases, including brain stroke and ischemic retinopathies, and endoplasmic reticulum (ER) stress has been proposed to be the underlying mechanism of the neuronal cell death of these conditions. We previously synthesized Kyoto University substances (KUSs) as modulators of valosin-containing protein (VCP); KUSs inhibit VCP ATPase activity and protect cells from different cell death-inducing insults. Here, we examined the efficacy of KUS121 in a rat model of retinal ischemic injury. Systemic administration of KUS121 to rats with ischemic retinal injury significantly suppressed inner retinal thinning and death of retinal ganglion and amacrine cells, with a significant functional maintenance of visual functions, as judged by electroretinography. Furthermore, intravitreal injection of KUS121, which is the clinically preferred route of drug administration for retinal diseases, appeared to show an equal or better neuroprotective efficacy in the ischemic retina compared with systemic administration. Indeed, induction of the ER stress marker C/EBP homologous protein (CHOP) after the ischemic insult was significantly suppressed by KUS121 administration. Our study suggests VCP modulation by KUS as a promising novel therapeutic strategy for ischemic neuronal diseases. PMID:28317920

  16. Role of endoplasmic reticulum calcium signaling in the pathogenesis of Alzheimer disease

    Directory of Open Access Journals (Sweden)

    Elena ePopugaeva

    2013-09-01

    Full Text Available Alzheimer disease (AD is a major threat of XXI century that is responsible for the majority of dementia in the elderly. Development of effective AD-preventing therapies are the top priority tasks for neuroscience research. Amyloid hypothesis of AD is a dominant idea in the field, but so far all amyloid-targeting therapies have failed in clinical trials. In addition to amyloid accumulation, there are consistent reports of abnormal calcium signaling in AD neurons. AD neurons exhibit enhanced intracellular calcium (Ca2+ liberation from the endoplasmic reticulum (ER and reduced store-operated Ca2+ entry (SOC. These changes occur primarily as a result of ER Ca2+ overload. We argue that normalization of intracellular Ca2+ homeostasis could be a strategy for development of effective disease-modifying therapies. The current review summarizes recent data about changes in ER Ca2+ signaling in AD. Ca2+ channels that are discussed in the current review include: inositol trisphosphate receptors (InsP3R, ryanodine receptors (RyanR, presenilins as ER Ca2+ leak channels and neuronal SOC channels. We discuss how function of these channels is altered in AD and how important are resulting Ca2+ signaling changes for AD pathogenesis.

  17. Z α-1 antitrypsin deficiency and the endoplasmic reticulum stress response.

    LENUS (Irish Health Repository)

    Greene, Catherine M

    2010-10-06

    The serine proteinase inhibitor α-1 antitrypsin (AAT) is produced principally by the liver at the rate of 2 g\\/d. It is secreted into the circulation and provides an antiprotease protective screen throughout the body but most importantly in the lung, where it can neutralise the activity of the serine protease neutrophil elastase. Mutations leading to deficiency in AAT are associated with liver and lung disease. The most notable is the Z AAT mutation, which encodes a misfolded variant of the AAT protein in which the glutamic acid at position 342 is replaced by a lysine. More than 95% of all individuals with AAT deficiency carry at least one Z allele. ZAAT protein is not secreted effectively and accumulates intracellularly in the endoplasmic reticulum (ER) of hepatocytes and other AAT-producing cells. This results in a loss of function associated with decreased circulating and intrapulmonary levels of AAT. However, the misfolded protein acquires a toxic gain of function that impacts on the ER. A major function of the ER is to ensure correct protein folding. ZAAT interferes with this function and promotes ER stress responses and inflammation. Here the signalling pathways activated during ER stress in response to accumulation of ZAAT are described and therapeutic strategies that can potentially relieve ER stress are discussed.

  18. Endoplasmic reticulum stress participates in the progress of senescence and apoptosis of osteoarthritis chondrocytes.

    Science.gov (United States)

    Liu, Yake; Zhu, Hai; Yan, Xin; Gu, Haoye; Gu, Zhifeng; Liu, Fan

    2017-09-16

    Endoplasmic reticulum stress (ERS) has been shown to participate in many disease pathologies. Recent reports have reported that ERS exists in human osteoarthritis (OA) chondrocytes. During OA, chondrocytes exhibit increased level of some senescence marker, such as senescence-associated β-galactosidase (SA β-gal) activity. However, the persistence and accumulation of senescent cells in various tissues can also impair function and have been involved in the pathogenesis of many age-related diseases, including OA. In this present study, we used IL-1β (10 ng/ml) to mimic OA chondrocytes and we found that IL-1β stimulated chondrocytes caused the increasing expression of ADAMTS5 and MMP13, decreasing COL2A1 expression, which were in accord with OA chondrocytes changes. Our data also showed that ERS is involved in the OA chondrocytes, SA β-gal activity significantly increases and inhibition of ERS can decrease the SA β-gal activity, apoptosis of OA chondrocytes and increase cell viability. These results help us to open new perspectives for the development of molecular-targeted treatment approaches and thus present an effective novel therapeutic approach for OA. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Infusion of glucose and lipids at physiological rates causes acute endoplasmic reticulum stress in rat liver.

    Science.gov (United States)

    Boden, Guenther; Song, Weiwei; Duan, Xunbao; Cheung, Peter; Kresge, Karen; Barrero, Carlos; Merali, Salim

    2011-07-01

    Endoplasmic reticulum (ER) stress has recently been implicated as a cause for obesity-related insulin resistance; however, what causes ER stress in obesity has remained uncertain. Here, we have tested the hypothesis that macronutrients can cause acute (ER) stress in rat liver. Examined were the effects of intravenously infused glucose and/or lipids on proximal ER stress sensor activation (PERK, eIF2-α, ATF4, Xbox protein 1 (XBP1s)), unfolded protein response (UPR) proteins (GRP78, calnexin, calreticulin, protein disulphide isomerase (PDI), stress kinases (JNK, p38 MAPK) and insulin signaling (insulin/receptor substrate (IRS) 1/2 associated phosphoinositol-3-kinase (PI3K)) in rat liver. Glucose and/or lipid infusions, ranging from 23.8 to 69.5 kJ/4 h (equivalent to between ~17% and ~50% of normal daily energy intake), activated the proximal ER stress sensor PERK and ATF6 increased the protein abundance of calnexin, calreticulin and PDI and increased two GRP78 isoforms. Glucose and glucose plus lipid infusions induced comparable degrees of ER stress, but only infusions containing lipid activated stress kinases (JNK and p38 MAPK) and inhibited insulin signaling (PI3K). In summary, physiologic amounts of both glucose and lipids acutely increased ER stress in livers 12-h fasted rats and dependent on the presence of fat, caused insulin resistance. We conclude that this type of acute ER stress is likely to occur during normal daily nutrient intake.

  20. Disassembly of simian virus 40 during passage through the endoplasmic reticulum and in the cytoplasm.

    Science.gov (United States)

    Kuksin, Dmitry; Norkin, Leonard C

    2012-02-01

    The nonenveloped polyomavirus simian virus 40 (SV40) is taken up into cells by a caveola-mediated endocytic process that delivers the virus to the endoplasmic reticulum (ER). Within the ER lumen, the capsid undergoes partial disassembly, which exposes its internal capsid proteins VP2 and VP3 to immunostaining with antibodies. We demonstrate here that the SV40 genome does not become accessible to detection while the virus is in the ER. Instead, the genome becomes accessible two distinct detection procedures, one using anti-bromodeoxyuridine antibodies and the other using a 5-ethynyl-2-deoxyuridine-based chemical reaction, only after the emergence of partially disassembled SV40 particles in the cytoplasm. These cytoplasmic particles retain some of the SV40 capsid proteins, VP1, VP2, and VP3, in addition to the viral genome. Thus, SV40 particles undergo discrete disassembly steps during entry that are separated temporally and topologically. First, a partial disassembly of the particles occurs in the ER, which exposes internal capsid proteins VP2 and VP3. Then, in the cytoplasm, disassembly progresses further to also make the genomic DNA accessible to immune detection.

  1. Altered Ca2+ Homeostasis and Endoplasmic Reticulum Stress in Myotonic Dystrophy Type 1 Muscle Cells

    Directory of Open Access Journals (Sweden)

    Gyorgy Szabadkai

    2013-06-01

    Full Text Available The pathogenesis of Myotonic Dystrophy type 1 (DM1 is linked to unstable CTG repeats in the DMPK gene which induce the mis-splicing to fetal/neonatal isoforms of many transcripts, including those involved in cellular Ca2+ homeostasis. Here we monitored the splicing of three genes encoding for Ca2+ transporters and channels (RyR1, SERCA1 and CACN1S during maturation of primary DM1 muscle cells in parallel with the functionality of the Excitation-Contraction (EC coupling machinery. At 15 days of differentiation, fetal isoforms of SERCA1 and CACN1S mRNA were significantly higher in DM1 myotubes compared to controls. Parallel functional studies showed that the cytosolic Ca2+ response to depolarization in DM1 myotubes did not increase during the progression of differentiation, in contrast to control myotubes. While we observed no differences in the size of intracellular Ca2+ stores, DM1 myotubes showed significantly reduced RyR1 protein levels, uncoupling between the segregated ER/SR Ca2+ store and the voltage-induced Ca2+ release machinery, parallel with induction of endoplasmic reticulum (ER stress markers. In conclusion, our data suggest that perturbed Ca2+ homeostasis, via activation of ER stress, contributes to muscle degeneration in DM1 muscle cells likely representing a premature senescence phenotype.

  2. Atf6 plays protective and pathologic roles in fatty liver disease due to endoplasmic reticulum stress

    Science.gov (United States)

    Cinaroglu, Ayca; Gao, Chuan; Imrie, Dru; Sadler, Kirsten C.

    2011-01-01

    Many etiologies of fatty liver disease (FLD) are associated with hyper-activation of one of the three pathways that comprise the unfolded protein response (UPR), a harbinger of endoplasmic reticulum (ER) stress. The UPR is mediated by pathways initiated by PERK, IRE1a/XBP1and ATF6, and each of these pathways have been implicated as either protective or pathological in FLD. We use zebrafish with FLD and hepatic ER stress to explore the relationship between Atf6 and steatosis. Mutation of the foie gras (foigr) gene causes FLD and hepatic ER stress. Prolonged treatment of wild-type larvae with a dose of tunicamycin that causes chronic ER stress phenocopies foigr. In contrast, acute exposure to a high dose of tunicamycin robustly activates the UPR but is less effective at inducing steatosis. The Srebp transcription factors are not required for steatosis in any of these models. Instead, depleting larvae of active Atf6 either through mbtps1 mutation or atf6 morpholino injection protects against steatosis caused by chronic ER stress whereas it exacerbates steatosis caused by acute tunicamycin treatment. Conclusion ER stress causes FLD. Loss of Atf6 prevents steatosis caused by chronic ER stress but can also potentiate steatosis caused by acute ER stress. This demonstrates that Atf6 can play both protective and pathological roles in FLD. PMID:21538441

  3. BiP clustering facilitates protein folding in the endoplasmic reticulum.

    Science.gov (United States)

    Griesemer, Marc; Young, Carissa; Robinson, Anne S; Petzold, Linda

    2014-07-01

    The chaperone BiP participates in several regulatory processes within the endoplasmic reticulum (ER): translocation, protein folding, and ER-associated degradation. To facilitate protein folding, a cooperative mechanism known as entropic pulling has been proposed to demonstrate the molecular-level understanding of how multiple BiP molecules bind to nascent and unfolded proteins. Recently, experimental evidence revealed the spatial heterogeneity of BiP within the nuclear and peripheral ER of S. cerevisiae (commonly referred to as 'clusters'). Here, we developed a model to evaluate the potential advantages of accounting for multiple BiP molecules binding to peptides, while proposing that BiP's spatial heterogeneity may enhance protein folding and maturation. Scenarios were simulated to gauge the effectiveness of binding multiple chaperone molecules to peptides. Using two metrics: folding efficiency and chaperone cost, we determined that the single binding site model achieves a higher efficiency than models characterized by multiple binding sites, in the absence of cooperativity. Due to entropic pulling, however, multiple chaperones perform in concert to facilitate the resolubilization and ultimate yield of folded proteins. As a result of cooperativity, multiple binding site models used fewer BiP molecules and maintained a higher folding efficiency than the single binding site model. These insilico investigations reveal that clusters of BiP molecules bound to unfolded proteins may enhance folding efficiency through cooperative action via entropic pulling.

  4. Generation of Red-Shifted Cameleons for Imaging Ca2+ Dynamics of the Endoplasmic Reticulum

    Directory of Open Access Journals (Sweden)

    Markus Waldeck-Weiermair

    2015-06-01

    Full Text Available Cameleons are sophisticated genetically encoded fluorescent probes that allow quantifying cellular Ca2+ signals. The probes are based on Förster resonance energy transfer (FRET between terminally located fluorescent proteins (FPs, which move together upon binding of Ca2+ to the central calmodulin myosin light chain kinase M13 domain. Most of the available cameleons consist of cyan and yellow FPs (CFP and YFP as the FRET pair. However, red-shifted versions with green and orange or red FPs (GFP, OFP, RFP have some advantages such as less phototoxicity and minimal spectral overlay with autofluorescence of cells and fura-2, a prominent chemical Ca2+ indicator. While GFP/OFP- or GFP/RFP-based cameleons have been successfully used to study cytosolic and mitochondrial Ca2+ signals, red-shifted cameleons to visualize Ca2+ dynamics of the endoplasmic reticulum (ER have not been developed so far. In this study, we generated and tested several ER targeted red-shifted cameleons. Our results show that GFP/OFP-based cameleons due to miss-targeting and their high Ca2+ binding affinity are inappropriate to record ER Ca2+ signals. However, ER targeted GFP/RFP-based probes were suitable to sense ER Ca2+ in a reliable manner. With this study we increased the palette of cameleons for visualizing Ca2+ dynamics within the main intracellular Ca2+ store.

  5. Mutant p53 promotes tumor progression and metastasis by the endoplasmic reticulum UDPase ENTPD5.

    Science.gov (United States)

    Vogiatzi, Fotini; Brandt, Dominique T; Schneikert, Jean; Fuchs, Jeannette; Grikscheit, Katharina; Wanzel, Michael; Pavlakis, Evangelos; Charles, Joël P; Timofeev, Oleg; Nist, Andrea; Mernberger, Marco; Kantelhardt, Eva J; Siebolts, Udo; Bartel, Frank; Jacob, Ralf; Rath, Ariane; Moll, Roland; Grosse, Robert; Stiewe, Thorsten

    2016-12-27

    Mutations in the p53 tumor suppressor gene are the most frequent genetic alteration in cancer and are often associated with progression from benign to invasive stages with metastatic potential. Mutations inactivate tumor suppression by p53, and some endow the protein with novel gain of function (GOF) properties that actively promote tumor progression and metastasis. By comparative gene expression profiling of p53-mutated and p53-depleted cancer cells, we identified ectonucleoside triphosphate diphosphohydrolase 5 (ENTPD5) as a mutant p53 target gene, which functions as a uridine 5'-diphosphatase (UDPase) in the endoplasmic reticulum (ER) to promote the folding of N-glycosylated membrane proteins. A comprehensive pan-cancer analysis revealed a highly significant correlation between p53 GOF mutations and ENTPD5 expression. Mechanistically, mutp53 is recruited by Sp1 to the ENTPD5 core promoter to induce its expression. We show ENTPD5 to be a mediator of mutant p53 GOF activity in clonogenic growth, architectural tissue remodeling, migration, invasion, and lung colonization in an experimental metastasis mouse model. Our study reveals folding of N-glycosylated membrane proteins in the ER as a mechanism underlying the metastatic progression of tumors with mutp53 that could provide new possibilities for cancer treatment.

  6. Structures and functions of protein disulfide isomerase family members involved in proteostasis in the endoplasmic reticulum.

    Science.gov (United States)

    Okumura, Masaki; Kadokura, Hiroshi; Inaba, Kenji

    2015-06-01

    The endoplasmic reticulum (ER) is an essential cellular compartment in which an enormous number of secretory and cell surface membrane proteins are synthesized and subjected to cotranslational or posttranslational modifications, such as glycosylation and disulfide bond formation. Proper maintenance of ER protein homeostasis (sometimes termed proteostasis) is essential to avoid cellular stresses and diseases caused by abnormal proteins. Accumulating knowledge of cysteine-based redox reactions catalyzed by members of the protein disulfide isomerase (PDI) family has revealed that these enzymes play pivotal roles in productive protein folding accompanied by disulfide formation, as well as efficient ER-associated degradation accompanied by disulfide reduction. Each of PDI family members forms a protein-protein interaction with a preferential partner to fulfill a distinct function. Multiple redox pathways that utilize PDIs appear to function synergistically to attain the highest quality and productivity of the ER, even under various stress conditions. This review describes the structures, physiological functions, and cooperative actions of several essential PDIs, and provides important insights into the elaborate proteostatic mechanisms that have evolved in the extremely active and stress-sensitive ER. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Effects of endoplasmic reticulum stress and related apoptosis on selective death of dopaminergic neurons

    Institute of Scientific and Technical Information of China (English)

    Lan Wang; Shenggang Sun; Xuebing Cao; Zhentao Zhang; Li Xu

    2006-01-01

    Objective: To explore the mechanism of endoplasmic reticulum stress (ERS) response and related apoptosis in dopaminergic neurons death. Methods: Nerve growth factor (NGF)-treatedPC12 cells were treated with 6-OHDA, MPP+ and rotenone. MTr assay and flow cytometry were used to measure the cell viability and the rate of celluar apoptosis induced by those neurotoxins. The expression of ERS-related gene XBP1, Grp78, CHOP, caspase-12 in drug-treated group and reserpine preincubation group was determined with RT-polymerase chain reaction (RT-PCR) and immunohistochemistry. Results: After the exposure to different toxins, the viability of PC12 cells were decreased by 52%, 44%, 40% at 100μM6-OHDA, 75 μM MPP+, 20 nM rotenone for 24 h respectively. FCM assay confirmed time-dependent cell apoptosis (P < 0.01 ). The gene and protein expression of XBP1, Grp78 in drug-treated group were significantly increased and reached their peaks 8 h after the treatment(P < 0.05).The expression levels of CHOP and caspase-12 gene were increased 16-24 h after the treatment(P < 0.01 ), but the expression level of caspase-12 was inhibited by reserpine preincubayion (P < 0.05). Conclusion: The excessive ERS and relative activated cell apoptosis pathway may be associated with selective death of dopaminergic neurons.

  8. The reticulons: Guardians of the structure and function of the endoplasmic reticulum

    Energy Technology Data Exchange (ETDEWEB)

    Di Sano, Federica; Bernardoni, Paolo [Department of Biology, University of Rome ' Tor Vergata' , Via della Ricerca Scientifica 1, 00133 Rome (Italy); Piacentini, Mauro, E-mail: mauro.piacentini@uniroma2.it [Department of Biology, University of Rome ' Tor Vergata' , Via della Ricerca Scientifica 1, 00133 Rome (Italy); National Institute for Infectious Diseases, IRCCS ' L. Spallanzani' , Via Portuense, 00149 Rome (Italy)

    2012-07-01

    The endoplasmic reticulum (ER) consists of the nuclear envelope and a peripheral network of tubules and membrane sheets. The tubules are shaped by a specific class of curvature stabilizing proteins, the reticulons and DP1; however it is still unclear how the sheets are assembled. The ER is the cellular compartment responsible for secretory and membrane protein synthesis. The reducing conditions of ER lead to the intra/inter-chain formation of new disulphide bonds into polypeptides during protein folding assessed by enzymatic or spontaneous reactions. Moreover, ER represents the main intracellular calcium storage site and it plays an important role in calcium signaling that impacts many cellular processes. Accordingly, the maintenance of ER function represents an essential condition for the cell, and ER morphology constitutes an important prerogative of it. Furthermore, it is well known that ER undergoes prominent shape transitions during events such as cell division and differentiation. Thus, maintaining the correct ER structure is an essential feature for cellular physiology. Now, it is known that proper ER-associated proteins play a fundamental role in ER tubules formation. Among these ER-shaping proteins are the reticulons (RTN), which are acquiring a relevant position. In fact, beyond the structural role of reticulons, in very recent years new and deeper functional implications of these proteins are emerging in relation to their involvement in several cellular processes.

  9. Endoplasmic reticulum stress regulates inflammation and insulin resistance in skeletal muscle from pregnant women.

    Science.gov (United States)

    Liong, Stella; Lappas, Martha

    2016-04-15

    Sterile inflammation and infection are key mediators of inflammation and peripheral insulin resistance associated with gestational diabetes mellitus (GDM). Studies have shown endoplasmic reticulum (ER) stress to induce inflammation and insulin resistance associated with obesity and type 2 diabetes, however is paucity of studies investigating the effects of ER stress in skeletal muscle on inflammation and insulin resistance associated with GDM. ER stress proteins IRE1α, GRP78 and XBP-1s were upregulated in skeletal muscle of obese pregnant women, whereas IRE1α was increased in GDM women. Suppression of ER stress, using ER stress inhibitor tauroursodeoxycholic acid (TUDCA) or siRNA knockdown of IRE1α and GRP78, significantly downregulated LPS-, poly(I:C)- or IL-1β-induced production of IL-6, IL-8, IL-1β and MCP-1. Furthermore, LPS-, poly(I:C)- or TNF-α-induced insulin resistance was improved following suppression of ER stress, by increasing insulin-stimulated phosphorylation of IR-β, IRS-1, GLUT-4 expression and glucose uptake. In summary, our inducible obesity and GDM-like models suggests that the development of GDM may be involved in activating ER stress-induced inflammation and insulin resistance in human skeletal muscle.

  10. Parallel analysis of tagged deletion mutants efficiently identifies genes involved in endoplasmic reticulum biogenesis.

    Science.gov (United States)

    Wright, Robin; Parrish, Mark L; Cadera, Emily; Larson, Lynnelle; Matson, Clinton K; Garrett-Engele, Philip; Armour, Chris; Lum, Pek Yee; Shoemaker, Daniel D

    2003-07-30

    Increased levels of HMG-CoA reductase induce cell type- and isozyme-specific proliferation of the endoplasmic reticulum. In yeast, the ER proliferations induced by Hmg1p consist of nuclear-associated stacks of smooth ER membranes known as karmellae. To identify genes required for karmellae assembly, we compared the composition of populations of homozygous diploid S. cerevisiae deletion mutants following 20 generations of growth with and without karmellae. Using an initial population of 1,557 deletion mutants, 120 potential mutants were identified as a result of three independent experiments. Each experiment produced a largely non-overlapping set of potential mutants, suggesting that differences in specific growth conditions could be used to maximize the comprehensiveness of similar parallel analysis screens. Only two genes, UBC7 and YAL011W, were identified in all three experiments. Subsequent analysis of individual mutant strains confirmed that each experiment was identifying valid mutations, based on the mutant's sensitivity to elevated HMG-CoA reductase and inability to assemble normal karmellae. The largest class of HMG-CoA reductase-sensitive mutations was a subset of genes that are involved in chromatin structure and transcriptional regulation, suggesting that karmellae assembly requires changes in transcription or that the presence of karmellae may interfere with normal transcriptional regulation.

  11. Transcriptional activation of endoplasmic reticulum chaperone GRP78 by HCMV IE1-72 protein

    Institute of Scientific and Technical Information of China (English)

    Derick Shi-Chen Ou; Sung-Bau Lee; Chi-Shuen Chu; Liang-Hao Chang; Bon-chu Chung; Li-Jung Juan

    2011-01-01

    Glucose-regulated protein 78 (GRP78), a key regulator of endoplasmic reticulum (ER) stress, facilitates cancer cell growth and viral replication. The mechanism leading to grp78 gene activation during viral infection is largely unknown, in this study, we show that the immediate-early 1 (IE1-72) protein of the human cytomegalovirus (HCMV) is essential for HCMV-mediated GRP78 activation. IE1-72 upregulated grp 78 gene expression depending on the ATPbinding site, the zinc-finger domain and the putative leucine-zipper motif of IE1-72, as well as the ER stress response elements (ERSEs) on the grp78 promoter. The purified IE1-72 protein bound to the CCAAT box within ERSE in vitro, whereas deletion mutants of IE1-72 deficient in grp78 promoter stimulation failed to do so. Moreover, IE1-72 binding to the grp78 promoter in infected cells accompanied the recruitment of TATA box-binding protein-associated factor 1 (TAF1), a histone acetyltransferase, and the increased level of acetylated histone H4, an indicator of activestate chromatin. These results provide evidence that HCMV IE1-72 activates grp78 gene expression through direct promoter binding and modulation of the local chromatin structure, indicating an active viral mechanism of cellular chaperone induction for viral growth.

  12. Endoplasmic reticulum-mitochondrial crosstalk: a novel role for the mitochondrial peptide humanin

    Directory of Open Access Journals (Sweden)

    Parameswaran G Sreekumar

    2017-01-01

    Full Text Available In this review, the interactive mechanisms of mitochondria with the endoplasmic reticulum (ER are discussed with emphasis on the potential protective role of the mitochondria derived peptide humanin (HN in ER stress. The ER and mitochondria are dynamic organelles capable of modifying their structure and function in response to changing environmental conditions. The ER and mitochondria join together at multiple sites and form mitochondria-ER associated membranes that participate in signal transduction pathways that are under active investigation. Our laboratory previously showed that HN protects cells from oxidative stress induced cell death and more recently, described the beneficial role of HN on ER stress-induced apoptosis in retinal pigment epithelium cells and the involvement of ER-mitochondrial cross-talk in cellular protection. The protection was achieved, in part, by the restoration of mitochondrial glutathione that was depleted by ER stress. Thus, HN may be a promising candidate for therapy for diseases that involve both oxidative and ER stress. Developing novel approaches for retinal delivery of HN, its analogues as well as small molecular weight ER stress inhibitors would prove to be a valuable approach in the treatment of age-related macular degeneration.

  13. Expanded polyglutamine embedded in the endoplasmic reticulum causes membrane distortion and coincides with Bax insertion

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Masashi; Li, Shimo; Itoh, Masanori; Wang, Miao-xing; Hayakawa, Miki; Islam, Saiful; Tana; Nakagawa, Kiyomi [Department of Neurobiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194 (Japan); Chen, Huayue [Department of Anatomy, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194 (Japan); Nakagawa, Toshiyuki, E-mail: tnakagaw@gifu-u.ac.jp [Department of Neurobiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194 (Japan)

    2016-05-27

    The endoplasmic reticulum (ER) is important in various cellular functions, such as secretary and membrane protein biosynthesis, lipid synthesis, and calcium storage. ER stress, including membrane distortion, is associated with many diseases such as Huntington's disease. In particular, nuclear envelope distortion is related to neuronal cell death associated with polyglutamine. However, the mechanism by which polyglutamine causes ER membrane distortion remains unclear. We used electron microscopy, fluorescence protease protection assay, and alkaline treatment to analyze the localization of polyglutamine in cells. We characterized polyglutamine embedded in the ER membrane and noted an effect on morphology, including the dilation of ER luminal space and elongation of ER-mitochondria contact sites, in addition to the distortion of the nuclear envelope. The polyglutamine embedded in the ER membrane was observed at the same time as Bax insertion. These results demonstrated that the ER membrane may be a target of polyglutamine, which triggers cell death through Bax. -- Highlights: •We characterized polyglutamine embedded in the ER membrane. •The polyglutamine embedded in the ER membrane was observed at the same time as Bax insertion. •The ER membrane may be a target of polyglutamine, which triggers cell death.

  14. Homocysteine activates T cells by enhancing endoplasmic reticulum-mitochondria coupling and increasing mitochondrial respiration.

    Science.gov (United States)

    Feng, Juan; Lü, Silin; Ding, Yanhong; Zheng, Ming; Wang, Xian

    2016-06-01

    Hyperhomocysteinemia (HHcy) accelerates atherosclerosis by increasing proliferation and stimulating cytokine secretion in T cells. However, whether homocysteine (Hcy)-mediated T cell activation is associated with metabolic reprogramming is unclear. Here, our in vivo and in vitro studies showed that Hcy-stimulated splenic T-cell activation in mice was accompanied by increased levels of mitochondrial reactive oxygen species (ROS) and calcium, mitochondrial mass and respiration. Inhibiting mitochondrial ROS production and calcium signals or blocking mitochondrial respiration largely blunted Hcy-induced T-cell interferon γ (IFN-γ) secretion and proliferation. Hcy also enhanced endoplasmic reticulum (ER) stress in T cells, and inhibition of ER stress with 4-phenylbutyric acid blocked Hcy-induced T-cell activation. Mechanistically, Hcy increased ER-mitochondria coupling, and uncoupling ER-mitochondria by the microtubule inhibitor nocodazole attenuated Hcy-stimulated mitochondrial reprogramming, IFN-γ secretion and proliferation in T cells, suggesting that juxtaposition of ER and mitochondria is required for Hcy-promoted mitochondrial function and T-cell activation. In conclusion, Hcy promotes T-cell activation by increasing ER-mitochondria coupling and regulating metabolic reprogramming.

  15. Chondroitin sulfate proteoglycans negatively regulate the positioning of mitochondria and endoplasmic reticulum to distal axons.

    Science.gov (United States)

    Sainath, Rajiv; Armijo-Weingart, Lorena; Ketscheck, Andrea; Xu, Zhuxuan; Li, Shuxin; Gallo, Gianluca

    2017-09-13

    Chondroitin sulfate proteoglycans (CSPGs) are components of the extracellular matrix that inhibit the extension and regeneration of axons. However, the underlying mechanism of action remains poorly understood. Mitochondria and endoplasmic reticulum (ER) are functionally inter-linked organelles important to axon development and maintenance. We report that CSPGs impair the targeting of mitochondria and ER to the growth cones of chicken embryonic sensory axons. The effect of CSPGs on the targeting of mitochondria is blocked by inhibition of the LAR receptor for CSPGs. The regulation of the targeting of mitochondria and ER to the growth cone by CSPGs is due to attenuation of PI3K signaling, which is known to be downstream of LAR receptor activation. Dynactin is a required component of the dynein motor complex that drives the normally occurring retrograde evacuation of mitochondria from growth cones. CSPGs elevate the levels of p150(Glu) dynactin found in distal axons, and inhibition of the interaction of dynactin with dynein increased axon lengths on CSPGs. CSPGs decreased the membrane potential of mitochondria, and pharmacological inhibition of mitochondria respiration at the growth cone independent of manipulation of mitochondria positioning impaired axon extension. Combined inhibition of dynactin and potentiation of mitochondria respiration further increased axon lengths on CSPGs relative to inhibition of dynactin alone. These data reveal that the regulation of the localization of mitochondria and ER to growth cones is a previously unappreciated aspect of the effects of CSPGs on embryonic axons. © 2017 Wiley Periodicals, Inc. Develop Neurobiol, 2017. © 2017 Wiley Periodicals, Inc.

  16. Erlotinib promotes endoplasmic reticulum stress-mediated injury in the intestinal epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Lu; Hu, Lingna; Yang, Baofang; Fang, Xianying; Gao, Zhe; Li, Wanshuai; Sun, Yang; Shen, Yan; Wu, Xuefeng [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Shu, Yongqian [Department of Clinical Oncology, The First Affiliated Hospital of Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029 (China); Gu, Yanhong, E-mail: guluer@163.com [Department of Clinical Oncology, The First Affiliated Hospital of Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029 (China); Wu, Xudong, E-mail: xudongwu@nju.edu.cn [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Xu, Qiang, E-mail: molpharm@163.com [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093 (China)

    2014-07-01

    Erlotinib, a popular drug for treating non-small cell lung cancer (NSCLC), causes diarrhea in approximately 55% of patients receiving this drug. In the present study, we found that erlotinib induced barrier dysfunction in rat small intestine epithelial cells (IEC-6) by increasing epithelial permeability and down-regulating E-cadherin. The mRNA levels of various pro-inflammatory cytokines (Il-6, Il-25 and Il-17f) were increased after erlotinib treatment in IEC-6 cells. Erlotinib concentration- and time-dependently induced apoptosis and endoplasmic reticulum (ER) stress in both IEC-6 and human colon epithelial cells (CCD 841 CoN). Intestinal epithelial injury was also observed in male C57BL/6J mice administrated with erlotinib. Knockdown of C/EBP homologous protein (CHOP) with small interference RNA partially reversed erlotinib-induced apoptosis, production of IL-6 and down-regulation of E-cadherin in cultured intestinal epithelial cells. In conclusion, erlotinib caused ER stress-mediated injury in the intestinal epithelium, contributing to its side effects of diarrhea in patients. - Highlights: • Erlotinib destroyed barrier integrity both in vitro and in vivo. • Erlotinib induced inflammation both in vitro and in vivo. • Erlotinib induced apoptosis both in vitro and in vivo. • ER stress contributed to erlotinib-induced barrier dysfunction.

  17. Novel targets for endoplasmic reticulum stress-induced apoptosis in B-CLL.

    Science.gov (United States)

    Rosati, Emanuela; Sabatini, Rita; Rampino, Giuliana; De Falco, Filomena; Di Ianni, Mauro; Falzetti, Franca; Fettucciari, Katia; Bartoli, Andrea; Screpanti, Isabella; Marconi, Pierfrancesco

    2010-10-14

    A better understanding of apoptotic signaling in B-chronic lymphocytic leukemia (B-CLL) cells may help to define new therapeutic strategies. This study investigated endoplasmic reticulum (ER) stress signaling in spontaneous apoptosis of B-CLL cells and whether manipulating ER stress increases their apoptosis. Results show that a novel ER stress-triggered caspase cascade, initiated by caspase-4 and involving caspase-8 and -3, plays an important role in spontaneous B-CLL cell apoptosis. ER stress-induced apoptosis in B-CLL cells also involves CHOP/GADD153 up-regulation, increased JNK1/2 phosphorylation, and caspase-8-mediated cleavage of Bap31 to Bap20, known to propagate apoptotic signals from ER to mitochondria. In ex vivo B-CLL cells, some apoptotic events associated with mitochondrial pathway also occur, including mitochondrial cytochrome c release and caspase-9 processing. However, pharmacologic inhibition studies show that caspase-9 plays a minor role in B-CLL cell apoptosis. ER stress also triggers survival signals in B-CLL cells by increasing BiP/GRP78 expression. Manipulating ER signaling by siRNA down-regulation of BiP/GRP78 or treating B-CLL cells with 2 well-known ER stress-inducers, tunicamycin and thapsigargin, increases their apoptosis. Overall, our findings show that ER triggers an essential pathway for B-CLL cell apoptosis and suggest that genetic and pharmacologic manipulation of ER signaling could represent an important therapeutic strategy.

  18. Proteasome inhibition compromises direct retention of cytochrome P450 2C2 in the endoplasmic reticulum.

    Science.gov (United States)

    Szczesna-Skorupa, Elzbieta; Kemper, Byron

    2008-10-15

    To determine whether protein degradation plays a role in the endoplasmic reticulum (ER) retention of cytochromes P450, the effects of proteasomal inhibitors on the expression and distribution of green fluorescent protein chimeras of CYP2C2 and related proteins was examined. In transfected cells, expression levels of chimeras of full-length CYP2C2 and its cytosolic domain, but not its N-terminal transmembrane sequence, were increased by proteasomal inhibition. Redistribution of all three chimeras from the reticular ER into a perinuclear compartment and, in a subset of cells, also to the cell surface was observed after proteasomal inhibition. Redistribution was blocked by the microtubular inhibitor, nocodazole, suggesting that redistribution to the cell surface followed the conventional vesicular transport pathway. Similar redistributions were detected for BAP31, a CYP2C2 binding chaperone; CYP2E1 and CYP3A4, which are also degraded by the proteasomal pathway; and for cytochrome P450 reductase, which does not undergo proteasomal degradation; but not for the ER membrane proteins, sec61 and calnexin. Redistribution does not result from saturation of an ER retention "receptor" since in some cases protein levels were unaffected. Proteasomal inhibition may, therefore, alter ER retention by affecting a protein critical for ER retention, either directly, or indirectly by affecting the composition of the ER membranes.

  19. Bap31 enhances the endoplasmic reticulum export and quality control of human class I MHC molecules.

    Science.gov (United States)

    Ladasky, John J; Boyle, Sarah; Seth, Malini; Li, Hewang; Pentcheva, Tsvetelina; Abe, Fumiyoshi; Steinberg, Steven J; Edidin, Michael

    2006-11-01

    The assembly of class I MHC molecules and their export from the endoplasmic reticulum (ER) is governed by chaperones and accessory proteins. We present evidence that the putative cargo receptor protein Bap31 participates in the transport and the quality control of human class I molecules. Transfection of the human adenocarcinoma cell line HeLa with yellow fluorescent protein-Bap31 chimeras increased surface levels of class I in a dose-dependent manner, by as much as 3.7-fold. The increase in surface class I resulted from an increase in the rate of export of newly synthesized class I molecules to the cell surface and from an increase in the stability of the exported molecules. We propose that Bap31 performs quality control on class I molecules in two distinct phases: first, by exporting peptide-loaded class I molecules to the ER/Golgi intermediate compartment, and second, by retrieving class I molecules that have lost peptides in the acidic post-ER environment. This function of Bap31 is conditional or redundant, because we find that Bap31 deficiency does not reduce surface class I levels. Overexpression of the Bap31 homolog, Bap29, decreases surface class levels in HeLa, indicating that it does not substitute for Bap31.

  20. PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis.

    Science.gov (United States)

    Simmen, Thomas; Aslan, Joseph E; Blagoveshchenskaya, Anastassia D; Thomas, Laurel; Wan, Lei; Xiang, Yang; Feliciangeli, Sylvain F; Hung, Chien-Hui; Crump, Colin M; Thomas, Gary

    2005-02-23

    The endoplasmic reticulum (ER) and mitochondria form contacts that support communication between these two organelles, including synthesis and transfer of lipids, and the exchange of calcium, which regulates ER chaperones, mitochondrial ATP production, and apoptosis. Despite the fundamental roles for ER-mitochondria contacts, little is known about the molecules that regulate them. Here we report the identification of a multifunctional sorting protein, PACS-2, that integrates ER-mitochondria communication, ER homeostasis, and apoptosis. PACS-2 controls the apposition of mitochondria with the ER, as depletion of PACS-2 causes BAP31-dependent mitochondria fragmentation and uncoupling from the ER. PACS-2 also controls formation of ER lipid-synthesizing centers found on mitochondria-associated membranes and ER homeostasis. However, in response to apoptotic inducers, PACS-2 translocates Bid to mitochondria, which initiates a sequence of events including the formation of mitochondrial truncated Bid, the release of cytochrome c, and the activation of caspase-3, thereby causing cell death. Together, our results identify PACS-2 as a novel sorting protein that links the ER-mitochondria axis to ER homeostasis and the control of cell fate, and provide new insights into Bid action.

  1. Intact protein folding in the glutathione-depleted endoplasmic reticulum implicates alternative protein thiol reductants

    Science.gov (United States)

    Tsunoda, Satoshi; Avezov, Edward; Zyryanova, Alisa; Konno, Tasuku; Mendes-Silva, Leonardo; Pinho Melo, Eduardo; Harding, Heather P; Ron, David

    2014-01-01

    Protein folding homeostasis in the endoplasmic reticulum (ER) requires efficient protein thiol oxidation, but also relies on a parallel reductive process to edit disulfides during the maturation or degradation of secreted proteins. To critically examine the widely held assumption that reduced ER glutathione fuels disulfide reduction, we expressed a modified form of a cytosolic glutathione-degrading enzyme, ChaC1, in the ER lumen. ChaC1CtoS purged the ER of glutathione eliciting the expected kinetic defect in oxidation of an ER-localized glutathione-coupled Grx1-roGFP2 optical probe, but had no effect on the disulfide editing-dependent maturation of the LDL receptor or the reduction-dependent degradation of misfolded alpha-1 antitrypsin. Furthermore, glutathione depletion had no measurable effect on induction of the unfolded protein response (UPR); a sensitive measure of ER protein folding homeostasis. These findings challenge the importance of reduced ER glutathione and suggest the existence of alternative electron donor(s) that maintain the reductive capacity of the ER. DOI: http://dx.doi.org/10.7554/eLife.03421.001 PMID:25073928

  2. Role of kinesin-1 and cytoplasmic dynein in endoplasmic reticulum movement in VERO cells

    Science.gov (United States)

    Woźniak, Marcin J.; Bola, Becky; Brownhill, Kim; Yang, Yen-Ching; Levakova, Vesselina; Allan, Victoria J.

    2009-01-01

    Summary Generating the extended endoplasmic reticulum (ER) network depends on microtubules, which act as tracks for motor-driven ER tubule movement, generate the force to extend ER tubules by means of attachment to growing microtubule plus-ends and provide static attachment points. We have analysed ER dynamics in living VERO cells and find that most ER tubule extension is driven by microtubule motors. Surprisingly, we observe that ∼50% of rapid ER tubule movements occur in the direction of the centre of the cell, driven by cytoplasmic dynein. Inhibition of this movement leads to an accumulation of lamellar ER in the cell periphery. By expressing dominant-negative kinesin-1 constructs, we show that kinesin-1 drives ER tubule extension towards the cell periphery and that this motility is dependent on the KLC1B kinesin light chain splice form but not on KLC1D. Inhibition of kinesin-1 promotes a shift from tubular to lamellar morphology and slows down the recovery of the ER network after microtubule depolymerisation and regrowth. These observations reconcile previous conflicting studies of kinesin-1 function in ER motility in vivo. Furthermore, our data reveal that cytoplasmic dynein plays a role in ER motility in a mammalian cultured cell, demonstrating that ER motility is more complex than previously thought. PMID:19454478

  3. Patulin induces apoptosis through ROS-mediated endoplasmic reticulum stress pathway.

    Science.gov (United States)

    Boussabbeh, Manel; Ben Salem, Intidhar; Prola, Alexandre; Guilbert, Arnaud; Bacha, Hassen; Abid-Essefi, Salwa; Lemaire, Christophe

    2015-04-01

    Patulin (PAT) is a toxic metabolite produced by several filamentous fungi of the genera of Penicillium, Aspergillus, and Byssochlamys. PAT is the most common mycotoxin found in apples and apple-based products including juice, compotes, cider, and baby food. Exposure to this mycotoxin has been reported to induce intestinal and kidney injuries. This study investigated the mechanism of PAT-induced toxicity in human colon carcinoma (HCT116) and embryonic kidney cells (HEK293). We demonstrated that PAT activated endoplasmic reticulum (ER) and unfolded protein response as evidenced by up-regulation of GRP78 and GADD34, splicing of XBP1 mRNA, and expression of the proapoptotic factor CHOP. This ER stress response was accompanied by the induction of the mitochondrial apoptotic pathway. Apoptosis occurred with ROS production, drop in mitochondrial membrane potential and caspase activation. Further, we showed that deficiency of the proapoptotic protein Bax or Bak protected cells against PAT-induced apoptosis. The treatment of cells with the ROS scavenger N-acetyl cysteine inhibits the ER stress response and prevents mitochondrial apoptosis. Collectively, our data provide new mechanistic insights in the signaling pathways of the cell death induced by PAT and demonstrate that PAT induces cytotoxicity through a ROS-dependent mechanism involving ER stress and activation of mitochondrial apoptotic pathway in human intestinal and kidney cells. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology.All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. ATF4- and CHOP-Dependent Induction of FGF21 through Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Xiao-shan Wan

    2014-01-01

    Full Text Available Fibroblast growth factor 21 (FGF21 is an important endogenous regulator involved in the regulation of glucose and lipid metabolism. FGF21 expression is strongly induced in animal and human subjects with metabolic diseases, but little is known about the molecular mechanism. Endoplasmic reticulum (ER stress plays an essential role in metabolic homeostasis and is observed in numerous pathological processes, including type 2 diabetes, overweight, nonalcoholic fatty liver disease (NAFLD. In this study, we investigate the correlation between the expression of FGF21 and ER stress. We demonstrated that TG-induced ER stress directly regulated the expression and secretion of FGF21 in a dose- and time-dependent manner. FGF21 is the target gene for activating transcription factor 4 (ATF4 and CCAAT enhancer binding protein homologous protein (CHOP. Suppression of CHOP impaired the transcriptional activation of FGF21 by TG-induced ER stress in CHOP−/− mouse primary hepatocytes (MPH, and overexpression of ATF4 and CHOP resulted in FGF21 promoter activation to initiate the transcriptional programme. In mRNA stability assay, we indicated that ER stress increased the half-life of mRNA of FGF21 significantly. In conclusion, FGF21 expression is regulated by ER stress via ATF- and CHOP-dependent transcriptional mechanism and posttranscriptional mechanism, respectively.

  5. The endoplasmic reticulum, not the pH gradient, drives calcium refilling of lysosomes.

    Science.gov (United States)

    Garrity, Abigail G; Wang, Wuyang; Collier, Crystal Md; Levey, Sara A; Gao, Qiong; Xu, Haoxing

    2016-05-23

    Impaired homeostasis of lysosomal Ca(2+) causes lysosome dysfunction and lysosomal storage diseases (LSDs), but the mechanisms by which lysosomes acquire and refill Ca(2+) are not known. We developed a physiological assay to monitor lysosomal Ca(2+) store refilling using specific activators of lysosomal Ca(2+) channels to repeatedly induce lysosomal Ca(2+) release. In contrast to the prevailing view that lysosomal acidification drives Ca(2+) into the lysosome, inhibiting the V-ATPase H(+) pump did not prevent Ca(2+) refilling. Instead, pharmacological depletion or chelation of Endoplasmic Reticulum (ER) Ca(2+) prevented lysosomal Ca(2+) stores from refilling. More specifically, antagonists of ER IP3 receptors (IP3Rs) rapidly and completely blocked Ca(2+) refilling of lysosomes, but not in cells lacking IP3Rs. Furthermore, reducing ER Ca(2+) or blocking IP3Rs caused a dramatic LSD-like lysosome storage phenotype. By closely apposing each other, the ER may serve as a direct and primary source of Ca(2+)for the lysosome.

  6. A lipid receptor sorts polyomavirus from the endolysosome to the endoplasmic reticulum to cause infection.

    Directory of Open Access Journals (Sweden)

    Mengding Qian

    2009-06-01

    Full Text Available The mechanisms by which receptors guide intracellular virus transport are poorly characterized. The murine polyomavirus (Py binds to the lipid receptor ganglioside GD1a and traffics to the endoplasmic reticulum (ER where it enters the cytosol and then the nucleus to initiate infection. How Py reaches the ER is unclear. We show that Py is transported initially to the endolysosome where the low pH imparts a conformational change that enhances its subsequent ER-to-cytosol membrane penetration. GD1a stimulates not viral binding or entry, but rather sorting of Py from late endosomes and/or lysosomes to the ER, suggesting that GD1a binding is responsible for ER targeting. Consistent with this, an artificial particle coated with a GD1a antibody is transported to the ER. Our results provide a rationale for transport of Py through the endolysosome, demonstrate a novel endolysosome-to-ER transport pathway that is regulated by a lipid, and implicate ganglioside binding as a general ER targeting mechanism.

  7. Quantitative proteomics reveal proteins enriched in tubular endoplasmic reticulum of Saccharomyces cerevisiae

    Science.gov (United States)

    Wang, Xinbo; Li, Shanshan; Wang, Haicheng; Shui, Wenqing; Hu, Junjie

    2017-01-01

    The tubular network is a critical part of the endoplasmic reticulum (ER). The network is shaped by the reticulons and REEPs/Yop1p that generate tubules by inducing high membrane curvature, and the dynamin-like GTPases atlastin and Sey1p/RHD3 that connect tubules via membrane fusion. However, the specific functions of this ER domain are not clear. Here, we isolated tubule-based microsomes from Saccharomyces cerevisiae via classical cell fractionation and detergent-free immunoprecipitation of Flag-tagged Yop1p, which specifically localizes to ER tubules. In quantitative comparisons of tubule-derived and total microsomes, we identified a total of 79 proteins that were enriched in the ER tubules, including known proteins that organize the tubular ER network. Functional categorization of the list of proteins revealed that the tubular ER network may be involved in membrane trafficking, lipid metabolism, organelle contact, and stress sensing. We propose that affinity isolation coupled with quantitative proteomics is a useful tool for investigating ER functions. DOI: http://dx.doi.org/10.7554/eLife.23816.001 PMID:28287394

  8. The Ca(2+)-ATPase pump facilitates bidirectional proton transport across the sarco/endoplasmic reticulum.

    Science.gov (United States)

    Espinoza-Fonseca, L Michel

    2017-03-28

    Ca(2+) transport across the sarco/endoplasmic reticulum (SR) plays an essential role in intracellular Ca(2+) homeostasis, signalling, cell differentiation and muscle contractility. During SR Ca(2+) uptake and release, proton fluxes are required to balance the charge deficit generated by the exchange of Ca(2+) and other ions across the SR. During Ca(2+) uptake by the SR Ca(2+)-ATPase (SERCA), two protons are countertransported from the SR lumen to the cytosol, thus partially compensating for the charge moved by Ca(2+) transport. Studies have shown that protons are also transported from the cytosol to the lumen during Ca(2+) release, but a transporter that facilitates proton transport into the SR lumen has not been described. In this article we propose that SERCA forms pores that facilitate bidirectional proton transport across the SR. We describe the location and structure of water-filled pores in SERCA that form cytosolic and luminal pathways for protons to cross the SR membrane. Based on this structural information, we suggest mechanistic models for proton translocation to the cytosol during active Ca(2+) transport, and into the SR lumen during SERCA inhibition by endogenous regulatory proteins. Finally, we discuss the physiological consequences of SERCA-mediated bidirectional proton transport across the SR membrane of muscle and non-muscle cells.

  9. Expression of Endoplasmic Reticulum Stress-Related Factors in the Retinas of Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Shu Yan

    2012-01-01

    Full Text Available Recent reports show that ER stress plays an important role in diabetic retinopathy (DR, but ER stress is a complicated process involving a network of signaling pathways and hundreds of factors, What factors involved in DR are not yet understood. We selected 89 ER stress factors from more than 200, A rat diabetes model was established by intraperitoneal injection of streptozotocin (STZ. The expression of 89 ER stress-related factors was found in the retinas of diabetic rats, at both 1- and 3-months after development of diabetes, by quantitative real-time polymerase chain reaction arrays. There were significant changes in expression levels of 13 and 12 ER stress-related factors in the diabetic rat retinas in the first and third month after the development of diabetes, Based on the array results, homocysteine- inducible, endoplasmic reticulum stress-inducible, ubiquitin-like domain member 1(HERP, and synoviolin(HRD1 were studied further by immunofluorescence and Western blot. Immunofluorescence and Western blot analyses showed that the expression of HERP was reduced in the retinas of diabetic rats in first and third month. The expression of Hrd1 did not change significantly in the retinas of diabetic rats in the first month but was reduced in the third month.

  10. Endoplasmic Reticulum Stress Cooperates in Zearalenone-Induced Cell Death of RAW 264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Fenglei Chen

    2015-08-01

    Full Text Available Zearalenone (ZEA is a fungal mycotoxin that causes cell apoptosis and necrosis. However, little is known about the molecular mechanisms of ZEA toxicity. The objective of this study was to explore the effects of ZEA on the proliferation and apoptosis of RAW 264.7 macrophages and to uncover the signaling pathway underlying the cytotoxicity of ZEA in RAW 264.7 macrophages. This study demonstrates that the endoplasmic reticulum (ER stress pathway cooperated in ZEA-induced cell death of the RAW 264.7 macrophages. Our results show that ZEA treatment reduced the viability of RAW 264.7 macrophages in a dose- and time-dependent manner as shown by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay (MTT and flow cytometry assay. Western blots analysis revealed that ZEA increased the expression of glucose-regulated protein 78 (GRP78 and CCAAT/enhancer binding protein homologous protein (CHOP, two ER stress-related marker genes. Furthermore, treating the cells with the ER stress inhibitors 4-phenylbutyrate (4-PBA or knocking down CHOP, using lentivirus encoded short hairpin interfering RNAs (shRNAs, significantly diminished the ZEA-induced increases in GRP78 and CHOP, and cell death. In summary, our results suggest that ZEA induces the apoptosis and necrosis of RAW 264.7 macrophages in a dose- and time-dependent manner via the ER stress pathway in which the activation of CHOP plays a critical role.

  11. Endoplasmic Reticulum Stress Cooperates in Zearalenone-Induced Cell Death of RAW 264.7 Macrophages.

    Science.gov (United States)

    Chen, Fenglei; Li, Qian; Zhang, Zhe; Lin, Pengfei; Lei, Lanjie; Wang, Aihua; Jin, Yaping

    2015-08-20

    Zearalenone (ZEA) is a fungal mycotoxin that causes cell apoptosis and necrosis. However, little is known about the molecular mechanisms of ZEA toxicity. The objective of this study was to explore the effects of ZEA on the proliferation and apoptosis of RAW 264.7 macrophages and to uncover the signaling pathway underlying the cytotoxicity of ZEA in RAW 264.7 macrophages. This study demonstrates that the endoplasmic reticulum (ER) stress pathway cooperated in ZEA-induced cell death of the RAW 264.7 macrophages. Our results show that ZEA treatment reduced the viability of RAW 264.7 macrophages in a dose- and time-dependent manner as shown by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay (MTT) and flow cytometry assay. Western blots analysis revealed that ZEA increased the expression of glucose-regulated protein 78 (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP), two ER stress-related marker genes. Furthermore, treating the cells with the ER stress inhibitors 4-phenylbutyrate (4-PBA) or knocking down CHOP, using lentivirus encoded short hairpin interfering RNAs (shRNAs), significantly diminished the ZEA-induced increases in GRP78 and CHOP, and cell death. In summary, our results suggest that ZEA induces the apoptosis and necrosis of RAW 264.7 macrophages in a dose- and time-dependent manner via the ER stress pathway in which the activation of CHOP plays a critical role.

  12. The anaphase-promoting complex or cyclosome supports cell survival in response to endoplasmic reticulum stress.

    Directory of Open Access Journals (Sweden)

    Meifan Chen

    Full Text Available The anaphase-promoting complex or cyclosome (APC/C is a multi-subunit ubiquitin ligase that regulates exit from mitosis and G1 phase of the cell cycle. Although the regulation and function of APC/C(Cdh1 in the unperturbed cell cycle is well studied, little is known of its role in non-genotoxic stress responses. Here, we demonstrate the role of APC/C(Cdh1 (APC/C activated by Cdh1 protein in cellular protection from endoplasmic reticulum (ER stress. Activation of APC/C(Cdh1 under ER stress conditions is evidenced by Cdh1-dependent degradation of its substrates. Importantly, the activity of APC/C(Cdh1 maintains the ER stress checkpoint, as depletion of Cdh1 by RNAi impairs cell cycle arrest and accelerates cell death following ER stress. Our findings identify APC/C(Cdh1 as a regulator of cell cycle checkpoint and cell survival in response to proteotoxic insults.

  13. Cannabidiol protects oligodendrocyte progenitor cells from inflammation-induced apoptosis by attenuating endoplasmic reticulum stress.

    Science.gov (United States)

    Mecha, M; Torrao, A S; Mestre, L; Carrillo-Salinas, F J; Mechoulam, R; Guaza, C

    2012-06-28

    Cannabidiol (CBD) is the most abundant cannabinoid in Cannabis sativa that has no psychoactive properties. CBD has been approved to treat inflammation, pain and spasticity associated with multiple sclerosis (MS), of which demyelination and oligodendrocyte loss are hallmarks. Thus, we investigated the protective effects of CBD against the damage to oligodendrocyte progenitor cells (OPCs) mediated by the immune system. Doses of 1 μM CBD protect OPCs from oxidative stress by decreasing the production of reactive oxygen species. CBD also protects OPCs from apoptosis induced by LPS/IFNγ through the decrease of caspase 3 induction via mechanisms that do not involve CB1, CB2, TRPV1 or PPARγ receptors. Tunicamycin-induced OPC death was attenuated by CBD, suggesting a role of endoplasmic reticulum (ER) stress in the mode of action of CBD. This protection against ER stress-induced apoptosis was associated with reduced phosphorylation of eiF2α, one of the initiators of the ER stress pathway. Indeed, CBD diminished the phosphorylation of PKR and eiF2α induced by LPS/IFNγ. The pro-survival effects of CBD in OPCs were accompanied by decreases in the expression of ER apoptotic effectors (CHOP, Bax and caspase 12), and increased expression of the anti-apoptotic Bcl-2. These findings suggest that attenuation of the ER stress pathway is involved in the 'oligoprotective' effects of CBD during inflammation.

  14. Adaptive endoplasmic reticulum stress alters cellular responses to the extracellular milieu.

    Science.gov (United States)

    Liu, Yiting; Neely, Elizabeth; Simmons, Zachary; Connor, James R

    2015-05-01

    The ability to respond to perturbations in endoplasmic reticulum (ER) function is a critical property for all cells. In the presence of chronic ER stress, the cell must adapt so that cell survival is favored or the stress may promote apoptosis. In some pathological processes, such as neurodengeneration, persistent ER stress can be tolerated for an extended period, but eventually cell death occurs. It is not known how an adaptive response converts from survival into apoptosis. To gain a better understanding of the role of adaptive ER stress in neurodegeneration, in this study, with a neuronal cell line SH-SY5Y and primary motor neuron-glia cell mixed cultures, we induced adaptive ER stress and modified the extracellular environment with physiologically relevant changes that alone did not activate ER stress. Our data demonstrate that an adaptive ER stress favored neuronal cell survival, but when cells were exposed to additional physiological insults the level of ER stress was increased, followed by activation of the caspase pathway. Our results indicate that an adaptive ER stress response could be converted to apoptosis when the external cellular milieu changed, suggesting that the conversion from prosurvival to proapoptotic pathways can be driven by the external milieu. This conversion was due at least partially to an increased level of ER stress. © 2015 Wiley Periodicals, Inc.

  15. Endoplasmic reticulum stress in amelogenesis imperfecta and phenotypic rescue using 4-phenylbutyrate.

    Science.gov (United States)

    Brookes, Steven J; Barron, Martin J; Boot-Handford, Ray; Kirkham, Jennifer; Dixon, Michael J

    2014-05-01

    Inherited diseases caused by genetic mutations can arise due to loss of protein function. Alternatively, mutated proteins may mis-fold, impairing endoplasmic reticulum (ER) trafficking, causing ER stress and triggering the unfolded protein response (UPR). The UPR attempts to restore proteostasis but if unsuccessful drives affected cells towards apoptosis. Previously, we reported that in mice, the p.Tyr64His mutation in the enamel extracellular matrix (EEM) protein amelogenin disrupts the secretory pathway in the enamel-forming ameloblasts, resulting in eruption of malformed tooth enamel that phenocopies human amelogenesis imperfecta (AI). Defective amelogenin post-secretory self-assembly and processing within the developing EEM has been suggested to underlie the pathogenesis of X chromosome-linked AI. Here, we challenge this concept by showing that AI pathogenesis associated with the p.Tyr64His amelogenin mutation involves ameloblast apoptosis induced by ER stress. Furthermore, we show that 4-phenylbutyrate can rescue the enamel phenotype in affected female mice by promoting cell survival over apoptosis such that they are able to complete enamel formation despite the presence of the mutation, offering a potential therapeutic option for patients with this form of AI and emphasizing the importance of ER stress in the pathogenesis of this inherited conformational disease.

  16. Inhalation of titanium dioxide induces endoplasmic reticulum stress-mediated autophagy and inflammation in mice.

    Science.gov (United States)

    Yu, Kyeong-Nam; Sung, Jae Hyuck; Lee, Somin; Kim, Ji-Eun; Kim, Sanghwa; Cho, Won-Young; Lee, Ah Young; Park, Soo Jin; Lim, Joohyun; Park, Changhoon; Chae, Chanhee; Lee, Jin Kyu; Lee, Jinkyu; Kim, Jun-Sung; Cho, Myung-Haing

    2015-11-01

    Titanium dioxide (TiO2) nanoparticles are widely used in cosmetics, sunscreen, electronics, drug delivery systems, and diverse bio-application fields. In the workplace, the primary exposure route for TiO2 nanoparticles is inhalation through the respiratory system. Because TiO2 nanoparticles have different physiological properties, in terms of size and bioactivity, their toxic effects in the respiratory system must be determined. In this study, to determine the toxic effect of inhaled TiO2 nanoparticles in the lung and the underlying mechanism, we used a whole-body chamber inhalation system to expose A/J mice to TiO2 nanoparticles for 28 days. During the experiments, the inhaled TiO2 nanoparticles were characterized using a cascade impactor and transmission electron microscopy. After inhalation of the TiO2 nanoparticles, hyperplasia and inflammation were observed in a TiO2 dose-dependent manner. To determine the biological mechanism of the toxic response in the lung, we examined endoplasmic reticulum (ER) and mitochondria in lung. The ER and mitochondria were disrupted and dysfunctional in the TiO2-exposed lung leading to abnormal autophagy. In summary, we assessed the potential risk of TiO2 nanoparticles in the respiratory system, which contributed to our understanding of the mechanism underlining TiO2 nanoparticle toxicity in the lung.

  17. Ursolic acid inhibits the development of nonalcoholic fatty liver disease by attenuating endoplasmic reticulum stress.

    Science.gov (United States)

    Li, Jian-Shuang; Wang, Wen-Jun; Sun, Yu; Zhang, Yu-Hao; Zheng, Ling

    2015-05-01

    Ursolic acid (UA) is a natural pentacyclic triterpenoid compound, which is enriched with many herbs and plants, such as apple, cranberry and olive. UA performs multiple biological activities including anti-oxidation, anti-inflammation, anti-cancer and hepatoprotection. However, the exact mechanism underlying the hepatoprotective activity of UA remains unclear. In this study, the effects of UA on the development of nonalcoholic fatty liver disease (NAFLD) were investigated. In vivo, UA treatment (0.14%, w/w) significantly decreased the liver weight, serum levels of ALT/AST and hepatic steatosis in db/db mice (a type 2 diabetic mouse model). In vitro, UA treatment (10-30 μg ml(-1)) significantly decreased palmitic acid induced intracellular lipid accumulation in L02 cells. Our results suggested that the beneficial effects of UA on NAFLD may be due to its ability to increase lipid β-oxidation and to inhibit the hepatic endoplasmic reticulum (ER) stress. Together, UA may be further considered as a natural compound for NAFLD treatment.

  18. Role of Mitochondria-Associated Endoplasmic Reticulum Membrane in Inflammation-Mediated Metabolic Diseases.

    Science.gov (United States)

    Thoudam, Themis; Jeon, Jae-Han; Ha, Chae-Myeong; Lee, In-Kyu

    2016-01-01

    Inflammation is considered to be one of the most critical factors involved in the development of complex metabolic diseases such as type 2 diabetes, cancer, and cardiovascular disease. A few decades ago, the discovery of mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) was followed by the identification of its roles in regulating cellular homeostatic processes, ranging from cellular bioenergetics to apoptosis. MAM provides an excellent platform for numerous signaling pathways; among them, inflammatory signaling pathways associated with MAM play a critical role in cellular defense during pathogenic infections and metabolic disorders. However, induction of MAM causes deleterious effects by amplifying mitochondrial reactive oxygen species generation through increased calcium transfer from the ER to mitochondria, thereby causing mitochondrial damage and release of mitochondrial components into the cytosol as damage-associated molecular patterns (DAMPs). These mitochondrial DAMPs rapidly activate MAM-resident inflammasome components and other inflammatory factors, which promote inflammasome complex formation and release of proinflammatory cytokines in pathological conditions. Long-term stimulation of the inflammasome instigates chronic inflammation, leading to the pathogenesis of metabolic diseases. In this review, we summarize the current understanding of MAM and its association with inflammation-mediated metabolic diseases.

  19. Role of Endoplasmic Reticulum Aminopeptidases in Health and Disease: from Infection to Cancer

    Directory of Open Access Journals (Sweden)

    Doriana Fruci

    2012-07-01

    Full Text Available Endoplasmic reticulum (ER aminopeptidases ERAP1 and ERAP2 (ERAPs are essential for the maturation of a wide spectrum of proteins involved in various biological processes. In the ER, these enzymes work in concert to trim peptides for presentation on MHC class I molecules. Loss of ERAPs function substantially alters the repertoire of peptides presented by MHC class I molecules, critically affecting recognition of both NK and CD8+ T cells. In addition, these enzymes are involved in the modulation of inflammatory responses by promoting the shedding of several cytokine receptors, and in the regulation of both blood pressure and angiogenesis. Recent genome-wide association studies have identified common variants of ERAP1 and ERAP2 linked to several human diseases, ranging from viral infections to autoimmunity and cancer. More recently, inhibition of ER peptide trimming has been shown to play a key role in stimulating innate and adaptive anti-tumor immune responses, suggesting that inhibition of ERAPs might be exploited for the establishment of innovative therapeutic approaches against cancer. This review summarizes data currently available for ERAP enzymes in ER peptide trimming and in other immunological and non-immunological functions, paying attention to the emerging role played by these enzymes in human diseases.

  20. Guanxinkang Decoction Exerts Its Antiatherosclerotic Effect Partly through Inhibiting the Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2014-01-01

    Full Text Available Purpose. To investigate the antiatherosclerotic effect of Guanxinkang (GXK decoction on the apoptosis, mitochondrial membrane potential (MMP, and endoplasmic reticulum stress (ERS of human umbilical vein endothelial cells (HUVEC pretreated with homocysteinemia (HCY. Materials and Methods. HUVEC were randomly divided into 5 groups: (1 blank control group (control, (2 model control group (model, (3 GXK low dose group, (4 GXK medium dose group, and (5 GXK high dose group. For the three GXK groups, HCY was given to reach the concentration of 3.0 mmol/L after HUVEC had been incubated with rabbit serum containing GXK for two hours. At 3, 6, 12, and 24 h after HCY had been incubated with the cells, the HUVEC were collected for test of the apoptosis rate, MMP, and GRP78 protein (reflecting ERS. Results. In the model control group, the apoptosis rate and GRP 78 protein expression of HUVEC significantly increased (P<0.05, while MMP significantly decreased (P<0.05 compared with the blank control group. After GXK treatment of medium and high doses, the apoptosis rate and the GRP 78 protein expression significantly (P<0.05 decreased, while MMP significantly increased (P<0.05 in a time-dependent manner compared with the model control group. Conclusion. GXK can antagonize the injury of HUVEC caused by HCY and the antagonism effect increases with the concentration and treatment duration of GXK, with the possible mechanism of GXK antagonism being through inhibiting ERS caused by HCY.

  1. A novel protein involved in heart development in Ambystoma mexicanum is localized in endoplasmic reticulum.

    Science.gov (United States)

    Jia, P; Zhang, C; Huang, X P; Poda, M; Akbas, F; Lemanski, S L; Erginel-Unaltuna, N; Lemanski, L F

    2008-11-01

    The discovery of the naturally occurring cardiac non-function (c) animal strain in Ambystoma mexicanum (axolotl) provides a valuable animal model to study cardiomyocyte differentiation. In homozygous mutant animals (c/c), rhythmic contractions of the embryonic heart are absent due to a lack of organized myofibrils. We have previously cloned a partial sequence of a peptide cDNA (N1) from an anterior-endoderm-conditioned-medium RNA library that had been shown to be able to rescue the mutant phenotype. In the current studies we have fully cloned the N1 full length cDNA sequence from the library. N1 protein has been detected in both adult heart and skeletal muscle but not in any other adult tissues. GFP-tagged expression of the N1 protein has revealed localization of the N1 protein in the endoplasmic reticulum (ER). Results from in situ hybridization experiments have confirmed the dramatic decrease of expression of N1 mRNA in mutant (c/c) embryos indicating that the N1 gene is involved in heart development.

  2. A conserved endoplasmic reticulum membrane protein complex (EMC) facilitates phospholipid transfer from the ER to mitochondria.

    Science.gov (United States)

    Lahiri, Sujoy; Chao, Jesse T; Tavassoli, Shabnam; Wong, Andrew K O; Choudhary, Vineet; Young, Barry P; Loewen, Christopher J R; Prinz, William A

    2014-10-01

    Mitochondrial membrane biogenesis and lipid metabolism require phospholipid transfer from the endoplasmic reticulum (ER) to mitochondria. Transfer is thought to occur at regions of close contact of these organelles and to be nonvesicular, but the mechanism is not known. Here we used a novel genetic screen in S. cerevisiae to identify mutants with defects in lipid exchange between the ER and mitochondria. We show that a strain missing multiple components of the conserved ER membrane protein complex (EMC) has decreased phosphatidylserine (PS) transfer from the ER to mitochondria. Mitochondria from this strain have significantly reduced levels of PS and its derivative phosphatidylethanolamine (PE). Cells lacking EMC proteins and the ER-mitochondria tethering complex called ERMES (the ER-mitochondria encounter structure) are inviable, suggesting that the EMC also functions as a tether. These defects are corrected by expression of an engineered ER-mitochondrial tethering protein that artificially tethers the ER to mitochondria. EMC mutants have a significant reduction in the amount of ER tethered to mitochondria even though ERMES remained intact in these mutants, suggesting that the EMC performs an additional tethering function to ERMES. We find that all Emc proteins interact with the mitochondrial translocase of the outer membrane (TOM) complex protein Tom5 and this interaction is important for PS transfer and cell growth, suggesting that the EMC forms a tether by associating with the TOM complex. Together, our findings support that the EMC tethers ER to mitochondria, which is required for phospholipid synthesis and cell growth.

  3. Endoplasmic reticulum-associated amino-peptidase 1 and rheumatic disease: genetics.

    Science.gov (United States)

    Ombrello, Michael J; Kastner, Daniel L; Remmers, Elaine F

    2015-07-01

    This article will review the genetic evidence implicating ERAP1, which encodes the endoplasmic reticulum-associated amino-peptidase 1, in susceptibility to rheumatic disease. Genetic variants and haplotypes of ERAP1 are associated with AS, psoriasis, and Behçet's disease in people of varying ancestries. In each of these diseases, disease-associated variants of ERAP1 have been shown to interact with disease-associated class I human leukocyte antigen alleles to influence disease risk. Functionally, disease-associated missense variants of ERAP1 concertedly alter ERAP1 enzymatic function, both quantitatively and qualitatively, whereas other disease-associated variants influence ERAP1 expression. Therefore, ERAP1 haplotypes (or allotypes) should be examined as functional units. Biologically, this amounts to an examination of the gene regulation and function of the protein encoded by each allotype. Genetically, the relationship between disease risk and ERAP1 allotypes should be examined to determine whether allotypes or individual variants produce the most parsimonious risk models. Future investigations of ERAP1 should focus on comprehensively characterizing naturally occurring ERAP1 allotypes, examining the enzymatic function and gene expression of each allotype, and identifying specific allotypes that influence disease susceptibility.

  4. Naphthoquinone Derivative PPE8 Induces Endoplasmic Reticulum Stress in p53 Null H1299 Cells

    Directory of Open Access Journals (Sweden)

    Jin-Cherng Lien

    2015-01-01

    Full Text Available Endoplasmic reticulum (ER plays a key role in synthesizing secretory proteins and sensing signal function in eukaryotic cells. Responding to calcium disturbance, oxidation state change, or pharmacological agents, ER transmembrane protein, inositol-regulating enzyme 1 (IRE1, senses the stress and triggers downstream signals. Glucose-regulated protein 78 (GRP78 dissociates from IRE1 to assist protein folding and guard against cell death. In prolonged ER stress, IRE1 recruits and activates apoptosis signal-regulating kinase 1 (ASK1 as well as downstream JNK for cell death. Naphthoquinones are widespread natural phenolic compounds. Vitamin K3, a derivative of naphthoquinone, inhibits variant tumor cell growth via oxygen uptake and oxygen stress. We synthesized a novel naphthoquinone derivative PPE8 and evaluated capacity to induce ER stress in p53 null H1299 and p53 wild-type A549 cells. In H1299 cells, PPE8 induced ER enlargement, GRP78 expression, and transient IER1 activation. Activated IRE1 recruited ASK1 for downstream JNK phosphorylation. IRE1 knockdown by siRNA attenuated PPE8-induced JNK phosphorylation and cytotoxicity. Prolonged JNK phosphorylation may be involved in PPE8-induced cytotoxicity. Such results did not arise in A549 cells, but p53 knockdown by siRNA restored PPE8-induced GRP78 expression and JNK phosphorylation. We offer a novel compound to induce ER stress and cytotoxicity in p53-deficient cancer cells, presenting an opportunity for treatment.

  5. Oxidative Homeostasis Regulates the Response to Reductive Endoplasmic Reticulum Stress through Translation Control

    Directory of Open Access Journals (Sweden)

    Shuvadeep Maity

    2016-07-01

    Full Text Available Reductive stress leads to the loss of disulfide bond formation and induces the unfolded protein response of the endoplasmic reticulum (UPRER, necessary to regain proteostasis in the compartment. Here we show that peroxide accumulation during reductive stress attenuates UPRER amplitude by altering translation without any discernible effect on transcription. Through a comprehensive genetic screen in Saccharomyces cerevisiae, we identify modulators of reductive stress-induced UPRER and demonstrate that oxidative quality control (OQC genes modulate this cellular response in the presence of chronic but not acute reductive stress. Using a combination of microarray and relative quantitative proteomics, we uncover a non-canonical translation attenuation mechanism that acts in a bipartite manner to selectively downregulate highly expressed proteins, decoupling the cell’s transcriptional and translational response during reductive ER stress. Finally, we demonstrate that PERK, a canonical translation attenuator in higher eukaryotes, helps in bypassing a ROS-dependent, non-canonical mode of translation attenuation.

  6. Subcellular localization and rearrangement of endoplasmic reticulum by Brome mosaic virus capsid protein.

    Science.gov (United States)

    Bamunusinghe, Devinka; Seo, Jang-Kyun; Rao, A L N

    2011-03-01

    Genome packaging in the plant-infecting Brome mosaic virus (BMV), a member of the alphavirus-like superfamily, as well as in other positive-strand RNA viruses pathogenic to humans (e.g., poliovirus) and animals (e.g., Flock House virus), is functionally coupled to replication. Although the subcellular localization site of BMV replication has been identified, that of the capsid protein (CP) has remained elusive. In this study, the application of immunofluorescence confocal microscopy to Nicotiana benthamiana leaves expressing replication-derived BMV CP as a green fluorescent protein (GFP) fusion, in conjunction with antibodies to the CP and double-stranded RNA, a presumed marker of RNA replication, revealed that the subcellular localization sites of replication and CP overlap. Our temporal analysis by transmission electron microscopy of ultrastructural modifications induced in BMV-infected N. benthamiana leaves revealed a reticulovesicular network of modified endoplasmic reticulum (ER) incorporating large assemblies of vesicles derived from ER accumulated in the cytoplasm during BMV infection. Additionally, for the first time, we have found by ectopic expression experiments that BMV CP itself has the intrinsic property of modifying ER to induce vesicles similar to those present in BMV infections. The significance of CP-induced vesicles in relation to CP-organized viral functions that are linked to replication-coupled packaging is discussed.

  7. ATG5 defines a phagophore domain connected to the endoplasmic reticulum during autophagosome formation in plants.

    Science.gov (United States)

    Le Bars, Romain; Marion, Jessica; Le Borgne, Rémi; Satiat-Jeunemaitre, Béatrice; Bianchi, Michele Wolfe

    2014-06-20

    Autophagosomes are the organelles responsible for macroautophagy and arise, in yeast and animals, from the sealing of a cup-shaped double-membrane precursor, the phagophore. How the phagophore is generated and grows into a sealed autophagosome is still not clear in detail, and unknown in plants. This is due, in part, to the scarcity of structurally informative, real-time imaging data of the required protein machinery at the phagophore formation site. Here we find that in intact living Arabidopsis tissue, autophagy-related protein ATG5, which is essential for autophagosome formation, is present at the phagophore site from early, sub-resolution stages and later defines a torus-shaped structure on a flat cisternal early phagophore. Movement and expansion of this structure are accompanied by the underlying endoplasmic reticulum, suggesting tight connections between the two compartments. Detailed real-time and 3D imaging of the growing phagophore are leveraged to propose a model for autophagosome formation in plants.

  8. Lyn kinase represses mucus hypersecretion by regulating IL-13-induced endoplasmic reticulum stress in asthma.

    Science.gov (United States)

    Wang, Xing; Yang, Xiaoqiong; Li, Yin; Wang, Xiaoyun; Zhang, Yun; Dai, Xi; Niu, Bin; Wu, Juan; Yuan, Xiefang; Xiong, Anjie; Liu, Zhigang; Zhong, Nanshan; Wu, Min; Li, Guoping

    2017-02-01

    In asthma, mucus hypersecretion is thought to be a prominent pathological feature associated with widespread mucus plugging. However, the current treatments for mucus hypersecretion are often ineffective or temporary. The potential therapeutic targets of mucus hypersecretion in asthma remain unknown. Here, we show that Lyn is a central effector of endoplasmic reticulum stress (ER stress) and mucous hypersecretion in asthma. In Lyn-transgenic mice (Lyn-TG) and wild-type (WT) C57BL/6J mice exposed to ovalbumin (OVA), Lyn overexpression attenuates mucus hypersecretion and ER stress. Interleukin 13 (IL-13) induced MUC5AC expression by enhancing ER stress in vitro. Lyn serves as a negative regulator of IL-13-induced ER stress and MUC5AC expression. We further find that an inhibitor of ER stress, which is likely involved in the PI3K p85α/Akt pathway and NFκB activity, blocked MUC5AC expression in Lyn-knockdown cells. Furthermore, PI3K/Akt signaling is required for IL-13-induced ER stress and MUC5AC expression in airway epithelial cells. The ER stress regulation of MUC5AC expression depends on NFκB in Lyn-knockdown airway epithelial cells. Our studies indicate not only a concept of mucus hypersecretion in asthma that involves Lyn kinase but also an important therapeutic candidate for asthma.

  9. Endoplasmic reticulum glucosidases and protein quality control factors cooperate to establish biotrophy in Ustilago maydis.

    Science.gov (United States)

    Fernández-Álvarez, Alfonso; Elías-Villalobos, Alberto; Jiménez-Martín, Alberto; Marín-Menguiano, Miriam; Ibeas, José I

    2013-11-01

    Secreted fungal effectors mediate plant-fungus pathogenic interactions. These proteins are typically N-glycosylated, a common posttranslational modification affecting their location and function. N-glycosylation consists of the addition, and subsequent maturation, of an oligosaccharide core in the endoplasmic reticulum (ER) and Golgi apparatus. In this article, we show that two enzymes catalyzing specific stages of this pathway in maize smut (Ustilago maydis), glucosidase I (Gls1) and glucosidase II β-subunit (Gas2), are essential for its pathogenic interaction with maize (Zea mays). Gls1 is required for the initial stages of infection following appressorium penetration, and Gas2 is required for efficient fungal spreading inside infected tissues. While U. maydis Δgls1 cells induce strong plant defense responses, Δgas2 hyphae are able to repress them, showing that slight differences in the N-glycoprotein processing can determine the extent of plant-fungus interactions. Interestingly, the calnexin protein, a central element of the ER quality control system for N-glycoproteins in eukaryotic cells, is essential for avoiding plant defense responses in cells with defective N-glycoproteins processing. Thus, N-glycoprotein maturation and this conserved checkpoint appear to play an important role in the establishment of an initial biotrophic state with the plant, which allows subsequent colonization.

  10. Hypercholesterolemia aggravates myocardial ischemia reperfusion injury via activating endoplasmic reticulum stress-mediated apoptosis.

    Science.gov (United States)

    Wu, Nan; Zhang, Xiaowen; Jia, Pengyu; Jia, Dalin

    2015-12-01

    The effect of hypercholesterolemia on myocardial ischemia reperfusion injury (MIRI) is in controversy and the underlying mechanism is still not well understood. In the present study, we firstly detected the effects of hypercholesterolemia on MIRI and the role of endoplasmic reticulum (ER) stress-mediated apoptosis pathway in this process. The infarct size was determined by TTC staining, and apoptosis was measured by the TUNEL method. The marker proteins of ER stress response and ER stress-mediated apoptosis pathway were detected by Western blot. The results showed that high cholesterol diet-induced hypercholesterolemia significantly increased the myocardial infarct size, the release of myocardium enzyme and the ratio of apoptosis, but did not affect the recovery of cardiac function. Moreover, hypercholesterolemia also remarkably up-regulated the expressions of ER stress markers (glucose-regulated protein 78 and calreticulin) and critical molecules in ER stress-mediated apoptosis pathway (CHOP, caspase 12, phospho-JNK). In conclusion, our study demonstrated that hypercholesterolemia enhanced myocardial vulnerability/sensitivity to ischemia reperfusion injury involved in aggravation the ER stress and activation of ER stress-mediated apoptosis pathway and it gave us a new insight into the underlying mechanisms associated with hypercholesterolemia-induced exaggerated MIRI and also provided a novel target for preventing MIRI in the presence of hypercholesterolemia. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Selenoprotein S/SEPS1 modifies endoplasmic reticulum stress in Z variant alpha1-antitrypsin deficiency.

    LENUS (Irish Health Repository)

    Kelly, Emer

    2009-06-19

    Z alpha(1)-antitrypsin (ZAAT) deficiency is a disease associated with emphysematous lung disease and also with liver disease. The liver disease of AAT deficiency is associated with endoplasmic reticulum (ER) stress. SEPS1 is a selenoprotein that, through a chaperone activity, decreases ER stress. To determine the effect of SEPS1 on ER stress in ZAAT deficiency, we measured activity of the grp78 promoter and levels of active ATF6 as markers of the unfolded protein response in HepG2 cells transfected with the mutant form of AAT, a ZAAT transgene. We evaluated levels of NFkappaB activity as a marker of the ER overload response. To determine the effect of selenium supplementation on the function of SEPS1, we investigated glutathione peroxidase activity, grp78 promoter activity, and NFkappaB activity in the presence or absence of selenium. SEPS1 reduced levels of active ATF6. Overexpression of SEPS1 also inhibited grp78 promoter and NFkappaB activity, and this effect was enhanced in the presence of selenium supplementation. This finding demonstrates a role for SEPS1 in ZAAT deficiency and suggests a possible therapeutic potential for selenium supplementation.

  12. A vesicle carrier that mediates peroxisome protein traffic from the endoplasmic reticulum.

    Science.gov (United States)

    Lam, Sheung Kwan; Yoda, Naofumi; Schekman, Randy

    2010-12-14

    Pex19p, a soluble cytoplasmic transport protein, is required for the traffic of the peroxisomal membrane proteins Pex3p and Pex15p from the endoplasmic reticulum (ER) to the peroxisome. We documented Pex15p traffic from the ER using a chimeric protein containing a C-terminal glycosylation acceptor peptide. Pex15Gp expressed in wild-type yeast cells is N-glycosylated and functions properly in the peroxisome. In contrast, pex19Δ-mutant cells accumulate the glycoprotein Pex15Gp in the ER. We developed a cell-free preperoxisomal vesicle-budding reaction in which Pex15Gp and Pex3p are packaged into small vesicles in the presence of cytosol, Pex19p, and ATP. Secretory vesicle budding (COPII) detected by the packaging of a SNARE protein (soluble N-ethylmaleimide-sensitive attachment protein receptor) occurs in the same incubation but does not depend on Pex19p. Conversely a dominant GTPase mutant Sar1p which inhibits COPII has no effect on Pex3p packaging. Pex15Gp and Pex3p budded vesicles sediment as low-buoyant-density membranes on a Nycodenz gradient and copurify by affinity isolation using native but not Triton X-100-treated budded vesicles. ER-peroxisome transport vesicles appear to rely on a novel budding mechanism requiring Pex19p and additional unknown factors.

  13. Endoplasmic reticulum stress promotes amyloid-beta peptides production in RGC-5 cells.

    Science.gov (United States)

    Liu, Bingqian; Zhu, Yingting; Zhou, Jiayi; Wei, Yantao; Long, Chongde; Chen, Mengfei; Ling, Yunlan; Ge, Jian; Zhuo, Yehong

    2014-11-01

    Endoplasmic reticulum (ER) stress has been implicated in various neurodegenerative diseases, including Alzheimer's disease. We have previously observed amyloid production in the retina of the Tg2576 transgenic mouse model of Alzheimer's disease. In this study, we used tunicamycin-induced ER stress in RGC-5 cells, a cell line identical to the photoreceptor cell line 661W, to investigate the effect of ER stress on production of amyloid-beta (Abeta) peptides. We found that the mRNA level of amyloid-beta precursor protein (APP) remained stable, while the protein level of amyloid-beta precursor protein (APP) was decreased, the amyloid-beta precursor protein cleaving enzymes beta-site APP-cleaving enzyme 1 and presenilin 1 were upregulated, Abeta1-40 and Abeta1-42 production were increased, and reactive oxygen species production and apoptosis markers were elevated following induction of ER stress. The protein level of Abeta degradation enzymes, neprilysin, endothelin-converting enzyme 1, and endothelin-converting enzyme 2 remained unchanged during the prolonged ER stress, showing that the generation of Abeta did not result from reduction of proteolysis by these enzymes. Inclusion of group II caspase inhibitor, Z-DEVD-FMK, increased the ER stress mediated Abeta production, suggesting that they are generated by a caspase-independent mechanism. Our findings provided evidence of a role of ER stress in Abeta peptide overproduction and apoptotic pathway activation in RGC-5 cells.

  14. Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in plants.

    Science.gov (United States)

    Wan, Shucen; Jiang, Liwen

    2016-05-01

    Being a major factory for protein synthesis, assembly, and export, the endoplasmic reticulum (ER) has a precise and robust ER quality control (ERQC) system monitoring its product line. However, when organisms are subjected to environmental stress, whether biotic or abiotic, the levels of misfolded proteins may overwhelm the ERQC system, tilting the balance between the capacity of and demand for ER quality control and resulting in a scenario termed ER stress. Intense or prolonged ER stress may cause damage to the ER as well as to other organelles, or even lead to cell death in extreme cases. To avoid such serious consequences, cells activate self-rescue programs to restore protein homeostasis in the ER, either through the enhancement of protein-folding and degradation competence or by alleviating the demands for such reactions. These are collectively called the unfolded protein response (UPR). Long investigated in mammalian cells and yeasts, the UPR is also of great interest to plant scientists. Among the three branches of UPR discovered in mammals, two have been studied in plants with plant homologs existing of the ER-membrane-associated activating transcription factor 6 (ATF6) and inositol-requiring enzyme 1 (IRE1). This review discusses the molecular mechanisms of these two types of UPR in plants, as well as the consequences of insufficient UPR, with a focus on experiments using model plants.

  15. Regulation and Quality Control of Adiponectin Assembly by Endoplasmic Reticulum Chaperone ERp44*

    Science.gov (United States)

    Hampe, Lutz; Radjainia, Mazdak; Xu, Cheng; Harris, Paul W. R.; Bashiri, Ghader; Goldstone, David C.; Brimble, Margaret A.; Wang, Yu; Mitra, Alok K.

    2015-01-01

    Adiponectin, a collagenous hormone secreted abundantly from adipocytes, possesses potent antidiabetic and anti-inflammatory properties. Mediated by the conserved Cys39 located in the variable region of the N terminus, the trimeric (low molecular weight (LMW)) adiponectin subunit assembles into different higher order complexes, e.g. hexamers (middle molecular weight (MMW)) and 12–18-mers (high molecular weight (HMW)), the latter being mostly responsible for the insulin-sensitizing activity of adiponectin. The endoplasmic reticulum (ER) chaperone ERp44 retains adiponectin in the early secretory compartment and tightly controls the oxidative state of Cys39 and the oligomerization of adiponectin. Using cellular and in vitro assays, we show that ERp44 specifically recognizes the LMW and MMW forms but not the HMW form. Our binding assays with short peptide mimetics of adiponectin suggest that ERp44 intercepts and converts the pool of fully oxidized LMW and MMW adiponectin, but not the HMW form, into reduced trimeric precursors. These ERp44-bound precursors in the cis-Golgi may be transported back to the ER and released to enhance the population of adiponectin intermediates with appropriate oxidative state for HMW assembly, thereby underpinning the process of ERp44 quality control. PMID:26060250

  16. Fenofibrate treatment attenuated chronic endoplasmic reticulum stress in the liver of nonalcoholic fatty liver disease mice.

    Science.gov (United States)

    Zhang, Nan; Lu, Yunxia; Shen, Xinru; Bao, Yingying; Cheng, Jingjing; Chen, Li; Li, Bao; Zhang, Qiu

    2015-01-01

    Fenofibrate is widely used in clinical practice, but its influence on chronic endoplasmic reticulum (ER) stress induced by feeding a high-calorie and high-cholesterol diet (HCD) has still not been studied. We thus investigated its effects on the liver of the nonalcoholic fatty liver disease (NAFLD) mouse model. Male C57BL/6 mice fed an HCD for 3 months were treated with fenofibrate (HCD + FF, 40 mg/kg, once daily) via gavage for 4 weeks. Insulin sensitivity, serum lipid and inflammatory cytokines were measured. Liver tissues were procured for histological examination as well as analysis of hepatic triglyceride levels, distribution of inflammatory cytokines and genes involved in ER stress. Our results showed that chronic feeding of an HCD successfully induced an NAFLD model accompanied by inflammatory activation, apoptosis and severe ER stress in the liver. Fenofibrate administration significantly improved symptoms of NAFLD and decreased apoptosis, expression of inflammatory cytokines and genes involved in ER stress, such as inositol-requiring enzyme 1α (IRE1α), X-box binding protein 1 (XBP1) and JNK phosphorylation. Thus, our study suggests that fenofibrate protected against inflammatory injury and apoptosis, maybe alleviating ER stress through the IRE1α-XBP1-JNK pathway in the liver of NAFLD mice. © 2015 S. Karger AG, Basel

  17. The Endoplasmic Reticulum Unfolded Protein Response in Neurodegenerative Disorders and Its Potential Therapeutic Significance

    Directory of Open Access Journals (Sweden)

    Paolo Remondelli

    2017-06-01

    Full Text Available In eukaryotic cells, the endoplasmic reticulum (ER is the cell compartment involved in secretory protein translocation and quality control of secretory protein folding. Different conditions can alter ER function, resulting in the accumulation of unfolded or misfolded proteins within the ER lumen. Such a condition, known as ER stress, elicits an integrated adaptive response known as the unfolded protein response (UPR that aims to restore proteostasis within the secretory pathway. Conversely, in prolonged cell stress or insufficient adaptive response, UPR signaling causes cell death. ER dysfunctions are involved and contribute to neuronal degeneration in several human diseases, including Alzheimer, Parkinson and Huntington disease and amyotrophic lateral sclerosis. The correlations between ER stress and its signal transduction pathway known as the UPR with neuropathological changes are well established. In addition, much evidence suggests that genetic or pharmacological modulation of UPR could represent an effective strategy for minimizing the progressive neuronal loss in neurodegenerative diseases. Here, we review recent results describing the main cellular mechanisms linking ER stress and UPR to neurodegeneration. Furthermore, we provide an up-to-date panoramic view of the currently pursued strategies for ameliorating the toxic effects of protein unfolding in disease by targeting the ER UPR pathway.

  18. Golgi enzymes do not cycle through the endoplasmic reticulum during protein secretion or mitosis.

    Science.gov (United States)

    Villeneuve, Julien; Duran, Juan; Scarpa, Margherita; Bassaganyas, Laia; Van Galen, Josse; Malhotra, Vivek

    2017-01-01

    Golgi-specific sialyltransferase (ST) expressed as a chimera with the rapamycin-binding domain of mTOR, FRB, relocates to the endoplasmic reticulum (ER) in cells exposed to rapamycin that also express invariant chain (Ii)-FKBP in the ER. This result has been taken to indicate that Golgi-resident enzymes cycle to the ER constitutively. We show that ST-FRB is trapped in the ER even without Ii-FKBP upon rapamycin addition. This is because ER-Golgi-cycling FKBP proteins contain a C-terminal KDEL-like sequence, bind ST-FRB in the Golgi, and are transported together back to the ER by KDEL receptor-mediated retrograde transport. Moreover, depletion of KDEL receptor prevents trapping of ST-FRB in the ER by rapamycin. Thus ST-FRB cycles artificially by binding to FKBP domain-containing proteins. In addition, Golgi-specific O-linked glycosylation of a resident ER protein occurs only upon artificial fusion of Golgi membranes with ER. Together these findings support the consensus view that there is no appreciable mixing of Golgi-resident enzymes with ER under normal conditions.

  19. Targeting and retention of type 1 ryanodine receptors to the endoplasmic reticulum.

    Science.gov (United States)

    Meur, Gargi; Parker, Andrew K T; Gergely, Fanni V; Taylor, Colin W

    2007-08-10

    Most ryanodine receptors and their relatives, inositol 1,4,5-trisphosphate receptors, are expressed in the sarcoplasmic or endoplasmic reticulum (ER), where they mediate Ca(2+) release. We expressed fragments of ryanodine receptor type 1 (RyR1) in COS cells alone or fused to intercellular adhesion molecule-1 (ICAM-1), each tagged with yellow fluorescent protein, and used confocal imaging and glycoprotein analysis to identify the determinants of ER targeting and retention. Single transmembrane domains (TMD) of RyR1 taken from the first (TMD1-TMD2) or last (TMD5-TMD6) pair were expressed in the ER membrane. TMD3-TMD4 was expressed in the outer mitochondrial membrane. The TMD outer pairs (TMD1-TMD2 and TMD5-TMD6) retained ICAM-1, a plasma membrane-targeted protein, within the ER membrane. TMD1 alone provided a strong ER retention signal and TMD6 a weaker signal, but the other single TMD were unable to retain ICAM-1 in the ER. We conclude that TMD1 provides the first and sufficient signal for ER targeting of RyR1. The TMD outer pairs include redundant ER retention signals, with TMD1 providing the strongest signal.

  20. GPx8 peroxidase prevents leakage of H2O2 from the endoplasmic reticulum.

    Science.gov (United States)

    Ramming, Thomas; Hansen, Henning G; Nagata, Kazuhiro; Ellgaard, Lars; Appenzeller-Herzog, Christian

    2014-05-01

    Unbalanced endoplasmic reticulum (ER) homeostasis (ER stress) leads to increased generation of reactive oxygen species (ROS). Disulfide-bond formation in the ER by Ero1 family oxidases produces hydrogen peroxide (H2O2) and thereby constitutes one potential source of ER-stress-induced ROS. However, we demonstrate that Ero1α-derived H2O2 is rapidly cleared by glutathione peroxidase (GPx) 8. In 293 cells, GPx8 and reduced/activated forms of Ero1α co-reside in the rough ER subdomain. Loss of GPx8 causes ER stress, leakage of Ero1α-derived H2O2 to the cytosol, and cell death. In contrast, peroxiredoxin (Prx) IV, another H2O2-detoxifying rough ER enzyme, does not protect from Ero1α-mediated toxicity, as is currently proposed. Only when Ero1α-catalyzed H2O2 production is artificially maximized can PrxIV participate in its reduction. We conclude that the peroxidase activity of the described Ero1α-GPx8 complex prevents diffusion of Ero1α-derived H2O2 within and out of the rough ER. Along with the induction of GPX8 in ER-stressed cells, these findings question a ubiquitous role of Ero1α as a producer of cytoplasmic ROS under ER stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Endoplasmic reticulum (ER Chaperones and Oxidoreductases: Critical Regulators of Tumor Cell Survival and Immunorecognition

    Directory of Open Access Journals (Sweden)

    Thomas eSimmen

    2014-10-01

    Full Text Available Endoplasmic reticulum (ER chaperones and oxidoreductases are abundant enzymes that mediate the production of fully folded secretory and transmembrane proteins. Resisting the Golgi and plasma membrane-directed bulk flow, ER chaperones and oxidoreductases enter retrograde trafficking whenever they are pulled outside of the ER. However, solid tumors are characterized by the increased production of reactive oxygen species (ROS, combined with reduced blood flow that leads to low oxygen supply and ER stress. Under these conditions, hypoxia and the unfolded protein response (UPR upregulate ER chaperones and oxidoreductases. When this occurs, ER oxidoreductases and chaperones become important regulators of tumor growth. However, under these conditions, these proteins not only promote the production of proteins, but also alter the properties of the plasma membrane and hence modulate tumor immune recognition. For instance, high levels of calreticulin serve as an eat-me signal on the surface of tumor cells. Conversely, both intracellular and surface BiP/GRP78 promotes tumor growth. Other ER folding assistants able to modulate the properties of tumor tissue include protein disulfide isomerase (PDI, Ero1α and GRP94. Understanding the roles and mechanisms of ER chaperones in regulating tumor cell functions and immunorecognition will lead to important insight for the development of novel cancer therapies.

  2. Role of Mitochondria and Endoplasmic Reticulum in Taurine-Deficiency-Mediated Apoptosis

    Directory of Open Access Journals (Sweden)

    Chian Ju Jong

    2017-07-01

    Full Text Available Taurine is a ubiquitous sulfur-containing amino acid found in high concentration in most tissues. Because of its involvement in fundamental physiological functions, such as regulating respiratory chain activity, modulating cation transport, controlling inflammation, altering protein phosphorylation and prolonging lifespan, taurine is an important nutrient whose deficiency leads to severe pathology and cell death. However, the mechanism by which taurine deficiency causes cell death is inadequately understood. Therefore, the present study examined the hypothesis that overproduction of reactive oxygen species (ROS by complex I of the respiratory chain triggers mitochondria-dependent apoptosis in hearts of taurine transporter knockout (TauTKO mice. In support of the hypothesis, a 60% decrease in mitochondrial taurine content of 3-month-old TauTKO hearts was observed, which was associated with diminished complex I activity and the onset of mitochondrial oxidative stress. Oxidative damage to stressed mitochondria led to activation of a caspase cascade, with stimulation of caspases 9 and 3 prevented by treatment of 3-month-old TauTKO mice with the mitochondria specific antioxidant, MitoTempo. In 12 month-old, but not 3-month-old, TauTKO hearts, caspase 12 activation contributes to cell death, revealing a pathological role for endoplasmic reticulum (ER stress in taurine deficient, aging mice. Thus, taurine is a cytoprotective nutrient that ensures normal mitochondrial and ER function, which is important for the reduction of risk for apoptosis and premature death.

  3. Morphine Protects Spinal Cord Astrocytes from Glutamate-Induced Apoptosis via Reducing Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2016-10-01

    Full Text Available Glutamate is not only a neurotransmitter but also an important neurotoxin in central nervous system (CNS. Chronic elevation of glutamate induces both neuronal and glial cell apoptosis. However, its effect on astrocytes is complex and still remains unclear. In this study, we investigated whether morphine, a common opioid ligand, could affect glutamate-induced apoptosis in astrocytes. Primary cultured astrocytes were incubated with glutamate in the presence/absence of morphine. It was found that morphine could reduce glutamate-induced apoptosis of astrocytes. Furthermore, glutamate activated Ca2+ release, thereby inducing endoplasmic reticulum (ER stress in astrocytes, while morphine attenuated this deleterious effect. Using siRNA to reduce the expression of κ-opioid receptor, morphine could not effectively inhibit glutamate-stimulated Ca2+ release in astrocytes, the protective effect of morphine on glutamate-injured astrocytes was also suppressed. These results suggested that morphine could protect astrocytes from glutamate-induced apoptosis via reducing Ca2+ overload and ER stress pathways. In conclusion, this study indicated that excitotoxicity participated in the glutamate mediated apoptosis in astrocytes, while morphine attenuated this deleterious effect via regulating Ca2+ release and ER stress.

  4. Endoplasmic reticulum stress suppresses lipin-1 expression in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Nobuhiko, E-mail: ntkhs@hoku-iryo-u.ac.jp [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Yoshizaki, Takayuki [Innovation Center, Kagoshima University, 1-21-40, Korimoto, Kagoshima 890-0065 (Japan); Hiranaka, Natsumi; Suzuki, Takeshi [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yui, Tomoo; Akanuma, Masayoshi [Department of Fixed Prosthodontics and Oral Implantology, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Kanazawa, Kaoru [Department of Dental Anesthesiology, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yoshida, Mika; Naito, Sumiyoshi [Department of Clinical Laboratory, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Fujiya, Mikihiro; Kohgo, Yutaka [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Ieko, Masahiro [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan)

    2013-02-01

    Highlights: ► Lipin-1 involves lipid metabolism, adipocyte differentiation, and inflammation. ► Adipose lipin-1 expression is reduced in obesity. ► ER stress suppresses lipin-1 expression in 3T3-L1 adipocytes. ► Activation of PPAR-γ recovers ER stress-induced lipin-1 reduction. -- Abstract: Lipin-1 plays crucial roles in the regulation of lipid metabolism and cell differentiation in adipocytes. In obesity, adipose lipin-1 mRNA expression is decreased and positively correlated with systemic insulin sensitivity. Amelioration of the lipin-1 depletion might be improved dysmetabolism. Although some cytokines such as TNF-α and interleukin-1β reduces adipose lipin-1 expression, the mechanism of decreased adipose lipin-1 expression in obesity remains unclear. Recently, endoplasmic reticulum (ER) stress is implicated in the pathogenesis of obesity. Here we investigated the role of ER stress on the lipin-1 expression in 3T3-L1 adipocytes. We demonstrated that lipin-1 expression was suppressed by the treatment with ER stress inducers (tunicamycin and thapsigargin) at transcriptional level. We also showed that constitutive lipin-1 expression could be maintained by peroxisome proliferator-activated receptor-γ in 3T3-L1 adipocytes. Activation of peroxisome proliferator-activated receptor-γ recovered the ER stress-induced lipin-1 suppression. These results suggested that ER stress might be involved in the pathogenesis of obesity through lipin-1 depletion.

  5. Spermine inhibits Endoplasmic Reticulum Stress - induced Apoptosis: a New Strategy to Prevent Cardiomyocyte Apoptosis

    Directory of Open Access Journals (Sweden)

    Can Wei

    2016-02-01

    Full Text Available Background/Aims: Endoplasmic reticulum stress (ERS plays an important role in the progression of acute myocardial infarction (AMI, in part by mediating apoptosis. Polyamines, including putrescine, spermidine, and spermine, are polycations with anti-oxidative, anti-aging, and cell growth-promoting activities. This study aimed to determine the mechanisms by which spermine protects against ERS-induced apoptosis in rats following AMI. Methods and Results: AMI was established by ligation of the left anterior descending coronary artery (LAD in rats, and exogenous spermine was administered by intraperitoneal injection (2.5 mg/ml daily for 7 days pre-AMI. Spermine treatment limited infarct size, attenuated cardiac troponin I and creatinine kinase-MB release, improved cardiac function, and decreased ERS and apoptosis related protein expression. Isolated cardiomyocytes subjected to hypoxia showed significant increase in reactive oxygen species (ROS and the expression of apoptosis and ERS related proteins; these effects occurred through PERK and eIF2α phosphorylation. The addition of spermine attenuated cardiomyocyte apoptosis, suppressed the production of ROS, and inhibited ERS related pathways. Conclusions: Spermine was an effective pre-treatment strategy to attenuate cardiac ERS injury in rats, and the cardioprotective mechanism occurring through inhibition of ROS production and down regulation of the PERK-eIF2α pathway. These findings provide a novel target for the prevention of apoptosis in the setting of AMI.

  6. Impact on the endoplasmic reticulum and Golgi apparatus of turnip mosaic virus infection.

    Science.gov (United States)

    Grangeon, Romain; Agbeci, Maxime; Chen, Jun; Grondin, Gilles; Zheng, Huanquan; Laliberté, Jean-François

    2012-09-01

    The impact of turnip mosaic virus (TuMV) infection on the endomembranes of the host early secretory pathway was investigated using an infectious clone that has been engineered for tagging viral membrane structures with a fluorescent protein fused to the viral protein 6K(2). TuMV infection led to the amalgamation of the endoplasmic reticulum (ER), Golgi apparatus, COPII coatamers, and chloroplasts into a perinuclear globular structure that also contained viral proteins. One consequence of TuMV infection was that protein secretion was blocked at the ER-Golgi interface. Fluorescence recovery after photobleaching (FRAP) experiments indicated that the perinuclear structure cannot be restocked in viral components but was dynamically connected to the bulk of the Golgi apparatus and the ER. Experiments with 6K(2) fused to photoactivable green fluorescent protein (GFP) showed that production of motile peripheral 6K(2) vesicles was functionally linked to the perinuclear structure. Disruption of the early secretory pathway did not prevent the formation of the perinuclear globular structure, enhanced the clustering of peripheral 6K(2) vesicles with COPII coatamers, and led to inhibition of cell-to-cell virus movement. This suggests that a functional secretory pathway is not required for the formation of the TuMV perinuclear globular structure and peripheral vesicles but is needed for successful viral intercellular propagation.

  7. Effect of amiloride on endoplasmic reticulum stress response in the injured spinal cord of rats.

    Science.gov (United States)

    Kuroiwa, Masahiro; Watanabe, Masahiko; Katoh, Hiroyuki; Suyama, Kaori; Matsuyama, Daisuke; Imai, Takeshi; Mochida, Joji

    2014-10-01

    After traumatic spinal cord injury (SCI), endoplasmic reticulum (ER) stress exacerbates secondary injury, leading to expansion of demyelination and reduced remyelination due to oligodendrocyte precursor cell (OPC) apoptosis. Although recent studies have revealed that amiloride controls ER stress and leads to improvement in several neurological disorders including SCI, its mechanism is not completely understood. Here, we used a rat SCI model to assess the effects of amiloride on functional recovery, secondary damage expansion, ER stress-induced cell death and OPC survival. Hindlimb function in rats with spinal cord contusion significantly improved after amiloride administration. Amiloride significantly decreased the expression of the pro-apoptotic transcription factor CHOP in the injured spinal cord and significantly increased the expression of the ER chaperone GRP78, which protects cells against ER stress. In addition, amiloride treatment led to a significant decrease in ER stress-induced apoptosis and a significant increase of NG2-positive OPCs in the injured spinal cord. Furthermore, in vitro experiments performed to investigate the direct effect of amiloride on OPCs revealed that amiloride reduced CHOP expression in OPCs cultured under ER stress. These results suggest that amiloride controls ER stress in SCI and inhibits cellular apoptosis, contributing to OPC survival. The present study suggests that amiloride may be an effective treatment to reduce ER stress-induced cell death in the acute phase of SCI.

  8. Trichodermin induces cell apoptosis through mitochondrial dysfunction and endoplasmic reticulum stress in human chondrosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chen-Ming [Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China); Wang, Shih-Wei [Department of Medicine, Mackay Medical College, New Taipei City, Taiwan (China); Lee, Tzong-Huei [Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan (China); Tzeng, Wen-Pei [Graduate Institute of Sports and Health, National Changhua University of Education, Changhua, Taiwan (China); Hsiao, Che-Jen [School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Liu, Shih-Chia [Department of Orthopaedics, Mackay Memorial Hospital, Taipei, Taiwan (China); Tang, Chih-Hsin, E-mail: chtang@mail.cmu.edu.tw [Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China); Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan (China); Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan (China)

    2013-10-15

    Chondrosarcoma is the second most common primary bone tumor, and it responds poorly to both chemotherapy and radiation treatment. Nalanthamala psidii was described originally as Myxosporium in 1926. This is the first study to investigate the anti-tumor activity of trichodermin (trichothec-9-en-4-ol, 12,13-epoxy-, acetate), an endophytic fungal metabolite from N. psidii against human chondrosarcoma cells. We demonstrated that trichodermin induced cell apoptosis in human chondrosarcoma cell lines (JJ012 and SW1353 cells) instead of primary chondrocytes. In addition, trichodermin triggered endoplasmic reticulum (ER) stress protein levels of IRE1, p-PERK, GRP78, and GRP94, which were characterized by changes in cytosolic calcium levels. Furthermore, trichodermin induced the upregulation of Bax and Bid, the downregulation of Bcl-2, and the dysfunction of mitochondria, which released cytochrome c and activated caspase-3 in human chondrosarcoma. In addition, animal experiments illustrated reduced tumor volume, which led to an increased number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells and an increased level of cleaved PARP protein following trichodermin treatment. Together, this study demonstrates that trichodermin is a novel anti-tumor agent against human chondrosarcoma cells both in vitro and in vivo via mitochondrial dysfunction and ER stress. - Highlights: • Trichodermin induces chondrosarcoma apoptosis. • ER stress is involved in trichodermin-induced cell death. • Trichodermin induces chondrosarcoma death in vivo.

  9. Endoplasmic reticulum calcium regulates the retrotranslocation of Trypanosoma cruzi calreticulin to the cytosol.

    Directory of Open Access Journals (Sweden)

    Carlos A Labriola

    Full Text Available For most secretory pathway proteins, crossing the endoplasmic reticulum (ER membrane is an irreversible process. However, in some cases this flow can be reversed. For instance, misfolded proteins retained in the ER are retrotranslocated to the cytosol to be degraded by the proteasome. This mechanism, known as ER associated degradation (ERAD, is exploited by several bacterial toxins to gain access to the cytosol. Interestingly, some ER resident proteins can also be detected in the cytosol or nucleus, calreticulin (CRT being the most studied. Here we show that in Trypanosoma cruzi a minor fraction of CRT localized to the cytosol. ER calcium depletion, but not increasing cytosolic calcium, triggered the retrotranslocation of CRT in a relatively short period of time. Cytosolic CRT was subsequently degraded by the proteasome. Interestingly, the single disulfide bridge of CRT is reduced when the protein is located in the cytosol. The effect exerted by ER calcium was strictly dependent on the C-terminal domain (CRT-C, since a CRT lacking it was totally retained in the ER, whereas the localization of an unrelated protein fused to CRT-C mirrored that of endogenous CRT. This finding expands the regulatory mechanisms of protein sorting and may represent a new crossroad between diverse physiological processes.

  10. Optimal microdomain crosstalk between endoplasmic reticulum and mitochondria for Ca2+ oscillations.

    Science.gov (United States)

    Qi, Hong; Li, Linxi; Shuai, Jianwei

    2015-01-23

    A Ca(2+) signaling model is proposed to consider the crosstalk of Ca(2+) ions between endoplasmic reticulum (ER) and mitochondria within microdomains around inositol 1, 4, 5-trisphosphate receptors (IP3R) and the mitochondrial Ca(2+) uniporter (MCU). Our model predicts that there is a critical IP3R-MCU distance at which 50% of the ER-released Ca(2+) is taken up by mitochondria and that mitochondria modulate Ca(2+) signals differently when outside of this critical distance. This study highlights the importance of the IP3R-MCU distance on Ca(2+) signaling dynamics. The model predicts that when MCU are too closely associated with IP3Rs, the enhanced mitochondrial Ca(2+) uptake will produce an increase of cytosolic Ca(2+) spike amplitude. Notably, the model demonstrates the existence of an optimal IP3R-MCU distance (30-85 nm) for effective Ca(2+) transfer and the successful generation of Ca(2+) signals in healthy cells. We suggest that the space between the inner and outer mitochondria membranes provides a defense mechanism against occurrences of high [Ca(2+)]Cyt. Our results also hint at a possible pathological mechanism in which abnormally high [Ca(2+)]Cyt arises when the IP3R-MCU distance is in excess of the optimal range.

  11. Osteoclast precursor differentiation by MCPIP via oxidative stress, endoplasmic reticulum stress,and autophagy

    Institute of Scientific and Technical Information of China (English)

    Kangkai Wang; Jianli Niu; Hyunbae Kim; Pappachan E. Kolattukudy

    2011-01-01

    Osteoclasts (OCs) are responsible for bone resorption in inflammatory joint diseases.Monocyte chemotactic protein-t (MCP-t) has been shown to induce differentiation of monocytes to OC precursors,but nothing is known about the underlying mechanisms.Here,we elucidate how MCPIP,induced by MCP-1,mediates this differentiation.Knockdown of MCPIP abolished MCP-1-mediated expression of OC markers,tartrate-resistant acid phosphatase,and serine protease cathepsin K.Expression of MCPIP induced p47PHOX and its membrane translocation,reactive oxygen species formation,and induction of endoplasmic reticulum (ER) stress chaperones,up-regulation of autophagy marker,Beclin-1,and lipidation of LC3,and induction of OC markers.Inhibition of oxidative stress attenuated ER stress and autophagy,and suppressed expression of OC markers.Inhibition of ER stress by a specific inhibitor or by knockdown of I REt blocked autophagy and induction of OC markers.ER stress inducers,tunicamycin and thapsigargin,induced expression of OC markers.Autophagy inhibition by 3'-methyladenine,LY294002,wortmannin or by knockdown of Beclin-1 or Atg 7 inhibited MCPIP-induced expression of OC markers.These results strongly suggest that MCP-1-induced differentiation of OC precursor cells is mediated via MCPIP-induced oxidative stress that causes ER stress leading to autophagy,revealing a novel mechanistic insight into the role of MCP-1 in OCs differentiation.

  12. Protective Effect of Gomisin N against Endoplasmic Reticulum Stress-Induced Hepatic Steatosis.

    Science.gov (United States)

    Jang, Min-Kyung; Yun, Ye-Rang; Kim, Seon Hoo; Kim, Ji Ha; Jung, Myeong Ho

    2016-05-01

    Gomisin N is a physiological substance derived from Schisandra chinensis. In the present study, the in vitro and in vivo effects of gomisin N on endoplasmic reticulum (ER) stress and hepatic steatosis were investigated. We quantified the expression of markers of ER stress, including glucose regulated protein 78 (GRP78), CCAAT/enhancer binding protein (C/EBP) homolog protein (CHOP), and X-box-binding protein-1 (XBP-1), and triglyceride (TG) accumulation, in HepG2 cells treated with tunicamycin or palmitate. Tunicamycin treatment in HepG2 cells induced expression of markers of ER stress and increased TG levels; Gomisin N reversed these effects, reducing the expression of markers of ER stress and TG levels. Similar effects were seen following palmitate pretreatment of HepG2 cells. The inhibitory effects of gomisin N were further confirmed in mice injected with tunicamycin. Gomisin N reduced expression of markers of ER stress and decreased TG levels in mouse liver after tunicamycin injection. Furthermore, gomisin N decreased expression of inflammatory and lipogenic genes in palmitate-incubated HepG2 cells. These results suggest that gomisin N inhibits ER stress and ameliorates hepatic steatosis induced by ER stress.

  13. Critical Role of Endoplasmic Reticulum Stress in Cognitive Impairment Induced by Microcystin-LR

    Directory of Open Access Journals (Sweden)

    Fei Cai

    2015-11-01

    Full Text Available Recent studies showed that cyanobacteria-derived microcystin-leucine-arginine (MCLR can cause hippocampal pathological damage and trigger cognitive impairment; but the underlying mechanisms have not been well understood. The objective of the present study was to investigate the mechanism of MCLR-induced cognitive deficit; with a focus on endoplasmic reticulum (ER stress. The Morris water maze test and electrophysiological study demonstrated that MCLR caused spatial memory injury in male Wistar rats; which could be inhibited by ER stress blocker; tauroursodeoxycholic acid (TUDCA. Meanwhile; real-time polymerase chain reaction (real-time PCR and immunohistochemistry demonstrated that the expression level of the 78-kDa glucose-regulated protein (GRP78; C/EBP homologous protein (CHOP and caspase 12 were significantly up-regulated. These effects were rescued by co-administration of TUDCA. In agreement with this; we also observed that treatment of rats with TUDCA blocked the alterations in ER ultrastructure and apoptotic cell death in CA1 neurons from rats exposed to MCLR. Taken together; the present results suggested that ER stress plays an important role in potential memory impairments in rats treated with MCLR; and amelioration of ER stress may serve as a novel strategy to alleviate damaged cognitive function triggered by MCLR.

  14. Methyl jasmonate affects morphology, number and activity of endoplasmic reticulum bodies in Raphanus sativus root cells.

    Science.gov (United States)

    Gotté, Maxime; Ghosh, Rajgourab; Bernard, Sophie; Nguema-Ona, Eric; Vicré-Gibouin, Maïté; Hara-Nishimura, Ikuko; Driouich, Azeddine

    2015-01-01

    The endoplasmic reticulum (ER) bodies are ER-derived structures that are found in Brassicaceae species and thought to play a role in defense. Here, we have investigated the occurrence, distribution and function of ER bodies in root cells of Raphanus sativus using a combination of microscopic and biochemical methods. We have also assessed the response of ER bodies to methyl jasmonate (MeJA), a phytohormone that mediates plant defense against wounding and pathogens. Our results show that (i) ER bodies do occur in different root cell types from the root cap region to the differentiation zone; (ii) they do accumulate a PYK10-like protein similar to the major marker protein of ER bodies that is involved in defense in Arabidopsis thaliana; and (iii) treatment of root cells with MeJA causes a significant increase in the number of ER bodies and the activity of β-glucosidases. More importantly, MeJA was found to induce the formation of very long ER bodies that results from the fusion of small ones, a phenomenon that has not been reported in any other study so far. These findings demonstrate that MeJA impacts the number and morphology of functional ER bodies and stimulates ER body enzyme activities, probably to participate in defense responses of radish root. They also suggest that these structures may provide a defensive system specific to root cells.

  15. Acetic Acid Causes Endoplasmic Reticulum Stress and Induces the Unfolded Protein Response in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Nozomi Kawazoe

    2017-06-01

    Full Text Available Since acetic acid inhibits the growth and fermentation ability of Saccharomyces cerevisiae, it is one of the practical hindrances to the efficient production of bioethanol from a lignocellulosic biomass. Although extensive information is available on yeast response to acetic acid stress, the involvement of endoplasmic reticulum (ER and unfolded protein response (UPR has not been addressed. We herein demonstrated that acetic acid causes ER stress and induces the UPR. The accumulation of misfolded proteins in the ER and activation of Ire1p and Hac1p, an ER-stress sensor and ER stress-responsive transcription factor, respectively, were induced by a treatment with acetic acid stress (>0.2% v/v. Other monocarboxylic acids such as propionic acid and sorbic acid, but not lactic acid, also induced the UPR. Additionally, ire1Δ and hac1Δ cells were more sensitive to acetic acid than wild-type cells, indicating that activation of the Ire1p-Hac1p pathway is required for maximum tolerance to acetic acid. Furthermore, the combination of mild acetic acid stress (0.1% acetic acid and mild ethanol stress (5% ethanol induced the UPR, whereas neither mild ethanol stress nor mild acetic acid stress individually activated Ire1p, suggesting that ER stress is easily induced in yeast cells during the fermentation process of lignocellulosic hydrolysates. It was possible to avoid the induction of ER stress caused by acetic acid and the combined stress by adjusting extracellular pH.

  16. Mitochondrial cholesterol accumulation in alcoholic liver disease: Role of ASMase and endoplasmic reticulum stress.

    Science.gov (United States)

    Marí, Montserrat; Morales, Albert; Colell, Anna; García-Ruiz, Carmen; Fernández-Checa, Jose C

    2014-01-01

    Alcoholic liver disease (ALD) is a major cause of chronic liver disease and a growing health concern in theworld. While the pathogenesis of ALD is poorly characterized key players identified in experimental models and patients, such as perturbations in mitochondrial structure and function, selective loss of antioxidant defense and susceptibility to inflammatory cytokines, contribute to ALD progression. Both oxidative stress and mitochondrial dysfunction compromise essential cellular functions and energy generation and hence are important pathogenic mechanisms of ALD. An important process mediating the mitochondrial disruption induced by alcohol intake is the trafficking of cholesterol to mitochondria, mediated by acid sphingomyelinase-induced endoplasmic reticulum stress, which contributes to increased cholesterol synthesis and StARD1upregulation. Mitochondrial cholesterol accumulation not only sensitizes to oxidative stress but it can contribute to the metabolic reprogramming in ALD, manifested by activation of the hypoxia inducible transcription factor 1 and stimulation of glycolysis and lactate secretion. Thus, a better understanding of the mechanisms underlying alcohol-mediated mitochondrial impairment and oxidative stress may lead to the identification of novel treatments for ALD. The present review briefly summarizes current knowledge on the cellular and molecular mechanisms contributing to alcohol-induced mitochondrial dysfunction and cholesterol accumulation and provides insights for potential therapeutic targets in ALD.

  17. Involvement of Endoplasmic Reticulum Stress in Uremic Cardiomyopathy: Protective Effects of Tauroursodeoxycholic Acid

    Directory of Open Access Journals (Sweden)

    Wei Ding

    2016-01-01

    Full Text Available Background/Aims: Uremic cardiomyopathy (UCM is a complication in chronic kidney disease. We investigated if endoplasmic reticulum stress (ERS is involved in UCM, and determined the efficacy of tauroursodeoxycholic acid (TUDCA in UCM prevention. Methods: Mice were divided randomly into three groups: sham (saline, i.p, 5/6 nephrectomized (Nx (saline, i.p and Nx+TUDCA (250 mg/kg/day, i.p.. Renal function was assessed by measuring serum creatinine, blood urea nitrogen and by periodic acid-Schiff reagent staining. Histologic examination of cardiac fibrosis and apoptosis was determined by Masson's trichrome and TUNEL assay. Cardiac function was evaluated by echocardiography. Fibrotic factors (transforming growth factor-β, fibronectin, collagen I/IV were evaluated by real-time PCR. ERS-related proteins were measured by western blotting. Results: Impaired renal function and cardiac dysfunction were shown in 5/6 nephrectomy mice but were improved significantly by TUDCA. 5/6 nephrectomy mice exhibited marked cardiomyocyte apoptosis, cardiac fibrosis and elevated pro-fibrotic factors. ERS markers (GRP78, GRP94, P-PERK, P-eIF2a and ERS-induced apoptosis pathways (activation of CHOP and caspase-12 were increased significantly in 5/6 nephrectomy mice, and TUDCA treatment blunted these changes. Conclusions: ERS has a key role in UCM, and the cardioprotective role of TUDCA is related to inhibition of ERS-induced apoptosis by inhibition of CHOP and caspase-12 pathways.

  18. Intracellular Accumulation of Gold Nanoparticles Leads to Inhibition of Macropinocytosis to Reduce the Endoplasmic Reticulum Stress

    Science.gov (United States)

    Gunduz, Nuray; Ceylan, Hakan; Guler, Mustafa O.; Tekinay, Ayse B.

    2017-01-01

    Understanding the toxicity of nanomaterials remains largely limited to acute cellular response, i.e., short-term in vitro cell-death based assays, and analyses of tissue- and organ-level accumulation and clearance patterns in animal models, which have produced very little information about how these materials (from the toxicity point of view) interact with the complex intracellular machinery. In particular, understanding the mechanism of toxicity caused by the gradual accumulation of nanomaterials due to prolonged exposure times is essential yet still continue to be a largely unexplored territory. Herein, we show intracellular accumulation and the associated toxicity of gold nanoparticles (AuNPs) for over two-months in the cultured vascular endothelial cells. We observed that steady exposure of AuNPs at low (non-lethal) dose leads to rapid intracellular accumulation without causing any detectable cell death while resulting in elevated endoplasmic reticulum (ER) stress. Above a certain intracellular AuNP threshold, inhibition of macropinocytosis mechanism ceases further nanoparticle uptake. Interestingly, the intracellular depletion of nanoparticles is irreversible. Once reaching the maximum achievable intracellular dose, a steady depletion is observed, while no cell death is observed at any stage of this overall process. This depletion is important for reducing the ER stress. To our knowledge, this is the first report suggesting active regulation of nanoparticle uptake by cells and the impact of long-term exposure to nanoparticles in vitro. PMID:28145529

  19. KLF15 is a molecular link between endoplasmic reticulum stress and insulin resistance.

    Directory of Open Access Journals (Sweden)

    Dae Young Jung

    Full Text Available Obesity places major demands on the protein folding capacity of the endoplasmic reticulum (ER, resulting in ER stress, a condition that promotes hepatic insulin resistance and steatosis. Here we identify the transcription factor, Kruppel-like factor 15 (KLF15, as an essential mediator of ER stress-induced insulin resistance in the liver. Mice with a targeted deletion of KLF15 exhibit increased hepatic ER stress, inflammation, and JNK activation compared to WT mice; however, KLF15 (-/- mice are protected against hepatic insulin resistance and fatty liver under high-fat feeding conditions and in response to pharmacological induction of ER stress. The mammalian target of rapamycin complex 1 (mTORC1, a key regulator of cellular energy homeostasis, has been shown to cooperate with ER stress signaling pathways to promote hepatic insulin resistance and lipid accumulation. We find that the uncoupling of ER stress and insulin resistance in KLF15 (-/- liver is associated with the maintenance of a low energy state characterized by decreased mTORC1 activity, increased AMPK phosphorylation and PGC-1α expression and activation of autophagy, an intracellular degradation process that enhances hepatic insulin sensitivity. Furthermore, in primary hepatocytes, KLF15 deficiency markedly inhibits activation of mTORC1 by amino acids and insulin, suggesting a mechanism by which KLF15 controls mTORC1-mediated insulin resistance. This study establishes KLF15 as an important molecular link between ER stress and insulin action.

  20. Overexpressed PLTP in macrophage may promote cholesterol accumulation by prolonged endoplasmic reticulum stress.

    Science.gov (United States)

    Yang, Xinquan; Yu, Yang; Wang, Daxin; Qin, Shucun

    2017-01-01

    It is well known that phospholipid transfer protein (PLTP) is involved in the lipid metabolism and development of atherosclerosis (AS). Abundant PLTP is considered to be expressed on the foam cells derived from monocyte/macrophages in atherosclerotic plaques, suggesting that high level of active PLTP may promote the formation of foam cells. However, the exact role of PLTP on the process of macrophage derived foam cell formation remains unclear. The accumulation of free cholesterol (FC) in the cytoplasm may lead to the prolonged endoplasmic reticulum stress (ERs) and the imbalance of intracellular cholesterol homeostasis. Different PLTP level definitely alternates the phospholipids (PL) and cholesterol level in plasma, strongly suggesting that active PLTP may change the level of FC and PL intracellularly, which subsequently induced the ERs in macrophage. Thus, we hypothesize that high level of PLTP may promote the accumulation of cholesterol in macrophage via the alteration ratio of FC to PL. Therefore, validating this hypothesis may clarify the role of PLTP in macrophage ERs in AS and also raise a novel strategy in the regression of AS plaques via restoring intracellular membrane lipid homeostasis and attenuating ERs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Endoplasmic reticulum stress inhibition attenuates hypertensive chronic kidney disease through reduction in proteinuria

    Science.gov (United States)

    Mohammed-Ali, Zahraa; Lu, Chao; Marway, Mandeep K.; Carlisle, Rachel E.; Ask, Kjetil; Lukic, Dusan; Krepinsky, Joan C.; Dickhout, Jeffrey G.

    2017-01-01

    Endoplasmic reticulum (ER) stress is implicated in chronic kidney disease (CKD) development in patients and in animal models. Here we show that ER stress inhibition through 4-phenylbutyric acid (4-PBA) administration decreases blood pressure, albuminuria, and tubular casts in an angiotensin II/deoxycorticosterone acetate/salt murine model of CKD. Lower albuminuria in 4-PBA-treated mice was associated with higher levels of cubilin protein in renal tissue membrane fractions. 4-PBA decreased renal interstitial fibrosis, renal CD3+ T-cell and macrophage infiltration, mRNA expression of TGFβ1, Wnt signaling molecules, and ER stress-induced pro-inflammatory genes. CHOP deficient mice that underwent this model of CKD developed hypertension comparable to wild type mice, but had less albuminuria and tubular casts. CHOP deficiency resulted in higher nephrin levels and decreased glomerulosclerosis compared to wild type mice; this effect was accompanied by lower macrophage infiltration and fibrosis. Our findings portray ER stress inhibition as a means to alleviate hypertensive CKD by preserving glomerular barrier integrity and tubular function. These results demonstrate ER stress modulation as a novel target for preserving renal function in hypertensive CKD. PMID:28148966

  2. Chaperone-Targeting Cytotoxin and Endoplasmic Reticulum Stress-Inducing Drug Synergize to Kill Cancer Cells

    Directory of Open Access Journals (Sweden)

    Joseph M. Backer

    2009-11-01

    Full Text Available Diverse physiological and therapeutic insults that increase the amount of unfolded or misfolded proteins in the endoplasmic reticulum (ER induce the unfolded protein response, an evolutionarily conserved protective mechanism that manages ER stress. Glucose-regulated protein 78/immunoglobulin heavy-chain binding protein (GRP78/BiP is an ER-resident protein that plays a central role in the ER stress response and is the only known substrate of the proteolytic A subunit (SubA of a novel bacterial AB5 toxin. Here, we report that an engineered fusion protein, epidermal growth factor (EGF-SubA, combining EGF and SubA, is highly toxic to growing and confluent epidermal growth factor receptor-expressing cancer cells, and its cytotoxicity is mediated by a remarkably rapid cleavage of GRP78/BiP. Systemic delivery of EGF-SubA results in a significant inhibition of human breast and prostate tumor xenografts in mouse models. Furthermore, EGF-SubA dramatically increases the sensitivity of cancer cells to the ER stress-inducing drug thapsigargin, and vice versa, demonstrating the first example of mechanism-based synergism in the action of a cytotoxin and an ER-targeting drug.

  3. Chronic Intermittent Hypobaric Hypoxia Improves Cardiac Function through Inhibition of Endoplasmic Reticulum Stress.

    Science.gov (United States)

    Yuan, Fang; Zhang, Li; Li, Yan-Qing; Teng, Xu; Tian, Si-Yu; Wang, Xiao-Ran; Zhang, Yi

    2017-08-11

    We investigated the role of endoplasmic reticulum stress (ERS) in chronic intermittent hypobaric hypoxia (CIHH)-induced cardiac protection. Adult male Sprague-Dawley rats were exposed to CIHH treatment simulating 5000 m altitude for 28 days, 6 hours per day. The heart was isolated and perfused with Langendorff apparatus and subjected to 30-min ischemia followed by 60-min reperfusion. Cardiac function, infarct size, and lactate dehydrogenase (LDH) activity were assessed. Expression of ERS molecular chaperones (GRP78, CHOP and caspase-12) was assayed by western blot analysis. CIHH treatment improved the recovery of left ventricular function and decreased cardiac infarct size and activity of LDH after I/R compared to control rats. Furthermore, CIHH treatment inhibited over-expression of ERS-related factors including GRP78, CHOP and caspase-12. CIHH-induced cardioprotection and inhibition of ERS were eliminated by application of dithiothreitol, an ERS inducer, and chelerythrine, a protein kinase C (PKC) inhibitor. In conclusion CIHH treatment exerts cardiac protection against I/R injury through inhibition of ERS via PKC signaling pathway.

  4. Endoplasmic reticulum remodeling tunes IP₃-dependent Ca²+ release sensitivity.

    Directory of Open Access Journals (Sweden)

    Lu Sun

    Full Text Available The activation of vertebrate development at fertilization relies on IP₃-dependent Ca²⁺ release, a pathway that is sensitized during oocyte maturation. This sensitization has been shown to correlate with the remodeling of the endoplasmic reticulum into large ER patches, however the mechanisms involved are not clear. Here we show that IP₃ receptors within ER patches have a higher sensitivity to IP₃ than those in the neighboring reticular ER. The lateral diffusion rate of IP₃ receptors in both ER domains is similar, and ER patches dynamically fuse with reticular ER, arguing that IP₃ receptors exchange freely between the two ER compartments. These results suggest that increasing the density of IP₃ receptors through ER remodeling is sufficient to sensitize IP₃-dependent Ca²⁺ release. Mathematical modeling supports this concept of 'geometric sensitization' of IP₃ receptors as a population, and argues that it depends on enhanced Ca²⁺-dependent cooperativity at sub-threshold IP₃ concentrations. This represents a novel mechanism of tuning the sensitivity of IP₃ receptors through ER remodeling during meiosis.

  5. Angiogenin Mediates Cell-Autonomous Translational Control under Endoplasmic Reticulum Stress and Attenuates Kidney Injury.

    Science.gov (United States)

    Mami, Iadh; Bouvier, Nicolas; El Karoui, Khalil; Gallazzini, Morgan; Rabant, Marion; Laurent-Puig, Pierre; Li, Shuping; Tharaux, Pierre-Louis; Beaune, Philippe; Thervet, Eric; Chevet, Eric; Hu, Guo-Fu; Pallet, Nicolas

    2016-03-01

    Endoplasmic reticulum (ER) stress is involved in the pathophysiology of kidney disease and aging, but the molecular bases underlying the biologic outcomes on the evolution of renal disease remain mostly unknown. Angiogenin (ANG) is a ribonuclease that promotes cellular adaptation under stress but its contribution to ER stress signaling remains elusive. In this study, we investigated the ANG-mediated contribution to the signaling and biologic outcomes of ER stress in kidney injury. ANG expression was significantly higher in samples from injured human kidneys than in samples from normal human kidneys, and in mouse and rat kidneys, ANG expression was specifically induced under ER stress. In human renal epithelial cells, ER stress induced ANG expression in a manner dependent on the activity of transcription factor XBP1, and ANG promoted cellular adaptation to ER stress through induction of stress granules and inhibition of translation. Moreover, the severity of renal lesions induced by ER stress was dramatically greater in ANG knockout mice (Ang(-/-)) mice than in wild-type mice. These results indicate that ANG is a critical mediator of tissue adaptation to kidney injury and reveal a physiologically relevant ER stress-mediated adaptive translational control mechanism.

  6. Emergence of endoplasmic reticulum stress and activated microglia in Purkinje cell degeneration mice.

    Science.gov (United States)

    Kyuhou, Shin-ichi; Kato, Nobuo; Gemba, Hisae

    2006-03-27

    In the current studies, we characterized the molecular and cellular mechanism of cell death in Purkinje cell degeneration (pcd) mice using real-time quantitative PCR, immunohistochemistry, and Western blotting. It appears that endoplasmic reticulum (ER) stress is involved in this degeneration of Purkinje cells because ER stress-related substrates, such as CHOP and caspase 12, were strongly activated in Purkinje cells of pcd mice during the third postnatal (P) week. A significant increase in the expression of the ER-specific chaperone BiP suggested that unfolded protein responses were induced. We also found that Purkinje cells underwent apoptosis via the activation of caspase 3 and subsequent fragmentation of DNA. In addition to the activation of apoptosis in Purkinje cells, many activated microglial cells are found to be present in the molecular layer of the cerebellar cortex. In the later phase of degeneration, there was conspicuous expression of inducible nitric oxide synthase (iNOS), and some Purkinje cells were strongly labeled with an antibody to nitrotyrosine, suggesting that Purkinje cells in pcd mice are damaged by nitric oxide released from microglial cells. Administration of minocycline, which may inhibit iNOS expression, delayed the death of Purkinje cells in pcd mice and mildly improved their motor abilities. These findings suggest that ER stress participates in the degeneration of Purkinje cells and that activation of microglia accelerates Purkinje cell death in pcd mice.

  7. Conserved and plant-unique strategies for overcoming endoplasmic reticulum stress.

    Science.gov (United States)

    Ruberti, Cristina; Brandizzi, Federica

    2014-01-01

    Stress caused by environmental conditions or physiological growth can lead to an accumulation of unfolded proteins in the endoplasmic reticulum (ER) causing ER stress, which in turn triggers a cytoprotective mechanism termed the unfolded protein response (UPR). Under mild-short stress conditions the UPR can restore ER functioning and cell growth, such as reducing the load of unfolded proteins through the upregulation of genes involved in protein folding and in degrading mis-folded proteins, and through autophagy activation, but it can also lead to cell death under prolonged and severe stress conditions. A diversified suite of sensors has been evolved in the eukaryotic lineages to orchestrate the UPR most likely to suit the cell's necessity to respond to the different kinds of stress in a conserved as well as species-specific manner. In plants three UPR sensors cooperate with non-identical signaling pathways: the protein kinase inositol-requiring enzyme (IRE1), the ER-membrane-associated transcription factor bZIP28, and the GTP-binding protein β1 (AGB1). In this mini-review, we show how plants differ from the better characterized metazoans and fungi, providing an overview of the signaling pathways of the UPR, and highlighting the overlapping and the peculiar roles of the different UPR branches in light of evolutionary divergences in eukaryotic kingdoms.

  8. Exogenous taurine attenuates mitochondrial oxidative stress and endoplasmic reticulum stress in rat cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    Yujie Yang; Yue Zhang; Xiaoyu Liu; Ji Zuo; Keqiang Wang; Wen Liu; Junbo Ge

    2013-01-01

    Taurine,a conditionally essential amino acid,plays a critical role in cardiovascular function.Here we examined the effect of taurine on mitochondria and endoplasmic reticulum in rat cardiomyocytes during glucose deprivation (GD).Data showed that cell viability,intracellular taurine contents,and taurine transporter expression were decreased during GD.In contrast,an increase in reactive oxygen species and intracellular Ca2+ contents was observed.GD also caused disrupted mitochondrial membrane potential,apoptotic cell death,and dissociation of unfolded protein response (UPR)-relative proteins in cardiomyocytes.Signal transduction analysis showed that Bcl-2 family protein balance was disturbed,caspase-12 was activated and UPR-relative protein levels were up-regulated.Moreover,pre-treatment with 80 mM exogenous taurine attenuated GD effect in cardiomyocytes.Our results suggest that taurine have beneficial effects on inhibiting mitochondria-dependent cell apoptosis and UPR-associated cell apoptosis and might have clinical impfications on acute myocardial infarction in future.

  9. Protective effect of mild endoplasmic reticulum stress on radiation-induced bystander effects in hepatocyte cells

    Science.gov (United States)

    Xie, Yuexia; Ye, Shuang; Zhang, Jianghong; He, Mingyuan; Dong, Chen; Tu, Wenzhi; Liu, Peifeng; Shao, Chunlin

    2016-01-01

    Radiation-induced bystander effect (RIBE) has important implications for secondary cancer risk assessment during cancer radiotherapy, but the defense and self-protective mechanisms of bystander normal cells are still largely unclear. The present study found that micronuclei (MN) formation could be induced in the non-irradiated HL-7702 hepatocyte cells after being treated with the conditioned medium from irradiated hepatoma HepG2 cells under either normoxia or hypoxia, where the ratio of the yield of bystander MN induction to the yield of radiation-induced MN formation under hypoxia was much higher than that of normoxia. Nonetheless, thapsigargin induced endoplasmic reticulum (ER) stress and dramatically suppressed this bystander response manifested as the decrease of MN and apoptosis inductions. Meanwhile, the interference of BiP gene, a major ER chaperone, amplified the detrimental RIBE. More precisely, thapsigargin provoked ER sensor of PERK to initiate an instantaneous and moderate ER stress thus defensed the hazard form RIBE, while BiP depletion lead to persistently destroyed homeostasis of ER and exacerbated cell injury. These findings provide new insights that the mild ER stress through BiP-PERK-p-eIF2α signaling pathway has a profound role in protecting cellular damage from RIBE and hence may decrease the potential secondary cancer risk after cancer radiotherapy. PMID:27958308

  10. Salinomycin induces cell death with autophagy through activation of endoplasmic reticulum stress in human cancer cells.

    Science.gov (United States)

    Li, Tianliang; Su, Ling; Zhong, Ning; Hao, Xuexi; Zhong, Diansheng; Singhal, Sunil; Liu, Xiangguo

    2013-07-01

    Salinomycin is perhaps the first promising compound that was discovered through high throughput screening in cancer stem cells. This novel agent can selectively eliminate breast and other cancer stem cells, though the mechanism of action remains unclear. In this study, we found that salinomycin induced autophagy in human non-small cell lung cancer (NSCLC) cells. Furthermore, we demonstrated that salinomycin stimulated endoplasmic reticulum stress and mediated autophagy via the ATF4-DDIT3/CHOP-TRIB3-AKT1-MTOR axis. Moreover, we found that the autophagy induced by salinomycin played a prosurvival role in human NSCLC cells and attenuated the apoptotic cascade. We also showed that salinomycin triggered more apoptosis and less autophagy in A549 cells in which CDH1 expression was inhibited, suggesting that the inhibition of autophagy might represent a promising strategy to target cancer stem cells. In conclusion, these findings provide evidence that combination treatment with salinomycin and pharmacological autophagy inhibitors will be an effective therapeutic strategy for eliminating cancer cells as well as cancer stem cells.

  11. BiP Clustering Facilitates Protein Folding in the Endoplasmic Reticulum

    Science.gov (United States)

    Robinson, Anne S.; Petzold, Linda

    2014-01-01

    The chaperone BiP participates in several regulatory processes within the endoplasmic reticulum (ER): translocation, protein folding, and ER-associated degradation. To facilitate protein folding, a cooperative mechanism known as entropic pulling has been proposed to demonstrate the molecular-level understanding of how multiple BiP molecules bind to nascent and unfolded proteins. Recently, experimental evidence revealed the spatial heterogeneity of BiP within the nuclear and peripheral ER of S. cerevisiae (commonly referred to as ‘clusters’). Here, we developed a model to evaluate the potential advantages of accounting for multiple BiP molecules binding to peptides, while proposing that BiP's spatial heterogeneity may enhance protein folding and maturation. Scenarios were simulated to gauge the effectiveness of binding multiple chaperone molecules to peptides. Using two metrics: folding efficiency and chaperone cost, we determined that the single binding site model achieves a higher efficiency than models characterized by multiple binding sites, in the absence of cooperativity. Due to entropic pulling, however, multiple chaperones perform in concert to facilitate the resolubilization and ultimate yield of folded proteins. As a result of cooperativity, multiple binding site models used fewer BiP molecules and maintained a higher folding efficiency than the single binding site model. These insilico investigations reveal that clusters of BiP molecules bound to unfolded proteins may enhance folding efficiency through cooperative action via entropic pulling. PMID:24991821

  12. Acetic Acid Causes Endoplasmic Reticulum Stress and Induces the Unfolded Protein Response in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kawazoe, Nozomi; Kimata, Yukio; Izawa, Shingo

    2017-01-01

    Since acetic acid inhibits the growth and fermentation ability of Saccharomyces cerevisiae, it is one of the practical hindrances to the efficient production of bioethanol from a lignocellulosic biomass. Although extensive information is available on yeast response to acetic acid stress, the involvement of endoplasmic reticulum (ER) and unfolded protein response (UPR) has not been addressed. We herein demonstrated that acetic acid causes ER stress and induces the UPR. The accumulation of misfolded proteins in the ER and activation of Ire1p and Hac1p, an ER-stress sensor and ER stress-responsive transcription factor, respectively, were induced by a treatment with acetic acid stress (>0.2% v/v). Other monocarboxylic acids such as propionic acid and sorbic acid, but not lactic acid, also induced the UPR. Additionally, ire1Δ and hac1Δ cells were more sensitive to acetic acid than wild-type cells, indicating that activation of the Ire1p-Hac1p pathway is required for maximum tolerance to acetic acid. Furthermore, the combination of mild acetic acid stress (0.1% acetic acid) and mild ethanol stress (5% ethanol) induced the UPR, whereas neither mild ethanol stress nor mild acetic acid stress individually activated Ire1p, suggesting that ER stress is easily induced in yeast cells during the fermentation process of lignocellulosic hydrolysates. It was possible to avoid the induction of ER stress caused by acetic acid and the combined stress by adjusting extracellular pH.

  13. Involvement of Endoplasmic Reticulum Stress in TULP1 Induced Retinal Degeneration.

    Directory of Open Access Journals (Sweden)

    Glenn P Lobo

    Full Text Available Inherited retinal disorders (IRDs result in severe visual impairments in children and adults. A challenge in the field of retinal degenerations is identifying mechanisms of photoreceptor cell death related to specific genetic mutations. Mutations in the gene TULP1 have been associated with two forms of IRDs, early-onset retinitis pigmentosa (RP and Leber congenital amaurosis (LCA. TULP1 is a cytoplasmic, membrane-associated protein shown to be involved in transportation of newly synthesized proteins destined for the outer segment compartment of photoreceptor cells; however, how mutant TULP1 causes cell death is not understood. In this study, we provide evidence that common missense mutations in TULP1 express as misfolded protein products that accumulate within the endoplasmic reticulum (ER causing prolonged ER stress. In an effort to maintain protein homeostasis, photoreceptor cells then activate the unfolded protein response (UPR complex. Our results indicate that the two major apoptotic arms of the UPR pathway, PERK and IRE1, are activated. Additionally, we show that retinas expressing mutant TULP1 significantly upregulate the expression of CHOP, a UPR signaling protein promoting apoptosis, and undergo photoreceptor cell death. Our study demonstrates that the ER-UPR, a known mechanism of apoptosis secondary to an overwhelming accumulation of misfolded protein, is involved in photoreceptor degeneration caused by missense mutations in TULP1. These observations suggest that modulating the UPR pathways might be a strategy for therapeutic intervention.

  14. Loss of endoplasmic reticulum Ca homeostasis:contribution to neuronal cell death during cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Ankur BODALIA; Hongbin LI; Michael F JACKSON

    2013-01-01

    The loss of Ca2+ homeostasis during cerebral ischemia is a hallmark of impending neuronal demise.Accordingly,considerable cellular resources are expended in maintaining low resting cytosolic levels of Ca2+.These include contributions by a host of proteins involved in the sequestration and transport of Ca2+,many of which are expressed within intracellular organelles,including lysosomes,mitochondria as well as the endoplasmic reticulum (ER).Ca2+ sequestration by the ER contributes to cytosolic Ca2+ dynamics and homeostasis.Furthermore,within the ER Ca2+ plays a central role in regulating a host of physiological processes.Conversely,impaired ER Ca2+ homeostasis is an important trigger of pathological processes.Here we review a growing body of evidence suggesting that ER dysfunction is an important factor contributing to neuronal injury and loss post-ischemia.Specifically,the contribution of the ER to cytosolic Ca2+ elevations during ischemia will be considered,as will the signalling cascades recruited as a consequence of disrupting ER homeostasis and function.

  15. Regulation of mitochondrial function and endoplasmic reticulum stress by nitric oxide in pluripotent stem cells

    Science.gov (United States)

    Caballano-Infantes, Estefania; Terron-Bautista, José; Beltrán-Povea, Amparo; Cahuana, Gladys M; Soria, Bernat; Nabil, Hajji; Bedoya, Francisco J; Tejedo, Juan R

    2017-01-01

    Mitochondrial dysfunction and endoplasmic reticulum stress (ERS) are global processes that are interrelated and regulated by several stress factors. Nitric oxide (NO) is a multifunctional biomolecule with many varieties of physiological and pathological functions, such as the regulation of cytochrome c inhibition and activation of the immune response, ERS and DNA damage; these actions are dose-dependent. It has been reported that in embryonic stem cells, NO has a dual role, controlling differentiation, survival and pluripotency, but the molecular mechanisms by which it modulates these functions are not yet known. Low levels of NO maintain pluripotency and induce mitochondrial biogenesis. It is well established that NO disrupts the mitochondrial respiratory chain and causes changes in mitochondrial Ca2+ flux that induce ERS. Thus, at high concentrations, NO becomes a potential differentiation agent due to the relationship between ERS and the unfolded protein response in many differentiated cell lines. Nevertheless, many studies have demonstrated the need for physiological levels of NO for a proper ERS response. In this review, we stress the importance of the relationships between NO levels, ERS and mitochondrial dysfunction that control stem cell fate as a new approach to possible cell therapy strategies. PMID:28289506

  16. MET Suppresses Epithelial VEGFR2 via Intracrine VEGF-induced Endoplasmic Reticulum-associated Degradation

    Directory of Open Access Journals (Sweden)

    Tom T. Chen

    2015-05-01

    Full Text Available Hepatocyte growth factor (HGF and vascular endothelial growth factor (VEGF drive cancer through their respective receptors, MET and VEGF receptor 2 (VEGFR2. VEGFR2 inhibits MET by promoting MET dephosphorylation. However, whether MET conversely regulates VEGFR2 remains unknown. Here we show that MET suppresses VEGFR2 protein by inducing its endoplasmic-reticulum-associated degradation (ERAD, via intracrine VEGF action. HGF–MET signaling in epithelial cancer cells promoted VEGF biosynthesis through PI3-kinase. In turn, VEGF and VEGFR2 associated within the ER, activating inositol-requiring enzyme 1α, and thereby facilitating ERAD-mediated depletion of VEGFR2. MET disruption upregulated VEGFR2, inducing compensatory tumor growth via VEGFR2 and MEK. However, concurrent disruption of MET and either VEGF or MEK circumvented this, enabling more profound tumor inhibition. Our findings uncover unique cross-regulation between MET and VEGFR2—two RTKs that play significant roles in tumor malignancy. Furthermore, these results suggest rational combinatorial strategies for targeting RTK signaling pathways more effectively, which has potentially important implications for cancer therapy.

  17. Endoplasmic reticulum stress induced by Thapsigargin in vascular smooth muscle cells of rat coronary artery

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-yan; DENG Chun-yu; JIANG Li

    2016-01-01

    AIM:To establish the endoplasmic reticulum stress ( ERS) cell model in vascular smooth muscle cells ( VSMCs) of Sprague-Dawley (SD) rats.METHODS:Under sterile condition, the coronary arteries were isolated from SD rats .The primary VSMCs were cultured by tissue-sticking method , and observed the basic morphological characteristics under optical microscope .The marker proteins of VSMCs including α-smooth muscle actin (α-SMA) and smooth muscle myosin heavy chain ( SM-MHC) were identified by immuno-fluorescence technique .VSMCs were treated with thapsigargin (0.5, 1 and 2 μmol/L) for 24 h, and the expression levels of binding immunoglobulin protein (BiP) and C/EBP homologus protein (CHOP), the marker molecules of ERS, were detected using Western blotting.RESULTS:VSMCs climbed out from coronary artery tissues after about six days , and the cells had a nice state and formed the VSMC-like typical "peak valley".The results of immunofluorescence technique show that the marker proteins of VSMCs ,α-SMA and SM-MHC were expressed significantly .The results of Western blotting show that the protein expression levels of BiP and CHOP were increased by thapsigargin in a dose-dependent manner .CONCLUSION:VSMCs can be successfully cultured by tissue-sticking method and built the ERS model induced by thapsigargin .

  18. Lyn kinase represses mucus hypersecretion by regulating IL-13-induced endoplasmic reticulum stress in asthma

    Directory of Open Access Journals (Sweden)

    Xing Wang

    2017-02-01

    Full Text Available In asthma, mucus hypersecretion is thought to be a prominent pathological feature associated with widespread mucus plugging. However, the current treatments for mucus hypersecretion are often ineffective or temporary. The potential therapeutic targets of mucus hypersecretion in asthma remain unknown. Here, we show that Lyn is a central effector of endoplasmic reticulum stress (ER stress and mucous hypersecretion in asthma. In Lyn-transgenic mice (Lyn-TG and wild-type (WT C57BL/6J mice exposed to ovalbumin (OVA, Lyn overexpression attenuates mucus hypersecretion and ER stress. Interleukin 13 (IL-13 induced MUC5AC expression by enhancing ER stress in vitro. Lyn serves as a negative regulator of IL-13-induced ER stress and MUC5AC expression. We further find that an inhibitor of ER stress, which is likely involved in the PI3K p85α/Akt pathway and NFκB activity, blocked MUC5AC expression in Lyn-knockdown cells. Furthermore, PI3K/Akt signaling is required for IL-13-induced ER stress and MUC5AC expression in airway epithelial cells. The ER stress regulation of MUC5AC expression depends on NFκB in Lyn-knockdown airway epithelial cells. Our studies indicate not only a concept of mucus hypersecretion in asthma that involves Lyn kinase but also an important therapeutic candidate for asthma.

  19. Recombinant Wheat Endoplasmic Reticulum Oxidoreductin 1 Improved Wheat Dough Properties and Bread Quality.

    Science.gov (United States)

    Liu, Guang; Wang, JingJing; Hou, Yi; Huang, Yan-Bo; Zhang, Ya-Ping; Li, Cunzhi; Li, Lin; Hu, Song-Qing

    2017-03-15

    Recombinant wheat endoplasmic reticulum oxidoreductin 1 (wEro1) with considerable ability was expressed in Escherichia coli. The functional roles of wEro1 in flour processing quality were investigated by farinographic, rheological, texture profile analysis, electrophoresis, size exclusion chromatography, scanning electron microscopy, and Fourier transform infrared spectroscopy. wEro1 exhibited an obvious oxidation activity of sulfhydryl groups in small molecule and protein. Addition of wEro1 could strengthen the processing quality of dough, indicated by the improved mixing characteristics, viscoelastic properties, and bread qualities. These improvement effects of wEro1 could be attributed to the formation of macromolecular gluten polymers and massive gluten networks by disulfide cross-linking. Additionally, the increased β-turn structure further demonstrated the enhancement of dough strength. Moreover, the amount of peroxide in dough was improved significantly from 2.36 to 2.82 μmol/g of flour with 0.15% wEro1 treatment. Therefore, the results suggested that wEro1 is a promising novel flour improver.

  20. From the endoplasmic reticulum to the plasma membrane: mechanisms of CFTR folding and trafficking.

    Science.gov (United States)

    Farinha, Carlos M; Canato, Sara

    2017-01-01

    CFTR biogenesis starts with its co-translational insertion into the membrane of endoplasmic reticulum and folding of the cytosolic domains, towards the acquisition of a fully folded compact native structure. Efficiency of this process is assessed by the ER quality control system that allows the exit of folded proteins but targets unfolded/misfolded CFTR to degradation. If allowed to leave the ER, CFTR is modified at the Golgi and reaches the post-Golgi compartments to be delivered to the plasma membrane where it functions as a cAMP- and phosphorylation-regulated chloride/bicarbonate channel. CFTR residence at the membrane is a balance of membrane delivery, endocytosis, and recycling. Several adaptors, motor, and scaffold proteins contribute to the regulation of CFTR stability and are involved in continuously assessing its structure through peripheral quality control systems. Regulation of CFTR biogenesis and traffic (and its dysregulation by mutations, such as the most common F508del) determine its overall activity and thus contribute to the fine modulation of chloride secretion and hydration of epithelial surfaces. This review covers old and recent knowledge on CFTR folding and trafficking from its synthesis to the regulation of its stability at the plasma membrane and highlights how several of these steps can be modulated to promote the rescue of mutant CFTR.

  1. A Conserved Endoplasmic Reticulum Membrane Protein Complex (EMC) Facilitates Phospholipid Transfer from the ER to Mitochondria

    Science.gov (United States)

    Tavassoli, Shabnam; Wong, Andrew K. O.; Choudhary, Vineet; Young, Barry P.; Loewen, Christopher J. R.; Prinz, William A.

    2014-01-01

    Mitochondrial membrane biogenesis and lipid metabolism require phospholipid transfer from the endoplasmic reticulum (ER) to mitochondria. Transfer is thought to occur at regions of close contact of these organelles and to be nonvesicular, but the mechanism is not known. Here we used a novel genetic screen in S. cerevisiae to identify mutants with defects in lipid exchange between the ER and mitochondria. We show that a strain missing multiple components of the conserved ER membrane protein complex (EMC) has decreased phosphatidylserine (PS) transfer from the ER to mitochondria. Mitochondria from this strain have significantly reduced levels of PS and its derivative phosphatidylethanolamine (PE). Cells lacking EMC proteins and the ER–mitochondria tethering complex called ERMES (the ER–mitochondria encounter structure) are inviable, suggesting that the EMC also functions as a tether. These defects are corrected by expression of an engineered ER–mitochondrial tethering protein that artificially tethers the ER to mitochondria. EMC mutants have a significant reduction in the amount of ER tethered to mitochondria even though ERMES remained intact in these mutants, suggesting that the EMC performs an additional tethering function to ERMES. We find that all Emc proteins interact with the mitochondrial translocase of the outer membrane (TOM) complex protein Tom5 and this interaction is important for PS transfer and cell growth, suggesting that the EMC forms a tether by associating with the TOM complex. Together, our findings support that the EMC tethers ER to mitochondria, which is required for phospholipid synthesis and cell growth. PMID:25313861

  2. Contribution of mitochondria and endoplasmic reticulum dysfunction in insulin resistance: Distinct or interrelated roles?

    Science.gov (United States)

    Rieusset, J

    2015-11-01

    Mitochondria and the endoplasmic reticulum (ER) regulate numerous cellular processes, and are critical contributors to cellular and whole-body homoeostasis. More important, mitochondrial dysfunction and ER stress are both closely associated with hepatic and skeletal muscle insulin resistance, thereby playing crucial roles in altered glucose homoeostasis in type 2 diabetes mellitus (T2DM). The accumulated evidence also suggests a potential interrelationship between alterations in both types of organelles, as mitochondrial dysfunction could participate in activation of the unfolded protein response, whereas ER stress could influence mitochondrial function. The fact that mitochondria and the ER are physically and functionally interconnected via mitochondria-associated membranes (MAMs) supports their interrelated roles in the pathophysiology of T2DM. However, the mechanisms that coordinate the interplay between mitochondrial dysfunction and ER stress, and its relevance to the control of glucose homoeostasis, are still unknown. This review evaluates the involvement of mitochondria and ER independently in the development of peripheral insulin resistance, as well as their potential roles in the disruption of organelle crosstalk at MAM interfaces in the alteration of insulin signalling. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. Attenuation of endoplasmic reticulum stress by caffeine ameliorates hyperoxia-induced lung injury.

    Science.gov (United States)

    Teng, Ru-Jeng; Jing, Xigang; Michalkiewicz, Teresa; Afolayan, Adeleye J; Wu, Tzong-Jin; Konduri, Girija G

    2017-05-01

    Rodent pups exposed to hyperoxia develop lung changes similar to bronchopulmonary dysplasia (BPD) in extremely premature infants. Oxidative stress from hyperoxia can injure developing lungs through endoplasmic reticulum (ER) stress. Early caffeine treatment decreases the rate of BPD, but the mechanisms remain unclear. We hypothesized that caffeine attenuates hyperoxia-induced lung injury through its chemical chaperone property. Sprague-Dawley rat pups were raised either in 90 (hyperoxia) or 21% (normoxia) oxygen from postnatal day 1 (P1) to postnatal day 10 (P10) and then recovered in 21% oxygen until P21. Caffeine (20 mg/kg) or normal saline (control) was administered intraperitoneally daily starting from P2. Lungs were inflation-fixed for histology or snap-frozen for immunoblots. Blood caffeine levels were measured in treated pups at euthanasia and were found to be 18.4 ± 4.9 μg/ml. Hyperoxia impaired alveolar formation and increased ER stress markers and downstream effectors; caffeine treatment attenuated these changes at P10. Caffeine also attenuated the hyperoxia-induced activation of cyclooxygenase-2 and markers of apoptosis. In conclusion, hyperoxia-induced alveolar growth impairment is mediated, in part, by ER stress. Early caffeine treatment protects developing lungs from hyperoxia-induced injury by attenuating ER stress. Copyright © 2017 the American Physiological Society.

  4. Intracellular Accumulation of Gold Nanoparticles Leads to Inhibition of Macropinocytosis to Reduce the Endoplasmic Reticulum Stress

    Science.gov (United States)

    Gunduz, Nuray; Ceylan, Hakan; Guler, Mustafa O.; Tekinay, Ayse B.

    2017-02-01

    Understanding the toxicity of nanomaterials remains largely limited to acute cellular response, i.e., short-term in vitro cell-death based assays, and analyses of tissue- and organ-level accumulation and clearance patterns in animal models, which have produced very little information about how these materials (from the toxicity point of view) interact with the complex intracellular machinery. In particular, understanding the mechanism of toxicity caused by the gradual accumulation of nanomaterials due to prolonged exposure times is essential yet still continue to be a largely unexplored territory. Herein, we show intracellular accumulation and the associated toxicity of gold nanoparticles (AuNPs) for over two-months in the cultured vascular endothelial cells. We observed that steady exposure of AuNPs at low (non-lethal) dose leads to rapid intracellular accumulation without causing any detectable cell death while resulting in elevated endoplasmic reticulum (ER) stress. Above a certain intracellular AuNP threshold, inhibition of macropinocytosis mechanism ceases further nanoparticle uptake. Interestingly, the intracellular depletion of nanoparticles is irreversible. Once reaching the maximum achievable intracellular dose, a steady depletion is observed, while no cell death is observed at any stage of this overall process. This depletion is important for reducing the ER stress. To our knowledge, this is the first report suggesting active regulation of nanoparticle uptake by cells and the impact of long-term exposure to nanoparticles in vitro.

  5. Competitive Inhibition of the Endoplasmic Reticulum Signal Peptidase by Non-cleavable Mutant Preprotein Cargos.

    Science.gov (United States)

    Cui, Jingqiu; Chen, Wei; Sun, Jinhong; Guo, Huan; Madley, Rachel; Xiong, Yi; Pan, Xingyi; Wang, Hongliang; Tai, Andrew W; Weiss, Michael A; Arvan, Peter; Liu, Ming

    2015-11-20

    Upon translocation across the endoplasmic reticulum (ER) membrane, secretory proteins are proteolytically processed to remove their signal peptide by signal peptidase (SPase). This process is critical for subsequent folding, intracellular trafficking, and maturation of secretory proteins. Prokaryotic SPase has been shown to be a promising antibiotic target. In contrast, to date, no eukaryotic SPase inhibitors have been reported. Here we report that introducing a proline immediately following the natural signal peptide cleavage site not only blocks preprotein cleavage but also, in trans, impairs the processing and maturation of co-expressed preproteins in the ER. Specifically, we find that a variant preproinsulin, pPI-F25P, is translocated across the ER membrane, where it binds to the catalytic SPase subunit SEC11A, inhibiting SPase activity in a dose-dependent manner. Similar findings were obtained with an analogous variant of preproparathyroid hormone, demonstrating that inhibition of the SPase does not depend strictly on the sequence or structure of the downstream mature protein. We further show that inhibiting SPase in the ER impairs intracellular processing of viral polypeptides and their subsequent maturation. These observations suggest that eukaryotic SPases (including the human ortholog) are, in principle, suitable therapeutic targets for antiviral drug design.

  6. Surviving endoplasmic reticulum stress is coupled to altered chondrocyte differentiation and function.

    Directory of Open Access Journals (Sweden)

    Kwok Yeung Tsang

    2007-03-01

    Full Text Available In protein folding and secretion disorders, activation of endoplasmic reticulum (ER stress signaling (ERSS protects cells, alleviating stress that would otherwise trigger apoptosis. Whether the stress-surviving cells resume normal function is not known. We studied the in vivo impact of ER stress in terminally differentiating hypertrophic chondrocytes (HCs during endochondral bone formation. In transgenic mice expressing mutant collagen X as a consequence of a 13-base pair deletion in Col10a1 (13del, misfolded alpha1(X chains accumulate in HCs and elicit ERSS. Histological and gene expression analyses showed that these chondrocytes survived ER stress, but terminal differentiation is interrupted, and endochondral bone formation is delayed, producing a chondrodysplasia phenotype. This altered differentiation involves cell-cycle re-entry, the re-expression of genes characteristic of a prehypertrophic-like state, and is cell-autonomous. Concomitantly, expression of Col10a1 and 13del mRNAs are reduced, and ER stress is alleviated. ERSS, abnormal chondrocyte differentiation, and altered growth plate architecture also occur in mice expressing mutant collagen II and aggrecan. Alteration of the differentiation program in chondrocytes expressing unfolded or misfolded proteins may be part of an adaptive response that facilitates survival and recovery from the ensuing ER stress. However, the altered differentiation disrupts the highly coordinated events of endochondral ossification culminating in chondrodysplasia.

  7. A contiguous compartment functions as endoplasmic reticulum and endosome/lysosome in Giardia lamblia.

    Science.gov (United States)

    Abodeely, Marla; DuBois, Kelly N; Hehl, Adrian; Stefanic, Sasa; Sajid, Mohammed; DeSouza, Wanderley; Attias, Marcia; Engel, Juan C; Hsieh, Ivy; Fetter, Richard D; McKerrow, James H

    2009-11-01

    The dynamic evolution of organelle compartmentalization in eukaryotes and how strictly compartmentalization is maintained are matters of ongoing debate. While the endoplasmic reticulum (ER) is classically envisioned as the site of protein cotranslational translocation, it has recently been proposed to have pluripotent functions. Using transfected reporter constructs, organelle-specific markers, and functional enzyme assays, we now show that in an early-diverging protozoan, Giardia lamblia, endocytosis and subsequent degradation of exogenous proteins occur in the ER or in an adjacent and communicating compartment. The Giardia endomembrane system is simple compared to those of typical eukaryotes. It lacks peroxisomes, a classical Golgi apparatus, and canonical lysosomes. Giardia orthologues of mammalian lysosomal proteases function within an ER-like tubulovesicular compartment, which itself can dynamically communicate with clathrin-containing vacuoles at the periphery of the cell to receive endocytosed proteins. These primitive characteristics support Giardia's proposed early branching and could serve as a model to study the compartmentalization of endocytic and lysosomal functions into organelles distinct from the ER. This system also may have functional similarity to the retrograde transport of toxins and major histocompatibility complex class I function in the ER of mammals.

  8. Proteostasis regulation at the endoplasmic reticulum: a new perturbation site for targeted cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Yanfen Liu; Yihong Ye

    2011-01-01

    To deal with the constant challenge of protein misfolding in the endoplasmic reticulum (ER), eukaryotic cells have evolved an ER protein quality control (ERQC) mechanism that is integrated with an adaptive stress response. The ERQC pathway is comprised of factors residing in the ER lumen that function in the identification and retention of aberrantly folded proteins, factors in the ER membrane for retrotranslocation of misfolded polypeptides, and enzymes in the cytosol that degrade retrotranslocated proteins. The integrated stress response (termed ER stress or unfolded protein response, UPR) contains several signaling branches elicited from the ER membrane, which fine-tune the rate of protein synthesis and entry into the ER to match the ER folding capacity. The fitness of the cell, particularly those bearing a high secretory burden, is critically dependent on functional integrity of the ER, which in turn relies on these stress-attenuating mechanisms to maintain protein homeostasis, or proteostasis. Aberrant proteostasis can trigger cellular apoptosis, making these adaptive stress response systems attractive targets for perturbation in treatment of cell malignancies. Here, we review our current understanding of how the cell preserves ER proteostasis and discuss how we may harness the mechanistic information on this process to develop new cancer therapeutics.

  9. Fluorescence Dynamics in the Endoplasmic Reticulum of a Live Cell: Time-Resolved Confocal Microscopy.

    Science.gov (United States)

    Ghosh, Shirsendu; Nandi, Somen; Ghosh, Catherine; Bhattacharyya, Kankan

    2016-09-19

    Fluorescence dynamics in the endoplasmic reticulum (ER) of a live non-cancer lung cell (WI38) and a lung cancer cell (A549) are studied by using time-resolved confocal microscopy. To selectively study the organelle, ER, we have used an ER-Tracker dye. From the emission maximum (λmaxem) of the ER-Tracker dye, polarity (i.e. dielectric constant, ϵ) in the ER region of the cells (≈500 nm in WI38 and ≈510 nm in A549) is estimated to be similar to that of chloroform (λmaxem =506 nm, ϵ≈5). The red shift by 10 nm in λmaxem in the cancer cell (A549) suggests a slightly higher polarity compared to the non-cancer cell (WI38). The fluorescence intensity of the ER-Tracker dye exhibits prolonged intermittent oscillations on a timescale of 2-6 seconds for the cancer cell (A549). For the non-cancer cell (WI38), such fluorescence oscillations are much less prominent. The marked fluorescence intensity oscillations in the cancer cell are attributed to enhanced calcium oscillations. The average solvent relaxation time () of the ER region in the lung cancer cell (A549, 250±50 ps) is about four times faster than that in the non-cancer cell (WI38, 1000±50 ps).

  10. Protective effects of endoplasmic reticulum stress preconditioning on hippocampal neurons in rats with status epilepticus

    Directory of Open Access Journals (Sweden)

    Yi ZHANG

    2014-12-01

    Full Text Available Objective To evaluate the protective effects of endoplasmic reticulum stress preconditioning induced by 2-deoxyglucose (2-DG on hippocampal neurons of rats with status epilepticus (SE and the possible mechanism.  Methods Ninety Sprague-Dawley (SD rats were randomly enrolled into preconditioning group (N = 30, SE group (N = 30 and control group (N = 30. Each group was divided into 6 subsets (N = 5 according to six time points (before seizure, 6 h, 12 h, 1 d, 2 d and 7 d after seizure. The preconditioning group was administered 2-DG intraperitoneally with a dose of 150 mg/kg for 7 days, and the lithium-pilocarpine induced SE rat model was established on both preconditioning group and SE group. The rats were sacrificed at the above six time points, and the brains were removed to make paraffin sections. Nissl staining was performed by toluidine blue to evaluate the hippocampal neuronal damage after seizure, and the number of survival neurons in hippocampal CA1 and CA3 regions of the rats were counted. Immunohistochemical staining was performed to detect the expressions of glucose regulated protein 78 (GRP78 and X-box binding protein 1 (XBP-1 in hippocampal CA3 region of the rats.  Results The number of survival neurons in preconditioning group was much more than that in SE group at 7 d after seizure (t = 5.353, P = 0.000, and was more obvious in CA1 region. There was no significant hippocampal neuronal damage in control group. The expressions of GRP78 and XBP-1 in CA3 region of hippocampus in SE group at 6 h after seizure were significantly higher than that in control group (P = 0.000, and then kept increasing until reaching the peak at 2 d (P = 0.000, for all. The expressions of GRP78 and XBP-1 in hippocampal CA3 region in preconditioning group were significantly higher than that in control group before seizure (P = 0.000, for all. The level of GRP78 maintained the highest at 24 h and 2 d after seizure (P = 0.000, for all, while the XBP-1 level

  11. PYK10 myrosinase reveals a functional coordination between endoplasmic reticulum bodies and glucosinolates in Arabidopsis thaliana.

    Science.gov (United States)

    Nakano, Ryohei T; Piślewska-Bednarek, Mariola; Yamada, Kenji; Edger, Patrick P; Miyahara, Mado; Kondo, Maki; Böttcher, Christoph; Mori, Masashi; Nishimura, Mikio; Schulze-Lefert, Paul; Hara-Nishimura, Ikuko; Bednarek, Paweł

    2017-01-01

    The endoplasmic reticulum body (ER body) is an organelle derived from the ER that occurs in only three families of the order Brassicales and is suggested to be involved in plant defense. ER bodies in Arabidopsis thaliana contain large amounts of β-glucosidases, but the physiological functions of ER bodies and these enzymes remain largely unclear. Here we show that PYK10, the most abundant β-glucosidase in A. thaliana root ER bodies, hydrolyzes indole glucosinolates (IGs) in addition to the previously reported in vitro substrate scopolin. We found a striking co-expression between ER body-related genes (including PYK10), glucosinolate biosynthetic genes and the genes for so-called specifier proteins affecting the terminal products of myrosinase-mediated glucosinolate metabolism, indicating that these systems have been integrated into a common transcriptional network. Consistent with this, comparative metabolite profiling utilizing a number of A. thaliana relatives within Brassicaceae identified a clear phylogenetic co-occurrence between ER bodies and IGs, but not between ER bodies and scopolin. Collectively, our findings suggest a functional link between ER bodies and glucosinolate metabolism in planta. In addition, in silico three-dimensional modeling, combined with phylogenomic analysis, suggests that PYK10 represents a clade of 16 myrosinases that arose independently from the other well-documented class of six thioglucoside glucohydrolases. These findings provide deeper insights into how glucosinolates are metabolized in cruciferous plants and reveal variation of the myrosinase-glucosinolate system within individual plants. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  12. Proteomic characterisation of endoplasmic reticulum-derived protein bodies in tobacco leaves

    Directory of Open Access Journals (Sweden)

    Joseph Minu

    2012-03-01

    Full Text Available Abstract Background The N-terminal proline-rich domain (Zera of the maize storage protein γ-zein, is able to induce the formation of endoplasmic reticulum (ER-derived protein bodies (PBs when fused to proteins of interest. This encapsulation enables a recombinant fused protein to escape from degradation and facilitates its recovery from plant biomass by gradient purification. The aim of the present work was to evaluate if induced PBs encapsulate additional proteins jointly with the recombinant protein. The exhaustive analysis of protein composition of PBs is expected to facilitate a better understanding of PB formation and the optimization of recombinant protein purification approaches from these organelles. Results We analysed the proteome of PBs induced in Nicotiana benthamiana leaves by transient transformation with Zera fused to a fluorescent marker protein (DsRed. Intact PBs with their surrounding ER-membrane were isolated on iodixanol based density gradients and their integrity verified by confocal and electron microscopy. SDS-PAGE analysis of isolated PBs showed that Zera-DsRed accounted for around 85% of PB proteins in term of abundance. Differential extraction of PBs was performed for in-depth analysis of their proteome and structure. Besides Zera-DsRed, 195 additional proteins were identified including a broad range of proteins resident or trafficking through the ER and recruited within the Zera-DsRed polymer. Conclusions This study indicates that Zera-protein fusion is still the major protein component of the new formed organelle in tobacco leaves. The analysis also reveals the presence of an unexpected diversity of proteins in PBs derived from both the insoluble Zera-DsRed polymer formation, including ER-resident and secretory proteins, and a secretory stress response induced most likely by the recombinant protein overloading. Knowledge of PBs protein composition is likely to be useful to optimize downstream purification of

  13. IRES-dependent translational control during virus-induced endoplasmic reticulum stress and apoptosis

    Directory of Open Access Journals (Sweden)

    Paul eHanson

    2012-03-01

    Full Text Available Many virus infections and stresses can induce endoplasmic reticulum (ER stress response, a host self defense mechanism against viral invasion and stress. During this event, viral and cellular gene expression is actively regulated and often encounters a switching of the translation initiation from cap-dependent to IRES (internal ribosome entry sites-dependent. This switching is largely dependent on the mRNA structure of the 5’untranslated region (5’UTR and on the particular stress stimuli. Picornviruses and some other viruses contain an IRES within their 5’UTR of viral genome and employ an IRES-driven mechanism for translation initiation. Recently, a growing number of cellular genes involved in growth control, cell cycle progression and apoptosis were also found to contain one or more IRES within their long highly structured 5’UTRs. These genes initiate translation usually by a cap-dependent mechanism under normal physiological conditions; however, in certain environments, such as infection, starvation and heat shock they shift translation initiation to an IRES-dependent modality. Although the molecular mechanism is not entirely understood, a number of studies have revealed that several cellular biochemical processes are responsible for the switching of translation initiation to IRES-dependent. These include the cleavage of translation initiation factors by viral and/or host proteases, phosphorylation (inactivation of host factors for translation initiation, over-production of homologous proteins of cap-binding protein eIF4E, suppression of cap-binding protein eIF4E expression by specific microRNA, activation of enzymes for mRNA decapping, as well as others. Here, we summarize the recent advances in our understanding of the molecular mechanisms for the switching of translation initiation, particularly for the proteins involved in cell survival and apoptosis in the ER stress pathways during viral infections.

  14. Silica nanoparticles induce endoplasmic reticulum stress response and activate mitogen activated kinase (MAPK signalling

    Directory of Open Access Journals (Sweden)

    Verena Christen

    2016-01-01

    Full Text Available Humans may be exposed to engineered silica nanoparticles (SiO2-NPs but potential adverse effects are poorly understood, in particular in relation to cellular effects and modes of action. Here we studied effects of SiO2-NPs on cellular function in human hepatoma cells (Huh7. Exposure for 24 h to 10 and 50 μg/ml SiO2-NPs led to induction of endoplasmic reticulum (ER stress as demonstrated by transcriptional induction of DNAJB9, GADD34, CHOP, as well as CHOP target genes BIM, CHAC-1, NOXA and PUMA. In addition, CHOP protein was induced. In addition, SiO2-NPs induced an inflammatory response as demonstrated by induction of TNF-α and IL-8. Activation of MAPK signalling was investigated employing a PCR array upon exposure of Huh7 cells to SiO2-NPs. Five of 84 analysed genes, including P21, P19, CFOS, CJUN and KSR1 exhibited significant transcriptional up-regulation, and 18 genes a significant down-regulation. Strongest down-regulation occurred for the proto-oncogene BRAF, MAPK11, one of the four p38 MAPK genes, and for NFATC4. Strong induction of CFOS, CJUN, FRA1 and CMYC was found after exposure to 50 μg/ml SiO2-NPs for 24 h. To analyse for effects derived from up-regulation of TNF-α, Huh7 cells were exposed to SiO2-NPs in the presence of the TNF-α inhibitor sauchinone, which reduced the induction of the TNF-α transcript by about 50%. These data demonstrate that SiO2-NPs induce ER stress, MAPK pathway and lead to inflammatory reaction in human hepatoma cells. Health implications of SiO2-NPs exposure should further be investigated for a risk assessment of these frequently used nanoparticles.

  15. The adaptive endoplasmic reticulum stress response to lipotoxicity in progressive human nonalcoholic fatty liver disease.

    Science.gov (United States)

    Lake, April D; Novak, Petr; Hardwick, Rhiannon N; Flores-Keown, Brieanna; Zhao, Fei; Klimecki, Walter T; Cherrington, Nathan J

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) may progress from simple steatosis to severe, nonalcoholic steatohepatitis (NASH) in 7%-14% of the U.S. population through a second "hit" in the form of increased oxidative stress and inflammation. Endoplasmic reticulum (ER) stress signaling and the unfolded protein response (UPR) are triggered when high levels of lipids and misfolded proteins alter ER homeostasis creating a lipotoxic environment within NAFLD livers. The objective of this study was to determine the coordinate regulation of ER stress-associated genes in the progressive stages of human NAFLD. Human liver samples categorized as normal, steatosis, NASH (Fatty), and NASH (Not Fatty) were analyzed by individual Affymetrix GeneChip Human 1.0 ST microarrays, immunoblots, and immunohistochemistry. A gene set enrichment analysis was performed on autophagy, apoptosis, lipogenesis, and ER stress/UPR gene categories. An enrichment of downregulated genes in the ER stress-associated lipogenesis and ER stress/UPR gene categories was observed in NASH. Conversely, an enrichment of upregulated ER stress-associated genes for autophagy and apoptosis gene categories was observed in NASH. Protein expression of the adaptive liver response protein STC2 and the transcription factor X-box binding protein 1 spliced (XBP-1s) were significantly elevated among NASH samples, whereas other downstream ER stress proteins including CHOP, ATF4, and phosphorylated JNK and eIF2α were not significantly changed in disease progression. Increased nuclear accumulation of total XBP-1 protein was observed in steatosis and NASH livers. The findings reveal the presence of a coordinated, adaptive transcriptional response to hepatic ER stress in human NAFLD.

  16. A transgenic zebrafish model for monitoring xbp1 splicing and endoplasmic reticulum stress in vivo.

    Science.gov (United States)

    Li, Junling; Chen, Zhiliang; Gao, Lian-Yong; Colorni, Angelo; Ucko, Michal; Fang, Shengyun; Du, Shao Jun

    2015-08-01

    Accumulation of misfolded or unfolded proteins in the endoplasmic reticulum (ER) triggers ER stress that initiates unfolded protein response (UPR). XBP1 is a transcription factor that mediates one of the key signaling pathways of UPR to cope with ER stress through regulating gene expression. Activation of XBP1 involves an unconventional mRNA splicing catalyzed by IRE1 endonuclease that removes an internal 26 nucleotides from xbp1 mRNA transcripts in the cytoplasm. Researchers have taken advantage of this unique activation mechanism to monitor XBP1 activation, thereby UPR, in cell culture and transgenic models. Here we report a Tg(ef1α:xbp1δ-gfp) transgenic zebrafish line to monitor XBP1 activation using GFP as a reporter especially in zebrafish oocytes and developing embryos. The Tg(ef1α:xbp1δ-gfp) transgene was constructed using part of the zebrafish xbp1 cDNA containing the splicing element. ER stress induced splicing results in the cDNA encoding a GFP-tagged partial XBP1 without the transactivation activation domain (XBP1Δ-GFP). The results showed that xbp1 transcripts mainly exist as the spliced active isoform in unfertilized oocytes and zebrafish embryos prior to zygotic gene activation at 3 hours post fertilization. A strong GFP expression was observed in unfertilized oocytes, eyes, brain and skeletal muscle in addition to a weak expression in the hatching gland. Incubation of transgenic zebrafish embryos with (dithiothreitol) DTT significantly induced XBP1Δ-GFP expression. Collectively, these studies unveil the presence of maternal xbp1 splicing in zebrafish oocytes, fertilized eggs and early stage embryos. The Tg(ef1α:xbp1δ-gfp) transgenic zebrafish provides a useful model for in vivo monitoring xbp1 splicing during development and under ER stress conditions.

  17. Endoplasmic reticulum stress in the proapoptotic action of edelfosine in solid tumor cells.

    Science.gov (United States)

    Nieto-Miguel, Teresa; Fonteriz, Rosalba I; Vay, Laura; Gajate, Consuelo; López-Hernández, Silvia; Mollinedo, Faustino

    2007-11-01

    The endoplasmic reticulum (ER) has been posited as a potential anticancer target. The synthetic antitumor alkyl-lysophospholipid analogue edelfosine accumulates in the ER of solid tumor cells. This ER accumulation of the drug leads to the inhibition of phosphatidylcholine and protein synthesis, G(2)-M arrest, depletion of ER-stored Ca(2+), Bax up-regulation and activation, transcriptional factor growth arrest and DNA damage-inducible gene 153 up-regulation, caspase-4 and caspase-8 activation, and eventually to apoptosis. Edelfosine prompted ER stress apoptotic signaling, but not the survival unfolded protein response. Edelfosine also induced persistent c-Jun NH(2)-terminal kinase (JNK) activation. Gene transfer-mediated overexpression of apoptosis signal-regulating kinase 1, which plays a crucial role in ER stress, enhanced edelfosine-induced JNK activation and apoptosis. Inhibition of JNK, caspase-4, or caspase-8 activation diminished edelfosine-induced apoptosis. Edelfosine treatment led to the generation of the p20 caspase-8 cleavage fragment of BAP31, directing proapoptotic signals between the ER and the mitochondria. bax(-/-)bak(-/-) double-knockout cells fail to undergo edelfosine-induced ER-stored Ca(2+) release and apoptosis. Wild-type and bax(-/-)bak(-/-) cells showed similar patterns of phosphatidylcholine and protein synthesis inhibition, despite their differences in drug sensitivity. Thus, edelfosine-induced apoptosis is dependent on Bax/Bak-mediated ER-stored Ca(2+) release, but phosphatidylcholine and protein synthesis inhibition is not critical. Transfection-enforced expression of Bcl-X(L), which localizes specifically in mitochondria, prevented apoptosis without inhibiting ER-stored Ca(2+) release. These data reveal that edelfosine induces an ER stress response in solid tumor cells, providing novel insights into the edelfosine-mediated antitumor activity. Our data also indicate that mitochondria are indispensable for this edelfosine-induced cell

  18. Antitumor alkyl-lysophospholipid analog edelfosine induces apoptosis in pancreatic cancer by targeting endoplasmic reticulum.

    Science.gov (United States)

    Gajate, C; Matos-da-Silva, M; Dakir, el-H; Fonteriz, R I; Alvarez, J; Mollinedo, F

    2012-05-24

    Pancreatic cancer remains as one of the most deadly cancers, and responds poorly to current therapies. The prognosis is extremely poor, with a 5-year survival of less than 5%. Therefore, search for new effective therapeutic drugs is of pivotal need and urgency to improve treatment of this incurable malignancy. Synthetic alkyl-lysophospholipid analogs (ALPs) constitute a heterogeneous group of unnatural lipids that promote apoptosis in a wide variety of tumor cells. In this study, we found that the anticancer drug edelfosine was the most potent ALP in killing human pancreatic cancer cells, targeting endoplasmic reticulum (ER). Edelfosine was taken up in significant amounts by pancreatic cancer cells and induced caspase- and mitochondrial-mediated apoptosis. Pancreatic cancer cells show a prominent ER and edelfosine accumulated in this subcellular structure, inducing a potent ER stress response, with caspase-4, BAP31 and c-Jun NH(2)-terminal kinase (JNK) activation, CHOP/GADD153 upregulation and phosphorylation of eukaryotic translation initiation factor 2 α-subunit that eventually led to cell death. Oral administration of edelfosine in xenograft mouse models of pancreatic cancer induced a significant regression in tumor growth and an increase in apoptotic index, as assessed by TUNEL assay and caspase-3 activation in the tumor sections. The ER stress-associated marker CHOP/GADD153 was visualized in the pancreatic tumor isolated from edelfosine-treated mice, indicating a strong in vivo ER stress response. These results suggest that edelfosine exerts its pro-apoptotic action in pancreatic cancer cells, both in vitro and in vivo, through its accumulation in the ER, which leads to ER stress and apoptosis. Thus, we propose that the ER could be a key target in pancreatic cancer, and edelfosine may constitute a prototype for the development of a new class of antitumor drugs targeting the ER.

  19. Calcineurin is involved in cardioprotection induced by ischemic postconditioning through attenuating endoplasmic reticulum stress

    Institute of Scientific and Technical Information of China (English)

    CHEN Yi-hong; WU Xu-dong; YAO Shu-tong; SUN Seng; LIU Xiu-hua

    2011-01-01

    Background Ischemic postconditioning (I-postC) is a newly discovered and more amenable cardioprotective strategy capable of protecting the myocardium from ischemia/reperfusion (I/R) injury.Endoplasmic reticulum (ER) is a principal site for secretary protein synthesis and calcium storage.Myocardial I/R causes ER stress and emerging studies suggest that the cardioprotection has been linked to the modulation of ER stress.The aim of the present study was to determine whether cardioprotection of I-postC involves reduction in ER stress through calcineurin pathway.Methods In the in vivo model of rat myocardial I/R,myocardial infarct size was measured by triphenyltetrazolium chloride (TTC) staining and apoptosis was detected using terminal eoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) assay.Expression of calreticulin,C/EBP homologous protein (CHOP),caspase-12,and activation of caspase-12 in myocardium were detected by Western blotting.The activity and expression of calcineurin in myocardium were also detected.Results I-postC protected the I/R heart against apoptosis,myocardial infarction,and leakage of lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB).I-postC suppressed I/R-induced ER stress,as shown by a decrease in the expression of calreticulin and CHOP,and caspase-12 activation.I-postC downregulated calcineurin activation in myocardium subjected to I/R.Conclusion I-postC protects myocardium from I/R injury by suppressing ER stress and calcineurin pathways are not associated with the I-postC-induced suppression of ER stress-related apoptosis.

  20. Fucoidan induces cancer cell apoptosis by modulating the endoplasmic reticulum stress cascades.

    Directory of Open Access Journals (Sweden)

    Shaohua Chen

    Full Text Available Cancer metastasis is the main cause leading to disease recurrence and high mortality in cancer patients. Therefore, inhibiting metastasis process or killing metastatic cancer cells by inducing apoptosis is of clinical importance in improving cancer patient survival. Previous studies revealed that fucoidan, a fucose-rich polysaccharide isolated from marine brown alga, is a promising natural product with significant anti-cancer activity. However, little is known about the role of endoplasmic reticulum (ER stress in fucoidan-induced cell apoptosis.We reported that fucoidan treatment inhibits cell growth and induces apoptosis in cancer cells. Fucoidan treatments resulted in down-regulation of the glucose regulated protein 78 (GRP78 in the metastatic MDA-MB-231 breast cancer cells, and of the ER protein 29 (ERp29 in the metastatic HCT116 colon cancer cells. However, fucoidan treatment promoted ER Ca2+-dependent calmodulin-dependent kinase II (CaMKII phosphorylation, Bcl-associated X protein (Bax and caspase 12 expression in MDA-MB-231 cells, but not in HCT116 cells. In both types of cancer cells, fucoidan activated the phosphorylation of eukaryotic initiation factor 2 alpha (p-eIF2α\\CCAAT/enhancer binding protein homologous protein (CHOP pro-apoptotic cascade and inhibited the phosphorylation of inositol-requiring kinase 1 (p-IRE-1\\X-box binding proteins 1 splicing (XBP-1s pro-survival cascade. Furthermore, CHOP knockdown prevented DNA damage and cell death induced by fucoidan.Fucoidan exerts its anti-tumor function by modulating ER stress cascades. Contribution of ER stress to the fucoidan-induced cell apoptosis augments our understanding of the molecular mechanisms underlying its anti-tumour activity and provides evidence for the therapeutic application of fucoidan in cancer.

  1. The yeast p5 type ATPase, spf1, regulates manganese transport into the endoplasmic reticulum.

    Directory of Open Access Journals (Sweden)

    Yifat Cohen

    Full Text Available The endoplasmic reticulum (ER is a large, multifunctional and essential organelle. Despite intense research, the function of more than a third of ER proteins remains unknown even in the well-studied model organism Saccharomyces cerevisiae. One such protein is Spf1, which is a highly conserved, ER localized, putative P-type ATPase. Deletion of SPF1 causes a wide variety of phenotypes including severe ER stress suggesting that this protein is essential for the normal function of the ER. The closest homologue of Spf1 is the vacuolar P-type ATPase Ypk9 that influences Mn(2+ homeostasis. However in vitro reconstitution assays with Spf1 have not yielded insight into its transport specificity. Here we took an in vivo approach to detect the direct and indirect effects of deleting SPF1. We found a specific reduction in the luminal concentration of Mn(2+ in ∆spf1 cells and an increase following it's overexpression. In agreement with the observed loss of luminal Mn(2+ we could observe concurrent reduction in many Mn(2+-related process in the ER lumen. Conversely, cytosolic Mn(2+-dependent processes were increased. Together, these data support a role for Spf1p in Mn(2+ transport in the cell. We also demonstrate that the human sequence homologue, ATP13A1, is a functionally conserved orthologue. Since ATP13A1 is highly expressed in developing neuronal tissues and in the brain, this should help in the study of Mn(2+-dependent neurological disorders.

  2. Involvement of endoplasmic reticulum stress in the necroptosis of microglia/macrophages after spinal cord injury.

    Science.gov (United States)

    Fan, H; Tang, H-B; Kang, J; Shan, L; Song, H; Zhu, K; Wang, J; Ju, G; Wang, Y-Z

    2015-12-17

    Microglia/macrophages play a crucial role in inflammation after spinal cord injury (SCI). Although extensive studies have been performed on the mechanisms of microglia/macrophage activation and recruitment, how microglia/macrophages are eliminated remains unclear. In the present study, we observed a high-level expression of mixed lineage kinase domain-like protein (MLKL), a key molecule in the execution of necroptosis, in microglia/macrophages after SCI in mice. In vivo PI-labeling and Necrostatin-1 treatment confirmed the necroptosis of microglia/macrophages. Interestingly, our electronic microscopic (EM) study revealed that MLKL localized not only at the membrane but also on the endoplasmic reticulum (ER) of necroptotic microglia/macrophages. Furthermore, receptor-interacting protein 3 (RIP3), another necrosome component, was also found on the ER of necroptotic microglia/macrophages. And Glucose-regulated protein 78 (GRP78), an ER stress sensor, was up-regulated in MLKL-positive microglia/macrophages after SCI, suggesting a possible link between necroptosis and ER stress. In vitro, oxygen-glucose deprivation (OGD) stress induced ER stress and necroptosis in microglia. Inhibiting ER stress by 4-phenylbutyrate (4-PBA) significantly blocked the OGD-induced necroptosis of microglia. In the end, our data showed that, GRP78 and phosphorylated MLKL were co-expressed by the microglia/macrophages in the injured human spinal cord. Taken together, these results suggested that microglia/macrophages undergo an ER-stress involved necroptosis after SCI, implying that ER stress and necroptosis could be manipulated for modulating inflammation post-SCI.

  3. RET(MEN 2B) is active in the endoplasmic reticulum before reaching the cell surface.

    Science.gov (United States)

    Runeberg-Roos, P; Virtanen, H; Saarma, M

    2007-12-13

    MEN 2B (multiple endocrine neoplasia type 2B) is an autosomal dominant cancer syndrome caused by an oncogenic form of the receptor tyrosine kinase REarranged during transfection (RET). The MEN 2B syndrome is associated with an abnormal autophosphorylation of the mutated receptor even without ligand-stimulation. Here, we characterize the activation of a RET(MEN 2B) variant carrying the point mutation Met918Thr, and show that the 150 kDa precursor of RET(MEN 2B) becomes phosphorylated already during synthesis in the endoplasmic reticulum (ER). At least three different tyrosine residues (Tyr905, Tyr1062, Tyr1096) of the RET(MEN 2B) precursor are phosphorylated before the oncogenic receptor reaches the cell surface. We also demonstrate that the precursor of RET(MEN 2B) interacts with both growth factor receptor-bound protein and Src homology 2 domain-containing already in the ER, and that this interaction is dependent on the kinase activity of RET. With the aid of two RET mutants (RET(MEN 2B/S32L) and RET(MEN 2B/F393L)), which accumulate in the ER, we show that the oncogenic precursor of the receptor has the capacity to activate AKT, extracellular signal-regulated kinase and signal transducer and activator of transcription 3 from the ER. Taken together, our data demonstrate that the oncogenic precursor of RET(MEN 2B) is phosphorylated, interacts with adapter proteins and induces downstream signalling from the ER.

  4. Acidosis Activates Endoplasmic Reticulum Stress Pathways through GPR4 in Human Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Lixue Dong

    2017-01-01

    Full Text Available Acidosis commonly exists in the tissue microenvironment of various pathophysiological conditions such as tumors, inflammation, ischemia, metabolic disease, and respiratory disease. For instance, the tumor microenvironment is characterized by acidosis and hypoxia due to tumor heterogeneity, aerobic glycolysis (the “Warburg effect”, and the defective vasculature that cannot efficiently deliver oxygen and nutrients or remove metabolic acid byproduct. How the acidic microenvironment affects the function of blood vessels, however, is not well defined. GPR4 (G protein-coupled receptor 4 is a member of the proton-sensing G protein-coupled receptors and it has high expression in endothelial cells (ECs. We have previously reported that acidosis induces a broad inflammatory response in ECs. Acidosis also increases the expression of several endoplasmic reticulum (ER stress response genes such as CHOP (C/EBP homologous protein and ATF3 (activating transcription factor 3. In the current study, we have examined acidosis/GPR4- induced ER stress pathways in human umbilical vein endothelial cells (HUVEC and other types of ECs. All three arms of the ER stress/unfolded protein response (UPR pathways were activated by acidosis in ECs as an increased expression of phosphorylated eIF2α (eukaryotic initiation factor 2α, phosphorylated IRE1α (inositol-requiring enzyme 1α, and cleaved ATF6 upon acidic pH treatment was observed. The expression of other downstream mediators of the UPR, such as ATF4, ATF3, and spliced XBP-1 (X box-binding protein 1, was also induced by acidosis. Through genetic and pharmacological approaches to modulate the expression level or activity of GPR4 in HUVEC, we found that GPR4 plays an important role in mediating the ER stress response induced by acidosis. As ER stress/UPR can cause inflammation and cell apoptosis, acidosis/GPR4-induced ER stress pathways in ECs may regulate vascular growth and inflammatory response in the acidic

  5. Obesity-induced endoplasmic reticulum stress suppresses nuclear factor-Y expression.

    Science.gov (United States)

    Liu, Yulan; Zhang, Yuwei; Zhang, Yanjie; Zhang, Jinlong; Liu, Yin; Feng, Peiqun; Su, Zhiguang

    2017-02-01

    Nuclear transcription factor Y (NF-Y) is an evolutionarily conserved transcription factor composed of three subunits, NF-YA, NF-YB, and NF-YC. NF-Y plays crucial roles in pre-adipocyte maintenance and/or commitment to adipogenesis. NF-YA dysfunction in adipocyte resulted in an age-dependent progressive loss of adipose tissue associated with metabolic complications. Endoplasmic reticulum (ER) stress has emerged as an important mediator in the pathogenesis of obesity. However, it is not known if NF-YA is involved in the ER stress-mediated pathogenesis of obesity. We first examined the effects of ER stress on the NF-YA expression in cultured 3T3-L1 adipocytes; then in ob/ob genetic obesity mice, we tested the effect of chemical chaperones alleviating ER stress on the expression levels of NF-YA. Subsequently, we inhibited the new mRNA synthesis using actinomycin D in 3T3-L1 cells to explore the mechanism modulating NF-YA expression. Finally, we evaluated the involvement of PPARg in the regulation of NF-YA expression by ER stress. We demonstrated that both obesity- and chemical chaperone -induced ER stress suppressed NF-YA expression and alleviation of ER stress by chemical chaperone could recover NF-YA expression in ob/ob mice. Moreover, we showed that ER stress suppressed NF-YA mRNA transcription through the involvement of peroxisome proliferator-activated receptor gamma (PPARg). Activation of PPARg ameliorates the ER stress-induced NF-YA suppression. Our findings may point to a possible role of NF-YA in stress conditions that occur in chronic obesity, ER stress might be involved in the pathogenesis of obesity through NF-YA depletion.

  6. Obesity-Induced Endoplasmic Reticulum Stress Causes Lung Endothelial Dysfunction and Promotes Acute Lung Injury.

    Science.gov (United States)

    Shah, Dilip; Romero, Freddy; Guo, Zhi; Sun, Jianxin; Li, Jonathan; Kallen, Caleb B; Naik, Ulhas P; Summer, Ross

    2017-08-01

    Obesity is a significant risk factor for acute respiratory distress syndrome. The mechanisms underlying this association are unknown. We recently showed that diet-induced obese mice exhibit pulmonary vascular endothelial dysfunction, which is associated with enhanced susceptibility to LPS-induced acute lung injury. Here, we demonstrate that lung endothelial dysfunction in diet-induced obese mice coincides with increased endoplasmic reticulum (ER) stress. Specifically, we observed enhanced expression of the major sensors of misfolded proteins, including protein kinase R-like ER kinase, inositol-requiring enzyme α, and activating transcription factor 6, in whole lung and in primary lung endothelial cells isolated from diet-induced obese mice. Furthermore, we found that primary lung endothelial cells exposed to serum from obese mice, or to saturated fatty acids that mimic obese serum, resulted in enhanced expression of markers of ER stress and the induction of other biological responses that typify the lung endothelium of diet-induced obese mice, including an increase in expression of endothelial adhesion molecules and a decrease in expression of endothelial cell-cell junctional proteins. Similar changes were observed in lung endothelial cells and in whole-lung tissue after exposure to tunicamycin, a compound that causes ER stress by blocking N-linked glycosylation, indicating that ER stress causes endothelial dysfunction in the lung. Treatment with 4-phenylbutyric acid, a chemical protein chaperone that reduces ER stress, restored vascular endothelial cell expression of adhesion molecules and protected against LPS-induced acute lung injury in diet-induced obese mice. Our work indicates that fatty acids in obese serum induce ER stress in the pulmonary endothelium, leading to pulmonary endothelial cell dysfunction. Our work suggests that reducing protein load in the ER of pulmonary endothelial cells might protect against acute respiratory distress syndrome in obese

  7. Endoplasmic Reticulum Ca(2+) Handling and Apoptotic Resistance in Tumor-Derived Endothelial Colony Forming Cells.

    Science.gov (United States)

    Poletto, Valentina; Dragoni, Silvia; Lim, Dmitry; Biggiogera, Marco; Aronica, Adele; Cinelli, Mariapia; De Luca, Antonio; Rosti, Vittorio; Porta, Camillo; Guerra, Germano; Moccia, Francesco

    2016-10-01

    Truly endothelial progenitor cells (EPCs) can be mobilized from bone marrow to support the vascular network of growing tumors, thereby sustaining the metastatic switch. Endothelial colony forming cells (ECFCs) are the only EPC subtype belonging to the endothelial phenotype and capable of incorporating within neovessels. The intracellular Ca(2+) machinery plays a key role in ECFC activation and is remodeled in renal cellular carcinoma-derived ECFCs (RCC-ECFCs). Particularly, RCC-ECFCs seems to undergo a drop in endoplasmic reticulum (ER) Ca(2+) concentration ([Ca(2+) ]ER ). This feature is remarkable when considering that inositol-1,4,5-trisphosphate (InsP3 )-dependent ER-to-mitochondria Ca(2+) transfer regulates the intrinsic apoptosis pathway. Herein, we sought to assess whether: (1) the [Ca(2+) ]ER and the InsP3 -induced ER-mitochondria Ca(2+) shuttle are reduced in RCC-ECFCs; and (2) the dysregulation of ER Ca(2+) handling leads to apoptosis resistance in tumor-derived cells. RCC-ECFCs displayed a reduction both in [Ca(2+) ]ER and in the InsP3 -dependent mitochondrial Ca(2+) uptake, while they expressed normal levels of Bcl-2 and Bak. The decrease in [Ca(2+) ]ER was associated to a remarkable ER expansion in RCC-ECFCs, which is a hallmark of ER stress, and did not depend on the remodeling of the Ca(2+) -transporting and the ER Ca(2+) -storing systems. As expected, RCC-ECFCs were less sensitive to rapamycin- and thapsigargin-induced apoptosis; however, buffering intracellular Ca(2+) levels with BAPTA dampened apoptosis in both cell types. Finally, store-operated Ca(2+) entry was seemingly uncoupled from the apoptotic machinery in RCC-ECFCs. Thus, the chronic underfilling of the ER Ca(2+) pool could confer a survival advantage to RCC-ECFCs and underpin RCC resistance to pharmacological treatment. J. Cell. Biochem. 117: 2260-2271, 2016. © 2016 Wiley Periodicals, Inc.

  8. Hyperactivity of the Ero1α Oxidase Elicits Endoplasmic Reticulum Stress but No Broad Antioxidant Response

    Science.gov (United States)

    Hansen, Henning Gram; Schmidt, Jonas Damgård; Søltoft, Cecilie Lützen; Ramming, Thomas; Geertz-Hansen, Henrik Marcus; Christensen, Brian; Sørensen, Esben Skipper; Juncker, Agnieszka Sierakowska; Appenzeller-Herzog, Christian; Ellgaard, Lars

    2012-01-01

    Oxidizing equivalents for the process of oxidative protein folding in the endoplasmic reticulum (ER) of mammalian cells are mainly provided by the Ero1α oxidase. The molecular mechanisms that regulate Ero1α activity in order to harness its oxidative power are quite well understood. However, the overall cellular response to oxidative stress generated by Ero1α in the lumen of the mammalian ER is poorly characterized. Here we investigate the effects of overexpressing a hyperactive mutant (C104A/C131A) of Ero1α. We show that Ero1α hyperactivity leads to hyperoxidation of the ER oxidoreductase ERp57 and induces expression of two established unfolded protein response (UPR) targets, BiP (immunoglobulin-binding protein) and HERP (homocysteine-induced ER protein). These effects could be reverted or aggravated by N-acetylcysteine and buthionine sulfoximine, respectively. Because both agents manipulate the cellular glutathione redox buffer, we conclude that the observed effects of Ero1α-C104A/C131A overexpression are likely caused by an oxidative perturbation of the ER glutathione redox buffer. In accordance, we show that Ero1α hyperactivity affects cell viability when cellular glutathione levels are compromised. Using microarray analysis, we demonstrate that the cell reacts to the oxidative challenge caused by Ero1α hyperactivity by turning on the UPR. Moreover, this analysis allowed the identification of two new targets of the mammalian UPR, CRELD1 and c18orf45. Interestingly, a broad antioxidant response was not induced. Our findings suggest that the hyperoxidation generated by Ero1α-C104A/C131A is addressed in the ER lumen and is unlikely to exert oxidative injury throughout the cell. PMID:23027870

  9. Proteasome inhibition-induces endoplasmic reticulum dysfunction and cell death of human cholangiocarcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Yucel Ustundag; Steven F Bronk; Gregory J Gores

    2007-01-01

    AIM: To determine if proteasome inhibition induces apoptosis in human cholangiocarcinoma cells, and if so, to elucidate the cellular mechanisms.METHODS: Studies were performed in the human KMCH, KMBC, and Mz-ChA-1 cholangiocarcinoma, and normal rat cell lines. MG132, a peptide aldehyde, which inhibits the chymotrypsin-like activity of the proteaosome was employed for this study. Apoptosis was assessed morphologically by 4'-6-Diamidino-2-phenylindole (DAPI) nuclear staining and fluorescence microscopy. Mitochondrial membrane potential was examined using a fluorescent unquenching assay. Ultrastructural changes during cell death were examined using transmission electron microscopy (TEM). Caspase 3/7 activity was assessed using an enzymatic-based fluorescent assay. Cytosolic-free calcium concentrations were measured using Fura-2 and digitized fluorescent microscopy.RESULTS: MG132, a proteasome inhibitor, induced apoptosis in all the cholangiocarcinoma cell lines examined. In contrast, minimal cytotoxicity was observed in normal rat cholangiocytes. Apoptosis was time- and -concentration-dependent. There was no change in the mitochondrial membrane potential between treated and untreated cells. Ultrastructural examination by transmission electron microscopy displayed the classic features of apoptosis, but in addition, there was also dramatic vacuolization of the endoplasmic reticulum (ER). Unexpectedly, no increase in caspase 3/7 activity was observed in MG132 treated cells, nor did the pancaspase inhibitor, Q-VD-OPh prevent cell death. The protein synthesis inhibitor, cycloheximide, blocked apoptosis induced by proteosome inhibitor indicating that ER dysfunction was dependent upon the formation of new proteins.CONCLUSION:Proteosome inhibition induces ER dysfunction and caspase-independent cell death selectively in human cholangiocarcinoma cells. Proteasome inhibitors warrant evaluation as anticancer agents for the treatment of human cholangiocarcinoma.

  10. Purification and biochemica characterisation of endoplasmic reticulum α 1,2-mannosidase from Sporothrix schenckiil

    Directory of Open Access Journals (Sweden)

    Héctor M Mora-Montes

    2010-02-01

    Full Text Available Alpha 1,2-mannosidases from glycosyl hydrolase family 47 participate in N-glycan biosynthesis. In filamentous fungi and mammalian cells, α1,2-mannosidases are present in the endoplasmic reticulum (ER and Golgi complex and are required to generate complex N-glycans. However, lower eukaryotes such Saccharomyces cerevisiae contain only one α1,2-mannosidase in the lumen of the ER and synthesise high-mannose N-glycans. Little is known about the N-glycan structure and the enzyme machinery involved in the synthesis of these oligosaccharides in the dimorphic fungus Sporothrix schenckii. Here, a membrane-bound α-mannosidase from S. schenckii was solubilised using a high-temperature procedure and purified by conventional methods of protein isolation. Analytical zymograms revealed a polypeptide of 75 kDa to be responsible for enzyme activity and this purified protein was recognised by anti-α1,2-mannosidase antibodies. The enzyme hydrolysed Man9GlcNAc2 into Man8GlcNAc2 isomer B and was inhibited preferentially by 1-deoxymannojirimycin. This α1,2-mannosidase was localised in the ER, with the catalytic domain within the lumen of this compartment. These properties are consistent with an ER-localised α1,2-mannosidase of glycosyl hydrolase family 47. Our results also suggested that in contrast to other filamentous fungi, S. schenckii lacks Golgi α1,2-mannosidases and therefore, the processing of N-glycans by α1,2-mannosidases is similar to that present in lower eukaryotes.

  11. Structures linking the myonemes, endoplasmic reticulum, and surface membranes in the contractile ciliate Vorticella.

    Science.gov (United States)

    Allen, R D

    1973-02-01

    An electron microscope investigation of the interface between the myonemes of Vorticella convallaria and their associated endoplasmic reticulum (ER) has revealed structures of a complex morphology linking these two organelles. These structures are named "linkage complexes". Each complex contains a spindle-shaped midpiece which lies in a groove of the ER membrane. Microfilaments splay out from the tips of the midpiece and may come in contact with the inner alveolar sac membrane. Three to six raillike structures lie on each side of the midpiece and parallel it. The ER membrane appears to pass through the sides of the rails. In the lumen of the ER these rails are associated with a meshwork of filaments. A cradle of five rods lies within the groove under the midpiece. The ER membrane also passes through these rods which contact the same meshwork. In the scopular region and in the stalk the microfilaments from the midpiece form a bundle which passes into the lumen of modified basal bodies. These basal bodies are connected to the alveolar sac which, in the stalk, passes as a flattened tube along its length. The parts of the dissociated linkage complex are scattered throughout the spasmoneme of the stalk along membranes of the intraspasmonemal tubules. Thus, both stalk and body contractile bundles have linkage complexes that link their associated membrane systems to the microfibrils and, in turn, connect this membrane-microfibrillar interface to the pellicular membranes. The arrangement of the linkage complex suggests an involvement in the control of the transport of calcium ions between ER and microfibrils, and possibly the transfer of a message from the surface membranes to the sites of calcium release to trigger myonemal contraction.

  12. PKR-like endoplasmic reticulum kinase is necessary for lipogenic activation during HCMV infection.

    Directory of Open Access Journals (Sweden)

    Yongjun Yu

    Full Text Available PKR-like endoplasmic reticulum (ER kinase (PERK is an ER-associated stress sensor protein which phosphorylates eukaryotic initiation factor 2α (eIF2α to induce translation attenuation in response to ER stress. PERK is also a regulator of lipogenesis during adipocyte differentiation through activation of the cleavage of sterol regulatory element binding protein 1 (SREBP1, resulting in the upregulation of lipogenic enzymes. Our recent studies have shown that human cytomegalovirus (HCMV infection in human fibroblasts (HF induces adipocyte-like lipogenesis through the activation of SREBP1. Here, we report that PERK expression is highly increased in HCMV-infected cells and is necessary for HCMV growth. Depletion of PERK, using short hairpin RNA (shRNA, resulted in attenuation of HCMV growth, inhibition of lipid synthesis and reduction of lipogenic gene expression. Examination of the cleavage of SREBP proteins showed PERK depletion inhibited the cleavage of SREBP1, but not SREBP2, in HCMV-infected cells, suggesting different cleavage regulatory mechanisms for SREBP1 and 2. Further studies showed that the depletion of SREBP1, but not SREBP2, reduced lipid synthesis in HCMV infection, suggesting that activation of SREBP1 is sufficient to induce lipogenesis in HCMV infection. The reduction of lipid synthesis by PERK depletion can be partially restored by expressing a Flag-tagged nuclear form of SREBP1a. Our studies also suggest that the induction of PERK in HCMV-infected cells stimulates SREBP1 cleavage by reducing levels of Insig1 (Insulin inducible gene 1 protein; this occurs independent of the phosphorylation of eIF2α. Introduction of an exogenous Insig1-Myc into HCMV infected cells significantly reduced HCMV growth and lipid synthesis. Our data demonstrate that the induction of PERK during HCMV infection is necessary for full activation of lipogenesis; this effect appears to be mediated by limiting the levels of Insig1 thus freeing SREBP1-SCAP

  13. PKR-like endoplasmic reticulum kinase is necessary for lipogenic activation during HCMV infection.

    Science.gov (United States)

    Yu, Yongjun; Pierciey, Francis J; Maguire, Tobi G; Alwine, James C

    2013-01-01

    PKR-like endoplasmic reticulum (ER) kinase (PERK) is an ER-associated stress sensor protein which phosphorylates eukaryotic initiation factor 2α (eIF2α) to induce translation attenuation in response to ER stress. PERK is also a regulator of lipogenesis during adipocyte differentiation through activation of the cleavage of sterol regulatory element binding protein 1 (SREBP1), resulting in the upregulation of lipogenic enzymes. Our recent studies have shown that human cytomegalovirus (HCMV) infection in human fibroblasts (HF) induces adipocyte-like lipogenesis through the activation of SREBP1. Here, we report that PERK expression is highly increased in HCMV-infected cells and is necessary for HCMV growth. Depletion of PERK, using short hairpin RNA (shRNA), resulted in attenuation of HCMV growth, inhibition of lipid synthesis and reduction of lipogenic gene expression. Examination of the cleavage of SREBP proteins showed PERK depletion inhibited the cleavage of SREBP1, but not SREBP2, in HCMV-infected cells, suggesting different cleavage regulatory mechanisms for SREBP1 and 2. Further studies showed that the depletion of SREBP1, but not SREBP2, reduced lipid synthesis in HCMV infection, suggesting that activation of SREBP1 is sufficient to induce lipogenesis in HCMV infection. The reduction of lipid synthesis by PERK depletion can be partially restored by expressing a Flag-tagged nuclear form of SREBP1a. Our studies also suggest that the induction of PERK in HCMV-infected cells stimulates SREBP1 cleavage by reducing levels of Insig1 (Insulin inducible gene 1) protein; this occurs independent of the phosphorylation of eIF2α. Introduction of an exogenous Insig1-Myc into HCMV infected cells significantly reduced HCMV growth and lipid synthesis. Our data demonstrate that the induction of PERK during HCMV infection is necessary for full activation of lipogenesis; this effect appears to be mediated by limiting the levels of Insig1 thus freeing SREBP1-SCAP complexes for

  14. Endoplasmic reticulum protein (ERp) 29 binds as strongly as protein disulfide isomerase (PDI) to bisphenol A.

    Science.gov (United States)

    Miyake, Yuka; Hashimoto, Shoko; Sasaki, Yoshie; Kudo, Tomohiro; Oguro, Ami; Imaoka, Susumu

    2014-04-21

    Bisphenol A (BPA), which is used in polycarbonate and epoxy resins, affects the development or function of the central nervous system. Previously, we isolated a BPA-binding protein from rat brain, identified it as protein disulfide isomerase (PDI), and found that BPA binds to the b' domain of PDI and inhibits its activity. There are 20 kinds of PDI family proteins in mammalian endoplasmic reticulum. The member proteins each have a different length and domain arrangement. Here we investigated the binding of BPA and T3 to ERp29, ERp57, and ERp72, which each have the b or b' domain. BPA/T3 binding of ERp57 and that of ERp72 were lower than that of PDI, and BPA did not inhibit the oxidase or reductase activity of these proteins. On the other hand, BPA and T3 bound to ERp29 as strongly as to PDI. The CD spectrum of PDI was changed in the presence of BPA in a dose-dependent manner, while that of ERp29 was not, suggesting that BPA did not affect the conformation of ERp29. We found that PDI suppresses GH expression in rat GH3 cells stimulated by thyroid hormone (T3) overexpression of PDI and that ERp57 reduced the GH level, but overexpression of ERp29 did not change GH expression. These results suggested that affinity to T3 does not involve the reduction of the T3 response. In this study, ERp29 was first identified as a BPA-binding protein but is not involved in the T3 response of GH3 cells.

  15. Involvement of endoplasmic reticulum stress in formalin-induced pain is attenuated by 4-phenylbutyric acid

    Science.gov (United States)

    Zhou, Fan; Zhang, Wei; Zhou, Jianmei; Li, Meirong; Zhong, Feng; Zhang, Yun; Liu, Yuezhu; Wang, Yaping

    2017-01-01

    Background Endoplasmic reticulum (ER) stress is involved in many neurological and inflammatory responses. Peripheral inflammatory responses can induce central sensitization and trigger inflammatory pain. However, there is little research on the relationship between ER stress and inflammatory pain. In this study, we examined whether the ER stress response is involved in peripheral inflammatory pain using a formalin-induced rat pain model. Methods Rats were divided into the following five groups: control, formalin, formalin + vehicle, formalin + 4-phenylbutyric acid (4-PBA) (40 mg/kg) and formalin + 4-PBA (100 mg/kg). Formalin-induced pain was assessed behaviorally by recording licking activity. The expression levels of immunoglobulin-binding protein (BIP), activating transcription factor-6 (ATF6), phosphorylated inositol-requiring enzyme-1 (p-IRE1), phosphorylated protein kinase RNA-like ER kinase (p-PERK) and c-fos were quantitatively assessed by Western blot, and the distribution of BIP, ATF6 and c-fos in the lumbar enlargement of spinal cord were identified by immunohistochemistry in spinal dorsal horn slices. In addition, the concentrations of nitric oxide (NO) and prostaglandin E2 (PGE2) in the spinal cord were tested by biochemical measurement and enzyme-linked immunosorbent assay (ELISA), respectively. Results Intraperitoneal injection of 4-PBA at the dose of 100 mg/kg before formalin injection significantly decreased nociceptive behavior in the second phase compared with control, formalin, formalin + vehicle and formalin + 4-PBA (40 mg/kg) (Ppain and that inhibition of ER stress may attenuate central sensitization induced by peripheral inflammatory stimulation. PMID:28360534

  16. Melatonin Activates Endoplasmic Reticulum Stress and Apoptosis in Rats with Diethylnitrosamine-Induced Hepatocarcinogenesis.

    Directory of Open Access Journals (Sweden)

    Andrea Janz Moreira

    Full Text Available Hepatocellular carcinoma (HCC is one of the most lethal human cancers worldwide because of its high incidence, its metastatic potential and the low efficacy of conventional treatment. Inactivation of apoptosis is implicated in tumour progression and chemotherapy resistance, and has been linked to the presence of endoplasmic reticulum stress. Melatonin, the main product of the pineal gland, exerts anti-proliferative, pro-apoptotic and anti-angiogenic effects in HCC cells, but these effects still need to be confirmed in animal models. Male Wistar rats in treatment groups received diethylnitrosamine (DEN 50 mg/kg intraperitoneally twice/once a week for 18 weeks. Melatonin was given in drinking water at 1 mg/kg/d, beginning 5 or 12 weeks after the start of DEN administration. Melatonin improved survival rates and successfully attenuated liver injury, as shown by histopathology, decreased levels of serum transaminases and reduced expression of placental glutathione S-transferase. Furthermore, melatonin treatment resulted in a significant increase of caspase 3, 8 and 9 activities, polyadenosine diphosphate (ADP ribose polymerase (PARP cleavage, and Bcl-associated X protein (Bax/Bcl-2 ratio. Cytochrome c, p53 and Fas-L protein concentration were also significantly enhanced by melatonin. Melatonin induced an increased expression of activating transcription factor 6 (ATF6, C/EBP-homologous protein (CHOP and immunoglobulin heavy chain-binding protein (BiP, while cyclooxygenase (COX-2 expression decreased. Data obtained suggest that induction of apoptosis and ER stress contribute to the beneficial effects of melatonin in rats with DEN-induced HCC.

  17. A physical/psychological and biological stress combine to enhance endoplasmic reticulum stress

    Science.gov (United States)

    Mondal, Tapan Kumar; Emeny, Rebecca T.; Gao, Donghong; Ault, Jeffrey G.; Kasten-Jolly, Jane; Lawrence, David A.

    2015-01-01

    The generation of an immune response against infectious and other foreign agents is substantially modified by allostatic load, which is increased with chemical, physical and/or psychological stressors. The physical/psychological stress from cold-restraint (CR) inhibits host defense against Listeria monocytogenes (LM), due to early effects of the catecholamine norepinephrine (NE) from sympathetic nerves on β1-adrenoceptors (β1AR) of immune cells. Although CR activates innate immunity within 2 h, host defenses against bacterial growth is suppressed 2–3 days after infection (Cao and Lawrence 2002). CR enhances inducible nitric oxide synthase (iNOS) expression and NO production. The early innate activation leads to cellular reduction-oxidation (redox) changes of immune cells. Lymphocytes from CR-treated mice express fewer surface thiols. Splenic and hepatic immune cells also have fewer proteins with free thiols after CR and/or LM, and macrophages have less glutathione after the in vivo CR exposure or exposure to NE in vitro. The early induction of CR-induced oxidative stress elevates endoplasmic reticulum (ER) stress, which could interfere with keeping phagocytized LM within the phagosome or re-encapsuling LM by autophagy once they escape from the phagosome. ER stress-related proteins, such as glucose-regulated protein 78 (GRP78), have elevated expression with CR and LM. The results indicate that CR enhances the unfolded protein response (UPR), which interferes with host defenses against LM. Thus, it is postulated that increased stress, as exists with living conditions at low socioeconomic conditions, can lower host defenses against pathogens because of oxidative and ER stress processes. PMID:26391182

  18. Stress of endoplasmic reticulum modulates differentiation and lipogenesis of human adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Koc, Michal; Mayerová, Veronika; Kračmerová, Jana [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, CZ-100 00 (Czech Republic); Mairal, Aline [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Inserm, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, Cedex 4 (France); Mališová, Lucia; Štich, Vladimír [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, CZ-100 00 (Czech Republic); Langin, Dominique [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Inserm, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, Cedex 4 (France); University of Toulouse, UMR1048, Paul Sabatier University, 31432 Toulouse, Cedex 4 (France); Toulouse University Hospitals, Department of Clinical Biochemistry, 31059 Toulouse, Cedex 9 (France); Rossmeislová, Lenka, E-mail: Lenka.Rossmeislova@lf3.cuni.cz [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, CZ-100 00 (Czech Republic)

    2015-05-08

    Background: Adipocytes are cells specialized for storage of neutral lipids. This storage capacity is dependent on lipogenesis and is diminished in obesity. The reason for the decline in lipogenic activity of adipocytes in obesity remains unknown. Recent data show that lipogenesis in liver is regulated by pathways initiated by endoplasmic reticulum stress (ERS). Thus, we aimed at investigating the effect of ERS on lipogenesis in adipose cells. Methods: Preadipocytes were isolated from subcutaneous abdominal adipose tissue from obese volunteers and in vitro differentiated into adipocytes. ERS was induced pharmacologically by thapsigargin (TG) or tunicamycin (TM). Activation of Unfolded Protein Response pathway (UPR) was monitored on the level of eIF2α phosphorylation and mRNA expression of downstream targets of UPR sensors. Adipogenic and lipogenic capacity was evaluated by Oil Red O staining, measurement of incorporation of radio-labelled glucose or acetic acid into lipids and mRNA analysis of adipogenic/lipogenic markers. Results: Exposition of adipocytes to high doses of TG (100 nM) and TM (1 μg/ml) for 1–24 h enhanced expression of several UPR markers (HSPA5, EDEM1, ATF4, XBP1s) and phosphorylation of eIF2α. This acute ERS substantially inhibited expression of lipogenic genes (DGAT2, FASN, SCD1) and glucose incorporation into lipids. Moreover, chronic exposure of preadipocytes to low dose of TG (2.5 nM) during the early phases of adipogenic conversion of preadipocytes impaired both, lipogenesis and adipogenesis. On the other hand, chronic low ERS had no apparent effect on lipogenesis in mature adipocytes. Conclusions: Acute ERS weakened a capacity of mature adipocytes to store lipids and chronic ERS diminished adipogenic potential of preadipocytes. - Highlights: • High intensity ERS inhibits lipogenic capacity of adipocytes. • ERS impairs adipogenesis when present in early stages of adipogenesis. • Lipogenesis in mature adipocytes is not

  19. Acrolein cytotoxicity in hepatocytes involves endoplasmic reticulum stress, mitochondrial dysfunction and oxidative stress.

    Science.gov (United States)

    Mohammad, Mohammad K; Avila, Diana; Zhang, Jingwen; Barve, Shirish; Arteel, Gavin; McClain, Craig; Joshi-Barve, Swati

    2012-11-15

    Acrolein is a common environmental, food and water pollutant and a major component of cigarette smoke. Also, it is produced endogenously via lipid peroxidation and cellular metabolism of certain amino acids and drugs. Acrolein is cytotoxic to many cell types including hepatocytes; however the mechanisms are not fully understood. We examined the molecular mechanisms underlying acrolein hepatotoxicity in primary human hepatocytes and hepatoma cells. Acrolein, at pathophysiological concentrations, caused a dose-dependent loss of viability of hepatocytes. The death was apoptotic at moderate and necrotic at high concentrations of acrolein. Acrolein exposure rapidly and dramatically decreased intracellular glutathione and overall antioxidant capacity, and activated the stress-signaling MAP-kinases JNK, p42/44 and p38. Our data demonstrate for the first time in human hepatocytes, that acrolein triggered endoplasmic reticulum (ER) stress and activated eIF2α, ATF-3 and -4, and Gadd153/CHOP, resulting in cell death. Notably, the protective/adaptive component of ER stress was not activated, and acrolein failed to up-regulate the protective ER-chaperones, GRP78 and GRP94. Additionally, exposure to acrolein disrupted mitochondrial integrity/function, and led to the release of pro-apoptotic proteins and ATP depletion. Acrolein-induced cell death was attenuated by N-acetyl cysteine, phenyl-butyric acid, and caspase and JNK inhibitors. Our data demonstrate that exposure to acrolein induces a variety of stress responses in hepatocytes, including GSH depletion, oxidative stress, mitochondrial dysfunction and ER stress (without ER-protective responses) which together contribute to acrolein toxicity. Our study defines basic mechanisms underlying liver injury caused by reactive aldehyde pollutants such as acrolein.

  20. The Batten disease gene CLN3 confers resistance to endoplasmic reticulum stress induced by tunicamycin

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dan, E-mail: danw@bjmu.edu.cn [Department of Medical Genetics, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191 (China); Liu, Jing; Wu, Baiyan [Department of Medical Genetics, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191 (China); Tu, Bo; Zhu, Weiguo [Department of Biochemistry and Molecular Biology, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191 (China); Luo, Jianyuan, E-mail: jluo@som.umaryland.edu [Department of Medical Genetics, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191 (China); Department of Medical and Research Technology, School of Medicine, University of Maryland, Baltimore 21201 (United States)

    2014-04-25

    Highlights: • The work reveals a protective properties of CLN3 towards TM-induced apoptosis. • CLN3 regulates expression of the GRP78 and the CHOP in response to the ER stress. • CLN3 plays a specific role in the ERS response. - Abstract: Mutations in CLN3 gene cause juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease), an early-onset neurodegenerative disorder that is characterized by the accumulation of ceroid lipofuscin within lysosomes. The function of the CLN3 protein remains unclear and is presumed to be related to Endoplasmic reticulum (ER) stress. To investigate the function of CLN3 in the ER stress signaling pathway, we measured proliferation and apoptosis in cells transfected with normal and mutant CLN3 after treatment with the ER stress inducer tunicamycin (TM). We found that overexpression of CLN3 was sufficient in conferring increased resistance to ER stress. Wild-type CLN3 protected cells from TM-induced apoptosis and increased cell proliferation. Overexpression of wild-type CLN3 enhanced expression of the ER chaperone protein, glucose-regulated protein 78 (GRP78), and reduced expression of the proapoptotic protein CCAAT/-enhancer-binding protein homologous protein (CHOP). In contrast, overexpression of mutant CLN3 or siRNA knockdown of CLN3 produced the opposite effect. Together, our data suggest that the lack of CLN3 function in cells leads to a failure of management in the response to ER stress and this may be the key deficit in JNCL that causes neuronal degeneration.

  1. Previously unknown role for the ubiquitin ligase Ubr1 in endoplasmic reticulum-associated protein degradation.

    Science.gov (United States)

    Stolz, Alexandra; Besser, Stefanie; Hottmann, Heike; Wolf, Dieter H

    2013-09-17

    Quality control and degradation of misfolded proteins are essential processes of all cells. The endoplasmic reticulum (ER) is the entry site of proteins into the secretory pathway in which protein folding occurs and terminally misfolded proteins are recognized and retrotranslocated across the ER membrane into the cytosol. Here, proteins undergo polyubiquitination by one of the membrane-embedded ubiquitin ligases, in yeast Hrd1/Der3 (HMG-CoA reductase degradation/degradation of the ER) and Doa10 (degradation of alpha), and are degraded by the proteasome. In this study, we identify cytosolic Ubr1 (E3 ubiquitin ligase, N-recognin) as an additional ubiquitin ligase that can participate in ER-associated protein degradation (ERAD) in yeast. We show that two polytopic ERAD substrates, mutated transporter of the mating type a pheromone, Ste6* (sterile), and cystic fibrosis transmembrane conductance regulator, undergo Ubr1-dependent degradation in the presence and absence of the canonical ER ubiquitin ligases. Whereas in the case of Ste6* Ubr1 is specifically required under stress conditions such as heat or ethanol or in the absence of the canonical ER ligases, efficient degradation of human cystic fibrosis transmembrane conductance regulator requires function of Ubr1 already in wild-type cells under standard growth conditions. Together with the Hsp70 (heat shock protein) chaperone Ssa1 (stress-seventy subfamily A) and the AAA-type ATPase Cdc48 (cell division cycle), Ubr1 directs the substrate to proteasomal degradation. These data unravel another layer of complexity in ERAD.

  2. Endoplasmic reticulum stress induces different molecular structural alterations in human dilated and ischemic cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Ana Ortega

    Full Text Available BACKGROUND: The endoplasmic reticulum (ER is a multifunctional organelle responsible for the synthesis and folding of proteins as well as for signalling and calcium storage, that has been linked to the contraction-relaxation process. Perturbations of its homeostasis activate a stress response in diseases such as heart failure (HF. To elucidate the alterations in ER molecular components, we analyze the levels of ER stress and structure proteins in human dilated (DCM and ischemic (ICM cardiomyopathies, and its relationship with patient's functional status. METHODS AND RESULTS: We examined 52 explanted human hearts from DCM (n = 21 and ICM (n = 21 subjects and 10 non-failing hearts as controls. Our results showed specific changes in stress (IRE1, p<0.05; p-IRE1, p<0.05 and structural (Reticulon 1, p<0.01 protein levels. The stress proteins GRP78, XBP1 and ATF6 as well as the structural proteins RRBP1, kinectin, and Nogo A and B, were upregulated in both DCM and ICM patients. Immunofluorescence results were concordant with quantified Western blot levels. Moreover, we show a novel relationship between stress and structural proteins. RRBP1, involved in procollagen synthesis and remodeling, was related with left ventricular function. CONCLUSIONS: In the present study, we report the existence of alterations in ER stress response and shaping proteins. We show a plausible effect of the ER stress on ER structure in a suitable sample of DCM and ICM subjects. Patients with higher values of RRBP1 had worse left ventricular function.

  3. Polyamine Depletion Attenuates Isoproterenol-Induced Hypertrophy and Endoplasmic Reticulum Stress in Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Yan Lin

    2014-10-01

    Full Text Available Background/Aim: Polyamines (putrescine, spermidine and spermine play an essential role in cell growth, differentiation and apoptosis. Hypertrophy is accompanied by an increase in polyamine synthesis and endoplasmic reticulum stress (ERS in cardiomyocytes. The present study was undertaken to elucidate the molecular interactions between polyamines, ERS and cardiac hypertrophy. Methods: Myocardial hypertrophy was simulated by incubating cultured neonatal rat cardiomyocytes in 100 nM isoproterenol (ISO. Polyamine deletion was achieved using 0.5 mM difluoromethylornithine (DFMO. Hypertrophy was estimated using cell surface area measurements, total protein concentrations and atrial natriuretic peptide (ANP gene expression. Apoptosis was measured using flow cytometry and transmission electron microscopy. Expression of ornithine decarboxylase (ODC and spermidine/spermine N1-acetyltransferase (SSAT were analyzed via real-time PCR and Western blotting. Protein expression of ERS and apoptosis factors were analyzed using Western blotting. Results: DFMO (0.5 mM and 2 mM treatments significantly attenuated hypertrophy and apoptosis induced by ISO in cardiomyocytes. DFMO also decreased lactate dehydrogenase (LDH and malondialdehyde (MDA level in the culture medium. In addition, DFMO (0.5 mM down regulated the expression of ODC, glucose-regulated protein 78 (GRP78, C/EBP homologous protein (CHOP, cleaved caspase-12, and Bax and up regulated the expression of SSAT and Bcl-2. Finally, these changes were partly reversed by the addition of exogenous putrescine (0.5 mM. Conclusion: The data presented here suggest that polyamine depletion could inhibit cardiac hypertrophy and apoptosis, which is closely related to the ERS pathway.

  4. Nongenomic STAT5-dependent effects on Golgi apparatus and endoplasmic reticulum structure and function.

    Science.gov (United States)

    Lee, Jason E; Yang, Yang-Ming; Liang, Feng-Xia; Gough, Daniel J; Levy, David E; Sehgal, Pravin B

    2012-03-01

    We report unexpected nongenomic functions of signal transducer and activator of transcription (STAT) 5 species in the cytoplasm aimed at preserving the structure and function of the Golgi apparatus and rough endoplasmic reticulum (ER) in vascular cells. Immunoimaging and green fluorescent protein-tagged-STAT5a protein localization studies showed the constitutive association of nonphosphorylated STAT5a, and to a lesser extent STAT5b, with the Golgi apparatus and of STAT5a with centrosomes in human pulmonary arterial endothelial and smooth muscle cells. Acute knockdown of STAT5a/b species using small interfering RNAs (siRNAs), including in the presence of an mRNA synthesis inhibitor (5,6-dichloro-1-β-d-ribofuranosylbenzimidazole), produced a dramatic phenotype within 1 day, consisting of dilatation and fragmentation of Golgi cisternae, a marked tubule-to-cyst change in the ER, increased accumulation of reticulon-4 (RTN4)/Nogo-B and atlastin-3 (ATL3) at cyst-zone boundaries, cystic separation of the outer and inner nuclear membranes, accompanied by scalloped/lunate distortion of the nucleus, with accumulation of RTN4 on convex sides of distorted nuclei. These cells showed inhibition of vesicular stomatitis virus G protein glycoprotein trafficking, mitochondrial fragmentation, and reduced mitochondrial function. STAT5a/b(-/-) mouse embryo fibroblasts also showed altered ER/Golgi dynamics. RTN4 knockdown using siRNA did not affect development of the cystic phenotype; ATL3 siRNA led to effacement of cyst-zone boundaries. In magnetic-bead cross-immunopanning assays, ATL3 bound both STAT5a and STAT5b. Remarkably, this novel cystic ER/lunate nucleus phenotype was characteristic of vascular cells in arterial lesions of idiopathic pulmonary hypertension, an unrelentingly fatal human disease. These data provide evidence of a STAT-family protein regulating the structure of a cytoplasmic organelle and implicate this mechanism in the pathogenesis of a human disease.

  5. Vertical sleeve gastrectomy reduces blood pressure and hypothalamic endoplasmic reticulum stress in mice

    Directory of Open Access Journals (Sweden)

    Anne K. McGavigan

    2017-03-01

    Full Text Available Bariatric surgery, such as vertical sleeve gastrectomy (VSG, causes remarkable improvements in cardiometabolic health, including hypertension remission. However, the mechanisms responsible remain undefined and poorly studied. Therefore, we developed and validated the first murine model of VSG that recapitulates the blood pressure-lowering effect of VSG using gold-standard radiotelemetry technology. We used this model to investigate several potential mechanisms, including body mass, brain endoplasmic reticulum (ER stress signaling and brain inflammatory signaling, which are all critical contributors to the pathogenesis of obesity-associated hypertension. Mice fed on a high-fat diet underwent sham or VSG surgery and radiotelemeter implantation. Sham mice were fed ad libitum or were food restricted to match their body mass to VSG-operated mice to determine the role of body mass in the ability of VSG to lower blood pressure. Blood pressure was then measured in freely moving unstressed mice by radiotelemetry. VSG decreased energy intake, body mass and fat mass. Mean arterial blood pressure (MAP was reduced in VSG-operated mice compared with both sham-operated groups. VSG-induced reductions in MAP were accompanied by a body mass-independent decrease in hypothalamic ER stress, hypothalamic inflammation and sympathetic nervous system tone. Assessment of gut microbial populations revealed VSG-induced increases in the relative abundance of Gammaproteobacteria and Enterococcus, and decreases in Adlercreutzia. These results suggest that VSG reduces blood pressure, but this is only partly due to the reduction in body weight. VSG-induced reductions in blood pressure may be driven by a decrease in hypothalamic ER stress and inflammatory signaling, and shifts in gut microbial populations.

  6. Endoplasmic reticulum stress-sensing mechanism is activated in Entamoeba histolytica upon treatment with nitric oxide.

    Directory of Open Access Journals (Sweden)

    Julien Santi-Rocca

    Full Text Available The Endoplasmic Reticulum stores calcium and is a site of protein synthesis and modification. Changes in ER homeostasis lead to stress responses with an activation of the unfolded protein response (UPR. The Entamoeba histolytica endomembrane system is simple compared to those of higher eukaryotes, as a canonical ER is not observed. During amoebiasis, an infection of the human intestine and liver by E. histolytica, nitric oxide (NO triggers an apoptotic-like event preceded by an impairment of energy production and a loss of important parasite pathogenic features. We address the question of how this ancient eukaryote responds to stress induced by immune components (i.e. NO and whether stress leads to ER changes and subsequently to an UPR. Gene expression analysis suggested that NO triggers stress responses marked by (i dramatic up-regulation of hsp genes although a bona fide UPR is absent; (ii induction of DNA repair and redox gene expression and iii up-regulation of glycolysis-related gene expression. Enzymology approaches demonstrate that NO directly inhibits glycolysis and enhance cysteine synthase activity. Using live imaging and confocal microscopy we found that NO dramatically provokes extensive ER fragmentation. ER fission in E. histolytica appears as a protective response against stress, as it has been recently proposed for neuron self-defense during neurologic disorders. Chronic ER stress is also involved in metabolic diseases including diabetes, where NO production reduces ER calcium levels and activates cell death. Our data highlighted unique cellular responses of interest to understand the mechanisms of parasite death during amoebiasis.

  7. Calreticulin Translocation Aggravates Endoplasmic Reticulum Stress-associated Apoptosis during Cardiomyocyte Hypoxia/Reoxygenation

    Institute of Scientific and Technical Information of China (English)

    Fei-Fei Xu; Xiu-Hua Liu

    2015-01-01

    Background:Calreticulin (CRT) is major Ca2+-binding chaperone mainly resident in the endoplasmic reticulum (ER) lumen.Recently,it has been shown that non-ER CRT regulates a wide array of cellular responses.We previously found that CRT was up-regulated during hypoxia/reoxygenation (H/R) and this study was aimed to investigate whether CRT nuclear translocation aggravates ER stress (ERS)-associated apoptosis during H/R injury in neonatal rat cardiomyocytes.Methods:Apoptosis rate and lactate dehydrogenase (LDH) leakage in culture medium were measured as indices of cell injury.Immunofluorescence staining showed the morphological changes of ER and intracellular translocation of CRT.Western blotting or reverse transcription polymerase chain reaction was used to detect the expression of target molecules.Results:Compared with control,H/R increased apoptosis rate and LDH activity.The ER became condensed and bubbled,and CRT translocated to the nucleus.Western blotting showed up-regulation of CRT,Nrf2,activating transcription factor 4 (ATF4),CHOP and caspase-12 expression after H/R.Exogenous CRT overexpression induced by plasmid transfection before H/R increased cell apoptosis,LDH leakage,ER disorder,CRT nuclear translocation and the expression of ERS-associated molecules.However,administration of the ERS inhibitor,taurine,or CRT siRNA alleviated cell injury,ER disorder,and inhibited ERS-associated apoptosis.Conclusions:Our results indicated that during H/R stress,CRT translocation increases cell apoptosis and LDH leakage,aggravates ER disorder,up-regulates expression of nuclear transcription factors,Nrf2 and ATF4,and activates ERS-associated apoptosis.

  8. Expression levels of urotensin II are associated with endoplasmic reticulum stress in patients with severe preeclampsia.

    Science.gov (United States)

    He, W-Y; Chen, G-J; Lai, X; Wu, F; Tang, C-S; Zhang, A-H

    2016-02-01

    Hypertensive disorders in pregnancy remain a leading cause of maternal and perinatal mortality and morbidity. We aim to study urotensin II (UII) and its association with the markers of endoplasmic reticulum stress (ERS) in placentas of patients with severe preeclampsia (SPE). Thirty-three patients with hypertensive disorders in pregnancy and twenty-two healthy pregnant women designated as healthy controls were recruited. Expression levels of UII, UII receptor (GPR14) and the markers of ERS in placenta specimens of patients were performed. Plasma and urinary UII levels were measured by radioimmunoassay method. Our study showed that the plasma levels of UII in patients with hypertensive disorders during pregnancy were significantly higher than that of the healthy control group. However, the urinary levels of UII had no difference in two groups. The expression level of mRNA and protein of UII, CCAAT/enhancer-binding protein homologous protein (CHOP) and glucose regulation protein 78 in placentas of SPE was significantly increased. Immunohistochemical analyses show that the expression levels of UII and ERS markers were mainly located in the cytoplasm of placental trophoblastic cells. Moreover, expression level of UII mRNA and protein was positively correlated with that of the markers of ERS. The positive correlation between UII and ERS markers expression level also corresponded with the level of patient's systolic blood pressure and proteinuria. In conclusion, we first verify that expression of UII is associated with ERS in patients with SPE. Our results indicate that UII may trigger ERS in placental trophoblastic cells in patients with preeclampsia.

  9. Apolipoprotein E4 impairs macrophage efferocytosis and potentiates apoptosis by accelerating endoplasmic reticulum stress.

    Science.gov (United States)

    Cash, James G; Kuhel, David G; Basford, Joshua E; Jaeschke, Anja; Chatterjee, Tapan K; Weintraub, Neal L; Hui, David Y

    2012-08-10

    Apolipoprotein (apo) E4 is a major genetic risk factor for a wide spectrum of inflammatory metabolic diseases, including atherosclerosis, diabetes, and Alzheimer disease. This study compared diet-induced adipose tissue inflammation as well as functional properties of macrophages isolated from human APOE3 and APOE4 mice to identify the mechanism responsible for the association between apoE4 and inflammatory metabolic diseases. The initial study confirmed previous reports that APOE4 gene replacement mice were less sensitive than APOE3 mice to diet-induced body weight gain but exhibited hyperinsulinemia, and their adipose tissues were similarly inflamed as those in APOE3 mice. Peritoneal macrophages isolated from APOE4 mice were defective in efferocytosis compared with APOE3 macrophages. Increased cell death was also observed in APOE4 macrophages when stimulated with LPS or oxidized LDL. Western blot analysis of cell lysates revealed that APOE4 macrophages displayed elevated JNK phosphorylation indicative of cell stress even under basal culturing conditions. Significantly higher cell stress due mainly to potentiation of endoplasmic reticulum (ER) stress signaling was also observed in APOE4 macrophages after LPS and oxidized LDL activation. The defect in efferocytosis and elevated apoptosis sensitivity of APOE4 macrophages was ameliorated by treatment with the ER chaperone tauroursodeoxycholic acid. Taken together, these results showed that apoE4 expression causes macrophage dysfunction and promotes apoptosis via ER stress induction. The reduction of ER stress in macrophages may be a viable option to reduce inflammation and inflammation-related metabolic disorders associated with the apoE4 polymorphism.

  10. Endoplasmic reticulum stress contributes to Helicobacter pylori VacA-induced apoptosis.

    Directory of Open Access Journals (Sweden)

    Yuko Akazawa

    Full Text Available Vacuolating cytotoxin A (VacA is one of the important virulence factors produced by H. pylori. VacA induces apoptotic cell death, which is potentiated by ammonia. VacA also causes cell death by mitochondrial damage, via signaling pathways that are not fully defined. Our aim was to determine whether endoplasmic reticulum (ER stress is associated with VacA-induced mitochondrial dysfunction and apoptosis. We found that C/EBP homologous protein (CHOP, a key signaling protein of ER stress-induced apoptosis, was transcriptionally up-regulated following incubation of gastric epithelial cells with VacA. The effect of VacA on CHOP induction was significantly enhanced by co-incubation with ammonium chloride. Phosphorylation of eukaryotic initiation factor 2 (eIF2-alpha, which is known to occur downstream of the ER stress sensor PKR-like ER-localized eIF2-alpha kinase (PERK and to regulate CHOP expression, was also observed following incubation with VacA in the presence of ammonium chloride. Knockdown of CHOP by siRNA resulted in inhibition of VacA-induced apoptosis. Further studies showed that silencing of the PERK gene with siRNA attenuated VacA-mediated phosphorylation of eIF2-alpha, CHOP induction, expression of BH3-only protein Bim and Bax activation, and cell death induced by VacA with ammonium chloride, indicating that ER stress may lead to mitochondrial dysfunction during VacA-induced toxicity. Activation of ER stress and up-regulation of BH3-only proteins were also observed in human H. pylori-infected gastric mucosa. Collectively, this study reveals a possible association between VacA-induced apoptosis in gastric epithelial cells, and activation of ER stress in H. pylori-positive gastric mucosa.

  11. Molecular chaperone activity of tomato (Lycopersicon esculentum) endoplasmic reticulum-located small heat shock protein.

    Science.gov (United States)

    Mamedov, Tarlan G; Shono, Mariko

    2008-03-01

    The gene encoding the small heat shock protein (sHSP), LeHSP21.5, has been previously cloned from tomato (GenBank accession no. AB026983). The deduced amino acid sequence of this tomato sHSP was most similar to that of other endoplasmic reticulum (ER)-localized sHSPs (ER-sHSP) and can be predicted to target the ER. We examined whether the gene product of LeHSP21.5 (probable ER-sHSP) can act as molecular chaperone. For functional analysis, LeHSP21.5 protein was expressed in Escherichia coli as His(6)-tagged protein in the C-terminal and purified. We confirmed that ER-sHSP could provide thermal protection of soluble proteins in vitro. We compared the thermal stability of E. coli strain BL21 (DE3) transformed with pET-ER-sHSP with the control E. coli strain BL21(DE3) transformed with only the pET vector under heat shock and IPTG-induced conditions. Most of the protein extracts from E. coli cells expressing ER-sHSP were protected from heat-induced denaturation, whereas extracts from cells not expressing ER-sHSP were very heat-sensitive under these conditions. A similar protective effect was observed when purified ER-sHSP was added to an E. coli cell extract. ER-sHSP prevented the thermal aggregation and inactivation of citrate synthase. These collective findings indicate that ER-sHSP can function as a molecular chaperone in vitro.

  12. Analysis of the Endoplasmic Reticulum Subproteome in the Livers of Type 2 Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Sang-Oh Kwon

    2012-12-01

    Full Text Available Type 2 diabetes is a chronic metabolic disease that results from insulin resistance in the liver, muscle, and adipose tissue and relative insulin deficiency. The endoplasmic reticulum (ER plays a crucial role in the regulation of the cellular response to insulin. Recently, ER stress has been known to reduce the insulin sensitivity of the liver and lead to type 2 diabetes. However, detailed mechanisms of ER stress response that leads to type 2 diabetes remains unknown. To obtain a global view of ER function in type 2 diabetic liver and identify proteins that may be responsible for hepatic ER stress and insulin resistance, we performed proteomics analysis of mouse liver ER using nano UPLC-MSE. A total of 1584 proteins were identified in control C57 and type 2 diabetic db/db mice livers. Comparison of the rER and sER proteomes from normal mice showed that proteins involved in protein synthesis and metabolic process were enriched in the rER, while those associated with transport and cellular homeostasis were localized to the sER. In addition, proteins involved in protein folding and ER stress were found only in the rER. In the livers of db/db mice, however, the functions of the rER and sER were severely disrupted, including the capacity to resolve ER stress. These results provide new insight into the research on hepatic insulin resistance and type 2 diabetes and are suggestive of the potential use of the differentially expressed hepatic ER proteins as biomarkers for hepatic insulin resistance and type 2 diabetes.

  13. Acidosis Activates Endoplasmic Reticulum Stress Pathways through GPR4 in Human Vascular Endothelial Cells.

    Science.gov (United States)

    Dong, Lixue; Krewson, Elizabeth A; Yang, Li V

    2017-01-27

    Acidosis commonly exists in the tissue microenvironment of various pathophysiological conditions such as tumors, inflammation, ischemia, metabolic disease, and respiratory disease. For instance, the tumor microenvironment is characterized by acidosis and hypoxia due to tumor heterogeneity, aerobic glycolysis (the "Warburg effect"), and the defective vasculature that cannot efficiently deliver oxygen and nutrients or remove metabolic acid byproduct. How the acidic microenvironment affects the function of blood vessels, however, is not well defined. GPR4 (G protein-coupled receptor 4) is a member of the proton-sensing G protein-coupled receptors and it has high expression in endothelial cells (ECs). We have previously reported that acidosis induces a broad inflammatory response in ECs. Acidosis also increases the expression of several endoplasmic reticulum (ER) stress response genes such as CHOP (C/EBP homologous protein) and ATF3 (activating transcription factor 3). In the current study, we have examined acidosis/GPR4- induced ER stress pathways in human umbilical vein endothelial cells (HUVEC) and other types of ECs. All three arms of the ER stress/unfolded protein response (UPR) pathways were activated by acidosis in ECs as an increased expression of phosphorylated eIF2α (eukaryotic initiation factor 2α), phosphorylated IRE1α (inositol-requiring enzyme 1α), and cleaved ATF6 upon acidic pH treatment was observed. The expression of other downstream mediators of the UPR, such as ATF4, ATF3, and spliced XBP-1 (X box-binding protein 1), was also induced by acidosis. Through genetic and pharmacological approaches to modulate the expression level or activity of GPR4 in HUVEC, we found that GPR4 plays an important role in mediating the ER stress response induced by acidosis. As ER stress/UPR can cause inflammation and cell apoptosis, acidosis/GPR4-induced ER stress pathways in ECs may regulate vascular growth and inflammatory response in the acidic microenvironment.

  14. SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum.

    Directory of Open Access Journals (Sweden)

    Kèvin Knoops

    2008-09-01

    Full Text Available Positive-strand RNA viruses, a large group including human pathogens such as SARS-coronavirus (SARS-CoV, replicate in the cytoplasm of infected host cells. Their replication complexes are commonly associated with modified host cell membranes. Membrane structures supporting viral RNA synthesis range from distinct spherular membrane invaginations to more elaborate webs of packed membranes and vesicles. Generally, their ultrastructure, morphogenesis, and exact role in viral replication remain to be defined. Poorly characterized double-membrane vesicles (DMVs were previously implicated in SARS-CoV RNA synthesis. We have now applied electron tomography of cryofixed infected cells for the three-dimensional imaging of coronavirus-induced membrane alterations at high resolution. Our analysis defines a unique reticulovesicular network of modified endoplasmic reticulum that integrates convoluted membranes, numerous interconnected DMVs (diameter 200-300 nm, and "vesicle packets" apparently arising from DMV merger. The convoluted membranes were most abundantly immunolabeled for viral replicase subunits. However, double-stranded RNA, presumably revealing the site of viral RNA synthesis, mainly localized to the DMV interior. Since we could not discern a connection between DMV interior and cytosol, our analysis raises several questions about the mechanism of DMV formation and the actual site of SARS-CoV RNA synthesis. Our data document the extensive virus-induced reorganization of host cell membranes into a network that is used to organize viral replication and possibly hide replicating RNA from antiviral defense mechanisms. Together with biochemical studies of the viral enzyme complex, our ultrastructural description of this "replication network" will aid to further dissect the early stages of the coronavirus life cycle and its virus-host interactions.

  15. Protective effect of catechin in type I Gaucher disease cells by reducing endoplasmic reticulum stress

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yea-Jin [Department of Biotechnology, Hoseo University, Baebang, Asan, Chungnam, 336-795 (Korea, Republic of); Kim, Sung-Jo, E-mail: sungjo@hoseo.edu [Department of Biotechnology, Hoseo University, Baebang, Asan, Chungnam, 336-795 (Korea, Republic of); Heo, Tae-Hwe, E-mail: thhur92@catholic.ac.kr [College of Pharmacy, The Catholic University of Korea, Bucheon 420-743 (Korea, Republic of)

    2011-09-23

    Highlights: {yields} Catechin reduces the expression level of ER stress marker protein in type I Gaucher disease cells. {yields} Catechin induces the proliferation rate of GD cells similar levels to normal cells. {yields} Catechin improves wound healing activity. {yields} Catechin-mediated reductions in ER stress may be associated with enhanced cell survival. {yields} We identified catechin as a protective agent against ER stress in GD cells. -- Abstract: Gaucher disease (GD) is the most common lysosomal storage disorder (LSD) and is divided into three phenotypes, I, II, and III. Type I is the most prevalent form and has its onset in adulthood. The degree of endoplasmic reticulum (ER) stress is one of the factors that determine GD severity. It has recently been reported that antioxidants reduce ER stress and apoptosis by scavenging the oxidants that cause oxidative stress. For this report, we investigated the possibility that catechin can act on type I GD patient cells to alleviate the pathogenic conditions of GD. We treated GD cells with catechin and examined the expression level of GRP78/BiP (an ER stress marker) by western blots and fluorescence microscopy, the proliferation rate of GD cells, and scratch-induced wound healing activity. Our results show that catechin reduces the expression level of GRP78/BiP, leads to cell proliferation rates of GD cells similar levels to normal cells, and improves wound healing activity. We conclude that catechin protects against ER stress in GD cells and catechin-mediated reductions in ER stress may be associated with enhanced cell survival.

  16. Endoplasmic reticulum stress mediates the anti-inflammatory effect of ethyl pyruvate in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Ge Wang

    Full Text Available Ethyl pyruvate (EP is a simple aliphatic ester of the metabolic intermediate pyruvate that has been demonstrated to be a potent anti-inflammatory agent in a variety of in vivo and in vitro model systems. However, the protective effects and mechanisms underlying the actions of EP against endothelial cell (EC inflammatory injury are not fully understood. Previous studies have confirmed that endoplasmic reticulum stress (ERS plays an important role in regulating the pathological process of EC inflammation. In this study, our aim was to explore the effects of EP on tumor necrosis factor-α (TNF-α-induced inflammatory injury in human umbilical vein endothelial cells (HUVECs and to explore the role of ERS in this process. TNF-α treatment not only significantly increased the adhesion of monocytes to HUVECs and inflammatory cytokine (sICAM1, sE-selectin, MCP-1 and IL-8 production in cell culture supernatants but it also increased ICAM and MMP9 protein expression in HUVECs. TNF-α also effectively increased the ERS-related molecules in HUVECs (GRP78, ATF4, caspase12 and p-PERK. EP treatment effectively reversed the effects of the TNF-α-induced adhesion of monocytes on HUVECs, inflammatory cytokines and ERS-related molecules. Furthermore, thapsigargin (THA, an ERS inducer attenuated the protective effects of EP against TNF-α-induced inflammatory injury and ERS. The PERK siRNA treatment not only inhibited ERS-related molecules but also mimicked the protective effects of EP to decrease TNF-α-induced inflammatory injury. In summary, we have demonstrated for the first time that EP can effectively reduce vascular endothelial inflammation and that this effect at least in part depends on the attenuation of ERS.

  17. Effects of lead exposure on placental cellular apoptosis and endoplasmic reticulum stress in rats

    Institute of Scientific and Technical Information of China (English)

    Wang Yunying; Hu Haiyan; Li Hong; Ma Haiyan; Xu Fengsen; Qu Baoming

    2014-01-01

    Background Lead exposure during pregnancy contributes to fetal abortion and/or teratogenesis.Endoplasmic reticulum (ER) apoptosis can be induced by various pathological conditions when ER function is disturbed.However,it is unclear whether ER stress and apoptosis play a role in the etiology of lead-exposed disease status.We aimed to investigate whether lead induced placental apoptosis and subsequent toxicity is initiated by ER apoptosis via caspase-12.Methods Sixty-three female Wistar rats were exposed to lead in drinking water during various gestational periods.Blood lead level was determined by atomic absorption spectrophotometry.Placental cytoplasmic organelles were examined by electronic microscopy.Placental caspase-12 mRNA expression was evaluated by qRT-PCR.TUNEL assay was used to determine the placental apoptosis.Results Lead exposure significant induced ER apoptosis compared to that of the controls (P <0.05),accompanied with increased caspase-12 mRNA expression.Significant differences of caspase-12 mRNA expression levels were observed among the four groups (F=13.78,P <0.05).Apoptotic index (AI) was significantly increased in experimental groups compared to that of the controls (F=96.15,P <0.05).In lead-exposed groups,trophoblast cells underwent degeneration and fibrin deposition; Mitochondria were swollen and decreased in number; ER swelling,expansion,and vacuolization were observed.Conclusion Lead exposure contributes to placental apoptosis,as well as increased caspase-12 mRNA expression,which in turn promoted ER stress.

  18. Melatonin inhibits tunicamycin-induced endoplasmic reticulum stress and insulin resistance in skeletal muscle cells.

    Science.gov (United States)

    Quan, Xiaojuan; Wang, Juyan; Liang, Chunlian; Zheng, Huadong; Zhang, Lin

    2015-08-07

    The prevalence of type 2 diabetes mellitus (T2D) is increasing worldwide. Melatonin possesses various beneficial metabolic actions, decreased levels of which may accelerate T2D. Endoplasmic reticulum stress (ERS) has been linked to insulin resistance in multiple tissues, but the role of melatonin on ERS and insulin resistance in skeletal muscle has not yet been investigated. In this study, the results showed that tunicamycin decreased insulin-stimulated Akt phosphorylation, but promoted the phosphorylation of protein kinase R-like ER protein kinase (PERK) time-dependently in C2C12 cells. Consistently, ERS gene markers, including binding immunoglobulin protein (BIP)/glucose regulated protein 78 (GRP78) expression and the splicing of X box binding protein 1 (XBP-1), were activated by tunicamycin time-dependently. Interestingly, melatonin pretreatment reversed the elevated PERK phosphorylation, as well as the activation of Bip expression and XBP-1 splicing, and prevented the inhibitory effect of tunicamycin on Akt phosphorylation. In addition, the insulin-provoked glucose transport was reduced by tunicamycin, and then promoted by melatonin pretreatment. A strong phosphorylation of inositol-requiring enzyme 1 (IRE-1), c-JUN NH2-terminal kinase (JNK), and insulin receptor substrate 1 (IRS-1) serine, and simultaneously, a dramatic decrease of IRS-1 tyrosine phosphorylation were observed in the presence of tunicamycin, leading to a blockade of insulin signaling, which was reversed by melatonin pretreatment. Furthermore, luzindole pretreatment acted inversely with melatonin action on glucose uptake and insulin signaling. Therefore, these results demonstrated that melatonin pretreatment inhibited the activated role of tunicamycin on ERS and insulin resistance through melatonin receptor-mediated IRE-1/JNK/IRS-1 insulin signaling in skeletal muscle cells.

  19. RIPK1 regulates survival of human melanoma cells upon endoplasmic reticulum stress through autophagy.

    Science.gov (United States)

    Luan, Qi; Jin, Lei; Jiang, Chen Chen; Tay, Kwang Hong; Lai, Fritz; Liu, Xiao Ying; Liu, Yi Lun; Guo, Su Tang; Li, Chun Ying; Yan, Xu Guang; Tseng, Hsin-Yi; Zhang, Xu Dong

    2015-01-01

    Although RIPK1 (receptor [TNFRSF]-interacting protein kinase 1) is emerging as a critical determinant of cell fate in response to cellular stress resulting from activation of death receptors and DNA damage, its potential role in cell response to endoplasmic reticulum (ER) stress remains undefined. Here we report that RIPK1 functions as an important prosurvival mechanism in melanoma cells undergoing pharmacological ER stress induced by tunicamycin (TM) or thapsigargin (TG) through activation of autophagy. While treatment with TM or TG upregulated RIPK1 and triggered autophagy in melanoma cells, knockdown of RIPK1 inhibited autophagy and rendered the cells sensitive to killing by TM or TG, recapitulating the effect of inhibition of autophagy. Consistently, overexpression of RIPK1 enhanced induction of autophagy and conferred resistance of melanoma cells to TM- or TG-induced cell death. Activation of MAPK8/JNK1 or MAPK9/JNK2, which phosphorylated BCL2L11/BIM leading to its dissociation from BECN1/Beclin 1, was involved in TM- or TG-induced, RIPK1-mediated activation of autophagy; whereas, activation of the transcription factor HSF1 (heat shock factor protein 1) downstream of the ERN1/IRE1-XBP1 axis of the unfolded protein response was responsible for the increase in RIPK1 in melanoma cells undergoing pharmacological ER stress. Collectively, these results identify upregulation of RIPK1 as an important resistance mechanism of melanoma cells to TM- or TG-induced ER stress by protecting against cell death through activation of autophagy, and suggest that targeting the autophagy-activating mechanism of RIPK1 may be a useful strategy to enhance sensitivity of melanoma cells to therapeutic agents that induce ER stress.

  20. Protrudin regulates endoplasmic reticulum morphology and function associated with the pathogenesis of hereditary spastic paraplegia.

    Science.gov (United States)

    Hashimoto, Yutaka; Shirane, Michiko; Matsuzaki, Fumiko; Saita, Shotaro; Ohnishi, Takafumi; Nakayama, Keiichi I

    2014-05-09

    Protrudin is a membrane protein that regulates polarized vesicular trafficking in neurons. The protrudin gene (ZFYVE27) is mutated in a subset of individuals with hereditary spastic paraplegia (HSP), and protrudin is therefore also referred to as spastic paraplegia (SPG) 33. We have now generated mice that express a transgene for dual epitope-tagged protrudin under control of a neuron-specific promoter, and we have subjected highly purified protrudin-containing complexes isolated from the brain of these mice to proteomics analysis to identify proteins that associate with protrudin. Protrudin was found to interact with other HSP-related proteins including myelin proteolipid protein 1 (SPG2), atlastin-1 (SPG3A), REEP1 (SPG31), REEP5 (similar to REEP1), Kif5A (SPG10), Kif5B, Kif5C, and reticulon 1, 3, and 4 (similar to reticulon 2, SPG12). Membrane topology analysis indicated that one of three hydrophobic segments of protrudin forms a hydrophobic hairpin domain similar to those of other SPG proteins. Protrudin was found to localize predominantly to the tubular endoplasmic reticulum (ER), and forced expression of protrudin promoted the formation and stabilization of the tubular ER network. The protrudin(G191V) mutant, which has been identified in a subset of HSP patients, manifested an increased intracellular stability, and cells expressing this mutant showed an increased susceptibility to ER stress. Our results thus suggest that protrudin contributes to the regulation of ER morphology and function, and that its deregulation by mutation is a causative defect in HSP.

  1. The role of endoplasmic reticulum stress in endothelial dysfunction induced by homocysteine thiolactone.

    Science.gov (United States)

    Wu, Shujin; Gao, Xiang; Yang, Shehua; Meng, Min; Yang, Xiaolai; Ge, Bin

    2015-06-01

    Our and other studies have reported that homocysteine thiolactone (HTL) could induce endothelial dysfunction. However, the precise mechanism was largely unknown. In this study, we tested the most possible factor-endoplasmic reticulum (ER) stress, which was demonstrated to be involved in endothelial dysfunction in cardiovascular disease. Acetylcholine (Ach)-induced endothelium-dependent relaxation (EDR) and biochemical parameters were measured in rat isolated aorta. The level of reactive oxygen species (ROS) and NO was designed by specific fluorescent probe DCFH-DA and DAF-FM DA separately. The nuclear translocation of the NF-κB was studied by immune-fluorescence. The mRNA expression and protein expression of GRP78--a key indicator for the induction of ER stress--were assessed by real-time PCR and Western blot. Two ER stress inhibitors-4-PBA (5 mm) and Tudca (500 μg/mL)--significantly prevented HTL-impaired EDR and increased NO release, endothelial nitric oxide synthase (eNOS) and SOD activity, decreased ROS production, NADPH activity, NOX-4 mRNA and MDA level. We also found that 4-PBA and Tudca blocked HTL--induced NF-κB activation thus inhibiting the downstream target gene production including TNF-α and ICAM-1. Simultaneously, HTL increased the mRNA and protein level of GRP78. HTL could induce ER stress leading to a downstream enhancement of oxidative stress and inflammation, which finally caused vascular endothelial dysfunction. © 2015 Société Française de Pharmacologie et de Thérapeutique.

  2. Sulfur mustard induces an endoplasmic reticulum stress response in the mouse ear vesicant model

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yoke-Chen; Wang, James D. [Rutgers University, Pharmacology and Toxicology, 170 Frelinghuysen Rd, Piscataway, NJ 08854 (United States); Svoboda, Kathy K. [Texas A and M University, Baylor College of Dentistry, Center for Craniofacial Research 3302 Gaston Ave, Dallas, Texas 75246 (United States); Casillas, Robert P. [MRIGlobal, 425 Volker Boulevard, Kansas City, MO 64110 (United States); Laskin, Jeffrey D. [UMDNJ-Robert Wood Johnson Medical School, Environmental and Occupational Medicine, 170 Frelinghuysen Rd, Piscataway, NJ 08854 (United States); Gordon, Marion K. [Rutgers University, Pharmacology and Toxicology, 170 Frelinghuysen Rd, Piscataway, NJ 08854 (United States); Gerecke, Donald R., E-mail: gerecke@eohsi.rutgers.edu [Rutgers University, Pharmacology and Toxicology, 170 Frelinghuysen Rd, Piscataway, NJ 08854 (United States)

    2013-04-15

    The endoplasmic reticulum (ER) stress response is a cell survival pathway upregulated when cells are under severe stress. Severely damaged mouse ear skin exposed to the vesicant, sulfur mustard (bis-2-chloroethyl sulfide, SM), resulted in increased expression of ER chaperone proteins that accompany misfolded and incorrectly made proteins targeted for degradation. Time course studies with SM using the mouse ear vesicant model (MEVM) showed progressive histopathologic changes including edema, separation of the epidermis from the dermis, persistent inflammation, upregulation of laminin γ2 (one of the chains of laminin-332, a heterotrimeric skin glycoprotein required for wound repair), and delayed wound healing from 24 h to 168 h post exposure. This was associated with time related increased expression of the cell survival ER stress marker, GRP78/BiP, and the ER stress apoptosis marker, GADD153/CHOP, suggesting simultaneous activation of both cell survival and non-mitochondrial apoptosis pathways. Dual immunofluorescence labeling of a keratinocyte migration promoting protein, laminin γ2 and GRP78/BIP, showed colocalization of the two molecules 72 h post exposure indicating that the laminin γ2 was misfolded after SM exposure and trapped within the ER. Taken together, these data show that ER stress is induced in mouse skin within 24 h of vesicant exposure in a defensive response to promote cell survival; however, it appears that this response is rapidly overwhelmed by the apoptotic pathway as a consequence of severe SM-induced injury. - Highlights: ► We demonstrated ER stress response in the mouse ear vesicant model. ► We described the asymmetrical nature of wound repair in the MEVM. ► We identified the distribution of various ER stress markers in the MEVM.

  3. Cis-hydroxyproline-induced inhibition of pancreatic cancer cell growth is mediated by endoplasmic reticulum stress

    Institute of Scientific and Technical Information of China (English)

    Christoph Mueller; Joerg Emmrich; Robert Jaster; Dagmar Braun; Stefan Liebe; Gisela Sparmann

    2006-01-01

    AIM: To investigate the biological effects of cishydroxyproline (CHP) on the rat pancreatic carcinoma cell line DSL6A, and to examine the underlying molecular mechanisms.METHODS: The effect of CHP on DSL6A cell proliferation was assessed by using BrdU incorporation. The expression of focal adhesion kinase (FAK) was characterized by Western blotting and immunofluorescence.Induction of endoplasmic reticulum (ER) stress was investigated by using RT-PCR and Western blotting for the glucose-related protein-78 (GRP78) and growth arrest and DNA inducible gene (GADD153). Cell viability was determined through measuring the metabolic activity based on the reduction potential of DSL6A cells. Apoptosis was analyzed by detection of caspase-3 activation and cleavage of poly(ADP-ribose) polymerase (PARP) as well as DNA laddering.RESULTS: In addition to inhibition of proliferation,incubation with CHP induced proteolytic cleavage of FAK and a delocalisation of the enzyme from focal adhesions,followed by a loss of cell adherence. Simultaneously,we could show an increased expression of GRP78 and GADD153, indicating a CHP-mediated activation of the ER stress cascade in the DSL6A cell line. Prolonged incubation of DSL6A cells with CHP finally resulted in apoptotic cell death. Beside L-proline, the inhibition of intracellular proteolysis by addition of a broad spectrum protease inhibitor could abolish the effects of CHP on cellular functions and the molecular processes. In contrast, impeding the activity of apoptosis-executing caspases had no influence on CHP-mediated cell damage.CONCLUSION: Our data suggest that the initiation of ER stress machinery by CHP leads to an activation of intracellular proteolytic processes, including caspaseindependent FAK degradation, resulting in damaging pancreatic carcinoma cells.

  4. A new endoplasmic reticulum-targeted two-photon fluorescent probe for imaging of superoxide anion in diabetic mice.

    Science.gov (United States)

    Xiao, Haibin; Liu, Xiao; Wu, Chuanchen; Wu, Yaohuan; Li, Ping; Guo, Xiaomeng; Tang, Bo

    2017-05-15

    Excessive or unfolded proteins accumulation in endoplasmic reticulum (ER) will cause ER stress, which has evolved to involve in various metabolic diseases. In particular, ER stress plays an important role in the pathogenesis of diabetes. Both ER stress and course of diabetes accompany oxidative stress and production of reactive oxygen species (ROS), among which superoxide anion (O2(•-)) is the first produced ROS and has been recognized as cell signaling mediator involved in the physiological and pathological process of diabetes. Hence, the development of effective monitoring methods of O2(•-) in live cells and in vivo is of great importance for ascertaining the onset and progress of related diseases. Herein, a new endoplasmic reticulum-targeted two-photon fluorescent probe termed ER-BZT is designed and synthesized for imaging of O2(•-). The probe ER-BZT shows high sensitivity, selectivity, stability, and low cytotoxicity. Based on these superior properties, the rise of O2(•-) levels in endoplasmic reticulum induced with different stimuli is visualized by one- and two-photon fluorescence imaging. Most importantly, by utilizing ER-BZT, the two-photon fluorescence imaging results demonstrate that the endogenous O2(•-) concentration in abdominal or hepatic tissue of diabetic mice is higher than that in normal mice. Meanwhile, after treated with metformin, a broad-spectrum antidiabetic drug, the diabetic mice exhibit depressed O2(•-) level. The proposed two-photon probe, ER-BZT might serve as perfect tool to image the O2(•-) fluctuations and study the relevance between O2(•-) and various diseases in live cells and in vivo.

  5. Endoplasmic reticulum stress and membranous nephropathy%内质网应激与膜性肾病

    Institute of Scientific and Technical Information of China (English)

    李静

    2011-01-01

    Endoplasmic reticulum ( ER) is an intracellular compartment that plays a critical role in the processing, folding and assembling of newly synthesized proteins. A scress-induced impairment of ER membrane integrity can be injurious by causing leakage of calcium ions and other ER luminal components and interfering with protein transport to Golgi apparatus. This in tum initiates the unfolded protein response ( UPR) . an integrated intracellular signaling pathway that responds to ER stress. As a defense mechanism,UPR can protect the cells from being impaired by ER stress. Also, UPR can activate pathways of cell death in response to prolonged or severe ER stress. This review highlights the current knowledge of ER stress in membranous nephropathy.%内质网(endoplasmic reticulum,ER)是调节蛋白质合成、折叠及组装的重要场所.各种原因如ER中Ca2+缺乏均可引起ER功能紊乱,使蛋白质从ER向高尔基体的转运受阻[1],最终引发内质网应激(endoplasmic reticulum stress,ERS).细胞通过激活未折叠蛋白反应(the unfolded protein response,UPR)保护ERS引起损伤的细胞,强烈或持久的ERS又可启动UPR的促凋亡信号.肾病尤其是膜性肾病(membranous nephropathy,MN)的发生发展与ERS密切相关,文中主要阐述ERS在MN发病机制中的作用.

  6. 内质网应激与缺血后处理的心肌保护%Endoplasmic reticulum stress and the cardioprotection of ischemic postconditioning

    Institute of Scientific and Technical Information of China (English)

    杨海燕; 刘新伟

    2010-01-01

    Endoplasmic reticulum stress is the cell adaptation reaction for a variety of noxious stimulation. But excessive endoplasmic reticulum stress can induce apoptosis and further lead to myocardium injury in the process of ischemia-reperfusion. Ischemic postconditioning is a phenomenon of endogenous protection which attenuates reperfusion injury by several signal transduction pathways, and regulation of endoplasmic reticulum stress is an important aspect. This review will discuss the cardioprotection mechanisms of ischemic postconditioning from endoplasmic reticulum stress.%内质网应激(endoplasmic reticulum stress,ERS)是细胞对各种伤害性刺激的适应性反应.在心肌缺血/再灌注(ischemia/reperfusion,I/R)过程中,过度的ERS引起心肌细胞凋亡导致心肌损伤.缺血后处理(ischemic postconditioning,I-postC)是心肌对抗I/R损伤的内源性保护现象,可通过多条信号转导途径发挥心肌保护作用,对ERS的调节是其重要方面.现将从ERS的角度探讨I-postC的心肌保护机制.

  7. Quantification of plasmodesmatal endoplasmic reticulum coupling between sieve elements and companion cells using fluorescence redistribution after photobleaching

    DEFF Research Database (Denmark)

    Martens, Helle; Roberts, Alison G.; Oparka, Karl J.;

    2006-01-01

    Transgenic tobacco (Nicotiana tabacum) was studied to localize the activity of phloem loading during development and to establish whether the endoplasmic reticulum (ER) of the companion cell (CC) and the sieve element (SE) reticulum is continuous by using a SUC2 promoter-green fluorescent protein...... retrieval along the pathway is an integral component of phloem function. GFP fluorescence was limited to CCs where it was visualized as a well-developed ER network in close proximity to the plasma membrane. ER coupling between CC and SEs was tested in wild-type tobacco using an ER-specific fluorochrome...... and fluorescence redistribution after photobleaching (FRAP), and showed that the ER is continuous via pore-plasmodesma units. ER coupling between CC and SE was quantified by determining the mobile fraction and half-life of fluorescence redistribution and compared with that of other cell types. In all tissues...

  8. Interaction of Bap31 and MHC class I molecules and their traffic out of the endoplasmic reticulum1

    OpenAIRE

    ABE, FUMIYOSHI; Van Prooyen, Nancy; Ladasky, John J.; Edidin, Michael

    2009-01-01

    The endoplasmic reticulum (ER) protein Bap31 associates with nascent class I MHC molecules. It appears to mediate the export of class I MHC molecules from the ER and may also be involved in their quality control. Here we use Förster resonance energy transfer (FRET) and quantitative fluorescence imaging to show that in human, HeLa, cells Bap31 clusters with MHC class I (HLA-A2) molecules in the ER, and traffics via export vesicles to the ER/Golgi intermediate compartment, ERGIC. FRET between B...

  9. Calcium signaling and endoplasmic reticulum dynamics during fertilization in marine protostome worms belonging to the phylum Nemertea.

    Science.gov (United States)

    Stricker, Stephen A

    2014-08-01

    Metaphase-I-arrested eggs of marine protostome worms in the phylum Nemertea generate a series of point-source calcium waves during fertilization. Such calcium oscillations depend on inositol-1,4,5-trisphosphate-mediated calcium release from endoplasmic reticulum (ER) stores that undergo structural reorganizations prior to and after fertilization. This article reviews fertilization-induced calcium transients and ER dynamics in nemertean eggs and compares these topics to what has been reported for other animals in order to identify unifying characteristics and distinguishing features of calcium responses during fertilization across the animal kingdom. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. The endoplasmic reticulum is a target organelle for trivalent dimethylarsinic acid (DMA{sup III})-induced cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Naranmandura, Hua, E-mail: narenman@zju.edu.cn [Department of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Xu, Shi [Department of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Koike, Shota [Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675 (Japan); Pan, Li Qiang [Department of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Chen, Bin [Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China); Wang, Yan Wei; Rehman, Kanwal; Wu, Bin [Department of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Chen, Zhe [Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou (China); Suzuki, Noriyuki, E-mail: n-suzuki@p.chiba-u.ac.jp [Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675 (Japan)

    2012-05-01

    The purpose of present study was to characterize the endoplasmic reticulum stress and generation of ROS in rat liver RLC-16 cells by exposing to trivalent dimethylarsinous acid (DMA{sup III}) and compared with that of trivalent arsenite (iAs{sup III}) and monomethylarsonous acid (MMA{sup III}). Protein kinase-like endoplasmic reticulum kinase (PERK) phosphorylation was significantly induced in cells exposed to DMA{sup III}, while there was no change in phosphorylated PERK (P-PERK) detected in cells after exposure to iAs{sup III} or MMA{sup III}. The generation of reactive oxygen species (ROS) after DMA{sup III} exposure was found to take place specifically in the endoplasmic reticulum (ER), while previous reports showed that ROS was generated in mitochondria following exposure to MMA{sup III}. Meanwhile, cycloheximide (CHX) which is an inhibitor of protein biosynthesis strongly inhibited the DMA{sup III}-induced intracellular ROS generation in the ER and the phosphorylation of PERK, suggesting the induction of ER stress probably occurs through the inhibition of the protein folding process. Activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) mRNA were induced by all three arsenic species, however, evidence suggested that they might be induced by different pathways in the case of iAs{sup III} and MMA{sup III}. In addition, ER resident molecular chaperone glucose-regulated protein78 (GRP78) was not affected by trivalent arsenicals, while it was induced in positive control only at high concentration (Thapsigargin;Tg), suggesting the GRP78 is less sensitive to low levels of ER stress. In summary, our findings demonstrate that the endoplasmic reticulum is a target organelle for DMA{sup III}-induced cytotoxicity. Highlights: ►ER is a target organelle for trivalent DMA{sup III}-induced cytotoxicity. ►Generation of ROS in ER can be induced specially by trivalent DMA{sup III}. ►ER-stress and generation of ROS are caused by the increase in

  11. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase

    DEFF Research Database (Denmark)

    Thastrup, Ole; Cullen, P J; Drøbak, B K

    1990-01-01

    Thapsigargin, a tumor-promoting sesquiterpene lactone, discharges intracellular Ca2+ in rat hepatocytes, as it does in many vertebrate cell types. It appears to act intracellularly, as incubation of isolated rat liver microsomes with thapsigargin induces a rapid, dose-dependent release of stored Ca....... This hypothesis is strongly supported by the demonstration that thapsigargin causes a rapid inhibition of the Ca2(+)-activated ATPase activity of rat liver microsomes, with an identical dose dependence to that seen in whole cell or isolated microsome Ca2+ discharge. The inhibition of the endoplasmic reticulum...

  12. The SAT Protein of Porcine Parvovirus Accelerates Viral Spreading through Induction of Irreversible Endoplasmic Reticulum Stress.

    Science.gov (United States)

    Mészáros, István; Tóth, Renáta; Olasz, Ferenc; Tijssen, Peter; Zádori, Zoltán

    2017-08-15

    The SAT protein (SATp) of porcine parvovirus (PPV) accumulates in the endoplasmic reticulum (ER), and SAT deletion induces the slow-spreading phenotype. The in vitro comparison of the wild-type Kresse strain and its SAT knockout (SAT(-)) mutant revealed that prolonged cell integrity and late viral release are responsible for the slower spreading of the SAT(-) virus. During PPV infection, regardless of the presence or absence of SATp, the expression of downstream ER stress response proteins (Xbp1 and CHOP) was induced. However, in the absence of SATp, significant differences in the quantity and the localization of CHOP were detected, suggesting a role of SATp in the induction of irreversible ER stress in infected cells. The involvement of the induction of irreversible ER stress in porcine testis (PT) cell necrosis and viral egress was confirmed by treatment of infected cells by ER stress-inducing chemicals (MG132, dithiothreitol, and thapsigargin), which accelerated the egress and spreading of both the wild-type and the SAT(-) viruses. UV stress induction had no beneficial effect on PPV infection, underscoring the specificity of ER stress pathways in the process. However, induction of CHOP and its nuclear translocation cannot alone be responsible for the biological effect of SAT, since nuclear CHOP could not complement the lack of SAT in a coexpression experiment.IMPORTANCE SATp is encoded by an alternative open reading frame of the PPV genome. Earlier we showed that SATp of the attenuated PPV NADL-2 strain accumulates in the ER and accelerates virus release and spreading. Our present work revealed that slow spreading is a general feature of SAT(-) PPVs and is the consequence of prolonged cell integrity. PPV infection induced ER stress in infected cells regardless of the presence of SATp, as demonstrated by the morphological changes of the ER and expression of the stress response proteins Xbp1 and CHOP. However, the presence of SATp made the ER stress more severe

  13. Glutamine treatment attenuates endoplasmic reticulum stress and apoptosis in TNBS-induced colitis.

    Science.gov (United States)

    Crespo, Irene; San-Miguel, Beatriz; Prause, Carolina; Marroni, Norma; Cuevas, María J; González-Gallego, Javier; Tuñón, María J

    2012-01-01

    Endoplasmic reticulum (ER) stress and apoptotic cell death play an important role in the pathogenesis and perpetuation of inflammatory bowel disease (IBD). We aimed to explore the potential of glutamine to reduce ER stress and apoptosis in a rat model of experimental IBD. Colitis was induced in male Wistar rats by intracolonic administration of 30 mg of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Glutamine (25 mg/dL) was given by rectal route daily for 2 d or 7 d. Both oxidative stress (TBARS concentration and oxidised/reduced glutathione ratio) and ER stress markers (CHOP, BiP, calpain-1 and caspase-12 expression) increased significantly within 48 h of TNBS instillation, and glutamine attenuated the extent of the changes. Glutamine also inhibited the significant increases of ATF6, ATF4 and spliced XBP-1 mRNA levels induced by TNBS instillation. TNBS-colitis resulted in a significant increase in p53 and cytochrome c expression, and a reduced Bcl-xL expression and Bax/Bcl-2 ratio. These effects were significantly inhibited by glutamine. Treatment with the amino acid also resulted in significant decreases of caspase-9, caspase-8 and caspase-3 activities. Double immunofluorescence staining showed co-localization of CHOP and cleaved caspase-3 in colon sections. Phospho-JNK and PARP-1 expression was also significantly higher in TNBS-treated rats, and treatment with glutamine significantly decreased JNK phosphorylation and PARP-1 proteolysis. To directly address the effect of glutamine on ER stress and apoptosis in epithelial cells, the ER stress inducers brefeldin A and tunicamycin were added to Caco-2 cells that were treated with glutamine (5 mM and 10 mM). The significant enhancement in PERK, ATF6 phosphorylated IRE1, BiP and cleaved caspase-3 expression induced by brefeldin A and tunicamycin was partly prevented by glutamine. Data obtained indicated that modulation of ER stress signalling and anti-apoptotic effects contribute to protection by glutamine against damage

  14. Glutamine treatment attenuates endoplasmic reticulum stress and apoptosis in TNBS-induced colitis.

    Directory of Open Access Journals (Sweden)

    Irene Crespo

    Full Text Available Endoplasmic reticulum (ER stress and apoptotic cell death play an important role in the pathogenesis and perpetuation of inflammatory bowel disease (IBD. We aimed to explore the potential of glutamine to reduce ER stress and apoptosis in a rat model of experimental IBD. Colitis was induced in male Wistar rats by intracolonic administration of 30 mg of 2,4,6-trinitrobenzene sulfonic acid (TNBS. Glutamine (25 mg/dL was given by rectal route daily for 2 d or 7 d. Both oxidative stress (TBARS concentration and oxidised/reduced glutathione ratio and ER stress markers (CHOP, BiP, calpain-1 and caspase-12 expression increased significantly within 48 h of TNBS instillation, and glutamine attenuated the extent of the changes. Glutamine also inhibited the significant increases of ATF6, ATF4 and spliced XBP-1 mRNA levels induced by TNBS instillation. TNBS-colitis resulted in a significant increase in p53 and cytochrome c expression, and a reduced Bcl-xL expression and Bax/Bcl-2 ratio. These effects were significantly inhibited by glutamine. Treatment with the amino acid also resulted in significant decreases of caspase-9, caspase-8 and caspase-3 activities. Double immunofluorescence staining showed co-localization of CHOP and cleaved caspase-3 in colon sections. Phospho-JNK and PARP-1 expression was also significantly higher in TNBS-treated rats, and treatment with glutamine significantly decreased JNK phosphorylation and PARP-1 proteolysis. To directly address the effect of glutamine on ER stress and apoptosis in epithelial cells, the ER stress inducers brefeldin A and tunicamycin were added to Caco-2 cells that were treated with glutamine (5 mM and 10 mM. The significant enhancement in PERK, ATF6 phosphorylated IRE1, BiP and cleaved caspase-3 expression induced by brefeldin A and tunicamycin was partly prevented by glutamine. Data obtained indicated that modulation of ER stress signalling and anti-apoptotic effects contribute to protection by glutamine

  15. Endoplasmic reticulum stress is involved in podocyte apoptosis induced by saturated fatty acid palmitate

    Institute of Scientific and Technical Information of China (English)

    TAO Jian-ling; WEN Yu-bing; SHI Bing-yang; ZHANG Hong; RUAN Xiong-zhong; LI Hang; LI Xue-mei; DONG Wen-ji; LI Xue-wang

    2012-01-01

    Background Podocyte apoptosis is recently indicated as an early phenomenon of diabetic nephropathy.Pancreatic β-cells exposed to saturated free fatty acid palmitate undergo irreversible endoplasmic reticulum (ER) stress and consequent apoptosis,contributing to the onset of diabetes.We hypothesized that palmitate could induce podocyte apoptosis via ER stress,which initiates or aggravates proteinuria in diabetic nephropathy.Methods Podocyte apoptosis was detected by 4',6-diamidio-2-phenylindole (DAPI) stained apoptotic cell count and Annexin V-PI stain.The expressions of ER molecule chaperone glucose-regulated protein 78 (GRP78),indicators of ER-associated apoptosis C/EBP homologous protein (CHOP),and Bcl-2 were assayed by Western blotting and real-time PCR.GRP78 and synaptopodin were co-localized by immunofluorescence stain.Results Palmitate significantly increased the percentage of cultured apoptotic murine podocytes time-dependently when loading 0.75 mmol/L (10 hours,13 hours,and 15 hours compared with 0 hour,P <0.001) and dose-dependently when loading palmitate ranging from 0.25 to 1.00 mmol/L for 15 hours (compared to control,P <0.001).Palmitate time-dependently and dose-dependently increased the protein expression of GRP78 and CHOP,and decreased that of Bcl-2.Palmitate loading ranging from 0.5 to 1.0 mmol/L for 12 hours significantly increased mRNA of GRP78 and CHOP,and decreased that of Bcl-2 compared to control (P <0.001),with the maximum concentration being 0.75 mmol/L.Palmitate 0.5 mmol/L loading for 3 hours,8 hours,and 12 hours significantly increased mRNA of GRP78 and CHOP,and decreased that of Bcl-2 compared to 0 hour (P <0.001),with the maximum effect at 3 hours.Confocal microscopy demonstrated that GRP78 expression was significantly increased when exposed to 0.5 mmol/L of palmitate for 8 hours compared to control.Conclusion Palmitate could induce podocyte apoptosis via ER stress,suggesting podocyte apoptosis and consequent proteinuria caused

  16. Ca2+ uptake by the endoplasmic reticulum Ca2+-ATPase in rat microvascular endothelial cells.

    Science.gov (United States)

    Moccia, Francesco; Berra-Romani, Roberto; Baruffi, Silvana; Spaggiari, Santina; Signorelli, Silvia; Castelli, Loretta; Magistretti, Jacopo; Taglietti, Vanni; Tanzi, Franco

    2002-01-01

    In non-excitable cells, many agonists increase the intracellular Ca(2+) concentration ([Ca(2+)](i)) by inducing an inositol 1,4,5-trisphosphate (IP(3))-mediated Ca(2+) release from the intracellular stores. Ca(2+) influx from the extracellular medium may then sustain the Ca(2+) signal. [Ca(2+)](i) recovers its resting level as a consequence of Ca(2+)-removing mechanisms, i.e. plasma-membrane Ca(2+)-ATPase (PMCA) pump, Na(+)/Ca(2+) exchanger (NCX) and sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA) pump. In a study performed in pancreatic acinar cells, evidence has been provided suggesting that, during the decay phase of the agonist-evoked Ca(2+) transients, the Ca(2+) concentration within the intracellular stores remains essentially constant [Mogami, Tepikin and Petersen (1998) EMBO J. 17, 435-442]. It was therefore hypothesized that, in such a situation, intracellular Ca(2+) is not only picked up by the SERCA pump, but is also newly released through IP(3)-sensitive Ca(2+) channels, with the balance between these two processes being approximately null. The main aim of the present work was to test this hypothesis by a different experimental approach. Using cardiac microvascular endothelial cells, we found that inhibition of the SERCA pump has no effect on the time course of agonist-evoked Ca(2+) transients. This result was not due to a low capacity of the SERCA pump since, after agonist removal, this pump proved to be very powerful in clearing the excess of intracellular Ca(2+). We showed further that: (i) in order to avoid a rapid removal of Ca(2+) by the SERCA pump, continuous IP(3) production appears to be required throughout all of the decay phase of the Ca(2+) transient; and (ii) Ca(2+) picked up by the SERCA pump can be fully and immediately released by agonist application. All these results support the model of Mogami, Tepikin and Petersen [(1998) EMBO J. 17, 435-442]. Since the SERCA pump did not appear to be involved in shaping the decay phase of the

  17. The Pathogen-Occupied Vacuoles of Anaplasma phagocytophilum and Anaplasma marginale Interact with the Endoplasmic Reticulum.

    Science.gov (United States)

    Truchan, Hilary K; Cockburn, Chelsea L; Hebert, Kathryn S; Magunda, Forgivemore; Noh, Susan M; Carlyon, Jason A

    2016-01-01

    The genus Anaplasma consists of tick-transmitted obligate intracellular bacteria that invade white or red blood cells to cause debilitating and potentially fatal infections. A. phagocytophilum, a human and veterinary pathogen, infects neutrophils to cause granulocytic anaplasmosis. A. marginale invades bovine erythrocytes. Evidence suggests that both species may also infect endothelial cells in vivo. In mammalian and arthropod host cells, A. phagocytophilum and A. marginale reside in host cell derived pathogen-occupied vacuoles (POVs). While it was recently demonstrated that the A. phagocytophilum-occupied vacuole (ApV) intercepts membrane traffic from the trans-Golgi network, it is unclear if it or the A. marginale-occupied vacuole (AmV) interacts with other secretory organelles. Here, we demonstrate that the ApV and AmV extensively interact with the host endoplasmic reticulum (ER) in endothelial, myeloid, and/or tick cells. ER lumen markers, calreticulin, and protein disulfide isomerase, and the ER membrane marker, derlin-1, were pronouncedly recruited to the peripheries of both POVs. ApV association with the ER initiated early and continued throughout the infection cycle. Both the ApV and AmV interacted with the rough ER and smooth ER. However, only derlin-1-positive rough ER derived vesicles were delivered into the ApV lumen where they localized with intravacuolar bacteria. Transmission electron microscopy identified multiple ER-POV membrane contact sites on the cytosolic faces of both species' vacuoles that corresponded to areas on the vacuoles' lumenal faces where intravacuolar Anaplasma organisms closely associated. A. phagocytophilum is known to hijack Rab10, a GTPase that regulates ER dynamics and morphology. Yet, ApV-ER interactions were unhindered in cells in which Rab10 had been knocked down, demonstrating that the GTPase is dispensable for the bacterium to parasitize the ER. These data establish the ApV and AmV as pathogen-host interfaces that directly

  18. Endoplasmic reticulum quality control is involved in the mechanism of endoglin-mediated hereditary haemorrhagic telangiectasia.

    Directory of Open Access Journals (Sweden)

    Bassam R Ali

    Full Text Available Hereditary haemorrhagic telangiectasia (HHT is an autosomal dominant genetic condition affecting the vascular system and is characterised by epistaxis, arteriovenous malformations and mucocutaneous and gastrointestinal telangiectases. This disorder affects approximately 1 in 8,000 people worldwide. Significant morbidity is associated with this condition in affected individuals, and anaemia can be a consequence of repeated haemorrhages from telangiectasia in the gut and nose. In the majority of the cases reported, the condition is caused by mutations in either ACVRL1 or endoglin genes, which encode components of the TGF-beta signalling pathway. Numerous missense mutations in endoglin have been reported as causative defects for HHT but the exact underlying cellular mechanisms caused by these mutations have not been fully established despite data supporting a role for the endoplasmic reticulum (ER quality control machinery. For this reason, we examined the subcellular trafficking of twenty-five endoglin disease-causing missense mutations. The mutant proteins were expressed in HeLa and HEK293 cell lines, and their subcellular localizations were established by confocal fluorescence microscopy alongside the analysis of their N-glycosylation profiles. ER quality control was found to be responsible in eight (L32R, V49F, C53R, V125D, A160D, P165L, I271N and A308D out of eleven mutants located on the orphan extracellular domain in addition to two (C363Y and C382W out of thirteen mutants in the Zona Pellucida (ZP domain. In addition, a single intracellular domain missense mutant was examined and found to traffic predominantly to the plasma membrane. These findings support the notion of the involvement of the ER's quality control in the mechanism of a significant number, but not all, missense endoglin mutants found in HHT type 1 patients. Other mechanisms including loss of interactions with signalling partners as well as adverse effects on functional

  19. Prolonged endoplasmic reticulum stress alters placental morphology and causes low birth weight

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Takashige, E-mail: tkawakami@ph.bunri-u.ac.jp; Yoshimi, Masaki; Kadota, Yoshito; Inoue, Masahisa; Sato, Masao; Suzuki, Shinya

    2014-03-01

    The role of endoplasmic reticulum (ER) stress in pregnancy remains largely unknown. Pregnant mice were subcutaneously administered tunicamycin (Tun), an ER stressor, as a single dose [0, 50, and 100 μg Tun/kg/body weight (BW)] on gestation days (GDs) 8.5, 12.5, and 15.5. A high incidence (75%) of preterm delivery was observed only in the group treated with Tun 100 μg/kg BW at GD 15.5, indicating that pregnant mice during late gestation are more susceptible to ER stress on preterm delivery. We further examined whether prolonged in utero exposure to ER stress affects fetal development. Pregnant mice were subcutaneously administered a dose of 0, 20, 40, and 60 μg Tun/kg from GD 12.5 to 16.5. Tun treatment decreased the placental and fetal weights in a dose-dependent manner. Histological evaluation showed the formation of a cluster of spongiotrophoblast cells in the labyrinth zone of the placenta of Tun-treated mice. The glycogen content of the fetal liver and placenta from Tun-treated mice was lower than that from control mice. Tun treatment decreased mRNA expression of Slc2a1/glucose transporter 1 (GLUT1), which is a major transporter for glucose, but increased placental mRNA levels of Slc2a3/GLUT3. Moreover, maternal exposure to Tun resulted in a decrease in vascular endothelial growth factor receptor-1 (VEGFR-1), VEGFR-2, and placental growth factor. These results suggest that excessive and exogenous ER stress may induce functional abnormalities in the placenta, at least in part, with altered GLUT and vascular-related gene expression, resulting in low infant birth weight. - Highlights: • Maternal exposure to excessive ER stress induced preterm birth and IUGR. • Prolonged excessive ER stress altered the formation of the placental labyrinth. • ER stress decreased GLUT1 mRNA expression in the placenta, but increased GLUT3. • ER stress-induced IUGR causes decreased glycogen and altered glucose transport.

  20. Characterization of a Novel Endoplasmic Reticulum Protein Involved in Tubercidin Resistance in Leishmania major.

    Directory of Open Access Journals (Sweden)

    Juliana Ide Aoki

    2016-09-01

    Full Text Available Tubercidin (TUB is a toxic adenosine analog with potential antiparasitic activity against Leishmania, with mechanism of action and resistance that are not completely understood. For understanding the mechanisms of action and identifying the potential metabolic pathways affected by this drug, we employed in this study an overexpression/selection approach using TUB for the identification of potential targets, as well as, drug resistance genes in L. major. Although, TUB is toxic to the mammalian host, these findings can provide evidences for a rational drug design based on purine pathway against leishmaniasis.After transfection of a cosmid genomic library into L. major Friedlin (LmjF parasites and application of the overexpression/selection method, we identified two cosmids (cosTUB1 and cosTU2 containing two different loci capable of conferring significant levels of TUB resistance. In the cosTUB1 contained a gene encoding NUPM1-like protein, which has been previously described as associated with TUB resistance in L. amazonensis. In the cosTUB2 we identified and characterized a gene encoding a 63 kDa protein that we denoted as tubercidin-resistance protein (TRP. Functional analysis revealed that the transfectants were less susceptible to TUB than LmjF parasites or those transfected with the control vector. In addition, the trp mRNA and protein levels in cosTUB2 transfectants were higher than LmjF. TRP immunolocalization revealed that it was co-localized to the endoplasmic reticulum (ER, a cellular compartment with many functions. In silico predictions indicated that TRP contains only a hypothetical transmembrane domain. Thus, it is likely that TRP is a lumen protein involved in multidrug efflux transport that may be involved in the purine metabolic pathway.This study demonstrated for the first time that TRP is associated with TUB resistance in Leishmania. The next challenge is to determine how TRP mediates TUB resistance and whether purine

  1. Cadmium-induced teratogenicity: Association with ROS-mediated endoplasmic reticulum stress in placenta

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhen; Wang, Hua; Xu, Zhong Mei; Ji, Yan-Li; Chen, Yuan-Hua; Zhang, Zhi-Hui; Zhang, Cheng; Meng, Xiu-Hong; Zhao, Mei; Xu, De-Xiang, E-mail: xudex@126.com

    2012-03-01

    The placenta is essential for sustaining the growth of the fetus. An increased endoplasmic reticulum (ER) stress has been associated with the impaired placental and fetal development. Cadmium (Cd) is a potent teratogen that caused fetal malformation and growth restriction. The present study investigated the effects of maternal Cd exposure on placental and fetal development. The pregnant mice were intraperitoneally injected with CdCl{sub 2} (4.5 mg/kg) on gestational day 9. As expected, maternal Cd exposure during early limb development significantly increased the incidences of forelimb ectrodactyly in fetuses. An obvious impairment in the labyrinth, a highly developed tissue of blood vessels, was observed in placenta of mice treated with CdCl{sub 2}. In addition, maternal Cd exposure markedly repressed cell proliferation and increased apoptosis in placenta. An additional experiment showed that maternal Cd exposure significantly upregulated the expression of GRP78, an ER chaperone. Moreover, maternal Cd exposure induced the phosphorylation of placental eIF2α, a downstream molecule of PERK signaling. In addition, maternal Cd exposure significantly increased the level of placental CHOP, another target of PERK signaling, indicating that the unfolded protein response (UPR) signaling was activated in placenta of mice treated with CdCl{sub 2}. Interestingly, alpha-phenyl-N-t-butylnitrone, a free radical spin-trapping agent, significantly alleviated Cd-induced placental ER stress and UPR. Taken together, these results suggest that reactive oxygen species (ROS)-mediated ER stress might be involved in Cd-induced impairment on placental and fetal development. Antioxidants may be used as pharmacological agents to protect against Cd-induced fetal malformation and growth restriction. -- Highlights: ► Cd induces fetal malformation and growth restriction. ► Cd induced placental ER stress and UPR. ► PBN alleviates Cd-induced ER stress and UPR in placenta. ► ROS-mediated ER

  2. Acrolein cytotoxicity in hepatocytes involves endoplasmic reticulum stress, mitochondrial dysfunction and oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Mohammad, Mohammad K. [Department of Medicine, University of Louisville (United States); Alcohol Research Center, University of Louisville (United States); Avila, Diana [Department of Medicine, University of Louisville (United States); Department of Pharmacology and Toxicology, University of Louisville (United States); Alcohol Research Center, University of Louisville (United States); Zhang, Jingwen [Department of Medicine, University of Louisville (United States); Alcohol Research Center, University of Louisville (United States); Barve, Shirish [Department of Medicine, University of Louisville (United States); Department of Pharmacology and Toxicology, University of Louisville (United States); Alcohol Research Center, University of Louisville (United States); Arteel, Gavin [Department of Pharmacology and Toxicology, University of Louisville (United States); Alcohol Research Center, University of Louisville (United States); McClain, Craig [Department of Medicine, University of Louisville (United States); Department of Pharmacology and Toxicology, University of Louisville (United States); Alcohol Research Center, University of Louisville (United States); Robley Rex VAMC, Louisville, KY (United States); Joshi-Barve, Swati, E-mail: s0josh01@louisville.edu [Department of Medicine, University of Louisville (United States); Department of Pharmacology and Toxicology, University of Louisville (United States); Alcohol Research Center, University of Louisville (United States)

    2012-11-15

    Acrolein is a common environmental, food and water pollutant and a major component of cigarette smoke. Also, it is produced endogenously via lipid peroxidation and cellular metabolism of certain amino acids and drugs. Acrolein is cytotoxic to many cell types including hepatocytes; however the mechanisms are not fully understood. We examined the molecular mechanisms underlying acrolein hepatotoxicity in primary human hepatocytes and hepatoma cells. Acrolein, at pathophysiological concentrations, caused a dose-dependent loss of viability of hepatocytes. The death was apoptotic at moderate and necrotic at high concentrations of acrolein. Acrolein exposure rapidly and dramatically decreased intracellular glutathione and overall antioxidant capacity, and activated the stress-signaling MAP-kinases JNK, p42/44 and p38. Our data demonstrate for the first time in human hepatocytes, that acrolein triggered endoplasmic reticulum (ER) stress and activated eIF2α, ATF-3 and -4, and Gadd153/CHOP, resulting in cell death. Notably, the protective/adaptive component of ER stress was not activated, and acrolein failed to up-regulate the protective ER-chaperones, GRP78 and GRP94. Additionally, exposure to acrolein disrupted mitochondrial integrity/function, and led to the release of pro-apoptotic proteins and ATP depletion. Acrolein-induced cell death was attenuated by N-acetyl cysteine, phenyl-butyric acid, and caspase and JNK inhibitors. Our data demonstrate that exposure to acrolein induces a variety of stress responses in hepatocytes, including GSH depletion, oxidative stress, mitochondrial dysfunction and ER stress (without ER-protective responses) which together contribute to acrolein toxicity. Our study defines basic mechanisms underlying liver injury caused by reactive aldehyde pollutants such as acrolein. -- Highlights: ► Human primary hepatocytes and cultured cell lines are used. ► Multiple cell death signaling pathways are activated by acrolein. ► Novel finding of

  3. Characterization of a Novel Endoplasmic Reticulum Protein Involved in Tubercidin Resistance in Leishmania major

    Science.gov (United States)

    Aoki, Juliana Ide; Coelho, Adriano Cappellazzo; Muxel, Sandra Marcia; Zampieri, Ricardo Andrade; Sanchez, Eduardo Milton Ramos; Nerland, Audun Helge; Floeter-Winter, Lucile Maria; Cotrim, Paulo Cesar

    2016-01-01

    Background Tubercidin (TUB) is a toxic adenosine analog with potential antiparasitic activity against Leishmania, with mechanism of action and resistance that are not completely understood. For understanding the mechanisms of action and identifying the potential metabolic pathways affected by this drug, we employed in this study an overexpression/selection approach using TUB for the identification of potential targets, as well as, drug resistance genes in L. major. Although, TUB is toxic to the mammalian host, these findings can provide evidences for a rational drug design based on purine pathway against leishmaniasis. Methodology/Principal findings After transfection of a cosmid genomic library into L. major Friedlin (LmjF) parasites and application of the overexpression/selection method, we identified two cosmids (cosTUB1 and cosTU2) containing two different loci capable of conferring significant levels of TUB resistance. In the cosTUB1 contained a gene encoding NUPM1-like protein, which has been previously described as associated with TUB resistance in L. amazonensis. In the cosTUB2 we identified and characterized a gene encoding a 63 kDa protein that we denoted as tubercidin-resistance protein (TRP). Functional analysis revealed that the transfectants were less susceptible to TUB than LmjF parasites or those transfected with the control vector. In addition, the trp mRNA and protein levels in cosTUB2 transfectants were higher than LmjF. TRP immunolocalization revealed that it was co-localized to the endoplasmic reticulum (ER), a cellular compartment with many functions. In silico predictions indicated that TRP contains only a hypothetical transmembrane domain. Thus, it is likely that TRP is a lumen protein involved in multidrug efflux transport that may be involved in the purine metabolic pathway. Conclusions/Significance This study demonstrated for the first time that TRP is associated with TUB resistance in Leishmania. The next challenge is to determine how

  4. Mechanical strain downregulates C/EBPβ in MSC and decreases endoplasmic reticulum stress.

    Directory of Open Access Journals (Sweden)

    Maya Styner

    Full Text Available Exercise prevents marrow mesenchymal stem cell (MSC adipogenesis, reversing trends that accompany aging and osteoporosis. Mechanical input, the in-vitro analogue to exercise, limits PPARγ expression and adipogenesis in MSC. We considered whether C/EBPβ might be mechanoresponsive as it is upstream to PPARγ, and also is known to upregulate endoplasmic reticulum (ER stress. MSC (C3H10T1/2 pluripotent cells as well as mouse marrow-derived MSC were cultured in adipogenic media and a daily mechanical strain regimen was applied. We demonstrate herein that mechanical strain represses C/EBPβ mRNA (0.6-fold ±0.07, p<0.05 and protein (0.4-fold ±0.1, p<0.01 in MSC. SiRNA silencing of β-catenin prevented mechanical repression of C/EBPβ. C/EBPβ overexpression did not override strain's inhibition of adipogenesis, which suggests that mechanical control of C/EBPβ is not the primary site at which adipogenesis is regulated. Mechanical inhibition of C/EBPβ, however, might be critical for further processes that regulate MSC health. Indeed, overexpression of C/EBPβ in MSC induced ER stress evidenced by a dose-dependent increase in the pro-apoptotic CHOP (protein 4-fold ±0.5, p<0.05 and a threshold reduction in the chaperone BiP (protein 0.6-fold ±0.1, p = 0.2; mRNA 0.3-fold ±0.1, p<0.01. ChIP-seq demonstrated a significant association between C/EBPβ and both CHOP and BiP genes. The strain regimen, in addition to decreasing C/EBPβ mRNA (0.5-fold ±0.09, p<0.05, expanded ER capacity as measured by an increase in BiP mRNA (2-fold ±0.2, p<0.05 and protein. Finally, ER stress induced by tunicamycin was ameliorated by mechanical strain as demonstrated by decreased C/EBPβ, increased BiP and decreased CHOP protein expression. Thus, C/EBPβ is a mechanically responsive transcription factor and its repression should counter increases in marrow fat as well as improve skeletal resistance to ER stress.

  5. Initiation of GalNAc-type O-glycosylation in the endoplasmic reticulum promotes cancer cell invasiveness.

    Science.gov (United States)

    Gill, David J; Tham, Keit Min; Chia, Joanne; Wang, Shyi Chyi; Steentoft, Catharina; Clausen, Henrik; Bard-Chapeau, Emilie A; Bard, Frederic A

    2013-08-20

    Invasiveness underlies cancer aggressiveness and is a hallmark of malignancy. Most malignant tumors have elevated levels of Tn, an O-GalNAc glycan. Mechanisms underlying Tn up-regulation and its effects remain unclear. Here we show that Golgi-to-endoplasmic reticulum relocation of polypeptide N-acetylgalactosamine-transferases (GalNAc-Ts) drives high Tn levels in cancer cell lines and in 70% of malignant breast tumors. This process stimulates cell adhesion to the extracellular matrix, as well as migration and invasiveness. The GalNAc-Ts lectin domain, mediating high-density glycosylation, is critical for these effects. Interfering with the lectin domain function inhibited carcinoma cell migration in vitro and metastatic potential in mice. We also show that stimulation of cell migration is dependent on Tn-bearing proteins present in lamellipodia of migrating cells. Our findings suggest that relocation of GalNAc-Ts to the endoplasmic reticulum frequently occurs upon cancerous transformation to enhance tumor cell migration and invasiveness through modification of cell surface proteins.

  6. Interaction between endoplasmic reticulum stress and caspase 8 activation in retrovirus MoMuLV-ts1-infected astrocytes.

    Science.gov (United States)

    Liu, Na; Scofield, Virginia L; Qiang, Wenan; Yan, Mingshan; Kuang, Xianghong; Wong, Paul K Y

    2006-05-10

    The murine retrovirus, MoMuLV-ts1, induces progressive paralysis and immune deficiency in FVB/N mice. We have reported previously that ts1 infection causes apoptosis in astrocytes via endoplasmic reticulum (ER) and mitochondrial stress (Liu, N., Kuang, X., Kim, H.T., Stoica, G., Qiang, W., Scofield, V.L., Wong, P.K.Y. Wong. 2004. Possible involvement of both endoplasmic reticulum- and mitochondria-dependent pathways in MoMuLV-ts1-induced apoptosis in astrocytes. J. NeuroVirol. 10, 189-198). In the present study, we show that caspase 8 activation in these cells is mediated through ER stress-associated elevation of death receptor DR5 and the C/EBP homologous protein (GADD153/CHOP), an ER stress-initiated transcription factor, rather than through TNFalpha and TNF-R1 interactions on the cell surface. Treatment with Z-IETD-FMK, a specific inhibitor of caspase 8 enzymatic activity, reduced ER stress by two mechanisms: by inhibiting caspase 8 activation, and by preventing cleavage of the ER-associated membrane protein BAP31 into BAP20, which exacerbates the ER stress response. These findings suggest that caspase 8- and ER stress-associated apoptotic pathways are linked in ts1-infected astrocytes.

  7. The procaspase-8 isoform, procaspase-8L, recruited to the BAP31 complex at the endoplasmic reticulum.

    Science.gov (United States)

    Breckenridge, David G; Nguyen, Mai; Kuppig, Stephan; Reth, Michael; Shore, Gordon C

    2002-04-02

    BAP31 is an integral protein of the endoplasmic reticulum membrane and a substrate of caspase-8. Here, we describe the procaspase-8 isoform, procaspase-8L, which is ubiquitously expressed and selectively recruited to the BAP31 complex in response to apoptotic signaling by E1A. Procaspase-8L is characterized by the N-terminal extension (Nex) domain, which extends procaspase-8/a at the N terminus and is required for selective association of procaspase-8L with the BAP31 complex. Gene deletion identified BAP31 and related BAP29 as required for processing of procaspase-8L in response to E1A, by a FADD-independent mechanism that was blocked by BCL-2. Further, Bap29,31 deletion, as well as a Nex-domain dominant-negative mutant, curtailed the activation of downstream caspases (IETDase and DEVDase) and cell death in response to E1A. Preferential recruitment of procaspase-8L by the BAP31 complex at the endoplasmic reticulum suggests an additional pathway for regulating initiator caspase-8 during apoptosis.

  8. Hypothyroidism minimizes the effects of acute hepatic failure caused by endoplasmic reticulum stress and redox environment alterations in rats.

    Science.gov (United States)

    Blas-Valdivia, Vanessa; Cano-Europa, Edgar; Martinez-Perez, Yoalli; Lezama-Palacios, Ruth; Franco-Colin, Margarita; Ortiz-Butron, Rocio

    2015-10-01

    The aim of this study was to investigate if a protective effect from hypothyroidism in acute liver failure resulted from reduced endoplasmic reticulum stress and changes to the redox environment. Twenty male Sprague-Dawley rats were divided in four groups: (1) euthyroid (sham surgery), (2) hypothyroid, (3) euthyroid (sham surgery)+thioacetamide and (4) hypothyroid+thioacetamide. Hypothyroidism was confirmed two weeks after thyroidectomy, and thioacetamide (TAA) (400mg/kg, ip) was administrated to the appropriate groups for three days with supportive therapy. Grades of encephalopathy in all animals were determined using behavioral tests. Animals were decapitated and their blood was obtained to assess liver function. The liver was dissected: the left lobe was used for histology and the right lobe was frozen for biochemical assays. Body weight, rectal temperature and T4 concentration were lower in hypothyroid groups. When measurements of oxidative stress markers, redox environment, γ-glutamylcysteine synthetase and glutathione-S-transferase were determined, we observed that hypothyroid animals with TAA compensated better with oxidative damage than euthyroid animals treated with TAA. Furthermore, we measured reduced expressions of GADD34, caspase-12 and GRP78 and subsequently less hypothyroidism-induced cellular damage in hypothyroid animals. We conclude that hypothyroidism protects against hepatic damage caused by TAA because it reduces endoplasmic reticulum stress and changes to the redox environment.

  9. Progressive Depletion of Rough Endoplasmic Reticulum in Epithelial Cells of the Small Intestine in Monosodium Glutamate Mice Model of Obesity

    Directory of Open Access Journals (Sweden)

    Kazuhiko Nakadate

    2016-01-01

    Full Text Available Chronic obesity is a known risk factor for metabolic syndrome. However, little is known about pathological changes in the small intestine associated with chronic obesity. This study investigated cellular and subcellular level changes in the small intestine of obese mice. In this study, a mouse model of obesity was established by early postnatal administration of monosodium glutamate. Changes in body weight were monitored, and pathological changes in the small intestine were evaluated using hematoxylin-eosin and Nissl staining and light and electron microscopy. Consequently, obese mice were significantly heavier compared with controls from 9 weeks of age. Villi in the small intestine of obese mice were elongated and thinned. There was reduced hematoxylin staining in the epithelium of the small intestine of obese mice. Electron microscopy revealed a significant decrease in and shortening of rough endoplasmic reticulum in epithelial cells of the small intestine of obese mice compared with normal mice. The decrease in rough endoplasmic reticulum in the small intestine epithelial cells of obese mice indicates that obesity starting in childhood influences various functions of the small intestine, such as protein synthesis, and could impair both the defense mechanism against invasion of pathogenic microbes and nutritional absorption.

  10. Catalytically Active Guanylyl Cyclase B Requires Endoplasmic Reticulum-mediated Glycosylation, and Mutations That Inhibit This Process Cause Dwarfism.

    Science.gov (United States)

    Dickey, Deborah M; Edmund, Aaron B; Otto, Neil M; Chaffee, Thomas S; Robinson, Jerid W; Potter, Lincoln R

    2016-05-20

    C-type natriuretic peptide activation of guanylyl cyclase B (GC-B), also known as natriuretic peptide receptor B or NPR2, stimulates long bone growth, and missense mutations in GC-B cause dwarfism. Four such mutants (L658F, Y708C, R776W, and G959A) bound (125)I-C-type natriuretic peptide on the surface of cells but failed to synthesize cGMP in membrane GC assays. Immunofluorescence microscopy also indicated that the mutant receptors were on the cell surface. All mutant proteins were dephosphorylated and incompletely glycosylated, but dephosphorylation did not explain the inactivation because the mutations inactivated a "constitutively phosphorylated" enzyme. Tunicamycin inhibition of glycosylation in the endoplasmic reticulum or mutation of the Asn-24 glycosylation site decreased GC activity, but neither inhibition of glycosylation in the Golgi by N-acetylglucosaminyltransferase I gene inactivation nor PNGase F deglycosylation of fully processed GC-B reduced GC activity. We conclude that endoplasmic reticulum-mediated glycosylation is required for the formation of an active catalytic, but not ligand-binding domain, and that mutations that inhibit this process cause dwarfism.

  11. Progressive Depletion of Rough Endoplasmic Reticulum in Epithelial Cells of the Small Intestine in Monosodium Glutamate Mice Model of Obesity.

    Science.gov (United States)

    Nakadate, Kazuhiko; Motojima, Kento; Hirakawa, Tomoya; Tanaka-Nakadate, Sawako

    2016-01-01

    Chronic obesity is a known risk factor for metabolic syndrome. However, little is known about pathological changes in the small intestine associated with chronic obesity. This study investigated cellular and subcellular level changes in the small intestine of obese mice. In this study, a mouse model of obesity was established by early postnatal administration of monosodium glutamate. Changes in body weight were monitored, and pathological changes in the small intestine were evaluated using hematoxylin-eosin and Nissl staining and light and electron microscopy. Consequently, obese mice were significantly heavier compared with controls from 9 weeks of age. Villi in the small intestine of obese mice were elongated and thinned. There was reduced hematoxylin staining in the epithelium of the small intestine of obese mice. Electron microscopy revealed a significant decrease in and shortening of rough endoplasmic reticulum in epithelial cells of the small intestine of obese mice compared with normal mice. The decrease in rough endoplasmic reticulum in the small intestine epithelial cells of obese mice indicates that obesity starting in childhood influences various functions of the small intestine, such as protein synthesis, and could impair both the defense mechanism against invasion of pathogenic microbes and nutritional absorption.

  12. Pancreatic endoplasmic reticulum kinase activation promotes medulloblastoma cell migration and invasion through induction of vascular endothelial growth factor A.

    Directory of Open Access Journals (Sweden)

    Stephanie Jamison

    Full Text Available Evidence is accumulating that activation of the pancreatic endoplasmic reticulum kinase (PERK in response to endoplasmic reticulum (ER stress adapts tumor cells to the tumor microenvironment and enhances tumor angiogenesis by inducing vascular endothelial growth factor A (VEGF-A. Recent studies suggest that VEGF-A can act directly on certain tumor cell types in an autocrine manner, via binding to VEGF receptor 2 (VEGFR2, to promote tumor cell migration and invasion. Although several reports show that PERK activation increases VEGF-A expression in medulloblastoma, the most common solid malignancy of childhood, the role that either PERK or VEGF-A plays in medulloblastoma remains elusive. In this study, we mimicked the moderate enhancement of PERK activity observed in tumor patients using a genetic approach and a pharmacologic approach, and found that moderate activation of PERK signaling facilitated medulloblastoma cell migration and invasion and increased the production of VEGF-A. Moreover, using the VEGFR2 inhibitor SU5416 and the VEGF-A neutralizing antibody to block VEGF-A/VEGFR2 signaling, our results suggested that tumor cell-derived VEGF-A promoted medulloblastoma cell migration and invasion through VEGFR2 signaling, and that both VEGF-A and VEGFR2 were required for the promoting effects of PERK activation on medulloblastoma cell migration and invasion. Thus, these findings suggest that moderate PERK activation promotes medulloblastoma cell migration and invasion through enhancement of VEGF-A/VEGFR2 signaling.

  13. Activation of AMP-activated protein kinase inhibits oxidized LDL-triggered endoplasmic reticulum stress in vivo.

    Science.gov (United States)

    Dong, Yunzhou; Zhang, Miao; Wang, Shuangxi; Liang, Bin; Zhao, Zhengxing; Liu, Chao; Wu, Mingyuan; Choi, Hyoung Chul; Lyons, Timothy J; Zou, Ming-Hui

    2010-06-01

    The oxidation of LDLs is considered a key step in the development of atherosclerosis. How LDL oxidation contributes to atherosclerosis remains poorly defined. Here we report that oxidized and glycated LDL (HOG-LDL) causes aberrant endoplasmic reticulum (ER) stress and that the AMP-activated protein kinase (AMPK) suppressed HOG-LDL-triggered ER stress in vivo. ER stress markers, sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase (SERCA) activity and oxidation, and AMPK activity were monitored in cultured bovine aortic endothelial cells (BAECs) exposed to HOG-LDL or in isolated aortae from mice fed an atherogenic diet. Exposure of BAECs to clinically relevant concentrations of HOG-LDL induced prolonged ER stress and reduced SERCA activity but increased SERCA oxidation. Chronic administration of Tempol (a potent antioxidant) attenuated both SERCA oxidation and aberrant ER stress in mice fed a high-fat diet in vivo. Likewise, AMPK activation by pharmacological (5'-aminoimidazole-4-carboxymide-1-beta-d-ribofuranoside, metformin, and statin) or genetic means (adenoviral overexpression of constitutively active AMPK mutants) significantly mitigated ER stress and SERCA oxidation and improved the endothelium-dependent relaxation in isolated mouse aortae. Finally, Tempol administration markedly attenuated impaired endothelium-dependent vasorelaxation, SERCA oxidation, ER stress, and atherosclerosis in ApoE(-/-) and ApoE(-/-)/AMPKalpha2(-/-) fed a high-fat diet. We conclude that HOG-LDL, via enhanced SERCA oxidation, causes aberrant ER stress, endothelial dysfunction, and atherosclerosis in vivo, all of which are inhibited by AMPK activation.

  14. Mitochondria-associated endoplasmic reticulum membranes allow adaptation of mitochondrial metabolism to glucose availability in the liver.

    Science.gov (United States)

    Theurey, Pierre; Tubbs, Emily; Vial, Guillaume; Jacquemetton, Julien; Bendridi, Nadia; Chauvin, Marie-Agnès; Alam, Muhammad Rizwan; Le Romancer, Muriel; Vidal, Hubert; Rieusset, Jennifer

    2016-04-01

    Mitochondria-associated endoplasmic reticulum membranes (MAM) play a key role in mitochondrial dynamics and function and in hepatic insulin action. Whereas mitochondria are important regulators of energy metabolism, the nutritional regulation of MAM in the liver and its role in the adaptation of mitochondria physiology to nutrient availability are unknown. In this study, we found that the fasted to postprandial transition reduced the number of endoplasmic reticulum-mitochondria contact points in mouse liver. Screening of potential hormonal/metabolic signals revealed glucose as the main nutritional regulator of hepatic MAM integrity both in vitro and in vivo Glucose reduced organelle interactions through the pentose phosphate-protein phosphatase 2A (PP-PP2A) pathway, induced mitochondria fission, and impaired respiration. Blocking MAM reduction counteracted glucose-induced mitochondrial alterations. Furthermore, disruption of MAM integrity mimicked effects of glucose on mitochondria dynamics and function. This glucose-sensing system is deficient in the liver of insulin-resistant ob/ob and cyclophilin D-KO mice, both characterized by chronic disruption of MAM integrity, mitochondrial fission, and altered mitochondrial respiration. These data indicate that MAM contribute to the hepatic glucose-sensing system, allowing regulation of mitochondria dynamics and function during nutritional transition. Chronic disruption of MAM may participate in hepatic mitochondrial dysfunction associated with insulin resistance. © The Author (2016). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  15. Sulindac sulfide inhibits sarcoendoplasmic reticulum Ca2+ ATPase, induces endoplasmic reticulum stress response, and exerts toxicity in glioma cells: relevant similarities to and important differences from celecoxib.

    Science.gov (United States)

    White, M C; Johnson, G G; Zhang, W; Hobrath, J V; Piazza, G A; Grimaldi, M

    2013-03-01

    Malignant gliomas have low survival expectations regardless of current treatments. Nonsteroidal anti-inflammatory drugs (NSAIDs) prevent cell transformation and slow cancer cell growth by mechanisms independent of cyclooxygenase (COX) inhibition. Certain NSAIDs trigger the endoplasmic reticulum stress response (ERSR), as revealed by upregulation of molecular chaperones such as GRP78 and C/EBP homologous protein (CHOP). Although celecoxib (CELE) inhibits the sarcoendoplasmic reticulum Ca(2+) ATPase (SERCA), an effect known to induce ERSR, sulindac sulfide (SS) has not been reported to affect SERCA. Here, we investigated these two drugs for their effects on Ca(2+) homeostasis, ERSR, and glioma cell survival. Our findings indicate that SS is a reversible inhibitor of SERCA and that both SS and CELE bind SERCA at its cyclopiazonic acid binding site. Furthermore, CELE releases additional Ca(2+) from the mitochondria. In glioma cells, both NSAIDS upregulate GRP78 and activate ER-associated caspase-4 and caspase-3. Although only CELE upregulates the expression of CHOP, it appears that CHOP induction could be associated with mitochondrial poisoning. In addition, CHOP induction appears to be uncorrelated with the gliotoxicity of these NSAIDS in our experiments. Our data suggest that activation of ERSR is primarily responsible for the gliotoxic effect of these NSAIDS. Because SS has good brain bioavailability, has lower COX-2 inhibition, and has no mitochondrial effects, it represents a more appealing molecular candidate than CELE to achieve gliotoxicity via activation of ERSR.

  16. Hydrogen sulfide regulates vascular endoplasmic reticulum stress in apolipoprotein E knockout mice

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhi-fang; ZHAO Bin; TANG Xiu-ying; LI Wei; ZHU Lu-lu; TANG Chao-shu; DU Jun-bao; JIN Hong-fang

    2011-01-01

    Background Atherosclerosis is an important cardiovascular disease,becoming a major and increasing health problem in developed countries.However,the possible underlying mechanisms were not completely clear.In 2009,our research group first discovered that hydrogen sulfide (H2S) as a novel gastrotransmitter played an important anti-atherosclerotic role.The study was designed to examine the regulatory effect of hydrogen sulfide (H2S) on endoplasmic reticulum stress (ERS) in apolipoprotein E knockout (apoE(-/-)) mice fed a Western type diet.Methods C57BL/6 mice and homozygous apoE(-/-) mice were fed a Western type diet.C57BL/6 mice were injected intraperitoneally with normal saline (5 ml/kg per day) as control group.The apoE+ mice were treated with the same dose of normal saline as the apoE(-/-) group,injected intraperitoneally with sodium hydrosulfide (NaHS,an H2S donor,56μmol/kg per day) as the apoE(-/-)+NaHS group and injected intraperitoneally with DL-propargylglycine (PPG,a cystathionine-y-lyase inhibitor,50 mg/kg,per day) as the apoE/ +PPG group.After 10 weeks,the mice were sacrificed and the plasma lipids were detected.Sections of aortic root from these animals were examined for atherosclerotic lesions by HE and oil red O staining.The aortic ultrastructure and microstructure were analyzed with the help of light and electronic microscope.Glucose-regulated protein 78 (GRP78),caspase-12,copper-andzinc-containing superoxide dismutase (Cu/ZnSOD) and Mn-containing superoxide dismutase (MnSOD) protein expression in aortic tissues were detected with immunohistochemistry.The level of intracellular reactive oxygen species (ROS) were measured by using a commercial assay kit.Results Compared with control mice,apoE(-/-) mice showed increased plasma levels of total cholesterol (TC),triglyceride (TG) and low density lipoprotein (LDL),decreased high density lipoprotein (HDL),increased aortic plaque size,destroyed ultra-structure of aortic tissue,and increased expression of GRP

  17. Anchoring secreted proteins in endoplasmic reticulum by plant oleosin: the example of vitamin B12 cellular sequestration by transcobalamin.

    Directory of Open Access Journals (Sweden)

    Laurent Pons

    Full Text Available BACKGROUND: Oleosin is a plant protein localized to lipid droplets and endoplasmic reticulum of plant cells. Our idea was to use it to target functional secretory proteins of interest to the cytosolic side of the endoplasmic reticulum of mammalian cells, through expressing oleosin-containing chimeras. We have designed this approach to create cellular models deficient in vitamin B12 (cobalamin because of the known problematics associated to the obtainment of effective vitamin B12 deficient cell models. This was achieved by the overexpression of transcobalamin inside cells through anchoring to oleosin. METHODOLOGY: chimera gene constructs including transcobalamin-oleosin (TC-O, green fluorescent protein-transcobalamin-oleosin (GFP-TC-O and oleosin-transcobalamin (O-TC were inserted into pAcSG2 and pCDNA3 vectors for expression in sf9 insect cells, Caco2 (colon carcinoma, NIE-115 (mouse neuroblastoma, HEK (human embryonic kidney, COS-7 (Green Monkey SV40-transfected kidney fibroblasts and CHO (Chinese hamster ovary cells. The subcellular localization, the changes in vitamin B12 binding activity and the metabolic consequences were investigated in both Caco2 and NIE-115 cells. PRINCIPAL FINDINGS: vitamin B12 binding was dramatically higher in TC-O than that in O-TC and wild type (WT. The expression of GFP-TC-O was observed in all cell lines and found to be co-localized with an ER-targeted red fluorescent protein and calreticulin of the endoplasmic reticulum in Caco2 and COS-7 cells. The overexpression of TC-O led to B12 deficiency, evidenced by impaired conversion of cyano-cobalamin to ado-cobalamin and methyl-cobalamin, decreased methionine synthase activity and reduced S-adenosyl methionine to S-adenosyl homocysteine ratio, as well as increases in homocysteine and methylmalonic acid concentration. CONCLUSIONS/SIGNIFICANCE: the heterologous expression of TC-O in mammalian cells can be used as an effective strategy for investigating the cellular

  18. Endoplasmic reticulum stress mediates sulforaphane-induced apoptosis of HepG2 human hepatocellular carcinoma cells.

    Science.gov (United States)

    Zou, Xiang; Qu, Zhongyuan; Fang, Yueni; Shi, Xin; Ji, Yubin

    2017-01-01

    Sulforaphane (SFN) is a naturally occurring chemopreventive agent, which effectively inhibits proliferation of HepG2 human hepatocellular carcinoma cells via mitochondria‑mediated apoptosis. Endoplasmic reticulum stress is considered the most important cause of cell apoptosis; therefore, the present study aimed to determine whether the endoplasmic reticulum pathway was involved in SFN-induced apoptosis of HepG2 cells. An MTT assay was used to detect the inhibitory effects of SFN on HepG2 cells. Fluorescence microscopy was used to observe the morphological changes in apoptotic cells, and western blot analysis was conducted to detect the expression of binding immunoglobulin protein (Bip)/glucose-regulated protein 78 (GRP78), X‑box binding protein‑1 (XBP‑1) and BH3 interacting domain death agonist (Bid). Furthermore, flow cytometry was used to determine the apoptotic rate of HepG2 cells, and the protein expression of C/EBP homologous protein (CHOP)/growth arrest‑ and DNA damage‑inducible gene 153 (GADD153) and caspase-12 in HepG2 cells. The results indicated that SFN significantly inhibited the proliferation of HepG2 cells; the half maximal inhibitory concentration values were 32.03±0.96, 20.90±1.96 and 13.87±0.44 µmol/l, following treatment with SFN for 24, 48 and 72 h, respectively. Following 48 h of SFN treatment (10, 20 and 40 µmol/l), the apoptotic rates of HepG2 cells were 31.8, 61.3 and 77.1%, respectively. Furthermore, after 48 h of exposure to SFN, the cells presented typical morphological alterations of apoptosis, as detected under fluorescence microscopy. Treatment with SFN for 48 h also significantly upregulated the protein expression levels of Bip/GRP78, XBP‑1, caspase‑12, CHOP/GADD153 and Bid in HepG2 cells. In conclusion, endoplasmic reticulum stress may be considered the most important mechanism underlying SFN-induced apoptosis in HepG2 cells.

  19. Analysis of the role of the gene bipA, encoding the major endoplasmic reticulum chaperone protein in the secretion of homologous and heterologous proteins in black Aspergilli

    NARCIS (Netherlands)

    Punt, P.J.; Gemeren, I.A. van; Drint-Kuijvenhoven, J.; Hessing, J.G.M.; Muijlwijk van - Harteveld, G.M.; Beijersbergen, A.; Verrips, C.T.; Hondel, C.A.M.J.J. van den

    1998-01-01

    The function of the endoplasmic-reticulum-localized chaperone binding protein (BiP) in relation to protein secretion in filamentous fungi was studied. It was shown that the overproduction of several homologous and heterologous recombinant proteins by Aspergillus strains induces the expression of bip

  20. Localization of O-glycan initiation, sphingomyelin synthesis, and glucosylceramide synthesis in Vero cells with respect to the endoplasmic reticulum-Golgi intermediate compartment

    NARCIS (Netherlands)

    Schweizer, A..; Clausen, H.; van Meer, G.; Hauri, H.P.

    1994-01-01

    The identification of an endoplasmic reticulum-Golgi intermediate compartment (ERGIC), defined by the 53-kDa transmembrane marker protein ERGIC-53, has added to the complexity of the exocytic pathway of higher eukaryotic cells. Recently, a subcellular fractionation procedure was established for the

  1. Localization of O-glycan initiation, sphingomyelin synthesis, and glucosylceramide synthesis in Vero cells with respect to the endoplasmic reticulum-Golgi intermediate compartment

    NARCIS (Netherlands)

    Schweizer, A..; Clausen, H.; van Meer, G.; Hauri, H.P.

    1994-01-01

    The identification of an endoplasmic reticulum-Golgi intermediate compartment (ERGIC), defined by the 53-kDa transmembrane marker protein ERGIC-53, has added to the complexity of the exocytic pathway of higher eukaryotic cells. Recently, a subcellular fractionation procedure was established for the

  2. Association of the golgi UDP-galactose transporter with UDP-galactose: ceramide galactosyltransferase allows UDP-galactose import in the endoplasmic reticulum

    NARCIS (Netherlands)

    Sprong, H.; Degroote, S.; Nilsson, T.; Kawakita, M.; Ishida, N.; van der Sluijs, P.; van Meer, G.

    2003-01-01

    UDP-galactose reaches the Golgi lumen through the UDP-galactose transporter (UGT) and is used for the galactosylation of proteins and lipids. Ceramides and diglycerides are galactosylated within the endoplasmic reticulum by the UDP-galactose: ceramide galactosyltransferase. It is not known how UDP-g

  3. Caspase-4 directly activates caspase-9 in endoplasmic reticulum stress-induced apoptosis in SH-SY5Y cells.

    Science.gov (United States)

    Yamamuro, Akiko; Kishino, Takashi; Ohshima, Yu; Yoshioka, Yasuhiro; Kimura, Tomoki; Kasai, Atsushi; Maeda, Sadaaki

    2011-01-01

    The present study investigated the function of caspase-4 in endoplasmic reticulum (ER) stress-induced apoptosis in human neuronal cell line SH-SY5Y. Tunicamycin, which is known to induce ER stress, activated both caspase-9 and caspase-4, and the activation of caspase-4 preceded that of caspase-9. The caspase-4 inhibitor LEVD-CHO suppressed both the apoptosis and caspase-9 activation. In addition, human recombinant active caspase-4 cleaved wild type and D330A mutant substituted Asp-330 for alanine of human recombinant procaspase-9, but did not cleave D315A mutant substituted Asp-315 for alanine. These results suggest that caspase-4 directly activates caspase-9 by the processing of procaspase-9 at Asp-315 in ER stress-induced neuronal apoptosis.

  4. Induction of Endoplasmic Reticulum Stress and Unfolded Protein Response Constitutes a Pathogenic Strategy of group A Streptococcus

    Directory of Open Access Journals (Sweden)

    Emanuel eHanski

    2014-08-01

    Full Text Available The connection between bacterial pathogens and unfolded protein response (UPR is poorly explored. In this review we highlight the evidence showing that group A streptococcus (GAS induces endoplasmic reticulum (ER stress and UPR through which it captures the amino acid asparagine (ASN from the host. GAS acts extracellularly and during adherence to host cells it delivers the hemolysin toxins; streptolysin O (SLO and streptolysin S (SLS. By poorly understood pathways, these toxins trigger UPR leading to the induction of the transcriptional regulator ATF4 and consequently to the upregulation of asparagine synthetase (ASNS transcription leading to production and release of ASN. GAS senses ASN and alters gene expression profile accordingly, and increases the rate of multiplication. We suggest that induction of UPR by GAS and by other bacterial pathogens represent means through which bacterial pathogens gain nutrients from the host, obviating the need to become internalized or inflict irreversible cell damage.

  5. The contributions of protein disulfide isomerase and its homologues to oxidative protein folding in the yeast endoplasmic reticulum

    DEFF Research Database (Denmark)

    Xiao, Ruoyu; Wilkinson, Bonney; Solovyov, Anton

    2004-01-01

    In vitro, protein disulfide isomerase (Pdi1p) introduces disulfides into proteins (oxidase activity) and provides quality control by catalyzing the rearrangement of incorrect disulfides (isomerase activity). Protein disulfide isomerase (PDI) is an essential protein in Saccharomyces cerevisiae......, but the contributions of the catalytic activities of PDI to oxidative protein folding in the endoplasmic reticulum (ER) are unclear. Using variants of Pdi1p with impaired oxidase or isomerase activity, we show that isomerase-deficient mutants of PDI support wild-type growth even in a strain in which all of the PDI...... homologues of the yeast ER have been deleted. Although the oxidase activity of PDI is sufficient for wild-type growth, pulse-chase experiments monitoring the maturation of carboxypeptidase Y reveal that oxidative folding is greatly compromised in mutants that are defective in isomerase activity. Pdi1p...

  6. Ammonia exposure induces oxidative stress, endoplasmic reticulum stress and apoptosis in hepatopancreas of pacific white shrimp (Litopenaeus vannamei).

    Science.gov (United States)

    Liang, Zhongxiu; Liu, Rui; Zhao, Depeng; Wang, Lingling; Sun, Mingzhe; Wang, Mengqiang; Song, Linsheng

    2016-07-01

    Ammonia is one of major environmental pollutants in the aquatic system that poses a great threat to the survival of shrimp. In the present study, the mRNA expression of endoplasmic reticulum (ER) stress marker and unfolded protein response (UPR) related genes, as well as the change of redox enzyme and apoptosis were investigated in hepatopancreas of the pacific white shrimp, Litopenaeus vannamei after the exposure of 20 mg L(-1) total ammonia nitrogen (TAN). Compared with the control group, the superoxide dismutase (SOD) activity in hepatopancreas decreased significantly (p vannamei after exposure to ammonia by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. The results indicated that ammonia exposure could induce oxidative stress, which further caused ER stress and apoptosis in hepatopancreas of L. vannamei.

  7. Progress in the unraveling of the endoplasmic reticulum stress/autophagy pathway and cancer: implications for future therapeutic approaches.

    Science.gov (United States)

    Schleicher, Stephen M; Moretti, Luigi; Varki, Vinod; Lu, Bo

    2010-06-01

    Given the inherent resistance to apoptosis that characterizes cancer, the targeting of alternative pathways is an attractive strategy to improve anti-tumor therapy. Endoplasmic reticulum (ER) stress, which is basally activated in many cancers, and the subsequent activation of autophagy represent novel cancer treatment targets. While these associated pathways are often protective and promote cell survival, when excessive, ER stress results in autophagic cell death. Therefore, depending on the circumstances, either inhibition or activation of ER stress and autophagy can improve cancer therapy. This review provides an update on how ER stress relates to autophagy, and how these associated pathways can serve dual functions to promote survival or cell death in cancer. Furthermore, it lays out a spectrum of potential pharmacological agents and combinatorial approaches that target these pathways to enhance tumor cell kill.

  8. Complexes of Usher proteins preassemble at the endoplasmic reticulum and are required for trafficking and ER homeostasis

    Directory of Open Access Journals (Sweden)

    Bernardo Blanco-Sánchez

    2014-05-01

    Full Text Available Usher syndrome (USH, the leading cause of hereditary combined hearing and vision loss, is characterized by sensorineural deafness and progressive retinal degeneration. Mutations in several different genes produce USH, but the proximal cause of sensory cell death remains mysterious. We adapted a proximity ligation assay to analyze associations among three of the USH proteins, Cdh23, Harmonin and Myo7aa, and the microtubule-based transporter Ift88 in zebrafish inner ear mechanosensory hair cells. We found that the proteins are in close enough proximity to form complexes and that these complexes preassemble at the endoplasmic reticulum (ER. Defects in any one of the three USH proteins disrupt formation and trafficking of the complex and result in diminished levels of the other proteins, generalized trafficking defects and ER stress that triggers apoptosis. ER stress, thus, contributes to sensory hair cell loss and provides a new target to explore for protective therapies for USH.

  9. ORP5/ORP8 localize to endoplasmic reticulum-mitochondria contacts and are involved in mitochondrial function.

    Science.gov (United States)

    Galmes, Romain; Houcine, Audrey; van Vliet, Alexander R; Agostinis, Patrizia; Jackson, Catherine L; Giordano, Francesca

    2016-06-01

    The oxysterol-binding protein (OSBP)-related proteins ORP5 and ORP8 have been shown recently to transport phosphatidylserine (PS) from the endoplasmic reticulum (ER) to the plasma membrane (PM) at ER-PM contact sites. PS is also transferred from the ER to mitochondria where it acts as precursor for mitochondrial PE synthesis. Here, we show that, in addition to ER-PM contact sites, ORP5 and ORP8 are also localized to ER-mitochondria contacts and interact with the outer mitochondrial membrane protein PTPIP51. A functional lipid transfer (ORD) domain was required for this localization. Interestingly, ORP5 and ORP8 depletion leads to defects in mitochondria morphology and respiratory function. © 2016 The Authors.

  10. Ethanol extract of Brazilian red propolis induces apoptosis in human breast cancer MCF-7 cells through endoplasmic reticulum stress.

    Science.gov (United States)

    Kamiya, Tetsuro; Nishihara, Hiroko; Hara, Hirokazu; Adachi, Tetsuo

    2012-11-07

    Propolis, a natural product collected from plants by honey bees, is commonly used in folk medicines. Endoplasmic reticulum (ER) stress is known to induce apoptosis through the induction of CCAAT/enhancer-binding protein homologous protein (CHOP). Here, we investigated whether ethanol extracts of propolis and caffeic acid phenethyl ester (CAPE) induce apoptosis, mitochondrial dysfunction, and ER stress in human breast cancer MCF-7 cells and human fibroblasts. Among several ethanol extracts of propolis and CAPE, Brazilian red propolis (BRP) significantly reduced MCF-7 cell viability through the induction of mitochondrial dysfunction, caspase-3 activity, and DNA fragmentation but did not affect those of fibroblasts. Moreover, treatment with BRP significantly induced CHOP expression in MCF-7 cells compared to fibroblasts. Further, pretreatment with a chemical chaperone, 4-phenylbutyric acid, suppressed BRP-triggered MCF-7 cell death. Overall, we revealed that an ethanol extract of BRP induces MCF-7 cell apoptosis through, at least in part, ER stress-related signaling.

  11. A Phytophthora sojae effector suppresses endoplasmic reticulum stress-mediated immunity by stabilizing plant Binding immunoglobulin Proteins

    Science.gov (United States)

    Jing, Maofeng; Guo, Baodian; Li, Haiyang; Yang, Bo; Wang, Haonan; Kong, Guanghui; Zhao, Yao; Xu, Huawei; Wang, Yan; Ye, Wenwu; Dong, Suomeng; Qiao, Yongli; Tyler, Brett M.; Ma, Wenbo; Wang, Yuanchao

    2016-01-01

    Phytophthora pathogens secrete an array of specific effector proteins to manipulate host innate immunity to promote pathogen colonization. However, little is known about the host targets of effectors and the specific mechanisms by which effectors increase susceptibility. Here we report that the soybean pathogen Phytophthora sojae uses an essential effector PsAvh262 to stabilize endoplasmic reticulum (ER)-luminal binding immunoglobulin proteins (BiPs), which act as negative regulators of plant resistance to Phytophthora. By stabilizing BiPs, PsAvh262 suppresses ER stress-triggered cell death and facilitates Phytophthora infection. The direct targeting of ER stress regulators may represent a common mechanism of host manipulation by microbes. PMID:27256489

  12. Birbeck granule-like "organized smooth endoplasmic reticulum" resulting from the expression of a cytoplasmic YFP-tagged langerin.

    Directory of Open Access Journals (Sweden)

    Cédric Lenormand

    Full Text Available Langerin is required for the biogenesis of Birbeck granules (BGs, the characteristic organelles of Langerhans cells. We previously used a Langerin-YFP fusion protein having a C-terminal luminal YFP tag to dynamically decipher the molecular and cellular processes which accompany the traffic of Langerin. In order to elucidate the interactions of Langerin with its trafficking effectors and their structural impact on the biogenesis of BGs, we generated a YFP-Langerin chimera with an N-terminal, cytosolic YFP tag. This latter fusion protein induced the formation of YFP-positive large puncta. Live cell imaging coupled to a fluorescence recovery after photobleaching approach showed that this coalescence of proteins in newly formed compartments was static. In contrast, the YFP-positive structures present in the pericentriolar region of cells expressing Langerin-YFP chimera, displayed fluorescent recovery characteristics compatible with active membrane exchanges. Using correlative light-electron microscopy we showed that the coalescent structures represented highly organized stacks of membranes with a pentalaminar architecture typical of BGs. Continuities between these organelles and the rough endoplasmic reticulum allowed us to identify the stacks of membranes as a form of "Organized Smooth Endoplasmic Reticulum" (OSER, with distinct molecular and physiological properties. The involvement of homotypic interactions between cytoplasmic YFP molecules was demonstrated using an A206K variant of YFP, which restored most of the Langerin traffic and BG characteristics observed in Langerhans cells. Mutation of the carbohydrate recognition domain also blocked the formation of OSER. Hence, a "double-lock" mechanism governs the behavior of YFP-Langerin, where asymmetric homodimerization of the YFP tag and homotypic interactions between the lectin domains of Langerin molecules participate in its retention and the subsequent formation of BG-like OSER. These

  13. Effect of berberine on endoplasmic reticulum stress PERK apoptosis pathway in HK-2 cells by high fructose

    Directory of Open Access Journals (Sweden)

    Yong ZHANG

    2017-02-01

    Full Text Available Objective To investigate the effect of berberine on endoplasmic reticulum stress PERK apoptosis pathway in HK-2 cells by high fructose. Methods HK-2 cells were grown in DMEM/F12, containing 10% fetal bovine serum (FBS and divided randomly into four groups: normal control group (Group C; Fructose group (Group F: it contains 25mmol/L fructose culture; Berberine group (Group B: 25mmol/L fructose + 10μmol/L berberine treatment group; TUDCA group (Group T: 25mmol/L fructose +2μmol/L TUDCA culture group; Cells were collected after culturing 24h. The expression of glucose-regulated protein 78 (GRP78, CHOP protein and the phosphorylation levels of PERK, eIF2α were tested by Western blotting. The cell cycles were detected by flow cytometry and the apoptosis of cells were detected by TUNEL staining. Results Western blotting showed that the expression of GRP78 and CHOP protein in group F was significantly higher than that in group C, and the levels of p-PERK and p-eIF2α in group F were significantly higher than those in group F. Compared with group F, GRP78, CHOP, p-PERK and p-eIF2α in group B and T were significantly lower (P0.05. Conclusion Persistent high fructose can activate the intracellular PERK pathway in HK-2 cells, causing endoplasmic reticulum stress. Berberine can inhibit the fructose-induced PERK and eIF2α phosphorylation, down-regulated the expression of GRP78, CHOP protein, thus by regulating PERK Pathways to alleviate cell cycle arrest and reduce cell apoptosis. DOI: 10.11855/j.issn.0577-7402.2017.01.02

  14. HIV-1 Protein Nef Inhibits Activity of ATP-binding Cassette Transporter A1 by Targeting Endoplasmic Reticulum Chaperone Calnexin*

    Science.gov (United States)

    Jennelle, Lucas; Hunegnaw, Ruth; Dubrovsky, Larisa; Pushkarsky, Tatiana; Fitzgerald, Michael L.; Sviridov, Dmitri; Popratiloff, Anastas; Brichacek, Beda; Bukrinsky, Michael

    2014-01-01

    HIV-infected patients are at increased risk of developing atherosclerosis, in part due to an altered high density lipoprotein profile exacerbated by down-modulation and impairment of ATP-binding cassette transporter A1 (ABCA1) activity by the HIV-1 protein Nef. However, the mechanisms of this Nef effect remain unknown. Here, we show that Nef interacts with an endoplasmic reticulum chaperone calnexin, which regulates folding and maturation of glycosylated proteins. Nef disrupted interaction between calnexin and ABCA1 but increased affinity and enhanced interaction of calnexin with HIV-1 gp160. The Nef mutant that did not bind to calnexin did not affect the calnexin-ABCA1 interaction. Interaction with calnexin was essential for functionality of ABCA1, as knockdown of calnexin blocked the ABCA1 exit from the endoplasmic reticulum, reduced ABCA1 abundance, and inhibited cholesterol efflux; the same effects were observed after Nef overexpression. However, the effects of calnexin knockdown and Nef on cholesterol efflux were not additive; in fact, the combined effect of these two factors together did not differ significantly from the effect of calnexin knockdown alone. Interestingly, gp160 and ABCA1 interacted with calnexin differently; although gp160 binding to calnexin was dependent on glycosylation, glycosylation was of little importance for the interaction between ABCA1 and calnexin. Thus, Nef regulates the activity of calnexin to stimulate its interaction with gp160 at the expense of ABCA1. This study identifies a mechanism for Nef-dependent inactivation of ABCA1 and dysregulation of cholesterol metabolism. PMID:25170080

  15. TRAIL-Induced Caspase Activation Is a Prerequisite for Activation of the Endoplasmic Reticulum Stress-Induced Signal Transduction Pathways.

    Science.gov (United States)

    Lee, Dae-Hee; Sung, Ki Sa; Guo, Zong Sheng; Kwon, William Taehyung; Bartlett, David L; Oh, Sang Cheul; Kwon, Yong Tae; Lee, Yong J

    2016-05-01

    It is well known that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis can be initially triggered by surface death receptors (the extrinsic pathway) and subsequently amplified through mitochondrial dysfunction (the intrinsic pathway). However, little is known about signaling pathways activated by the TRAIL-induced endoplasmic reticulum (ER) stress response. In this study, we report that TRAIL-induced apoptosis is associated with the endoplasmic reticulum (ER) stress response. Human colorectal carcinoma HCT116 cells were treated with TRAIL and the ER stress-induced signal transduction pathway was investigated. During TRAIL treatment, expression of ER stress marker genes, in particular the BiP (binding immunoglobulin protein) gene, was increased and activation of the PERK (PKR-like ER kinase)-eIF2α (eukaryotic initiation factor 2α)-ATF4 (activating transcription factor 4)-CHOP (CCAAT-enhancer-binding protein homologous protein) apoptotic signal transduction pathway occurred. Experimental data from use of a siRNA (small interfering RNA) technique, caspase inhibitor, and caspase-3-deficient cell line revealed that TRAIL-induced caspase activation is a prerequisite for the TRAIL-induced ER stress response. TRAIL-induced ER stress was triggered by caspase-8-mediated cleavage of BAP31 (B cell receptor-associated protein 31). The involvement of the proapoptotic PERK-CHOP pathway in TRAIL-induced apoptosis was verified by using a PERK knockout (PERK(-/-)) mouse embryo fibroblast (MEF) cell line and a CHOP(-/-) MEF cell line. These results suggest that TRAIL-induced the activation of ER stress response plays a role in TRAIL-induced apoptotic death.

  16. p28 Bap31, a Bcl-2/Bcl-XL- and procaspase-8-associated protein in the endoplasmic reticulum.

    Science.gov (United States)

    Ng, F W; Nguyen, M; Kwan, T; Branton, P E; Nicholson, D W; Cromlish, J A; Shore, G C

    1997-10-20

    We have identified a human Bcl-2-interacting protein, p28 Bap31. It is a 28-kD (p28) polytopic integral protein of the endoplasmic reticulum whose COOH-terminal cytosolic region contains overlapping predicted leucine zipper and weak death effector homology domains, flanked on either side by identical caspase recognition sites. In cotransfected 293T cells, p28 is part of a complex that includes Bcl-2/Bcl-XL and procaspase-8 (pro-FLICE). Bax, a pro-apoptotic member of the Bcl-2 family, does not associate with the complex; however, it prevents Bcl-2 from doing so. In the absence (but not presence) of elevated Bcl-2 levels, apoptotic signaling by adenovirus E1A oncoproteins promote cleavage of p28 at the two caspase recognition sites. Purified caspase-8 (FLICE/MACH/Mch5) and caspase-1(ICE), but not caspase-3 (CPP32/apopain/ Yama), efficiently catalyze this reaction in vitro. The resulting NH2-terminal p20 fragment induces apoptosis when expressed ectopically in otherwise normal cells. Taken together, the results suggest that p28 Bap31 is part of a complex in the endoplasmic reticulum that mechanically bridges an apoptosis-initiating caspase, like procaspase-8, with the anti-apoptotic regulator Bcl-2 or Bcl-XL. This raises the possibility that the p28 complex contributes to the regulation of procaspase-8 or a related caspase in response to E1A, dependent on the status of the Bcl-2 setpoint within the complex.

  17. The SGK1 inhibitor SI113 induces autophagy, apoptosis, and endoplasmic reticulum stress in endometrial cancer cells.

    Science.gov (United States)

    Conza, Domenico; Mirra, Paola; Calì, Gaetano; Tortora, Teresa; Insabato, Luigi; Fiory, Francesca; Schenone, Silvia; Amato, Rosario; Beguinot, Francesco; Perrotti, Nicola; Ulianich, Luca

    2017-12-01

    Endometrial cancer is often characterized by PI3K/AKT pathway deregulation. Recently it has been suggested that SGK1, a serine/threonine protein kinase that shares structural and functional similarities with the AKT family, might play a role in cancer, since its expression and/or activity has been found to be deregulated in different human tumors. However, the role of SGK1 in endometrial cancer has been poorly investigated. Here, we show that SGK1 expression is increased in tissue specimens from neoplastic endometrium. The SGK1 inhibitor SI113 induced a significant reduction of endometrial cancer cells viability, measured by the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. This effect was associated to the increase of autophagy, as revealed by the increase of the markers LC3B-II and beclin I, detected by both immunofluorescence and western blot analysis. SI113 treatment caused also apoptosis of endometrial cancer cells, evidenced by the cleavage of the apoptotic markers PARP and Caspase-9. Intriguingly, these effects were associated to the induction of endoplasmic reticulum stress markers GRP78 and CHOP evaluated by both Real-Time RT-PCR and Western Blot analysis. Increased expression of SGK1 in endometrial cancer tissues suggest a role for SGK1 in this type of cancer, as reported for other malignancies. Moreover, the efficacy of SI113 in affecting endometrial cancer cells viability, possibly via endoplasmic reticulum stress activation, identifies SGK1 as an attractive molecular target for new tailored therapeutic intervention for the treatment of endometrial cancer. © 2017 Wiley Periodicals, Inc.

  18. Upregulation of the SERCA-type Ca2+ pump activity in response to endoplasmic reticulum stress in PC12 cells

    Directory of Open Access Journals (Sweden)

    Frandsen Aase

    2001-04-01

    Full Text Available Abstract Background Ca2+-ATPases of endoplasmic reticulum (SERCAs are responsible for maintenance of the micro- to millimolar Ca2+ ion concentrations within the endoplasmic reticulum (ER of eukaryotic cells. This intralumenal Ca2+ storage is important for the generation of Ca2+ signals as well as for the correct folding and posttranslational processing of proteins entering ER after synthesis. ER perturbations such as depletion of Ca2+ or abolishing the oxidative potential, inhibition of glycosylation, or block of secretory pathway, activate the Unfolded Protein Response, consisting of an upregulation of a number of ER-resident chaperones/stress proteins in an effort to boost the impaired folding capacity. Results We show here that in PC12 cells, depletion of ER Ca2+ by EGTA, as well as inhibition of disulphide bridge formation within the ER by dithiotreitol or inhibition of N-glycosylation by tunicamycin, led to a 2- to 3-fold increase of the SERCA-mediated 45Ca2+ transport to microsomes isolated from cells exposed to these stress agents. The time course of this response corresponded to that for transcriptional upregulation of ER stress proteins, as well as to the increase in the SERCA2b mRNA, as we recently observed in an independent study. Conclusions These findings provide the first functional evidence for the increase of SERCA pumping capacity in cells subjected to the ER stress. Since at least three different and unrelated mechanisms of eliciting the ER stress response were found to cause this functional upregulation of Ca2+ transport into the ER, these results support the existence of a coupling between the induction of the UPR pathway in general, and the regulation of expression of at least one of the SERCA pump isoforms.

  19. Endoplasmic reticulum stress-induced resistance to doxorubicin is reversed by paeonol treatment in human hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Lulu Fan

    Full Text Available BACKGROUND: Endoplasmic reticulum stress (ER stress is generally activated in solid tumors and results in tumor cell anti-apoptosis and drug resistance. Paeonol (Pae, 2-hydroxy-4-methoxyacetophenone, is a natural product extracted from the root of Paeonia Suffruticosa Andrew. Although Pae displays anti-neoplastic activity and increases the efficacy of chemotherapeutic drugs in various cell lines and in animal models, studies related to the effect of Pae on ER stress-induced resistance to chemotherapeutic agents in hepatocellular carcinoma (HCC are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated the effect of the endoplasmic reticulum (ER stress response during resistance of human hepatocellular carcinoma cells to doxorubicin. Treatment with the ER stress-inducer tunicamycin (TM before the addition of doxorubicin reduced the rate of apoptosis induced by doxorubicin. Interestingly, co-pretreatment with tunicamycin and Pae significantly increased apoptosis induced by doxorubicin. Furthermore, induction of ER stress resulted in increasing expression of COX-2 concomitant with inactivation of Akt and up-regulation of the pro-apoptotic transcription factor CHOP (GADD153 in HepG2 cells. These cellular changes in gene expression and Akt activation may be an important resistance mechanism against doxorubicin in hepatocellular carcinoma cells undergoing ER stress. However, co-pretreatment with tunicamycin and Pae decreased the expression of COX-2 and levels of activation of Akt as well as increasing the levels of CHOP in HCC cells. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that Pae reverses ER stress-induced resistance to doxorubicin in human hepatocellular carcinoma cells by targeting COX-2 mediated inactivation of PI3K/AKT/CHOP.

  20. Inhibition of soluble epoxide hydrolase attenuates hepatic fibrosis and endoplasmic reticulum stress induced by carbon tetrachloride in mice

    Science.gov (United States)

    Harris, Todd R.; Bettaieb, Ahmed; Kodani, Sean; Dong, Hua; Myers, Richard; Chiamvimonvat, Nipavan; Haj, Fawaz G.; Hammock, Bruce D.

    2015-01-01

    Liver fibrosis is a pathological condition in which chronic inflammation and changes to the extracellular matrix lead to alterations in hepatic tissue architecture and functional degradation of the liver. Inhibitors of the enzyme soluble epoxide hydrolase (sEH) reduce fibrosis in the heart, pancreas and kidney in several disease models. In this study, we assess the effect of sEH inhibition on the development of fibrosis in a carbon tetrachloride (CCl4)-induced mouse model by monitoring changes in the inflammatory response, matrix remolding and endoplasmic reticulum stress. The sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) was administered in drinking water. Collagen deposition in the liver was increased five-fold in the CCl4-treated group, and this was returned to control levels by TPPU treatment. Hepatic expression of Col1a2 and 3a1 mRNA was increased over fifteen-fold in the CCl4-treated group relative to the control group, and this increase was reduced by 50% by TPPU treatment. Endoplasmic reticulum (ER) stress observed in the livers of CCl4-treated animals was attenuated by TPPU treatment. In order to support the hypothesis that TPPU is acting to reduce the hepatic fibrosis and ER stress through its action as a sEH inhibitor we used a second sEH inhibitor, trans-4-{4-[3-(4-trifluoromethoxy-phenyl)-ureido]-cyclohexyloxy}-benzoic acid (t-TUCB), and sEH null mice. Taken together, these data indicate that the sEH may play an important role in the development of hepatic fibrosis induced by CCl4, presumably by reducing endogenous fatty acid epoxide chemical mediators acting to reduce ER stress. PMID:25827057

  1. C-terminal, endoplasmic reticulum-lumenal domain of prosurfactant protein C - structural features and membrane interactions.

    Science.gov (United States)

    Casals, Cristina; Johansson, Hanna; Saenz, Alejandra; Gustafsson, Magnus; Alfonso, Carlos; Nordling, Kerstin; Johansson, Jan

    2008-02-01

    Surfactant protein C (SP-C) constitutes the transmembrane part of prosurfactant protein C (proSP-C) and is alpha-helical in its native state. The C-terminal part of proSP-C (CTC) is localized in the endoplasmic reticulum lumen and binds to misfolded (beta-strand) SP-C, thereby preventing its aggregation and amyloid fibril formation. In this study, we investigated the structure of recombinant human CTC and the effects of CTC-membrane interaction on protein structure. CTC forms noncovalent trimers and supratrimeric oligomers. It contains two intrachain disulfide bridges, and its secondary structure is significantly affected by urea or heat only after disulfide reduction. The postulated Brichos domain of CTC, with homologs found in proteins associated with amyloid and proliferative disease, is up to 1000-fold more protected from limited proteolysis than the rest of CTC. The protein exposes hydrophobic surfaces, as determined by CTC binding to the environment-sensitive fluorescent probe 1,1'-bis(4-anilino-5,5'-naphthalenesulfonate). Fluorescence energy transfer experiments further reveal close proximity between bound 1,1'-bis(4-anilino-5,5'-naphthalenesulfonate) and tyrosine residues in CTC, some of which are conserved in all Brichos domains. CTC binds to unilamellar phospholipid vesicles with low micromolar dissociation constants, and differential scanning calorimetry and CD analyses indicate that membrane-bound CTC is less structurally ordered than the unbound protein. The exposed hydrophobic surfaces and the structural disordering that result from interactions with phospholipid membranes suggest a mechanism whereby CTC binds to misfolded SP-C in the endoplasmic reticulum membrane.

  2. Different Eukaryotic Initiation Factor Mutations Lead to Various Degrees of Intolerance to the Stress of Endoplasmic Reticulum in Oligodendrocytes

    Institute of Scientific and Technical Information of China (English)

    Na Chen; Yu-Wu Jiang; Hong-Jun Hao; Ting-Ting Ban; Kai Gao; Zhong-Bin Zhang; Jing-Min Wang

    2015-01-01

    Background:Vanishing white matter disease (VWM),a human autosomal recessive inherited leukoencephalopathy,is due to mutations in eukaryotic initiation factor 2B (eIF2B).eIF2B is responsible for the initiation of protein synthesis by its guanine nucleotide exchange factor (GEF) activity.Mutations ofeIF2B impair GEF activity at different degree.Previous studies implied improperly activated unfolded protein response (UPR) and endoplasmic reticulum stress (ERS) participated in the pathogenesis ofVWM.Autophagy relieves endoplasmic reticulum load by eliminating the unfolded protein.It is still unknown the effects of genotypes on the pathogenesis.In this work,UPR and autophagy flux were analyzed with different mutational types.Methods:ERS tolerance,reflected by apoptosis and cell viability,was detected in human oligodendrocyte cell line transfected with the wild type,or different mutations ofp.Arg 113His,p.Arg269* or p.Ser610-Asp613del in eIF2Bε.A representative UPR-PERK component of activating transcription factor 4 (ATF4) was measured under the basal condition and ERS induction.Autophagy was analyzed the flux in the presence of lysosomal inhibitors.Results:The degree of ERS tolerance varied in different genotypes.The truncated or deletion mutant showed prominent apoptosis cell viability declination afder ERS induction.The most seriously damaged GEF activity ofp.Arg269* group underwent spontaneous apoptosis.The truncated or deletion mutant showed elevated ATF4 under basal as well as ERS condition.Decreased expression of LC3-Ⅰ and LC3-Ⅱ in the mutants reflected an impaired autophagy flux,which was more obvious in the truncated or deletion mutants after ERS induction.Conclusions:GEF activities in different genotypes could influence the cell ERS tolerance as well as compensatory pathways of UPR and autophagy.Oligodendrocytes with truncated or deletion mutants showed less tolerable to ERS.

  3. Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver

    Science.gov (United States)

    Li, Yu; Xu, Shanqin; Giles, Amber; Nakamura, Kazuto; Lee, Jong Woo; Hou, Xiuyun; Donmez, Gizem; Li, Ji; Luo, Zhijun; Walsh, Kenneth; Guarente, Leonard; Zang, Mengwei

    2011-01-01

    Endoplasmic reticulum (ER) stress has been implicated in the pathophysiology of human type 2 diabetes (T2DM). Although SIRT1 has a therapeutic effect on metabolic deterioration in T2DM, the precise mechanisms by which SIRT1 improves insulin resistance remain unclear. Here, we demonstrate that adenovirus-mediated overexpression of SIRT1 in the liver of diet-induced insulin-resistant low-density lipoprotein receptor-deficient mice and of genetically obese ob/ob mice attenuates hepatic steatosis and ameliorates systemic insulin resistance. These beneficial effects were associated with decreased mammalian target of rapamycin complex 1 (mTORC1) activity, inhibited the unfolded protein response (UPR), and enhanced insulin receptor signaling in the liver, leading to decreased hepatic gluconeogenesis and improved glucose tolerance. The tunicamycin-induced splicing of X-box binding protein-1 and expression of GRP78 and CHOP were reduced by resveratrol in cultured cells in a SIRT1-dependent manner. Conversely, SIRT1-deficient mouse embryonic fibroblasts challenged with tunicamycin exhibited markedly increased mTORC1 activity and impaired ER homeostasi and insulin signaling. These effects were abolished by mTORC1 inhibition by rapamycin in human HepG2 cells. These studies indicate that SIRT1 serves as a negative regulator of UPR signaling in T2DM and that SIRT1 attenuates hepatic steatosis, ameliorates insulin resistance, and restores glucose homeostasis, largely through the inhibition of mTORC1 and ER stress.—Li, Y., Xu, S., Giles, A., Nakamura, K., Lee, J. W., Hou, X., Donmez, G., Li, J., Luo, Z., Walsh, K., Guarente, L., Zang, M. Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver. PMID:21321189

  4. The specialized pro-resolving lipid mediator maresin 1 protects hepatocytes from lipotoxic and hypoxia-induced endoplasmic reticulum stress.

    Science.gov (United States)

    Rius, Bibiana; Duran-Güell, Marta; Flores-Costa, Roger; López-Vicario, Cristina; Lopategi, Aritz; Alcaraz-Quiles, José; Casulleras, Mireia; Lozano, Juan José; Titos, Esther; Clària, Joan

    2017-08-02

    Endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) are hallmarks of nonalcoholic fatty liver disease (NAFLD), which is the hepatic manifestation of the metabolic syndrome associated with obesity. The specialized pro-resolving lipid mediator maresin 1 (MaR1) preserves tissue homeostasis by exerting cytoprotective actions, dampening inflammation, and expediting its timely resolution. Here, we explored whether MaR1 protects liver cells from lipotoxic and hypoxia-induced ER stress. Mice were rendered obese by high-fat diet feeding, and experiments were performed in primary hepatocytes, Kupffer cells, and precision-cut liver slices (PCLSs). Palmitate-induced lipotoxicity increased ER stress and altered autophagy in hepatocytes, effects that were prevented by MaR1. MaR1 protected hepatocytes against lipotoxicity-induced apoptosis by activating the UPR prosurvival mechanisms and preventing the excessive up-regulation of proapoptotic pathways. Protective MaR1 effects were also seen in hepatocytes challenged with hypoxia and TNF-α-induced cell death. High-throughput microRNA (miRNA) sequencing revealed that MaR1 actions were associated with specific miRNA signatures targeting both protein folding and apoptosis. MaR1 also prevented lipotoxic-triggered ER stress and hypoxia-induced inflammation in PCLSs and enhanced Kupffer cell phagocytic capacity. Together, these findings describe the ability of MaR1 to oppose ER stress in liver cells under conditions frequently encountered in NAFLD.-Rius, B., Duran-Güell, M., Flores-Costa, R., López-Vicario, C., Lopategi, A., Alcaraz-Quiles, J., Casulleras, M., Lozano, J. J., Titos, E., Clària, J. The specialized pro-resolving lipid mediator maresin 1 protects hepatocytes from lipotoxic and hypoxia-induced endoplasmic reticulum stress. © FASEB.

  5. Endoplasmic Reticulum Stress and Bipolar Disorder - Almost Forgotten Therapeutic Drug Targets in the Unfolded Protein Response Pathway Revisited.

    Science.gov (United States)

    Bengesser, Susanne A; Fuchs, Robert; Lackner, Nina; Birner, Armin; Reininghaus, Bernd; Meier-Allard, Nathalie; Stracke, Anika; Kapfhammer, Hans-Peter; Reininghaus, Eva Z; Wallner-Liebmann, Sandra

    2016-01-01

    Bipolar Disorder (BD) is characterized by recurring mood swings, which are not completely understood yet. So far, it is an accepted theory that multiple factors contribute to pathogenesis of BD according to the vulnerability-stressmodel. This model combines on the one hand biological predisposing vulnerability, and on the other hand several chronic and acute stressful negative events as underlying mechanisms of BD. Recently, ER (Endoplasmic Reticulum) stress reached the spotlight of BD research again. The expression of the chaperone BiP (syn. GRP78/glucose-regulated protein, 78kDa), which is highly expressed in the Endoplasmic Reticulum (ER), is upregulated by different kinds of mood stabilizers. These results implied that the ER, an organelle which is prone towards different kinds of cellular stress, might be involved in the pathophysiology of BD. This hypothesis was further strengthened by hypothesis driven genetic association studies, which showed significant association of BiP promotor polymorphisms with BD. Also other ER-stress associated genes like XBP1 (X-box binding protein 1) or GRP94 (glucose-regulated protein, 94kDa, synonym for heat shock protein HSP90B1) were recently linked to BD in hypothesis driven gene association studies. In addition to the proteins mentioned before, our review focuses on further UPR (Unfolded Protein Response) related proteins associated with BD and raises the hypothesis that ER-stress may represent a common interface between BD and obesity which is overrepresented in BD patients. Finally, members of the UPR pathway are discussed as putative targets for mood stabilizers.

  6. Apoptosis and necrosis induced by novel realgar quantum dots in human endometrial cancer cells via endoplasmic reticulum stress signaling pathway

    Directory of Open Access Journals (Sweden)

    Wang H

    2015-08-01

    Full Text Available Huan Wang,1–3 Zhengyun Liu,4 Ying Gou,3 Yu Qin,4 Yaze Xu,5 Jie Liu,4 Jin-Zhu Wu6 1Research Center for Medicine and Biology, 2Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, 3Department of Microbiology, 4Key Lab for Basic Pharmacology of Ministry of Education, 5Pharmacy School, Zunyi Medical College, Zunyi, 6Department of Chemistry, School of Science, Harbin Institute of Technology, Harbin, People’s Republic of China Abstract: Realgar (AS4S4 has been used in traditional medicines for malignancy, but the poor water solubility is still a major hindrance to its clinical use. Realgar quantum dots (RQDs were therefore synthesized with improved water solubility and bioavailability. Human endometrial cancer JEC cells were exposed to various concentrations of RQDs to evaluate their anticancer effects and to explore mechanisms by the MTT assay, transmission electron microscopy (TEM, flow cytometry, real-time reverse transcriptase polymerase chain reaction (RT-PCR and Western blot analysis. Results revealed that the highest photoluminescence quantum yield of the prepared RQDs was up to approximately 70%, with the average size of 5.48 nm. RQDs induced antiproliferative activity against JEC cells in a concentration-dependent manner. In light microscopy and TEM examinations, RQDs induced vacuolization and endoplasmic reticulum (ER dilation in JEC cells in a concentration-dependent manner. ER stress by RQDs were further confirmed by increased expression of GADD153 and GRP78 at both mRNA and protein levels. ER stress further led to JEC cell apoptosis and necrosis, as evidenced by flow cytometry and mitochondrial membrane potential detection. Our findings demonstrated that the newly synthesized RQDs were effective against human endometrial cancer cells. The underlying mechanism appears to be, at least partly, due to ER stress leading to apoptotic cell death and necrosis. Keywords: realgar, quantum dots

  7. Inhibition of soluble epoxide hydrolase attenuates hepatic fibrosis and endoplasmic reticulum stress induced by carbon tetrachloride in mice

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Todd R. [Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616 (United States); Bettaieb, Ahmed [Department of Nutrition, University of California, Davis, CA 95616 (United States); Kodani, Sean; Dong, Hua [Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616 (United States); Myers, Richard; Chiamvimonvat, Nipavan [Department of Internal Medicine: Cardiovascular, University of California, Davis, CA 95616 (United States); Haj, Fawaz G. [Department of Nutrition, University of California, Davis, CA 95616 (United States); Department of Internal Medicine: Endocrinology, Diabetes and Metabolism, University of California, Davis, CA 95616 (United States); Hammock, Bruce D., E-mail: bdhammock@ucdavis.edu [Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616 (United States)

    2015-07-15

    Liver fibrosis is a pathological condition in which chronic inflammation and changes to the extracellular matrix lead to alterations in hepatic tissue architecture and functional degradation of the liver. Inhibitors of the enzyme soluble epoxide hydrolase (sEH) reduce fibrosis in the heart, pancreas and kidney in several disease models. In this study, we assess the effect of sEH inhibition on the development of fibrosis in a carbon tetrachloride (CCl{sub 4})-induced mouse model by monitoring changes in the inflammatory response, matrix remolding and endoplasmic reticulum stress. The sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) was administered in drinking water. Collagen deposition in the liver was increased five-fold in the CCl{sub 4}-treated group, and this was returned to control levels by TPPU treatment. Hepatic expression of Col1a2 and 3a1 mRNA was increased over fifteen-fold in the CCl{sub 4}-treated group relative to the Control group, and this increase was reduced by 50% by TPPU treatment. Endoplasmic reticulum (ER) stress observed in the livers of CCl{sub 4}-treated animals was attenuated by TPPU treatment. In order to support the hypothesis that TPPU is acting to reduce the hepatic fibrosis and ER stress through its action as a sEH inhibitor we used a second sEH inhibitor, trans-4-(4-[3-(4-trifluoromethoxy-phenyl)-ureido]-cyclohexyloxy)-benzoic acid (t-TUCB), and sEH null mice. Taken together, these data indicate that the sEH may play an important role in the development of hepatic fibrosis induced by CCl{sub 4}, presumably by reducing endogenous fatty acid epoxide chemical mediators acting to reduce ER stress. - Highlights: • We administer an inhibitor of sEH in a CCl4 murine model. • sEH inhibition reduces liver collagen deposition and pro-fibrotic gene expression. • sEH inhibition induces MMP-1a activity.

  8. Nitric oxide scavenging causes remodeling of the endoplasmic reticulum, Golgi apparatus and mitochondria in pulmonary arterial endothelial cells.

    Science.gov (United States)

    Lee, Jason E; Yuan, Huijuan; Liang, Feng-Xia; Sehgal, Pravin B

    2013-09-01

    The dependence of the structure and function of cytoplasmic organelles in endothelial cells on constitutively produced intracellular nitric oxide (NO) remains largely unexplored. We previously reported fragmentation of the Golgi apparatus in cells exposed to NO scavengers or after siRNA-mediated knockdown of eNOS. Others have reported increased mitochondrial fission in response to an NO donor. Functionally, we previously reported that bovine pulmonary arterial endothelial cells (PAECs) exposed to the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) developed a prosecretory phenotype characterized by prolonged secretion of soluble proteins. In the present study, we investigated whether NO scavenging led to remodeling of the endoplasmic reticulum (ER). Live-cell DAF-2DA imaging confirmed the presence of intracellular NO in association with the BODIPY C5-ceramide-labeled Golgi apparatus. Untreated human PAECs displayed a pattern of peripheral tubulo-reticular ER with a juxtanuclear accumulation of ER sheets. Cells exposed to c-PTIO showed a dramatic increase in ER sheets as assayed using immunofluorescence for the ER structural protein reticulon-4b/Nogo-B and the ER-resident GTPase atlastin-3, live-cell fluorescence assays using RTN4-GFP and KDEL-mCherry, and electron microscopy methods. These ER changes were inhibited by the NO donor diethylamine NONOate, and also produced by L-NAME, but not D-NAME or 8-br-cGMP. This ER remodeling was accompanied by Golgi fragmentation and increased fibrillarity and function of mitochondria (uptake of tetramethyl-rhodamine, TMRE). Despite Golgi fragmentation the functional ER/Golgi trafficking unit was preserved as seen by the accumulation of Sec31A ER exit sites adjacent to the dispersed Golgi elements and a 1.8-fold increase in secretion of soluble cargo. Western blotting and immunopanning data showed that RTN4b was increasingly ubiquitinated following c-PTIO exposure, especially in the

  9. The Possible Potentiating Role of Endoplasmic Reticulum Stress Response Inhibitors in Trans-Differentiation of white to Brown Adipocytes

    Directory of Open Access Journals (Sweden)

    Ali Mohammad Sharifi

    2012-01-01

    Full Text Available The brown adipose tissue (BAT is an organ with the specialised function of intracellular fat oxidation; in other words, brown fat points to a potential natural tool by which energy expenditure is being stimulated. Obesity is a serious illness which can lead to many medical complications such as cardiovascular disorders. The BAT production, therefore, could be a promising therapeutic strategy for managing obesity. While different approaches have been examined to generate brown adipocytes from various precursor cells, no study has proposed an efficient procedure for direct trans-differentiation of white to brown adipocytes. Bone morphogenic protein (BMP-7 is a possible potential agent by which most of the main factors involved in induction of brown adipocytogenesis such as early regulators of brown fat fate, positive regulatory domain containing 16 (PRDM16 and peroxisome proliferator-activated receptor gamma (PPARγ coactivator-1 alpha (PGC-1α are stimulated, but the rate of success was not so promising. It has been documented that mature white adipocytes exert endoplasmic reticulum stress response (ESR and consequently unfolded protein response (UPR becomes activated for the purpose of ESR recovery since the ESR exceeds the capacity of UPR to overcome the imposed stress, and in turn disables the cell to manage the protein synthesis cascade including those required for BMP-7 induction of brown adipogenesis. This was performed using three main ESR sensors: PKR-like endoplasmic reticulum kinase (PERK, inositol requiring enzyme-1 (IRE-1 and activating transcription factor 6 alpha (ATF-6α resulting in attenuation of protein translation by blocking the activation of transcriptional machinery of UPR genes and the cell behaviour would also be changed towards apoptosis.It may suggest and propose the hypothesis that pretreatment of the white adipocyte with an ESR inhibitor such as salubrinal by reducing ESR and turning on the protein synthesis machinery

  10. Ca2+ and endoplasmic reticulum Ca2+-ATPase regulate the formation of silk fibers with favorable mechanical properties.

    Science.gov (United States)

    Wang, Xin; Li, Yi; Xie, Kang; Yi, Qiying; Chen, Quanmei; Wang, Xiaohuan; Shen, Hong; Xia, Qingyou; Zhao, Ping

    2015-02-01

    Calcium ions (Ca(2+)) are crucial for the conformational transition of silk fibroin in vitro, and silk fibroin conformations correlate with the mechanical properties of silk fibers. To investigate the relationship between Ca(2+) and mechanical properties of silk fibers, CaCl2 was injected into silkworms (Bombyx mori). Fourier-transform infrared spectroscopy (FTIR) analysis and mechanical testing revealed that injection of CaCl2 solution (7.5mg/g body weight) significantly increased the levels of α-helix and random coil structures of silk proteins. In addition, extension of silk fibers increased after CaCl2 injection. In mammals, sarcoplasmic reticulum Ca(2+)-ATPase in muscle and endoplasmic reticulum Ca(2+)-ATPase in other tissues (together denoted by SERCA) are responsible for calcium balance. Therefore, we analyzed the expression pattern of silkworm SERCA (BmSERCA) in silk glands and found that BmSERCA was abundant in the anterior silk gland (ASG). After injection of thapsigargin (TG) to block SERCA activity, silkworms showed a silk-spinning deficiency and their cocoons had higher calcium content compared to that of controls. Moreover, FTIR analysis revealed that the levels of α-helix and β-sheet structures increased in silk fibers from TG-injected silkworms compared to controls. The results provide evidence that BmSERCA has a key function in calcium transportation in ASG that is related to maintaining a suitable ionic environment. This ionic environment with a proper Ca(2+) concentration is crucial for the formation of silk fibers with favorable mechanical performances.

  11. ATF6 as a Transcription Activator of the Endoplasmic Reticulum Stress Element: Thapsigargin Stress-Induced Changes and Synergistic Interactions with NF-Y and YY1

    OpenAIRE

    Li, Mingqing; Baumeister, Peter; Roy, Binayak; Phan, Trevor; Foti, Dolly; Luo, Shengzhan; Lee, Amy S.

    2000-01-01

    ATF6, a member of the leucine zipper protein family, can constitutively induce the promoter of glucose-regulated protein (grp) genes through activation of the endoplasmic reticulum (ER) stress element (ERSE). To understand the mechanism of grp78 induction by ATF6 in cells subjected to ER calcium depletion stress mediated by thapsigargin (Tg) treatment, we discovered that ATF6 itself undergoes Tg stress-induced changes. In nonstressed cells, ATF6, which contains a putative short transmembrane ...

  12. Insulin gene mutations resulting in early-onset diabetes: marked differences in clinical presentation, metabolic status, and pathogenic effect through endoplasmic reticulum retention

    DEFF Research Database (Denmark)

    Meur, Gargi; Simon, Albane; Harun, Nasret

    2009-01-01

    the molecular mechanisms involved. RESEARCH DESIGN AND METHODS: The INS gene was sequenced in 16 French probands with unexplained MODY, 95 patients with nonautoimmune early-onset diabetes (diagnosed at ... quantitated by real-time PCR. RESULTS: A novel coding mutation, L30M, potentially affecting insulin multimerization, was identified in five diabetic individuals (diabetes onset 17-36 years) in a single family. L30M preproinsulin-GFP fluorescence largely associated with the endoplasmic reticulum (ER) in MIN6...

  13. Islet Oxygen Consumption and Insulin Secretion Tightly Coupled to Calcium Derived from L-type Calcium Channels but Not from the Endoplasmic Reticulum*

    OpenAIRE

    Gilbert, Merle; Jung, Seung-Ryoung; Reed, Benjamin J.; Sweet, Ian R.

    2008-01-01

    The aim of the study was to test whether the source of intracellular calcium (Ca2+) is a determinant of beta cell function. We hypothesized that elevations in cytosolic Ca2+ caused by the release of Ca2+ from the endoplasmic reticulum (ER) have little physiologic impact on oxygen consumption and insulin secretion. Ca2+ release from the ER was induced in isolated rat islets by acetylcholine and response of oxygen consumption rate (OCR), NAD(P)H, cytosolic Ca2+, and ...

  14. 内质网应激在青光眼中作用的研究进展%The progress of study about endoplasmic reticulum stress in glaucoma

    Institute of Scientific and Technical Information of China (English)

    胡婕; 江冰

    2016-01-01

    In eukaryotic cells,the most secreted proteins and membrane proteins are compounded,modified and folded into the correct structure in the endoplasmic reticulum.Only correctly folded proteins can be transported to the golgi apparatus for further processing.If the endoplasmic reticulum is insufficient to deal with the accumulation of unfolded or misfolded proteins,balance will be broken,and endoplasmic reticulum stress (ERS) will be started.To eliminate the unfolded proteins,cells will activate unfolded protein response (UPR) immediately for self-protection.If the induced ERS is strong or persistent,the UPR could not maintain the balance of homeostasis in endoplasmic reticulum.Then the ERS will lead to C/EBP homologous protein activation and initiate cell apoptosis.The continuous ERS may participate in the occurrence and development of many diseases,such as neurodegenerative diseases and type 2 diabetes.In this article,the research progress of ERS and its relationship with glaucoma is reviewed.%近年研究发现内质网应激参与了众多疾病的发病.细胞发生内质网应激的最终结局取决于内质网应激程度和未折叠蛋白质反应维持自身稳态能力两者间的动态平衡.本文从小梁网细胞和青光眼神经传导通路两个方面,探讨了内质网应激与青光眼疾病发生、发展的可能作用机制,并针对目前已发现的治疗新靶点进行综述.

  15. Phosphatidylinositol- and phosphatidylcholine-transfer activity of PITPβ is essential for COPI-mediated retrograde transport from the Golgi to the endoplasmic reticulum

    OpenAIRE

    Carvou, Nicolas; Holic, Roman; Li, Michelle; Futter, Clare; Skippen, Alison; Cockcroft, Shamshad

    2010-01-01

    Vesicles formed by the COPI complex function in retrograde transport from the Golgi to the endoplasmic reticulum (ER). Phosphatidylinositol transfer protein β (PITPβ), an essential protein that possesses phosphatidylinositol (PtdIns) and phosphatidylcholine (PtdCho) lipid transfer activity is known to localise to the Golgi and ER but its role in these membrane systems is not clear. To examine the function of PITPβ at the Golgi-ER interface, RNA interference (RNAi) was used to knockdown PITPβ ...

  16. Analysis of Ca(2+) uptake into the smooth endoplasmic reticulum of permeabilised sternal epithelial cells during the moulting cycle of the terrestrial isopod Porcellio scaber.

    Science.gov (United States)

    Hagedorn, Monica; Ziegler, Andreas

    2002-07-01

    In terrestrial isopods, large amounts of Ca(2+) are transported across anterior sternal epithelial cells during moult-related deposition and resorption of CaCO(3) deposits. Because of its toxicity and function as a second messenger, resting cytosolic Ca(2+) levels must be maintained below critical concentrations during epithelial Ca(2+) transport, raising the possibility that organelles play a role during Ca(2+) transit. We therefore studied the uptake of Ca(2+) into Ca(2+)-sequestering organelles by monitoring the formation of birefringent calcium oxalate crystals in permeabilised anterior and posterior sternal epithelium cells of Porcellio scaber during Ca(2+)-transporting and non-transporting stages of the moulting cycle using polarised-light microscopy. The results indicate ATP-dependent uptake of Ca(2+) into organelles. Half-maximal crystal growth at a Ca(2+) activity, a(Ca), of 0.4 micromol l(-1) and blockade by cyclopiazonic acid suggest Ca(2+) uptake into the smooth endoplasmic reticulum by the smooth endoplasmic reticulum Ca(2+)-ATPase. Analytical electron microscopical techniques support this interpretation by revealing the accumulation of Ca(2+)-containing crystals in smooth membranous intracellular compartments. A comparison of different moulting stages demonstrated a virtual lack of crystal formation in the early premoult stage and a significant fivefold increase between mid premoult and the Ca(2+)-transporting stages of late premoult and intramoult. These results suggest a contribution of the smooth endoplasmic reticulum as a transient Ca(2+) store during intracellular Ca(2+) transit.

  17. 内质网应激在心理应激中的作用%The role of endoplasmic reticulum stress in psychological stress

    Institute of Scientific and Technical Information of China (English)

    钟静玫; 白洁

    2012-01-01

    The psychological stress could result in psychological diseases and physiological diseases. And the psychological stress could cause endoplasmic reticulum stress by a series of reactions. The endoplasmic reticulum stress play roles in psychophysiological disorders, mental illnesses and neural degeneration diseases by mediating inflammation, apoptosis and the other processes of pathophysiology. This work reviewed some molecular mechanisms on the endoplasmic reticulum stress playing roles in the diseases related with the psychological stress.%心理应激可以造成心理疾病与生理疾病.心理应激通过一系列反应导致内质网应激.内质网应激通过炎症、凋亡等过程导致心身疾病、心理疾病、神经退行性疾病.本文将对内质网应激在心理应激相关疾病中的作用的分子机理做一综述.

  18. ER reorganization is remarkably induced in COS-7 cells accumulating transmembrane protein receptors not competent for export from the endoplasmic reticulum.

    Science.gov (United States)

    D'Agostino, Massimo; Crespi, Arianna; Polishchuk, Elena; Generoso, Serena; Martire, Gianluca; Colombo, Sara Francesca; Bonatti, Stefano

    2014-11-01

    The newly synthesized mutant L501fsX533 Frizzled-4 form and the alpha3beta4 nicotinic acetylcholine receptor expressed in the absence of nicotine accumulate in the endoplasmic reticulum of COS-7 cells and induce the formation of large areas of smooth and highly convoluted cisternae. This results in a generalized block of the transport to the Golgi complex of newly synthesized proteins. Intriguingly, both effects happen peculiarly in COS-7 cells; HeLa, Huh-7, and HEK293 cells expressing the two receptors at similar level than COS-7 cells show normal ER and normal transport toward the plasma membrane. These results question the conclusion that a dominant-negative mechanism would explain the dominance of the mutant L501fsX533 Fz4 allele in the transmission of a form of Familial exudative vitreoretinopathy. Moreover, they indicate that the coordination of endoplasmic reticulum homeostasis in COS-7 cells is particularly error prone. This finding suggests that COS-7 cells may be extremely useful to study the molecular mechanisms regulating endoplasmic reticulum size and architecture.

  19. YiQiFuMai Powder Injection Ameliorates Cerebral Ischemia by Inhibiting Endoplasmic Reticulum Stress-Mediated Neuronal Apoptosis

    Directory of Open Access Journals (Sweden)

    Guosheng Cao

    2016-01-01

    Full Text Available YiQiFuMai (YQFM powder injection as a modern preparation derived from Sheng Mai San, a traditional Chinese medicine, has been widely used in the treatment of cardiovascular and cerebrovascular diseases. However, its neuroprotective effect and underlying mechanism in cerebral ischemia remain to be explored. The present study was designed to investigate the neuroprotective effect of YQFM on endoplasmic reticulum (ER stress-mediated neuronal apoptosis in the permanent middle cerebral artery occlusion- (MCAO- injured mice and the oxygen-glucose deprivation- (OGD- induced pheochromocytoma (PC12 cells. The results showed that single administration of YQFM (1.342 g/kg, i.p. could reduce the brain infarction and improve the neurological deficits and the cerebral blood flow (CBF after MCAO for 24 h in mice. Moreover, incubation with YQFM (100, 200, and 400 μg/mL could increase the cell viability, decrease the caspase-3 activity, and inhibit the cell apoptosis in OGD-induced PC12 cells for 12 h. In addition, YQFM treatment could significantly modulate cleaved caspase-3 and Bcl-2 expressions and inhibit the expressions of ER stress-related marker proteins and signaling pathways in vivo and in vitro. In conclusion, our findings provide the first evidence that YQFM ameliorates cerebral ischemic injury linked with modulating ER stress-related signaling pathways, which provided some new insights for its prevention and treatment of cerebral ischemia diseases.

  20. Calcium-induced alteration of mitochondrial morphology and mitochondrial-endoplasmic reticulum contacts in rat brown adipocytes

    Directory of Open Access Journals (Sweden)

    I. Golic

    2014-09-01

    Full Text Available Mitochondria are key organelles maintaining cellular bioenergetics and integrity, and their regulation of [Ca2+]i homeostasis has been investigated in many cell types. We investigated the short-term Ca-SANDOZ® treatment on brown adipocyte mitochondria, using imaging and molecular biology techniques. Two-month-old male Wistar rats were divided into two groups: Ca-SANDOZ® drinking or tap water (control drinking for three days. Alizarin Red S staining showed increased Ca2+ level in the brown adipocytes of treated rats, and potassium pyroantimonate staining localized electron-dense regions in the cytoplasm, mitochondria and around lipid droplets. Ca-SANDOZ® decreased mitochondrial number, but increased their size and mitochondrial cristae volume. Transmission electron microscopy revealed numerous enlarged and fusioned-like mitochondria in the Ca-SANDOZ® treated group compared to the control, and megamitochondria in some brown adipocytes. The Ca2+ diet affected mitochondrial fusion as mitofusin 1 (MFN1 and mitofusin 2 (MFN2 were increased, and mitochondrial fission as dynamin related protein 1 (DRP1 was decreased. Confocal microscopy showed a higher colocalization rate between functional mitochondria and endoplasmic reticulum (ER. The level of uncoupling protein-1 (UCP1 was elevated, which was confirmed by immunohistochemistry and Western blot analysis. These results suggest that Ca-SANDOZ® stimulates mitochondrial fusion, increases mitochondrial-ER contacts and the thermogenic capacity of brown adipocytes

  1. Neuroprotective effects of Activin A on endoplasmic reticulum stress-mediated apoptotic and autophagic PC12 cell death

    Directory of Open Access Journals (Sweden)

    Long-xing Xue

    2017-01-01

    Full Text Available Activin A, a member of the transforming growth factor-beta superfamily, plays a neuroprotective role in multiple neurological diseases. Endoplasmic reticulum (ER stress-mediated apoptotic and autophagic cell death is implicated in a wide range of diseases, including cerebral ischemia and neurodegenerative diseases. Thapsigargin was used to induce PC12 cell death, and Activin A was used for intervention. Our results showed that Activin A significantly inhibited morphological changes in thapsigargin-induced apoptotic cells, and the expression of apoptosis-associated proteins [cleaved-caspase-12, C/EBP homologous protein (CHOP and cleaved-caspase-3] and biomarkers of autophagy (Beclin-1 and light chain 3, and downregulated the expression of thapsigargin-induced ER stress-associated proteins [inositol requiring enzyme-1 (IRE1, tumor necrosis factor receptor-associated factor 2 (TRAF2, apoptosis signal-regulating kinase 1 (ASK1, c-Jun N-terminal kinase (JNK and p38]. The inhibition of thapsigargin-induced cell death was concentration-dependent. These findings suggest that administration of Activin A protects PC12 cells against ER stress-mediated apoptotic and autophagic cell death by inhibiting the activation of the IRE1-TRAF2-ASK1-JNK/p38 cascade.

  2. Manganese induces endoplasmic reticulum (ER) stress and activates multiple caspases in nigral dopaminergic neuronal cells, SN4741.

    Science.gov (United States)

    Chun, H S; Lee, H; Son, J H

    2001-12-04

    Chronic exposure to manganese causes Parkinson's disease (PD)-like clinical symptoms (Neurotoxicology 5 (1984) 13; Arch. Neurol. 46 (1989) 1104; Neurology 56 (2001) 4). Occupational exposure to manganese is proposed as a risk factor in specific cases of idiopathic PD (Neurology 56 (2001) 8). We have investigated the mechanism of manganese neurotoxicity in nigral dopaminergic (DA) neurons using the DA cell line, SN4741 (J. Neurosci. 19 (1999) 10). Manganese treatment elicited endoplasmic reticulum (ER) stress responses, such as an increased level of the ER chaperone BiP, and simultaneously activated the ER resident caspase-12. Peak activation of other major initiator caspases-like activities, such as caspase-1, -8 and -9, ensued, resulting in activation of caspase-3-like activity during manganese-induced DA cell death. The neurotoxic cell death induced by manganese was significantly reduced in the Bcl-2-overexpressing DA cell lines. Our findings suggest that manganese-induced neurotoxicity is mediated in part by ER stress and considerably ameliorated by Bcl-2 overexpression in DA cells.

  3. Size dependent effect of ZnO nanoparticles on endoplasmic reticulum stress signaling pathway in murine liver.

    Science.gov (United States)

    Kuang, Huijuan; Yang, Pengfei; Yang, Lin; Aguilar, Zoraida P; Xu, Hengyi

    2016-11-05

    ZnO nanoparticles (NPs) have been assessed to show adverse effects on the liver, but the molecular mechanisms and the role of nanoparticle properties in these adverse reactions have not been sufficiently studied. In this study, the toxicity of various sizes of ZnO particles (bulk, 90nm, and 30nm) that were ingested orally over a period of 3days were evaluated in mice. The blood biochemistry, hematological analyses, and histopathological evaluation showed that there was apparent toxicity caused by smaller ZnO NPs (30nm) in liver. The smallest ZnO NPs showed highest accumulation in the mice liver. The RT-qPCR data indicated that 30nm ZnO NPs can induce significant endoplasmic reticulum (ER) stress responses. The ER stress marker of PERK, eIF2α, ATF4, Chop, JNK, caspase-12, caspase-9, GRP94, and Bax at the mRNA levels were higher expression in 30nm ZnO NP than that in bulk or 90nm ZnO. These findings implied that the smaller ZnO NPs (30nm) activated ER stress responses that signified severe apoptosis in murine liver.

  4. Fusion of the endoplasmic reticulum and mitochondrial outer membrane in rats brown adipose tissue: activation of thermogenesis by Ca2+.

    Directory of Open Access Journals (Sweden)

    Leopoldo de Meis

    Full Text Available Brown adipose tissue (BAT mitochondria thermogenesis is regulated by uncoupling protein 1 (UCP 1, GDP and fatty acids. In this report, we observed fusion of the endoplasmic reticulum (ER membrane with the mitochondrial outer membrane of rats BAT. Ca(2+-ATPase (SERCA 1 was identified by immunoelectron microscopy in both ER and mitochondria. This finding led us to test the Ca(2+ effect in BAT mitochondria thermogenesis. We found that Ca(2+ increased the rate of respiration and heat production measured with a microcalorimeter both in coupled and uncoupled mitochondria, but had no effect on the rate of ATP synthesis. The Ca(2+ concentration needed for half-maximal activation varied between 0.08 and 0.11 microM. The activation of respiration was less pronounced than that of heat production. Heat production and ATP synthesis were inhibited by rotenone and KCN. Liver mitochondria have no UCP1 and during respiration synthesize a large amount of ATP, produce little heat, GDP had no effect on mitochondria coupling, Ca(2+ strongly inhibited ATP synthesis and had little or no effect on the small amount of heat released. These finding indicate that Ca(2+ activation of thermogenesis may be a specific feature of BAT mitochondria not found in other mitochondria such as liver.

  5. Targeted delivery of an antigenic peptide to the endoplasmic reticulum: application for development of a peptide therapy for ankylosing spondylitis.

    Directory of Open Access Journals (Sweden)

    Hui-Chun Yu

    Full Text Available The development of suitable methods to deliver peptides specifically to the endoplasmic reticulum (ER can provide some potential therapeutic applications of such peptides. Ankylosing spondylitis (AS is strongly associated with the expression of human leukocytic antigen-B27 (HLA-B27. HLA-B27 heavy chain (HC has a propensity to fold slowly resulting in the accumulation of misfolded HLA-B27 HC in the ER, triggering the unfolded protein response, and forming a homodimer, (B27-HC2. Natural killer cells and T-helper 17 cells are then a