WorldWideScience

Sample records for nodal code arrotta

  1. Qualification of ARROTTA code for LWR accident analysis

    International Nuclear Information System (INIS)

    Huang, P.-H.; Peng, K.Y.; Lin, W.-C.; Wu, J.-Y.

    2004-01-01

    This paper presents the qualification efforts performed by TPC and INER for the 3-D spatial kinetics code ARROTTA for LWR core transient analysis. TPC and INER started a joint 5 year project in 1989 to establish independent capabilities to perform reload design and transient analysis utilizing state-of-the-art computer programs. As part of the effort, the ARROTTA code was chosen to perform multi-dimensional kinetics calculations such as rod ejection for PWR and rod drop for BWR. To qualify ARROTTA for analysis of FSAR licensing basis core transients, ARROTTA has been benchmarked for the static core analysis against plant measured data and SIMULATE-3 predictions, and for the kinetic analysis against available benchmark problems. The static calculations compared include critical boron concentration, core power distribution, and control rod worth. The results indicated that ARROTTA predictions match very well with plant measured data and SIMULATE-3 predictions. The kinetic benchmark problems validated include NEACRP rod ejection problem, 3-D LMW LWR rod withdrawal/insertion problem, and 3-D LRA BWR transient benchmark problem. The results indicate that ARROTTA's accuracy and stability are excellent as compared to other space-time kinetics codes. It is therefore concluded that ARROTTA provides accurate predictions for multi-dimensional core transient for LWRs. (author)

  2. Analyses of PWR boron dilution consequences with the Arrotta code

    International Nuclear Information System (INIS)

    Johanson, E.; Cheng, H.W.; Sehgal, B.R.

    1998-03-01

    During the past few years, major attention has been paid to analyzing the issue of reactivity initiated accidents (RIAs), of which the boron dilution event is of very special interest to the countries having pressurized water reactors (PWRs) in their nuclear power delivery systems. The scenario considered is that if an inadvertent accumulation of boron free water in one loop during reactor startup operations of a PWR and the inadvertent startup of the reactor coolant pump (RCP) in the loop. This could then lead to a rapid boron dilution in the core, which can in turn give rise to a power excursion. This report is devoted to studying the potential physical and thermal hydraulic consequences of a slug of diluted coolant entering the core after one RCP start under a couple of postulated cases. The severity of the consequences of such a scenario is primarily determined by the amount of positive reactivity insertion, and they are also related to the reactivity insertion rate. Therefore, in the report, detailed calculations and analyses have been carried out from case to case by using the well-known space-time kinetics code, ARROTTA. As a result, the spatial distribution for nodal power, fuel enthalpy, fuel temperature and clad outside temperature as well as the change in core reactivity, total core power and peak fuel temperature can be provided. In general, the maximum fuel enthalpy, peak fuel temperature, and clad outside temperature, for all the cases considered in the report, do not exceed their respective routine safety limitations because of the strong Doppler effect and moderator temperature feedback, except if the safety limitations on fuel enthalpy addition for high burnup fuel are drastically reduced

  3. A comparison of two nodal codes : Advanced nodal code (ANC) and analytic function expansion nodal (AFEN) code

    International Nuclear Information System (INIS)

    Chung, S.K.; Hah, C.J.; Lee, H.C.; Kim, Y.H.; Cho, N.Z.

    1996-01-01

    Modern nodal methods usually employs the transverse integration technique in order to reduce a multi-dimensional diffusion equation to one-dimensional diffusion equations. The use of the transverse integration technique requires two major approximations such as a transverse leakage approximation and a one-dimensional flux approximation. Both the transverse leakage and the one-dimensional flux are approximated by polynomials. ANC (Advanced Nodal Code) developed by Westinghouse employs a modern nodal expansion method for the flux calculation, the equivalence theory for the homogenization error reduction and a group theory for pin power recovery. Unlike the conventional modern nodal methods, AFEN (Analytic Function Expansion Nodal) method expands homogeneous flux distributions within a node into non-separable analytic basis functions, which eliminate two major approximations of the modern nodal methods. A comparison study of AFEN with ANC has been performed to see the applicability of AFEN to commercial PWR and different types of reactors such as MOX fueled reactor. The qualification comparison results demonstrate that AFEN methodology is accurate enough to apply for commercial PWR analysis. The results show that AFEN provides very accurate results (core multiplication factor and assembly power distribution) for cores that exhibit strong flux gradients as in a MOX loaded core. (author)

  4. The Nudo, Rollo, Melon codes and nodal correlations

    International Nuclear Information System (INIS)

    Perlado, J.M.; Aragones, J.M.; Minguez, E.; Pena, J.

    1975-01-01

    Analysis of nodal calculation and checking results by the reference reactor experimental data. Nudo code description, adapting experimental data to nodal calculations. Rollo, Melon codes as improvement in the cycle life calculations of albedos, mixing parameters and nodal correlations. (author)

  5. NESTLE: A nodal kinetics code

    International Nuclear Information System (INIS)

    Al-Chalabi, R.M.; Turinsky, P.J.; Faure, F.-X.; Sarsour, H.N.; Engrand, P.R.

    1993-01-01

    The NESTLE nodal kinetics code has been developed for utilization as a stand-alone code for steady-state and transient reactor neutronic analysis and for incorporation into system transient codes, such as TRAC and RELAP. The latter is desirable to increase the simulation fidelity over that obtained from currently employed zero- and one-dimensional neutronic models and now feasible due to advances in computer performance and efficiency of nodal methods. As a stand-alone code, requirements are that it operate on a range of computing platforms from memory-limited personal computers (PCs) to supercomputers with vector processors. This paper summarizes the features of NESTLE that reflect the utilization and requirements just noted

  6. Sensitivity analysis of MIDAS tests using SPACE code. Effect of nodalization

    International Nuclear Information System (INIS)

    Eom, Shin; Oh, Seung-Jong; Diab, Aya

    2018-01-01

    The nodalization sensitivity analysis for the ECCS (Emergency Core Cooling System) bypass phe�nomena was performed using the SPACE (Safety and Performance Analysis CodE) thermal hydraulic analysis computer code. The results of MIDAS (Multi-�dimensional Investigation in Downcomer Annulus Simulation) test were used. The MIDAS test was conducted by the KAERI (Korea Atomic Energy Research Institute) for the performance evaluation of the ECC (Emergency Core Cooling) bypass phenomenon in the DVI (Direct Vessel Injection) system. The main aim of this study is to examine the sensitivity of the SPACE code results to the number of thermal hydraulic channels used to model the annulus region in the MIDAS experiment. The numerical model involves three nodalization cases (4, 6, and 12 channels) and the result show that the effect of nodalization on the bypass fraction for the high steam flow rate MIDAS tests is minimal. For computational efficiency, a 4 channel representation is recommended for the SPACE code nodalization. For the low steam flow rate tests, the SPACE code over-�predicts the bypass fraction irrespective of the nodalization finesse. The over-�prediction at low steam flow may be attributed to the difficulty to accurately represent the flow regime in the vicinity of the broken cold leg.

  7. Sensitivity analysis of MIDAS tests using SPACE code. Effect of nodalization

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Shin; Oh, Seung-Jong; Diab, Aya [KEPCO International Nuclear Graduate School (KINGS), Ulsan (Korea, Republic of). Dept. of NPP Engineering

    2018-02-15

    The nodalization sensitivity analysis for the ECCS (Emergency Core Cooling System) bypass phe�nomena was performed using the SPACE (Safety and Performance Analysis CodE) thermal hydraulic analysis computer code. The results of MIDAS (Multi-�dimensional Investigation in Downcomer Annulus Simulation) test were used. The MIDAS test was conducted by the KAERI (Korea Atomic Energy Research Institute) for the performance evaluation of the ECC (Emergency Core Cooling) bypass phenomenon in the DVI (Direct Vessel Injection) system. The main aim of this study is to examine the sensitivity of the SPACE code results to the number of thermal hydraulic channels used to model the annulus region in the MIDAS experiment. The numerical model involves three nodalization cases (4, 6, and 12 channels) and the result show that the effect of nodalization on the bypass fraction for the high steam flow rate MIDAS tests is minimal. For computational efficiency, a 4 channel representation is recommended for the SPACE code nodalization. For the low steam flow rate tests, the SPACE code over-�predicts the bypass fraction irrespective of the nodalization finesse. The over-�prediction at low steam flow may be attributed to the difficulty to accurately represent the flow regime in the vicinity of the broken cold leg.

  8. LOLA SYSTEM: A code block for nodal PWR simulation. Part. I - Simula-3 Code

    Energy Technology Data Exchange (ETDEWEB)

    Aragones, J M; Ahnert, C; Gomez Santamaria, J; Rodriguez Olabarria, I

    1985-07-01

    Description of the theory and users manual of the SIMULA-3 code, which is part of the core calculation system by nodal theory in one group, called LOLA SYSTEM. SIMULA-3 is the main module of the system, it uses a modified nodal theory, with interface leakages equivalent to the diffusion theory. (Author) 4 refs.

  9. LOLA SYSTEM: A code block for nodal PWR simulation. Part. I - Simula-3 Code

    International Nuclear Information System (INIS)

    Aragones, J. M.; Ahnert, C.; Gomez Santamaria, J.; Rodriguez Olabarria, I.

    1985-01-01

    Description of the theory and users manual of the SIMULA-3 code, which is part of the core calculation system by nodal theory in one group, called LOLA SYSTEM. SIMULA-3 is the main module of the system, it uses a modified nodal theory, with interface leakages equivalent to the diffusion theory. (Author) 4 refs

  10. Development and validation of a nodal code for core calculation

    International Nuclear Information System (INIS)

    Nowakowski, Pedro Mariano

    2004-01-01

    The code RHENO solves the multigroup three-dimensional diffusion equation using a nodal method of polynomial expansion.A comparative study has been made between this code and present internationals nodal diffusion codes, resulting that the RHENO is up to date.The RHENO has been integrated to a calculation line and has been extend to make burnup calculations.Two methods for pin power reconstruction were developed: modulation and imbedded. The modulation method has been implemented in a program, while the implementation of the imbedded method will be concluded shortly.The validation carried out (that includes experimental data of a MPR) show very good results and calculation efficiency

  11. VALIDATION OF FULL CORE GEOMETRY MODEL OF THE NODAL3 CODE IN THE PWR TRANSIENT BENCHMARK PROBLEMS

    Directory of Open Access Journals (Sweden)

    Tagor Malem Sembiring

    2015-10-01

    Full Text Available ABSTRACT VALIDATION OF FULL CORE GEOMETRY MODEL OF THE NODAL3 CODE IN THE PWR TRANSIENT BENCHMARK PROBLEMS. The coupled neutronic and thermal-hydraulic (T/H code, NODAL3 code, has been validated in some PWR static benchmark and the NEACRP PWR transient benchmark cases. However, the NODAL3 code have not yet validated in the transient benchmark cases of a control rod assembly (CR ejection at peripheral core using a full core geometry model, the C1 and C2 cases.  By this research work, the accuracy of the NODAL3 code for one CR ejection or the unsymmetrical group of CRs ejection case can be validated. The calculations by the NODAL3 code have been carried out by the adiabatic method (AM and the improved quasistatic method (IQS. All calculated transient parameters by the NODAL3 code were compared with the reference results by the PANTHER code. The maximum relative difference of 16% occurs in the calculated time of power maximum parameter by using the IQS method, while the relative difference of the AM method is 4% for C2 case.  All calculation results by the NODAL3 code shows there is no systematic difference, it means the neutronic and T/H modules are adopted in the code are considered correct. Therefore, all calculation results by using the NODAL3 code are very good agreement with the reference results. Keywords: nodal method, coupled neutronic and thermal-hydraulic code, PWR, transient case, control rod ejection.   ABSTRAK VALIDASI MODEL GEOMETRI TERAS PENUH PAKET PROGRAM NODAL3 DALAM PROBLEM BENCHMARK GAYUT WAKTU PWR. Paket program kopel neutronik dan termohidraulika (T/H, NODAL3, telah divalidasi dengan beberapa kasus benchmark statis PWR dan kasus benchmark gayut waktu PWR NEACRP.  Akan tetapi, paket program NODAL3 belum divalidasi dalam kasus benchmark gayut waktu akibat penarikan sebuah perangkat batang kendali (CR di tepi teras menggunakan model geometri teras penuh, yaitu kasus C1 dan C2. Dengan penelitian ini, akurasi paket program

  12. Hybrid microscopic depletion model in nodal code DYN3D

    International Nuclear Information System (INIS)

    Bilodid, Y.; Kotlyar, D.; Shwageraus, E.; Fridman, E.; Kliem, S.

    2016-01-01

    Highlights: • A new hybrid method of accounting for spectral history effects is proposed. • Local concentrations of over 1000 nuclides are calculated using micro depletion. • The new method is implemented in nodal code DYN3D and verified. - Abstract: The paper presents a general hybrid method that combines the micro-depletion technique with correction of micro- and macro-diffusion parameters to account for the spectral history effects. The fuel in a core is subjected to time- and space-dependent operational conditions (e.g. coolant density), which cannot be predicted in advance. However, lattice codes assume some average conditions to generate cross sections (XS) for nodal diffusion codes such as DYN3D. Deviation of local operational history from average conditions leads to accumulation of errors in XS, which is referred as spectral history effects. Various methods to account for the spectral history effects, such as spectral index, burnup-averaged operational parameters and micro-depletion, were implemented in some nodal codes. Recently, an alternative method, which characterizes fuel depletion state by burnup and 239 Pu concentration (denoted as Pu-correction) was proposed, implemented in nodal code DYN3D and verified for a wide range of history effects. The method is computationally efficient, however, it has applicability limitations. The current study seeks to improve the accuracy and applicability range of Pu-correction method. The proposed hybrid method combines the micro-depletion method with a XS characterization technique similar to the Pu-correction method. The method was implemented in DYN3D and verified on multiple test cases. The results obtained with DYN3D were compared to those obtained with Monte Carlo code Serpent, which was also used to generate the XS. The observed differences are within the statistical uncertainties.

  13. Validation of full core geometry model of the NODAL3 code in the PWR transient Benchmark problems

    International Nuclear Information System (INIS)

    T-M Sembiring; S-Pinem; P-H Liem

    2015-01-01

    The coupled neutronic and thermal-hydraulic (T/H) code, NODAL3 code, has been validated in some PWR static benchmark and the NEACRP PWR transient benchmark cases. However, the NODAL3 code have not yet validated in the transient benchmark cases of a control rod assembly (CR) ejection at peripheral core using a full core geometry model, the C1 and C2 cases. By this research work, the accuracy of the NODAL3 code for one CR ejection or the unsymmetrical group of CRs ejection case can be validated. The calculations by the NODAL3 code have been carried out by the adiabatic method (AM) and the improved quasistatic method (IQS). All calculated transient parameters by the NODAL3 code were compared with the reference results by the PANTHER code. The maximum relative difference of 16 % occurs in the calculated time of power maximum parameter by using the IQS method, while the relative difference of the AM method is 4 % for C2 case. All calculation results by the NODAL3 code shows there is no systematic difference, it means the neutronic and T/H modules are adopted in the code are considered correct. Therefore, all calculation results by using the NODAL3 code are very good agreement with the reference results. (author)

  14. SIRIUS - A one-dimensional multigroup analytic nodal diffusion theory code

    Energy Technology Data Exchange (ETDEWEB)

    Forslund, P. [Westinghouse Atom AB, Vaesteraas (Sweden)

    2000-09-01

    In order to evaluate relative merits of some proposed intranodal cross sections models, a computer code called Sirius has been developed. Sirius is a one-dimensional, multigroup analytic nodal diffusion theory code with microscopic depletion capability. Sirius provides the possibility of performing a spatial homogenization and energy collapsing of cross sections. In addition a so called pin power reconstruction method is available for the purpose of reconstructing 'heterogeneous' pin qualities. consequently, Sirius has the capability of performing all the calculations (incl. depletion calculations) which are an integral part of the nodal calculation procedure. In this way, an unambiguous numerical analysis of intranodal cross section models is made possible. In this report, the theory of the nodal models implemented in sirius as well as the verification of the most important features of these models are addressed.

  15. Status on development and verification of reactivity initiated accident analysis code for PWR (NODAL3)

    International Nuclear Information System (INIS)

    Peng Hong Liem; Surian Pinem; Tagor Malem Sembiring; Tran Hoai Nam

    2015-01-01

    A coupled neutronics thermal-hydraulics code NODAL3 has been developed based on the nodal few-group neutron diffusion theory in 3-dimensional Cartesian geometry for a typical pressurized water reactor (PWR) static and transient analyses, especially for reactivity initiated accidents (RIA). The spatial variables are treated by using a polynomial nodal method (PNM) while for the neutron dynamic solver the adiabatic and improved quasi-static methods are adopted. A simple single channel thermal-hydraulics module and its steam table is implemented into the code. Verification works on static and transient benchmarks are being conducting to assess the accuracy of the code. For the static benchmark verification, the IAEA-2D, IAEA-3D, BIBLIS and KOEBERG light water reactor (LWR) benchmark problems were selected, while for the transient benchmark verification, the OECD NEACRP 3-D LWR Core Transient Benchmark and NEA-NSC 3-D/1-D PWR Core Transient Benchmark (Uncontrolled Withdrawal of Control Rods at Zero Power). Excellent agreement of the NODAL3 results with the reference solutions and other validated nodal codes was confirmed. (author)

  16. The Verification of Coupled Neutronics Thermal-Hydraulics Code NODAL3 in the PWR Rod Ejection Benchmark

    Directory of Open Access Journals (Sweden)

    Surian Pinem

    2014-01-01

    Full Text Available A coupled neutronics thermal-hydraulics code NODAL3 has been developed based on the few-group neutron diffusion equation in 3-dimensional geometry for typical PWR static and transient analyses. The spatial variables are treated by using a polynomial nodal method while for the neutron dynamic solver the adiabatic and improved quasistatic methods are adopted. In this paper we report the benchmark calculation results of the code against the OECD/NEA CRP PWR rod ejection cases. The objective of this work is to determine the accuracy of NODAL3 code in analysing the reactivity initiated accident due to the control rod ejection. The NEACRP PWR rod ejection cases are chosen since many organizations participated in the NEA project using various methods as well as approximations, so that, in addition to the reference solutions, the calculation results of NODAL3 code can also be compared to other codes’ results. The transient parameters to be verified are time of power peak, power peak, final power, final average Doppler temperature, maximum fuel temperature, and final coolant temperature. The results of NODAL3 code agree well with the PHANTHER reference solutions in 1993 and 1997 (revised. Comparison with other validated codes, DYN3D/R and ANCK, shows also a satisfactory agreement.

  17. ANDREA: Advanced nodal diffusion code for reactor analysis

    International Nuclear Information System (INIS)

    Belac, J.; Josek, R.; Klecka, L.; Stary, V.; Vocka, R.

    2005-01-01

    A new macro code is being developed at NRI which will allow coupling of the advanced thermal-hydraulics model with neutronics calculations as well as efficient use in core loading pattern optimization process. This paper describes the current stage of the macro code development. The core simulator is based on the nodal expansion method, Helios lattice code is used for few group libraries preparation. Standard features such as pin wise power reconstruction and feedback iterations on critical control rod position, boron concentration and reactor power are implemented. A special attention is paid to the system and code modularity in order to enable flexible and easy implementation of new features in future. Precision of the methods used in the macro code has been verified on available benchmarks. Testing against Temelin PWR operational data is under way (Authors)

  18. Analysis of NEA-NSC PWR Uncontrolled Control Rod Withdrawal at Zero Power Benchmark Cases with NODAL3 Code

    Directory of Open Access Journals (Sweden)

    Tagor Malem Sembiring

    2017-01-01

    Full Text Available The in-house coupled neutronic and thermal-hydraulic (N/T-H code of BATAN (National Nuclear Energy Agency of Indonesia, NODAL3, based on the few-group neutron diffusion equation in 3-dimensional geometry using the polynomial nodal method, has been verified with static and transient PWR benchmark cases. This paper reports the verification of NODAL3 code in the NEA-NSC PWR uncontrolled control rods withdrawal at zero power benchmark. The objective of this paper is to determine the accuracy of NODAL3 code in solving the continuously slow and fast reactivity insertions due to single and group of control rod bank withdrawn while the power and temperature increment are limited by the Doppler coefficient. The benchmark is chosen since many organizations participated using various methods and approximations, so the calculation results of NODAL3 can be compared to other codes’ results. The calculated parameters are performed for the steady-state, transient core averaged, and transient hot pellet results. The influence of radial and axial nodes number was investigated for all cases. The results of NODAL3 code are in very good agreement with the reference solutions if the radial and axial nodes number is 2 × 2 and 2 × 18 (total axial layers, respectively.

  19. Discrete rod burnup analysis capability in the Westinghouse advanced nodal code

    International Nuclear Information System (INIS)

    Buechel, R.J.; Fetterman, R.J.; Petrunyak, M.A.

    1992-01-01

    Core design analysis in the last several years has evolved toward the adoption of nodal-based methods to replace traditional fine-mesh models as the standard neutronic tool for first core and reload design applications throughout the nuclear industry. The accuracy, speed, and reduction in computation requirements associated with the nodal methods have made three-dimensional modeling the preferred approach to obtain the most realistic core model. These methods incorporate detailed rod power reconstruction as well. Certain design applications such as confirmation of fuel rod design limits and fuel reconstitution considerations, for example, require knowledge of the rodwise burnup distribution to avoid unnecessary conservatism in design analyses. The Westinghouse Advanced Nodal Code (ANC) incorporates the capability to generate the intra-assembly pin burnup distribution using an efficient algorithm

  20. Nodal kinetics model upgrade in the Penn State coupled TRAC/NEM codes

    International Nuclear Information System (INIS)

    Beam, Tara M.; Ivanov, Kostadin N.; Baratta, Anthony J.; Finnemann, Herbert

    1999-01-01

    The Pennsylvania State University currently maintains and does development and verification work for its own versions of the coupled three-dimensional kinetics/thermal-hydraulics codes TRAC-PF1/NEM and TRAC-BF1/NEM. The subject of this paper is nodal model enhancements in the above mentioned codes. Because of the numerous validation studies that have been performed on almost every aspect of these codes, this upgrade is done without a major code rewrite. The upgrade consists of four steps. The first two steps are designed to improve the accuracy of the kinetics model, based on the nodal expansion method. The polynomial expansion solution of 1D transverse integrated diffusion equation is replaced with a solution, which uses a semi-analytic expansion. Further the standard parabolic polynomial representation of the transverse leakage in the above 1D equations is replaced with an improved approximation. The last two steps of the upgrade address the code efficiency by improving the solution of the time-dependent NEM equations and implementing a multi-grid solver. These four improvements are implemented into the standalone NEM kinetics code. Verification of this code was accomplished based on the original verification studies. The results show that the new methods improve the accuracy and efficiency of the code. The verification of the upgraded NEM model in the TRAC-PF1/NEM and TRAC-BF1/NEM coupled codes is underway

  1. Development of an object oriented nodal code using the refined AFEN derived from the method of component decomposition

    International Nuclear Information System (INIS)

    Noh, J. M.; Yoo, J. W.; Joo, H. K.

    2004-01-01

    In this study, we invented a method of component decomposition to derive the systematic inter-nodal coupled equations of the refined AFEN method and developed an object oriented nodal code to solve the derived coupled equations. The method of component decomposition decomposes the intra-nodal flux expansion of a nodal method into even and odd components in three dimensions to reduce the large coupled linear system equation into several small single equations. This method requires no additional technique to accelerate the iteration process to solve the inter-nodal coupled equations, since the derived equations can automatically act as the coarse mesh re-balance equations. By utilizing the object oriented programming concepts such as abstraction, encapsulation, inheritance and polymorphism, dynamic memory allocation, and operator overloading, we developed an object oriented nodal code that can facilitate the input/output and the dynamic control of the memories, and can make the maintenance easy. (authors)

  2. LOLA SYSTEM: A code block for nodal PWR simulation. Part. II - MELON-3, CONCON and CONAXI Codes

    International Nuclear Information System (INIS)

    Aragones, J. M.; Ahnert, C.; Gomez Santamaria, J.; Rodriguez Olabarria, I.

    1985-01-01

    Description of the theory and users manual of the MELON-3, CONCON and CONAXI codes, which are part of the core calculation system by nodal theory in one group, called LOLA SYSTEM. These auxiliary codes, provide some of the input data for the main module SIMULA-3; these are, the reactivity correlations constants, the albe does and the transport factors. (Author) 7 refs

  3. LOLA SYSTEM: A code block for nodal PWR simulation. Part. II - MELON-3, CONCON and CONAXI Codes

    Energy Technology Data Exchange (ETDEWEB)

    Aragones, J M; Ahnert, C; Gomez Santamaria, J; Rodriguez Olabarria, I

    1985-07-01

    Description of the theory and users manual of the MELON-3, CONCON and CONAXI codes, which are part of the core calculation system by nodal theory in one group, called LOLA SYSTEM. These auxiliary codes, provide some of the input data for the main module SIMULA-3; these are, the reactivity correlations constants, the albe does and the transport factors. (Author) 7 refs.

  4. Development of a code in three-dimensional cylindrical geometry based on analytic function expansion nodal (AFEN) method

    International Nuclear Information System (INIS)

    Lee, Joo Hee

    2006-02-01

    There is growing interest in developing pebble bed reactors (PBRs) as a candidate of very high temperature gas-cooled reactors (VHTRs). Until now, most existing methods of nuclear design analysis for this type of reactors are base on old finite-difference solvers or on statistical methods. But for realistic analysis of PBRs, there is strong desire of making available high fidelity nodal codes in three-dimensional (r,θ,z) cylindrical geometry. Recently, the Analytic Function Expansion Nodal (AFEN) method developed quite extensively in Cartesian (x,y,z) geometry and in hexagonal-z geometry was extended to two-group (r,z) cylindrical geometry, and gave very accurate results. In this thesis, we develop a method for the full three-dimensional cylindrical (r,θ,z) geometry and implement the method into a code named TOPS. The AFEN methodology in this geometry as in hexagonal geometry is 'robus' (e.g., no occurrence of singularity), due to the unique feature of the AFEN method that it does not use the transverse integration. The transverse integration in the usual nodal methods, however, leads to an impasse, that is, failure of the azimuthal term to be transverse-integrated over r-z surface. We use 13 nodal unknowns in an outer node and 7 nodal unknowns in an innermost node. The general solution of the node can be expressed in terms of that nodal unknowns, and can be updated using the nodal balance equation and the current continuity condition. For more realistic analysis of PBRs, we implemented em Marshak boundary condition to treat the incoming current zero boundary condition and the partial current translation (PCT) method to treat voids in the core. The TOPS code was verified in the various numerical tests derived from Dodds problem and PBMR-400 benchmark problem. The results of the TOPS code show high accuracy and fast computing time than the VENTURE code that is based on finite difference method (FDM)

  5. The Use of System Codes in Scaling Studies: Relevant Techniques for Qualifying NPP Nodalizations for Particular Scenarios

    Directory of Open Access Journals (Sweden)

    V. Martinez-Quiroga

    2014-01-01

    Full Text Available System codes along with necessary nodalizations are valuable tools for thermal hydraulic safety analysis. Qualifying both codes and nodalizations is an essential step prior to their use in any significant study involving code calculations. Since most existing experimental data come from tests performed on the small scale, any qualification process must therefore address scale considerations. This paper describes the methodology developed at the Technical University of Catalonia in order to contribute to the qualification of Nuclear Power Plant nodalizations by means of scale disquisitions. The techniques that are presented include the so-called Kv-scaled calculation approach as well as the use of “hybrid nodalizations” and “scaled-up nodalizations.” These methods have revealed themselves to be very helpful in producing the required qualification and in promoting further improvements in nodalization. The paper explains both the concepts and the general guidelines of the method, while an accompanying paper will complete the presentation of the methodology as well as showing the results of the analysis of scaling discrepancies that appeared during the posttest simulations of PKL-LSTF counterpart tests performed on the PKL-III and ROSA-2 OECD/NEA Projects. Both articles together produce the complete description of the methodology that has been developed in the framework of the use of NPP nodalizations in the support to plant operation and control.

  6. A nodal Grean's function method of reactor core fuel management code, NGCFM2D

    International Nuclear Information System (INIS)

    Li Dongsheng; Yao Dong.

    1987-01-01

    This paper presents the mathematical model and program structure of the nodal Green's function method of reactor core fuel management code, NGCFM2D. Computing results of some reactor cores by NGCFM2D are analysed and compared with other codes

  7. A transient, Hex-Z nodal code corrected by discontinuity factors

    International Nuclear Information System (INIS)

    Shatilla, Y.A.M.; Henry, A.F.

    1993-01-01

    This document constitutes Volume 1 of the Final Report of a three-year study supported by the special Research Grant Program for Nuclear Energy Research set up by the US Department of Energy. The original motivation for the work was to provide a fast and accurate computer program for the analysis of transients in heavy water or graphite-moderated reactors being considered as candidates for the New Production Reactor. Thus, part of the funding was by way of pass-through money from the Savannah River Laboratory. With this intent in mind, a three-dimensional (Hex-Z), general-energy-group transient, nodal code was created, programmed, and tested. In order to improve accuracy, correction terms, called open-quotes discontinuity factors,close quotes were incorporated into the nodal equations. Ideal values of these factors force the nodal equations to provide node-integrated reaction rates and leakage rates across nodal surfaces that match exactly those edited from a more exact reference calculation. Since the exact reference solution is needed to compute the ideal discontinuity factors, the fact that they result in exact nodal equations would be of little practical interest were it not that approximate discontinuity factors, found at a greatly reduced cost, often yield very accurate results. For example, for light-water reactors, discontinuity factors found from two-dimensional, fine-mesh, multigroup transport solutions for two-dimensional cuts of a fuel assembly provide very accurate predictions of three-dimensional, full-core power distributions. The present document (volume 1) deals primarily with the specification, programming and testing of the three-dimensional, Hex-Z computer program. The program solves both the static (eigenvalue) and transient, general-energy-group, nodal equations corrected by user-supplied discontinuity factors

  8. Development of a computer code for neutronic calculations of a hexagonal lattice of nuclear reactor using the flux expansion nodal method

    Directory of Open Access Journals (Sweden)

    Mohammadnia Meysam

    2013-01-01

    Full Text Available The flux expansion nodal method is a suitable method for considering nodalization effects in node corners. In this paper we used this method to solve the intra-nodal flux analytically. Then, a computer code, named MA.CODE, was developed using the C# programming language. The code is capable of reactor core calculations for hexagonal geometries in two energy groups and three dimensions. The MA.CODE imports two group constants from the WIMS code and calculates the effective multiplication factor, thermal and fast neutron flux in three dimensions, power density, reactivity, and the power peaking factor of each fuel assembly. Some of the code's merits are low calculation time and a user friendly interface. MA.CODE results showed good agreement with IAEA benchmarks, i. e. AER-FCM-101 and AER-FCM-001.

  9. On-line application of the PANTHER advanced nodal code

    International Nuclear Information System (INIS)

    Hutt, P.K.; Knight, M.P.

    1992-01-01

    Over the last few years, Nuclear Electric has developed an integrated core performance code package for both light water reactors (LWRs) and advanced gas-cooled reactors (AGRs) that can perform a comprehensive range of calculations for fuel cycle design, safety analysis, and on-line operational support for such plants. The package consists of the following codes: WIMS for lattice physics, PANTHER whole reactor nodal flux and AGR thermal hydraulics, VIPRE for LWR thermal hydraulics, and ENIGMA for fuel performance. These codes are integrated within a UNIX-based interactive system called the Reactor Physics Workbench (RPW), which provides an interactive graphic user interface and quality assurance records/data management. The RPW can also control calculational sequences and data flows. The package has been designed to run both off-line and on-line accessing plant data through the RPW

  10. An evaluation of nodalization/decay heat/ volatile fission product release models in ISAAC code

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yong Mann; Park, Soo Yong; Kim, Dong Ha

    2003-03-01

    An ISAAC computer code, which was developed for a Level-2 PSA during 1995, has developed mainly with fundamental models for CANDU-specific severe accident progression and also the accident-analyzing experiences are limited to Level-2 PSA purposes. Hence the system nodalization model, decay model and volatile fission product release model, which are known to affect fission product behavior directly or indirectly, are evaluated to both enhance understanding for basic models and accumulate accident-analyzing experiences. As a research strategy, sensitivity studies of model parameters and sensitivity coefficients are performed. According to the results from core nodalization sensitivity study, an original 3x3 nodalization (per loop) method which groups horizontal fuel channels into 12 representative channels, is evaluated to be sufficient for an optimal scheme because detailed nodalization methods have no large effect on fuel thermal-hydraulic behavior, total accident progression and fission product behavior. As ANSI/ANS standard model for decay heat prediction after reactor trip has no needs for further model evaluation due to both wide application on accident analysis codes and good comparison results with the ORIGEN code, ISAAC calculational results of decay heat are used as they are. In addition, fission product revaporization in a containment which is caused by the embedded decay heat, is demonstrated. The results for the volatile fission product release model are analyzed. In case of early release, the IDCOR model with an in-vessel Te release option shows the most conservative results and for the late release case, NUREG-0772 model shows the most conservative results. Considering both early and late release, the IDCOR model with an in-vessel Te bound option shows mitigated conservative results.

  11. Nodalization qualification process of the PSBVVER facility for the Cathare2 thermal-hydraulic code

    International Nuclear Information System (INIS)

    Del Nevo, A.; Araneo, D.; D'Auria, F.; Galassi, G.

    2004-01-01

    The present document deals with the nodalization qualification process of the PSB-VVER test facility for Cathare2 code. PSB-VVER facility is a 1/300 volume scale model of a VVER-1000, reactor installed at Electrogorsk Research and Engineering Centre in 1998. The version V1.5b of the Cathare2 code has been used. In order to evaluate the nodalization performance, the qualifying procedure set up at the DIMNP of Pisa University (UNIPI) has been applied that foresees two qualification levels: a 'steady state' level and an 'on transient' level. After the steady state behavior check of the nodalization, it has been preformed the on transient qualification the PSB-VVER test 2. It is a 11% equivalent break in Upper Plenum with the actuation of one high pressure injection system, connected to the hot leg of the loop 4, and 4 passive systems (ECCS hydro-accumulators), connected to the outlet plenum and to the inlet chamber of the downcomer. The low-pressure injection system is not available in the test. The goal of this paper is to demonstrate that the first step of the nodalization qualification adopted for the PSB test analyses is achieved and the PSB facility input deck is available and ready to use. The quantitative accuracy of the performed calculation has been evaluated by using the FFT-BM tool developed at the University of Pisa.(author)

  12. NODAL interpreter for CP/M

    International Nuclear Information System (INIS)

    Oide, Katsunobu.

    1982-11-01

    A NODAL interpreter which works under CP/M operating system is made for microcomputers. This interpreter language named NODAL-80 has a similar structure to the NODAL of SPS, but its commands, variables, and expressions are modified to increase the flexibility of programming. NODAL-80 also uses a simple intermediate code to make the execution speed fast without imposing any restriction on the dynamic feature of NODAL language. (author)

  13. Benchmarking with high-order nodal diffusion methods

    International Nuclear Information System (INIS)

    Tomasevic, D.; Larsen, E.W.

    1993-01-01

    Significant progress in the solution of multidimensional neutron diffusion problems was made in the late 1970s with the introduction of nodal methods. Modern nodal reactor analysis codes provide significant improvements in both accuracy and computing speed over earlier codes based on fine-mesh finite difference methods. In the past, the performance of advanced nodal methods was determined by comparisons with fine-mesh finite difference codes. More recently, the excellent spatial convergence of nodal methods has permitted their use in establishing reference solutions for some important bench-mark problems. The recent development of the self-consistent high-order nodal diffusion method and its subsequent variational formulation has permitted the calculation of reference solutions with one node per assembly mesh size. In this paper, we compare results for four selected benchmark problems to those obtained by high-order response matrix methods and by two well-known state-of-the-art nodal methods (the open-quotes analyticalclose quotes and open-quotes nodal expansionclose quotes methods)

  14. Static benchmarking of the NESTLE advanced nodal code

    International Nuclear Information System (INIS)

    Mosteller, R.D.

    1997-01-01

    Results from the NESTLE advanced nodal code are presented for multidimensional numerical benchmarks representing four different types of reactors, and predictions from NESTLE are compared with measured data from pressurized water reactors (PWRs). The numerical benchmarks include cases representative of PWRs, boiling water reactors (BWRs), CANDU heavy water reactors (HWRs), and high-temperature gas-cooled reactors (HTGRs). The measured PWR data include critical soluble boron concentrations and isothermal temperature coefficients of reactivity. The results demonstrate that NESTLE correctly solves the multigroup diffusion equations for both Cartesian and hexagonal geometries, that it reliably calculates k eff and reactivity coefficients for PWRs, and that--subsequent to the incorporation of additional thermal-hydraulic models--it will be able to perform accurate calculations for the corresponding parameters in BWRs, HWRs, and HTGRs as well

  15. STEP- A three-dimensional nodal diffusion code for LMR's

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeong Il; Kim, Taek Kyum [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    STEP is a three-dimensional multigroup nodal diffusion code for the neutronics analysis of the LMR core. STEP employs DIF3D and HEXNOD nodal methods. In DIF3D, one-dimensional fluxes are approximated by polynomials while HEXNOD analytically solves transverse-integrated one-dimensional diffusion equations. The nodal equations are solved using a conventional fission source iteration procedure accelerated by coarse-mesh rebalancing and asymptotic extrapolation. At each fission source iteration, the interface currents for each group are computed by solving the response matrix equations with a known group source term. These partial currents are used to updata flux moments. This solution is accomplished by inner iteration, a series of sweeps through the spatial mesh. Inner iterations are performed by sweeping the axial mesh plane in a standard red-black checkerboard ordering, i.e. the odd-numbered planes are processed during the first pass, followed by the even-numbered planes on the second pass. On each plane, the nodes are swept in the four-color checkerboard ordering. STEP accepts microscopic cross section data from the CCCC standard interface file ISOTXS currently used for the neutronics analysis of LMR's at KAERI as well as macroscopic cross section data. Material cross sections are obtained by summing the product of atom densities and microscopic cross sections over all isotopes comprising the material. Energy is released from both fission ad capture. The thermal-hydraulics model calculates average fuel and coolant temperatures. STEP takes account of feedback effects from both fuel temperature and coolant temperature changes. The thermal-hydraulics model is a conservative, single channel model where there is no heat transfer between assemblies. Thus, STEP gives conservative results which, however, are of useful information for core design and can be useful tool for neutronics analysis of LMR core design and will be used for the base program of a future

  16. Analysis of the applicability of acceleration methods for a triangular prism geometry nodal diffusion code

    International Nuclear Information System (INIS)

    Fujimura, Toichiro; Okumura, Keisuke

    2002-11-01

    A prototype version of a diffusion code has been developed to analyze the hexagonal core as reduced moderation reactor and the applicability of some acceleration methods have been investigated to accelerate the convergence of the iterative solution method. The hexagonal core is divided into regular triangular prisms in the three-dimensional code MOSRA-Prism and a polynomial expansion nodal method is applied to approximate the neutron flux distribution by a cubic polynomial. The multi-group diffusion equation is solved iteratively with ordinal inner and outer iterations and the effectiveness of acceleration methods is ascertained by applying an adaptive acceleration method and a neutron source extrapolation method, respectively. The formulation of the polynomial expansion nodal method is outlined in the report and the local and global effectiveness of the acceleration methods is discussed with various sample calculations. A new general expression of vacuum boundary condition, derived in the formulation is also described. (author)

  17. Development of a qualified nodalization for small-break LOCA transient analysis in PSB-VVER integral test facility by RELAP5 system code

    Energy Technology Data Exchange (ETDEWEB)

    Shahedi, S. [Department of Energy Engineering, Sharif University of Technology, Azadi Street, Tehran (Iran, Islamic Republic of); Jafari, J., E-mail: jalil_jafari@yahoo.co [Reactors and Accelerators R and D School, Nuclear Science and Technology Research Institute, North Kargar Street, Tehran (Iran, Islamic Republic of); Boroushaki, M. [Department of Energy Engineering, Sharif University of Technology, Azadi Street, Tehran (Iran, Islamic Republic of); D' Auria, F. [DIMNP, University of Pisa, Via Diotisalvi 2, 56126 Pisa (Italy)

    2010-10-15

    This paper deals with development and qualification of a nodalization for modeling of the PSB-VVER integral test facility (ITF) by RELAP5/MOD3.2 code and prediction of its primary and secondary systems behaviors at steady state and transient conditions. The PSB-VVER is a full-height, 1/300 volume and power scale representation of a VVER-1000 NPP. A RELAP5 nodalization has been developed for PSB-VVER modeling and a nodalization qualification process has been applied for the developed nodalization at steady state and transient levels and a qualified nodalization has been proposed for modeling of the PSB ITF. The 11% small-break loss-of-coolant-accident (SBLOCA), i.e. rupture of one of the hydroaccumulators (HA) injection lines in the upper plenum (UP) region of reactor pressure vessel (RPV) below the hot legs (HL), inlets has been considered for nodalization qualification process. The influence of the different steam generator (SG) nodalizations on the RELAP5 results and on the nodalization qualification process has been examined. The 'steady state' qualification level includes checking the correctness of the initial and boundary conditions and geometrical fidelity. In the 'transient' qualification level, the time dependent results of the code calculation are compared with the experimental time trends from both the qualitative and quantitative point of view. For quantitative assessment of the results, a Fast Fourier Transform Based Method (FFTBM) has been used. The FFTBM was used to establish a range in which the steam generators nodalizations can vary.

  18. Error quantification of the axial nodal diffusion kernel of the DeCART code

    International Nuclear Information System (INIS)

    Cho, J. Y.; Kim, K. S.; Lee, C. C.

    2006-01-01

    This paper is to quantify the transport effects involved in the axial nodal diffusion kernel of the DeCART code. The transport effects are itemized into three effects, the homogenization, the diffusion, and the nodal effects. A five pin model consisting of four fuel pins and one non-fuel pin is demonstrated to quantify the transport effects. The transport effects are analyzed for three problems, the single pin (SP), guide tube (GT) and control rod (CR) problems by replacing the non-fuel pin with the fuel pin, a guide-tube and a control rod pins, respectively. The homogenization and diffusion effects are estimated to be about -4 and -50 pcm for the eigenvalue, and less than 2 % for the node power. The nodal effect on the eigenvalue is evaluated to be about -50 pcm in the SP and GT problems, and +350 pcm in the CR problem. Regarding the node power, this effect induces about a 3 % error in the SP and GT problems, and about a 20 % error in the CR problem. The large power error in the CR problem is due to the plane thickness, and it can be decreased by using the adaptive plane size. From the error quantification, it is concluded that the homogenization and the diffusion effects are not controllable if DeCART maintains the diffusion kernel for the axial solution, but the nodal effect is controllable by introducing the adaptive plane size scheme. (authors)

  19. A nodal expansion method using conformal mapping for hexagonal geometry

    International Nuclear Information System (INIS)

    Chao, Y.A.; Shatilla, Y.A.

    1993-01-01

    Hexagonal nodal methods adopting the same transverse integration process used for square nodal methods face the subtle theoretical problem that this process leads to highly singular nonphysical terms in the diffusion equation. Lawrence, in developing the DIF3D-N code, tried to approximate the singular terms with relatively simple polynomials. In the HEX-NOD code, Wagner ignored the singularities to simplify the diffusion equation and introduced compensating terms in the nodal equations to restore the nodal balance relation. More recently developed hexagonal nodal codes, such as HEXPE-DITE and the hexagonal version of PANTHER, used methods similar to Wagner's. It will be shown that for light water reactor applications, these two different approximations significantly degraded the accuracy of the respective method as compared to the established square nodal methods. Alternatively, the method of conformal mapping was suggested to map a hexagon to a rectangle, with the unique feature of leaving the diffusion operator invariant, thereby fundamentally resolving the problems associated with transverse integration. This method is now implemented in the Westinghouse hexagonal nodal code ANC-H. In this paper we report on the results of comparing the three methods for a variety of problems via benchmarking against the fine-mesh finite difference code

  20. Comparison of neutronic transport equation resolution nodal methods

    International Nuclear Information System (INIS)

    Zamonsky, O.M.; Gho, C.J.

    1990-01-01

    In this work, some transport equation resolution nodal methods are comparatively studied: the constant-constant (CC), linear-nodal (LN) and the constant-quadratic (CQ). A nodal scheme equivalent to finite differences has been used for its programming, permitting its inclusion in existing codes. Some bidimensional problems have been solved, showing that linear-nodal (LN) are, in general, obtained with accuracy in CPU shorter times. (Author) [es

  1. Development of a neutronics code based on analytic function expansion nodal method for pebble-type High Temperature Gas-cooled Reactor design

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nam Zin; Lee, Joo Hee; Lee, Jae Jun; Yu, Hui; Lee, Gil Soo [Korea Advanced Institute of Science and Tehcnology, Daejeon (Korea, Republic of)

    2006-03-15

    There is growing interest in developing Pebble Bed Reactors(PBRs) as a candidate of Very High Temperature gas-cooled Reactors(VHTRs). Until now, most existing methods of nuclear design analysis for this type of reactors are base on old finite-difference solvers or on statistical methods. And other existing nodal cannot be adapted for this kind of reactors because of transverse integration problem. In this project, we developed the TOPS code in three dimensional cylindrical geometry based on Analytic Function Expansion Nodal (AFEN) method developed at KAIST. The TOPS code showed better results in computing time than FDM and MCNP. Also TOPS showed very accurate results in reactor analysis.

  2. Development of a neutronics code based on analytic function expansion nodal method for pebble-type High Temperature Gas-cooled Reactor design

    International Nuclear Information System (INIS)

    Cho, Nam Zin; Lee, Joo Hee; Lee, Jae Jun; Yu, Hui; Lee, Gil Soo

    2006-03-01

    There is growing interest in developing Pebble Bed Reactors(PBRs) as a candidate of Very High Temperature gas-cooled Reactors(VHTRs). Until now, most existing methods of nuclear design analysis for this type of reactors are base on old finite-difference solvers or on statistical methods. And other existing nodal cannot be adapted for this kind of reactors because of transverse integration problem. In this project, we developed the TOPS code in three dimensional cylindrical geometry based on Analytic Function Expansion Nodal (AFEN) method developed at KAIST. The TOPS code showed better results in computing time than FDM and MCNP. Also TOPS showed very accurate results in reactor analysis

  3. Improvements in practical applicability of NSHEX: nodal transport calculation code for three-dimensional hexagonal-Z geometry

    International Nuclear Information System (INIS)

    Sugino, Kazuteru

    1998-07-01

    As a tool to perform a fast reactor core calculations with high accuracy, NSHEX the nodal transport calculation code for three-dimensional hexagonal-Z geometry is under development. To improve the practical applicability of NSHEX, for instance, in its application to safety analysis and commercial reactor core design studies, we investigated the basic theory used in it, improved the program performance, and evaluated its applicability to the analysis of commercial reactor cores. The current studies show the following: (1) An improvement in the treatment of radial leakage in the radial nodal coupling equation bettered calculational convergence for safety analysis calculation, so the applicability of NSHEX to safety analysis was improved. (2) As a result of comparison of results from NSHEX and the standard core calculation code, it was confirmed that there was consistency between them. (3) According to the evaluation of the effect due to the difference of calculational condition, it was found that the calculation under appropriate nodal expansion orders and Sn orders correspond to the one under most detailed condition. However further investigation is required to reduce the uncertainty in calculational results due to the treatment of high order flux moments. (4) A whole core version of NSHEX enabling calculation for any FBR core geometry has been developed, this improved general applicability of NSHEX. (5) An investigation of the applicability of the rebalance method to acceleration clarified that this improved calculational convergence and it was effective. (J.P.N.)

  4. The simplified P3 approach on a trigonal geometry in the nodal reactor code DYN3D

    International Nuclear Information System (INIS)

    Duerigen, S.; Fridman, E.

    2011-01-01

    DYN3D is a three-dimensional nodal diffusion code for steady-state and transient analyses of Light-Water Reactors with square and hexagonal fuel assembly geometries. Currently, several versions of the DYN3D code are available including a multi-group diffusion and a simplified P 3 (SP 3 ) neutron transport option. In this work, the multi-group SP 3 method based on trigonal-z geometry was developed. The method is applicable to the analysis of reactor cores with hexagonal fuel assemblies and allows flexible mesh refinement, which is of particular importance for WWER-type Pressurized Water Reactors as well as for innovative reactor concepts including block type High-Temperature Reactors and Sodium Fast Reactors. In this paper, the theoretical background for the trigonal SP 3 methodology is outlined and the results of a preliminary verification analysis are presented by means of a simplified WWER-440 core test example. The accordant cross sections and reference solutions were produced by the Monte Carlo code SERPENT. The DYN3D results are in good agreement with the reference solutions. The average deviation in the nodal power distribution is about 1%. (Authors)

  5. Elaboration of a nodal method to solve the steady state multigroup diffusion equation. Study and use of the multigroup diffusion code DAHRA

    International Nuclear Information System (INIS)

    Halilou, A.; Lounici, A.

    1981-01-01

    The subject is divided in two parts: In the first part a nodal method has been worked out to solve the steady state multigroup diffusion equation. This method belongs to the same set of nodal methods currently used to calculate the exact fission powers and neutron fluxes in a very short computing time. It has been tested on a two dimensional idealized reactors. The effective multiplication factor and the fission powers for each fuel element have been calculated. The second part consists in studying and mastering the multigroup diffusion code DAHRA - a reduced version of DIANE - a two dimensional code using finite difference method

  6. Acceleration of nodal diffusion code by Chebychev polynomial extrapolation method; Ubrzanje spoljasnjih iteracija difuzionog nodalnog proracuna Chebisevijevom ekstrapolacionom metodom

    Energy Technology Data Exchange (ETDEWEB)

    Zmijarevic, I; Tomashevic, Dj [Institut za Nuklearne Nauke Boris Kidric, Belgrade (Yugoslavia)

    1988-07-01

    This paper presents Chebychev acceleration of outer iterations of a nodal diffusion code of high accuracy. Extrapolation parameters, unique for all moments are calculated using the node integrated distribution of fission source. Sample calculations are presented indicating the efficiency of method. (author)

  7. Influence of reactor vessel nodalization in the coupled code analysis of Asymmetric Main Feedwater Isolation

    International Nuclear Information System (INIS)

    Bencik, V.; Feretic, D.; Grgic, D.

    2001-01-01

    Asymmetric Main Feedwater Isolation (AMFWI) transient in one Steam Generator (SG) for NPP Krsko using RELAP5 standalone code and coupled code RELAP5- QUABOX/CUBBOX (R5QC) was analyzed. In the RELAP5 standalone calculation, a point kinetics model was used, while in the coupled code a three-dimensional (3D) neutronics model of QUABOX with different RELAP5 nodalization schemes of reactor vessel was used. Both code versions use best-estimate thermal-hydraulic system code for all components in the plant and include realistic description of plant protection and control systems. Two different types of calculations were performed: with and without automatic control rod system available. The AMFWI transient causes the great asymmetry of the transferred heat in the SGs and subsequently the asymmetry of the power produced across the core due to different reactivity feedback resulting from the thermal-hydraulic channels assigned to different loops. The work presented in the paper is a part of validation of the 3D coupled code R5QC in the analysis of asymmetric transients.(author)

  8. Benchmarking of the PHOENIX-P/ANC [Advanced Nodal Code] advanced nuclear design system

    International Nuclear Information System (INIS)

    Nguyen, T.Q.; Liu, Y.S.; Durston, C.; Casadei, A.L.

    1988-01-01

    At Westinghouse, an advanced neutronic methods program was designed to improve the quality of the predictions, enhance flexibility in designing advanced fuel and related products, and improve design lead time. Extensive benchmarking data is presented to demonstrate the accuracy of the Advanced Nodal Code (ANC) and the PHOENIX-P advanced lattice code. Qualification data to demonstrate the accuracy of ANC include comparison of key physics parameters against a fine-mesh diffusion theory code, TORTISE. Benchmarking data to demonstrate the validity of the PHOENIX-P methodologies include comparison of physics predictions against critical experiments, isotopics measurements and measured power distributions from spatial criticals. The accuracy of the PHOENIX-P/ANC Advanced Design System is demonstrated by comparing predictions of hot zero power physics parameters and hot full power core follow against measured data from operating reactors. The excellent performance of this system for a broad range of comparisons establishes the basis for implementation of these tools for core design, licensing and operational follow of PWR [pressurized water reactor] cores at Westinghouse

  9. Nodal coupling by response matrix principles

    International Nuclear Information System (INIS)

    Ancona, A.; Becker, M.; Beg, M.D.; Harris, D.R.; Menezes, A.D.; VerPlanck, D.M.; Pilat, E.

    1977-01-01

    The response matrix approach has been used in viewing a reactor node in isolation and in characterizing the node by reflection and trans-emission factors. These are then used to generate invariant imbedding parameters, which in turn are used in a nodal reactor simulator code to compute core power distributions in two and three dimensions. Various nodal techniques are analyzed and converted into a single invariant imbedding formalism

  10. The NODAL system for the SPS

    International Nuclear Information System (INIS)

    Crowley-Milling, M.C.; Shering, G.C.

    1978-01-01

    A comprehensive description is given of the NODAL system used for computer control of the CERN Super-Proton Synchrotron. Details are given of NODAL, a high-level programming language based on FOCAL and SNOBOL4, designed for interactive use. It is shown how this interpretive language is used with a network of computers and how it can be extended by adding machine-code modules. The report updates and replaces an earlier one published in 1974. (Auth.)

  11. A comparison of Nodal methods in neutron diffusion calculations

    Energy Technology Data Exchange (ETDEWEB)

    Tavron, Barak [Israel Electric Company, Haifa (Israel) Nuclear Engineering Dept. Research and Development Div.

    1996-12-01

    The nuclear engineering department at IEC uses in the reactor analysis three neutron diffusion codes based on nodal methods. The codes, GNOMERl, ADMARC2 and NOXER3 solve the neutron diffusion equation to obtain flux and power distributions in the core. The resulting flux distributions are used for the furl cycle analysis and for fuel reload optimization. This work presents a comparison of the various nodal methods employed in the above codes. Nodal methods (also called Coarse-mesh methods) have been designed to solve problems that contain relatively coarse areas of homogeneous composition. In the nodal method parts of the equation that present the state in the homogeneous area are solved analytically while, according to various assumptions and continuity requirements, a general solution is sought out. Thus efficiency of the method for this kind of problems, is very high compared with the finite element and finite difference methods. On the other hand, using this method one can get only approximate information about the node vicinity (or coarse-mesh area, usually a feel assembly of a 20 cm size). These characteristics of the nodal method make it suitable for feel cycle analysis and reload optimization. This analysis requires many subsequent calculations of the flux and power distributions for the feel assemblies while there is no need for detailed distribution within the assembly. For obtaining detailed distribution within the assembly methods of power reconstruction may be applied. However homogenization of feel assembly properties, required for the nodal method, may cause difficulties when applied to fuel assemblies with many absorber rods, due to exciting strong neutron properties heterogeneity within the assembly. (author).

  12. MOSRA-Light; high speed three-dimensional nodal diffusion code for vector computers

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, Keisuke [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    MOSRA-Light is a three-dimensional neutron diffusion calculation code for X-Y-Z geometry. It is based on the 4th order polynomial nodal expansion method (NEM). As the 4th order NEM is not sensitive to mesh sizes, accurate calculation is possible by the use of coarse meshes of about 20 cm. The drastic decrease of number of unknowns in a 3-dimensional problem results in very fast computation. Furthermore, it employs newly developed computation algorithm `boundary separated checkerboard sweep method` appropriate to vector computers. This method is very efficient because the speedup factor by vectorization increases, as a scale of problem becomes larger. Speed-up factor compared to the scalar calculation is from 20 to 40 in the case of PWR core calculation. Considering the both effects by the vectorization and the coarse mesh method, total speedup factor is more than 1000 as compared with conventional scalar code with the finite difference method. MOSRA-Light can be available on most of vector or scalar computers with the UNIX or it`s similar operating systems (e.g. freeware like Linux). Users can easily install it by the help of the conversation style installer. This report contains the general theory of NEM, the fast computation algorithm, benchmark calculation results and detailed information for usage of this code including input data instructions and sample input data. (author)

  13. MOSRA-Light; high speed three-dimensional nodal diffusion code for vector computers

    International Nuclear Information System (INIS)

    Okumura, Keisuke

    1998-10-01

    MOSRA-Light is a three-dimensional neutron diffusion calculation code for X-Y-Z geometry. It is based on the 4th order polynomial nodal expansion method (NEM). As the 4th order NEM is not sensitive to mesh sizes, accurate calculation is possible by the use of coarse meshes of about 20 cm. The drastic decrease of number of unknowns in a 3-dimensional problem results in very fast computation. Furthermore, it employs newly developed computation algorithm 'boundary separated checkerboard sweep method' appropriate to vector computers. This method is very efficient because the speedup factor by vectorization increases, as a scale of problem becomes larger. Speed-up factor compared to the scalar calculation is from 20 to 40 in the case of PWR core calculation. Considering the both effects by the vectorization and the coarse mesh method, total speedup factor is more than 1000 as compared with conventional scalar code with the finite difference method. MOSRA-Light can be available on most of vector or scalar computers with the UNIX or it's similar operating systems (e.g. freeware like Linux). Users can easily install it by the help of the conversation style installer. This report contains the general theory of NEM, the fast computation algorithm, benchmark calculation results and detailed information for usage of this code including input data instructions and sample input data. (author)

  14. Extension of the linear nodal method to large concrete building calculations

    International Nuclear Information System (INIS)

    Childs, R.L.; Rhoades, W.A.

    1985-01-01

    The implementation of the linear nodal method in the TORT code is described, and the results of a mesh refinement study to test the effectiveness of the linear nodal and weighted diamond difference methods available in TORT are presented

  15. NOMAD: a nodal microscopic analysis method for nuclear fuel depletion

    International Nuclear Information System (INIS)

    Rajic, H.L.; Ougouag, A.M.

    1987-01-01

    Recently developed assembly homogenization techniques made possible very efficient global burnup calculations based on modern nodal methods. There are two possible ways of modeling the global depletion process: macroscopic and microscopic depletion models. Using a microscopic global depletion approach NOMAD (NOdal Microscopic Analysis Method for Nuclear Fuel Depletion), a multigroup, two- and three-dimensional, multicycle depletion code was devised. The code uses the ILLICO nodal diffusion model. The formalism of the ILLICO methodology is extended to treat changes in the macroscopic cross sections during a depletion cycle without recomputing the coupling coefficients. This results in a computationally very efficient method. The code was tested against a well-known depletion benchmark problem. In this problem a two-dimensional pressurized water reactor is depleted through two cycles. Both cycles were run with 1 x 1 and 2 x 2 nodes per assembly. It is obvious that the one node per assembly solution gives unacceptable results while the 2 x 2 solution gives relative power errors consistently below 2%

  16. Development of LMR basic design technology - Development of 3-D multi-group nodal kinetics code for liquid metal reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Hyun [Kyunghee University, Seoul (Korea, Republic of)

    1996-07-01

    A development project of 3-dimensional kinetics code for ALMR has three level of works. In the first level, a multi-group, nodal kinetics code for the HEX-Z geometry has been developed. A code showed very good results for the static analysis as well as for the kinetics problems. At the second level, a core thermal-hydraulic analysis code was developed for the temperature feedback calculation in ALMR transients analysis. This code is coupled with kinetics code. A sodium property table was programmed and tested to the KAERI data and thermal feedback model was developed and coupled in code. Benchmarking of T/H calculation has been performed and showed fairly good results. At the third level of research work, reactivity feedback model for structure thermal expansion is developed and added to the code. At present, basic model was studied. However, code development in now on going. Benchmarking of this model developed can not be done because of lack of data. 31 refs., 17 tabs., 38 figs. (author)

  17. Reactivity Coefficient Calculation for AP1000 Reactor Using the NODAL3 Code

    Science.gov (United States)

    Pinem, Surian; Malem Sembiring, Tagor; Tukiran; Deswandri; Sunaryo, Geni Rina

    2018-02-01

    The reactivity coefficient is a very important parameter for inherent safety and stability of nuclear reactors operation. To provide the safety analysis of the reactor, the calculation of changes in reactivity caused by temperature is necessary because it is related to the reactor operation. In this paper, the temperature reactivity coefficients of fuel and moderator of the AP1000 core are calculated, as well as the moderator density and boron concentration. All of these coefficients are calculated at the hot full power condition (HFP). All neutron diffusion constant as a function of temperature, water density and boron concentration were generated by the SRAC2006 code. The core calculations for determination of the reactivity coefficient parameter are done by using NODAL3 code. The calculation results show that the fuel temperature, moderator temperature and boron reactivity coefficients are in the range between -2.613 pcm/°C to -4.657pcm/°C, -1.00518 pcm/°C to 1.00649 pcm/°C and -9.11361 pcm/ppm to -8.0751 pcm/ppm, respectively. For the water density reactivity coefficients, the positive reactivity occurs at the water temperature less than 190 °C. The calculation results show that the reactivity coefficients are accurate because the results have a very good agreement with the design value.

  18. A practical implementation of the higher-order transverse-integrated nodal diffusion method

    International Nuclear Information System (INIS)

    Prinsloo, Rian H.; Tomašević, Djordje I.; Moraal, Harm

    2014-01-01

    Highlights: • A practical higher-order nodal method is developed for diffusion calculations. • The method resolves the issue of the transverse leakage approximation. • The method achieves much superior accuracy as compared to standard nodal methods. • The calculational cost is only about 50% greater than standard nodal methods. • The method is packaged in a module for connection to existing nodal codes. - Abstract: Transverse-integrated nodal diffusion methods currently represent the standard in full core neutronic simulation. The primary shortcoming of this approach is the utilization of the quadratic transverse leakage approximation. This approach, although proven to work well for typical LWR problems, is not consistent with the formulation of nodal methods and can cause accuracy and convergence problems. In this work, an improved, consistent quadratic leakage approximation is formulated, which derives from the class of higher-order nodal methods developed some years ago. Further, a number of iteration schemes are developed around this consistent quadratic leakage approximation which yields accurate node average results in much improved calculational times. The most promising of these iteration schemes results from utilizing the consistent leakage approximation as a correction method to the standard quadratic leakage approximation. Numerical results are demonstrated on a set of benchmark problems and further applied to a realistic reactor problem, particularly the SAFARI-1 reactor, operating at Necsa, South Africa. The final optimal solution strategy is packaged into a standalone module which may simply be coupled to existing nodal diffusion codes

  19. Modification of the ANC Nodal Code for analysis of PWR assembly bow

    International Nuclear Information System (INIS)

    Franceschini, Fausto; Fetterman, Robert J.; Little, David C.

    2008-01-01

    Refueling operations at certain PWR cores have revealed fuel assemblies with assembly bow that was higher than expected. As the fuel assemblies bow, the gaps between assemblies change from the uniform nominal configuration. This causes a change in the water volume which affects neutron moderation and thereby power distribution, fuel depletion history, rod internal pressure, etc., with non-trivial impacts on the safety analysis. Westinghouse has developed a new methodology for incorporation of assembly bow in its reload safety analysis package. As part of the new process, the standard Westinghouse reactor physics tool for core analysis, the Advanced Nodal Code ANC, has been modified. The modified ANC, ANCGAP, enables explicit treatment of three-dimensional gap distributions in its neutronic calculations; its accuracy is similar to that of the standard ANC, as demonstrated through an extensive benchmark campaign conducted over a variety of fuel compositions and challenging gap configurations. These features make ANCGAP a crucial tool in the Westinghouse assembly bow package. (authors)

  20. Modification of the ANC Nodal Code for analysis of PWR assembly bow

    Energy Technology Data Exchange (ETDEWEB)

    Franceschini, Fausto; Fetterman, Robert J.; Little, David C. [Westinghouse Electric Company LLC, Pittsburgh PA (United States)

    2008-07-01

    Refueling operations at certain PWR cores have revealed fuel assemblies with assembly bow that was higher than expected. As the fuel assemblies bow, the gaps between assemblies change from the uniform nominal configuration. This causes a change in the water volume which affects neutron moderation and thereby power distribution, fuel depletion history, rod internal pressure, etc., with non-trivial impacts on the safety analysis. Westinghouse has developed a new methodology for incorporation of assembly bow in its reload safety analysis package. As part of the new process, the standard Westinghouse reactor physics tool for core analysis, the Advanced Nodal Code ANC, has been modified. The modified ANC, ANCGAP, enables explicit treatment of three-dimensional gap distributions in its neutronic calculations; its accuracy is similar to that of the standard ANC, as demonstrated through an extensive benchmark campaign conducted over a variety of fuel compositions and challenging gap configurations. These features make ANCGAP a crucial tool in the Westinghouse assembly bow package. (authors)

  1. Development and Validation of NODAL-LAMBDA Program for the Calculation of the Sub-criticality of LAMDA MODES By Nodal Methods in BWR reactors

    International Nuclear Information System (INIS)

    Munoz-Cobo, J. L.; Merino, R.; Escriva, A.; Melara, J.; Concejal, A.

    2014-01-01

    We have developed a 3D code with two energy groups and diffusion theory that is capable of calculating eigenvalues lambda of a BWR reactor using nodal methods and boundary conditions that calculates ALBEDO NODAL-LAMBDA from the properties of the reflector code itself. The code calculates the sub-criticality of the first harmonic, which is involved in the stability against oscillations reactor out of phase, and which is needed for calculating the decay rate for data out of phase oscillations. The code is very fast and in a few seconds is able to make a calculation of the first eigenvalues and eigenvectors, discretized solving the problem with different matrix elements zero. The code uses the LAPACK and ARPACK libraries. It was necessary to modify the LAPACK library to perform various operations with five non-diagonal matrices simultaneously in order to reduce the number of calls to bookstores and simplify the procedure for calculating the matrices in compressed format CSR. The code is validated by comparing it with the results for SIMULATE different cases and making 3D BENCHMAR of the IAEA. (Author)

  2. Sensitivity analysis to a RELAP5 nodalization developed for a typical TRIGA research reactor

    International Nuclear Information System (INIS)

    Reis, Patrícia A.L.; Costa, Antonella L.; Pereira, Claubia; Silva, Clarysson A.M.; Veloso, Maria Auxiliadora F.

    2012-01-01

    Highlights: ► We investigated how much the code results are affected by the code user. ► Two essential modifications were made on a previously validated nodalization. ► We used the RELAP5 code to predict the results. ► Results highlight the necessity of sensitivity analysis to have the ideal modeling. - Abstract: The main aim of this work is to identify how much the code results are affected by the code user in the choice of, for example, the number of thermal hydraulic channels in a nuclear reactor nodalization. To perform this, two essential modifications were made on a previously validated nodalization for analysis of steady-state and forced recirculation off transient in the IPR-R1 TRIGA research reactor. Experimental data were taken as reference to compare the behavior of the reactor for two different types of modeling. The results highlight the necessity of sensitivity analysis to obtain the ideal modeling to simulate a specific system.

  3. Development and qualification of a thermal-hydraulic nodalization for modeling station blackout accident in PSB-VVER test facility

    Energy Technology Data Exchange (ETDEWEB)

    Saghafi, Mahdi [Department of Energy Engineering, Sharif University of Technology, Azadi Avenue, Tehran (Iran, Islamic Republic of); Ghofrani, Mohammad Bagher, E-mail: ghofrani@sharif.edu [Department of Energy Engineering, Sharif University of Technology, Azadi Avenue, Tehran (Iran, Islamic Republic of); D’Auria, Francesco [San Piero a Grado Nuclear Research Group (GRNSPG), University of Pisa, Via Livornese 1291, San Piero a Grado, Pisa (Italy)

    2016-07-15

    Highlights: • A thermal-hydraulic nodalization for PSB-VVER test facility has been developed. • Station blackout accident is modeled with the developed nodalization in MELCOR code. • The developed nodalization is qualified at both steady state and transient levels. • MELCOR predictions are qualitatively and quantitatively in acceptable range. • Fast Fourier Transform Base Method is used to quantify accuracy of code predictions. - Abstract: This paper deals with the development of a qualified thermal-hydraulic nodalization for modeling Station Black-Out (SBO) accident in PSB-VVER Integral Test Facility (ITF). This study has been performed in the framework of a research project, aiming to develop an appropriate accident management support tool for Bushehr nuclear power plant. In this regard, a nodalization has been developed for thermal-hydraulic modeling of the PSB-VVER ITF by MELCOR integrated code. The nodalization is qualitatively and quantitatively qualified at both steady-state and transient levels. The accuracy of the MELCOR predictions is quantified in the transient level using the Fast Fourier Transform Base Method (FFTBM). FFTBM provides an integral representation for quantification of the code accuracy in the frequency domain. It was observed that MELCOR predictions are qualitatively and quantitatively in the acceptable range. In addition, the influence of different nodalizations on MELCOR predictions was evaluated and quantified using FFTBM by developing 8 sensitivity cases with different numbers of control volumes and heat structures in the core region and steam generator U-tubes. The most appropriate case, which provided results with minimum deviations from the experimental data, was then considered as the qualified nodalization for analysis of SBO accident in the PSB-VVER ITF. This qualified nodalization can be used for modeling of VVER-1000 nuclear power plants when performing SBO accident analysis by MELCOR code.

  4. The application of modern nodal methods to PWR reactor physics analysis

    International Nuclear Information System (INIS)

    Knight, M.P.

    1988-06-01

    The objective of this research is to develop efficient computational procedures for PWR reactor calculations, based on modern nodal methods. The analytic nodal method, which is characterised by the use of exact exponential expansions in transverse-integrated equations, is implemented within an existing finite-difference code. This shows considerable accuracy and efficiency on standard benchmark problems, very much in line with existing experience with nodal methods., Assembly powers can be calculated to within 2.0% with just one mesh per assembly. (author)

  5. Core design optimization by integration of a fast 3-D nodal code in a heuristic search procedure

    Energy Technology Data Exchange (ETDEWEB)

    Geemert, R. van; Leege, P.F.A. de; Hoogenboom, J.E.; Quist, A.J. [Delft University of Technology, NL-2629 JB Delft (Netherlands)

    1998-07-01

    An automated design tool is being developed for the Hoger Onderwijs Reactor (HOR) in Delft, the Netherlands, which is a 2 MWth swimming-pool type research reactor. As a black box evaluator, the 3-D nodal code SILWER, which up to now has been used only for evaluation of predetermined core designs, is integrated in the core optimization procedure. SILWER is a part of PSl's ELCOS package and features optional additional thermal-hydraulic, control rods and xenon poisoning calculations. This allows for fast and accurate evaluation of different core designs during the optimization search. Special attention is paid to handling the in- and output files for SILWER such that no adjustment of the code itself is required for its integration in the optimization programme. The optimization objective, the safety and operation constraints, as well as the optimization procedure, are discussed. (author)

  6. Core design optimization by integration of a fast 3-D nodal code in a heuristic search procedure

    International Nuclear Information System (INIS)

    Geemert, R. van; Leege, P.F.A. de; Hoogenboom, J.E.; Quist, A.J.

    1998-01-01

    An automated design tool is being developed for the Hoger Onderwijs Reactor (HOR) in Delft, the Netherlands, which is a 2 MWth swimming-pool type research reactor. As a black box evaluator, the 3-D nodal code SILWER, which up to now has been used only for evaluation of predetermined core designs, is integrated in the core optimization procedure. SILWER is a part of PSl's ELCOS package and features optional additional thermal-hydraulic, control rods and xenon poisoning calculations. This allows for fast and accurate evaluation of different core designs during the optimization search. Special attention is paid to handling the in- and output files for SILWER such that no adjustment of the code itself is required for its integration in the optimization programme. The optimization objective, the safety and operation constraints, as well as the optimization procedure, are discussed. (author)

  7. Nodal aberration theory for wild-filed asymmetric optical systems

    Science.gov (United States)

    Chen, Yang; Cheng, Xuemin; Hao, Qun

    2016-10-01

    Nodal Aberration Theory (NAT) was used to calculate the zero field position in Full Field Display (FFD) for the given aberration term. Aiming at wide-filed non-rotational symmetric decentered optical systems, we have presented the nodal geography behavior of the family of third-order and fifth-order aberrations. Meanwhile, we have calculated the wavefront aberration expressions when one optical element in the system is tilted, which was not at the entrance pupil. By using a three-piece-cellphone lens example in optical design software CodeV, the nodal geography is testified under several situations; and the wavefront aberrations are calculated when the optical element is tilted. The properties of the nodal aberrations are analyzed by using Fringe Zernike coefficients, which are directly related with the wavefront aberration terms and usually obtained by real ray trace and wavefront surface fitting.

  8. The analytic nodal method in cylindrical geometry

    International Nuclear Information System (INIS)

    Prinsloo, Rian H.; Tomasevic, Djordje I.

    2008-01-01

    Nodal diffusion methods have been used extensively in nuclear reactor calculations, specifically for their performance advantage, but also for their superior accuracy. More specifically, the Analytic Nodal Method (ANM), utilising the transverse integration principle, has been applied to numerous reactor problems with much success. In this work, a nodal diffusion method is developed for cylindrical geometry. Application of this method to three-dimensional (3D) cylindrical geometry has never been satisfactorily addressed and we propose a solution which entails the use of conformal mapping. A set of 1D-equations with an adjusted, geometrically dependent, inhomogeneous source, is obtained. This work describes the development of the method and associated test code, as well as its application to realistic reactor problems. Numerical results are given for the PBMR-400 MW benchmark problem, as well as for a 'cylindrisized' version of the well-known 3D LWR IAEA benchmark. Results highlight the improved accuracy and performance over finite-difference core solutions and investigate the applicability of nodal methods to 3D PBMR type problems. Results indicate that cylindrical nodal methods definitely have a place within PBMR applications, yielding performance advantage factors of 10 and 20 for 2D and 3D calculations, respectively, and advantage factors of the order of 1000 in the case of the LWR problem

  9. KEK NODAL system

    International Nuclear Information System (INIS)

    Kurokawa, S.; Abe, K.; Akiyama, A.; Katoh, T.; Kikutani, E.; Koiso, H.; Kurihara, N.; Oide, K.; Shinomoto, M.

    1985-01-01

    The KEK NODAL system, which is based on the NODAL devised at the CERN SPS, works on an optical-fiber token ring network of twenty-four minicomputers (Hitachi HIDIC 80's) to control the TRISTAN accelerator complex, now being constructed at KEK. KEK NODAL retains main features of the original NODAL: the interpreting scheme, the multi-computer programming facility, and the data-module concept. In addition, it has the following characteristics: fast execution due to the compiler-interpreter method, a multicomputer file system, a full-screen editing facility, and a dynamic linkage scheme of data modules and NODAL functions. The structure of the KEK NODAL system under PMS, a real-time multitasking operating system of HIDIC 80, is described; the NODAL file system is also explained

  10. A simplified presentation of the multigroup analytic nodal method in 2-D Cartesian geometry

    International Nuclear Information System (INIS)

    Hebert, Alain

    2008-01-01

    The nodal diffusion algorithms used in many production reactor simulation codes are originating from a common ancestry developed in the 1970s, the analytic nodal method (ANM) of the QUANDRY code. However, this original presentation of the ANM is complex and makes difficult the calculation of the nodal coupling matrices. Moreover, QUANDRY is limited to two-energy groups and its generalization to more groups appears laborious. We are presenting a simplified implementation of the ANM requiring only limited programming work. This formulation is consistent with the initial QUANDRY implementation and is easily generalizable to arbitrary G-group problems. A Matlab script is provided to highlight the simplicity of our presentation. For the sake of clarity, our implementation is limited to G-group, 2-D Cartesian geometry

  11. KEK NODAL user's guide

    International Nuclear Information System (INIS)

    Akiyama, Atsuyoshi; Katoh, Tadahiko; Kikutani, Eiji; Koiso, Haruyo; Kurokawa, Shin-ichi; Oide, Katsunobu.

    1984-06-01

    NODAL is an interpreter language for accelerator control developed at CERN SPS and has been used successfully since 1974. At present NODAL or NODAL-like languages are used at DESY PETRA and CERN CPS. At KEK, we have also adopted NODAL for the control of TRISTAN, a 30 GeV x 30 GeV electron-positron colliding beam facility. The KEK version of NODAL has the following improvements on the SPS NODAL: (1) the fast execution speed due to the compiler-interpreter scheme, and (2) the full-screen editing facility. This manual explains how to use the KEK NODAL. It is based on the manual of the SPS NODAL, THE NODAL SYSTEM FOR THE SPS, by M.C. Crowley-Milling and G.C. Shering, CERN 78-07. We have made some additions and modifications to make the manual more appropriate for the KEK NODAL system, paying attention to retaining the good features of the original SPS NODAL manual. We acknowledge Professor M.C. Crowley-Milling, Dr G.C. Shering and CERN for their kind permission for this modification. (author)

  12. The implementation of a simplified spherical harmonics semi-analytic nodal method in PANTHER

    International Nuclear Information System (INIS)

    Hall, S.K.; Eaton, M.D.; Knight, M.P.

    2013-01-01

    Highlights: ► An SP N nodal method is proposed. ► Consistent CMFD derived and tested. ► Mark vacuum boundary conditions applied. ► Benchmarked against other diffusions and transport codes. - Abstract: In this paper an SP N nodal method is proposed which can utilise existing multi-group neutron diffusion solvers to obtain the solution. The semi-analytic nodal method is used in conjunction with a coarse mesh finite difference (CMFD) scheme to solve the resulting set of equations. This is compared against various nuclear benchmarks to show that the method is capable of computing an accurate solution for practical cases. A few different CMFD formulations are implemented and their performance compared. It is found that the effective diffusion coefficent (EDC) can provide additional stability and require less power iterations on a coarse mesh. A re-arrangement of the EDC is proposed that allows the iteration matrix to be computed at the beginning of a calculation. Successive nodal updates only modify the source term unlike existing CMFD methods which update the iteration matrix. A set of Mark vacuum boundary conditions are also derived which can be applied to the SP N nodal method extending its validity. This is possible due to a similarity transformation of the angular coupling matrix, which is used when applying the nodal method. It is found that the Marshak vacuum condition can also be derived, but would require the significant modification of existing neutron diffusion codes to implement it

  13. Nodal integral method for the neutron diffusion equation in cylindrical geometry

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1987-01-01

    The nodal methodology is based on retaining a higher a higher degree of analyticity in the process of deriving the discrete-variable equations compared to conventional numerical methods. As a result, extensive numerical testing of nodal methods developed for a wide variety of partial differential equations and comparison of the results to conventional methods have established the superior accuracy of nodal methods on coarse meshes. Moreover, these tests have shown that nodal methods are more computationally efficient than finite difference and finite-element methods in the sense that they require shorter CPU times to achieve comparable accuracy in the solutions. However, nodal formalisms and the final discrete-variable equations they produce are, in general, more complicated than their conventional counterparts. This, together with anticipated difficulties in applying the transverse-averaging procedure in curvilinear coordinates, has limited the applications of nodal methods, so far, to Cartesian geometry, and with additional approximations to hexagonal geometry. In this paper the authors report recent progress in deriving and numerically implementing a nodal integral method (NIM) for solving the neutron diffusion equation in cylindrical r-z geometry. Also, presented are comparisons of numerical solutions to two test problems with those obtained by the Exterminator-2 code, which indicate the superior accuracy of the nodal integral method solutions on much coarser meshes

  14. A polygonal nodal SP3 method for whole core Pin-by-Pin neutronics calculation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yunzhao; Wu, Hongchun; Cao, Liangzhi, E-mail: xjtulyz@gmail.com, E-mail: hongchun@mail.xjtu.edu.cn, E-mail: caolz@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi' an Jiaotong University, Shaanxi (China)

    2011-07-01

    In this polygonal nodal-SP3 method, neutron transport equation is transformed by employing an isotropic SP3 method into two coupled equations that are both in the same mathematic form with the diffusion equation, and then a polygonal nodal method is proposed to solve the two coupled equations. In the polygonal nodal method, adjacent nodes are coupled through partial currents, and a nodal response matrix between incoming and outgoing currents is obtained by expanding detailed nodal flux distribution into a sum of exponential functions. This method avoids the transverse integral technique, which is widely used in regular nodal method and can not be used in triangular geometry because of the mathematical singularity. It is demonstrated by the numerical results of the test problems that the k{sub eff} and power distribution agree well with other codes, the triangular nodal-SP3 method appears faster, and that whole core pin-by-pin transport calculation with fine meshes is feasible after parallelization and acceleration. (author)

  15. RELAP 4/MOD 6 boiling water nodalization study

    International Nuclear Information System (INIS)

    Sonneck, G.; Pfau, H.

    1985-09-01

    The risk of nuclear steam supply systems is dominated by the core melt accidents. The first step to a realistic assessment of these sequences is the successful prediction of a loss of coolant event in a test loop. One of the codes for that is RELAP 4/MOD 6 and one of the important options in this code is the nodalization. The base of this work is the test LOCA No. 1 FIX II in Studsvik (Sweden) which also served as the OECD International Standard Problem 15. This report discusses the influence of different nodalizations, of different distributions of pressure, water and structural heat as well as of different bubble rise options, break flow coefficients, and heat transfer time steps. The most important result is that a simple RELAP 4/MOD6 model with less than 10 volumes is able to predict an experiment as LOCA No. 1 in FIX II successfully using only a fraction of the usual computing time. (Author)

  16. A nodalization study of steam separator in real time simulation

    International Nuclear Information System (INIS)

    Horugshyang, Lein; Luh, R.T.J.; Zen-Yow, Wang

    1999-01-01

    The motive of this paper is to investigate the influence of steam separator nodalization on reactor thermohydraulics in terms of stability and level response. Three different nodalizations of steam separator are studied by using THEATRE and REMARK Code in a BWR simulator. The first nodalization is the traditional one with two nodes for steam separator. In this nodalization, the steam separation is modeled in the outer node, i.e., upper downcomer. Separated steam enters the Steen dome node and the liquid goes to the feedwater node. The second nodalization is similar to the first one with the steam separation modeled in the inner node. There is one additional junction connecting steam dome node and the inner node. The liquid fallback junction connects the inner node and feedwater node. The third nodalization is a combination of the former two with an integrated node for steam separator. Boundary conditions in this study are provided by a simplified feedwater and main steam driver. For comparison purpose, three tests including full power steady state initialisation, recirculation pumps runback and reactor scram are conducted. Major parameters such as reactor pressure, reactor level, void fractions, neutronic power and junction flows are recorded for analysis. Test results clearly show that the first nodalization is stable for steady state initialisation. However it has too responsive level performance in core flow reduction transients. The second nodalization is the closest representation of real plant structure, but not the performance. Test results show that an instability occurs in the separator region for both steady state initialisation and transients. This instability is caused by an unbalanced momentum in the dual loop configuration. The magnitude of the oscillation reduces as the power decreases. No superiority to the other nodalizations is shown in the test results. The third nodalization shows both stability and responsiveness in the tests. (author)

  17. A procedure for solving the neutron diffusion equation on a parallel micro-processor; modifications to the nodal expansion codes RECNEC and HEXNEC to implement the procedure

    International Nuclear Information System (INIS)

    Putney, J.M.

    1983-05-01

    The characteristics of a simple parallel micro-processor (PMP) are reviewed and its software requirements discussed. One of the more immediate applications is the multi-spatial simulation of a nuclear reactor station. This is of particular interest because 3D reactor simulation might then be possible as part of operating procedure for PFR and CDFR. A major part of a multi-spatial reactor simulator is the solution of the neutron diffusion equation. A procedure is described for solving the equation on a PMP, which is applied to the nodal expansion method with modifications to the nodal expansion codes RECNEC and HEXNEC. Estimations of the micro-processor requirements for the simulation of both PFR and CDFR are given. (U.K.)

  18. Some topics on safety analysis and accident nodalization of CAREM-25

    International Nuclear Information System (INIS)

    Gimenez, Marcelo O.; Zanocco, Pablo; Schlamp, Miguel A.; Ottaviani, Anahi; Garcia, Alicia

    2000-01-01

    The main goal of nuclear safety area in the CAREM Project Phase I, carried out during 1999, was to consolidate the safety systems design through an integral analysis of the reactor and the safety systems response to different accidental sequences. A primary circuit nodalization, including the steam generators, was done with RELAP5 code. The modeling of System 230 (absorber rods drive feed water system), System 1400 (purification and control volume system) and steam condensation on the absorber rods drive system and on RPV wall is implemented through boundary conditions. Also the Residual Heat Removal System and the Second Shutdown system are modeled. The reactor steady state at full power was calculated. The results agree quite well with design values. It can be said from the accident analysis that the nodalization responds properly. Further analysis should be done in order to qualify the nodalization and to compare benchmarks with other codes and experimental data. On the other hand, the steam dome model should be improved with more precise data about absorber rods drive system condensation, loss of heat and inner components layout. (author)

  19. Taipower's transient analysis methodology for pressurized water reactors

    International Nuclear Information System (INIS)

    Huang, Pinghue

    1998-01-01

    The methodology presented in this paper is a part of the 'Taipower's Reload Design and Transient Analysis Methodologies for Light Water Reactors' developed by the Taiwan Power Company (TPC) and the Institute of Nuclear Energy Research. This methodology utilizes four computer codes developed or sponsored by Electric Power Research institute: system transient analysis code RETRAN-02, core thermal-hydraulic analysis code COBRAIIIC, three-dimensional spatial kinetics code ARROTTA, and fuel rod evaluation code FREY. Each of the computer codes was extensively validated. Analysis methods and modeling techniques were conservatively established for each application using a systematic evaluation with the assistance of sensitivity studies. The qualification results and analysis methods were documented in detail in TPC topical reports. The topical reports for COBRAIIIC, ARROTTA. and FREY have been reviewed and approved by the Atomic Energy Council (ABC). TPC 's in-house transient methodology have been successfully applied to provide valuable support for many operational issues and plant improvements for TPC's Maanshan Units I and 2. Major applications include the removal of the resistance temperature detector bypass system, the relaxation of the hot-full-power moderator temperature coefficient design criteria imposed by the ROCAEC due to a concern on Anticipated Transient Without Scram, the reduction of boron injection tank concentration and the elimination of the heat tracing, and the reduction of' reactor coolant system flow. (author)

  20. Improvement of neutron kinetics module in TRAC-BF1code: one-dimensional nodal collocation method

    Energy Technology Data Exchange (ETDEWEB)

    Jambrina, Ana; Barrachina, Teresa; Miro, Rafael; Verdu, Gumersindo, E-mail: ajambrina@iqn.upv.es, E-mail: tbarrachina@iqn.upv.es, E-mail: rmiro@iqn.upv.es, E-mail: gverdu@iqn.upv.es [Universidade Politecnica de Valencia (UPV), Valencia (Spain); Soler, Amparo, E-mail: asoler@iberdrola.es [SEA Propulsion S.L., Madrid (Spain); Concejal, Alberto, E-mail: acbe@iberdrola.es [Iberdrola Ingenieria y Construcion S.A.U., Madrid (Spain)

    2013-07-01

    The TRAC-BF1 one-dimensional kinetic model is a formulation of the neutron diffusion equation in the two energy groups' approximation, based on the analytical nodal method (ANM). The advantage compared with a zero-dimensional kinetic model is that the axial power profile may vary with time due to thermal-hydraulic parameter changes and/or actions of the control systems but at has the disadvantages that in unusual situations it fails to converge. The nodal collocation method developed for the neutron diffusion equation and applied to the kinetics resolution of TRAC-BF1 thermal-hydraulics, is an adaptation of the traditional collocation methods for the discretization of partial differential equations, based on the development of the solution as a linear combination of analytical functions. It has chosen to use a nodal collocation method based on a development of Legendre polynomials of neutron fluxes in each cell. The qualification is carried out by the analysis of the turbine trip transient from the NEA benchmark in Peach Bottom NPP using both the original 1D kinetics implemented in TRAC-BF1 and the 1D nodal collocation method. (author)

  1. Development of one-energy group, two-dimensional, frequency dependent detector adjoint function based on the nodal method

    International Nuclear Information System (INIS)

    Khericha, Soli T.

    2000-01-01

    One-energy group, two-dimensional computer code was developed to calculate the response of a detector to a vibrating absorber in a reactor core. A concept of local/global components, based on the frequency dependent detector adjoint function, and a nodalization technique were utilized. The frequency dependent detector adjoint functions presented by complex equations were expanded into real and imaginary parts. In the nodalization technique, the flux is expanded into polynomials about the center point of each node. The phase angle and the magnitude of the one-energy group detector adjoint function were calculated for a detector located in the center of a 200x200 cm reactor using a two-dimensional nodalization technique, the computer code EXTERMINATOR, and the analytical solution. The purpose of this research was to investigate the applicability of a polynomial nodal model technique to the calculations of the real and the imaginary parts of the detector adjoint function for one-energy group two-dimensional polynomial nodal model technique. From the results as discussed earlier, it is concluded that the nodal model technique can be used to calculate the detector adjoint function and the phase angle. Using the computer code developed for nodal model technique, the magnitude of one energy group frequency dependent detector adjoint function and the phase angle were calculated for the detector located in the center of a 200x200 cm homogenous reactor. The real part of the detector adjoint function was compared with the results obtained from the EXTERMINATOR computer code as well as the analytical solution based on a double sine series expansion using the classical Green's Function solution. The values were found to be less than 1% greater at 20 cm away from the source region and about 3% greater closer to the source compared to the values obtained from the analytical solution and the EXTERMINATOR code. The currents at the node interface matched within 1% of the average

  2. DIF3D nodal neutronics option for two- and three-dimensional diffusion theory calculations in hexagonal geometry

    International Nuclear Information System (INIS)

    Lawrence, R.D.

    1983-03-01

    A nodal method is developed for the solution of the neutron-diffusion equation in two- and three-dimensional hexagonal geometries. The nodal scheme has been incorporated as an option in the finite-difference diffusion-theory code DIF3D, and is intended for use in the analysis of current LMFBR designs. The nodal equations are derived using higher-order polynomial approximations to the spatial dependence of the flux within the hexagonal-z node. The final equations, which are cast in the form of inhomogeneous response-matrix equations for each energy group, involved spatial moments of the node-interior flux distribution plus surface-averaged partial currents across the faces of the node. These equations are solved using a conventional fission-source iteration accelerated by coarse-mesh rebalance and asymptotic source extrapolation. This report describes the mathematical development and numerical solution of the nodal equations, as well as the use of the nodal option and details concerning its programming structure. This latter information is intended to supplement the information provided in the separate documentation of the DIF3D code

  3. Development of nodal interface conditions for a PN approximation nodal model

    International Nuclear Information System (INIS)

    Feiz, M.

    1993-01-01

    A relation was developed for approximating higher order odd-moments from lower order odd-moments at the nodal interfaces of a Legendre polynomial nodal model. Two sample problems were tested using different order P N expansions in adjacent nodes. The developed relation proved to be adequate and matched the nodal interface flux accurately. The development allows the use of different order expansions in adjacent nodes, and will be used in a hybrid diffusion-transport nodal model. (author)

  4. Investigation on generalized Variational Nodal Methods for heterogeneous nodes

    International Nuclear Information System (INIS)

    Wang, Yongping; Wu, Hongchun; Li, Yunzhao; Cao, Liangzhi; Shen, Wei

    2017-01-01

    Highlights: • We developed two heterogeneous nodal methods based on the Variational Nodal Method. • Four problems were solved to evaluate the two heterogeneous nodal methods. • The function expansion method is good at treating continuous-changing heterogeneity. • The finite sub-element method is good at treating discontinuous-changing heterogeneity. - Abstract: The Variational Nodal Method (VNM) is generalized for heterogeneous nodes and applied to four kinds of problems including Molten Salt Reactor (MSR) core problem with continuous cross section profile, Pressurized Water Reactor (PWR) control rod cusping effect problem, PWR whole-core pin-by-pin problem, and heterogeneous PWR core problem without fuel-coolant homogenization in each pin cell. Two approaches have been investigated for the treatment of the nodal heterogeneity in this paper. To concentrate on spatial heterogeneity, diffusion approximation was adopted for the angular variable in neutron transport equation. To provide demonstrative numerical results, the codes in this paper were developed in slab geometry. The first method, named as function expansion (FE) method, expands nodal flux by orthogonal polynomials and the nodal cross sections are also expressed as spatial depended functions. The second path, named as finite sub-element (FS) method, takes advantage of the finite-element method by dividing each node into numbers of homogeneous sub-elements and expanding nodal flux into the combination of linear sub-element trial functions. Numerical tests have been carried out to evaluate the ability of the two nodal (coarse-mesh) heterogeneous VNMs by comparing with the fine-mesh homogeneous VNM. It has been demonstrated that both heterogeneous approaches can handle heterogeneous nodes. The FE method is good at continuous-changing heterogeneity as in the MSR core problem, while the FS method is good at discontinuous-changing heterogeneity such as the PWR pin-by-pin problem and heterogeneous PWR core

  5. Application of the SPH method in nodal diffusion analyses of SFR cores

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, Evgeny; Fridman, Emil [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Reactor Safety; Mikityuk, K. [Paul Scherrer Institut, Villigen (Switzerland)

    2016-07-01

    The current study investigated the potential of the SPH method, applied to correct the few-group XS produced by Serpent, to further improve the accuracy of the nodal diffusion solutions. The procedure for the generation of SPH-corrected few-group XS is presented in the paper. The performance of the SPH method was tested on a large oxide SFR core from the OECD/NEA SFR benchmark. The reference SFR core was modeled with the DYN3D and PARCS nodal diffusion codes using the SPH-corrected few-group XS generated by Serpent. The nodal diffusion results obtained with and without SPH correction were compared to the reference full-core Serpent MC solution. It was demonstrated that the application of the SPH method improves the accuracy of the nodal diffusion solutions, particularly for the rodded core state.

  6. Nodal algorithm derived from a new variational principle

    International Nuclear Information System (INIS)

    Watson, Fernando V.

    1995-01-01

    As a by-product of the research being carried on by the author on methods of recovering pin power distribution of PWR cores, a nodal algorithm based on a modified variational principle for the two group diffusion equations has been obtained. The main feature of the new algorithm is the low dimensionality achieved by the reduction of the original diffusion equations to a system of algebraic Eigen equations involving the average sources only, instead of sources and interface group currents used in conventional nodal methods. The advantage of this procedure is discussed and results generated by the new algorithm and by a finite difference code are compared. (author). 2 refs, 7 tabs

  7. Advances in the solution of three-dimensional nodal neutron transport equation

    International Nuclear Information System (INIS)

    Pazos, Ruben Panta; Hauser, Eliete Biasotto; Vilhena, Marco Tullio de

    2003-01-01

    In this paper we study the three-dimensional nodal discrete-ordinates approximations of neutron transport equation in a convex domain with piecewise smooth boundaries. We use the combined collocation method of the angular variables and nodal approach for the spatial variables. By nodal approach we mean the iterated transverse integration of the S N equations. This procedure leads to the set of one-dimensional averages angular fluxes in each spatial variable. The resulting system of equations is solved with the LTS N method, first applying the Laplace transform to the set of the nodal S N equations and then obtaining the solution by symbolic computation. We include the LTS N method by diagonalization to solve the nodal neutron transport equation and then we outline the convergence of these nodal-LTS N approximations with the help of a norm associated to the quadrature formula used to approximate the integral term of the neutron transport equation. We give numerical results obtained with an algebraic computer system (for N up to 8) and with a code for higher values of N. We compare our results for the geometry of a box with a source in a vertex and a leakage zone in the opposite with others techniques used in this problem. (author)

  8. Real depletion in nodal diffusion codes

    International Nuclear Information System (INIS)

    Petkov, P.T.

    2002-01-01

    The fuel depletion is described by more than one hundred fuel isotopes in the advanced lattice codes like HELIOS, but only a few fuel isotopes are accounted for even in the advanced steady-state diffusion codes. The general assumption that the number densities of the majority of the fuel isotopes depend only on the fuel burnup is seriously in error if high burnup is considered. The real depletion conditions in the reactor core differ from the asymptotic ones at the stage of lattice depletion calculations. This study reveals which fuel isotopes should be explicitly accounted for in the diffusion codes in order to predict adequately the real depletion effects in the core. A somewhat strange conclusion is that if the real number densities of the main fissionable isotopes are not explicitly accounted for in the diffusion code, then Sm-149 should not be accounted for either, because the net error in k-inf is smaller (Authors)

  9. Maternal Nodal inversely affects NODAL and STOX1 expression in the fetal placenta

    Directory of Open Access Journals (Sweden)

    Hari Krishna Thulluru

    2013-08-01

    Full Text Available Nodal, a secreted signaling protein from the TGFβ-super family plays a vital role during early embryonic development. Recently, it was found that maternal decidua-specific Nodal knockout mice show intrauterine growth restriction (IUGR and preterm birth. As the chromosomal location of NODAL is in the same linkage area as the susceptibility gene STOX1, associated with the familial form of early-onset, IUGR-complicated pre-eclampsia, their potential maternal-fetal interaction was investigated. Pre-eclamptic mothers with children who carried the STOX1 susceptibility allele themselves all carried the NODAL H165R SNP, which causes a 50% reduced activity. Surprisingly, in decidua Nodal knockout mice the fetal placenta showed up-regulation of STOX1 and NODAL expression. Conditioned media of human first trimester decidua and a human endometrial stromal cell line (T-HESC treated with siRNAs against NODAL or carrying the H165R SNP were also able to induce NODAL and STOX1 expression when added to SGHPL-5 first trimester extravillous trophoblast cells. Finally, a human TGFß-BMP-Signaling-Pathway PCR-Array on decidua and the T-HESC cell line with Nodal knockdown revealed upregulation of Activin-A, which was confirmed in conditioned media by ELISA. We show that maternal decidua Nodal knockdown gives upregulation of NODAL and STOX1 mRNA expression in fetal extravillous trophoblast cells, potentially via upregulation of Activin-A in the maternal decidua. As both Activin-A and Nodal have been implicated in pre-eclampsia, being increased in serum of pre-eclamptic women and upregulated in pre-eclamptic placentas respectively, this interaction at the maternal-fetal interface might play a substantial role in the development of pre-eclampsia.

  10. DIF3D nodal neutronics option for two- and three-dimensional diffusion theory calculations in hexagonal geometry. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, R.D.

    1983-03-01

    A nodal method is developed for the solution of the neutron-diffusion equation in two- and three-dimensional hexagonal geometries. The nodal scheme has been incorporated as an option in the finite-difference diffusion-theory code DIF3D, and is intended for use in the analysis of current LMFBR designs. The nodal equations are derived using higher-order polynomial approximations to the spatial dependence of the flux within the hexagonal-z node. The final equations, which are cast in the form of inhomogeneous response-matrix equations for each energy group, involved spatial moments of the node-interior flux distribution plus surface-averaged partial currents across the faces of the node. These equations are solved using a conventional fission-source iteration accelerated by coarse-mesh rebalance and asymptotic source extrapolation. This report describes the mathematical development and numerical solution of the nodal equations, as well as the use of the nodal option and details concerning its programming structure. This latter information is intended to supplement the information provided in the separate documentation of the DIF3D code.

  11. HEXAN - a hexagonal nodal code for solving the diffusion equation

    International Nuclear Information System (INIS)

    Makai, M.

    1982-07-01

    This report describes the theory of and provides a user's manual for the HEXAN program, which is a nodal program for the solution of the few-group diffusion equation in hexagonal geometry. Based upon symmetry considerations, the theory provides an analytical solution in a homogeneous node. WWER and HTGR test problem solutions are presented. The equivalence of the finite-difference scheme and the response matrix method is proven. The properties of a symmetric node's response matrix are investigated. (author)

  12. Super-nodal methods for space-time kinetics

    Science.gov (United States)

    Mertyurek, Ugur

    The purpose of this research has been to develop an advanced Super-Nodal method to reduce the run time of 3-D core neutronics models, such as in the NESTLE reactor core simulator and FORMOSA nuclear fuel management optimization codes. Computational performance of the neutronics model is increased by reducing the number of spatial nodes used in the core modeling. However, as the number of spatial nodes decreases, the error in the solution increases. The Super-Nodal method reduces the error associated with the use of coarse nodes in the analyses by providing a new set of cross sections and ADFs (Assembly Discontinuity Factors) for the new nodalization. These so called homogenization parameters are obtained by employing consistent collapsing technique. During this research a new type of singularity, namely "fundamental mode singularity", is addressed in the ANM (Analytical Nodal Method) solution. The "Coordinate Shifting" approach is developed as a method to address this singularity. Also, the "Buckling Shifting" approach is developed as an alternative and more accurate method to address the zero buckling singularity, which is a more common and well known singularity problem in the ANM solution. In the course of addressing the treatment of these singularities, an effort was made to provide better and more robust results from the Super-Nodal method by developing several new methods for determining the transverse leakage and collapsed diffusion coefficient, which generally are the two main approximations in the ANM methodology. Unfortunately, the proposed new transverse leakage and diffusion coefficient approximations failed to provide a consistent improvement to the current methodology. However, improvement in the Super-Nodal solution is achieved by updating the homogenization parameters at several time points during a transient. The update is achieved by employing a refinement technique similar to pin-power reconstruction. A simple error analysis based on the relative

  13. An approach to model reactor core nodalization for deterministic safety analysis

    International Nuclear Information System (INIS)

    Salim, Mohd Faiz; Samsudin, Mohd Rafie; Mamat Ibrahim, Mohd Rizal; Roslan, Ridha; Sadri, Abd Aziz; Farid, Mohd Fairus Abd

    2016-01-01

    Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH 1.6 , stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D ® computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M

  14. An approach to model reactor core nodalization for deterministic safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Salim, Mohd Faiz, E-mail: mohdfaizs@tnb.com.my; Samsudin, Mohd Rafie, E-mail: rafies@tnb.com.my [Nuclear Energy Department, Regulatory Economics & Planning Division, Tenaga Nasional Berhad (Malaysia); Mamat Ibrahim, Mohd Rizal, E-mail: m-rizal@nuclearmalaysia.gov.my [Prototypes & Plant Development Center, Malaysian Nuclear Agency (Malaysia); Roslan, Ridha, E-mail: ridha@aelb.gov.my; Sadri, Abd Aziz [Nuclear Installation Divisions, Atomic Energy Licensing Board (Malaysia); Farid, Mohd Fairus Abd [Reactor Technology Center, Malaysian Nuclear Agency (Malaysia)

    2016-01-22

    Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH{sub 1.6}, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D{sup ®} computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.

  15. An approach to model reactor core nodalization for deterministic safety analysis

    Science.gov (United States)

    Salim, Mohd Faiz; Samsudin, Mohd Rafie; Mamat @ Ibrahim, Mohd Rizal; Roslan, Ridha; Sadri, Abd Aziz; Farid, Mohd Fairus Abd

    2016-01-01

    Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH1.6, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D® computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.

  16. VARIANT: VARIational anisotropic nodal transport for multidimensional Cartesian and hexadgonal geometry calculation

    International Nuclear Information System (INIS)

    Palmiotti, G.; Carrico, C.B.; Lewis, E.E.

    1995-10-01

    The theoretical basis, implementation information and numerical results are presented for VARIANT (VARIational Anisotropic Neutron Transport), a FORTRAN module of the DIF3D code system at Argonne National Laboratory. VARIANT employs the variational nodal method to solve multigroup steady-state neutron diffusion and transport problems. The variational nodal method is a hybrid finite element method that guarantees nodal balance and permits spatial refinement through the use of hierarchical complete polynomial trial functions. Angular variables are expanded with complete or simplified P 1 , P 3 or P 5 5 spherical harmonics approximations with full anisotropic scattering capability. Nodal response matrices are obtained, and the within-group equations are solved by red-black or four-color iteration, accelerated by a partitioned matrix algorithm. Fission source and upscatter iterations strategies follow those of DIF3D. Two- and three-dimensional Cartesian and hexagonal geometries are implemented. Forward and adjoint eigenvalue, fixed source, gamma heating, and criticality (concentration) search problems may be performed

  17. Experimental discovery of nodal chains

    Science.gov (United States)

    Yan, Qinghui; Liu, Rongjuan; Yan, Zhongbo; Liu, Boyuan; Chen, Hongsheng; Wang, Zhong; Lu, Ling

    2018-05-01

    Three-dimensional Weyl and Dirac nodal points1 have attracted widespread interest across multiple disciplines and in many platforms but allow for few structural variations. In contrast, nodal lines2-4 can have numerous topological configurations in momentum space, forming nodal rings5-9, nodal chains10-15, nodal links16-20 and nodal knots21,22. However, nodal lines are much less explored because of the lack of an ideal experimental realization23-25. For example, in condensed-matter systems, nodal lines are often fragile to spin-orbit coupling, located away from the Fermi level, coexist with energy-degenerate trivial bands or have a degeneracy line that disperses strongly in energy. Here, overcoming all these difficulties, we theoretically predict and experimentally observe nodal chains in a metallic-mesh photonic crystal having frequency-isolated linear band-touching rings chained across the entire Brillouin zone. These nodal chains are protected by mirror symmetry and have a frequency variation of less than 1%. We use angle-resolved transmission measurements to probe the projected bulk dispersion and perform Fourier-transformed field scans to map out the dispersion of the drumhead surface state. Our results establish an ideal nodal-line material for further study of topological line degeneracies with non-trivial connectivity and consequent wave dynamics that are richer than those in Weyl and Dirac materials.

  18. The variational nodal method: history and recent accomplishments

    International Nuclear Information System (INIS)

    Lewis, E.E.

    2004-01-01

    The variational nodal method combines spherical harmonics expansions in angle with hybrid finite element techniques is space to obtain multigroup transport response matrix algorithms applicable to both deep penetration and reactor core physics problems. This survey briefly recounts the method's history and reviews its capabilities. The variational basis for the approach is presented and two methods for obtaining discretized equations in the form of response matrices are detailed. The first is that contained the widely used VARIANT code, while the second incorporates newly developed integral transport techniques into the variational nodal framework. The two approaches are combined with a finite sub element formulation to treat heterogeneous nodes. Applications are presented for both a deep penetration problem and to an OECD benchmark consisting of LWR MOX fuel assemblies. Ongoing work is discussed. (Author)

  19. On the extension of the analytic nodal diffusion solver ANDES to sodium fast reactors

    International Nuclear Information System (INIS)

    Ochoa, R.; Herrero, J.J.; Garcia-Herranz, N.

    2011-01-01

    Within the framework of the Collaborative Project for a European Sodium Fast Reactor, the reactor physics group at UPM is working on the extension of its in-house multi-scale advanced deterministic code COBAYA3 to Sodium Fast Reactors (SFR). COBAYA3 is a 3D multigroup neutron kinetics diffusion code that can be used either as a pin-by-pin code or as a stand-alone nodal code by using the analytic nodal diffusion solver ANDES. It is coupled with thermal-hydraulics codes such as COBRA-TF and FLICA, allowing transient analysis of LWR at both fine-mesh and coarse-mesh scales. In order to enable also 3D pin-by-pin and nodal coupled NK-TH simulations of SFR, different developments are in progress. This paper presents the first steps towards the application of COBAYA3 to this type of reactors. ANDES solver, already extended to triangular-Z geometry, has been applied to fast reactor steady-state calculations. The required cross section libraries were generated with ERANOS code for several configurations. Here some of the limitations encountered when attempting to apply the Analytical Coarse Mesh Finite Difference (ACMFD) method - implemented inside ANDES - to fast reactor calculations are discussed and the sensitivity of the method to the energy-group structure is studied. In order to reinforce some of the conclusions obtained two calculations are presented. The first one involves a 3D mini-core model in 33 groups, where the ANDES solver presents several issues. And secondly, a benchmark from the NEA for a small 3D FBR in hexagonal-Z geometry in 4 energy groups is used to verify the good convergence of the code in a few-energy-group structure. (author)

  20. SPANDOM - source projection analytic nodal discrete ordinates method

    International Nuclear Information System (INIS)

    Kim, Tae Hyeong; Cho, Nam Zin

    1994-01-01

    We describe a new discrete ordinates nodal method for the two-dimensional transport equation. We solve the discrete ordinates equation analytically after the source term is projected and represented in polynomials. The method is applied to two fast reactor benchmark problems and compared with the TWOHEX code. The results indicate that the present method accurately predicts not only multiplication factor but also flux distribution

  1. The variational nodal method: some history and recent activity

    International Nuclear Information System (INIS)

    Lewis, E.E.; Smith, M.A.; Palmiotti, G.

    2005-01-01

    The variational nodal method combines spherical harmonics expansions in angle with hybrid finite element techniques in space to obtain multigroup transport response matrix algorithms applicable to a wide variety of reactor physics problems. This survey briefly recounts the method's history and reviews its capabilities. Two methods for obtaining discretized equations in the form of response matrices are compared. The first is that contained the widely used VARIANT code, while the second incorporates more recently developed integral transport techniques into the variational nodal framework. The two approaches are combined with a finite sub-element formulation to treat heterogeneous nodes. Results are presented for application to a deep penetration problem and to an OECD benchmark consisting of LWR Mox fuel assemblies. Ongoing work is discussed. (authors)

  2. Development of an Analytic Nodal Diffusion Solver in Multi-groups for 3D Reactor Cores with Rectangular or Hexagonal Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Lozano, Juan Andres; Aragones, Jose Maria; Garcia-Herranz, Nuria [Universidad Politecnica de Madrid, 28006 Jose Gutierrez Abascal 2, Madrid (Spain)

    2008-07-01

    More accurate modelling of physical phenomena involved in present and future nuclear reactors requires a multi-scale and multi-physics approach. This challenge can be accomplished by the coupling of best-estimate core-physics, thermal-hydraulics and multi-physics solvers. In order to make viable that coupling, the current trends in reactor simulations are along the development of a new generation of tools based on user-friendly, modular, easily linkable, faster and more accurate codes to be integrated in common platforms. These premises are in the origin of the NURESIM Integrated Project within the 6. European Framework Program, which is envisaged to provide the initial step towards a Common European Standard Software Platform for nuclear reactors simulations. In the frame of this project and to reach the above-mentioned goals, a 3-D multigroup nodal solver for neutron diffusion calculations called ANDES (Analytic Nodal Diffusion Equation Solver) has been developed and tested in-depth in this Thesis. ANDES solves the steady-state and time-dependent neutron diffusion equation in three-dimensions and any number of energy groups, utilizing the Analytic Coarse-Mesh Finite-Difference (ACMFD) scheme to yield the nodal coupling equations. It can be applied to both Cartesian and triangular-Z geometries, so that simulations of LWR as well as VVER, HTR and fast reactors can be performed. The solver has been implemented in a fully encapsulated way, enabling it as a module to be readily integrated in other codes and platforms. In fact, it can be used either as a stand-alone nodal code or as a solver to accelerate the convergence of whole core pin-by-pin code systems. Verification of performance has shown that ANDES is a code with high order definition for whole core realistic nodal simulations. In this paper, the methodology developed and involved in ANDES is presented. (authors)

  3. INGEN: a general-purpose mesh generator for finite element codes

    International Nuclear Information System (INIS)

    Cook, W.A.

    1979-05-01

    INGEN is a general-purpose mesh generator for two- and three-dimensional finite element codes. The basic parts of the code are surface and three-dimensional region generators that use linear-blending interpolation formulas. These generators are based on an i, j, k index scheme that is used to number nodal points, construct elements, and develop displacement and traction boundary conditions. This code can generate truss elements (2 modal points); plane stress, plane strain, and axisymmetry two-dimensional continuum elements (4 to 8 nodal points); plate elements (4 to 8 nodal points); and three-dimensional continuum elements (8 to 21 nodal points). The traction loads generated are consistent with the element generated. The expansion--contraction option is of special interest. This option makes it possible to change an existing mesh such that some regions are refined and others are made coarser than the original mesh. 9 figures

  4. On the treatment of nonlinear local feedbacks within advanced nodal generalized perturbation theory

    International Nuclear Information System (INIS)

    Maldonado, G.I.; Turinsky, P.J.; Kropaczek, D.J.

    1993-01-01

    Recent efforts to upgrade the underlying neutronics formulations within the in-core nuclear fuel management optimization code FORMOSA (Ref. 1) have produced two important developments; first, a computationally efficient and second-order-accurate advanced nodal generalized perturbation theory (GPT) model [derived from the nonlinear iterative nodal expansion method (NEM)] for evaluating core attributes (i.e., k eff and power distribution versus cycle burnup), and second, an equally efficient and accurate treatment of local thermal-hydraulic and fission product feedbacks embedded within NEM GPT. The latter development is the focus of this paper

  5. One-dimensional nodal neutronics routines for the TRAC-BD1 thermal-hydraulics program

    International Nuclear Information System (INIS)

    Nigg, D.W.

    1983-09-01

    Nuclear reactor core transient neutronic behavior is currently modeled in the TRAC-BD1 code using a point-reactor kinetics formulation. This report describes a set of subroutines based on the Analytic Nodal Method that were written to provide TRAC-BD1 with a one-dimensional space-dependent neutronics capability. Use of the routines is illustrated with several test problems. The results of these problems show that the Analytic Nodal neutronics routines have desirable accuracy and computing time characteristics and should be a useful addition to TRAC-BD1

  6. Calculation of accurate albedo boundary conditions for three-dimensional nodal diffusion codes by the method of characteristics

    International Nuclear Information System (INIS)

    Petkov, Petko T.

    2000-01-01

    Most of the few-group three-dimensional nodal diffusion codes used for neutronics calculations of the WWER reactors use albedo type boundary conditions on the core-reflector boundary. The conventional albedo are group-to-group reflection probabilities, defined on each outer node face. The method of characteristics is used to calculate accurate albedo by the following procedure. A many-group two-dimensional heterogeneous core-reflector problem, including a sufficient part of the core and detailed description of the adjacent reflector, is solved first. From this solution the angular flux on the core-reflector boundary is calculated in all groups for all traced neutron directions. Accurate boundary conditions can be calculated for the radial, top and bottom reflectors as well as for the absorber part of the WWER-440 reactor control assemblies. The algorithm can be used to estimate also albedo, coupling outer node faces on the radial reflector in the axial direction. Numerical results for the WWER-440 reactor are presented. (Authors)

  7. Avoided intersections of nodal lines

    International Nuclear Information System (INIS)

    Monastra, Alejandro G; Smilansky, Uzy; Gnutzmann, Sven

    2003-01-01

    We consider real eigenfunctions of the Schroedinger operator in 2D. The nodal lines of separable systems form a regular grid, and the number of nodal crossings equals the number of nodal domains. In contrast, for wavefunctions of non-integrable systems nodal intersections are rare, and for random waves, the expected number of intersections in any finite area vanishes. However, nodal lines display characteristic avoided crossings which we study in this work. We define a measure for the avoidance range and compute its distribution for the random wave ensemble. We show that the avoidance range distribution of wavefunctions of chaotic systems follows the expected random wave distributions, whereas for wavefunctions of classically integrable but quantum non-separable systems, the distribution is quite different. Thus, the study of the avoidance distribution provides more support to the conjecture that nodal structures of chaotic systems are reproduced by the predictions of the random wave ensemble

  8. Magnonic triply-degenerate nodal points

    Science.gov (United States)

    Owerre, S. A.

    2017-12-01

    We generalize the concept of triply-degenerate nodal points to non-collinear antiferromagnets. Here, we introduce this concept to insulating quantum antiferromagnets on the decorated honeycomb lattice, with spin-1 bosonic quasiparticle excitations known as magnons. We demonstrate the existence of magnonic surface states with constant energy contours that form pairs of magnonic arcs connecting the surface projection of the magnonic triple nodal points. The quasiparticle excitations near the triple nodal points represent three-component bosons beyond that of magnonic Dirac, Weyl, and nodal-line cases. They can be regarded as a direct reflection of the intrinsic spin carried by magnons. Furthermore, we show that the magnonic triple nodal points can split into magnonic Weyl points, as the system transits from a non-collinear spin structure to a non-coplanar one with a non-zero scalar spin chirality. Our results not only apply to insulating antiferromagnets, but also provide a platform to seek for triple nodal points in metallic antiferromagnets.

  9. Depletion Calculations for MTR Core Using MCNPX and Multi-Group Nodal Diffusion Methods

    International Nuclear Information System (INIS)

    Jaradata, Mustafa K.; Park, Chang Je; Lee, Byungchul

    2013-01-01

    In order to maintain a self-sustaining steady-state chain reaction, more fuel than is necessary in order to maintain a steady state chain reaction must be loaded. The introduction of this excess fuel increases the net multiplication capability of the system. In this paper MCNPX and multi-group nodal diffusion theory will be used for depletion calculations for MTR core. The eigenvalue and power distribution in the core will be compared for different burnup. Multi-group nodal diffusion theory with combination of NEWT-TRITON system was used to perform depletion calculations for 3Χ3 MTR core. 2G and 6G approximations were used and compared with MCNPX results for 2G approximation the maximum difference from MCNPX was 40 mk and for 6G approximation was 6 mk which is comparable to the MCNPX results. The calculated power using nodal code was almost the same MCNPX results. Finally the results of the multi-group nodal theory were acceptable and comparable to the calculated using MCNPX

  10. Study of the funtionalization of nodal cross sections in multigrupos for neutronics-thermohydraulic PWR core 3D calculations

    International Nuclear Information System (INIS)

    Sanchez-Cervera, S.; Hueso, C.; Herrero, J. J.

    2011-01-01

    This paper contains the work developed to study the dependencies of the nodal parameters with local variables. After entering the parameter space of operation, are obtained constants homogenized through calculations with deterministic code of transport NEWT with SCALE system codes.

  11. A geometrically exact beam element based on the absolute nodal coordinate formulation

    International Nuclear Information System (INIS)

    Gerstmayr, Johannes; Matikainen, Marko K.; Mikkola, Aki M.

    2008-01-01

    In this study, Reissner's classical nonlinear rod formulation, as implemented by Simo and Vu-Quoc by means of the large rotation vector approach, is implemented into the framework of the absolute nodal coordinate formulation. The implementation is accomplished in the planar case accounting for coupled axial, bending, and shear deformation. By employing the virtual work of elastic forces similarly to Simo and Vu-Quoc in the absolute nodal coordinate formulation, the numerical results of the formulation are identical to those of the large rotation vector formulation. It is noteworthy, however, that the material definition in the absolute nodal coordinate formulation can differ from the material definition used in Reissner's beam formulation. Based on an analytical eigenvalue analysis, it turns out that the high frequencies of cross section deformation modes in the absolute nodal coordinate formulation are only slightly higher than frequencies of common shear modes, which are present in the classical large rotation vector formulation of Simo and Vu-Quoc, as well. Thus, previous claims that the absolute nodal coordinate formulation is inefficient or would lead to ill-conditioned finite element matrices, as compared to classical approaches, could be refuted. In the introduced beam element, locking is prevented by means of reduced integration of certain parts of the elastic forces. Several classical large deformation static and dynamic examples as well as an eigenvalue analysis document the equivalence of classical nonlinear rod theories and the absolute nodal coordinate formulation for the case of appropriate material definitions. The results also agree highly with those computed in commercial finite element codes

  12. The nodal discrete-ordinate transport calculation of anisotropy scattering problem in three-dimensional cartesian geometry

    International Nuclear Information System (INIS)

    Wu Hongchun; Xie Zhongsheng; Zhu Xuehua

    1994-01-01

    The nodal discrete-ordinate transport calculating model of anisotropy scattering problem in three-dimensional cartesian geometry is given. The computing code NOTRAN/3D has been encoded and the satisfied conclusion is gained

  13. An alternative solver for the nodal expansion method equations - 106

    International Nuclear Information System (INIS)

    Carvalho da Silva, F.; Carlos Marques Alvim, A.; Senra Martinez, A.

    2010-01-01

    An automated procedure for nuclear reactor core design is accomplished by using a quick and accurate 3D nodal code, aiming at solving the diffusion equation, which describes the spatial neutron distribution in the reactor. This paper deals with an alternative solver for nodal expansion method (NEM), with only two inner iterations (mesh sweeps) per outer iteration, thus having the potential to reduce the time required to calculate the power distribution in nuclear reactors, but with accuracy similar to the ones found in conventional NEM. The proposed solver was implemented into a computational system which, besides solving the diffusion equation, also solves the burnup equations governing the gradual changes in material compositions of the core due to fuel depletion. Results confirm the effectiveness of the method for practical purposes. (authors)

  14. Reconstruction of pin burnup characteristics from nodal calculations in hexagonal geometry

    International Nuclear Information System (INIS)

    Yang, W.S.; Finck, P.J.; Khalil, H.S.

    1990-01-01

    A reconstruction method has been developed for recovering pin burnup characteristics from fuel cycle calculations performed in hexagonal-z geometry using the nodal diffusion option of the DIF3D/REBUS-3 code system. Intra-modal distributions of group fluxes, nuclide densities, power density, burnup, and fluence are efficiently computed using polynomial shapes constrained to satisfy nodal information. The accuracy of the method has been tested by performing several numerical benchmark calculations and by comparing predicted local burnups to values measured for experimental assemblies in EBR-11. The results indicate that the reconstruction methods are quite accurate, yielding maximum errors in power and nuclide densities that are less than 2% for driver assemblies and typically less than 5% for blanket assemblies. 14 refs., 2 figs., 5 tabs

  15. Intercomparison of the finite difference and nodal discrete ordinates and surface flux transport methods for a LWR pool-reactor benchmark problem in X-Y geometry

    International Nuclear Information System (INIS)

    O'Dell, R.D.; Stepanek, J.; Wagner, M.R.

    1983-01-01

    The aim of the present work is to compare and discuss the three of the most advanced two dimensional transport methods, the finite difference and nodal discrete ordinates and surface flux method, incorporated into the transport codes TWODANT, TWOTRAN-NODAL, MULTIMEDIUM and SURCU. For intercomparison the eigenvalue and the neutron flux distribution are calculated using these codes in the LWR pool reactor benchmark problem. Additionally the results are compared with some results obtained by French collision probability transport codes MARSYAS and TRIDENT. Because the transport solution of this benchmark problem is close to its diffusion solution some results obtained by the finite element diffusion code FINELM and the finite difference diffusion code DIFF-2D are included

  16. Consistent Code Qualification Process and Application to WWER-1000 NPP

    International Nuclear Information System (INIS)

    Berthon, A.; Petruzzi, A.; Giannotti, W.; D'Auria, F.; Reventos, F.

    2006-01-01

    Calculation analysis by application of the system codes are performed to evaluate the NPP or the facility behavior during a postulated transient or to evaluate the code capability. The calculation analysis constitutes a process that involves the code itself, the data of the reference plant, the data about the transient, the nodalization, and the user. All these elements affect one each other and affect the results. A major issue in the use of mathematical model is constituted by the model capability to reproduce the plant or facility behavior under steady state and transient conditions. These aspects constitute two main checks that must be satisfied during the qualification process. The first of them is related to the realization of a scheme of the reference plant; the second one is related to the capability to reproduce the transient behavior. The aim of this paper is to describe the UMAE (Uncertainty Method based on Accuracy Extrapolation) methodology developed at University of Pisa for qualifying a nodalization and analysing the calculated results and to perform the uncertainty evaluation of the system code by the CIAU code (Code with the capability of Internal Assessment of Uncertainty). The activity consists with the re-analysis of the Experiment BL-44 (SBLOCA) performed in the LOBI facility and the analysis of a Kv-scaling calculation of the WWER-1000 NPP nodalization taking as reference the test BL-44. Relap5/Mod3.3 has been used as thermal-hydraulic system code and the standard procedure adopted at University of Pisa has been applied to show the capability of the code to predict the significant aspects of the transient and to obtain a qualified nodalization of the WWER-1000 through a systematic qualitative and quantitative accuracy evaluation. The qualitative accuracy evaluation is based on the selection of Relevant Thermal-hydraulic Aspects (RTAs) and is a prerequisite to the application of the Fast Fourier Transform Based Method (FFTBM) which quantifies

  17. Inclusion of nodal option in diffusion conventional codes

    International Nuclear Information System (INIS)

    Prati, A.; Anaf, J.

    1985-01-01

    The GCMDT (Generalized Coarse Mesh Diffusion Theory) is studied to use in the 2DB diffusion conventional code. An adequate formalism for its implementation in codes of 'Mesh-Centered' is developed for retangular, triangular and hexagonal geometries. (M.C.K.) [pt

  18. The analytic nodal diffusion solver ANDES in multigroups for 3D rectangular geometry: Development and performance analysis

    International Nuclear Information System (INIS)

    Lozano, Juan-Andres; Garcia-Herranz, Nuria; Ahnert, Carol; Aragones, Jose-Maria

    2008-01-01

    In this work we address the development and implementation of the analytic coarse-mesh finite-difference (ACMFD) method in a nodal neutron diffusion solver called ANDES. The first version of the solver is implemented in any number of neutron energy groups, and in 3D Cartesian geometries; thus it mainly addresses PWR and BWR core simulations. The details about the generalization to multigroups and 3D, as well as the implementation of the method are given. The transverse integration procedure is the scheme chosen to extend the ACMFD formulation to multidimensional problems. The role of the transverse leakage treatment in the accuracy of the nodal solutions is analyzed in detail: the involved assumptions, the limitations of the method in terms of nodal width, the alternative approaches to implement the transverse leakage terms in nodal methods - implicit or explicit -, and the error assessment due to transverse integration. A new approach for solving the control rod 'cusping' problem, based on the direct application of the ACMFD method, is also developed and implemented in ANDES. The solver architecture turns ANDES into an user-friendly, modular and easily linkable tool, as required to be integrated into common software platforms for multi-scale and multi-physics simulations. ANDES can be used either as a stand-alone nodal code or as a solver to accelerate the convergence of whole core pin-by-pin code systems. The verification and performance of the solver are demonstrated using both proof-of-principle test cases and well-referenced international benchmarks

  19. The SINTRAN III NODAL system

    International Nuclear Information System (INIS)

    Skaali, T.B.

    1980-10-01

    NODAL is a high level programming language based on FOCAL and SNOBOL4, with some influence from BASIC. The language was developed to operate on the computer network controlling the SPS accelerator at CERN. NODAL is an interpretive language designed for interactive use. This is the most important aspect of the language, and is reflected in its structure. The interactive facilities make it possible to write, debug and modify programs much faster than with compiler based languages like FORTRAN and ALGOL. Apart from a few minor modifications, the basic part of the Oslo University NODAL system does not differ from the CERN version. However, the Oslo University implementation has been expanded with new functions which enable the user to execute many of the SINTRAN III monitor calls from the NODAL level. In particular the most important RT monitor calls have been implemented in this way, a property which renders possible the use of NODAL as a RT program administrator. (JIW)

  20. The correction of pebble bed reactor nodal cross sections for the effects of leakage and depletion history

    Science.gov (United States)

    Hudson, Nathanael Harrison

    An accurate and computationally fast method to generate nodal cross sections for the Pebble Bed Reactor (PBR) was presented. In this method, named Spectral History Correction (SHC), a set of fine group microscopic cross section libraries, pre-computed at specified depletion and moderation states, was coupled with the nodal nuclide densities and group bucklings to compute the new fine group spectrum for each node. The relevant fine group cross-section library was then recollapsed to the local broad group cross-section structure with this new fine group spectrum. This library set was tracked in terms of fuel isotopic densities. Fine group modulation factors (to correct the homogeneous flux for heterogeneous effects) and fission spectra were also stored with the cross section library. As the PBR simulation converges to a steady state fuel cycle, the initial nodal cross section library becomes inaccurate due to the burnup of the fuel and the neutron leakage into and out of the node. Because of the recirculation of discharged fuel pebbles with fresh fuel pebbles, a node can consist of a collection of pebbles at various burnup stages. To account for the nodal burnup, the microscopic cross sections were combined with nodal averaged atom densities to approximate the fine group macroscopic cross-sections for that node. These constructed, homogeneous macroscopic cross sections within the node were used to calculate a numerical solution for the fine group spectrum with B1 theory. This new fine spectrum was used to collapse the pre-computed microscopic cross section library to the broad group structure employed by the fuel cycle code. This SHC technique was developed and practically implemented as a subroutine within the PBR fuel cycle code PEBBED. The SHC subroutine was called to recalculate the broad group cross sections during the code convergence. The result was a fast method that compared favorably to the benchmark scheme of cross section calculation with the lattice

  1. Robust doubly charged nodal lines and nodal surfaces in centrosymmetric systems

    Science.gov (United States)

    Bzdušek, Tomáš; Sigrist, Manfred

    2017-10-01

    Weyl points in three spatial dimensions are characterized by a Z -valued charge—the Chern number—which makes them stable against a wide range of perturbations. A set of Weyl points can mutually annihilate only if their net charge vanishes, a property we refer to as robustness. While nodal loops are usually not robust in this sense, it has recently been shown using homotopy arguments that in the centrosymmetric extension of the AI symmetry class they nevertheless develop a Z2 charge analogous to the Chern number. Nodal loops carrying a nontrivial value of this Z2 charge are robust, i.e., they can be gapped out only by a pairwise annihilation and not on their own. As this is an additional charge independent of the Berry π -phase flowing along the band degeneracy, such nodal loops are, in fact, doubly charged. In this manuscript, we generalize the homotopy discussion to the centrosymmetric extensions of all Atland-Zirnbauer classes. We develop a tailored mathematical framework dubbed the AZ +I classification and show that in three spatial dimensions such robust and multiply charged nodes appear in four of such centrosymmetric extensions, namely, AZ +I classes CI and AI lead to doubly charged nodal lines, while D and BDI support doubly charged nodal surfaces. We remark that no further crystalline symmetries apart from the spatial inversion are necessary for their stability. We provide a description of the corresponding topological charges, and develop simple tight-binding models of various semimetallic and superconducting phases that exhibit these nodes. We also indicate how the concept of robust and multiply charged nodes generalizes to other spatial dimensions.

  2. A one-dimensional, one-group absorption-production nodal method for neutron flux and power distributions calculations

    International Nuclear Information System (INIS)

    Ferreira, C.R.

    1984-01-01

    It is presented the absorption-production nodal method for steady and dynamical calculations in one-dimension and one group energy. It was elaborated the NOD1D computer code (in FORTRAN-IV language). Calculations of neutron flux and power distributions, burnup, effective multiplication factors and critical boron concentration were made with the NOD1D code and compared with results obtained through the CITATION code, which uses the finite difference method. The nuclear constants were produced by the LEOPARD code. (M.C.K.) [pt

  3. Usefulness of FDG PET for nodal staging using a dual head coincidence camera in patients with lung cancer

    International Nuclear Information System (INIS)

    Yoon, Seok Nam; Park, Chan H.; Lee, Myoung Hoon; Hwang, Kyung Hoon; Hwang, Kyung Hoon

    2001-01-01

    Staging of lung cancer requires an accurate evaluation of the mediastinum. Positron imaging with dual head cameras may be not as sensitive as dedicated PET. Therefore, the purpose of the study was to evaluated the usefulness of F-18 FDG coincidence (CoDe) PET using a dual-head gamma camera in the nodal staging of the lung cancer. CoDe-PET studies were performed in 51 patients with histologically proven non small cell lung cancer. CoDe-PET began 60 minutes after the injection of 111-185 MBq of F-18 FDG. CoDe-PET was performed using a dual-head gamma camera equipped with coincidence detection circuitry (Elscints Varicam, Haifa, lsrael). There was no attenuation correction made and reconstruction was done using a filtered back-projection. Surgery was performed in 49 patients CoDe-PET studies were evaluated visually. Any focal increased uptake was considered abnormal. The nodal stating of CoDe-PET studies were evaluated visually. Any focal increased uptake was considered abnormal. The nodal staging of CoDe-PET and of CT were compared with the nodal stating of surgical (49) and mediastinoscopical (2) pathology. All primary lung lesions were hypermetabolic and easily visualized. Compared with surgical nodal staging as a gold standard, false positives occurred in 13 CoDe PET and 17 CT studies and false negative occurred in 5 CoDe-PET and 4 CT studies. Assessment of lymph node involvement by CoDe-PET depicted a sensitivity of 67%, specificity of 64% and accuracy of 65%. CT revealed a sensitivity of 73%, specificity of 53% and accuracy of 59% in the assessment of lymph node involvement. The detection of primary lesions were 100% but nodal staging was suboptimal for routine clinical use. This is mainly due to limited resolution of our system

  4. Moderator feedback effects in two-dimensional nodal methods for pressurized water reactor analysis

    International Nuclear Information System (INIS)

    Downar, T.J.

    1987-01-01

    A method was developed for incorporating moderator feedback effects in two-dimensional nodal codes used for pressurized water reactor (PWR) neutronic analysis. Equations for the assembly average quality and density are developed in terms of the assembly power calculated in two dimensions. The method is validated with a Westinghouse PWR using the Electric Power Research Institute code SIMULATE-E. Results show a several percent improvement is achieved in the two-dimensional power distribution prediction compared to methods without moderator feedback

  5. Two-energy group solution of the diffusion equation by the multidimensional nodal polynomial expansion method

    International Nuclear Information System (INIS)

    Ribeiro, R.D.M.; Vellozo, S.O.; Botelho, D.A.

    1983-01-01

    The EPON computer code based in a Nodal Polynomial Expansion Method, wrote in Fortran IV, for steady-state, square geometry, one-dimensional or two-dimensional geometry and for one or two-energy group is presented. The neutron and power flux distributions for nuclear power plants were calculated, comparing with codes that use similar or different methodologies. The availability, economy and speed of the methodology is demonstrated. (E.G.) [pt

  6. Nodal-chain metals.

    Science.gov (United States)

    Bzdušek, Tomáš; Wu, QuanSheng; Rüegg, Andreas; Sigrist, Manfred; Soluyanov, Alexey A

    2016-10-06

    The band theory of solids is arguably the most successful theory of condensed-matter physics, providing a description of the electronic energy levels in various materials. Electronic wavefunctions obtained from the band theory enable a topological characterization of metals for which the electronic spectrum may host robust, topologically protected, fermionic quasiparticles. Many of these quasiparticles are analogues of the elementary particles of the Standard Model, but others do not have a counterpart in relativistic high-energy theories. A complete list of possible quasiparticles in solids is lacking, even in the non-interacting case. Here we describe the possible existence of a hitherto unrecognized type of fermionic excitation in metals. This excitation forms a nodal chain-a chain of connected loops in momentum space-along which conduction and valence bands touch. We prove that the nodal chain is topologically distinct from previously reported excitations. We discuss the symmetry requirements for the appearance of this excitation and predict that it is realized in an existing material, iridium tetrafluoride (IrF 4 ), as well as in other compounds of this class of materials. Using IrF 4 as an example, we provide a discussion of the topological surface states associated with the nodal chain. We argue that the presence of the nodal-chain fermions will result in anomalous magnetotransport properties, distinct from those of materials exhibiting previously known excitations.

  7. The development of a transient neutron flux solution in the PANTHER code

    International Nuclear Information System (INIS)

    Hutt, P.K.; Knight, M.P.

    1990-01-01

    In the United Kingdom a new three-dimensional, two-group, homogeneous reactor diffusion code, PANTHER, has been developed for the analysis of pressurized water reactors (PWRs) and advanced gas-cooled reactors (AGRs). The code can perform a comprehensive range of calculations, steady state, depletion, and transient with either a finite difference or analytic nodal flux solution. The nodal solution allows the representation of within-node burnup variation and pin-power reconstruction in either steady-state or transient mode. Specific steady-state and transient thermal feedback modules are included for both PWRs and AGRs. The code is being developed to perform a complete range of reactor calculations from online operational support to fuel management and fault transient analysis. In the area of transient analysis, the code is currently being used for a number of PWR fault transient assessments, including rod ejection and steam-line break. In addition, work is proceeding to incorporate the PANTHER 3D nodal transient solution in the TRAC-P code. This paper outlines the development of the transient flux solutions within PANTHER

  8. A variational synthesis nodal discrete ordinates method

    International Nuclear Information System (INIS)

    Favorite, J.A.; Stacey, W.M.

    1999-01-01

    A self-consistent nodal approximation method for computing discrete ordinates neutron flux distributions has been developed from a variational functional for neutron transport theory. The advantage of the new nodal method formulation is that it is self-consistent in its definition of the homogenized nodal parameters, the construction of the global nodal equations, and the reconstruction of the detailed flux distribution. The efficacy of the method is demonstrated by two-dimensional test problems

  9. Power feedback effects in the LEM code

    International Nuclear Information System (INIS)

    Kromar, M.

    1999-01-01

    The nodal diffusion code LEM has been extended with the power feedback option. Thermohydraulic and neutronic coupling is covered with the Reactivity Coefficient Method. Presented are results of the code testing. Verification is done on the typical non-uprated NPP Krsko reload cycles. Results show that the code fulfill objectives arising in the process of reactor core analysis.(author)

  10. Non-linear triangle-based polynomial expansion nodal method for hexagonal core analysis

    International Nuclear Information System (INIS)

    Cho, Jin Young; Cho, Byung Oh; Joo, Han Gyu; Zee, Sung Qunn; Park, Sang Yong

    2000-09-01

    This report is for the implementation of triangle-based polynomial expansion nodal (TPEN) method to MASTER code in conjunction with the coarse mesh finite difference(CMFD) framework for hexagonal core design and analysis. The TPEN method is a variation of the higher order polynomial expansion nodal (HOPEN) method that solves the multi-group neutron diffusion equation in the hexagonal-z geometry. In contrast with the HOPEN method, only two-dimensional intranodal expansion is considered in the TPEN method for a triangular domain. The axial dependence of the intranodal flux is incorporated separately here and it is determined by the nodal expansion method (NEM) for a hexagonal node. For the consistency of node geometry of the MASTER code which is based on hexagon, TPEN solver is coded to solve one hexagonal node which is composed of 6 triangular nodes directly with Gauss elimination scheme. To solve the CMFD linear system efficiently, stabilized bi-conjugate gradient(BiCG) algorithm and Wielandt eigenvalue shift method are adopted. And for the construction of the efficient preconditioner of BiCG algorithm, the incomplete LU(ILU) factorization scheme which has been widely used in two-dimensional problems is used. To apply the ILU factorization scheme to three-dimensional problem, a symmetric Gauss-Seidel Factorization scheme is used. In order to examine the accuracy of the TPEN solution, several eigenvalue benchmark problems and two transient problems, i.e., a realistic VVER1000 and VVER440 rod ejection benchmark problems, were solved and compared with respective references. The results of eigenvalue benchmark problems indicate that non-linear TPEN method is very accurate showing less than 15 pcm of eigenvalue errors and 1% of maximum power errors, and fast enough to solve the three-dimensional VVER-440 problem within 5 seconds on 733MHz PENTIUM-III. In the case of the transient problems, the non-linear TPEN method also shows good results within a few minute of

  11. Application of a nodal collocation approximation for the multidimensional PL equations to the 3D Takeda benchmark problems

    International Nuclear Information System (INIS)

    Capilla, M.; Talavera, C.F.; Ginestar, D.; Verdú, G.

    2012-01-01

    Highlights: ► The multidimensional P L approximation to the nuclear transport equation is reviewed. ► A nodal collocation method is developed for the spatial discretization of P L equations. ► Advantages of the method are lower dimension and good characterists of the associated algebraic eigenvalue problem. ► The P L nodal collocation method is implemented into the computer code SHNC. ► The SHNC code is verified with 2D and 3D benchmark eigenvalue problems from Takeda and Ikeda, giving satisfactory results. - Abstract: P L equations are classical approximations to the neutron transport equations, which are obtained expanding the angular neutron flux in terms of spherical harmonics. These approximations are useful to study the behavior of reactor cores with complex fuel assemblies, for the homogenization of nuclear cross-sections, etc., and most of these applications are in three-dimensional (3D) geometries. In this work, we review the multi-dimensional P L equations and describe a nodal collocation method for the spatial discretization of these equations for arbitrary odd order L, which is based on the expansion of the spatial dependence of the fields in terms of orthonormal Legendre polynomials. The performance of the nodal collocation method is studied by means of obtaining the k eff and the stationary power distribution of several 3D benchmark problems. The solutions are obtained are compared with a finite element method and a Monte Carlo method.

  12. Quantum oscillations in nodal line systems

    Science.gov (United States)

    Yang, Hui; Moessner, Roderich; Lim, Lih-King

    2018-04-01

    We study signatures of magnetic quantum oscillations in three-dimensional nodal line semimetals at zero temperature. The extended nature of the degenerate bands can result in a Fermi surface geometry with topological genus one, as well as a Fermi surface of electron and hole pockets encapsulating the nodal line. Moreover, the underlying two-band model to describe a nodal line is not unique, in that there are two classes of Hamiltonian with distinct band topology giving rise to the same Fermi-surface geometry. After identifying the extremal cyclotron orbits in various magnetic field directions, we study their concomitant Landau levels and resulting quantum oscillation signatures. By Landau-fan-diagram analyses, we extract the nontrivial π Berry phase signature for extremal orbits linking the nodal line.

  13. An analytical nodal method for time-dependent one-dimensional discrete ordinates problems

    International Nuclear Information System (INIS)

    Barros, R.C. de

    1992-01-01

    In recent years, relatively little work has been done in developing time-dependent discrete ordinates (S N ) computer codes. Therefore, the topic of time integration methods certainly deserves further attention. In this paper, we describe a new coarse-mesh method for time-dependent monoenergetic S N transport problesm in slab geometry. This numerical method preserves the analytic solution of the transverse-integrated S N nodal equations by constants, so we call our method the analytical constant nodal (ACN) method. For time-independent S N problems in finite slab geometry and for time-dependent infinite-medium S N problems, the ACN method generates numerical solutions that are completely free of truncation errors. Bsed on this positive feature, we expect the ACN method to be more accurate than conventional numerical methods for S N transport calculations on coarse space-time grids

  14. Neutron transport in hexagonal reactor cores modeled by trigonal-geometry diffusion and simplified P{sub 3} nodal methods

    Energy Technology Data Exchange (ETDEWEB)

    Duerigen, Susan

    2013-05-15

    The superior advantage of a nodal method for reactor cores with hexagonal fuel assemblies discretized as cells consisting of equilateral triangles is its mesh refinement capability. In this thesis, a diffusion and a simplified P{sub 3} (or SP{sub 3}) neutron transport nodal method are developed based on trigonal geometry. Both models are implemented in the reactor dynamics code DYN3D. As yet, no other well-established nodal core analysis code comprises an SP{sub 3} transport theory model based on trigonal meshes. The development of two methods based on different neutron transport approximations but using identical underlying spatial trigonal discretization allows a profound comparative analysis of both methods with regard to their mathematical derivations, nodal expansion approaches, solution procedures, and their physical performance. The developed nodal approaches can be regarded as a hybrid NEM/AFEN form. They are based on the transverse-integration procedure, which renders them computationally efficient, and they use a combination of polynomial and exponential functions to represent the neutron flux moments of the SP{sub 3} and diffusion equations, which guarantees high accuracy. The SP{sub 3} equations are derived in within-group form thus being of diffusion type. On this basis, the conventional diffusion solver structure can be retained also for the solution of the SP{sub 3} transport problem. The verification analysis provides proof of the methodological reliability of both trigonal DYN3D models. By means of diverse hexagonal academic benchmark and realistic detailed-geometry full-transport-theory problems, the superiority of the SP{sub 3} transport over the diffusion model is demonstrated in cases with pronounced anisotropy effects, which is, e.g., highly relevant to the modeling of fuel assemblies comprising absorber material.

  15. Heterogeneous treatment in the variational nodal method

    International Nuclear Information System (INIS)

    Fanning, T.H.

    1995-01-01

    The variational nodal transport method is reduced to its diffusion form and generalized for the treatment of heterogeneous nodes while maintaining nodal balances. Adapting variational methods to heterogeneous nodes requires the ability to integrate over a node with discontinuous cross sections. In this work, integrals are evaluated using composite gaussian quadrature rules, which permit accurate integration while minimizing computing time. Allowing structure within a nodal solution scheme avoids some of the necessity of cross section homogenization, and more accurately defines the intra-nodal flux shape. Ideally, any desired heterogeneity can be constructed within the node; but in reality, the finite set of basis functions limits the practical resolution to which fine detail can be defined within the node. Preliminary comparison tests show that the heterogeneous variational nodal method provides satisfactory results even if some improvements are needed for very difficult, configurations

  16. Recent improvements and new features in the Westinghouse lattice physics codes

    International Nuclear Information System (INIS)

    Huria, H.C.; Buechel, R.J.

    1995-01-01

    Westinghouse has been using the ANC three-dimensional, two-energy-group nodal model for nuclear analysis and fuel management calculations for standard pressurized water reactor (PWR) reload design analysis since 1988. The cross sections are obtained from PHOENIX-P, a modified version of the PHOENIX lattice physics code for all square-assembly PWR cores. The PHOENIX-H code was developed for modeling both the VVER-1000 and VVER-440 fuel lattice configurations. The PHOENIX-H code has evolved from PHOENIX-P, the primary difference being in the neutronic solution modules. The PHOENIX-P code determines the assembly flux distribution using integral transport theory-based pin-cell nodal coupling followed by two-dimensional discrete ordinates solution in x-y geometry. The PHOENIX-H code uses the two-dimensional heterogeneous response method. The other infrastructure is identical in both the codes, and they share the same 42-group cross-section library

  17. Approximate Schur complement preconditioning of the lowest order nodal discretizations

    Energy Technology Data Exchange (ETDEWEB)

    Moulton, J.D.; Ascher, U.M. [Univ. of British Columbia, Vancouver, British Columbia (Canada); Morel, J.E. [Los Alamos National Lab., NM (United States)

    1996-12-31

    Particular classes of nodal methods and mixed hybrid finite element methods lead to equivalent, robust and accurate discretizations of 2nd order elliptic PDEs. However, widespread popularity of these discretizations has been hindered by the awkward linear systems which result. The present work exploits this awkwardness, which provides a natural partitioning of the linear system, by defining two optimal preconditioners based on approximate Schur complements. Central to the optimal performance of these preconditioners is their sparsity structure which is compatible with Dendy`s black box multigrid code.

  18. Introduction of SCIENCE code package

    International Nuclear Information System (INIS)

    Lu Haoliang; Li Jinggang; Zhu Ya'nan; Bai Ning

    2012-01-01

    The SCIENCE code package is a set of neutronics tools based on 2D assembly calculations and 3D core calculations. It is made up of APOLLO2F, SMART and SQUALE and used to perform the nuclear design and loading pattern analysis for the reactors on operation or under construction of China Guangdong Nuclear Power Group. The purpose of paper is to briefly present the physical and numerical models used in each computation codes of the SCIENCE code pack age, including the description of the general structure of the code package, the coupling relationship of APOLLO2-F transport lattice code and SMART core nodal code, and the SQUALE code used for processing the core maps. (authors)

  19. Solution of the transport equation in stationary state, in one and two dimensions, for BWR assemblies using nodal methods; Solucion de la ecuacion de transporte en estado estacionario, en 1 y 2 dimensiones, para ensambles tipo BWR usando metodos nodales

    Energy Technology Data Exchange (ETDEWEB)

    Xolocostli M, J V

    2002-07-01

    . In this geometry nodal, continuous and discontinuous schemes were used. For the continuos schemes, only the Bi Quadratic (BiQ) and the Bi Cubic (BiC) were considered. In the case of the discontinuous ones two nodal schemes were considered, namely the Discontinuous Bi Linear (DBiL) and Discontinuous Bi Quadratic (DBiQ). The nodal schemes applied use from 4 up to 16 interpolation parameters per cell. These schemes are-defined for a set D{sub c} of interpolation parameters and a polynomial space S{sub h} corresponding to each one of the nodal schemes considered. All these four nodal hybrid schemes were implemented in a computer program called TNHXY starting from the computer program TNXY developed in previous thesis works. Several subroutines wae added to calculate the average neutron flux for each cell and for each energy group, generating two versions, one for the continuous schemes and one for the discontinuous schemes. For this geometry, two benchmark problems of the ANL-7416 document were analyzed. They are 7x7 BWR fuel assemblies, one without control rod and the other one with control rod. The computer program was also applied to a MOX assembly proposed by the Nuclear Energy Agency and it is considered as a reference problem. The results obtained for the one-dimensional problems using TNX for the effective multiplication factor were compared with the ones obtained with the code ANISN/PC. TNX code shows a faster convergence within four significant figures for the case with no control rod and three significant figures for the case with control rod (using double precision). These results suggest TNX is a very useful tool for this kind of calculations. For X Y geometry, the results obtained with TNHXY were compared with those calculated with the code TWOTRAN. To get these results, several spatial (1x1, 2x2, 4x4 per cell) and angular meshes (S{sub 2}, S{sub 4}, S{sub 6}, and S{sub 8}) were used. The results for the problem with no control rod were practically the same

  20. Encapsulation of nodal segments of lobelia chinensis

    Directory of Open Access Journals (Sweden)

    Weng Hing Thong

    2015-04-01

    Full Text Available Lobelia chinensis served as an important herb in traditional chinese medicine. It is rare in the field and infected by some pathogens. Therefore, encapsulation of axillary buds has been developed for in vitro propagation of L. chinensis. Nodal explants of L. chinensis were used as inclusion materials for encapsulation. Various combinations of calcium chloride and sodium alginate were tested. Encapsulation beads produced by mixing 50 mM calcium chloride and 3.5% sodium alginate supported the optimal in vitro conversion potential. The number of multiple shoots formed by encapsulated nodal segments was not significantly different from the average of shoots produced by non-encapsulated nodal segments. The encapsulated nodal segments regenerated in vitro on different medium. The optimal germination and regeneration medium was Murashige-Skoog medium. Plantlets regenerated from the encapsulated nodal segments were hardened, acclimatized and established well in the field, showing similar morphology with parent plants. This encapsulation technology would serve as an alternative in vitro regeneration system for L. chinensis.

  1. On the non-uniqueness of the nodal mathematical adjoint

    International Nuclear Information System (INIS)

    Müller, Erwin

    2014-01-01

    Highlights: • We evaluate three CMFD schemes for computing the nodal mathematical adjoint. • The nodal mathematical adjoint is not unique and can be non-positive (nonphysical). • Adjoint and forward eigenmodes are compatible if produced by the same CMFD method. • In nodal applications the excited eigenmodes are purely mathematical entities. - Abstract: Computation of the neutron adjoint flux within the framework of modern nodal diffusion methods is often facilitated by reducing the nodal equation system for the forward flux into a simpler coarse-mesh finite-difference form and then transposing the resultant matrix equations. The solution to the transposed problem is known as the nodal mathematical adjoint. Since the coarse-mesh finite-difference reduction of a given nodal formulation can be obtained in a number of ways, different nodal mathematical adjoint solutions can be computed. This non-uniqueness of the nodal mathematical adjoint challenges the credibility of the reduction strategy and demands a verdict as to its suitability in practical applications. This is the matter under consideration in this paper. A selected number of coarse-mesh finite-difference reduction schemes are described and compared. Numerical calculations are utilised to illustrate the differences in the adjoint solutions as well as to appraise the impact on such common applications as the computation of core point kinetics parameters. Recommendations are made for the proper application of the coarse-mesh finite-difference reduction approach to the nodal mathematical adjoint problem

  2. Complex models of nodal nuclear data

    International Nuclear Information System (INIS)

    Dufek, Jan

    2011-01-01

    During the core simulations, nuclear data are required at various nodal thermal-hydraulic and fuel burnup conditions. The nodal data are also partially affected by thermal-hydraulic and fuel burnup conditions in surrounding nodes as these change the neutron energy spectrum in the node. Therefore, the nodal data are functions of many parameters (state variables), and the more state variables are considered by the nodal data models the more accurate and flexible the models get. The existing table and polynomial regression models, however, cannot reflect the data dependences on many state variables. As for the table models, the number of mesh points (and necessary lattice calculations) grows exponentially with the number of variables. As for the polynomial regression models, the number of possible multivariate polynomials exceeds the limits of existing selection algorithms that should identify a few dozens of the most important polynomials. Also, the standard scheme of lattice calculations is not convenient for modelling the data dependences on various burnup conditions since it performs only a single or few burnup calculations at fixed nominal conditions. We suggest a new efficient algorithm for selecting the most important multivariate polynomials for the polynomial regression models so that dependences on many state variables can be considered. We also present a new scheme for lattice calculations where a large number of burnup histories are accomplished at varied nodal conditions. The number of lattice calculations being performed and the number of polynomials being analysed are controlled and minimised while building the nodal data models of a required accuracy. (author)

  3. Nodal metastasis in thyroid cancer

    International Nuclear Information System (INIS)

    Samuel, A.M.

    1999-01-01

    The biological behavior and hence the prognosis of thyroid cancer (TC) depends among other factors on the extent of spread of the disease outside the thyroid bed. This effect is controversial, especially for nodal metastasis of well differentiated thyroid carcinoma (WDC). Nodal metastasis at the time of initial diagnosis behaves differently depending on the histology, age of the patient, presence of extrathyroidal extension, and the sex of the individual. The type of the surgery, administration of 131 I and thyroxin suppression also to some extent influence the rate of recurrence and mortality. Experience has shown that it is not as innocuous as a small intrathyroidal tumor without any invasion outside the thyroid bed and due consideration should be accorded to the management strategies for handling patients with nodal metastasis

  4. Determination of power distribution in reactor with nodal expansion method; Izrachun porazdelitve mochi v reaktorju z metodo nodalne ekspanzije

    Energy Technology Data Exchange (ETDEWEB)

    Kromar, M; Trkov, A [Institut Jozef Stefan, Ljubljana (Yugoslavia); Pregl, G [Tehnishka Fakulteta Maribor Univ. (Yugoslavia)

    1988-07-01

    Nodal expansion method (NEM) is one of the advanced coarse-mesh methods based on integral form of few-group diffusion equation. NEM can be characterized by high accuracy and computational efficiency. Method was tested by development of computer code NEXT. Validation of the code was performed by calculation of 2-D and 3-D IAEA benchmark problem. NEXT was compared with codes based on other methods (finite differences, finite elements) and has been found to be accurate as well as fast. (author)

  5. Final Report, Nuclear Energy Research Initiative (NERI) Project: An Innovative Reactor Analysis Methodology Based on a Quasidiffusion Nodal Core Model

    International Nuclear Information System (INIS)

    Anistratov, Dmitriy Y.; Adams, Marvin L.; Palmer, Todd S.; Smith, Kord S.; Clarno, Kevin; Hikaru Hiruta; Razvan Nes

    2003-01-01

    OAK (B204) Final Report, NERI Project: ''An Innovative Reactor Analysis Methodology Based on a Quasidiffusion Nodal Core Model'' The present generation of reactor analysis methods uses few-group nodal diffusion approximations to calculate full-core eigenvalues and power distributions. The cross sections, diffusion coefficients, and discontinuity factors (collectively called ''group constants'') in the nodal diffusion equations are parameterized as functions of many variables, ranging from the obvious (temperature, boron concentration, etc.) to the more obscure (spectral index, moderator temperature history, etc.). These group constants, and their variations as functions of the many variables, are calculated by assembly-level transport codes. The current methodology has two main weaknesses that this project addressed. The first weakness is the diffusion approximation in the full-core calculation; this can be significantly inaccurate at interfaces between different assemblies. This project used the nodal diffusion framework to implement nodal quasidiffusion equations, which can capture transport effects to an arbitrary degree of accuracy. The second weakness is in the parameterization of the group constants; current models do not always perform well, especially at interfaces between unlike assemblies. The project developed a theoretical foundation for parameterization and homogenization models and used that theory to devise improved models. The new models were extended to tabulate information that the nodal quasidiffusion equations can use to capture transport effects in full-core calculations

  6. Sensitivity of SBLOCA analysis to model nodalization

    International Nuclear Information System (INIS)

    Lee, C.; Ito, T.; Abramson, P.B.

    1983-01-01

    The recent Semiscale test S-UT-8 indicates the possibility for primary liquid to hang up in the steam generators during a SBLOCA, permitting core uncovery prior to loop-seal clearance. In analysis of Small Break Loss of Coolant Accidents with RELAP5, it is found that resultant transient behavior is quite sensitive to the selection of nodalization for the steam generators. Although global parameters such as integrated mass loss, primary inventory and primary pressure are relatively insensitive to the nodalization, it is found that the predicted distribution of inventory around the primary is significantly affected by nodalization. More detailed nodalization predicts that more of the inventory tends to remain in the steam generators, resulting in less inventory in the reactor vessel and therefore causing earlier and more severe core uncovery

  7. Solution of the transport equation in stationary state, in one and two dimensions, for BWR assemblies using nodal methods

    International Nuclear Information System (INIS)

    Xolocostli M, J.V.

    2002-01-01

    . In this geometry nodal, continuous and discontinuous schemes were used. For the continuos schemes, only the Bi Quadratic (BiQ) and the Bi Cubic (BiC) were considered. In the case of the discontinuous ones two nodal schemes were considered, namely the Discontinuous Bi Linear (DBiL) and Discontinuous Bi Quadratic (DBiQ). The nodal schemes applied use from 4 up to 16 interpolation parameters per cell. These schemes are-defined for a set D c of interpolation parameters and a polynomial space S h corresponding to each one of the nodal schemes considered. All these four nodal hybrid schemes were implemented in a computer program called TNHXY starting from the computer program TNXY developed in previous thesis works. Several subroutines wae added to calculate the average neutron flux for each cell and for each energy group, generating two versions, one for the continuous schemes and one for the discontinuous schemes. For this geometry, two benchmark problems of the ANL-7416 document were analyzed. They are 7x7 BWR fuel assemblies, one without control rod and the other one with control rod. The computer program was also applied to a MOX assembly proposed by the Nuclear Energy Agency and it is considered as a reference problem. The results obtained for the one-dimensional problems using TNX for the effective multiplication factor were compared with the ones obtained with the code ANISN/PC. TNX code shows a faster convergence within four significant figures for the case with no control rod and three significant figures for the case with control rod (using double precision). These results suggest TNX is a very useful tool for this kind of calculations. For X Y geometry, the results obtained with TNHXY were compared with those calculated with the code TWOTRAN. To get these results, several spatial (1x1, 2x2, 4x4 per cell) and angular meshes (S 2 , S 4 , S 6 , and S 8 ) were used. The results for the problem with no control rod were practically the same as those obtained with

  8. Nodal in computerized control systems of accelerators

    International Nuclear Information System (INIS)

    Kagarmanov, A.A.; Koval'tsov, V.I.; Korobov, S.A.

    1994-01-01

    Brief description of the Nodal language programming structure is presented. Its possibilities as high-level programming language for accelerator control systems are considered. The status of the Nodal language in the HEPI is discussed. 3 refs

  9. Nodal pricing in a coupled electricity market

    OpenAIRE

    Bjørndal, Endre; Bjørndal, Mette; Cai, Hong

    2014-01-01

    This paper investigates a pricing model for an electricity market with a hybrid congestion management method, i.e. part of the system applies a nodal pricing scheme and the rest applies a zonal pricing scheme. The model clears the zonal and nodal pricing areas simultaneously. The nodal pricing area is affected by the changes in the zonal pricing area since it is directly connected to the zonal pricing area by commercial trading. The model is tested on a 13-node power system. Within the area t...

  10. Solving two-dimensions heat conduction problem for fuel elements in reactor by nodal green's function method

    International Nuclear Information System (INIS)

    Tang Jian; Peng Muzhang; Cao Dongxing

    1989-01-01

    A new numerical method-nodal green's function method is used for solving heat conduction function. A heat conduction problem in cylindrical geometry with axial conduction is solved in this paper. The Kirchhoff transformation is used to deal with the problem with temperature dependent conductivity. Therefor, the calculation for the function is simplified. On the basis of the formulas developed, the code named NGMEFC is programmed. A sample problem which has been calculated by the code COBRA-IV is chosen as checking. A good agreement between both codes is achieved. The calculation shows that the calculation efficiency of the nodel green's function method is much higher than that of finite difference method

  11. Regional Nodal Irradiation in Early-Stage Breast Cancer.

    Science.gov (United States)

    Whelan, Timothy J; Olivotto, Ivo A; Parulekar, Wendy R; Ackerman, Ida; Chua, Boon H; Nabid, Abdenour; Vallis, Katherine A; White, Julia R; Rousseau, Pierre; Fortin, Andre; Pierce, Lori J; Manchul, Lee; Chafe, Susan; Nolan, Maureen C; Craighead, Peter; Bowen, Julie; McCready, David R; Pritchard, Kathleen I; Gelmon, Karen; Murray, Yvonne; Chapman, Judy-Anne W; Chen, Bingshu E; Levine, Mark N

    2015-07-23

    Most women with breast cancer who undergo breast-conserving surgery receive whole-breast irradiation. We examined whether the addition of regional nodal irradiation to whole-breast irradiation improved outcomes. We randomly assigned women with node-positive or high-risk node-negative breast cancer who were treated with breast-conserving surgery and adjuvant systemic therapy to undergo either whole-breast irradiation plus regional nodal irradiation (including internal mammary, supraclavicular, and axillary lymph nodes) (nodal-irradiation group) or whole-breast irradiation alone (control group). The primary outcome was overall survival. Secondary outcomes were disease-free survival, isolated locoregional disease-free survival, and distant disease-free survival. Between March 2000 and February 2007, a total of 1832 women were assigned to the nodal-irradiation group or the control group (916 women in each group). The median follow-up was 9.5 years. At the 10-year follow-up, there was no significant between-group difference in survival, with a rate of 82.8% in the nodal-irradiation group and 81.8% in the control group (hazard ratio, 0.91; 95% confidence interval [CI], 0.72 to 1.13; P=0.38). The rates of disease-free survival were 82.0% in the nodal-irradiation group and 77.0% in the control group (hazard ratio, 0.76; 95% CI, 0.61 to 0.94; P=0.01). Patients in the nodal-irradiation group had higher rates of grade 2 or greater acute pneumonitis (1.2% vs. 0.2%, P=0.01) and lymphedema (8.4% vs. 4.5%, P=0.001). Among women with node-positive or high-risk node-negative breast cancer, the addition of regional nodal irradiation to whole-breast irradiation did not improve overall survival but reduced the rate of breast-cancer recurrence. (Funded by the Canadian Cancer Society Research Institute and others; MA.20 ClinicalTrials.gov number, NCT00005957.).

  12. NESTLE: Few-group neutron diffusion equation solver utilizing the nodal expansion method for eigenvalue, adjoint, fixed-source steady-state and transient problems

    International Nuclear Information System (INIS)

    Turinsky, P.J.; Al-Chalabi, R.M.K.; Engrand, P.; Sarsour, H.N.; Faure, F.X.; Guo, W.

    1994-06-01

    NESTLE is a FORTRAN77 code that solves the few-group neutron diffusion equation utilizing the Nodal Expansion Method (NEM). NESTLE can solve the eigenvalue (criticality); eigenvalue adjoint; external fixed-source steady-state; or external fixed-source. or eigenvalue initiated transient problems. The code name NESTLE originates from the multi-problem solution capability, abbreviating Nodal Eigenvalue, Steady-state, Transient, Le core Evaluator. The eigenvalue problem allows criticality searches to be completed, and the external fixed-source steady-state problem can search to achieve a specified power level. Transient problems model delayed neutrons via precursor groups. Several core properties can be input as time dependent. Two or four energy groups can be utilized, with all energy groups being thermal groups (i.e. upscatter exits) if desired. Core geometries modelled include Cartesian and Hexagonal. Three, two and one dimensional models can be utilized with various symmetries. The non-linear iterative strategy associated with the NEM method is employed. An advantage of the non-linear iterative strategy is that NSTLE can be utilized to solve either the nodal or Finite Difference Method representation of the few-group neutron diffusion equation

  13. The adjoint variational nodal method

    International Nuclear Information System (INIS)

    Laurin-Kovitz, K.; Lewis, E.E.

    1993-01-01

    The widespread use of nodal methods for reactor core calculations in both diffusion and transport approximations has created a demand for the corresponding adjoint solutions as a prerequisite for performing perturbation calculations. With some computational methods, however, the solution of the adjoint problem presents a difficulty; the physical adjoint obtained by discretizing the adjoint equation is not the same as the mathematical adjoint obtained by taking the transpose of the coefficient matrix, which results from the discretization of the forward equation. This difficulty arises, in particular, when interface current nodal methods based on quasi-one-dimensional solution of the diffusion or transport equation are employed. The mathematical adjoint is needed to perform perturbation calculations. The utilization of existing nodal computational algorithms, however, requires the physical adjoint. As a result, similarity transforms or related techniques must be utilized to relate physical and mathematical adjoints. Thus far, such techniques have been developed only for diffusion theory

  14. Development of a coupled dynamics code with transport theory capability and application to accelerator driven systems transients

    International Nuclear Information System (INIS)

    Cahalan, J.E.; Ama, T.; Palmiotti, G.; Taiwo, T.A.; Yang, W.S.

    2000-01-01

    The VARIANT-K and DIF3D-K nodal spatial kinetics computer codes have been coupled to the SAS4A and SASSYS-1 liquid metal reactor accident and systems analysis codes. SAS4A and SASSYS-1 have been extended with the addition of heavy liquid metal (Pb and Pb-Bi) thermophysical properties, heat transfer correlations, and fluid dynamics correlations. The coupling methodology and heavy liquid metal modeling additions are described. The new computer code suite has been applied to analysis of neutron source and thermal-hydraulics transients in a model of an accelerator-driven minor actinide burner design proposed in an OECD/NEA/NSC benchmark specification. Modeling assumptions and input data generation procedures are described. Results of transient analyses are reported, with emphasis on comparison of P1 and P3 variational nodal transport theory results with nodal diffusion theory results, and on significance of spatial kinetics effects

  15. Topological transport in Dirac nodal-line semimetals

    Science.gov (United States)

    Rui, W. B.; Zhao, Y. X.; Schnyder, Andreas P.

    2018-04-01

    Topological nodal-line semimetals are characterized by one-dimensional Dirac nodal rings that are protected by the combined symmetry of inversion P and time-reversal T . The stability of these Dirac rings is guaranteed by a quantized ±π Berry phase and their low-energy physics is described by a one-parameter family of (2+1)-dimensional quantum field theories exhibiting the parity anomaly. Here we study the Berry-phase supported topological transport of P T -invariant nodal-line semimetals. We find that small inversion breaking allows for an electric-field-induced anomalous transverse current, whose universal component originates from the parity anomaly. Due to this Hall-like current, carriers at opposite sides of the Dirac nodal ring flow to opposite surfaces when an electric field is applied. To detect the topological currents, we propose a dumbbell device, which uses surface states to filter charges based on their momenta. Suggestions for experiments and device applications are discussed.

  16. NODAL3 Sensitivity Analysis for NEACRP 3D LWR Core Transient Benchmark (PWR

    Directory of Open Access Journals (Sweden)

    Surian Pinem

    2016-01-01

    Full Text Available This paper reports the results of sensitivity analysis of the multidimension, multigroup neutron diffusion NODAL3 code for the NEACRP 3D LWR core transient benchmarks (PWR. The code input parameters covered in the sensitivity analysis are the radial and axial node sizes (the number of radial node per fuel assembly and the number of axial layers, heat conduction node size in the fuel pellet and cladding, and the maximum time step. The output parameters considered in this analysis followed the above-mentioned core transient benchmarks, that is, power peak, time of power peak, power, averaged Doppler temperature, maximum fuel centerline temperature, and coolant outlet temperature at the end of simulation (5 s. The sensitivity analysis results showed that the radial node size and maximum time step give a significant effect on the transient parameters, especially the time of power peak, for the HZP and HFP conditions. The number of ring divisions for fuel pellet and cladding gives negligible effect on the transient solutions. For productive work of the PWR transient analysis, based on the present sensitivity analysis results, we recommend NODAL3 users to use 2×2 radial nodes per assembly, 1×18 axial layers per assembly, the maximum time step of 10 ms, and 9 and 1 ring divisions for fuel pellet and cladding, respectively.

  17. Impacts of Contingency Reserve on Nodal Price and Nodal Reliability Risk in Deregulated Power Systems

    DEFF Research Database (Denmark)

    Zhao, Qian; Wang, Peng; Goel, Lalit

    2013-01-01

    The deregulation of power systems allows customers to participate in power market operation. In deregulated power systems, nodal price and nodal reliability are adopted to represent locational operation cost and reliability performance. Since contingency reserve (CR) plays an important role...... in reliable operation, the CR commitment should be considered in operational reliability analysis. In this paper, a CR model based on customer reliability requirements has been formulated and integrated into power market settlement. A two-step market clearing process has been proposed to determine generation...

  18. A two-dimensional, semi-analytic expansion method for nodal calculations

    International Nuclear Information System (INIS)

    Palmtag, S.P.

    1995-08-01

    Most modern nodal methods used today are based upon the transverse integration procedure in which the multi-dimensional flux shape is integrated over the transverse directions in order to produce a set of coupled one-dimensional flux shapes. The one-dimensional flux shapes are then solved either analytically or by representing the flux shape by a finite polynomial expansion. While these methods have been verified for most light-water reactor applications, they have been found to have difficulty predicting the large thermal flux gradients near the interfaces of highly-enriched MOX fuel assemblies. A new method is presented here in which the neutron flux is represented by a non-seperable, two-dimensional, semi-analytic flux expansion. The main features of this method are (1) the leakage terms from the node are modeled explicitly and therefore, the transverse integration procedure is not used, (2) the corner point flux values for each node are directly edited from the solution method, and a corner-point interpolation is not needed in the flux reconstruction, (3) the thermal flux expansion contains hyperbolic terms representing analytic solutions to the thermal flux diffusion equation, and (4) the thermal flux expansion contains a thermal to fast flux ratio term which reduces the number of polynomial expansion functions needed to represent the thermal flux. This new nodal method has been incorporated into the computer code COLOR2G and has been used to solve a two-dimensional, two-group colorset problem containing uranium and highly-enriched MOX fuel assemblies. The results from this calculation are compared to the results found using a code based on the traditional transverse integration procedure

  19. An integral nodal variational method for multigroup criticality calculations

    International Nuclear Information System (INIS)

    Lewis, E.E.; Tsoulfanidis, N.

    2003-01-01

    An integral formulation of the variational nodal method is presented and applied to a series of benchmark critically problems. The method combines an integral transport treatment of the even-parity flux within the spatial node with an odd-parity spherical harmonics expansion of the Lagrange multipliers at the node interfaces. The response matrices that result from this formulation are compatible with those in the VARIANT code at Argonne National Laboratory. Either homogeneous or heterogeneous nodes may be employed. In general, for calculations requiring higher-order angular approximations, the integral method yields solutions with comparable accuracy while requiring substantially less CPU time and memory than the standard spherical harmonics expansion using the same spatial approximations. (author)

  20. 47 CFR 101.503 - Digital Electronic Message Service Nodal Stations.

    Science.gov (United States)

    2010-10-01

    ... Service § 101.503 Digital Electronic Message Service Nodal Stations. 10.6 GHz DEMS Nodal Stations may be... 47 Telecommunication 5 2010-10-01 2010-10-01 false Digital Electronic Message Service Nodal Stations. 101.503 Section 101.503 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY...

  1. A Hennart nodal method for the diffusion equation

    International Nuclear Information System (INIS)

    Lesaint, P.; Noceir, S.; Verwaerde, D.

    1995-01-01

    A modification of the Hennart nodal method for neutron diffusion problems is presented. The final system of equations obtained by this method is not positive definite. However, a flux elimination technique leads to a simple positive definite system, which can be solved by the traditional iterative methods. Calculations of a two-dimensional International Atomic Energy Agency benchmark problem are performed and compared with results of the original Hennart nodal method and some finite element methods. The high computational efficiency of this modified nodal method is clearly demonstrated

  2. Nodal lymphomas of the abdomen

    International Nuclear Information System (INIS)

    Bruneton, J.N.; Caramella, E.; Manzino, J.J.

    1986-01-01

    Modern imaging modalities have greatly contributed to current knowledge about intra-abdominal nodal lymphomas. Since both intra and retroperitoneal node involvement can be demonstrated by computed tomography (CT) and ultrasonography, it seems legitimate to treat these two sites together in the same chapter, particularly since the older separation between intraperitoneal and retroperitoneal nodal disease was based to a large degree on the limitations of lymphography. Hodgkin's disease (HD) has benefited less from recent technological advances. The diversity in the incidence of nodal involvement between HD and NHL, the diagnostic capabilities of modern imaging techniques, and the histopathological features of lymphomatous non-Hodgkin and Hodgkin nodes, justify adoption of an investigatory approach which takes all of these factors into account. Details of this investigative strategy are discussed in this paper following a review of available imaging modalities. In current practice, the four main methods for the exploration of abdominal lymph nodes are lymphography, ultrasonography, CT, and radionuclide studies. The first three techniques are also utilized to guide biopsies for staging purposes and for the evaluation of response to treatment

  3. OSCAR-4 Code System Application to the SAFARI-1 Reactor

    International Nuclear Information System (INIS)

    Stander, Gerhardt; Prinsloo, Rian H.; Tomasevic, Djordje I.; Mueller, Erwin

    2008-01-01

    The OSCAR reactor calculation code system consists of a two-dimensional lattice code, the three-dimensional nodal core simulator code MGRAC and related service codes. The major difference between the new version of the OSCAR system, OSCAR-4, and its predecessor, OSCAR-3, is the new version of MGRAC which contains many new features and model enhancements. In this work some of the major improvements in the nodal diffusion solution method, history tracking, nuclide transmutation and cross section models are described. As part of the validation process of the OSCAR-4 code system (specifically the new MGRAC version), some of the new models are tested by comparing computational results to SAFARI-1 reactor plant data for a number of operational cycles and for varying applications. A specific application of the new features allows correct modeling of, amongst others, the movement of fuel-follower type control rods and dynamic in-core irradiation schedules. It is found that the effect of the improved control rod model, applied over multiple cycles of the SAFARI-1 reactor operation history, has a significant effect on in-cycle reactivity prediction and fuel depletion. (authors)

  4. A NEM diffusion code for fuel management and time average core calculation

    International Nuclear Information System (INIS)

    Mishra, Surendra; Ray, Sherly; Kumar, A.N.

    2005-01-01

    A computer code based on Nodal expansion method has been developed for solving two groups three dimensional diffusion equation. This code can be used for fuel management and time average core calculation. Explicit Xenon and fuel temperature estimation are also incorporated in this code. TAPP-4 phase-B physics experimental results were analyzed using this code and a code based on FD method. This paper gives the comparison of the observed data and the results obtained with this code and FD code. (author)

  5. International Code Assessment and Applications Program: Summary of code assessment studies concerning RELAP5/MOD2, RELAP5/MOD3, and TRAC-B

    International Nuclear Information System (INIS)

    Schultz, R.R.

    1993-12-01

    Members of the International Code Assessment Program (ICAP) have assessed the US Nuclear Regulatory Commission (USNRC) advanced thermal-hydraulic codes over the past few years in a concerted effort to identify deficiencies, to define user guidelines, and to determine the state of each code. The results of sixty-two code assessment reviews, conducted at INEL, are summarized. Code deficiencies are discussed and user recommended nodalizations investigated during the course of conducting the assessment studies and reviews are listed. All the work that is summarized was done using the RELAP5/MOD2, RELAP5/MOD3, and TRAC-B codes

  6. Radiotherapy studies and extra-nodal non-Hodgkin lymphomas, progress and challenges

    DEFF Research Database (Denmark)

    Specht, L

    2012-01-01

    Extra-nodal lymphomas may arise in any organ, and different histological subtypes occur in distinct patterns. Prognosis and treatment depend not only on the histological subtype and disease extent, but also on the particular involved extra-nodal organ. The clinical course and response to treatment...... for the more common extra-nodal organs, e.g. stomach, Waldeyer's ring, skin and brain, are fairly well known and show significant variation. A few randomised trials have been carried out testing the role of radiotherapy in these lymphomas. However, for most extra-nodal lymphomas, randomised trials have...... not been carried out, and treatment decisions are made on small patient series and extrapolations from nodal lymphomas. Hopefully, wide international collaboration will make controlled clinical trials possible in the less common extra-nodal lymphomas. Modern highly conformal radiotherapy allows better...

  7. PWR in-core nuclear fuel management optimization utilizing nodal (non-linear NEM) generalized perturbation theory

    International Nuclear Information System (INIS)

    Maldonado, G.I.; Turinsky, P.J.; Kropaczek, D.J.

    1993-01-01

    The computational capability of efficiently and accurately evaluate reactor core attributes (i.e., k eff and power distributions as a function of cycle burnup) utilizing a second-order accurate advanced nodal Generalized Perturbation Theory (GPT) model has been developed. The GPT model is derived from the forward non-linear iterative Nodal Expansion Method (NEM) strategy, thereby extending its inherent savings in memory storage and high computational efficiency to also encompass GPT via the preservation of the finite-difference matrix structure. The above development was easily implemented into the existing coarse-mesh finite-difference GPT-based in-core fuel management optimization code FORMOSA-P, thus combining the proven robustness of its adaptive Simulated Annealing (SA) multiple-objective optimization algorithm with a high-fidelity NEM GPT neutronics model to produce a powerful computational tool used to generate families of near-optimum loading patterns for PWRs. (orig.)

  8. Nodal line optimization and its application to violin top plate design

    Science.gov (United States)

    Yu, Yonggyun; Jang, In Gwun; Kim, In Kyum; Kwak, Byung Man

    2010-10-01

    In the literature, most problems of structural vibration have been formulated to adjust a specific natural frequency: for example, to maximize the first natural frequency. In musical instruments like a violin; however, mode shapes are equally important because they are related to sound quality in the way that natural frequencies are related to the octave. The shapes of nodal lines, which represent the natural mode shapes, are generally known to have a unique feature for good violins. Among the few studies on mode shape optimization, one typical study addresses the optimization of nodal point location for reducing vibration in a one-dimensional beam structure. However, nodal line optimization, which is required in violin plate design, has not yet been considered. In this paper, the central idea of controlling the shape of the nodal lines is proposed and then applied to violin top plate design. Finite element model for a violin top plate was constructed using shell elements. Then, optimization was performed to minimize the square sum of the displacement of selected nodes located along the target nodal lines by varying the thicknesses of the top plate. We conducted nodal line optimization for the second and the fifth modes together at the same time, and the results showed that the nodal lines obtained match well with the target nodal lines. The information on plate thickness distribution from nodal line optimization would be valuable for tailored trimming of a violin top plate for the given performances.

  9. Bilinear nodal transport method in weighted diamond difference form

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1987-01-01

    Nodal methods have been developed and implemented for the numerical solution of the discrete ordinates neutron transport equation. Numerical testing of these methods and comparison of their results to those obtained by conventional methods have established the high accuracy of nodal methods. Furthermore, it has been suggested that the linear-linear approximation is the most computationally efficient, practical nodal approximation. Indeed, this claim has been substantiated by comparing the accuracy in the solution, and the CPU time required to achieve convergence to that solution by several nodal approximations, as well as the diamond difference scheme. Two types of linear-linear nodal methods have been developed in the literature: analytic linear-linear (NLL) methods, in which the transverse-leakage terms are derived analytically, and approximate linear-linear (PLL) methods, in which these terms are approximated. In spite of their higher accuracy, NLL methods result in very complicated discrete-variable equations that exhibit a high degree of coupling, thus requiring special solution algorithms. On the other hand, the sacrificed accuracy in PLL methods is compensated for by the simple discrete-variable equations and diamond-difference-like solution algorithm. In this paper the authors outline the development of an NLL nodal method, the bilinear method, which can be written in a weighted diamond difference form with one spatial weight per dimension that is analytically derived rather than preassigned in an ad hoc fashion

  10. Implementation of burnup in FERM nodal computer code

    International Nuclear Information System (INIS)

    Yoriyaz, H.; Nakata, H.

    1986-01-01

    In this work a spatial burnup scheme and feedback effects has been implemented into the FERM [1] ('Finite Element Response Matrix') program. The spatially dependent neutronic parameters have been considered in three levels: zonewise calculation, assemblywise calculation and pointwise calculation. The results have been compared with the results obtained by CITATION [2] program and showed that the processing time in the FERM code has been hundred of times shorter and no significant difference has been observed in the assembly average power distribution. (Author) [pt

  11. Uniqueness Theorem for the Inverse Aftereffect Problem and Representation the Nodal Points Form

    OpenAIRE

    A. Neamaty; Sh. Akbarpoor; A. Dabbaghian

    2015-01-01

    In this paper, we consider a boundary value problem with aftereffect on a finite interval. Then, the asymptotic behavior of the solutions, eigenvalues, the nodal points and the associated nodal length are studied. We also calculate the numerical values of the nodal points and the nodal length. Finally, we prove the uniqueness theorem for the inverse aftereffect problem by applying any dense subset of the nodal points.

  12. Solution of the transport equation in stationary state, in one and two dimensions, for BWR assemblies using nodal methods; Solucion de la ecuacion de transporte en estado estacionario, en 1 y 2 dimensiones, para ensambles tipo BWR usando metodos nodales

    Energy Technology Data Exchange (ETDEWEB)

    Xolocostli M, J.V

    2002-07-01

    . In this geometry nodal, continuous and discontinuous schemes were used. For the continuos schemes, only the Bi Quadratic (BiQ) and the Bi Cubic (BiC) were considered. In the case of the discontinuous ones two nodal schemes were considered, namely the Discontinuous Bi Linear (DBiL) and Discontinuous Bi Quadratic (DBiQ). The nodal schemes applied use from 4 up to 16 interpolation parameters per cell. These schemes are-defined for a set D{sub c} of interpolation parameters and a polynomial space S{sub h} corresponding to each one of the nodal schemes considered. All these four nodal hybrid schemes were implemented in a computer program called TNHXY starting from the computer program TNXY developed in previous thesis works. Several subroutines wae added to calculate the average neutron flux for each cell and for each energy group, generating two versions, one for the continuous schemes and one for the discontinuous schemes. For this geometry, two benchmark problems of the ANL-7416 document were analyzed. They are 7x7 BWR fuel assemblies, one without control rod and the other one with control rod. The computer program was also applied to a MOX assembly proposed by the Nuclear Energy Agency and it is considered as a reference problem. The results obtained for the one-dimensional problems using TNX for the effective multiplication factor were compared with the ones obtained with the code ANISN/PC. TNX code shows a faster convergence within four significant figures for the case with no control rod and three significant figures for the case with control rod (using double precision). These results suggest TNX is a very useful tool for this kind of calculations. For X Y geometry, the results obtained with TNHXY were compared with those calculated with the code TWOTRAN. To get these results, several spatial (1x1, 2x2, 4x4 per cell) and angular meshes (S{sub 2}, S{sub 4}, S{sub 6}, and S{sub 8}) were used. The results for the problem with no control rod were practically the same

  13. Time-dependent patterning of the mesoderm and endoderm by Nodal signals in zebrafish

    Directory of Open Access Journals (Sweden)

    Dougan Scott T

    2007-03-01

    Full Text Available Abstract Background The vertebrate body plan is generated during gastrulation with the formation of the three germ layers. Members of the Nodal-related subclass of the TGF-β superfamily induce and pattern the mesoderm and endoderm in all vertebrates. In zebrafish, two nodal-related genes, called squint and cyclops, are required in a dosage-dependent manner for the formation of all derivatives of the mesoderm and endoderm. These genes are expressed dynamically during the blastula stages and may have different roles at different times. This question has been difficult to address because conditions that alter the timing of nodal-related gene expression also change Nodal levels. We utilized a pharmacological approach to conditionally inactivate the ALK 4, 5 and 7 receptors during the blastula stages without disturbing earlier signaling activity. This permitted us to directly examine when Nodal signals specify cell types independently of dosage effects. Results We show that two drugs, SB-431542 and SB-505124, completely block the response to Nodal signals when added to embryos after the mid-blastula transition. By blocking Nodal receptor activity at later stages, we demonstrate that Nodal signaling is required from the mid-to-late blastula period to specify sequentially, the somites, notochord, blood, Kupffer's vesicle, hatching gland, heart, and endoderm. Blocking Nodal signaling at late times prevents specification of cell types derived from the embryo margin, but not those from more animal regions. This suggests a linkage between cell fate and length of exposure to Nodal signals. Confirming this, cells exposed to a uniform Nodal dose adopt progressively more marginal fates with increasing lengths of exposure. Finally, cell fate specification is delayed in squint mutants and accelerated when Nodal levels are elevated. Conclusion We conclude that (1 Nodal signals are most active during the mid-to-late blastula stages, when nodal-related gene

  14. A Nodal-independent and tissue-intrinsic mechanism controls heart-looping chirality

    Science.gov (United States)

    Noël, Emily S.; Verhoeven, Manon; Lagendijk, Anne Karine; Tessadori, Federico; Smith, Kelly; Choorapoikayil, Suma; den Hertog, Jeroen; Bakkers, Jeroen

    2013-11-01

    Breaking left-right symmetry in bilateria is a major event during embryo development that is required for asymmetric organ position, directional organ looping and lateralized organ function in the adult. Asymmetric expression of Nodal-related genes is hypothesized to be the driving force behind regulation of organ laterality. Here we identify a Nodal-independent mechanism that drives asymmetric heart looping in zebrafish embryos. In a unique mutant defective for the Nodal-related southpaw gene, preferential dextral looping in the heart is maintained, whereas gut and brain asymmetries are randomized. As genetic and pharmacological inhibition of Nodal signalling does not abolish heart asymmetry, a yet undiscovered mechanism controls heart chirality. This mechanism is tissue intrinsic, as explanted hearts maintain ex vivo retain chiral looping behaviour and require actin polymerization and myosin II activity. We find that Nodal signalling regulates actin gene expression, supporting a model in which Nodal signalling amplifies this tissue-intrinsic mechanism of heart looping.

  15. Uniqueness Theorem for the Inverse Aftereffect Problem and Representation the Nodal Points Form

    Directory of Open Access Journals (Sweden)

    A. Neamaty

    2015-03-01

    Full Text Available In this paper, we consider a boundary value problem with aftereffect on a finite interval. Then, the asymptotic behavior of the solutions, eigenvalues, the nodal points and the associated nodal length are studied. We also calculate the numerical values of the nodal points and the nodal length. Finally, we prove the uniqueness theorem for the inverse aftereffect problem by applying any dense subset of the nodal points.

  16. Rules for Phase Shifts of Quantum Oscillations in Topological Nodal-Line Semimetals

    Science.gov (United States)

    Li, Cequn; Wang, C. M.; Wan, Bo; Wan, Xiangang; Lu, Hai-Zhou; Xie, X. C.

    2018-04-01

    Nodal-line semimetals are topological semimetals in which band touchings form nodal lines or rings. Around a loop that encloses a nodal line, an electron can accumulate a nontrivial π Berry phase, so the phase shift in the Shubnikov-de Haas (SdH) oscillation may give a transport signature for the nodal-line semimetals. However, different experiments have reported contradictory phase shifts, in particular, in the WHM nodal-line semimetals (W =Zr /Hf , H =Si /Ge , M =S /Se /Te ). For a generic model of nodal-line semimetals, we present a systematic calculation for the SdH oscillation of resistivity under a magnetic field normal to the nodal-line plane. From the analytical result of the resistivity, we extract general rules to determine the phase shifts for arbitrary cases and apply them to ZrSiS and Cu3 PdN systems. Depending on the magnetic field directions, carrier types, and cross sections of the Fermi surface, the phase shift shows rich results, quite different from those for normal electrons and Weyl fermions. Our results may help explore transport signatures of topological nodal-line semimetals and can be generalized to other topological phases of matter.

  17. Application of the nodal method RTN-0 for the solution of the neutron diffusion equation dependent of time in hexagonal-Z geometry; Aplicacion del metodo nodal RTN-0 para la solucion de la ecuacion de difusion de neutrones dependiente del tiempo en geometria hexagonal-Z

    Energy Technology Data Exchange (ETDEWEB)

    Esquivel E, J.; Alonso V, G. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Del Valle G, E., E-mail: jaime.esquivel@inin.gob.mx [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, Col. Lindavista, 07738 Ciudad de Mexico (Mexico)

    2015-09-15

    The solution of the neutron diffusion equation either for reactors in steady state or time dependent, is obtained through approximations generated by implementing of nodal methods such as RTN-0 (Raviart-Thomas-Nedelec of zero index), which is used in this study. Since the nodal methods are applied in quadrangular geometries, in this paper a technique in which the hexagonal geometry through the transfinite interpolation of Gordon-Hall becomes the appropriate geometry to make use of the nodal method RTN-0 is presented. As a result, a computer program was developed, whereby is possible to obtain among other results the neutron multiplication effective factor (k{sub eff}), and the distribution of radial and/or axial power. To verify the operation of the code, was applied to three benchmark problems: in the first two reactors VVER and FBR, results k{sub eff} and power distribution are obtained, considering the steady state case of reactor; while the third problem a type VVER is analyzed, in its case dependent of time, which qualitative results are presented on the behavior of the reactor power. (Author)

  18. BEACON: An application of nodal methods for operational support

    International Nuclear Information System (INIS)

    Boyd, W.A.; Nguyen, T.Q.

    1992-01-01

    A practical application of nodal methods is on-line plant operational support. However, to enable plant personnel to take full advantage of a nodal model to support plant operations, (a) a core nodal model must always be up to date with the current core history and conditions, (b) the nodal methods must be fast enough to allow numerous core calculations to be performed in minutes to support engineering decisions, and (c) the system must be easily accessible to engineering personnel at the reactor, their offices, or any other location considered appropriate. A core operational support package developed by Westinghouse called BEACON (best estimate analysis of core operations - nuclear) has been installed at several plants. Results from these plants and numerous in-core flux maps analyzed have demonstrated the accuracy of the model and the effectiveness of the methodology

  19. SCDAP/RELAP5/MOD 3.1 Code Manual: Developmental assessment. Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    Hohorst, J.K.; Johnsen, E.C. [eds.; Allison, C.M. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1995-06-01

    The SCDAP/RELAP5 code has been developed for best estimate transient simulation of Light Water Reactor coolant systems during a severe accident. The code models the coupled behavior of the reactor coolant system, the core, fission product released during a severe accident transient as well as large and small break loss of coolant accidents, operational transients such as anticipated transient without SCRAM, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits as much of a particular system to be modeled as necessary. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater conditioning systems. This volume contains detailed code-to-data calculations performed using SCDAP/RELAP5/MOD3.1, as well as comparison calculations performed with earlier code versions. Results of full plant calculations which include Surry, TMI-2, and Browns Ferry are described. Results of a nodalization study, which accounted for both axial and radial nodalization of the core, are also reported.

  20. SCDAP/RELAP5/MOD 3.1 Code Manual: Developmental assessment. Volume 5

    International Nuclear Information System (INIS)

    Hohorst, J.K.; Johnsen, E.C.

    1995-06-01

    The SCDAP/RELAP5 code has been developed for best estimate transient simulation of Light Water Reactor coolant systems during a severe accident. The code models the coupled behavior of the reactor coolant system, the core, fission product released during a severe accident transient as well as large and small break loss of coolant accidents, operational transients such as anticipated transient without SCRAM, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits as much of a particular system to be modeled as necessary. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater conditioning systems. This volume contains detailed code-to-data calculations performed using SCDAP/RELAP5/MOD3.1, as well as comparison calculations performed with earlier code versions. Results of full plant calculations which include Surry, TMI-2, and Browns Ferry are described. Results of a nodalization study, which accounted for both axial and radial nodalization of the core, are also reported

  1. Thermal-Hydraulic System Codes in Nulcear Reactor Safety and Qualification Procedures

    Directory of Open Access Journals (Sweden)

    Alessandro Petruzzi

    2008-01-01

    Full Text Available In the last four decades, large efforts have been undertaken to provide reliable thermal-hydraulic system codes for the analyses of transients and accidents in nuclear power plants. Whereas the first system codes, developed at the beginning of the 1970s, utilized the homogenous equilibrium model with three balance equations to describe the two-phase flow, nowadays the more advanced system codes are based on the so-called “two-fluid model” with separation of the water and vapor phases, resulting in systems with at least six balance equations. The wide experimental campaign, constituted by the integral and separate effect tests, conducted under the umbrella of the OECD/CSNI was at the basis of the development and validation of the thermal-hydraulic system codes by which they have reached the present high degree of maturity. However, notwithstanding the huge amounts of financial and human resources invested, the results predicted by the code are still affected by errors whose origins can be attributed to several reasons as model deficiencies, approximations in the numerical solution, nodalization effects, and imperfect knowledge of boundary and initial conditions. In this context, the existence of qualified procedures for a consistent application of qualified thermal-hydraulic system code is necessary and implies the drawing up of specific criteria through which the code-user, the nodalization, and finally the transient results are qualified.

  2. Comparison of PANTHER nodal solutions in hexagonal-z geometry

    International Nuclear Information System (INIS)

    Knight, M.; Hutt, P.; Lewis, I.

    1995-01-01

    The reactor physics code PANTHER has been extended to hexagonal geometries. Steady-state, depletion, and transient calculations with feedback can all be performed. Two hexagonal nodal flux solutions have been developed. In the first method, transverse integration is performed exactly as in the rectangular case. The resulting transverse integrated equation has singular terms, which are simply ignored. The second approach applies a conformal mapping that transforms the hexagon onto a rectangle. Pin power reconstruction has also been developed with both methods. For a benchmark VVER-1000 reactor depletion problem, both methods give accurate results for standard depletion calculations. In the more extreme situation with all rods inserted, the simpler method breaks down. However, the accuracy of the conformal solution was found to be excellent in all cases studied

  3. Assessment of Effect on LBLOCA PCT for Change in Upper Head Nodalization

    International Nuclear Information System (INIS)

    Kang, Dong Gu; Huh, Byung Gil; Yoo, Seung Hun; Bang, Youngseok; Seul, Kwangwon; Cho, Daehyung

    2014-01-01

    In this study, the best estimate plus uncertainty (BEPU) analysis of LBLOCA for original and modified nodalizations was performed, and the effect on LBLOCA PCT for change in upper head nodalization was assessed. In this study, the best estimate plus uncertainty (BEPU) analysis of LBLOCA for original and modified nodalizations was performed, and the effect on LBLOCA PCT for change in upper head nodalization was assessed. It is confirmed that modification of upper head nodalization influences PCT behavior, especially in the reflood phase. In conclusions, the modification of nodalization to reflect design characteristic of upper head temperature should be done to predict PCT behavior accurately in LBLOCA analysis. In the best estimate (BE) method with the uncertainty evaluation, the system nodalization is determined by the comparative studies of the experimental data. Up to now, it was assumed that the temperature of the upper dome in OPR-1000 was close to that of the cold leg. However, it was found that the temperature of the upper head/dome might be a little lower than or similar to that of the hot leg through the evaluation of the detailed design data. Since the higher upper head temperature affects blowdown quenching and peak cladding temperature in the reflood phase, the nodalization for upper head should be modified

  4. Mapping of nodal disease in locally advanced prostate cancer: Rethinking the clinical target volume for pelvic nodal irradiation based on vascular rather than bony anatomy

    International Nuclear Information System (INIS)

    Shih, Helen A.; Harisinghani, Mukesh; Zietman, Anthony L.; Wolfgang, John A.; Saksena, Mansi; Weissleder, Ralph

    2005-01-01

    Purpose: Toxicity from pelvic irradiation could be reduced if fields were limited to likely areas of nodal involvement rather than using the standard 'four-field box.' We employed a novel magnetic resonance lymphangiographic technique to highlight the likely sites of occult nodal metastasis from prostate cancer. Methods and Materials: Eighteen prostate cancer patients with pathologically confirmed node-positive disease had a total of 69 pathologic nodes identifiable by lymphotropic nanoparticle-enhanced MRI and semiquantitative nodal analysis. Fourteen of these nodes were in the para-aortic region, and 55 were in the pelvis. The position of each of these malignant nodes was mapped to a common template based on its relation to skeletal or vascular anatomy. Results: Relative to skeletal anatomy, nodes covered a diffuse volume from the mid lumbar spine to the superior pubic ramus and along the sacrum and pelvic side walls. In contrast, the nodal metastases mapped much more tightly relative to the large pelvic vessels. A proposed pelvic clinical target volume to encompass the region at greatest risk of containing occult nodal metastases would include a 2.0-cm radial expansion volume around the distal common iliac and proximal external and internal iliac vessels that would encompass 94.5% of the pelvic nodes at risk as defined by our node-positive prostate cancer patient cohort. Conclusions: Nodal metastases from prostate cancer are largely localized along the major pelvic vasculature. Defining nodal radiation treatment portals based on vascular rather than bony anatomy may allow for a significant decrease in normal pelvic tissue irradiation and its associated toxicities

  5. A simple nodal force distribution method in refined finite element meshes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jai Hak [Chungbuk National University, Chungju (Korea, Republic of); Shin, Kyu In [Gentec Co., Daejeon (Korea, Republic of); Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2017-05-15

    In finite element analyses, mesh refinement is frequently performed to obtain accurate stress or strain values or to accurately define the geometry. After mesh refinement, equivalent nodal forces should be calculated at the nodes in the refined mesh. If field variables and material properties are available at the integration points in each element, then the accurate equivalent nodal forces can be calculated using an adequate numerical integration. However, in certain circumstances, equivalent nodal forces cannot be calculated because field variable data are not available. In this study, a very simple nodal force distribution method was proposed. Nodal forces of the original finite element mesh are distributed to the nodes of refined meshes to satisfy the equilibrium conditions. The effect of element size should also be considered in determining the magnitude of the distributing nodal forces. A program was developed based on the proposed method, and several example problems were solved to verify the accuracy and effectiveness of the proposed method. From the results, accurate stress field can be recognized to be obtained from refined meshes using the proposed nodal force distribution method. In example problems, the difference between the obtained maximum stress and target stress value was less than 6 % in models with 8-node hexahedral elements and less than 1 % in models with 20-node hexahedral elements or 10-node tetrahedral elements.

  6. Nodal methods for problems in fluid mechanics and neutron transport

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1985-01-01

    A new high-accuracy, coarse-mesh, nodal integral approach is developed for the efficient numerical solution of linear partial differential equations. It is shown that various special cases of this general nodal integral approach correspond to several high efficiency nodal methods developed recently for the numerical solution of neutron diffusion and neutron transport problems. The new approach is extended to the nonlinear Navier-Stokes equations of fluid mechanics; its extension to these equations leads to a new computational method, the nodal integral method which is implemented for the numerical solution of these equations. Application to several test problems demonstrates the superior computational efficiency of this new method over previously developed methods. The solutions obtained for several driven cavity problems are compared with the available experimental data and are shown to be in very good agreement with experiment. Additional comparisons also show that the coarse-mesh, nodal integral method results agree very well with the results of definitive ultra-fine-mesh, finite-difference calculations for the driven cavity problem up to fairly high Reynolds numbers

  7. The Nodal Polynomial Expansion method to solve the multigroup diffusion equations

    International Nuclear Information System (INIS)

    Ribeiro, R.D.M.

    1983-03-01

    The methodology of the solutions of the multigroup diffusion equations and uses the Nodal Polynomial Expansion Method is covered. The EPON code was developed based upon the above mentioned method for stationary state, rectangular geometry, one-dimensional or two-dimensional and for one or two energy groups. Then, one can study some effects such as the influence of the baffle on the thermal flux by calculating the flux and power distribution in nuclear reactors. Furthermore, a comparative study with other programs which use Finite Difference (CITATION and PDQ5) and Finite Element (CHD and FEMB) Methods was undertaken. As a result, the coherence, feasibility, speed and accuracy of the methodology used were demonstrated. (Author) [pt

  8. A quasi-static polynomial nodal method for nuclear reactor analysis

    International Nuclear Information System (INIS)

    Gehin, J.C.

    1992-09-01

    Modern nodal methods are currently available which can accurately and efficiently solve the static and transient neutron diffusion equations. Most of the methods, however, are limited to two energy groups for practical application. The objective of this research is the development of a static and transient, multidimensional nodal method which allows more than two energy groups and uses a non-linear iterative method for efficient solution of the nodal equations. For both the static and transient methods, finite-difference equations which are corrected by the use of discontinuity factors are derived. The discontinuity factors are computed from a polynomial nodal method using a non-linear iteration technique. The polynomial nodal method is based upon a quartic approximation and utilizes a quadratic transverse-leakage approximation. The solution of the time-dependent equations is performed by the use of a quasi-static method in which the node-averaged fluxes are factored into shape and amplitude functions. The application of the quasi-static polynomial method to several benchmark problems demonstrates that the accuracy is consistent with that of other nodal methods. The use of the quasi-static method is shown to substantially reduce the computation time over the traditional fully-implicit time-integration method. Problems involving thermal-hydraulic feedback are accurately, and efficiently, solved by performing several reactivity/thermal-hydraulic updates per shape calculation

  9. A quasi-static polynomial nodal method for nuclear reactor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gehin, Jess C. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1992-09-01

    Modern nodal methods are currently available which can accurately and efficiently solve the static and transient neutron diffusion equations. Most of the methods, however, are limited to two energy groups for practical application. The objective of this research is the development of a static and transient, multidimensional nodal method which allows more than two energy groups and uses a non-linear iterative method for efficient solution of the nodal equations. For both the static and transient methods, finite-difference equations which are corrected by the use of discontinuity factors are derived. The discontinuity factors are computed from a polynomial nodal method using a non-linear iteration technique. The polynomial nodal method is based upon a quartic approximation and utilizes a quadratic transverse-leakage approximation. The solution of the time-dependent equations is performed by the use of a quasi-static method in which the node-averaged fluxes are factored into shape and amplitude functions. The application of the quasi-static polynomial method to several benchmark problems demonstrates that the accuracy is consistent with that of other nodal methods. The use of the quasi-static method is shown to substantially reduce the computation time over the traditional fully-implicit time-integration method. Problems involving thermal-hydraulic feedback are accurately, and efficiently, solved by performing several reactivity/thermal-hydraulic updates per shape calculation.

  10. A finite element code for electric motor design

    Science.gov (United States)

    Campbell, C. Warren

    1994-01-01

    FEMOT is a finite element program for solving the nonlinear magnetostatic problem. This version uses nonlinear, Newton first order elements. The code can be used for electric motor design and analysis. FEMOT can be embedded within an optimization code that will vary nodal coordinates to optimize the motor design. The output from FEMOT can be used to determine motor back EMF, torque, cogging, and magnet saturation. It will run on a PC and will be available to anyone who wants to use it.

  11. Hybrid nodal loop metal: Unconventional magnetoresponse and material realization

    Science.gov (United States)

    Zhang, Xiaoming; Yu, Zhi-Ming; Lu, Yunhao; Sheng, Xian-Lei; Yang, Hui Ying; Yang, Shengyuan A.

    2018-03-01

    A nodal loop is formed by a band crossing along a one-dimensional closed manifold, with each point on the loop a linear nodal point in the transverse dimensions, and can be classified as type I or type II depending on the band dispersion. Here, we propose a class of nodal loops composed of both type-I and type-II points, which are hence termed as hybrid nodal loops. Based on first-principles calculations, we predict the realization of such loops in the existing electride material Ca2As . For a hybrid loop, the Fermi surface consists of coexisting electron and hole pockets that touch at isolated points for an extended range of Fermi energies, without the need for fine-tuning. This leads to unconventional magnetic responses, including the zero-field magnetic breakdown and the momentum-space Klein tunneling observable in the magnetic quantum oscillations, as well as the peculiar anisotropy in the cyclotron resonance.

  12. Type-I and type-II topological nodal superconductors with s -wave interaction

    Science.gov (United States)

    Huang, Beibing; Yang, Xiaosen; Xu, Ning; Gong, Ming

    2018-01-01

    Topological nodal superconductors with protected gapless points in momentum space are generally realized based on unconventional pairings. In this work we propose a minimal model to realize these topological nodal phases with only s -wave interaction. In our model the linear and quadratic spin-orbit couplings along the two orthogonal directions introduce anisotropic effective unconventional pairings in momentum space. This model may support different nodal superconducting phases characterized by either an integer winding number in BDI class or a Z2 index in D class at the particle-hole invariant axes. In the vicinity of the nodal points the effective Hamiltonian can be described by either type-I or type-II Dirac equations, and the Lifshitz transition from type-I nodal phases to type-II nodal phases can be driven by external in-plane magnetic fields. We show that these nodal phases are robust against weak impurities, which only slightly renormalizes the momentum-independent parameters in the impurity-averaged Hamiltonian, thus these phases are possible to be realized in experiments with real semi-Dirac materials. The smoking-gun evidences to verify these phases based on scanning tunneling spectroscopy method are also briefly discussed.

  13. Analysis of a small PWR core with the PARCS/Helios and PARCS/Serpent code systems

    International Nuclear Information System (INIS)

    Baiocco, G.; Petruzzi, A.; Bznuni, S.; Kozlowski, T.

    2017-01-01

    Highlights: • The consistency between Helios and Serpent few-group cross sections is shown. • The PARCS model is validated against a Monte Carlo 3D model. • The fission and capture rates are compared. • The influence of the spacer grids on the axial power distribution is shown. - Abstract: Lattice physics codes are primarily used to generate cross-section data for nodal codes. In this work the methodology of homogenized constant generation was applied to a small Pressurized Water Reactor (PWR) core, using the deterministic code Helios and the Monte Carlo code Serpent. Subsequently, a 3D analysis of the PWR core was performed with the nodal diffusion code PARCS using the two-group cross section data sets generated by Helios and Serpent. Moreover, a full 3D model of the PWR core was developed using Serpent in order to obtain a reference solution. Several parameters, such as k eff , axial and radial power, fission and capture rates were compared and found to be in good agreement.

  14. Evaluation of the use of nodal methods for MTR neutronic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Reitsma, F.; Mueller, E.Z.

    1997-08-01

    Although modern nodal methods are used extensively in the nuclear power industry, their use for research reactor analysis has been very limited. The suitability of nodal methods for material testing reactor analysis is investigated with the emphasis on the modelling of the core region (fuel assemblies). The nodal approach`s performance is compared with that of the traditional finite-difference fine mesh approach. The advantages of using nodal methods coupled with integrated cross section generation systems are highlighted, especially with respect to data preparation, simplicity of use and the possibility of performing a great variety of reactor calculations subject to strict time limitations such as are required for the RERTR program.

  15. Extension of the analytic nodal diffusion solver ANDES to triangular-Z geometry and coupling with COBRA-IIIc for hexagonal core analysis

    International Nuclear Information System (INIS)

    Lozano, Juan-Andres; Jimenez, Javier; Garcia-Herranz, Nuria; Aragones, Jose-Maria

    2010-01-01

    In this paper the extension of the multigroup nodal diffusion code ANDES, based on the Analytic Coarse Mesh Finite Difference (ACMFD) method, from Cartesian to hexagonal geometry is presented, as well as its coupling with the thermal-hydraulic (TH) code COBRA-IIIc for hexagonal core analysis. In extending the ACMFD method to hexagonal assemblies, triangular-Z nodes are used. In the radial plane, a direct transverse integration procedure is applied along the three directions that are orthogonal to the triangle interfaces. The triangular nodalization avoids the singularities, that appear when applying transverse integration to hexagonal nodes, and allows the advantage of the mesh subdivision capabilities implicit within that geometry. As for the thermal-hydraulics, the extension of the coupling scheme to hexagonal geometry has been performed with the capability to model the core using either assembly-wise channels (hexagonal mesh) or a higher refinement with six channels per fuel assembly (triangular mesh). Achieving this level of TH mesh refinement with COBRA-IIIc code provides a better estimation of the in-core 3D flow distribution, improving the TH core modelling. The neutronics and thermal-hydraulics coupled code, ANDES/COBRA-IIIc, previously verified in Cartesian geometry core analysis, can also be applied now to full three-dimensional VVER core problems, as well as to other thermal and fast hexagonal core designs. Verification results are provided, corresponding to the different cases of the OECD/NEA-NSC VVER-1000 Coolant Transient Benchmarks.

  16. Nodal methods in numerical reactor calculations

    International Nuclear Information System (INIS)

    Hennart, J.P.; Valle, E. del

    2004-01-01

    The present work describes the antecedents, developments and applications started in 1972 with Prof. Hennart who was invited to be part of the staff of the Nuclear Engineering Department at the School of Physics and Mathematics of the National Polytechnic Institute. Since that time and up to 1981, several master theses based on classical finite element methods were developed with applications in point kinetics and in the steady state as well as the time dependent multigroup diffusion equations. After this period the emphasis moved to nodal finite elements in 1, 2 and 3D cartesian geometries. All the thesis were devoted to the numerical solution of the neutron multigroup diffusion and transport equations, few of them including the time dependence, most of them related with steady state diffusion equations. The main contributions were as follows: high order nodal schemes for the primal and mixed forms of the diffusion equations, block-centered finite-differences methods, post-processing, composite nodal finite elements for hexagons, and weakly and strongly discontinuous schemes for the transport equation. Some of these are now being used by several researchers involved in nuclear fuel management. (Author)

  17. Nodal methods in numerical reactor calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hennart, J P [UNAM, IIMAS, A.P. 20-726, 01000 Mexico D.F. (Mexico); Valle, E del [National Polytechnic Institute, School of Physics and Mathematics, Department of Nuclear Engineering, Mexico, D.F. (Mexico)

    2004-07-01

    The present work describes the antecedents, developments and applications started in 1972 with Prof. Hennart who was invited to be part of the staff of the Nuclear Engineering Department at the School of Physics and Mathematics of the National Polytechnic Institute. Since that time and up to 1981, several master theses based on classical finite element methods were developed with applications in point kinetics and in the steady state as well as the time dependent multigroup diffusion equations. After this period the emphasis moved to nodal finite elements in 1, 2 and 3D cartesian geometries. All the thesis were devoted to the numerical solution of the neutron multigroup diffusion and transport equations, few of them including the time dependence, most of them related with steady state diffusion equations. The main contributions were as follows: high order nodal schemes for the primal and mixed forms of the diffusion equations, block-centered finite-differences methods, post-processing, composite nodal finite elements for hexagons, and weakly and strongly discontinuous schemes for the transport equation. Some of these are now being used by several researchers involved in nuclear fuel management. (Author)

  18. Implications of inaccurate clinical nodal staging in pancreatic adenocarcinoma.

    Science.gov (United States)

    Swords, Douglas S; Firpo, Matthew A; Johnson, Kirsten M; Boucher, Kenneth M; Scaife, Courtney L; Mulvihill, Sean J

    2017-07-01

    Many patients with stage I-II pancreatic adenocarcinoma do not undergo resection. We hypothesized that (1) clinical staging underestimates nodal involvement, causing stage IIB to have a greater percent of resected patients and (2) this stage-shift causes discrepancies in observed survival. The Surveillance, Epidemiology, and End Results (SEER) research database was used to evaluate cause-specific survival in patients with pancreatic adenocarcinoma from 2004-2012. Survival was compared using the log-rank test. Single-center data on 105 patients who underwent resection of pancreatic adenocarcinoma without neoadjuvant treatment were used to compare clinical and pathologic nodal staging. In SEER data, medium-term survival in stage IIB was superior to IB and IIA, with median cause-specific survival of 14, 9, and 11 months, respectively (P < .001). Seventy-two percent of stage IIB patients underwent resection vs 28% in IB and 36% in IIA (P < .001). In our institutional data, 12.4% of patients had clinical evidence of nodal involvement vs 69.5% by pathologic staging (P < .001). Among clinical stage IA-IIA patients, 71.6% had nodal involvement by pathologic staging. Both SEER and institutional data support substantial underestimation of nodal involvement by clinical staging. This finding has implications in decisions regarding neoadjuvant therapy and analysis of outcomes in the absence of pathologic staging. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Analytic function expansion nodal method for nuclear reactor core design

    International Nuclear Information System (INIS)

    Noh, Hae Man

    1995-02-01

    In most advanced nodal methods the transverse integration is commonly used to reduce the multi-dimensional diffusion equation into equivalent one- dimensional diffusion equations when derving the nodal coupling equations. But the use of the transverse integration results in some limitations. The first limitation is that the transverse leakage term which appears in the transverse integration procedure must be appropriately approximated. The second limitation is that the one-dimensional flux shapes in each spatial direction resulted from the nodal calculation are not accurate enough to be directly used in reconstructing the pinwise flux distributions. Finally the transverse leakage defined for a non-rectangular node such as a hexagonal node or a triangular node is too complicated to be easily handled and may contain non-physical singular terms of step-function and delta-function types. In this thesis, the Analytic Function Expansion Nodal (AFEN) method and its two variations : the Polynomial Expansion Nodal (PEN) method and the hybrid of the AFEN and PEN methods, have been developed to overcome the limitations of the transverse integration procedure. All of the methods solve the multidimensional diffusion equation without the transverse integration. The AFEN method which we believe is the major contribution of this study to the reactor core analysis expands the homogeneous flux distributions within a node in non-separable analytic basis functions satisfying the neutron diffusion equations at any point of the node and expresses the coefficients of the flux expansion in terms of the nodal unknowns which comprise a node-average flux, node-interface fluxes, and corner-point fluxes. Then, the nodal coupling equations composed of the neutron balance equations, the interface current continuity equations, and the corner-point leakage balance equations are solved iteratively to determine all the nodal unknowns. Since the AFEN method does not use the transverse integration in

  20. A spectral nodal method for discrete ordinates problems in x,y geometry

    International Nuclear Information System (INIS)

    Barros, R.C. de; Larsen, E.W.

    1991-06-01

    A new nodal method is proposed for the solution of S N problems in x- y-geometry. This method uses the Spectral Green's Function (SGF) scheme for solving the one-dimensional transverse-integrated nodal transport equations with no spatial truncation error. Thus, the only approximations in the x, y-geometry nodal method occur in the transverse leakage terms, as in diffusion theory. We approximate these leakage terms using a flat or constant approximation, and we refer to the resulting method as the SGF-Constant Nodal (SGF-CN) method. We show in numerical calculations that the SGF-CN method is much more accurate than other well-known transport nodal methods for coarse-mesh deep-penetration S N problems, even though the transverse leakage terms are approximated rather simply. (author)

  1. Oyster Creek cycle 10 nodal model parameter optimization study using PSMS

    International Nuclear Information System (INIS)

    Dougher, J.D.

    1987-01-01

    The power shape monitoring system (PSMS) is an on-line core monitoring system that uses a three-dimensional nodal code (NODE-B) to perform nodal power calculations and compute thermal margins. The PSMS contains a parameter optimization function that improves the ability of NODE-B to accurately monitor core power distributions. This functions iterates on the model normalization parameters (albedos and mixing factors) to obtain the best agreement between predicted and measured traversing in-core probe (TIP) reading on a statepoint-by-statepoint basis. Following several statepoint optimization runs, an average set of optimized normalization parameters can be determined and can be implemented into the current or subsequent cycle core model for on-line core monitoring. A statistical analysis of 19 high-power steady-state state-points throughout Oyster Creek cycle 10 operation has shown a consistently poor virgin model performance. The normalization parameters used in the cycle 10 NODE-B model were based on a cycle 8 study, which evaluated only Exxon fuel types. The introduction of General Electric (GE) fuel into cycle 10 (172 assemblies) was a significant fuel/core design change that could have altered the optimum set of normalization parameters. Based on the need to evaluate a potential change in the model normalization parameters for cycle 11 and in an attempt to account for the poor cycle 10 model performance, a parameter optimization study was performed

  2. Optical conductivity of three and two dimensional topological nodal-line semimetals

    Science.gov (United States)

    Barati, Shahin; Abedinpour, Saeed H.

    2017-10-01

    The peculiar shape of the Fermi surface of topological nodal-line semimetals at low carrier concentrations results in their unusual optical and transport properties. We analytically investigate the linear optical responses of three- and two-dimensional nodal-line semimetals using the Kubo formula. The optical conductivity of a three-dimensional nodal-line semimetal is anisotropic. Along the axial direction (i.e., the direction perpendicular to the nodal-ring plane), the Drude weight has a linear dependence on the chemical potential at both low and high carrier dopings. For the radial direction (i.e., the direction parallel to the nodal-ring plane), this dependence changes from linear into quadratic in the transition from low into high carrier concentration. The interband contribution into optical conductivity is also anisotropic. In particular, at large frequencies, it saturates to a constant value for the axial direction and linearly increases with frequency along the radial direction. In two-dimensional nodal-line semimetals, no interband optical transition could be induced and the only contribution to the optical conductivity arises from the intraband excitations. The corresponding Drude weight is independent of the carrier density at low carrier concentrations and linearly increases with chemical potential at high carrier doping.

  3. Analysis of the asymmetrically expressed Ablim1 locus reveals existence of a lateral plate Nodal-independent left sided signal and an early, left-right independent role for nodal flow

    Directory of Open Access Journals (Sweden)

    Hilton Helen

    2010-05-01

    Full Text Available Abstract Background Vertebrates show clear asymmetry in left-right (L-R patterning of their organs and associated vasculature. During mammalian development a cilia driven leftwards flow of liquid leads to the left-sided expression of Nodal, which in turn activates asymmetric expression of the transcription factor Pitx2. While Pitx2 asymmetry drives many aspects of asymmetric morphogenesis, it is clear from published data that additional asymmetrically expressed loci must exist. Results A L-R expression screen identified the cytoskeletally-associated gene, actin binding lim protein 1 (Ablim1, as asymmetrically expressed in both the node and left lateral plate mesoderm (LPM. LPM expression closely mirrors that of Nodal. Significantly, Ablim1 LPM asymmetry was detected in the absence of detectable Nodal. In the node, Ablim1 was initially expressed symmetrically across the entire structure, resolving to give a peri-nodal ring at the headfold stage in a flow and Pkd2-dependent manner. The peri-nodal ring of Ablim1 expression became asymmetric by the mid-headfold stage, showing stronger right than left-sided expression. Node asymmetry became more apparent as development proceeded; expression retreated in an anticlockwise direction, disappearing first from the left anterior node. Indeed, at early somite stages Ablim1 shows a unique asymmetric expression pattern, in the left lateral plate and to the right side of the node. Conclusion Left LPM Ablim1 is expressed in the absence of detectable LPM Nodal, clearly revealing existence of a Pitx2 and Nodal-independent left-sided signal in mammals. At the node, a previously unrecognised action of early nodal flow and Pkd2 activity, within the pit of the node, influences gene expression in a symmetric manner. Subsequent Ablim1 expression in the peri-nodal ring reveals a very early indication of L-R asymmetry. Ablim1 expression analysis at the node acts as an indicator of nodal flow. Together these results make

  4. Nodal Structure of the Electronic Wigner Function

    DEFF Research Database (Denmark)

    Schmider, Hartmut; Dahl, Jens Peder

    1996-01-01

    On the example of several atomic and small molecular systems, the regular behavior of nodal patterns in the electronic one-particle reduced Wigner function is demonstrated. An expression found earlier relates the nodal pattern solely to the dot-product of the position and the momentum vector......, if both arguments are large. An argument analogous to the ``bond-oscillatory principle'' for momentum densities links the nuclear framework in a molecule to an additional oscillatory term in momenta parallel to bonds. It is shown that these are visible in the Wigner function in terms of characteristic...

  5. Qualification of a full plant nodalization for the prediction of the core exit temperature through a scaling methodology

    Energy Technology Data Exchange (ETDEWEB)

    Freixa, J., E-mail: jordi.freixa-terradas@upc.edu; Martínez-Quiroga, V., E-mail: victor.martinez.quiroga@upc.edu; Reventós, F., E-mail: francesc.reventos@upc.edu

    2016-11-15

    Highlights: • Core exit temperature is used in PWRs as an indication of core heat up. • Qualification of full scale nuclear reactors by means of a scaling methodology. • Scaling of RELAP5 calculations to full scale power plants. - Abstract: System codes and their necessary power plant nodalizations are an essential step in thermal hydraulic safety analysis. In order to assess the safety of a particular power plant, in addition to the validation and verification of the code, the nodalization of the system needs to be qualified. Since most existing experimental data come from scaled-down facilities, any qualification process must therefore address scale considerations. The Group of Thermal Hydraulic Studies at Technical University of Catalonia has developed a scaling-up methodology (SCUP) for the qualification of full-scale nodalizations through a systematic procedure based on the extrapolation of post-test simulations of Integral Test Facility experiments. In the present work, the SCUP methodology will be employed to qualify the nodalization of the AscóNPP, a Pressurized Water Reactor (PWR), for the reproduction of an important safety phenomenon which is the effectiveness of the Core Exit Temperature (CET) as an Accident Management (AM) indicator. Given the difficulties in placing measurements in the core region, CET measurements are used as a criterion for the initiation of safety operational procedures during accidental conditions in PWR. However, the CET response has some limitation in detecting inadequate core cooling simply because the measurement is not taken in the position where the cladding exposure occurs. In order to apply the SCUP methodology, the OECD/NEA ROSA-2 Test 3, an SBLOCA in the hot leg, has been selected as a starting point. This experiment was conducted at the Large Scale Test Facility (LSTF), a facility operated by the Japanese Atomic Energy Agency (JAEA) and was focused on the assessment of the effectiveness of AM actions triggered by

  6. Application of the nodal method RTN-0 for the solution of the neutron diffusion equation dependent of time in hexagonal-Z geometry

    International Nuclear Information System (INIS)

    Esquivel E, J.; Alonso V, G.; Del Valle G, E.

    2015-09-01

    The solution of the neutron diffusion equation either for reactors in steady state or time dependent, is obtained through approximations generated by implementing of nodal methods such as RTN-0 (Raviart-Thomas-Nedelec of zero index), which is used in this study. Since the nodal methods are applied in quadrangular geometries, in this paper a technique in which the hexagonal geometry through the transfinite interpolation of Gordon-Hall becomes the appropriate geometry to make use of the nodal method RTN-0 is presented. As a result, a computer program was developed, whereby is possible to obtain among other results the neutron multiplication effective factor (k eff ), and the distribution of radial and/or axial power. To verify the operation of the code, was applied to three benchmark problems: in the first two reactors VVER and FBR, results k eff and power distribution are obtained, considering the steady state case of reactor; while the third problem a type VVER is analyzed, in its case dependent of time, which qualitative results are presented on the behavior of the reactor power. (Author)

  7. Pathology of nodal marginal zone lymphomas.

    Science.gov (United States)

    Pileri, Stefano; Ponzoni, Maurilio

    Nodal marginal zone B cell lymphomas (NMZLs) are a rare group of lymphoid disorders part of the spectrum of marginal zone B-cell lymphomas, which encompass splenic marginal one B-cell lymphoma (SMZL) and extra nodal marginal zone of B-cell lymphoma (EMZL), often of MALT-type. Two clinicopathological forms of NMZL are recognized: adult-type and pediatric-type, respectively. NMZLs show overlapping features with other types of MZ, but distinctive features as well. In this review, we will focus on the salient distinguishing features of NMZL mostly under morphological/immunophenotypical/molecular perspectives in views of the recent acquisitions and forthcoming updated 2016 WHO classification of lymphoid malignancies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. ANOVA-HDMR structure of the higher order nodal diffusion solution

    International Nuclear Information System (INIS)

    Bokov, P. M.; Prinsloo, R. H.; Tomasevic, D. I.

    2013-01-01

    Nodal diffusion methods still represent a standard in global reactor calculations, but employ some ad-hoc approximations (such as the quadratic leakage approximation) which limit their accuracy in cases where reference quality solutions are sought. In this work we solve the nodal diffusion equations utilizing the so-called higher-order nodal methods to generate reference quality solutions and to decompose the obtained solutions via a technique known as High Dimensional Model Representation (HDMR). This representation and associated decomposition of the solution provides a new formulation of the transverse leakage term. The HDMR structure is investigated via the technique of Analysis of Variance (ANOVA), which indicates why the existing class of transversely-integrated nodal methods prove to be so successful. Furthermore, the analysis leads to a potential solution method for generating reference quality solutions at a much reduced calculational cost, by applying the ANOVA technique to the full higher order solution. (authors)

  9. Two codes used in analysis of rod ejection accident for Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Zhu Xinguan

    1987-12-01

    Two codes were developed to analyse rod ejection accident for Qinshan Nuclear Power Plant. One was based on point model with temperature reactivity feedback. In this code, the worth of ejected rod was obtained under'adiabatic' approximation. In the other code, the Nodal Green's Function Method was used to solve space-time dependent neutron diffusion equation. Using these codes, the transient core-power have been calculated for two rod ejection cases at beginning of core-life in Qinshan Nuclear Power Plant

  10. Five-point form of the nodal diffusion method and comparison with finite-difference

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1988-01-01

    Nodal Methods have been derived, implemented and numerically tested for several problems in physics and engineering. In the field of nuclear engineering, many nodal formalisms have been used for the neutron diffusion equation, all yielding results which were far more computationally efficient than conventional Finite Difference (FD) and Finite Element (FE) methods. However, not much effort has been devoted to theoretically comparing nodal and FD methods in order to explain the very high accuracy of the former. In this summary we outline the derivation of a simple five-point form for the lowest order nodal method and compare it to the traditional five-point, edge-centered FD scheme. The effect of the observed differences on the accuracy of the respective methods is established by considering a simple test problem. It must be emphasized that the nodal five-point scheme derived here is mathematically equivalent to previously derived lowest order nodal methods. 7 refs., 1 tab

  11. Modelling horizontal steam generator with ATHLET. Verification of different nodalization schemes and implementation of verified constitutive equations

    Energy Technology Data Exchange (ETDEWEB)

    Beliaev, J.; Trunov, N.; Tschekin, I. [OKB Gidropress (Russian Federation); Luther, W. [GRS Garching (Germany); Spolitak, S. [RNC-KI (Russian Federation)

    1995-12-31

    Currently the ATHLET code is widely applied for modelling of several Power Plants of WWER type with horizontal steam generators. A main drawback of all these applications is the insufficient verification of the models for the steam generator. This paper presents the nodalization schemes for the secondary side of the steam generator, the results of stationary calculations, and preliminary comparisons to experimental data. The consideration of circulation in the water inventory of the secondary side is proved to be necessary. (orig.). 3 refs.

  12. Modelling horizontal steam generator with ATHLET. Verification of different nodalization schemes and implementation of verified constitutive equations

    Energy Technology Data Exchange (ETDEWEB)

    Beliaev, J; Trunov, N; Tschekin, I [OKB Gidropress (Russian Federation); Luther, W [GRS Garching (Germany); Spolitak, S [RNC-KI (Russian Federation)

    1996-12-31

    Currently the ATHLET code is widely applied for modelling of several Power Plants of WWER type with horizontal steam generators. A main drawback of all these applications is the insufficient verification of the models for the steam generator. This paper presents the nodalization schemes for the secondary side of the steam generator, the results of stationary calculations, and preliminary comparisons to experimental data. The consideration of circulation in the water inventory of the secondary side is proved to be necessary. (orig.). 3 refs.

  13. Cilia are required for asymmetric nodal induction in the sea urchin embryo.

    Science.gov (United States)

    Tisler, Matthias; Wetzel, Franziska; Mantino, Sabrina; Kremnyov, Stanislav; Thumberger, Thomas; Schweickert, Axel; Blum, Martin; Vick, Philipp

    2016-08-23

    Left-right (LR) organ asymmetries are a common feature of metazoan animals. In many cases, laterality is established by a conserved asymmetric Nodal signaling cascade during embryogenesis. In most vertebrates, asymmetric nodal induction results from a cilia-driven leftward fluid flow at the left-right organizer (LRO), a ciliated epithelium present during gastrula/neurula stages. Conservation of LRO and flow beyond the vertebrates has not been reported yet. Here we study sea urchin embryos, which use nodal to establish larval LR asymmetry as well. Cilia were found in the archenteron of embryos undergoing gastrulation. Expression of foxj1 and dnah9 suggested that archenteron cilia were motile. Cilia were polarized to the posterior pole of cells, a prerequisite of directed flow. High-speed videography revealed rotating cilia in the archenteron slightly before asymmetric nodal induction. Removal of cilia through brief high salt treatments resulted in aberrant patterns of nodal expression. Our data demonstrate that cilia - like in vertebrates - are required for asymmetric nodal induction in sea urchin embryos. Based on these results we argue that the anterior archenteron represents a bona fide LRO and propose that cilia-based symmetry breakage is a synapomorphy of the deuterostomes.

  14. Improvements and validation of the transient analysis code MOREL for molten salt reactors

    International Nuclear Information System (INIS)

    Zhuang Kun; Zheng Youqi; Cao Liangzhi; Hu Tianliang; Wu Hongchun

    2017-01-01

    The liquid fuel salt used in the molten salt reactors (MSRs) serves as the fuel and coolant simultaneously. On the one hand, the delayed neutron precursors circulate in the whole primary loop and part of them decay outside the core. On the other hand, the fission heat is carried off directly by the fuel flow. These two features require new analysis method with the coupling of fluid flow, heat transfer and neutronics. In this paper, the recent update of MOREL code is presented. The update includes: (1) the improved quasi-static method for the kinetics equation with convection term is developed. (2) The multi-channel thermal hydraulic model is developed based on the geometric feature of MSR. (3) The Variational Nodal Method is used to solve the neutron diffusion equation instead of the original analytic basis functions expansion nodal method. The update brings significant improvement on the efficiency of MOREL code. And, the capability of MOREL code is extended for the real core simulation with feedback. The numerical results and experiment data gained from molten salt reactor experiment (MSRE) are used to verify and validate the updated MOREL code. The results agree well with the experimental data, which prove the new development of MOREL code is correct and effective. (author)

  15. Application of the RT-0 nodal methods and NRMPO matrix-response to the cycles 1 and 2 of the LVC; Aplicacion de los metodos nodal RT-0 y matriz respuesta NRMPO a los ciclos 1 y 2 de la CLV

    Energy Technology Data Exchange (ETDEWEB)

    Delfin L, A.; Hernandez L, H.; Alonso V, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2005-07-01

    The nodal methods the same as that of matrix-response are used to develop numeric calculations, so much in static as dynamics of reactors, in one, two and three dimensions. The topic of this work is to apply the equations modeled in the RPM0 program, obtained when using the nodal scheme RT-0 (Raviart-Thomas index zero) in the neutron diffusion equation in stationary state X Y geometry, applying finite differences centered in mesh and lineal reactivity; also, to use those equations captured in the NRMPO program developed by E. Malambu that uses the matrix-response method in X Y geometry. The numeric results of the radial distribution of power by fuel assembly of the unit 1, in the cycles 1 and 2 of the CLV obtained by both methods, they are compared with the calculations obtained with the CM-PRESTO code that is a neutronic-thermo hydraulic simulator in three dimensions. The comparison of the radial distribution of power in the cycles 1 and 2 of the CLV with the CM-PRESTO code, it presents for RPM0 maximum errors of 8.2% and 12.4% and for NRMPO 31.2% and 61.3% respectively. The results show that it can be feasible to use the program RPM0 like a quick and efficient tool in the multicycle analysis in the fuel management. (Author)

  16. Fuel management and core design code systems for pressurized water reactor neutronic calculations

    International Nuclear Information System (INIS)

    Ahnert, C.; Arayones, J.M.

    1985-01-01

    A package of connected code systems for the neutronic calculations relevant in fuel management and core design has been developed and applied for validation to the startup tests and first operating cycle of a 900MW (electric) PWR. The package includes the MARIA code system for the modeling of the different types of PWR fuel assemblies, the CARMEN code system for detailed few group diffusion calculations for PWR cores at operating and burnup conditions, and the LOLA code system for core simulation using onegroup nodal theory parameters explicitly calculated from the detailed solutions

  17. Application of nonlinear nodal diffusion generalized perturbation theory to nuclear fuel reload optimization

    International Nuclear Information System (INIS)

    Maldonado, G.I.; Turinsky, P.J.

    1995-01-01

    The determination of the family of optimum core loading patterns for pressurized water reactors (PWRs) involves the assessment of the core attributes for thousands of candidate loading patterns. For this reason, the computational capability to efficiently and accurately evaluate a reactor core's eigenvalue and power distribution versus burnup using a nodal diffusion generalized perturbation theory (GPT) model is developed. The GPT model is derived from the forward nonlinear iterative nodal expansion method (NEM) to explicitly enable the preservation of the finite difference matrix structure. This key feature considerably simplifies the mathematical formulation of NEM GPT and results in reduced memory storage and CPU time requirements versus the traditional response-matrix approach to NEM. In addition, a treatment within NEM GPT can account for localized nonlinear feedbacks, such as that due to fission product buildup and thermal-hydraulic effects. When compared with a standard nonlinear iterative NEM forward flux solve with feedbacks, the NEM GPT model can execute between 8 and 12 times faster. These developments are implemented within the PWR in-core nuclear fuel management optimization code FORMOSA-P, combining the robustness of its adaptive simulated annealing stochastic optimization algorithm with an NEM GPT neutronics model that efficiently and accurately evaluates core attributes associated with objective functions and constraints of candidate loading patterns

  18. Post test analysis of TEPSS tests -P2-, -P3-, -P5- and -P7- using the system code RELAP5/MOD 3.2

    International Nuclear Information System (INIS)

    Luebbesmeyer, D.

    2000-01-01

    For the PANDA-Test-Facility (TEPSS configuration) post-test calculations and analyses have been performed for experiment -P2- (Early Start), -P3- (PCC start up), -P5- (Symmetric case, Two PCCs only) and -P7- (Severe Accident). Post test calculations have been performed with the system code RELAP5/Mod 3.2 using two different nodalization of the PANDA facility namely a basis nodalization and a much reduced one. The general trend of the calculations can be summarised: RELAP5/Mod3.2 calculated the general trends of the experiments sufficiently accurate; Using the reduced nodalization the results seem to be slightly more accurate than for the basic nodalization; On the other hand, calculations based on the reduced nodalization are not significantly faster than those with basic nodalization; The mass error is in the order of 200 to 900 kg. (author)

  19. NUMERICAL SOLUTION OF SINGULAR INVERSE NODAL PROBLEM BY USING CHEBYSHEV POLYNOMIALS

    OpenAIRE

    NEAMATY, ABDOLALI; YILMAZ, EMRAH; AKBARPOOR, SHAHRBANOO; DABBAGHIAN, ABDOLHADI

    2017-01-01

    In this study, we consider Sturm-Liouville problem in two cases: the first case having no singularity and the second case having a singularity at zero. Then, we calculate the eigenvalues and the nodal points and present the uniqueness theorem for the solution of the inverse problem by using a dense subset of the nodal points in two given cases. Also, we use Chebyshev polynomials of the first kind for calculating the approximate solution of the inverse nodal problem in these cases. Finally, we...

  20. Modifying nodal pricing method considering market participants optimality and reliability

    Directory of Open Access Journals (Sweden)

    A. R. Soofiabadi

    2015-06-01

    Full Text Available This paper develops a method for nodal pricing and market clearing mechanism considering reliability of the system. The effects of components reliability on electricity price, market participants’ profit and system social welfare is considered. This paper considers reliability both for evaluation of market participant’s optimality as well as for fair pricing and market clearing mechanism. To achieve fair pricing, nodal price has been obtained through a two stage optimization problem and to achieve fair market clearing mechanism, comprehensive criteria has been introduced for optimality evaluation of market participant. Social welfare of the system and system efficiency are increased under proposed modified nodal pricing method.

  1. Elsevier Trophoblast Research Award lecture: The multifaceted role of Nodal signaling during mammalian reproduction.

    Science.gov (United States)

    Park, C B; Dufort, D

    2011-03-01

    Nodal, a secreted signaling protein in the transforming growth factor-beta (TGF-β) superfamily, has established roles in vertebrate development. However, components of the Nodal signaling pathway are also expressed at the maternal-fetal interface and have been implicated in many processes of mammalian reproduction. Emerging evidence indicates that Nodal and its extracellular inhibitor Lefty are expressed in the uterus and complex interactions between the two proteins mediate menstruation, decidualization and embryo implantation. Furthermore, several studies have shown that Nodal from both fetal and maternal sources may regulate trophoblast cell fate and facilitate placentation as both embryonic and uterine-specific Nodal knockout mouse strains exhibit disrupted placenta morphology. Here we review the established and prospective roles of Nodal signaling in facilitating successful pregnancy, including recent evidence supporting a potential link to parturition and preterm birth. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Churchill regulates cell movement and mesoderm specification by repressing Nodal signaling

    Directory of Open Access Journals (Sweden)

    Mentzer Laura

    2007-11-01

    Full Text Available Abstract Background Cell movements are essential to the determination of cell fates during development. The zinc-finger transcription factor, Churchill (ChCh has been proposed to regulate cell fate by regulating cell movements during gastrulation in the chick. However, the mechanism of action of ChCh is not understood. Results We demonstrate that ChCh acts to repress the response to Nodal-related signals in zebrafish. When ChCh function is abrogated the expression of mesodermal markers is enhanced while ectodermal markers are expressed at decreased levels. In cell transplant assays, we observed that ChCh-deficient cells are more motile than wild-type cells. When placed in wild-type hosts, ChCh-deficient cells often leave the epiblast, migrate to the germ ring and are later found in mesodermal structures. We demonstrate that both movement of ChCh-compromised cells to the germ ring and acquisition of mesodermal character depend on the ability of the donor cells to respond to Nodal signals. Blocking Nodal signaling in the donor cells at the levels of Oep, Alk receptors or Fast1 inhibited migration to the germ ring and mesodermal fate change in the donor cells. We also detect additional unusual movements of transplanted ChCh-deficient cells which suggests that movement and acquisition of mesodermal character can be uncoupled. Finally, we demonstrate that ChCh is required to limit the transcriptional response to Nodal. Conclusion These data establish a broad role for ChCh in regulating both cell movement and Nodal signaling during early zebrafish development. We show that chch is required to limit mesodermal gene expression, inhibit Nodal-dependant movement of presumptive ectodermal cells and repress the transcriptional response to Nodal signaling. These findings reveal a dynamic role for chch in regulating cell movement and fate during early development.

  3. Solution and Study of the Two-Dimensional Nodal Neutron Transport Equation

    International Nuclear Information System (INIS)

    Panta Pazos, Ruben; Biasotto Hauser, Eliete; Tullio de Vilhena, Marco

    2002-01-01

    In the last decade Vilhena and coworkers reported an analytical solution to the two-dimensional nodal discrete-ordinates approximations of the neutron transport equation in a convex domain. The key feature of these works was the application of the combined collocation method of the angular variable and nodal approach in the spatial variables. By nodal approach we mean the transverse integration of the SN equations. This procedure leads to a set of one-dimensional S N equations for the average angular fluxes in the variables x and y. These equations were solved by the old version of the LTS N method, which consists in the application of the Laplace transform to the set of nodal S N equations and solution of the resulting linear system by symbolic computation. It is important to recall that this procedure allow us to increase N the order of S N up to 16. To overcome this drawback we step forward performing a spectral painstaking analysis of the nodal S N equations for N up to 16 and we begin the convergence of the S N nodal equations defining an error for the angular flux and estimating the error in terms of the truncation error of the quadrature approximations of the integral term. Furthermore, we compare numerical results of this approach with those of other techniques used to solve the two-dimensional discrete approximations of the neutron transport equation. (authors)

  4. Tumor microvessel density–associated mast cells in canine nodal lymphoma

    Science.gov (United States)

    Mann, Elizabeth; Whittington, Lisa

    2014-01-01

    Objective: Mast cells are associated in angiogenesis in various human and animal neoplasms. However, association of mast cells with tumor microvessel density in canine lymphoma was not previously documented. The objective of the study is to determine if mast cells are increased in canine nodal lymphomas and to evaluate their correlation with tumor microvessel density and grading of lymphomas. Methods: Nodal lymphomas from 33 dogs were studied and compared with nonneoplastic lymph nodes from 6 dogs as control. Mast cell count was made on Toluidine blue stained sections. Immunohistochemistry using antibody against Factor VIII was employed to visualize and determine microvessel density. Results: The mast cell count in lymphoma (2.95 ± 2.4) was significantly higher (p < 0.05) than that in the control (0.83 ± 0.3) and was positively correlated with tumor microvessel density (r = 0.44, p = 0.009). Significant difference was not observed in mast cell count and tumor microvessel density among different gradings of lymphomas. Conclusions: Mast cells are associated with tumor microvessel density in canine nodal lymphoma with no significant difference among gradings of lymphomas. Mast cells may play an important role in development of canine nodal lymphomas. Further detailed investigation on the role of mast cells as important part of tumor microenvironment in canine nodal lymphomas is recommended. PMID:26770752

  5. Tumor microvessel density–associated mast cells in canine nodal lymphoma

    Directory of Open Access Journals (Sweden)

    Moges Woldemeskel

    2014-11-01

    Full Text Available Objective: Mast cells are associated in angiogenesis in various human and animal neoplasms. However, association of mast cells with tumor microvessel density in canine lymphoma was not previously documented. The objective of the study is to determine if mast cells are increased in canine nodal lymphomas and to evaluate their correlation with tumor microvessel density and grading of lymphomas. Methods: Nodal lymphomas from 33 dogs were studied and compared with nonneoplastic lymph nodes from 6 dogs as control. Mast cell count was made on Toluidine blue stained sections. Immunohistochemistry using antibody against Factor VIII was employed to visualize and determine microvessel density. Results: The mast cell count in lymphoma (2.95 ± 2.4 was significantly higher (p < 0.05 than that in the control (0.83 ± 0.3 and was positively correlated with tumor microvessel density (r = 0.44, p = 0.009. Significant difference was not observed in mast cell count and tumor microvessel density among different gradings of lymphomas. Conclusions: Mast cells are associated with tumor microvessel density in canine nodal lymphoma with no significant difference among gradings of lymphomas. Mast cells may play an important role in development of canine nodal lymphomas. Further detailed investigation on the role of mast cells as important part of tumor microenvironment in canine nodal lymphomas is recommended.

  6. A computational study of nodal-based tetrahedral element behavior.

    Energy Technology Data Exchange (ETDEWEB)

    Gullerud, Arne S.

    2010-09-01

    This report explores the behavior of nodal-based tetrahedral elements on six sample problems, and compares their solution to that of a corresponding hexahedral mesh. The problems demonstrate that while certain aspects of the solution field for the nodal-based tetrahedrons provide good quality results, the pressure field tends to be of poor quality. Results appear to be strongly affected by the connectivity of the tetrahedral elements. Simulations that rely on the pressure field, such as those which use material models that are dependent on the pressure (e.g. equation-of-state models), can generate erroneous results. Remeshing can also be strongly affected by these issues. The nodal-based test elements as they currently stand need to be used with caution to ensure that their numerical deficiencies do not adversely affect critical values of interest.

  7. A new diffusion nodal method based on analytic basis function expansion

    International Nuclear Information System (INIS)

    Noh, J.M.; Cho, N.Z.

    1993-01-01

    The transverse integration procedure commonly used in most advanced nodal methods results in some limitations. The first is that the transverse leakage term that appears in the transverse integration procedure must be appropriately approximated. In most advanced nodal methods, this term is expanded in a quadratic polynomial. The second arises when reconstructing the pinwise flux distribution within a node. The available one-dimensional flux shapes from nodal calculation in each spatial direction cannot be used directly in the flux reconstruction. Finally, the transverse leakage defined for a hexagonal node becomes so complicated as not to be easily handled and contains nonphysical singular terms. In this paper, a new nodal method called the analytic function expansion nodal (AFEN) method is described for both the rectangular geometry and the hexagonal geometry in order to overcome these limitations. This method does not solve the transverse-integrated one-dimensional diffusion equations but instead solves directly the original multidimensional diffusion equation within a node. This is a accomplished by expanding the solution (or the intranodal homogeneous flux distribution) in terms of nonseparable analytic basis functions satisfying the diffusion equation at any point in the node

  8. Patterns of practice of regional nodal irradiation in breast cancer: results of the European Organization for Research and Treatment of Cancer (EORTC) NOdal Radiotherapy (NORA) survey

    NARCIS (Netherlands)

    Belkacemi, Y.; Kaidar-Person, O.; Poortmans, P.; Ozsahin, M.; Valli, M.-C.; Russell, N.; Kunkler, I.; Hermans, J.; Kuten, A.; van Tienhoven, G.; Westenberg, H.

    2015-01-01

    Predicting outcome of breast cancer (BC) patients based on sentinel lymph node (SLN) status without axillary lymph node dissection (ALND) is an area of uncertainty. It influences the decision-making for regional nodal irradiation (RNI). The aim of the NORA (NOdal RAdiotherapy) survey was to examine

  9. The effect of code user and boundary conditions on RELAP calculations of MTR research reactor transient scenarios

    Directory of Open Access Journals (Sweden)

    Khedr Ahmed

    2005-01-01

    Full Text Available The safety evaluation of nuclear power and re search reactors is a very important step before their construction and during their operation. This evaluation based on the best estimate calculations requires qualified codes qualified users, and qualified nodalizations. The effect of code users on the RELAP5 results during the analysis of loss of flow transient in MTR research reactors is presented in this pa per. To clarify this effect, two nodalizations for research reactor different in the simulation of the open water surface boundary conditions of the reactor pool have been used. Very different results are obtained with few choices for code users. The core natural circulation flow with the be ginning of core boiling doesn't stop but in creases. The in creasing in the natural circulation flow shifts out the boiling from the core and the clad temperature decreases be low the local saturation temperature.

  10. On the Nodal Lines of Eisenstein Series on Schottky Surfaces

    Science.gov (United States)

    Jakobson, Dmitry; Naud, Frédéric

    2017-04-01

    On convex co-compact hyperbolic surfaces {X=Γ backslash H2}, we investigate the behavior of nodal curves of real valued Eisenstein series {F_λ(z,ξ)}, where {λ} is the spectral parameter, {ξ} the direction at infinity. Eisenstein series are (non-{L^2}) eigenfunctions of the Laplacian {Δ_X} satisfying {Δ_X F_λ=(1/4+λ^2)F_λ}. As {λ} goes to infinity (the high energy limit), we show that, for generic {ξ}, the number of intersections of nodal lines with any compact segment of geodesic grows like {λ}, up to multiplicative constants. Applications to the number of nodal domains inside the convex core of the surface are then derived.

  11. A nodal method of calculating power distributions for LWR-type reactors with square fuel lattices

    International Nuclear Information System (INIS)

    Hoeglund, Randolph.

    1980-06-01

    A nodal model is developed for calculating the power distribution in the core of a light water reactor with a square fuel lattice. The reactor core is divided into a number of more or less cubic nodes and a nodal coupling equation, which gives the thermal power density in one node as a function of the power densities in the neighbour nodes, is derived from the neutron diffusion equations for two energy groups. The three-dimensional power distribution can be computed iteratively using this coupling equation, for example following the point Jacobi, the Gauss-Seidel or the point successive overrelaxation scheme. The method has been included as the neutronic model in a reactor core simulation computer code BOREAS, where it is combined with a thermal-hydraulic model in order to make a simultaneous computation of the interdependent power and void distributions in a boiling water reactor possible. Also described in this report are a method for temporary one-dimensional iteration developed in order to accelerate the iterative solution of the problem and the Haling principle which is widely used in the planning of reloading operations for BWR reactors. (author)

  12. SCRAM reactivity calculations with the KIKO3D code

    International Nuclear Information System (INIS)

    Hordosy, G.; Kerszturi, A.; Maraczy, Cs.; Temesvari, E.

    1999-01-01

    Discrepancies between calculated static reactivities and measured reactivities evaluated with reactivity meters led to investigating SCRAM with the KIKO3D dynamic code, The time and space dependent neutron flux in the reactor core during the rod drop measurement was calculated by the KIKO3D nodal diffusion code. For calculating the ionisation chamber signals the Green function technique was applied. The Green functions of ionisation chambers were evaluated via solving the neutron transport equation in the reflector regions with the MCNP Monte Carlo code. The detector signals during asymmetric SCRAM measurements were calculated and compared with measured data using the inverse point kinetics transformation. The sufficient agreement validates the KIKO3D code to determine the reactivities after SCRAM. (Authors)

  13. Torsionfree Sheaves over a Nodal Curve of Arithmetic Genus One

    Indian Academy of Sciences (India)

    We classify all isomorphism classes of stable torsionfree sheaves on an irreducible nodal curve of arithmetic genus one defined over C C . Let be a nodal curve of arithmetic genus one defined over R R , with exactly one node, such that does not have any real points apart from the node. We classify all isomorphism ...

  14. Nodal spectrum method for solving neutron diffusion equation

    International Nuclear Information System (INIS)

    Sanchez, D.; Garcia, C. R.; Barros, R. C. de; Milian, D.E.

    1999-01-01

    Presented here is a new numerical nodal method for solving static multidimensional neutron diffusion equation in rectangular geometry. Our method is based on a spectral analysis of the nodal diffusion equations. These equations are obtained by integrating the diffusion equation in X, Y directions and then considering flat approximations for the current. These flat approximations are the only approximations that are considered in this method, as a result the numerical solutions are completely free from truncation errors. We show numerical results to illustrate the methods accuracy for coarse mesh calculations

  15. Solution and study of nodal neutron transport equation applying the LTSN-DiagExp method

    International Nuclear Information System (INIS)

    Hauser, Eliete Biasotto; Pazos, Ruben Panta; Vilhena, Marco Tullio de; Barros, Ricardo Carvalho de

    2003-01-01

    In this paper we report advances about the three-dimensional nodal discrete-ordinates approximations of neutron transport equation for Cartesian geometry. We use the combined collocation method of the angular variables and nodal approach for the spatial variables. By nodal approach we mean the iterated transverse integration of the S N equations. This procedure leads to the set of one-dimensional averages angular fluxes in each spatial variable. The resulting system of equations is solved with the LTS N method, first applying the Laplace transform to the set of the nodal S N equations and then obtained the solution by symbolic computation. We include the LTS N method by diagonalization to solve the nodal neutron transport equation and then we outline the convergence of these nodal-LTS N approximations with the help of a norm associated to the quadrature formula used to approximate the integral term of the neutron transport equation. (author)

  16. TGF-β promotes glioma cell growth via activating Nodal expression through Smad and ERK1/2 pathways

    International Nuclear Information System (INIS)

    Sun, Jing; Liu, Su-zhi; Lin, Yan; Cao, Xiao-pan; Liu, Jia-ming

    2014-01-01

    Highlights: •TGF-β promoted Nodal expression in glioma cells. •TGF-β promoted Nodal expression via activating Smad and ERK1/2 pathways. •TGF-β promotes glioma cell growth via activating Nodal expression. -- Abstract: While there were certain studies focusing on the mechanism of TGF-β promoting the growth of glioma cells, the present work revealed another novel mechanism that TGF-β may promote glioma cell growth via enhancing Nodal expression. Our results showed that Nodal expression was significantly upregulated in glioma cells when TGF-β was added, whereas the TGF-β-induced Nodal expression was evidently inhibited by transfection Smad2 or Smad3 siRNAs, and the suppression was especially significant when the Smad3 was downregulated. Another, the attenuation of TGF-β-induced Nodal expression was observed with blockade of the ERK1/2 pathway also. Further detection of the proliferation, apoptosis, and invasion of glioma cells indicated that Nodal overexpression promoted the proliferation and invasion of tumor cells and inhibited their apoptosis, resembling the effect of TGF-β addition. Downregulation of Nodal expression via transfection Nodal-specific siRNA in the presence of TGF-β weakened the promoting effect of the latter on glioma cells growth, and transfecting Nodal siRNA alone in the absence of exogenous TGF-β more profoundly inhibited the growth of glioma cells. These results demonstrated that while both TGF-β and Nodal promoted glioma cells growth, the former might exert such effect by enhancing Nodal expression, which may form a new target for glioma therapy

  17. Topological crystalline superconductivity and second-order topological superconductivity in nodal-loop materials

    Science.gov (United States)

    Shapourian, Hassan; Wang, Yuxuan; Ryu, Shinsei

    2018-03-01

    We study the intrinsic fully gapped odd-parity superconducting order in doped nodal-loop materials with a torus-shaped Fermi surface. We show that the mirror symmetry, which protects the nodal loop in the normal state, also protects the superconducting state as a topological crystalline superconductor. As a result, the surfaces preserving the mirror symmetry host gapless Majorana cones. Moreover, for a Weyl-loop system (twofold degenerate at the nodal loop), the surfaces that break the mirror symmetry (those parallel to the bulk nodal loop) contribute a Chern (winding) number to the quasi-two-dimensional system in a slab geometry, which leads to a quantized thermal Hall effect and a single Majorana zero mode bound at a vortex line penetrating the system. This Chern number can be viewed as a higher-order topological invariant, which supports hinge modes in a cubic sample when mirror symmetry is broken. For a Dirac-loop system (fourfold degenerate at the nodal loop), the fully gapped odd-parity state can be either time-reversal symmetry-breaking or symmetric, similar to the A and B phases of 3He. In a slab geometry, the A phase has a Chern number two, while the B phase carries a nontrivial Z2 invariant. We discuss the experimental relevance of our results to nodal-loop materials such as CaAgAs.

  18. Dual Atrioventricular Nodal Pathways Physiology: A Review of Relevant Anatomy, Electrophysiology, and Electrocardiographic Manifestations

    Directory of Open Access Journals (Sweden)

    Bhalaghuru Chokkalingam Mani, MD

    2014-01-01

    Full Text Available More than half a century has passed since the concept of dual atrioventricular (AV nodal pathways physiology was conceived. Dual AV nodal pathways have been shown to be responsible for many clinical arrhythmia syndromes, most notably AV nodal reentrant tachycardia. Although there has been a considerable amount of research on this topic, the subject of dual AV nodal pathways physiology remains heavily debated and discussed. Despite advances in understanding arrhythmia mechanisms and the widespread use of invasive electrophysiologic studies, there is still disagreement on the anatomy and physiology of the AV node that is the basis of discontinuous antegrade AV conduction. The purpose of this paper is to review the concept of dual AV nodal pathways physiology and its varied electrocardiographic manifestations.

  19. Nodal-dependent mesendoderm specification requires the combinatorial activities of FoxH1 and Eomesodermin.

    Directory of Open Access Journals (Sweden)

    Christopher E Slagle

    2011-05-01

    Full Text Available Vertebrate mesendoderm specification requires the Nodal signaling pathway and its transcriptional effector FoxH1. However, loss of FoxH1 in several species does not reliably cause the full range of loss-of-Nodal phenotypes, indicating that Nodal signals through additional transcription factors during early development. We investigated the FoxH1-dependent and -independent roles of Nodal signaling during mesendoderm patterning using a novel recessive zebrafish FoxH1 mutation called midway, which produces a C-terminally truncated FoxH1 protein lacking the Smad-interaction domain but retaining DNA-binding capability. Using a combination of gel shift assays, Nodal overexpression experiments, and genetic epistasis analyses, we demonstrate that midway more accurately represents a complete loss of FoxH1-dependent Nodal signaling than the existing zebrafish FoxH1 mutant schmalspur. Maternal-zygotic midway mutants lack notochords, in agreement with FoxH1 loss in other organisms, but retain near wild-type expression of markers of endoderm and various nonaxial mesoderm fates, including paraxial and intermediate mesoderm and blood precursors. We found that the activity of the T-box transcription factor Eomesodermin accounts for specification of these tissues in midway embryos. Inhibition of Eomesodermin in midway mutants severely reduces the specification of these tissues and effectively phenocopies the defects seen upon complete loss of Nodal signaling. Our results indicate that the specific combinations of transcription factors available for signal transduction play critical and separable roles in determining Nodal pathway output during mesendoderm patterning. Our findings also offer novel insights into the co-evolution of the Nodal signaling pathway, the notochord specification program, and the chordate branch of the deuterostome family of animals.

  20. Development of 3D multi-group neutron diffusion code for hexagonal geometry

    International Nuclear Information System (INIS)

    Sun Wei; Wang Kan; Ni Dongyang; Li Qing

    2013-01-01

    Based on the theory of new flux expansion nodal method to solve the neutron diffusion equations, the intra-nodal fluence rate distribution was expanded in a series of analytic basic functions for each group. In order to improve the accuracy of calculation result, continuities of neutron fluence rate and current were utilized across the nodal surfaces. According to the boundary conditions, the iteration method was adopted to solve the diffusion equation, where inner iteration speedup method is Gauss-Seidel method and outer is Lyusternik-Wagner. A new speedup method (one-outer-iteration and multi-inner-iteration method) was proposed according to the characteristic that the convergence speed of multiplication factor is faster than that of neutron fluence rate and the update of inner iteration matrix is slow. Based on the proposed model, the code HANDF-D was developed and tested by 3D two-group vver440 benchmark, experiment 2 of HFETR, 3D four-group thermal reactor benchmark, and 3D seven-group fast reactor benchmark. The numerical results show that HANDF-D can predict accurately the multiplication factor and nodal powers. (authors)

  1. Ultrasound-guided core biopsy: an effective method of detecting axillary nodal metastases.

    LENUS (Irish Health Repository)

    Solon, Jacqueline G

    2012-02-01

    BACKGROUND: Axillary nodal status is an important prognostic predictor in patients with breast cancer. This study evaluated the sensitivity and specificity of ultrasound-guided core biopsy (Ax US-CB) at detecting axillary nodal metastases in patients with primary breast cancer, thereby determining how often sentinel lymph node biopsy could be avoided in node positive patients. STUDY DESIGN: Records of patients presenting to a breast unit between January 2007 and June 2010 were reviewed retrospectively. Patients who underwent axillary ultrasonography with or without preoperative core biopsy were identified. Sensitivity, specificity, positive predictive value, and negative predictive value for ultrasonography and percutaneous biopsy were evaluated. RESULTS: Records of 718 patients were reviewed, with 445 fulfilling inclusion criteria. Forty-seven percent (n = 210\\/445) had nodal metastases, with 110 detected by Ax US-CB (sensitivity 52.4%, specificity 100%, positive predictive value 100%, negative predictive value 70.1%). Axillary ultrasonography without biopsy had sensitivity and specificity of 54.3% and 97%, respectively. Lymphovascular invasion was an independent predictor of nodal metastases (sensitivity 60.8%, specificity 80%). Ultrasound-guided core biopsy detected more than half of all nodal metastases, sparing more than one-quarter of all breast cancer patients an unnecessary sentinel lymph node biopsy. CONCLUSIONS: Axillary ultrasonography, when combined with core biopsy, is a valuable component of the management of patients with primary breast cancer. Its ability to definitively identify nodal metastases before surgical intervention can greatly facilitate a patient\\'s preoperative integrated treatment plan. In this regard, we believe our study adds considerably to the increasing data, which indicate the benefit of Ax US-CB in the preoperative detection of nodal metastases.

  2. A sliding point contact model for the finite element structures code EURDYN

    International Nuclear Information System (INIS)

    Smith, B.L.

    1986-01-01

    A method is developed by which sliding point contact between two moving deformable structures may be incorporated within a lumped mass finite element formulation based on displacements. The method relies on a simple mechanical interpretation of the contact constraint in terms of equivalent nodal forces and avoids the use of nodal connectivity via a master slave arrangement or pseudo contact element. The methodology has been iplemented into the EURDYN finite element program for the (2D axisymmetric) version coupled to the hydro code SEURBNUK. Sample calculations are presented illustrating the use of the model in various contact situations. Effects due to separation and impact of structures are also included. (author)

  3. Temporal quadratic expansion nodal Green's function method

    International Nuclear Information System (INIS)

    Liu Cong; Jing Xingqing; Xu Xiaolin

    2000-01-01

    A new approach is presented to efficiently solve the three-dimensional space-time reactor dynamics equation which overcomes the disadvantages of current methods. In the Temporal Quadratic Expansion Nodal Green's Function Method (TQE/NGFM), the Quadratic Expansion Method (QEM) is used for the temporal solution with the Nodal Green's Function Method (NGFM) employed for the spatial solution. Test calculational results using TQE/NGFM show that its time step size can be 5-20 times larger than that of the Fully Implicit Method (FIM) for similar precision. Additionally, the spatial mesh size with NGFM can be nearly 20 times larger than that using the finite difference method. So, TQE/NGFM is proved to be an efficient reactor dynamics analysis method

  4. Barrier tunneling of the loop-nodal semimetal in the hyperhoneycomb lattice

    Science.gov (United States)

    Guan, Ji-Huan; Zhang, Yan-Yang; Lu, Wei-Er; Xia, Yang; Li, Shu-Shen

    2018-05-01

    We theoretically investigate the barrier tunneling in the 3D model of the hyperhoneycomb lattice, which is a nodal-line semimetal with a Dirac loop at zero energy. In the presence of a rectangular potential, the scattering amplitudes for different injecting states around the nodal loop are calculated, by using analytical treatments of the effective model, as well as numerical simulations of the tight binding model. In the low energy regime, states with remarkable transmissions are only concentrated in a small range around the loop plane. When the momentum of the injecting electron is coplanar with the nodal loop, nearly perfect transmissions can occur for a large range of injecting azimuthal angles if the potential is not high. For higher potential energies, the transmission shows a resonant oscillation with the potential, but still with peaks being perfect transmissions that do not decay with the potential width. These strikingly robust transports of the loop-nodal semimetal can be approximately explained by a momentum dependent Dirac Hamiltonian.

  5. Quantum anomalies in nodal line semimetals

    Science.gov (United States)

    Burkov, A. A.

    2018-04-01

    Topological semimetals are a new class of condensed matter systems with nontrivial electronic structure topology. Their unusual observable properties may often be understood in terms of quantum anomalies. In particular, Weyl and Dirac semimetals, which have point band-touching nodes, are characterized by the chiral anomaly, which leads to the Fermi arc surface states, anomalous Hall effect, negative longitudinal magnetoresistance, and planar Hall effect. In this paper, we explore analogous phenomena in nodal line semimetals. We demonstrate that such semimetals realize a three-dimensional analog of the parity anomaly, which is a known property of two-dimensional Dirac semimetals arising, for example, on the surface of a three-dimensional topological insulator. We relate one of the characteristic properties of nodal line semimetals, namely, the drumhead surface states, to this anomaly, and derive the field theory, which encodes the corresponding anomalous response.

  6. A 3D coarse-mesh time dependent code for nuclear reactor kinetic calculations

    International Nuclear Information System (INIS)

    Montagnini, B.; Raffaelli, P.; Sumini, M.; Zardini, D.M.

    1996-01-01

    A course-mesh code for time-dependent multigroup neutron diffusion calculation based on a direct integration scheme for the time dependence and a low order nodal flux expansion approximation for the space variables has been implemented as a fast tool for transient analysis. (Author)

  7. Core design calculations of IRIS reactor using modified CORD-2 code package

    International Nuclear Information System (INIS)

    Pevec, D.; Grgic, D.; Jecmenica, R.; Petrovic, B.

    2002-01-01

    Core design calculations, with thermal-hydraulic feedback, for the first cycle of the IRIS reactor were performed using the modified CORD-2 code package. WIMSD-5B code is applied for cell and cluster calculations with two different 69-group data libraries (ENDF/BVI rev. 5 and JEF-2.2), while the nodal code GNOMER is used for diffusion calculations. The objective of the calculation was to address basic core design problems for innovative reactors with long fuel cycle. The results were compared to our results obtained with CORD-2 before the modification and to preliminary results obtained with CASMO code for a similar problem without thermal-hydraulic feedback.(author)

  8. OPR1000 RCP Flow Coastdown Analysis using SPACE Code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong-Hyuk; Kim, Seyun [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The Korean nuclear industry developed a thermal-hydraulic analysis code for the safety analysis of PWRs, named SPACE(Safety and Performance Analysis Code for Nuclear Power Plant). Current loss of flow transient analysis of OPR1000 uses COAST code to calculate transient RCS(Reactor Coolant System) flow. The COAST code calculates RCS loop flow using pump performance curves and RCP(Reactor Coolant Pump) inertia. In this paper, SPACE code is used to reproduce RCS flowrates calculated by COAST code. The loss of flow transient is transient initiated by reduction of forced reactor coolant circulation. Typical loss of flow transients are complete loss of flow(CLOF) and locked rotor(LR). OPR1000 RCP flow coastdown analysis was performed using SPACE using simplified nodalization. Complete loss of flow(4 RCP trip) was analyzed. The results show good agreement with those from COAST code, which is CE code for calculating RCS flow during loss of flow transients. Through this study, we confirmed that SPACE code can be used instead of COAST code for RCP flow coastdown analysis.

  9. Flow-based market coupling. Stepping stone towards nodal pricing?

    International Nuclear Information System (INIS)

    Van der Welle, A.J.

    2012-07-01

    For achieving one internal energy market for electricity by 2014, market coupling is deployed to integrate national markets into regional markets and ultimately one European electricity market. The extent to which markets can be coupled depends on the available transmission capacities between countries. Since interconnections are congested from time to time, congestion management methods are deployed to divide the scarce available transmission capacities over market participants. For further optimization of the use of available transmission capacities while maintaining current security of supply levels, flow-based market coupling (FBMC) will be implemented in the CWE region by 2013. Although this is an important step forward, important hurdles for efficient congestion management remain. Hence, flow based market coupling is compared to nodal pricing, which is often considered as the most optimal solution from theoretical perspective. In the context of decarbonised power systems it is concluded that advantages of nodal pricing are likely to exceed its disadvantages, warranting further development of FBMC in the direction of nodal pricing.

  10. BWR modeling capability and Scale/Triton lattice-to-core integration of the Nestle nodal simulator - 331

    International Nuclear Information System (INIS)

    Galloway, J.; Hernandez, H.; Maldonado, G.I.; Jessee, M.; Popov, E.; Clarno, K.

    2010-01-01

    This article reports the status of recent and substantial enhancements made to the NESTLE nodal core simulator, a code originally developed at North Carolina State University (NCSU) of which version 5.2.1 has been available for several years through the Oak Ridge National Laboratory (ORNL) Radiation Safety Information Computational Center (RSICC) software repository. In its released and available form, NESTLE is a seasoned, well-developed and extensively tested code system particularly useful to model PWRs. In collaboration with NCSU, University of Tennessee (UT) and ORNL researchers have recently developed new enhancements for the NESTLE code, including the implementation of a two-phase drift-flux thermal hydraulic and flow redistribution model to facilitate modeling of Boiling Water Reactors (BWRs) as well as the development of an integrated coupling of SCALE/TRITON lattice physics to NESTLE so to produce an end-to-end capability for reactor simulations. These latest advancements implemented into NESTLE as well as an update of other ongoing efforts of this project are herein reported. (authors)

  11. Code package to analyse behavior of the WWER fuel rods in normal operation: TOPRA's code

    International Nuclear Information System (INIS)

    Scheglov, A.; Proselkov, V.

    2001-01-01

    This paper briefly describes the code package intended for analysis of WWER fuel rod characteristics. The package includes two computer codes: TOPRA-1 and TOPRA-2 for full-scale fuel rod analyses; MRZ and MKK codes for analyzing the separate sections of fuel rods in r-z and r-j geometry. The TOPRA's codes are developed on the base of PIN-mod2 version and verified against experimental results obtained in MR, MIR and Halden research reactors (in the framework of SOFIT, FGR-2 and FUMEX experimental programs). Comparative analysis of calculation results and results from post-reactor examination of the WWER-440 and WWER-1000 fuel rod are also made as additional verification of these codes. To avoid the enlarging of uncertainties in fuel behavior prediction as a result of simplifying of the fuel geometry, MKK and MRZ codes are developed on the basis of the finite element method with use of the three nodal finite elements. Results obtained in the course of the code verification indicate the possibility for application of the method and TOPRA's code for simplified engineering calculations of WWER fuel rods thermal-physical parameters. An analysis of maximum relative errors for predicting of the fuel rod characteristics in the range of the accepted parameter values is also presented in the paper

  12. MicroRNA expression in nodal and extranodal Diffuse Large B-cell Lymphoma

    DEFF Research Database (Denmark)

    Mandrup, Charlotte; Petersen, Anders; Højfeldt, Anne Dirks

    MicroRNA expression in nodal and extranodal Diffuse Large B-cell Lymphoma   C. Mandrup1, A. Petersen1, A. D. Hoejfeldt1, H. F. Thomsen1, J. Madsen1, J. Dahlgaard1, P. Johansen2, A. Bukh1, K. Dybkaer1 and H. E Johnsen1. 1Department of Hematology, 2Pathological Institute, Aalborg Hospital, Aarhus...... University Hospital, Aalborg, Denmark Introduction: The aim of this project was to analyse microRNA (miRNA) expression in nodal and extranodal diffuse large B-cell lymphoma (DLBCL). Manifestation at diagnosis may be nodal and/or extranodal. At present, there are no known determinants for none...... of the manifestations, and no way to predict the potential progression from nodal to extranodal disease. miRNA are small regulatory RNA molecules with core function to repress/cleave sequence complementary mRNA targets. Abnormalities in miRNA genetics and expression are known to affect initiation and development...

  13. Application of the RT-0 nodal methods and NRMPO matrix-response to the cycles 1 and 2 of the LVC

    International Nuclear Information System (INIS)

    Delfin L, A.; Hernandez L, H.; Alonso V, G.

    2005-01-01

    The nodal methods the same as that of matrix-response are used to develop numeric calculations, so much in static as dynamics of reactors, in one, two and three dimensions. The topic of this work is to apply the equations modeled in the RPM0 program, obtained when using the nodal scheme RT-0 (Raviart-Thomas index zero) in the neutron diffusion equation in stationary state X Y geometry, applying finite differences centered in mesh and lineal reactivity; also, to use those equations captured in the NRMPO program developed by E. Malambu that uses the matrix-response method in X Y geometry. The numeric results of the radial distribution of power by fuel assembly of the unit 1, in the cycles 1 and 2 of the CLV obtained by both methods, they are compared with the calculations obtained with the CM-PRESTO code that is a neutronic-thermo hydraulic simulator in three dimensions. The comparison of the radial distribution of power in the cycles 1 and 2 of the CLV with the CM-PRESTO code, it presents for RPM0 maximum errors of 8.2% and 12.4% and for NRMPO 31.2% and 61.3% respectively. The results show that it can be feasible to use the program RPM0 like a quick and efficient tool in the multicycle analysis in the fuel management. (Author)

  14. Higher order polynomial expansion nodal method for hexagonal core neutronics analysis

    International Nuclear Information System (INIS)

    Jin, Young Cho; Chang, Hyo Kim

    1998-01-01

    A higher-order polynomial expansion nodal(PEN) method is newly formulated as a means to improve the accuracy of the conventional PEN method solutions to multi-group diffusion equations in hexagonal core geometry. The new method is applied to solving various hexagonal core neutronics benchmark problems. The computational accuracy of the higher order PEN method is then compared with that of the conventional PEN method, the analytic function expansion nodal (AFEN) method, and the ANC-H method. It is demonstrated that the higher order PEN method improves the accuracy of the conventional PEN method and that it compares very well with the other nodal methods like the AFEN and ANC-H methods in accuracy

  15. Amplification and protein overexpression of cyclin D1: Predictor of occult nodal metastasis in early oral cancer.

    Science.gov (United States)

    Noorlag, Rob; Boeve, Koos; Witjes, Max J H; Koole, Ronald; Peeters, Ton L M; Schuuring, Ed; Willems, Stefan M; van Es, Robert J J

    2017-02-01

    Accurate nodal staging is pivotal for treatment planning in early (stage I-II) oral cancer. Unfortunately, current imaging modalities lack sensitivity to detect occult nodal metastases. Chromosomal region 11q13, including genes CCND1, Fas-associated death domain (FADD), and CTTN, is often amplified in oral cancer with nodal metastases. However, evidence in predicting occult nodal metastases is limited. In 158 patients with early tongue and floor of mouth (FOM) squamous cell carcinomas, both CCND1 amplification and cyclin D1, FADD, and cortactin protein expression were correlated with occult nodal metastases. CCND1 amplification and cyclin D1 expression correlated with occult nodal metastases. Cyclin D1 expression was validated in an independent multicenter cohort, confirming the correlation with occult nodal metastases in early FOM cancers. Cyclin D1 is a predictive biomarker for occult nodal metastases in early FOM cancers. Prospective research on biopsy material should confirm these results before implementing its use in routine clinical practice. © 2016 Wiley Periodicals, Inc. Head Neck 39: 326-333, 2017. © 2016 Wiley Periodicals, Inc.

  16. Hybrid nodal methods in the solution of the diffusion equations in X Y geometry; Metodos nodales hibridos en la solucion de las ecuaciones de difusion en geometria XY

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez M, N. [CFE, Carretera Cardel-Nautla Km. 43.5, 91680 Veracruz (Mexico); Alonso V, G.; Valle G, E. del [IPN-ESFM, 07738 Mexico D.F. (Mexico)]. e-mail: nhmiranda@mexico.com

    2003-07-01

    In 1979, Hennart and collaborators applied several schemes of classic finite element in the numerical solution of the diffusion equations in X Y geometry and stationary state. Almost two decades then, in 1996, himself and other collaborators carried out a similar work but using nodal schemes type finite element. Continuing in this last direction, in this work a group it is described a set of several Hybrid Nodal schemes denominated (NH) as well as their application to solve the diffusion equations in multigroup in stationary state and X Y geometry. The term hybrid nodal it means that such schemes interpolate not only Legendre moments of face and of cell but also the values of the scalar flow of neutrons in the four corners of each cell or element of the spatial discretization of the domain of interest. All the schemes here considered are polynomials like they were it their predecessors. Particularly, its have developed and applied eight different hybrid nodal schemes that its are very nearby related with those developed by Hennart and collaborators in the past. It is treated of schemes in those that nevertheless that decreases the number of interpolation parameters it is conserved the accurate in relation to the bi-quadratic and bi-cubic schemes. Of these eight, three were described and applied in a previous work. It is the bi-lineal classic scheme as well as the hybrid nodal schemes, bi-quadratic and bi-cubic for that here only are described the other 5 hybrid nodal schemes although they are provided numerical results for several test problems with all them. (Author)

  17. A theoretical study on a convergence problem of nodal methods

    Energy Technology Data Exchange (ETDEWEB)

    Shaohong, Z.; Ziyong, L. [Shanghai Jiao Tong Univ., 1954 Hua Shan Road, Shanghai, 200030 (China); Chao, Y. A. [Westinghouse Electric Company, P. O. Box 355, Pittsburgh, PA 15230-0355 (United States)

    2006-07-01

    The effectiveness of modern nodal methods is largely due to its use of the information from the analytical flux solution inside a homogeneous node. As a result, the nodal coupling coefficients depend explicitly or implicitly on the evolving Eigen-value of a problem during its solution iteration process. This poses an inherently non-linear matrix Eigen-value iteration problem. This paper points out analytically that, whenever the half wave length of an evolving node interior analytic solution becomes smaller than the size of that node, this non-linear iteration problem can become inherently unstable and theoretically can always be non-convergent or converge to higher order harmonics. This phenomenon is confirmed, demonstrated and analyzed via the simplest 1-D problem solved by the simplest analytic nodal method, the Analytic Coarse Mesh Finite Difference (ACMFD, [1]) method. (authors)

  18. Recognizing nodal marginal zone lymphoma: recent advances and pitfalls. A systematic review

    Science.gov (United States)

    van den Brand, Michiel; van Krieken, J. Han J.M.

    2013-01-01

    The diagnosis of nodal marginal zone lymphoma is one of the remaining problem areas in hematopathology. Because no established positive markers exist for this lymphoma, it is frequently a diagnosis of exclusion, making distinction from other low-grade B-cell lymphomas difficult or even impossible. This systematic review summarizes and discusses the current knowledge on nodal marginal zone lymphoma, including clinical features, epidemiology and etiology, histology, and cytogenetic and molecular features. In particular, recent advances in diagnostics and pathogenesis are discussed. New immunohistochemical markers have become available that could be used as positive markers for nodal marginal zone lymphoma. These markers could be used to ensure more homogeneous study groups in future research. Also, recent gene expression studies and studies describing specific gene mutations have provided clues to the pathogenesis of nodal marginal zone lymphoma, suggesting deregulation of the nuclear factor kappa B pathway. Nevertheless, nodal marginal zone lymphoma remains an enigmatic entity, requiring further study to define its pathogenesis to allow an accurate diagnosis and tailored treatment. However, recent data indicate that it is not related to splenic or extranodal lymphoma, and that it is also not related to lymphoplasmacytic lymphoma. Thus, even though the diagnosis is not always easy, it is clearly a separate entity. PMID:23813646

  19. Extra-nodal extension is a significant prognostic factor in lymph node positive breast cancer.

    Directory of Open Access Journals (Sweden)

    Sura Aziz

    Full Text Available Presence of lymph node (LN metastasis is a strong prognostic factor in breast cancer, whereas the importance of extra-nodal extension and other nodal tumor features have not yet been fully recognized. Here, we examined microscopic features of lymph node metastases and their prognostic value in a population-based cohort of node positive breast cancer (n = 218, as part of the prospective Norwegian Breast Cancer Screening Program NBCSP (1996-2009. Sections were reviewed for the largest metastatic tumor diameter (TD-MET, nodal afferent and efferent vascular invasion (AVI and EVI, extra-nodal extension (ENE, number of ENE foci, as well as circumferential (CD-ENE and perpendicular (PD-ENE diameter of extra-nodal growth. Number of positive lymph nodes, EVI, and PD-ENE were significantly increased with larger primary tumor (PT diameter. Univariate survival analysis showed that several features of nodal metastases were associated with disease-free (DFS or breast cancer specific survival (BCSS. Multivariate analysis demonstrated an independent prognostic value of PD-ENE (with 3 mm as cut-off value in predicting DFS and BCSS, along with number of positive nodes and histologic grade of the primary tumor (for DFS: P = 0.01, P = 0.02, P = 0.01, respectively; for BCSS: P = 0.02, P = 0.008, P = 0.02, respectively. To conclude, the extent of ENE by its perpendicular diameter was independently prognostic and should be considered in line with nodal tumor burden in treatment decisions of node positive breast cancer.

  20. Extension of the analytic nodal method to four energy groups

    International Nuclear Information System (INIS)

    Parsons, D.K.; Nigg, D.W.

    1985-01-01

    The Analytic Nodal Method is one of several recently-developed coarse mesh numerical methods for efficiently and accurately solving the multidimensional static and transient neutron diffusion equations. This summary describes a mathematically rigorous extension of the Analytic Nodal Method to the frequently more physically realistic four-group case. A few general theoretical considerations are discussed, followed by some calculated results for a typical steady-state two-dimensional PWR quarter core application. 8 refs

  1. Twisted Vector Bundles on Pointed Nodal Curves

    Indian Academy of Sciences (India)

    Abstract. Motivated by the quest for a good compactification of the moduli space of -bundles on a nodal curve we establish a striking relationship between Abramovich's and Vistoli's twisted bundles and Gieseker vector bundles.

  2. Error estimation for variational nodal calculations

    International Nuclear Information System (INIS)

    Zhang, H.; Lewis, E.E.

    1998-01-01

    Adaptive grid methods are widely employed in finite element solutions to both solid and fluid mechanics problems. Either the size of the element is reduced (h refinement) or the order of the trial function is increased (p refinement) locally to improve the accuracy of the solution without a commensurate increase in computational effort. Success of these methods requires effective local error estimates to determine those parts of the problem domain where the solution should be refined. Adaptive methods have recently been applied to the spatial variables of the discrete ordinates equations. As a first step in the development of adaptive methods that are compatible with the variational nodal method, the authors examine error estimates for use in conjunction with spatial variables. The variational nodal method lends itself well to p refinement because the space-angle trial functions are hierarchical. Here they examine an error estimator for use with spatial p refinement for the diffusion approximation. Eventually, angular refinement will also be considered using spherical harmonics approximations

  3. A new 3-D integral code for computation of accelerator magnets

    International Nuclear Information System (INIS)

    Turner, L.R.; Kettunen, L.

    1991-01-01

    For computing accelerator magnets, integral codes have several advantages over finite element codes; far-field boundaries are treated automatically, and computed field in the bore region satisfy Maxwell's equations exactly. A new integral code employing edge elements rather than nodal elements has overcome the difficulties associated with earlier integral codes. By the use of field integrals (potential differences) as solution variables, the number of unknowns is reduced to one less than the number of nodes. Two examples, a hollow iron sphere and the dipole magnet of Advanced Photon Source injector synchrotron, show the capability of the code. The CPU time requirements are comparable to those of three-dimensional (3-D) finite-element codes. Experiments show that in practice it can realize much of the potential CPU time saving that parallel processing makes possible. 8 refs., 4 figs., 1 tab

  4. Opposing nodal and BMP signals regulate left-right asymmetry in the sea urchin larva.

    Directory of Open Access Journals (Sweden)

    Yi-Jyun Luo

    Full Text Available Nodal and BMP signals are important for establishing left-right (LR asymmetry in vertebrates. In sea urchins, Nodal signaling prevents the formation of the rudiment on the right side. However, the opposing pathway to Nodal signaling during LR axis establishment is not clear. Here, we revealed that BMP signaling is activated in the left coelomic pouch, specifically in the veg2 lineage, but not in the small micromeres. By perturbing BMP activities, we demonstrated that BMP signaling is required for activating the expression of the left-sided genes and the formation of the left-sided structures. On the other hand, Nodal signals on the right side inhibit BMP signaling and control LR asymmetric separation and apoptosis of the small micromeres. Our findings show that BMP signaling is the positive signal for left-sided development in sea urchins, suggesting that the opposing roles of Nodal and BMP signals in establishing LR asymmetry are conserved in deuterostomes.

  5. Intra nodal reconstruction of the numerical solution generated by the spectro nodal constant for Sn problems of eigenvalues in two-dimensional rectangular geometry

    International Nuclear Information System (INIS)

    Menezes, Welton Alves de

    2009-01-01

    In this dissertation the spectral nodal method SD-SGF-CN, cf. spectral diamond - spectral Green's function - constant nodal, is used to determine the angular fluxes averaged along the edges of the homogenized nodes in heterogeneous domains. Using these results, we developed an algorithm for the reconstruction of the node-edge average angular fluxes within the nodes of the spatial grid set up on the domain, since more localized numerical solutions are not generated by coarse-mesh numerical methods. Numerical results are presented to illustrate the accuracy of the algorithm we offer. (author)

  6. Using nodal expansion method in calculation of reactor core with square fuel assemblies

    International Nuclear Information System (INIS)

    Abdollahzadeh, M. Y.; Boroushaki, M.

    2009-01-01

    A polynomial nodal method is developed to solve few-group neutron diffusion equations in cartesian geometry. In this article, the effective multiplication factor, group flux and power distribution based on the nodal polynomial expansion procedure is presented. In addition, by comparison of the results the superiority of nodal expansion method on finite-difference and finite-element are fully demonstrated. The comparison of the results obtained by these method with those of the well known benchmark problems have shown that they are in very good agreement.

  7. cmpXLatt: Westinghouse automated testing tool for nodal cross section models

    International Nuclear Information System (INIS)

    Guimaraes, Petri Forslund; Rönnberg, Kristian

    2011-01-01

    The procedure for evaluating the merits of different nodal cross section representation models is normally both cumbersome and time consuming, and includes many manual steps when preparing appropriate benchmark problems. Therefore, a computer tool called cmpXLatt has been developed at Westinghouse in order to facilitate the process of performing comparisons between nodal diffusion theory results and corresponding transport theory results on a single node basis. Due to the large number of state points that can be evaluated by cmpXLatt, a systematic and comprehensive way of performing verification and validation of nodal cross section models is provided. This paper presents the main features of cmpXLatt and demonstrates the benefits of using cmpXLatt in a real life application. (author)

  8. Analysis of unmitigated large break loss of coolant accidents using MELCOR code

    Science.gov (United States)

    Pescarini, M.; Mascari, F.; Mostacci, D.; De Rosa, F.; Lombardo, C.; Giannetti, F.

    2017-11-01

    In the framework of severe accident research activity developed by ENEA, a MELCOR nodalization of a generic Pressurized Water Reactor of 900 MWe has been developed. The aim of this paper is to present the analysis of MELCOR code calculations concerning two independent unmitigated large break loss of coolant accident transients, occurring in the cited type of reactor. In particular, the analysis and comparison between the transients initiated by an unmitigated double-ended cold leg rupture and an unmitigated double-ended hot leg rupture in the loop 1 of the primary cooling system is presented herein. This activity has been performed focusing specifically on the in-vessel phenomenology that characterizes this kind of accidents. The analysis of the thermal-hydraulic transient phenomena and the core degradation phenomena is therefore here presented. The analysis of the calculated data shows the capability of the code to reproduce the phenomena typical of these transients and permits their phenomenological study. A first sequence of main events is here presented and shows that the cold leg break transient results faster than the hot leg break transient because of the position of the break. Further analyses are in progress to quantitatively assess the results of the code nodalization for accident management strategy definition and fission product source term evaluation.

  9. Fluorine-18-Fluorodeoxyglucose PET in the mediastinal nodal staging of bronchogenic carcinoma.

    Energy Technology Data Exchange (ETDEWEB)

    Berlangieri, S.U.; Scott, A.M.; Knight, S.; Pointon, O.; Thomas, D.L.; O``Keefe, G.; Chan, J.G.; Egen, G.F.; Tochon-Danguy, H.J.; Clarke, C.P.; McKay, W.J. [Austin Hospital, Melbourne, VIC (Australia). Centre for Positron Emission Tomography and the Departments of Nuclear Medicine and Thoracic Surgery

    1998-03-01

    Full text: Non-invasive methods of pre-operative staging of non-small cell bronchogenic carcinoma are inaccurate. To determine the clinical role of positron emission tomography (PET) in the mediastinal staging of lung carcinoma, {sup 18}F-fluorodeoxyglucose (FDG) studies were performed in 25 patients with suspected non-small cell bronchogenic carcinoma and correlated with pathology. The patients comprised 20 men and 5 women (mean age 63; range 43-78 y). All patients had proven non-small cell lung carcinoma, except two, one patient with benign inflammatory disease and the other with small cell carcinoma. The FDG PET studies were acquired on a Siemens 951131R body tomography over 2-3 bed positions to include the thorax and mediastinum. The PET images were interpreted for tumour involvement of mediastinal nodes according to the American Thoracic Society classification and scored for confidence of tumour presence on a 5 point scale. The intensity of glucose metabolism was compared to mediastinal blood pool activity and graded on a 4 point scale. FDG PET correctly excluded ipsilateral mediastinal nodal (N2) disease in 16 of 16 patients. Six of nine patients with N2 disease were correctly identified by FDG PET. Of the three patients with N2 nodal involvement not detected by PET, each had single station nodal disease, and in two patients the primary lesions abutted the involved nodal group. A total of 104 nodal stations were sampled or examined at surgery. FDG PET correctly excluded disease in 83/83 (100% specificity) negative nodal stations. FDG PET is a promising non-invasive functional imaging modality for the mediastinal staging of bronchogenic carcinoma.

  10. Nodalization effects on RELAP5 results related to MTR research reactor transient scenarios

    Directory of Open Access Journals (Sweden)

    Khedr Ahmed

    2005-01-01

    Full Text Available The present work deals with the anal y sis of RELAP5 results obtained from the evaluation study of the total loss of flow transient with the deficiency of the heat removal system in a research reactor using two different nodalizations. It focuses on the effect of nodalization on the thermal-hydraulic evaluation of the re search reactor. The analysis of RELAP5 results has shown that nodalization has a big effect on the predicted scenario of the postulated transient. There fore, great care should be taken during the nodalization of the reactor, especially when the avail able experimental or measured data are insufficient for making a complete qualification of the nodalization. Our analysis also shows that the research reactor pool simulation has a great effect on the evaluation of natural circulation flow and on other thermal-hydraulic parameters during the loss of flow transient. For example, the on set time of core boiling changes from less than 2000 s to 15000 s, starting from the beginning of the transient. This occurs if the pool is simulated by two vertical volumes in stead of one vertical volume.

  11. Present Status of GNF New Nodal Simulator

    International Nuclear Information System (INIS)

    Iwamoto, T.; Tamitani, M.; Moore, B.

    2001-01-01

    This paper presents core simulator consolidation work done at Global Nuclear Fuel (GNF). The unified simulator needs to supercede the capabilities of past simulator packages from the original GNF partners: GE, Hitachi, and Toshiba. At the same time, an effort is being made to produce a simulation package that will be a state-of-the-art analysis tool when released, in terms of the physics solution methodology and functionality. The core simulator will be capable and qualified for (a) high-energy cycles in the U.S. markets, (b) mixed-oxide (MOX) introduction in Japan, and (c) high-power density plants in Europe, etc. The unification of the lattice physics code is also in progress based on a transport model with collision probability methods. The AETNA core simulator is built upon the PANAC11 software base. The goal is to essentially replace the 1.5-energy-group model with a higher-order multigroup nonlinear nodal solution capable of the required modeling fidelity, while keeping highly automated library generation as well as functionality. All required interfaces to PANAC11 will be preserved, which minimizes the impact on users and process automation. Preliminary results show statistical accuracy improvement over the 1.5-group model

  12. [Method for optimal sensor placement in water distribution systems with nodal demand uncertainties].

    Science.gov (United States)

    Liu, Shu-Ming; Wu, Xue; Ouyang, Le-Yan

    2013-08-01

    The notion of identification fitness was proposed for optimizing sensor placement in water distribution systems. Nondominated Sorting Genetic Algorithm II was used to find the Pareto front between minimum overlap of possible detection times of two events and the best probability of detection, taking nodal demand uncertainties into account. This methodology was applied to an example network. The solutions show that the probability of detection and the number of possible locations are not remarkably affected by nodal demand uncertainties, but the sources identification accuracy declines with nodal demand uncertainties.

  13. Application of nonlinear nodal diffusion method for a small research reactor

    International Nuclear Information System (INIS)

    Jaradat, Mustafa K.; Alawneh, Luay M.; Park, Chang Je; Lee, Byungchul

    2014-01-01

    Highlights: • We applied nonlinear unified nodal method for 10 MW IAEA MTR benchmark problem. • TRITION–NEWT system was used to obtain two-group burnup dependent cross sections. • The criticality and power distribution compared with reference (IAEA-TECDOC-233). • Comparison between different fuel materials was conducted. • Satisfactory results were provided using UNM for MTR core calculations. - Abstract: Nodal diffusion methods are usually used for LWR calculations and rarely used for research reactor calculations. A unified nodal method with an implementation of the coarse mesh finite difference acceleration was developed for use in plate type research reactor calculations. It was validated for two PWR benchmark problems and then applied for IAEA MTR benchmark problem for static calculations to check the validity and accuracy of the method. This work was conducted to investigate the unified nodal method capability to treat material testing reactor cores. A 10 MW research reactor core is considered with three calculation cases for low enriched uranium fuel depending on the core burnup status of fresh, beginning-of-life, and end-of-life cores. The validation work included criticality calculations, flux distribution, and power distribution; in addition, a comparison between different fuel materials with the same uranium content was conducted. The homogenized two-group cross sections were generated using the TRITON–NEWT system. The results were compared with a reference, which was taken from IAEA-TECDOC-233. The unified nodal method provides satisfactory results for an all-rod out case, and the three-dimensional, two-group diffusion model can be considered accurate enough for MTR core calculations

  14. Spectral history model in DYN3D: Verification against coupled Monte-Carlo thermal-hydraulic code BGCore

    International Nuclear Information System (INIS)

    Bilodid, Y.; Kotlyar, D.; Margulis, M.; Fridman, E.; Shwageraus, E.

    2015-01-01

    Highlights: • Pu-239 based spectral history method was tested on 3D BWR single assembly case. • Burnup of a BWR fuel assembly was performed with the nodal code DYN3D. • Reference solution was obtained by coupled Monte-Carlo thermal-hydraulic code BGCore. • The proposed method accurately reproduces moderator density history effect for BWR test case. - Abstract: This research focuses on the verification of a recently developed methodology accounting for spectral history effects in 3D full core nodal simulations. The traditional deterministic core simulation procedure includes two stages: (1) generation of homogenized macroscopic cross section sets and (2) application of these sets to obtain a full 3D core solution with nodal codes. The standard approach adopts the branch methodology in which the branches represent all expected combinations of operational conditions as a function of burnup (main branch). The main branch is produced for constant, usually averaged, operating conditions (e.g. coolant density). As a result, the spectral history effects that associated with coolant density variation are not taken into account properly. Number of methods to solve this problem (such as micro-depletion and spectral indexes) were developed and implemented in modern nodal codes. Recently, we proposed a new and robust method to account for history effects. The methodology was implemented in DYN3D and involves modification of the few-group cross section sets. The method utilizes the local Pu-239 concentration as an indicator of spectral history. The method was verified for PWR and VVER applications. However, the spectrum variation in BWR core is more pronounced due to the stronger coolant density change. The purpose of the current work is investigating the applicability of the method to BWR analysis. The proposed methodology was verified against recently developed BGCore system, which couples Monte Carlo neutron transport with depletion and thermal-hydraulic solvers and

  15. Solution and study of nodal neutron transport equation applying the LTS{sub N}-DiagExp method

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, Eliete Biasotto; Pazos, Ruben Panta [Pontificia Univ. Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil). Faculdade de Matematica]. E-mail: eliete@pucrs.br; rpp@mat.pucrs.br; Vilhena, Marco Tullio de [Pontificia Univ. Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil). Instituto de Matematica]. E-mail: vilhena@mat.ufrgs.br; Barros, Ricardo Carvalho de [Universidade do Estado, Nova Friburgo, RJ (Brazil). Instituto Politecnico]. E-mail: ricardo@iprj.uerj.br

    2003-07-01

    In this paper we report advances about the three-dimensional nodal discrete-ordinates approximations of neutron transport equation for Cartesian geometry. We use the combined collocation method of the angular variables and nodal approach for the spatial variables. By nodal approach we mean the iterated transverse integration of the S{sub N} equations. This procedure leads to the set of one-dimensional averages angular fluxes in each spatial variable. The resulting system of equations is solved with the LTS{sub N} method, first applying the Laplace transform to the set of the nodal S{sub N} equations and then obtained the solution by symbolic computation. We include the LTS{sub N} method by diagonalization to solve the nodal neutron transport equation and then we outline the convergence of these nodal-LTS{sub N} approximations with the help of a norm associated to the quadrature formula used to approximate the integral term of the neutron transport equation. (author)

  16. Need for higher order polynomial basis for polynomial nodal methods employed in LWR calculations

    International Nuclear Information System (INIS)

    Taiwo, T.A.; Palmiotti, G.

    1997-01-01

    The paper evaluates the accuracy and efficiency of sixth order polynomial solutions and the use of one radial node per core assembly for pressurized water reactor (PWR) core power distributions and reactivities. The computer code VARIANT was modified to calculate sixth order polynomial solutions for a hot zero power benchmark problem in which a control assembly along a core axis is assumed to be out of the core. Results are presented for the VARIANT, DIF3D-NODAL, and DIF3D-finite difference codes. The VARIANT results indicate that second order expansion of the within-node source and linear representation of the node surface currents are adequate for this problem. The results also demonstrate the improvement in the VARIANT solution when the order of the polynomial expansion of the within-node flux is increased from fourth to sixth order. There is a substantial saving in computational time for using one radial node per assembly with the sixth order expansion compared to using four or more nodes per assembly and fourth order polynomial solutions. 11 refs., 1 tab

  17. Incidental Prophylactic Nodal Irradiation and Patterns of Nodal Relapse in Inoperable Early Stage NSCLC Patients Treated With SBRT: A Case-Matched Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lao, Louis [Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, Auckland City Hospital, Auckland (New Zealand); Hope, Andrew J. [Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada); Maganti, Manjula [Department of Biostatistics, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada); Brade, Anthony; Bezjak, Andrea; Saibishkumar, Elantholi P.; Giuliani, Meredith; Sun, Alexander [Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada); Cho, B. C. John, E-mail: john.cho@rmp.uhn.on.ca [Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada)

    2014-09-01

    Purpose: Reported rates of non-small cell lung cancer (NSCLC) nodal failure following stereotactic body radiation therapy (SBRT) are lower than those reported in the surgical series when matched for stage. We hypothesized that this effect was due to incidental prophylactic nodal irradiation. Methods and Materials: A prospectively collected group of medically inoperable early stage NSCLC patients from 2004 to 2010 was used to identify cases with nodal relapses. Controls were matched to cases, 2:1, controlling for tumor volume (ie, same or greater) and tumor location (ie, same lobe). Reference (normalized to equivalent dose for 2-Gy fractions [EQD2]) point doses at the ipsilateral hilum and carina, demographic data, and clinical outcomes were extracted from the medical records. Univariate conditional logistical regression analyses were performed with variables of interest. Results: Cases and controls were well matched except for size. The controls, as expected, had larger gross tumor volumes (P=.02). The mean ipsilateral hilar doses were 9.6 Gy and 22.4 Gy for cases and controls, respectively (P=.014). The mean carinal doses were 7.0 Gy and 9.2 Gy, respectively (P=.13). Mediastinal nodal relapses, with and without ipsilateral hilar relapse, were associated with mean ipsilateral hilar doses of 3.6 Gy and 19.8 Gy, respectively (P=.01). The conditional density plot appears to demonstrate an inverse dose-effect relationship between ipsilateral hilar normalized total dose and risk of ipsilateral hilar relapse. Conclusions: Incidental hilar dose greater than 20 Gy is significantly associated with fewer ipsilateral hilar relapses in inoperable early stage NSCLC patients treated with SBRT.

  18. Incidental Prophylactic Nodal Irradiation and Patterns of Nodal Relapse in Inoperable Early Stage NSCLC Patients Treated With SBRT: A Case-Matched Analysis

    International Nuclear Information System (INIS)

    Lao, Louis; Hope, Andrew J.; Maganti, Manjula; Brade, Anthony; Bezjak, Andrea; Saibishkumar, Elantholi P.; Giuliani, Meredith; Sun, Alexander; Cho, B. C. John

    2014-01-01

    Purpose: Reported rates of non-small cell lung cancer (NSCLC) nodal failure following stereotactic body radiation therapy (SBRT) are lower than those reported in the surgical series when matched for stage. We hypothesized that this effect was due to incidental prophylactic nodal irradiation. Methods and Materials: A prospectively collected group of medically inoperable early stage NSCLC patients from 2004 to 2010 was used to identify cases with nodal relapses. Controls were matched to cases, 2:1, controlling for tumor volume (ie, same or greater) and tumor location (ie, same lobe). Reference (normalized to equivalent dose for 2-Gy fractions [EQD2]) point doses at the ipsilateral hilum and carina, demographic data, and clinical outcomes were extracted from the medical records. Univariate conditional logistical regression analyses were performed with variables of interest. Results: Cases and controls were well matched except for size. The controls, as expected, had larger gross tumor volumes (P=.02). The mean ipsilateral hilar doses were 9.6 Gy and 22.4 Gy for cases and controls, respectively (P=.014). The mean carinal doses were 7.0 Gy and 9.2 Gy, respectively (P=.13). Mediastinal nodal relapses, with and without ipsilateral hilar relapse, were associated with mean ipsilateral hilar doses of 3.6 Gy and 19.8 Gy, respectively (P=.01). The conditional density plot appears to demonstrate an inverse dose-effect relationship between ipsilateral hilar normalized total dose and risk of ipsilateral hilar relapse. Conclusions: Incidental hilar dose greater than 20 Gy is significantly associated with fewer ipsilateral hilar relapses in inoperable early stage NSCLC patients treated with SBRT

  19. Oddness of least energy nodal solutions on radial domains

    Directory of Open Access Journals (Sweden)

    Christopher Grumiau

    2010-07-01

    Full Text Available In this article, we consider the Lane-Emden problem $$displaylines{ Delta u(x + |{u(x}mathclose|^{p-2}u(x=0, quad hbox{for } xinOmega,cr u(x=0, quad hbox{for } xinpartialOmega, }$$ where $2 < p < 2^{*}$ and $Omega$ is a ball or an annulus in $mathbb{R}^{N}$, $Ngeq 2$. We show that, for p close to 2, least energy nodal solutions are odd with respect to an hyperplane -- which is their nodal surface. The proof ingredients are a constrained implicit function theorem and the fact that the second eigenvalue is simple up to rotations.

  20. Concomitant occurrence of sinus histiocytosis with massive lymphadenopathy and nodal marginal zone lymphoma.

    Science.gov (United States)

    Pang, Changlee S; Grier, David D; Beaty, Michael W

    2011-03-01

    Sinus histiocytosis with massive lymphadenopathy (SHML), also known as Rosai-Dorfman disease, is a rare self-limiting disorder of histiocytes with unknown etiology. Sinus histiocytosis with massive lymphadenopathy is most common in children and young adults and is characterized by painless lymphadenopathy. Histologically there is a proliferation of sinus histiocytes with lymphophagocytosis or emperipolesis. On rare occasions, SHML has been associated with lymphoma, usually involving different anatomic sites and developing at different times. We report a case of concomitant SHML and nodal marginal zone lymphoma involving the same lymph node without involvement of other nodal or extranodal sites. The presence of concomitant SHML within the lymph node involved by nodal marginal zone lymphoma may represent the responsiveness of SHML histiocytes to B-cell-derived cytokines in lymphoproliferative disorders. To our knowledge, this is the first description of concomitant occurrence of SHML and nodal marginal zone lymphoma.

  1. A block-iterative nodal integral method for forced convection problems

    International Nuclear Information System (INIS)

    Decker, W.J.; Dorning, J.J.

    1992-01-01

    A new efficient iterative nodal integral method for the time-dependent two- and three-dimensional incompressible Navier-Stokes equations has been developed. Using the approach introduced by Azmy and Droning to develop nodal mehtods with high accuracy on coarse spatial grids for two-dimensional steady-state problems and extended to coarse two-dimensional space-time grids by Wilson et al. for thermal convection problems, we have developed a new iterative nodal integral method for the time-dependent Navier-Stokes equations for mechanically forced convection. A new, extremely efficient block iterative scheme is employed to invert the Jacobian within each of the Newton-Raphson iterations used to solve the final nonlinear discrete-variable equations. By taking advantage of the special structure of the Jacobian, this scheme greatly reduces memory requirements. The accuracy of the overall method is illustrated by appliying it to the time-dependent version of the classic two-dimensional driven cavity problem of computational fluid dynamics

  2. Multiarea Transmission Cost Allocation in Large Power Systems Using the Nodal Pricing Control Approach

    Directory of Open Access Journals (Sweden)

    M. Ghayeni

    2010-12-01

    Full Text Available This paper proposes an algorithm for transmission cost allocation (TCA in a large power system based on nodal pricing approach using the multi-area scheme. The nodal pricing approach is introduced to allocate the transmission costs by the control of nodal prices in a single area network. As the number of equations is dependent on the number of buses and generators, this method will be very time consuming for large power systems. To solve this problem, the present paper proposes a new algorithm based on multi-area approach for regulating the nodal prices, so that the simulation time is greatly reduced and therefore the TCA problem with nodal pricing approach will be applicable for large power systems. In addition, in this method the transmission costs are allocated to users more equitable. Since the higher transmission costs in an area having a higher reliability are paid only by users of that area in contrast with the single area method, in which these costs are allocated to all users regardless of their locations. The proposed method is implemented on the IEEE 118 bus test system which comprises three areas. Results show that with application of multi-area approach, the simulation time is greatly reduced and the transmission costs are also allocated to users with less variation in new nodal prices with respect to the single area approach.

  3. The orphan receptor ALK7 and the Activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate development

    Science.gov (United States)

    Reissmann, Eva; Jörnvall, Henrik; Blokzijl, Andries; Andersson, Olov; Chang, Chenbei; Minchiotti, Gabriella; Persico, M. Graziella; Ibáñez, Carlos F.; Brivanlou, Ali H.

    2001-01-01

    Nodal proteins have crucial roles in mesendoderm formation and left–right patterning during vertebrate development. The molecular mechanisms of signal transduction by Nodal and related ligands, however, are not fully understood. In this paper, we present biochemical and functional evidence that the orphan type I serine/threonine kinase receptor ALK7 acts as a receptor for mouse Nodal and Xenopus Nodal-related 1 (Xnr1). Receptor reconstitution experiments indicate that ALK7 collaborates with ActRIIB to confer responsiveness to Xnr1 and Nodal. Both receptors can independently bind Xnr1. In addition, Cripto, an extracellular protein genetically implicated in Nodal signaling, can independently interact with both Xnr1 and ALK7, and its expression greatly enhances the ability of ALK7 and ActRIIB to respond to Nodal ligands. The Activin receptor ALK4 is also able to mediate Nodal signaling but only in the presence of Cripto, with which it can also interact directly. A constitutively activated form of ALK7 mimics the mesendoderm-inducing activity of Xnr1 in Xenopus embryos, whereas a dominant-negative ALK7 specifically blocks the activities of Nodal and Xnr1 but has little effect on other related ligands. In contrast, a dominant-negative ALK4 blocks all mesoderm-inducing ligands tested, including Nodal, Xnr1, Xnr2, Xnr4, and Activin. In agreement with a role in Nodal signaling, ALK7 mRNA is localized to the ectodermal and organizer regions of Xenopus gastrula embryos and is expressed during early stages of mouse embryonic development. Therefore, our results indicate that both ALK4 and ALK7 can mediate signal transduction by Nodal proteins, although ALK7 appears to be a receptor more specifically dedicated to Nodal signaling. PMID:11485994

  4. Nodal price volatility reduction and reliability enhancement of restructured power systems considering demand-price elasticity

    International Nuclear Information System (INIS)

    Goel, L.; Wu, Qiuwei; Wang, Peng

    2008-01-01

    With the development of restructured power systems, the conventional 'same for all customers' electricity price is getting replaced by nodal prices. Electricity prices will fluctuate with time and nodes. In restructured power systems, electricity demands will interact mutually with prices. Customers may shift some of their electricity consumption from time slots of high electricity prices to those of low electricity prices if there is a commensurate price incentive. The demand side load shift will influence nodal prices in return. This interaction between demand and price can be depicted using demand-price elasticity. This paper proposes an evaluation technique incorporating the impact of the demand-price elasticity on nodal prices, system reliability and nodal reliabilities of restructured power systems. In this technique, demand and price correlations are represented using the demand-price elasticity matrix which consists of self/cross-elasticity coefficients. Nodal prices are determined using optimal power flow (OPF). The OPF and customer damage functions (CDFs) are combined in the proposed reliability evaluation technique to assess the reliability enhancement of restructured power systems considering demand-price elasticity. The IEEE reliability test system (RTS) is simulated to illustrate the developed techniques. The simulation results show that demand-price elasticity reduces the nodal price volatility and improves both the system reliability and nodal reliabilities of restructured power systems. Demand-price elasticity can therefore be utilized as a possible efficient tool to reduce price volatility and to enhance the reliability of restructured power systems. (author)

  5. Combined-modality therapy for patients with regional nodal metastases from melanoma

    International Nuclear Information System (INIS)

    Ballo, Matthew T.; Ross, Merrick I.; Cormier, Janice N.; Myers, Jeffrey N.; Lee, Jeffrey E.; Gershenwald, Jeffrey E.; Hwu, Patrick; Zagars, Gunar K.

    2006-01-01

    Purpose: To evaluate the outcome and patterns of failure for patients with nodal metastases from melanoma treated with combined-modality therapy. Methods and Materials: Between 1983 and 2003, 466 patients with nodal metastases from melanoma were managed with lymphadenectomy and radiation, with or without systemic therapy. Surgery was a therapeutic procedure for clinically apparent nodal disease in 434 patients (regionally advanced nodal disease). Adjuvant radiation was generally delivered with a hypofractionated regimen. Adjuvant systemic therapy was delivered to 154 patients. Results: With a median follow-up of 4.2 years, 252 patients relapsed and 203 patients died of progressive disease. The actuarial 5-year disease-specific, disease-free, and distant metastasis-free survival rates were 49%, 42%, and 44%, respectively. By multivariate analysis, increasing number of involved lymph nodes and primary ulceration were associated with an inferior 5-year actuarial disease-specific and distant metastasis-free survival. Also, the number of involved lymph nodes was associated with the development of brain metastases, whereas thickness was associated with lung metastases, and primary ulceration was associated with liver metastases. The actuarial 5-year regional (in-basin) control rate for all patients was 89%, and on multivariate analysis there were no patient or disease characteristics associated with inferior regional control. The risk of lymphedema was highest for those patients with groin lymph node metastases. Conclusions: Although regional nodal disease can be satisfactorily controlled with lymphadenectomy and radiation, the risk of distant metastases and melanoma death remains high. A management approach to these patients that accounts for the competing risks of distant metastases, regional failure, and long-term toxicity is needed

  6. Face centered cubic SnSe as a Z2 trivial Dirac nodal line material

    OpenAIRE

    Tateishi, Ikuma; Matsuura, Hiroyasu

    2018-01-01

    The presence of Dirac nodal line in the time-reversal and inversion symmetric system is dictated by Z2 index when spin-orbit interaction is absent. With the first principles calculation, we show that the Dirac nodal line can emerge in Z2 trivial material by calculating the band structure of SnSe of face centered cubic lattice as an example and it becomes a topological crystalline insulator when spin-orbit interaction is taken into account. We clarify the origin of the Dirac nodal line by obta...

  7. Aircraft Nodal Data Acquisition System (ANDAS), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of an Aircraft Nodal Data Acquisition System (ANDAS) based upon the short haul Zigbee networking standard is proposed. It employs a very thin (135 um)...

  8. Nodal approximations in space and time for neutron kinetics

    International Nuclear Information System (INIS)

    Grossman, L.M.; Hennart, J.P.

    2005-01-01

    A general formalism is described of the nodal type in time and space for the neutron kinetics equations. In space, several nodal methods are given of the Raviart-Thomas type (RT0 and RT1), of the Brezzi-Douglas-Marini type (BDM0 and BDM1) and of the Brezzi-Douglas-Fortin-Marini type (BDFM 1). In time, polynomial and analytical approximations are derived. In the analytical case, they are based on the inclusion of an exponential term in the basis function. They can be continuous or discontinuous in time, leading in particular to the well-known Crank-Nicolson, Backward Euler and θ schemes

  9. Development and implementation of a set of numerical quadratures SQN and EQN type in the transport code AZTRAN

    International Nuclear Information System (INIS)

    Chepe P, M.; Xolocostli M, J. V.; Gomez T, A. M.; Del Valle G, E.

    2015-09-01

    The deterministic transport codes for analysis of nuclear reactors have been used for several years already, these codes have evolved in terms of the methodology used and the degree of accuracy, because at the present time has more computer power. In this paper, the transport code used considers the classical technique of multi-group for discretization energy, for space discretization uses the nodal methods, while for the angular discretization the discrete ordinates method is used; so that presents the development and implementation of a set of numerical quadratures of SQ N type symmetrical with the same weight for each angular direction and these are compared with the quadratures of EQ N type. The two sets of numerical quadratures were implemented in the program AZTRAN to a problem with isotropic medium in XYZ geometry, in steady state using the nodal method RTN-0 (Raviart-Thomas-Nedelec). The analyzed results correspond to the effective multiplication factor k eff and neutron angular flux with approximations from S 4 to S 16 . (Author)

  10. Analysis of the OECD main steam line break benchmark using ANC-K/MIDAC code

    International Nuclear Information System (INIS)

    Aoki, Shigeaki; Tahara, Yoshihisa; Suemura, Takayuki; Ogawa, Junto

    2004-01-01

    A three-dimensional (3D) neutronics and thermal-and-hydraulics (T/H) coupling code ANC-K/MIDAC has been developed. It is the combination of the 3D nodal kinetic code ANC-K and the 3D drift flux thermal hydraulic code MIDAC. In order to verify the adequacy of this code, we have performed several international benchmark problems. In this paper, we show the calculation results of ''OECD Main Steam Line Break Benchmark (MSLB benchmark)'', which gives the typical local power peaking problem. And we calculated the return-to-power scenario of the Phase II problem. The comparison of the results shows the very good agreement of important core parameters between the ANC-K/MIDAC and other participant codes. (author)

  11. Description and applicability of the BEFEM-CODE

    Energy Technology Data Exchange (ETDEWEB)

    Groth, T.

    1980-05-15

    The BEFEM-CODE, developed for rock mechanics problems in hard rock with joints, is a simple FEM code constructed using triangular and quadrilateral elements. As an option, a joint element of the Goodman type may be used. The Cook-Pian type quadrilateral stress hybrid element was introduced into the version of the code used for the Naesliden project, to replace the constant stress quadrilateral elements. This hybrid element, derived with assumed stress distributions, simplifies the excavation process for use in non-linear models. The shear behavior of the Goodman 1976 joint element has been replaced by Goodman's 1968 formulation. This element makes it possible to take dilation into account, but it was not considered necessary to use dilation to simulate proper joint behavior in the Naesliden project. The code uses Barton's shear strength criteria. Excessive nodal forces due to failure and non-linearities in the joint elements are redistributed with stress transfer iterations. Convergence can be speeded up by dividing each excavation sequence into several loadsteps in which the stiffness matrix is recalculated.

  12. A semi-experimental nodal synthesis method for the on-line reconstruction of three-dimensional neutron flux-shapes and reactivity

    International Nuclear Information System (INIS)

    Jacqmin, R.P.

    1991-01-01

    The safety and optimal performance of large, commercial, light-water reactors require the knowledge at all time of the neutron-flux distribution in the core. In principle, this information can be obtained by solving the time-dependent neutron diffusion equations. However, this approach is complicated and very expensive. Sufficiently accurate, real-time calculations (time scale of approximately one second) are not yet possible on desktop computers, even with fast-running, nodal kinetics codes. A semi-experimental, nodal synthesis method which avoids the solution of the time-dependent, neutron diffusion equations is described. The essential idea of this method is to approximate instantaneous nodal group-fluxes by a linear combination of K, precomputed, three-dimensional, static expansion-functions. The time-dependent coefficients of the combination are found from the requirement that the reconstructed flux-distribution agree in a least-squares sense with the readings of J (≥K) fixed, prompt-responding neutron-detectors. Possible numerical difficulties with the least-squares solution of the ill-conditioned, J-by-K system of equations are brought under complete control by the use of a singular-value-decomposition technique. This procedure amounts to the rearrangement of the original, linear combination of K expansion functions into an equivalent more convenient, linear combination of R (≤K) orthogonalized ''modes'' of decreasing magnitude. Exceedingly small modes are zeroed to eliminate any risk of roundoff-error amplification, and to assure consistency with the limited accuracy of the data. Additional modes are zeroed when it is desirable to limit the sensitivity of the results to measurement noise

  13. A semi-experimental nodal synthesis method for the on-line reconstruction of three-dimensional neutron flux-shapes and reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Jacqmin, R.P.

    1991-12-10

    The safety and optimal performance of large, commercial, light-water reactors require the knowledge at all time of the neutron-flux distribution in the core. In principle, this information can be obtained by solving the time-dependent neutron diffusion equations. However, this approach is complicated and very expensive. Sufficiently accurate, real-time calculations (time scale of approximately one second) are not yet possible on desktop computers, even with fast-running, nodal kinetics codes. A semi-experimental, nodal synthesis method which avoids the solution of the time-dependent, neutron diffusion equations is described. The essential idea of this method is to approximate instantaneous nodal group-fluxes by a linear combination of K, precomputed, three-dimensional, static expansion-functions. The time-dependent coefficients of the combination are found from the requirement that the reconstructed flux-distribution agree in a least-squares sense with the readings of J ({ge}K) fixed, prompt-responding neutron-detectors. Possible numerical difficulties with the least-squares solution of the ill-conditioned, J-by-K system of equations are brought under complete control by the use of a singular-value-decomposition technique. This procedure amounts to the rearrangement of the original, linear combination of K expansion functions into an equivalent more convenient, linear combination of R ({le}K) orthogonalized modes'' of decreasing magnitude. Exceedingly small modes are zeroed to eliminate any risk of roundoff-error amplification, and to assure consistency with the limited accuracy of the data. Additional modes are zeroed when it is desirable to limit the sensitivity of the results to measurement noise.

  14. Development of an environment-insensitive PWR radial reflector model applicable to modern nodal reactor analysis method

    International Nuclear Information System (INIS)

    Mueller, E.M.

    1989-05-01

    This research is concerned with the development and analysis of methods for generating equivalent nodal diffusion parameters for the radial reflector of a PWR. The requirement that the equivalent reflector data be insensitive to changing core conditions is set as a principle objective. Hence, the environment dependence of the currently most reputable nodal reflector models, almost all of which are based on the nodal equivalence theory homgenization methods of Koebke and Smith, is investigated in detail. For this purpose, a special 1-D nodal equivalence theory reflector model, called the NGET model, is developed and used in 1-D and 2-D numerical experiments. The results demonstrate that these modern radial reflector models exhibit sufficient sensitivity to core conditions to warrant the development of alternative models. A new 1-D nodal reflector model, which is based on a novel combination of the nodal equivalence theory and the response matrix homogenization methods, is developed. Numerical results varify that this homogenized baffle/reflector model, which is called the NGET-RM model, is highly insensitive to changing core conditions. It is also shown that the NGET-RM model is not inferior to any of the existing 1-D nodal reflector models and that it has features which makes it an attractive alternative model for multi-dimensional reactor analysis. 61 refs., 40 figs., 36 tabs

  15. A Hybrid Interpolation Method for Geometric Nonlinear Spatial Beam Elements with Explicit Nodal Force

    Directory of Open Access Journals (Sweden)

    Huiqing Fang

    2016-01-01

    Full Text Available Based on geometrically exact beam theory, a hybrid interpolation is proposed for geometric nonlinear spatial Euler-Bernoulli beam elements. First, the Hermitian interpolation of the beam centerline was used for calculating nodal curvatures for two ends. Then, internal curvatures of the beam were interpolated with a second interpolation. At this point, C1 continuity was satisfied and nodal strain measures could be consistently derived from nodal displacement and rotation parameters. The explicit expression of nodal force without integration, as a function of global parameters, was founded by using the hybrid interpolation. Furthermore, the proposed beam element can be degenerated into linear beam element under the condition of small deformation. Objectivity of strain measures and patch tests are also discussed. Finally, four numerical examples are discussed to prove the validity and effectivity of the proposed beam element.

  16. The statistics of the points where nodal lines intersect a reference curve

    International Nuclear Information System (INIS)

    Aronovitch, Amit; Smilansky, Uzy

    2007-01-01

    We study the intersection points of a fixed planar curve Γ with the nodal set of a translationally invariant and isotropic Gaussian random field Ψ(r) and the zeros of its normal derivative across the curve. The intersection points form a discrete random process which is the object of this study. The field probability distribution function is completely specified by the correlation G(|r - r'|) = (Ψ(r)Ψ(r')). Given an arbitrary G(|r - r'|), we compute the two-point correlation function of the point process on the line, and derive other statistical measures (repulsion, rigidity) which characterize the short- and long-range correlations of the intersection points. We use these statistical measures to quantitatively characterize the complex patterns displayed by various kinds of nodal networks. We apply these statistics in particular to nodal patterns of random waves and of eigenfunctions of chaotic billiards. Of special interest is the observation that for monochromatic random waves, the number variance of the intersections with long straight segments grows like Lln L, as opposed to the linear growth predicted by the percolation model, which was successfully used to predict other long-range nodal properties of that field

  17. Nodal methods for calculating nuclear reactor transients, control rod patterns, and fuel pin powers

    International Nuclear Information System (INIS)

    Cho, Byungoh.

    1990-01-01

    Nodal methods which are used to calculate reactor transients, control rod patterns, and fuel pin powers are investigated. The 3-D nodal code, STORM, has been modified to perform these calculations. Several numerical examples lead to the following conclusions: (1) By employing a thermal leakage-to-absorption ratio (TLAR) approximation for the spatial shape of the thermal fluxes for the 3-D Langenbuch-Maurer-Werner (LMW) and the superprompt critical transient problems, the convergence of the conventional two-group scheme is accelerated. (2) By employing the steepest-ascent hill climbing search with heuristic strategies, Optimum Control Rod Pattern Searcher (OCRPS) is developed for solving control rod positioning problem in BWRs. Using the method of approximation programming the objective function and the nuclear and thermal-hydraulic constraints are modified as heuristic functions that guide the search. The test calculations have demonstrated that, for the first cycle of the Edwin Hatch Unit number-sign 2 reactor, OCRPS shows excellent performance for finding a series of optimum control rod patterns for six burnup steps during the operating cycle. (3) For the modified two-dimensional EPRI-9R problem, the least square second-order polynomial flux expansion method was demonstrated to be computationally about 30 times faster than a fine-mesh finite difference calculation in order to achieve comparable accuracy for pin powers. The basic assumption of this method is that the reconstructed flux can be expressed as a product of an assembly form function and a second-order polynomial function

  18. Development of Regulatory Audit Core Safety Code : COREDAX

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chae Yong; Jo, Jong Chull; Roh, Byung Hwan [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Lee, Jae Jun; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2005-07-01

    Korea Institute of Nuclear Safety (KINS) has developed a core neutronics simulator, COREDAX code, for verifying core safety of SMART-P reactor, which is technically supported by Korea Advanced Institute of Science and Technology (KAIST). The COREDAX code would be used for regulatory audit calculations of 3- dimendional core neutronics. The COREDAX code solves the steady-state and timedependent multi-group neutron diffusion equation in hexagonal geometry as well as rectangular geometry by analytic function expansion nodal (AFEN) method. AFEN method was developed at KAIST, and it was internationally verified that its accuracy is excellent. The COREDAX code is originally programmed based on the AFEN method. Accuracy of the code on the AFEN method was excellent for the hexagonal 2-dimensional problems, but there was a need for improvement for hexagonal-z 3-dimensional problems. Hence, several solution routines of the AFEN method are improved, and finally the advanced AFEN method is created. COREDAX code is based on the advanced AFEN method . The initial version of COREDAX code is to complete a basic framework, performing eigenvalue calculations and kinetics calculations with thermal-hydraulic feedbacks, for audit calculations of steady-state core design and reactivity-induced accidents of SMART-P reactor. This study describes the COREDAX code for hexagonal geometry.

  19. Isospectral graphs with identical nodal counts

    International Nuclear Information System (INIS)

    Oren, Idan; Band, Ram

    2012-01-01

    According to a recent conjecture, isospectral objects have different nodal count sequences (Gnutzmann et al 2005 J. Phys. A: Math. Gen. 38 8921–33). We study generalized Laplacians on discrete graphs, and use them to construct the first non-trivial counterexamples to this conjecture. In addition, these examples demonstrate a surprising connection between isospectral discrete and quantum graphs. (paper)

  20. A nodal method based on matrix-response method

    International Nuclear Information System (INIS)

    Rocamora Junior, F.D.; Menezes, A.

    1982-01-01

    A nodal method based in the matrix-response method, is presented, and its application to spatial gradient problems, such as those that exist in fast reactors, near the core - blanket interface, is investigated. (E.G.) [pt

  1. Patterns of failure after the reduced volume approach for elective nodal irradiation in nasopharyngeal carcinoma.

    Science.gov (United States)

    Seol, Ki Ho; Lee, Jeong Eun

    2016-03-01

    To evaluate the patterns of nodal failure after radiotherapy (RT) with the reduced volume approach for elective neck nodal irradiation (ENI) in nasopharyngeal carcinoma (NPC). Fifty-six NPC patients who underwent definitive chemoradiotherapy with the reduced volume approach for ENI were reviewed. The ENI included retropharyngeal and level II lymph nodes, and only encompassed the echelon inferior to the involved level to eliminate the entire neck irradiation. Patients received either moderate hypofractionated intensity-modulated RT for a total of 72.6 Gy (49.5 Gy to elective nodal areas) or a conventional fractionated three-dimensional conformal RT for a total of 68.4-72 Gy (39.6-45 Gy to elective nodal areas). Patterns of failure, locoregional control, and survival were analyzed. The median follow-up was 38 months (range, 3 to 80 months). The out-of-field nodal failure when omitting ENI was none. Three patients developed neck recurrences (one in-field recurrence in the 72.6 Gy irradiated nodal area and two in the elective irradiated region of 39.6 Gy). Overall disease failure at any site developed in 11 patients (19.6%). Among these, there were six local failures (10.7%), three regional failures (5.4%), and five distant metastases (8.9%). The 3-year locoregional control rate was 87.1%, and the distant failure-free rate was 90.4%; disease-free survival and overall survival at 3 years was 80% and 86.8%, respectively. No patient developed nodal failure in the omitted ENI site. Our investigation has demonstrated that the reduced volume approach for ENI appears to be a safe treatment approach in NPC.

  2. Patterns of failure after the reduced volume approach for elective nodal irradiation in nasopharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Ki Ho; Lee, Jeong Eun [Dept. of Radiation Oncology, Kyungpook National University School of Medicine, Daegu (Korea, Republic of)

    2016-03-15

    To evaluate the patterns of nodal failure after radiotherapy (RT) with the reduced volume approach for elective neck nodal irradiation (ENI) in nasopharyngeal carcinoma (NPC). Fifty-six NPC patients who underwent definitive chemoradiotherapy with the reduced volume approach for ENI were reviewed. The ENI included retropharyngeal and level II lymph nodes, and only encompassed the echelon inferior to the involved level to eliminate the entire neck irradiation. Patients received either moderate hypofractionated intensity-modulated RT for a total of 72.6 Gy (49.5 Gy to elective nodal areas) or a conventional fractionated three-dimensional conformal RT for a total of 68.4-72 Gy (39.6-45 Gy to elective nodal areas). Patterns of failure, locoregional control, and survival were analyzed. The median follow-up was 38 months (range, 3 to 80 months). The out-of-field nodal failure when omitting ENI was none. Three patients developed neck recurrences (one in-field recurrence in the 72.6 Gy irradiated nodal area and two in the elective irradiated region of 39.6 Gy). Overall disease failure at any site developed in 11 patients (19.6%). Among these, there were six local failures (10.7%), three regional failures (5.4%), and five distant metastases (8.9%). The 3-year locoregional control rate was 87.1%, and the distant failure-free rate was 90.4%; disease-free survival and overall survival at 3 years was 80% and 86.8%, respectively. No patient developed nodal failure in the omitted ENI site. Our investigation has demonstrated that the reduced volume approach for ENI appears to be a safe treatment approach in NPC.

  3. Patterns of failure after the reduced volume approach for elective nodal irradiation in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Seol, Ki Ho; Lee, Jeong Eun

    2016-01-01

    To evaluate the patterns of nodal failure after radiotherapy (RT) with the reduced volume approach for elective neck nodal irradiation (ENI) in nasopharyngeal carcinoma (NPC). Fifty-six NPC patients who underwent definitive chemoradiotherapy with the reduced volume approach for ENI were reviewed. The ENI included retropharyngeal and level II lymph nodes, and only encompassed the echelon inferior to the involved level to eliminate the entire neck irradiation. Patients received either moderate hypofractionated intensity-modulated RT for a total of 72.6 Gy (49.5 Gy to elective nodal areas) or a conventional fractionated three-dimensional conformal RT for a total of 68.4-72 Gy (39.6-45 Gy to elective nodal areas). Patterns of failure, locoregional control, and survival were analyzed. The median follow-up was 38 months (range, 3 to 80 months). The out-of-field nodal failure when omitting ENI was none. Three patients developed neck recurrences (one in-field recurrence in the 72.6 Gy irradiated nodal area and two in the elective irradiated region of 39.6 Gy). Overall disease failure at any site developed in 11 patients (19.6%). Among these, there were six local failures (10.7%), three regional failures (5.4%), and five distant metastases (8.9%). The 3-year locoregional control rate was 87.1%, and the distant failure-free rate was 90.4%; disease-free survival and overall survival at 3 years was 80% and 86.8%, respectively. No patient developed nodal failure in the omitted ENI site. Our investigation has demonstrated that the reduced volume approach for ENI appears to be a safe treatment approach in NPC

  4. Nodal prices determination with wind integration for radial ...

    African Journals Online (AJOL)

    With competitive electricity market operation, open access to the transmission and distribution network is essential ... The results have been obtained for IEEE 33 ...... The value of intermittent wind DG under nodal prices and amp – mile tariffs.

  5. Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates

    Science.gov (United States)

    Chang, Shu-Ming; Lin, Chang-Shou; Lin, Tai-Chia; Lin, Wen-Wei

    2004-09-01

    In this paper, we study the distribution of m segregated nodal domains of the m-mixture of Bose-Einstein condensates under positive and large repulsive scattering lengths. It is shown that components of positive bound states may repel each other and form segregated nodal domains as the repulsive scattering lengths go to infinity. Efficient numerical schemes are created to confirm our theoretical results and discover a new phenomenon called verticillate multiplying, i.e., the generation of multiple verticillate structures. In addition, our proposed Gauss-Seidel-type iteration method is very effective in that it converges linearly in 10-20 steps.

  6. Discontinuous nodal schemes applied to the bidimensional neutron transport equation

    International Nuclear Information System (INIS)

    Delfin L, A.; Valle G, E. Del; Hennart B, J.P.

    1996-01-01

    In this paper several strong discontinuous nodal schemes are described, starting from the one that has only two interpolation parameters per cell to the one having ten. Their application to the spatial discretization of the neutron transport equation in X-Y geometry is also described, giving, for each one of the nodal schemes, the approximation for the angular neutron flux that includes the set of interpolation parameters and the corresponding polynomial space. Numerical results were obtained for several test problems presenting here the problem with the highest degree of difficulty and their comparison with published results 1,2 . (Author)

  7. A study of the literature on nodal methods in reactor physics calculations

    International Nuclear Information System (INIS)

    Van de Wetering, T.F.H.

    1993-01-01

    During the last few decades several calculation methods have been developed for the three-dimensional analysis of a reactor core. A literature survey was carried out to gain insights in the starting points and method of operation of the advanced nodal methods. These methods are applied in reactor core analyses of large nuclear power reactors, because of their high computing speed. The so-called Nodal-Expansion method is described in detail

  8. Assessment of RELAP5/MOD2 code using loss of offsite power transient data of KNU [Korea Nuclear Unit] No. 1 Plant

    International Nuclear Information System (INIS)

    Chung, Bud-Dong; Kim, Hho-Jung

    1990-04-01

    This report presents a code assessment study based on a real plant transient that occurred on June 9, 1981 at the KNU number-sign 1 (Korea Nuclear Unit Number 1). KNU number-sign 1 is a two-loop Westinghouse PWR plant of 587 Mwe. The loss of offsite power transient occurred at the 77.5% reactor power with 0.5%/hr power ramp. The real plant data were collected from available on-line plant records and computer diagnostics. The transient was simulated by RELAP5/MOD2/36.05 and the results were compared with the plant data to assess the code weaknesses and strengths. Some nodalization studies were performed to contribute to developing a guideline for PWR nodalization for the transient analysis. 5 refs., 18 figs., 3 tabs

  9. Computer codes for the analysis of flask impact problems

    International Nuclear Information System (INIS)

    Neilson, A.J.

    1984-09-01

    This review identifies typical features of the design of transportation flasks and considers some of the analytical tools required for the analysis of impact events. Because of the complexity of the physical problem, it is unlikely that a single code will adequately deal with all the aspects of the impact incident. Candidate codes are identified on the basis of current understanding of their strengths and limitations. It is concluded that the HONDO-II, DYNA3D AND ABAQUS codes which ar already mounted on UKAEA computers will be suitable tools for use in the analysis of experiments conducted in the proposed AEEW programme and of general flask impact problems. Initial attention should be directed at the DYNA3D and ABAQUS codes with HONDO-II being reserved for situations where the three-dimensional elements of DYNA3D may provide uneconomic simulations in planar or axisymmetric geometries. Attention is drawn to the importance of access to suitable mesh generators to create the nodal coordinate and element topology data required by these structural analysis codes. (author)

  10. Interplay between short-range correlated disorder and Coulomb interaction in nodal-line semimetals

    Science.gov (United States)

    Wang, Yuxuan; Nandkishore, Rahul M.

    2017-09-01

    In nodal-line semimetals, Coulomb interactions and short-range correlated disorder are both marginal perturbations to the clean noninteracting Hamiltonian. We analyze their interplay using a weak-coupling renormalization group approach. In the clean case, the Coulomb interaction has been found to be marginally irrelevant, leading to Fermi liquid behavior. We extend the analysis to incorporate the effects of disorder. The nodal line structure gives rise to kinematical constraints similar to that for a two-dimensional Fermi surface, which plays a crucial role in the one-loop renormalization of the disorder couplings. For a twofold degenerate nodal loop (Weyl loop), we show that disorder flows to strong coupling along a unique fixed trajectory in the space of symmetry inequivalent disorder couplings. Along this fixed trajectory, all symmetry inequivalent disorder strengths become equal. For a fourfold degenerate nodal loop (Dirac loop), disorder also flows to strong coupling, however, the strengths of symmetry inequivalent disorder couplings remain different. We show that feedback from disorder reverses the sign of the beta function for the Coulomb interaction, causing the Coulomb interaction to flow to strong coupling as well. However, the Coulomb interaction flows to strong coupling asymptotically more slowly than disorder. Extrapolating our results to strong coupling, we conjecture that at low energies nodal line semimetals should be described by a noninteracting nonlinear sigma model. We discuss the relation of our results with possible many-body localization at zero temperatures in such materials.

  11. Group-decoupled multi-group pin power reconstruction utilizing nodal solution 1D flux profiles

    International Nuclear Information System (INIS)

    Yu, Lulin; Lu, Dong; Zhang, Shaohong; Wang, Dezhong

    2014-01-01

    Highlights: • A direct fitting multi-group pin power reconstruction method is developed. • The 1D nodal solution flux profiles are used as the condition. • The least square fit problem is analytically solved. • A slowing down source improvement method is applied. • The method shows good accuracy for even challenging problems. - Abstract: A group-decoupled direct fitting method is developed for multi-group pin power reconstruction, which avoids both the complication of obtaining 2D analytic multi-group flux solution and any group-coupled iteration. A unique feature of the method is that in addition to nodal volume and surface average fluxes and corner fluxes, transversely-integrated 1D nodal solution flux profiles are also used as the condition to determine the 2D intra-nodal flux distribution. For each energy group, a two-dimensional expansion with a nine-term polynomial and eight hyperbolic functions is used to perform a constrained least square fit to the 1D intra-nodal flux solution profiles. The constraints are on the conservation of nodal volume and surface average fluxes and corner fluxes. Instead of solving the constrained least square fit problem numerically, we solve it analytically by fully utilizing the symmetry property of the expansion functions. Each of the 17 unknown expansion coefficients is expressed in terms of nodal volume and surface average fluxes, corner fluxes and transversely-integrated flux values. To determine the unknown corner fluxes, a set of linear algebraic equations involving corner fluxes is established via using the current conservation condition on all corners. Moreover, an optional slowing down source improvement method is also developed to further enhance the accuracy of the reconstructed flux distribution if needed. Two test examples are shown with very good results. One is a four-group BWR mini-core problem with all control blades inserted and the other is the seven-group OECD NEA MOX benchmark, C5G7

  12. Hybrid nodal methods in the solution of the diffusion equations in X Y geometry

    International Nuclear Information System (INIS)

    Hernandez M, N.; Alonso V, G.; Valle G, E. del

    2003-01-01

    In 1979, Hennart and collaborators applied several schemes of classic finite element in the numerical solution of the diffusion equations in X Y geometry and stationary state. Almost two decades then, in 1996, himself and other collaborators carried out a similar work but using nodal schemes type finite element. Continuing in this last direction, in this work a group it is described a set of several Hybrid Nodal schemes denominated (NH) as well as their application to solve the diffusion equations in multigroup in stationary state and X Y geometry. The term hybrid nodal it means that such schemes interpolate not only Legendre moments of face and of cell but also the values of the scalar flow of neutrons in the four corners of each cell or element of the spatial discretization of the domain of interest. All the schemes here considered are polynomials like they were it their predecessors. Particularly, its have developed and applied eight different hybrid nodal schemes that its are very nearby related with those developed by Hennart and collaborators in the past. It is treated of schemes in those that nevertheless that decreases the number of interpolation parameters it is conserved the accurate in relation to the bi-quadratic and bi-cubic schemes. Of these eight, three were described and applied in a previous work. It is the bi-lineal classic scheme as well as the hybrid nodal schemes, bi-quadratic and bi-cubic for that here only are described the other 5 hybrid nodal schemes although they are provided numerical results for several test problems with all them. (Author)

  13. Radiological signs of extra nodal abdominal involvements in lymphoma

    International Nuclear Information System (INIS)

    Carro, A.I.; Alegre, N.; Cervera, J.L.; Montero, A.I.

    1998-01-01

    To assess abdominal CT images in lymphoma patients for the study of extra nodal abdominal involvement. Ninety-two patients diagnosed as having lymphoma were studied retrospectively. All the patients underwent abdominopelvic CT with oral and intravenous contrast (except in one patient who was allergic). In every case, the diagnosis was confirmed by biopsy or radiological follow-up after treatment had been completed. Fifty-two patients (56.5%) presented infiltration of extra nodal organs. The organs most frequently involved were liver and spleen, followed by the gastrointestinal tract, the musculoskeletal system and the genitourinary tract. The findings in this study coincide with those reported elsewhere with the exception of the splenic involvement the incidence of which was lower in the present series. (Author) 17 refs

  14. Applications of a systematic homogenization theory for nodal diffusion methods

    International Nuclear Information System (INIS)

    Zhang, Hong-bin; Dorning, J.J.

    1992-01-01

    The authors recently have developed a self-consistent and systematic lattice cell and fuel bundle homogenization theory based on a multiple spatial scales asymptotic expansion of the transport equation in the ratio of the mean free path to the reactor characteristics dimension for use with nodal diffusion methods. The mathematical development leads naturally to self-consistent analytical expressions for homogenized diffusion coefficients and cross sections and flux discontinuity factors to be used in nodal diffusion calculations. The expressions for the homogenized nuclear parameters that follow from the systematic homogenization theory (SHT) are different from those for the traditional flux and volume-weighted (FVW) parameters. The calculations summarized here show that the systematic homogenization theory developed recently for nodal diffusion methods yields accurate values for k eff and assembly powers even when compared with the results of a fine mesh transport calculation. Thus, it provides a practical alternative to equivalence theory and GET (Ref. 3) and to simplified equivalence theory, which requires auxiliary fine-mesh calculations for assemblies embedded in a typical environment to determine the discontinuity factors and the equivalent diffusion coefficient for a homogenized assembly

  15. A coarse-mesh nodal method-diffusive-mesh finite difference method

    International Nuclear Information System (INIS)

    Joo, H.; Nichols, W.R.

    1994-01-01

    Modern nodal methods have been successfully used for conventional light water reactor core analyses where the homogenized, node average cross sections (XSs) and the flux discontinuity factors (DFs) based on equivalence theory can reliably predict core behavior. For other types of cores and other geometries characterized by tightly-coupled, heterogeneous core configurations, the intranodal flux shapes obtained from a homogenized nodal problem may not accurately portray steep flux gradients near fuel assembly interfaces or various reactivity control elements. This may require extreme values of DFs (either very large, very small, or even negative) to achieve a desired solution accuracy. Extreme values of DFs, however, can disrupt the convergence of the iterative methods used to solve for the node average fluxes, and can lead to a difficulty in interpolating adjacent DF values. Several attempts to remedy the problem have been made, but nothing has been satisfactory. A new coarse-mesh nodal scheme called the Diffusive-Mesh Finite Difference (DMFD) technique, as contrasted with the coarse-mesh finite difference (CMFD) technique, has been developed to resolve this problem. This new technique and the development of a few-group, multidimensional kinetics computer program are described in this paper

  16. A variational nodal diffusion method of high accuracy; Varijaciona nodalna difuziona metoda visoke tachnosti

    Energy Technology Data Exchange (ETDEWEB)

    Tomasevic, Dj; Altiparmarkov, D [Institut za Nuklearne Nauke Boris Kidric, Belgrade (Yugoslavia)

    1988-07-01

    A variational nodal diffusion method with accurate treatment of transverse leakage shape is developed and presented in this paper. Using Legendre expansion in transverse coordinates higher order quasi-one-dimensional nodal equations are formulated. Numerical solution has been carried out using analytical solutions in alternating directions assuming Legendre expansion of the RHS term. The method has been tested against 2D and 3D IAEA benchmark problem, as well as 2D CANDU benchmark problem. The results are highly accurate. The first order approximation yields to the same order of accuracy as the standard nodal methods with quadratic leakage approximation, while the second order reaches reference solution. (author)

  17. TISKTH-3: a couple neutronics/thermal-hydraulics code for the transient analysis of light water reactors

    International Nuclear Information System (INIS)

    Peng Muzhang; Zhang Quan; Wang Guoli; Zhang Yuman

    1988-01-01

    TISKTH-3 is a coupled neutronics/thermal-hydraulics code for the transient analysis. A 3-dimensional neutron kinetics equation solved by the Nodal Green's Function Method is used for the neutronics model of the code. A homogeneous equilibrium model with a complete boiling curve and two numerical solutions of the implicit and explicit scheme is used for the thermal-hydraulics model of the code. A 2-dimensional heat conduction equation with variable conductivity solved by the method of weighted residuals is used for the fuel rod heat transfer model of the code. TISKTH-3 is able to analyze the fast transient process and complicate accident situations in the core. The initative applications have shown that the stability and convergency in the calculations with the code are satisfactory

  18. TISKTH-3: a couple neutronics/thermal-hydraulics code for the transient analysis of light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Muzhang, Peng; Quan, Zhang; Guoli, Wang; Yuman, Zhang

    1988-03-01

    TISKTH-3 is a coupled neutronics/thermal-hydraulics code for the transient analysis. A 3-dimensional neutron kinetics equation solved by the Nodal Green's Function Method is used for the neutronics model of the code. A homogeneous equilibrium model with a complete boiling curve and two numerical solutions of the implicit and explicit scheme is used for the thermal-hydraulics model of the code. A 2-dimensional heat conduction equation with variable conductivity solved by the method of weighted residuals is used for the fuel rod heat transfer model of the code. TISKTH-3 is able to analyze the fast transient process and complicate accident situations in the core. The initative applications have shown that the stability and convergency in the calculations with the code are satisfactory.

  19. Vectorization, parallelization and porting of nuclear codes. Vectorization and parallelization. Progress report fiscal 1999

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Masaaki; Ogasawara, Shinobu; Kume, Etsuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ishizuki, Shigeru; Nemoto, Toshiyuki; Kawasaki, Nobuo; Kawai, Wataru [Fujitsu Ltd., Tokyo (Japan); Yatake, Yo-ichi [Hitachi Ltd., Tokyo (Japan)

    2001-02-01

    Several computer codes in the nuclear field have been vectorized, parallelized and trans-ported on the FUJITSU VPP500 system, the AP3000 system, the SX-4 system and the Paragon system at Center for Promotion of Computational Science and Engineering in Japan Atomic Energy Research Institute. We dealt with 18 codes in fiscal 1999. These results are reported in 3 parts, i.e., the vectorization and the parallelization part on vector processors, the parallelization part on scalar processors and the porting part. In this report, we describe the vectorization and parallelization on vector processors. In this vectorization and parallelization on vector processors part, the vectorization of Relativistic Molecular Orbital Calculation code RSCAT, a microscopic transport code for high energy nuclear collisions code JAM, three-dimensional non-steady thermal-fluid analysis code STREAM, Relativistic Density Functional Theory code RDFT and High Speed Three-Dimensional Nodal Diffusion code MOSRA-Light on the VPP500 system and the SX-4 system are described. (author)

  20. Application of the HGPT methodology of reactor operation problems with a nodal mixed method

    International Nuclear Information System (INIS)

    Baudron, A.M.; Bruna, G.B.; Gandini, A.; Lautard, J.J.; Monti, S.; Pizzigati, G.

    1998-01-01

    The heuristically based generalized perturbation theory (HGPT), to first and higher order, applied to the neutron field of a reactor system, is discussed in relation to quasistatic problems. This methodology is of particular interest in reactor operation. In this application it may allow an on-line appraisal of the main physical responses of the reactor system when subject to alterations relevant to normal system exploitation, e.g. control rod movement, and/or soluble boron concentration changes to be introduced, for instance, for compensating power level variations following electrical network demands. In this paper, after describing the main features of the theory, its implementation into the diffusion, 3D mixed dual nodal code MINOS of the SAPHYR system is presented. The results from a small scale investigation performed on a simplified PWR system corroborate the validity of the methodology proposed

  1. Calculation of mixed HEU-LEU cores for the HOR research reactor with the scale code system

    International Nuclear Information System (INIS)

    Leege, P.F.A. de; Gibcus, H.P.M.; Hoogenboom, J.E.; Vries, J.W. de

    1997-01-01

    The HOR reactor of Interfaculty Reactor Institute (IRI), Delft, The Netherlands, will be converted to use low enriched fuel (LEU) assemblies. As there are still many usable high enriched (HEU) fuel assemblies present, there will be a considerable reactor operation time with mixed cores with both HEU and LEU fuel assemblies. At IRI a comprehensive reactor physics code system and evaluated nuclear data is implemented for detailed core calculations. One of the backbones of the IRI code system is the well-known SCALE code system package. Full core calculations are performed with the diffusion theory code BOLD VENTURE, the nodal code SILWER, and the Monte Carlo code KENO Va. Results are displayed of a strategy from a HEU core to a mixed HEU-LEU core and eventually a LEU core. (author)

  2. Pressure-induced organic topological nodal-line semimetal in the three-dimensional molecular crystal Pd (dddt) 2

    Science.gov (United States)

    Liu, Zhao; Wang, Haidi; Wang, Z. F.; Yang, Jinlong; Liu, Feng

    2018-04-01

    The nodal-line semimetal represents a class of topological materials characterized with highest band degeneracy. It is usually found in inorganic materials of high crystal symmetry or a minimum symmetry of inversion aided with accidental band degeneracy [Phys. Rev. Lett. 118, 176402 (2017), 10.1103/PhysRevLett.118.176402]. Based on first-principles band structure, Wannier charge center, and topological surface state calculations, here we predict a pressure-induced topological nodal-line semimetal in the absence of spin-orbit coupling (SOC) in the synthesized single-component 3D molecular crystal Pd (dddt) 2 . We show a Γ -centered single nodal line undulating within a narrow energy window across the Fermi level. This intriguing nodal line is generated by pressure-induced accidental band degeneracy, without protection from any crystal symmetry. When SOC is included, the fourfold degenerated nodal line is gapped and Pd (dddt) 2 becomes a strong 3D topological metal with an Z2 index of (1;000). However, the tiny SOC gap makes it still possible to detect the nodal-line properties experimentally. Our findings afford an attractive route for designing and realizing topological states in 3D molecular crystals, as they are weakly bonded through van der Waals forces with a low crystal symmetry so that their electronic structures can be easily tuned by pressure.

  3. Radiotherapy for esthesioneuroblastoma: is elective nodal irradiation warranted in the multimodality treatment approach?

    Science.gov (United States)

    Noh, O Kyu; Lee, Sang-wook; Yoon, Sang Min; Kim, Sung Bae; Kim, Sang Yoon; Kim, Chang Jin; Jo, Kyung Ja; Choi, Eun Kyung; Song, Si Yeol; Kim, Jong Hoon; Ahn, Seung Do

    2011-02-01

    The role of elective nodal irradiation (ENI) in radiotherapy for esthesioneuroblastoma (ENB) has not been clearly defined. We analyzed treatment outcomes of patients with ENB and the frequency of cervical nodal failure in the absence of ENI. Between August 1996 and December 2007, we consulted with 19 patients with ENB regarding radiotherapy. Initial treatment consisted of surgery alone in 2 patients; surgery and postoperative radiotherapy in 4; surgery and adjuvant chemotherapy in 1; surgery, postoperative radiotherapy, and chemotherapy in 3; and chemotherapy followed by radiotherapy or concurrent chemoradiotherapy in 5. Five patients did not receive planned radiotherapy because of disease progression. Including 2 patients who received salvage radiotherapy, 14 patients were treated with radiotherapy. Elective nodal irradiation was performed in 4 patients with high-risk factors, including 3 with cervical lymph node metastasis at presentation. Fourteen patients were analyzable, with a median follow-up of 27 months (range, 7-64 months). The overall 3-year survival rate was 73.4%. Local failure occurred in 3 patients (21.4%), regional cervical failure in 3 (21.4%), and distant failure in 2 (14.3%). No cervical nodal failure occurred in patients treated with combined systemic chemotherapy regardless of ENI. Three cervical failures occurred in the 4 patients treated with ENI or neck dissection (75%), none of whom received systemic chemotherapy. ENI during radiotherapy for ENB seems to play a limited role in preventing cervical nodal failure. Omitting ENI may be an option if patients are treated with a combination of radiotherapy and chemotherapy. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Radiotherapy for Esthesioneuroblastoma: Is Elective Nodal Irradiation Warranted in the Multimodality Treatment Approach?

    International Nuclear Information System (INIS)

    Noh, O Kyu; Lee, Sang-wook; Yoon, Sang Min; Kim, Sung Bae; Kim, Sang Yoon; Kim, Chang Jin; Jo, Kyung Ja; Choi, Eun Kyung; Song, Si Yeol; Kim, Jong Hoon; Ahn, Seung Do

    2011-01-01

    Purpose: The role of elective nodal irradiation (ENI) in radiotherapy for esthesioneuroblastoma (ENB) has not been clearly defined. We analyzed treatment outcomes of patients with ENB and the frequency of cervical nodal failure in the absence of ENI. Methods and Materials: Between August 1996 and December 2007, we consulted with 19 patients with ENB regarding radiotherapy. Initial treatment consisted of surgery alone in 2 patients; surgery and postoperative radiotherapy in 4; surgery and adjuvant chemotherapy in 1; surgery, postoperative radiotherapy, and chemotherapy in 3; and chemotherapy followed by radiotherapy or concurrent chemoradiotherapy in 5. Five patients did not receive planned radiotherapy because of disease progression. Including 2 patients who received salvage radiotherapy, 14 patients were treated with radiotherapy. Elective nodal irradiation was performed in 4 patients with high-risk factors, including 3 with cervical lymph node metastasis at presentation. Results: Fourteen patients were analyzable, with a median follow-up of 27 months (range, 7-64 months). The overall 3-year survival rate was 73.4%. Local failure occurred in 3 patients (21.4%), regional cervical failure in 3 (21.4%), and distant failure in 2 (14.3%). No cervical nodal failure occurred in patients treated with combined systemic chemotherapy regardless of ENI. Three cervical failures occurred in the 4 patients treated with ENI or neck dissection (75%), none of whom received systemic chemotherapy. Conclusions: ENI during radiotherapy for ENB seems to play a limited role in preventing cervical nodal failure. Omitting ENI may be an option if patients are treated with a combination of radiotherapy and chemotherapy.

  5. Role of CT/PET in predicting nodal disease in head and neck cancers

    International Nuclear Information System (INIS)

    Singham, S.; Iyer, G.; Clark, J.

    2009-01-01

    Full text:Introduction: Pre-treatment evaluation of the presence of cervical nodal metastases is important in head and neck cancers and has major prognostic implications. In this study, we aim to determine the accuracy of CT/PET as a tool for identifying such metastases. Methods: All patients from Royal Prince Alfred and Liverpool Hospitals, who underwent CT/PET for any cancer arising from the head and neck, and who underwent subsequent surgery (which included a neck dissection) within 8 weeks of the CT/PET were included. Nodal staging was undertaken by utilising imaging-based nodal classification, and comparison with pathologic data from the surgical specimen was made. PET was considered positive if the SUV was greater than 2. Results: We identified 111 patients from the above criteria. 80 of such patients were treated for squamous cell carcinoma (SCC). CT/PET identified unsuspected metastatic disease in 6 patients. Correlation of CT/PET findings and the presence of disease at the primary site: sensitivity: 98%, specificity: 93%, positive predictive value (PPV): 98% and negative predictive value (NPV): 93%. Correlating CT/PET findings with the presence of nodal disease at any level: sensitivity: 95%, specificity: 88%, PPV: 95% and NPV: 88%. CT/PET was anatomically accurate in predicting the site of metastases in 62/74 (84%). Conclusion: PET is accurate in predicting both presence of nodal metastases and the level of involvement. CT/PET should be undertaken as a pre-operative tool to assist in planning the extent of surgery required in head and neck cancers.

  6. MASTER- an indigenous nuclear design code of KAERI

    International Nuclear Information System (INIS)

    Cho, Byung Oh; Lee, Chang Ho; Park, Chan Oh; Lee, Chong Chul

    1996-01-01

    KAERI has recently developed the nuclear design code MASTER for the application to reactor physics analyses for pressurized water reactors. Its neutronics model solves the space-time dependent neutron diffusion equations with the advanced nodal methods. The major calculation categories of MASTER consist of microscopic depletion, steady-state and transient solution, xenon dynamics, adjoint solution and pin power and burnup reconstruction. The MASTER validation analyses, which are in progress aiming to submit the Uncertainty Topical Report to KINS in the first half of 1996, include global reactivity calculations and detailed pin-by-pin power distributions as well as in-core detector reaction rate calculations. The objective of this paper is to give an overall description of the CASMO/MASTER code system whose verification results are in details presented in the separate papers

  7. Risk of isolated nodal failure for non-small cell lung cancer (NSCLC) treated with the elective nodal irradiation (ENI) using 3D-conformal radiotherapy (3D-CRT) techniques--a retrospective analysis.

    Science.gov (United States)

    Kepka, Lucyna; Bujko, Krzysztof; Zolciak-Siwinska, Agnieszka

    2008-01-01

    To estimate retrospectively the rate of isolated nodal failures (INF) in NSCLC patients treated with the elective nodal irradiation (ENI) using 3D-conformal radiotherapy (3D-CRT). One hundred and eighty-five patients with I-IIIB stage treated with 3D-CRT in consecutive clinical trials differing in an extent of the ENI were analyzed. According to the extent of the ENI, two groups were distinguished: extended (n = 124) and limited (n = 61) ENI. INF was defined as regional nodal failure occurring without local progression. Cumulative Incidence of INF (CIINF) was evaluated by univariate and multivariate analysis with regard to prognostic factors. With a median follow up of 30 months, the two-year actuarial overall survival was 35%. The two-year CIINF rate was 12%. There were 16 (9%) INF, eight (6%) for extended and eight (13%) for limited ENI. In the univariate analysis bulky mediastinal disease (BMD), left side, higher N stage, and partial response to RT had a significant negative impact on the CIINF. BMD was the only independent predictor of the risk of incidence of the INF (p = 0.001). INF is more likely to occur in case of more advanced nodal status.

  8. Pattern of Progression after Stereotactic Body Radiotherapy for Oligometastatic Prostate Cancer Nodal Recurrences.

    Science.gov (United States)

    Ost, P; Jereczek-Fossa, B A; Van As, N; Zilli, T; Tree, A; Henderson, D; Orecchia, R; Casamassima, F; Surgo, A; Miralbell, R; De Meerleer, G

    2016-09-01

    To report the relapse pattern of stereotactic body radiotherapy (SBRT) for oligorecurrent nodal prostate cancer (PCa). PCa patients with ≤3 lymph nodes (N1/M1a) at the time of recurrence were treated with SBRT. SBRT was defined as a radiotherapy dose of at least 5 Gy per fraction to a biological effective dose of at least 80 Gy to all metastatic sites. Distant progression-free survival was defined as the time interval between the first day of SBRT and appearance of new metastatic lesions, outside the high-dose region. Relapses after SBRT were recorded and compared with the initially treated site. Secondary end points were local control, time to palliative androgen deprivation therapy and toxicity scored using the Common Terminology Criteria for Adverse Events v4.0. Overall, 89 metastases were treated in 72 patients. The median distant progression-free survival was 21 months (95% confidence interval 16-25 months) with 88% of patients having ≤3 metastases at the time of progression. The median time from first SBRT to the start of palliative androgen deprivation therapy was 44 months (95% confidence interval 17-70 months). Most relapses (68%) occurred in nodal regions. Relapses after pelvic nodal SBRT (n = 36) were located in the pelvis (n = 14), retroperitoneum (n = 1), pelvis and retroperitoneum (n = 8) or in non-nodal regions (n = 13). Relapses after SBRT for extrapelvic nodes (n = 5) were located in the pelvis (n = 1) or the pelvis and retroperitoneum (n = 4). Late grade 1 and 2 toxicity was observed in 17% (n = 12) and 4% of patients (n = 3). SBRT for oligometastatic PCa nodal recurrences is safe. Most subsequent relapses are again nodal and oligometastatic. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  9. A semi-experimental nodal synthesis method for the on-line reconstruction of three-dimensional neutron flux-shapes and reactivity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jacqmin, Robert P. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1991-12-10

    The safety and optimal performance of large, commercial, light-water reactors require the knowledge at all time of the neutron-flux distribution in the core. In principle, this information can be obtained by solving the time-dependent neutron diffusion equations. However, this approach is complicated and very expensive. Sufficiently accurate, real-time calculations (time scale of approximately one second) are not yet possible on desktop computers, even with fast-running, nodal kinetics codes. A semi-experimental, nodal synthesis method which avoids the solution of the time-dependent, neutron diffusion equations is described. The essential idea of this method is to approximate instantaneous nodal group-fluxes by a linear combination of K, precomputed, three-dimensional, static expansion-functions. The time-dependent coefficients of the combination are found from the requirement that the reconstructed flux-distribution agree in a least-squares sense with the readings of J (≥K) fixed, prompt-responding neutron-detectors. Possible numerical difficulties with the least-squares solution of the ill-conditioned, J-by-K system of equations are brought under complete control by the use of a singular-value-decomposition technique. This procedure amounts to the rearrangement of the original, linear combination of K expansion functions into an equivalent more convenient, linear combination of R (≤K) orthogonalized ``modes`` of decreasing magnitude. Exceedingly small modes are zeroed to eliminate any risk of roundoff-error amplification, and to assure consistency with the limited accuracy of the data. Additional modes are zeroed when it is desirable to limit the sensitivity of the results to measurement noise.

  10. Phase I Trial of Pelvic Nodal Dose Escalation With Hypofractionated IMRT for High-Risk Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Adkison, Jarrod B.; McHaffie, Derek R.; Bentzen, Soren M.; Patel, Rakesh R.; Khuntia, Deepak [Department of Human Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, Madison, WI (United States); Petereit, Daniel G. [Department of Radiation Oncology, John T. Vucurevich Regional Cancer Care Institute, Rapid City Regional Hospital, Rapid City, SD (United States); Hong, Theodore S.; Tome, Wolfgang [Department of Human Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, Madison, WI (United States); Ritter, Mark A., E-mail: ritter@humonc.wisc.edu [Department of Human Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, Madison, WI (United States)

    2012-01-01

    Purpose: Toxicity concerns have limited pelvic nodal prescriptions to doses that may be suboptimal for controlling microscopic disease. In a prospective trial, we tested whether image-guided intensity-modulated radiation therapy (IMRT) can safely deliver escalated nodal doses while treating the prostate with hypofractionated radiotherapy in 5 Vulgar-Fraction-One-Half weeks. Methods and Materials: Pelvic nodal and prostatic image-guided IMRT was delivered to 53 National Comprehensive Cancer Network (NCCN) high-risk patients to a nodal dose of 56 Gy in 2-Gy fractions with concomitant treatment of the prostate to 70 Gy in 28 fractions of 2.5 Gy, and 50 of 53 patients received androgen deprivation for a median duration of 12 months. Results: The median follow-up time was 25.4 months (range, 4.2-57.2). No early Grade 3 Radiation Therapy Oncology Group or Common Terminology Criteria for Adverse Events v.3.0 genitourinary (GU) or gastrointestinal (GI) toxicities were seen. The cumulative actuarial incidence of Grade 2 early GU toxicity (primarily alpha blocker initiation) was 38%. The rate was 32% for Grade 2 early GI toxicity. None of the dose-volume descriptors correlated with GU toxicity, and only the volume of bowel receiving {>=}30 Gy correlated with early GI toxicity (p = 0.029). Maximum late Grades 1, 2, and 3 GU toxicities were seen in 30%, 25%, and 2% of patients, respectively. Maximum late Grades 1 and 2 GI toxicities were seen in 30% and 8% (rectal bleeding requiring cautery) of patients, respectively. The estimated 3-year biochemical control (nadir + 2) was 81.2 {+-} 6.6%. No patient manifested pelvic nodal failure, whereas 2 experienced paraaortic nodal failure outside the field. The six other clinical failures were distant only. Conclusions: Pelvic IMRT nodal dose escalation to 56 Gy was delivered concurrently with 70 Gy of hypofractionated prostate radiotherapy in a convenient, resource-efficient, and well-tolerated 28-fraction schedule. Pelvic nodal dose

  11. Encapsulation of nodal cuttings and shoot tips for storage and exchange of cassava germplasm.

    Science.gov (United States)

    Danso, K E; Ford-Lloyd, B V

    2003-04-01

    We report the encapsulation of in vitro-derived nodal cuttings or shoot tips of cassava in 3% calcium alginate for storage and germplasm exchange purposes. Shoot regrowth was not significantly affected by the concentration of sucrose in the alginate matrix while root formation was. In contrast, increasing the sucrose concentration in the calcium chloride polymerisation medium significantly reduced regrowth from encapsulated nodal cuttings of accession TME 60444. Supplementing the alginate matrix with increased concentrations of 6-benzylaminopurine and alpha-naphthaleneacetic acid enhanced complete plant regrowth within 2 weeks. Furthermore, plant regrowth by encapsulated nodal cuttings and shoot tips was significantly affected by the duration of the storage period as shoot recovery decreased from almost 100% to 73.3% for encapsulated nodal cuttings and 94.4% to 60% for shoot tips after 28 days of storage. The high frequency of plant regrowth from alginate-coated micropropagules coupled with high viability percentage after 28 days of storage is highly encouraging for the exchange of cassava genetic resources. Such encapsulated micropropagules could be used as an alternative to synthetic seeds derived from somatic embryos.

  12. Mapping of selected markets with Nodal pricing or similar systems. Australia, New Zealand and North American power markets

    Energy Technology Data Exchange (ETDEWEB)

    Mathiesen, Vivi (ed.)

    2011-07-01

    This report shows that the principals of nodal pricing can be implemented in different ways. A common denominator for markets with nodal pricing is a central market based nodal dispatch, where prices and flows are determined simultaneously close to real time. This stands apart from the European market design, which is based on a highly simplified version of the grid, and a physical point auction day ahead. Congestion management is handled by the TSO during the operational hour and not through the market as is the case in nodal pricing systems. Nodal pricing yields optimal dispatch and congestion management through the market, and as such an optimal utilisation of energy generation and network. However, whether this short term optimisation delivers the highest overall efficiency for the market in terms of competition in the wholesale and retail market, price discovery, possibilities for hedging, long term price signals etc. is difficult to determine. The markets investigated handle issues such as market power, risk management, investment signals and retail markets in very different ways. New Zealand and PJM are examples of markets with full nodal pricing, i.e. both generators and the demand side are exposed to nodal prices. The PJM market has more 'additional features' than the New Zealand market. Examples of these are separate capacity market to trigger investments in generation and generator price caps to deal with situations of market power. In addition PJM offers liquid and mature markets for risk management, such as aggregates of nodes where market participant can chose to be settled (rather than to be settled directly at the node). A general finding though, seems to be that risk management at peripheral nodes is challenging in nodal markets, particularly for independent retailers. In New Zealand generators and retailers were permitted to 'reintegrate' in order to cope with the nodal prices. The Australian market has central market based

  13. Numerical divergence effects of equivalence theory in the nodal expansion method

    International Nuclear Information System (INIS)

    Zika, M.R.; Downar, T.J.

    1993-01-01

    Accurate solutions of the advanced nodal equations require the use of discontinuity factors (DFs) to account for the homogenization errors that are inherent in all coarse-mesh nodal methods. During the last several years, nodal equivalence theory (NET) has successfully been implemented for the Cartesian geometry and has received widespread acceptance in the light water reactor industry. The extension of NET to other reactor types has had limited success. Recent efforts to implement NET within the framework of the nodal expansion method have successfully been applied to the fast breeder reactor. However, attempts to apply the same methods to thermal reactors such as the Modular High-Temperature Gas Reactor (MHTGR) have led to numerical divergence problems that can be attributed directly to the magnitude of the DFs. In the work performed here, it was found that the numerical problems occur in the inner and upscatter iterations of the solution algorithm. These iterations use a Gauss-Seidel iterative technique that is always convergent for problems with unity DFs. However, for an MHTGR model that requires large DFs, both the inner and upscatter iterations were divergent. Initial investigations into methods for bounding the DFs have proven unsatisfactory as a means of remedying the convergence problems. Although the DFs could be bounded to yield a convergent solution, several cases were encountered where the resulting flux solution was less accurate than the solution without DFs. For the specific case of problems without upscattering, an alternate numerical method for the inner iteration, an LU decomposition, was identified and shown to be feasible

  14. Acceleration of the nodal program FERM

    International Nuclear Information System (INIS)

    Nakata, H.

    1985-01-01

    Acceleration of the nodal FERM was tried by three acceleration schemes. Results of the calculations showed the best acceleration with the Tchebyshev method where the savings in the computing time were of the order of 50%. Acceleration with the Assymptotic Source Extrapoltation Method and with the Coarse-Mesh Rebalancing Method did not result in any improvement on the global computational time, although a reduction in the number of outer iterations was observed. (Author) [pt

  15. A proposal for combined MRI and PET/CT interpretation criteria for preoperative nodal staging in non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Kim, Yoo Na; Yi, Chin A.; Lee, Kyung Soo; Lee, Ho Yun; Kim, Tae Sung; Chung, Myung Jin; Kwon, O.Jung; Chung, Man Pyo; Kim, Byung-Tae; Choi, Joon Young; Kim, Seon Woo; Han, Joungho; Shim, Young Mog

    2012-01-01

    To determine the positive reading criteria for malignant nodes when interpreting combined MRI and PET/CT images for preoperative nodal staging in non-small-cell lung cancer (NSCLC). Forty-nine patients with biopsy-proven NSCLC underwent both PET/CT and thoracic MRI [diffusion weighted imaging (DWI)]. Each nodal station was evaluated for the presence of metastasis by applying either inclusive (positive if either one read positive) or exclusive (positive if both read positive) criteria in the combined interpretation of PET/CT and MRI. Nodal stage was confirmed pathologically. The combined diagnostic accuracy of PET/CT and MRI was determined on per-nodal station and per-patient bases and compared with that of PET/CT alone. In 49 patients, 39 (19%) of 206 nodal stations harboured malignant cells. Out of 206 nodal stations, 186 (90%) had concordant readings, while the rest (10%) had discordant readings. Inclusive criteria of combined PET/CT and MRI helped increase sensitivity for detecting nodal metastasis (69%) compared with PET/CT alone (46%; P = 0.003), while specificity was not significantly decreased. Inclusive criteria in combined MRI and PET/CT readings help improve significantly the sensitivity for detecting nodal metastasis compared with PET/CT alone and may decrease unnecessary open thoracotomy. (orig.)

  16. New procedure for criticality search using coarse mesh nodal methods

    International Nuclear Information System (INIS)

    Pereira, Wanderson F.; Silva, Fernando C. da; Martinez, Aquilino S.

    2011-01-01

    The coarse mesh nodal methods have as their primary goal to calculate the neutron flux inside the reactor core. Many computer systems use a specific form of calculation, which is called nodal method. In classical computing systems that use the criticality search is made after the complete convergence of the iterative process of calculating the neutron flux. In this paper, we proposed a new method for the calculation of criticality, condition which will be over very iterative process of calculating the neutron flux. Thus, the processing time for calculating the neutron flux was reduced by half compared with the procedure developed by the Nuclear Engineering Program of COPPE/UFRJ (PEN/COPPE/UFRJ). (author)

  17. New procedure for criticality search using coarse mesh nodal methods

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Wanderson F.; Silva, Fernando C. da; Martinez, Aquilino S., E-mail: wneto@con.ufrj.b, E-mail: fernando@con.ufrj.b, E-mail: Aquilino@lmp.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2011-07-01

    The coarse mesh nodal methods have as their primary goal to calculate the neutron flux inside the reactor core. Many computer systems use a specific form of calculation, which is called nodal method. In classical computing systems that use the criticality search is made after the complete convergence of the iterative process of calculating the neutron flux. In this paper, we proposed a new method for the calculation of criticality, condition which will be over very iterative process of calculating the neutron flux. Thus, the processing time for calculating the neutron flux was reduced by half compared with the procedure developed by the Nuclear Engineering Program of COPPE/UFRJ (PEN/COPPE/UFRJ). (author)

  18. Accidente cerebrovascular isquémico asociado con ablación por radiofrecuencia de reentrada nodal Ischemic stroke associated with radio frequency ablation for nodal reentry

    Directory of Open Access Journals (Sweden)

    Juan C Díaz Martínez

    2010-04-01

    Full Text Available La taquicardia por reentrada nodal es la causa más común de taquicardia supraventricular paroxística; en aquellos pacientes en quienes el manejo farmacológico no es efectivo o deseado la ablación por radiofrecuencia es un excelente método terapéutico dada su alta tasa de curación. Aunque en términos generales dichos procedimientos son rápidos y seguros, se han descrito varias complicaciones entre las que sobresale el accidente cerebrovascular isquémico. Se presenta el caso de una paciente de 41 años con episodios de taquicardia por reentrada nodal a repetición, que fue llevada a ablación por radiofrecuencia. En el post-operatorio inmediato se evidenció déficit neurológico focal con isquemia en el territorio de la arteria cerebral media derecha, tras lo cual se realizó angiografía con intento de angioplastia y abxicimab y posteriormente infusión local de activador de plasminógeno tisular (rtPA con adecuado resultado clínico y angiográfico.Atrioventricular nodal reentry tachycardia is the most common type of paroxismal supraventricular tachycardia. In those patients in whom drug therapy is not effective or not desired, radio frequency ablation is an excellent therapeutic method. Although overall these procedures are fast and safe, several complications among which ischemic stroke stands out, have been reported. We present the case of a 41 year old female patient with repetitive episodes of tachycardia due to nodal reentry who was treated with radiofrequency ablation. Immediately after the procedure she presented focal neurologic deficit consistent with ischemic stroke in the right medial cerebral artery territory. Angiography with angioplastia and abxicimab was performed and then tissue plasminogen activator (rtPA was locally infused, with appropriate clinical and angiographic outcome.

  19. The effect of nodalization and temperature of reactor upper region: Sensitivity analysis for APR-1400 LBLOCA

    International Nuclear Information System (INIS)

    Kang, Dong Gu

    2017-01-01

    Highlights: • The nodalization of APR-1400 was modified to reflect the characteristic of upper region temperature. • The effect of nodalization and temperature of reactor upper region on LBLOCA consequence was evaluated. • The modification of nodalization is an essential prerequisite in APR-1400 LBLOCA analysis. - Abstract: In best estimate (BE) calculation, the definition of system nodalization is important step influencing the prediction accuracy for specific thermal-hydraulic phenomena. The upper region of reactor is defined as the region of the upper guide structure (UGS) and upper dome. It has been assumed that the temperature of upper region is close to average temperature in most large break loss of coolant accident (LBLOCA) analysis cases. However, it was recently found that the temperature of upper region of APR-1400 reactor might be little lower than or similar to hot leg temperature through the review of detailed design data. In this study, the nodalization of APR-1400 was modified to reflect the characteristic of upper region temperature, and the effect of nodalization and temperature of reactor upper region on LBLOCA consequence was evaluated by sensitivity analysis including best estimate plus uncertainty (BEPU) calculation. In basecase calculation, in case of modified version, the peak cladding temperature (PCT) in blowdown phase became higher and the blowdown quenching (or cooling) was significantly deteriorated as compared to original case, and as a result, the cladding temperature in reflood phase became higher and the final quenching was also delayed. In addition, thermal-hydraulic parameters were compared and analyzed to investigate the effect of change of upper region on cladding temperature. In BEPU analysis, the 95 percentile PCT used in current regulatory practice was increased due to the modification of upper region nodalization, and it occurred in the reflood phase unlike original case.

  20. Analysis of nodal coverage utilizing image guided radiation therapy for primary gynecologic tumor volumes

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Faisal [University of Utah School of Medicine, Salt Lake City, UT (United States); Loma Linda University Medical Center, Department of Radiation Oncology, Loma Linda, CA (United States); Sarkar, Vikren; Gaffney, David K.; Salter, Bill [Department of Radiation Oncology, University of Utah, Salt Lake City, UT (United States); Poppe, Matthew M., E-mail: matthew.poppe@hci.utah.edu [Department of Radiation Oncology, University of Utah, Salt Lake City, UT (United States)

    2016-10-01

    Purpose: To evaluate radiation dose delivered to pelvic lymph nodes, if daily Image Guided Radiation Therapy (IGRT) was implemented with treatment shifts based on the primary site (primary clinical target volume [CTV]). Our secondary goal was to compare dosimetric coverage with patient outcomes. Materials and methods: A total of 10 female patients with gynecologic malignancies were evaluated retrospectively after completion of definitive intensity-modulated radiation therapy (IMRT) to their pelvic lymph nodes and primary tumor site. IGRT consisted of daily kilovoltage computed tomography (CT)-on-rails imaging fused with initial planning scans for position verification. The initial plan was created using Varian's Eclipse treatment planning software. Patients were treated with a median radiation dose of 45 Gy (range: 37.5 to 50 Gy) to the primary volume and 45 Gy (range: 45 to 64.8 Gy) to nodal structures. One IGRT scan per week was randomly selected from each patient's treatment course and re-planned on the Eclipse treatment planning station. CTVs were recreated by fusion on the IGRT image series, and the patient's treatment plan was applied to the new image set to calculate delivered dose. We evaluated the minimum, maximum, and 95% dose coverage for primary and nodal structures. Reconstructed primary tumor volumes were recreated within 4.7% of initial planning volume (0.9% to 8.6%), and reconstructed nodal volumes were recreated to within 2.9% of initial planning volume (0.01% to 5.5%). Results: Dosimetric parameters averaged less than 10% (range: 1% to 9%) of the original planned dose (45 Gy) for primary and nodal volumes on all patients (n = 10). For all patients, ≥99.3% of the primary tumor volume received ≥ 95% the prescribed dose (V95%) and the average minimum dose was 96.1% of the prescribed dose. In evaluating nodal CTV coverage, ≥ 99.8% of the volume received ≥ 95% the prescribed dose and the average minimum dose was 93%. In

  1. Risk of isolated nodal failure for non-small cell lung cancer (NSCLC) treated with the elective nodal irradiation (ENI) using 3D-conformal radiotherapy (3D-CRT) techniques - A retrospective analysis

    International Nuclear Information System (INIS)

    Kepka, Lucyna; Bujko, Krzysztof; Zolciak-Siwinska, Agnieszka

    2008-01-01

    Purpose. To estimate retrospectively the rate of isolated nodal failures (INF) in NSCLC patients treated with the elective nodal irradiation (ENI) using 3D-conformal radiotherapy (3D-CRT). Materials/methods. One hundred and eighty-five patients with I-IIIB stage treated with 3D-CRT in consecutive clinical trials differing in an extent of the ENI were analyzed. According to the extent of the ENI, two groups were distinguished: extended (n=124) and limited (n=61) ENI. INF was defined as regional nodal failure occurring without local progression. Cumulative Incidence of INF (CIINF) was evaluated by univariate and multivariate analysis with regard to prognostic factors. Results. With a median follow up of 30 months, the two-year actuarial overall survival was 35%. The two-year CIINF rate was 12%. There were 16 (9%) INF, eight (6%) for extended and eight (13%) for limited ENI. In the univariate analysis bulky mediastinal disease (BMD), left side, higher N stage, and partial response to RT had a significant negative impact on the CIINF. BMD was the only independent predictor of the risk of incidence of the INF (p=0.001). Conclusions. INF is more likely to occur in case of more advanced nodal status

  2. Acceleration of the FERM nodal program

    International Nuclear Information System (INIS)

    Nakata, H.

    1985-01-01

    It was tested three acceleration methods trying to reduce the number of outer iterations in the FERM nodal program. The results obtained indicated that the Chebychev polynomial acceleration method with variable degree results in a economy of 50% in the computer time. Otherwise, the acceleration method by source asymptotic extrapolation or by zonal rebalance did not result in economy of the global computer time, however some acceleration had been verified in outer iterations. (M.C.K.) [pt

  3. Nodal method for fast reactor analysis

    International Nuclear Information System (INIS)

    Shober, R.A.

    1979-01-01

    In this paper, a nodal method applicable to fast reactor diffusion theory analysis has been developed. This method has been shown to be accurate and efficient in comparison to highly optimized finite difference techniques. The use of an analytic solution to the diffusion equation as a means of determining accurate coupling relationships between nodes has been shown to be highly accurate and efficient in specific two-group applications, as well as in the current multigroup method

  4. Topological and trivial magnetic oscillations in nodal loop semimetals

    Science.gov (United States)

    Oroszlány, László; Dóra, Balázs; Cserti, József; Cortijo, Alberto

    2018-05-01

    Nodal loop semimetals are close descendants of Weyl semimetals and possess a topologically dressed band structure. We argue by combining the conventional theory of magnetic oscillation with topological arguments that nodal loop semimetals host coexisting topological and trivial magnetic oscillations. These originate from mapping the topological properties of the extremal Fermi surface cross sections onto the physics of two dimensional semi-Dirac systems, stemming from merging two massless Dirac cones. By tuning the chemical potential and the direction of magnetic field, a sharp transition is identified from purely trivial oscillations, arising from the Landau levels of a normal two dimensional (2D) electron gas, to a phase where oscillations of topological and trivial origin coexist, originating from 2D massless Dirac and semi-Dirac points, respectively. These could in principle be directly identified in current experiments.

  5. Development of a parallelization strategy for the VARIANT code

    International Nuclear Information System (INIS)

    Hanebutte, U.R.; Khalil, H.S.; Palmiotti, G.; Tatsumi, M.

    1996-01-01

    The VARIANT code solves the multigroup steady-state neutron diffusion and transport equation in three-dimensional Cartesian and hexagonal geometries using the variational nodal method. VARIANT consists of four major parts that must be executed sequentially: input handling, calculation of response matrices, solution algorithm (i.e. inner-outer iteration), and output of results. The objective of the parallelization effort was to reduce the overall computing time by distributing the work of the two computationally intensive (sequential) tasks, the coupling coefficient calculation and the iterative solver, equally among a group of processors. This report describes the code's calculations and gives performance results on one of the benchmark problems used to test the code. The performance analysis in the IBM SPx system shows good efficiency for well-load-balanced programs. Even for relatively small problem sizes, respectable efficiencies are seen for the SPx. An extension to achieve a higher degree of parallelism will be addressed in future work. 7 refs., 1 tab

  6. Rapid enhancement of nodal quasiparticle mass with heavily underdoping in Bi2212

    Science.gov (United States)

    Anzai, Hiroaki; Arita, Masashi; Namatame, Hirofumi; Taniguchi, Masaki; Ishikado, Motoyuki; Fujita, Kazuhiro; Ishida, Shigeyuki; Uchida, Shin-ichi; Ino, Akihiro

    2018-05-01

    We report substantial advance of our low-energy angle-resolved photoemission study of nodal quasiparticles in Bi2Sr2CaCu2O8+δ. The new data cover the samples from underdoped down to heavily underdoped levels. We also present the nodal Fermi velocities that determined by using an excitation-photon energy of hν = 7.0 eV over a wide doping range. The consistency between the results with hν = 8.1 and 7.0 eV allows us to rule out the effect of photoemission matrix elements. In comparison with the data previously reported, the nodal effective mass increases by a factor of ∼ 1.5 in going from optimally doped to heavily underdoped levels. We find a rapid enhancement of the nodal quasiparticle mass at low doping levels near the superconductor-to-insulator transition. The effective coupling spectrum, λ (ω) , is extracted directly from the energy derivatives of the quasiparticle dispersion and scattering rate, as a causal function of the mass enhancement factor. A steplike increase in Reλ (ω) around ∼ 65 meV is demonstrated clearly by the Kramers-Kronig transform of Imλ (ω) . To extract the low-energy renormalization effect, we calculated a simple model for the electron-boson interaction. This model reveals that the contribution of the renormalization at | ω | ≤ 15 meV to the quasiparticle mass is larger than that around 65 meV in underdoped samples.

  7. Comparison of treatment outcomes between involved-field and elective nodal irradiation in limited-stage small cell lung cancer

    International Nuclear Information System (INIS)

    Han, Tae-Jin; Kim, Hak-Jae; Wu, Hong-Gyun; Heo, Dae-Seog; Kim, Young-Whan; Lee, Se-Hoon

    2012-01-01

    The present study was performed to assess the usefulness of involved-field irradiation and the impact of 18 F-fluorodeoxyglucose-positron emission tomography-based staging on treatment outcomes in limited-stage small cell lung cancer. Eighty patients who received definitive chemoradiotherapy for limited-stage small cell lung cancer were retrospectively analyzed. Fifty patients were treated with involved-field irradiation, which means that the radiotherapy portal includes only clinically identifiable tumors. The other 30 patients were irradiated with a comprehensive portal, including uninvolved mediastinal and/or supraclavicular lymph nodes, so-called elective nodal irradiation. No significant difference was seen in clinical factors between the two groups. At a median follow-up of 27 months (range, 5-75 months), no significant differences were observed in 3 year overall survival (44.6 vs. 54.1%, P=0.220) and 3 year progression-free survival (24.4 vs. 42.8%, P=0.133) between the involved-field irradiation group and the elective nodal irradiation group, respectively. For patients who did not undergo positron emission tomography scans, 3 year overall survival (29.3 vs. 56.3%, P=0.022) and 3 year progression-free survival (11.0 vs. 50.0%, P=0.040) were significantly longer in the elective nodal irradiation group. Crude incidences of isolated nodal failure were 6.0% in the involved-field irradiation group and 0% in the elective nodal irradiation group, respectively. All isolated nodal failures were developed in patients who had not undergone positron emission tomography scans in their initial work-ups. If patients did not undergo positron emission tomography-based staging, the omission of elective nodal irradiation resulted in impaired survival outcomes and raised the risk of isolated nodal failure. Therefore, involved-field irradiation for limited-stage small cell lung cancer might be reasonable only with positron emission tomography scan implementation. (author)

  8. Ischemic stroke associated with radio frequency ablation for nodal reentry

    International Nuclear Information System (INIS)

    Diaz M, Juan C; Duran R, Carlos E; Perafan B, Pablo; Pava M, Luis F

    2010-01-01

    Atrioventricular nodal reentry tachycardia is the most common type of paroxysmal supraventricular tachycardia. In those patients in whom drug therapy is not effective or not desired, radio frequency ablation is an excellent therapeutic method. Although overall these procedures are fast and safe, several complications among which ischemic stroke stands out, have been reported. We present the case of a 41 year old female patient with repetitive episodes of tachycardia due to nodal reentry who was treated with radiofrequency ablation. Immediately after the procedure she presented focal neurologic deficit consistent with ischemic stroke in the right medial cerebral artery territory. Angiography with angioplastia and abxicimab was performed and then tissue plasminogen activator (rtPA) was locally infused, with appropriate clinical and angiographic outcome.

  9. Real-time control of power systems using nodal prices

    NARCIS (Netherlands)

    Jokic, A.; Lazar, M.; Bosch, van den P.P.J.

    2009-01-01

    This article presents a novel control scheme for achieving optimal power balancing and congestion management in electrical power systems via nodal prices. We develop a dynamic controller that guarantees economically optimal steady-state operation while respecting all line flow constraints in

  10. Isospectral discrete and quantum graphs with the same flip counts and nodal counts

    Science.gov (United States)

    Juul, Jonas S.; Joyner, Christopher H.

    2018-06-01

    The existence of non-isomorphic graphs which share the same Laplace spectrum (to be referred to as isospectral graphs) leads naturally to the following question: what additional information is required in order to resolve isospectral graphs? It was suggested by Band, Shapira and Smilansky that this might be achieved by either counting the number of nodal domains or the number of times the eigenfunctions change sign (the so-called flip count) (Band et al 2006 J. Phys. A: Math. Gen. 39 13999–4014 Band and Smilansky 2007 Eur. Phys. J. Spec. Top. 145 171–9). Recent examples of (discrete) isospectral graphs with the same flip count and nodal count have been constructed by Ammann by utilising Godsil–McKay switching (Ammann private communication). Here, we provide a simple alternative mechanism that produces systematic examples of both discrete and quantum isospectral graphs with the same flip and nodal counts.

  11. Subchannel analysis of a boiloff experiment by a system thermalhydraulic code

    International Nuclear Information System (INIS)

    Bousbia-Salah, A.; D'Auria, F.

    2001-01-01

    This paper presents the results of system thermalhydraulic code using the sub-channel analysis approach in predicting the Neptun boil off experiments. This approach will be suitable for further works in view of coupling the system code with a 3D neutron kinetic one. The boil off tests were conducted in order to simulate the consequences of loss of coolant inventory leading to uncovery and heat up of fuel elements of a nuclear reactor core. In this framework, the Neptun low pressure test No5002, which is a good repeat experiment, is considered. The calculations were carried out using the system transient analysis code Relap5/Mod3.2. A detailed nodalization of the Neptun test section was developed. A reference case was run, and the overall data comparison shows good agreement between calculated and experimental thermalhydraulic parameters. A series of sensitivity analyses were also performed in order to assess the code prediction capabilities. The obtained results were almost satisfactory, this demonstrates, as well, the reasonable success of the subchannel analysis approach adopted in the present context for a system thermalhydraulic code.(author)

  12. The impact of nodal tumour burden on lymphoscintigraphic imaging in patients with melanomas

    Energy Technology Data Exchange (ETDEWEB)

    Kretschmer, Lutz; Bertsch, Hans Peter; Hellriegel, Simin; Thoms, Kai-Martin; Schoen, Michael Peter [Georg August University of Goettingen, Department of Dermatology, Venereology and Allergology, Goettingen (Germany); Bardzik, Pawel; Meller, Johannes; Sahlmann, Carsten Oliver [Georg-August-University of Goettingen, Department of Nuclear Medicine, Goettingen (Germany)

    2014-10-15

    To retrospectively study the influence of nodal tumour burden on lymphoscintigraphic imaging in 509 consecutive patients with melanomas. Bidirectional lymphatic drainage, the clear depiction of an afferent lymphatic vessel, time to depiction of the first sentinel lymph node (SLN) and number of depicted and excised nodes were recorded. Nodal tumour load was classified as SLN-negative, SLN micrometastases or macrometastases. In the overall population, using multivariate regression analysis, a short SLN depiction time was significantly associated with the depiction of a greater number of radioactive nodes, a short distance between the primary tumour site and the nodal basin, younger age and lower nodal tumour burden. The proportion of patients with clear depiction of an afferent lymphatic vessel depended on the nodal tumour load (46 % in SLN-negative patients, 57 % in SLN positive patients, and 69 % in patients with macrometastases; P = 0.009). Macrometastasis was significantly associated with delayed depiction of the first radioactive node and a greater number of depicted hotspots. In patients with clinically nonsuspicious nodes, i.e. the classical target group for SLN biopsy, clear depiction of an afferent vessel was significantly associated with a higher number of SLNs during dynamic acquisition, SLN micrometastasis and a higher overall number of metastatic lymph nodes after SLN biopsy plus completion lymphadenectomy. The excision of more than two SLNs did not increase the metastasis detection rate. In patients with bidirectional or tridirectional lymphatic drainage, the SLN positivity rates for the first, second and third basin were 25.4 %, 11.7 % and 0.0 %, respectively (P = 0.002). In patients with clinically nonsuspicious lymph nodes, clear depiction of an afferent lymph vessel may be a sign of micrometastasis. Macrometastasis is associated with prominent afferent vessels, delayed depiction of the first radioactive node and a higher number of depicted hotspots

  13. Benchmarking of FA2D/PARCS Code Package

    International Nuclear Information System (INIS)

    Grgic, D.; Jecmenica, R.; Pevec, D.

    2006-01-01

    FA2D/PARCS code package is used at Faculty of Electrical Engineering and Computing (FER), University of Zagreb, for static and dynamic reactor core analyses. It consists of two codes: FA2D and PARCS. FA2D is a multigroup two dimensional transport theory code for burn-up calculations based on collision probability method, developed at FER. It generates homogenised cross sections both of single pins and entire fuel assemblies. PARCS is an advanced nodal code developed at Purdue University for US NRC and it is based on neutron diffusion theory for three dimensional whole core static and dynamic calculations. It is modified at FER to enable internal 3D depletion calculation and usage of neutron cross section data in a format produced by FA2D and interface codes. The FA2D/PARCS code system has been validated on NPP Krsko operational data (Cycles 1 and 21). As we intend to use this code package for development of IRIS reactor loading patterns the first logical step was to validate the FA2D/PARCS code package on a set of IRIS benchmarks, starting from simple unit fuel cell, via fuel assembly, to full core benchmark. The IRIS 17x17 fuel with erbium burnable absorber was used in last full core benchmark. The results of modelling the IRIS full core benchmark using FA2D/PARCS code package have been compared with reference data showing the adequacy of FA2D/PARCS code package model for IRIS reactor core design.(author)

  14. Supporting qualified database for V and V and uncertainty evaluation of best-estimate system codes

    International Nuclear Information System (INIS)

    Petruzzi, A.; D'Auria, F.

    2014-01-01

    Uncertainty evaluation constitutes a key feature of BEPU (Best Estimate Plus Uncertainty) process. The uncertainty can be the result of a Monte Carlo type analysis involving input uncertainty parameters or the outcome of a process involving the use of experimental data and connected code calculations. Those uncertainty methods are discussed in several papers and guidelines (IAEA-SRS- 52, OECD/NEA BEMUSE reports). The present paper aims at discussing the role and the depth of the analysis required for merging from one side suitable experimental data and on the other side qualified code calculation results. This aspect is mostly connected with the second approach for uncertainty mentioned above, but it can be used also in the framework of the first approach. Namely, the paper discusses the features and structure of the database that includes the following kinds of documents: 1. The' RDS-facility' (Reference Data Set for the selected facility): this includes the description of the facility, the geometrical characterization of any component of the facility, the instrumentations, the data acquisition system, the evaluation of pressure losses, the physical properties of the material and the characterization of pumps, valves and heat losses; 2. The 'RDS-test' (Reference Data Set for the selected test of the facility): this includes the description of the main phenomena investigated during the test, the configuration of the facility for the selected test (possible new evaluation of pressure and heat losses if needed) and the specific boundary and initial conditions; 3. The 'QP' (Qualification Report) of the code calculation results: this includes the description of the nodalization developed following a set of homogeneous techniques, the achievement of the steady state conditions and the qualitative and quantitative analysis of the transient with the characterization of the Relevant Thermal-Hydraulics Aspects (RTA); 4. The EH (Engineering

  15. Primary nodal peripheral T-cell lymphomas: diagnosis and therapeutic considerations

    Directory of Open Access Journals (Sweden)

    Luis Alberto de Pádua Covas Lage

    2015-08-01

    Full Text Available Nodal peripheral T-cell lymphomas are a rare group of neoplasms derived from post-thymic and activated T lymphocytes. A review of scientific articles listed in PubMed, Lilacs, and the Cochrane Library databases was performed using the term "peripheral T-cell lymphomas". According to the World Health Organization classification of hematopoietic tissue tumors, this group of neoplasms consists of peripheral T-cell lymphoma not otherwise specified (PTCL-NOS, angioimmunoblastic T-cell lymphoma (AITL, anaplastic large cell lymphoma-anaplastic lymphoma kinase positive (ALCL-ALK+, and a provisional entity called anaplastic large cell lymphoma-anaplastic lymphoma kinase negative (ALCL-ALK-. Because the treatment and prognoses of these neoplasms involve different principles, it is essential to distinguish each one by its clinical, immunophenotypic, genetic, and molecular features. Except for anaplastic large cell lymphoma-anaplastic lymphoma kinase positive, which has no adverse international prognostic index, the prognosis of nodal peripheral T-cell lymphomas is worse than that of aggressive B-cell lymphomas. Chemotherapy based on anthracyclines provides poor outcomes because these neoplasms frequently have multidrug-resistant phenotypes. Based on this, the current tendency is to use intensified cyclophosphamide, doxorubicin, vincristine, prednisolone (CHOP regimens with the addition of new drugs, and autologous hematopoietic stem cell transplantation. This paper describes the clinical features and diagnostic methods, and proposes a therapeutic algorithm for nodal peripheral T-cell lymphoma patients.

  16. Modelling of WWER-1000 steam generators by REALP5/MOD3.2 code

    Energy Technology Data Exchange (ETDEWEB)

    D`Auria, F.; Galassi, G.M. [Univ. of Pisa (Italy); Frogheri, M. [Univ. of Genova (Italy)

    1997-12-31

    The presentation summarises the results of best estimate calculations carried out with reference to the WWER-1000 Nuclear Power Plant, utilizing a qualified nodalization set-up for the Relap5/Mod3.2 code. The nodalization development has been based on the data of the Kozloduy Bulgarian Plant. The geometry of the steam generator imposed drastic changes in noding philosophy with respect to what is suitable for the U-tubes steam generators. For the secondary side a symmetry axis was chosen to separate (in the nodalization) the hot and the cold sides of the tubes. In this way the secondary side of the steam generators was divided into three zones: (a) the hot zone including the hot collector and the hot l/2 parts of the tubes; (b) the cold zone including the cold collector and the cold 1/2 parts of the tubes; (c) the downcomer region, where down flow is assumed. As a consequence of above in the primary side more nodes are placed on the hot side of the tubes. Steady state and transient qualification has been achieved, considering the criteria proposed at the University of Pisa, utilizing plant transient data from the Kozloduy and the Ukrainian Zaporosche Plants. The results of the application of the qualified WWER-1000 Relap5/Mod3.2 nodalization to various transients including large break LOCA, small break LOCA and steam generator tube rupture, together with a sensitivity analysis on the steam generators, are reported in the presentation. Emphasis is given to the prediction of the steam generators performances. 23 refs.

  17. Modelling of WWER-1000 steam generators by REALP5/MOD3.2 code

    Energy Technology Data Exchange (ETDEWEB)

    D` Auria, F; Galassi, G M [Univ. of Pisa (Italy); Frogheri, M [Univ. of Genova (Italy)

    1998-12-31

    The presentation summarises the results of best estimate calculations carried out with reference to the WWER-1000 Nuclear Power Plant, utilizing a qualified nodalization set-up for the Relap5/Mod3.2 code. The nodalization development has been based on the data of the Kozloduy Bulgarian Plant. The geometry of the steam generator imposed drastic changes in noding philosophy with respect to what is suitable for the U-tubes steam generators. For the secondary side a symmetry axis was chosen to separate (in the nodalization) the hot and the cold sides of the tubes. In this way the secondary side of the steam generators was divided into three zones: (a) the hot zone including the hot collector and the hot l/2 parts of the tubes; (b) the cold zone including the cold collector and the cold 1/2 parts of the tubes; (c) the downcomer region, where down flow is assumed. As a consequence of above in the primary side more nodes are placed on the hot side of the tubes. Steady state and transient qualification has been achieved, considering the criteria proposed at the University of Pisa, utilizing plant transient data from the Kozloduy and the Ukrainian Zaporosche Plants. The results of the application of the qualified WWER-1000 Relap5/Mod3.2 nodalization to various transients including large break LOCA, small break LOCA and steam generator tube rupture, together with a sensitivity analysis on the steam generators, are reported in the presentation. Emphasis is given to the prediction of the steam generators performances. 23 refs.

  18. F-18 fluorodeoxyglucose positron emission tomography in the mediastinal nodal staging of non-small cell lung carcinoma

    International Nuclear Information System (INIS)

    Berlangieri, S.U.; Scott, A.M.; Knight, S.; Fitt, G.J.; Hess, E.M.; Pathmaraj, K.; Hennessy, O.F.; Tochon-Danguy, H.J.; Chan, J.G.; Egan, G.F.; Sinclair, R.A.; Clarke, C.P.; McKay, W.J.; St Vincents Hospital, Fitzroy, VIC

    1998-01-01

    Full text: Positron emission tomography (PET) using F-18 fluorodeoxyglucose (FDG), as a metabolic tumour marker, has been proposed for staging of oncological disease. To determine its role in the mediastinal staging of lung cancer, a prospective comparison of FDG PET with surgery was performed in patients with suspected non-small cell lung carcinoma. The analysis group consists of 70 patients, 49 men and 21 women, mean age 64 yrs (range 41-83 yrs). The PET study was acquired on a Siemens 951/31R scanner over 3 bed positions, 45 minutes following 400MBq FDG. The emission scan was attenuation corrected using measured transmission data. The FDG PET were interpreted by a nuclear physician blinded to the clinical data and the results of the patients' CT scan. On PET, nodes were graded qualitatively on a 5 point scale with scores 4 or greater, positive for tumour involvement. Surgical specimens were obtained in all patients by thoracotomy or mediastinoscopy. The PET metabolic studies and pathology were mapped according to the American Thoracic Society nodal classification resulting in a total of 277 nodal stations evaluated. The PET studies analysed N2 or N3 tumour involvement by nodal station in comparison to histology of pathological specimens or direct visual assessment of the nodal stations at surgery. All patients had proven non-small cell lung carcinoma, except two, in whom, a tissue confirmation of the suspected diagnosis was not attained. PET excluded tumour in 237 of 246 nodal stations (specificity 96%). PET correctly identified 23 of 31 nodal stations with disease (sensitivity 74%). PET correctly staged 260 of 277 nodal stations (accuracy 94%) for disease. FDG PET is an accurate non-invasive functional imaging modality for the mediastinal staging of non-small cell lung cancer and has an important clinical role in the preoperative staging of lung cancer patients

  19. Nodal signals mediate interactions between the extra-embryonic and embryonic tissues in zebrafish

    OpenAIRE

    Xiang, Fan; Hagos, Engda G.; Xu, Bo; Sias, Christina; Kawakami, Koichi; Burdine, Rebecca D.; Dougan, Scott T.

    2007-01-01

    In many vertebrates, extra-embryonic tissues are important signaling centers that induce and pattern the germ layers. In teleosts, the mechanism by which the extra-embryonic yolk syncytial layer (YSL) patterns the embryo is not understood. Although the Nodal-related protein Squint is expressed in the YSL, its role in this tissue is not known. We generated a series of stable transgenic lines with GFP under the control of squint genomic sequences. In all species, nodal-related genes induce thei...

  20. FEMAXI-III, a computer code for fuel rod performance analysis

    International Nuclear Information System (INIS)

    Ito, K.; Iwano, Y.; Ichikawa, M.; Okubo, T.

    1983-01-01

    This paper presents a method of fuel rod thermal-mechanical performance analysis used in the FEMAXI-III code. The code incorporates the models describing thermal-mechanical processes such as pellet-cladding thermal expansion, pellet irradiation swelling, densification, relocation and fission gas release as they affect pellet-cladding gap thermal conductance. The code performs the thermal behavior analysis of a full-length fuel rod within the framework of one-dimensional multi-zone modeling. The mechanical effects including ridge deformation is rigorously analyzed by applying the axisymmetric finite element method. The finite element geometrical model is confined to a half-pellet-height region with the assumption that pellet-pellet interaction is symmetrical. The 8-node quadratic isoparametric ring elements are adopted for obtaining accurate finite element solutions. The Newton-Raphson iteration with an implicit algorithm is applied to perform the analysis of non-linear material behaviors accurately and stably. The pellet-cladding interaction mechanism is exactly treated using the nodal continuity conditions. The code is applicable to the thermal-mechanical analysis of water reactor fuel rods experiencing variable power histories. (orig.)

  1. An analytical approach for a nodal scheme of two-dimensional neutron transport problems

    International Nuclear Information System (INIS)

    Barichello, L.B.; Cabrera, L.C.; Prolo Filho, J.F.

    2011-01-01

    Research highlights: → Nodal equations for a two-dimensional neutron transport problem. → Analytical Discrete Ordinates Method. → Numerical results compared with the literature. - Abstract: In this work, a solution for a two-dimensional neutron transport problem, in cartesian geometry, is proposed, on the basis of nodal schemes. In this context, one-dimensional equations are generated by an integration process of the multidimensional problem. Here, the integration is performed for the whole domain such that no iterative procedure between nodes is needed. The ADO method is used to develop analytical discrete ordinates solution for the one-dimensional integrated equations, such that final solutions are analytical in terms of the spatial variables. The ADO approach along with a level symmetric quadrature scheme, lead to a significant order reduction of the associated eigenvalues problems. Relations between the averaged fluxes and the unknown fluxes at the boundary are introduced as the usually needed, in nodal schemes, auxiliary equations. Numerical results are presented and compared with test problems.

  2. Extra-nodal lymphoma. A survey of Japan lymphoma radiation therapy group

    International Nuclear Information System (INIS)

    Oguchi, Masahiko; Ikeda, Hiroshi; Nakamura, Shigeo

    2002-01-01

    The purpose of this study was to examine, retrospectively, national-wide clinical data of patients with localized extranodal non-Hodgkin's lymphoma (NHL) who were treated by radiation therapy with or without chemotherapy. The survey was carried out at 25 radiation oncology institutions in Japan in 1998. In 1999, according to the Revised European American Lymphoma (REAL) classification, central pathological review conducted at Aichi cancer center was carried out for the data from 7 radiation oncology institutions. The 5-year progression free survival rates (PFS) were calculated to identify prognostic factors. Survey: Data from 1, 141 patients with stage I and II NHL were recruited from 1988 through 1992. Of them, 787 patients, who were treated using definitive radiotherapy with or without chemotherapy for intermediate and high-grade lymphomas in Working Formulation, constituted the core of this study. Primary tumors arose mainly from extra-nodal organs (71%) in the head and neck (Waldeyer's ring: 41%, thyroid gland: 7%, nasal cavities: 5%, oral cavities: 4%, sinus: 3%, orbital structures: 3%, skin: 2% and etc.). The median age of 60 years for patients with extra-nodal NHL was higher than that of 56 years for patients with nodal NHL (p<0.01). Female were dominant in incidence of extra-nodal NHL arising from the thyroid gland, skin and gastrointestinal tract. The percentage of stage I to the extra-nodal NHL from orbit, sino-nasal presentation was higher than that of other NHLs. The percentage of stage II to the extra-nodal NHL from Waldeyer's ring and thyroid gland was higher than that of other NHLs. Central pathological review was carried out for pathological data from 79 patients (Waldeyer's ring: 45, thyroid gland: 19, sinonasal cavities: 15). Of these, diffuse large B cell lymphoma (DLBCL) composed 63% of all patients, mucosa associated lyumphoid tissue lymphoma (MALT-L): 16%, Natural Killer/T cell lymphoma (NK/T-L): 11%, and mantle cell lymphoma: 5% in REAL

  3. HELIOS/DRAGON/NESTLE codes' simulation of void reactivity in a CANDU core

    International Nuclear Information System (INIS)

    Sarsour, H.N.; Rahnema, F.; Mosher, S.; Turinsky, P.J.; Serghiuta, D.; Marleau, G.; Courau, T.

    2002-01-01

    This paper presents results of simulation of void reactivity in a CANDU core using the NESTLE core simulator, cross sections from the HELIOS lattice physics code in conjunction with incremental cross sections from the DRAGON lattice physics code. First, a sub-region of a CANDU6 core is modeled using the NESTLE core simulator and predictions are contrasted with predictions by the MCNP Monte Carlo simulation code utilizing a continuous energy model. In addition, whole core modeling results are presented using the NESTLE finite difference method (FDM), NESTLE nodal method (NM) without assembly discontinuity factors (ADF), and NESTLE NM with ADF. The work presented in this paper has been performed as part of a project sponsored by the Canadian Nuclear Safety Commission (CNSC). The purpose of the project was to gather information and assess the accuracy of best estimate methods using calculational methods and codes developed independently from the CANDU industry. (author)

  4. Spectral nodal method for one-speed X,Y-geometry Eigenvalue diffusion problems

    International Nuclear Information System (INIS)

    Dominguez, Dany S.; Lorenzo, Daniel M.; Hernandez, Carlos G.; Barros, Ricardo C.; Silva, Fernando C. da

    2001-01-01

    Presented here is a new numerical nodal method for steady-state multidimensional neutron diffusion equation in rectangular geometry. Our method is based on a spectral analysis of the transverse-integrated nodal diffusion equations. These equations are obtained by integrating the diffusion equation in X and Y directions, and then considering flat approximations for the transverse leakage terms. These flat approximations are the only approximations that we consider in this method; as a result the numerical solutions are completely free from truncation errors in slab geometry. We show numerical results to illustrate the method's accuracy for coarse mesh calculations in a heterogeneous medium. (author)

  5. Cryopreservation of in vitro grown nodal segments of Rauvolfia serpentina by PVS2 vitrification.

    Science.gov (United States)

    Ray, Avik; Bhattacharya, Sabita

    2008-01-01

    This paper describes the cryopreservation by PVS2 vitrification of Rauvolfia serpentina (L.) Benth ex kurz, an important tropical medicinal plant. The effects of type and size of explants, sucrose preculture (duration and concentration) and vitrification treatment were tested. Preliminary experiments with PVS1, 2 and 3 produced shoot growth only for PVS2. When optimizing the PVS2 vitrification of nodal segments, those of 0.31 - 0.39 cm in size were better than other nodal sizes and or apices. Sucrose preculture had a positive role in survival and subsequent regrowth of the cryopreserved explants. Seven days on 0.5 M sucrose solution significantly improved the viability of nodal segments. PVS2 incubation for 45 minutes combined with a 7-day preculture gave the optimum result of 66 percent. Plantlets derived after cryopreservation resumed growth and regenerated normally.

  6. Prognostic impact of the level of nodal involvement: retrospective analysis of patients with advanced oral squamous cell carcinoma.

    Science.gov (United States)

    Murakami, R; Nakayama, H; Semba, A; Hiraki, A; Nagata, M; Kawahara, K; Shiraishi, S; Hirai, T; Uozumi, H; Yamashita, Y

    2017-01-01

    We retrospectively evaluated the prognostic impact of the level of nodal involvement in patients with advanced oral squamous cell carcinoma (SCC). Between 2005 and 2010, 105 patients with clinical stage III or IV oral SCC had chemoradiotherapy preoperatively. Clinical (cN) and pathological nodal (pN) involvement was primarily at levels Ib and II. We defined nodal involvement at levels Ia and III-V as anterior and inferior extensions, respectively, and recorded such findings as extensive. With respect to pretreatment variables (age, clinical stage, clinical findings of the primary tumour, and nodal findings), univariate analysis showed that extensive cN was the only significant factor for overall survival (hazard ratio [HR], 3.27; 95% CI 1.50 to 7.13; p=0.001). Univariate analysis showed that all pN findings, including the nodal classification (invaded nodes, multiple, and contralateral) and extensive involvement were significant, and multivariate analysis confirmed that extensive pN (HR 4.71; 95% CI 1.85 to 11.97; p=0.001) and multiple pN (HR 2.59; 95% CI 1.10 to 6.09; p=0.029) were independent predictors of overall survival. Assessment based on the level of invaded neck nodes may be a better predictor of survival than the current nodal classification. Copyright © 2016 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  7. Development of 3-dimensional neutronics kinetics analysis code for CANDU-PHWR

    International Nuclear Information System (INIS)

    Kim, M. W.; Kim, C. H.; Hong, I. S.

    2005-02-01

    The followings are the major contents and scope of the research : development of kinetics power calculation module, formulation of space-dependent neutron transient analysis - implementation of 3-D and 2-G unified nodal method, verification of the kinetics module by benchmark problem - 3-D PHWR kinetics benchmark problem suggested by AECL, reactor trip simulation by shutdown system 1 in Wolsong unit 2. Development of a dynamic linked library code, SCAN D LL, for the coupled calculation with RELAP-CANDU : modeling of shutdown system 1, development of automatic shutdown module - automatic trip module based on rate log power control logic, automatic insertion of shutdown system 1. Development of a link code for coupled calculation - development of SCAN D LL(windows version), verification of coupled code by - 40% reactor inlet header break LOCA power pulse, 100% reactor outlet header break LOCA power pulse, 50% pump suction break LOCA power pulse

  8. Development of an advanced code system for fast-reactor transient analysis

    International Nuclear Information System (INIS)

    Konstantin Mikityuk; Sandro Pelloni; Paul Coddington

    2005-01-01

    FAST (Fast-spectrum Advanced Systems for power production and resource management) is a recently approved PSI activity in the area of fast spectrum core and safety analysis with emphasis on generic developments and Generation IV systems. In frames of the FAST project we will study both statics and transients core physics, reactor system behaviour and safety; related international experiments. The main current goal of the project is to develop unique analytical and code capability for core and safety analysis of critical (and sub-critical) fast spectrum systems with an initial emphasis on a gas cooled fast reactors. A structure of the code system is shown on Fig. 1. The main components of the FAST code system are 1) ERANOS code for preparation of basic x-sections and their partial derivatives; 2) PARCS transient nodal-method multi-group neutron diffusion code for simulation of spatial (3D) neutron kinetics in hexagonal and square geometries; 3) TRAC/AAA code for system thermal hydraulics; 4) FRED transient model for fuel thermal-mechanical behaviour; 5) PVM system as an interface between separate parts of the code system. The paper presents a structure of the code system (Fig. 1), organization of interfaces and data exchanges between main parts of the code system, examples of verification and application of separate codes and the system as a whole. (authors)

  9. Hyoid bone chondrosarcoma with cervical nodal metastasis: A case ...

    African Journals Online (AJOL)

    Background: Hyoid bone chondrosarcoma is a very rare condition. This study presents a case report of low-grade chondrosarcoma of hyoid bone with cervical nodal metastasis. The study also presents preoperative radiological investigations, pathological examination and the follow-up of the case. Case presentation: A 42 ...

  10. Development and validation of gui based input file generation code for relap

    International Nuclear Information System (INIS)

    Anwar, M.M.; Khan, A.A.; Chughati, I.R.; Chaudri, K.S.; Inyat, M.H.; Hayat, T.

    2009-01-01

    Reactor Excursion and Leak Analysis Program (RELAP) is a widely acceptable computer code for thermal hydraulics modeling of Nuclear Power Plants. It calculates thermal- hydraulic transients in water-cooled nuclear reactors by solving approximations to the one-dimensional, two-phase equations of hydraulics in an arbitrarily connected system of nodes. However, the preparation of input file and subsequent analysis of results in this code is a tedious task. The development of a Graphical User Interface (GUI) for preparation of the input file for RELAP-5 is done with the validation of GUI generated Input File. The GUI is developed in Microsoft Visual Studio using Visual C Sharp (C) as programming language. The Nodalization diagram is drawn graphically and the program contains various component forms along with the starting data form, which are launched for properties assignment to generate Input File Cards serving as GUI for the user. The GUI is provided with Open / Save function to store and recall the Nodalization diagram along with Components' properties. The GUI generated Input File is validated for several case studies and individual component cards are compared with the originally required format. The generated Input File of RELAP is found consistent with the requirement of RELAP. The GUI provided a useful platform for simulating complex hydrodynamic problems efficiently with RELAP. (author)

  11. Benchmark calculation for GT-MHR using HELIOS/MASTER code package and MCNP

    International Nuclear Information System (INIS)

    Lee, Kyung Hoon; Kim, Kang Seog; Noh, Jae Man; Song, Jae Seung; Zee, Sung Quun

    2005-01-01

    The latest research associated with the very high temperature gas-cooled reactor (VHTR) is focused on the verification of a system performance and safety under operating conditions for the VHTRs. As a part of those, an international gas-cooled reactor program initiated by IAEA is going on. The key objectives of this program are the validation of analytical computer codes and the evaluation of benchmark models for the projected and actual VHTRs. New reactor physics analysis procedure for the prismatic VHTR is under development by adopting the conventional two-step procedure. In this procedure, a few group constants are generated through the transport lattice calculations using the HELIOS code, and the core physics analysis is performed by the 3-dimensional nodal diffusion code MASTER. We evaluated the performance of the HELIOS/MASTER code package through the benchmark calculations related to the GT-MHR (Gas Turbine-Modular Helium Reactor) to dispose weapon plutonium. In parallel, MCNP is employed as a reference code to verify the results of the HELIOS/MASTER procedure

  12. The dynamic right-to-left translocation of Cerl2 is involved in the regulation and termination of Nodal activity in the mouse node.

    Directory of Open Access Journals (Sweden)

    José Manuel Inácio

    Full Text Available The determination of left-right body asymmetry in mouse embryos depends on the interplay of molecules in a highly sensitive structure, the node. Here, we show that the localization of Cerl2 protein does not correlate to its mRNA expression pattern, from 3-somite stage onwards. Instead, Cerl2 protein displays a nodal flow-dependent dynamic behavior that controls the activity of Nodal in the node, and the transmission of the laterality information to the left lateral plate mesoderm (LPM. Our results indicate that Cerl2 initially localizes and prevents the activation of Nodal genetic circuitry on the right side of the embryo, and later its right-to-left translocation shutdowns Nodal activity in the node. The consequent prolonged Nodal activity in the node by the absence of Cerl2 affects local Nodal expression and prolongs its expression in the LPM. Simultaneous genetic removal of both Nodal node inhibitors, Cerl2 and Lefty1, sustains even longer and bilateral this LPM expression.

  13. A 2D benchmark for the verification of the PEBBED code

    International Nuclear Information System (INIS)

    Ganapol, Barry D.; Gougar, Hans D.; Ougouag, Abderrafi M.

    2008-01-01

    A new benchmarking concept is presented for verifying the PEBBED 3D multigroup finite difference/nodal diffusion code with application to pebble bed modular reactors (PBMRs). The key idea is to perform convergence acceleration, also called extrapolation to zero discretization, of a basic finite difference numerical algorithm to give extremely high accuracy. The method is first demonstrated on a 1D cylindrical shell and then on an r,Θ wedge where the order of the second order finite difference scheme is confirmed to four places. (authors)

  14. Atlas-Based Segmentation Improves Consistency and Decreases Time Required for Contouring Postoperative Endometrial Cancer Nodal Volumes

    International Nuclear Information System (INIS)

    Young, Amy V.; Wortham, Angela; Wernick, Iddo; Evans, Andrew; Ennis, Ronald D.

    2011-01-01

    Purpose: Accurate target delineation of the nodal volumes is essential for three-dimensional conformal and intensity-modulated radiotherapy planning for endometrial cancer adjuvant therapy. We hypothesized that atlas-based segmentation ('autocontouring') would lead to time savings and more consistent contours among physicians. Methods and Materials: A reference anatomy atlas was constructed using the data from 15 postoperative endometrial cancer patients by contouring the pelvic nodal clinical target volume on the simulation computed tomography scan according to the Radiation Therapy Oncology Group 0418 trial using commercially available software. On the simulation computed tomography scans from 10 additional endometrial cancer patients, the nodal clinical target volume autocontours were generated. Three radiation oncologists corrected the autocontours and delineated the manual nodal contours under timed conditions while unaware of the other contours. The time difference was determined, and the overlap of the contours was calculated using Dice's coefficient. Results: For all physicians, manual contouring of the pelvic nodal target volumes and editing the autocontours required a mean ± standard deviation of 32 ± 9 vs. 23 ± 7 minutes, respectively (p = .000001), a 26% time savings. For each physician, the time required to delineate the manual contours vs. correcting the autocontours was 30 ± 3 vs. 21 ± 5 min (p = .003), 39 ± 12 vs. 30 ± 5 min (p = .055), and 29 ± 5 vs. 20 ± 5 min (p = .0002). The mean overlap increased from manual contouring (0.77) to correcting the autocontours (0.79; p = .038). Conclusion: The results of our study have shown that autocontouring leads to increased consistency and time savings when contouring the nodal target volumes for adjuvant treatment of endometrial cancer, although the autocontours still required careful editing to ensure that the lymph nodes at risk of recurrence are properly included in the target volume.

  15. Analysis of steam generator loss-of-feedwater experiments with APROS and RELAP5/MOD3.1 computer codes

    Energy Technology Data Exchange (ETDEWEB)

    Virtanen, E.; Haapalehto, T. [Lappeenranta Univ. of Technology, Lappeenranta (Finland); Kouhia, J. [VTT Energy, Nuclear Energy, Lappeenranta (Finland)

    1995-09-01

    Three experiments were conducted to study the behavior of the new horizontal steam generator construction of the PACTEL test facility. In the experiments the secondary side coolant level was reduced stepwise. The experiments were calculated with two computer codes RELAP5/MOD3.1 and APROS version 2.11. A similar nodalization scheme was used for both codes to that the results may be compared. Only the steam generator was modelled and the rest of the facility was given as a boundary condition. The results show that both codes calculate well the behaviour of the primary side of the steam generator. On the secondary side both codes calculate lower steam temperatures in the upper part of the heat exchange tube bundle than was measured in the experiments.

  16. On the nodal structure of atomic and molecular Wigner functions

    International Nuclear Information System (INIS)

    Dahl, J.P.; Schmider, H.

    1996-01-01

    In previous work on the phase-space representation of quantum mechanics, we have presented detailed pictures of the electronic one-particle reduced Wigner function for atoms and small molecules. In this communication, we focus upon the nodal structure of the function. On the basis of the simplest systems, we present an expression which relates the oscillatory decay of the Wigner function solely to the dot product of the position and momentum vector, if both arguments are large. We then demonstrate the regular behavior of nodal patterns for the larger systems. For the molecular systems, an argument analogous to the open-quotes bond-oscillatory principleclose quotes for momentum densities links the nuclear framework to an additional oscillatory term in momenta parallel to bonds. It is shown that these are visible in the Wigner function in terms of characteristic nodes

  17. A nodal model for the simulation of a PWR core

    International Nuclear Information System (INIS)

    Souza Pinto, R. de.

    1981-06-01

    A computer program FORTRAN language was developed to simulate the neutronic and thermal-hydraulic transient behaviour of a PWR reactor core. The reator power is calculated using a point kinectics model with six groups of delayed neutron precursors. The fission product decay heat was considered assuming three effective decay heat groups. A nodal model was employed for the treatment of heat transfer in the fuel rod, with integration of the heat equation by the lumped parameter technique. Axial conduction was neglected. A single-channel nodal model was developed for the thermo-hydrodynamic simulation using mass and energy conservation equations for the control volumes. The effect of the axial pressure variation was neglected. The computer program was tested, with good results, through the simulation of the transient behaviour of postulated accidents in a typical PWR. (Author) [pt

  18. Implantation of multigroup diffusion code 2DB in the IEAv CDC CYBER 170/750 system, and its preliminary evaluation

    International Nuclear Information System (INIS)

    Prati, A.; Anaf, J.

    1988-09-01

    The IBM version of the multigroup diffusion code 2DB was implemented in the IEAv CDC CYBER 170/750 system. It was optimized relative to the use of the central memory, limited to 132 K-words, through the memory manager CMM and its partition into three source codes: rectangular and cylindrical geometries, triangular geometry and hexagonal geometry. The reactangular, triangular and hexagonal geometry nodal options were revised and optimized. A fast reactor and a PWR type thermal reactor sample cases were studied. The results are presented and analized. An updated 2DB code user's manual was written in Portugueses and published separately. (author) [pt

  19. Multidimensional method of spatially coupled approximation to the transverse escape in nodal codes

    International Nuclear Information System (INIS)

    Jatuff, F.E.

    1990-01-01

    A natural extension of the polynomic development programmed in RHENO code is presented, which adds to the variable order one-dimensional functions sum, a number of terms that represent functions of production. These new terms, which provide a direct determination of transverse escapes, are calculated from the new variables coupling among nodes: the 4 fluxes in rectangle vortices (bidimensional Cartesian geometry) or the 12 fluxes half-way through the parallelepiped edges (tridimensional Cartesian geometry). (Author) [es

  20. The verification of PWR-fuel code for PWR in-core fuel management

    International Nuclear Information System (INIS)

    Surian Pinem; Tagor M Sembiring; Tukiran

    2015-01-01

    In-core fuel management for PWR is not easy because of the number of fuel assemblies in the core as much as 192 assemblies so many possibilities for placement of the fuel in the core. Configuration of fuel assemblies in the core must be precise and accurate so that the reactor operates safely and economically. It is necessary for verification of PWR-FUEL code that will be used in-core fuel management for PWR. PWR-FUEL code based on neutron transport theory and solved with the approach of multi-dimensional nodal diffusion method many groups and diffusion finite difference method (FDM). The goal is to check whether the program works fine, especially for the design and in-core fuel management for PWR. Verification is done with equilibrium core search model at three conditions that boron free, 1000 ppm boron concentration and critical boron concentration. The result of the average burn up fuel assemblies distribution and power distribution at BOC and EOC showed a consistent trend where the fuel with high power at BOC will produce a high burn up in the EOC. On the core without boron is obtained a high multiplication factor because absence of boron in the core and the effect of fission products on the core around 3.8 %. Reactivity effect at 1000 ppm boron solution of BOC and EOC is 6.44 % and 1.703 % respectively. Distribution neutron flux and power density using NODAL and FDM methods have the same result. The results show that the verification PWR-FUEL code work properly, especially for core design and in-core fuel management for PWR. (author)

  1. Finite Macro-Element Mesh Deformation in a Structured Multi-Block Navier-Stokes Code

    Science.gov (United States)

    Bartels, Robert E.

    2005-01-01

    A mesh deformation scheme is developed for a structured multi-block Navier-Stokes code consisting of two steps. The first step is a finite element solution of either user defined or automatically generated macro-elements. Macro-elements are hexagonal finite elements created from a subset of points from the full mesh. When assembled, the finite element system spans the complete flow domain. Macro-element moduli vary according to the distance to the nearest surface, resulting in extremely stiff elements near a moving surface and very pliable elements away from boundaries. Solution of the finite element system for the imposed boundary deflections generally produces smoothly varying nodal deflections. The manner in which distance to the nearest surface has been found to critically influence the quality of the element deformation. The second step is a transfinite interpolation which distributes the macro-element nodal deflections to the remaining fluid mesh points. The scheme is demonstrated for several two-dimensional applications.

  2. Tumour thickness as a predictor of nodal metastases in oral cancer: comparison between tongue and floor of mouth subsites.

    Science.gov (United States)

    Balasubramanian, Deepak; Ebrahimi, Ardalan; Gupta, Ruta; Gao, Kan; Elliott, Michael; Palme, Carsten E; Clark, Jonathan R

    2014-12-01

    To identify whether tumour thickness as a predictor of nodal metastases in oral squamous cell carcinoma differs between tongue and floor of mouth (FOM) subsites. Retrospective review of 343 patients treated between 1987 and 2012. The neck was considered positive in the presence of pathologically proven nodal metastases on neck dissection or during follow-up. There were 222 oral tongue and 121 FOM tumours. In patients with FOM tumours 2.1-4mm thick, the rate of nodal metastases was 41.7%. In contrast, for tongue cancers of a similar thickness the rate was only 11.2%. This increased to 38.5% in patients with tongue cancers that were 4.1-6mm thick. Comparing these two subsites, FOM cancers cross the critical 20% threshold of probability for nodal metastases between 1 and 2mm whereas tongue cancers cross the 20% threshold just under 4mm thickness. On logistic regression adjusting for relevant covariates, there was a significant difference in the propensity for nodal metastases based on tumour thickness according to subsite (p=0.028). Thin FOM tumours (2.1-4mm) have a high rate of nodal metastases. Elective neck dissection is appropriate in FOM tumours ⩾2mm thick and in tongue tumours ⩾4mm thick. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Selective Nodal Irradiation on Basis of 18FDG-PET Scans in Limited-Disease Small-Cell Lung Cancer: A Prospective Study

    International Nuclear Information System (INIS)

    Loon, Judith van; De Ruysscher, Dirk; Wanders, Rinus; Boersma, Liesbeth; Simons, Jean; Oellers, Michel; Dingemans, Anne-Marie C.; Hochstenbag, Monique; Bootsma, Gerben; Geraedts, Wiel; Pitz, Cordula; Teule, Jaap; Rhami, Ali; Thimister, Willy; Snoep, Gabriel; Dehing-Oberije, Cary; Lambin, Philippe

    2010-01-01

    Purpose: To evaluate the results of selective nodal irradiation on basis of 18 F-deoxyglucose positron emission tomography (PET) scans in patients with limited-disease small-cell lung cancer (LD-SCLC) on isolated nodal failure. Methods and Materials: A prospective study was performed of 60 patients with LD-SCLC. Radiotherapy was given to a dose of 45 Gy in twice-daily fractions of 1.5 Gy, concurrent with carboplatin and etoposide chemotherapy. Only the primary tumor and the mediastinal lymph nodes involved on the pretreatment PET scan were irradiated. A chest computed tomography (CT) scan was performed 3 months after radiotherapy completion and every 6 months thereafter. Results: A difference was seen in the involved nodal stations between the pretreatment 18 F-deoxyglucose PET scans and computed tomography scans in 30% of patients (95% confidence interval, 20-43%). Of the 60 patients, 39 (65%; 95% confidence interval [CI], 52-76%) developed a recurrence; 2 patients (3%, 95% CI, 1-11%) experienced isolated regional failure. The median actuarial overall survival was 19 months (95% CI, 17-21). The median actuarial progression-free survival was 14 months (95% CI, 12-16). 12% (95% CI, 6-22%) of patients experienced acute Grade 3 (Common Terminology Criteria for Adverse Events, version 3.0) esophagitis. Conclusion: PET-based selective nodal irradiation for LD-SCLC resulted in a low rate of isolated nodal failures (3%), with a low percentage of acute esophagitis. These findings are in contrast to those from our prospective study of CT-based selective nodal irradiation, which resulted in an unexpectedly high percentage of isolated nodal failures (11%). Because of the low rate of isolated nodal failures and toxicity, we believe that our data support the use of PET-based SNI for LD-SCLC.

  4. Disrupted Nodal and Hub Organization Account for Brain Network Abnormalities in Parkinson's Disease.

    Science.gov (United States)

    Koshimori, Yuko; Cho, Sang-Soo; Criaud, Marion; Christopher, Leigh; Jacobs, Mark; Ghadery, Christine; Coakeley, Sarah; Harris, Madeleine; Mizrahi, Romina; Hamani, Clement; Lang, Anthony E; Houle, Sylvain; Strafella, Antonio P

    2016-01-01

    The recent application of graph theory to brain networks promises to shed light on complex diseases such as Parkinson's disease (PD). This study aimed to investigate functional changes in sensorimotor and cognitive networks in Parkinsonian patients, with a focus on inter- and intra-connectivity organization in the disease-associated nodal and hub regions using the graph theoretical analyses. Resting-state functional MRI data of a total of 65 participants, including 23 healthy controls (HCs) and 42 patients, were investigated in 120 nodes for local efficiency, betweenness centrality, and degree. Hub regions were identified in the HC and patient groups. We found nodal and hub changes in patients compared with HCs, including the right pre-supplementary motor area (SMA), left anterior insula, bilateral mid-insula, bilateral dorsolateral prefrontal cortex (DLPFC), and right caudate nucleus. In general, nodal regions within the sensorimotor network (i.e., right pre-SMA and right mid-insula) displayed weakened connectivity, with the former node associated with more severe bradykinesia, and impaired integration with default mode network regions. The left mid-insula also lost its hub properties in patients. Within the executive networks, the left anterior insular cortex lost its hub properties in patients, while a new hub region was identified in the right caudate nucleus, paralleled by an increased level of inter- and intra-connectivity in the bilateral DLPFC possibly representing compensatory mechanisms. These findings highlight the diffuse changes in nodal organization and regional hub disruption accounting for the distributed abnormalities across brain networks and the clinical manifestations of PD.

  5. CRY 1AB trangenic cowpea obtained by nodal electroporation ...

    African Journals Online (AJOL)

    Electroporation-mediated genetic transformation was used to introduce Cry 1 Ab insecticidal gene into cowpea. Nodal buds were electroporated in planta with a plasmid carrying the Cry 1Ab and antibiotic resistance npt II genes driven by a 35S CaMV promoter. T1 seeds derived from electroporated branches were selected ...

  6. Note on the nodal line of the p-Laplacian

    Directory of Open Access Journals (Sweden)

    Abdel R. El Amrouss

    2006-09-01

    Full Text Available In this paper, we prove that the length of the nodal line of the eigenfunctions associated to the second eigenvalue of the problem $$ -Delta_p u = lambda ho (x |u|^{p-2}u quad hbox{in } Omega $$ with the Dirichlet conditions is not bounded uniformly with respect to the weight.

  7. A nodal method based on the response-matrix method

    International Nuclear Information System (INIS)

    Cunha Menezes Filho, A. da; Rocamora Junior, F.D.

    1983-02-01

    A nodal approach based on the Response-Matrix method is presented with the purpose of investigating the possibility of mixing two different allocations in the same problem. It is found that the use of allocation of albedo combined with allocation of direct reflection produces good results for homogeneous fast reactor configurations. (Author) [pt

  8. Engineering topological phases with a three-dimensional nodal-loop semimetal

    Science.gov (United States)

    Li, Linhu; Yap, Han Hoe; Araújo, Miguel A. N.; Gong, Jiangbin

    2017-12-01

    A three-dimensional (3D) nodal-loop semimetal phase is exploited to engineer a number of intriguing phases featuring different peculiar topological surface states. In particular, by introducing various two-dimensional gap terms to a 3D tight-binding model of a nodal-loop semimetal, we obtain a rich variety of topological phases of great interest to ongoing theoretical and experimental studies, including a chiral insulator, degenerate-surface-loop insulator, and second-order topological insulator, as well as a Weyl semimetal with tunable Fermi arc profiles. The unique concept underlying our approach is to engineer topological surface states that inherit their dispersion relations from a gap term. The results provide one rather unified principle for the creation of novel topological phases and can guide the search for new topological materials. Two-terminal transport studies are also carried out to distinguish the engineered topological phases.

  9. Development of three dimensional transient analysis code STTA for SCWR core

    International Nuclear Information System (INIS)

    Wang, Lianjie; Zhao, Wenbo; Chen, Bingde; Yao, Dong; Yang, Ping

    2015-01-01

    Highlights: • A coupled three dimensional neutronics/thermal-hydraulics code STTA is developed for SCWR core transient analysis. • The Dynamic Link Libraries method is adopted for coupling computation for SCWR multi-flow core transient analysis. • The NEACRP-L-335 PWR benchmark problems are studied to verify STTA. • The SCWR rod ejection problems are studied to verify STTA. • STTA meets what is expected from a code for SCWR core 3-D transient preliminary analysis. - Abstract: A coupled three dimensional neutronics/thermal-hydraulics code STTA (SCWR Three dimensional Transient Analysis code) is developed for SCWR core transient analysis. Nodal Green’s Function Method based on the second boundary condition (NGFMN-K) is used for solving transient neutron diffusion equation. The SCWR sub-channel code ATHAS is integrated into NGFMN-K through the serial integration coupling approach. The NEACRP-L-335 PWR benchmark problem and SCWR rod ejection problems are studied to verify STTA. Numerical results show that the PWR solution of STTA agrees well with reference solutions and the SCWR solution is reasonable. The coupled code can be well applied to the core transients and accidents analysis with 3-D core model during both subcritical pressure and supercritical pressure operation

  10. The efficiency and fidelity of the in-core nuclear fuel management code FORMOSA-P

    International Nuclear Information System (INIS)

    Kropaczek, D.J.; Turinsky, P.J.

    1994-01-01

    The second-order generalized perturbation theory (GPT), nodal neutronic model utilized within the nuclear fuel management optimization code FORMOSA-P is presented within the context of prediction fidelity and computational efficiency versus forward solution. Key features of thr GPT neutronics model as implemented within the Simulated Annealing optimization adaptive control algorithm are discussed. Supporting results are then presented demonstrating the superior consistency of adaptive control for both global and local optimization searches. (authors). 15 refs., 1 fig., 4 tabs

  11. Solution of the transport equation in stationary state and X Y geometry, using continuous and discontinuous hybrid nodal schemes; Solucion de la ecuacion de transporte en estado estacionario y geometria X Y, usando esquemas nodales hibridos continuos y discontinuos

    Energy Technology Data Exchange (ETDEWEB)

    Xolocostli M, V.; Valle G, E. del [IPN-ESFM, 07738 Mexico D.F. (Mexico); Alonso V, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: xvicente@hotmail.com

    2003-07-01

    In this work it is described the development and the application of the NH-FEM schemes, Hybrid Nodal schemes using the Finite Element method in the solution of the neutron transport equation in stationary state and X Y geometry, of which two families of schemes were developed, one of which corresponds to the continuous and the other to the discontinuous ones, inside those first its are had the Bi-Quadratic Bi Q, and to the Bi-cubic BiC, while for the seconds the Discontinuous Bi-lineal DBiL and the Discontinuous Bi-quadratic DBiQ. These schemes were implemented in a program to which was denominated TNHXY, Transport of neutrons with Hybrid Nodal schemes in X Y geometry. One of the immediate applications of the schemes NH-FEM it will be in the analysis of assemblies of nuclear fuel, particularly of the BWR type. The validation of the TNHXY program was made with two test problems or benchmark, already solved by other authors with numerical techniques and to compare results. The first of them consists in an it BWR fuel assemble in an arrangement 7x7 without rod and with control rod providing numerical results. The second is a fuel assemble of mixed oxides (MOX) in an arrangement 10x10. This last problem it is known as the Benchmark problem WPPR of the NEA Data Bank and the results are compared with those of other commercial codes as HELIOS, MCNP-4B and CPM-3. (Author)

  12. An adaptive mesh refinement approach for average current nodal expansion method in 2-D rectangular geometry

    International Nuclear Information System (INIS)

    Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.

    2013-01-01

    Highlights: ► A new adaptive h-refinement approach has been developed for a class of nodal method. ► The resulting system of nodal equations is more amenable to efficient numerical solution. ► The benefit of the approach is reducing computational efforts relative to the uniform fine mesh modeling. ► Spatially adaptive approach greatly enhances the accuracy of the solution. - Abstract: The aim of this work is to develop a spatially adaptive coarse mesh strategy that progressively refines the nodes in appropriate regions of domain to solve the neutron balance equation by zeroth order nodal expansion method. A flux gradient based a posteriori estimation scheme has been utilized for checking the approximate solutions for various nodes. The relative surface net leakage of nodes has been considered as an assessment criterion. In this approach, the core module is called in by adaptive mesh generator to determine gradients of node surfaces flux to explore the possibility of node refinements in appropriate regions and directions of the problem. The benefit of the approach is reducing computational efforts relative to the uniform fine mesh modeling. For this purpose, a computer program ANRNE-2D, Adaptive Node Refinement Nodal Expansion, has been developed to solve neutron diffusion equation using average current nodal expansion method for 2D rectangular geometries. Implementing the adaptive algorithm confirms its superiority in enhancing the accuracy of the solution without using fine nodes throughout the domain and increasing the number of unknown solution. Some well-known benchmarks have been investigated and improvements are reported

  13. Modification of atrioventricular nodal electrophysiology by selective radiofrequency delivery on the anterior or posterior approaches.

    Science.gov (United States)

    Chorro, F J; Sanchis, J; Such, L; Artal, L; Llavador, J J; Llavador, E; Monmeneu, J V; López-Merino, V

    1997-05-01

    An analysis was made in 14 isolated and perfused rabbit hearts of the electrophysiological effects of selective radiofrequency (RF) delivery in the anterior (group I, n = 7) or posterior zone (group II, n = 7) of the Koch triangle, with the aim of modifying atrioventricular nodal (AVN) conduction without suppressing 1:1 transmission. After opening the right atrium, RF was delivered (0.5 W) with a 1-mm diameter unipolar electrode positioned in the selected zone until a prolongation of no less than 15% was obtained in the Wenckebach cycle length (WCL). Before and after (30 min) RF, anterograde and retrograde AVN refractoriness and conduction were evaluated, stimulating from the crista terminalis (CT), the interatrial septum (IAS), and from the RV epicardium. After RF, the following percentage increments were observed in group I: AH(CT) = 36% +/- 9%, AH(IAS) = 38% +/- 11%, WCL(CT) = 28% +/- 8%, WCL(IAS) = 22% +/- 6%, functional refractory period (FRP) of the AVN(CT) = 13% +/- 11%, FRP-AVN(IAS) = 13% +/- 8%, retrograde WCL = 20% +/- 19%, and retrograde FRPVA = 13% +/- 16%. The increments observed in group II and the significances of the differences with respect to group I were: AH(CT) = 11% +/- 14% (P IAS) = 19% +/- 32% (NS), WCL(CT) = 42% +/- 14% (P IAS) = 42% +/- 16% (P < 0.01), FRP-AVN(CT) = 28% +/- 28% (NS), FRP-AVN(LAS) = 21% +/- 19% (NS), retrograde WCL = 35% +/- 24% (NS), and retrograde FRP = 16% +/- 13% (NS). In both groups, the AH interval variations were not correlated with those of the rest of the parameters analyzed. Truncated nodal function curves suggestive of a dual AV nodal pathway were obtained in three experiments, though in only one of them was this observed under basal conditions. In the other two experiments, with dual AV nodal physiology only after RF (one from each group), AV nodal reentrant tachycardias were triggered with atrial extrastimulus at coupling intervals equal to or shorter than at those that cause a sudden lengthening of the AH

  14. An analytical spatial reconstruction algorithm for the SD-SGF-CN hybrid nodal method for one-speed X,Y-geometry SN eigenvalue problems

    International Nuclear Information System (INIS)

    Menezes, Welton Alves; Alves Filho, Hermes; Barros, Ricardo C.

    2009-01-01

    In this paper the X,Y-geometry SD-SGF-CN spectral nodal method, cf. spectral diamond-spectral Green's function-constant nodal, is used to determine the one-speed node-edge average angular fluxes in heterogeneous domains. This hybrid spectral nodal method uses the spectral diamond (SD) auxiliary equation for the multiplying regions and the spectral Green's function (SGF) auxiliary equation for the non-multiplying regions of the domain. Moreover, we consider constant approximations for the transverse-leakage terms in the transverse integrated S N nodal equations. We solve the SD-SGF-CN equations using the one-node block inversion (NBI) iterative scheme, which uses the most recent estimates available for the node-entering fluxes to evaluate the node-exiting fluxes in the directions that constitute the incoming fluxes for the adjacent node. Using these results, we offer an algorithm for analytical reconstruction of the coarse-mesh nodal solution within each spatial node, as localized numerical solutions are not generated by usual accurate nodal methods. Numerical results are presented to illustrate the accuracy of the present algorithm. (author)

  15. Analysis of steam generator loss-of-feedwater experiments with APROS and RELAP5/MOD3.1 computer codes

    International Nuclear Information System (INIS)

    Virtanen, E.; Haapalehto, T.; Kouhia, J.

    1997-01-01

    Three experiments were conducted to study the behaviour of the new horizontal steam generator construction of the PACTEL test facility. In the experiments the secondary side coolant level was reduced stepwise. The experiments were calculated with two computer codes RELAP5/MOD3.1 and APROS version 2.11. A similar nodalization scheme was used for both codes so that the results may be compared. Only the steam generator was modeled and the rest of the facility was given as a boundary condition. The results show that both codes calculate well the behaviour of the primary side of the steam generator. On the secondary side both codes calculate lower steam temperatures in the upper part of the heat exchange tube bundle than was measured in the experiments. (orig.)

  16. An Interesting Case of Retropharyngeal Lymph Nodal Metastases in a Case of Iodine-Refractory Thyroid Cancer.

    Science.gov (United States)

    Harisankar, Chidambaram Natrajan Balasubramanian; Vijayabhaskar, Ramakrishnan

    2018-01-01

    Metastases to cervical lymph node are fairly common in differentiated thyroid cancer. In iodine-refractory disease, the disease may persist in the thyroid bed, cervical lymph nodes, lungs, or the bones commonly. Retropharyngeal lymph nodal involvement in thyroid cancer is unusual and may even be the presenting complaint. We represent a case of iodine-refractory thyroid cancer with retropharyngeal lymph nodal involvement in addition to lung metastases.

  17. Nodal Control and Surgical Salvage after Primary Radiotherapy in 1,782 Patients with Laryngeal and Pharyngeal Carcinoma

    International Nuclear Information System (INIS)

    Vendelbo Johansen, Lars; Grau, Cai; Overgaard, Jens

    2004-01-01

    The purpose of this study was to evaluate the ultimate neck control after primary radiotherapy and surgical salvage in laryngeal and pharyngeal cancer patients. Some 1,782 consecutive patients with squamous cell carcinoma were treated by radiotherapy. At presentation 26% of the patients had metastatic lymph nodes. A total of 298 primary or secondary nodal recurrences were seen, 159 were treated, and 53 (∼18%) were controlled. Isolated N-recurrence was fatal in 2.7% (36/1,324) of the N0 patients. Univariate actuarial analysis of nodal control demonstrated that the region of origin, T-classification, T-size, N-classification, tumor stage, differentiation, hemoglobin, and radiation time were significant prognostic factors. In a Cox analysis the independent significant parameters were gender, region of origin, N-classification, and differentiation. The conclusions were that in patients with nodal recurrence a little over half were treated and of these a third of the nodal recurrences were controlled. Significant prognostic factors in multivariate analysis were gender, region of origin, N-classification, and tumor differentiation

  18. ICAP [International Code Assessment and Applications Program] assessment of RELAP5/MOD2, Cycle 36.05 against LOFT [Loss of Fluid Test] Small Break Experiment L3-7

    International Nuclear Information System (INIS)

    Lee, Euy-Joon; Chung, Bud-Dong; Kim, Hho-Jung

    1990-04-01

    The LOFT small break (1 in-dia) experiment L3-7 has been analyzed using the reactor thermal hydraulic analysis code RELAP5/MOD2, Cycle 36.05. The base calculation (Case A) was completed and compared with the experimental data. Three types of sensitivity studies (Cases B, Cm, and D) were carried out to investigate the effects of (1) break discharge coefficient Cd, (2) pump two-phase difference multiplier and (3) High Pressure Injection System (HPIS) capacity on major thermal and hydraulic (T/H) parameters. A nodalization study (Case E) was conducted to assess the phenomena with a simplified nodalization. The results indicate that Cd of 0.9 and 0.1 fit to the single discharge flow rate of Test L3-7 best among the tried cases. The pump two-phase multiplier has little effects on the T/H parameters because of the low discharge flow rate and the early pump coast down in this smaller size SBLOCA. But HPIS capacity has a very strong influence on parameters such as pressure, flow and temperature. It is also shown that a simplified nodalization could accomodate the dominant T/H phenomena with the same degree of code accuracy and efficiency

  19. Exact boundary controllability of nodal profile for quasilinear hyperbolic systems

    CERN Document Server

    Li, Tatsien; Gu, Qilong

    2016-01-01

    This book provides a comprehensive overview of the exact boundary controllability of nodal profile, a new kind of exact boundary controllability stimulated by some practical applications. This kind of controllability is useful in practice as it does not require any precisely given final state to be attained at a suitable time t=T by means of boundary controls, instead it requires the state to exactly fit any given demand (profile) on one or more nodes after a suitable time t=T by means of boundary controls. In this book we present a general discussion of this kind of controllability for general 1-D first order quasilinear hyperbolic systems and for general 1-D quasilinear wave equations on an interval as well as on a tree-like network using a modular-structure construtive method, suggested in LI Tatsien's monograph "Controllability and Observability for Quasilinear Hyperbolic Systems"(2010), and we establish a complete theory on the local exact boundary controllability of nodal profile for 1-D quasilinear hyp...

  20. Dirac Magnon Nodal Loops in Quasi-2D Quantum Magnets.

    Science.gov (United States)

    Owerre, S A

    2017-07-31

    In this report, we propose a new concept of one-dimensional (1D) closed lines of Dirac magnon nodes in two-dimensional (2D) momentum space of quasi-2D quantum magnetic systems. They are termed "2D Dirac magnon nodal-line loops". We utilize the bilayer honeycomb ferromagnets with intralayer coupling J and interlayer coupling J L , which is realizable in the honeycomb chromium compounds CrX 3 (X ≡ Br, Cl, and I). However, our results can also exist in other layered quasi-2D quantum magnetic systems. Here, we show that the magnon bands of the bilayer honeycomb ferromagnets overlap for J L  ≠ 0 and form 1D closed lines of Dirac magnon nodes in 2D momentum space. The 2D Dirac magnon nodal-line loops are topologically protected by inversion and time-reversal symmetry. Furthermore, we show that they are robust against weak Dzyaloshinskii-Moriya interaction Δ DM  magnon edge modes.

  1. The Nodal Location of Metastases in Melanoma Sentinel Lymph Nodes

    DEFF Research Database (Denmark)

    Riber-Hansen, Rikke; Nyengaard, Jens; Hamilton-Dutoit, Stephen

    2009-01-01

    BACKGROUND: The design of melanoma sentinel lymph node (SLN) histologic protocols is based on the premise that most metastases are found in the central parts of the nodes, but the evidence for this belief has never been thoroughly tested. METHODS: The nodal location of melanoma metastases in 149...

  2. Determination and delineation of nodal target volumes for head-and-neck cancer based on patterns of failure in patients receiving definitive and postoperative IMRT

    International Nuclear Information System (INIS)

    Chao, K.S. Clifford; Wippold, Franz J.; Ozyigit, Gokhan; Tran, Binh N.; Dempsey, James F.

    2002-01-01

    Purpose: We present the guidelines for target volume determination and delineation of head-and-neck lymph nodes based on the analysis of the patterns of nodal failure in patients treated with intensity-modulated radiotherapy (IMRT). Methods and Materials: Data pertaining to the natural course of nodal metastasis for each head-and-neck cancer subsite were reviewed. A system was established to provide guidance for nodal target volume determination and delineation. Following these guidelines, 126 patients (52 definitive, 74 postoperative) were treated between February 1997 and December 2000 with IMRT for head-and-neck cancer. The median follow-up was 26 months (range 12-55), and the patterns of nodal failure were analyzed. Results: These guidelines define the nodal target volume based on the location of the primary tumor and the probability of microscopic metastasis to the ipsilateral and contralateral (Level I-V) nodal regions. Following these guidelines, persistent or recurrent nodal disease was found in 6 (12%) of 52 patients receiving definitive IMRT, and 7 (9%) of 74 patients receiving postoperative IMRT had failure in the nodal region. Conclusion: On the basis of our clinical experience in implementing inverse-planning IMRT for head-and-neck cancer, we present guidelines using a simplified, but clinically relevant, method for nodal target volume determination and delineation. The intention was to provide a foundation that enables different institutions to exchange clinical experiences in head-and-neck IMRT. These guidelines will be subject to future refinement when the clinical experience in head-and-neck IMRT advances

  3. Radiotherapy of adult nodal non Hodgkin's lymphoma

    International Nuclear Information System (INIS)

    Gamen, G.; Thirion, P.

    1999-01-01

    The role of radiotherapy in the treatment of nodal non-Hodgkin's lymphoma has been modified by the introduction of efficient chemotherapy and the development of different pathological classifications. The recommended treatment of early-stage aggressive lymphomas is primarily a combination chemotherapy. The interest of adjuvant radiotherapy remains unclear and has to be established through large prospective trials. If radiation therapy has to be delivered, the historical results of exclusive radiation therapy showed that involved-fields and a dose of 35-40 Gy (daily fraction of 1.8 Gy, 5 days a week) are the optimal schedule. The interest of radiotherapy in the treatment of advanced-stage aggressive lymphoma is yet to be proven. Further studies had to stratify localized stages according to the factors of the International Prognostic Index. For easy-stage low-grade lymphoma, radiotherapy remains the standard treatment. However, the appropriate technique to use is controversial. Involved-field irradiation at a dose of 35 Gy seems to be the optimal schedule, providing a 10 year disease-free survival rate of 50 % and no major toxicity. There is no standard indication of radiotherapy in the treatment advanced-stage low-grade lymphoma. For 'new' nodal lymphoma's types, the indication of radiotherapy cannot be established (mantle-zone lymphoma, marginal zone B-cell lymphoma) or must take into account the natural history (Burkitt's lymphoma, peripheral T-cell lymphoma) and the sensibility to others therapeutic methods. (authors)

  4. GDF3 is a BMP inhibitor that can activate Nodal signaling only at very high doses

    Science.gov (United States)

    Levine, Ariel J.; Levine, Zachary J.; Brivanlou, Ali H.

    2013-01-01

    Within the TGF-β superfamily, there are approximately forty ligands divided into two major branches: the TGF-β/Activin/Nodal ligands and the BMP/GDF ligands. We studied the ligand GDF3 and found that it inhibits signaling by its co-family members, the BMPs; however, GDF3 has been described by others to have Nodal-like activity. Here, we show that GDF3 can activate Nodal signaling, but only at very high doses and only upon mRNA over-expression. In contrast, GDF3 inhibits BMP signaling upon over-expression of GDF3 mRNA, as recombinant protein, and regardless of its dose. We therefore further characterized the mechanism through which GDF3 protein acts as a specific BMP inhibitor and found that the BMP inhibitory activity of GDF3 resides redundantly in the unprocessed, predominant form and in the mature form of the protein. These results confirm and extend the activity that we described for GDF3 and illuminate the experimental basis for the different observations of others. We suggest that GDF3 is either a bi-functional TGF-β ligand, or, more likely, that it is a BMP inhibitor that can artificially activate Nodal signaling under non-physiological conditions. PMID:18823971

  5. Disrupted nodal and hub organization account for brain network abnormalities in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Yuko Koshimori

    2016-11-01

    Full Text Available The recent application of graph theory to brain networks promises to shed light on complex diseases such as Parkinson’s disease. This study aimed to investigate functional changes in sensorimotor and cognitive networks in parkinsonian patients, with a focus on inter- and intra-connectivity organization in the disease-associated nodal and hub regions using the graph theoretical analyses. Resting-state functional MRI data of a total of 65 participants, including 23 healthy controls and 42 patients, were investigated in 120 nodes for local efficiency, betweenness centrality, and degree. Hub regions were identified in the healthy control and patient groups. We found nodal and hub changes in patients compared with healthy controls, including the right pre-supplementary motor area, left anterior insula, bilateral mid-insula, bilateral dorsolateral prefrontal cortex, and right caudate nucleus. In general, nodal regions within the sensorimotor network (i.e. right pre-supplementary motor area and right mid-insula displayed weakened connectivity, with the former node associated with more severe bradykinesia, and impaired integration with default mode network regions. The left mid-insula also lost its hub properties in patients. Within the executive networks, the left anterior insular cortex lost its hub properties in patients, while a new hub region was identified in the right caudate nucleus, paralleled by an increased level of inter- and intra-connectivity in the bilateral dorsolateral prefrontal cortex possibly representing compensatory mechanisms. These findings highlight the diffuse changes in nodal organization and regional hub disruption accounting for the distributed abnormalities across brain networks and the clinical manifestations of Parkinson’s disease.

  6. Twisted vector bundles on pointed nodal curves

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    by identifying the points p1 and p2. If m ≥ 2, let R1,...,Rm−1 be m − 1 copies of the projective line P1 and let xi,yi be two distinct points in Ri. Let R be the nodal curve which arises from the union. R0 ⊔ R1 ⊔···⊔ Rm−1 ⊔ Rm by identifying p1 ∈ R0 and p2 ∈ Rm with x1 ∈ R1 and ym−1 ∈ Rm−1 respectively and by identifying ...

  7. On the theories, techniques, and computer codes used in numerical reactor criticality and burnup calculations

    International Nuclear Information System (INIS)

    El-Osery, I.A.

    1981-01-01

    The purpose of this paper is to discuss the theories, techniques and computer codes that are frequently used in numerical reactor criticality and burnup calculations. It is a part of an integrated nuclear reactor calculation scheme conducted by the Reactors Department, Inshas Nuclear Research Centre. The crude part in numerical reactor criticality and burnup calculations includes the determination of neutron flux distribution which can be obtained in principle as a solution of Boltzmann transport equation. Numerical methods used for solving transport equations are discussed. Emphasis are made on numerical techniques based on multigroup diffusion theory. These numerical techniques include nodal, modal, and finite difference ones. The most commonly known computer codes utilizing these techniques are reviewed. Some of the main computer codes that have been already developed at the Reactors Department and related to numerical reactor criticality and burnup calculations have been presented

  8. Assessment of 12 CHF prediction methods, for an axially non-uniform heat flux distribution, with the RELAP5 computer code

    Energy Technology Data Exchange (ETDEWEB)

    Ferrouk, M. [Laboratoire du Genie Physique des Hydrocarbures, University of Boumerdes, Boumerdes 35000 (Algeria)], E-mail: m_ferrouk@yahoo.fr; Aissani, S. [Laboratoire du Genie Physique des Hydrocarbures, University of Boumerdes, Boumerdes 35000 (Algeria); D' Auria, F.; DelNevo, A.; Salah, A. Bousbia [Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione, Universita di Pisa (Italy)

    2008-10-15

    The present article covers the evaluation of the performance of twelve critical heat flux methods/correlations published in the open literature. The study concerns the simulation of an axially non-uniform heat flux distribution with the RELAP5 computer code in a single boiling water reactor channel benchmark problem. The nodalization scheme employed for the considered particular geometry, as modelled in RELAP5 code, is described. For this purpose a review of critical heat flux models/correlations applicable to non-uniform axial heat profile is provided. Simulation results using the RELAP5 code and those obtained from our computer program, based on three type predictions methods such as local conditions, F-factor and boiling length average approaches were compared.

  9. AFTC Code for Automatic Fault Tree Construction: Users Manual

    International Nuclear Information System (INIS)

    Gopika Vinod; Saraf, R.K.; Babar, A.K.

    1999-04-01

    Fault Trees perform a predominant role in reliability and safety analysis of system. Manual construction of fault tree is a very time consuming task and moreover, it won't give a formalized result, since it relies highly on analysts experience and heuristics. This necessitates a computerised fault tree construction, which is still attracting interest of reliability analysts. AFTC software is a user friendly software model for constructing fault trees based on decision tables. Software is equipped with libraries of decision tables for components commonly used in various Nuclear Power Plant (NPP) systems. User is expected to make a nodal diagram of the system, for which fault tree is to be constructed, from the flow sheets available. The text nodal diagram goes as the sole input defining the system flow chart. AFTC software is a rule based expert system which draws the fault tree from the system flow chart and component decision tables. AFTC software gives fault tree in both text and graphic format. Help is provided as how to enter system flow chart and component decision tables. The software is developed in 'C' language. Software is verified with simplified version of the fire water system of an Indian PHWR. Code conversion will be undertaken to create a window based version. (author)

  10. Omitting elective nodal irradiation during thoracic irradiation in limited-stage small cell lung cancer--evidence from a phase II trial.

    Science.gov (United States)

    Colaco, Rovel; Sheikh, Hamid; Lorigan, Paul; Blackhall, Fiona; Hulse, Paul; Califano, Raffaele; Ashcroft, Linda; Taylor, Paul; Thatcher, Nicholas; Faivre-Finn, Corinne

    2012-04-01

    Omitting elective nodal irradiation (ENI) in limited-stage disease small cell lung cancer (LD-SCLC) is expected to result in smaller radiation fields. We report on data from a randomised phase II trial that omitted ENI in patients receiving concurrent chemo-radiotherapy for LD-SCLC. 38 patients with LD-SCLC were randomised to receive once-daily (66 Gy in 33 fractions) or twice-daily (45 Gy in 30 fractions) radiotherapy (RT). 3D-conformal RT was given concurrently with cisplatin and etoposide starting with the second cycle of a total of four cycles. The gross tumour volume was defined as primary tumour with involved lymph nodes (nodes ≥1 cm in short axis) identifiable with CT imaging. ENI was not used. Six recurrence patterns were identified: recurrence within planning target volume (PTV) only, recurrence within PTV+regional nodal recurrence and/or distant recurrence, isolated nodal recurrence outside PTV, nodal recurrence outside PTV+distant recurrence, distant metastases only and no recurrence. At median follow-up 16.9 months, 31/38 patients were evaluable and 14/31 patients had relapsed. There were no isolated nodal recurrences. Eight patients relapsed with intra-thoracic disease: 2 within PTV only, 4 within PTV and distantly and 2 with nodal recurrence outside PTV plus distant metastases. Rates of grade 3+ acute oesophagitis and pneumonitis in the 31 evaluable patients were 23 and 3% respectively. In our study of LD-SCLC, omitting ENI based on CT imaging was not associated with a high risk of isolated nodal recurrence, although further prospective studies are needed to confirm this. Routine ENI omission will be further evaluated prospectively in the ongoing phase III CONVERT trial (NCT00433563). Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. The role of elective nodal irradiation for esthesioneuroblastoma patients with clinically negative neck.

    Science.gov (United States)

    Jiang, Wen; Mohamed, Abdallah S R; Fuller, Clifton David; Kim, Betty Y S; Tang, Chad; Gunn, G Brandon; Hanna, Ehab Y; Frank, Steven J; Su, Shirley Y; Diaz, Eduardo; Kupferman, Michael E; Beadle, Beth M; Morrison, William H; Skinner, Heath; Lai, Stephen Y; El-Naggar, Adel K; DeMonte, Franco; Rosenthal, David I; Garden, Adam S; Phan, Jack

    2016-01-01

    Although adjuvant radiation to the tumor bed has been reported to improve the clinic outcomes of esthesioneuroblastoma (ENB) patients, the role of elective neck irradiation (ENI) in clinically node-negative (N0) patients remains controversial. Here, we evaluated the effects of ENI on neck nodal relapse risk in ENB patients treated with radiation therapy as a component of multimodality treatment. Seventy-one N0 ENB patients irradiated at the University of Texas MD Anderson Cancer Center between 1970 and 2013 were identified. ENI was performed on 22 of these patients (31%). Survival analysis was performed with focus on comparative outcomes of those patients who did and did not receive ENI. The median follow-up time for our cohort is 80.8 months (range, 6-350 months). Among N0 patients, 13 (18.3%) developed neck nodal relapses, with a median time to progression of 62.5 months. None of these 13 patients received prophylactic neck irradiation. ENI was associated with significantly improved regional nodal control at 5 years (regional control rate of 100% for ENI vs 82%, P ENI developed isolated neck recurrences. All had further treatment for their neck disease, including neck dissection (n = 10), radiation (n = 10), or chemotherapy (n = 5). Six of these 11 patients (54.5%) demonstrated no evidence of further recurrence with a median follow-up of 55.5 months. ENI significantly reduces the risk of cervical nodal recurrence in ENB patients with clinically N0 neck, but this did not translate to a survival benefit. Multimodality treatment for isolated neck recurrence provides a reasonable salvage rate. The greatest benefit for ENI appeared to be among younger patients who presented with Kadish C disease. Further studies are needed to confirm these findings. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  12. The role of elective-nodal irradiation for esthesioneuroblastoma patients with clinically negative neck

    Science.gov (United States)

    Jiang, Wen; Mohamed, Abdallah Sherif; Fuller, Clifton David; Kim, Betty Y.S.; Tang, Chad; Gunn, G. Brandon; Hanna, Ehab Y.; Frank, Steven J.; Su, Shirley Y.; Diaz, Eduardo; Kupferman, Michael E.; Beadle, Beth M.; Morrison, William H.; Skinner, Heath; Lai, Stephen Y.; El-Naggar, Adel K.; DeMonte, Franco; Rosenthal, David I.; Garden, Adam S.; Phan, Jack

    2017-01-01

    Purpose Although adjuvant radiation to the tumor bed has been reported to improve the clinic outcomes of esthesioneuroblastoma (ENB) patients, the role of elective neck irradiation (ENI) in clinically node negative (N0) patients remains controversial. Here, we evaluated the effects of ENI on neck nodal relapse risk in ENB patients treated with radiotherapy as a component of multi-modality treatment. Methods and Materials Seventy-one N0 ENB patients irradiated at XXXXXXXXX between 1970 and 2013 were identified. ENI was performed on 22 of these patients (31%). Survival analysis was performed with focus on comparative outcomes of those patients who did and did not receive ENI. Results The median follow up time for our cohort is 80.8 months (range 6 – 350 month). Among N0 patients, 13 (18.3%) developed neck nodal relapses, with a median time to progression of 62.5 months. None of these 13 patients received prophylactic neck irradiation. ENI was associated with significantly improved regional nodal control at 5-year (regional control rate of 100% for ENI vs 82%, p ENI developed isolated neck recurrences. All had further treatment for their neck disease, including neck dissection (n=10), radiation (n=10), or chemotherapy (n=5). Six of these 11 patients (54.5%) demonstrated no evidence of further recurrence with a median follow up of 55.5 month. Conclusion ENI significantly reduces the risk of cervical nodal recurrence in ENB patients with clinically N0 neck but this did not translate to a survival benefit. Multimodality treatment for isolated neck recurrence provides a reasonable salvage rate. The greatest benefit for ENI appeared to be among younger patients who presented with Kadish C disease. Further studies are needed to confirm these findings. PMID:26979544

  13. Nodal Diffusion Burnable Poison Treatment for Prismatic Reactor Cores

    International Nuclear Information System (INIS)

    Ougouag, A.M.; Ferrer, R.M.

    2010-01-01

    The prismatic block version of the High Temperature Reactor (HTR) considered as a candidate Very High Temperature Reactor (VHTR)design may use burnable poison pins in locations at some corners of the fuel blocks (i.e., assembly equivalent structures). The presence of any highly absorbing materials, such as these burnable poisons, within fuel blocks for hexagonal geometry, graphite-moderated High Temperature Reactors (HTRs) causes a local inter-block flux depression that most nodal diffusion-based method have failed to properly model or otherwise represent. The location of these burnable poisons near vertices results in an asymmetry in the morphology of the assemblies (or blocks). Hence the resulting inadequacy of traditional homogenization methods, as these 'spread' the actually local effect of the burnable poisons throughout the assembly. Furthermore, the actual effect of the burnable poison is primarily local with influence in its immediate vicinity, which happens to include a small region within the same assembly as well as similar regions in the adjacent assemblies. Traditional homogenization methods miss this artifact entirely. This paper presents a novel method for treating the local effect of the burnable poison explicitly in the context of a modern nodal method.

  14. Regeneration of three sweet potato (Ipomea batatas (L.)) accessions via meristem, Nodal and callus induction

    International Nuclear Information System (INIS)

    Addae-Frimpomaah, F.

    2012-11-01

    In vitro regeneration of three sweet potato accessions UE007, UK-BNARI and SA-BNARI using meristem, nodal cuttings or callus induction was studied. Meristematic explants cultured on Murashige and Skoog (1962) basal medium supplemented with low concentration of benzylaminopurine (BAP) or kinetin resulted in callus with or without shoot development which delayed shoot emergence. The degree of callus development increased as the concentration of the cytokinin in the culture medium increased. Although, callus development was comparatively lower on kinetin amended medium than BAP amended medium, Murashige and Skoog medium supplemented with 0.25mg/1BAP had the highest shoot induction (80%). For further differentiation of callus or shoots into distinct stem and leaves, the culture were transferred into fresh MS medium supplemented with 0.25mg/1 BAP, 0.1 mg/1 NAA and 0.1 mg/1 Gibberellic acid (GA 3 . To overcome the delay in shoot initiation using meristem culture, nodal cuttings of sweet potato were used as explants and cultured on MS medium amended with 0.3 - 0.9mg/1 BAP. All explants cultured on 0.3 or 0.6mg/1 BAP developed shoots. Furthermore, liquid MS medium amended with 0.25mg/1 BAP, 0.1mg/I NAA, and 0.1mg/1 GA 3 also enhanced early shoot development from nodal cutting explants compared to solid culture. Post flask acclimatisation of meristem or nodal cutting-derived plantlets showed that meristem derived plantlets were better acclimatised than nodal cutting plants due to vigorous root development leading to higher percentage survival in pots and subsequent tuber production. Callusogenesis was achieved when leaf lobe explants were cultured on CLC/ Ipomoea medium supplemented with 1.0 - 4.0mg/1 2,4-D with 4.0mg/1 2,4-D being the optimal concentration. However, the calli were non-embryogenic and therefore could not produce embryos when transferred to 0.1mg/1 BAP amended medium but rather produced either single or multiple shoots. The highest percentage shoot (83

  15. Características morfológicas y posibles implicaciones clínicas de las arterias nodales Morphological characteristics and potential clinical implications of nodal arteries

    Directory of Open Access Journals (Sweden)

    Luis E Ballesteros

    2010-12-01

    Full Text Available La expresión morfológica de las arterias nodales es relevante en el diagnóstico y manejo de eventos clínicos y en abordajes quirúrgicos del corazón. Se estudiaron 88 arterias nodales de corazones obtenidos como material de autopsia. Las arterias coronarias se inyectaron con resina poliéster pigmentada de color rojo. Se registraron las formas de presentación de las arterias nodales y sus características morfométricas. La arteria del nodo sinoatrial se originó de la coronaria derecha en 52 casos (59,1%, de la circunfleja en 33 corazones (37,35% y de ambas en 3 (3,4%. Su calibre proximal fue de 1,31 mm (± 0,3, correspondiente a las arterias originadas de la coronaria derecha de 1,25 mm (± 0,3 mientras que las que se originaron de la arteria circunfleja obtuvieron un calibre de 1,42 mm (± 0,3, siendo esta diferencia significativa (p= 0,01. Se originó con mayor frecuencia en el tercio anteromedial, tanto de la coronaria derecha como de la circunfleja (54,6% y 61,2% respectivamente. En su segmento final cruzó por delante de la desembocadura de la vena cava superior en la mayoría de los casos (44%, mientras que en 22 corazones (24,5% cursó alrededor de la cava. Se observó arteria en forma de «S» en 14 casos (15,9% del total de la muestra y 42,4% de las originadas de la arteria circunfleja. La arteria del nodo atrioventricular se originó del segmento en «U» invertida de la coronaria derecha, al nivel de la cruz cardiaca, en 81 corazones (92%, y presentó un calibre proximal de 1,06 mm (± 0,22. Con relación al calibre y al origen se evidencian hallazgos que coinciden con estudios previos. Se destaca la alta prevalencia de la arteria en forma de «S» y de la trayectoria de la arteria sinoatrial alrededor de la vena cava superior.The morphological expression of nodal arteries is important in the diagnosis and management of cardiac clinical events and surgical approaches. 88 nodal arteries of hearts obtained from autopsies were

  16. Discrete nodal integral transport-theory method for multidimensional reactor physics and shielding calculations

    International Nuclear Information System (INIS)

    Lawrence, R.D.; Dorning, J.J.

    1980-01-01

    A coarse-mesh discrete nodal integral transport theory method has been developed for the efficient numerical solution of multidimensional transport problems of interest in reactor physics and shielding applications. The method, which is the discrete transport theory analogue and logical extension of the nodal Green's function method previously developed for multidimensional neutron diffusion problems, utilizes the same transverse integration procedure to reduce the multidimensional equations to coupled one-dimensional equations. This is followed by the conversion of the differential equations to local, one-dimensional, in-node integral equations by integrating back along neutron flight paths. One-dimensional and two-dimensional transport theory test problems have been systematically studied to verify the superior computational efficiency of the new method

  17. NODAL and SHH dose-dependent double inhibition promotes an HPE-like phenotype in chick embryos

    Directory of Open Access Journals (Sweden)

    Sandra Mercier

    2013-03-01

    Holoprosencephaly (HPE is a common congenital defect that results from failed or incomplete forebrain cleavage. HPE is characterized by a wide clinical spectrum, with inter- and intrafamilial variability. This heterogeneity is not well understood and it has been suggested that HPE involves a combination of multiple gene mutations. In this model, several mutated alleles or modifying factors are presumed to act in synergy to cause and determine the severity of HPE. This could explain the various clinical phenotypes. Screening for HPE-associated genes in humans suggests the involvement of NODAL or SHH signaling, or both. To test this multigenic hypothesis, we investigated the effects of chemical inhibition of these two main HPE signaling pathways in a chick embryo model. SB-505124, a selective inhibitor of transforming growth factor-B type I receptors was used to inhibit the NODAL pathway. Cyclopamine was used to inhibit the SHH pathway. We report that both inhibitors caused HPE-like defects that were dependent on the drug concentration and on the developmental stage at the time of treatment. We also investigated double inhibition of NODAL and SHH pathways from the onset of gastrulation by using subthreshold inhibitor concentrations. The inhibitors of the NODAL and SHH pathways, even at low concentration, acted synergistically to promote an HPE-like phenotype. These findings support the view that genetic heterogeneity is important in the etiology of HPE and may contribute to the phenotypic variability.

  18. Development of long-lived radionuclide transmutation technology - Development of a code system for core analysis of the transmutation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nam Zin; Kim, Yong Hee; Kim, Tae Hyung; Jo, Chang Keun; Park, Chang Je [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1996-07-01

    The objective of this study is to develop a code system for core analysis= of the critical transmutation reactors utilizing fast neutrons. Core characteristics of the transmutation reactors were identified and four codes, HANCELL for pincell calculation, PRISM and AFEN-H3D for core calculation, and MA{sub B}URN for depletion calculation, were developed. The pincell calculation code is based on one-dimensional collision probability method and may provide homogenized/condensed parameters of a pincell and also can homogenize the control assembly via a nonlinear iterative method. The core calculation codes, PRISM and AFEN-H3D, solve the multi-group, multi-dimensional neutron diffusion equations for a hexagonal geometry and they are based on the finite difference method and analytic function expansion nodal (AFEN) method, respectively. The MA{sub B}URN code san analyze the behavior of actinides and fission products in a reactor core. Through benchmarking, we confirmed that the newly developed codes provide accurate solutions. 30 refs., 10 tabs., 8 figs. (author)

  19. The exponential function expansion of the intra-nodal cross sections for the spectral history gradient correction

    International Nuclear Information System (INIS)

    Cho, J. Y.; Noh, J. M.; Cheong, H. K.; Choo, H. K.

    1998-01-01

    In order to simplify the previous spectral history effect correction based on the polynomial expansion nodal method, a new spectral history effect correction is proposed. The new spectral history correction eliminates four microscopic depletion points out of total 13 depletion points in the previous correction by approximating the group cross sections with exponential function. The neutron flux to homogenize the group cross sections for the correction of the spectral history effect is calculated by the analytic function expansion nodal method in stead of the conventional polynomial expansion nodal method. This spectral history correction model is verified against the three MOX benchmark cores: a checkerboard type, a small core with 25 fuel assemblies, and a large core with 177 fuel assemblies. The benchmark results prove that this new spectral history correction model is superior to the previous one even with the reduced number of the local microscopic depletion points

  20. Activin- and Nodal-related factors control antero-posterior patterning of the zebrafish embryo.

    Science.gov (United States)

    Thisse, B; Wright, C V; Thisse, C

    2000-01-27

    Definition of cell fates along the dorso-ventral axis depends on an antagonistic relationship between ventralizing transforming growth factor-beta superfamily members, the bone morphogenetic proteins and factors secreted from the dorsal organizer, such as Noggin and Chordin. The extracellular binding of the last group to the bone morphogenetic proteins prevents them from activating their receptors, and the relative ventralizer:antagonist ratio is thought to specify different dorso-ventral cell fates. Here, by taking advantage of a non-genetic interference method using a specific competitive inhibitor, the Lefty-related gene product Antivin, we provide evidence that cell fate along the antero-posterior axis of the zebrafish embryo is controlled by the morphogenetic activity of another transforming growth factor-beta superfamily subgroup--the Activin and Nodal-related factors. Increasing antivin doses progressively deleted posterior fates within the ectoderm, eventually resulting in the removal of all fates except forebrain and eyes. In contrast, overexpression of activin or nodal-related factors converted ectoderm that was fated to be forebrain into more posterior ectodermal or mesendodermal fates. We propose that modulation of intercellular signalling by Antivin/Activin and Nodal-related factors provides a mechanism for the graded establishment of cell fates along the antero-posterior axis of the zebrafish embryo.

  1. [Does nodal irradiation (clavicular and internal mammary chains) increase the toxicity of adjuvant breast radiotherapy?].

    Science.gov (United States)

    Riou, O; Bourgier, C; Fenoglietto, P; Azria, D

    2015-06-01

    Treatment volume is a major risk factor of radiation-induced toxicity. As nodal irradiation increases treatment volume, radiation toxicity should be greater. Nevertheless, scientific randomised data do not support this fact. However, a radiation-induced toxicity is possible outside tangential fields in the nodal volumes not related to breast-only treatment. Treatment should not be adapted only to the disease but personalized to the individual risk of toxicity for each patient. Copyright © 2015 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  2. A Nodal-independent and tissue-intrinsic mechanism controls heart-looping chirality

    NARCIS (Netherlands)

    Noel, E.S.; Verhoeven, M.; Lagendijk, A.K.; Tessadori, F.; Smith, K.; Choorapoikayil, S.; den Hertog, J.; Bakkers, J.

    2013-01-01

    Breaking left-right symmetry in bilateria is a major event during embryo development that is required for asymmetric organ position, directional organ looping and lateralized organ function in the adult. Asymmetric expression of Nodal-related genes is hypothesized to be the driving force behind

  3. Two-dimensional core calculation research for fuel management optimization based on CPACT code

    International Nuclear Information System (INIS)

    Chen Xiaosong; Peng Lianghui; Gang Zhi

    2013-01-01

    Fuel management optimization process requires rapid assessment for the core layout program, and the commonly used methods include two-dimensional diffusion nodal method, perturbation method, neural network method and etc. A two-dimensional loading patterns evaluation code was developed based on the three-dimensional LWR diffusion calculation program CPACT. Axial buckling introduced to simulate the axial leakage was searched in sub-burnup sections to correct the two-dimensional core diffusion calculation results. Meanwhile, in order to get better accuracy, the weight equivalent volume method of the control rod assembly cross-section was improved. (authors)

  4. T-cell receptor (TCR) phenotype of nodal Epstein-Barr virus (EBV)-positive cytotoxic T-cell lymphoma (CTL): a clinicopathologic study of 39 cases.

    Science.gov (United States)

    Kato, Seiichi; Asano, Naoko; Miyata-Takata, Tomoko; Takata, Katsuyoshi; Elsayed, Ahmed Ali; Satou, Akira; Takahashi, Emiko; Kinoshita, Tomohiro; Nakamura, Shigeo

    2015-04-01

    Among Epstein-Barr virus (EBV)-positive cytotoxic T/NK-cell lymphoma, there are only a few reports on the clinicopathologic features of patients with primary nodal presentation (nodal EBV cytotoxic T-cell lymphoma [CTL]). Here, we compared the clinicopathologic profiles of 39 patients with nodal EBV CTL with those of 27 cases of "extranasal" NK/T-cell lymphoma of nasal type (ENKTL), especially addressing their T-cell receptor (TCR) phenotype. Histologically, 22 of 39 nodal EBV CTL cases (56%) were unique in having centroblastoid appearance, which was contrasted with the lower incidence of this feature in ENKTL (15%, P=0.001). In contrast, pleomorphic appearance was more frequently seen in ENKTL than in nodal EBV CTL (67% vs. 23%, P=0.001). Thirty-three of 39 nodal EBV CTL cases (85%) were of T-cell lineage on the basis of TCR expression and/or TCRγ gene rearrangement; in detail, 18 cases (46%) were TCRβ positive (αβ T), 5 (13%) were TCRγ and/or δ positive (γδ T), and 10 (26%) were TCR-silent type with clonal TCRγ gene rearrangement but no expression of TCRβ, γ, or δ. These results were clearly contrasted by a lower incidence of T-cell lineage in ENKTL (7 cases, 26%, P<0.001). Notably, the survival time of the 5 nodal lymphoma patients with γδ T-cell phenotype was within 3 months, which was inferior to those of αβ T and TCR-silent types (P=0.003), and 3 of those with available clinical information were all found to be associated with autoimmune diseases. These data suggest that nodal EBV CTL is distinct from ENKTL.

  5. Modular ORIGEN-S for multi-physics code systems

    Energy Technology Data Exchange (ETDEWEB)

    Yesilyurt, Gokhan; Clarno, Kevin T.; Gauld, Ian C., E-mail: yesilyurtg@ornl.gov, E-mail: clarnokt@ornl.gov, E-mail: gauldi@ornl.gov [Oak Ridge National Laboratory, TN (United States); Galloway, Jack, E-mail: jack@galloways.net [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2011-07-01

    the AMP Nuclear Fuel Performance code and the NESTLE advanced nodal code. (author)

  6. Modular ORIGEN-S for multi-physics code systems

    International Nuclear Information System (INIS)

    Yesilyurt, Gokhan; Clarno, Kevin T.; Gauld, Ian C.; Galloway, Jack

    2011-01-01

    the AMP Nuclear Fuel Performance code and the NESTLE advanced nodal code. (author)

  7. Topological surface states in nodal superconductors.

    Science.gov (United States)

    Schnyder, Andreas P; Brydon, Philip M R

    2015-06-24

    Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states.

  8. Topological surface states in nodal superconductors

    International Nuclear Information System (INIS)

    Schnyder, Andreas P; Brydon, Philip M R

    2015-01-01

    Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states. (topical review)

  9. A self-consistent nodal method in response matrix formalism for the multigroup diffusion equations

    International Nuclear Information System (INIS)

    Malambu, E.M.; Mund, E.H.

    1996-01-01

    We develop a nodal method for the multigroup diffusion equations, based on the transverse integration procedure (TIP). The efficiency of the method rests upon the convergence properties of a high-order multidimensional nodal expansion and upon numerical implementation aspects. The discrete 1D equations are cast in response matrix formalism. The derivation of the transverse leakage moments is self-consistent i.e. does not require additional assumptions. An outstanding feature of the method lies in the linear spatial shape of the local transverse leakage for the first-order scheme. The method is described in the two-dimensional case. The method is validated on some classical benchmark problems. (author)

  10. Bifurcation from infinity and nodal solutions of quasilinear elliptic differential equations

    Directory of Open Access Journals (Sweden)

    Bian-Xia Yang

    2014-01-01

    Full Text Available In this article, we establish a unilateral global bifurcation theorem from infinity for a class of $N$-dimensional p-Laplacian problems. As an application, we study the global behavior of the components of nodal solutions of the problem $$\\displaylines{ \\operatorname{div}(\\varphi_p(\

  11. Patterns of practice of regional nodal irradiation in breast cancer: results of the European Organization for Research and Treatment of Cancer (EORTC) NOdal Radiotherapy (NORA) survey.

    Science.gov (United States)

    Belkacemi, Y; Kaidar-Person, O; Poortmans, P; Ozsahin, M; Valli, M-C; Russell, N; Kunkler, I; Hermans, J; Kuten, A; van Tienhoven, G; Westenberg, H

    2015-03-01

    Predicting outcome of breast cancer (BC) patients based on sentinel lymph node (SLN) status without axillary lymph node dissection (ALND) is an area of uncertainty. It influences the decision-making for regional nodal irradiation (RNI). The aim of the NORA (NOdal RAdiotherapy) survey was to examine the patterns of RNI. A web-questionnaire, including several clinical scenarios, was distributed to 88 EORTC-affiliated centers. Responses were received between July 2013 and January 2014. A total of 84 responses were analyzed. While three-dimensional (3D) radiotherapy (RT) planning is carried out in 81 (96%) centers, nodal areas are delineated in only 51 (61%) centers. Only 14 (17%) centers routinely link internal mammary chain (IMC) and supraclavicular node (SCN) RT indications. In patients undergoing total mastectomy (TM) with ALND, SCN-RT is recommend by 5 (6%), 53 (63%) and 51 (61%) centers for patients with pN0(i+), pN(mi) and pN1, respectively. Extra-capsular extension (ECE) is the main factor influencing decision-making RNI after breast conserving surgery (BCS) and TM. After primary systemic therapy (PST), 49 (58%) centers take into account nodal fibrotic changes in ypN0 patients for RNI indications. In ypN0 patients with inner/central tumors, 23 (27%) centers indicate SCN-RT and IMC-RT. In ypN1 patients, SCN-RT is delivered by less than half of the centers in patients with ypN(i+) and ypN(mi). Twenty-one (25%) of the centers recommend ALN-RT in patients with ypN(mi) or 1-2N+ after ALND. Seventy-five (90%) centers state that age is not considered a limiting factor for RNI. The NORA survey is unique in evaluating the impact of SLNB/ALND status on adjuvant RNI decision-making and volumes after BCS/TM with or without PST. ALN-RT is often indicated in pN1 patients, particularly in the case of ECE. Besides the ongoing NSABP-B51/RTOG and ALLIANCE trials, NORA could help to design future specific RNI trials in the SLNB era without ALND in patients receiving or not PST.

  12. Analysis of the anisotropy effects with the AZTRAN code

    International Nuclear Information System (INIS)

    Xolocostli, V.; Vargas, S.; Gomez, A.; Del Valle, E.

    2017-09-01

    Among the improvements that are made for the deterministic codes with which nuclear reactors are analyzed, is the implementation of the dispersion anisotropic dispersion section, which can obtain better results. With the current computing technology is possible to carry out these implementations, since the computation time is no longer a considerable problem as in the past. In this paper we analyze some effects of anisotropy in the AZTRAN code, a code that solves the Boltzmann transport equation in one, two and three dimensions at steady state, using the multigroup technique, the nodal method RTN-0 and ordered discrete, which is part of the AZTLAN platform for analysis of nuclear reactors, which is currently under development. The implementation of the anisotropy in the AZTRAN code is one of the latest improvements that have been made to the code, leading to different tests and analyzes regarding the anisotropic dispersion, some as a test with homogeneous fuel assemblies. In the case presented here, the benchmark problem of a fuel assembly type BWR is analyzed, which is part of the Benchmark problem suite for reactor physics study of LWR next generation fuels, proposed by the Committee on Reactor Physics organized by the Japan Atomic Energy Research Institute (JAERI). In this problem the behavior of the infinite multiplication factor (k inf ) is analyzed, as well as the behavior of using odd and even anisotropy approximation with respect to the symmetry in the radial power of the assembly. (Author)

  13. Implementation of the kinetics in the transport code AZTRAN

    International Nuclear Information System (INIS)

    Duran G, J. A.; Del Valle G, E.; Gomez T, A. M.

    2017-09-01

    This paper shows the implementation of the time dependence in the three-dimensional transport code AZTRAN (AZtlan TRANsport), which belongs to the AZTLAN platform, for the analysis of nuclear reactors (currently under development). The AZTRAN code with this implementation is able to numerically solve the time-dependent transport equation in XYZ geometry, for several energy groups, using the discrete ordinate method S n for the discretization of the angular variable, the nodal method RTN-0 for spatial discretization and method 0 for discretization in time. Initially, the code only solved the neutrons transport equation in steady state, so the implementation of the temporal part was made integrating the neutrons transport equation with respect to time and balance equations corresponding to the concentrations of delayed neutron precursors, for which method 0 was applied. After having directly implemented code kinetics, the improved quasi-static method was implemented, which is a tool for reducing computation time, where the angular flow is factored by the product of two functions called shape function and amplitude function, where the first is calculated for long time steps, called macro-steps and the second is resolved for small time steps called micro-steps. In the new version of AZTRAN several Benchmark problems that were taken from the literature were simulated, the problems used are of two and three dimensions which allowed corroborating the accuracy and stability of the code, showing in general in the reference tests a good behavior. (Author)

  14. A least squares principle unifying finite element, finite difference and nodal methods for diffusion theory

    International Nuclear Information System (INIS)

    Ackroyd, R.T.

    1987-01-01

    A least squares principle is described which uses a penalty function treatment of boundary and interface conditions. Appropriate choices of the trial functions and vectors employed in a dual representation of an approximate solution established complementary principles for the diffusion equation. A geometrical interpretation of the principles provides weighted residual methods for diffusion theory, thus establishing a unification of least squares, variational and weighted residual methods. The complementary principles are used with either a trial function for the flux or a trial vector for the current to establish for regular meshes a connection between finite element, finite difference and nodal methods, which can be exact if the mesh pitches are chosen appropriately. Whereas the coefficients in the usual nodal equations have to be determined iteratively, those derived via the complementary principles are given explicitly in terms of the data. For the further development of the connection between finite element, finite difference and nodal methods, some hybrid variational methods are described which employ both a trial function and a trial vector. (author)

  15. Solution of the transport equation in stationary state and X Y geometry, using continuous and discontinuous hybrid nodal schemes

    International Nuclear Information System (INIS)

    Xolocostli M, V.; Valle G, E. del; Alonso V, G.

    2003-01-01

    In this work it is described the development and the application of the NH-FEM schemes, Hybrid Nodal schemes using the Finite Element method in the solution of the neutron transport equation in stationary state and X Y geometry, of which two families of schemes were developed, one of which corresponds to the continuous and the other to the discontinuous ones, inside those first its are had the Bi-Quadratic Bi Q, and to the Bi-cubic BiC, while for the seconds the Discontinuous Bi-lineal DBiL and the Discontinuous Bi-quadratic DBiQ. These schemes were implemented in a program to which was denominated TNHXY, Transport of neutrons with Hybrid Nodal schemes in X Y geometry. One of the immediate applications of the schemes NH-FEM it will be in the analysis of assemblies of nuclear fuel, particularly of the BWR type. The validation of the TNHXY program was made with two test problems or benchmark, already solved by other authors with numerical techniques and to compare results. The first of them consists in an it BWR fuel assemble in an arrangement 7x7 without rod and with control rod providing numerical results. The second is a fuel assemble of mixed oxides (MOX) in an arrangement 10x10. This last problem it is known as the Benchmark problem WPPR of the NEA Data Bank and the results are compared with those of other commercial codes as HELIOS, MCNP-4B and CPM-3. (Author)

  16. Numerical nodal simulation of the axial power distribution within nuclear reactors using a kinetics diffusion model. I

    International Nuclear Information System (INIS)

    Barros, R.C. de.

    1992-05-01

    Presented here is a new numerical nodal method for the simulation of the axial power distribution within nuclear reactors using the one-dimensional one speed kinetics diffusion model with one group of delayed neutron precursors. Our method is based on a spectral analysis of the nodal kinetics equations. These equations are obtained by integrating the original kinetics equations separately over a time step and over a spatial node, and then considering flat approximations for the forward difference terms. These flat approximations are the only approximations that are considered in the method. As a result, the spectral nodal method for space - time reactor kinetics generates numerical solutions for space independent problems or for time independent problems that are completely free from truncation errors. We show numerical results to illustrate the method's accuracy for coarse mesh calculations. (author)

  17. Non-enhanced CT versus contrast-enhanced CT in integrated PET/CT studies for nodal staging of rectal cancer

    International Nuclear Information System (INIS)

    Tateishi, Ukihide; Maeda, Tetsuo; Morimoto, Tsuyoshi; Miyake, Mototaka; Arai, Yasuaki; Kim, E.E.

    2007-01-01

    The purpose of the present study was to determine the diagnostic accuracy of non-enhanced CT and contrast-enhanced CT in integrated PET/CT studies for preoperative nodal staging of rectal cancer. Retrospective analysis was performed in 53 patients with pathologically proven rectal cancer who had been referred for preoperative staging. All patients underwent integrated PET/CT consisting of non-enhanced and contrast-enhanced CT followed by whole-body fluorine-18-fluorodeoxyglucose ([ 18 F]FDG) PET. Both non-enhanced and contrast-enhanced PET/CT images were evaluated separately by two observers in consensus. The reference standard was histopathologic results. For nodal staging of rectal cancer, we compared diagnostic accuracy on a per-patient basis between the two modalities. Nodal staging was correctly determined with non-enhanced studies in 37 patients (70%) and with contrast-enhanced studies in 42 patients (79%). On a per-patient basis, sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of regional lymph node staging were 85%, 68%, 83%, 72%, and 79%, respectively, with contrast-enhanced studies, and 85%, 42%, 73%, 62%, and 70%, respectively, with non-enhanced studies. The difference in the accuracy of nodal staging between the two modalities was not significant (p = 0.063). Compared with non-enhanced studies, contrast-enhanced studies determined more correctly the status of pararectal lymph nodes (p 0.002), internal iliac lymph nodes (p = 0.004), and obturator lymph nodes (p < 0.0001). Contrast-enhanced PET/CT is superior to non-enhanced PET/CT for precise definition of regional nodal status in rectal cancer. (orig.)

  18. Hereditary bone dysplasia with pathological fractures and nodal osteoarthropathy

    International Nuclear Information System (INIS)

    Arendse, Regan; Brink, Paul; Beighton, Peter

    2009-01-01

    A father and daughter both had multiple pathological fractures and nodal osteoarthropathy. The father, aged 50 years, had at least 20 healed fractures of the axial and appendicular skeleton, sustained by minor trauma over his 50-year lifespan, many of which had been surgically fixed prior to his first presentation to us. Fractures of the clavicles, thoracic cage and long bones of the arms and legs, had healed with malalignment and deformity. Healed fractures were complicated by ankylosis of the cervical vertebrae and both elbows. He also had osteoarthritis of the hands, with exuberant osteophytosis, and profound perceptive deafness. His general health was good, his intellect and facies were normal, and his sclerae were white. The daughter, aged 27 years, had sustained at least seven fractures of the axial and appendicular skeleton following trivial injuries, in distribution similar to those of the father. She had also experienced painful swelling of the fingers, which preceded progressive development of nodal osteoarthropathy. Her hearing was normal. In both individuals, biochemical and immunological investigations yielded normal results. It was not possible for molecular studies to be undertaken. Pedigree data were consistent with autosomal dominant transmission, and this disorder appeared to be a previously undocumented heritable skeletal dysplasia. (orig.)

  19. Hereditary bone dysplasia with pathological fractures and nodal osteoarthropathy

    Energy Technology Data Exchange (ETDEWEB)

    Arendse, Regan [University of Stellenbosch, Department of Medicine, Tygerberg Hospital, Stellenbosch (South Africa); University of Cape Town, Division of Rheumatology, Groote Schuur Hospital, Cape Town (South Africa); Brink, Paul [University of Stellenbosch, Department of Medicine, Tygerberg Hospital, Stellenbosch (South Africa); Beighton, Peter [University of Cape Town, Division of Human Genetics, Faculty of Health Sciences, Cape Town (South Africa)

    2009-12-15

    A father and daughter both had multiple pathological fractures and nodal osteoarthropathy. The father, aged 50 years, had at least 20 healed fractures of the axial and appendicular skeleton, sustained by minor trauma over his 50-year lifespan, many of which had been surgically fixed prior to his first presentation to us. Fractures of the clavicles, thoracic cage and long bones of the arms and legs, had healed with malalignment and deformity. Healed fractures were complicated by ankylosis of the cervical vertebrae and both elbows. He also had osteoarthritis of the hands, with exuberant osteophytosis, and profound perceptive deafness. His general health was good, his intellect and facies were normal, and his sclerae were white. The daughter, aged 27 years, had sustained at least seven fractures of the axial and appendicular skeleton following trivial injuries, in distribution similar to those of the father. She had also experienced painful swelling of the fingers, which preceded progressive development of nodal osteoarthropathy. Her hearing was normal. In both individuals, biochemical and immunological investigations yielded normal results. It was not possible for molecular studies to be undertaken. Pedigree data were consistent with autosomal dominant transmission, and this disorder appeared to be a previously undocumented heritable skeletal dysplasia. (orig.)

  20. The use of genetic programming in the analysis of quantitative gene expression profiles for identification of nodal status in bladder cancer

    International Nuclear Information System (INIS)

    Mitra, Anirban P; Almal, Arpit A; George, Ben; Fry, David W; Lenehan, Peter F; Pagliarulo, Vincenzo; Cote, Richard J; Datar, Ram H; Worzel, William P

    2006-01-01

    Previous studies on bladder cancer have shown nodal involvement to be an independent indicator of prognosis and survival. This study aimed at developing an objective method for detection of nodal metastasis from molecular profiles of primary urothelial carcinoma tissues. The study included primary bladder tumor tissues from 60 patients across different stages and 5 control tissues of normal urothelium. The entire cohort was divided into training and validation sets comprised of node positive and node negative subjects. Quantitative expression profiling was performed for a panel of 70 genes using standardized competitive RT-PCR and the expression values of the training set samples were run through an iterative machine learning process called genetic programming that employed an N-fold cross validation technique to generate classifier rules of limited complexity. These were then used in a voting algorithm to classify the validation set samples into those associated with or without nodal metastasis. The generated classifier rules using 70 genes demonstrated 81% accuracy on the validation set when compared to the pathological nodal status. The rules showed a strong predilection for ICAM1, MAP2K6 and KDR resulting in gene expression motifs that cumulatively suggested a pattern ICAM1>MAP2K6>KDR for node positive cases. Additionally, the motifs showed CDK8 to be lower relative to ICAM1, and ANXA5 to be relatively high by itself in node positive tumors. Rules generated using only ICAM1, MAP2K6 and KDR were comparably robust, with a single representative rule producing an accuracy of 90% when used by itself on the validation set, suggesting a crucial role for these genes in nodal metastasis. Our study demonstrates the use of standardized quantitative gene expression values from primary bladder tumor tissues as inputs in a genetic programming system to generate classifier rules for determining the nodal status. Our method also suggests the involvement of ICAM1, MAP2K6, KDR

  1. F18 FDG positron emission tomography revelation of primary testicular lymphoma with concurrent multiple extra nodal involvement

    International Nuclear Information System (INIS)

    Vamsy, Mohana; Dattatreya, P.S.; Parakh, Megha; Dayal, Monal; Prabhakar Rao, V.V.S.

    2013-01-01

    Primary testicular lymphoma (PTL) a relatively rare disease of non-Hodgkin's lymphomas occurring with a lesser incidence of 1-2% has a propensity to occur at later ages above 50 years. PTL spreads to extra nodal sites due to deficiency of extra cellular adhesion molecules. We present detection of multiple sites of extra nodal involvement of PTL by F-18 positron emission tomography/computed tomography study aiding early detection of the dissemination thus aiding in staging and management. (author)

  2. Development of a perturbation code, PERT-K, for hexagonal core geometry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taek Kyum; Kim, Sang Ji; Song, Hoon; Kim, Young Il; Kim, Young Jin [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-01-01

    A perturbation code for hexagonal core geometry has been developed based on Nodal Expansion Method. By using relevant output files of DIF3D code, it can calculate the reactivity changes caused by perturbation in composition or/and neutron cross section libraries. The accuracy of PERT-K code has been validated by calculating the reactivity changes due to fuel composition change, the sodium void coefficients, and the sample reactivity worths of BFS-73-1 critical experiments. In the case of 10% reduction in all fuel isotopics at a assembly located in the outer core, PERT-K computation agrees with the direct computation by DIF3D within 60 pcm. The sample reactivity worths of BFS-73-1 critical experiments are predicted with PERT-K code within the experimental error bounds. For 100% sodium void occurrence at the inner core, the maximum difference of reactivity changes between PERT-K and direct DIF3D computations is less than 40 pcm. On the other hand, the same sodium void condition at the outer core leads to a difference of reactivity change greater than 400 pcm. However, as sodium voiding becomes near zero value, the difference becomes less and rapidly falls within the acceptable bound, i.e. 40 pcm. (author). 11 refs., 9 figs., 6 tabs.

  3. Building the nodal nuclear data dependences in a many-dimensional state-variable space

    International Nuclear Information System (INIS)

    Dufek, Jan

    2011-01-01

    Highlights: → The Abstract and Introduction are revised to reflect reviewers' comments. → Section is revised and simplified. → The third paragraph in Section is revised. → All typos are fixed. - Abstract: We present new methods for building the polynomial-regression based nodal nuclear data models. The data models can reflect dependences on a large number of state variables, and they can consider various history effects. Suitable multivariate polynomials that approximate the nodal data dependences are identified efficiently in an iterative manner. The history effects are analysed using a new sampling scheme for lattice calculations where the traditional base burnup and branch calculations are replaced by a large number of diverse burnup histories. The total number of lattice calculations is controlled so that the data models are built to a required accuracy.

  4. Present status of reactor physics in the United States and Japan-II. 6. Present Status of GNF New Nodal Simulator

    International Nuclear Information System (INIS)

    Iwamoto, T.; Tamitani, M.; Moore, B.

    2001-01-01

    This paper presents core simulator consolidation work done at Global Nuclear Fuel (GNF). The unified simulator needs to supersede the capabilities of past simulator packages from the original GNF partners: GE (Ref. 1), Hitachi (Ref. 2), and Toshiba (Ref. 3). At the same time, an effort is being made to produce a simulation package that will be a state-of-the-art analysis tool when released, in terms of the physics solution methodology and functionality. The core simulator will be capable and qualified for (a) high-energy cycles in the U.S. markets, (b) mixed-oxide (MOX) introduction in Japan, and (c) high-power density plants in Europe, etc. The unification of the lattice physics code is also in progress based on a transport model with collision probability methods. The AETNA core simulator is built upon the PANAC11 software base. The goal is to essentially replace the 1.5-energy group model with a higher-order multigroup nonlinear nodal solution capable of the required modeling fidelity, while keeping highly automated library generation as well as functionality. All required interfaces to PANAC11 will be preserved, which minimizes the impact on users and process automation. Preliminary results show statistical accuracy improvement over the 1.5- group model. The status of the GNF new nodal simulator is presented. It is built on a highly automated software base by combining the best technologies of GE, Hitachi, and Toshiba and will provide a BWR core analysis tool with high functionality and fidelity. (authors)

  5. A 3D nodal mixed dual method for nuclear reactor kinetics with improved quasistatic model and a semi-implicit scheme to solve the precursor equations

    International Nuclear Information System (INIS)

    Dahmani, M.; Baudron, A.M.; Lautard, J.J.; Erradi, L.

    2001-01-01

    The mixed dual nodal method MINOS is used to solve the reactor kinetics equations with improved quasistatic IQS model and the θ method is used to solve the precursor equations. The speed of calculation which is the main advantage of the MINOS method and the possibility to use the large time step for shape flux calculation permitted by the IQS method, allow us to reduce considerably the computing time. The IQS/MINOS method is implemented in CRONOS 3D reactor code. Numerical tests on different transient benchmarks show that the results obtained with the IQS/MINOS method and the direct numerical method used to solve the kinetics equations, are very close and the total computing time is largely reduced

  6. Unbounded planar domains whose second nodal line does not touch the boundary

    Czech Academy of Sciences Publication Activity Database

    Freitas, P.; Krejčiřík, David

    2007-01-01

    Roč. 14, č. 1 (2007), s. 107-111 ISSN 1073-2780 R&D Projects: GA MŠk LC06002 Institutional research plan: CEZ:AV0Z10480505 Keywords : Dirichlet Laplacian * eigenfunctions * nodal line Subject RIV: BA - General Mathematics Impact factor: 0.702, year: 2007

  7. The effects of pruning and nodal adventitious roots on polychlorinated biphenyl uptake by Cucurbita pepo grown in field conditions

    Energy Technology Data Exchange (ETDEWEB)

    Low, Jennifer E.; Whitfield Aslund, Melissa L. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, PO Box 17000 Station Forces, Kingston, ON, K7K 7B4 (Canada); Rutter, Allison [School of Environmental Studies, Rm 0626 Biosciences Complex, Queen' s University, 116 Barrie St., Kingston, ON, K7L 3N6 (Canada); Zeeb, Barbara A., E-mail: zeeb-b@rmc.ca [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, PO Box 17000 Station Forces, Kingston, ON, K7K 7B4 (Canada)

    2011-03-15

    Two cultivation techniques (i-pruning and ii-nodal adventitious root encouragement) were investigated for their ability to increase PCB phytoextraction by Cucurbita pepo ssp pepo cv. Howden (pumpkin) plants in situ at a contaminated industrial site in Ontario (Aroclor 1248, mean soil [PCB] = 5.6 {mu}g g{sup -1}). Pruning was implemented to increase plant biomass close to the root where PCB concentration is known to be highest. This treatment was found to have no effect on final shoot biomass or PCB concentration. However, material pruned from the plant is not included in the final shoot biomass. The encouragement of nodal adventitious roots at stem nodes did significantly increase the PCB concentration in the primary stem, while not affecting shoot biomass. Both techniques are easily applied cultivation practices that may be implemented to decrease phytoextraction treatment time. - Research highlights: > Presence of nodal adventitious roots do increase phytoextraction efficiency. > Pruning may increase the biomass of pumpkin plants during phytoextraction. > [Aroclor 1248] decreases in plant tissue with increasing distance from the root. - The application of cultivation practices (pruning and nodal adventitious root encouragement) increases phytoextraction of PCBs in C. pepo.

  8. The effects of pruning and nodal adventitious roots on polychlorinated biphenyl uptake by Cucurbita pepo grown in field conditions

    International Nuclear Information System (INIS)

    Low, Jennifer E.; Whitfield Aslund, Melissa L.; Rutter, Allison; Zeeb, Barbara A.

    2011-01-01

    Two cultivation techniques (i-pruning and ii-nodal adventitious root encouragement) were investigated for their ability to increase PCB phytoextraction by Cucurbita pepo ssp pepo cv. Howden (pumpkin) plants in situ at a contaminated industrial site in Ontario (Aroclor 1248, mean soil [PCB] = 5.6 μg g -1 ). Pruning was implemented to increase plant biomass close to the root where PCB concentration is known to be highest. This treatment was found to have no effect on final shoot biomass or PCB concentration. However, material pruned from the plant is not included in the final shoot biomass. The encouragement of nodal adventitious roots at stem nodes did significantly increase the PCB concentration in the primary stem, while not affecting shoot biomass. Both techniques are easily applied cultivation practices that may be implemented to decrease phytoextraction treatment time. - Research highlights: → Presence of nodal adventitious roots do increase phytoextraction efficiency. → Pruning may increase the biomass of pumpkin plants during phytoextraction. → [Aroclor 1248] decreases in plant tissue with increasing distance from the root. - The application of cultivation practices (pruning and nodal adventitious root encouragement) increases phytoextraction of PCBs in C. pepo.

  9. Nodal enhances the activity of FoxO3a and its synergistic interaction with Smads to regulate cyclin G2 transcription in ovarian cancer cells.

    Science.gov (United States)

    Fu, G; Peng, C

    2011-09-15

    Nodal, a member of the transforming growth factor-β superfamily, has been recently shown to suppress cell proliferation and to stimulate the expression of cyclin G2 (CCNG2) in human epithelial ovarian cancer cells. However, the precise mechanisms underlying these events are not fully understood. In this study, we investigated the transcriptional regulation of CCNG2 by the Nodal signaling pathway. In ovarian cancer cells, overexpression of Nodal or its receptors, activin receptor-like kinase 7 (ALK7) or ALK4, resulted in an increase in the CCNG2 promoter activity. Several putative Forkhead box class O (FoxO)3a-binding sites are present in the human CCNG2 promoter and overexpression of FoxO3a enhanced the CCNG2 promoter activity. The functional FoxO3a-binding element (FBE) was mapped to a proximal region located between -398 and -380 bp (FBE1) through deletion and mutation analyses, as well as chromatin immunoprecipitation (IP) assay. Interestingly, mutation of the FBE1 not only abolished the effect of FoxO3a, but also blocked Nodal-induced CCNG2 transcription. Nodal stimulated FoxO3a mRNA and protein expression through the canonical Smad pathway and suppressed FoxO3a inactivation by inhibiting AKT activity. Silencing of FoxO3a using small interfering RNA significantly reduced the effect of Nodal on the CCNG2 promoter activity. On the other hand, overexpression of Smad2 and Smad3 enhanced the FoxO3a-induced CCNG2 promoter activity whereas knockdown of Smad4 blocked the activity of FoxO3a. Furthermore, IP assays revealed that FoxO3a formed complexes with Smad proteins and that Nodal enhanced the binding of FoxO3a to the CCNG2 promoter. Finally, silencing of FoxO3a reversed the inhibitory effect of Nodal on cell proliferation. Taken together, these findings demonstrated that Nodal signaling promotes CCNG2 transcription by upregulating FoxO3a expression, inhibiting FoxO3a phosphorylation and enhancing its synergistic interaction with Smads. These results also suggest

  10. Void fraction prediction of NUPEC PSBT tests by CATHARE code

    International Nuclear Information System (INIS)

    Del Nevo, A.; Michelotti, L.; Moretti, F.; Rozzia, D.; D'Auria, F.

    2011-01-01

    The current generation of thermal-hydraulic system codes benefits of about sixty years of experiments and forty years of development and are considered mature tools to provide best estimate description of phenomena and detailed reactor system representations. However, there are continuous needs for checking the code capabilities in representing nuclear system, for drawing attention to their weak points, for identifying models which need to be refined for best-estimate calculations. Prediction of void fraction and Departure from Nucleate Boiling (DNB) in system thermal-hydraulics is currently based on empirical approaches. The database carried out by Nuclear Power Engineering Corporation (NUPEC), Japan addresses these issues. It is suitable for supporting the development of new computational tools based on more mechanistic approaches (i.e. three-field codes, two-phase CFD, etc.) as well as for validating current generation of thermal-hydraulic system codes. Selected experiments belonging to this database are used for the OECD/NRC PSBT benchmark. The paper reviews the activity carried out by CATHARE2 code on the basis of the subchannel (four test sections) and presents rod bundle (different axial power profile and test sections) experiments available in the database in steady state and transient conditions. The results demonstrate the accuracy of the code in predicting the void fraction in different thermal-hydraulic conditions. The tests are performed varying the pressure, coolant temperature, mass flow and power. Sensitivity analyses are carried out addressing nodalization effect and the influence of the initial and boundary conditions of the tests. (author)

  11. Three- and four-noded planar elements using absolute nodal coordinate formulation

    International Nuclear Information System (INIS)

    Olshevskiy, Alexander; Dmitrochenko, Oleg; Kim, Changwan

    2013-01-01

    This paper investigates two new types of planar finite elements containing three and four nodes. These elements are the reduced forms of the spatial plate elements employing the absolute nodal coordinate approach. Elements of the first type use translations of nodes and global slopes as nodal coordinates and have 18 and 24 degrees of freedom. The slopes facilitate the prevention of the shear locking effect in bending problems. Furthermore, the slopes accurately describe the deformed shape of the elements. Triangular and quadrilateral elements of the second type use translational degrees of freedom only and, therefore, can be utilized successfully in problems without bending. These simple elements with 6 and 8 degrees of freedom are identical to the elements used in conventional formulation of the finite element method from the kinematical point of view. Similarly to the famous problem called “flying spaghetti” which is used often as a benchmark for beam elements, a kind of “flying lasagna” is simulated for the planar elements. Numerical results of simulations are presented.

  12. Two-dimensional semi-analytic nodal method for multigroup pin power reconstruction

    International Nuclear Information System (INIS)

    Seung Gyou, Baek; Han Gyu, Joo; Un Chul, Lee

    2007-01-01

    A pin power reconstruction method applicable to multigroup problems involving square fuel assemblies is presented. The method is based on a two-dimensional semi-analytic nodal solution which consists of eight exponential terms and 13 polynomial terms. The 13 polynomial terms represent the particular solution obtained under the condition of a 2-dimensional 13 term source expansion. In order to achieve better approximation of the source distribution, the least square fitting method is employed. The 8 exponential terms represent a part of the analytically obtained homogeneous solution and the 8 coefficients are determined by imposing constraints on the 4 surface average currents and 4 corner point fluxes. The surface average currents determined from a transverse-integrated nodal solution are used directly whereas the corner point fluxes are determined during the course of the reconstruction by employing an iterative scheme that would realize the corner point balance condition. The outgoing current based corner point flux determination scheme is newly introduced. The accuracy of the proposed method is demonstrated with the L336C5 benchmark problem. (authors)

  13. Numerical solution of the Neutron Transport Equation using discontinuous nodal methods at X-Y geometry; Solucion numerica de la ecuacion de transporte de neutrones usando metodos nodales discontinuos en geometria X-Y

    Energy Technology Data Exchange (ETDEWEB)

    Delfin L, A

    1997-12-31

    The purpose of this work is to solve the neutron transport equation in discrete-ordinates and X-Y geometry by developing and using the strong discontinuous and strong modified discontinuous nodal finite element schemes. The strong discontinuous and modified strong discontinuous nodal finite element schemes go from two to ten interpolation parameters per cell. They are describing giving a set D{sub c} and polynomial space S{sub c} corresponding for each scheme BDMO, RTO, BL, BDM1, HdV, BDFM1, RT1, BQ and BDM2. The solution is obtained solving the neutron transport equation moments for each nodal scheme by developing the basis functions defined by Pascal triangle and the Legendre moments giving in the polynomial space S{sub c} and, finally, looking for the non singularity of the resulting linear system. The linear system is numerically solved using a computer program for each scheme mentioned . It uses the LU method and forward and backward substitution and makes a partition of the domain in cells. The source terms and angular flux are calculated, using the directions and weights associated to the S{sub N} approximation and solving the angular flux moments to find the effective multiplication constant. The programs are written in Fortran language, using the dynamic allocation of memory to increase efficiently the available memory of the computing equipment. (Author).

  14. In Vitro Regeneration of Shoots From Nodal Explants of Dendrobium Chrysotoxum Lindl

    Directory of Open Access Journals (Sweden)

    Kaur Saranjeet

    2017-06-01

    Full Text Available Transverse sections (2 mm thickness of stem-nodes from in vitro raised seedlings had morphogenic potential on semisolid and liquid Murashige and Skoog medium supplemented with cytokinins N6-benzyladenine (BA 4.44 μM, furfurylaminopurine (KIN 4.65 μM and auxin α-naphthalene acetic acid (NAA 5.37 μM individually and in combinations. The regeneration response was influenced by both the type of growth regulator and physical state of the medium. The explants produced either shoot buds on cytokinincontaining media or protocorm-like bodies (PLBs on NAA containing media both solid and liquid. More neo-formations were produced on liquid media, especially those containing only NAA. They were formed at nodal and inter-nodal regions. The secondary buds were produced on the surface of primary PLBs. The plantlets were developed on MS medium containing banana homogenate 50 g·dm-3. The current study is the first ever report on successful regeneration of Dendrobium chrysotoxum from stem-node segments.

  15. A nodal method applied to a diffusion problem with generalized coefficients

    International Nuclear Information System (INIS)

    Laazizi, A.; Guessous, N.

    1999-01-01

    In this paper, we consider second order neutrons diffusion problem with coefficients in L ∞ (Ω). Nodal method of the lowest order is applied to approximate the problem's solution. The approximation uses special basis functions in which the coefficients appear. The rate of convergence obtained is O(h 2 ) in L 2 (Ω), with a free rectangular triangulation. (authors)

  16. A difference-equation formalism for the nodal domains of separable billiards

    Energy Technology Data Exchange (ETDEWEB)

    Manjunath, Naren; Samajdar, Rhine [Indian Institute of Science, Bangalore 560012 (India); Jain, Sudhir R., E-mail: srjain@barc.gov.in [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-09-15

    Recently, the nodal domain counts of planar, integrable billiards with Dirichlet boundary conditions were shown to satisfy certain difference equations in Samajdar and Jain (2014). The exact solutions of these equations give the number of domains explicitly. For complete generality, we demonstrate this novel formulation for three additional separable systems and thus extend the statement to all integrable billiards.

  17. Computation Method Comparison for Th Based Seed-Blanket Cores

    International Nuclear Information System (INIS)

    Kolesnikov, S.; Galperin, A.; Shwageraus, E.

    2004-01-01

    This work compares two methods for calculating a given nuclear fuel cycle in the WASB configuration. Both methods use the ELCOS Code System (2-D transport code BOXER and 3-D nodal code SILWER) [4] are compared. In the first method, the cross-sections of the Seed and Blanket, needed for the 3-D nodal code are generated separately for each region by the 2-D transport code. In the second method, the cross-sections of the Seed and Blanket, needed for the 3-D nodal code are generated from Seed-Blanket Colorsets (Fig.1) calculated by the 2-D transport code. The evaluation of the error introduced by the first method is the main objective of the present study

  18. Identification of nodal tissue in the living heart using rapid scanning fiber-optics confocal microscopy and extracellular fluorophores.

    Science.gov (United States)

    Huang, Chao; Kaza, Aditya K; Hitchcock, Robert W; Sachse, Frank B

    2013-09-01

    Risks associated with pediatric reconstructive heart surgery include injury of the sinoatrial node (SAN) and atrioventricular node (AVN), requiring cardiac rhythm management using implantable pacemakers. These injuries are the result of difficulties in identifying nodal tissues intraoperatively. Here we describe an approach based on confocal microscopy and extracellular fluorophores to quantify tissue microstructure and identify nodal tissue. Using conventional 3-dimensional confocal microscopy we investigated the microstructural arrangement of SAN, AVN, and atrial working myocardium (AWM) in fixed rat heart. AWM exhibited a regular striated arrangement of the extracellular space. In contrast, SAN and AVN had an irregular, reticulated arrangement. AWM, SAN, and AVN tissues were beneath a thin surface layer of tissue that did not obstruct confocal microscopic imaging. Subsequently, we imaged tissues in living rat hearts with real-time fiber-optics confocal microscopy. Fiber-optics confocal microscopy images resembled images acquired with conventional confocal microscopy. We investigated spatial regularity of tissue microstructure from Fourier analysis and second-order image moments. Fourier analysis of fiber-optics confocal microscopy images showed that the spatial regularity of AWM was greater than that of nodal tissues (37.5 ± 5.0% versus 24.3 ± 3.9% for SAN and 23.8 ± 3.7% for AVN; Pfiber-optics confocal microscopy. Application of the approach in pediatric reconstructive heart surgery may reduce risks of injuring nodal tissues.

  19. Nodal aberration theory applied to freeform surfaces

    Science.gov (United States)

    Fuerschbach, Kyle; Rolland, Jannick P.; Thompson, Kevin P.

    2014-12-01

    When new three-dimensional packages are developed for imaging optical systems, the rotational symmetry of the optical system is often broken, changing its imaging behavior and making the optical performance worse. A method to restore the performance is to use freeform optical surfaces that compensate directly the aberrations introduced from tilting and decentering the optical surfaces. In order to effectively optimize the shape of a freeform surface to restore optical functionality, it is helpful to understand the aberration effect the surface may induce. Using nodal aberration theory the aberration fields induced by a freeform surface in an optical system are explored. These theoretical predications are experimentally validated with the design and implementation of an aberration generating telescope.

  20. Simulation of the postulated stopping accident of the bombs of the primary circuit of Angra 2 with the code RELAP5/MOD3.2

    International Nuclear Information System (INIS)

    Andrade, Delvonei A.; Sabundjian, Gaiane; Madeira, Alzira A.; Pereira, Luiz Carlos M.; Borges, Ronaldo C.; Lapa, Nelbia S.

    2001-01-01

    This work presents the simulation of an anticipated transient for Angra 2 Nuclear Power Plant, where the coast down of the four reactor coolant pumps is verified. The best estimate thermal hydraulic system code RELAP5/MOD3.2 was used on this frame. A multi-purpose nodalization of Angra 2 was developed to simulate a comprehensive set of operational transients and accidents with RELAP5/MOD3.2 code. The overall objective of this work is to provide independent accident evaluation and further operational behavior follow-up to support the licensing process of the plant. (author)

  1. A nodal discontinuous Galerkin approach to 3-D viscoelastic wave propagation in complex geological media

    Science.gov (United States)

    Lambrecht, L.; Lamert, A.; Friederich, W.; Möller, T.; Boxberg, M. S.

    2018-03-01

    A nodal discontinuous Galerkin (NDG) approach is developed and implemented for the computation of viscoelastic wavefields in complex geological media. The NDG approach combines unstructured tetrahedral meshes with an element-wise, high-order spatial interpolation of the wavefield based on Lagrange polynomials. Numerical fluxes are computed from an exact solution of the heterogeneous Riemann problem. Our implementation offers capabilities for modelling viscoelastic wave propagation in 1-D, 2-D and 3-D settings of very different spatial scale with little logistical overhead. It allows the import of external tetrahedral meshes provided by independent meshing software and can be run in a parallel computing environment. Computation of adjoint wavefields and an interface for the computation of waveform sensitivity kernels are offered. The method is validated in 2-D and 3-D by comparison to analytical solutions and results from a spectral element method. The capabilities of the NDG method are demonstrated through a 3-D example case taken from tunnel seismics which considers high-frequency elastic wave propagation around a curved underground tunnel cutting through inclined and faulted sedimentary strata. The NDG method was coded into the open-source software package NEXD and is available from GitHub.

  2. A Nodal and Finite Difference Hybrid Method for Pin-by-Pin Heterogeneous Three-Dimensional Light Water Reactor Diffusion Calculations

    International Nuclear Information System (INIS)

    Lee, Deokjung; Downar, Thomas J.; Kim, Yonghee

    2004-01-01

    An innovative hybrid spatial discretization method is proposed to improve the computational efficiency of pin-wise heterogeneous three-dimensional light water reactor (LWR) core neutronics analysis. The newly developed method employs the standard finite difference method in the x and y directions and the well-known nodal methods [nodal expansion method (NEM) and analytic nodal method (ANM) as needed] in the z direction. Four variants of the hybrid method are investigated depending on the axial nodal methodologies: HYBRID A, NEM with the conventional quadratic transverse leakage; HYBRID B, the conventional NEM method except that the transverse-leakage shapes are obtained from a fine-mesh local problem (FMLP) around the control rod tip; HYBRID C, the same as HYBRID B except that ANM with a high-order transverse leakage obtained from the FMLP is used in the vicinity of the control rod tip; and HYBRID D, the same as HYBRID C except that the transverse leakage is determined using the buckling approximation instead of the FMLP around the control rod tip. Benchmark calculations demonstrate that all the hybrid algorithms are consistent and stable and that the HYBRID C method provides the best numerical performance in the case of rodded LWR problems with pin-wise homogenized cross sections

  3. Wielandt method applied to the diffusion equations discretized by finite element nodal methods; Metodo de Wielandt aplicado a las ecuaciones de difusion discretizadas por metodos nodales de elemento finito

    Energy Technology Data Exchange (ETDEWEB)

    Mugica R, A.; Valle G, E. del [IPN, ESFM, 07738 Mexico D.F. (Mexico)]. e-mail: mugica@esfm.ipn.mx

    2003-07-01

    Nowadays the numerical methods of solution to the diffusion equation by means of algorithms and computer programs result so extensive due to the great number of routines and calculations that should carry out, this rebounds directly in the execution times of this programs, being obtained results in relatively long times. This work shows the application of an acceleration method of the convergence of the classic method of those powers that it reduces notably the number of necessary iterations for to obtain reliable results, what means that the compute times they see reduced in great measure. This method is known in the literature like Wielandt method and it has incorporated to a computer program that is based on the discretization of the neutron diffusion equations in plate geometry and stationary state by polynomial nodal methods. In this work the neutron diffusion equations are described for several energy groups and their discretization by means of those called physical nodal methods, being illustrated in particular the quadratic case. It is described a model problem widely described in the literature which is solved for the physical nodal grade schemes 1, 2, 3 and 4 in three different ways: to) with the classic method of the powers, b) method of the powers with the Wielandt acceleration and c) method of the powers with the Wielandt modified acceleration. The results for the model problem as well as for two additional problems known as benchmark problems are reported. Such acceleration method can also be implemented to problems of different geometry to the proposal in this work, besides being possible to extend their application to problems in 2 or 3 dimensions. (Author)

  4. LAVENDER: A steady-state core analysis code for design studies of accelerator driven subcritical reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shengcheng; Wu, Hongchun; Cao, Liangzhi; Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn; Huang, Kai; He, Mingtao; Li, Xunzhao

    2014-10-15

    Highlights: • A new code system for design studies of accelerator driven subcritical reactors (ADSRs) is developed. • S{sub N} transport solver in triangular-z meshes, fine deletion analysis and multi-channel thermal-hydraulics analysis are coupled in the code. • Numerical results indicate that the code is reliable and efficient for design studies of ADSRs. - Abstract: Accelerator driven subcritical reactors (ADSRs) have been proposed and widely investigated for the transmutation of transuranics (TRUs). ADSRs have several special characteristics, such as the subcritical core driven by spallation neutrons, anisotropic neutron flux distribution and complex geometry etc. These bring up requirements for development or extension of analysis codes to perform design studies. A code system named LAVENDER has been developed in this paper. It couples the modules for spallation target simulation and subcritical core analysis. The neutron transport-depletion calculation scheme is used based on the homogenized cross section from assembly calculations. A three-dimensional S{sub N} nodal transport code based on triangular-z meshes is employed and a multi-channel thermal-hydraulics analysis model is integrated. In the depletion calculation, the evolution of isotopic composition in the core is evaluated using the transmutation trajectory analysis algorithm (TTA) and fine depletion chains. The new code is verified by several benchmarks and code-to-code comparisons. Numerical results indicate that LAVENDER is reliable and efficient to be applied for the steady-state analysis and reactor core design of ADSRs.

  5. Radiofrequency Catheter Ablation of Coexistent Idiopathic Left Ventricular Tachycardia and Atrioventricular Nodal Reentrant Tachycardia

    Directory of Open Access Journals (Sweden)

    Ken-Pen Weng

    2005-10-01

    Full Text Available A healthy 15-year-old male patient presented with a 6-month history of recurrent attacks of palpitations. On multiple emergency room visits, a sustained wide QRS complex tachycardia with a right bundle branch block and northwest axis deviation was documented. The tachycardia was not terminated by intravenous adenosine, but was suppressed with intravenous verapamil. There was no evidence of structural heart disease, myocarditis, long QT syndrome, or electrolyte imbalance after a series of standard examinations. Idiopathic left ventricular tachycardia (ILVT was suspected. Electrophysiologic studies revealed 2 inducible tachycardias, which were shown to represent atrioventricular nodal reentrant tachycardia (AVNRT and ILVT. Transformation from AVNRT to ILVT occurred spontaneously following atrial pacing. Successful ablation of ILVT and the slow atrioventricular nodal pathway resulted in cure of the double tachycardia.

  6. Atrial activation during atrioventricular nodal reentrant tachycardia: studies on retrograde fast pathway conduction

    NARCIS (Netherlands)

    Katritsis, Demosthenes G.; Ellenbogen, Kenneth A.; Becker, Anton E.

    2006-01-01

    Detailed right and left septal mapping of retrograde atrial activation during typical atrioventricular nodal reentrant tachycardia (AVNRT) has not been undertaken and may provide insight into the complex physiology of AVNRT, especially the anatomic localization of the fast and slow pathways. The

  7. Modeling of the installation with the code MELCOR 1.8.4

    International Nuclear Information System (INIS)

    Pomier Baez, L.E.; Nunez Mc Leod, J.E.

    1998-01-01

    Full text: The calculation code MELCOR 1.8.4 is an integrated program that allow to simulate the development of accidents in nuclear plants with refrigerated reactors with light water. This code can simulate the whole spectrum of phenomenons. This work carried out the validation of the packages of the code MELCOR dedicated to evaluate the behaviour under conditions of two-phase flow, through the comparison of the results of the simulation with the experimental data of the installation TPTF (Two-Phase Test Facility) (ROSA-IV) of the Institute JAERI (Japan Atomic Energy Research Institute) of Japan. The main objective of the experiments TPTF is obtain data on the thermohydraulic behaviour from light water reactors (PWR) during an accident with small loss of coolant (SBLOCA), and the capacity of MELCOR code was evaluated in the simulation of these kind of accidents. Diverse options of the code were studies, in order to analyzing the behaviour of the feigned phenomenon. The effect of the change in the nodalization of the nuclear installation was studies, as well as the management of diverse control functions. The results of the evaluation show a good concordance with the experimental data, especially in the prediction of the behaviour of the steam fraction in relation with the mass flow, the quality of the steam and the mixture level in the exit volume that represent two possibilities state in the vessel reactor during the accidental situation. (author) [es

  8. Development Status of Diffusion Code RAST-K 2.0 at UNIST

    Energy Technology Data Exchange (ETDEWEB)

    Park, Minyong; Zheng, Youqi; Choe, Jiwon; Zhang, Peng; Lee, Deokjung [UNIST, Ulsan (Korea, Republic of); Lee, Eunki; Shin, Hocheol [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The non-linear scheme was used based on the 2-group CMFD and a three dimensional multi -group unified nodal method (UNM). To consider the history effects, the main heavy isotopes were tracked by micro-depletion module using CRAM. The simplified 1-D single channel thermal hydraulic solver from nTACER is implemented. The θ method was adopted in the transient calculation. To get detailed pin-wise power and burnup distribution, Pin power reconstruction module was implemented. Also automatic control logic to calculate MTC, FTC, control rod worth was implemented. To perform multicycle analysis, restart and shuffling/rotation module has been implemented. To link between CASMO-4E and RAST-K 2.0, CATORA (CASMO TO RAST-K 2.0) code was developed. Unlike the other diffusion codes, RAST-K 2.0 depletion module uses CRAM and extended depletion chain for fission products. Most lattice codes give cumulative fission yield of Pm-149 without considering Pm-148 and Pm-149 capture reaction which will lead to the increase of Sm-149 number density. This paper reports the status of RAST-K 2.0 code development at UNIST. The new code applies a new kernel based on the two-node UNM with CMFD, and θ method for kinetic calculation. Also, the microdepletion calculation is used to consider the history effects. And other modules and functions also implemented such as pin power reconstruction, branch calculation, restart, multi-cycle, and 1-D single channel T/H solver.

  9. Verification of a BWR code package by gamma scan measurements

    International Nuclear Information System (INIS)

    Nakajima, Tsuyoshi; Iwamoto, Tatsuya; Kumanomido, Hironori

    1996-01-01

    High-burnup 8 x 8 fuel with a large central water rod (called step 2 fuel) has been recently introduced to the latest Japanese boiling water reactor (BWR) plants. Lanthanum-140 gamma intensity is almost directly related to nodal powers. By gamma scan measurement, the axial distribution of 140 La in the exposed fuel was measured at the end of cycle (EOC) 1 and was compared with the calculation by a BWR code package TGBLA/LOGOS. The multienrichment fuel-type core (MEC) design was adopted for the initial cycle core of the plants. The MEC design contains three different enrichment types of fuels to simulate the equilibrium cycles, achieve much higher discharge exposure, and save fuel cycle cost, and the low-enrichment fuels are loaded in periphery and in control cells. Such MEC design could be a challenge to the BWR design methods because of the large spectrum mismatch among the fuel assemblies of the different enrichments. The aforementioned comparison has shown that the accuracy of the TGBLA/LOGOS code package is satisfactory

  10. Pelvic Nodal Dosing With Registration to the Prostate: Implications for High-Risk Prostate Cancer Patients Receiving Stereotactic Body Radiation Therapy

    International Nuclear Information System (INIS)

    Kishan, Amar U.; Lamb, James M.; Jani, Shyam S.; Kang, Jung J.; Steinberg, Michael L.; King, Christopher R.

    2015-01-01

    Purpose: To determine whether image guidance with rigid registration (RR) to intraprostatic markers (IPMs) yields acceptable coverage of the pelvic lymph nodes in the context of a stereotactic body radiation therapy (SBRT) regimen. Methods and Materials: Four to seven kilovoltage cone-beam CTs (CBCTs) from 12 patients with high-risk prostate cancer were analyzed, allowing approximation of an SBRT regimen. The nodal clinical target volume (CTV N ) and bladder were contoured on all kilovoltage CBCTs. The V 100 CTV N , expressed as a ratio to the same parameter on the initial plan, and the magnitude of translational shift between RR to the IPMs versus RR to the pelvic bones, were computed. The ability of a multimodality bladder filling protocol to minimize bladder height variation was assessed in a separate cohort of 4 patients. Results: Sixty-five CBCTs were assessed. The average V 100 CTV N was 92.6%, but for a subset of 3 patients the average was 80.0%, compared with 97.8% for the others (P<.0001). The average overall and superior–inferior axis magnitudes of the bony-to-fiducial translations were significantly larger in the subgroup with suboptimal nodal coverage (8.1 vs 3.9 mm and 5.8 vs 2.4 mm, respectively; P<.0001). Relative bladder height changes were also significantly larger in the subgroup with suboptimal nodal coverage (42.9% vs 18.5%; P<.05). Use of a multimodality bladder-filling protocol minimized bladder height variation (P<.001). Conclusion: A majority of patients had acceptable nodal coverage after RR to IPMs, even when approximating SBRT. However, a subset of patients had suboptimal nodal coverage. These patients had large bony-to-fiducial translations and large variations in bladder height. Nodal coverage should be excellent if the superior–inferior axis bony-to-fiducial translation and the relative bladder height change (both easily measured on CBCT) are kept to a minimum. Implementation of a strict bladder filling protocol may achieve this

  11. An analytical discrete ordinates solution for a nodal model of a two-dimensional neutron transport problem

    International Nuclear Information System (INIS)

    Filho, J. F. P.; Barichello, L. B.

    2013-01-01

    In this work, an analytical discrete ordinates method is used to solve a nodal formulation of a neutron transport problem in x, y-geometry. The proposed approach leads to an important reduction in the order of the associated eigenvalue systems, when combined with the classical level symmetric quadrature scheme. Auxiliary equations are proposed, as usually required for nodal methods, to express the unknown fluxes at the boundary introduced as additional unknowns in the integrated equations. Numerical results, for the problem defined by a two-dimensional region with a spatially constant and isotropically emitting source, are presented and compared with those available in the literature. (authors)

  12. Exactly solvable spin-1 Ising–Heisenberg diamond chain with the second-neighbor interaction between nodal spins

    International Nuclear Information System (INIS)

    Hovhannisyan, V V; Ananikian, N S; Strečka, J

    2016-01-01

    The spin-1 Ising–Heisenberg diamond chain with the second-neighbor interaction between nodal spins is rigorously solved using the transfer-matrix method. In particular, exact results for the ground state, magnetization process and specific heat are presented and discussed. It is shown that further-neighbor interaction between nodal spins gives rise to three novel ground states with a translationally broken symmetry, but at the same time, does not increases the total number of intermediate plateaus in a zero-temperature magnetization curve compared with the simplified model without this interaction term. The zero-field specific heat displays interesting thermal dependencies with a single- or double-peak structure. (paper)

  13. Loss of coolant acident analyses on Osiris research reactor using the RELAP5 code

    International Nuclear Information System (INIS)

    Soares, Humberto Vitor; Costa, Antonella Lombardi; Lima, Claubia Pereira Bezerra; Veloso, Maria Auxiliadora Fortini

    2011-01-01

    RELAP5/MOD 3.3 code is widely used for thermal hydraulic studies of commercial nuclear power plants. However, several current investigations have shown that RELAP5 code can also be applied for thermal hydraulic analysis of nuclear research systems with good predictions. In this paper, a nodalization of the core and the most important components of the primary cooling system of the OSIRIS reactor developed for RELAP5 thermal hydraulic code are presented as well as results of steady state and transient simulations. OSIRIS has thermal power of 70 MW and it is an open pool type research reactor moderated and cooled by water. The OSIRIS reactor characteristics have been used as a base for the development of a model for the Multipurpose Brazilian Reactor (RMB). The aim of the present work is to investigate the behavior of the core during a loss of coolant accident and the possible damage of the fuel elements due an inadequate heat removal. Although the core coolant reached the saturation point due the large break, the fuel element conditions were out of the damage zone. (author)

  14. Fluorodeoxyglucose positron emission tomography?computed tomography in evaluation of pelvic and para-aortic nodal involvement in early stage and operable cervical cancer: Comparison with surgicopathological findings

    OpenAIRE

    Bansal, Vandana; Damania, Kaizad; Sharma, Anshu Rajnish

    2011-01-01

    Introduction: Nodal metastases in cervical cancer have prognostic implications. Imaging is used as an adjunct to clinical staging for evaluation of nodal metastases. Fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) has an advantage of superior resolution of its CT component and detecting nodal disease based on increased glycolytic activity rather than node size. But there are limited studies describing its limitations in early stage cervical cancers. Objectiv...

  15. Three-dimensional static and dynamic reactor calculations by the nodal expansion method

    International Nuclear Information System (INIS)

    Christensen, B.

    1985-05-01

    This report reviews various method for the calculation of the neutron-flux- and power distribution in an nuclear reactor. The nodal expansion method (NEM) is especially described in much detail. The nodal expansion method solves the diffusion equation. In this method the reactor core is divided into nodes, typically 10 to 20 cm in each direction, and the average flux in each node is calculated. To obtain the coupling between the nodes the local flux inside each node is expressed by use of a polynomial expansion. The expansion is one-dimensional, so inside each node such three expansions occur. To calculate the expansion coefficients it is necessary that the polynomial expansion is a solution to the one-dimensional diffusion equation. When the one-dimensional diffusion equation is established a term with the transversal leakage occur, and this term is expanded after the same polynomials. The resulting equation system with the expansion coefficients as the unknowns is solved with weigthed residual technique. The nodal expansion method is built into a computer program (also called NEM), which is divided into two parts, one part for steady-state calculations and one part for dynamic calculations. It is possible to take advantage of symmetry properties of the reactor core. The program is very flexible with regard to the number of energy groups, the node size, the flux expansion order and the transverse leakage expansion order. The boundary of the core is described by albedos. The program and input to it are described. The program is tested on a number of examples extending from small theoretical one up to realistic reactor cores. Many calculations are done on the wellknown IAEA benchmark case. The calculations have tested the accuracy and the computing time for various node sizes and polynomial expansions. In the dynamic examples various strategies for variation of the time step-length have been tested. (author)

  16. Lymphoma no Hodgkin extra nodal in head and neck: value of CT

    International Nuclear Information System (INIS)

    Ramos Aguilar, A.; Romance Garcia, A.; Fuentes Lupianez, J.J.; Sanchez Lafuente, J.; Rodriguez Sanpedro, F.

    1994-01-01

    The head and neck regions is one of the most common sites of extra nodal non-Hodgkin's lymphoma (NHL). We studied 7 cases of NHL of head and neck using CT enhanced with intravenous contrast medium, analyzing the important role it plays in diagnosis, treatment planning and evaluation of the recurrence of these tumors. (Author)

  17. On the use of the Serpent Monte Carlo code for few-group cross section generation

    International Nuclear Information System (INIS)

    Fridman, E.; Leppaenen, J.

    2011-01-01

    Research highlights: → B1 methodology was used for generation of leakage-corrected few-group cross sections in the Serpent Monte-Carlo code. → Few-group constants generated by Serpent were compared with those calculated by Helios deterministic lattice transport code. → 3D analysis of a PWR core was performed by a nodal diffusion code DYN3D employing two-group cross section sets generated by Serpent and Helios. → An excellent agreement in the results of 3D core calculations obtained with Helios and Serpent generated cross-section libraries was observed. - Abstract: Serpent is a recently developed 3D continuous-energy Monte Carlo (MC) reactor physics burnup calculation code. Serpent is specifically designed for lattice physics applications including generation of homogenized few-group constants for full-core core simulators. Currently in Serpent, the few-group constants are obtained from the infinite-lattice calculations with zero neutron current at the outer boundary. In this study, in order to account for the non-physical infinite-lattice approximation, B1 methodology, routinely used by deterministic lattice transport codes, was considered for generation of leakage-corrected few-group cross sections in the Serpent code. A preliminary assessment of the applicability of the B1 methodology for generation of few-group constants in the Serpent code was carried out according to the following steps. Initially, the two-group constants generated by Serpent were compared with those calculated by Helios deterministic lattice transport code. Then, a 3D analysis of a Pressurized Water Reactor (PWR) core was performed by the nodal diffusion code DYN3D employing two-group cross section sets generated by Serpent and Helios. At this stage thermal-hydraulic (T-H) feedback was neglected. The DYN3D results were compared with those obtained from the 3D full core Serpent MC calculations. Finally, the full core DYN3D calculations were repeated taking into account T-H feedback and

  18. Computation of Steady State Nodal Voltages for Fast Security Assessment in Power Systems

    DEFF Research Database (Denmark)

    Møller, Jakob Glarbo; Jóhannsson, Hjörtur; Østergaard, Jacob

    2014-01-01

    Development of a method for real-time assess-ment of post-contingency nodal voltages is introduced. Linear network theory is applied in an algorithm that utilizes Thevenin equivalent representation of power systems as seen from every voltage-controlled node in a network. The method is evaluated b...

  19. The Maternal Maverick/GDF15-like TGF-β Ligand Panda Directs Dorsal-Ventral Axis Formation by Restricting Nodal Expression in the Sea Urchin Embryo

    Science.gov (United States)

    Haillot, Emmanuel; Molina, Maria Dolores; Lapraz, François; Lepage, Thierry

    2015-01-01

    Specification of the dorsal-ventral axis in the highly regulative sea urchin embryo critically relies on the zygotic expression of nodal, but whether maternal factors provide the initial spatial cue to orient this axis is not known. Although redox gradients have been proposed to entrain the dorsal-ventral axis by acting upstream of nodal, manipulating the activity of redox gradients only has modest consequences, suggesting that other factors are responsible for orienting nodal expression and defining the dorsal-ventral axis. Here we uncover the function of Panda, a maternally provided transforming growth factor beta (TGF-β) ligand that requires the activin receptor-like kinases (Alk) Alk3/6 and Alk1/2 receptors to break the radial symmetry of the embryo and orient the dorsal-ventral axis by restricting nodal expression. We found that the double inhibition of the bone morphogenetic protein (BMP) type I receptors Alk3/6 and Alk1/2 causes a phenotype dramatically more severe than the BMP2/4 loss-of-function phenotype, leading to extreme ventralization of the embryo through massive ectopic expression of nodal, suggesting that an unidentified signal acting through BMP type I receptors cooperates with BMP2/4 to restrict nodal expression. We identified this ligand as the product of maternal Panda mRNA. Double inactivation of panda and bmp2/4 led to extreme ventralization, mimicking the phenotype caused by inactivation of the two BMP receptors. Inhibition of maternal panda mRNA translation disrupted the early spatial restriction of nodal, leading to persistent massive ectopic expression of nodal on the dorsal side despite the presence of Lefty. Phylogenetic analysis indicates that Panda is not a prototypical BMP ligand but a member of a subfamily of TGF-β distantly related to Inhibins, Lefty, and TGF-β that includes Maverick from Drosophila and GDF15 from vertebrates. Indeed, overexpression of Panda does not appear to directly or strongly activate phosphoSmad1

  20. The Maternal Maverick/GDF15-like TGF-β Ligand Panda Directs Dorsal-Ventral Axis Formation by Restricting Nodal Expression in the Sea Urchin Embryo.

    Science.gov (United States)

    Haillot, Emmanuel; Molina, Maria Dolores; Lapraz, François; Lepage, Thierry

    2015-01-01

    Specification of the dorsal-ventral axis in the highly regulative sea urchin embryo critically relies on the zygotic expression of nodal, but whether maternal factors provide the initial spatial cue to orient this axis is not known. Although redox gradients have been proposed to entrain the dorsal-ventral axis by acting upstream of nodal, manipulating the activity of redox gradients only has modest consequences, suggesting that other factors are responsible for orienting nodal expression and defining the dorsal-ventral axis. Here we uncover the function of Panda, a maternally provided transforming growth factor beta (TGF-β) ligand that requires the activin receptor-like kinases (Alk) Alk3/6 and Alk1/2 receptors to break the radial symmetry of the embryo and orient the dorsal-ventral axis by restricting nodal expression. We found that the double inhibition of the bone morphogenetic protein (BMP) type I receptors Alk3/6 and Alk1/2 causes a phenotype dramatically more severe than the BMP2/4 loss-of-function phenotype, leading to extreme ventralization of the embryo through massive ectopic expression of nodal, suggesting that an unidentified signal acting through BMP type I receptors cooperates with BMP2/4 to restrict nodal expression. We identified this ligand as the product of maternal Panda mRNA. Double inactivation of panda and bmp2/4 led to extreme ventralization, mimicking the phenotype caused by inactivation of the two BMP receptors. Inhibition of maternal panda mRNA translation disrupted the early spatial restriction of nodal, leading to persistent massive ectopic expression of nodal on the dorsal side despite the presence of Lefty. Phylogenetic analysis indicates that Panda is not a prototypical BMP ligand but a member of a subfamily of TGF-β distantly related to Inhibins, Lefty, and TGF-β that includes Maverick from Drosophila and GDF15 from vertebrates. Indeed, overexpression of Panda does not appear to directly or strongly activate phosphoSmad1

  1. Prophylactic Level VII Nodal Dissection as a Prognostic Factor in Papillary Thyroid Carcinoma: a Pilot Study of 27 Patients.

    Science.gov (United States)

    Fayek, Ihab Samy

    2015-01-01

    Prognostic value of prophylactic level VII nodal dissection in papillary thyroid carcinoma has been highlighted. A total of 27 patients with papillary thyroid carcinoma with N0 neck underwent total thyroidectomy with level VI and VII nodal dissection through same collar neck incision. Multicentricity, bilaterality, extrathyroidal extension, level VI and VII lymph nodes were studied as separate and independent prognostic factors for DFS at 24 months. 21 females and 6 males with a mean age of 34.6 years old, tumor size was 5-24 mm. (mean 12.4 mm.), multicentricity in 11 patients 2-4 foci (mean 2.7), bilaterality in 8 patients and extrathyroidal extension in 8 patients. Dissected level VI LNs 2-8 (mean 5 LNs) and level VII LNs 1-4 (mean 1.9). Metastatic level VI LNs 0-3 (mean 1) and level VII LNs 0-2 (mean 0.5). Follow-up from 6-51 months (mean 25.6) with 7 patients showed recurrence (3 local and 4 distant). Cumulative DFS at 24 months was 87.8% and was significantly affected in relation to bilaterality (p-valueVII positive ((p-valueVII nodal involvement. Level VII prophylactic nodal dissection is an important and integral prognostic factor in papillary thyroid carcinoma. A larger multicenter study is crucial to reach a satisfactory conclusion about the necessity and safety of this approach.

  2. Numerical solution of the Neutron Transport Equation using discontinuous nodal methods at X-Y geometry

    International Nuclear Information System (INIS)

    Delfin L, A.

    1996-01-01

    The purpose of this work is to solve the neutron transport equation in discrete-ordinates and X-Y geometry by developing and using the strong discontinuous and strong modified discontinuous nodal finite element schemes. The strong discontinuous and modified strong discontinuous nodal finite element schemes go from two to ten interpolation parameters per cell. They are describing giving a set D c and polynomial space S c corresponding for each scheme BDMO, RTO, BL, BDM1, HdV, BDFM1, RT1, BQ and BDM2. The solution is obtained solving the neutron transport equation moments for each nodal scheme by developing the basis functions defined by Pascal triangle and the Legendre moments giving in the polynomial space S c and, finally, looking for the non singularity of the resulting linear system. The linear system is numerically solved using a computer program for each scheme mentioned . It uses the LU method and forward and backward substitution and makes a partition of the domain in cells. The source terms and angular flux are calculated, using the directions and weights associated to the S N approximation and solving the angular flux moments to find the effective multiplication constant. The programs are written in Fortran language, using the dynamic allocation of memory to increase efficiently the available memory of the computing equipment. (Author)

  3. Clinical investigation: Regional nodal failure patterns in breast cancer patients treated with mastectomy without radiotherapy

    International Nuclear Information System (INIS)

    Strom, Eric A.; Woodward, Wendy A.; Katz, Angela; Buchholz, Thomas A.; Perkins, George H.; Jhingran, Anuja; Theriault, Richard; Singletary, Eva; Sahin, Aysegul; McNeese, Marsha D.

    2005-01-01

    Purpose: The purpose of this study was to describe regional nodal failure patterns in patients who had undergone mastectomy with axillary dissection to define subgroups of patients who might benefit from supplemental regional nodal radiation to the axilla or supraclavicular fossa/axillary apex. Methods and Materials: The cohort consisted of 1031 patients treated with mastectomy (including a level I-II axillary dissection) and doxorubicin-based systemic therapy without radiation on five clinical trials at M.D. Anderson Cancer Center. Patient records, including pathology reports, were retrospectively reviewed. All regional recurrences (with or without distant metastasis) were recorded. Median follow-up was 116 months (range, 6-262 months). Results: Twenty-one patients recurred within the low-mid axilla (10-year actuarial rate 3%). Of these, 16 were isolated regional failures (no chest wall failure). The risk of failure in the low-mid axilla was not significantly higher for patients with increasing numbers of involved nodes, increasing percentage of involved nodes, larger nodal size or gross extranodal extension. Only 3 of 100 patients with 20% involved axillary nodes, and the presence of gross extranodal extension (10-year actuarial rates 15%, 14%, and 19%, respectively, p 20% involved axillary nodes, or gross extranodal extension are at increased risk of failure in the supraclavicular fossa/axillary apex and should receive radiation to undissected regions in addition to the chest wall

  4. Electronic manual of the nuclear characteristics analysis code-set for FBR

    International Nuclear Information System (INIS)

    Makino, Tohru

    2001-03-01

    Reactor Physics Gr., System Engineering Technology Division, O-arai Engineering Center has consolidated the nuclear design database to improve analytical methods and prediction accuracy for large fast breeder cores such as demonstration or commercial FBRs from the previous research. The up-to-date information about usage of the nuclear characteristics analysis code-set was compiled as a part of the improvement of basic design data base for FBR core. The outlines of the electronic manual are as follows; (1) The electronic manual includes explanations of following codes: JOINT : Code Interface Program. SLAROM, CASUP : Effective Cross Section Calculation Code. CITATION-FBR : Diffusion Analysis Code. PERKY : Perturbative Diffusion Analysis Code. SNPERT, SNPERT-3D : Perturbative Transport Analysis Code. SAGEP, SAGEP-3D : Sensitivity Coefficient Calculation Code. NSHEX : Transport Analysis Code using Nodal Method. ABLE : Cross Section Adjustment Calculation Code. ACCEPT : Predicting Accuracy Evaluation Code. (2) The electronic manual is described using HTML file format and PDF file for easy maintenance, updating and for easy referring through JNC Intranet. User can refer manual pages by usual Web browser software without any special setup. (3) Many of manual pages include link-tags to jump to related pages. String search is available in both HTML and PDF documents. (4) User can download source code, sample input data and shell script files to carry out each analysis from download page of each code (JNC inside only). (5) Usage of the electronic manual and maintenance/updating process are described in this report and it makes possible to enroll new code or new information in the electronic manual. Since the information has been taken into account about modifications and error fixings, added to each code after the last consolidation in 1994, the electronic manual would cover most recent status of the nuclear characteristics analysis code-set. One of other advantages of use

  5. Validation of the ATHLET-code 2.1A by calculation of the ECTHOR experiment; Validierung des ATHLET-Codes 2.1A anhand des Einzeleffekt-Tests ECTHOR

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Andreas; Sarkadi, Peter; Schaffrath, Andreas [TUEV NORD SysTec GmbH und Co. KG, Hamburg (Germany)

    2010-05-15

    Before a numerical code (e.g. ATHLET) is used for simulation of physical phenomena being new or unknown for the code and/or the user, the user ensures the applicability of the code and his own experience of handling with it by means of a so-called validation. Parametric studies with the code are executed for that matter and the results have to be compared with verified experimental data. Corresponding reference values are available in terms of so-called single-effect-tests (e.g. ECTHOR). In this work the system-code ATHLET Mod. 2.1 Cycle A is validated by post test calculation of the ECTHOR experiment due to the above named aspects. With the ECTHOR-tests the clearing of a water-filled model of a loop seal by means of an air-stream was investigated including momentum exchange at the phase interface under adiabatic and atmospheric conditions. The post test calculations show that the analytical results meet the experimental data within the reproducibility of the experiments. Further findings of the parametric studies are: - The experimental results obtained with the system water-air (ECTHOR) can be assigned to a water-steam-system, if the densities of the phases are equal in both cases. - The initial water level in the loop seal has no influence on the results as long as the gas mass flow is increased moderately. - The loop seal is appropriately nodalized if the mean length of the control volumes accords approx. 1.5 tim es the hydraulic pipe diameter. (orig.)

  6. Validation of the ATHLET-code 2.1A by calculation of the ECTHOR experiment; Validierung des ATHLET-Codes 2.1A anhand des Einzeleffekt-Tests ECTHOR

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Andreas; Sarkadi, Peter; Schaffrath, Andreas [TUEV NORD SysTec GmbH und Co. KG, Hamburg (Germany)

    2010-06-15

    Before a numerical code (e.g. ATHLET) is used for simulation of physical phenomena being new or unknown for the code and/or the user, the user ensures the applicability of the code and his own experience of handling with it by means of a so-called validation. Parametric studies with the code are executed for that matter und the results have to be compared with verified experimental data. Corresponding reference values are available in terms of so-called single-effect-tests (e.g. ECTHOR). In this work the system-code ATHLET Mod. 2.1 Cycle A is validated by post test calculation of the ECTHOR experiment due to the above named aspects. With the ECTHOR-tests the clearing of a water-filled model of a loop seal by means of an air-stream was investigated including momentum exchange at the phase interface under adiabatic and atmospheric conditions. The post test calculations show that the analytical results meet the experimental data within the reproducibility of the experiments. Further findings of the parametric studies are: - The experimental results obtained with the system water-air (ECTHOR) can be assigned to a water-steam-system, if the densities of the phases are equal in both cases. - The initial water level in the loop seal has no influence on the results as long as the gas mass flow is increased moderately. - The loop seal is appropriately nodalized if the mean length of the control volumes accords approx. 1.5 times the hydraulic pipe diameter. (orig.)

  7. Nuclear movement regulated by non-Smad Nodal signaling via JNK is associated with Smad signaling during zebrafish endoderm specification.

    Science.gov (United States)

    Hozumi, Shunya; Aoki, Shun; Kikuchi, Yutaka

    2017-11-01

    Asymmetric nuclear positioning is observed during animal development, but its regulation and significance in cell differentiation remain poorly understood. Using zebrafish blastulae, we provide evidence that nuclear movement towards the yolk syncytial layer, which comprises extraembryonic tissue, occurs in the first cells fated to differentiate into the endoderm. Nodal signaling is essential for nuclear movement, whereas nuclear envelope proteins are involved in movement through microtubule formation. Positioning of the microtubule-organizing center, which is proposed to be crucial for nuclear movement, is regulated by Nodal signaling and nuclear envelope proteins. The non-Smad JNK signaling pathway, which is downstream of Nodal signaling, regulates nuclear movement independently of the Smad pathway, and this nuclear movement is associated with Smad signal transduction toward the nucleus. Our study provides insight into the function of nuclear movement in Smad signaling toward the nucleus, and could be applied to the control of TGFβ signaling. © 2017. Published by The Company of Biologists Ltd.

  8. The preliminary thermal-hydraulic design of one superheated steam water cooled blanket concept based on RELAP5 and MELCOR codes - 15147

    International Nuclear Information System (INIS)

    Guo, Y.; Wang, G.; Cheng, Y.; Peng, C.

    2015-01-01

    Water Cooled Blanket (WCB) is very important in the concept design and energy transfer in future fusion power plant. One concept design of WCB is under computational testing. RELAP5 and MELCOR codes, which are mature and often used in nuclear engineering, are selected as simulation tools. The complex inner flow channels and heat sources are simplified according to its thermal-hydraulic characteristics. Then the nodal models for RELAP5 and MELCOR are built for approximating the concept design. The superheated steam scheme is analyzed by two codes separately under different power levels. After some adjustments of the inlet flow resistance coefficients of some flow channels, the reasonable stable conditions can be obtained. The stable fluid and wall temperature distributions and pressure drops are studied. The results of two codes are compared and some advices are given. (authors)

  9. Wielandt method applied to the diffusion equations discretized by finite element nodal methods

    International Nuclear Information System (INIS)

    Mugica R, A.; Valle G, E. del

    2003-01-01

    Nowadays the numerical methods of solution to the diffusion equation by means of algorithms and computer programs result so extensive due to the great number of routines and calculations that should carry out, this rebounds directly in the execution times of this programs, being obtained results in relatively long times. This work shows the application of an acceleration method of the convergence of the classic method of those powers that it reduces notably the number of necessary iterations for to obtain reliable results, what means that the compute times they see reduced in great measure. This method is known in the literature like Wielandt method and it has incorporated to a computer program that is based on the discretization of the neutron diffusion equations in plate geometry and stationary state by polynomial nodal methods. In this work the neutron diffusion equations are described for several energy groups and their discretization by means of those called physical nodal methods, being illustrated in particular the quadratic case. It is described a model problem widely described in the literature which is solved for the physical nodal grade schemes 1, 2, 3 and 4 in three different ways: to) with the classic method of the powers, b) method of the powers with the Wielandt acceleration and c) method of the powers with the Wielandt modified acceleration. The results for the model problem as well as for two additional problems known as benchmark problems are reported. Such acceleration method can also be implemented to problems of different geometry to the proposal in this work, besides being possible to extend their application to problems in 2 or 3 dimensions. (Author)

  10. Tbx6 regulates left/right patterning in mouse embryos through effects on nodal cilia and perinodal signaling.

    Directory of Open Access Journals (Sweden)

    Anna-Katerina Hadjantonakis

    Full Text Available BACKGROUND: The determination of left/right body axis during early embryogenesis sets up a developmental cascade that coordinates the development of the viscera and is essential to the correct placement and alignment of organ systems and vasculature. Defective left-right patterning can lead to congenital cardiac malformations, vascular anomalies and other serious health problems. Here we describe a novel role for the T-box transcription factor gene Tbx6 in left/right body axis determination in the mouse. RESULTS: Embryos lacking Tbx6 show randomized embryo turning and heart looping. Our results point to multiple mechanisms for this effect. First, Dll1, a direct target of Tbx6, is down regulated around the node in Tbx6 mutants and there is a subsequent decrease in nodal signaling, which is required for laterality determination. Secondly, in spite of a lack of expression of Tbx6 in the node, we document a profound effect of the Tbx6 mutation on the morphology and motility of nodal cilia. This results in the loss of asymmetric calcium signaling at the periphery of the node, suggesting that unidirectional nodal flow is disrupted. To carry out these studies, we devised a novel method for direct labeling and live imaging cilia in vivo using a genetically-encoded fluorescent protein fusion that labels tubulin, combined with laser point scanning confocal microscopy for direct visualization of cilia movement. CONCLUSIONS: We conclude that the transcription factor gene Tbx6 is essential for correct left/right axis determination in the mouse and acts through effects on notch signaling around the node as well as through an effect on the morphology and motility of the nodal cilia.

  11. Can pelvic node dissection at radical prostatectomy influence the nodal recurrence at salvage lymphadenectomy for prostate cancer?

    Directory of Open Access Journals (Sweden)

    Arjun Sivaraman

    2018-03-01

    Full Text Available Purpose: To verify the quality of pelvic lymph node dissection (PLND performed at radical prostatectomy (RP and its impact on nodal recurrence in patients undergoing salvage lymph node dissection (sLND. Materials and Methods: Retrospective review of 48 patients who underwent sLND for presumed nodal recurrence, to describe the PLND characteristics at RP and correlate the anatomical sites and number of suspicious nodes reported in radiological imaging and final pathology of sLND. Results: Overall, at RP, 8 (16.7% did not undergo PLND, 32 (66.7% and 8 (16.7% received a “limited” (between external iliac vein and obturator nerve and an “extended” (external iliac, hypogastric, and obturator dissection, respectively. Median nodes removed during limited and extended dissection were 2 and 24, respectively. At sLND, the mean age was 61.3 years and median prostate specific antigen (PSA was 1.07 ng/mL. Median nodes removed at sLND were 17 with a median of 2 positive nodes. Recurrent nodes were identified within the template of an extended PLND in 62.5%, 50.0% and 12.5% patients, respectively, following prior no, limited and extended dissection at RP. Recurrence outside the expected lymphatic drainage pathway was noted in 37.5% patients with prior extended dissection at RP. There was a correlation between imaging and pathology specimen in 83% for node location and 58.3% for number of anatomical sites involved. Conclusions: In prostate cancer patients undergoing sLND, most had inadequate PLND at the original RP. Pattern of nodal recurrence may be influenced by the prior dissection and pre sLND imaging appears to underestimate the nodal recurrence.

  12. Can pelvic node dissection at radical prostatectomy influence the nodal recurrence at salvage lymphadenectomy for prostate cancer?

    Science.gov (United States)

    Sivaraman, Arjun; Benfante, Nicole; Touijer, Karim; Coleman, Jonathan; Scardino, Peter; Laudone, Vincent; Eastham, James

    2018-03-01

    To verify the quality of pelvic lymph node dissection (PLND) performed at radical prostatectomy (RP) and its impact on nodal recurrence in patients undergoing salvage lymph node dissection (sLND). Retrospective review of 48 patients who underwent sLND for presumed nodal recurrence, to describe the PLND characteristics at RP and correlate the anatomical sites and number of suspicious nodes reported in radiological imaging and final pathology of sLND. Overall, at RP, 8 (16.7%) did not undergo PLND, 32 (66.7%) and 8 (16.7%) received a "limited" (between external iliac vein and obturator nerve) and an "extended" (external iliac, hypogastric, and obturator) dissection, respectively. Median nodes removed during limited and extended dissection were 2 and 24, respectively. At sLND, the mean age was 61.3 years and median prostate specific antigen (PSA) was 1.07 ng/mL. Median nodes removed at sLND were 17 with a median of 2 positive nodes. Recurrent nodes were identified within the template of an extended PLND in 62.5%, 50.0% and 12.5% patients, respectively, following prior no, limited and extended dissection at RP. Recurrence outside the expected lymphatic drainage pathway was noted in 37.5% patients with prior extended dissection at RP. There was a correlation between imaging and pathology specimen in 83% for node location and 58.3% for number of anatomical sites involved. In prostate cancer patients undergoing sLND, most had inadequate PLND at the original RP. Pattern of nodal recurrence may be influenced by the prior dissection and pre sLND imaging appears to underestimate the nodal recurrence.

  13. Computer code abstract: NESTLE

    International Nuclear Information System (INIS)

    Turinsky, P.J.; Al-Chalabi, R.M.K.; Engrand, P.; Sarsour, H.N.; Faure, F.X.; Guo, W.

    1995-01-01

    NESTLE is a few-group neutron diffusion equation solver utilizing the nodal expansion method (NEM) for eigenvalue, adjoint, and fixed-source steady-state and transient problems. The NESTLE code solve the eigenvalue (criticality), eigenvalue adjoint, external fixed-source steady-state, and external fixed-source or eigenvalue initiated transient problems. The eigenvalue problem allows criticality searches to be completed, and the external fixed-source steady-state problem can search to achieve a specified power level. Transient problems model delayed neutrons via precursor groups. Several core properties can be input as time dependent. Two- or four-energy groups can be utilized, with all energy groups being thermal groups (i.e., upscatter exits) is desired. Core geometries modeled include Cartesian and hexagonal. Three-, two-, and one-dimensional models can be utilized with various symmetries. The thermal conditions predicted by the thermal-hydraulic model of the core are used to correct cross sections for temperature and density effects. Cross sections for temperature and density effects. Cross sections are parameterized by color, control rod state (i.e., in or out), and burnup, allowing fuel depletion to be modeled. Either a macroscopic or microscopic model may be employed

  14. Elective nodal irradiation (ENI) vs. involved field radiotherapy (IFRT) for locally advanced non-small cell lung cancer (NSCLC): A comparative analysis of toxicities and clinical outcomes

    International Nuclear Information System (INIS)

    Fernandes, Annemarie T.; Shen, Jason; Finlay, Jarod; Mitra, Nandita; Evans, Tracey; Stevenson, James; Langer, Corey; Lin, Lilie; Hahn, Stephen; Glatstein, Eli; Rengan, Ramesh

    2010-01-01

    Background: Elective nodal irradiation (ENI) and involved field radiotherapy (IFRT) are definitive radiotherapeutic approaches used to treat patients with locally advanced non-small cell lung cancer (NSCLC). ENI delivers prophylactic radiation to clinically uninvolved lymph nodes, while IFRT only targets identifiable gross nodal disease. Because clinically uninvolved nodal stations may harbor microscopic disease, IFRT raises concerns for increased nodal failures. This retrospective cohort analysis evaluates failure rates and treatment-related toxicities in patients treated at a single institution with ENI and IFRT. Methods: We assessed all patients with stage III locally advanced or stage IV oligometastatic NSCLC treated with definitive radiotherapy from 2003 to 2008. Each physician consistently treated with either ENI or IFRT, based on their treatment philosophy. Results: Of the 108 consecutive patients assessed (60 ENI vs. 48 IFRT), 10 patients had stage IV disease and 95 patients received chemotherapy. The median follow-up time for survivors was 18.9 months. On multivariable logistic regression analysis, patients treated with IFRT demonstrated a significantly lower risk of high grade esophagitis (Odds ratio: 0.31, p = 0.036). The differences in 2-year local control (39.2% vs. 59.6%), elective nodal control (84.3% vs. 84.3%), distant control (47.7% vs. 52.7%) and overall survival (40.1% vs. 43.7%) rates were not statistically significant between ENI vs. IFRT. Conclusions: Nodal failure rates in clinically uninvolved nodal stations were not increased with IFRT when compared to ENI. IFRT also resulted in significantly decreased esophageal toxicity, suggesting that IFRT may allow for integration of concurrent systemic chemotherapy in a greater proportion of patients.

  15. Elective nodal irradiation (ENI) vs. involved field radiotherapy (IFRT) for locally advanced non-small cell lung cancer (NSCLC): A comparative analysis of toxicities and clinical outcomes.

    Science.gov (United States)

    Fernandes, Annemarie T; Shen, Jason; Finlay, Jarod; Mitra, Nandita; Evans, Tracey; Stevenson, James; Langer, Corey; Lin, Lilie; Hahn, Stephen; Glatstein, Eli; Rengan, Ramesh

    2010-05-01

    Elective nodal irradiation (ENI) and involved field radiotherapy (IFRT) are definitive radiotherapeutic approaches used to treat patients with locally advanced non-small cell lung cancer (NSCLC). ENI delivers prophylactic radiation to clinically uninvolved lymph nodes, while IFRT only targets identifiable gross nodal disease. Because clinically uninvolved nodal stations may harbor microscopic disease, IFRT raises concerns for increased nodal failures. This retrospective cohort analysis evaluates failure rates and treatment-related toxicities in patients treated at a single institution with ENI and IFRT. We assessed all patients with stage III locally advanced or stage IV oligometastatic NSCLC treated with definitive radiotherapy from 2003 to 2008. Each physician consistently treated with either ENI or IFRT, based on their treatment philosophy. Of the 108 consecutive patients assessed (60 ENI vs. 48 IFRT), 10 patients had stage IV disease and 95 patients received chemotherapy. The median follow-up time for survivors was 18.9 months. On multivariable logistic regression analysis, patients treated with IFRT demonstrated a significantly lower risk of high grade esophagitis (Odds ratio: 0.31, p = 0.036). The differences in 2-year local control (39.2% vs. 59.6%), elective nodal control (84.3% vs. 84.3%), distant control (47.7% vs. 52.7%) and overall survival (40.1% vs. 43.7%) rates were not statistically significant between ENI vs. IFRT. Nodal failure rates in clinically uninvolved nodal stations were not increased with IFRT when compared to ENI. IFRT also resulted in significantly decreased esophageal toxicity, suggesting that IFRT may allow for integration of concurrent systemic chemotherapy in a greater proportion of patients. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Routine use of standard breast MRI compared to axillary ultrasound for differentiating between no, limited and advanced axillary nodal disease in newly diagnosed breast cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Nijnatten, T.J.A. van, E-mail: Thiemovn@gmail.com [Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht (Netherlands); Department of Surgery, Maastricht University Medical Center+, Maastricht (Netherlands); GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht (Netherlands); Ploumen, E.H. [Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht (Netherlands); Department of Surgery, Maastricht University Medical Center+, Maastricht (Netherlands); Schipper, RJ. [Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht (Netherlands); Department of Surgery, Maastricht University Medical Center+, Maastricht (Netherlands); GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht (Netherlands); Department of Surgery, Catharina Hospital, Eindhoven (Netherlands); Goorts, B. [Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht (Netherlands); Department of Surgery, Maastricht University Medical Center+, Maastricht (Netherlands); GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht (Netherlands); Andriessen, E.H. [Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht (Netherlands); Department of Surgery, Maastricht University Medical Center+, Maastricht (Netherlands); Vanwetswinkel, S.; Schavemaker, M. [Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht (Netherlands); Nelemans, P. [Department of Epidemiology, Maastricht University Medical Center+, Maastricht (Netherlands); Vries, B. de [Department of Pathology, Zuyderland Hospital, Heerlen (Netherlands); and others

    2016-12-15

    Objectives: To compare standard breast MRI to dedicated axillary ultrasound (with or without tissue sampling) for differentiating between no, limited and advanced axillary nodal disease in breast cancer patients. Methods: All patients who underwent breast MRI and dedicated axillary ultrasound between 2009 and 2014 were eligible. Exclusion criteria were recurrent disease, neoadjuvant systemic therapy and not receiving completion axillary lymph node dissection after positive sentinel lymph node biopsy (SLNB). Two radiologists independently reassessed all MRI exams. Axillary ultrasound findings were retrospectively collected. Probability of advanced axillary nodal disease (pN2-3) given clinically node negative (cN0) or limited (cN1) findings was calculated, with corresponding negative predictive value (NPV) to exclude pN2-3 and positive predictive value (PPV) to identify axillary nodal disease. Histopathology served as gold standard. Results: A total of 377 cases resulted in 81.4% no, 14.4% limited and 4.2% advanced axillary nodal disease at final histopathology. Probability of pN2-3 given cN0 for breast MRI and axillary ultrasound was 0.7–0.9% versus 1.5% and probability of pN2-3 given cN1 was 11.6–15.4% versus 29.0%. When cN1 on breast MRI was observed, PPV to identify positive axillary nodal disease was 50.7% and 59.0%. Conclusions: Evaluation of axillary nodal status on standard breast MRI is comparable to dedicated axillary ultrasound in breast cancer patients. In patients who underwent preoperative standard breast MRI, axillary ultrasound is only required in case of suspicious nodal findings on MRI.

  17. Validation of ASTEC v1.0 computer code against FPT2 test

    International Nuclear Information System (INIS)

    Mladenov, I.; Tusheva, P.; Kalchev, B.; Dimov, D.; Ivanov, I.

    2005-01-01

    The aim of the work is by various nodalization schemes of the model to investigate the ASTEC v1.0 computer code sensitivity and to validate the code against PHEBUS - FPT2 experiment. This code is used for severe accident analysis. The aim corresponds to the main technical objective of the experiment which is to contribute to the validation of models and computer codes to be used for the calculation of the source term in case of a severe accident in a Light Water Reactor. The objective's scope of the FPT2 is large - separately for the bundle, the experimental circuit and the containment. Additional objectives are to characterize aerosol sizing and deposition processes, and also potential FP poisoning effects on hydrogen recombiner coupons exposed to containment atmospheric conditions representative of a LWR severe accident. The analyses of the results of the performed calculations show a good accordance with the reference case calculations, and then with the experimental data. Some differences in the calculations for the thermal behavior appear locally during the oxidation phase and the heat-up phase. There is very good confirmation regarding the volatile and semi-volatile fission products release from the fuel pellets. Important for analysis of the process is the final axial distribution of the mass of fuel relocation obtained at the end of the calculation

  18. Impact of receptor phenotype on nodal burden in patients with breast cancer who have undergone neoadjuvant chemotherapy

    LENUS (Irish Health Repository)

    Boland, M. R.

    2017-07-31

    Optimal evaluation and management of the axilla following neoadjuvant chemotherapy(NAC) in patients with node-positive breast cancer remains controversial. The aim of this study wasto examine the impact of receptor phenotype in patients with nodal metastases who undergo NAC to seewhether this approach can identify those who may be suitable for conservative axillary management.Methods: Between 2009 and 2014, all patients with breast cancer and biopsy-proven nodal diseasewho received NAC were identied from prospectively developed databases. Details of patients who hadaxillary lymph node dissection (ALND) following NAC were recorded and rates of pathological completeresponse (pCR) were evaluated for receptor phenotype.

  19. Comparison between 18F-Fluorodeoxyglucose Positron Emission Tomography and Sen