WorldWideScience

Sample records for nocturnal co2 fixation

  1. Elevated CO2 concentration around alfalfa nodules increases N2 fixation

    OpenAIRE

    Fischinger, Stephanie A.; Hristozkova, Marieta; Mainassara, Zaman-Allah; Schulze, Joachim

    2009-01-01

    Nodule CO2 fixation via PEPC provides malate for bacteroids and oxaloacetate for N assimilation. The process is therefore of central importance for efficient nitrogen fixation. Nodule CO2 fixation is known to depend on external CO2 concentration. The hypothesis of the present paper was that nitrogen fixation in alfalfa plants is enhanced when the nodules are exposed to elevated CO2 concentrations. Therefore nodulated plants of alfalfa were grown in a hydroponic system that allowed separate ae...

  2. 14CO2 fixation pattern of cyanobacteria

    International Nuclear Information System (INIS)

    Erdmann, N.; Schiewer, U.

    1985-01-01

    The 14 CO 2 fixation pattern of three cyanobacteria in the light and dark were studied. Two different chromatographic methods widely used for separating labelled photosynthetic intermediates were compared. After ethanolic extraction, a rather uniform fixation pattern reflecting mainly the β-carboxylation pathway is obtained for all 3 species. Of the intermediates, glucosylglycerol is specific and high citrulline and low malate contents are fairly specific to cyanobacteria. The composition of the 14 CO 2 fixation pattern is hardly affected by changes in temperature or light intensity, but it is severely affected by changes in the water potential of the medium. (author)

  3. Quantitative analysis of an engineered CO2-fixing Escherichia coli reveals great potential of heterotrophic CO2 fixation.

    Science.gov (United States)

    Gong, Fuyu; Liu, Guoxia; Zhai, Xiaoyun; Zhou, Jie; Cai, Zhen; Li, Yin

    2015-01-01

    Production of fuels from the abundant and wasteful CO2 is a promising approach to reduce carbon emission and consumption of fossil fuels. Autotrophic microbes naturally assimilate CO2 using energy from light, hydrogen, and/or sulfur. However, their slow growth rates call for investigation of the possibility of heterotrophic CO2 fixation. Although preliminary research has suggested that CO2 fixation in heterotrophic microbes is feasible after incorporation of a CO2-fixing bypass into the central carbon metabolic pathway, it remains unclear how much and how efficient that CO2 can be fixed by a heterotrophic microbe. A simple metabolic flux index was developed to indicate the relative strength of the CO2-fixation flux. When two sequential enzymes of the cyanobacterial Calvin cycle were incorporated into an E. coli strain, the flux of the CO2-fixing bypass pathway accounts for 13 % of that of the central carbon metabolic pathway. The value was increased to 17 % when the carbonic anhydrase involved in the cyanobacterial carbon concentrating mechanism was introduced, indicating that low intracellular CO2 concentration is one limiting factor for CO2 fixation in E. coli. The engineered CO2-fixing E. coli with carbonic anhydrase was able to fix CO2 at a rate of 19.6 mg CO2 L(-1) h(-1) or the specific rate of 22.5 mg CO2 g DCW(-1) h(-1). This CO2-fixation rate is comparable with the reported rates of 14 autotrophic cyanobacteria and algae (10.5-147.0 mg CO2 L(-1) h(-1) or the specific rates of 3.5-23.7 mg CO2 g DCW(-1) h(-1)). The ability of CO2 fixation was created and improved in E. coli by incorporating partial cyanobacterial Calvin cycle and carbon concentrating mechanism, respectively. Quantitative analysis revealed that the CO2-fixation rate of this strain is comparable with that of the autotrophic cyanobacteria and algae, demonstrating great potential of heterotrophic CO2 fixation.

  4. A study for the biological CO2 fixation and utilization system

    International Nuclear Information System (INIS)

    Otsuki, T.

    2001-01-01

    Increased CO 2 in the atmosphere is such a serious problem for mankind that many research and development approaches are implemented to reduce CO 2 emissions. One is a biological CO 2 fixation using the photosynthetic function of microalgae like Chlorella and Synechocystis sp. The target of the project is to achieve a CO 2 fixation rate of 50 g CO 2 /m 2 ·d, which is 10 times as large as that of the temperate forest. The purpose of this study is to clarify the possibilities of the biological CO 2 fixation system in view of the CO 2 balance, energy balance, and payback period. The amount of CO 2 fixation of the system should be larger than the emission of CO 2 by operating. Furthermore, the energy consumption of the system should also be less than the biochemical energy (enthalpy) of glucose, which is made by photosynthesis. After CO 2 fixation was completed by the microalgae, the biomass must be utilized practically for many markets and the initial investment in the system construction could be regained

  5. Nonphotosynthetic CO2 fixation by alfalfa (Medicago sativa L.) roots and nodules

    International Nuclear Information System (INIS)

    Anderson, M.P.; Heichel, G.H.; Vance, C.P.

    1987-01-01

    The dependence of alfalfa (Medicago sativa L.) root and nodule nonphotosynthetic CO 2 fixation on the supply of currently produced photosynthate and nodule nitrogenase activity was examined a various times after phloem-girdling and exposure of nodules to Ar:O 2 . Phloem-girdling was effected 20 hours and exposure to Ar:O 2 was effected 2 to 3 hours before initiation of experiments. Nodule and root CO 2 fixation rates of phloem-girdled plants were reduced to 38 and 50%, respectively, of those of control plants. Exposure to Ar:O 2 decreased nodule CO 2 fixation rates to 45%, respiration rates to 55%, and nitrogenase activities to 51% of those of the controls. The products of nodule CO 2 fixation were exported through the xylem to the shoot mainly as amino acids within 30 to 60 minutes after exposure to 14 CO 2 . In contrast to nodules, roots exported very little radioactivity, and most of the 14 C was exported as organic acids. The nonphotosynthetic CO 2 fixation rate of roots and nodules averaged 26% of the gross respiration rate, i.e. the sum of net respiration and nonphotosynthetic CO 2 assimilation. Nodules fixed CO 2 at a rate 5.6 times that of roots, but since nodules comprised a small portion of root system mass, roots accounted for 76% of the nodulated roots system CO 2 fixation. The results indicate that nodule CO 2 fixation in alfalfa is associated with N assimilation

  6. CO2 Fixation by Membrane Separated NaCl Electrolysis

    DEFF Research Database (Denmark)

    Park, Hyun Sic; Lee, Ju Sung; Han, Junyoung

    2015-01-01

    for converting CO2 into CaCO3 requires high temperature and high pressure as reaction conditions. This study proposes a method to fixate CaCO3 stably by using relatively less energy than existing methods. After forming NaOH absorbent solution through electrolysis of NaCl in seawater, CaCO3 was precipitated...... crystal product was high-purity calcite. The study shows a successful method for fixating CO2 by reducing carbon dioxide released into the atmosphere while forming high-purity CaCO3.......Atmospheric concentrations of carbon dioxide (CO2), a major cause of global warming, have been rising due to industrial development. Carbon capture and storage (CCS), which is regarded as the most effective way to reduce such atmospheric CO2 concentrations, has several environmental and technical...

  7. Estimation of nocturnal CO2 and N2O soil emissions from changes in surface boundary layer mass storage

    Science.gov (United States)

    Grant, Richard H.; Omonode, Rex A.

    2018-04-01

    Annual budgets of greenhouse and other trace gases require knowledge of the emissions throughout the year. Unfortunately, emissions into the surface boundary layer during stable, calm nocturnal periods are not measurable using most micrometeorological methods due to non-stationarity and uncoupled flow. However, during nocturnal periods with very light winds, carbon dioxide (CO2) and nitrous oxide (N2O) frequently accumulate near the surface and this mass accumulation can be used to determine emissions. Gas concentrations were measured at four heights (one within and three above canopy) and turbulence was measured at three heights above a mature 2.5 m maize canopy from 23 July to 10 September 2015. Nocturnal CO2 and N2O fluxes from the canopy were determined using the accumulation of mass within a 6.3 m control volume and out the top of the control volume within the nocturnal surface boundary layer. Diffusive fluxes were estimated by flux gradient method. The total accumulative and diffusive fluxes during near-calm nights (friction velocities CO2 and 0.53 nmol m-2 s-1 N2O. Fluxes were also measured using chambers. Daily mean CO2 fluxes determined by the accumulation method were 90 to 130 % of those determined using soil chambers. Daily mean N2O fluxes determined by the accumulation method were 60 to 80 % of that determined using soil chambers. The better signal-to-noise ratios of the chamber method for CO2 over N2O, non-stationary flow, assumed Schmidt numbers, and anemometer tilt were likely contributing reasons for the differences in chambers versus accumulated nocturnal mass flux estimates. Near-surface N2O accumulative flux measurements in more homogeneous regions and with greater depth are needed to confirm the conclusion that mass accumulation can be effectively used to estimate soil emissions during nearly calm nights.

  8. Fixation of CO2 in air: Synthesis and crystal structure of a µ3-CO3 ...

    Indian Academy of Sciences (India)

    Unknown

    Fixation of CO2 in air: Synthesis and crystal structure of a ... from the reaction between copper(I) complexes and dioxygen.2,6,7 ... and co-workers from the reaction of [(L2) ..... followed by water dissociation.13h,24 While fixation of CO2 by ...

  9. Modification of bifunctional epoxy resin using CO2 fixation process and nanoclay

    International Nuclear Information System (INIS)

    Khoshkish, Morteza; Bouhendi, Hosein; Vafayan, Mehdi

    2014-01-01

    A bifunctional epoxy resin was modified by using a CO 2 fixation solution process in the presence of tetra n-butyl ammonium bromide (TBAB) as catalyst and the modified treated resin was treated by cloisite 30B as nano additive. The Unmodified epoxy resin (UME), CO 2 fixated modified epoxy resin (CFME), and CFME/clay nano composite (CFMEN), were cured by diethylenetriamine (DETA). A cycloaliphatic compound as a reactive diluent was used to control the viscosity of high viscose CFME. The exfoliation of organoclay in UME and CFME was investigated by X-ray diffraction and activation energy was computed using the advanced integral isoconversional method. The activation energy dependency demonstrated that the mechanism of UME curing did not change in the presence of nanoclay. In contrast, the CO 2 fixation results showed a significant change in the activation energy dependency. The Thermal stability parameters include the initial degradation temperature (IDT), the temperature at the maximum rate of weight loss (T max ), and the decomposition activation energy (E d ) were determined by thermal gravimetry analysis. Dynamic mechanical thermal analysis measurements showed that the presence of organoclay in CFME increases the T g of nano composite in contrast to UME. The fracture roughness of UME, CFME and CFNE were determined by scanning electron microscope. The exfoliated UME/1%clay nanocomposite was confirmed by TEM image. - Highlights: • A new epoxy resin was synthesized using CO 2 fixation reaction. • The synthesized epoxy resin was modified by an organo nano-clay. • CO 2 fixation noticeably changed the curing mechanism. • CO 2 fixation reaction consumes CO 2 which is a harmful greenhouse gas

  10. Possibility of high CO{sub 2} fixation rate by coral reef ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    K. Yamada; Y. Suzuki; B.E. Casareto; H. Komiyama [Shinshu University, Tokida (Japan). Dept. of Fine Materials Engineering

    2003-07-01

    Previous net rates of CO{sub 2} fixation by coral reef ecosystems have been said to be nearly zero due to a balance between CO{sub 2} fixed by organic carbon production and CO{sub 2} released by both organic carbon decomposition and inorganic carbon formation. But this study, conducted in Bora Bay, Miyako Island, Japan showed net rates of about 7 gC m{sup -2} d{sup -1} inside a coral reef and on a coral reef. It was found by experiment that the photosynthetic rate of coral increased with the increase of the flow rate of seawater. The authors tried to calculate net primary production (= net rates of CO{sub 2} fixation) outside a coral reef with flow rate. A flow rate on the coral reef of the open seaside is much higher than that in a lagoon. As an example, the CO{sub 2} fixation rates at the flow rates of 6 and 30 cm/s are compared. When it is assumed that the length of the whole coral reef facing the ocean is 50,000 km and its width is 100 m, and the flow rate is 30cm/s, the CO{sub 2} fixation rate is calculated to be 6.3 x 10{sup 6} t-C/y (3.5g-C/m{sup 2}d). This value is 2.2 times higher than that at the flow rate of 6 cm/s. This fixation rate is only by the coral itself. It means that the CO{sub 2} fixation rate by coral reef ecosystems can be much higher and the magnitude for worldwide ecosystems can be in the order of 10{sup 6}-10{sup 7} t-C/y. 14 refs., 5 tabs.

  11. Heterotrophic fixation of CO2 in soil

    Czech Academy of Sciences Publication Activity Database

    Šantrůčková, Hana; Bird, M. I.; Elhottová, Dana; Novák, Jaroslav; Picek, T.; Šimek, Miloslav; Tykva, Richard

    2005-01-01

    Roč. 49, č. 2 (2005), s. 218-225 ISSN 0095-3628 R&D Projects: GA ČR(CZ) GA206/02/1036; GA AV ČR(CZ) IAA6066901 Institutional research plan: CEZ:AV0Z60660521 Keywords : heterotrophic fixation * CO2 * soil Subject RIV: EH - Ecology, Behaviour Impact factor: 2.674, year: 2005

  12. The importance of nodule CO2 fixation for the efficiency of symbiotic nitrogen fixation in pea at vegetative growth and during pod formation.

    Science.gov (United States)

    Fischinger, Stephanie Anastasia; Schulze, Joachim

    2010-05-01

    Nodule CO2 fixation is of pivotal importance for N2 fixation. The process provides malate for bacteroids and oxaloacetate for nitrogen assimilation. The hypothesis of the present paper was that grain legume nodules would adapt to higher plant N demand and more restricted carbon availability at pod formation through increased nodule CO2 fixation and a more efficient N2 fixation. Growth, N2 fixation, and nodule composition during vegetative growth and at pod formation were studied in pea plants (Pisum sativum L.). In parallel experiments, 15N2 and 13CO2 uptake, as well as nodule hydrogen and CO2 release, was measured. Plants at pod formation showed higher growth rates and N2 fixation per plant when compared with vegetative growth. The specific activity of active nodules was about 25% higher at pod formation. The higher nodule activity was accompanied by higher amino acid concentration in nodules and xylem sap with a higher share of asparagine. Nodule 13CO2 fixation was increased at pod formation, both per plant and per 15N2 fixed unit. However, malate concentration in nodules was only 40% of that during vegetative growth and succinate was no longer detectable. The data indicate that increased N2 fixation at pod formation is connected with strongly increased nodule CO2 fixation. While the sugar concentration in nodules at pod formation was not altered, the concentration of organic acids, namely malate and succinate, was significantly lower. It is concluded that strategies to improve the capability of nodules to fix CO2 and form organic acids might prolong intensive N2 fixation into the later stages of pod formation and pod filling in grain legumes.

  13. Pathway of /sup 14/Co/sub 2/ fixation in marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, G V; Karekar, M D [Shivaji Univ., Kolhapur (India). Dept. of Botany

    1973-08-01

    Marine plants have a different metabolic environment which is likely to affect pathways of CO/sub 2/ fixation. It has been observed that in marine alga, Ulva lactuca, during short term light fixation of /sup 14/CO/sub 2/, besides PGA, an appreciable amount of activity was located in aspartate. This curious observation can now be explained on the basis of Hatch, Slack and Kortschak pathway of CO/sub 2/ fixation. In order to trace pathways of /sup 14/CO/sub 2/ in marine algae, a wide variety of algal specimens were exposed to NaH/sup 14/CO/sub 3/ in light and the products were analyzed. The algae selected were Ulva lactuca, Sargassum ilicifolium, Sphacelaria sp., Padina tetrastromatica, Chaetomorpha media and Enteromorpha tubulosa. It has been found that the pathways of CO/sub 2/ in the above marine algae differ from the conventional pattern recorded in Chlorella. The early labelling of aspartate and its subsequent utilization indicates that HSK pathway is operative in the marine algae. Malate synthesis is inhibited due to the effect of saline environment on the activity of malic dehydrogenase. Appreciable label in PGA is suggestive of the fact that Calvin and Bassham pathway as well as the HSK route are simultaneously operating. (auth)

  14. Modification of bifunctional epoxy resin using CO{sub 2} fixation process and nanoclay

    Energy Technology Data Exchange (ETDEWEB)

    Khoshkish, Morteza; Bouhendi, Hosein, E-mail: H.boohendi@ippi.ac.ir; Vafayan, Mehdi

    2014-10-15

    A bifunctional epoxy resin was modified by using a CO{sub 2} fixation solution process in the presence of tetra n-butyl ammonium bromide (TBAB) as catalyst and the modified treated resin was treated by cloisite 30B as nano additive. The Unmodified epoxy resin (UME), CO{sub 2} fixated modified epoxy resin (CFME), and CFME/clay nano composite (CFMEN), were cured by diethylenetriamine (DETA). A cycloaliphatic compound as a reactive diluent was used to control the viscosity of high viscose CFME. The exfoliation of organoclay in UME and CFME was investigated by X-ray diffraction and activation energy was computed using the advanced integral isoconversional method. The activation energy dependency demonstrated that the mechanism of UME curing did not change in the presence of nanoclay. In contrast, the CO{sub 2} fixation results showed a significant change in the activation energy dependency. The Thermal stability parameters include the initial degradation temperature (IDT), the temperature at the maximum rate of weight loss (T{sub max}), and the decomposition activation energy (E{sub d}) were determined by thermal gravimetry analysis. Dynamic mechanical thermal analysis measurements showed that the presence of organoclay in CFME increases the T{sub g} of nano composite in contrast to UME. The fracture roughness of UME, CFME and CFNE were determined by scanning electron microscope. The exfoliated UME/1%clay nanocomposite was confirmed by TEM image. - Highlights: • A new epoxy resin was synthesized using CO{sub 2} fixation reaction. • The synthesized epoxy resin was modified by an organo nano-clay. • CO{sub 2} fixation noticeably changed the curing mechanism. • CO{sub 2} fixation reaction consumes CO{sub 2} which is a harmful greenhouse gas.

  15. Basic study of CO2 fixation using a combination of seaweed and shells; Kaiso to kairui wo kumiawaseta CO2 koteika kiso kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, H. [Kansai Electric Power Co. Inc., Osaka (Japan)

    1997-09-10

    CO2 fixed in organic matters return to the atmosphere after putrefication and decomposition, but it is also known that CO2 fixed in inorganic shells stays there permanently. A study is made in this report about the fixation of CO2 in organic matters by use of the ulva and anchored diatom known to be high in CO2 trapping capability, and the study also covers the raising of shells aiming at the fixation of CO2 in inorganic matters. The ulva is raised in a cylindrical raceway type culture water tank, and the anchored diatom in a cylindrical culture unit, and breeding conditions under which they multiply at the highest rate are determined. Their CO2 fixation rates are, respectively, 92.76mg/liter/day and 25.45mg/liter/day, which may be converted, respectively, into 147.1 ton and 5.8 ton of CO2 per hectare per year. Fixed CO2 amounts are tentatively calculated using the above-said figures combined with the raising of shells, and it is found that CO2 may be effectively fixed when the ulva is raised in a 1-hectare area and the shells in a 3.63-hectare area. In this case, the annual CO2 fixation amounts are estimated at 74.1 ton in inorganic matters and 3.9 ton in organic matters. 6 figs.

  16. Size-fractionated biomass, photosynthesis and dark CO2 fixation in a tropical oceanic environment

    Digital Repository Service at National Institute of Oceanography (India)

    Gomes, H.; Goes, J.I.; Parulekar, A.H.

    photosynthesizing at high light intensities of approx 1500 mu E m sup(-2) s sup(-1). Below the euphotic zone (100-200 m), dark fixation of CO sub(2) was qute significant. The average column dark fixation of CO sub(2) was 0.045 g C m sup(-2) day sup(-1), which...

  17. [Regulation of alternative CO[sub 2] fixation pathways in procaryotic and eucaryotic photosynthetic organisms

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The major goal of this project is to determine how microorganisms regulate the assimilation of CO[sup 2] via pathways alternative to the usual Calvin reductive pentose phosphate scheme. In particular, we are interest in the molecular basis for switches in CO[sub 2] metabolic paths. Several earlier studies had indicated that purple nonsulfur photosynthetic bacteria assimilate significant amounts of CO[sub 2] via alternative non-Calvin routes. We have deleted the gene that encodes. RubisCo (ribulose bisphosphate carboxylase/oxygenase) in both the Rhodobacter sphaeroids and Rhodospirillum rubrum. The R. sphaeroides RubisCO deletion strain (strain 16) could not grow under photoheterotrophic conditions with malate as electron donor and CO[sub 2] as the electron acceptor; however the R. rub RubisCO deletion strain (strain I-19) could. Over the past year we have sought to physiologically characterize strain 16PHC. We found that, 16PHC exhibited rates of whole-cell CO[sub 2] fixation which were significantly higher than strain 16. Strain 16PHC could not grow photolithoautotrophically in a CO[sub 2] atmosphere; however, CO[sub 2] fixation catalyzed by photoheterotrophically grown 16PHC was repressed by the addition of DMSO. Likewise, we found that cells initially grown in the presence of DMSO could induce the CO[sub 2] fixation system when DMSO was removed. Thus, these results suggested that both PHC and I-19 could be used to study alternative CO[sub 2] fixation reactions and their significance in R. sphaexoides and R. rubrum.

  18. Carbon sequestration in soybean crop soils: the role of hydrogen-coupled CO2 fixation

    Science.gov (United States)

    Graham, A.; Layzell, D. B.; Scott, N. A.; Cen, Y.; Kyser, T. K.

    2011-12-01

    Conversion of native vegetation to agricultural land in order to support the world's growing population is a key factor contributing to global climate change. However, the extent to which agricultural activities contribute to greenhouse gas emissions compared to carbon storage is difficult to ascertain, especially for legume crops, such as soybeans. Soybean establishment often leads to an increase in N2O emissions because N-fixation leads to increased soil available N during decomposition of the low C:N legume biomass. However, soybean establishment may also reduce net greenhouse gas emissions by increasing soil fertility, plant growth, and soil carbon storage. The mechanism behind increased carbon storage, however, remains unclear. One explanation points to hydrogen coupled CO2 fixation; the process by which nitrogen fixation releases H2 into the soil system, thereby promoting chemoautotrophic carbon fixation by soil microbes. We used 13CO2 as a tracer to track the amount and fate of carbon fixed by hydrogen coupled CO2 fixation during one-year field and laboratory incubations. The objectives of the research are to 1) quantify rates of 13CO2 fixation in soil collected from a field used for long-term soybean production 2) examine the impact of H2 gas concentration on rates of 13CO2 fixation, and 3) measure changes in δ13C signature over time in 3 soil fractions: microbial biomass, light fraction, and acid stable fraction. If this newly-fixed carbon is incorporated into the acid-stable soil C fraction, it has a good chance of contributing to long-term soil C sequestration under soybean production. Soil was collected in the field both adjacent to root nodules (nodule soil) and >3cm away (root soil) and labelled with 13CO2 (1% v/v) in the presence and absence of H2 gas. After a two week labelling period, δ13C signatures already revealed differences in the four treatments of bulk soil: -17.1 for root, -17.6 for nodule, -14.2 for root + H2, and -6.1 for nodule + H2

  19. Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria

    Science.gov (United States)

    Kanno, Masahiro; Carroll, Austin L.; Atsumi, Shota

    2017-03-01

    Cyanobacteria have attracted much attention as hosts to recycle CO2 into valuable chemicals. Although cyanobacteria have been engineered to produce various compounds, production efficiencies are too low for commercialization. Here we engineer the carbon metabolism of Synechococcus elongatus PCC 7942 to improve glucose utilization, enhance CO2 fixation and increase chemical production. We introduce modifications in glycolytic pathways and the Calvin Benson cycle to increase carbon flux and redirect it towards carbon fixation. The engineered strain efficiently uses both CO2 and glucose, and produces 12.6 g l-1 of 2,3-butanediol with a rate of 1.1 g l-1 d-1 under continuous light conditions. Removal of native regulation enables carbon fixation and 2,3-butanediol production in the absence of light. This represents a significant step towards industrial viability and an excellent example of carbon metabolism plasticity.

  20. CO2 fixation in alfalfa and birdsfoot trefoil root nodules and partitioning of 14C to the plant

    International Nuclear Information System (INIS)

    Maxwell, C.A.; Vance, C.P.; Heichel, G.H.; Stade, S.

    1984-01-01

    The objectives of this study were to determine if nonphotosynthetic CO 2 fixation by root nodules contributes carbon for the assimilation of fixed N 2 in alfalfa (Medicago sativa L.) and birdsfoot trefoil (Lotus corniculatus L.) and if assimilation products are partitioned to different plant organs. Effective alfalfa nodules excised from or attached to roots had apparent 14 CO 2 fixation rates of 50 to 80 μg CO 2 kg -1 s -1 (dry weight) at 0.0012 to 0.0038 mole fraction CO 2 . Nodule CO 2 fixation rates increased six- to seven-fold as ambient CO 2 was raised from 0.0038 to 0.0663 mole fraction. Respiration rates of nodules (3 to 4 mg CO 2 kg -1 s -1 ) were 10 to 100-fold higher than 14 CO 2 fixation rates of nodules. Pulse chase experiments with 14 CO 2 combined with nodule and xylem sap analysis demonstrated the initial products of root and nodule CO 2 fixation were organic acids. However, the export of fixed 14 C from effective nodules was primarily in the form of amino acids. In contrast, nodule and/or root fixed 14 C in ineffectively nodulated alfalfa and denodulated effective alfalfa and birdsfoot trefoil was transported primarily as organic acids. Aspartate, asparagine, alanine, glutamate, and glutamine were the most heavily labeled compounds in the amino acid fraction of both effective alfalfa and birdsfoot trefoil nodules exposed to 14 CO 2 . By contrast, asparate, asparagine, and glutamine were the predominantly labeled amino acids in xylem sap collected from nodulated effective roots exposed to 14 CO 2 . The occurrence of nodule CO 2 fixation in alfalfa and birdsfoot trefoil and the export of fixed carbon as asparagine and aspartate to roots and shoots is consistent with a role for CO 2 fixation by nodules in providing carbon skeletons for assimilation and transport of symbiotically fixed N 2

  1. [Regulation of alternative CO{sub 2} fixation pathways in procaryotic and eucaryotic photosynthetic organisms]. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    The major goal of this project is to determine how microorganisms regulate the assimilation of CO{sup 2} via pathways alternative to the usual Calvin reductive pentose phosphate scheme. In particular, we are interest in the molecular basis for switches in CO{sub 2} metabolic paths. Several earlier studies had indicated that purple nonsulfur photosynthetic bacteria assimilate significant amounts of CO{sub 2} via alternative non-Calvin routes. We have deleted the gene that encodes. RubisCo (ribulose bisphosphate carboxylase/oxygenase) in both the Rhodobacter sphaeroids and Rhodospirillum rubrum. The R. sphaeroides RubisCO deletion strain (strain 16) could not grow under photoheterotrophic conditions with malate as electron donor and CO{sub 2} as the electron acceptor; however the R. rub RubisCO deletion strain (strain I-19) could. Over the past year we have sought to physiologically characterize strain 16PHC. We found that, 16PHC exhibited rates of whole-cell CO{sub 2} fixation which were significantly higher than strain 16. Strain 16PHC could not grow photolithoautotrophically in a CO{sub 2} atmosphere; however, CO{sub 2} fixation catalyzed by photoheterotrophically grown 16PHC was repressed by the addition of DMSO. Likewise, we found that cells initially grown in the presence of DMSO could induce the CO{sub 2} fixation system when DMSO was removed. Thus, these results suggested that both PHC and I-19 could be used to study alternative CO{sub 2} fixation reactions and their significance in R. sphaexoides and R. rubrum.

  2. Effect of simulated tillage on microbial autotrophic CO2 fixation in paddy and upland soils

    Science.gov (United States)

    Ge, Tida; Wu, Xiaohong; Liu, Qiong; Zhu, Zhenke; Yuan, Hongzhao; Wang, Wei; Whiteley, A. S.; Wu, Jinshui

    2016-01-01

    Tillage is a common agricultural practice affecting soil structure and biogeochemistry. To evaluate how tillage affects soil microbial CO2 fixation, we incubated and continuously labelled samples from two paddy soils and two upland soils subjected to simulated conventional tillage (CT) and no-tillage (NT) treatments. Results showed that CO2 fixation (14C-SOC) in CT soils was significantly higher than in NT soils. We also observed a significant, soil type- and depth-dependent effect of tillage on the incorporation rates of labelled C to the labile carbon pool. Concentrations of labelled C in the carbon pool significantly decreased with soil depth, irrespective of tillage. Additionally, quantitative PCR assays revealed that for most soils, total bacteria and cbbL-carrying bacteria were less abundant in CT versus NT treatments, and tended to decrease in abundance with increasing depth. However, specific CO2 fixation activity was significantly higher in CT than in NT soils, suggesting that the abundance of cbbL-containing bacteria may not always reflect their functional activity. This study highlights the positive effect of tillage on soil microbial CO2 fixation, and the results can be readily applied to the development of sustainable agricultural management. PMID:26795428

  3. Evaluation of options relative to the fixation and disposal of 14C-contaminated CO2 as CaCO3

    International Nuclear Information System (INIS)

    Croff, A.G.

    1976-04-01

    A paper study was conducted to determine the best method for fixing the 14 C-contaminated CO 2 resulting from an HTGR fuel block burner as CaCO 3 , and to determine the best methods for disposing of the CaCO 3 thus produced. The fixation method selected was the direct reaction of a Ca(OH) 2 slurry with the CO 2 . The least expensive disposal options which are likely to be acceptable appear to be the shallow-land burial of either drummed CaCO 3 solid (total cost = $18.47/kg heavy metal) or drummed CaCO 3 concreted with cement (total cost = $43.33/kg heavy metal). Neither placing the CO 2 fixation process before the Kr removal process nor separating the bulk of the graphite fuel block from the fuel particles is attractive on both technical and economic grounds. However, reduction of the HTGR fuel nitrogen content appears to be a more attractive method of reducing the 14 C release rate

  4. Carboxysomal carbonic anhydrases: Structure and role in microbial CO2 fixation

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, Gordon C.; Heinhorst, Sabine; Kerfeld, Cheryl A.

    2010-06-23

    Cyanobacteria and some chemoautotrophic bacteria are able to grow in environments with limiting CO2 concentrations by employing a CO2-concentrating mechanism (CCM) that allows them to accumulate inorganic carbon in their cytoplasm to concentrations several orders of magnitude higher than that on the outside. The final step of this process takes place in polyhedral protein microcompartments known as carboxysomes, which contain the majority of the CO2-fixing enzyme, RubisCO. The efficiency of CO2 fixation by the sequestered RubisCO is enhanced by co-localization with a specialized carbonic anhydrase that catalyzes dehydration of the cytoplasmic bicarbonate and ensures saturation of RubisCO with its substrate, CO2. There are two genetically distinct carboxysome types that differ in their protein composition and in the carbonic anhydrase(s) they employ. Here we review the existing information concerning the genomics, structure and enzymology of these uniquely adapted carbonic anhydrases, which are of fundamental importance in the global carbon cycle.

  5. Summary report of working group I CO{sub 2} capture, fixation/utilization, and disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The topics of our working group were divided into four key areas: CO{sub 2} Capture, Utilization/Fixation, Ocean Disposal, and Land Disposal. Fourteen presentations were made as follows: CO{sub 2} Capture: Toshikatsu Hakuta (Japan) and Rod Judkins, Bruce St. John, and Alan Wolsky (US). Utilization/Fixation: Hironori Arakawa, Yasuo Asada, and Takashi lbusuki (Japan) and Ed Lipinsky (US). Ocean Disposal: Yuji Shindo (Japan) and Eric Adams, Gerard Nihous, and Wheeler North (US). Land Disposal: Shoichi Tanaka (Japan) and Roger Bailey (US/Canada). Co-chairs for this working group were Toshikatsu Hakuta (Japan) and Howard Herzog (US). This document contains only a summary outline of research needs in the area of CO{sub 2} capture and sequestration. It should be used in conjunction with other assessments made in this area. For the U.S., a DOE report entitled A Research Needs Assessment for the Capture, Utilization and Disposal of Carbon Dioxide from Fossil Fuel-Fired Power Plants will be forthcoming in 1993.

  6. Products of Dark CO2 Fixation in Pea Root Nodules Support Bacteroid Metabolism 1

    Science.gov (United States)

    Rosendahl, Lis; Vance, Carroll P.; Pedersen, Walther B.

    1990-01-01

    Products of the nodule cytosol in vivo dark [14C]CO2 fixation were detected in the plant cytosol as well as in the bacteroids of pea (Pisum sativum L. cv “Bodil”) nodules. The distribution of the metabolites of the dark CO2 fixation products was compared in effective (fix+) nodules infected by a wild-type Rhizobium leguminosarum (MNF 300), and ineffective (fix−) nodules of the R. leguminosarum mutant MNF 3080. The latter has a defect in the dicarboxylic acid transport system of the bacterial membrane. The 14C incorporation from [14C]CO2 was about threefold greater in the wild-type nodules than in the mutant nodules. Similarly, in wild-type nodules the in vitro phosphoenolpyruvate carboxylase activity was substantially greater than that of the mutant. Almost 90% of the 14C label in the cytosol was found in organic acids in both symbioses. Malate comprised about half of the total cytosol organic acid content on a molar basis, and more than 70% of the cytosol radioactivity in the organic acid fraction was detected in malate in both symbioses. Most of the remaining 14C was contained in the amino acid fraction of the cytosol in both symbioses. More than 70% of the 14C label found in the amino acids of the cytosol was incorporated in aspartate, which on a molar basis comprised only about 1% of the total amino acid pool in the cytosol. The extensive 14C labeling of malate and aspartate from nodule dark [14C]CO2 fixation is consistent with the role of phosphoenolpyruvate carboxlase in nodule dark CO2 fixation. Bacteroids from the effective wild-type symbiosis accumulated sevenfold more 14C than did the dicarboxylic acid transport defective bacteroids. The bacteroids of the effective MNF 300 symbiosis contained the largest proportion of the incorporated 14C in the organic acids, whereas ineffective MNF 3080 bacteroids mainly contained 14C in the amino acid fraction. In both symbioses a larger proportion of the bacteroid 14C label was detected in malate and aspartate

  7. Photosynthetic CO{sub 2} fixation and energy production - microalgae as a main subject

    Energy Technology Data Exchange (ETDEWEB)

    Asada, Yasuo [National Inst. of Bioscience and Human-Technology, Tsukuba-shi, Ibaraki-ken (Japan)

    1993-12-31

    Research activities for application of microalgal photosynthesis to CO{sub 2} fixation in Japan are overviewed. Presenter`s studies on energy (hydrogen gas) production by cyanobacteria (blue-green algae) and photosynthetic bacteria are also introduced.

  8. Photosynthetic CO2 fixation in guard cells (GC)

    International Nuclear Information System (INIS)

    Gotow, K.; Taylor, S.; Zeiger, E.

    1987-01-01

    Recent studies indicate that carbon metabolism in GC is modulated by light quality. The fate of 14 CO 2 supplied to highly purified Vicia GC protoplasts irradiated with red light was investigated. The suspension was stirred at 25 0 C and dark-adapted for 5 min. After 5 min. in red light, 4.8 uCi of NaH 14 CO 3 was added (final concentration: 100 uM). Metabolism was quenched after 30 s with boiling ethanol. Anionic compounds were separated by 2D PC and TLC, and quantified. Rates of CO 2 fixation were 5- to 8-fold higher in the light. In the dark, malate and aspartate had 90% of the total label; in the light, 3-PGA, sugar monophosphates (SMP) and sugar diophosphates (SDP) had up to 60% of the label. Phosphates treatment and rechromatography of labelled SDP showed the presence of ribulose, a specific PCRP metabolite. In time-course experiments, labelled 3-PGA was detected within 5 s. With time, the percentage of label in 3-PGA decreased and that in SMP increased. The authors conclude that 3-PGA is a primary carboxylation product of the PCRP in GC and that the activity of the PCRP and PEP-carboxylase is metabolically regulated

  9. Free-air CO2 enrichment (FACE) reduces the inhibitory effect of soil nitrate on N2 fixation of Pisum sativum.

    Science.gov (United States)

    Butterly, Clayton R; Armstrong, Roger; Chen, Deli; Tang, Caixian

    2016-01-01

    Additional carbohydrate supply resulting from enhanced photosynthesis under predicted future elevated CO2 is likely to increase symbiotic nitrogen (N) fixation in legumes. This study examined the interactive effects of atmospheric CO2 and nitrate (NO3(-)) concentration on the growth, nodulation and N fixation of field pea (Pisum sativum) in a semi-arid cropping system. Field pea was grown for 15 weeks in a Vertosol containing 5, 25, 50 or 90 mg NO3(-)-N kg(-1) under either ambient CO2 (aCO2; 390 ppm) or elevated CO2 (eCO2; 550 ppm) using free-air CO2 enrichment (SoilFACE). Under aCO2, field pea biomass was significantly lower at 5 mg NO3(-)-N kg(-1) than at 90 mg NO3(-)-N kg(-1) soil. However, increasing the soil N level significantly reduced nodulation of lateral roots but not the primary root, and nodules were significantly smaller, with 85% less nodule mass in the 90 NO3(-)-N kg(-1) than in the 5 mg NO3(-)-N kg(-1) treatment, highlighting the inhibitory effects of NO3(-). Field pea grown under eCO2 had greater biomass (approx. 30%) than those grown under aCO2, and was not affected by N level. Overall, the inhibitory effects of NO3(-) on nodulation and nodule mass appeared to be reduced under eCO2 compared with aCO2, although the effects of CO2 on root growth were not significant. Elevated CO2 alleviated the inhibitory effect of soil NO3(-) on nodulation and N2 fixation and is likely to lead to greater total N content of field pea growing under future elevated CO2 environments. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Elevated Atmospheric CO2 and Warming Stimulates Growth and Nitrogen Fixation in a Common Forest Floor Cyanobacterium under Axenic Conditions

    Directory of Open Access Journals (Sweden)

    Zoë Lindo

    2017-03-01

    Full Text Available The predominant input of available nitrogen (N in boreal forest ecosystems originates from moss-associated cyanobacteria, which fix unavailable atmospheric N2, contribute to the soil N pool, and thereby support forest productivity. Alongside climate warming, increases in atmospheric CO2 concentrations are expected in Canada’s boreal region over the next century, yet little is known about the combined effects of these factors on N fixation by forest floor cyanobacteria. Here we assess changes in N fixation in a common forest floor, moss-associated cyanobacterium, Nostoc punctiforme Hariot, under elevated CO2 conditions over 30 days and warming combined with elevated CO2 over 90 days. We measured rates of growth and changes in the number of specialized N2 fixing heterocyst cells, as well as the overall N fixing activity of the cultures. Elevated CO2 stimulated growth and N fixation overall, but this result was influenced by the growth stage of the cyanobacteria, which in turn was influenced by our temperature treatments. Taken together, climate change factors of warming and elevated CO2 are expected to stimulate N2 fixation by moss-associated cyanobacteria in boreal forest systems.

  11. Production of Microalgal Lipids as Biodiesel Feedstock with Fixation of CO2 by Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Qiao Hu

    2014-01-01

    Full Text Available The global warming and shortage of energy are two critical problems for human social development. CO2 mitigation and replacing conventional diesel with biodiesel are effective routes to reduce these problems. Production of microalgal lipids as biodiesel feedstock by a freshwater microalga, Chlorella vulgaris, with the ability to fixate CO2 is studied in this work. The results show that nitrogen deficiency, CO2 volume fraction and photoperiod are the key factors responsible for the lipid accumulation in C. vulgaris. With 5 % CO2, 0.75 g/L of NaNO3 and 18:6 h of light/dark cycle, the lipid content and overall lipid productivity reached 14.5 % and 33.2 mg/(L·day, respectively. Furthermore, we proposed a technique to enhance the microalgal lipid productivity by activating acetyl-CoA carboxylase (ACCase with an enzyme activator. Citric acid and Mg2+ were found to be efficient enzyme activators of ACCase. With the addition of 150 mg/L of citric acid or 1.5 mmol/L of MgCl2, the lipid productivity reached 39.1 and 38.0 mg/(L·day, respectively, which was almost twofold of the control. This work shows that it is practicable to produce lipids by freshwater microalgae that can fixate CO2, and provides a potential route to solving the global warming and energy shortage problems.

  12. Production of Microalgal Lipids as Biodiesel Feedstock with Fixation of CO2 by Chlorella vulgaris

    OpenAIRE

    Qiao Hu; Sen-Xiang Zhang; Zhong-Hua Yang; Hao Huang; Rong Zeng

    2014-01-01

    The global warming and shortage of energy are two critical problems for human social development. CO2 mitigation and replacing conventional diesel with biodiesel are effective routes to reduce these problems. Production of microalgal lipids as biodiesel feedstock by a freshwater microalga, Chlorella vulgaris, with the ability to fixate CO2 is studied in this work. The results show that nitrogen deficiency, CO2 volume fraction and photoperiod are the key factors responsible for the lipid accum...

  13. Effect of nickel on growth and 14 CO2 fixation in Chlorella (Chlorella pyrenoidosa)

    International Nuclear Information System (INIS)

    Subrahmanyam, A.D.; Rathore, V.S.

    1996-01-01

    Influence of nickel on growth, 14 C fixation and allocation of carbon among different biochemical fractions was investigated in Chlorella pyrenoidosa. Nickel significantly reduced the fresh and dry weights of chlorella cells. 14 C fixation was significantly reduced by increasing nickel concentration in growth media. 14 C allocation into different biochemical fractions was also markedly altered by nickel. Reduction in 14 CO 2 assimilation and carbon allocation into pigment-lipid fraction and residue fraction resulted in decreased chlorophyll content and dry weight. (author). 15 refs., 4 figs

  14. Microbial fixation of CO2 in water bodies and in drylands to combat climate change, soil loss and desertification.

    Science.gov (United States)

    Rossi, Federico; Olguín, Eugenia J; Diels, Ludo; De Philippis, Roberto

    2015-01-25

    The growing concern for the increase of the global warming effects due to anthropogenic activities raises the challenge of finding novel technological approaches to stabilize CO2 emissions in the atmosphere and counteract impinging interconnected issues such as desertification and loss of biodiversity. Biological-CO2 mitigation, triggered through biological fixation, is considered a promising and eco-sustainable method, mostly owing to its downstream benefits that can be exploited. Microorganisms such as cyanobacteria, green algae and some autotrophic bacteria could potentially fix CO2 more efficiently than higher plants, due to their faster growth. Some examples of the potential of biological-CO2 mitigation are reported and discussed in this paper. In arid and semiarid environments, soil carbon sequestration (CO2 fixation) by cyanobacteria and biological soil crusts is considered an eco-friendly and natural process to increase soil C content and a viable pathway to soil restoration after one disturbance event. Another way for biological-CO2 mitigation intensively studied in the last few years is related to the possibility to perform carbon dioxide sequestration using microalgae, obtaining at the same time bioproducts of industrial interest. Another possibility under study is the exploitation of specific chemotrophic bacteria, such as Ralstonia eutropha (or picketii) and related organisms, for CO2 fixation coupled with the production chemicals such as polyhydroxyalkanoates (PHAs). In spite of the potential of these processes, multiple factors still have to be optimized for maximum rate of CO2 fixation by these microorganisms. The optimization of culture conditions, including the optimal concentration of CO2 in the provided gas, the use of metabolic engineering and of dual purpose systems for the treatment of wastewater and production of biofuels and high value products within a biorefinery concept, the design of photobioreactors in the case of phototrophs are some

  15. Research and survey report of FY 1997 on the CO2 balance for high-temperature CO2 fixation and utilization technology; 1997 nendo chosa hokokusho (nisanka tanso koon bunri gijutsu ni okeru CO2 balance ni kansuru chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The purpose of this research is to clarify the application condition and effectiveness of high-temperature CO2 fixation and utilization technology. To evaluate the present process, it was compared with others, such as separation using a polymer membrane, physico-chemical absorption process, adsorption process, hydrogen contact reduction process, and biological fixation. The development trends of absorption, membrane, adsorption, and cryogenic separation were investigated. The questionnaire was carried out about the separation technologies which are in the stage of performance test using actual gas, to arrange and compare the data and information. The current trends of chemical and biological CO2 fixation and utilization technology were also investigated for arranging the subjects. High-temperature CO2 disposal by the carbonation in concrete waste has been studied, to clarify its application conditions and effectiveness. In order to compare the separation technologies, treatment processes of CO2 in the exhaust gas from boilers of LNG power generation and coal fired power generation were simulated. These processes were simulated by ASPEN PLUS for the modeling. Trends of application of ASPEN PLUS and collection of information were surveyed by participating in the ASPEN WORLD. 103 refs., 51 figs., 55 tabs.

  16. Genes and pathways for CO2 fixation in the obligate, chemolithoautotrophic acidophile, Acidithiobacillus ferrooxidans, Carbon fixation in A. ferrooxidans

    Directory of Open Access Journals (Sweden)

    Esparza Mario

    2010-08-01

    Full Text Available Abstract Background Acidithiobacillus ferrooxidans is chemolithoautotrophic γ-proteobacterium that thrives at extremely low pH (pH 1-2. Although a substantial amount of information is available regarding CO2 uptake and fixation in a variety of facultative autotrophs, less is known about the processes in obligate autotrophs, especially those living in extremely acidic conditions, prompting the present study. Results Four gene clusters (termed cbb1-4 in the A. ferrooxidans genome are predicted to encode enzymes and structural proteins involved in carbon assimilation via the Calvin-Benson-Bassham (CBB cycle including form I of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO, EC 4.1.1.39 and the CO2-concentrating carboxysomes. RT-PCR experiments demonstrated that each gene cluster is a single transcriptional unit and thus is an operon. Operon cbb1 is divergently transcribed from a gene, cbbR, encoding the LysR-type transcriptional regulator CbbR that has been shown in many organisms to regulate the expression of RubisCO genes. Sigma70-like -10 and -35 promoter boxes and potential CbbR-binding sites (T-N11-A/TNA-N7TNA were predicted in the upstream regions of the four operons. Electrophoretic mobility shift assays (EMSAs confirmed that purified CbbR is able to bind to the upstream regions of the cbb1, cbb2 and cbb3 operons, demonstrating that the predicted CbbR-binding sites are functional in vitro. However, CbbR failed to bind the upstream region of the cbb4 operon that contains cbbP, encoding phosphoribulokinase (EC 2.7.1.19. Thus, other factors not present in the assay may be required for binding or the region lacks a functional CbbR-binding site. The cbb3 operon contains genes predicted to encode anthranilate synthase components I and II, catalyzing the formation of anthranilate and pyruvate from chorismate. This suggests a novel regulatory connection between CO2 fixation and tryptophan biosynthesis. The presence of a form II RubisCO

  17. Photosynthetic and light-enhanced dark fixation of 14CO2 from the ambient atmosphere and 14C-bicarbonate infiltrated through vascular bundles in maize leaves

    International Nuclear Information System (INIS)

    Samejima, Muneaki; Miyachi, Shigetoh

    1978-01-01

    Preillumination of maize leaves in the absence of CO 2 greatly enhanced the capacity for fixing 14 CO 2 into malate and aspartate in the subsequent dark period. The light-enhanced dark fixation of 14 CO 2 lasted for about 1 min. The level of phosphoenolypyruvate in maize leaves in CO 2 -free air did not decrease in the dark subsequent to preillumination. These results indicate that phosphoenolpyruvate carboxylase is activated in light and quickly inactivated in the following darkness. First, labeling method is described, and next, the experiments on the analysis of 14 CO 2 fixation products, the degradation of malate, and the determination of phosphoenolpyruvate in maize leaves are explained. Oxygen-free condition in the atmosphere where the experiments were carried out did not exert any effect on the products by the light-enhanced dark fixation of 14 CO 2 provided from the atmosphere, and the major labeled compounds were malate and aspartate. This indicates that the transfer of carboxyl carbon of C 4 -acids to form 3-phosphoglycerate is light-dependent. When NaH 14 CO 3 solution was vacuum-infiltrated through vascular bundles of maize leaves, the main initial photosynthetic 14 CO 2 -fixation products were phosphate esters. This indicates that by this technique, 14 CO 2 could be directly provided to the bundle sheath cells, and was fixed via the reductive pentose phosphate cycle. While, the main initial 14 CO 2 -fixation products were malate and aspartate even when 14 CO 2 was given through vascular tissues in the dark immediately following preillumination. The possible regulatory mechanisms underlying the above findings are discussed. (Wakatsuki, Y.)

  18. How easy is CO2 fixation by M-C bond containing complexes (M = Cu, Ni, Co, Rh, Ir)?

    KAUST Repository

    Nolan, Steve; Cavallo, Luigi; Poater, Albert; Vummaleti, Sai V. C.; Talarico, Giovanni

    2015-01-01

    A comparison between different M–C bonds (M = Cu(I), Ni(II), Co(I), Rh(I) and Ir(I)) has been reported by using density functional theory (DFT) calculations to explore the role of the metal in the fixation or incorporation of CO2 into such complexes. The systems investigated are various metal based congeners of the Ir-complex 8 [(cod)(IiPr)Ir-CCPh], with a ligand scaffold based on cod and IiPr ligands (cod = 1,5-cyclooctadiene; IiPr = 1,3-bis(isopropyl)imidazol-2-ylidene). The results of this study show that the calculated CO2 insertion barriers follow the trend: Cu(I) (20.8 kcal mol−1) < Rh(I) (30.0 kcal mol−1) < Co(I) (31.3 kcal mol−1) < Ir(I) (37.5 kcal mol−1) < Ni(II) (45.4 kcal mol−1), indicating that the Cu(I) based analogue is the best CO2 fixer, while Ni(II) is the worst in the studied series.

  19. How easy is CO2 fixation by M-C bond containing complexes (M = Cu, Ni, Co, Rh, Ir)?

    KAUST Repository

    Nolan, Steve

    2015-11-27

    A comparison between different M–C bonds (M = Cu(I), Ni(II), Co(I), Rh(I) and Ir(I)) has been reported by using density functional theory (DFT) calculations to explore the role of the metal in the fixation or incorporation of CO2 into such complexes. The systems investigated are various metal based congeners of the Ir-complex 8 [(cod)(IiPr)Ir-CCPh], with a ligand scaffold based on cod and IiPr ligands (cod = 1,5-cyclooctadiene; IiPr = 1,3-bis(isopropyl)imidazol-2-ylidene). The results of this study show that the calculated CO2 insertion barriers follow the trend: Cu(I) (20.8 kcal mol−1) < Rh(I) (30.0 kcal mol−1) < Co(I) (31.3 kcal mol−1) < Ir(I) (37.5 kcal mol−1) < Ni(II) (45.4 kcal mol−1), indicating that the Cu(I) based analogue is the best CO2 fixer, while Ni(II) is the worst in the studied series.

  20. CO2 (carbon dioxide) fixation by applying new chemical absorption-precipitation methods

    International Nuclear Information System (INIS)

    Park, Sangwon; Lee, Min-Gu; Park, Jinwon

    2013-01-01

    CO 2 (carbon dioxide) is the most common greenhouse gas and most of it is emitted from human activities. The methods for CO 2 emission reduction can be divided into physical, chemical, and biochemical methods. Among the physical and chemical methods, CCS (carbon capture and storage) is a well-known reducing technology. However, this method has many disadvantages including the required storage area. In general, CCS requires capture and storage processes. In this study, we propose a method for reusing the absorbed CO 2 either in nature or in industry. The emitted CO 2 was converted into CO 3 2− using a conversion solution, and then made into a carbonate by combining the conversion solution with metal ions at normal temperature and pressure. The resulting carbonate was analyzed using FT-IR (Fourier transform infrared spectroscopy) and XRD (X-ray diffraction). We verified the formation of a solid consisting of calcite and vaterite. In addition, the conversion solution that was used could be reused in the same process of CCS technology. Our study demonstrates a successful method of reducing and reusing emitted CO 2 , thereby making CO 2 a potential future resource. - Highlights: • This study focused on a new CO 2 fixation process method. • In CCS technology, the desorption process requires high thermal energy consumption. • This new method does not require a desorption process because the CO 2 is accomplished through CaCO 3 crystallization. • A new absorption method is possible instead of the conventional absorption-desorption process. • This is not only a rapid reaction for fixing CO 2 , but also economically feasible

  1. 14CO2-fixation and nitrate reductase activity in vivo in relation to hybrid vigour in maize

    International Nuclear Information System (INIS)

    Balasubramanian, V.; Shanthakumari, P.; Sinha, S.K.

    1977-01-01

    Dry matter accumulation in maize shoots, leaf area, 14 CO 2 -fixation and nitrate reductase activity in vivo were measured in the field grown heterotic hybrid CM 400x CM 300 and its inbred parents CM 300 and CM 400 from seedling to maturity. Rates of dry matter accumulation and leaf area development were higher in the hybrid during the initial vegetative phase than in the inbreds. The hybrid had more absolute level of 14 CO 2 -fixation and nitrate reductase activity, although the rates of these processes on unit weight basis were not higher than those of inbreds. It is concluded that the rapid development of leaf area in hybrids during the early stages of vegetative growth is probably important for hybrid vigour. (author)

  2. Co-occurrence of methanogenesis and N{sub 2} fixation in oil sands tailings

    Energy Technology Data Exchange (ETDEWEB)

    Collins, C.E. Victoria [Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2G7 (Canada); Foght, Julia M. [Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9 (Canada); Siddique, Tariq, E-mail: tariq.siddique@ualberta.ca [Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2G7 (Canada)

    2016-09-15

    Oil sands tailings ponds in northern Alberta, Canada have been producing biogenic gases via microbial metabolism of hydrocarbons for decades. Persistent methanogenic activity in tailings ponds without any known replenishment of nutrients such as fixed nitrogen (N) persuaded us to investigate whether N{sub 2} fixation or polyacrylamide (PAM; used as a tailings flocculant) could serve as N sources. Cultures comprising mature fine tailings (MFT) plus methanogenic medium supplemented with or deficient in fixed N were incubated under an N{sub 2} headspace. Some cultures were further amended with citrate, which is used in oil sands processing, as a relevant carbon source, and/or with PAM. After an initial delay, N-deficient cultures with or without PAM produced methane (CH{sub 4}) at the same rate as N-containing cultures, indicating a mechanism of overcoming apparent N-deficiency. Acetylene reduction and {sup 15}N{sub 2} incorporation in all N-deficient cultures (with or without PAM) suggested active N{sub 2} fixation concurrently with methanogenesis but inability to use PAM as a N source. 16S rRNA gene pyrosequencing revealed little difference between archaeal populations regardless of N content. However, bacterial sequences in N-deficient cultures showed enrichment of Hyphomicrobiaceae and Clostridium members that might contain N{sub 2}-fixing species. The results are important in understanding long-term production of biogenic greenhouse gases in oil sands tailings. - Highlights: • Methanogenesis in oil sands tailings can occur under nitrogen depleted conditions. • {sup 15}N{sub 2} isotopic analysis reveals that indigenous microbes can fix N{sub 2} for microbial metabolism and methanogenesis. • 16S rRNA gene analysis suggests that members of Hyphomicrobiaceae and Clostridium may be involved in N{sub 2} fixation. • This is the first report that describes co-occurrence of methanogenesis and nitrogen fixation in oil sands tailings.

  3. Fiscal 1995 investigation on biological fixation of carbon dioxide; 1995 nendo seibutsuteki CO2 kotei ni kansuru chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    To cope with the global warming caused by CO2, an investigation was conducted into biological fixation. It is necessary to make a many-sided and comprehensive study on the mechanism of CO2 fixation, the scale (area and carbon holding density), the rate and the environmental impact of the introduction of the technology and the technical problems, and to make a quantitative evaluation of each of the methods in order to make them practical proposals. The global ecosystem is classified into the land biota and ocean biota, and each typical ecosystem was surveyed in terms of the surface area, the carbon holding amount (presently existing amount), the net primary production amount, the required nutrient salt amount, the transpiration rate, etc. Next, a discussion was made on the increasing effect of the carbon fixation amount by changing the present ecosystem from the aspect of scale and rate. At the same time, a study was carried out of energy efficiency, economical efficiency and problems. Last, elementary technology was taken up which seems to be important for implementing measures for the biological carbon fixation. As to the ocean, it is necessary to obtain information, which is not sufficient to utilize marine biota for CO2 fixation, especially on the mechanism of depth-direction transfer of organism and its quantitative grasp. As to the land, one of the measures is conversion of the ecosystem where the amount of carbon fixed is small to the ecosystem where the amount is large. 249 refs., 58 figs., 51 tabs.

  4. Co-optimization of diesel fuel biodegradation and N2 fixation through the addition of particulate organic carbon

    International Nuclear Information System (INIS)

    Piehler, M.; Swistak, J.; Paerl, H.

    1995-01-01

    Petroleum hydrocarbon pollution in the marine environment is widespread and current bioremedial techniques are often not cost effective for small spills. The formulation of simple and inexpensive bioremedial methods could help reduce the impacts of frequent low volume spills in areas like marinas and ports. Particulate organic carbon (POC) was added to diesel fuel amended samples from inshore marine waters in the form of corn-slash (post-harvest leaves and stems), with and without inorganic nutrients (nitrate and phosphate). Biodegradation of diesel fuel ( 14 C hexadecane mineralization) and N 2 fixation were measured in response to the additions, The addition of POC was necessary for N 2 fixation and diesel fuel biodegradation to co-occur. The effects of diesel fuel and inorganic nutrient additions on N 2 fixation rates were not consistent, with both inhibitory and stimulatory responses to each addition observed. The highest observed diesel fuel biodegradation levels were in response to treatments that included inorganic nutrients. The addition of POC alone increased diesel fuel degradation levels above that observed in the control. In an attempt to determine the effect of the POC on the microbial community, the corn particles were observed microscopically using scanning electron microscopy and light microscopy with tetrazolium salt additions. The corn particles were found to have abundant attached bacterial communities and microscale oxygen concentration gradients occurring on individual particles. The formation of oxygen replete microzones may be essential for the co-occurrence of aerobic diesel fuel biodegradation and oxygen inhibited N2 fixation. Mesocosm experiments are currently underway to further examine the structure and function of this primarily heterotrophic system and to explore the potential contribution of N 2 fixation to the N requirements of diesel fuel biodegradation

  5. Cell-specific CO2 fixation rates of two distinct groups of plastidic protists in the Atlantic Ocean remain unchanged after nutrient addition.

    Science.gov (United States)

    Grob, Carolina; Jardillier, Ludwig; Hartmann, Manuela; Ostrowski, Martin; Zubkov, Mikhail V; Scanlan, David J

    2015-04-01

    To assess the role of open-ocean ecosystems in global CO2 fixation, we investigated how picophytoplankton, which dominate primary production, responded to episodic increases in nutrient availability. Previous experiments have shown nitrogen alone, or in combination with phosphorus or iron, to be the proximate limiting nutrient(s) for total phytoplankton grown over several days. Much less is known about how nutrient upshift affects picophytoplankton CO2 fixation over the duration of the light period. To address this issue, we performed a series of small volume (8-60 ml) - short term (10-11 h) nutrient addition experiments in different regions of the Atlantic Ocean using NH4 Cl, FeCl3 , K medium, dust and nutrient-rich water from 300 m depth. We found no significant nutrient stimulation of group-specific CO2 fixation rates of two taxonomically and size-distinct groups of plastidic protists. The above was true regardless of the region sampled or nutrient added, suggesting that this is a generic phenomenon. Our findings show that at least in the short term (i.e. daylight period), nutrient availability does not limit CO2 fixation by the smallest plastidic protists, while their taxonomic composition does not determine their response to nutrient addition. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Stem photosynthesis in a desert ephemeral, Eriogonum inflatum : Characterization of leaf and stem CO2 fixation and H2O vapor exchange under controlled conditions.

    Science.gov (United States)

    Osmond, C B; Smith, S D; Gui-Ying, B; Sharkey, T D

    1987-07-01

    The gas exchange characteristics of photosynthetic tissues of leaves and stems of Eriogonum inflatum are described. Inflated stems were found to contain extraordinarily high internal CO 2 concentrations (to 14000 μbar), but fixation of this internal CO 2 was 6-10 times slower than fixation of atmospheric CO 2 by these stems. Although the pool of CO 2 is a trivial source of CO 2 for stem photosynthesis, it may result in higher water-use efficiency of stem tissues. Leaf and stem photosynthetic activities were compared by means of CO 2 fixation in CO 2 response curves, light and temperature response curves in IRGA systems, and by means of O 2 exchange at CO 2 saturation in a leaf disc O 2 electrode system. On an area basis leaves contain about twice the chlorophyll and nitrogen as stems, and are capable of up to 4-times the absolute CO 2 and O 2 exchange rates. However, the stem shape is such that lighting of the shaded side leads to a substantial increase in overall stem photosynthesis on a projected area basis, to about half the leaf rate in air. Stem conductance is lower than leaf conductance under most conditions and is less sensitive to high temperature or high VPD. Under most conditions, the ratio C i /C a is lower in stems than in leaves and stems show greater water-use efficiency (higher ratio assimilation/transpiration) as a function of VPD. This potential advantage of stem photosynthesis in a water limited environment may be offset by the higher VPD conditions in the hotter, drier part of the year when stems are active after leaves have senesced. Stem and leaf photosynthesis were similarly affected by decreasing plant water potential.

  7. Mechanism of CO 2 Fixation by Ir I -X Bonds (X = OH, OR, N, C)

    KAUST Repository

    Vummaleti, Sai V. C.; Talarico, Giovanni; Nolan, Steven P.; Cavallo, Luigi; Poater, Albert

    2015-01-01

    Density functional theory calculations have been used to investigate the CO2 fixation mechanism proposed by Nolan et al. for the IrI complex [Ir(cod)(IiPr)(OH)] (1; cod = 1,5-cyclooctadiene; IiPr = 1,3-diisopropylimidazol-2-ylidene) and its derivatives. For 1, our results suggest that CO2 insertion is the rate-limiting step rather than the dimerization step. Additionally, in agreement with the experimental results, our results show that CO2 insertion into the Ir-OR1 (R1 = H, methyl, and phenyl) and Ir-N bonds is kinetically facile, and the calculated activation energies span a range of only 12.0-23.0 kcal/mol. Substantially higher values (35.0-50.0 kcal/mol) are reported for analogous Ir-C bonds. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Mechanism of CO 2 Fixation by Ir I -X Bonds (X = OH, OR, N, C)

    KAUST Repository

    Vummaleti, Sai V. C.

    2015-09-08

    Density functional theory calculations have been used to investigate the CO2 fixation mechanism proposed by Nolan et al. for the IrI complex [Ir(cod)(IiPr)(OH)] (1; cod = 1,5-cyclooctadiene; IiPr = 1,3-diisopropylimidazol-2-ylidene) and its derivatives. For 1, our results suggest that CO2 insertion is the rate-limiting step rather than the dimerization step. Additionally, in agreement with the experimental results, our results show that CO2 insertion into the Ir-OR1 (R1 = H, methyl, and phenyl) and Ir-N bonds is kinetically facile, and the calculated activation energies span a range of only 12.0-23.0 kcal/mol. Substantially higher values (35.0-50.0 kcal/mol) are reported for analogous Ir-C bonds. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Equilibration of metabolic CO2 with preformed CO2 and bicarbonate

    International Nuclear Information System (INIS)

    Hems, R.; Saez, G.T.

    1983-01-01

    Entry of metabolic 14 CO 2 into urea is shown to occur more readily than it equilibrates with the general pool of cellular plus extracellular bicarbonate plus CO 2 . Since the sites of CO 2 production (pyruvate dehydrogenase and oxoglutarate dehydrogenase) and of fixation (carbamoylphosphate synthetase) are intramitochondrial, it is likely that the fixation of CO 2 is also more rapid than its equilibration with the cytoplasmic pool of bicarbonate plus CO 2 . This observation may point to a more general problem concerning the interpretation of isotope data, with compartmentation or proximity of sites of production and utilisation of metabolites may result in the isotope following a preferred pathway. (Auth.)

  10. Marine ecosystem and CO sub 2 fixation. ; Development desired on new fixing technology upon elucidating the mechanisms in the natural world. Kaiyo seitaikei to CO sub 2 kotei. ; Shizenkai no mechanism kaimei ni yoru atarashii kotei gijutsu no kaihatsu wo

    Energy Technology Data Exchange (ETDEWEB)

    Nozaki, K [Electrotechnical Laboratory, Tsukuba (Japan)

    1992-02-15

    This paper describes the following matters on CO{sub 2} fixation using living organisms, and marine organisms in particular. For CO{sub 2} fixation using land organisms, promotion is urged on desert greening and forestation with fast growing trees. The CO{sub 2} transfer into deep sea beds with sea water circulation is a slow process, requiring several hundred to one thousand years before the CO{sub 2} increased in the atmosphere is absorbed into deep sea water. Precipitation of organics produced by photosynthesis of vegetable planktons on the ground surface also contributes to the CO{sub 2} transfer into deeper ground. If the CO{sub 2} fixing speed in coral reefs in Okinawa and Hawaii is applied to the coral reefs all over the world, it will mean a CO{sub 2} fixation being carried out corresponding to an annual increase in the forest area of 10,000 to 200,000 km{sup 2}. The paper touches on technological development to fix CO{sub 2} by propagating vegetable planktons on ocean surface with supply of nutritious salt, or to discard liquefied CO{sub 2} from thermal power plants into deep sea beds. 32 refs., 7 figs., 1 tab.

  11. Development of CO2 fixation system at a sludge incinerator by a unicellular green alga chlorella; Gesui odei shokyaku shisetsu ni okeru kurorera wo mochiita CO2 kotei system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Misonou, T. [Yamanashi Univ., Yamanashi (Japan). Faculty of Pedagogy; Morimoto, K. [Yamanashi Univ., Yamanashi (Japan). Graduate School; Suzuki, Y. [Yamanashi Univ., Yamanashi (Japan). Faculty of Engineering

    1997-03-05

    Among many environmental problems now the world is facing with, the increase of CO2 concentration in the atmosphere is considered to give rise to many phenomena causing such serious effects as abnormal weather, water shortage, food shortage, etc., hence predictions by climate models are being tried at many places in the world, and any of them predicts a temperature rise due to the increase of gases such as CO2 causing the green house effect. In this article, an experiment has been carried out which cultures chlorella capable of fixing CO2 by using the exhaust gas actually emit from the sludge incinerator inside the South Sewage Purification Center of Kofu City, Yamanashi Prefecture. As a result, it has been theoretically concluded that a CO2 fixation system can be constructed inside the above center, but it is necessary to consider the balance between working electric energy during the system operation and the amount of CO2 fixation by the above system. In case when the electric power from a commercial power plant is used for the operation of the system, such usage becomes meaningless unless the system fixes CO2 more than the CO2 discharge by this power generation. 11 refs., 5 figs., 4 tabs.

  12. FY 1996 annual report of investigation on biological fixation of carbon dioxide. 2; 1996 nendo seibutsuteki CO2 kotei ni kansuru chosa hokokusho. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Various kinds of biological fixation processes of CO2 were evaluated from the various viewpoints. Afforestation of tropical and temperate areas, greening of desert, biomass energy production in these areas by energy plantation, coastal mangrove plantation, fertilization with nitrogen and phosphate to outer ocean and coastal, upwelling zone fertilization with iron, and coral reef expansion combined with OTEC (ocean thermal energy conversion) were comparatively investigated as the selected measures. As a result, the cost of CO2 fixation by cultivation of sea weed and plankton was much higher than that of afforestation. The iron fertilization method which was considered to be one of the high CO2 reduction potentials might be economical. However, its effect could not be quantitatively evaluated. The afforestation of tropical and temperate areas seemed to be most feasible in a short term from the viewpoints of economy and environment. It was suggested that the establishment of a systematic water management technology could make greening and afforestation of desert. 76 refs., 27 figs., 28 tabs.

  13. Rechargeable Al-CO2 Batteries for Reversible Utilization of CO2.

    Science.gov (United States)

    Ma, Wenqing; Liu, Xizheng; Li, Chao; Yin, Huiming; Xi, Wei; Liu, Ruirui; He, Guang; Zhao, Xian; Luo, Jun; Ding, Yi

    2018-05-21

    The excessive emission of CO 2 and the energy crisis are two major issues facing humanity. Thus, the electrochemical reduction of CO 2 and its utilization in metal-CO 2 batteries have attracted wide attention because the batteries can simultaneously accelerate CO 2 fixation/utilization and energy storage/release. Here, rechargeable Al-CO 2 batteries are proposed and realized, which use chemically stable Al as the anode. The batteries display small discharge/charge voltage gaps down to 0.091 V and high energy efficiencies up to 87.7%, indicating an efficient battery performance. Their chemical reaction mechanism to produce the performance is revealed to be 4Al + 9CO 22Al 2 (CO 3 ) 3 + 3C, by which CO 2 is reversibly utilized. These batteries are envisaged to effectively and safely serve as a potential CO 2 fixation/utilization strategy with stable Al. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Studies on CO2 removal and reduction. CO2 taisaku kenkyu no genjo

    Energy Technology Data Exchange (ETDEWEB)

    Shindo, Y [National Institute of Materials and Chemical Research, Tsukuba (Japan)

    1993-02-01

    This paper summarizes study trends mainly in CO2 fixing processes. Underground CO2 storage is a most promising method because it can fix a huge amount of CO2 and has low effects on ecological systems. Storing CO2 in ocean includes such methods as storing it in deep oceans; storing it in deep ocean beds; dissolving it into sea water; neutralizing it with calcium carbonates; and precipitating it as dry ice. Japan, disposing CO2 in these ways, may create international problems. Separation of CO2 may use a chemical absorption process as a superior method. Other processes discussed include a physical adsorption method and a membrane separation method. A useful method for CO2 fixation using marine organisms is fixation using coral reefs. This process will require an overall study including circulation of phosphorus and nitrogen. Marine organisms may include planktons and algae. CO2 fixation using land plants may be able to fix one trillion and 8 hundred billion tons of CO2 as converted to carbon. This process would require forest protection, prevention of desertification, and tree planting. Discussions are being given also on improving power generation cycles, recovering CO2 from automotive exhausts, and backfilling carbons into ground by means of photosynthesis. 23 refs., 7 figs., 1 tab.

  15. Biological CO2 fixation using Chlorella vulgaris and its thermal characteristics through thermogravimetric analysis.

    Science.gov (United States)

    Razzak, Shaikh A; Ali, Saad Aldin M; Hossain, Mohammad M; Mouanda, Alexis Nzila

    2016-11-01

    The present research is focused on cultivation of microalgae strain Chlorella vulgaris for bio-fixation of CO2 coupled with biomass production. In this regard, a single semi-batch vertical tubular photobioreactor and four similar photobioreactors in series have been employed. The concentration of CO2 in the feed stream was varied from 2 to 12 % (v/v) by adjusting CO2 to air ratio. The amount of CO2 capture and algae growth were monitored by measuring decrease of CO2 concentration in the gas phase, microalgal cell density, and algal biomass production rate. The results show that 4 % CO2 gives maximum amount of biomass (0.9 g L(-1)) and productivity (0.118 g L(-1) day(-1)) of C. vulgaris in a single reactor. In series reactors, average productivity per reactor found to be 0.078 g L(-1) day(-1). The maximum CO2 uptake for single reactor also found with 4 % CO2, and it is around 0.2 g L(-1) day(-1). In series reactors, average CO2 uptake is 0.13 g L(-1) day(-1) per reactor. TOC analysis shows that the carbon content of the produced biomass is around 40.67 % of total weight. The thermochemical characteristics of the cultivated C. vulgaris samples were analyzed in the presence of air. All samples burn above 200 °C and the combustion rate become faster at around 600 °C. Almost 98 wt% of the produced biomass is combustible in this range.

  16. Survey report of FY 1997 on the trends of novel CO2 fixation technology using bacteria and microalgae; 1997 nendo chosa hokokusho (saikin sorui wo riyoshita atarashii nisanka tanso kotei gijutsu no doko chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    For this survey, the latest technology trends relating to microbial functions are summarized to recover and effectively utilize CO2, typical greenhouse effect gas, using microbial functions. Systematic survey and analysis are conducted concerning the microorganisms useful for fixing CO2, CO2 uptake mechanism during the microbial reactions, utilization methods of solar light and useful energy sources except solar light, highly efficient production of useful materials, and usage of produced useful materials. Research has concentrated on use of biological activities for this purpose through design of bioreactors using microorganisms (bacteria and microalgae) for efficient CO2 fixation. For the process to have net CO2 fixation as assessed by its life cycle and to make the process economically feasible, it is essential not only to fix CO2 merely in the form of biomass but in addition to convert it to useful materials by the catalytic activities of the organisms. Three categories were set for the survey, i.e., microorganisms with CO2 fixation ability, available energy for CO2 fixation, and target CO2 fixation products. 169 refs., 49 figs., 14 tabs.

  17. CO{sub 2} separation

    Energy Technology Data Exchange (ETDEWEB)

    Hakuta, Toshikatu [National Inst. of Materials and Chemical Research, Ibaraki (Japan)

    1993-12-31

    The climate change induced by CO{sub 2} and other greenhouse gases is probably the most serious environmental threat that mankind has ever experienced. Nowadays fossil fuels occupy the majority of the world commercial energy supply. Most nations will be dependent on fossil fuels even in the first half of the next century. Around 30 % of CO{sub 2} in the world is emitted from thermal power plants. Recovering CO{sub 2} from energy conversion processes and storing it outside the atmosphere is a promising option for the mitigation of global warming. CO{sub 2} fixation and storage include CO{sub 2} disposal into oceans and underground, and utilization of CO{sub 2}. CO{sub 2} separation process will be used in any CO{sub 2} storage system, and is estimated to consume almost half the energy of the total system. Research and development of highly efficient CO{sub 2} separation process is most important from the viewpoint of practical application of CO{sub 2} fixation system.

  18. Fiscal 1997 report on the survey of biological CO2 fixation using arid land and oligotrophic waters; 1997 nendo chosa hokokusho (kansochi, hin`eiyo kaiiki wo riyoshita seibutsuteki CO2 kotei ni kansuru chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This survey is aimed to investigate various measures to be taken for biological CO2 fixation, to synthetically study feasibilities of the measures from various aspects of CO2 fixation mechanism, scale, speed, and environmental effects and technical problems in case of introducing those, and to assess the measures quantitatively. In this fiscal year, a study was proceeded with of possibilities of carbon fixation by afforestation and that by fertilization into ocean. The paper defined significance of afforestation in arid land, and especially advantages in conducting researches in West Australia. Relationships were examined among afforestation, precipitation and topography. The result of the survey was described of water- and salt-transfer simulation methods. Studies of arid land were made in terms of photosynthetic speed, transpiration speed, soil characteristics, measuring methods for precipitation and vaporization amount, and the examples. Seven places of Leonora where water source and water quality were examined were selected, and the measuring results were described. The paper summed up the state of utilization of biomass energy obtained from forest and commented on a scenario on tree-planting. Finally, a possibility was stated of the carbon fixation by fermentation into ocean. 178 refs., 121 figs., 53 tabs.

  19. Fixation and utilization of CO2 by biological and/or chemical processes

    International Nuclear Information System (INIS)

    Hiromichi, N.

    1994-01-01

    This paper presents the carbon dioxide fixation and utilisation by biological and/or chemical processes. It presents research objectives and program contents for the effective fixation of carbon dioxide by micro-organism and its hydrogenation. (TEC). 5 figs., 2 tabs

  20. Utilisation of CO2, fixation of nitrogen and exhaust gas cleaning in electric discharge with electrode catalysis

    International Nuclear Information System (INIS)

    Marcela, M.; Imrich, M.; Mario, J.

    2001-01-01

    The method reported here provides a contribution to CO 2 utilisation, nitrogen fixation and combustion exhaust cleaning using synergetic effect of electric discharge with heterogeneous catalysis on electrodes. The efficiency of CO 2 removal is about 40-65%. The process of CO 2 removal is always accompanied by NO x , VOC, SX and other component removal and is connected with O 2 formation. The final product of process is powder with fractal microstructure, low specific weight, water insoluble suitable for use as nitrogen containing fertilizer. The main component (95%) of solid product is amorphous condensate of amino acids with about 5% of metal organic compound with catalytic properties. The condensate has character of statistical proteinoid. Its creation seems to play important role during formation of life in pre-biotic Earth

  1. CO2 fixation by coral reefs. Sangosho ni yoru nisanka tanso no kotei

    Energy Technology Data Exchange (ETDEWEB)

    Kayane, H [Geological Survey of Japan, Tsukuba (Japan)

    1993-05-01

    In order for a coral reef to be a CO2 absorbing source, a condition would have to be satisfied that, with respect to production of organic carbon through photosynthesis, a total production by coral reef organism association is large, and the ratio of the total production to a total consumption is more than one. A requirement that the ratio of inorganic carbon production through calcification be 1.5 or more must also be met. Measurements have been carried out at coral fields off the Ishigaki Island by the Geological Research Center. The measurement results revealed that production is high for both of organic carbon and inorganic carbon, surplus organic carbon is produced, and CO2 is absorbed into the coral reefs. It was also found by measuring the stable isotope ratio of nitrogen in coral reef organisms that nitrogen required for the production in the coral reefs is supplied from the atmosphere through nitrogen fixation. The paper adds a description that CaCO3 deposition in the coral reefs has peaked in 5000 years to 6000 years ago, and it is in a ceiling-hit condition now. 25 refs., 3 figs.

  2. Photosynthetic /sup 14/CO/sub 2/ fixation in the leaves of rice and some other species

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, R; Samejima, M; Murata, Y [Tokyo Univ. (Japan). Faculty of Agriculture

    1977-03-01

    The activity of CO/sub 2/-fixing enzymes and the initial products of photosynthetic /sup 14/CO/sub 2/ fixation in two rice varieties, the one japonica and the other indica, were examined, comparing with those in several C/sub 3/ and C/sub 4/ crop species. Corn and barnyard grass as C/sub 4/ plants and barley and wheat as C/sub 3/ plants were used as comparison materials. The plants were cultured at 25 deg. C in daytime and 20 deg. C in night under natural light in a phytotron. After about a month from sowing, the fully expanded leaf blades were subjected to the experiments. The fresh leaf blades of one gram were homogenized in 5 ml of 50 mM Tris-H/sub 2/SO/sub 4/ buffer (pH 7.7) containing 4 mM EDTA, 10 mM dithiothreitol and 50 mg of polyamide powder. After filtration, the supernatant was used as the crude enzyme extract for assaying the activity of RuDP carboxylase and PEP carboxylase. The experiments revealed that (1) in C/sub 3/ plants, the RuDP carboxylase activity was higher, and the PEP carboxylase activity was lower than those in C/sub 4/ plants; (2) the initial products of photosynthetic /sup 14/CO/sub 2/ fixation in the japonica rice variety were mainly PGA and other sugar phosphates as in barley, whereas in corn, they were malic and aspartic acids; (3) the /sup 14/C incorporation into glycine and serine was high in the japonica rice and barley, whereas low in corn. From these results, rice could be regarded as C/sub 3/ plant.

  3. Literature review of CO sub 2 behavior in the ocean and its fixation methods

    Energy Technology Data Exchange (ETDEWEB)

    Sakaguchi, I [and others; CRIEPI, Abiko-shi (Japan). Abiko Research Lab.

    1991-01-01

    CO{sub 2} behaviour in the ocean and its fixation methods are reviewed. Intermediate and deep water is an important carbon reservoir in the ocean. It is estimated that plenty of carbon, 37,700 GtC, is stored in the intermediate and deep water as compared with the storage in the atmosphere and surface water, 725 GtC each. Main carbon transportation routes in the ocean are (1) downward flux by sinking of carbonate particles, organic particles and water from surface, and (2) upward flux by upwelling of dissolved carbon rich deep water. Because 10{sup 3} years are estimated to be required for deep water upwelling to surface, organic and carbonate particles sinking into the intermediate and deep water are considered to be stored for a long term. Biomass of marine algae and its primary production are estimated to be 2-5 GtC and 10-40 GtC/year respectively. Two to five per cent of the primary production is estimated to be transported from surface to more than 1000 m deep as marine snow or fecal pellets. Following three methods are considered to be possible candidates to reduce atmospheric CO{sub 2} using marine organisms: (1) increasing macroalgae biomass to be used as biomass energy; (2) fixing CO{sub 2} as CaCO{sub 3} like coral reefs; (3) adding micronutrients such as iron to ocean surface water for increasing the primary production and the amount of carbon particles sinking to a deep layer. Following subjects should be studied before utilizing these methods in the ocean: (1) cost reduction for biomass production for increasing macroalgae biomass; (2) CO{sub 2} balance during classification for fixing CO{sub 2} as CaCO{sub 3}; (3) cleaning limiting factors for algae production, how to spread micronutrients to vast sea area and assessing possible environmental effects of adding micronutrients.

  4. Report on survey of international cooperation possibility on chemical CO2 fixation and utilization technology in FY 1997; 1997 nendo chosa hokokusho (kagakuteki CO2 koteika yuko riyo gijutsu ni kakawaru kokusai kyoryoku kanosei chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This survey focused on the end of the more promising companion and promoting the international cooperation on chemical CO2 fixation and utilization technology. As a result, the way of the carrying-forward of the international cooperation with more than one companion could be arranged beforehand. It led to getting an arrangement about a secrecy agreement respectively with Lurgi company and ABB company in Europe, and to providing a catalyst sample developed by RITE to implement an examination by the other party and to show related technical information. In addition, it concluded a cooperation agreement about a total system of the chemical CO2 fixation and utilization technology and methanol synthesis with ZSW. In Australia, negotiation about international cooperation with CSIRO which is a federal research organization and CRC (Cooperative Research Centre) for renewable energy has been started. The ideal circumstances are being ready for the chemical CO2 fixation project for which the international cooperation with the country where the natural energy is rich like Australia is essential when coming to practical use. To do alternating current with further high density in the following year it is desired to build a concrete study cooperation system. 1 fig., 4 tabs.

  5. End-Tidal CO2 Tension Is Predictive of Effective Nocturnal Oxygen Therapy in Patients with Chronic Heart Failure and Central Sleep Apnea.

    Science.gov (United States)

    Sugimura, Koichiro; Shinozaki, Tsuyoshi; Fukui, Shigefumi; Ogawa, Hiromasa; Shimokawa, Hiroaki

    2016-05-01

    Central sleep apnea (CSA) is characterized by recurring cycles of crescendo-decrescendo ventilation during sleep, and enhances sympathetic nerve activity. Thus CSA has a prognostic impact in patients with chronic heart failure (CHF). Although nocturnal oxygen (O2) therapy decreases frequency of CSA and improves functional exercise capacity, it is also known that some non-responders to the therapy exist. We thus aimed to identify predictors of responders to nocturnal O2 therapy in CHF patients with CSA. In 12 CHF patients with CSA hospitalized at our department, sleep study was performed at 2 consecutive nights. Patients nasally inhaled O2 at either the first or second night in a randomized manner. To predict the percentage reduction in apnea-hypopnea index (%ΔAHI) in response to the nocturnal O2 therapy, we performed multiple regression analysis with a stepwise method with variables including age, brain-natriuretic peptide, circulation time, baseline AHI, hypercapnic ventilatory response and end-tidal carbon dioxide tension (PETCO2). Nocturnal O2 therapy significantly decreased AHI (from 32 ± 13 /h to 12 ± 10 /h, P 50% reduction of AHI), with 88.9% of sensitivity and 66.7% of specificity. In conclusion, PETCO2 is useful to predict the efficacy of O2 therapy in CHF patients with CSA, providing important information to the current nocturnal O2 therapy.

  6. Crassulacean acid metabolism, CO2-recycling, and tissue desiccation in the Mexican epiphyte Tillandsia schiedeana Steud (Bromeliaceae).

    Science.gov (United States)

    Martin, C E; Adams, W W

    1987-01-01

    After 23 days without water in a greenhouse, rates of nocturnal CO2 uptake in Tillandsia schiedeana decreased substantially and maximum rates occurred later in the dark period eventually coinciding with the onset of illumination. Nocturnal CO2 uptake accounted for less than half the total nighttime increase in acidity measured in well-watered plants. With increased tissue desiccation, only 11-12% of measured acid accumulation was attributable to atmospheric CO2 uptake. Plants desiccated for 30 days regained initial levels of nocturnal acid accumulation and CO2 uptake after rehydration for 10h. These results stress the importance of CO2 recycling via CAM in this epiphytic bromeliad, especially during droughts.

  7. Dark CO2 fixation in leaves of tomato plants grown with ammonium and nitrate at nitrogen sources

    International Nuclear Information System (INIS)

    Ikeda, M.; Yamada, Y.

    1981-01-01

    The dark (non-photosynthetic) CO 2 fixation was studied in the leaves of ammonium-fed and nitrate-fed tomato plants. The ability to fix 14 CO 2 in the dark of ammonium-fed plants was remarkably lower as compared with nitrate-fed plants, supporting the previous finding that the synthesis of C 4 -compounds from C 3 -compounds was reduced in the leaves of ammonium-fed plants. There was no difference in the activity of PEP carboxylase in extracts prepared from the leaves between both the plants during an early period of the treatment. However, the enzyme activity began to decrease rapidly in ammonium-fed plants 4 days after the treatment. By long-term treatments, the enzyme activity in ammonium-fed plants became half as high as that of nitrate-fed plants. The decreased PEP carboxylase activity in ammonium-fed plants was not associated with the presence of NH 4 -N and the absence of NO 3 -N in the leaf extract, and was not restored by the addition of the leaf extract from nitrate-fed plants. It is concluded that the decreased rate of synthesis of C 4 -compounds from C 3 -compounds in ammonium-fed plants is closely associated with a decrease in the dark fixation involving PEP carboxylase. (orig.)

  8. Report on the survey in fiscal 1998. 2. Investigation in fiscal 1998 on biological fixation process of CO{sub 2} utilizing arid areas and oligotrophic sea areas; 1998 nendo kansochi, hin'eiyo kaiiki wo riyoshita seibutsuteki CO{sub 2} kotei ni kansuru chosa. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    An investigation was carried out subsequent to fiscal 1997 on biological CO2 fixation process. Western Australia was investigated for afforestation in an arid area. Eighty-eight percent of the total amount of ground surface biomass is found on trees having a height of 4 m or higher. Plants in Sturt Meadows were classified into 16 kinds, and biomass amount in each kind was estimated. Water management was discussed as a possibility of applying the element technologies in arid area afforestation. Different technical proposals on desert planting were also discussed. With regard to oceans, problems and effects are described on fertilization by sprinkling wide area of ocean with nutrient salts for CO2 fixation by means of the ecosystem. Nutrient salt addition is effective in increasing production of organic matters, but what is important is the understanding about food network balance and elementary process of the ecosystem. Composition of organic matters migrating into greater depths is one of the important parameters. A proposal was made on a system evaluation project including fertilizer application by means of closed system experiments for promotion of CO2 fixation and utilization of the produced organic matters in multiple aspects. The project includes balancing experiments on marine ecosystems including coral reefs. Modeling is also important (NEDO)

  9. Report on the survey in fiscal 1998. 2. Investigation in fiscal 1998 on biological fixation process of CO{sub 2} utilizing arid areas and oligotrophic sea areas; 1998 nendo kansochi, hin'eiyo kaiiki wo riyoshita seibutsuteki CO{sub 2} kotei ni kansuru chosa. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    An investigation was carried out subsequent to fiscal 1997 on biological CO2 fixation process. Western Australia was investigated for afforestation in an arid area. Eighty-eight percent of the total amount of ground surface biomass is found on trees having a height of 4 m or higher. Plants in Sturt Meadows were classified into 16 kinds, and biomass amount in each kind was estimated. Water management was discussed as a possibility of applying the element technologies in arid area afforestation. Different technical proposals on desert planting were also discussed. With regard to oceans, problems and effects are described on fertilization by sprinkling wide area of ocean with nutrient salts for CO2 fixation by means of the ecosystem. Nutrient salt addition is effective in increasing production of organic matters, but what is important is the understanding about food network balance and elementary process of the ecosystem. Composition of organic matters migrating into greater depths is one of the important parameters. A proposal was made on a system evaluation project including fertilizer application by means of closed system experiments for promotion of CO2 fixation and utilization of the produced organic matters in multiple aspects. The project includes balancing experiments on marine ecosystems including coral reefs. Modeling is also important (NEDO)

  10. Effect of infection by chlorotic spot virus on 14CO2 fixation in leaves of groundnut Arachis hypogea L

    International Nuclear Information System (INIS)

    Sreenivasulu, P.; Nayudu, M.V.

    1980-01-01

    Photosynthetic incorporation of 14 CO 2 into leaves of groundnut infected by chlorotic spot virus (GCSV) was slightly more at stages 2 and 5 less at stage 4 as compared to control. 14 C incorporation into the alcohol soluble fraction of infected leaves followed the same trend as total 14 CO 2 fixation but in the alcohol-insoluble fraction the same was less at all the sampled stages. 14 C in the alcohol-soluble fraction of fed leaves of both types (stage 5) decreased with time along with simultaneous increase in alcohol-insoluble fraction. The proportion of 14 C incorporated into organic acids, amino acids and sugars was same in both the samples at stage 2, greater into organic and amino acids and less into sugars at stages 4 and 5, and at 12 and 24 hr time periods of stage 5 of virus infected leaves when compared to healthy ones. 14 C incorporated into total sugars and organic acids of infected leaves followed that of total 14 C fixation, and varied in individual sugars and organic acids. 14 C in sugars of both type of leaves decreased with time and with simultaneous increase in organic and amino acids. 14 C incorporated into virus infected leaf proteins was more when compared to healthy leaves. (auth.)

  11. Dependence of carbon dioxide concentration on microalgal carbon dioxide fixation

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Yeoung Sang; Park, Song Moon [Department of Chemical Engineering, School of Environmental Engineering, Pohang University of Science and Technology, Pohang (Korea); Bolesky, Bohumil [Department of Chemical Engineering, McGill University (Canada)

    1999-10-01

    Batch cultivation of chlorella vulgaris was carried out under various CO{sub 2} concentrations in order to understand and describe mathematically the CO{sub 2} inhibition of microalgal CO{sub 2} fixation. The volumetric CO{sub 2} transfer coefficient from mixture gas to culture medium was estimated from the volumetric O{sub 2} transfer coefficient obtained experimentally. Using this transfer coefficient and aquatic equilibrium relationship between dissolved inorganic carbons, the behavior of dissolved CO{sub 2} was calculated during microalgal culture. When air containing 0.035%(v/v) CO{sub 2} was supplied into microalgal culture, the fixation rate was limited by CO{sub 2} transfer rate. However, the limitation was disappeared by supplying mixture gas containing above 2%(v/v) CO{sub 2} and the dissolved CO{sub 2} concentration was maintained at the saturated value. In the range of CO{sub 2} partial pressure in the flue gases from thermal power sations and steel-making plants, the microalgal CO{sub 2} fixation rate was inhibited. The CO{sub 2} fixation rate was successfully formulated by a new empirical equation as a function of dissolved CO{sub 2} concentration, which could be useful for modeling and simulating the performance of photobioreaction with enriched CO{sub 2}. Also, it was found that the CO{sub 2} inhibition of microalgal CO{sub 2} fixation was reversible and that microalgal CO{sub 2} fixation process could be stable against a shock of unusually high CO{sub 2} concentration. 29 refs., 8 figs.

  12. Elevated CO2 Increases Nitrogen Fixation at the Reproductive Phase Contributing to Various Yield Responses of Soybean Cultivars

    Directory of Open Access Journals (Sweden)

    Yansheng Li

    2017-09-01

    Full Text Available Nitrogen deficiency limits crop performance under elevated CO2 (eCO2, depending on the ability of plant N uptake. However, the dynamics and redistribution of N2 fixation, and fertilizer and soil N use in legumes under eCO2 have been little studied. Such an investigation is essential to improve the adaptability of legumes to climate change. We took advantage of genotype-specific responses of soybean to increased CO2 to test which N-uptake phenotypes are most strongly related to enhanced yield. Eight soybean cultivars were grown in open-top chambers with either 390 ppm (aCO2 or 550 ppm CO2 (eCO2. The plants were supplied with 100 mg N kg−1 soil as 15N-labeled calcium nitrate, and harvested at the initial seed-filling (R5 and full-mature (R8 stages. Increased yield in response to eCO2 correlated highly (r = 0.95 with an increase in symbiotically fixed N during the R5 to R8 stage. In contrast, eCO2 only led to small increases in the uptake of fertilizer-derived and soil-derived N during R5 to R8, and these increases did not correlate with enhanced yield. Elevated CO2 also decreased the proportion of seed N redistributed from shoot to seeds, and this decrease strongly correlated with increased yield. Moreover, the total N uptake was associated with increases in fixed-N per nodule in response to eCO2, but not with changes in nodule biomass, nodule density, or root length.

  13. Modes of carbon fixation in an arsenic and CO2-rich shallow hydrothermal ecosystem

    DEFF Research Database (Denmark)

    Callac, Nolwenn; Posth, Nicole R.; Rattray, Jayne E.

    2017-01-01

    for autotrophic carbon fixation used in the Calvin-Benson-Bassham (CBB) and reverse tricaboxylic acid (rTCA) cycles. Both forms of RuBisCO, together with ATP citrate lyase genes in the rTCA cycle, increase with distance from the active hydrothermal centres and decrease with sediment depth. Clustering of Ru...

  14. Investigational study of the CO2 balance in high temperature CO2 separation technology; Nisanka tanso koon bunri gijutsu ni okeru CO2 balance ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    An investigational study was conducted to clarify the adaptable environment and effectivity of technologies of high temperature separation/recovery/reutilization of CO2. In the study, data collection, arrangement and comparison were made of various separation technologies such as the membrane method, absorption method, adsorption method, and cryogenic separation method. With the LNG-fired power generation as an example, the adaptable environment and effectivity were made clear by making models by a process simulator, ASPEN PLUS. Moreover, using this simulator, effects of replacing the conventional steam reforming of hydrocarbon with the CO2 reforming were made clear with the methanol synthesis as an example. As to the rock fixation treatment of high temperature CO2, collection/arrangement were made of the data on the fixation treatment of the CO2 separated at high temperature into basic rocks such as peridotite and serpentinite in order to clarify the adaptable environment and effectivity of the treatment. Besides, a potentiality of the fixation to concrete waste was made clear. 57 refs., 57 figs., 93 tabs.

  15. The effects of environmental physical factors on the microbial communities and the distribution of different CO2 fixation pathways in a limestone landscape

    Science.gov (United States)

    Wun, S. R.; Huang, T. Y.; Hsu, B. M.; Fan, C. W.

    2017-12-01

    We aimed to study the effects of physical factors on the relative abundance of bacteria and their preferential admissions of autotrophic CO2 fixation pathways after subjected to environmental long-term influence. The Narrow-Sky located in upper part of Takangshan is a small gulch of Pleistocene coralline limestone formation in southern Taiwan. The physical parameters such as illumination, humidity, and temperature were varied largely in habitats around the gulch, namely on the limestone wall at the opening of gulch, on the coordinate ground soil, on the wall inside the gulch, and the water drip from limestone wall. The total organic carbon was measured in solid samples to evaluate the biomass of the habitats. A metagenomic approach was carried out to reveal their microbial community structure. After the metagenomic library of operational taxonomic units (OTUs) was constructed, a BLAST search by "nomenclature of bacteria" instead of sequences between the OTU libraries and KEGG database was carried out to generate libraries of "model microbial communities", which the complete genomes of the entire bacterial populations were available. Our results showed the biomass of habitats in the opening of gulch was twice higher than the inside, suggesting the illumination played an important role in biosynthesis. In quantitative comparison in key enzymes of CO2 fixation pathways by model communities, 70% to 90% of bacteria possessed key enzymes of Fuchs-Holo cycle, while only 5% to 20% of bacteria contained key enzymes of Calvin-Benson cycle. The key enzymes for hydroxypropionate/ hydroxybutyrate and dicarboxylate/ 4-hydroxybutyrate cycles were not found in this study. In the water sample, approximate 10% of bacteria consisted of the key enzyme for Arnon-Buchanan cycle. Less than 2% of bacteria in all habitats take the reductive acetyl-CoA cycle for CO2 fixation. This study provides a novel method to study biosynthetic process of microbial communities in natural habitats.

  16. Use of low enriched 15N2 for symbiotic fixation tests

    International Nuclear Information System (INIS)

    Victoria, R.L.

    1975-01-01

    Gaseous atmospheres containing 15 N 2 with low enrichment were used to test symbiotic nitrogen fixation in beans (Phaseolus vulgari, L.). The tests of fixation in nodulated roots and the tests of fixation in the whole plant, in which the plants were placed inside a specially constructed growth chamber, gave positive results and suggest that the methodology used can be very helpfull in more detailed studies on symbiotic fixation. Samples of atmospheric air were purified by absorption of O 2 and CO 2 by two methods. The purified N 2 obtained was analysed and the results were compared. Samples of bean plant material were collected in natural conditions and analysed for 15 N natural variation. Several samples were prepared for 15 N isotopic analysis by two methods. The results obtained were compared. All samples were analysed in an Atlas-Varian Ch-4 model mass spectrometer, and the results were given in delta 15 N 0 / 00 variation in relation to a standard gas

  17. CROP YIELD AND CO2 FIXATION MONITORING IN ASIA USING A PHOTOSYNTHETICSTERILITY MODEL WITH SATELLITES AND METEOROLOGICAL DATA

    Energy Technology Data Exchange (ETDEWEB)

    Daijiro Kaneko [Department of Civil and Environmental Engineering, Matsue National College of Technology, Matsue (Japan); Toshiro Kumakura [Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka (Japan); Peng Yang [Laboratory of Resources Remote Sensing and Digital Agriculture, Ministry of Agriculture, Beijing (China)

    2008-09-30

    This study is intended to develop a model for estimating carbon dioxide (CO{sub 2}) fixation in the carbon cycle and for monitoring grain yields using a photosynthetic-sterility model, which integrates solar radiation and air temperature effects on photosynthesis, along with grain-filling from heading to ripening. Grain production monitoring would support orderly crisis management to maintain food security in Asia, which is facing climate fluctuation through this century of global warming. The author improved a photosynthesis-and-sterility model to compute both the crop yield and crop situation index CSI, which gives a percentage of rice yields compared to normal annual production. The model calculates photosynthesis rates including biomass effects, lowtemperature sterility, and high-temperature injury by incorporating solar radiation, effective air temperature, the normalized difference vegetation index NDVI, and the effect of temperature on photosynthesis by grain plant leaves. A decision-tree method classifies the distribution of crop fields in Asia using MODIS fundamental landcover and SPOT VEGETATION data, which include the Normalized Vegetation index (NDVI) and Land Surface Water Index (LSWI). This study provides daily distributions of the photosynthesis rate, which is the CO2 fixation in Asian areas combined with the land-cover distribution, the Japanese geostationary meteorological satellite (GMS), and meteorological re-analysis data by National Centers for Environmental Prediction (NCEP). The method is based on routine observation data, enabling automated monitoring of crop yields.

  18. Dark CO/sub 2/ fixation in leaves of tomato plants grown with ammonium and nitrate as nitrogen sources

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, M; Yamada, Y [Kyushu Univ., Fukuoka (Japan). Dept. of Agricultural Chemistry

    1981-01-01

    The dark (non-photosynthetic) CO/sub 2/ fixation was studied in the leaves of ammonium-fed and nitrate-fed tomato plants. The ability to fix /sup 14/CO/sub 2/ in the dark of ammonium-fed plants was remarkably lower as compared with nitrate-fed plants, supporting the previous finding that the synthesis of C/sub 4/-compounds from C/sub 3/-compounds was reduced in the leaves of ammonium-fed plants. There was no difference in the activity of PEP carboxylase in extracts prepared from the leaves between both the plants during an early period of the treatment. However, the enzyme activity began to decrease rapidly in ammonium-fed plants 4 days after the treatment. By long-term treatments, the enzyme activity in ammonium-fed plants became half as high as that of nitrate-fed plants. The decreased PEP carboxylase activity in ammonium-fed plants was not associated with the presence of NH/sub 4/-N and the absence of NO/sub 3/-N in the leaf extract, and was not restored by the addition of the leaf extract from nitrate-fed plants. It is concluded that the decreased rate of synthesis of C/sub 4/-compounds from C/sub 3/-compounds in ammonium-fed plants is closely associated with a decrease in the dark fixation involving PEP carboxylase.

  19. Report on a survey in fiscal 1999. Part 3. Survey on biological CO2 fixation utilizing arid regions and oligotrophic sea areas; 1999 nendo kansochi, hin'eiyokaiiki wo riyoshita seibutsuteki CO{sub 2} kotei ni kansuru chosa. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    With objectives to elucidate whether CO2 fixation quantity can be increased by utilizing the features of ecological systems, and know what degree the increasing possibility is at, surveys were performed on (1) the 'possibility of carbon fixation by means of afforestation in arid regions', and (2) the possibility of carbon fixation by applying fertilizers into oceans'. With respect to the (1) afforestation in arid regions, surveys were performed mainly in the West Australian Province to elucidate the current status of carbon fixation quantity, its possibility for increase, water balance, importance of soil structures, and effects of salts (including nutritious salt) on vegetation. Regarding the (2) fertilizer application into oceans, elucidation was made on circulation of organic matters in oceans, effects of applying ferrous fertilizers on the carbon fixation, and the importance of supplying inorganic nitrogen during the fertilizer application. The material cost for scattering irons at this time was calculated as two dollars per ton of carbon fixation quantity. Surveys were also carried out on processes of decomposition of particulate organic matters, and the change in the C/N ratio during the processes. Proposals were presented on preparing the platform that can calculate the carbon fixation quantity when water, soil, nutritious salt, afforestation, and climate are changed, and on preparing the scenario that can increase the carbon fixation quantity in the order of 1Gt-C/y. (NEDO)

  20. Crassulacean Acid Metabolism in the Epiphyte Tillandsia usneoides L. (Spanish Moss) : RESPONSES OF CO(2) EXCHANGE TO CONTROLLED ENVIRONMENTAL CONDITIONS.

    Science.gov (United States)

    Martin, C E; Siedow, J N

    1981-08-01

    Patterns of CO(2) exchange in Spanish moss under various experimental conditions were measured using an infrared gas analysis system. Plants were collected from a study site in North Carolina and placed in a gas exchange chamber for several days of continuous measurements. No substantial seasonal effects on CO(2) exchange were observed. High rates of nocturnal CO(2) uptake were observed under day/night temperature regimes of 25/10, 25/15, 25/20, 30/20, and 35/20 C; however, daytime temperatures of 40 C eliminated nighttime CO(2) uptake and a nighttime temperature of 5 C eliminated nocturnal CO(2) uptake, regardless of day temperature. Constant chamber conditions also inhibited nocturnal CO(2) uptake. Constant high relative humidity (RH) slightly stimulated CO(2) uptake while low nighttime RH reduced nocturnal CO(2) uptake.Reductions in daytime irradiance to approximately 25% full sunlight had no effect on CO(2) exchange. Continuous darkness resulted in continuous CO(2) loss by the plants, but a CO(2) exchange pattern similar to normal day/night conditions was observed under constant illumination. High tissue water content inhibited CO(2) uptake. Wetting of the tissue at any time of day or night resulted in net CO(2) loss. Abrupt increases in temperature or decreases in RH resulted in sharp decreases in net CO(2) uptake.The results indicate that Spanish moss is tolerant of a wide range of temperatures, irradiances, and water contents. They also indicate that high nighttime RH is a prerequisite for high rates of CO(2) uptake.

  1. Effects of a Heat Wave on Nocturnal Stomatal Conductance in Eucalyptus camaldulensis

    Directory of Open Access Journals (Sweden)

    Víctor Resco de Dios

    2018-06-01

    Full Text Available Nocturnal transpiration constitutes a significant yet poorly understood component of the global water cycle. Modeling nocturnal transpiration has been complicated by recent findings showing that stomata respond differently to environmental drivers over day- vs. night-time periods. Here, we propose that nocturnal stomatal conductance depends on antecedent daytime conditions. We tested this hypothesis across six genotypes of Eucalyptus camaldulensis Dehnh. growing under different CO2 concentrations (ambient vs. elevated and exposed to contrasting temperatures (ambient vs. heat wave for four days prior to the night of measurements, when all plants experienced ambient temperature conditions. We observed significant effects after the heat wave that led to 36% reductions in nocturnal stomatal conductance. The response was partly driven by changes in daytime stomatal behavior but additional factors may have come into play. We also observed significant differences in response to the heat wave across genotypes, likely driven by local adaptation to their climate of origin, but CO2 played no effect. Stomatal models may need to incorporate the role of antecedent effects to improve projections particularly after drastic changes in the environment such as heat waves.

  2. Effect of indomethacin on desmopressin resistant nocturnal polyuria and nocturnal enuresis.

    Science.gov (United States)

    Kamperis, Konstantinos; Rittig, Søren; Bower, Wendy F; Djurhuus, Jens C

    2012-11-01

    We evaluated the acute effect of indomethacin on renal water and solute handling in children with coexisting monosymptomatic nocturnal enuresis and desmopressin resistant nocturnal polyuria, and in healthy controls. A total of 23 subjects were recruited, consisting of 12 children with monosymptomatic nocturnal enuresis and nocturnal polyuria with partial or no response to desmopressin, and 11 age matched controls. Children completed a 48-hour inpatient study protocol consisting of fractional urine collections and blood samples. Sodium and water intake were standardized. During the second night a dose of 50 mg indomethacin was administered orally before bedtime. Diuresis, urine osmolalities, clearances and fractional excretions were calculated for sodium, potassium, urea, osmoles and solute-free water. Renin, angiotensin II, aldosterone and atrial natriuretic peptide were measured in plasma. Prostaglandin E(2) was measured in urine. Indomethacin markedly decreased the nocturnal sodium, urea and osmotic excretion in children with enuresis and controls. The overall effect on nocturnal urine output was inconsistent in the group with enuresis. Subjects in whom nocturnal diuresis was decreased following administration of indomethacin remained dry. Prostaglandin inhibition leads to antidiuresis, reducing the amount of sodium, urea and osmotic excretion in children with monosymptomatic nocturnal enuresis and desmopressin resistant nocturnal polyuria. The sodium regulating hormones do not seem to mediate these processes. The overall effect in desmopressin nonresponders with nocturnal polyuria is variable. The extent to which indomethacin can be applied in the treatment of enuresis needs further evaluation. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  3. Effects of herbicides on /sup 14/CO/sub 2/ fixation in isolated mesophyll cells from Beta vulgaris (sugar beet) and Chenopodium album

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, G; Guenther, G [Paedagogische Hochschule Karl Liebknecht, Potsdam (German Democratic Republic)

    1979-01-01

    10/sup -4/ - 10/sup -6/ molar solutions of herbicides (atrazine, 2,4-D, desmetryne, diallate, diquat, feuron, lenacil, NaTa, paraquat, phenmedipham, prometryne, propham, pyrazone, and simazine) cause similar inhibitory effects on the photosynthetic /sup 14/CO/sub 2/ fixation in isolated mesophyll cells from Chenopodium album and Beta vulgaris. Correlatdion between inhibition and herbicide resistance of the whole plants could be realized for lenacil only.

  4. CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project

    Directory of Open Access Journals (Sweden)

    C. Lac

    2013-05-01

    Full Text Available Accurate simulation of the spatial and temporal variability of tracer mixing ratios over urban areas is a challenging and interesting task needed to be performed in order to utilise CO2 measurements in an atmospheric inverse framework and to better estimate regional CO2 fluxes. This study investigates the ability of a high-resolution model to simulate meteorological and CO2 fields around Paris agglomeration during the March field campaign of the CO2-MEGAPARIS project. The mesoscale atmospheric model Meso-NH, running at 2 km horizontal resolution, is coupled with the Town Energy Balance (TEB urban canopy scheme and with the Interactions between Soil, Biosphere and Atmosphere CO2-reactive (ISBA-A-gs surface scheme, allowing a full interaction of CO2 modelling between the surface and the atmosphere. Statistical scores show a good representation of the urban heat island (UHI with stronger urban–rural contrasts on temperature at night than during the day by up to 7 °C. Boundary layer heights (BLH have been evaluated on urban, suburban and rural sites during the campaign, and also on a suburban site over 1 yr. The diurnal cycles of the BLH are well captured, especially the onset time of the BLH increase and its growth rate in the morning, which are essential for tall tower CO2 observatories. The main discrepancy is a small negative bias over urban and suburban sites during nighttime (respectively 45 m and 5 m, leading to a few overestimations of nocturnal CO2 mixing ratios at suburban sites and a bias of +5 ppm. The diurnal CO2 cycle is generally well captured for all the sites. At the Eiffel tower, the observed spikes of CO2 maxima occur every morning exactly at the time at which the atmospheric boundary layer (ABL growth reaches the measurement height. At suburban ground stations, CO2 measurements exhibit maxima at the beginning and at the end of each night, when the ABL is fully contracted, with a strong spatio-temporal variability. A

  5. Comparison of CO2 Fixation in Wood Used for Residence HOuses in Japan and Korea

    OpenAIRE

    Choi, Soo Im; Sakai, Masahiro; Jeong, In Soo; Oh, Seung Won; Kang, Hag Mo

    2003-01-01

    In this study, we have estimated the amount of carbon (C) fixation in wooden materials used for residence house units in Japan and Korea. This type of C fixation might be helpful to prevent the global warming. In year 2000, the amount of C fixation in the wooden materials was approximately 7.3% (150 million C ton) of total forest C accumulation in Japan, whereas in Korea, it was 2.0% (4.3million C ton) of the total forest C accumulation. The reason is that structural types of the house units ...

  6. Targeting nocturnal hypertension in type 2 diabetes mellitus.

    Science.gov (United States)

    Rossen, Niklas Blach; Knudsen, Søren Tang; Fleischer, Jesper; Hvas, Anne-Mette; Ebbehøj, Eva; Poulsen, Per Løgstrup; Hansen, Klavs Würgler

    2014-11-01

    Several studies in different populations have suggested that nighttime blood pressure (BP) is a stronger predictor of cardiovascular events than daytime BP. Consequently, treatment strategies to target nighttime BP have come into focus. The aim of the present study was to investigate the effect of change of administration time of antihypertensive drugs. We included 41 patients with type 2 diabetes mellitus and nocturnal hypertension (nighttime systolic BP >120 mm Hg) in an open-label, crossover study. Patients were randomized to 8 weeks of either morning or bedtime administration of all of the individual's once-daily antihypertensive drugs, followed by 8 weeks of switched dosing regimen. Bedtime administration of antihypertensive drugs resulted in a significant reduction in nighttime (7.5 mm Hg; Pdiabetes mellitus and nocturnal hypertension, administration of once-daily antihypertensive drugs at bedtime may be favorable. The increased nocturnal natriuresis may reflect increased effect of bedtime-administered thiazides and renin-angiotensin system inhibitors, suggesting a potential mechanism of the observed effects on BP with chronotherapeutic intervention. © 2014 American Heart Association, Inc.

  7. Capture, transport and storage of CO2

    International Nuclear Information System (INIS)

    De Boer, B.

    2008-01-01

    The emission of greenhouse gas CO2 in industrial processes and electricity production can be reduced on a large scale. Available techniques include post-combustion, pre-combustion, the oxy-fuel process, CO2 fixation in industrial processes and CO2 mineralization. In the Netherlands, plans for CO2 capture are not developing rapidly (CCS - carbon capture and storage). [mk] [nl

  8. Quantifying the local influence at a tall tower site in nocturnal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Werth, David; Buckley, Robert; Zhang, Gengsheng; Kurzeja, Robert; Leclerc, Monique; Duarte, Henrique; Parker, Matthew; Watson, Thomas

    2015-10-17

    The influence of the local terrestrial environment on nocturnal atmospheric CO2 measurements at a 329-m television transmitter tower (and a component of a CO2 monitoring network) was estimated with a tracer release experiment and a subsequent simulation of the releases. This was done to characterize the vertical transport of emissions from the surface to the uppermost tower level and how it is affected by atmospheric stability. The tracer release experiment was conducted over two nights in May of 2009 near the Department of Energy’s Savannah River Site (SRS) in South Carolina. Tracer was released on two contrasting nights—slightly stable and moderately stable—from several upwind surface locations. Measurements at the 329-m level on both nights indicate that tracer was able to mix vertically within a relatively short (~24 km) distance, implying that nocturnal stable conditions do not necessarily prevent vertical dispersion in the boundary layer and that CO2 measurements at the tower are at least partly influenced by nearby emissions. A simulation of the tracer release is used to calculate the tower footprint on the two nights to estimate the degree to which the local domain affects the tower readings. The effect of the nocturnal boundary layer on the area sampled by the tower can be seen clearly, as the footprints were affected by changes in stability. The contribution of local sources to the measurements at the tower was minimal, however, suggesting that nocturnal concentrations at upper levels are contributed mostly by regional sources.

  9. Carbon dioxide fixation in isolated Kalanchoe chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    Levi, C.; Gibbs, M.

    1975-07-01

    Chloroplasts isolated from Kalanchoe diagremontiana leaves were capable of photosynthesizing at a rate of 5.4 ..mu..moles of CO/sub 2/ per milligram of chlorophyll per hour. The dark rate of fixation was about 1 percent of the light rate. A high photosynthetic rate was associated with low starch content of the leaves. Ribose 5-phosphate, fructose 1, 6-diphosphate, and dithiothreitol stimulated fixation, whereas phosphoenolpyruvate and azide were inhibitors. The products of CO/sub 2/ fixation were primarily those of the photosynthetic carbon reduction cycle. (auth)

  10. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux

    Science.gov (United States)

    A. Christopher Oishi; Sari Palmroth; Kurt H. Johnsen; Heather R. McCarthy; Ram. Oren

    2014-01-01

    Soil CO2 efflux (Fsoil) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity,...

  11. Evaluation of isotopic dilution method for measuring N2 fixation in azolla: comparison with other methods

    International Nuclear Information System (INIS)

    Sah, R.N.; Goyal, S.S.; Rains, D.W.; Paige, D.F.

    1989-01-01

    An isotopic dilution method that overcomes the drawbacks of commonly used methods for measuring N 2 fixation by aquatic N‐fixers such as Azolla pinnata‐Anabaena azollae association (Azolla) is presented. The method was compared with 15 N2 gas (while maintaining CO 2 ) and the difference methods of measuring N 2 fixation. The isotopic dilution method was used for two conditions: a. For 15 N‐free growth medium, Azolla was pre‐enriched with 15 N, and N 2 fixation was determined by measuring the dilution of 15 N in the tissue. b. For the growth medium containing N, N2 fixation was determined by providing 15 N enriched ammonium sulfate in the growth medium and measuring 15 N to 14 N ratio in the tissue. An airtight chamber, necessary for 15 N 2 gas and acetylene reduction methods, was not representative of the growing environment of Azolla. Temperature in the airtight chamber was far from uniform and CO 2 was rapidly depleted. The isotopic dilution method is simpler, relatively inexpensive, subject to fewer errors and applicable to more diverse conditions, and yet was as accurate as 15 N2‐gas method. (author)

  12. /sup 14/CO/sub 2/-fixation by the endosymbiotic Platymonas convolutae within the turbellarian Convoluta roscoffensis

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, B P [Koeln Univ. (F.R. Germany). Botanisches Inst.

    1975-01-01

    Photosynthetic assimilation of /sup 14/CO/sub 2/ by the symbiotic green alga Platymonas convolutae Parke et Manton in the marine flatworm Convoluta roscoffensis Graff has been investigated and compared with that in free-living P. subcordiformis and P. tetrathele. All Platymonas species investigated rapidly incorporate /sup 14/CO/sub 2/ into a complex variety of soluble and insoluble assimilates. The rate of dark fixation is considerably lower in P. convolutae. Typical /sup 14/C-assimilate patterns are rather uniform in all Platymonas species, but the time courses of /sup 14/C-labelling of several compounds are very different. The percentage of /sup 14/C-aspartate and /sup 14/C-malate is significantly higher in P. convolutae after short-term-photosynthesis, whereas /sup 14/C-labelled phosphate esters predominate in the free-living Platymonas species. A comparison of the kinetics of /sup 14/C-labelling and of the distribution of /sup 14/C-activity between soluble and insoluble fractions suggests that glucose and fructose, not mannitol, as well as several amimo acids (especially alanine) move from the algal partner to the tissue of the animal host. The significance of these findings is discussed.

  13. Carbon Dioxide Fixation in Isolated Kalanchoe Chloroplasts 1

    Science.gov (United States)

    Levi, Carolyn; Gibbs, Martin

    1975-01-01

    Chloroplasts isolated from Kalanchoe diagremontiana leaves were capable of photosynthesizing at a rate of 5.4 μmoles of CO2 per milligram of chlorophyll per hour. The dark rate of fixation was about 1% of the light rate. A high photosynthetic rate was associated with low starch content of the leaves. Ribose 5-phosphate, fructose 1,6-diphosphate, and dithiothreitol stimulated fixation, whereas phosphoenolpyruvate and azide were inhibitors. The products of CO2 fixation were primarily those of the photosynthetic carbon reduction cycle. PMID:16659249

  14. The role of calcifying organisms in the global CO sub 2 cycle

    Energy Technology Data Exchange (ETDEWEB)

    Kayanne, H; Miyachi, S [Geological Survey of Japan, Tsukuba (Japan)

    1991-11-01

    The increase in atmospheric CO{sub 2} is recognised as a serious problem. The coral reefs of the Japanese islands fix 2.2 kg CO{sub 2}/m per year as organic carbon and 2.1 kg CO{sub 2}/m per year as calcium carbonate. The potential CO{sub 2} fixation of the Ryukyu reefs is 1.4 per cent of CO{sub 2} emission from Japan. Technology is being established to enhance the rate of CO{sub 2} fixation. Calcareous algae also play an important role in the calcification, and the mass culture of marine unicellular coccolith former is under investigation in Japan. 4 refs., 3 boxes.

  15. Improving yield and nitrogen fixation of grain legumes in the tropics and sub-tropics of Asia. Results of a co-ordinated research programme

    International Nuclear Information System (INIS)

    1998-07-01

    The Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture initiated a Co-ordinated Research Project on The Use of Isotopes in Studies to Improve Yield and N 2 Fixation of Grain Legumes with the Aim of Increasing Food Production and Saving N-fertilizer in the Tropics and Sub-Tropics of Asia that was operational from 1990 to 1995. This Project was underpinned by extensive experience in the use of 15 N-labelled fertilizer in quantifying N 2 fixation by food and pasture legumes; the isotope-dilution technique, recognized as the most accurate mode of quantifying fixation, was developed at the IAEA and has been used profitably for over 20 years in co-ordinated research projects that were focused on aspects relevant to the sustainability of agriculture in developing countries in which food security is most under threat. This effort to improve N 2 fixation by food legumes in Asia, and in so doing to increase productivity of cereal-based farming systems as a whole, was timely in terms of regional needs. It was complemented by an overlapping Co-ordinated Research Project entitled ''The Use of Nuclear and Related Techniques in Management of Nitrogen Fixation by trees for Enhancing Soil Fertility and Soil Conservation in Fragile Tropical Soils''. The project involved scientists from Australia, Bangladesh, China, India, Malaysia, Pakistan the Philippines, Sri Lanka, Thailand and Viet Nam

  16. Specific 14C labelling of 3-phosphoglyceric acid by light enhanced dark CO2 fixation in tea leaves

    International Nuclear Information System (INIS)

    Aoki, Satoshi

    1984-01-01

    Conditions for light enhanced dark CO 2 fixation (LED), products of LED and distribution pattern of 14 C of 3-phosphoglyceric acid (PGA) were investigated. By LED, 14 C-bicarbonate was abruptly and temporarily incorporated in single cells and discs of tea leaves. Optimal conditions of temperature, preillumination period and light intensity for LED in single cells were 28 deg C, 10 min and 20 klx respectively, and 20 deg C, 20 - 30 min and 40 - 80 klx respectively, in leaf discs. By photosynthesis for 30 sec and 60 sec of leaf discs, although 14 C-bicarbonate was considerably incorporated into PGA and phosphateesters, 14 C was incorporated into malate, serin+glycine and sucrose, too. Malate was predominantly labelled by dark fixation. On the other hand, by LED, 14 C-bicarbonate was incorporated into PGA. PGA was degradated by the modified Sakami's method and their distribution pattern was analyzed. By photosynthesis for 60 sec, 14 C of C-1 carbon (carboxylic carbon), C-2 carbon and C-3 carbon of PGA were 70, 17 and 13 %, respectively. By LED of 60 sec, however, 97 % of 14 C was at C-1. From these results, it is clear that carboxylic carbon of PGA was specifically labelled from 14 C-bicarbonate by LED. (Kubozono, M.)

  17. Effects of SO/sub 2/ on photosynthesis and nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    Haellgren, J E; Huss, K

    1975-06-15

    Responses of photosynthesis and nitrogen fixation to NaHSO/sub 3/ (10/sup -5/ to 5 x 10/sup -3/ M) were investigated in the lichen Stereocaulon paschale (L.) Fr. and the blue-green alga Anabaena cylindrica Lemmermann. The treatments were performed in buffered media with varying pH (5.8 to 8.1) and light conditions (0 to 32 W x m/sup -2/). The activities of the intact organisms were investigated, under the same environmental conditions, with /sup 14/C liquid scintillation and acetylene reduction techniques respectively. The nitrogen fixation proved to be more susceptible than photosynthesis, in both organisms, and in all cases treatments at pH 5.8 were more inhibitory than at higher pH-values. Treatment with 5 x 10/sup -4/ M NaHSO/sub 3/ at pH 5.8 caused no reduction of photosynthesis in S. paschale, while the inhibition of nitrogen fixation was 97%. For A. cylindrica the corresponding values were 40% and 75% respectively. Short-time treatments of A. cylindrica showed that the nitrogen fixation was more rapidly affected than photosynthesis. The inhibition of nitrogenase activity and CO/sub 2/-fixation was smaller in the dark and increased at higher light intensities. Both processes showed a good capacity for recovery after removal of the NaHSO/sub 3/ solution. Also the clumping ability of A. cylindrica was disturbed by NaHSO/sub 3/ treatments.

  18. Use of low enriched /sup 15/N/sub 2/ for symbiotic fixation tests

    Energy Technology Data Exchange (ETDEWEB)

    Victoria, R L

    1975-01-01

    Gaseous atmospheres containing /sup 15/N/sub 2/ with low enrichment were used to test symbiotic nitrogen fixation in beans (Phaseolus vulgari, L.). The tests of fixation in nodulated roots and the tests of fixation in the whole plant, in which the plants were placed inside a specially constructed growth chamber, gave positive results and suggest that the methodology used can be very helpfull in more detailed studies on symbiotic fixation. Samples of atmospheric air were purified by absorption of O/sub 2/ and CO/sub 2/ by two methods. The purified N/sub 2/ obtained was analysed and the results were compared. Samples of bean plant material were collected in natural conditions and analysed for /sup 15/N natural variation. Several samples were prepared for /sup 15/N isotopic analysis by two methods. The results obtained were compared. All samples were analysed in an Atlas-Varian Ch-4 model mass spectrometer, and the results were given in delta /sup 15/N/sub 0///sup 00/ variation in relation to a standard gas.

  19. Methanotrophy induces nitrogen fixation during peatland development

    Science.gov (United States)

    Larmola, Tuula; Leppänen, Sanna M.; Tuittila, Eeva-Stiina; Aarva, Maija; Merilä, Päivi; Fritze, Hannu; Tiirola, Marja

    2014-01-01

    Nitrogen (N) accumulation rates in peatland ecosystems indicate significant biological atmospheric N2 fixation associated with Sphagnum mosses. Here, we show that the linkage between methanotrophic carbon cycling and N2 fixation may constitute an important mechanism in the rapid accumulation of N during the primary succession of peatlands. In our experimental stable isotope enrichment study, previously overlooked methane-induced N2 fixation explained more than one-third of the new N input in the younger peatland stages, where the highest N2 fixation rates and highest methane oxidation activities co-occurred in the water-submerged moss vegetation. PMID:24379382

  20. Co-occurrence of methanogenesis and N2 fixation in oil sands tailings.

    Science.gov (United States)

    Collins, C E Victoria; Foght, Julia M; Siddique, Tariq

    2016-09-15

    Oil sands tailings ponds in northern Alberta, Canada have been producing biogenic gases via microbial metabolism of hydrocarbons for decades. Persistent methanogenic activity in tailings ponds without any known replenishment of nutrients such as fixed nitrogen (N) persuaded us to investigate whether N2 fixation or polyacrylamide (PAM; used as a tailings flocculant) could serve as N sources. Cultures comprising mature fine tailings (MFT) plus methanogenic medium supplemented with or deficient in fixed N were incubated under an N2 headspace. Some cultures were further amended with citrate, which is used in oil sands processing, as a relevant carbon source, and/or with PAM. After an initial delay, N-deficient cultures with or without PAM produced methane (CH4) at the same rate as N-containing cultures, indicating a mechanism of overcoming apparent N-deficiency. Acetylene reduction and (15)N2 incorporation in all N-deficient cultures (with or without PAM) suggested active N2 fixation concurrently with methanogenesis but inability to use PAM as a N source. 16S rRNA gene pyrosequencing revealed little difference between archaeal populations regardless of N content. However, bacterial sequences in N-deficient cultures showed enrichment of Hyphomicrobiaceae and Clostridium members that might contain N2-fixing species. The results are important in understanding long-term production of biogenic greenhouse gases in oil sands tailings. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. A short history of RubisCO: the rise and fall (?) of Nature's predominant CO2 fixing enzyme.

    Science.gov (United States)

    Erb, Tobias J; Zarzycki, Jan

    2018-02-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) is arguably one of the most abundant proteins in the biosphere and a key enzyme in the global carbon cycle. Although RubisCO has been intensively studied, its evolutionary origins and rise as Nature's most dominant carbon dioxide (CO 2 )-fixing enzyme still remain in the dark. In this review we will bring together biochemical, structural, physiological, microbiological, as well as phylogenetic data to speculate on the evolutionary roots of the CO 2 -fixation reaction of RubisCO, the emergence of RubisCO-based autotrophic CO 2 -fixation in the context of the Calvin-Benson-Bassham cycle, and the further evolution of RubisCO into the 'RubisCOsome', a complex of various proteins assembling and interacting with the enzyme to improve its operational capacity (functionality) under different biological and environmental conditions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Processes for the control of 14CO2 during reprocessing

    International Nuclear Information System (INIS)

    Notz, K.J.; Holladay, D.W.; Forsberg, C.W.; Haag, G.L.

    1980-01-01

    The fixation of 14 CO 2 may be required at some future time because of the significant fractional contribution of 14 C, via the ingestion pathway, to the total population dose from the nuclear fuel cycle, even though the actual quantity of this dose is very small when compared to natural background. The work described here was done in support of fuel reprocessing development, of both graphite fuel (HTGRs) and metal-clad fuel (LWRs and LMFBRs), and was directed to the control of 14 CO 2 released during reprocessing operations. However, portions of this work are also applicable to the control of 14 CO 2 released during reactor operation. The work described falls in three major areas: (1) The application of liquid-slurry fixation with Ca(OH) 2 , which converts the CO 2 to CaCO 3 , carried out after treatment of the CO 2 -containing stream to remove other gaseous radioactive components, mainly 85 Kr. This approach is primarily for application to HTGR fuel reprocessing. (2) The above process for CO 2 fixation, but used ahead of Kr removal, and followed by a molecular sieve process to take out the 85 Kr. This approach was developed for use with HTGR reprocessing, but certain aspects also have application to metal-clad fuel reprocessing and to reactor operation. (3) The use of solid Ba(OH) 2 hydrate reacting directly with the gaseous phase. This process is generally applicable to both reprocessing and to reactor operation

  3. 14CO2 fixation and allocation of 14C into major biochemical fractions in different parts of Indian mustard (Brassica juncea)

    International Nuclear Information System (INIS)

    Subrahmanyam, D.; Rathore, V.S.

    1993-01-01

    14CO2 fixation and transport of 14C-photosynthates amongst different parts of Indian mustard (Brassica juncea) and the incorporation of 14C into major chemical fractions in different plant parts was studied at ripening stage. Stem and pod together contributed 70 % of the total 14C fixed by the plant. In all plant parts neutral saccharide fraction contained maximum radioactivity immediately after exposing plants to 14CO2. After 24 h, the radioactivity in this fraction declined considerably due to translocation or conversion into other fractions. Concomitantly radioactivity in lipids and pigments, residue and starch fractions increased after 24 h. The 14C allocation patterns in stem and leaves were similar. However, in pods very high radioactivity was recovered from amino and organic acid fractions indicating the presence of active phosphoenolpyruvate carboxylase in pod walls

  4. Measurement of brain pH using 11CO2 and positron emission tomography

    International Nuclear Information System (INIS)

    Buxton, R.B.; Wechsler, L.R.; Alpert, N.M.; Ackerman, R.H.; Elmaleh, D.R.; Correia, J.A.

    1984-01-01

    We have examined the feasibility of measuring local brain pH in vivo with 11 CO 2 and positron emission tomography. In particular, we have addressed two objections that have been raised against this method: the assumed need to estimate local tissue PCO 2 and the rapid fixation of 11 C in tissue. From a reexamination of the basic theory, we argue that after administration of 11 CO 2 the time-dependent distribution of 11 C between tissue and blood is independent of the distribution of CO 2 already in the body, making it unnecessary to estimate local tissue PCO 2 . Assuming that the blood--brain barrier is impermeable to bicarbonate ions, there will be equal partial pressures of 11 CO 2 in blood and tissue at equilibrium. To overcome the problem of fixation in the tissue we have developed a kinetic model of the time-dependent distribution of 11 C that accounts for regional variations in blood flow, CO 2 extraction, pH, and rate of fixation. The values of the model parameters can be estimated from sequential measurements of tissue activity concentration during administration of 11 CO 2 . Tissue pH can then be calculated from one of the parameter values, a measurement of arterial pH, and known constants. Numerical calculations based on the kinetic model with assumed values of the parameters were used to optimize the experimental design. The calculations show that problems with fixation are much less severe with continuous infusion of activity than with bolus administration. During infusion the tissue curve depends strongly on tissue pH but only weakly on the rate of fixation

  5. Free atmospheric CO2 enrichment increased above ground biomass but did not affect symbiotic N2-fixation and soil carbon dynamics in a mixed deciduous stand in Wales

    Directory of Open Access Journals (Sweden)

    A. R. Smith

    2011-02-01

    Full Text Available Through increases in net primary production (NPP, elevated CO2 is hypothesized to increase the amount of plant litter entering the soil. The fate of this extra carbon on the forest floor or in mineral soil is currently not clear. Moreover, increased rates of NPP can be maintained only if forests can escape nitrogen limitation. In a Free atmospheric CO2 Enrichment (FACE experiment near Bangor, Wales, 4 ambient and 4 elevated [CO2] plots were planted with patches of Betula pendula, Alnus glutinosa and Fagus sylvatica on a former arable field. After 4 years, biomass averaged for the 3 species was 5497 (se 270 g m−2 in ambient and 6450 (se 130 g m−2 in elevated [CO2] plots, a significant increase of 17% (P = 0.018. During that time, only a shallow L forest floor litter layer had formed due to intensive bioturbation. Total soil C and N contents increased irrespective of treatment and species as a result of afforestation. We could not detect an additional C sink in the soil, nor were soil C stabilization processes affected by elevated [CO2]. We observed a decrease of leaf N content in Betula and Alnus under elevated [CO2], while the soil C/N ratio decreased regardless of CO2 treatment. The ratio of N taken up from the soil and by N2-fixation in Alnus was not affected by elevated [CO2]. We infer that increased nitrogen use efficiency is the mechanism by which increased NPP is sustained under elevated [CO2] at this site.

  6. Carbon recycling by cyanobacteria: improving CO2 fixation through chemical production.

    Science.gov (United States)

    Zhang, Angela; Carroll, Austin L; Atsumi, Shota

    2017-09-01

    Atmospheric CO2 levels have reached an alarming level due to industrialization and the burning of fossil fuels. In order to lower the level of atmospheric carbon, strategies to sequester excess carbon need to be implemented. The CO2-fixing mechanism in photosynthetic organisms enables integration of atmospheric CO2 into biomass. Additionally, through exogenous metabolic pathways in these photosynthetic organisms, fixed CO2 can be routed to produce various commodity chemicals that are currently produced from petroleum. This review will highlight studies and modifications to different components of cyanobacterial CO2-fixing systems, as well as the application of these systems toward CO2-derived chemical production. 2,3-Butanediol is given particular focus as one of the most thoroughly studied systems for conversion of CO2 to a bioproduct. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Discontinuation of furosemide decreases PaCO(2) in patients with COPD.

    NARCIS (Netherlands)

    Brijker, F.; Heijdra, Y.F.; Elshout, F.J.J. van den; Folgering, H.T.M.

    2002-01-01

    STUDY OBJECTIVE: To evaluate whether the discontinuation of furosemide treatment resulted in a decrease in PaCO(2) and an increase in daytime and nocturnal oxygenation. BACKGROUND: Furosemide is widely prescribed in patients with COPD for the treatment of peripheral edema. It is known that

  8. Application of microbial photosynthesis to energy production and CO2 fixation

    International Nuclear Information System (INIS)

    Asada, Y.; Miyake, J.

    1994-01-01

    This paper presents different applications of microbial photosynthesis for energy production and carbon dioxide fixation. The authors discuss about energetic aspects of photosynthesis and features of biological way for solar energy conversion. (TEC). 4 figs., 12 refs

  9. Functions, Compositions, and Evolution of the Two Types of Carboxysomes: Polyhedral Microcompartments That Facilitate CO2 Fixation in Cyanobacteria and Some Proteobacteria

    Science.gov (United States)

    Rae, Benjamin D.; Long, Benedict M.; Badger, Murray R.

    2013-01-01

    SUMMARY Cyanobacteria are the globally dominant photoautotrophic lineage. Their success is dependent on a set of adaptations collectively termed the CO2-concentrating mechanism (CCM). The purpose of the CCM is to support effective CO2 fixation by enhancing the chemical conditions in the vicinity of the primary CO2-fixing enzyme, d-ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), to promote the carboxylase reaction and suppress the oxygenase reaction. In cyanobacteria and some proteobacteria, this is achieved by encapsulation of RubisCO within carboxysomes, which are examples of a group of proteinaceous bodies called bacterial microcompartments. Carboxysomes encapsulate the CO2-fixing enzyme within the selectively permeable protein shell and simultaneously encapsulate a carbonic anhydrase enzyme for CO2 supply from a cytoplasmic bicarbonate pool. These bodies appear to have arisen twice and undergone a process of convergent evolution. While the gross structures of all known carboxysomes are ostensibly very similar, with shared gross features such as a selectively permeable shell layer, each type of carboxysome encapsulates a phyletically distinct form of RubisCO enzyme. Furthermore, the specific proteins forming structures such as the protein shell or the inner RubisCO matrix are not identical between carboxysome types. Each type has evolutionarily distinct forms of the same proteins, as well as proteins that are entirely unrelated to one another. In light of recent developments in the study of carboxysome structure and function, we present this review to summarize the knowledge of the structure and function of both types of carboxysome. We also endeavor to cast light on differing evolutionary trajectories which may have led to the differences observed in extant carboxysomes. PMID:24006469

  10. CO2, the promises of geological sequestration

    International Nuclear Information System (INIS)

    Rouat, S.

    2006-01-01

    Trapping part of the world CO 2 effluents in the deep underground is a profitable and ecological way to limit the global warming. This digest paper presents the different ways of CO 2 sequestration (depleted oil and gas fields, unexploited coal seams, saline aquifers), the other possible solutions for CO 2 abatement (injection in the bottom of the ocean, conversion into carbonates by injection into basic rocks, fixation by photosynthesis thanks to micro-algae cultivation), and takes stock of the experiments in progress (Snoehvit field in Norway, European project Castor). (J.S.)

  11. Differential arousal regulation by prokineticin 2 signaling in the nocturnal mouse and the diurnal monkey.

    Science.gov (United States)

    Zhou, Qun-Yong; Burton, Katherine J; Neal, Matthew L; Qiao, Yu; Kanthasamy, Anumantha G; Sun, Yanjun; Xu, Xiangmin; Ma, Yuanye; Li, Xiaohan

    2016-08-18

    The temporal organization of activity/rest or sleep/wake rhythms for mammals is regulated by the interaction of light/dark cycle and circadian clocks. The neural and molecular mechanisms that confine the active phase to either day or night period for the diurnal and the nocturnal mammals are unclear. Here we report that prokineticin 2, previously shown as a circadian clock output molecule, is expressed in the intrinsically photosensitive retinal ganglion cells, and the expression of prokineticin 2 in the intrinsically photosensitive retinal ganglion cells is oscillatory in a clock-dependent manner. We further show that the prokineticin 2 signaling is required for the activity and arousal suppression by light in the mouse. Between the nocturnal mouse and the diurnal monkey, a signaling receptor for prokineticin 2 is differentially expressed in the retinorecipient suprachiasmatic nucleus and the superior colliculus, brain projection targets of the intrinsically photosensitive retinal ganglion cells. Blockade with a selective antagonist reveals the respectively inhibitory and stimulatory effect of prokineticin 2 signaling on the arousal levels for the nocturnal mouse and the diurnal monkey. Thus, the mammalian diurnality or nocturnality is likely determined by the differential signaling of prokineticin 2 from the intrinsically photosensitive retinal ganglion cells onto their retinorecipient brain targets.

  12. Increased nocturnal blood pressure in enuretic children with polyuria.

    Science.gov (United States)

    Kruse, Anne; Mahler, Birgitte; Rittig, Soren; Djurhuus, Jens Christian

    2009-10-01

    We investigated the association between nocturnal blood pressure and urine production in children with enuresis. A total of 39 consecutive children with a mean age of 9.8 years (range 6.2 to 14.9) with monosymptomatic nocturnal enuresis completed a bladder diary, including 2 weeks of basic documentation and 2 with desmopressin titration from 120 to 240 microg sublingually. Arterial blood pressure was measured every 30 minutes during 24 hours and during 4 additional nights using an ambulatory blood pressure monitor. Furthermore, 10 healthy children were recruited into the study who completed a bladder diary for 5 days while measuring arterial blood pressures with documentation of all intake and voided volumes. Patients with nocturnal polyuria had significantly higher nocturnal mean arterial pressure than patients without polyuria and controls (p polyuria than in children without polyuria. There was a significant positive correlation between average nocturnal mean arterial pressure and nocturnal urine volume in the whole study. The association between nocturnal blood pressure and urine volume, and the role of blood pressure should be investigated in a larger group of children with enuresis who have nocturnal polyuria.

  13. Transcriptome-based analysis on carbon metabolism of Haematococcus pluvialis mutant under 15% CO2.

    Science.gov (United States)

    Li, Ke; Cheng, Jun; Lu, Hongxiang; Yang, Weijuan; Zhou, Junhu; Cen, Kefa

    2017-06-01

    To elucidate the mechanism underlying the enhanced growth rate in the Haematococcus pluvialis mutated with 60 Co-γ rays and domesticated with 15% CO 2 , transcriptome sequencing was conducted to clarify the carbon metabolic pathways of mutant cells. The CO 2 fixation rate of mutant cells increased to 2.57gL -1 d -1 under 15% CO 2 due to the enhanced photosynthesis, carbon fixation, glycolysis pathways. The upregulation of PetH, ATPF0A and PetJ related to photosynthetic electron transport, ATP synthase and NADPH generation promoted the photosynthesis. The upregulation of genes related to Calvin cycle and ppdK promoted carbon fixation in both C3 and C4 photosynthetic pathways. The reallocation of carbon was also enhanced under 15% CO 2 . The 19-, 14- and 3.5-fold upregulation of FBA, TPI and PK genes, respectively, remarkably promoted the glycolysis pathways. This accelerated the conversion of photosynthetic carbon to pyruvate, which was an essential precursor for astaxanthin and lipids biosynthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. FINAL TECHNICAL REPORT-THE ECOLOGY AND GENOMICS OF CO2 FIXATIION IN OCEANIC RIVER PLUMES

    Energy Technology Data Exchange (ETDEWEB)

    PAUL, JOHN H

    2013-06-21

    Oceanic river plumes represent some of the most productive environments on Earth. As major conduits for freshwater and nutrients into the coastal ocean, their impact on water column ecosystems extend for up to a thousand km into oligotrophic oceans. Upon entry into the oceans rivers are tremendous sources of CO2 and dissolved inorganic carbon (DIC). Yet owing to increased light transmissivity from sediment deposition coupled with the influx of nutrients, dramatic CO2 drawdown occurs, and plumes rapidly become sinks for CO2. Using state-of-the-art gene expression technology, we have examined the molecular biodiversity of CO2 fixation in the Mississippi River Plume (MRP; two research cruises) and the Orinoco River Plume (ORP; one cruise). When the MRP extends far into the Gulf because of entrainment with the Loop Current, MRP production (carbon fixation) can account for up to 41% of the surface production in the Gulf of Mexico. Nearer-shore plume stations (“high plume,” salinity< 32 ppt) had tremendous CO2 drawdown that was correlated to heterokont (principally diatom) carbon fixation gene expression. The principal form of nitrogen for this production based upon 15N studies was urea, believed to be from anthropogenic origin (fertilizer) from the MRP watershed. Intermediate plume environments (salinity 34 ppt) were characterized by high levels of Synechococcuus carbon fixation that was fueled by regenerated ammonium. Non-plume stations were characterized by high light Prochlorococcus carbon fixation gene expression that was positively correlated with dissolved CO2 concentrations. Although data from the ORP cruise is still being analyzed, some similarities and striking differences were found between the ORP and MRP. High levels of heterokont carbon fixation gene expression that correlated with CO2 drawdown were observed in the high plume, yet the magnitude of this phenomenon was far below that of the MRP, most likely due to the lower levels of anthropogenic

  15. Comparative Effects of an Angiotensin II Receptor Blocker (ARB)/Diuretic vs. ARB/Calcium-Channel Blocker Combination on Uncontrolled Nocturnal Hypertension Evaluated by Information and Communication Technology-Based Nocturnal Home Blood Pressure Monitoring - The NOCTURNE Study.

    Science.gov (United States)

    Kario, Kazuomi; Tomitani, Naoko; Kanegae, Hiroshi; Ishii, Hajime; Uchiyama, Kazuaki; Yamagiwa, Kayo; Shiraiwa, Toshihiko; Katsuya, Tomohiro; Yoshida, Tetsuro; Kanda, Kiyomi; Hasegawa, Shinji; Hoshide, Satoshi

    2017-06-23

    Nocturnal blood pressure (BP) is an independent risk factor of cardiovascular events. The NOCTURNE study, a multicenter, randomized controlled trial (RCT) using our recently developed information and communication technology (ICT) nocturnal home BP monitoring (HBPM) device, was performed to compare the nocturnal HBP-lowering effects of differential ARB-based combination therapies in 411 Japanese patients with nocturnal hypertension (HT).Methods and Results:Patients with nocturnal BP ≥120/70 mmHg at baseline even under ARB therapy (100 mg irbesartan daily) were enrolled. The ARB/CCB combination therapy (irbesartan 100 mg+amlodipine 5 mg) achieved a significantly greater reduction in nocturnal home systolic BP (primary endpoint) than the ARB/diuretic combination (daily irbesartan 100 mg+trichlormethiazide 1 mg) (-14.4 vs. -10.5 mmHg, P<0.0001), independently of urinary sodium excretion and/or nocturnal BP dipping status. However, the change in nocturnal home systolic BP was comparable among the post-hoc subgroups with higher salt sensitivity (diabetes, chronic kidney disease, and elderly patients). This is the first RCT demonstrating the feasibility of clinical assessment of nocturnal BP by ICT-nocturnal HBPM. The ARB/CCB combination was shown to be superior to ARB/diuretic in patients with uncontrolled nocturnal HT independently of sodium intake, despite the similar impact of the 2 combinations in patients with higher salt sensitivity.

  16. Nanodeserts: A Conjecture in Nanotechnology to Enhance Quasi-Photosynthetic CO2 Absorption

    Directory of Open Access Journals (Sweden)

    Wenfeng Wang

    2016-01-01

    Full Text Available This paper advances “nanodeserts” as a conjecture on the possibility of developing the hierarchical structured polymeric nanomaterials for enhancing abiotic CO2 fixation in the soil-groundwater system beneath deserts (termed as quasi-photosynthetic CO2 absorption. Arid and semiarid deserts ecosystems approximately characterize one-third of the Earth’s land surface but play an unsung role in the carbon cycling, considering the huge potentials of such CO2 absorption to expand insights to the long-sought missing CO2 sink and the naturally unneglectable turbulence in temperature sensitivities of soil respiration it produced. “Nanodeserts” as a reconciled concept not only indicate a conjecture in nanotechnology to enhance quasi-photosynthetic CO2 absorption, but also aim to present to the desert researchers a better understanding of the footprints of abiotic CO2 transport, conversion, and assignment in the soil-groundwater system beneath deserts. Meanwhile, nanodeserts allow a stable temperature sensitivity of soil respiration in deserts by largely reducing the CO2 release above the deserts surface and highlighting the abiotic CO2 fixation beneath deserts. This may be no longer a novelty in the future.

  17. Nocturnal accumulation of CO2 underneath a tropical forest canopy along a topographical gradient.

    Science.gov (United States)

    de Araújo, Alessandro C; Kruijt, Bart; Nobre, Antonio D; Dolman, Albertus J; Waterloo, Maarten J; Moors, Eddy J; de Souza, Juliana S

    2008-09-01

    Flux measurements of carbon dioxide and water vapor above tropical rain forests are often difficult to interpret because the terrain is usually complex. This complexity induces heterogeneity in the surface but also affects lateral movement of carbon dioxide (CO2) not readily detected by the eddy covariance systems. This study describes such variability using measurements of CO2 along vertical profiles and along a toposequence in a tropical rain forest near Manaus, Brazil. Seasonal and diurnal variation was recorded, with atmospheric CO2 concentration maxima around dawn, generally higher CO2 build-up in the dry season and stronger daytime CO2 drawdown in the wet season. This variation was reflected all along the toposequence, but the slope and valley bottom accumulated clearly more CO2 than the plateaus, depending on atmospheric stability. Particularly during stable nights, accumulation was along lines of equal altitude, suggesting that large amounts of CO2 are stored in the valleys of the landscape. Flushing of this store only occurs during mid-morning, when stored CO2 may well be partly transported back to the plateaus. It is clear that, for proper interpretation of tower fluxes in such complex and actively respiring terrain, the horizontal variability of storage needs to be taken into account not only during the night but also during the mornings.

  18. Environmental and biogeochemical controls on N2 fixation in ombrotrophic peatlands

    Science.gov (United States)

    Zivkovic, T.; Moore, T. R.

    2017-12-01

    Northern peatlands have low atmospheric nitrogen (N) inputs and acquire N mostly via biological, microbially-driven N2-fixation. Little is known about rates and controls on N2-fixation in ombrotrophic bogs. We conducted two studies to test environmental and biogeochemical controls on N2-fixation. First, we used acetylene reduction assay (ARA) calibrated with 15N2 tracer to measure N2-fixation rates in three species of Sphagnum mosses along a hydrological gradient (beaver pond, hollow and hummock in bog margin and in bog) at Mer Bleue bog from June-October 2013 and May - November 2014. We tested the following controls: moisture availability, temperature, and PAR. The largest ARA rates throughout both seasons occurred in the pond in floating Sphagnum cuspidatum mats (50.3 ± 12.9 μmol m-2 d-1 Mean ± SE), which were up to 2.5 times larger than the rates found in the driest hummock site. There was a significant seasonal peak in both years in July and early August that coincided with the peak of the air temperature. In fact, 45% of the variance of N2 fixation rates over the two field seasons was explained by rain events, water table fluctuations and the surface peat temperature (multiple regression analysis, n = 539). Our results highlight the potential impact of climate change, namely negative effects due to potential droughts and positive effect of warming, on N2 fixation patterns in ombrotrophic peatlands. Secondly, we tested stoichiometric controls (Sphagnum tissue N and phosphorous (P) ratio) of N2-fixation. In a controlled environment, we selected eight study sites along a latitudinal gradient from temperate, boreal to subarctic zone in eastern Canada. We found that decreasing N:P ratio corresponded to increasing N2-fixation. N:P explained 65% of the variance in N2-fixation in hollows but only 20% in hummocks. Changes in neither N or P concentration alone explained the increase in N2-fixation better than N:P ratio. We interpret that the difference between

  19. Nocturnal Polyuria: Excess of Nocturnal Urine Production, Excess of Definitions-Influence on Renal Function Profile.

    Science.gov (United States)

    Goessaert, An-Sofie; Walle, Johan Vande; Bosch, Ruud; Hoebeke, Piet; Everaert, Karel

    2016-03-01

    This study aimed to identify important differences in renal function profile, and potential water and sodium diuresis cutoffs among participants with nocturnal polyuria according to nocturnal polyuria definitions. This post hoc analysis was based on a prospective study in which participants completed a bladder diary, collected urine and provided a blood sample. With an age dependent nocturnal polyuria index greater than 20% to 33% as the referent 4 definitions of nocturnal polyuria were compared, including 1) nocturnal polyuria index greater than 33%, 2) nocturnal urine production greater than 90 ml per hour and 3) greater than 10 ml/kg, and 4) nocturia index greater than 1.5. In 112 male and female participants significant differences in baseline characteristics and bladder diary parameters were found according to definition. Diuresis rate, free water clearance and sodium clearance had similar 24-hour courses in the subgroups with and without polyuria by each definition. The range varied more in the subgroup with vs without polyuria, especially at night for diuresis rate and free water clearance. At night the latter decreased in the polyuria subgroup based on each definition (p polyuria subgroups was found only for urine production greater than 90 ml per hour and polyuria index greater than 20% to 33%. For each definition sodium clearance remained high in the polyuria subgroup, which differed significantly from the no polyuria subgroups (p polyuria by definition. The renal function profile indicating the pathophysiological mechanism of nocturnal polyuria did not seem to be influenced by definition but free water clearance and sodium clearance cutoff sensitivity differed substantially. These results must be confirmed in a larger homogeneous sample. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  20. How can increased use of biological N2 fixation in agriculture benefit the environment?

    International Nuclear Information System (INIS)

    Jensen, Erik Steen; Hauggaard-Nielsen, Henrik

    2001-01-01

    Asymbiotic, associative or symbiotic biological N 2 fixation (BNF), is a free and renewable resource, which should constitute an integral part of sustainable agro-ecosystems. Yet there has been a rapid increase in use of fertiliser N and a parallel decline in the cultivation of leguminous plants and BNF, especially in the developed world. Fertilisers have boosted crop yields, but intensive agricultural systems have increasingly negative effects on the atmospheric and aquatic environments. BNF, either alone or in combination with fertilisers and animal manures, may prove to be a better solution to supply nitrogen to the cropping systems of the future. This review focuses on the potential benefit of BNF on the environment especially on soil acidification, rhizosphere processes and plant CO 2 fixation. As fertiliser N has supplanted BNF in agriculture the re-substitution of BNF is considered. What is the consequence of fertiliser N production on energy use? The effect of fertiliser use on the release of the greenhouse gas CO 2 is estimated at approximately 1 % of the global anthropogenic emission of CO 2 . The role of BNF on nitrogen cycling, ammonia volatilisation, N 2 O emission and NO 3 leaching suggests that BNF is less likely than fertilisers to cause losses during pre-cropping and cropping. Sometimes however the post-harvest losses may be greater, due to the special qualities of legume residues. Nevertheless, legumes provide other 'ecological services' including improved soil structure, erosion protection and greater biological diversity. (author)

  1. Comparing CO2 Storage and Advection Conditions at Night at Different Carboeuroflux Sites

    Science.gov (United States)

    Aubinet, M.; Berbigier, P.; Bernhofer, Ch.; et al.

    Anemometer and CO2 concentration data from temporary campaigns performed at six CARBOEUROFLUX forest sites were used to estimate the importance of non-turbulent fluxes in nighttime conditions. While storage was observed to be significant only during periods of both low turbulence and low advection, the advective fluxes strongly influence the nocturnal CO2 balance, with the exception of almost flat and highly homogeneous sites. On the basis of the main factors determining the onset of advective fluxes, the ‘advection velocity’, which takes net radiation and local topography into account, was introduced as a criterion to characterise the conditions of storage enrichment/depletion. Comparative analyses of the six sites showed several common features of the advective fluxes but also some substantial differences. In particular, all sites where advection occurs show the onset of a boundary layer characterised by a downslope flow, negative vertical velocities and negative vertical CO2 concentration gradients during nighttime. As a consequence, vertical advection was observed to be positive at all sites, which corresponds to a removal of CO2 from the ecosystem. The main differences between sites are the distance from the ridge, which influences the boundary-layer depth, and the sign of the mean horizontal CO2 concentration gradients, which is probably determined by the source/sink distribution. As a consequence, both positive and negative horizontal advective fluxes (corresponding respectively to CO2 removal from the ecosystem and to CO2 supply to the ecosystem) were observed. Conclusive results on the importance of non-turbulent components in the mass balance require, however, further experimental investigations at sites with different topographies, slopes, different land covers, which would allow a more comprehensive analysis of the processes underlying the occurrence of advective fluxes. The quantification of these processes would help to better quantify nocturnal

  2. Percutaneous anterior C1/2 transarticular screw fixation: salvage of failed percutaneous odontoid screw fixation for odontoid fracture

    OpenAIRE

    Wu, Ai-Min; Jin, Hai-Ming; Lin, Zhong-Ke; Chi, Yong-Long; Wang, Xiang-Yang

    2017-01-01

    Background The objective of this study is to investigate the outcomes and safety of using percutaneous anterior C1/2 transarticular screw fixation as a salvage technique for odontoid fracture if percutaneous odontoid screw fixation fails. Methods Fifteen in 108 odontoid fracture patients (planned to be treated by percutaneous anterior odontoid screw fixation) were failed to introduce satisfactory odontoid screw trajectory. To salvage this problem, we chose the percutaneous anterior C1/2 trans...

  3. Nocturnal Gastroesophageal Reflux Revisited by Impedance-pH Monitoring

    Science.gov (United States)

    Blondeau, Kathleen; Mertens, Veerle; Tack, Jan; Sifrim, Daniel

    2011-01-01

    Background/Aims Impedance-pH monitoring allows detailed characterization of gastroesophageal reflux and esophageal activity associated with reflux. We assessed the characteristics of nocturnal reflux and esophageal activity preceding and following reflux. Methods Impedance-pH tracings from 11 healthy subjects and 76 patients with gastroesophageal reflux disease off acid-suppressive therapy were analyzed. Characteristics of nocturnal supine reflux, time distribution and esophageal activity seen on impedance at 2 minute intervals preceding and following reflux were described. Results Patients had more nocturnal reflux events than healthy subjects (8 [4-12] vs 2 [1-5], P = 0.002), with lower proportion of weakly acidic reflux (57% [35-78] vs 80% [60-100], P = 0.044). Nocturnal reflux was mainly liquid (80%) and reached the proximal esophagus more often in patients (6% vs 0%, P = 0.047). Acid reflux predominated in the first 2 hours (66%) and weakly acidic reflux in the last 3 hours (70%) of the night. Most nocturnal reflux was preceded by aboral flows and cleared by short lasting volume clearance. In patients, prolonged chemical clearance was associated with less esophageal activity. Conclusions Nocturnal weakly acidic reflux is as common as acid reflux in patients with gastroesophageal reflux disease, and predominates later in the night. Impedance-pH can predict prolonged chemical clearance after nocturnal acid reflux. PMID:21602991

  4. Regulators of nonsulfur purple phototrophic bacteria and the interactive control of CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy generation.

    Science.gov (United States)

    Dubbs, James M; Tabita, F Robert

    2004-06-01

    For the metabolically diverse nonsulfur purple phototrophic bacteria, maintaining redox homeostasis requires balancing the activities of energy supplying and energy-utilizing pathways, often in the face of drastic changes in environmental conditions. These organisms, members of the class Alphaproteobacteria, primarily use CO2 as an electron sink to achieve redox homeostasis. After noting the consequences of inactivating the capacity for CO2 reduction through the Calvin-Benson-Bassham (CBB) pathway, it was shown that the molecular control of many additional important biological processes catalyzed by nonsulfur purple bacteria is linked to expression of the CBB genes. Several regulator proteins are involved, with the two component Reg/Prr regulatory system playing a major role in maintaining redox poise in these organisms. Reg/Prr was shown to be a global regulator involved in the coordinate control of a number of metabolic processes including CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy-generation pathways. Accumulating evidence suggests that the Reg/Prr system senses the oxidation/reduction state of the cell by monitoring a signal associated with electron transport. The response regulator RegA/PrrA activates or represses gene expression through direct interaction with target gene promoters where it often works in concert with other regulators that can be either global or specific. For the key CO2 reduction pathway, which clearly triggers whether other redox balancing mechanisms are employed, the ability to activate or inactivate the specific regulator CbbR is of paramount importance. From these studies, it is apparent that a detailed understanding of how diverse regulatory elements integrate and control metabolism will eventually be achieved.

  5. Possible impacts of CO2 storage on the marine environment

    International Nuclear Information System (INIS)

    Poremski, H.J.

    2005-01-01

    This study examined the potential impacts of deep-sea carbon dioxide (CO 2 ) sequestration on the marine environment. The upper layers of oceans are currently saturated with CO 2 , while deeper ocean waters remain undersaturated. Arctic and Antarctic waters have higher uptake rates of CO 2 due to their lower temperatures. CO 2 deposited in Arctic and Antarctic waters sinks to the bottom of the ocean, and is then transported to equatorial latitudes, where stored amounts of CO 2 that are not fixed by biochemical processes will be released and enter the atmosphere again after a period of approximately 1000 years. Nearly 50 per cent of CO 2 fixation occurs as a result of phytoplankton growth, which is dependent on the availability of a range of nutrients, essential trace metals, and optimal physical conditions. Fertilization-induced CO 2 fixation in the sediments of southern oceans will result in nutrient depletion of bottom layers, which will in turn result in lower primary production levels at equatorial latitudes. Current modelling approaches to CO 2 injection assume that the injected CO 2 will dissolve in a plume extending 100 m around a riser. Retention times of several hundred years are anticipated. However, further research is needed to investigate the efficacy of CO 2 deep ocean storage technologies. Increased CO 2 uptake can also increase the formation of bicarbonate (HCO 3 ) acidification, decrease pH values, and inhibit the formation of biomass in addition to impacting on the calcification of many organisms. It was concluded that ocean storage by injection or deep storage is an untenable option at present due to the fact that the effects of excessive CO 2 in marine environments are not fully understood. 22 refs., 2 tabs

  6. A study of CO2 precipitation method considering an ionic CO2 and Ca(OH)2 slurry

    International Nuclear Information System (INIS)

    Park, Sangwon; Jo, Hoyong; Kang, Dongwoo; Park, Jinwon

    2014-01-01

    CCS (carbon capture and storage) is the most popular technology used for the reduction of CO 2 in the post-combustion stage. However, the CCS process has some disadvantages including uncertainty about the stability of the land that is used to store the separated CO 2 . Consequently, CCU (carbon capture and utilization) technologies have recently received increased attention as a possible replacement for CCS. In this study, we utilized CO 2 fixation methods by using the metal carbonate mechanism. We selected 5 and 30 wt% MEA (mono-ethanolamine) solutions to rapidly make a carbonate and Ca(OH) 2 slurry. In all of the experiments, normal temperature and pressure conditions were maintained (except during desorption to check for residual CO 2 in the MEA solution). Consequently, most of the CO 2 was converted to carbonate. The MEA converted CO 2 to ionic CO 2 and rapidly created calcium carbonate. Also the formed solids that were observed were determined to be CaCO 3 and Ca(OH) 2 by X-ray diffractometry. Also, the MEA solution could be reused to absorb CO 2 . Therefore, we have confirmed the development of our suggested CCS process. This process has the ability not only to reuse emitted CO 2 , but it can also be employed to reuse construction wastes that include heavy metals. - Highlights: • We propose novel CO 2 conversion technology by utilizing an amine solution. • In this study, alkaline solutions were used to produce CO 2 precipitate. • The MEA (mono-ethanolamine) solution has a sufficient potential to fix CO 2 with metal sources under moderate condition. • Also, the Ca(OH) 2 slurry yielded enough Ca 2+ ions to make carbonate

  7. Herbicide-induced changes in 14CO2 uptake of leaves of some crop and weed species

    International Nuclear Information System (INIS)

    Santakumari, M.; Rama Das, V.S.

    1980-01-01

    The effect of diuron or atrazine on the rate of photosynthetic 14 CO 2 uptake of two each crop (Pisum Sativum and Pennisetum typhoides) and weed species (Amaranthus viridis and Cyperus rotundus) was studied. The results indicated a marked inhibition of 14 CO 2 fixation of leaves within two hours after diuron or atrazine treatment. However the resistant plants were able to exhibit a recovery of the net photosynthetic rate subsequently while the susceptible plants failed to recover. The results suggested that even with fully open stomata and available NADPH, the normal CO 2 fixation was not restored by herbicide treated leaves. (author)

  8. Biochemical studies on the effect of fluoride on higher plants. 3. The effect of fluoride on dark carbon dioxide fixation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S F; Miller, G W

    1963-01-01

    Dark CO/sub 2/ fixation and phosphoenolpyruvate-carboxylase activity were studied in fluoride-necrotic and control soya-bean leaves. Necrotic leaves had a higher rate of dark CO/sub 2/ fixation than control leaves both in vivo and in vitro (phosphoenolpyruvate carboxylase). Results suggested that the accumulation of organic acids and amino acids in necrotic leaves resulted from an increased rate of dark CO/sub 2/ fixation. The possible role of fluoride in stimulating the carboxylation and its implication to necrosis are discussed.

  9. Current management of nocturnal enuresis.

    Science.gov (United States)

    Robson, Wm Lane M

    2008-07-01

    Nocturnal enuresis is an especially common problem with the potential to have an appreciable negative impact on the emotional health of a child. Our understanding of the pathogenesis continues to improve. A disorder of sleep arousal, a low nocturnal bladder capacity, and nocturnal polyuria are the three factors that interrelate to cause nocturnal enuresis. Constipation is a very common and often unrecognized factor that appreciably affects bladder function. Successful treatment involves interventions that simultaneously improve these factors. Self-esteem improves with any form of therapy and dryness is possible for the majority of children.

  10. Tropical Dominance of N2 Fixation in the North Atlantic Ocean

    Science.gov (United States)

    Marconi, Dario; Sigman, Daniel M.; Casciotti, Karen L.; Campbell, Ethan C.; Alexandra Weigand, M.; Fawcett, Sarah E.; Knapp, Angela N.; Rafter, Patrick A.; Ward, Bess B.; Haug, Gerald H.

    2017-10-01

    To investigate the controls on N2 fixation and the role of the Atlantic in the global ocean's fixed nitrogen (N) budget, Atlantic N2 fixation is calculated by combining meridional nitrate fluxes across World Ocean Circulation Experiment sections with observed nitrate 15N/14N differences between northward and southward transported nitrate. N2 fixation inputs of 27.1 ± 4.3 Tg N/yr and 3.0 ± 0.5 Tg N/yr are estimated north of 11°S and 24°N, respectively. That is, 90% of the N2 fixation in the Atlantic north of 11°S occurs south of 24°N in a region with upwelling that imports phosphorus (P) in excess of N relative to phytoplankton requirements. This suggests that, under the modern iron-rich conditions of the equatorial and North Atlantic, N2 fixation occurs predominantly in response to P-bearing, N-poor conditions. We estimate a N2 fixation rate of 30.5 ± 4.9 Tg N/yr north of 30°S, implying only 3 Tg N/yr between 30° and 11°S, despite evidence of P-bearing, N-poor surface waters in this region as well; this is consistent with iron limitation of N2 fixation in the South Atlantic. Since the ocean flows through the Atlantic surface in Pacific basins.

  11. Carbon assimilation in Eucalyptus urophylla grown under high atmospheric CO2 concentrations: A proteomics perspective.

    Science.gov (United States)

    Santos, Bruna Marques Dos; Balbuena, Tiago Santana

    2017-01-06

    Photosynthetic organisms may be drastically affected by the future climate projections of a considerable increase in CO 2 concentrations. Growth under a high concentration of CO 2 could stimulate carbon assimilation-especially in C3-type plants. We used a proteomics approach to test the hypothesis of an increase in the abundance of the enzymes involved in carbon assimilation in Eucalyptus urophylla plants grown under conditions of high atmospheric CO 2 . Our strategy allowed the profiling of all Calvin-Benson cycle enzymes and associated protein species. Among the 816 isolated proteins, those involved in carbon fixation were found to be the most abundant ones. An increase in the abundance of six key enzymes out of the eleven core enzymes involved in carbon fixation was detected in plants grown at a high CO 2 concentration. Proteome changes were corroborated by the detection of a decrease in the stomatal aperture and in the vascular bundle area in Eucalyptus urophylla plantlets grown in an environment of high atmospheric CO 2 . Our proteomics approach indicates a positive metabolic response regarding carbon fixation in a CO 2 -enriched atmosphere. The slight but significant increase in the abundance of the Calvin enzymes suggests that stomatal closure did not prevent an increase in the carbon assimilation rates. The sample enrichment strategy and data analysis used here enabled the identification of all enzymes and most protein isoforms involved in the Calvin-Benson-Bessham cycle in Eucalyptus urophylla. Upon growth in CO 2 -enriched chambers, Eucalyptus urophylla plantlets responded by reducing the vascular bundle area and stomatal aperture size and by increasing the abundance of six of the eleven core enzymes involved in carbon fixation. Our proteome approach provides an estimate on how a commercially important C3-type plant would respond to an increase in CO 2 concentrations. Additionally, confirmation at the protein level of the predicted genes involved in

  12. Stomata of the CAM plant Tillandsia recurvata respond directly to humidity.

    Science.gov (United States)

    Lange, O L; Medina, E

    1979-01-01

    Under controlled conditions, CO 2 exchange of Tillandsia recurvata showed all characteristics of CAM. During the phase of nocturnal CO 2 fixation stomata of the plant responded sensitively to changes in ambient air humidity. Dry air resulted in an increase, moist air in a decrease of diffusion resistance. The evaporative demand of the air affected the level of stomatal resistance during the entire night period. Due to stomatal closure, the total nocturnal water loss of T. recurvata was less at low than at high humidity. It is concluded that stomata respond directly to humidity and not via bulk tissue water conditions of the leaves. Such control of transpiration may optimize water use efficiency for this almost rootless, extreme epiphyte.

  13. Monitoring of Al3+-induced changes in growth, 14Co2 fixation of maize seedlings and some elements estimation by spectroscopic method

    International Nuclear Information System (INIS)

    Mostafa, I.Y.; Kamel, H.A.; Abd-ElAal, M.S.

    2004-01-01

    This experiment was carried out to study the effect of aluminum on the corn seedlings. Corn grains were divided to 9 groups. In the 1 st , 2 nd , 3 rd and 4 th groups, corn grains were soaked in 0.1, 1, 10 and 100 mM of Al solutions, respectively for 6 hours and sown in 15-cm pots. In the 5 th , 6 th . 7 th and 8 th groups, corn grains were sown in pots containing soil treated with 0.1, 1, 10 and 100 mM of Al solutions, respectively. The 9 th group used as control (neither grains nor soil treated with Al). After 10 days from cultivation lengths and weights of the seedlings, chlorophyll 'a' and 'b contents', 14 Co 2 fixation and some mineral ions were measured. The lower concentration 0.1 mM the soil treatments caused a significant increase in the shoot length/plant and insignificant increase in the root length when compared with the control, while all other concentrations in the two treatments caused a significant decrease in both the shoot and lengths. Shoot and fresh and dry weights/plant were significantly reduced by the different AI 3+ concentrations in both treatments except 0.1 mM of soil treatment. The ratio of dry weight/fresh weight of root was only increased in case of soil treatments. Chlorophyll 'a' and b content significantly increased by 0.1 mM Al in case of soaking and by 0.1 and 1 mM in case of soil treatments. 14 Co 2 fixation was significantly reduced due to soaking treatments, while it significantly increased by 0.1 mM Al 3+ - in case of soil treatments. Determination of Al, Fe, Mn, Ca, Mg, K and Na was carried out by flame atomic absorption spectrometry (F-AAS) with a good analytical speed out without noticeable interference

  14. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession

    Science.gov (United States)

    Batterman, Sarah A.; Hedin, Lars O.; van Breugel, Michiel; Ransijn, Johannes; Craven, Dylan J.; Hall, Jefferson S.

    2013-10-01

    Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO2 may be constrained by nitrogen, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N2), but it is unclear whether this functional group can supply the nitrogen needed as forests recover from disturbance or previous land use, or expand in response to rising CO2 (refs 6, 8). Here we identify a powerful feedback mechanism in which N2 fixation can overcome ecosystem-scale deficiencies in nitrogen that emerge during periods of rapid biomass accumulation in tropical forests. Over a 300-year chronosequence in Panama, N2-fixing tree species accumulated carbon up to nine times faster per individual than their non-fixing neighbours (greatest difference in youngest forests), and showed species-specific differences in the amount and timing of fixation. As a result of fast growth and high fixation, fixers provided a large fraction of the nitrogen needed to support net forest growth (50,000kg carbon per hectare) in the first 12years. A key element of ecosystem functional diversity was ensured by the presence of different N2-fixing tree species across the entire forest age sequence. These findings show that symbiotic N2 fixation can have a central role in nitrogen cycling during tropical forest stand development, with potentially important implications for the ability of tropical forests to sequester CO2.

  15. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession.

    Science.gov (United States)

    Batterman, Sarah A; Hedin, Lars O; van Breugel, Michiel; Ransijn, Johannes; Craven, Dylan J; Hall, Jefferson S

    2013-10-10

    Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO2 may be constrained by nitrogen, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N2), but it is unclear whether this functional group can supply the nitrogen needed as forests recover from disturbance or previous land use, or expand in response to rising CO2 (refs 6, 8). Here we identify a powerful feedback mechanism in which N2 fixation can overcome ecosystem-scale deficiencies in nitrogen that emerge during periods of rapid biomass accumulation in tropical forests. Over a 300-year chronosequence in Panama, N2-fixing tree species accumulated carbon up to nine times faster per individual than their non-fixing neighbours (greatest difference in youngest forests), and showed species-specific differences in the amount and timing of fixation. As a result of fast growth and high fixation, fixers provided a large fraction of the nitrogen needed to support net forest growth (50,000 kg carbon per hectare) in the first 12 years. A key element of ecosystem functional diversity was ensured by the presence of different N2-fixing tree species across the entire forest age sequence. These findings show that symbiotic N2 fixation can have a central role in nitrogen cycling during tropical forest stand development, with potentially important implications for the ability of tropical forests to sequester CO2.

  16. Community structure and soil pH determine chemoautotrophic carbon dioxide fixation in drained paddy soils.

    Science.gov (United States)

    Long, Xi-En; Yao, Huaiying; Wang, Juan; Huang, Ying; Singh, Brajesh K; Zhu, Yong-Guan

    2015-06-16

    Previous studies suggested that microbial photosynthesis plays a potential role in paddy fields, but little is known about chemoautotrophic carbon fixers in drained paddy soils. We conducted a microcosm study using soil samples from five paddy fields to determine the environmental factors and quantify key functional microbial taxa involved in chemoautotrophic carbon fixation. We used stable isotope probing in combination with phospholipid fatty acid (PLFA) and molecular approaches. The amount of microbial (13)CO2 fixation was determined by quantification of (13)C-enriched fatty acid methyl esters and ranged from 21.28 to 72.48 ng of (13)C (g of dry soil)(-1), and the corresponding ratio (labeled PLFA-C:total PLFA-C) ranged from 0.06 to 0.49%. The amount of incorporationof (13)CO2 into PLFAs significantly increased with soil pH except at pH 7.8. PLFA and high-throughput sequencing results indicated a dominant role of Gram-negative bacteria or proteobacteria in (13)CO2 fixation. Correlation analysis indicated a significant association between microbial community structure and carbon fixation. We provide direct evidence of chemoautotrophic C fixation in soils with statistical evidence of microbial community structure regulation of inorganic carbon fixation in the paddy soil ecosystem.

  17. High CO/sub 2/ partial pressure effects on dark and light CO/sub 2/ fixation and metabolism in Vicia faba leaves

    Energy Technology Data Exchange (ETDEWEB)

    Coudret, A.; Ferron, F.; Laffray, D.

    1985-01-01

    Stomatal opening on Vicia faba can be induced by high CO/sub 2/ partial pressures (10.2%) in dark as well as in light. Stomatal aperture was measured in both cases with a hydrogen porometer. The distribution of /sup 14/C among early products of photosynthesis was studied. Comparisons are made with carboxylations occurring when stomata were open in the dark with CO/sub 2/-free air and in light with 0.034% CO/sub 2/. Results showed that in high CO/sub 2/ partial pressure in light, less radioactivity was incorporated in Calvin cycle intermediates and more in sucrose. ..beta.. carboxylations and photorespiration seemed to be inhibited. In the dark in both CO/sub 2/ conditions, /sup 14/C incorporation was found in malate and aspartate but also in serine and glycerate in high CO/sub 2/ conditions. In light these changes in metabolic pathways may be related with the deleterious effects recorded on leaves after long-term expositions to high partial pressure of CO/sub 2/.

  18. Effect of CO2 Concentration on Growth and Biochemical Composition of Newly Isolated Indigenous Microalga Scenedesmus bajacalifornicus BBKLP-07.

    Science.gov (United States)

    Patil, Lakkanagouda; Kaliwal, Basappa

    2017-05-01

    Photosynthetic mitigation of CO 2 through microalgae is gaining great importance due to its higher photosynthetic ability compared to plants, and the biomass can be commercially exploited for various applications. CO 2 fixation capability of the newly isolated freshwater microalgae Scenedesmus bajacalifornicus BBKLP-07 was investigated using a 1-l photobioreactor. The cultivation was carried at varying concentration of CO 2 ranging from 5 to 25%, and the temperature and light intensities were kept constant. A maximum CO 2 fixation rate was observed at 15% CO 2 concentration. Characteristic growth parameters such as biomass productivity, specific growth rate, and maximum biomass yield, and biochemical parameters such as carbohydrate, protein, lipid, chlorophyll, and carotenoid were determined and discussed. It was observed that the effect of CO 2 concentration on growth and biochemical composition was quite significant. The maximum biomass productivity was 0.061 ± 0.0007 g/l/day, and the rate of CO 2 fixation was 0.12 ± 0.002 g/l/day at 15% CO 2 concentration. The carbohydrate and lipid content were maximum at 25% CO 2 with 26.19 and 25.81% dry cell weight whereas protein, chlorophyll, and carotenoid contents were 32.89% dry cell weight, 25.07 μg/ml and 6.15 μg/ml respectively at 15% CO 2 concentration.

  19. Processes regulating pCO2 in the surface waters of the central eastern Gotland Sea: a model study

    Directory of Open Access Journals (Sweden)

    Bernd Schneider

    2011-09-01

    Full Text Available This work presents a one-dimensional simulation of the seasonal changes in CO2 partial pressure (pCO2. The results of the model were constrained using data from observations, which improved the model's ability to estimate nitrogen fixation in the central Baltic Sea and allowed the impact of nitrogen fixation on the ecological state of the Baltic Sea to be studied. The model used here is the public domain water-column model GOTM (General Ocean Turbulence Model, which in this study was coupled with a modifed Baltic Sea ecosystem model, ERGOM (The Baltic Sea Research Institute's ecosystem model. To estimate nitrogen fixation rates in the Gotland Sea, the ERGOM model was modified by including an additional cyanobacteria group able to fix nitrogen from March to June. Furthermore, the model was extended by a simple CO2 cycle. Variable C:P and N:P ratios, controlled by phosphate concentrations in ambient water, were used to represent cyanobacteria, detritus and sediment detritus. This approach improved the model's ability to reproduce sea-surface phosphate and pCO2 dynamics. The resulting nitrogen fixation rates in 2005 for the two simulations, with and without the additional cyanobacteria group, were 259 and 278 mmol N m-2 year-1respectively.

  20. CARBON DIOXIDE FIXATION.

    Energy Technology Data Exchange (ETDEWEB)

    FUJITA,E.

    2000-01-12

    Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

  1. CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum

    Directory of Open Access Journals (Sweden)

    U. Riebesell

    2010-09-01

    Full Text Available CO2/pH perturbation experiments were carried out under two different pCO2 levels (39.3 and 101.3 Pa to evaluate effects of CO2-induced ocean acidification on the marine diatom Phaeodactylum tricornutum. After acclimation (>20 generations to ambient and elevated CO2 conditions (with corresponding pH values of 8.15 and 7.80, respectively, growth and photosynthetic carbon fixation rates of high CO2 grown cells were enhanced by 5% and 12%, respectively, and dark respiration stimulated by 34% compared to cells grown at ambient CO2. The half saturation constant (Km for carbon fixation (dissolved inorganic carbon, DIC increased by 20% under the low pH and high CO2 condition, reflecting a decreased affinity for HCO3– or/and CO2 and down-regulated carbon concentrating mechanism (CCM. In the high CO2 grown cells, the electron transport rate from photosystem II (PSII was photoinhibited to a greater extent at high levels of photosynthetically active radiation, while non-photochemical quenching was reduced compared to low CO2 grown cells. This was probably due to the down-regulation of CCM, which serves as a sink for excessive energy. The balance between these positive and negative effects on diatom productivity will be a key factor in determining the net effect of rising atmospheric CO2 on ocean primary production.

  2. Dilution-triggered SMM behavior under zero field in a luminescent Zn2Dy2 tetranuclear complex incorporating carbonato-bridging ligands derived from atmospheric CO2 fixation.

    Science.gov (United States)

    Titos-Padilla, Silvia; Ruiz, José; Herrera, Juan Manuel; Brechin, Euan K; Wersndorfer, Wolfgang; Lloret, Francesc; Colacio, Enrique

    2013-08-19

    The synthesis, structure, magnetic, and luminescence properties of the Zn2Dy2 tetranuclear complex of formula {(μ3-CO3)2[Zn(μ-L)Dy(NO3)]2}·4CH3OH (1), where H2L is the compartmental ligand N,N',N″-trimethyl-N,N″-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylenetriamine, are reported. The carbonate anions that bridge two Zn(μ-L)Dy units come from the atmospheric CO2 fixation in a basic medium. Fast quantum tunneling relaxation of the magnetization (QTM) is very effective in this compound, so that single-molecule magnet (SMM) behavior is only observed in the presence of an applied dc field of 1000 Oe, which is able to partly suppress the QTM relaxation process. At variance, a 1:10 Dy:Y magnetic diluted sample, namely, 1', exhibits SMM behavior at zero applied direct-current (dc) field with about 3 times higher thermal energy barrier than that in 1 (U(eff) = 68 K), thus demonstrating the important role of intermolecular dipolar interactions in favoring the fast QTM relaxation process. When a dc field of 1000 Oe is applied to 1', the QTM is almost fully suppressed, the reversal of the magnetization slightly slows, and U(eff) increases to 78 K. The dilution results combined with micro-SQUID magnetization measurements clearly indicate that the SMM behavior comes from single-ion relaxation of the Dy(3+) ions. Analysis of the relaxation data points out that a Raman relaxation process could significantly affect the Orbach relaxation process, reducing the thermal energy barrier U(eff) for slow relaxation of the magnetization.

  3. Abundance and distribution of archaeal acetyl-CoA/propionyl-CoA carboxylase genes indicative for putatively chemoautotrophic Archaea in the tropical Atlantic's interior

    OpenAIRE

    Bergauer, Kristin; Sintes, Eva; van Bleijswijk, Judith; Witte, Harry; Herndl, Gerhard J; Lueders, Tillmann

    2013-01-01

    Recently, evidence suggests that dark CO2 fixation in the pelagic realm of the ocean does not only occur in the suboxic and anoxic water bodies but also in the oxygenated meso- and bathypelagic waters of the North Atlantic. To elucidate the significance and phylogeny of the key organisms mediating dark CO2 fixation in the tropical Atlantic, we quantified functional genes indicative for CO2 fixation. We used a Q-PCR-based assay targeting the bifunctional acetyl-CoA/propionyl-CoA carboxylase (a...

  4. Nocturnal continuous glucose monitoring

    DEFF Research Database (Denmark)

    Bay, Christiane; Kristensen, Peter Lommer; Pedersen-Bjergaard, Ulrik

    2013-01-01

    Abstract Background: A reliable method to detect biochemical nocturnal hypoglycemia is highly needed, especially in patients with recurrent severe hypoglycemia. We evaluated reliability of nocturnal continuous glucose monitoring (CGM) in patients with type 1 diabetes at high risk of severe...

  5. A New Class of Metal-Cyclam-Based Zirconium Metal–Organic Frameworks for CO 2 Adsorption and Chemical Fixation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jie [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States). Dept. of Chemistry; Usov, Pavel M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States). Dept. of Chemistry; Xu, Wenqian [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) and X-ray Science Division; Celis-Salazar, Paula J. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States). Dept. of Chemistry; Lin, Shaoyang [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States). Dept. of Chemistry; Kessinger, Matthew C. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States). Dept. of Chemistry; Landaverde-Alvarado, Carlos [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States). Dept. of Chemical Engineering and Macromolecules Innovation Inst.; Cai, Meng [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States). Dept. of Chemistry; May, Ann M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States). Dept. of Chemistry; Slebodnick, Carla [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States). Dept. of Chemistry; Zhu, Dunru [Nanjing Univ. of Technology (China). State Key Lab. of Materials-Oriented Chemical Engineering (MCE) and College of Chemical Engineering; Senanayake, Sanjaya D. [Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Chemistry; Morris, Amanda J. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States). Dept. of Chemistry and Macromolecules Innovation Inst.

    2017-12-22

    Metal-organic frameworks (MOFs) have shown great promise in catalysis, mainly due to their high content of active centers, large internal surface areas, tunable pore size, and versatile chemical functionalities. However, it is a challenge to rationally design and construct MOFs that can serve as highly stable and reusable heterogeneous catalysts. Here two new robust 3D porous metal-cyclam-based zirconium MOFs, denoted VPI-100 (Cu) and VPI-100 (Ni), have been prepared by a modulated synthetic strategy. The frameworks are assembled by eight-connected Zr-6 clusters and metallocyclams as organic linkers. Importantly, the cyclam core has accessible axial coordination sites for guest interactions and maintains the electronic properties exhibited by the parent cyclam ring. The VPI-100 MOFs exhibit excellent chemical stability in various organic and aqueous solvents over a wide pH range and show high CO2 uptake capacity (up to similar to 9.83 wt% adsorption at 273 K under 1 atm). Moreover, VPI-100 MOFs demonstrate some of the highest reported catalytic activity values (turnover frequency and conversion efficiency) among Zr-based MOFs for the chemical fixation of CO2 with epoxides, including sterically hindered epoxides. The MOFs, which bear dual catalytic sites (Zr and Cu/Ni), enable chemistry not possible with the cyclam ligand under the same conditions and can be used as recoverable stable heterogeneous catalysts without losing performance.

  6. Effects of some inhibitors of protein synthesis on the chloroplast fine structure, CO2 fixation and the Hill reaction activity

    Directory of Open Access Journals (Sweden)

    S. Więckowski

    2015-01-01

    Full Text Available A comparative study concerning the effects of chloramphenicol (100 μg ml-1, actidione (10 μg ml-1, 5-bromouracil (190 μg ml-1, actinomycin D (30 μg ml-1 and DL-ethionine (800 μg ml-1 on the chloroplast fine structure, 14CO2 incorporation and the Hill reaction activity was the subject of the experiments presented in this paper. The experiments were conducted on bean seedlings under the conditions when chlorophyll accumulation was inhibited only partially. The results obtained indicate that chloromphenicol is responsible for the reduction of the number of grana per section of plastid and for the formation of numerous vesicles in the stroma. In the presence of actidione, actinomycin D or DL-ethionine the lamellae are poorly differentiated into .stroma and granum regions and there occur disturbances in the typical orientation of lamellae within chloroplasts. Only in the presence of 5-bromouracil the development of chloroplast structure resemble that in control plants. A comparison of the results obtained with those published earlier (Więckowski et al., 1974; Ficek and Więckowski, 1974 shows that such processes as assimilatory pigment accumulation, the rate of CO2 fixation, the Hill reaction activity, and the development of lamellar system are suppressed in a different extent by the inhibitors used.

  7. Elevated CO2 did not mitigate the effect of a short-term drought on biological soil crusts

    Science.gov (United States)

    Wertin, Timothy M.; Phillips, Susan L.; Reed, Sasha C.; Belnap, Jayne

    2012-01-01

    Biological soil crusts (biocrusts) are critical components of arid and semi-arid ecosystems that contribute significantly to carbon (C) and nitrogen (N) fixation, water retention, soil stability, and seedling recruitment. While dry-land ecosystems face a number of environmental changes, our understanding of how biocrusts may respond to such perturbation remains notably poor. To determine the effect that elevated CO2 may have on biocrust composition, cover, and function, we measured percent soil surface cover, effective quantum yield, and pigment concentrations of naturally occurring biocrusts growing in ambient and elevated CO2 at the desert study site in Nevada, USA, from spring 2005 through spring 2007. During the experiment, a year-long drought allowed us to explore the interacting effects that elevated CO2 and water availability may have on biocrust cover and function. We found that, regardless of CO2 treatment, precipitation was the major regulator of biocrust cover. Drought reduced moss and lichen cover to near-zero in both ambient and elevated CO2 plots, suggesting that elevated CO2 did not alleviate water stress or increase C fixation to levels sufficient to mitigate drought-induced reduction in cover. In line with this result, lichen quantum yield and soil cyanobacteria pigment concentrations appeared more strongly dependent upon recent precipitation than CO2 treatment, although we did find evidence that, when hydrated, elevated CO2 increased lichen C fixation potential. Thus, an increase in atmospheric CO2 may only benefit biocrusts if overall climate patterns shift to create a wetter soil environment.

  8. Response of Nodularia spumigena to pCO2 – Part 1: Growth, production and nitrogen cycling

    Directory of Open Access Journals (Sweden)

    M. Nausch

    2012-08-01

    Full Text Available Heterocystous cyanobacteria of the genus Nodularia form extensive blooms in the Baltic Sea and contribute substantially to the total annual primary production. Moreover, they dispense a large fraction of new nitrogen to the ecosystem when inorganic nitrogen concentration in summer is low. Thus, it is of ecological importance to know how Nodularia will react to future environmental changes, in particular to increasing carbon dioxide (CO2 concentrations and what consequences there might arise for cycling of organic matter in the Baltic Sea. Here, we determined carbon (C and dinitrogen (N2 fixation rates, growth, elemental stoichiometry of particulate organic matter and nitrogen turnover in batch cultures of the heterocystous cyanobacterium Nodularia spumigena under low (median 315 μatm, mid (median 353 μatm, and high (median 548 μatm CO2 concentrations. Our results demonstrate an overall stimulating effect of rising pCO2 on C and N2 fixation, as well as on cell growth. An increase in pCO2 during incubation days 0 to 9 resulted in an elevation in growth rate by 84 ± 38% (low vs. high pCO2 and 40 ± 25% (mid vs. high pCO2, as well as in N2 fixation by 93 ± 35% and 38 ± 1%, respectively. C uptake rates showed high standard deviations within treatments and in between sampling days. Nevertheless, C fixation in the high pCO2 treatment was elevated compared to the other two treatments by 97% (high vs. low and 44% (high vs. mid at day 0 and day 3, but this effect diminished afterwards. Additionally, elevation in carbon to nitrogen and nitrogen to phosphorus ratios of the particulate biomass formed (POC : POP and PON : POP was observed at high pCO2. Our findings suggest that rising pCO2 stimulates the growth of heterocystous diazotrophic cyanobacteria, in a similar way as reported for the non-heterocystous diazotroph Trichodesmium. Implications for biogeochemical cycling and food web dynamics, as well as ecological and socio-economical aspects in the

  9. Carbon dioxide (CO 2 ) utilizing strain database | Saini | African ...

    African Journals Online (AJOL)

    Culling of excess carbon dioxide from our environment is one of the major challenges to scientific communities. Many physical, chemical and biological methods have been practiced to overcome this problem. The biological means of CO2 fixation using various microorganisms is gaining importance because database of ...

  10. Pathophysiology of nocturnal lower urinary tract symptoms in older patients with urinary incontinence.

    Science.gov (United States)

    Denys, Marie-Astrid; Decalf, Veerle; Kumps, Candy; Petrovic, Mirko; Goessaert, An-Sofie; Everaert, Karel

    2017-11-01

    To explore the mismatch between functional bladder capacity and nocturnal urine production, and to study the pathophysiology of an increased nocturnal urine production in older patients with urinary incontinence. The present prospective observational study included adults aged ≥65 years with urinary incontinence. Participants completed questionnaires, frequency volume charts and renal function profiles. The nocturnal lower urinary tract symptom index was defined as nocturnal urine output/maximum voided volume; the nocturnal polyuria index as nocturnal/24 h urine output. The median age (n = 95) was 74 years (69-79), 87% were women and 73% had nocturnal lower urinary tract symptoms (nocturnal urinary incontinence or nocturia ≥2). Participants with nocturnal lower urinary tract symptoms had a significantly higher nocturnal urine output (809 mL vs 650 mL; P = 0.001) and no significant difference in maximum voided volume (350 mL vs 437 mL; P = 0.079) compared with participants without nocturnal lower urinary tract symptoms. Participants (nocturnal polyuria index >33% [n = 56], nocturnal polyuria index >40% [n = 42], nocturnal lower urinary tract symptom index >1.87 [n = 51]) showed higher night-time diuresis rates, free water and sodium clearance compared with during the daytime. Controls (nocturnal polyuria index ≤33% [n = 26], nocturnal polyuria index ≤40% [n = 40], nocturnal lower urinary tract symptom index ≤1.87 [n = 44]) had no circadian rhythm in their diuresis rate or sodium clearance, but more nocturnal free water clearance compared with during the daytime. The majority of older adults with urinary incontinence present nocturnal lower urinary tract symptoms. An increased nocturnal sodium diuresis seems to be the only mechanism differentiating patients with nocturnal lower urinary tract symptoms from controls. © 2017 The Japanese Urological Association.

  11. CO2 Biofixation and Growth Kinetics of Chlorella vulgaris and Nannochloropsis gaditana.

    Science.gov (United States)

    Adamczyk, Michał; Lasek, Janusz; Skawińska, Agnieszka

    2016-08-01

    CO2 biofixation was investigated using tubular bioreactors (15 and 1.5 l) either in the presence of green algae Chlorella vulgaris or Nannochloropsis gaditana. The cultivation was carried out in the following conditions: temperature of 25 °C, inlet-CO2 of 4 and 8 vol%, and artificial light enhancing photosynthesis. Higher biofixation were observed in 8 vol% CO2 concentration for both microalgae cultures than in 4 vol%. Characteristic process parameters such as productivity, CO2 fixation, and kinetic rate coefficient were determined and discussed. Simplified and advanced methods for determination of CO2 fixation were compared. In a simplified method, it is assumed that 1 kg of produced biomass equals 1.88 kg recycled CO2. Advance method is based on empirical results of the present study (formula with carbon content in biomass). It was observed that application of the simplified method can generate large errors, especially if the biomass contains a relatively low amount of carbon. N. gaditana is the recommended species for CO2 removal due to a high biofixation rate-more than 1.7 g/l/day. On day 10 of cultivation, the cell concentration was more than 1.7 × 10(7) cells/ml. In the case of C. vulgaris, the maximal biofixation rate and cell concentration did not exceed 1.4 g/l/day and 1.3 × 10(7) cells/ml, respectively.

  12. Experimental and simulation studies of iron oxides for geochemical fixation of CO2-SO2 gas mixtures

    Science.gov (United States)

    Garcia, Susana; Rosenbauer, Robert J.; Palandri, James; Maroto-Valer, M. Mercedes

    2011-01-01

    Iron-bearing minerals are reactive phases of the subsurface environment and could potentially trap CO2–SO2gas mixtures derived from fossil fuel combustion processes by their conversion to siderite (FeCO3) and dissolved sulfate. Changes in fluid and mineral compositions resulting from reactions, involving the co-injection of SO2 with CO2 were observed both theoretically and experimentally. Experiments were conducted with a natural hematite (α-Fe2O3) sample. A high pressure-high temperature apparatus was used to simulate conditions in geologic formations deeper than 800 m, where CO2 is in the supercritical state. Solid samples were allowed to react with a NaCl–NaOH brine and SO2-bearing CO2-dominated gas mixtures. The predicted equilibrium mineral assemblage at 100 °C and 250 bar became hematite, dawsonite (NaAl(OH)2CO3), siderite (FeCO3) and quartz (SiO2). Experimentally, siderite and dawsonite, derived from the presence of kaolinite (Al2Si2O5(OH)4) in the parent material, were present in residual solids at longer reaction time intervals, which agreed well with results from the modelling work.

  13. Effects of long-term elevated CO2, warming, and prolonged drought on Pleurozium-associated diazotrophic activity and abundance

    Science.gov (United States)

    Dyrnum, Kristine; Priemé, Anders; Michelsen, Anders

    2014-05-01

    Nitrogen (N2) fixation is the primary natural influx of N to terrestrial ecosystems, and changes in N2 fixation may have consequences for primary productivity and thus ecosystem function. We studied the activity and abundance of diazotrophs associated with the feather moss Pleurozium schreberi in a temperate heathland, after seven years of global change manipulations, including elevated atmospheric CO2 (510 ppm), increased temperature (0.5-1.5 ° C), and prolonged pre-summer droughts (4-6 weeks /year). Acetylene reduction assay was carried out monthly to monitor N2 fixation rates throughout one year, while nif H copy abundance, serving as a diazotroph abundance estimate, was measured by quantitative polymerase chain reaction (q-PCR). Prolonged summer droughts significantly increased both N2 fixation and nif H copy abundance, contrasting previous studies that demonstrate a direct negative correlation between N2 fixation and water availability. A shift in the relative abundance of N2-fixing bacteria from the green, upper parts of the moss stem to the lower, brown parts was observed. This shift could make diazotrophs less sensitive to desiccation, enabling N2 fixation to be upheld for longer during drought and thus causing higher abundance. Increased temperature likewise had a positive effect on the diazotroph abundance, although this did not translate into increased activity. Possibly, warming protects diazotrophs during extreme cold events, while actual N2 fixation is limited by water, disregarding a rise in potential N2 fixation caused by higher abundance. Increased CO2 caused no significant diazotroph response. Our study showed that long-term increase in temperature and recurrent drought events cause higher diazotroph abundance in Pleurozium schreberi and thus enhance the potential N2 fixations rate. Furthermore, our results indicate that diazotrophs may alter colonization patterns and thereby actively remain in the moss fraction less likely affected by

  14. Fixation of metallic sulfosalicylate complexes on an anionic exchange resin

    International Nuclear Information System (INIS)

    Cahuzac, S.

    1969-06-01

    Since sulfosalicylate ions have acid-base properties, sulfosalicylate complexes have an apparent stability which varies with the ph. As a result, the fixation of sulfo-salicylates on an anionic exchange resin depends on the ph of the solution in equilibrium with the resin. This research has been aimed at studying the influence of the ph on the fixation on an anionic exchange resin (Dowex 1 x 4) of sulfosalicylate anions on the one hand, and of metallic sulfosalicylate complexes on the other hand. In the first part of this work, a determination has been made, by frontal analysis of the distribution of sulfosalicylate ions in the resin according to the total sulfosalicylate I concentration in the aqueous solution in equilibrium with the resin. The exchange constants of these ions between the resin and the solution have been calculated. In the second part, a study has been made of the fixation of anionic sulfosalicylate complexes of Fe(III), Al(III), Cr(III), Cu(II), Ni(II), Co(II), Zn(II), Mn(II), Cd(II), Fe(II) and UO 2 2+ . By measuring the partition coefficients of these different elements between the resin and the solution it has been possible to give interpretation for the modes of fixation of the metallic ions, and to calculate their exchange constant between the resin and the solution. The relationship has been established for each metallic element studied, between its partition coefficient, the ph and the total concentration of the complexing agent in solution. Such a relationship makes it possible to predict, for given conditions, the nature of the species in solution and in the resin, as well as the partition coefficient of a metallic, element. Finally, in the third part of the work, use has been made of results obtained previously, to carry out some separations (Ni 2+ - Co 2+ ; Ni 2+ - Co 2+ - Cu 2+ ; UO 2 2+ - Fe 3+ ; UO 2 2+ - Cr 3+ ; UO 2 2+ - Cu 2+ ; UO 2 2+ - Ni 2+ ; UO 2 2+ - Co 2+ ; UO 2 2+ - Mn 2+ and UO 2 2+ - Cd 2+ ), as well as the purification

  15. Carbon dioxide fixation by microalgae cultivated in open bioreactors

    International Nuclear Information System (INIS)

    Centeno da Rosa, Ana Priscila; Fernandes Carvalho, Lisiane; Goldbeck, Luzia; Vieira Costa, Jorge Alberto

    2011-01-01

    Highlights: → We studied the growth and CO 2 fixation by Spirulina LEB18 and Chlorella kessleri. → The maximum dailyfixation was obtained for Spirulina with an injection of 6% of CO 2 . → The microalgae presented growth during the 20 d of culture with up to 18% of CO 2 . → The use of CO 2 from industrial generation decreases the cost of producing biomass. - Abstract: The biofixation of carbon dioxide (CO 2 ) by microalgae has been proven to be an efficient and economical method, mainly due to the photosynthetic ability of these microorganisms to use this gas as a source of nutrients for their development. The aim of this work was to study the growth of Spirulina LEB18 and Chlorella kessleri microalgae, exposed to controlled and non-controlled conditions, with the injection of different concentrations of CO 2 . The cultures was carried out in 6 L open raceway ponds, under controlled conditions at 30 o C and 39 μE m -2 s -1 and under non-controlled conditions, protected by a tunnel of transparent film. The experiments were subjected to CO 2 injections at concentrations of 0.038, 6, 12 and 18% (v/v). The highest concentration of biomass (4.95 g L -1 ) and maximum daily fixation (0.21 g g -1 d -1 ) were obtained for Spirulina LEB18 in culture that was prepared in non-controlled conditions with an injection of 6% (v/v) of CO 2 . C. kessleri had maximum (p -1 ) when grown with 18% (v/v) of CO 2 in non-controlled conditions of cultivation.

  16. N-2 fixation by non-heterocystous cyanobacteria

    NARCIS (Netherlands)

    Bergman, B.; Gallon, J.R.; Rai, A.N.; Stal, L.J.

    1997-01-01

    Many, though not all, non-heterocystous cyanobacteria can fix N-2. However, very few strains can fix N-2 aerobically. Nevertheless, these organisms may make a substantial contribution to the global nitrogen cycle. In this general review, N-2 fixation by laboratory cultures and natural populations of

  17. Niche convergence suggests functionality of the nocturnal fovea.

    Science.gov (United States)

    Moritz, Gillian L; Melin, Amanda D; Tuh Yit Yu, Fred; Bernard, Henry; Ong, Perry S; Dominy, Nathaniel J

    2014-01-01

    The fovea is a declivity of the retinal surface associated with maximum visual acuity. Foveae are widespread across vertebrates, but among mammals they are restricted to haplorhine primates (tarsiers, monkeys, apes, and humans), which are primarily diurnal. Thus primates have long contributed to the view that foveae are functional adaptations to diurnality. The foveae of tarsiers, which are nocturnal, are widely interpreted as vestigial traits and therefore evidence of a diurnal ancestry. This enduring premise is central to adaptive hypotheses on the origins of anthropoid primates; however, the question of whether tarsier foveae are functionless anachronisms or nocturnal adaptations remains open. To explore this question, we compared the diets of tarsiers (Tarsius) and scops owls (Otus), taxa united by numerous anatomical homoplasies, including foveate vision. A functional interpretation of these homoplasies predicts dietary convergence. We tested this prediction by analyzing stable isotope ratios that integrate dietary information. In Borneo and the Philippines, the stable carbon isotope compositions of Tarsius and Otus were indistinguishable, whereas the stable nitrogen isotope composition of Otus was marginally higher than that of Tarsius. Our results indicate that species in both genera consumed mainly ground-dwelling prey. Taken together, our findings support a functional interpretation of the many homoplasies shared by tarsiers and scops owls, including a retinal fovea. We suggest that the fovea might function similarly in tarsiers and scops owls by calibrating the auditory localization pathway. The integration of auditory localization and visual fixation during prey detection and acquisition might be critical at low light levels.

  18. Dark Matters: Challenges of Nocturnal Communication Between Plants and Animals in Delivery of Pollination Services.

    Science.gov (United States)

    Borges, Renee M

    2018-03-01

    The night is a special niche characterized by dim light, lower temperatures, and higher humidity compared to the day. Several animals have made the transition from the day into the night and have acquired unique adaptations to cope with the challenges of performing nocturnal activities. Several plant species have opted to bloom at night, possibly as a response to aridity to prevent excessive water loss through evapotranspiration since flowering is often a water-demanding process, or to protect pollen from heat stress. Nocturnal pollinators have visual adaptations to function under dim light conditions but may also trade off vision against olfaction when they are dependent on nectar-rewarding and scented flowers. Nocturnal pollinators may use CO 2 and humidity cues emanating from freshly-opened flowers as indicators of nectar-rich resources. Some endothermic nocturnal insect pollinators are attracted to thermogenic flowers within which they remain to obtain heat as a reward to increase their energy budget. This review focuses on mechanisms that pollinators use to find flowers at night, and the signals that nocturnally blooming flowers may employ to attract pollinators under dim light conditions. It also indicates gaps in our knowledge. While millions of years of evolutionary time have given pollinators and plants solutions to the delivery of pollination services and to the offering of appropriate rewards, this history of successful evolution is being threatened by artificial light at night. Excessive and inappropriate illumination associated with anthropogenic activities has resulted in significant light pollution which serves to undermine life processes governed by dim light.

  19. Distinct responses of soil microbial communities to elevated CO2 and O3 in a soybean agro-ecosystem.

    Science.gov (United States)

    He, Zhili; Xiong, Jinbo; Kent, Angela D; Deng, Ye; Xue, Kai; Wang, Gejiao; Wu, Liyou; Van Nostrand, Joy D; Zhou, Jizhong

    2014-03-01

    The concentrations of atmospheric carbon dioxide (CO2) and tropospheric ozone (O3) have been rising due to human activities. However, little is known about how such increases influence soil microbial communities. We hypothesized that elevated CO2 (eCO2) and elevated O3 (eO3) would significantly affect the functional composition, structure and metabolic potential of soil microbial communities, and that various functional groups would respond to such atmospheric changes differentially. To test these hypotheses, we analyzed 96 soil samples from a soybean free-air CO2 enrichment (SoyFACE) experimental site using a comprehensive functional gene microarray (GeoChip 3.0). The results showed the overall functional composition and structure of soil microbial communities shifted under eCO2, eO3 or eCO2+eO3. Key functional genes involved in carbon fixation and degradation, nitrogen fixation, denitrification and methane metabolism were stimulated under eCO2, whereas those involved in N fixation, denitrification and N mineralization were suppressed under eO3, resulting in the fact that the abundance of some eO3-supressed genes was promoted to ambient, or eCO2-induced levels by the interaction of eCO2+eO3. Such effects appeared distinct for each treatment and significantly correlated with soil properties and soybean yield. Overall, our analysis suggests possible mechanisms of microbial responses to global atmospheric change factors through the stimulation of C and N cycling by eCO2, the inhibition of N functional processes by eO3 and the interaction by eCO2 and eO3. This study provides new insights into our understanding of microbial functional processes in response to global atmospheric change in soybean agro-ecosystems.

  20. Increased sympathetic activity during sleep and nocturnal hypertension in Type 2 diabetic patients with diabetic nephropathy

    DEFF Research Database (Denmark)

    Nielsen, F S; Hansen, H P; Jacobsen, P

    1999-01-01

    AIMS: To elucidate the putative factors involved in the blunted nocturnal blood pressure reduction in hypertensive Type 2 diabetic patients with diabetic nephropathy. METHODS: Extracellular fluid volume and fluid shift from interstitial to plasma volume (haematocrit), sympathetic nervous activity...... (plasma noradrenaline and adrenaline) and the internal 'body clock' (serum melatonin) were investigated in 31 hypertensive Type 2 diabetes mellitus (DM) patients with diabetic nephropathy (24 males, age 60 (45-73) years). All variables, except extracellular volume, were measured repeatedly...... constant in both groups. Extracellular fluid volume and plasma melatonin levels were comparable in the two groups. CONCLUSION: Sustained adrenergic activity during sleep is associated with blunted nocturnal blood pressure reduction in hypertensive Type 2DM patients with diabetic nephropathy, probably...

  1. Does the Age of Donor Kidneys Affect Nocturnal Polyuria in Patients With Successful Real Transplantation?

    Science.gov (United States)

    Mitsui, T; Morita, K; Iwami, D; Kitta, T; Kanno, Y; Moriya, K; Takeda, M; Shinohara, N

    We investigated whether the age of donor kidneys influences the incidence of nocturnal polyuria in patients with successful renal transplantation (RTX). Eighty-five patients (45 men and 40 women) undergoing RTX (median age, 47 years) were included in this study. Twenty-four-hour bladder diaries were kept for 3 days, and nocturnal polyuria was defined as a nocturnal polyuria index (nocturnal urine volume/24-hour urine volume) of >0.33. Risk factors for nocturnal polyuria were analyzed in patients with RTX by means of the Mann-Whitney U test, χ 2 test, and a logistic regression analysis. End-stage renal disease (ESRD) developed from diabetes mellitus in 16 patients (19%). Sixty-five patients (76%) received pre-transplant dialysis, with a median duration of 5 years. The median serum creatinine level and body mass index at the most recent visit were 1.2 mg/dL and 21.2 kg/m 2 , respectively. On the basis of the 24-hour bladder diaries, nocturnal polyuria was identified in 48 patients (56%). A logistic regression analysis revealed that diabetes mellitus as the original disease for ESRD was the only risk factor for nocturnal polyuria (odds ratio, 8.95; 95% confidence interval, 2.01-65.3; P = .0028). The age of donor kidneys at examination did not affect the incidence of nocturnal polyuria (P = .9402). Nocturnal polyuria was not uncommon in patients with successful RTX. Diabetes mellitus as the original disease for ESRD was the only risk factor for nocturnal polyuria, whereas the age of donor kidneys at examination did not affect the incidence of nocturnal polyuria. Thus, nocturnal polyuria is caused by recipient factors but not donor factors. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Measurement of nitrogen fixation in beam (Phaseolus vulgaris L.) cv. carioca, using a 15N2 low enrichment method

    International Nuclear Information System (INIS)

    Trivelin, P.C.O.; Matsui, E.; Saito, S.M.T.; Libardi, P.L.; Salati, E.

    1984-01-01

    A experimental work under field conditions to develop a method to measure atmospheric N 2 -fixation by leguminous plants, using a low enrichment 15 N 2 technique, is carried out. The experiment was developed using a N 2 -fixation measuring chamber on Terra Roxa Estruturada. The beam plants had their aereal part under normal conditions and the rooting system confined, through which a mixture of Ar, O 2 and N 2 labelled with 15 N (1.9% atom excess) was circulated from the 22nd to the 31st day from planting. Samples of the gaseous Ar, O 2 and N 2 mixture were analysed by mass spectrometry to determine 15 N concentrations and O 2 and CO 2 contents. The N 2 -fixed was measured by determination of total-N and isotopic concentration of nitrogen in the plants. (M.A.C.) [pt

  3. Desmopressin is an effective treatment for mixed nocturia with nocturnal polyuria and decreased nocturnal bladder capacity.

    Science.gov (United States)

    Lee, Hye Won; Choo, Myung-Soo; Lee, Jeong Gu; Park, Choal Hee; Paick, Jae-Seung; Lee, Jeong Zoo; Han, Deok Hyun; Park, Won Hee; Lee, Kyu-Sung

    2010-12-01

    To investigate the efficacy and safety of desmopressin in patients with mixed nocturia, Patients aged ≥ 18 yr with mixed nocturia (≥ 2 voids/night and a nocturnal polyuria index [NPi] >33% and a nocturnal bladder capacity index [NBCi] >1) were recruited. The optimum dose of oral desmopressin was determined during a 3-week dose-titration period and the determined dose was maintained for 4 weeks. The efficacy was assessed by the frequency-volume charts and the sleep questionnaire. The primary endpoint was the proportion of patients with a 50% or greater reduction in the number of nocturnal voids (NV) compared with baseline. Among 103 patients enrolled, 94 (79 men and 15 women) were included in the analysis. The proportion of patients with a 50% or greater reduction in NV was 68 (72%). The mean number of NV decreased significantly (3.20 to 1.34) and the mean nocturnal urine volume, nocturia index, NPi, and NBCi decreased significantly. The mean duration of sleep until the first NV was prolonged from 118.4 ± 44.1 to 220.3 ± 90.7 min (P<0.001). The overall impression of patients about their quality of sleep improved. Adverse events occurred in 6 patients, including one asymptomatic hyponatremia. Desmopressin is an effective and well-tolerated treatment for mixed nocturia.

  4. Cortical bone trajectory screw fixation versus traditional pedicle screw fixation for 2-level posterior lumbar interbody fusion: comparison of surgical outcomes for 2-level degenerative lumbar spondylolisthesis.

    Science.gov (United States)

    Sakaura, Hironobu; Miwa, Toshitada; Yamashita, Tomoya; Kuroda, Yusuke; Ohwada, Tetsuo

    2018-01-01

    OBJECTIVE The cortical bone trajectory (CBT) screw technique is a new nontraditional pedicle screw (PS) insertion method. However, the biomechanical behavior of multilevel CBT screw/rod fixation remains unclear, and surgical outcomes in patients after 2-level posterior lumbar interbody fusion (PLIF) using CBT screw fixation have not been reported. Thus, the purposes of this study were to examine the clinical and radiological outcomes after 2-level PLIF using CBT screw fixation for 2-level degenerative lumbar spondylolisthesis (DS) and to compare these outcomes with those after 2-level PLIF using traditional PS fixation. METHODS The study included 22 consecutively treated patients who underwent 2-level PLIF with CBT screw fixation for 2-level DS (CBT group, mean follow-up 39 months) and a historical control group of 20 consecutively treated patients who underwent 2-level PLIF using traditional PS fixation for 2-level DS (PS group, mean follow-up 35 months). Clinical symptoms were evaluated using the Japanese Orthopaedic Association (JOA) scoring system. Bony union was assessed by dynamic plain radiographs and CT images. Surgery-related complications, including symptomatic adjacent-segment disease (ASD), were examined. RESULTS The mean operative duration and intraoperative blood loss were 192 minutes and 495 ml in the CBT group and 218 minutes and 612 ml in the PS group, respectively (p 0.05, respectively). The mean JOA score improved significantly from 12.3 points before surgery to 21.1 points (mean recovery rate 54.4%) at the latest follow-up in the CBT group and from 12.8 points before surgery to 20.4 points (mean recovery rate 51.8%) at the latest follow-up in the PS group (p > 0.05). Solid bony union was achieved at 90.9% of segments in the CBT group and 95.0% of segments in the PS group (p > 0.05). Symptomatic ASD developed in 2 patients in the CBT group (9.1%) and 4 patients in the PS group (20.0%, p > 0.05). CONCLUSIONS Two-level PLIF with CBT screw fixation

  5. Nocturnal Polyuria : Excess of Nocturnal Urine Production, Excess of Definitions-Influence on Renal Function Profile

    NARCIS (Netherlands)

    Goessaert, An-Sofie; Walle, Johan Vande; Bosch, JLHR; Hoebeke, Piet; Everaert, Karel

    2016-01-01

    PURPOSE: This study aimed to identify important differences in renal function profile, and potential water and sodium diuresis cutoffs among participants with nocturnal polyuria according to nocturnal polyuria definitions. MATERIALS AND METHODS: This post hoc analysis was based on a prospective

  6. Abundance and distribution of archaeal acetyl-CoA/propionyl-CoA carboxylase genes indicative for putatively chemoautotrophic Archaea in the tropical Atlantic's interior.

    Science.gov (United States)

    Bergauer, Kristin; Sintes, Eva; van Bleijswijk, Judith; Witte, Harry; Herndl, Gerhard J

    2013-06-01

    Recently, evidence suggests that dark CO2 fixation in the pelagic realm of the ocean does not only occur in the suboxic and anoxic water bodies but also in the oxygenated meso- and bathypelagic waters of the North Atlantic. To elucidate the significance and phylogeny of the key organisms mediating dark CO2 fixation in the tropical Atlantic, we quantified functional genes indicative for CO2 fixation. We used a Q-PCR-based assay targeting the bifunctional acetyl-CoA/propionyl-CoA carboxylase (accA subunit), a key enzyme powering inter alia the 3-hydroxypropionate/4-hydroxybutyrate cycle (HP/HB) and the archaeal ammonia monooxygenase (amoA). Quantification of accA-like genes revealed a consistent depth profile in the upper mesopelagial with increasing gene abundances from subsurface layers towards the oxygen minimum zone (OMZ), coinciding with an increase in archaeal amoA gene abundance. Gene abundance profiles of metabolic marker genes (accA, amoA) were correlated with thaumarchaeal 16S rRNA gene abundances as well as CO2 fixation rates to link the genetic potential to actual rate measurements. AccA gene abundances correlated with archaeal amoA gene abundance throughout the water column (r(2)  = 0.309, P < 0.0001). Overall, a substantial genetic predisposition of CO2 fixation was present in the dark realm of the tropical Atlantic in both Archaea and Bacteria. Hence, dark ocean CO2 fixation might be more widespread among prokaryotes inhabiting the oxygenated water column of the ocean's interior than hitherto assumed. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  7. Isolation and application of SOX and NOX resistant microalgae in biofixation of CO2 from thermoelectricity plants

    International Nuclear Information System (INIS)

    Radmann, Elisangela Martha; Vieira Camerini, Felipe; Duarte Santos, Thaisa; Vieira Costa, Jorge Alberto

    2011-01-01

    Highlights: → Microalgae can help reduce global warming. → Synechococcus nidulans and Chlorella vulgaris were isolated in a thermoelectric plant. → Microalgae were compared with Spirulina and Scenedesmus obliquus for CO 2 fixation. → Microalgae were exposed to CO 2 , SO 2 and NO, simulating a gas from coal combustion. → C. vulgaris and Spirulina sp. showed 13.43% of maximum daily fixation. - Abstract: Microalgae have been studied for their potential use in foodstuffs, agriculture, in the treatment of wastewater and, in particular, in the reduction of atmospheric carbon dioxide, the main cause of global warming. Thermoelectricity plants account for 22% of CO 2 emitted into the atmosphere and native microalgae may be more tolerant to the gases emitted from burning fossil fuels. In the study presented here, microalgae were isolated from ponds next to a Thermoelectricity Plant, located in southern Brazil, and identified as Synechococcus nidulans and Chlorella vulgaris. The isolated microalgae were grown and compared with two different strains of microalgae, Spirulina sp. and Scenedesmus obliquus, for CO 2 biofixation. The microalgae were exposed to 12% CO 2 , 60 ppm of SO 2 and 100 ppm of NO, simulating a gas from coal combustion. The C. vulgaris had similar behavior to Spirulina sp., with 13.43% of maximum daily fixation. The microalgae with the greater fixing capacity were C. vulgaris and Spirulina sp. and these can be grown in electric power plants for CO 2 biofixation of the coal combustion gas, which would help reduce global warming.

  8. Carbon dioxide fixation by microalgae cultivated in open bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Centeno da Rosa, Ana Priscila; Fernandes Carvalho, Lisiane; Goldbeck, Luzia [Laboratory of Biochemical Engineering, College of Chemistry and Food, Federal University of Rio Grande (FURG), P.O. Box 474, Rio Grande, RS 96201-900 (Brazil); Vieira Costa, Jorge Alberto, E-mail: dqmjorge@furg.br [Laboratory of Biochemical Engineering, College of Chemistry and Food, Federal University of Rio Grande (FURG), P.O. Box 474, Rio Grande, RS 96201-900 (Brazil)

    2011-08-15

    Highlights: {yields} We studied the growth and CO{sub 2} fixation by Spirulina LEB18 and Chlorella kessleri. {yields} The maximum dailyfixation was obtained for Spirulina with an injection of 6% of CO{sub 2}. {yields} The microalgae presented growth during the 20 d of culture with up to 18% of CO{sub 2}. {yields} The use of CO{sub 2} from industrial generation decreases the cost of producing biomass. - Abstract: The biofixation of carbon dioxide (CO{sub 2}) by microalgae has been proven to be an efficient and economical method, mainly due to the photosynthetic ability of these microorganisms to use this gas as a source of nutrients for their development. The aim of this work was to study the growth of Spirulina LEB18 and Chlorella kessleri microalgae, exposed to controlled and non-controlled conditions, with the injection of different concentrations of CO{sub 2}. The cultures was carried out in 6 L open raceway ponds, under controlled conditions at 30 {sup o}C and 39 {mu}E m{sup -2} s{sup -1} and under non-controlled conditions, protected by a tunnel of transparent film. The experiments were subjected to CO{sub 2} injections at concentrations of 0.038, 6, 12 and 18% (v/v). The highest concentration of biomass (4.95 g L{sup -1}) and maximum daily fixation (0.21 g g{sup -1} d{sup -1}) were obtained for Spirulina LEB18 in culture that was prepared in non-controlled conditions with an injection of 6% (v/v) of CO{sub 2}. C. kessleri had maximum (p < 0.0008) specific growth rate (0.84 d{sup -1}) when grown with 18% (v/v) of CO{sub 2} in non-controlled conditions of cultivation.

  9. Ocean acidification: the other CO2 problem.

    Science.gov (United States)

    Doney, Scott C; Fabry, Victoria J; Feely, Richard A; Kleypas, Joan A

    2009-01-01

    Rising atmospheric carbon dioxide (CO2), primarily from human fossil fuel combustion, reduces ocean pH and causes wholesale shifts in seawater carbonate chemistry. The process of ocean acidification is well documented in field data, and the rate will accelerate over this century unless future CO2 emissions are curbed dramatically. Acidification alters seawater chemical speciation and biogeochemical cycles of many elements and compounds. One well-known effect is the lowering of calcium carbonate saturation states, which impacts shell-forming marine organisms from plankton to benthic molluscs, echinoderms, and corals. Many calcifying species exhibit reduced calcification and growth rates in laboratory experiments under high-CO2 conditions. Ocean acidification also causes an increase in carbon fixation rates in some photosynthetic organisms (both calcifying and noncalcifying). The potential for marine organisms to adapt to increasing CO2 and broader implications for ocean ecosystems are not well known; both are high priorities for future research. Although ocean pH has varied in the geological past, paleo-events may be only imperfect analogs to current conditions.

  10. Effect of lentil cultivar on N2 fixation and N partitioning

    International Nuclear Information System (INIS)

    Kurdali, F.; Kalifa, K.; Al-Shamma, M.

    1996-12-01

    The study conducted on five lentil cultivars. the results showed that dry matter production, nodulation and N sup 2 fixation were influenced by the cultivar. Beyond flowering, N sup 2 fixation, soil N uptake, and N and P remobilization differed by the cultivar. (author). 32 Refs., 7 Figs., 9 Tabs

  11. Taxonomic identity determines N2 fixation by canopy trees across lowland tropical forests.

    Science.gov (United States)

    Wurzburger, Nina; Hedin, Lars O

    2016-01-01

    Legumes capable of fixing atmospheric N2 are abundant and diverse in many tropical forests, but the factors determining ecological patterns in fixation are unresolved. A long-standing idea is that fixation depends on soil nutrients (N, P or Mo), but recent evidence shows that fixation may also differ among N2-fixing species. We sampled canopy-height trees across five species and one species group of N2-fixers along a landscape P gradient, and manipulated P and Mo to seedlings in a shadehouse. Our results identify taxonomy as the major determinant of fixation, with P (and possibly Mo) only influencing fixation following tree-fall disturbances. While 44% of trees did not fix N2, other trees fixed at high rates, with two species functioning as superfixers across the landscape. Our results raise the possibility that fixation is determined by biodiversity, evolutionary history and species-specific traits (tree growth rate, canopy stature and response to disturbance) in the tropical biome. © 2015 John Wiley & Sons Ltd/CNRS.

  12. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux.

    Science.gov (United States)

    Oishi, A Christopher; Palmroth, Sari; Johnsen, Kurt H; McCarthy, Heather R; Oren, Ram

    2014-04-01

    Soil CO2 efflux (Fsoil ) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity, but the long-term effects of these factors on Fsoil are less clear. Expanding on previous studies at the Duke Free-Air CO2 Enrichment (FACE) site, we quantified the effects of elevated [CO2] and N fertilization on Fsoil using daily measurements from automated chambers over 10 years. Consistent with previous results, compared to ambient unfertilized plots, annual Fsoil increased under elevated [CO2] (ca. 17%) and decreased with N (ca. 21%). N fertilization under elevated [CO2] reduced Fsoil to values similar to untreated plots. Over the study period, base respiration rates increased with leaf productivity, but declined after productivity saturated. Despite treatment-induced differences in aboveground biomass, soil temperature and water content were similar among treatments. Interannually, low soil water content decreased annual Fsoil from potential values - estimated based on temperature alone assuming nonlimiting soil water content - by ca. 0.7% per 1.0% reduction in relative extractable water. This effect was only slightly ameliorated by elevated [CO2]. Variability in soil N availability among plots accounted for the spatial variability in Fsoil , showing a decrease of ca. 114 g C m(-2) yr(-1) per 1 g m(-2) increase in soil N availability, with consistently higher Fsoil in elevated [CO2] plots ca. 127 g C per 100 ppm [CO2] over the +200 ppm enrichment. Altogether, reflecting increased belowground carbon partitioning in response to greater plant nutritional needs, the effects of elevated [CO2] and N fertilization on Fsoil in this stand are sustained beyond the early stages of stand development and

  13. Circadian Rhythm of Glomerular Filtration and Solute Handling Related to Nocturnal Enuresis.

    Science.gov (United States)

    Dossche, L; Raes, A; Hoebeke, P; De Bruyne, P; Vande Walle, J

    2016-01-01

    Although nocturnal polyuria in patients with monosymptomatic enuresis can largely be explained by the decreased nocturnal vasopressin secretion hypothesis, other circadian rhythms in the kidney also seem to have a role. We recently documented an absent day/night rhythm in a subgroup of desmopressin refractory cases. We explore the importance of abnormal circadian rhythm of glomerular filtration and tubular (sodium, potassium) parameters in patients with monosymptomatic enuresis. In this retrospective study of a tertiary enuresis population we collected data subsequent to a standardized screening (International Children's Continence Society questionnaire), 14-day diary for nocturnal enuresis and diuresis, and 24-hour concentration profile. The study population consisted of 139 children with nocturnal enuresis who were 5 years or older. Children with nonmonosymptomatic nocturnal enuresis were used as controls. There was a maintained circadian rhythm of glomerular filtration, sodium, osmotic excretion and diuresis rate in children with monosymptomatic and nonmonosymptomatic nocturnal enuresis, and there was no difference between the 2 groups. Secondary analysis revealed that in patients with nocturnal polyuria (with monosymptomatic or nonmonosymptomatic nocturnal enuresis) circadian rhythm of glomerular filtration, sodium and osmotic excretion, and diuresis rate was diminished in contrast to those without nocturnal polyuria (p Circadian rhythm of the kidney does not differ between patients with nonmonosymptomatic and monosymptomatic enuresis. However, the subgroup with enuresis and nocturnal polyuria has a diminished circadian rhythm of nocturnal diuresis, sodium excretion and glomerular filtration in contrast to children without nocturnal polyuria. This observation cannot be explained by the vasopressin theory alone. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  14. Nocturnal Hypertension and Attenuated Nocturnal Blood Pressure Dipping is Common in Pediatric Lupus

    Science.gov (United States)

    Campbell, J. Fallon; Swartz, Sarah J.; Wenderfer, Scott E.

    2015-01-01

    Hypertension is an important manifestation of systemic lupus erythematosus (SLE) but reports of prevalence vary between 20-70% in published reports of adult and pediatric patients. For both children and adults with SLE, the clinical diagnosis and management of hypertension has traditionally been based on guidelines developed for the general population. In clinical trials, the criteria used for defining participants with hypertension are mostly undefined. As a first step towards formally assessing the blood pressure (BP) patterns of children diagnosed with SLE, 24-hr ambulatory BP monitoring data was analyzed on clinic patients who presented with prehypertension or stage I hypertension. In this pediatric SLE cohort (n=10), 20% met daytime criteria for a diagnosis of hypertension. Patterns of BP elevation varied widely with white coat, masked, isolated systolic, and diastolic nocturnal hypertension all identified. Nocturnal hypertension was detected in 60% and attenuated nocturnal BP dipping in 90% of both hypertensive and normotensive SLE patients. In SLE patients, the median nighttime systolic and diastolic loads were 25% and 15.5% compared with median daily loads of 12.5% and 11.5%. Daytime and nighttime systolic and diastolic BP load and nocturnal dipping was compared to a control population consisting of 85 non-SLE patients under 21 years old with prehypertension or stage 1 hypertension presenting to hypertension clinic. Median systolic BP dipped 5.3 mmHg in SLE patients compared to 11.9 mmHg in non-lupus ( p-value = 0.001). Median diastolic BP dipped 12.9 mmHg versus 18.5 mmHg in non-lupus ( p-value = 0.003). Patterns of BP dysregulation in pediatric SLE merit further exploration. Children with or without SLE displaying prehypertensive or stage 1 casual BP measurements had similar rates of hypertension by ambulatory BP monitoring. However, regardless of BP diagnosis, and independent of kidney involvement, there was an increased proportion with attenuated

  15. Inducible hydrogenase in cyanobacteria enhances N/sub 2/ fixation. [Nostoc, anabaena

    Energy Technology Data Exchange (ETDEWEB)

    Tel-Or, E.; Luijk, L.W.; Packer, L.

    1977-06-01

    Whether hydrogenase is activated or induced, we found no evidence for activation of either consumption or production of H/sub 2/ in aerobically-grown cultures but both of these activities increased 5--20-fold when cultures are grown under H/sub 2/ gas. On the other hand, hydrogenase-catalyzed consumption of H/sub 2/ is stimulated by light and/or light plus CO/sub 2/ in hydrogenase-induced cultures. Nitrogenase activity appears to be induced in cultures grown under H/sub 2/. Studies unambiguously establish that in H/sub 2/-induced cultures hydrogenase manifests a cooperativity with nitrogenase. In the presence of H/sub 2/ the activity of nitrogenase is stimulated 3--5-fold such that rates of about 3 ..mu..mol N/sub 2/ fixed/mg chlorophyll/h are obtained if the method of Peterson and Burris is used to convert acetylene reduction data to equivalents of /sup 15/N/sub 2/ fixation to ammonia.

  16. Transport and partitioning of CO2 fixed by root nodules of ureide and amide producing legumes

    International Nuclear Information System (INIS)

    Vance, C.P.; Boylan, K.L.M.; Maxwell, C.A.; Heichel, G.H.; Hardman, L.L.

    1985-01-01

    Nodulated and denodulated roots of adzuki bean (Vigna angularis), soybean (Glycine max), and alfalfa (Medicago sativa) were exposed to 14 CO 2 to investigate the contribution of nodule CO 2 fixation to assimilation and transport of fixed nitrogen. The distribution of radioactivity in xylem sap and partitioning of carbon fixed by nodules to the whole plant were measured. Radioactivity in the xylem sap of nodulated soybean and adzuki bean was located primarily (70 to 87%) in the acid fraction while the basic (amino acid) fraction contained 10 to 22%. In contrast radioactivity in the xylem sap of nodulated alfalfa was primarily in amino acids with about 20% in organic acids. Total ureide concentration was 8.1, 4.7, and 0.0 micromoles per milliliter xylem sap for soybean, adzuki bean, and alfalfa, respectively. While the major nitrogen transport products in soybeans and adzuki beans are ureides, this class of metabolites contained less than 20% of the the total radioactivity. When nodules of plants were removed, radioactivity in xylem sap decreased by 90% or more. Pulse-chase experiments indicated that CO 2 fixed by nodules was rapidly transported to shoots and incorporated into acid stable constituents. The data are consistent with a role for nodule CO 2 fixation providing carbon for the assimilation and transport of fixed nitrogen in amide-based legumes. In contrast, CO 2 fixation by nodules of ureide transporting legumes appears to contribute little to assimilation and transport of fixed nitrogen. 19 references, 2 figures, 5 tables

  17. Comparing the effects of nocturnal sleep and daytime napping on declarative memory consolidation.

    Directory of Open Access Journals (Sweden)

    June C Lo

    Full Text Available Nocturnal sleep and daytime napping facilitate memory consolidation for semantically related and unrelated word pairs. We contrasted forgetting of both kinds of materials across a 12-hour interval involving either nocturnal sleep or daytime wakefulness (experiment 1 and a 2-hour interval involving either daytime napping or wakefulness (experiment 2. Beneficial effects of post-learning nocturnal sleep and daytime napping were greater for unrelated word pairs (Cohen's d=0.71 and 0.68 than for related ones (Cohen's d=0.58 and 0.15. While the size of nocturnal sleep and daytime napping effects was similar for unrelated word pairs, for related pairs, the effect of nocturnal sleep was more prominent. Together, these findings suggest that sleep preferentially facilitates offline memory processing of materials that are more susceptible to forgetting.

  18. Comparing the effects of nocturnal sleep and daytime napping on declarative memory consolidation.

    Science.gov (United States)

    Lo, June C; Dijk, Derk-Jan; Groeger, John A

    2014-01-01

    Nocturnal sleep and daytime napping facilitate memory consolidation for semantically related and unrelated word pairs. We contrasted forgetting of both kinds of materials across a 12-hour interval involving either nocturnal sleep or daytime wakefulness (experiment 1) and a 2-hour interval involving either daytime napping or wakefulness (experiment 2). Beneficial effects of post-learning nocturnal sleep and daytime napping were greater for unrelated word pairs (Cohen's d=0.71 and 0.68) than for related ones (Cohen's d=0.58 and 0.15). While the size of nocturnal sleep and daytime napping effects was similar for unrelated word pairs, for related pairs, the effect of nocturnal sleep was more prominent. Together, these findings suggest that sleep preferentially facilitates offline memory processing of materials that are more susceptible to forgetting.

  19. Patterns and possible mechanisms of soil CO2 uptake in sandy soil.

    Science.gov (United States)

    Fa, Ke-Yu; Zhang, Yu-Qing; Wu, Bin; Qin, Shu-Gao; Liu, Zhen; She, Wei-Wei

    2016-02-15

    It has been reported that soils in drylands can absorb CO2, although the patterns and mechanisms of such a process remain under debate. To address this, we investigated the relationships between soil CO2 flux and meteorological factors and soil properties in Northwest China to reveal the reasons for "anomalous" soil CO2 flux in a desert ecosystem. Soil CO2 flux increased significantly and exponentially with surficial turbulence at the diel scale under dry conditions (Psoil CO2 flux demonstrated remarkable negative correlation with soil air pressure (Psoil water content was insufficient to dissolve the absorbed CO2 in dry conditions, but was sufficient in wet conditions. The concentration of soil HCO3(-) in the morning was higher than in the evening in dry conditions, but this pattern was reversed in wet conditions. These results imply that CO2 outgassing induced by turbulence, expansion of soil air, CO2 effusion from soil water, and carbonate precipitation during daytime can explain the abiotic diurnal CO2 release. Moreover, CO2 pumping from the atmosphere into the soil, caused mainly by carbonate dissolution, can account for nocturnal CO2 absorption in dry conditions. The abiotic soil CO2 flux pattern (CO2 absorption throughout the diel cycle) in wet conditions can be attributed to downward mass flow of soil CO2 and intensified soil air shrinkage, CO2 dissolving in soil water, and carbonate dissolution. These results provide a basis for determining the location of abiotic fixed carbon within soils in desert ecosystems. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Report on a survey in fiscal 1999. Survey on trends in new carbon dioxide fixation technologies utilizing bacteria and algae. (3); 1999 nendo saikin sorui wo riyoshita atarashii nisanka tanso kotei gijutsu no doko chosa. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    In order to achieve collection and effective utilization of CO2 as the representative greenhouse effect gas, through use of microorganism functions, a survey was performed on problems when the CO2 fixation system is applied to factories, based on the results of surveys in fiscals 1997 and 1998 and the supplementary surveys therein. Discussions were given on feasibility and effect of introducing the in situ CO2 fixation systems. With regard to the current status and problems in technologies to fix and utilize effectively CO2 by use of photosynthetic bacteria and micro algae by means of solar beam, the paper summarizes the 'searches and breeding of bacteria and algae' and the 'research and development of a high-density and large-quantity cultivation system such as for CO2 fixation and useful substance production'. The paper also describes problems in the CO2 fixation technologies utilizing bacteria and algae. With regard to the CO2 fixation technologies utilizing bacteria and algae, the paper summarized the contents of the survey on CO2 fixation by using photosynthetic bacteria, clostridium bacteria, and coryne bacteria. Surveys were performed inside and outside the country on kinds and existence quantities of unutilized organic wastes in which microorganisms that fix CO2 can be utilized. The CO2 fixation systems can be considered of their possibilities of being introduced into foodstuff factories where organic waste water with high concentration can be obtained. (NEDO)

  1. Report on a survey in fiscal 1999. Survey on trends in new carbon dioxide fixation technologies utilizing bacteria and algae. (3); 1999 nendo saikin sorui wo riyoshita atarashii nisanka tanso kotei gijutsu no doko chosa. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    In order to achieve collection and effective utilization of CO2 as the representative greenhouse effect gas, through use of microorganism functions, a survey was performed on problems when the CO2 fixation system is applied to factories, based on the results of surveys in fiscals 1997 and 1998 and the supplementary surveys therein. Discussions were given on feasibility and effect of introducing the in situ CO2 fixation systems. With regard to the current status and problems in technologies to fix and utilize effectively CO2 by use of photosynthetic bacteria and micro algae by means of solar beam, the paper summarizes the 'searches and breeding of bacteria and algae' and the 'research and development of a high-density and large-quantity cultivation system such as for CO2 fixation and useful substance production'. The paper also describes problems in the CO2 fixation technologies utilizing bacteria and algae. With regard to the CO2 fixation technologies utilizing bacteria and algae, the paper summarized the contents of the survey on CO2 fixation by using photosynthetic bacteria, clostridium bacteria, and coryne bacteria. Surveys were performed inside and outside the country on kinds and existence quantities of unutilized organic wastes in which microorganisms that fix CO2 can be utilized. The CO2 fixation systems can be considered of their possibilities of being introduced into foodstuff factories where organic waste water with high concentration can be obtained. (NEDO)

  2. Promoting helix pitch and trichome length to improve biomass harvesting efficiency and carbon dioxide fixation rate by Spirulina sp. in 660 m2 raceway ponds under purified carbon dioxide from a coal chemical flue gas.

    Science.gov (United States)

    Cheng, Jun; Guo, Wangbiao; Ameer Ali, Kubar; Ye, Qing; Jin, Guiyong; Qiao, Zhanshan

    2018-08-01

    The helix pitch and trichome length of Spirulina sp. were promoted to improve the biomass harvesting efficiency and CO 2 fixation rate in 660 m 2 raceway ponds aerated with food-grade CO 2 purified from a coal chemical flue gas. The CO 2 fixation rate was improved with increased trichome length of the Spirulina sp. in a raceway pond with double paddlewheels, baffles, and CO 2 aerators (DBA raceway pond). The trichome length has increased by 33.3 μm, and CO 2 fixation rate has increased by 42.3% and peaked to 51.3 g/m 2 /d in a DBA raceway pond. Biomass harvesting efficiency was increased with increased helix pitch. When the day-average greenhouse temperature was 33 °C and day-average sunlight intensity was 72,100 lu×, the helix pitch of Spirulina sp. was increased to 56.2 μm. Hence the biomass harvesting efficiency was maximized to 75.6% and biomass actual yield was increased to 35.9 kg in a DBA raceway pond. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. [Effectiveness comparison of suspension fixation plus hinged external fixator and double plate internal fixation in treatment of type C humeral intercondylar fractures].

    Science.gov (United States)

    Zhang, Jian; Lin, Xu; Zhong, Zeli; Wu, Chao; Tan, Lun

    2017-07-01

    To compare the effectiveness of suspension fixation plus hinged external fixator with double plate internal fixation in the treatment of type C humeral intercondylar fractures. Between January 2014 and April 2016, 30 patients with type C (Association for the Study of Internal Fixation, AO/ASIF) humeral intercondylar fractures were treated. Kirschner wire suspension fixation plus hinged external fixator was used in 14 cases (group A), and double plate internal fixation in 16 cases (group B). There was no significant difference in gender, age, injury cause, disease duration, injury side, and type of fracture between 2 groups ( P >0.05). There was no significant difference in operation time and hospitalization stay between 2 groups ( P >0.05). But the intraoperative blood loss in group A was significantly less than that in group B ( P internal fixation removal, the intraoperative blood loss, and VAS score at 1 day and 3 days after operation in group A were significant better than those in group B ( P external fixator and double plate internal fixation for the treatment of type C humeral intercondylar fractures have ideal outcome in elbow function. But the suspension fixation plus hinged external fixator is better than double plate internal fixation in intraoperative blood loss, postoperative VAS score, and time of internal fixation removal.

  4. New Tools for CO2 Fixation by Homogeneous Catalysis - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Jessop, Phillip G.

    2006-01-20

    The overall goal is the development of new or more efficient methods for the conversion of CO{sub 2} into useful organic products, via the design or discovery of new catalysts, ligands, solvents, and methods. Specific objectives for this funded period: (1) To develop a high-throughput screening technique and use it to develop an efficient catalyst/reagent/solvent system for the synthesis of ureas or carboxylic acids. (2) To use in-situ spectroscopic and kinetic methods to study the mechanism of the synthesis of ureas or carboxylic acids. (3) To develop bifunctional ligands capable of secondary interactions with CO{sub 2}, to detect the interactions, and to demonstrate applications to catalysis.

  5. [Comparison of external fixation with or without limited internal fixation for open knee fractures].

    Science.gov (United States)

    Li, K N; Lan, H; He, Z Y; Wang, X J; Yuan, J; Zhao, P; Mu, J S

    2018-03-01

    Objective: To explore the characteristics and methods of different fixation methods and prevention of open knee joint fracture. Methods: The data of 86 cases of open knee joint fracture admitted from January 2002 to December 2015 in Department of Orthopaedics, Affiliated Hospital of Chengdu University were analyzed retrospectively.There were 65 males and 21 females aged of 38.6 years. There were 38 cases treated with trans articular external fixation alone, 48 cases were in the trans articular external fixation plus auxiliary limited internal fixation group. All the patients were treated according to the same three stages except for different fixation methods. Observation of external fixation and fracture fixation, fracture healing, wound healing and treatment, treatment and related factors of infection control and knee function recovery. χ(2) test was used to analyze data. Results: Eleven patients had primary wound healing, accounting for 12.8%. Seventy-five patients had two wounds healed, accounting for 87.2%. Only 38 cases of trans articular external fixator group had 31 cases of articular surface reduction, accounting for 81.6%; Five cases of trans articular external fixator assisted limited internal fixation group had 5 cases of poor reduction, accounting for 10.4%; There was significant difference between the two groups (χ(2)=44.132, P external fixation group, a total of 23 cases of patients with infection, accounted for 60.5% of external fixation group; trans articular external fixation assisted limited internal fixation group there were 30 cases of patients with infection, accounting for the assistance of external fixator and limited internal fixation group 62.5%; There was significant difference between the two groups(χ(2)=0.035, P >0.05). Five cases of fracture nonunion cases of serious infection, patients voluntarily underwent amputation. The Lysholm Knee Scale: In the external fixation group, 23 cases were less than 50 points, accounting for 60

  6. Photosynthetic and nitrogen fixation capability in several soybean mutant lines

    International Nuclear Information System (INIS)

    Gandanegara, S.; Hendratno, K.

    1987-01-01

    Photosynthetic and nitrogen fixation capability in several soybean mutant lines. A greenhouse experiment has been carried out to study photosynthetic and nitrogen fixation capability of five mutant lines and two soybean varieties. An amount of 330 uCi of 14 CO 2 was fed to the plants including of the non-fixing reference crop (Chippewa non-nodulating isoline). Nitrogen fixation measurements was carried out using 15 N isotope dilution technique according to A-value concept. Results showed that beside variety/mutant lines, plant growth also has important role in photosynthetic and N fixing capability. Better growth and a higher photosynthetic capability in Orba, mutant lines nos. 63 and 65 resulted in a greater amount of N 2 fixed (mg N/plant) than other mutant lines. (author). 12 refs.; 5 figs

  7. POSSIBILITIES OF CARBON DIOXIDE FIXATION BY MICROALGAE IN REFINERY

    OpenAIRE

    Šingliar, Michal; Mikulec, Jozef; Kušnir, Patrik; Polakovičova, Gabriela

    2013-01-01

    Capture and sequestration of carbon dioxide is one of the most critical challenges today for businesses and governments worldwide. Thousands of emitting power plants and industries worldwide face this costly challenge – reduce the CO2 emissions or pay penalties. One possibility for carbon dioxide sequestration is its fixation in microalgae. Microalgae can sequester CO2 from flue gases emitted from fossil fuel-fired refinery plants and units, thereby reducing emissions of a major greenhouse ga...

  8. Heterologous Expression of the Clostridium carboxidivorans CO Dehydrogenase Alone or Together with the Acetyl Coenzyme A Synthase Enables both Reduction of CO2 and Oxidation of CO by Clostridium acetobutylicum.

    Science.gov (United States)

    Carlson, Ellinor D; Papoutsakis, Eleftherios T

    2017-08-15

    With recent advances in synthetic biology, CO 2 could be utilized as a carbon feedstock by native or engineered organisms, assuming the availability of electrons. Two key enzymes used in autotrophic CO 2 fixation are the CO dehydrogenase (CODH) and acetyl coenzyme A (acetyl-CoA) synthase (ACS), which form a bifunctional heterotetrameric complex. The CODH/ACS complex can reversibly catalyze CO 2 to CO, effectively enabling a biological water-gas shift reaction at ambient temperatures and pressures. The CODH/ACS complex is part of the Wood-Ljungdahl pathway (WLP) used by acetogens to fix CO 2 , and it has been well characterized in native hosts. So far, only a few recombinant CODH/ACS complexes have been expressed in heterologous hosts, none of which demonstrated in vivo CO 2 reduction. Here, functional expression of the Clostridium carboxidivorans CODH/ACS complex is demonstrated in the solventogen Clostridium acetobutylicum , which was engineered to express CODH alone or together with the ACS. Both strains exhibited CO 2 reduction and CO oxidation activities. The CODH reactions were interrogated using isotopic labeling, thus verifying that CO was a direct product of CO 2 reduction, and vice versa. CODH apparently uses a native C. acetobutylicum ferredoxin as an electron carrier for CO 2 reduction. Heterologous CODH activity depended on actively growing cells and required the addition of nickel, which is inserted into CODH without the need to express the native Ni insertase protein. Increasing CO concentrations in the gas phase inhibited CODH activity and altered the metabolite profile of the CODH-expressing cells. This work provides the foundation for engineering a complete and functional WLP in nonnative host organisms. IMPORTANCE Functional expression of CO dehydrogenase (CODH) from Clostridium carboxidivorans was demonstrated in C. acetobutylicum , which is natively incapable of CO 2 fixation. The expression of CODH, alone or together with the C. carboxidivorans

  9. FY 1999 survey report on the survey on the role and course of the development of technology such as CO2 recovery, fixation and effective use in the industrial policy; 1999 nendo CO{sub 2} kaishu koteika yuko riyo nado gijutsu kaihatsu no sangyo seisakujo no ichizuke oyobi hokosei ni kansuru chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This paper aims at arranging and assessing the role of themes of the technology development such as CO2 recovery, fixation and effective use in the industrial policy and the results of the development. It also aims at analyzing factors to hinder technology development in comparison with the developmental trend of technology and the role in the industrial policy in foreign countries and at considering the future role in the industrial policy and the course to be taken. Judging from the number of projects and a variety of fields of technology, it could be said that the development of the related technology in Japan is at a top level the same as that in the U.S. In the present conditions, however, most of the technologies are at the stage of the basic research. In many of the research fields except a part like EOR, it is difficult to promote the research only by economical principles, and the government as core needs to promote it. As viewed from an international point, the development/commercialization of technology such as CO2 recovery, fixation and effective use are extremely important from an aspect of not only the heightening of competitiveness in the domestic industry, but Japan's international contribution in the 21st century. (NEDO)

  10. Toward solar biodiesel production from CO2 using engineered cyanobacteria.

    Science.gov (United States)

    Woo, Han Min; Lee, Hyun Jeong

    2017-05-01

    Metabolic engineering of cyanobacteria has received attention as a sustainable strategy to convert carbon dioxide to various biochemicals including fatty acid-derived biodiesel. Recently, Synechococcus elongatus PCC 7942, a model cyanobacterium, has been engineered to convert CO2 to fatty acid ethyl esters (FAEEs) as biodiesel. Modular pathway has been constructed for FAEE production. Several metabolic engineering strategies were discussed to improve the production levels of FAEEs, including host engineering by improving CO2 fixation rate and photosynthetic efficiency. In addition, protein engineering of key enzyme in S. elongatus PCC 7942 was implemented to address issues on FAEE secretions toward sustainable FAEE production from CO2. Finally, advanced metabolic engineering will promote developing biosolar cell factories to convert CO2 to feasible amount of FAEEs toward solar biodiesel. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Photosynthetic carbon fixation characteristics of fruiting structures of Brassica campestris L

    International Nuclear Information System (INIS)

    Singal, H.R.; Sheoran, I.S.; Singh, R.

    1987-01-01

    Activities of key enzymes of the Calvin cycle and C 4 metabolism, rates of CO 2 fixation, and the initial products of photosynthetic 14 CO 2 fixation were determined in the podwall, seed coat (fruiting structures), and the subtending leaf (leaf below a receme) of Brassica campestris L. cv Toria. Compared to activities of ribulose-1,5-bisphosphate carboxylase and other Calvin cycle enzymes, e.g. NADP-glyceraldehyde-3-phosphate-dehydrogenase and ribulose-5-phosphate kinase, the activities of phosphoenol pyruvate carboxylase and other enzymes of C 4 metabolism, viz. NADP-malate dehydrogenase, NADP-malic enzyme, glutamate pyruvate transaminase, and glutamate oxaloacetate transaminase, were generally much higher in seed than in podwall and leaf. Podwall and leaf were comparable to each other. Pulse-chase experiments showed that in seed the major product of 14 CO 2 assimilation was malate (in short time), whereas in podwall and leaf, the label initially appeared in 3-PGA. With time, the label moved to sucrose. In contrast to legumes, Brassica pods were able to fix net CO 2 during light. However, respiratory losses were very high during the dark period

  12. Inhibitory effect of self-generated extracellular dissolved organic carbon on carbon dioxide fixation in sulfur-oxidizing bacteria during a chemoautotrophic cultivation process and its elimination.

    Science.gov (United States)

    Wang, Ya-Nan; Tsang, Yiu Fai; Wang, Lei; Fu, Xiaohua; Hu, Jiajun; Li, Huan; Le, Yiquan

    2018-03-01

    The features of extracellular dissolved organic carbon (EDOC) generation in two typical aerobic sulfur-oxidizing bacteria (Thiobacillus thioparus DSM 505 and Halothiobacillus neapolitanus DSM 15147) and its impact on CO 2 fixation during chemoautotrophic cultivation process were investigated. The results showed that EDOC accumulated in both strains during CO 2 fixation process. Large molecular weight (MW) EDOC derived from cell lysis and decay was dominant during the entire process in DSM 505, whereas small MW EDOC accounted for a large proportion during initial and middle stages of DSM 15147 as its cytoskeleton synthesis rate did not keep up with CO 2 assimilation rate. The self-generated EDOC feedback repressed cbb gene transcription and thus decreased total bacterial cell number and CO 2 fixation yield in both strains, but DSM 505 was more sensitive to this inhibition effect. Moreover, the membrane bioreactor effectively decreased the EDOC/TOC ratio and improved carbon fixation yield of DSM 505. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Highly integrated CO2 capture and conversion: Direct synthesis of cyclic carbonates from industrial flue gas

    KAUST Repository

    Barthel, Alexander; Saih, Youssef; Gimenez, Michel; Pelletier, Jeremie; Kü hn, Fritz Elmar; D´ Elia, Valerio; Basset, Jean-Marie

    2016-01-01

    Robust and selective catalytic systems based on early transition metal halides (Y, Sc, Zr) and organic nucleophiles were found able to quantitatively capture CO2 from diluted streams via formation of hemicarbonate species and to convert it to cyclic organic carbonates under ambient conditions. This observation was exploited in the direct and selective chemical fixation of flue gas CO2 collected from an industrial exhaust, affording high degrees of CO2 capture and conversion.

  14. Highly integrated CO2 capture and conversion: Direct synthesis of cyclic carbonates from industrial flue gas

    KAUST Repository

    Barthel, Alexander

    2016-02-08

    Robust and selective catalytic systems based on early transition metal halides (Y, Sc, Zr) and organic nucleophiles were found able to quantitatively capture CO2 from diluted streams via formation of hemicarbonate species and to convert it to cyclic organic carbonates under ambient conditions. This observation was exploited in the direct and selective chemical fixation of flue gas CO2 collected from an industrial exhaust, affording high degrees of CO2 capture and conversion.

  15. Carbon dioxide measurements in the nocturnal boundary layer over Amazonian forest

    Directory of Open Access Journals (Sweden)

    A. D. Culf

    1999-01-01

    Full Text Available Measurements of carbon dioxide concentration, temperature and windspeed were made in the nocturnal boundary layer over a tropical forest near Manaus, Brazil using a tethered balloon system. The measurements were made up to a maximum height of 300 m on ten consecutive nights in November 1995. Simultaneous surface flux and in-canopy concentration measurements were made at the surface close to the site. The observation period included several different types of conditions. Generally strong windshear and relatively weak temperature gradients prevented the formation of a strong capping inversion to the nocturnal boundary layer. On some nights, however, the inversion was sufficiently strong that the CO2 concentration at 100 m above the surface exceeded 400 ppm. The concentration within the canopy was largely controlled by the presence of an inversion very close to the canopy surface. The temperature and wind profiles are contrasted with conditions in Randônia, Brazil, where the windshear was found to be weaker and higher carbon dioxide concentrations were observed in the early morning. The difference in carbon dioxide concentrations in the nocturnal boundary layer between dusk and dawn is used to estimate the regional nighttime flux of carbon dioxide. The value obtained generally exceeds the measured surface flux and sometimes exceeds the sum of the surface flux and the in-canopy storage made at the tower site. The reasons for the discrepancy are not clear; either one of the methods is in error or the regional carbon dioxide budget differs significantly from the local budget measured at the tower site.

  16. Fixation of carbon dioxide by coral reef. Sangosho ni yoru CO2 no kotei

    Energy Technology Data Exchange (ETDEWEB)

    Yamamuro, M [Geological Survey of Japan, Tsukuba, Ibaraki (Japan)

    1993-08-01

    The methods for fixation of carbon dioxide in the atmosphere in order to control the greenhouse effect, are groped. Carbon is fixed through two ways such as the production of organic compounds by photosynthesis and formation of calcium carbonate by calcification. Among them, the photosynthesis fixes carbon dioxide in the air, and calcification, on thinking of only chemical equilibrium in the sea water, is a process to exhaust carbon dioxide from ocean to the atmosphere. It is, therefore, uneven in opinions of researchers if the coral reef is an absorbing source or an exhausting one of carbon dioxide. A conventional discussion on this theme, did not carry out based on the actual search or measurement, but preceded on modelling. In order, therefore, to introduce a scientific decision on a play of the coral reef for the global carbon circulation, it seems to take more time. In this paper, an opinion that the coral reef is an absorbing source of carbon dioxide in the air according to some measuring results of carbon dioxide fixation velocity and organic compounds volume in sediments in the coral reefs, are described. 11 refs., 4 figs.

  17. Niche convergence suggests functionality of the nocturnal fovea

    Directory of Open Access Journals (Sweden)

    Gillian L. Moritz

    2014-07-01

    Full Text Available The fovea is a declivity of the retinal surface associated with maximum visual acuity. Foveae are widespread across vertebrates, but among mammals they are restricted to haplorhine primates (tarsiers, monkeys, apes, and humans, which are primarily diurnal. Thus primates have long contributed to the prevailing view that the fovea is a functional adaptation to diurnal color vision. The foveae of nocturnal taxa, such as tarsiers, are widely interpreted as vestigial traits and therefore evidence of a diurnal ancestry. This enduring premise has been central to adaptive hypotheses on the origins of anthropoid primates; however, the question of whether the fovea of tarsiers is a functionless anachronism or a nocturnal adaptation remains open. To address this question, we focused on the diets of tarsiers (Tarsius and scops owls (Otus, two taxa united by numerous anatomical homoplasies, including foveate vision. A functional interpretation of these homoplasies predicts dietary convergence and competition. This prediction can be tested with an analysis of carbon and nitrogen stable isotopes in tissues, which integrate dietary information. As predicted, the isotopic niches of Tarsius and Otus overlapped. In both Borneo and the Philippines, the δ13C values were indistinguishable, whereas the δ15N values of Otus were marginally higher than those of Tarsius. Our results indicate that both diets consisted mainly of ground-dwelling prey and raise the possibility of some resource partitioning. Taken together, our isotopic analysis supports a functional interpretation of the many homoplasies shared by tarsiers and scops owls, including a retinal fovea. We suggest that the fovea might function similarly in tarsiers and scops owls by calibrating the auditory localization pathway. The integration of auditory localization and visual fixation during prey detection and acquisition might be critical at low light levels.

  18. Survival with Three-Times Weekly In-Center Nocturnal Versus Conventional Hemodialysis

    Science.gov (United States)

    Xu, Jianglin; Suri, Rita S.; Nesrallah, Gihad; Lindsay, Robert; Garg, Amit X.; Lester, Keith; Ofsthun, Norma; Lazarus, Michael; Hakim, Raymond M.

    2012-01-01

    Whether the duration of hemodialysis treatments improves outcomes remains controversial. Here, we evaluated survival and clinical changes associated with converting from conventional hemodialysis (mean=3.75 h/treatment) to in-center nocturnal hemodialysis (mean=7.85 h/treatment). All 959 consecutive patients who initiated nocturnal hemodialysis for the first time in 77 Fresenius Medical Care facilities during 2006 and 2007 were eligible. We used Cox models to compare risk for mortality during 2 years of follow-up in a 1:3 propensity score–matched cohort of 746 nocturnal and 2062 control patients on conventional hemodialysis. Two-year mortality was 19% among nocturnal hemodialysis patients compared with 27% among conventional patients. Nocturnal hemodialysis associated with a 25% reduction in the risk for death after adjustment for age, body mass index, and dialysis vintage (hazard ratio=0.75, 95% confidence interval=0.61–0.91, P=0.004). With respect to clinical features, interdialytic weight gain, albumin, hemoglobin, dialysis dose, and calcium increased on nocturnal therapy, whereas postdialysis weight, predialysis systolic blood pressure, ultrafiltration rate, phosphorus, and white blood cell count declined (all P<0.001). In summary, notwithstanding the possibility of residual selection bias, conversion to treatment with nocturnal hemodialysis associates with favorable clinical features, laboratory biomarkers, and improved survival compared with propensity score–matched controls. The potential impact of extended treatment time on clinical outcomes while maintaining a three times per week hemodialysis schedule requires evaluation in future clinical trials. PMID:22362905

  19. Field evaluation of N2 fixation by seventeen mung bean genotypes in the Philippines

    International Nuclear Information System (INIS)

    Rosales, C.M.; Rivera, F.; Hautia, R.A.; Del Rosario, E.

    1994-12-01

    Seventeen mung bean genotypes were screened for biological nitrogen fixation (BNF) during the late dry (March-May) and early dry (October-December) seasons of 1992 in the Philippines. The 15 N isotope dilution method was used to measure N 2 fixation. Performances were quantified based on both indirect and direct measurements of N 2 fixation. Genetic variation was observed among varieties tested for some BNF characteristic. However, genetic variability for percent N derived from fixation (%Ndfa) was not evident. PAEC 3 mutant, Taiwan Green, Acc 687 and Pagasa 7 were the best performers. Whereas Acc 2041 consistently performed poorly for most of the BNF characters tested. (author). 14 refs., 1 fig., 2 tabs

  20. Effect of melatonin on nocturnal blood pressure: meta-analysis of randomized controlled trials

    Directory of Open Access Journals (Sweden)

    Laudon M

    2011-09-01

    Full Text Available Ehud Grossman1,4, Moshe Laudon2, Nava Zisapel2,31Department of Internal Medicine D and Hypertension Unit, The Chaim Sheba Medical Center, Tel-Hashomer, Israel; 2Neurim Pharmaceuticals Ltd, Tel Aviv, Israel and 3Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; 4Sackler School of Medicine, Tel Aviv University, Tel Aviv, IsraelBackground: Patients with nocturnal hypertension are at higher risk for cardiovascular complications such as myocardial infarction and cerebrovascular insult. Published studies inconsistently reported decreases in nocturnal blood pressure with melatonin.Methods: A meta-analysis of the efficacy and safety of exogenous melatonin in ameliorating nocturnal blood pressure was performed using a random effects model of all studies fitting the inclusion criteria, with subgroup analysis of fast-release versus controlled-release preparations.Results: Seven trials (three of controlled-release and four of fast-release melatonin with 221 participants were included. Meta-analysis of all seven studies did not reveal significant effects of melatonin versus placebo on nocturnal blood pressure. However, subgroup analysis revealed that controlled-release melatonin significantly reduced nocturnal blood pressure whereas fast-release melatonin had no effect. Systolic blood pressure decreased significantly with controlled-release melatonin (-6.1 mmHg; 95% confidence interval [CI] -10.7 to -1.5; P = 0.009 but not fast-release melatonin (-0.3 mmHg; 95% CI -5.9 to 5.30; P = 0.92. Diastolic blood pressure also decreased significantly with controlled-release melatonin (-3.5 mmHg; 95% CI -6.1 to -0.9; P = 0.009 but not fast-release melatonin (-0.2 mmHg; 95% CI -3.8 to 3.3; P = 0.89. No safety concerns were raised.Conclusion: Add-on controlled-release melatonin to antihypertensive therapy is effective and safe in ameliorating nocturnal hypertension, whereas fast-release melatonin is ineffective. It is necessary

  1. The effects of adenotonsillotomy on nocturnal enuresis in snoring children

    Directory of Open Access Journals (Sweden)

    Marta Kostrzewa

    2017-12-01

    Full Text Available Introduction: Nocturnal enuresis is a common problem in the paediatric population. A number of reports indicate that there is a relationship between sleep-disordered breathing in children with tonsillar hypertrophy and nocturnal enuresis. Restoration of nasopharyngeal patency may eliminate nocturnal enuresis. Aim: The aim of the study was to evaluate the incidence of nocturnal enuresis in children snoring due to nasopharyngeal lymphatic tissue hypertrophy as well as to assess the effects of restored upper respiratory patency by means of adenectomy and tonsillectomy on the resolution of nocturnal enuresis in children. Material and methods: The study included 50 children with sleep-disordered breathing qualified for adenectomy, tonsillotomy or adenotonsillotomy (median age 7 years. The control group consisted of 20 healthy children (median age 8 years. Children in the study group were assessed prior to surgical procedure as well as 3 and 6 months after surgery. The presence of sleep-disordered breathing and nocturnal enuresis was determined based on author’s questionnaire completed by parents. Results: The incidence of nocturnal enuresis in children with nasopharyngeal lymphatic tissue hypertrophy was 18% (M:F 17%:19%; p > 0.05. Nocturnal enuresis was still reported in 6% of children 3 months after tonsillotomy. The disorder resolved in all girls and 97% of boys 6 months after procedure. Conclusions: Sleep-disordered breathing in children with nasopharyngeal lymphatic tissue hypertrophy is associated with nocturnal enuresis. Restoration of nasopharyngeal patency in these patients eliminates nocturnal enuresis. Tonsillar hypertrophy causing obstructive breathing should be included in the differential diagnosis of nocturnal enuresis.

  2. Fixation strength of a polyetheretherketone femoral component in total knee arthroplasty.

    Science.gov (United States)

    de Ruiter, Lennert; Janssen, Dennis; Briscoe, Adam; Verdonschot, Nico

    2017-11-01

    Introducing polyetheretherketone (PEEK) polymer as a material for femoral components in total knee arthroplasty (TKA) could potentially lead to a reduction of the cemented fixation strength. A PEEK implant is more likely to deform under high loads, rendering geometrical locking features less effective. Fixation strength may be enhanced by adding more undercuts or specific surface treatments. The aim of this study is to measure the initial fixation strength and investigate the associated failure patterns of three different iterations of PEEK-OPTIMA ® implants compared with a Cobalt-Chromium (CoCr) component. Femoral components were cemented onto trabecular bone analogue foam blocks and preconditioned with 86,400 cycles of compressive loading (2600 N-260 N at 1 Hz). They were then extracted while the force was measured and the initial failure mechanism was recorded. Four groups were compared: CoCr, regular PEEK, PEEK with an enhanced cement-bonding surface and the latter with additional surface primer. The mean pull-off forces for the four groups were 3814 N, 688 N, 2525 N and 2552 N, respectively. The initial failure patterns for groups 1, 3 and 4 were the same; posterior condylar foam fracture and cement-bone debonding. Implants from group 2 failed at the cement-implant interface. This study has shown that a PEEK-OPTIMA ® femoral TKA component with enhanced macro- and microtexture is able to replicate the main failure mechanism of a conventional CoCr femoral implant. The fixation strength is lower than for a CoCr implant, but substantially higher than loads occurring under in-vivo conditions. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. Survey report for fiscal 1998. Survey of the current state and tasks of research and development of technologies for effectively utilizing CO{sub 2} fixation by higher vegetation; 1998 nendo chosa hokokusho. Koto shokubutsu ni okeru nisanka tanso koteika yuko riyo gijutsu no kenkyu kaihatsu no genjo to kadai ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Investigations and studies are conducted seeking for a CO2 fixation method improved by utilizing the photosynthesizing function of higher vegetation. Details of higher vegetation genes are being disclosed thanks to the rapid progress of studies making use of molecular biological techniques, and the application of the genetic mechanism to scientific and technological fields is becoming increasingly feasible. In particular, the role of the CO2 fixation enzyme RuBisCO has been elucidated almost completely. It has been learned that, in terms of photosynthesizing capability, the C{sub 4} plants (corn etc.) are 2-3 times higher than the C{sub 3} plants (rice, wheat, etc.), and 5-10 times higher than the CAM plants (cactuses etc.). Studies are also under way about the rice genome so that a photosynthesizing capability so high as that of the C{sub 4} plants may be endowed the rice plant. The metabolism and control of useful substances produced in the CO2 fixation process etc. in the higher vegetation are being investigated, and it is now expected that some day such useful substances will be produced and utilized efficiently. Researches are under way into the relationship between the green leaf that is the organ that performs photosynthesis and the organ (sink) that stores and utilizes starch and sugar is in progress, and now a new field is going to open where vegetables will be fully utilized. (NEDO)

  4. Analysis of nocturia with 24-h urine volume, nocturnal urine volume, nocturnal bladder capacity and length of sleep duration: concept for effective treatment modality.

    Science.gov (United States)

    Udo, Yukihiro; Nakao, Masahiro; Honjo, Hisashi; Ukimura, Osamu; Kawauchi, Akihiro; Kitakoji, Hiroshi; Miki, Tsuneharu

    2011-03-01

    • To determine the relationship between the number of nocturia and 24-h urine volume, nocturnal urine volume, nocturnal bladder capacity and length of sleep duration as well as to assess the significance of these factors with respect to eliminating nocturnal voidings in individual patients with nocturia. • Among 532 participants who completed a 3-day bladder diary between April 2005 and December 2006, the diaries of 450 participants without 24-h polyuria were analyzed. • Clinical variables such as the number of daytime and night-time voids, 24-h urine volume, nocturnal polyuria index, daytime and night-time maximum voided volumes (MVV), night/day MVV ratio, sleep duration and proportion of night/day urine production rates were obtained from each diary. • Participants were classified into eight groups according to values of three factors: nocturnal MVV, proportion of night/day urine production rates and length of sleep duration. • Each group was divided into three subgroups: non-nocturics (number of nocturnal voidings is zero), mild nocturics (number of nocturnal voidings is one) and severe nocturics (number of nocturnal voidings is two or more). • The data from non-nocturics with three normal factors were regarded as the normal control and compared with the variables of the other subgroups using Dunnett's method. • Variables that form the basis of classifying participants into eight groups and corresponding to abnormal factors of each group were statistically significant in all the subgroups of each group. • Furthermore, a significantly increased 24-h urine volume was found in severe nocturics of the group with three normal factors. • A significantly decreased 24-h urine volume was found in non-nocturics of groups with nocturnal polyuria, decreased bladder capacity and both long sleep duration and nocturnal polyuria. • A significantly increased nocturnal MVV and night/day MVV ratio were shown in non-nocturics and mild nocturics of the groups

  5. Nocturnal bees are attracted by widespread floral scents.

    Science.gov (United States)

    Carvalho, Airton Torres; Maia, Artur Campos Dalia; Ojima, Poliana Yumi; dos Santos, Adauto A; Schlindwein, Clemens

    2012-03-01

    Flower localization in darkness is a challenging task for nocturnal pollinators. Floral scents often play a crucial role in guiding them towards their hosts. Using common volatile compounds of floral scents, we trapped female nocturnal Megalopta-bees (Halictidae), thus uncovering olfactory cues involved in their search for floral resources. Applying a new sampling method hereby described, we offer novel perspectives on the investigation of nocturnal bees.

  6. Bacterial N2-fixation in mangrove ecosystems: insights from a diazotroph-mangrove interaction.

    Science.gov (United States)

    Alfaro-Espinoza, Gabriela; Ullrich, Matthias S

    2015-01-01

    Mangrove forests are highly productive ecosystems but represent low nutrient environments. Nitrogen availability is one of the main factors limiting mangrove growth. Diazotrophs have been identified as key organisms that provide nitrogen to these environments. N2-fixation by such organisms was found to be higher in the mangrove roots than in surrounding rhizosphere. Moreover, previous studies showed that mangroves grew better in the presence of N2-fixers indicating a potentially mutualistic relationship. However, the molecular signals and mechanisms that govern these interactions are still poorly understood. Here we present novel insights in the interaction of a diazotroph with a mangrove species to improve our understanding of the molecular and ecophysiological relationship between these two organisms under controlled conditions. Our results showed that Marinobacterium mangrovicola is a versatile organism capable of competing with other organisms to survive for long periods in mangrove soils. N2-fixation by this bacterium was up-regulated in the presence of mangrove roots, indicating a possible beneficial interaction. The increase in N2-fixation was limited to cells of the exponential growth phase suggesting that N2-fixation differs over the bacterial growth cycle. Bacterial transformants harboring a transcriptional nifH::gusA fusion showed that M. mangrovicola successfully colonized mangrove roots and simultaneously conducted N2-fixation. The colonization process was stimulated by the lack of an external carbon source suggesting a possible mutualistic relationship. M. mangrovicola represents an interesting genetically accessible diazotroph, which colonize mangrove roots and exhibit higher N2-fixation in the presence of mangrove roots. Consequently, we propose this microorganism as a tool to study molecular interactions between N2-fixers and mangrove plants and to better understand how changes in the environment could impact these important and relatively unknown

  7. Screening with nuclear techniques for yield and N2 fixation in mung bean in Thailand

    International Nuclear Information System (INIS)

    Boonkerd, N.; Wadisrisuk, P.; Siripin, S.; Murakami, T.; Danso, S.K.A.

    1998-01-01

    For a farmer to reap benefit from mung bean's (Vigna radiata) capacity to fix N 2 , the crop's requirement for N must come mainly from the atmosphere through symbiotic fixation in the root nodules. The aim of this study was to evaluate recommended mung-bean cultivars and advanced breeding lines, and identify high fixers. Preliminary investigations with the 15 N natural-abundance method indicated its utility for measuring N 2 fixation, and the examination of five recommended cultivars and two advanced breeding lines of mung using the 15 N-dilution method showed diversity in N 2 fixation and yield. More than 400 lines of mung bean were screened in soil in cement containers for growth, nodulation, N accumulation and N 2 fixation at 35 days after planting, with the natural-abundance method used to determine N 2 fixation. Genetic variability was observed for all characteristics. Estimates of fixed N ranged from 0-300 mg N/plant. Whereas some lines obtained N mainly from fixation, recommended cultivars apparently obtained their N mainly from soil. The data are discussed in terms of reliability of the 15 N natural-abundance method

  8. Biological N2 fixation mainly controlled by Sphagnum tissue N:P ratio in ombrotrophic bogs

    Science.gov (United States)

    Zivkovic, Tatjana; Moore, Tim R.

    2017-04-01

    Most of the 18 Pg nitrogen (N) accumulated in northern nutrient-poor and Sphagnum-dominated peatlands (bogs and fens) can be attributed to N2-fixation by diazotrophs either associated with the live Sphagnum or non-symbiotically in the deeper peat such as through methane consumption close to the water table. Where atmospheric N deposition is low (Sphagnum, suggested by the increase in tissue N:P to >16. It is unclear how Sphagnum-hosted diazotrophic activity may be affected by N deposition and thus changes in N:P ratio. First, we investigated the effects of long-term addition of different sources of nitrogen (0, 1.6, 3.2 and 6.4 g N m-2 y-1as NH4Cl and NaNO3), and phosphorus (5 g P m-2 y-1as KH2PO4) on Sphagnum nutrient status (N, P and N:P ratio), net primary productivity (NPP) and Sphagnum-associated N2fixation at Mer Bleue, a temperate ombrotrophic bog. We show that N concentration in Sphagnum tissue increased with larger rates of N addition, with a stronger effect on Sphagnum from NH4 than NO3. The addition of P created a 3.5 fold increase in Sphagnum P content compared to controls. Sphagnum NPP decreased linearly with the rise in N:P ratio, while linear growth declined exponentially with increase in Sphagnum N content. Rates of N2-fixation determined in the laboratory significantly decreased in response to even the smallest addition of both N species. In contrast, the addition of P increased N2 fixation by up to 100 times compared to N treatments and up to 5-30 times compared to controls. The change in N2-fixation was best modeled by the N:P ratio, across all experimental treatments. Secondly, to test the role of N:P ratio on N2-fixation across a range of bogs, eight study sites along the latitudinal gradient from temperate, boreal to subarctic zone in eastern Canada were selected. From each bog, two predominant microptopographies, hummocks and hollows, were tested for both N2-fixation activity in the laboratory and Sphagnum tissue concentrations of N, P and N

  9. Nocturnal sleep problems among university students from 26 countries.

    Science.gov (United States)

    Peltzer, Karl; Pengpid, Supa

    2015-05-01

    The aim of this study is to estimate the prevalence of nocturnal sleeping problems and its associated factors among university students in mainly low- and middle-income countries. A cross-sectional survey was conducted with 20,222 undergraduate university students (mean age, 20.8; SD = 2.8) from 27 universities in 26 countries across Asia, Africa and the Americas. Overall, 10.4% reported severe or extreme nocturnal sleeping problems (male, 10.2%; female, 10.5%) in the past month. Noctural sleeping problems differed by country, from 32.9% in Indonesia to 3.0 % in Thailand among Asian countries, from 13.7% in Mauritius to 7.5% in South Africa, and from 11.8% in Jamaica to 6.1% in Columbia in the Americas. In multivariate logistic regression analysis, coming from a poor family background, staying off campus (on their own or with parents or guardians), stress (history of child sexual abuse), poor mental health (depression and PTSD symptoms), health risk behaviour (tobacco use, heavy internet use, gambling, skipping breakfast and having sustained an injury), lack of social support and poor academic performance were associated with nocturnal sleeping problems. A significant prevalence of past-month nocturnal sleeping problems was found. Potential factors associated with the risk of reporting sleeping complaints were identified, which may assist in prevention strategies to promote a better quality of sleep.

  10. Nocturnal accumulation of CO2 underneath a tropical forest canopy along a tropographical gradient

    NARCIS (Netherlands)

    Araújo, de A.C.; Kruijt, B.; Nobre, A.D.; Dolman, A.J.; Waterloo, M.J.; Moors, E.J.; Souza, de J.

    2008-01-01

    Flux measurements of carbon dioxide and water vapor above tropical rain forests are often difficult to interpret because the terrain is usually complex. This complexity induces heterogeneity in the surface but also affects lateral movement of carbon dioxide (CO2) not readily detected by the eddy

  11. Five decades of N2 fixation research in the North Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    Mar eBenavides

    2015-06-01

    Full Text Available Dinitrogen (N2 fixation (the reduction of atmospheric N2 to ammonium by specialized prokaryotic microbes, represents an important input of fixed nitrogen and contributes significantly to primary productivity in the oceans. Marine N2 fixation was discovered in the North Atlantic Ocean (NA in the 1960s. Ever since, the NA has been subject to numerous studies that have looked into the diversity and abundance of N2-fixing microbes (diazotrophs, the spatial and temporal variability of N2 fixation rates, and the range of physical and chemical variables that control them. The NA provides 10-25% of the globally fixed N2, ranking as the third basin with the largest N2 fixation inputs in the world’s oceans. This basin suffers a chronic depletion in phosphorus availability, more aeolian dust deposition than any other basin in the world’s oceans, and significant nutrient inputs from important rivers like the Amazon and the Congo. These characteristics make it unique in comparison with other oceanic basins. After five decades of intensive research, here we present a comprehensive review of our current understanding of diazotrophic activity in the NA from both a geochemical and biological perspective. We discuss the advantages and disadvantages of current methods, future perspectives, and questions which remain to be answered.

  12. Nitrogen fixation in arctic marine sediments: effect of oil and hydrocarbon fractions

    Energy Technology Data Exchange (ETDEWEB)

    Knowles, R; Wishart, C

    1977-06-01

    Nitrogen fixation (acetylene reduction) was measured in grab and core samples of sediments from the Beaufort Sea and Eskimo Lakes, Northwest Territories, Canada. Very low rates (about 25 mg N/m/sup 2/.year) were detected in untreated sediments. Activity was markedly stimulated by the addition of glucose, sucrose, lactose, mannitol and malate but much less so by acetate; negligible activity was supported by N-acetylglucosamine. There was no consistent effect of the presence or absence of oxygen. Nitrogen fixation potentials in glucose-supplemented sediment samples showed large variation between stations, between samples from the same station and between depths within single cores down to 18 cm. Weathered Normal Wells crude oil, hexane, decane, dodecane and hexadecane had no effect, stimulatory or inhibitory, on nitrogen fixation or carbon dioxide evolution. 1,2,4-trimethylbenzene caused complete inhibition of nitrogen fixation but only partial inhibition of CO/sub 2/ evolution. There was no evidence of utilization of any of the hydrocarbons tested during periods of over 30 days under the experimental conditions employed.

  13. Aphotic N2 fixation along an oligotrophic to ultraoligotrophic transect in the western tropical South Pacific Ocean

    Science.gov (United States)

    Benavides, Mar; Shoemaker, Katyanne M.; Moisander, Pia H.; Niggemann, Jutta; Dittmar, Thorsten; Duhamel, Solange; Grosso, Olivier; Pujo-Pay, Mireille; Hélias-Nunige, Sandra; Fumenia, Alain; Bonnet, Sophie

    2018-05-01

    The western tropical South Pacific (WTSP) Ocean has been recognized as a global hot spot of dinitrogen (N2) fixation. Here, as in other marine environments across the oceans, N2 fixation studies have focused on the sunlit layer. However, studies have confirmed the importance of aphotic N2 fixation activity, although until now only one had been performed in the WTSP. In order to increase our knowledge of aphotic N2 fixation in the WTSP, we measured N2 fixation rates and identified diazotrophic phylotypes in the mesopelagic layer along a transect spanning from New Caledonia to French Polynesia. Because non-cyanobacterial diazotrophs presumably need external dissolved organic matter (DOM) sources for their nutrition, we also identified DOM compounds using Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) with the aim of searching for relationships between the composition of DOM and non-cyanobacterial N2 fixation in the aphotic ocean. N2 fixation rates were low (average 0.63 ± 0.07 nmol N L-1 d-1) but consistently detected across all depths and stations, representing ˜ 6-88 % of photic N2 fixation. N2 fixation rates were not significantly correlated with DOM compounds. The analysis of nifH gene amplicons revealed a wide diversity of non-cyanobacterial diazotrophs, mostly matching clusters 1 and 3. Interestingly, a distinct phylotype from the major nifH subcluster 1G dominated at 650 dbar, coinciding with the oxygenated Subantarctic Mode Water (SAMW). This consistent pattern suggests that the distribution of aphotic diazotroph communities is to some extent controlled by water mass structure. While the data available are still too scarce to elucidate the distribution and controls of mesopelagic non-cyanobacterial diazotrophs in the WTSP, their prevalence in the mesopelagic layer and the consistent detection of active N2 fixation activity at all depths sampled during our study suggest that aphotic N2 fixation may contribute significantly to fixed

  14. [Nocturnal polyuria, treatment with desmopressin].

    Science.gov (United States)

    Zachoval, R; Krhut, J; Šottner, O; Hanuš, T; Martan, A; Horčička, L; Feyereisl, J; Halaška, M; Švabík, K; Krofta, L

    2013-08-01

    Nonpharmacologic and especially pharmacologic treatment options are available for nocturnal polyuria. Desmopressin represents the basis of pharmacologic treatment. Desmopressin acetate is a synthetic analogue of arginine vasopressin with high affinity to V2 receptors with antidiuretic effect. It is the only medicament currently registered for antidiuretic treatment. Desmopressin has not any relevant affinity to V1 receptors, and therefore there is no hypertensive effect in contrary to natural vasopressin. Desmopressin use before a bedtime leads to reduced production of urine during a sleep, therefore time between desires to void is prolonged and number of nocturia is reduced. Clinical effect, in a meaning of reduced urine production and increased osmolality of urine, lasts approximately 8-12 hours. In the treatment of nocturnal polyuria desmopressin is used orally one hour before a bedtime. It is essential to titrate an ideal dose, the initial dose is 60 µg of MELT formula (fast melting oral formulation) and it can be increased according to the clinical effect up to the maximal recommended daily dose 240 µg. Patients treated with desmopressin should cut down a fluid intake 1 hour before and 8 hours after the use of desmopressin. Total number of adverse events connected withdesmopressin treatment in clinical studies was higher compared to placebo but the side effects were mostly mild. The most common adverse events were headaches, nausea, diarrhoea, abdominal pain, dry mouth and hyponatremia both in the short-term and long-term clinical trials. Hyponatremia was observed mainly in patients over 65 year of age. Therefore treatment with desmopressin should not be commended in patients over 65 year of age without close monitoring of the natrium level in serum and all patients should be informed about the first symptoms of hyponatremia - headache, nausea and insomnia. According to Evidence Based Medicine, the level of evidence for treatment of nocturnal polyuria with

  15. Metabolism of poly-β-hydroxybutyric acid in bacteroids of Rhizobium lupini in connection with nitrogen fixation and photosynthesis

    International Nuclear Information System (INIS)

    Romanov, V.I.; Fedulova, N.G.; Tchermenskaya, I.E.; Shramko, V.I.; Molchanov, M.I.; Kretovich, W.L.

    1980-01-01

    The darkening of lupin plants grown in a sand culture on a nitrogen-free medium at a stage of initial flowering led to a sharply decreased nitrogen fixation intensity which eventually ceased. Decreased intensity of nitrogen fixation in bacteroids was accompanied by an accumulation of poly-β-hydroxybutyric acid (PHB): in the course of 10-20 h (depending upon temperature) its content increased by 2.5-3.0 times. If, following darkening, the plants were once again exposed to light, an abrupt increase of nitrogen fixation intensity was observed and a simultaneous decrease of PHB content. It has been shown that lupin's exposure to light in 14 CO 2 atmosphere lasting 19 h resulted in the latter's incorporation into PHB, bacteroids and into the entire nodule; these processes developed almost in parallel. During the early period of vegetation growth prior to flowering, the PHB content of bacteroids decreased from 13 14 to 3.4% of dry weight, whereas the intensity of nitrogen fixation was raised. Concurrently increase of the activity of some enzymes connected with the PHB metabolism (aceto-acetyl-CoA-reductase, acetyl-CoA acetyl transferase PHB-depolymerase, (CoA-transferase, of 3-ketoacids) occured. The plants' subsequent ageing and reduction of nitrogen fixation intensity led to a noticeable increase of PHB content and a decrease of the above mentioned enzymes' activity. The specific activity of β-hydroxybutyric dehydrogenase involved with PHB catabolism was high and was maintained at a constant level throughout the entire vegetative period. (orig.)

  16. CO2 Capture and Reuse

    International Nuclear Information System (INIS)

    Thambimuthu, K.; Gupta, M.; Davison, J.

    2003-01-01

    producing streams for use as a feedstock or by product for subsequent utilization in industrial processes, this paper will also review existing methods of CO2 utilization and the future scope for utilization as a sink that could prevent the release of anthropogenic CO2 emissions into the atmosphere. In order to be effective as a sink, the process or product that uses CO2 must take cognisance of the type of energy use, energy penalties and net greenhouse gas emissions associated with the 'capture' and 'fixation' of carbon, as well as significantly prolonging the period between CO2 production from fossil fuels and the stage of its final discharge into the atmosphere from any degradation or release of the 'fixed' carbon. Hence, the manufacturing of various chemicals, materials or products using CO2 as a raw material will be reviewed and evaluated in terms of these criteria as well as their chemical/thermodynamic stability relative to CO2

  17. Isolation and application of SO{sub X} and NO{sub X} resistant microalgae in biofixation of CO{sub 2} from thermoelectricity plants

    Energy Technology Data Exchange (ETDEWEB)

    Radmann, Elisangela Martha; Vieira Camerini, Felipe; Duarte Santos, Thaisa [Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande (FURG), P.O. Box 474, Rio Grande-RS 96201-900 (Brazil); Vieira Costa, Jorge Alberto, E-mail: dqmjorge@furg.br [Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande (FURG), P.O. Box 474, Rio Grande-RS 96201-900 (Brazil)

    2011-09-15

    Highlights: {yields} Microalgae can help reduce global warming. {yields} Synechococcus nidulans and Chlorella vulgaris were isolated in a thermoelectric plant. {yields} Microalgae were compared with Spirulina and Scenedesmus obliquus for CO{sub 2} fixation. {yields} Microalgae were exposed to CO{sub 2}, SO{sub 2} and NO, simulating a gas from coal combustion. {yields} C. vulgaris and Spirulina sp. showed 13.43% of maximum daily fixation. - Abstract: Microalgae have been studied for their potential use in foodstuffs, agriculture, in the treatment of wastewater and, in particular, in the reduction of atmospheric carbon dioxide, the main cause of global warming. Thermoelectricity plants account for 22% of CO{sub 2} emitted into the atmosphere and native microalgae may be more tolerant to the gases emitted from burning fossil fuels. In the study presented here, microalgae were isolated from ponds next to a Thermoelectricity Plant, located in southern Brazil, and identified as Synechococcus nidulans and Chlorella vulgaris. The isolated microalgae were grown and compared with two different strains of microalgae, Spirulina sp. and Scenedesmus obliquus, for CO{sub 2} biofixation. The microalgae were exposed to 12% CO{sub 2}, 60 ppm of SO{sub 2} and 100 ppm of NO, simulating a gas from coal combustion. The C. vulgaris had similar behavior to Spirulina sp., with 13.43% of maximum daily fixation. The microalgae with the greater fixing capacity were C. vulgaris and Spirulina sp. and these can be grown in electric power plants for CO{sub 2} biofixation of the coal combustion gas, which would help reduce global warming.

  18. Smaller Fixation Target Size Is Associated with More Stable Fixation and Less Variance in Threshold Sensitivity.

    Directory of Open Access Journals (Sweden)

    Kazunori Hirasawa

    Full Text Available The aims of this randomized observational case control study were to quantify fixation behavior during standard automated perimetry (SAP with different fixation targets and to evaluate the relationship between fixation behavior and threshold variability at each test point in healthy young participants experienced with perimetry. SAP was performed on the right eyes of 29 participants using the Octopus 900 perimeter, program 32, dynamic strategy. The fixation targets of Point, Cross, and Ring were used for SAP. Fixation behavior was recorded using a wearable eye-tracking glass. All participants underwent SAP twice with each fixation target in a random fashion. Fixation behavior was quantified by calculating the bivariate contour ellipse area (BCEA and the frequency of deviation from the fixation target. The BCEAs (deg2 of Point, Cross, and Ring targets were 1.11, 1.46, and 2.02, respectively. In all cases, BCEA increased significantly with increasing fixation target size (p < 0.05. The logarithmic value of BCEA demonstrated the same tendency (p < 0.05. A positive correlation was identified between fixation behavior and threshold variability for the Point and Cross targets (ρ = 0.413-0.534, p < 0.05. Fixation behavior increased with increasing fixation target size. Moreover, a larger fixation behavior tended to be associated with a higher threshold variability. A small fixation target is recommended during the visual field test.

  19. Nocturnal Eating: Association with Binge Eating, Obesity, and Psychological Distress

    Science.gov (United States)

    Striegel-Moore, Ruth H.; Rosselli, Francine; Wilson, G. Terence; Perrin, Nancy; Harvey, Kate; DeBar, Lynn

    2009-01-01

    Objective To examine clinical correlates of nocturnal eating, a core behavioral symptom of night eating syndrome. Method Data from 285 women who had participated in a two-stage screening for binge eating were utilized. Women (n = 41) who reported one or more nocturnal eating episodes in the past 28 days on the Eating Disorder Examination and women who did not report nocturnal eating (n =244) were compared on eating disorder symptomatology, Body Mass Index (BMI), and on measures of psychosocial adjustment. Results Nocturnal eaters were significantly more likely to report binge eating and differed significantly from non-nocturnal eaters (with responses indicating greater disturbance) on weight and shape concern, eating concern, self-esteem, depression, and functional impairment, but not on BMI or dietary restraint. Group differences remained significant in analyses adjusting for binge eating. Conclusions This study confirms the association between nocturnal eating and binge eating previously found in treatment seeking samples yet also suggests that the elevated eating disorder symptoms and decreased psychosocial adjustment observed in nocturnal eaters is not simply a function of binge eating. PMID:19708071

  20. FY 1999 report on the results of the R and D of the global environmental industry technology. R and D of the CO2 fixation/effective use technology using bacteria/algae; 1999 nendo saikin sorui nado riyo nisanka tanso koteika yuko riyo gijutsu kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of developing the technology to fix CO2 and recycle it as resource in higher efficiency than that in photosynthesis in the nature world, study of bacteria, etc. was made in terms of the search, breeding, and artificial realization of the growth environment, etc. The FY 1999 results were summed up. As to high efficiency photosynthetic bacteria/microalgae, conditions for sampling/breeding/optimum culture of bacteria were established and made database. From conditions for the optimum CO2 fixation by photosynthetic bacteria, oxygen injury prevention culture method, continuous culture experiment, etc., it was found out that the carbyne cycle was a main route of the carbon fixation also in photosynthetic bacteria. As to the cell fusion, established were the technology of electric fusion of interspecific fusion strains and the technology of evaluation of growth characteristics. Also studied was a method to transfect genes into Chlorella sp. which fixes CO2. Concerning the light collecting reactor of 200L scale, a high concentration culture experiment was carried out using Chlorella sp. UK001 as the strain tested, and the engineering data on the behavior in culture tank, multiplication speed, etc. were collected. (NEDO)

  1. Nocturnal Oviposition Behavior of Forensically Important Diptera in Central England.

    Science.gov (United States)

    Barnes, Kate M; Grace, Karon A; Bulling, Mark T

    2015-11-01

    Timing of oviposition on a corpse is a key factor in entomologically based minimum postmortem interval (mPMI) calculations. However, there is considerable variation in nocturnal oviposition behavior of blow flies reported in the research literature. This study investigated nocturnal oviposition in central England for the first time, over 25 trials from 2011 to 2013. Liver-baited traps were placed in an urban location during control (diurnal), and nocturnal periods and environmental conditions were recorded during each 5-h trial. No nocturnal activity or oviposition was observed during the course of the study indicating that nocturnal oviposition is highly unlikely in central England. © 2015 American Academy of Forensic Sciences.

  2. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession

    DEFF Research Database (Denmark)

    Batterman, Sarah A.; Hedin, Lars O.; Van Breugel, Michiel

    2013-01-01

    Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO 2 may be constrained by nitrogen, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N 2), but it is unclear whether this function...... tree species across the entire forest age sequence. These findings show that symbiotic N 2 fixation can have a central role in nitrogen cycling during tropical forest stand development, with potentially important implications for the ability of tropical forests to sequester CO 2....

  3. Effects of macro nutrient concentration on biological N2 fixation by Azotobacter vinelandii ATCC 12837

    International Nuclear Information System (INIS)

    Liew Pauline Woan Ying; Nazalan Najimudin; Jong Bor Chyan; Latiffah Noordin; Khairuddin Abdul Rahim; Amir Hamzah Ahmad Ghazali

    2010-01-01

    The dynamic changes of biological N 2 fixation by Azotobacter vinelandii ATCC 12837 under the influence of various macro nutrients, specifically phosphorus (P) and potassium (K), was investigated. In this attempt, Oryza sativa L. var. MR 219 was used as the model plant. Results obtained showed changes in the biological N 2 fixation activities with different macro nutrient(s) manipulations. The research activity enables optimisation of macro nutrients concentration for optimal/ enhanced biological N 2 fixation by A. vinelandii ATCC 12837. (author)

  4. Dinitrogen fixation in aphotic oxygenated marine environments

    Directory of Open Access Journals (Sweden)

    Eyal eRahav

    2013-08-01

    Full Text Available We measured N2 fixation rates from oceanic zones that have traditionally been ignored as sources of biological N2 fixation; the aphotic, fully oxygenated, nitrate (NO3--rich, waters of the oligotrophic Levantine Basin (LB and the Gulf of Aqaba (GA. N2 fixation rates measured from pelagic aphotic waters to depths up to 720 m, during the mixed and stratified periods, ranged from 0.01 nmol N L-1 d-1 to 0.38 nmol N L-1 d-1. N2 fixation rates correlated significantly with bacterial productivity and heterotrophic diazotrophs were identified from aphotic as well as photic depths. Dissolved free amino acid amendments to whole water from the GA enhanced bacterial productivity by 2to 3.5 and N2 fixation rates by ~ 2 fold in samples collected from aphotic depths while in amendments to water from photic depths bacterial productivity increased 2 to 6 fold while N2 fixation rates increased by a factor of 2 to 4 illustrating that both BP an heterotrophic N2 fixation are carbon limited. Experimental manipulations of aphotic waters from the LB demonstrated a significant positive correlation between transparent exopolymeric particles (TEP concentration and N2 fixation rates. This suggests that sinking organic material and high carbon (C: nitrogen (N micro-environments (such as TEP-based aggregates or marine snow could support high heterotrophic N2 fixation rates in oxygenated surface waters and in the aphotic zones. Indeed, our calculations show that aphotic N2 fixation accounted for 37 to 75 % of the total daily integrated N2 fixation rates at both locations in the Mediterranean and Red Seas with rates equal or greater to those measured from the photic layers. Moreover, our results indicate that that while N2 fixation may be limited in the surface waters, aphotic, pelagic N2 fixation may contribute significantly to new N inputs in other oligotrophic basins, yet it is currently not included in regional or global N budgets.

  5. Benthic N2 fixation in coral reefs and the potential effects of human-induced environmental change

    Science.gov (United States)

    Cardini, Ulisse; Bednarz, Vanessa N; Foster, Rachel A; Wild, Christian

    2014-01-01

    Tropical coral reefs are among the most productive and diverse ecosystems, despite being surrounded by ocean waters where nutrients are in short supply. Benthic dinitrogen (N2) fixation is a significant internal source of “new” nitrogen (N) in reef ecosystems, but related information appears to be sparse. Here, we review the current state (and gaps) of knowledge on N2 fixation associated with coral reef organisms and their ecosystems. By summarizing the existing literature, we show that benthic N2 fixation is an omnipresent process in tropical reef environments. Highest N2 fixation rates are detected in reef-associated cyanobacterial mats and sea grass meadows, clearly showing the significance of these functional groups, if present, to the input of new N in reef ecosystems. Nonetheless, key benthic organisms such as hard corals also importantly contribute to benthic N2 fixation in the reef. Given the usually high coral coverage of healthy reef systems, these results indicate that benthic symbiotic associations may be more important than previously thought. In fact, mutualisms between carbon (C) and N2 fixers have likely evolved that may enable reef communities to mitigate N limitation. We then explore the potential effects of the increasing human interferences on the process of benthic reef N2 fixation via changes in diazotrophic populations, enzymatic activities, or availability of benthic substrates favorable to these microorganisms. Current knowledge indicates positive effects of ocean acidification, warming, and deoxygenation and negative effects of increased ultraviolet radiation on the amount of N fixed in coral reefs. Eutrophication may either boost or suppress N2 fixation, depending on the nutrient becoming limiting. As N2 fixation appears to play a fundamental role in nutrient-limited reef ecosystems, these assumptions need to be expanded and confirmed by future research efforts addressing the knowledge gaps identified in this review. PMID:24967086

  6. Aphotic N2 fixation along an oligotrophic to ultraoligotrophic transect in the western tropical South Pacific Ocean

    Directory of Open Access Journals (Sweden)

    M. Benavides

    2018-05-01

    Full Text Available The western tropical South Pacific (WTSP Ocean has been recognized as a global hot spot of dinitrogen (N2 fixation. Here, as in other marine environments across the oceans, N2 fixation studies have focused on the sunlit layer. However, studies have confirmed the importance of aphotic N2 fixation activity, although until now only one had been performed in the WTSP. In order to increase our knowledge of aphotic N2 fixation in the WTSP, we measured N2 fixation rates and identified diazotrophic phylotypes in the mesopelagic layer along a transect spanning from New Caledonia to French Polynesia. Because non-cyanobacterial diazotrophs presumably need external dissolved organic matter (DOM sources for their nutrition, we also identified DOM compounds using Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS with the aim of searching for relationships between the composition of DOM and non-cyanobacterial N2 fixation in the aphotic ocean. N2 fixation rates were low (average 0.63 ± 0.07 nmol N L−1 d−1 but consistently detected across all depths and stations, representing ∼ 6–88 % of photic N2 fixation. N2 fixation rates were not significantly correlated with DOM compounds. The analysis of nifH gene amplicons revealed a wide diversity of non-cyanobacterial diazotrophs, mostly matching clusters 1 and 3. Interestingly, a distinct phylotype from the major nifH subcluster 1G dominated at 650 dbar, coinciding with the oxygenated Subantarctic Mode Water (SAMW. This consistent pattern suggests that the distribution of aphotic diazotroph communities is to some extent controlled by water mass structure. While the data available are still too scarce to elucidate the distribution and controls of mesopelagic non-cyanobacterial diazotrophs in the WTSP, their prevalence in the mesopelagic layer and the consistent detection of active N2 fixation activity at all depths sampled during our study suggest that aphotic N2

  7. Biocatalysis for the application of CO2 as a chemical feedstock

    Directory of Open Access Journals (Sweden)

    Apostolos Alissandratos

    2015-12-01

    Full Text Available Biocatalysts, capable of efficiently transforming CO2 into other more reduced forms of carbon, offer sustainable alternatives to current oxidative technologies that rely on diminishing natural fossil-fuel deposits. Enzymes that catalyse CO2 fixation steps in carbon assimilation pathways are promising catalysts for the sustainable transformation of this safe and renewable feedstock into central metabolites. These may be further converted into a wide range of fuels and commodity chemicals, through the multitude of known enzymatic reactions. The required reducing equivalents for the net carbon reductions may be drawn from solar energy, electricity or chemical oxidation, and delivered in vitro or through cellular mechanisms, while enzyme catalysis lowers the activation barriers of the CO2 transformations to make them more energy efficient. The development of technologies that treat CO2-transforming enzymes and other cellular components as modules that may be assembled into synthetic reaction circuits will facilitate the use of CO2 as a renewable chemical feedstock, greatly enabling a sustainable carbon bio-economy.

  8. Prevalence of Nocturnal Enuresis and Its Associated Factors in Primary School and Preschool Children of Khorramabad in 2013

    Directory of Open Access Journals (Sweden)

    Katayoun Bakhtiar

    2014-01-01

    Full Text Available Background. Nocturnal enuresis refers to an inability to control urination during sleep. This study aimed to determine the prevalence of nocturnal enuresis and its associated factors in children in the city of Khorramabad. Materials and Methods. In this descriptive-analytic, cross-sectional study, 710 male and female children were divided into two groups with equal numbers. The samples were selected from the schools of Khorramabad using the multistage cluster and stratified random sampling methods based on the diagnostic criteria of DSM-IV. The data was analyzed using the logistic regression. Results. The results showed that 8% of the children had nocturnal enuresis, including 5.2% of primary nocturnal enuresis and 2.8% of secondary nocturnal enuresis. The prevalence of nocturnal enuresis in the boys (10.7% was higher compared with that in the girls (5.4% (P=0.009. There were statistically significant relationships between nocturnal enuresis and history of nocturnal enuresis in siblings (P=0.023, respiratory infections (P=0.036, deep sleep (P=0.007, corporal punishment at school (P=0.036, anal itching (P=0.043, and history of seizures (P=0.043. Conclusion. This study showed that the prevalence of nocturnal enuresis in the boys was higher compared with that in the girls.

  9. Prevalence of nocturnal enuresis and its associated factors in primary school and preschool children of khorramabad in 2013.

    Science.gov (United States)

    Bakhtiar, Katayoun; Pournia, Yadollah; Ebrahimzadeh, Farzad; Farhadi, Ali; Shafizadeh, Fathollah; Hosseinabadi, Reza

    2014-01-01

    Background. Nocturnal enuresis refers to an inability to control urination during sleep. This study aimed to determine the prevalence of nocturnal enuresis and its associated factors in children in the city of Khorramabad. Materials and Methods. In this descriptive-analytic, cross-sectional study, 710 male and female children were divided into two groups with equal numbers. The samples were selected from the schools of Khorramabad using the multistage cluster and stratified random sampling methods based on the diagnostic criteria of DSM-IV. The data was analyzed using the logistic regression. Results. The results showed that 8% of the children had nocturnal enuresis, including 5.2% of primary nocturnal enuresis and 2.8% of secondary nocturnal enuresis. The prevalence of nocturnal enuresis in the boys (10.7%) was higher compared with that in the girls (5.4%) (P = 0.009). There were statistically significant relationships between nocturnal enuresis and history of nocturnal enuresis in siblings (P = 0.023), respiratory infections (P = 0.036), deep sleep (P = 0.007), corporal punishment at school (P = 0.036), anal itching (P = 0.043), and history of seizures (P = 0.043). Conclusion. This study showed that the prevalence of nocturnal enuresis in the boys was higher compared with that in the girls.

  10. Biomechanics of lumbar cortical screw-rod fixation versus pedicle screw-rod fixation with and without interbody support.

    Science.gov (United States)

    Perez-Orribo, Luis; Kalb, Samuel; Reyes, Phillip M; Chang, Steve W; Crawford, Neil R

    2013-04-15

    Seven different combinations of posterior screw fixation, with or without interbody support, were compared in vitro using nondestructive flexibility tests. To study the biomechanical behavior of a new cortical screw (CS) fixation construct relative to the traditional pedicle screw (PS) construct. The CS is an alternative to the PS for posterior fixation of the lumbar spine. The CS trajectory is more sagittally and cranially oriented than the PS, being anchored in the pars interarticularis. Like PS fixation, CS fixation uses interconnecting rods fastened with top-locking connectors. Stability after bilateral CS fixation was compared with stability after bilateral PS fixation in the setting of intact disc and with direct lateral interbody fixation (DLIF) or transforaminal lateral interbody fixation (TLIF) support. Standard nondestructive flexibility tests were performed in cadaveric lumbar specimens, allowing non-paired comparisons of specific conditions from 28 specimens (4 groups of 7) within a larger experiment of multiple hardware configurations. Condition tested and group from which results originated were as follows: (1) intact (all groups); (2) with L3-L4 bilateral PS-rods (group 1); (3) with bilateral CS-rods (group 2); (4) with DLIF (group 3); (5) with DLIF + CS-rods (group 4); (6) with DLIF + PS-rods (group 3); (7) with TLIF + CS-rods (group 2), and (8) with TLIF + PS-rods (group 2). To assess spinal stability, the mean range of motion, lax zone, and stiff zone at L3-L4 were compared during flexion-extension, lateral bending, and axial rotation. With intact disc, stability was equivalent after PS-rod and CS-rod fixation, except that PS-rod fixation was stiffer during axial rotation. With DLIF support, there was no significant difference in stability between PS-rod and CS-rod fixation. With TLIF support, PS-rod fixation was stiffer than CS-rod fixation during lateral bending. Bilateral CS-rod fixation provided about the same stability in cadaveric specimens

  11. Experimental investigation of CO2-brine-rock interactions at elevated temperature and pressure: Implications for CO2 sequestration in deep-saline aquifers

    Science.gov (United States)

    Rosenbauer, R.J.; Koksalan, T.; Palandri, J.L.

    2005-01-01

    Deep-saline aquifers are potential repositories for excess CO2, currently being emitted to the atmosphere from anthropogenic activities, but the reactivity of supercritical CO2 with host aquifer fluids and formation minerals needs to be understood. Experiments reacting supercritical CO2 with natural and synthetic brines in the presence and absence of limestone and plagioclase-rich arkosic sandstone showed that the reaction of CO2-saturated brine with limestone results in compositional, mineralogical, and porosity changes in the aquifer fluid and rock that are dependent on initial brine composition, especially dissolved calcium and sulfate. Experiments reacting CO2-saturated, low-sulfate brine with limestone dissolved 10% of the original calcite and increased rock porosity by 2.6%. Experiments reacting high-sulfate brine with limestone, both in the presence and absence of supercritical CO2, were characterized by the precipitation of anhydrite, dolomitization of the limestone, and a final decrease in porosity of 4.5%. However, based on favorable initial porosity changes of about 15% due to the dissolution of calcite, the combination of CO2 co-injection with other mitigation strategies might help alleviate some of the well-bore scale and formation-plugging problems near the injection zone of a brine disposal well in Paradox Valley, Colorado, as well as provide a repository for CO2. Experiments showed that the solubility of CO2 is enhanced in brine in the presence of limestone by 9% at 25 ??C and 6% at 120 ??C and 200 bar relative to the brine itself. The solubility of CO2 is enhanced also in brine in the presence of arkosic sandstone by 5% at 120 ??C and 300 bar. The storage of CO 2 in limestone aquifers is limited to only ionic and hydraulic trapping. However, brine reacted with supercritical CO2 and arkose yielded fixation and sequestration of CO2 in carbonate mineral phases. Brine desiccation was observed in all experiments containing a discrete CO2 phase

  12. Sequestering CO2 in the Ocean: Options and Consequences

    Science.gov (United States)

    Rau, G. H.; Caldeira, K.

    2002-12-01

    The likelihood of negative climate and environmental impacts associated with increasing atmospheric CO2 has prompted serious consideration of various CO2 mitigation strategies. Among these are methods of capturing and storing of CO2 in the ocean. Two approaches that have received the most attention in this regard have been i) ocean fertilization to enhanced biological uptake and fixation of CO2, and ii) the chemical/mechanical capture and injection of CO2 into the deep ocean. Both methods seek to enhance or speed up natural mechanisms of CO2 uptake and storage by the ocean, namely i) the biological CO2 "pump" or ii) the passive diffusion of CO2 into the surface ocean and subsequent mixing into the deep sea. However, as will be reviewed, concerns about the capacity and effectiveness of either strategy in long-term CO2 sequestration have been raised. Both methods are not without potentially significant environmental impacts, and the costs of CO2 capture and injection (option ii) are currently prohibitive. An alternate method of ocean CO2 sequestration would be to react and hydrate CO2 rich waste gases (e.g., power plant flue gas) with seawater and to subsequently neutralize the resulting carbonic acid with limestone to produce calcium and bicarbonate ions in solution. This approach would simply speed up the CO2 uptake and sequestration that naturally (but very slowly) occurs via global carbonate weathering. This would avoid much of the increased acidity associated with direct CO2 injection while obviating the need for costly CO2 separation and capture. The addition of the resulting bicarbonate- and carbonate-rich solution to the ocean would help to counter the decrease in pH and carbonate ion concentration, and hence loss of biological calcification that is presently occurring as anthropogenic CO2 invades the ocean from the atmosphere. However, as with any approach to CO2 mitigation, the costs, impacts, risks, and benefits of this method need to be better understood

  13. Removal of 14C-contaminated CO2 from simulated LWR fuel reprocessing off-gas by utilizing the reaction between CO2 and alkaline hydroxides in either slurry or solid form

    International Nuclear Information System (INIS)

    Holladay, D.W.; Haag, G.L.

    1979-01-01

    An important consideration in the design of a LWR fuel reprocessing plant is the removal of 14 C-contaminated CO 2 from the process off-gas. The separation and fixation of essentially all the CO 2 from the simulated off-gas can be accomplished by reaction with alkaline slurries in agitated tank-type contactors. Based on efficacy for CO 2 removal, consideration of reactant cost, and stability of the carbonate product as related to long-term storage requirements, the two most promising slurry reactants for CO 2 removal from low CO 2 -content feed gases are Ca(OH) 2 and Ba(OH) 2 . The removal of 14 C-contaminated CO 2 from simulated LWR off-gases was studied as a function of both operating conditions and varying sizes of bench-scale design. Parametrically, the effects on the CO 2 removal rate of feed composition (330 ppM - 4.47% CO 2 ), impeller speed (325 to 650 rpm), superficial velocity (5 to 80 cm/min), reactants [Mg(OH) 2 , NaOH], contactor size (20.3 cm and 27.3 cm ID), and type of operation (semibatch or continuous slurry) were deterined

  14. Iatrogenic nocturnal eneuresis- an overlooked side effect of anti histamines?

    Directory of Open Access Journals (Sweden)

    D Italiano

    2015-01-01

    Full Text Available Nocturnal enuresis is a common disorder in childhood, but its pathophysiological mechanisms have not been fully elucidated. Iatrogenic nocturnal enuresis has been described following treatment with several psychotropic medications. Herein, we describe a 6-year-old child who experienced nocturnal enuresis during treatment with the antihistamine cetirizine. Drug rechallenge was positive. Several neurotransmitters are implicated in the pathogenesis of nocturnal enuresis, including noradrenaline, serotonin and dopamine. Antihistamine treatment may provoke functional imbalance of these pathways resulting in incontinence.

  15. Survey report for fiscal 1998. Survey of trends of new CO{sub 2} fixation technology using bacteria and algae (II); 1998 nendo chosa hokokusho. Saikin sorui wo riyoshita atarashii nisanka tanso kotei gijutsu no doko chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The trend of technology is surveyed from a standpoint that, in the process of CO2 fixation using microbes for the production of useful substances, it is essential, in view of income/outgo balance and economy, to utilize their catalytic function. The survey centers about the feasibility of the utilization of organic wastes, cellulose wastes in particular, as an energy source. Special attention is paid to the energy of artificial light and laser beams. From a point of view that it is important to suppress cell multiplication and to effectively utilize only catalytic activity for the production of useful substances, the cell division mechanism of the Corynebacterium is analyzed, and the findings are compiled to facilitate the study as to whether the division may be controlled. A report is also prepared on the metabolic mechanism of a photosynthesizing bacterium that is judged to be the most promising species. Reference is made to aerobic and anaerobic bacteria. Shown are the organic compounds that are formed by CO2 gas fixation thanks to microbial or enzymatic reactions. To emphasize their importance as an energy source and to explain the conversion of biomass into useful substances, the technology and economy of conversion into fuel compounds are surveyed. The production of ethanol out of organic wastes is evaluated in the way of LCA (life cycle assessment). (NEDO)

  16. Analysis of Microbial Communities in the Oil Reservoir Subjected to CO2-Flooding by Using Functional Genes as Molecular Biomarkers for Microbial CO2 Sequestration

    Directory of Open Access Journals (Sweden)

    Jin-Feng eLiu

    2015-03-01

    Full Text Available Sequestration of CO2 in oil reservoirs is considered to be one of the feasible options for mitigating atmospheric CO2 building up and also for the in situ potential bioconversion of stored CO2 to methane. However, the information on these functional microbial communities and the impact of CO2 storage on them is hardly available. In this paper a comprehensive molecular survey was performed on microbial communities in production water samples from oil reservoirs experienced CO2-flooding by analysis of functional genes involved in the process, including cbbM, cbbL, fthfs, [FeFe]-hydrogenase and mcrA. As a comparison, these functional genes in the production water samples from oil reservoir only experienced water-flooding in areas of the same oil bearing bed were also analyzed. It showed that these functional genes were all of rich diversity in these samples, and the functional microbial communities and their diversity were strongly affected by a long-term exposure to injected CO2. More interestingly, microorganisms affiliated with members of the genera Methanothemobacter, Acetobacterium and Halothiobacillus as well as hydrogen producers in CO2 injected area either increased or remained unchanged in relative abundance compared to that in water-flooded area, which implied that these microorganisms could adapt to CO2 injection and, if so, demonstrated the potential for microbial fixation and conversion of CO2 into methane in subsurface oil reservoirs.

  17. Association between nocturnal bruxism and gastroesophageal reflux.

    Science.gov (United States)

    Miyawaki, Shouichi; Tanimoto, Yuko; Araki, Yoshiko; Katayama, Akira; Fujii, Akihito; Takano-Yamamoto, Teruko

    2003-11-01

    To examine the relationship between nocturnal bruxism and gastroesophageal reflux. Controlled descriptive study and double-blind, placebo-controlled, clinical study. Portable pH monitoring, electromyography, and audio-video recordings were conducted during the night in the subjects' home. Ten patients with bruxism and 10 normal subjects were matched for height, weight, age, and sex. They did not have symptoms of gastroesophageal reflux disease. Medication with a proton pump inhibitor (ie, a gastric-acid-inhibiting drug). The bruxism group showed a significantly higher frequency of nocturnal rhythmic masticatory muscle activity (RMMA) episodes (mean +/- SD: 6.7 +/- 2.2 times per hour) and a higher frequency and percentage of time of gastroesophageal reflux episodes with a pH less than 4.0 and 5.0 (0.5 +/- 0.9 and 3.6 +/- 1.6 times per hour and 1.3% +/- 2.5% and 7.4% +/- 12.6%, respectively) than the control group (RMMA episodes: 2.4 +/- 0.9 times per hour; gastroesophageal reflux episodes: 0.0 +/- 0.0 and 0.1 +/- 0.3 times per hour and 0.0% +/- 0.0% and 0.0% +/- 0.0%, respectively). In the bruxism group, 100% of the gastroesophageal reflux episodes with a pH less than 3.0 and 4.0 included both an RMMA episode and an electromyographic burst, the duration of which was approximately 0.5 to 1.0 seconds, probably representing swallowing of saliva. The majority of gastroesophageal reflux episodes with a pH of 4.0 to 5.0 also included both an RMMA episode and an electromyographic burst in the control and bruxism groups (100% +/- 0.0% vs 70.7% +/- 16.5%), again probably due to swallowing of saliva. The remaining minority of gastroesophageal reflux episodes with a pH of 4.0 to 5.0 contained only an electromyographic burst (swallowing of saliva). The frequency of RMMA episodes after the release of the medication from the proton pump inhibitor, which increased the gastric and esophageal pH, was significantly lower than that after administration of the placebo in the control

  18. Co-liquefaction of micro algae with coal. 2; Bisai sorui to sekitan no kyoekika hanno. 2

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, C.; Matsui, T.; Otsuki, M.; Ikenaga, N.; Suzuki, T. [Kansai University, Osaka (Japan). Faculty of Engineering

    1996-10-28

    For the removal and recycle of CO2, a global warming gas, utilization of photosynthesis by micro algae is investigated. Formed micro algae are decomposed into CO2, H2O and CH4 again, which does not result in the permanent fixation. For the effective utilization of these micro algae, creation of petroleum alternate energy was tried through the co-liquefaction of micro algae with coal. Were investigated influences of the reaction temperature during the co-liquefaction and influences of catalysts, such as Fe(CO)5-S, Ru(CO)12, and Mo(CO)6-S, which are effective for the coal liquefaction. Micro algae, such as chlorella, spirulina, and littorale, and Yallourn brown coal were tested. It was found that co-liquefaction of micro algae with coal can be successfully proceeded under the same conditions as the liquefaction of coal. The oil yield obtained from the co-liquefaction in the presence of Fe(CO)5-S, an effective catalyst for coal liquefaction, agreed appropriately with the arithmetical mean value from separate liquefaction of coal and micro algae. It was suggested that pyrrhotite, an active species for coal liquefaction, was sufficiently formed by increasing the addition of sulfur. 2 refs., 7 figs., 1 tab.

  19. Optimising biological N2 fixation by legumes in farming systems

    International Nuclear Information System (INIS)

    Hardarson, Gudni; Atkins, Craig

    2001-01-01

    Whether grown as pulses for grain, as green manure, as pastures or as the tree components of agro-forestry systems, the value of leguminous crops lies in their ability to fix atmospheric N 2 , so reducing the use of expensive fertiliser N and enhancing soil fertility. N 2 fixing legumes provide the basis for developing sustainable farming systems that incorporate integrated nutrient management. By exploiting the stable nitrogen isotope 15 N, it has been possible to reliably measure rates of N 2 fixation in a wide range of agro-ecological field situations involving many leguminous species. The accumulated data demonstrate that there is a wealth of genetic diversity among legumes and their Rhizobium symbionts which can be used to enhance N 2 fixation. Practical agronomic and microbiological means to maximise N inputs by legumes have also been identified. (author)

  20. NanoSIMS Analyses of Mo Indicate Nitrogenase Activity and Help Solve a N and C Fixation Puzzle in a Marine Cyanobacterium

    Science.gov (United States)

    Pett-Ridge, J.; Weber, P. K.; Finzi, J.; Hutcheon, I. D.; Capone, D. G.

    2006-12-01

    Diazotrophic cyanobacteria are capable of both CO2 and N2 fixation, yet must separate these two functions because the nitrogenase enzymes used in N2 fixation are strongly inhibited by O2 produced during photosynthesis. Some lineages, such as Anabaena, use specialized cells (heterocysts) to maintain functional segregation. However the mechanism of this segregation is poorly understood in Trichodesmium, a critical component of marine primary production in the tropical and subtropical North Atlantic. While some Trichodesmium studies suggest a temporal segregation of the nitrogen and carbon fixing processes, others indicate nitrogen fixation is spatially isolated in differentiated cells called diazocytes. In order to isolate the intracellular location of N fixation in both species, we used a combination of TEM, SEM and NanoSIMS analysis to map the distribution of C, N and Mo (a critical nitrogenase co-factor) isotopes in intact cells. NanoSIMS is a powerful surface analysis tool which combines nanometer-scale imaging resolution with the high sensitivity of mass spectrometry. Using cells grown in a 13CO^2 and 15N2 enriched atmosphere, our analyses indicate that in Anabaena, heterocysts are consistently enriched in Mo, and Mo accumulation suggests active N fixation (as opposed to N storage). In the non- heterocystous Trichodesmium, Mo is concentrated in sub-regions of individual cells, and is not associated with regions of N storage (cyanophycin granules). We suggest that NanoSIMS mapping of metal enzyme co- factors is a unique method of identifying physiological and morphological characteristics within individual bacterial cells. This combination of NanoSIMS analysis and high resolution microscopy allows isotopic analysis to be linked to morphological features and holds great promise for fine-scale studies of bacteria metabolism.

  1. N2 production and fixation in deep-tier burrows of Squilla empusa in muddy sediments of Great Peconic Bay

    Science.gov (United States)

    Waugh, Stuart; Aller, Robert C.

    2017-11-01

    Global marine N budgets often show deficits due to dominance of benthic N2 production relative to pelagic N2 fixation. Recent studies have argued that benthic N2 fixation in shallow water environments has been underestimated. In particular, N2 fixation associated with animal burrows may be significant as indicated by high rates of N2 fixation reported in muddy sands populated by the ghost shrimp, Neotrypaea californiensis (Bertics et al., 2010). We investigated whether N2 fixation occurs at higher rates in the burrow-walls of the deep-burrowing ( 0.5-4 m) mantis shrimp, Squilla empusa, compared to ambient, estuarine muds and measured seasonal in-situ N2 concentrations in burrow-water relative to bottom-water. Acetylene reduction assays showed lower N2 fixation in burrow-walls than in un-populated sediments, likely due to inhibitory effects of O2 on ethylene production. Dissolved N2 was higher in burrow-water than proximate bottom-water at all seasons, demonstrating a consistent balance of net N2 production relative to fixation in deep-tier biogenic structures.

  2. [CAM in Tillandsia usneoides: Studies on the pathway of carbon and the dependency of CO2-exchange on light intensity, temperature and water content of the plant].

    Science.gov (United States)

    Kluge, M; Lange, O L; Eichmann, M V; Schmid, R

    1973-12-01

    Tillandsia usneoides, in the common sense a non-succulent plant, exhibits CO2 exchange characterized by net CO2 dark fixation during the night and depression of CO2 exchange during the day. Malate has been demonstrated to accumulate during CO2 dark fixation and to be converted to carbohydrates in light. Thus, T. usneoides exhibits CAM like typical succulents.Net CO2 uptake during the day is increased with net CO2 output being suppressed in duration of time and extent when light intensity increases. Furthermore, a slight increase in CO2 fixation during the following night can be observed if the plants were treated with high light intensity during the previous day.Curves of CO2 exchange typical for CAM are obtained if T. usneoides is kept at 15°C and 20°C. Lower temperature tend to increase CO2 uptake during the day and to inhibit CO2 dark fixation. Temperatures higher than 20°C favour loss of CO2 by respiration, which becomes apparent during the whole day and night at 30°C and higher temperatures. Thus, T. usneoides gains carbon only at temperatures well below 25°C.Net CO2 uptake during the day occurs only in moist plant material and is inhibited in plants cept under water stress conditions. However, CO2 uptake during the night is clearly favoured if the plants dry out. Therefore dry plants gain more carbon than moist ones.Curves of CO2 exchange typical for CAM were also obtained with 13 other species of the genus Tillandsia.The exhibition of CAM by the non-succulent T. usneoides calls for a new definition of the term "succulence" if it is to remain useful in characterizing this metabolic pathway. Because CO2-fixing cells of T. usneoides possess relatively large vacuoles and are relatively poor in chloroplasts, they resembles the assimilatory cells of typical CAM-exhibiting succulents. Therefore, if "succulence" only means the capacity of big vacuoles to store malate, the assimilatory cells in T. usneoides are succulent. It seems to be useful to investigate

  3. Nocturnal eating predicts tooth loss among adults: results from the Danish MONICA study

    DEFF Research Database (Denmark)

    Lundgren, Jennifer D; Williams, Karen B; Heitmann, Berit L

    2010-01-01

    The relationship between nocturnal eating, such as that associated with night eating syndrome (NES), and oral health is unknown. This study sought to determine if nocturnal eating is related to tooth loss in a large, epidemiologic sample. Danes (N=2217; age range 30-60 years, M BMI [kg/m(2...

  4. Results of application of external fixation with different types of fixators

    Directory of Open Access Journals (Sweden)

    Grubor Predrag

    2012-01-01

    Full Text Available Introduction. Extra-focal or external fixation is the method of fracture fixation through the healthy part of the bone using pins or wires. Objective. The aim was to determine which external splints (Ortofix, Mitković, Charnley and Ilizarov had the best biomechanical properties in primary stabilization of spiral, transverse and commutative bone fractures. Methods. To determine the investigation methodology of biomechanical characteristics of the external fixator we used mathematical and computer simulator (software, juvidur physical model and clinical examination. Results. Values of advancing fragments in millimetres obtained by the study of mathematical and computer simulator (software: Charnley - 0.080 mm, Mitković M 20 - 0.785 mm, Ilizarov - 2.245 mm and Ortofix - 1.400 mm. In testing the juvidur model the following values were obtained: the external fixator Mitković M20 - 1.380 mm, Ortofix - 1.470 mm, Ilizarov - 2.410 mm, and Charnley - 2.510 mm. Clinical research of biomechanical characteristics of the effect of vertical force yielded the following results: Mitković M20 - 0.89 mm, Ortofix - 0.14 mm, Charnley - 0.80 mm and Ilizarov - 1.23 mm. Conclusion. When determining the total number of the stability test splints under the effect of vertical force (compression and force effect in antero-posterior, later-lateral plane of cross, spiral and comminuted long bone fractures, the best unified biomechanical stability was shown by the following external fixators: firstly, Mitković M20 (0.93mm, secondly, Charnley fixator (1.14 mm, thirdly, Ortofix (1.22 mm, and fourthly, Ilizarov (1.60 mm.

  5. CHEMICAL FIXATION OF CO2 IN COAL COMBUSTION PRODUCTS AND RECYCLING THROUGH BIOSYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    C. Henry Copeland; Paul Pier; Samantha Whitehead; Paul Enlow; Richard Strickland; David Behel

    2003-12-15

    This Annual Technical Progress Report presents the principle results in enhanced growth of algae using coal combustion products as a catalyst to increase bicarbonate levels in solution. A co-current reactor is present that increases the gas phase to bicarbonate transfer rate by a factor of five to nine. The bicarbonate concentration at a given pH is approximately double that obtained using a control column of similar construction. Algae growth experiments were performed under laboratory conditions to obtain baseline production rates and to perfect experimental methods. The final product of this initial phase in algae production is presented. Algal growth can be limited by several factors, including the level of bicarbonate available for photosynthesis, the pH of the growth solution, nutrient levels, and the size of the cell population, which determines the available space for additional growth. In order to supply additional CO2 to increase photosynthesis and algal biomass production, fly ash reactor has been demonstrated to increase the available CO2 in solution above the limits that are achievable with dissolved gas alone. The amount of dissolved CO2 can be used to control pH for optimum growth. Periodic harvesting of algae can be used to maintain algae in the exponential, rapid growth phase. An 800 liter scale up demonstrated that larger scale production is possible. The larger experiment demonstrated that indirect addition of CO2 is feasible and produces significantly less stress on the algal system. With better harvesting methods, nutrient management, and carbon dioxide management, an annual biomass harvest of about 9,000 metric tons per square kilometer (36 MT per acre) appears to be feasible. To sequester carbon, the algal biomass needs to be placed in a permanent location. If drying is undesirable, the biomass will eventually begin to aerobically decompose. It was demonstrated that algal biomass is a suitable feed to an anaerobic digester to produce methane

  6. Nocturnal enuresis in india: Are we diagnosing and managing correctly?

    Directory of Open Access Journals (Sweden)

    N M Reddy

    2017-01-01

    Full Text Available Nocturnal enuresis is a common problem affecting school-aged children worldwide. Although it has significant impact on child's psychology, it is always under-recognized in India and considered as a condition which will outgrow with advancing age. Nocturnal enuresis classified as primary or secondary and monosymptomatic or nonmonosymptomatic. Factors that cause enuresis include genetic factors, bladder dysfunction, psychological factors, and inappropriate antidiuretic hormone secretion, leading to nocturnal polyuria. Diagnosis consists of detailed medical history, clinical examination, frequency-volume charts, and appropriate investigations. The frequency-volume chart or voiding diary helps in establishing diagnosis and tailoring therapy. The first step in treating nocturnal enuresis is to counsel the parents and the affected child about the condition and reassure them that it can be cured. One of the effective strategies to manage enuresis is alarm therapy, but currently, it is not easily available in India. Desmopressin has been used in the treatment of nocturnal enuresis for close to 50 years. It provides an effective and safe option for the management of nocturnal enuresis. This review covers the diagnosis and management of nocturnal enuresis and introduces the concept of “bedwetting clinics” in India, which should help clinicians in the thorough investigation of bedwetting cases.

  7. A Meta-Analysis for Postoperative Complications in Tibial Plafond Fracture: Open Reduction and Internal Fixation Versus Limited Internal Fixation Combined With External Fixator.

    Science.gov (United States)

    Wang, Dong; Xiang, Jian-Ping; Chen, Xiao-Hu; Zhu, Qing-Tang

    2015-01-01

    The treatment of tibial plafond fractures is challenging to foot and ankle surgeons. Open reduction and internal fixation and limited internal fixation combined with an external fixator are 2 of the most commonly used methods of tibial plafond fracture repair. However, conclusions regarding the superior choice remain controversial. The present meta-analysis aimed to quantitatively compare the postoperative complications between open reduction and internal fixation and limited internal fixation combined with an external fixator for tibial plafond fractures. Nine studies with 498 fractures in 494 patients were included in the present study. The meta-analysis found no significant differences in bone healing complications (risk ratio [RR] 1.17, 95% confidence interval [CI] 0.68 to 2.01, p = .58], nonunion (RR 1.09, 95% CI 0.51 to 2.36, p = .82), malunion or delayed union (RR 1.24, 95% CI 0.57 to 2.69, p = .59), superficial (RR 1.56, 95% CI 0.43 to 5.61, p = .50) and deep (RR 1.89, 95% CI 0.62 to 5.80) infections, arthritis symptoms (RR 1.20, 95% CI 0.92 to 1.58, p = .18), or chronic osteomyelitis (RR 0.31, 95% CI 0.05 to 1.84, p = .20) between the 2 groups. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  8. Use of 15N in evaluating symbiotic N2 fixation of field-grown soybeans

    International Nuclear Information System (INIS)

    Ham, G.E.

    1978-01-01

    Various methods have been used to estimate N 2 fixation by legumes (i.e. Kjeldahl N and the acetylene-ethylene assay). Recently 'Asub(N)' values by the legume and a non-nodulating crop using 15 N-labelled N fertilizer were used to quantitatively estimate the amount of N 2 fixed by legume crops growing under field conditions. The objective of this research was to evaluate Kjeldahl N procedures, the acetylene-ethylene assay and the 'Asub(N)' technique as estimators of N 2 fixation by field-grown soybeans. The 'Asub(N)' value concept provided a reliable estimate of N 2 fixation by soybeans which agreed with acetylene-ethylene measurements made weekly and the values compared favourably with Kjeldahl N measurements. (author)

  9. Shifts in nitrogen acquisition strategies enable enhanced terrestrial carbon storage under elevated CO2 in a global model

    Science.gov (United States)

    Sulman, B. N.; Brzostek, E. R.; Menge, D.; Malyshev, S.; Shevliakova, E.

    2017-12-01

    Earth System Model (ESM) projections of terrestrial carbon (C) uptake are critical to understanding the future of the global C cycle. Current ESMs include intricate representations of photosynthetic C fixation in plants, allowing them to simulate the stimulatory effect of increasing atmospheric CO2 levels on photosynthesis. However, they lack sophisticated representations of plant nutrient acquisition, calling into question their ability to project the future land C sink. We conducted simulations using a new model of terrestrial C and nitrogen (N) cycling within the Geophysical Fluid Dynamics Laboratory (GFDL) global land model LM4 that uses a return on investment framework to simulate global patterns of N acquisition via fixation of N2 from the atmosphere, scavenging of inorganic N from soil solution, and mining of organic N from soil organic matter (SOM). We show that these strategies drive divergent C cycle responses to elevated CO2 at the ecosystem scale, with the scavenging strategy leading to N limitation of plant growth and the mining strategy facilitating stimulation of plant biomass accumulation over decadal time scales. In global simulations, shifts in N acquisition from inorganic N scavenging to organic N mining along with increases in N fixation supported long-term acceleration of C uptake under elevated CO2. Our results indicate that the ability of the land C sink to mitigate atmospheric CO2 levels is tightly coupled to the functional diversity of ecosystems and their capacity to change their N acquisition strategies over time. Incorporation of these mechanisms into ESMs is necessary to improve confidence in model projections of the global C cycle.

  10. 14CO2 studies in isoproturon treated crop and weed species

    International Nuclear Information System (INIS)

    Rao, K.R.; Balakrishna Reddy, R.

    1986-01-01

    Isoproturon, a selective herbiside inhibited the photosynthetic carbon assimilation in the weeds with the progress of time. In the crop plant, however, there was a gradual recovery in the carbon assimilation due to the progressive reopening of the stomata. The 14 Co 2 fixation of in vivo and in vitro chloroplasts was also drastically inhibited in the susceptible weeds when compared to the resistant crop plants. (author). 5 refs

  11. The possible evolution and future of CO2-concentrating mechanisms.

    Science.gov (United States)

    Raven, John A; Beardall, John; Sánchez-Baracaldo, Patricia

    2017-06-01

    CO2-concentrating mechanisms (CCMs), based either on active transport of inorganic carbon (biophysical CCMs) or on biochemistry involving supplementary carbon fixation into C4 acids (C4 and CAM), play a major role in global primary productivity. However, the ubiquitous CO2-fixing enzyme in autotrophs, Rubisco, evolved at a time when atmospheric CO2 levels were very much higher than today and O2 was very low and, as CO2 and O2 approached (by no means monotonically), today's levels, at some time subsequently many organisms evolved a CCM that increased the supply of CO2 and decreased Rubisco oxygenase activity. Given that CO2 levels and other environmental factors have altered considerably between when autotrophs evolved and the present day, and are predicted to continue to change into the future, we here examine the drivers for, and possible timing of, evolution of CCMs. CCMs probably evolved when CO2 fell to 2-16 times the present atmospheric level, depending on Rubisco kinetics. We also assess the effects of other key environmental factors such as temperature and nutrient levels on CCM activity and examine the evidence for evolutionary changes in CCM activity and related cellular processes as well as limitations on continuity of CCMs through environmental variations. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Estimation and robust control of microalgae culture for optimization of biological fixation of CO2

    International Nuclear Information System (INIS)

    Filali, R.

    2012-01-01

    This thesis deals with the optimization of carbon dioxide consumption by microalgae. Indeed, following several current environmental issues primarily related to large emissions of CO 2 , it is shown that microalgae represent a very promising solution for CO 2 mitigation. From this perspective, we are interested in the optimization strategy of CO 2 consumption through the development of a robust control law. The main aim is to ensure optimal operating conditions for a Chlorella vulgaris culture in an instrumented photo-bioreactor. The thesis is based on three major axes. The first one concerns growth modeling of the selected species based on a mathematical model reflecting the influence of light and total inorganic carbon concentration. For the control context, the second axis is related to biomass estimation from the real-time measurement of dissolved carbon dioxide. This step is necessary for the control part due to the lack of affordable real-time sensors for this kind of measurement. Three observers structures have been studied and compared: an extended Kalman filter, an asymptotic observer and an interval observer. The last axis deals with the implementation of a non-linear predictive control law coupled to the estimation strategy for the regulation of the cellular concentration around a value which maximizes the CO 2 consumption. Performance and robustness of this control law have been validated in simulation and experimentally on a laboratory-scale instrumented photo-bioreactor. This thesis represents a preliminary study for the optimization of CO 2 mitigation strategy by microalgae. (author)

  13. Nocturnal polyuria is related to absent circadian rhythm of glomerular filtration rate.

    Science.gov (United States)

    De Guchtenaere, A; Vande Walle, C; Van Sintjan, P; Raes, A; Donckerwolcke, R; Van Laecke, E; Hoebeke, P; Vande Walle, J

    2007-12-01

    Monosymptomatic nocturnal enuresis is frequently associated with nocturnal polyuria and low urinary osmolality during the night. Initial studies found decreased vasopressin levels associated with low urinary osmolality overnight. Together with the documented desmopressin response, this was suggestive of a primary role for vasopressin in the pathogenesis of enuresis in the absence of bladder dysfunction. Recent studies no longer confirm this primary role of vasopressin. Other pathogenetic factors such as disordered renal sodium handling, hypercalciuria, increased prostaglandins and/or osmotic excretion might have a role. So far, little attention has been given to abnormalities in the circadian rhythm of glomerular filtration rate. We evaluated the circadian rhythm of glomerular filtration rate and diuresis in children with desmopressin resistant monosymptomatic nocturnal enuresis and nocturnal polyuria. We evaluated 15 children (9 boys) 9 to 14 years old with monosymptomatic nocturnal enuresis and nocturnal polyuria resistant to desmopressin treatment. The control group consisted of 25 children (12 boys) 9 to 16 years old with monosymptomatic nocturnal enuresis without nocturnal polyuria. Compared to the control population, children with nocturnal polyuria lost their circadian rhythm not only for diuresis and sodium excretion but also for glomerular filtration rate. Patients with monosymptomatic nocturnal enuresis and nocturnal polyuria lack a normal circadian rhythm for diuresis and sodium excretion, and the circadian rhythm of glomerular filtration rate is absent. This absence of circadian rhythm of glomerular filtration rate and/or sodium handling cannot be explained by a primary role of vasopressin, but rather by a disorder in circadian rhythm of renal glomerular and/or tubular functions.

  14. Fixation distance and fixation duration to vertical road signs.

    Science.gov (United States)

    Costa, Marco; Simone, Andrea; Vignali, Valeria; Lantieri, Claudio; Palena, Nicola

    2018-05-01

    The distance of first-fixation to vertical road signs was assessed in 22 participants while driving a route of 8.34 km. Fixations to road signs were recorded by a mobile eye-movement-tracking device synchronized to GPS and kinematic data. The route included 75 road signs. First-fixation distance and fixation duration distributions were positively skewed. Median distance of first-fixation was 51 m. Median fixation duration was 137 ms with a modal value of 66 ms. First-fixation distance was linearly related to speed and fixation duration. Road signs were gazed at a much closer distance than their visibility distance. In a second study a staircase procedure was used to test the presentation-time threshold that lead to a 75% accuracy in road sign identification. The threshold was 35 ms, showing that short fixations to a road signs could lead to a correct identification. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. The cyanobacterial nitrogen fixation paradox in natural waters [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Hans Paerl

    2017-03-01

    Full Text Available Nitrogen fixation, the enzymatic conversion of atmospheric N (N2 to ammonia (NH3, is a microbially mediated process by which “new” N is supplied to N-deficient water bodies. Certain bloom-forming cyanobacterial species are capable of conducting N2 fixation; hence, they are able to circumvent N limitation in these waters. However, this anaerobic process is highly sensitive to oxygen, and since cyanobacteria produce oxygen in photosynthesis, they are faced with a paradoxical situation, where one critically important (for supporting growth biochemical process is inhibited by another. N2-fixing cyanobacterial taxa have developed an array of biochemical, morphological, and ecological adaptations to minimize the “oxygen problem”; however, none of these allows N2 fixation to function at a high enough efficiency so that it can supply N needs at the ecosystem scale, where N losses via denitrification, burial, and advection often exceed the inputs of “new” N by N2 fixation. As a result, most marine and freshwater ecosystems exhibit chronic N limitation of primary production. Under conditions of perpetual N limitation, external inputs of N from human sources (agricultural, urban, and industrial play a central role in determining ecosystem fertility and, in the case of N overenrichment, excessive primary production or eutrophication. This points to the importance of controlling external N inputs (in addition to traditional phosphorus controls as a means of ensuring acceptable water quality and safe water supplies. Nitrogen fixation, the enzymatic conversion of atmospheric N2 to ammonia (NH3 is a  microbially-mediated process by which “new” nitrogen is supplied to N-deficient water bodies.  Certain bloom-forming cyanobacterial species are capable of conducting N2 fixation; hence they are able to circumvent nitrogen limitation in these waters. However, this anaerobic process is highly sensitive to oxygen, and since cyanobacteria produce

  16. [Effectiveness comparison of flexible fixation and rigid fixation in treatment of ankle pronation-external rotation fractures with distal tibiofibular syndesmosis].

    Science.gov (United States)

    Li, Yuewei; Zhang, Minghui; Li, Xiaorong; Chen, Xiaoyong; Deng, Jianlong

    2017-07-01

    To compare the effectiveness of flexible fixation and rigid fixation in the treatment of ankle pronation-external rotation fractures with distal tibiofibular syndesmosis. A retrospective analysis was made on the clinical data of 50 patients with ankle pronation-external rotation fractures and distal tibiofibular syndesmosis treated between January 2013 and December 2015. Suture-button fixation was used in 23 patients (flexible fixation group) and cortical screw fixation in 27 patients (rigid fixation group). There was no significant difference in age, gender, weight, side, fracture type, and time from trauma to surgery between 2 groups ( P >0.05). The operation time, medial clear space (MCS), tibiofibular clear space (TFCS), tibiofibular overlap (TFO), American Orthopaedic Foot and Ankle Society (AOFAS) score, and Foot and Ankle Disability Index (FADI) score were compared between 2 groups. The operation time was (83.0±9.1) minutes in the flexible fixation group and was (79.6±13.1) minutes in the rigid fixation group, showing no significant difference ( t =1.052, P =0.265). All patients achieved healing of incision by first intention. The patients were followed up 12-20 months (mean, 14 months). The X-ray films showed good healing of fracture in 2 groups. There was no screw fracture, delayed union or nounion. The fracture healing time was (12.1±2.5) months in the flexible fixation group and was (11.3±3.2) months in the rigid fixation group, showing no significant difference between 2 groups ( t =1.024, P =0.192). Reduction loss occurred after removal of screw in 2 cases of the rigid fixation group. At last follow-up, there was no significant difference in MCS, TFCS, TFO, AOFAS score and FADI score between 2 groups ( P >0.05). Suture-button fixation has similar effectiveness to screw fixation in ankle function and imaging findings, and flexible fixation has lower risk of reduction loss of distal tibiofibular syndesmosis than rigid fixation.

  17. Oxygen-Poor Microzones as Potential Sites of Microbial N2 Fixation in Nitrogen-Depleted Aerobic Marine Waters

    Science.gov (United States)

    Paerl, Hans W.; Prufert, Leslie E.

    1987-01-01

    The nitrogen-deficient coastal waters of North Carolina contain suspended bacteria potentially able to fix N2. Bioassays aimed at identifying environmental factors controlling the development and proliferation of N2 fixation showed that dissolved organic carbon (as simple sugars and sugar alcohols) and particulate organic carbon (derived from Spartina alterniflora) additions elicited and enhanced N2 fixation (nitrogenase activity) in these waters. Nitrogenase activity occurred in samples containing flocculent, mucilage-covered bacterial aggregates. Cyanobacterium-bacterium aggregates also revealed N2 fixation. In all cases bacterial N2 fixation occurred in association with surficial microenvironments or microzones. Since nitrogenase is oxygen labile, we hypothesized that the aggregates themselves protected their constituent microbes from O2. Microelectrode O2 profiles revealed that aggregates had lower internal O2 tensions than surrounding waters. Tetrazolium salt (2,3,5-triphenyl-3-tetrazolium chloride) reduction revealed that patchy zones existed both within microbes and extracellularly in the mucilage surrounding microbes where free O2 was excluded. Triphenyltetrazolium chloride reduction also strongly inhibited nitrogenase activity. These findings suggest that N2 fixation is mediated by the availability of the appropriate types of reduced microzones. Organic carbon enrichment appears to serve as an energy and structural source for aggregate formation, both of which were required for eliciting N2 fixation responses of these waters. Images PMID:16347337

  18. LDRD final report on "Pumping up CO2 and conversion into useful molecules" (LDRD 105932).

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Richard Alan; Stewart, Constantine A.; Dickie, Diane A. (University of New Mexico, Albuquerque, NM)

    2009-11-01

    Group 12 metal cyclam complexes and their derivatives as well as (octyl){sub 2}Sn(OMe){sub 2} were examined as potential catalysts for the production of dimethyl carbonate (DMC) using CO{sub 2} and methanol. The zinc cyclams will readily take up carbon dioxide and methanol at room temperature and atmospheric pressure to give the metal methyl carbonate. The tin exhibited an improvement in DMC yields. Studies involving the reaction of bis-phosphino- and (phosphino)(silyl)-amido group 2 and 12 complexes with CO{sub 2} and CS{sub 2} were performed. Notable results include formation of phosphino-substituted isocyanates, fixation of three moles of CO{sub 2} in an unprecedented [N(CO{sub 2}){sub 3}]{sup 3-} anion, and rapid splitting of CS{sub 2} by main group elements under extremely mild conditions. Similar investigations of divalent group 14 silyl amides led to room temperature splitting of CO{sub 2} into CO and metal oxide clusters, and the formation of isocyanates and carbodiimides.

  19. Mechanisms of carbon dioxide acquisition and CO2 sensing in marine diatoms: a gateway to carbon metabolism.

    Science.gov (United States)

    Matsuda, Yusuke; Hopkinson, Brian M; Nakajima, Kensuke; Dupont, Christopher L; Tsuji, Yoshinori

    2017-09-05

    Diatoms are one of the most successful marine eukaryotic algal groups, responsible for up to 20% of the annual global CO 2 fixation. The evolution of a CO 2 -concentrating mechanism (CCM) allowed diatoms to overcome a number of serious constraints on photosynthesis in the marine environment, particularly low [CO 2 ] aq in seawater relative to concentrations required by the CO 2 fixing enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), which is partly due to the slow diffusion rate of CO 2 in water and a limited CO 2 formation rate from [Formula: see text] in seawater. Diatoms use two alternative strategies to take up dissolved inorganic carbon (DIC) from the environment: one primarily relies on the direct uptake of [Formula: see text] through plasma-membrane type solute carrier (SLC) 4 family [Formula: see text] transporters and the other is more reliant on passive diffusion of CO 2 formed by an external carbonic anhydrase (CA). Bicarbonate taken up into the cytoplasm is most likely then actively transported into the chloroplast stroma by SLC4-type transporters on the chloroplast membrane system. Bicarbonate in the stroma is converted into CO 2 only in close proximity to RubisCO preventing unnecessary CO 2 leakage. CAs play significant roles in mobilizing DIC as it is progressively moved towards the site of fixation. However, the evolutionary types and subcellular locations of CAs are not conserved between different diatoms, strongly suggesting that this DIC mobilization strategy likely evolved multiple times with different origins. By contrast, the recent discovery of the thylakoid luminal θ-CA indicates that the strategy to supply CO 2 to RubisCO in the pyrenoid may be very similar to that of green algae, and strongly suggests convergent coevolution in CCM function of the thylakoid lumen not only among diatoms but among eukaryotic algae in general. In this review, both experimental and corresponding theoretical models of the diatom CCMs are

  20. Eye shape and the nocturnal bottleneck of mammals.

    Science.gov (United States)

    Hall, Margaret I; Kamilar, Jason M; Kirk, E Christopher

    2012-12-22

    Most vertebrate groups exhibit eye shapes that vary predictably with activity pattern. Nocturnal vertebrates typically have large corneas relative to eye size as an adaptation for increased visual sensitivity. Conversely, diurnal vertebrates generally demonstrate smaller corneas relative to eye size as an adaptation for increased visual acuity. By contrast, several studies have concluded that many mammals exhibit typical nocturnal eye shapes, regardless of activity pattern. However, a recent study has argued that new statistical methods allow eye shape to accurately predict activity patterns of mammals, including cathemeral species (animals that are equally likely to be awake and active at any time of day or night). Here, we conduct a detailed analysis of eye shape and activity pattern in mammals, using a broad comparative sample of 266 species. We find that the eye shapes of cathemeral mammals completely overlap with nocturnal and diurnal species. Additionally, most diurnal and cathemeral mammals have eye shapes that are most similar to those of nocturnal birds and lizards. The only mammalian clade that diverges from this pattern is anthropoids, which have convergently evolved eye shapes similar to those of diurnal birds and lizards. Our results provide additional evidence for a nocturnal 'bottleneck' in the early evolution of crown mammals.

  1. Symbiotic N2-fixation by the cover crop Pueraria phaseoloides as influenced by litter mineralization

    DEFF Research Database (Denmark)

    Vesterager, J.M.; Østerby, S.; Jensen, E.S.

    1995-01-01

    The perennial legume Pueraria phaseoloides is widely used as a cover crop in rubber and oil palm plantations. However, very little knowledge exists on the effect of litter mineralization from P. phaseoloides on its symbiotic N-2- fixation. The contribution from symbiotic N-2-fixation (Ndfa...

  2. [Treatment of pediatric distal femur fractures by external fixator combined with limited internal fixation].

    Science.gov (United States)

    Wei, Sheng-wang; Shi, Zhan-ying; Hu, Ju-zheng; Wu, Hao

    2016-03-01

    To discuss the clinical effects of external fixator combined with limited internal fixation in the treatment of pediatric distal femur fractures. From January 2008 to June 2014, 17 children of distal femur fractures were treated by external fixator combined with limited internal fixation. There were 12 males and 5 females, aged from 6 to 13 years old with an average of 10.2 years, ranged in the course of disease from 1 h to 2 d. Preoperative diagnoses were confirmed by X-ray films in all children. There were 11 patients with supracondylar fracture , and 6 patients with intercondylar comminuted fracture. According to AO/ASIF classification, 9 fractures were type A1, 5 cases were type A2,and 3 cases were type C1. The intraoperative and postoperative complications, postoperative radiological examination, lower limbs length and motion of knee joints were observed. Knee joint function was assessed by KSS score. All the patients were followed up from 6 to 38 months with an average of 24.4 months. No nerve or blood vessel injury was found. One case complicated with the external fixation loosening, 2 cases with the infection of pin hole and 3 cases with the leg length discrepancy. Knee joint mobility and length measurement (compared with the contralateral), the average limited inflexion was 10 degrees (0 degrees to 20 degrees), the average limited straight was 4 degrees (0 degrees to 10), the average varus or valgus angle was 3 degrees (0 degrees to 5 degrees). KSS of the injured side was (96.4 +/- 5.0) points at final follow-up, 16 cases got excellent results and 1 good. All fractures obtained healing and no epiphyseal closed early was found. External fixator combined with limited internal fixation has advantages of simple operation, reliable fixation, early functional exercise in treating pediatric distal femurs fractures.

  3. Neural organisation in the first optic ganglion of the nocturnal bee Megalopta genalis.

    Science.gov (United States)

    Greiner, Birgit; Ribi, Willi A; Wcislo, William T; Warrant, Eric J

    2004-11-01

    Each neural unit (cartridge) in the first optic ganglion (lamina) of the nocturnal bee Megalopta genalis contains nine receptor cell axons (6 short and 3 long visual fibres), and four different types of first-order interneurons, also known as L-fibres (L1 to L4) or lamina monopolar cells. The short visual fibres terminate within the lamina as three different types (svf 1, 2, 3). The three long visual fibres pass through the lamina without forming characteristic branching patterns and terminate in the second optic ganglion, the medulla. The lateral branching pattern of svf 2 into adjacent cartridges is unique for hymenopterans. In addition, all four types of L-fibres show dorso-ventrally arranged, wide, lateral branching in this nocturnal bee. This is in contrast to the diurnal bees Apis mellifera and Lasioglossum leucozonium, where only two out of four L-fibre types (L2 and L4) reach neighbouring cartridges. In M. genalis, L1 forms two sub-types, viz. L1-a and L1-b; L1-b in particular has the potential to contact several neighbouring cartridges. L2 and L4 in the nocturnal bee are similar to L2 and L4 in the diurnal bees but have dorso-ventral arborisations that are twice as wide. A new type of laterally spreading L3 has been discovered in the nocturnal bee. The extensive neural branching pattern of L-fibres in M. genalis indicates a potential role for these neurons in the spatial summation of photons from large groups of ommatidia. This specific adaptation in the nocturnal bee could significantly improve reliability of vision in dim light.

  4. Sleep Apnea and Circadian Extracellular Fluid Change as Independent Factors for Nocturnal Polyuria.

    Science.gov (United States)

    Niimi, Aya; Suzuki, Motofumi; Yamaguchi, Yasuhiro; Ishii, Masaki; Fujimura, Tetsuya; Nakagawa, Tohru; Fukuhara, Hiroshi; Kume, Haruki; Igawa, Yasuhiko; Akishita, Masahiro; Homma, Yukio

    2016-10-01

    We investigated the relationships among nocturnal polyuria, sleep apnea and body fluid volume to elucidate the pathophysiology of nocturia in sleep apnea syndrome. We enrolled 104 consecutive patients who underwent polysomnography for suspected sleep apnea syndrome. Self-assessed symptom questionnaires were administered to evaluate sleep disorder and lower urinary tract symptoms, including nocturia. Voiding frequency and voided volume were recorded using a 24-hour frequency-volume chart. Body fluid composition was estimated in the morning and at night using bioelectric impedance analysis. Frequency-volume chart data were analyzed in 22 patients after continuous positive airway pressure therapy. Patients with nocturnal polyuria showed a higher apnea-hypopnea index (33.9 vs 24.2, p = 0.03) and a larger circadian change in extracellular fluid adjusted to lean body mass (0.22 vs -0.19, p = 0.019) than those without nocturnal polyuria. These relations were more evident in patients 65 years old or older than in those 64 years or younger. A multivariate linear regression model showed an independent relationship of nocturnal polyuria with the apnea-hypopnea index and the circadian change in extracellular fluid adjusted to lean body mass (p = 0.0012 and 0.022, respectively). Continuous positive airway pressure therapy significantly improved nocturnal polyuria and nocturia only in patients with nocturnal polyuria. This study identified sleep apnea and the circadian change in extracellular fluid as independent factors for nocturnal polyuria. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  5. Association between morphometric variables and nocturnal desaturation in sickle-cell anemia.

    Science.gov (United States)

    Salles, Cristina; Bispo, Marcelo; Trindade-Ramos, Regina Terse

    2014-01-01

    to evaluate associations between morphometric variables, cervical circumference (CC), and abdominal circumference (AC) with the presence of nocturnal desaturation in children and adolescents with sickle-cell anemia. all patients were submitted to baseline polysomnography, oral cavity measurements (maxillary intermolar distance, mandibular intermolar distance, and overjet), and CC and AC measurements. a total of 85 patients were evaluated. A positive correlation was observed between the height/age Z-score and CC measurement (r = 0.233, p = 0.031). The presence of nocturnal desaturation was associated with CC (59.2± 9.3 vs. 67.5 ± 10.7, p = 0.006) and AC measurements (27.0 ± 2.0 vs. 29.0± 2.1, p = 0.028). There was a negative correlation between desaturation and maxillary intermolar distance (r = -0.365, p = 0.001) and mandibular intermolar distance (r = -0.233, p = 0.037). the morphometric variables of CC and AC may contribute to raise suspicion of nocturnal desaturation in children and adolescents with sickle-cell anemia. Copyright © 2014 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  6. Association between morphometric variables and nocturnal desaturation in sickle-cell anemia

    Directory of Open Access Journals (Sweden)

    Cristina Salles

    2014-07-01

    Full Text Available OBJECTIVE: to evaluate associations between morphometric variables, cervical circumference (CC, and abdominal circumference (AC with the presence of nocturnal desaturation in children and adolescents with sickle-cell anemia. METHODS: all patients were submitted to baseline polysomnography, oral cavity measurements (maxillary intermolar distance, mandibular intermolar distance, and overjet, and CC and AC measurements. RESULTS: a total of 85 patients were evaluated. A positive correlation was observed between the height/age Z-score and CC measurement (r = 0.233, p = 0.031. The presence of nocturnal desaturation was associated with CC (59.2± 9.3 vs. 67.5 ± 10.7, p = 0.006 and AC measurements (27.0 ± 2.0 vs. 29.0± 2.1, p = 0.028. There was a negative correlation between desaturation and maxillary intermolar distance (r = -0.365, p = 0.001 and mandibular intermolar distance (r = -0.233, p = 0.037. CONCLUSIONS: the morphometric variables of CC and AC may contribute to raise suspicion of nocturnal desaturation in children and adolescents with sickle-cell anemia.

  7. Effects of moderate and heavy endurance exercise on nocturnal HRV.

    Science.gov (United States)

    Hynynen, E; Vesterinen, V; Rusko, H; Nummela, A

    2010-06-01

    This study examined the effects of endurance exercise on nocturnal autonomic modulation. Nocturnal R-R intervals were collected after a rest day, after a moderate endurance exercise and after a marathon run in ten healthy, physically active men. Heart rate variability (HRV) was analyzed as a continuous four-hour period starting 30 min after going to bed for sleep. In relation to average nocturnal heart rate after rest day, increases to 109+/-6% and 130+/-11% of baseline were found after moderate endurance exercise and marathon, respectively. Standard deviation of R-R intervals decreased to 90+/-9% and 64+/-10%, root-mean-square of differences between adjacent R-R intervals to 87+/-10% and 55+/-16%, and high frequency power to 77+/-19% and 34+/-19% of baseline after moderate endurance exercise and marathon, respectively. Also nocturnal low frequency power decreased to 56+/-26% of baseline after the marathon. Changes in nocturnal heart rate and HRV suggest prolonged dose-response effects on autonomic modulation after exercises, which may give useful information on the extent of exercise-induced nocturnal autonomic modulation and disturbance to the homeostasis.

  8. Amino acid synthesis in photosynthesizing spinach cells: effects of ammonia on pool sizes and rates of labeling from 14CO2

    International Nuclear Information System (INIS)

    Larsen, P.O.; Cornwell, K.L.; Gee, S.L.; Bassham, J.A.

    1981-01-01

    Isolated cells from leaves of Spinacia oleracea have been maintained in a state capable of high rates of photosynthetic CO 2 fixation for more than 60 hours. The incorporation of 14 CO 2 under saturating CO 2 conditions into carbohydrates, carboxylic acids, and amino acids, and the effect of ammonia on this incorporation have been studied. Total incorporation, specific radioactivity, and pool size have been determined as a function of time for most of the protein amino acids and for γ-aminobutyric acid. The measurements of specific radio-activities and of the approaches to 14 C saturation of some amino acids indicate the presence and relative sizes of metabolically active and passive pools of these amino acids. Added ammonia decreased carbon fixation into carbohydrates and increased fixation into carboxylic acids and amino acids. The results indicate that added ammonia stimulates the reactions mediated by pyruvate kinase and phosphenoenolpyruvate carboxylase, as seen with other plant systems. The data on the effects of added ammonia on total labeling, pool sizes, and specific radioactivities of several amino acids provides a number of indications about the intracellular sites of principal synthesis from carbon skeletons of these amino acids and the selective nature of effects of increased intracellular ammonia concentration on-such synthesis

  9. Permanganate Fixation of Plant Cells

    Science.gov (United States)

    Mollenhauer, Hilton H.

    1959-01-01

    In an evaluation of procedures explored to circumvent some of the problems of osmium tetroxide-fixation and methacrylate embedding of plant materials, excised segments of root tips of Zea mays were fixed for electron microscopy in potassium permanganate in the following treatment variations: unbuffered and veronal-acetate buffered solutions of 0.6, 2.0, and 5.0 per cent KMnO4 at pH 5.0, 6.0, 6.7, and 7.5, and temperatures of 2–4°C. and 22°C. After fixation the segments were dehydrated, embedded in epoxy resin, sectioned, and observed or photographed. The cells of the central region of the rootcap are described. The fixation procedures employing unbuffered solutions containing 2.0 to 5.0 per cent KMnO4 at a temperature of 22°C. gave particularly good preservation of cell structure and all membrane systems. Similar results were obtained using a solution containing 2.0 per cent KMnO4, buffered with veronal-acetate to pH 6.0, and a fixation time of 2 hours at 22°C. The fixation procedure utilizing veronal-acetate buffered, 0.6 per cent KMnO4 at 2–4°C. and pH 6.7 also gave relatively good preservation of most cellular constituents. However, preservation of the plasma membrane was not so good, nor was the intensity of staining so great, as that with the group of fixatives containing greater concentrations of KMnO4. The other fixation procedures did not give satisfactory preservation of fine structure. A comparison is made of cell structures as fixed in KMnO4 or OsO4. PMID:14423414

  10. Adaptive genomic evolution of opsins reveals that early mammals flourished in nocturnal environments.

    Science.gov (United States)

    Borges, Rui; Johnson, Warren E; O'Brien, Stephen J; Gomes, Cidália; Heesy, Christopher P; Antunes, Agostinho

    2018-02-05

    Based on evolutionary patterns of the vertebrate eye, Walls (1942) hypothesized that early placental mammals evolved primarily in nocturnal habitats. However, not only Eutheria, but all mammals show photic characteristics (i.e. dichromatic vision, rod-dominated retina) suggestive of a scotopic eye design. Here, we used integrative comparative genomic and phylogenetic methodologies employing the photoreceptive opsin gene family in 154 mammals to test the likelihood of a nocturnal period in the emergence of all mammals. We showed that mammals possess genomic patterns concordant with a nocturnal ancestry. The loss of the RH2, VA, PARA, PARIE and OPN4x opsins in all mammals led us to advance a probable and most-parsimonious hypothesis of a global nocturnal bottleneck that explains the loss of these genes in the emerging lineage (> > 215.5 million years ago). In addition, ancestral character reconstruction analyses provided strong evidence that ancestral mammals possessed a nocturnal lifestyle, ultra-violet-sensitive vision, low visual acuity and low orbit convergence (i.e. panoramic vision). Overall, this study provides insight into the evolutionary history of the mammalian eye while discussing important ecological aspects of the photic paleo-environments ancestral mammals have occupied.

  11. Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea-barley intercrops

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1996-01-01

    g N-15-labeled N m(-2). The effect of intercropping on the dry matter and N yields, competition for inorganic N among the intercrop components, symbiotic fixation in pea and N transfer from pea to barley were determined. As an average of four years the grain yields were similar in monocropped pea...... only 9% of total fertilizer-N recovery in the intercrop. The amount of symbiotic N-2 fixation in the intercrop was less than expected from its composition and the fixation in monocrop. This indicates that the competition from barley had a negative effect on the fixation, perhaps via shading...... by the intercrop components, resulting in reduced competition for inorganic N, rather than a facilitative effect, in which symbiotically fixed N-2 is made available to barley....

  12. Effects of salinity and short-term elevated atmospheric CO2 on the chemical equilibrium between CO2 fixation and photosynthetic electron transport of Stevia rebaudiana Bertoni.

    Science.gov (United States)

    Hussin, Sayed; Geissler, Nicole; El-Far, Mervat M M; Koyro, Hans-Werner

    2017-09-01

    The effect of water salinity on plant growth and photosynthetic traits of Stevia rebaudiana was investigated to determine its level and mechanisms of salinity tolerance. It was also attempted to assess how short-term elevated CO 2 concentration would influence the boundaries and mechanisms of its photosynthetic capacity. The plants were grown in gravel/hydroponic system under controlled greenhouse conditions and irrigated with four different salinity levels (0, 25, 50 and 100 mol m -3 NaCl). Low salinity did not significantly alter the plant fresh weight, which was substantially decreased by 67% at high salinity treatment. Salinity tolerance threshold was reached at 50 mol m -3  NaCl while C50 was between 50 and 100 mol m -3  NaCl, indicating that S. rebaudiana is a moderate salt tolerant species. Salt-induced growth reduction was apparently linked to a significant decline of about 47% in the photosynthetic rates (A net ) at high salinity treatment, leading consequently to a disequilibrium between CO 2 -assimilation and electron transport rates (indicated by enhanced ETR max /A gross ratio). Elevated atmospheric CO 2 enhanced CO 2 assimilation rates by 65% and 80% for control and high-salt-stressed plants respectively, likely due to significant increases in intercellular CO 2 concentration (indicated by enhanced C i /C a ). The priority for Stevia under elevated atmospheric CO 2 was not to save water but to maximize photosynthesis so that the PWUE was progressively improved and the threat of oxidative stress was diminished (decline in ETR max /A gross ). The results imply that elevated CO 2 level could ameliorate some of the detrimental effects of salinity, conferring higher tolerance and survival of S. rebaudiana, a highlydesired feature with the forthcoming era of global changes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Response of biomass and nitrogen yield of white clover to radiation and atmospheric CO2 concentration

    International Nuclear Information System (INIS)

    Manderscheid, R.; Bender, J.; Schenk, U.; Weigel, H.J.

    1997-01-01

    The objectives of the present study were to test (i) whether the effect of season-long CO 2 enrichment on plant dry matter production of white clover (Trifolium repens cv. Karina) depends on the temperature or can solely be explained by changes in radiation use efficiency, and (ii) whether the atmospheric CO 2 concentration affects the relationship between tissue %N and plant biomass. Plants were grown in pots with adequate nutrient and water supply and were exposed to ambient and above ambient CO 2 concentrations (approximately +80 ppm, +160 ppm, +280 ppm) in open-top chambers for two seasons. Nitrogen fertilizer was given only before the experiment started to promote N 2 fixation. Plants were clipped to a height of 5 cm, when the canopy had reached a height of about 20 cm and when the CO 2 effect had not been diminished due to self-shading of the leaves. Photon exposure (400–700 nm) measured above the canopy was linearly related to the above ground biomass, the leaf area index and the nitrogen yield (r 2 > 0.94). The slopes of the curves depended on the CO 2 concentration. Since most of the radiation (>90%) was absorbed by the foliage, the slopes were used to calculate the CO 2 effect on the radiation use efficiency of biomass production, which is shown to increase curvilinearly between 380 and 660 ppm CO 2 from 2.7 g MJ −1 to 3.9 g MJ −1 . CO 2 enrichment increased above ground biomass by increasing the leaf number, the individual leaf weight and the leaf area; specific leaf weight was not affected. The relative CO 2 response varied between harvests; there was a slight but not significant positive relationship with mean daytime temperature. At the beginning of the season, plant nitrogen concentration in the above ground biomass was decreased by CO 2 enrichment. However, at later growth stages, when the plants depended solely on N 2 fixation, nitrogen concentration was found to be increased when the nitrogen concentration value was adjusted for the decrease

  14. Prognostic value of nocturnal pulse oximetry in patients with heart failure.

    Science.gov (United States)

    Rivera-López, Ricardo; Jordán-Martínez, Laura; López-Fernández, Silvia; Rivera-Fernandez, Ricardo; Tercedor, Luis; Sáez-Roca, Germán

    2018-05-23

    To analyze the prognostic value of nocturnal hypoxemia measured with portable nocturnal pulse-oximetry in patients hospitalized due to heart failure and its relation to mortality and hospital readmission. We included 38 patients who were admitted consecutively to our unit with the diagnosis of decompensated heart failure. Pulse-oximetry was considered positive for hypoxemia when more than 10 desaturations per hour were recorded during sleep. Follow-up was performed for 30.3 (standard deviation [SD] 14.2) months, the main objective being a combined endpoint of all-cause mortality and hospital readmission due to heart failure. The average age was 70.7 (SD 10.7) years, 63.3% were males. Pulse-oximetry was considered positive for hypoxemia in 27 (71%) patients. Patients with positive pulse-oximetry had the most frequent endpoint (9.1% [1] vs. 61.5% [16], P = 0.003). After multivariate analysis, continuous nocturnal hypoxemia was related to the combined endpoint (HR = 8.37, 1.19-68.4, P = 0.03). Patients hospitalized for heart failure and nocturnal hypoxemia measured with portable pulse-oximeter have an increased risk of hospital readmission and death. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  15. Capnography for assessing nocturnal hypoventilation and predicting compliance with subsequent noninvasive ventilation in patients with ALS.

    Directory of Open Access Journals (Sweden)

    Sung-Min Kim

    Full Text Available BACKGROUND: Patients with amyotrophic lateral sclerosis (ALS suffer from hypoventilation, which can easily worsen during sleep. This study evaluated the efficacy of capnography monitoring in patients with ALS for assessing nocturnal hypoventilation and predicting good compliance with subsequent noninvasive ventilation (NIV treatment. METHODS: Nocturnal monitoring and brief wake screening by capnography/pulse oximetry, functional scores, and other respiratory signs were assessed in 26 patients with ALS. Twenty-one of these patients were treated with NIV and had their treatment compliance evaluated. RESULTS: Nocturnal capnography values were reliable and strongly correlated with the patients' respiratory symptoms (R(2 = 0.211-0.305, p = 0.004-0.021. The duration of nocturnal hypercapnea obtained by capnography exhibited a significant predictive power for good compliance with subsequent NIV treatment, with an area-under-the-curve value of 0.846 (p = 0.018. In contrast, no significant predictive values for nocturnal pulse oximetry or functional scores for nocturnal hypoventilation were found. Brief waking supine capnography was also useful as a screening tool before routine nocturnal capnography monitoring. CONCLUSION: Capnography is an efficient tool for assessing nocturnal hypoventilation and predicting good compliance with subsequent NIV treatment of ALS patients, and may prove useful as an adjunctive tool for assessing the need for NIV treatment in these patients.

  16. Fast heterogeneous N2O5 uptake and ClNO2 production in power plant and industrial plumes observed in the nocturnal residual layer over the North China Plain

    Science.gov (United States)

    Wang, Zhe; Wang, Weihao; Tham, Yee Jun; Li, Qinyi; Wang, Hao; Wen, Liang; Wang, Xinfeng; Wang, Tao

    2017-10-01

    Dinitrogen pentoxide (N2O5) and nitryl chloride (ClNO2) are key species in nocturnal tropospheric chemistry and have significant effects on particulate nitrate formation and the following day's photochemistry through chlorine radical production and NOx recycling upon photolysis of ClNO2. To better understand the roles of N2O5 and ClNO2 in the high-aerosol-loading environment of northern China, an intensive field study was carried out at a high-altitude site (Mt. Tai, 1465 m a.s.l.) in the North China Plain (NCP) during the summer of 2014. Elevated ClNO2 plumes were frequently observed in the nocturnal residual layer with a maximum mixing ratio of 2.1 ppbv (1 min), whilst N2O5 was typically present at very low levels (coal-fired industry and power plants in the NCP. The heterogeneous N2O5 uptake coefficient (γ) and ClNO2 yield (ϕ) were estimated from steady-state analysis and observed growth rate of ClNO2. The derived γ and ϕ exhibited high variability, with means of 0.061 ± 0.025 and 0.28 ± 0.24, respectively. These values are higher than those derived from previous laboratory and field studies in other regions and cannot be well characterized by model parameterizations. Fast heterogeneous N2O5 reactions dominated the nocturnal NOx loss in the residual layer over this region and contributed to substantial nitrate formation of up to 17 µg m-3. The estimated nocturnal nitrate formation rates ranged from 0.2 to 4.8 µg m-3 h-1 in various plumes, with a mean of 2.2 ± 1.4 µg m-3 h-1. The results demonstrate the significance of heterogeneous N2O5 reactivity and chlorine activation in the NCP, and their unique and universal roles in fine aerosol formation and NOx transformation, and thus their potential impacts on regional haze pollution in northern China.

  17. Dissolved Organic Matter Influences N2 Fixation in the New Caledonian Lagoon (Western Tropical South Pacific

    Directory of Open Access Journals (Sweden)

    Mar Benavides

    2018-03-01

    Full Text Available Specialized prokaryotes performing biological dinitrogen (N2 fixation (“diazotrophs” provide an important source of fixed nitrogen in oligotrophic marine ecosystems such as tropical and subtropical oceans. In these waters, cyanobacterial photosynthetic diazotrophs are well known to be abundant and active, yet the role and contribution of non-cyanobacterial diazotrophs are currently unclear. The latter are not photosynthetic (here called “heterotrophic” and hence require external sources of organic matter to sustain N2 fixation. Here we added the photosynthesis inhibitor 3-(3,4-dichlorophenyl-1,1-dimethylurea (DCMU to estimate the N2 fixation potential of heterotrophic diazotrophs as compared to autotrophic ones. Additionally, we explored the influence of dissolved organic matter (DOM on these diazotrophs along a coast to open ocean gradient in the surface waters of a subtropical coral lagoon (New Caledonia. Total N2 fixation (samples not amended with DCMU ranged from 0.66 to 1.32 nmol N L−1 d−1. The addition of DCMU reduced N2 fixation by >90%, suggesting that the contribution of heterotrophic diazotrophs to overall N2 fixation activity was minor in this environment. Higher contribution of heterotrophic diazotrophs occurred in stations closer to the shore and coincided with the decreasing lability of DOM, as shown by various colored DOM and fluorescent DOM (CDOM and FDOM indices. We tested the response of diazotrophs (in terms of nifH gene expression and bulk N2 fixation rates upon the addition of a mix of carbohydrates (“DOC” treatment, amino acids (“DON” treatment, and phosphonates and phosphomonesters (“DOP” treatment. While nifH expression increased significantly in Trichodesmium exposed to the DOC treatment, bulk N2 fixation rates increased significantly only in the DOP treatment. The lack of nifH expression by gammaproteobacteria, in any of the DOM addition treatments applied, questions the contribution of non

  18. The design and realization of synthetic pathways for the fixation of carbon dioxide in vitro

    OpenAIRE

    Schwander, Thomas; Erb, Tobias (Dr.)

    2018-01-01

    The fixation of inorganic carbon and the conversion to organic molecules is a prerequisite for life and the foundation of the carbon cycle on Earth. Since the industrial revolution, this carbon cycle has become inbalanced and consequently the atmospheric carbon dioxide (CO2) concentration is increasing and is a major cause of global warming. On the contrary, atmospheric CO2 can also be considered as an important carbon feedstock o...

  19. Paroxysmal nocturnal hemoglobinuria (PNH)

    Science.gov (United States)

    ... help slow the breakdown of red blood cells. Blood transfusions may be needed. Supplemental iron and folic acid ... is no known way to prevent this disorder. Alternative Names PNH Images Blood cells References Brodsky RA. Proxymal nocturnal hemoglobinuria. In: ...

  20. Metal–organic framework-based catalysts: Chemical fixation of CO2 with epoxides leading to cyclic organic carbonates

    Directory of Open Access Journals (Sweden)

    M. Hassan eBeyzavi

    2015-01-01

    Full Text Available As a C1 feedstock, CO2 has the potential to be uniquely highly economical in both a chemical and a financial sense. In particular, the highly atom-economical acid-catalyzed cycloaddition of CO2 to epoxides to yield cyclic organic carbonates (OCs, a functionality having many important industrial applications, is an attractive reaction for the utilization of CO2 as a chemical feedstock. Metal–organic frameworks (MOFs are promising candidates in catalysis as they are a class of crystalline, porous and functional materials with remarkable properties including great surface area, high stability, open channels and permanent porosity. MOFs structure tunability and their affinity for CO2, makes them great catalysts for the formation of OCs using CO2 and epoxides. In this review, we examine MOF-based catalytic materials for the cycloaddition of carbon dioxide to epoxides. Catalysts are grouped based on the location of catalytic sites, i.e., at the struts, nodes, defect sites, or some combination thereof. Additionally, important features of each catalyst system are critically discussed.

  1. Nocturnal vision and landmark orientation in a tropical halictid bee.

    Science.gov (United States)

    Warrant, Eric J; Kelber, Almut; Gislén, Anna; Greiner, Birgit; Ribi, Willi; Wcislo, William T

    2004-08-10

    Some bees and wasps have evolved nocturnal behavior, presumably to exploit night-flowering plants or avoid predators. Like their day-active relatives, they have apposition compound eyes, a design usually found in diurnal insects. The insensitive optics of apposition eyes are not well suited for nocturnal vision. How well then do nocturnal bees and wasps see? What optical and neural adaptations have they evolved for nocturnal vision? We studied female tropical nocturnal sweat bees (Megalopta genalis) and discovered that they are able to learn landmarks around their nest entrance prior to nocturnal foraging trips and to use them to locate the nest upon return. The morphology and optics of the eye, and the physiological properties of the photoreceptors, have evolved to give Megalopta's eyes almost 30 times greater sensitivity to light than the eyes of diurnal worker honeybees, but this alone does not explain their nocturnal visual behavior. This implies that sensitivity is improved by a strategy of photon summation in time and in space, the latter of which requires the presence of specialized cells that laterally connect ommatidia into groups. First-order interneurons, with significantly wider lateral branching than those found in diurnal bees, have been identified in the first optic ganglion (the lamina ganglionaris) of Megalopta's optic lobe. We believe that these cells have the potential to mediate spatial summation. Despite the scarcity of photons, Megalopta is able to visually orient to landmarks at night in a dark forest understory, an ability permitted by unusually sensitive apposition eyes and neural photon summation.

  2. Utilization of CO2 fixating bacterium Actinobacillus succinogenes 130Z for simultaneous biogas upgrading and bio-succinic acid production

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi; Alvarado-Morales, Merlin; Angelidaki, Irini

    2014-01-01

    Biogas is an attractive renewable energy carrier. However, it contains CO2 which limits certain applications of biogas. Here we report a novel approach for removing CO2 from biogas and capturing it as a biochemical through a biological process. This approach entails converting CO2 into bio...... and titre, CO2 consumption rate and CH4 purity. When using biogas as the only CO2 source at 140 kPa, the CO2 consumption rate corresponded to 2.59 L CO2 L-1 d-1 with a final succinic acid titre of 14.4 g L-1. Under this pressure condition the highest succinic acid yield and biogas quality reached......-succinic acid using the bacterial strain Actinobacillus succinogenes 130Z, and simultaneously producing high purity CH4 (>95%). Results showed that when pressure during fermentation was increased from 101.325 to 140 kPa, higher CO2 solubility was achieved, thereby positively affecting final succinic acid yield...

  3. New Perspectives on Nitrogen Fixation Measurements Using 15N2 Gas

    Directory of Open Access Journals (Sweden)

    Nicola Wannicke

    2018-04-01

    Full Text Available Recently, the method widely used to determine 15N2 fixation rates in marine and freshwater environments was found to underestimate rates because the dissolution of the added 15N2 gas bubble in seawater takes longer than theoretically calculated. As a solution to the potential underestimate of rate measurements, the usage of the enriched water method was proposed to provide constant 15N2 enrichment. Still, the superiority of enriched water method over the previously used bubble injection remains inconclusive. To clarify this issue, we performed laboratory based experiments and implemented the results into an error analysis of 15N2 fixation rates. Moreover, we conducted a literature search on the comparison of the two methods to calculate a mean effect size using a meta-analysis approach. Our results indicate that the error potentially introduced by an equilibrium phase of the 15N2 gas is −72% at maximum for experiments with very short incubation times of 1 h. In contrast, the underestimation was negligible for incubations lasting 12–24 h (error is −0.2%. Our meta-analysis indicates that 84% of the measurements in the two groups will overlap and there is a 61% chance that a sample picked at random from the enriched water group will have a higher value than one picked at random from the bubble group. Overall, the underestimation of N2 fixation rates when using the bubble method relative to the enriched water method is highly dependent on incubation time and other experimental conditions and cannot be generalized.

  4. Exploring the Boundaries of N2-Fixation in Cereals and Grasses: A Hypothetical and Experimental Framework

    NARCIS (Netherlands)

    Giller, K.E.; Merckx, R.

    2003-01-01

    Despite more than 40 years of research on free-living and endophytic bacteria associated with cereals and grasses, conclusive examples of impacts of non-symbiotic N2-fixation in agriculture are lacking. All available methods for measurement of N2-fixation associated with cereals and grasses have

  5. Divergent Responses of Forest Soil Microbial Communities under Elevated CO2 in Different Depths of Upper Soil Layers.

    Science.gov (United States)

    Yu, Hao; He, Zhili; Wang, Aijie; Xie, Jianping; Wu, Liyou; Van Nostrand, Joy D; Jin, Decai; Shao, Zhimin; Schadt, Christopher W; Zhou, Jizhong; Deng, Ye

    2018-01-01

    Numerous studies have shown that the continuous increase of atmosphere CO 2 concentrations may have profound effects on the forest ecosystem and its functions. However, little is known about the response of belowground soil microbial communities under elevated atmospheric CO 2 (eCO 2 ) at different soil depth profiles in forest ecosystems. Here, we examined soil microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) after a 10-year eCO 2 exposure using a high-throughput functional gene microarray (GeoChip). The results showed that eCO 2 significantly shifted the compositions, including phylogenetic and functional gene structures, of soil microbial communities at both soil depths. Key functional genes, including those involved in carbon degradation and fixation, methane metabolism, denitrification, ammonification, and nitrogen fixation, were stimulated under eCO 2 at both soil depths, although the stimulation effect of eCO 2 on these functional markers was greater at the soil depth of 0 to 5 cm than of 5 to 15 cm. Moreover, a canonical correspondence analysis suggested that NO 3 -N, total nitrogen (TN), total carbon (TC), and leaf litter were significantly correlated with the composition of the whole microbial community. This study revealed a positive feedback of eCO 2 in forest soil microbial communities, which may provide new insight for a further understanding of forest ecosystem responses to global CO 2 increases. IMPORTANCE The concentration of atmospheric carbon dioxide (CO 2 ) has continuously been increasing since the industrial revolution. Understanding the response of soil microbial communities to elevated atmospheric CO 2 (eCO 2 ) is important for predicting the contribution of the forest ecosystem to global atmospheric change. This study analyzed the effect of eCO 2 on microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) in a forest ecosystem. Our findings suggest that the compositional and functional structures of microbial

  6. Scale Modelling of Nocturnal Cooling in Urban Parks

    Science.gov (United States)

    Spronken-Smith, R. A.; Oke, T. R.

    Scale modelling is used to determine the relative contribution of heat transfer processes to the nocturnal cooling of urban parks and the characteristic temporal and spatial variation of surface temperature. Validation is achieved using a hardware model-to-numerical model-to-field observation chain of comparisons. For the calm case, modelling shows that urban-park differences of sky view factor (s) and thermal admittance () are the relevant properties governing the park cool island (PCI) effect. Reduction in sky view factor by buildings and trees decreases the drain of longwave radiation from the surface to the sky. Thus park areas near the perimeter where there may be a line of buildings or trees, or even sites within a park containing tree clumps or individual trees, generally cool less than open areas. The edge effect applies within distances of about 2.2 to 3.5 times the height of the border obstruction, i.e., to have any part of the park cooling at the maximum rate a square park must be at least twice these dimensions in width. Although the central areas of parks larger than this will experience greater cooling they will accumulate a larger volume of cold air that may make it possible for them to initiate a thermal circulation and extend the influence of the park into the surrounding city. Given real world values of s and it seems likely that radiation and conduction play almost equal roles in nocturnal PCI development. Evaporation is not a significant cooling mechanism in the nocturnal calm case but by day it is probably critical in establishing a PCI by sunset. It is likely that conditions that favour PCI by day (tree shade, soil wetness) retard PCI growth at night. The present work, which only deals with PCI growth, cannot predict which type of park will be coolest at night. Complete specification of nocturnal PCI magnitude requires knowledge of the PCI at sunset, and this depends on daytime energetics.

  7. CO2 as a C1-organic building block: Enantioselective electrocarboxylation of aromatic ketones with CO2catalyzed by cinchona alkaloids under mild conditions

    International Nuclear Information System (INIS)

    Chen, Bao-Li; Tu, Zhuo-Ying; Zhu, Hong-Wei; Sun, Wen-Wen; Wang, Huan; Lu, Jia-Xing

    2014-01-01

    Highlights: •Cinchona alkaloids catalysis achieve enantioselective electrocarboxylation of racemic aromatic ketones. •The applications of CO 2 enantioselective electrochemical fixation into optically active hydroxyl carboxylic acids have been expanded. •The applications of alkaloids have been expanded. •The applications of asymmetric synthesis by electrochemical methodology have been expanded. -- Abstract: The enantioselective electrocarboxylation of pro-chiral aromatic ketones (2-acetonaphthone, 1-(6-methoxy-2-naphthyl)ethanone, 1-(4-methoxy-1-naphthyl)ethanone) with atmospheric pressure of CO 2 catalyzed by cinchona alkaloids in the presence of phenol was investigated in an undivided cell for the first time to give optically active 2-hydroxy-2-arylpropionic acid. For the model compound 2-acetonaphthone, the influence of various reaction conditions, such as cathode material, current density, catalyst type, ratio of proton to catalyst and catalyst quantity, on the enantiomeric excesses (ee) and yield has been investigated. Under the optimized conditions of 2-acetonaphthone, all the aromatic ketones examined are converted into corresponding optically active 2-hydroxy-2-arylpropionic acids in moderate yield (32.2% - 41.3%) and ee (48.1% - 48.6%). In addition, the electrochemical behavior of 2-acetonaphthone has been studied by cyclic voltammetry (CV) in the absence and presence of CO 2 . Moreover, the probable reaction pathway was proposed accordingly

  8. Nocturnal hypoxia in ALS is related to cognitive dysfunction and can occur as clusters of desaturations.

    Directory of Open Access Journals (Sweden)

    Su-Yeon Park

    Full Text Available Amyotrophic lateral sclerosis (ALS is a neurodegenerative disease that leads to progressive weakness of the respiratory and limb muscles. Consequently, most patients with ALS exhibit progressive hypoventilation, which worsens during sleep. The aim of this study was to evaluate the relationship between nocturnal hypoxia and cognitive dysfunction and to assess the pattern of nocturnal hypoxia in patients with ALS.Twenty-five patients with definite or probable ALS underwent neuropsychologic testing, nocturnal pulse oximetry, and capnography. Patients were grouped according to the presence of nocturnal hypoxia (SpO2<95% for ≥10% of the night and their clinical characteristics and cognitive function were compared.Compared to patients without nocturnal hypoxia, those with nocturnal hypoxia (n = 10, 40% had poor memory retention (p = 0.039 and retrieval efficiency (p = 0.045. A cluster-of-desaturation pattern was identified in 7 patients (70% in the Hypoxia Group.These results suggest that nocturnal hypoxia can be related to cognitive dysfunction in ALS. In addition, a considerable number of patients with ALS may be exposed to repeated episodes of deoxygenation-reoxygenation (a cluster-of-desaturation pattern during sleep, which could be associated with the generation of reactive oxygen species. Further studies are required to define the exact causal relationships between these phenomena, the exact manifestations of nocturnal cluster-of-desaturation patterns, and the effect of clusters of desaturation on ALS progression.

  9. Temporal Relationships Between Napping and Nocturnal Sleep in Healthy Adolescents.

    Science.gov (United States)

    Jakubowski, Karen P; Hall, Martica H; Lee, Laisze; Matthews, Karen A

    2017-01-01

    Many adolescents do not achieve the recommended 9 hr of sleep per night and report daytime napping, perhaps because it makes up for short nocturnal sleep. This article tests temporal relationships between daytime naps and nighttime sleep as measured by actigraphy and diary among 236 healthy high school students during one school week. Mixed model analyses adjusted for age, race, and gender demonstrated that shorter actigraphy-assessed nocturnal sleep duration predicted longer napping (measured by actigraphy and diary) the next day. Napping (by actigraphy and diary) predicted shorter nocturnal sleep duration and worse sleep efficiency that night measured by actigraphy. Diary-reported napping also predicted poorer self-reported sleep quality that night. Frequent napping may interfere with nocturnal sleep during adolescence.

  10. Ribulose 1,5-bisphosphate dependent CO2 fixation in the halophilic archaebacterium, Halobacterium mediterranei

    International Nuclear Information System (INIS)

    Rawal, N.; Kelkar, S.M.; Altekar, W.

    1988-01-01

    The cell extract of Halobacterium mediterranei catalyses incorporation of 14 CO 2 into 3-phosphoglycerate in the presence of ribulose bisphosphate suggesting the existence of ribulose bisphosphate carboxylase activity in this halophilic archaebacterium

  11. Environmental forcing of nitrogen fixation in the eastern tropical and sub-tropical North Atlantic Ocean.

    Science.gov (United States)

    Rijkenberg, Micha J A; Langlois, Rebecca J; Mills, Matthew M; Patey, Matthew D; Hill, Polly G; Nielsdóttir, Maria C; Compton, Tanya J; Laroche, Julie; Achterberg, Eric P

    2011-01-01

    During the winter of 2006 we measured nifH gene abundances, dinitrogen (N(2)) fixation rates and carbon fixation rates in the eastern tropical and sub-tropical North Atlantic Ocean. The dominant diazotrophic phylotypes were filamentous cyanobacteria, which may include Trichodesmium and Katagnymene, with up to 10(6) L(-1)nifH gene copies, unicellular group A cyanobacteria with up to 10(5) L(-1)nifH gene copies and gamma A proteobacteria with up to 10(4) L(-1)nifH gene copies. N(2) fixation rates were low and ranged between 0.032-1.28 nmol N L(-1) d(-1) with a mean of 0.30 ± 0.29 nmol N L(-1) d(-1) (1σ, n = 65). CO(2)-fixation rates, representing primary production, appeared to be nitrogen limited as suggested by low dissolved inorganic nitrogen to phosphate ratios (DIN:DIP) of about 2 ± 3.2 in surface waters. Nevertheless, N(2) fixation rates contributed only 0.55 ± 0.87% (range 0.03-5.24%) of the N required for primary production. Boosted regression trees analysis (BRT) showed that the distribution of the gamma A proteobacteria and filamentous cyanobacteria nifH genes was mainly predicted by the distribution of Prochlorococcus, Synechococcus, picoeukaryotes and heterotrophic bacteria. In addition, BRT indicated that multiple a-biotic environmental variables including nutrients DIN, dissolved organic nitrogen (DON) and DIP, trace metals like dissolved aluminum (DAl), as a proxy of dust inputs, dissolved iron (DFe) and Fe-binding ligands as well as oxygen and temperature influenced N(2) fixation rates and the distribution of the dominant diazotrophic phylotypes. Our results suggest that lower predicted oxygen concentrations and higher temperatures due to climate warming may increase N(2) fixation rates. However, the balance between a decreased supply of DIP and DFe from deep waters as a result of more pronounced stratification and an enhanced supply of these nutrients with a predicted increase in deposition of Saharan dust may ultimately determine the

  12. Differences in ocular parameters between diurnal and nocturnal raptors.

    Science.gov (United States)

    Beckwith-Cohen, Billie; Horowitz, Igal; Bdolah-Abram, Tali; Lublin, Avishai; Ofri, Ron

    2015-01-01

    To establish and compare normal ocular parameters between and within diurnal and nocturnal raptor groups. Eighty-eight ophthalmically normal raptors of six nocturnal and 11 diurnal species were studied. Tear production was measured using Schirmer tear test (STT) and phenol red thread test (PRTT), and applanation tonometry was conducted. Ultrasonographic measurements of axial length (AL), mediolateral axis (ML), vitreous body (VB), and pecten length (PL) were recorded, and conjunctival cultures were obtained. A weak correlation (R = 0.312, P = 0.006) was found between PRTT and STT. Tear production was significantly lower in nocturnal species (P raptors were positive for mycology or bacteriology, either on culture or PCR. The most common infectious agent isolated was Staphylococcus spp. Phenol red thread test and STT are both valid methods to measure tear production; however, a separate baseline must be determined for each species using these methods, as the results of one method cannot be extrapolated to the other. Due to significant differences observed within diurnal and nocturnal species, it appears that a more intricate division should be used when comparing these parameters for raptors, and the classification of diurnal or nocturnal holds little significance in the baseline of these data. © 2013 American College of Veterinary Ophthalmologists.

  13. Clinical Outcomes of Posterior C1 and C2 Screw-Rod Fixation for Atlantoaxial Instability.

    Science.gov (United States)

    Işik, Hasan Serdar; Sandal, Evren; Çağli, Sedat

    2017-06-14

    In this study, we aimed at sharing our experiences and contributing to the literature by making a retrospective analysis of the patients we operated with screw-rod system for atlantoaxial instability in our clinic. Archive files of adult patients, who were operated for posterior C1-C2 stabilization with screw and rod in our clinic between January 2006 and January 2016, were analyzed. 28 patients, who had pre and post-operative images, follow-up forms and who were followed for at least one year, were analyzed. Preoperative clinical and radiological records, preoperative observations, postoperative complications, and clinical responses were evaluated. The average age of 28 patients (F:13 M:19) was 44.7 (21-73). Fixation was performed with C1-C2 screw-rod system on the basis of the following diagnoses; type 2 odontoid fracture (16), basilar invagination (5), C1-C2 instability (5), and atlantoaxial subluxation secondary to rheumatoid arthritis (2). Lateral mass screws were inserted at C1 segment. C2 screws inserted were bilateral pedicle in 12 cases, bilateral pars in 4, bilateral laminar in 8 and one side pars, one side laminar in 4 cases. There was no screw malposition. Neither implant failure nor recurrent instability was observed during follow-up. Significant clinical improvement was reported according to the assessments done with JOA and VAS scores. C1-C2 screw fixation is regarded as a more successful and safe method than other fixation methods in surgical treatment of atlantoaxial instability considering complications, success in reduction, fusion and fixation strength. C2 laminar screw technique is as successful as the other alternatives in fixation and fusion.

  14. How can mountaintop CO2 observations be used to constrain regional carbon fluxes?

    Science.gov (United States)

    Lin, John C.; Mallia, Derek V.; Wu, Dien; Stephens, Britton B.

    2017-05-01

    Despite the need for researchers to understand terrestrial biospheric carbon fluxes to account for carbon cycle feedbacks and predict future CO2 concentrations, knowledge of these fluxes at the regional scale remains poor. This is particularly true in mountainous areas, where complex meteorology and lack of observations lead to large uncertainties in carbon fluxes. Yet mountainous regions are often where significant forest cover and biomass are found - i.e., areas that have the potential to serve as carbon sinks. As CO2 observations are carried out in mountainous areas, it is imperative that they are properly interpreted to yield information about carbon fluxes. In this paper, we present CO2 observations at three sites in the mountains of the western US, along with atmospheric simulations that attempt to extract information about biospheric carbon fluxes from the CO2 observations, with emphasis on the observed and simulated diurnal cycles of CO2. We show that atmospheric models can systematically simulate the wrong diurnal cycle and significantly misinterpret the CO2 observations, due to erroneous atmospheric flows as a result of terrain that is misrepresented in the model. This problem depends on the selected vertical level in the model and is exacerbated as the spatial resolution is degraded, and our results indicate that a fine grid spacing of ˜ 4 km or less may be needed to simulate a realistic diurnal cycle of CO2 for sites on top of the steep mountains examined here in the American Rockies. In the absence of higher resolution models, we recommend coarse-scale models to focus on assimilating afternoon CO2 observations on mountaintop sites over the continent to avoid misrepresentations of nocturnal transport and influence.

  15. Markisa fruit (Passiflora edulis var. flavicarpa) as a fixation material of natural colour of mangrove waste on batik

    Science.gov (United States)

    Izzah, S. N.; Marwoto, P.; Iswari, R. S.

    2018-03-01

    The process of natural colouring of batik using mangrove waste with the markisa fruit as a fixation material has been reported. In this experiment, the fixation material of markisa fruit has been compared with the commonly used fixation materials, such as CaCO3, AlK(SO4)2, and FeSO4 as material controls. Both grey scale and staining scale have been used as standard evaluations. Based on the Indonesian National Standard (SNI) it can be shown that batik with markisa fruit as a fixation material has a colour fastness value against average washing at good-excellent level (4-5) and colour fastness value to sunshine is moderate-excellent level (3-5). Thus, we conclude that Markisa fruit can be used as a fixation material in the colouring process of natural colour batik from mangrove waste.

  16. Photosynthate partitioning and nitrogen fixation of alfalfa and birdsfoot trefoil

    International Nuclear Information System (INIS)

    Shieh, W.J.

    1985-01-01

    Nodule mass and number are usually correlated with rates of nitrogen fixation in legumes. Birdsfoot trefoil (Lotus corniculatus L.) with more than twice the nodule number and mass, however, fixes far less nitrogen than alfalfa (Medicago sativa L.) at the same age. In this research, photosynthesis and photosynthate partitioning and utilization in relation to nitrogen fixation of alfalfa and birdsfoot trefoil were examined in order to determine their relationship to nitrogen fixation potential. Photosynthate to nodules was studied using 14 CO 2 labeling techniques. Partitioning patterns were altered by shading and dark depletion treatments. Efficiency of photosynthate utilization was examined by determining turnover of 14 C photosynthate in nodule metabolites and by studying rates of cyanide-resistant and cyanide-sensitive O 2 uptake. Alfalfa nodule activity was greater than trefoil expressed on a hole pot or nodule dry weight basis. Both shading and dark treatments significantly reduced nodule activity as estimated by the acetylene reduction assay. Shoots of both species were found to be the dominant sinks for photosynthate. Percentage 14 C recovered in alfalfa roots was more than twice that of trefoil at 1,2,3,4 and 24 h after labeling. Greater relative specific radioactivity (RSA) in nodules of both species suggests that they were stronger sinks for current photosynthate than roots

  17. Nocturnal Hypertension: Neglected Issue in Comprehensive Hypertension Management

    Directory of Open Access Journals (Sweden)

    Andi Kristanto

    2016-09-01

    Full Text Available The body circardian rhythm affects blood pressure variability at day and night, therefore blood pressure at day and night might be different. Nocturnal hypertension is defined as increase of blood pressure >120/70mmHg at night, which is caused by disturbed circadian rhythm, and associated with higher cardiovascular and cerebrovascular events also mortality in hypertensive patients. Nocturnal hypertension and declining blood pressure pattern, can only be detected by continuous examination for 24 hours, also known as ambulatory blood pressure measurement (ABPM. Chronotherapy, has become a strategy for managing the hypertensive nocturnal patients, by taking hypertensive medication at night to obtain normal blood pressure decrease in accordance with the normal circadian rhythm and, improving blood pressure control.

  18. The association between nocturia and nocturnal polyuria in clinical and epidemiological studies: a systematic review and meta-analyses.

    Science.gov (United States)

    Hofmeester, Ilse; Kollen, Boudewijn J; Steffens, Martijn G; Bosch, J L H Ruud; Drake, Marcus J; Weiss, Jeffrey P; Blanker, Marco H

    2014-04-01

    We determined the relationship between nocturia and nocturnal polyuria. The PubMed® and Embase® databases were searched for studies written in English, German, French or Dutch with original data on adult participants in an investigation of the relationship between nocturia and nocturnal polyuria. A meta-analysis of the difference in mean nocturnal voiding frequencies between patients with and without nocturnal polyuria was conducted. Nocturnal polyuria risk was compared between participants with and without nocturia, and the resulting odds ratio was subsequently converted to relative risk with 95% CIs. From 511 references identified we selected 78 publications of 66 studies, 15 of which met the inclusion criteria for this study. Quality scores of studies were generally high for internal validity but low for external validity. In 7 studies (1,416 participants) we estimated a standardized mean difference of 0.59 (95% CI 0.29-0.89) for nocturnal voids between nocturnal polyuria and nonnocturnal polyuria cases. In 8 other studies (with 2,320 participants) we calculated a pooled OR of 4.99 (3.92-6.37) for nocturnal polyuria in individuals with nocturia. The corresponding RR, based on a nocturnal polyuria risk in the pooled population of 63.8%, was 1.41 (1.37-1.44). The association between nocturia and nocturnal polyuria is apparent and robust. However, the clinical importance of the association appears to be less obvious than previously suggested based on single studies. The observed high prevalence of nocturnal polyuria, as a result of the applied International Continence Society definition, may be responsible for this discrepancy. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  19. Symbiosis revisited: phosphorus and acid buffering stimulate N2 fixation but not Sphagnum growth

    Science.gov (United States)

    van den Elzen, Eva; Kox, Martine A. R.; Harpenslager, Sarah F.; Hensgens, Geert; Fritz, Christian; Jetten, Mike S. M.; Ettwig, Katharina F.; Lamers, Leon P. M.

    2017-03-01

    In pristine Sphagnum-dominated peatlands, (di)nitrogen (N2) fixing (diazotrophic) microbial communities associated with Sphagnum mosses contribute substantially to the total nitrogen input, increasing carbon sequestration. The rates of symbiotic nitrogen fixation reported for Sphagnum peatlands, are, however, highly variable, and experimental work on regulating factors that can mechanistically explain this variation is largely lacking. For two common fen species (Sphagnum palustre and S. squarrosum) from a high nitrogen deposition area (25 kg N ha-1 yr-1), we found that diazotrophic activity (as measured by 15 - 15N2 labeling) was still present at a rate of 40 nmol N gDW-1 h-1. This was surprising, given that nitrogen fixation is a costly process. We tested the effects of phosphorus availability and buffering capacity by bicarbonate-rich water, mimicking a field situation in fens with stronger groundwater or surface water influence, as potential regulators of nitrogen fixation rates and Sphagnum performance. We expected that the addition of phosphorus, being a limiting nutrient, would stimulate both diazotrophic activity and Sphagnum growth. We indeed found that nitrogen fixation rates were doubled. Plant performance, in contrast, did not increase. Raised bicarbonate levels also enhanced nitrogen fixation, but had a strong negative impact on Sphagnum performance. These results explain the higher nitrogen fixation rates reported for minerotrophic and more nutrient-rich peatlands. In addition, nitrogen fixation was found to strongly depend on light, with rates 10 times higher in light conditions suggesting high reliance on phototrophic organisms for carbon. The contrasting effects of phosphorus and bicarbonate on Sphagnum spp. and their diazotrophic communities reveal strong differences in the optimal niche for both partners with respect to conditions and resources. This suggests a trade-off for the symbiosis of nitrogen fixing microorganisms with their Sphagnum

  20. Nocturnal Polyuria in Older Women with Urge Urinary Incontinence: Role of Sleep Quality, Time in Bed and Medications Used.

    Science.gov (United States)

    Tyagi, Shachi; Perera, Subashan; Clarkson, Becky D; Tadic, Stasa D; Resnick, Neil M

    2017-03-01

    Nocturia is common and bothersome in older adults, especially those who are also incontinent. Since nocturnal polyuria is a major contributor, we examined factors associated with nocturnal polyuria in this population to identify those possibly amenable to intervention. We analyzed baseline data from 2 previously completed studies of urge urinary incontinence. The studies involved 284 women (mean age ± SD 72.9 ± 7.9 years) who also completed 3-day voiding diaries. Participants with a nocturnal polyuria index greater than 33% were categorized as having nocturnal polyuria (nocturnal polyuria index = nocturnal urinary volume per 24-hour urine volume). Associations between nocturnal polyuria and various demographic, clinical and sleep related parameters were determined. Overall 55% of the participants had nocturnal polyuria. Multivariable regression analysis revealed that age, body mass index, use of angiotensin converting enzyme inhibitor/angiotensin receptor blocker, time spent in bed and duration of first uninterrupted sleep were independent correlates of nocturnal polyuria. Participants with a larger nocturnal excretion reported a shorter duration of uninterrupted sleep before first awakening to void and worse sleep quality despite spending similar time in bed. Body mass index, use of angiotensin converting enzyme inhibitor/angiotensin receptor blockers, time in bed and duration of uninterrupted sleep before first awakening to void are independently associated with nocturnal polyuria in older women with urge urinary incontinence, and are potentially modifiable. These findings also confirm the association between sleep and nocturnal polyuria. Further studies should explore whether interventions to reduce nocturnal polyuria and/or increase the duration of uninterrupted sleep before first awakening to void would help to improve sleep quality in this population and thereby reduce or eliminate the need for sedative hypnotics. Copyright © 2017 American Urological

  1. External fixation combined with delayed internal fixation in treatment of tibial plateau fractures with dislocation.

    Science.gov (United States)

    Tao, Xingguang; Chen, Nong; Pan, Fugen; Cheng, Biao

    2017-10-01

    The aim of this study was to evaluate the clinical efficacy of external fixation, delayed open reduction, and internal fixation in treating tibial plateau fracture with dislocation.Clinical data of 34 patients diagnosed with tibial plateau fracture complicated with dislocation between January 2009 and May 2015 were retrospectively analyzed. Fifteen patients in group A underwent early calcaneus traction combined with open reduction and internal fixation and 19 in group B received early external fixation combined with delayed open reduction and internal fixation. Operation time, postoperative complication, bone healing time, knee joint range of motion, initial weight-bearing time, Rasmussen tibial plateau score, and knee function score (HSS) were statistically compared between 2 groups.The mean follow-up time was 18.6 months (range: 5-24 months). The mean operation time in group A was 96 minutes, significantly longer than 71 minutes in group B (P  .05). In group A, initial weight-bearing time in group A was (14.0 ± 3.6) weeks, significantly differing from (12.9 ± 2.8) weeks in group B (P  0.05). Rasmussen tibial plateau score in group A was slightly lower than that in group B (P > .05). The excellent rate of knee joint function in group A was 80% and 84.21% in group B (P > .05).External fixation combined with delayed open reduction and internal fixation is a safer and more efficacious therapy of tibial plateau fracture complicated with dislocation compared with early calcaneus traction and open reduction and internal fixation.

  2. Regulation of carbon dioxide fixation in facultatively autotrophic bacteria. A phisiological and genetical study.

    NARCIS (Netherlands)

    Meijer, Wilhelmus Gerhardus

    1990-01-01

    Autotrophic bactcria are capable of CO2 fixation via the Calvin cycle, emplofng energy derived from the oxidation of anorganic substrates (e.g. Hz), simple organic substrates (one-carbon compounds, e.g. methanol, formate), or from light. Ribulose-1,5-bisphospbate carboxylase/oxygenase (RuBisC/O),

  3. Nitrogen supply of crops by biological nitrogen fixation. 2

    International Nuclear Information System (INIS)

    Jensen, E.S.; Andersen, A.J.; Soerensen, H.; Thomsen, J.D.

    1985-02-01

    In the present work the contributions from combined N-sources and symbiotic nitrogen fixation to the nitrogen supply of field-grown peas and field beans were evaluated by means of 15 N fertilizer dilution. The effect of N-fertilizer, supplied at sowing and at different stages of plant development, on nitrogen fixation, yield and protein production in peas, was studied in pot experiments. (author)

  4. Desmopressin (melt) therapy in children with monosymptomatic nocturnal enuresis and nocturnal polyuria results in improved neuropsychological functioning and sleep.

    Science.gov (United States)

    Van Herzeele, Charlotte; Dhondt, Karlien; Roels, Sanne P; Raes, Ann; Hoebeke, Piet; Groen, Luitzen-Albert; Vande Walle, Johan

    2016-09-01

    There is a high comorbidity between nocturnal enuresis, sleep disorders and psychological problems. The aim of this study was to investigate whether a decrease in nocturnal diuresis volume not only improves enuresis but also ameliorates disrupted sleep and (neuro)psychological dysfunction, the major comorbidities of this disorder. In this open-label, prospective phase IV study, 30 children with monosymptomatic nocturnal enuresis (MNE) underwent standardized video-polysomnographic testing and multi-informant (neuro)psychological testing at baseline and 6 months after the start of desmopressin treatment in the University Hospital Ghent, Belgium. Primary endpoints were the effect on sleep and (neuro)psychological functioning. The secondary endpoint was the change in the first undisturbed sleep period or the time to the first void. Thirty children aged between 6 and 16 (mean 10.43, standard deviation 3.08) years completed the study. The results demonstrated a significant decrease in periodic limb movements during sleep (PLMS) and a prolonged first undisturbed sleep period. Additionally, (neuro)psychological functioning was improved on several domains. The study demonstrates that the degree of comorbidity symptoms is at least aggravated by enuresis (and/or high nocturnal diuresis rate) since sleep and (neuro)psychological functioning were significantly ameliorated by treatment of enuresis. These results indicate that enuresis is not such a benign condition as has previously been assumed.

  5. Variable Nitrogen Fixation in Wild Populus.

    Directory of Open Access Journals (Sweden)

    Sharon L Doty

    Full Text Available The microbiome of plants is diverse, and like that of animals, is important for overall health and nutrient acquisition. In legumes and actinorhizal plants, a portion of essential nitrogen (N is obtained through symbiosis with nodule-inhabiting, N2-fixing microorganisms. However, a variety of non-nodulating plant species can also thrive in natural, low-N settings. Some of these species may rely on endophytes, microorganisms that live within plants, to fix N2 gas into usable forms. Here we report the first direct evidence of N2 fixation in the early successional wild tree, Populus trichocarpa, a non-leguminous tree, from its native riparian habitat. In order to measure N2 fixation, surface-sterilized cuttings of wild poplar were assayed using both 15N2 incorporation and the commonly used acetylene reduction assay. The 15N label was incorporated at high levels in a subset of cuttings, suggesting a high level of N-fixation. Similarly, acetylene was reduced to ethylene in some samples. The microbiota of the cuttings was highly variable, both in numbers of cultured bacteria and in genetic diversity. Our results indicated that associative N2-fixation occurred within wild poplar and that a non-uniformity in the distribution of endophytic bacteria may explain the variability in N-fixation activity. These results point to the need for molecular studies to decipher the required microbial consortia and conditions for effective endophytic N2-fixation in trees.

  6. Transient improvements in fixational stability in strabismic amblyopes following bifoveal fixation and reduced interocular suppression.

    Science.gov (United States)

    Raveendran, Rajkumar Nallour; Babu, Raiju J; Hess, Robert F; Bobier, William R

    2014-03-01

    To test the hypothesis that fixational stability of the amblyopic eye in strabismics will improve when viewing provides both bifoveal fixation and reduced inter-ocular suppression by reducing the contrast to the fellow eye. Seven strabismic amblyopes (Age: 29.2 ± 9 years; five esotropes and two exotropes) showing clinical characteristics of central suppression were recruited. Interocular suppression was measured by a global motion task. For each participant, a balance point was determined which defined contrast levels for each eye where binocular combination was optimal (interocular suppression minimal). When the balance point could not be determined, this participant was excluded. Bifoveal fixation was established by ocular alignment using a haploscope. Participants dichoptically viewed similar targets (a cross of 2.3° surrounded by a square of 11.3°) at 40 cm. Target contrasts presented to each eye were either high contrast (100% to both eyes) or balanced contrast (attenuated contrast in the fellow fixing eye). Fixation stability was measured over a 5 min period and quantified using bivariate contour ellipse areas in four different binocular conditions; unaligned/high contrast, unaligned/balance point, aligned/high contrast and aligned/balance point. Fixation stability was also measured in six control subjects (Age: 25.3 ± 4 years). Bifoveal fixation in the strabismics was transient (58.15 ± 15.7 s). Accordingly, fixational stability was analysed over the first 30 s using repeated measures anova. Post hoc analysis revealed that for the amblyopic subjects, the fixational stability of the amblyopic eye was significantly improved in aligned/high contrast (p = 0.01) and aligned/balance point (p suppression. However, once initiated, bifoveal fixation is transient with the strabismic eye drifting away from foveal alignment, thereby increasing the angle of strabismus. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.

  7. Effects of ultraviolet radiation on photosynthetic performance and N2 fixation in Trichodesmium erythraeum IMS 101

    Science.gov (United States)

    Cai, Xiaoni; Hutchins, David A.; Fu, Feixue; Gao, Kunshan

    2017-10-01

    Biological effects of ultraviolet radiation (UVR; 280-400 nm) on marine primary producers are of general concern, as oceanic carbon fixers that contribute to the marine biological CO2 pump are being exposed to increasing UV irradiance due to global change and ozone depletion. We investigated the effects of UV-B (280-320 nm) and UV-A (320-400 nm) on the biogeochemically critical filamentous marine N2-fixing cyanobacterium Trichodesmium (strain IMS101) using a solar simulator as well as under natural solar radiation. Short exposure to UV-B, UV-A, or integrated total UVR significantly reduced the effective quantum yield of photosystem II (PSII) and photosynthetic carbon and N2 fixation rates. Cells acclimated to low light were more sensitive to UV exposure compared to high-light-grown ones, which had more UV-absorbing compounds, most likely mycosporine-like amino acids (MAAs). After acclimation under natural sunlight, the specific growth rate was lower (by up to 44 %), MAA content was higher, and average trichome length was shorter (by up to 22 %) in the full spectrum of solar radiation with UVR, than under a photosynthetically active radiation (PAR) alone treatment (400-700 nm). These results suggest that prior shipboard experiments in UV-opaque containers may have substantially overestimated in situ nitrogen fixation rates by Trichodesmium, and that natural and anthropogenic elevation of UV radiation intensity could significantly inhibit this vital source of new nitrogen to the current and future oligotrophic oceans.

  8. Retinal and optical adaptations for nocturnal vision in the halictid bee Megalopta genalis.

    Science.gov (United States)

    Greiner, Birgit; Ribi, Willi A; Warrant, Eric J

    2004-06-01

    The apposition compound eye of a nocturnal bee, the halictid Megalopta genalis, is described for the first time. Compared to the compound eye of the worker honeybee Apis mellifera and the diurnal halictid bee Lasioglossum leucozonium, the eye of M. genalis shows specific retinal and optical adaptations for vision in dim light. The major anatomical adaptations within the eye of the nocturnal bee are (1) nearly twofold larger ommatidial facets and (2) a 4-5 times wider rhabdom diameter than found in the diurnal bees studied. Optically, the apposition eye of M. genalis is 27 times more sensitive to light than the eyes of the diurnal bees. This increased optical sensitivity represents a clear optical adaptation to low light intensities. Although this unique nocturnal apposition eye has a greatly improved ability to catch light, a 27-fold increase in sensitivity alone cannot account for nocturnal vision at light intensities that are 8 log units dimmer than during daytime. New evidence suggests that additional neuronal spatial summation within the first optic ganglion, the lamina, is involved.

  9. Calcium silicates synthesised from industrial residues with the ability for CO2 sequestration.

    Science.gov (United States)

    Morales-Flórez, Victor; Santos, Alberto; López, Antonio; Moriña, Isabel; Esquivias, Luis

    2014-12-01

    This work explored several synthesis routes to obtain calcium silicates from different calcium-rich and silica-rich industrial residues. Larnite, wollastonite and calcium silicate chloride were successfully synthesised with moderate heat treatments below standard temperatures. These procedures help to not only conserve natural resources, but also to reduce the energy requirements and CO2 emissions. In addition, these silicates have been successfully tested as carbon dioxide sequesters, to enhance the viability of CO2 mineral sequestration technologies using calcium-rich industrial by-products as sequestration agents. Two different carbon sequestration experiments were performed under ambient conditions. Static experiments revealed carbonation efficiencies close to 100% and real-time resolved experiments characterised the dynamic behaviour and ability of these samples to reduce the CO2 concentration within a mixture of gases. The CO2 concentration was reduced up to 70%, with a carbon fixation dynamic ratio of 3.2 mg CO2 per g of sequestration agent and minute. Our results confirm the suitability of the proposed synthesis routes to synthesise different calcium silicates recycling industrial residues, being therefore energetically more efficient and environmentally friendly procedures for the cement industry. © The Author(s) 2014.

  10. Evaluation of functional outcome of pilon fractures managed with limited internal fixation and external fixation: A prospective clinical study.

    Science.gov (United States)

    Meena, Umesh Kumar; Bansal, Mahesh Chand; Behera, Prateek; Upadhyay, Rahul; Gothwal, Gyan Chand

    2017-11-01

    The management of pilon fractures is controversial primarily due to the high rate of complications irrespective of the mode of treatment. Limited internal fixation with external fixation is associated with minimal soft tissue handling. This may reduce the chances of wound dehiscence and infection. This study was designed to evaluate the functional and clinical outcomes in patients treated with limited internal fixation combined with external fixation in pilon fractures. This study was conducted as a prospective clinical study on 56 skeletally mature patients with closed fractures with poor skin condition, and with open grade 1 and grade 2 distal tibial intra-articular fractures. All patients were treated with combined limited internal fixation and ankle spanning external fixation. All fractures in this series united with an average time period of union of 18.3weeks (ranging from 13 weeks to 30 weeks). There was no non-union in any case. There was malunion in 4 cases, varus malunion (>5 degree) in 2 cases and recurvatum in another 2 cases). Excellent to good functional results were observed in 88% cases based on the modified Ovadia and Beals score. The mean ankle dorsiflexion and planter flexion movements were 10.2±5.3 degrees and 27.4±7.2 degrees respectively. infections occurred in 6 patients which included 4 pin tract infections and 2 superficial wound infection, all 6 healed after removal of pin tract and with oral antibiotics. The technique of combined external fixation with internal fixation is safe and effective management option for intra-articular distal tibial fractures.

  11. Development of suitable photobioreactors for CO{sub 2} sequestration addressing global warming using green algae and cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, K.; Dasgupta, C.N.; Nayak, B.; Lindblad, P.; Das, D. [Indian Institute of Technology, Kharagpur (India)

    2011-04-15

    CO{sub 2} sequestration by cyanobacteria and green algae are receiving increased attention in alleviating the impact of increasing CO{sub 2} in the atmosphere. They, in addition to CO{sub 2} capture, can produce renewable energy carriers such as carbon free energy hydrogen, bioethanol, biodiesel and other valuable biomolecules. Biological fixation of CO{sub 2} are greatly affected by the characteristics of the microbial strains, their tolerance to temperature and the CO{sub 2} present in the flue gas including SOx, NOx. However, there are additional factors like the availability of light, pH, O{sub 2}, removal, suitable design of the photobioreactor, culture density and the proper agitation of the reactor that will affect significantly the CO{sub 2} sequestration process. Present paper deals with the photobioreactors of different geometry available for biomass production. It also focuses on the hybrid types of reactors (integrating two reactors) which can be used for overcoming the bottlenecks of a single photobioreactor.

  12. Global effects of moon phase on nocturnal acoustic scattering layers

    KAUST Repository

    Prihartato, Perdana; Irigoien, Xabier; Genton, Marc G.; Kaartvedt, Stein

    2016-01-01

    © Inter-Research 2016. The impact of moon phase on the global nocturnal vertical distribution of acoustic scattering layers (SLs) in the upper 200 m was studied during the Malaspina expedition that circumnavigated the world. We assessed the nocturnal weighted mean depths and the vertical extension of the SL (the range between the upper 25th percentile and lower 75th percentile of the backscatter) and used a generalized additive model to reveal the relationship between the nocturnal vertical distribution of the SL and moon phase, as well as other environmental factors. Moon phase significantly affected the SL distribution on a global scale, in contrast to other factors such as dissolved oxygen, temperature and fluorescence, which each correlated with nocturnal SL distribution during the large geographic coverage. Full moon caused a deepening effect on the nocturnal SL. Contrary to expectations, the shallowest distribution was not observed during the darkest nights (new moon) and there was no difference in vertical distribution between new moon and intermediate moon phases. We conclude that the trend of deepening SL during approximately full moon (bright nights) is a global phenomenon related to anti-predator behavior.

  13. Global effects of moon phase on nocturnal acoustic scattering layers

    KAUST Repository

    Prihartato, PK

    2016-01-18

    © Inter-Research 2016. The impact of moon phase on the global nocturnal vertical distribution of acoustic scattering layers (SLs) in the upper 200 m was studied during the Malaspina expedition that circumnavigated the world. We assessed the nocturnal weighted mean depths and the vertical extension of the SL (the range between the upper 25th percentile and lower 75th percentile of the backscatter) and used a generalized additive model to reveal the relationship between the nocturnal vertical distribution of the SL and moon phase, as well as other environmental factors. Moon phase significantly affected the SL distribution on a global scale, in contrast to other factors such as dissolved oxygen, temperature and fluorescence, which each correlated with nocturnal SL distribution during the large geographic coverage. Full moon caused a deepening effect on the nocturnal SL. Contrary to expectations, the shallowest distribution was not observed during the darkest nights (new moon) and there was no difference in vertical distribution between new moon and intermediate moon phases. We conclude that the trend of deepening SL during approximately full moon (bright nights) is a global phenomenon related to anti-predator behavior.

  14. The Impact of Nocturnal Hypoglycemia on Sleep in Subjects With Type 2 Diabetes

    DEFF Research Database (Denmark)

    Jennum, Poul; Stender-Petersen, Kirstine; Rabøl, Rasmus

    2015-01-01

    night visits (one normoglycemic and one hypoglycemic) in randomized order. Plasma glucose (PG) levels were controlled by hyperinsulinemic glucose clamping. On the hypoglycemic night, hypoglycemia was induced after reaching sleep stage N2 by turning off glucose infusion until the PG target of 2......OBJECTIVE: The aim of this trial was to investigate the impact of nocturnal hypoglycemia on sleep patterns (assessed by polysomnography) and counterregulatory hormones. RESEARCH DESIGN AND METHODS: In this single-blinded, crossover trial, 26 subjects with type 2 diabetes attended two experimental.......7-2.8 mmol/L was reached and maintained for 15 min. Thereafter, subjects were brought back to normoglycemia for the rest of the night. On the normoglycemic night, PG was maintained at 5.0-7.0 mmol/L throughout the night. RESULTS: During the first 4 h of sleep (0-4 h; after reaching sleep stage N2...

  15. Nocturnal Polyuria and Hypertension in Patients with Lifestyle Related Diseases and Overactive Bladder.

    Science.gov (United States)

    Yokoyama, Osamu; Nishizawa, Osamu; Homma, Yukio; Takeda, Masayuki; Gotoh, Momokazu; Kakizaki, Hidehiro; Akino, Hironobu; Hayashi, Koichi; Yonemoto, Koji

    2017-02-01

    The objective of this multicenter cross-sectional study was to investigate the relationship of nocturnal polyuria in patients with common lifestyle related diseases and overactive bladder, with special attention to hypertension. After baseline assessment, patients recorded 24-hour urinary frequency/volume, blood pressure and heart rate for 3 days. They were stratified into 4 groups based on mean blood pressure, including no hypertension, and controllable, untreated and uncontrolled hypertension, respectively. The 2,353 eligible patients, who had urinary urgency once or more per week and 1 or more nocturnal toilet visits, were enrolled from 543 sites in Japan. Of these patients complete data, including the 24-hour frequency volume chart, were collected from 1,271. Multivariable analyses showed a statistically significant association of nocturnal polyuria with increasing age (OR 1.04, 95% CI 1.02-1.05, p polyuria in women alone (p = 0.01 and 0.03, respectively). Lower urinary tract symptoms suggestive of benign prostatic hyperplasia were significantly associated with nocturnal polyuria in men alone (p polyuria was significantly associated with age, male gender, and untreated hypertension in patients with lifestyle related diseases and overactive bladder. The association between hypertension and nocturnal polyuria was significant in women alone. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  16. Sibelius: Luonnotar. Chevauchee nocturne et lever du soleil / Pierre Gervasoni

    Index Scriptorium Estoniae

    Gervasoni, Pierre

    1996-01-01

    Uuest heliplaadist "Sibelius: Luonnotar. Chevauchee nocturne et lever du soleil. 4 Legendes. Orchestre Philharmonique Royal de Stockholm, Paavo Järvi. Virgin Classics 545 213-2 (CD:167F). 1996. TT: 1h 13'22"

  17. Comparison of skeletal stability after sagittal split ramus osteotomy among mono-cortical plate fixation, bi-cortical plate fixation, and hybrid fixation using absorbable plates and screws.

    Science.gov (United States)

    Ueki, Koichiro; Moroi, Akinori; Yoshizawa, Kunio; Hotta, Asami; Tsutsui, Takamitsu; Fukaya, Kenichi; Hiraide, Ryota; Takayama, Akihiro; Tsunoda, Tatsuta; Saito, Yuki

    2017-02-01

    The purpose of this study was to examine skeletal stability and plate breakage after sagittal split ramus osteotomy (SSRO) with the mono-cortical plate fixation, bi-cortical plate fixation, and hybrid fixation techniques using absorbable plates and screws. A total of 76 Japanese patients diagnosed with mandibular prognathism with and without maxillary deformity were divided into 3 groups randomly. A total of 28 patients underwent SSRO with mono-cortical plate fixation, 23 underwent SSRO with bi-cortical plate fixation, and 25 underwent SSRO with hybrid fixation. Skeletal stability and horizontal condylar angle were analyzed by axial, frontal, and lateral cephalograms from before the operation to 1 year postoperatively. Breakage of the plate and screws was observed by 3-dimensional computed tomography (3DCT) immediately after surgery and after 1 year. Although there was a significant difference between the mono-cortical plate fixation group and hybrid fixation group regarding right MeAg in T1 (P = 0.0488) and occlusal plane in T1 (P = 0.0346), there were no significant differences between the groups for the other measurements in each time interval. In 2 cases, namely, 6 sides in the mono-cortical plate fixation group, breakage of the absorbable plate was found by 3DCT. However, there was no breakage in the bi-cortical plate fixation group and hybrid fixation group. This study results suggested that there were no significant differences in the postoperative skeletal stability among the 3 groups, and bi-cortical fixation as well as hybrid fixation was a reliable and useful method to prevent plate breakage even if an absorbable material was used. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  18. Visual reliability and information rate in the retina of a nocturnal bee.

    Science.gov (United States)

    Frederiksen, Rikard; Wcislo, William T; Warrant, Eric J

    2008-03-11

    Nocturnal animals relying on vision typically have eyes that are optically and morphologically adapted for both increased sensitivity and greater information capacity in dim light. Here, we investigate whether adaptations for increased sensitivity also are found in their photoreceptors by using closely related and fast-flying nocturnal and diurnal bees as model animals. The nocturnal bee Megalopta genalis is capable of foraging and homing by using visually discriminated landmarks at starlight intensities. Megalopta's near relative, Lasioglossum leucozonium, performs these tasks only in bright sunshine. By recording intracellular responses to Gaussian white-noise stimuli, we show that photoreceptors in Megalopta actually code less information at most light levels than those in Lasioglossum. However, as in several other nocturnal arthropods, Megalopta's photoreceptors possess a much greater gain of transduction, indicating that nocturnal photoreceptors trade information capacity for sensitivity. By sacrificing photoreceptor signal-to-noise ratio and information capacity in dim light for an increased gain and, thus, an increased sensitivity, this strategy can benefit nocturnal insects that use neural summation to improve visual reliability at night.

  19. The C4-pathway of C-fixation in Spinacea oleracea. Pt. 1

    International Nuclear Information System (INIS)

    Boecher, M.; Kluge, M.

    1977-01-01

    Spinach leaf slices readily fix 14 C supplied from a suspension medium. The pattern of label distribution after 14 C-fixation in the light depends on the pH of the suspension medium. In the range of pH 3.5 leaf slices show labelling patterns of the C 3 type as do intact leaves or leaf slices incubated with 14 CO 2 in a gas cuvette. In contrast, if the tissue slices were suspended at pH 7.5 substantially more label appears in malate and other compounds of the C 4 -pathway. Under these conditions also the malate content of the tissue increases. The addition of NaHCO 3 at pH 3.5 increases the rate of C-fixation and nearly the whole fixed carbon is metabolized in the Calvin-cycle. The C-fixation is also increased, if NaHCO 3 is added at pH 7.5. Here both, the C 3 - and the C 4 -pathway contribute to an enhancement of the C-fixation. It is assumed, that increasing amounts of bicarbonate (substrate of PEP carboxylase) become available to the cells when the pH of the external medium is raised. This could increase an operation of the C 4 -pathway of C-fixation. This view is supported by the finding, that in contrast to low pH, the C-fixation at high pH results in a dominant labelling of the C 4 -atoms of malate. (orig.) [de

  20. The Effects of SO2 on N2-Fixation, Carbon Partitioning, and Yield Components in Snapbean, Phaseolus Vulgaris L.

    OpenAIRE

    Griffith, Stephen M.

    1983-01-01

    The primary air pollutant sulfur dioxide has been shown to affect plant biochemistry and physiology, although very little is known about its effects on N2-fixation in legumes. This study was designed to determine if N2-fixation, carbon partitioning , and productivity are affected under short term low level, so2 exposures. Greenhouse grown snapbeans (P has eo lus vulgaris L. cv. Ear l iwax), 29 days from planting, were exposed to 0.0, 0.4, and 0.8 parts per million sulfur dioxide for 4 hour...

  1. Does petroleum development affect burrowing owl nocturnal space-use?

    Energy Technology Data Exchange (ETDEWEB)

    Scobie, Corey; Wellicome, Troy; Bayne, Erin [Department of Biological Sciences, University of Alberta (Canada)], email: cscobie@ualberta.ca, email: tiw@ualberta.ca, email: bayne@ualberta.ca

    2011-07-01

    Decline all over Canada in the population of burrowing owls, a federally listed endangered species, has raised concerns about the possible influence of petroleum infrastructure development on owl nocturnal space-use while foraging. Roads, wells, pipelines and sound-producing facilities related to petroleum development change the landscape and can influence the owls' mortality risk. For 3 years, 27 breeding adult male burrowing owls with nests close to different petroleum infrastructures were captured and fitted with a miniature GPS datalogger in order to track their nocturnal foraging. Data from these GPS devices were fed into a geographical information system and showed that pipelines and wells did not alter the foraging habits of the owls. Dirt and gravel roads, with little traffic, were preferentially selected by the owls, conceivably because of higher owl mortality risk along paved roads. Sound-producing facilities did not change owls' foraging behaviour, implying that sound may not affect their nocturnal space-use. Traffic data and sound power measurements will be used in further studies in an effort to better understand burrowing owls' nocturnal foraging habits.

  2. N2-fixation and seedling growth promotion of lodgepole pine by endophytic Paenibacillus polymyxa.

    Science.gov (United States)

    Anand, Richa; Grayston, Susan; Chanway, Christopher

    2013-08-01

    We inoculated lodgepole pine (Pinus contorta var. latifolia (Dougl.) Engelm.) with Paenibacillus polymyxa P2b-2R, a diazotrophic bacterium previously isolated from internal stem tissue of a naturally regenerating pine seedling to evaluate biological nitrogen fixation and seedling growth promotion by this microorganism. Seedlings generated from pine seed inoculated with strain P2b-2R were grown for up to 13 months in a N-limited soil mix containing 0.7 mM available N labeled as Ca((15)NO3)2 to facilitate detection of N2-fixation. Strain P2b-2R developed a persistent endophytic population comprising 10(2)-10(6) cfu g(-1) plant tissue inside pine roots, stems, and needles during the experiment. At the end of the growth period, P2b-2R had reduced seedling mortality by 14 % and (15)N foliar N abundance 79 % and doubled foliar N concentration and seedling biomass compared to controls. Our results suggest that N2-fixation by P. polymyxa enhanced growth of pine seedlings and support the hypothesis that plant-associated diazotrophs capable of endophytic colonization can satisfy a significant proportion of the N required by tree seedlings growing under N-limited conditions.

  3. Racial Differences in Reported Napping and Nocturnal Sleep in 2- to 8-Year-Old Children

    Science.gov (United States)

    Crosby, Brian; LeBourgeois, Monique K.; Harsh, John

    2010-01-01

    Objectives The objectives of this study were to examine racial differences in reported napping and nighttime sleep of 2- to 8-year-old children, to identify factors accounting for these differences, and to determine if variability in napping was related to psychosocial functioning. Methods Caretakers of 1043 children (73.5% non-Hispanic white; 50.4% male) 2 to 8 years old from a community sample reported on their children’s napping behavior and nighttime sleep. Caretakers of 255 preschool children (3–5 years old) also completed the Behavior Assessment System for Children. Results A more gradual age-related decline in napping was found for black children. At age 8, 39.1% of black children were reported to nap, compared with only 4.9% of white children. Black children also napped significantly more days per week, had shorter average nocturnal sleep durations, and slept significantly less on weekdays than on weekend nights. Despite differences in sleep distribution, total weekly sleep duration (diurnal and nocturnal) was nearly identical for the 2 racial groups at each year of age. Logistic regression analysis revealed that demographic variables were related to but did not fully explain napping differences. Napping in a subset of preschoolers was not significantly related to psychosocial functioning. Conclusions There are remarkable racial differences in reported napping and nighttime sleep patterns beginning as early as age 3 and extending to at least 8 years of age. These differences are independent of commonly investigated demographic factors. Differences in napping behavior do not seem to have psychosocial significance in a sample of preschool children. PMID:15866856

  4. Soil respiration in relation to photosynthesis of Quercus mongolica trees at elevated CO2.

    Science.gov (United States)

    Zhou, Yumei; Li, Mai-He; Cheng, Xu-Bing; Wang, Cun-Guo; Fan, A-Nan; Shi, Lian-Xuan; Wang, Xiu-Xiu; Han, Shijie

    2010-12-06

    Knowledge of soil respiration and photosynthesis under elevated CO(2) is crucial for exactly understanding and predicting the carbon balance in forest ecosystems in a rapid CO(2)-enriched world. Quercus mongolica Fischer ex Ledebour seedlings were planted in open-top chambers exposed to elevated CO(2) (EC = 500 µmol mol(-1)) and ambient CO(2) (AC = 370 µmol mol(-1)) from 2005 to 2008. Daily, seasonal and inter-annual variations in soil respiration and photosynthetic assimilation were measured during 2007 and 2008 growing seasons. EC significantly stimulated the daytime soil respiration by 24.5% (322.4 at EC vs. 259.0 mg CO(2) m(-2) hr(-1) at AC) in 2007 and 21.0% (281.2 at EC vs. 232.6 mg CO(2) m(-2) hr(-1) at AC) in 2008, and increased the daytime CO(2) assimilation by 28.8% (624.1 at EC vs. 484.6 mg CO(2) m(-2) hr(-1) at AC) across the two growing seasons. The temporal variation in soil respiration was positively correlated with the aboveground photosynthesis, soil temperature, and soil water content at both EC and AC. EC did not affect the temperature sensitivity of soil respiration. The increased daytime soil respiration at EC resulted mainly from the increased aboveground photosynthesis. The present study indicates that increases in CO(2) fixation of plants in a CO(2)-rich world will rapidly return to the atmosphere by increased soil respiration.

  5. Effects of desmopressin for the treatment of nocturnal polyuria in elderly women: impact on related sleep quality

    Science.gov (United States)

    Mun, Jong-Hyeon; Kim, Sun-Ouck; Yu, Ho Song; Chung, Ho Suck; Kwon, Dongdeuk

    2015-01-01

    Introduction: We investigated the efficacy, safety, and impact of desmopressin on quality of sleep in treating nocturnal polyuria in elderly women. Methods: We recruited 60 women over 60 years old with lower urinary tract symptoms (LUTS), including nocturia, and with nocturnal polyuria. Nocturnal polyuria was defined as nighttime urine production exceeding 33% of the 24-hour total urine volume determined by a frequency volume (FV) chart. All patients failed to respond to treatment of their underlying disease and evening fluid restriction. Desmopressin 0.1 mg was administered orally at bedtime for 12 weeks. The participants completed a series of questionnaires on the Medical Outcomes Study (MOS) sleep scale and FV chart before and after treatment. Results: The patient population had a mean age of 69.2 ± 9.4 years (range: 61–81). The mean duration of symptoms was 61.2 ± 45.1 months. Significant decreases were evident after desmopressin treatment in the number of nocturia episodes (3.63 ± 1.61 to 2.00 ± 1.13, p = 0.01), nocturnal urine volume (p = 0.01), nocturnal polyuria index (NPI) (p = 0.01), and nocturia index (NI) p = 0.01). Among the categories of the MOS sleep scale, sleep index (p = 0.003), sleep disturbance (p = 0.001), snoring (p = 0.028), and shortness of breath (p = 0.036) significantly changed, with a decreased number of nocturia episodes. Adverse events were mild. Conclusions: Desmopressin is an effective treatment for nocturnal polyuria in elderly women, where conservative treatment has failed. Sleep quality is also improved. PMID:26600882

  6. Effects of exercise timing on sleep architecture and nocturnal blood pressure in prehypertensives

    Directory of Open Access Journals (Sweden)

    Fairbrother K

    2014-12-01

    Full Text Available Kimberly Fairbrother,1 Ben Cartner,1 Jessica R Alley,1 Chelsea D Curry,1, David L Dickinson,2 David M Morris,1 Scott R Collier1 1Vascular Biology and Autonomic Studies Laboratory, Department of Health and Exercise Science, 2Department of Economics, Appalachian State University, Boone, NC, USA Background: During nocturnal sleep, blood pressure (BP “dips” compared to diurnal BP, reducing stress on the cardiovascular system. Both the hypotensive response elicited by acute aerobic exercise and sleep quality can impact this dipping response. Purpose: The purpose of this study was to investigate the effects of aerobic exercise timing on circadian BP changes and sleep architecture. Materials and methods: Twenty prehypertensive subjects completed the study. During four test sessions, participants first completed a graded exercise test to exhaustion and then performed 30 minutes of treadmill exercise at 7 am (7A, 1 pm (1P, and 7 pm (7P in a random, counterbalanced order at 65% of the heart rate obtained at peak oxygen uptake. An ambulatory cuff was used to monitor BP responses during 24 hours following exercise, and an ambulatory sleep-monitoring headband was worn during sleep following each session. Results: Aerobic exercise at 7A invoked a greater dip in nocturnal systolic BP than exercise at 1P or 7P, although the greatest dip in nocturnal diastolic BP occurred following 7P. Compared to 1P, 7A also invoked greater time spent in deep sleep. Conclusion: These data indicate that early morning may be the most beneficial time to engage in aerobic exercise to enhance nocturnal BP changes and quality of sleep. Keywords: nocturnal dipping, prehypertension, aerobic exercise

  7. Effects of Vildagliptin Add-on Insulin Therapy on Nocturnal Glycemic Variations in Uncontrolled Type 2 Diabetes.

    Science.gov (United States)

    Li, Feng-Fei; Shen, Yun; Sun, Rui; Zhang, Dan-Feng; Jin, Xing; Zhai, Xiao-Fang; Chen, Mao-Yuan; Su, Xiao-Fei; Wu, Jin-Dan; Ye, Lei; Ma, Jian-Hua

    2017-10-01

    To investigate whether vildagliptin add-on insulin therapy improves glycemic variations in patients with uncontrolled type 2 diabetes (T2D) compared to patients with placebo therapy. This was a 24-week, single-center, double-blind, placebo-controlled trial. Inadequately controlled T2D patients treated with insulin therapy were recruited between June 2012 and April 2013. The trial included a 2-week screening period and a 24-week randomized period. Subjects were randomly assigned to a vildagliptin add-on insulin therapy group (n = 17) or a matched placebo group (n = 16). Scheduled visits occurred at weeks 4, 8, 12, 16, 20, and 24. Continuous glucose monitoring (CGM) was performed before and at the endpoint of the study. A total of 33 subjects were admitted, with 1 patient withdrawing from the placebo group. After 24 weeks of therapy, HbA1c values were significantly reduced at the endpoint in the vildagliptin add-on group. CGM data showed that patients with vildagliptin add-on therapy had a significantly lower 24-h mean glucose concentration and mean amplitude of glycemic excursion (MAGE). At the endpoint of the study, patients in the vildagliptin add-on group had a significantly lower MAGE and standard deviation compared to the control patients during the nocturnal period (0000-0600). A severe hypoglycemic episode was not observed in either group. Vildagliptin add-on therapy to insulin has the ability to improve glycemic variations, especially during the nocturnal time period, in patients with uncontrolled T2D.

  8. Lipid Signaling via Pkh1/2 Regulates Fungal CO2 Sensing through the Kinase Sch9

    Directory of Open Access Journals (Sweden)

    Susann Pohlers

    2017-01-01

    Full Text Available Adaptation to alternating CO2 concentrations is crucial for all organisms. Carbonic anhydrases—metalloenzymes that have been found in all domains of life—enable fixation of scarce CO2 by accelerating its conversion to bicarbonate and ensure maintenance of cellular metabolism. In fungi and other eukaryotes, the carbonic anhydrase Nce103 has been shown to be essential for growth in air (~0.04% CO2. Expression of NCE103 is regulated in response to CO2 availability. In Saccharomyces cerevisiae, NCE103 is activated by the transcription factor ScCst6, and in Candida albicans and Candida glabrata, it is activated by its homologues CaRca1 and CgRca1, respectively. To identify the kinase controlling Cst6/Rca1, we screened an S. cerevisiae kinase/phosphatase mutant library for the ability to regulate NCE103 in a CO2-dependent manner. We identified ScSch9 as a potential ScCst6-specific kinase, as the sch9Δ mutant strain showed deregulated NCE103 expression on the RNA and protein levels. Immunoprecipitation revealed the binding capabilities of both proteins, and detection of ScCst6 phosphorylation by ScSch9 in vitro confirmed Sch9 as the Cst6 kinase. We could show that CO2-dependent activation of Sch9, which is part of a kinase cascade, is mediated by lipid/Pkh1/2 signaling but not TORC1. Finally, we tested conservation of the identified regulatory cascade in the pathogenic yeast species C. albicans and C. glabrata. Deletion of SCH9 homologues of both species impaired CO2-dependent regulation of NCE103 expression, which indicates a conservation of the CO2 adaptation mechanism among yeasts. Thus, Sch9 is a Cst6/Rca1 kinase that links CO2 adaptation to lipid signaling via Pkh1/2 in fungi.

  9. [Complications of open reduction and internal fixation versus external fixation for unstable distal radius fractures: a meta-analysis].

    Science.gov (United States)

    Yang, Z; Yuan, Z Z; Ma, J X; Ma, X L

    2016-12-20

    Objective: To make a systematic assessment of the complications of open reduction and internal fixation versus external fixation for unstable distal radius fractures. Method: A computer-based online search of PubMed, ScienceDirect, EMBASE, BIOSIS, Springer and Cochrane Library were performed.The randomized and controlled trials of open reduction and internal fixation versus external fixation for unstable distal radius fractures were collected.The included trials were screened out strictly based on the criterion of inclusion and exclusion.The quality of included trials was evaluated.RevMan 5.0 was used for data analysis. Result: A total of 17 studies involving 1 402 patients were included.There were 687 patients with open reduction and internal fixation and 715 with external fixation.The results of Meta-analysis indicated that there were statistically significant differences with regard to the postoperatively total complications, infection, malunion, tendon rupture ( I 2 =8%, RR =0.77(95% CI 0.65-0.91, Z =3.10, P 0.05). Conclusion: Postoperative complications are present in both open reduction and internal fixation and external fixation.Compared with external fixation, open reduction and internal fixation is lower in total complications postoperatively, infection and malunion, but external fixation has lower tendon rupture incidence.

  10. Nocturnal drainage wind characteristics in two converging air sheds

    International Nuclear Information System (INIS)

    Gedayloo, T.; Clements, W.E.; Barr, S.; Archuleta, J.A.

    1980-01-01

    During the short experimental period in the Grants Basin of Northeastern New Mexico a survey was conducted on the complex meteorology of this area. Emphasis was placed on the nocturnal drainage flow because of the potential hazards to the populated areas of Milan and Grants from the effluents of the uranium mining and milling operation in this area. This investigation has shown that the nocturnal drainage flow patterns agree with the winds predicted on the basis of the complex terrain of the area. Because of the surface cooling at night (over 25 0 C during summer and about 20 0 C during winter), air from elevated surrounding areas flows to the low lying regions consequently setting up a nocturnal drainage flow. This regime exists over 60% of the time during summer months and over 65% of the time during winter months with a depth generally less than 200 m. In the San Mateo air shed the drainage flow is east northeast, and in the Ambrosia Lake air shed it is from northwest. The confluence of these two air flows contributes mainly to the drainage flow through the channel formed by La Ja Mesa and Mesa Montanosa. The analysis of data collected by the recording Flats Station confirms the prediction that although the area south of the channel region broadens considerably causing a reduction in flow speed, contributions from the southside of La Jara Mesa and Mesa Montanosa partly compensate for this reduction. The position of this recording station is 15 to 20 km from the populated towns of Milan and Grants. A drainage flow speed of approximately 2.2 m s -1 and the duration of over 11 hours as recorded by this station indicates that air from the San Mateo and Ambrosia Lake regions may be transported southwards to these population centers during a nocturnal period. In order to test this prediction, a series of multi-atmospheric tracer experiments were conducted in the Grants Basin

  11. Nocturnal asthma in school children of south punjab, pakistan

    International Nuclear Information System (INIS)

    Mustafa, G.; Khan, P.A.; Iqbal, I.

    2008-01-01

    At the present time, the epidemiology of the childhood asthma is of considerable interest. There is an understandable concern that changes in the geographical area, lifestyle, and environment. This study was conducted to find the prevalence of nocturnal asthma, in school children of south Punjab, Pakistan. It was a cross sectional, questionnaire based, descriptive survey of the children aged 3-18 years, in randomly selected primary and secondary schools, from October 2002 to March 2003. The data was analysed with Statistical Analysis System (SAS). Of 6120 questionnaire sent to the parents/guardians, we received 3180 back (52%). Of the 3180 respondents, 1767 (56%) were for boys and 1413 (44%) were for girls. The median age was 8.25 years. Around 71% of children were between 4 to 11 years of age. The parents reported nocturnal asthma in 177 (6%) of their children with an equal prevalence in boys and girls, i.e., (3% each, rounded off to nearest whole number). Of these 177 children with nocturnal asthma, 99 (56%) were boys and 78 (44%) were girls. Of the 1767 boys and 1413 girls, the nocturnal asthma reported by parents was 6% each (99 and 78 respectively). The nocturnal asthma was not reported in 14-18 years age group of females. The asthma is taken as a stigma in our society and as such is not reported or disclosed rather denied. An extensive educational media campaign is required for awareness of the masses. (author)

  12. High-intensity endurance training increases nocturnal heart rate variability in sedentary participants

    Directory of Open Access Journals (Sweden)

    A Nummela

    2016-01-01

    Full Text Available The effects of endurance training on endurance performance characteristics and cardiac autonomic modulation during night sleep were investigated during two 4-week training periods. After the first 4-week training period (3 x 40 min per week, at 75% of HRR the subjects were divided into HIGH group (n = 7, who performed three high-intensity endurance training sessions per week; and CONTROL group (n = 8 who did not change their training. An incremental treadmill test was performed before and after the two 4-weektraining periods. Furthermore, nocturnal RR-intervals were recorded after each training day. In the second 4-weektraining period HIGH group increased their V0Zmax (P = 0.005 more than CONTROL group. At the same time, nocturnal HR decreased (P = 0.039 and high-frequency power (HFP increased (P = 0.003 in HIGH group while no changes were observed in CONTROL group. Furthermore, a correlation was observed between the changes in nocturnal HFP and changes in V0Zmax during the second 4-week training period (r = 0.90, P < 0.001. The present study showed that the increased HFP is related to improved VO2max in sedentary subjects suggesting that nocturnal HFP can provide a useful method in monitoring individual responses to endurance training.

  13. Low levels of nitryl chloride at ground level: nocturnal nitrogen oxides in the Lower Fraser Valley of British Columbia

    Directory of Open Access Journals (Sweden)

    H. D. Osthoff

    2018-05-01

    Full Text Available The nocturnal nitrogen oxides, which include the nitrate radical (NO3, dinitrogen pentoxide (N2O5, and its uptake product on chloride containing aerosol, nitryl chloride (ClNO2, can have profound impacts on the lifetime of NOx ( =  NO + NO2, radical budgets, and next-day photochemical ozone (O3 production, yet their abundances and chemistry are only sparsely constrained by ambient air measurements.Here, we present a measurement data set collected at a routine monitoring site near the Abbotsford International Airport (YXX located approximately 30 km from the Pacific Ocean in the Lower Fraser Valley (LFV on the west coast of British Columbia. Measurements were made from 20 July to 4 August 2012 and included mixing ratios of ClNO2, N2O5, NO, NO2, total odd nitrogen (NOy, O3, photolysis frequencies, and size distribution and composition of non-refractory submicron aerosol (PM1.At night, O3 was rapidly and often completely removed by dry deposition and by titration with NO of anthropogenic origin and unsaturated biogenic hydrocarbons in a shallow nocturnal inversion surface layer. The low nocturnal O3 mixing ratios and presence of strong chemical sinks for NO3 limited the extent of nocturnal nitrogen oxide chemistry at ground level. Consequently, mixing ratios of N2O5 and ClNO2 were low ( <  30 and  <  100 parts-per-trillion by volume (pptv and median nocturnal peak values of 7.8 and 7.9 pptv, respectively. Mixing ratios of ClNO2 frequently peaked 1–2 h after sunrise rationalized by more efficient formation of ClNO2 in the nocturnal residual layer aloft than at the surface and the breakup of the nocturnal boundary layer structure in the morning. When quantifiable, production of ClNO2 from N2O5 was efficient and likely occurred predominantly on unquantified supermicron-sized or refractory sea-salt-derived aerosol. After sunrise, production of Cl radicals from photolysis of ClNO2 was negligible compared to production of OH

  14. The Path of Carbon in Photosynthesis XIII. pH Effects in C{sup 14}O{sub 2} Fixation by Scenedesmus

    Science.gov (United States)

    Ouellet, C.; Benson, A. A.

    1951-10-23

    The rates of photosynthesis and dark fixation of C{sup 14}O{sub 2} in Scenedesmus have been compared in dilute phosphate buffers of 1.6 to 11.4 pH; determination of C{sup 14} incorporation into the various products shows enhancement of uptake in an acid medium into sucrose, polysaccharides, alanine and serine, in an alkaline medium into malic asparctic acids. kinetic experiments at extreme pH values suggest that several paths are available for CO{sub 2} assimilation. A tentative correlation of the results with the pH optima of some enzymes and resultant effects upon concentrations of intermediates is presented.

  15. Nocturnal polyuria and decreased serum testosterone: is there an association in men with lower urinary tract symptoms?

    Science.gov (United States)

    Kim, Jin Wook; Oh, Mi Mi; Yoon, Cheol Yong; Bae, Jae Hyun; Kim, Je Jong; Moon, Du Geon

    2014-05-01

    To investigate the putative association between nocturia and decreased serum testosterone in men with lower urinary tract symptoms. Frequency volume charts and serum testosterone levels of patients visiting the outpatient clinic for lower urinary tract symptoms were collected and analyzed. Age, prostate volume, body mass index and the presence of comorbidities were accounted for. Frequency volume charts were analyzed for pathophysiological components of nocturnal polyuria, global polyuria, decreased nocturnal bladder capacity and increased frequency to identify associated risks. Frequency volume charts were also used to chart 8-h changes of volume, frequency and capacity to identify time diurnal interactions with risk factors based on serum testosterone levels. A total of 2180 patients were enrolled in the study. Multivariate analysis showed testosterone decreased 0.142 ng/mL for every increase in nocturia, independent of other factors. Logistic regression analysis showed a significant difference between pathophysiological components. Decreased testosterone was shown to carry a significant independent risk for overall nocturia (odds ratio 1.60, 95% confidence interval 1.013-2.527, P = 0.044), and particularly nocturnal polyuria (odds ratio 1.934, 95% confidence interval 1.001-3.737, P = 0.027). Repeated measurement models showed patients with serum testosterone below 2.50 ng/mL to have a paradoxical increase in nocturnal urine volume at night. Nocturia, especially nocturnal polyuria, is associated with decreased serum testosterone. Patients with low serum testosterone show increased nocturnal urine output. © 2013 The Japanese Urological Association.

  16. Treatment Options for Primary Nocturnal Enuresis by Parents in a ...

    African Journals Online (AJOL)

    femi oloka

    common treatment option was waking up child at intervals during the night to void by 103 (45.2 ... patient/family education, simple behavioral ... nocturnal enuresis were employing in managing ..... Dental and Medical Sciences 2014;13:41 – 4.

  17. Nocturnal motor activity in fibromyalgia patients with poor sleep quality.

    Science.gov (United States)

    Hyyppä, M T; Kronholm, E

    1995-01-01

    Nocturnal motor activity was examined in long-term rehabilitation patients complaining of poor sleep and having fibromyalgia syndrome (N = 24) or other musculoskeletal disorders (N = 60) and compared with that in 91 healthy controls drawn from a random community sample. Self-reports on sleep complaints and habits were collected. The frequency of nocturnal body movements, the "apnoea" index and ratio of "quiet sleep" to total time in bed were measured using the Static Charge Sensitive Bed (SCSB) (BioMatt). As a group, patients with fibromyalgia syndrome did not differ from patients with other musculoskeletal disorders or from healthy controls in their nocturnal motor activity. The "apnoea" index was a little higher in the fibromyalgia group than in the healthy control group but did not differ from that of the group of other musculoskeletal patients. Further multivariate analyses adjusted for age, BMI, medication and "apnoea" index did not support the assumption that an increased nocturnal motor activity characterizes patients with fibromyalgia syndrome.

  18. Hearing is not necessarily believing in nocturnal anurans

    OpenAIRE

    Richardson, Christina; Gomez, Doris; Durieux, Romain; Théry, Marc; Joly, Pierre; Léna, Jean-Paul; Plénet, Sandrine; Lengagne, Thierry

    2010-01-01

    The recent discovery of the use of visual cues for mate choice by nocturnal acoustic species raises the important, and to date unaddressed, question of how these signals affect the outcome of mate choice predicted by female preference for male calls. In order to address this question, we presented female Hyla arborea tree frogs with a series of choices between combinations of acoustic and visual cues of varying quality in nocturnal conditions. While females exhibited the expected preference f...

  19. Overcoming fixation with repeated memory suppression.

    Science.gov (United States)

    Angello, Genna; Storm, Benjamin C; Smith, Steven M

    2015-01-01

    Fixation (blocks to memories or ideas) can be alleviated not only by encouraging productive work towards a solution, but, as the present experiments show, by reducing counterproductive work. Two experiments examined relief from fixation in a word-fragment completion task. Blockers, orthographically similar negative primes (e.g., ANALOGY), blocked solutions to word fragments (e.g., A_L_ _GY) in both experiments. After priming, but before the fragment completion test, participants repeatedly suppressed half of the blockers using the Think/No-Think paradigm, which results in memory inhibition. Inhibiting blockers did not alleviate fixation in Experiment 1 when conscious recollection of negative primes was not encouraged on the fragment completion test. In Experiment 2, however, when participants were encouraged to remember negative primes at fragment completion, relief from fixation was observed. Repeated suppression may nullify fixation effects, and promote creative thinking, particularly when fixation is caused by conscious recollection of counterproductive information.

  20. N2 Fixation by Grain Legume Varieties as Affected By Rhizobia ...

    African Journals Online (AJOL)

    acer

    [*Author of Correspondence: hyakubu2009@g-mail.com]. 229. ABSTRACT: ... Yusuf et al, (2006) reported that cowpea fixed. 16-34kgN/ha and ... fixation of legume crops (Michiels et al.,. 1994). ..... Robert, M.B. (1995). ... nitrogen fixation), John.

  1. Effects of ultraviolet radiation on photosynthetic performance and N2 fixation in Trichodesmium erythraeum IMS 101

    Directory of Open Access Journals (Sweden)

    X. Cai

    2017-10-01

    Full Text Available Biological effects of ultraviolet radiation (UVR; 280–400 nm on marine primary producers are of general concern, as oceanic carbon fixers that contribute to the marine biological CO2 pump are being exposed to increasing UV irradiance due to global change and ozone depletion. We investigated the effects of UV-B (280–320 nm and UV-A (320–400 nm on the biogeochemically critical filamentous marine N2-fixing cyanobacterium Trichodesmium (strain IMS101 using a solar simulator as well as under natural solar radiation. Short exposure to UV-B, UV-A, or integrated total UVR significantly reduced the effective quantum yield of photosystem II (PSII and photosynthetic carbon and N2 fixation rates. Cells acclimated to low light were more sensitive to UV exposure compared to high-light-grown ones, which had more UV-absorbing compounds, most likely mycosporine-like amino acids (MAAs. After acclimation under natural sunlight, the specific growth rate was lower (by up to 44 %, MAA content was higher, and average trichome length was shorter (by up to 22 % in the full spectrum of solar radiation with UVR, than under a photosynthetically active radiation (PAR alone treatment (400–700 nm. These results suggest that prior shipboard experiments in UV-opaque containers may have substantially overestimated in situ nitrogen fixation rates by Trichodesmium, and that natural and anthropogenic elevation of UV radiation intensity could significantly inhibit this vital source of new nitrogen to the current and future oligotrophic oceans.

  2. Nocturnal Light Pulses Lower Carbon Dioxide Production Rate without Affecting Feed Intake in Geese

    Directory of Open Access Journals (Sweden)

    De-Jia Huang

    2016-03-01

    Full Text Available This study was conducted to investigate the effect of nocturnal light pulses (NLPs on the feed intake and metabolic rate in geese. Fourteen adult Chinese geese were penned individually, and randomly assigned to either the C (control or NLP group. The C group was exposed to a 12L:12D photoperiod (12 h light and 12 h darkness per day, whereas the NLP group was exposed to a 12L:12D photoperiod inserted by 15-min lighting at 2-h intervals in the scotophase. The weight of the feed was automatically recorded at 1-min intervals for 1 wk. The fasting carbon dioxide production rate (CO2 PR was recorded at 1-min intervals for 1 d. The results revealed that neither the daily feed intake nor the feed intakes during both the daytime and nighttime were affected by photoperiodic regimen, and the feed intake during the daytime did not differ from that during the nighttime. The photoperiodic treatment did not affect the time distribution of feed intake. However, NLPs lowered (p<0.05 the mean and minimal CO2 PR during both the daytime and nighttime. Both the mean and minimal CO2 PR during the daytime were significantly higher (p<0.05 than those during the nighttime. We concluded that NLPs lowered metabolic rate of the geese, but did not affect the feed intake; both the mean and minimal CO2 PR were higher during the daytime than during the nighttime.

  3. Artificial light pollution: Shifting spectral wavelengths to mitigate physiological and health consequences in a nocturnal marsupial mammal.

    Science.gov (United States)

    Dimovski, Alicia M; Robert, Kylie A

    2018-05-02

    The focus of sustainable lighting tends to be on reduced CO 2 emissions and cost savings, but not on the wider environmental effects. Ironically, the introduction of energy-efficient lighting, such as light emitting diodes (LEDs), may be having a great impact on the health of wildlife. These white LEDs are generated with a high content of short-wavelength 'blue' light. While light of any kind can suppress melatonin and the physiological processes it regulates, these short wavelengths are potent suppressors of melatonin. Here, we manipulated the spectral composition of LED lights and tested their capacity to mitigate the physiological and health consequences associated with their use. We experimentally investigated the impact of white LEDs (peak wavelength 448 nm; mean irradiance 2.87 W/m 2 ), long-wavelength shifted amber LEDs (peak wavelength 605 nm; mean irradiance 2.00 W/m 2 ), and no lighting (irradiance from sky glow light treatments. White LED exposed wallabies had significantly suppressed nocturnal melatonin compared to no light and amber LED exposed wallabies, while there was no difference in lipid peroxidation. Antioxidant capacity declined from baseline to week 10 under all treatments. These results provide further evidence that short-wavelength light at night is a potent suppressor of nocturnal melatonin. Importantly, we also illustrate that shifting the spectral output to longer wavelengths could mitigate these negative physiological impacts. © 2018 Wiley Periodicals, Inc.

  4. Rates of nocturnal transpiration in two evergreen temperate woodland species with differing water-use strategies.

    Science.gov (United States)

    Zeppel, Melanie; Tissue, David; Taylor, Daniel; Macinnis-Ng, Catriona; Eamus, Derek

    2010-08-01

    Nocturnal fluxes may be a significant factor in the annual water budget of forested ecosystems. Here, we assessed sap flow in two co-occurring evergreen species (Eucalyptus parramattensis and Angophora bakeri) in a temperate woodland for 2 years in order to quantify the magnitude of seasonal nocturnal sap flow (E(n)) under different environmental conditions. The two species showed different diurnal water relations, demonstrated by different diurnal curves of stomatal conductance, sap flow and leaf water potential. The relative influence of several microclimatic variables, including wind speed (U), vapour pressure deficit (D), the product of U and D (UD) and soil moisture content, were quantified. D exerted the strongest influence on E(n) (r² = 0.59-0.86), soil moisture content influenced E(n) when D was constant, but U and UD did not generally influence E(n). In both species, cuticular conductance (G(c)) was a small proportion of total leaf conductance (G(s)) and was not a major pathway for E(n). We found that E(n) was primarily a function of transpiration from the canopy rather than refilling of stem storage, with canopy transpiration accounting for 50-70% of nocturnal flows. Mean E(n) was 6-8% of the 24-h flux across seasons (spring, summer and winter), but was up to 19% of the 24-h flux on some days in both species. Despite different daytime strategies in water use of the two species, both species demonstrated low night-time water loss, suggesting similar controls on water loss at night. In order to account for the impact of E(n) on pre-dawn leaf water potential arising from the influence of disequilibria between root zone and leaf water potential, we also developed a simple model to more accurately predict soil water potential (ψ(s)).

  5. N2-fixation and residual N effect of four legume species and four companion grass species

    DEFF Research Database (Denmark)

    Rasmussen, Jim; Søegaard, Karen; Pirhofer-Walzl, Karin

    2012-01-01

    and climatic conditions. We conducted a field experiment on a sandy soil at two nitrogen levels with seven two-species forage mixtures: alfalfa, bird's-foot trefoil, red clover, or white clover in mixture with perennial ryegrass, and white clover in mixture with meadow fescue, timothy, or hybrid ryegrass. We...... found high N2-fixation of more than 300 kg N ha-1 from both red clover and alfalfa even when the two mixtures received 300 kg total-N ha-1 in cattle slurry. The addition of cattle slurry N fertilizer lowered N2-fixation for white clover and red clover as expected, but for bird's-foot trefoil and alfalfa...... no changes in the proportion of N derived from N2-fixation was observed. We conclude that the competition for available soil N from perennial ryegrass in mixture was an important factor for the proportion of N in alfalfa, white clover, and bird's-foot trefoil obtained from N2-fixation. White clover had...

  6. Ocellar optics in nocturnal and diurnal bees and wasps.

    Science.gov (United States)

    Warrant, Eric J; Kelber, Almut; Wallén, Rita; Wcislo, William T

    2006-12-01

    Nocturnal bees, wasps and ants have considerably larger ocelli than their diurnal relatives, suggesting an active role in vision at night. In a first step to understanding what this role might be, the morphology and physiological optics of ocelli were investigated in three tropical rainforest species - the nocturnal sweat bee Megalopta genalis, the nocturnal paper wasp Apoica pallens and the diurnal paper wasp Polistes occidentalis - using hanging-drop techniques and standard histological methods. Ocellar image quality, in addition to lens focal length and back focal distance, was determined in all three species. During flight, the ocellar receptive fields of both nocturnal species are centred very dorsally, possibly in order to maximise sensitivity to the narrow dorsal field of light that enters through gaps in the rainforest canopy. Since all ocelli investigated had a slightly oval shape, images were found to be astigmatic: images formed by the major axis of the ocellus were located further from the proximal surface of the lens than images formed by the minor axis. Despite being astigmatic, images formed at either focal plane were reasonably sharp in all ocelli investigated. When compared to the position of the retina below the lens, measurements of back focal distance reveal that the ocelli of Megalopta are highly underfocused and unable to resolve spatial detail. This together with their very large and tightly packed rhabdoms suggests a role in making sensitive measurements of ambient light intensity. In contrast, the ocelli of the two wasps form images near the proximal boundary of the retina, suggesting the potential for modest resolving power. In light of these results, possible roles for ocelli in nocturnal bees and wasps are discussed, including the hypothesis that they might be involved in nocturnal homing and navigation, using two main cues: the spatial pattern of bright patches of daylight visible through the rainforest canopy, and compass information

  7. Intrascleral IOL Fixation.

    Science.gov (United States)

    Jacob, Soosan

    2017-01-01

    Intrascleral sutureless intraocular lens (IOL) fixation utilizes direct haptic fixation within the sclera in eyes with deficient capsular support. This has advantages of long-term stability, good control of tilt and decentration, and lesser pseudophakodonesis. This review summarizes various techniques for intrascleral haptic fixation, results, complications, adaptations in special situations, modifications of the technique, combination surgeries, and intrascleral capsular bag fixation techniques (glued capsular hook). Copyright 2017 Asia-Pacific Academy of Ophthalmology.

  8. Nocturnal, every-other-day, online haemodiafiltration: an effective therapeutic alternative.

    Science.gov (United States)

    Maduell, Francisco; Arias, Marta; Durán, Carlos E; Vera, Manel; Fontseré, Néstor; Azqueta, Manel; Rico, Nayra; Pérez, Nuria; Sentis, Alexis; Elena, Montserrat; Rodriguez, Néstor; Arcal, Carola; Bergadá, Eduardo; Cases, Aleix; Bedini, Jose Luis; Campistol, Josep M

    2012-04-01

    Longer and more frequent dialysis sessions have demonstrated excellent survival and clinical advantages, while online haemodiafiltration (OL-HDF) provides the most efficient form of dialysis treatment. The aim of this study was to evaluate the beneficial effects of a longer (nocturnal) and more frequent (every-other-day) dialysis schedule with OL-HDF at the same or the highest convective volume. This prospective, in-centre crossover study was carried out in 26 patients, 18 males and 8 females, 49.2±14 years old, on 4-5 h thrice-weekly post-dilution OL-HDF, switched to nocturnal every-other-day OL-HDF. Patient inclusion criteria consisted of stable patients with good vascular access and with good prospects for improved occupational, psychological and social rehabilitation. Patients were randomly assigned into two groups: Group A received the same convective volume as previously for 6 months followed by a higher convective volume for a further 6 months, while Group B received the same schedule in reverse order. Nocturnal every-other-day OL-HDF was well tolerated and 56% of patients who were working during the baseline period continued to work throughout the study with practically no absenteeism. The convective volume was 26.7±2 L at baseline, 27.5±2 with the unchanged volume and 42.9±4 L with the higher volume. eKt/V increased from 1.75±0.4 to 3.37±0.9. Bicarbonate, blood urea nitrogen (BUN) and creatinine values decreased, while phosphate levels fell markedly with a 90% reduction in phosphate binders. Blood pressure and left ventricular hypertrophy (LVH) improved and the use of anti-hypertensive drugs decreased. In both groups, BUN, creatinine and β2-microglobulin reduction ratios improved. Different removal patterns were observed for myoglobin, prolactin and α1-acid glycoprotein. Nocturnal every-other-day OL-HDF could be an excellent therapeutic alternative since good tolerance and occupational rehabilitation, marked improvement in dialysis dose

  9. Nocturnal sleep pattern in native Brazilian Terena adults

    Directory of Open Access Journals (Sweden)

    REIMÃO RUBENS

    2000-01-01

    Full Text Available Social-economic factors influence sleep habits. This research analyzes characteristics of nocturnal sleep in Brazilian Native Terena adults. Sixty-four adults (31 M; 33 F from 18 to 75 years, with a mean age of 37.0, from the Indian Reservation village of Córrego do Meio, in the central region of Mato Grosso do Sul, an agriculturally oriented group were evaluated. Nocturnal sleep characteristics were evaluated by means of a standard questionnaire applied to each individual. It was observed that reported nocturnal sleep was longer, sleep onset was earlier and wake up time was also earlier than usually described in urban populations. The mean total time in bed was 8.5 h or more, in every age bracket. The seven-day prevalence rate of insomnia was 4.6%, while the seven-day prevalence rate of hypnotic use was 1.5%, both remarkably less than described in urban populations. These findings stress the need to consider ethnic influences on sleep patterns and disorders.

  10. Technical advances in flow cytometry-based diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria

    Science.gov (United States)

    Correia, Rodolfo Patussi; Bento, Laiz Cameirão; Bortolucci, Ana Carolina Apelle; Alexandre, Anderson Marega; Vaz, Andressa da Costa; Schimidell, Daniela; Pedro, Eduardo de Carvalho; Perin, Fabricio Simões; Nozawa, Sonia Tsukasa; Mendes, Cláudio Ernesto Albers; Barroso, Rodrigo de Souza; Bacal, Nydia Strachman

    2016-01-01

    ABSTRACT Objective: To discuss the implementation of technical advances in laboratory diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria for validation of high-sensitivity flow cytometry protocols. Methods: A retrospective study based on analysis of laboratory data from 745 patient samples submitted to flow cytometry for diagnosis and/or monitoring of paroxysmal nocturnal hemoglobinuria. Results: Implementation of technical advances reduced test costs and improved flow cytometry resolution for paroxysmal nocturnal hemoglobinuria clone detection. Conclusion: High-sensitivity flow cytometry allowed more sensitive determination of paroxysmal nocturnal hemoglobinuria clone type and size, particularly in samples with small clones. PMID:27759825

  11. Carbonato-bridged Ni(II)2Ln(III)2 (Ln(III) = Gd(III), Tb(III), Dy(III)) complexes generated by atmospheric CO2 fixation and their single-molecule-magnet behavior: [(μ4-CO3)2{Ni(II)(3-MeOsaltn)(MeOH or H2O)Ln(III)(NO3)}2]·solvent [3-MeOsaltn = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato].

    Science.gov (United States)

    Sakamoto, Soichiro; Fujinami, Takeshi; Nishi, Koshiro; Matsumoto, Naohide; Mochida, Naotaka; Ishida, Takayuki; Sunatsuki, Yukinari; Re, Nazzareno

    2013-06-17

    Atmospheric CO2 fixation of [Ni(II)(3-MeOsaltn)(H2O)22.5H2O [3-MeOsaltn = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato], Ln(III)(NO3)3·6H2O, and triethylamine occurred in methanol/acetone, giving a first series of carbonato-bridged Ni(II)2Ln(III)2 complexes [(μ4-CO3)2{Ni(II)(3-MeOsaltn)(MeOH)Ln(III)(NO3)}2] (1Gd, 1Tb, and 1Dy). When the reaction was carried out in acetonitrile/water, it gave a second series of complexes [(μ4-CO3)2{Ni(II)(3-MeOsaltn)(H2O)Ln(III)(NO3)}22CH3CN·2H2O (2Gd, 2Tb, and 2Dy). For both series, each Ni(II)2Ln(III)2 structure can be described as two di-μ-phenoxo-bridged Ni(II)Ln(III) binuclear units bridged by two carbonato CO3(2-) units to form a carbonato-bridged (μ4-CO3)2{Ni(II)2Ln(III)2} structure. The high-spin Ni(II) ion has octahedral coordination geometry, and the Ln(III) ion is coordinated by O9 donor atoms from Ni(II)(3-MeOsaltn), bidentate NO3(-), and one and two oxygen atoms of two CO3(2-) ions. The NO3(-) ion for the first series roughly lie on Ln-O(methoxy) bonds and are tilted toward the outside, while for the second series, the two oxygen atoms roughly lie on one of the Ln-O(phenoxy) bonds due to the intramolecular hydrogen bond. The temperature-dependent magnetic susceptibilities indicated a ferromagnetic interaction between the Ni(II) and Ln(III) ions (Ln(III) = Gd(III), Tb(III), Dy(III)) for all of the complexes, with a distinctly different magnetic behavior between the two series in the lowest-temperature region due to the Ln(III)-Ln(III) magnetic interaction and/or different magnetic anisotropies of the Tb(III) or Dy(III) ion. Alternating-current susceptibility measurements under the 0 and 1000 Oe direct-current (dc) bias fields showed no magnetic relaxation for the Ni(II)2Gd(III)2 complexes but exhibited an out-of-phase signal for Ni(II)2Tb(III)2 and Ni(II)2Dy(III)2, indicative of slow relaxation of magnetization. The energy barriers, Δ/kB, for the spin flipping were estimated from the Arrhenius

  12. Prospects for improving CO2 fixation in C3-crops through understanding C4-Rubisco biogenesis and catalytic diversity.

    Science.gov (United States)

    Sharwood, Robert E; Ghannoum, Oula; Whitney, Spencer M

    2016-06-01

    By operating a CO2 concentrating mechanism, C4-photosynthesis offers highly successful solutions to remedy the inefficiency of the CO2-fixing enzyme Rubisco. C4-plant Rubisco has characteristically evolved faster carboxylation rates with low CO2 affinity. Owing to high CO2 concentrations in bundle sheath chloroplasts, faster Rubisco enhances resource use efficiency in C4 plants by reducing the energy and carbon costs associated with photorespiration and lowering the nitrogen investment in Rubisco. Here, we show that C4-Rubisco from some NADP-ME species, such as maize, are also of potential benefit to C3-photosynthesis under current and future atmospheric CO2 pressures. Realizing this bioengineering endeavour necessitates improved understanding of the biogenesis requirements and catalytic variability of C4-Rubisco, as well as the development of transformation capabilities to engineer Rubisco in a wider variety of food and fibre crops. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The relationship between nocturnal polyuria and the distribution of body fluid: assessment by bioelectric impedance analysis.

    Science.gov (United States)

    Torimoto, Kazumasa; Hirayama, Akihide; Samma, Shoji; Yoshida, Katsunori; Fujimoto, Kiyohide; Hirao, Yoshihiko

    2009-01-01

    Increased nocturnal urinary volume is closely associated with nocturia. We investigated the relationship between nocturnal polyuria and the variation of body fluid distribution during the daytime using bioelectric impedance analysis. A total of 34 men older than 60 years were enrolled in this study. A frequency volume chart was recorded. Nocturnal polyuria was defined as a nocturnal urine volume per 24-hour production of greater than 0.35 (the nocturnal polyuria index). Bioelectric impedance analysis was performed 4 times daily at 8 and 11 a.m., and 5 and 9 p.m. using an InBody S20 body composition analyzer (BioSpace, Seoul, Korea). A significant difference was found in mean +/- SEM 24-hour urine production per fat-free mass between the groups with and without nocturnal polyuria (17.8 +/- 1.4 vs 7.7 +/- 0.9 ml/kg). The increase in fluid in the legs compared with the volume at 8 a.m. was significantly larger at 5 p.m., while there was no difference in the arms or trunk. Nocturnal urine volume significantly correlated with the difference in fluid volume in the legs (r = 0.527, p = 0.0019) and extracellular fluid volume (r = 0.3844, p = 0.0248) between the volumes at 8 a.m. and 9 p.m. Overproduction of urine per fat-free mass leads to nocturnal polyuria. Extracellular fluid accumulates as edema in the legs during the day in patients with nocturnal polyuria. The volume of accumulated extracellular fluid correlates with nocturnal urine volume. We suggest that leg edema is the source of nocturnal urine volume and decreasing edema may cure nocturnal polyuria.

  14. Photosynthetic Performance of the Red Alga Pyropia haitanensis During Emersion, With Special Reference to Effects of Solar UV Radiation, Dehydration and Elevated CO2 Concentration.

    Science.gov (United States)

    Xu, Juntian; Gao, Kunshan

    2015-11-01

    Macroalgae distributed in intertidal zones experience a series of environmental changes, such as periodical desiccation associated with tidal cycles, increasing CO2 concentration and solar UVB (280-315 nm) irradiance in the context of climate change. We investigated how the economic red macroalga, Pyropia haitanensis, perform its photosynthesis under elevated atmospheric CO2 concentration and in the presence of solar UV radiation (280-400 nm) during emersion. Our results showed that the elevated CO2 (800 ppmv) significantly increased the photosynthetic carbon fixation rate of P. haitanensis by about 100% when the alga was dehydrated. Solar UV radiation had insignificant effects on the net photosynthesis without desiccation stress and under low levels of sunlight, but significantly inhibited it with increased levels of desiccation and sunlight intensity, to the highest extent at the highest levels of water loss and solar radiation. Presence of UV radiation and the elevated CO2 acted synergistically to cause higher inhibition of the photosynthetic carbon fixation, which exacerbated at higher levels of desiccation and sunlight. While P. haitanensis can benefit from increasing atmospheric CO2 concentration during emersion under low and moderate levels of solar radiation, combined effects of elevated CO2 and UV radiation acted synergistically to reduce its photosynthesis under high solar radiation levels during noon periods. © 2015 The American Society of Photobiology.

  15. Pregnancy and paroxysmal nocturnal hemoglobinuria

    NARCIS (Netherlands)

    Bais, J.; Pel, M.; von dem Borne, A.; van der Lelie, H.

    1994-01-01

    A patient is described who developed symptoms of paroxysmal nocturnal hemoglobinuria (PNH) in her first pregnancy. This was uneventful except for a spontaneous preterm delivery. The second pregnancy was complicated by severe anemia and a hemolytic crisis with Budd-Chiari syndrome at 31 weeks'

  16. Low levels of nitryl chloride at ground level: nocturnal nitrogen oxides in the Lower Fraser Valley of British Columbia

    Science.gov (United States)

    Osthoff, Hans D.; Odame-Ankrah, Charles A.; Taha, Youssef M.; Tokarek, Travis W.; Schiller, Corinne L.; Haga, Donna; Jones, Keith; Vingarzan, Roxanne

    2018-05-01

    The nocturnal nitrogen oxides, which include the nitrate radical (NO3), dinitrogen pentoxide (N2O5), and its uptake product on chloride containing aerosol, nitryl chloride (ClNO2), can have profound impacts on the lifetime of NOx ( = NO + NO2), radical budgets, and next-day photochemical ozone (O3) production, yet their abundances and chemistry are only sparsely constrained by ambient air measurements. Here, we present a measurement data set collected at a routine monitoring site near the Abbotsford International Airport (YXX) located approximately 30 km from the Pacific Ocean in the Lower Fraser Valley (LFV) on the west coast of British Columbia. Measurements were made from 20 July to 4 August 2012 and included mixing ratios of ClNO2, N2O5, NO, NO2, total odd nitrogen (NOy), O3, photolysis frequencies, and size distribution and composition of non-refractory submicron aerosol (PM1). At night, O3 was rapidly and often completely removed by dry deposition and by titration with NO of anthropogenic origin and unsaturated biogenic hydrocarbons in a shallow nocturnal inversion surface layer. The low nocturnal O3 mixing ratios and presence of strong chemical sinks for NO3 limited the extent of nocturnal nitrogen oxide chemistry at ground level. Consequently, mixing ratios of N2O5 and ClNO2 were low ( formation of ClNO2 in the nocturnal residual layer aloft than at the surface and the breakup of the nocturnal boundary layer structure in the morning. When quantifiable, production of ClNO2 from N2O5 was efficient and likely occurred predominantly on unquantified supermicron-sized or refractory sea-salt-derived aerosol. After sunrise, production of Cl radicals from photolysis of ClNO2 was negligible compared to production of OH from the reaction of O(1D) + H2O except for a short period after sunrise.

  17. Impact of nocturnal heartburn on quality of life, sleep, and productivity: the SINERGE study.

    Science.gov (United States)

    Calleja, José Luis; Bixquert, M; Maldonado, J

    2007-10-01

    The aim of the SINERGE study was to assess the impact of nocturnal heartburn on quality of life, sleep, and productivity. Ambulatory patients >/=18 years old and classified as defined cases of nocturnal heartburn (n=337), nonnocturnal heartburn (n=139), uncontrolled hypertension (n=198), and symptomatic depression (n=104) were included in this cross-sectional study. Information on age, gender, body mass index, and comorbidity was collected and the following validated questionnaires were applied: SF-12, Pittsburgh Sleep Quality Index, and Work Productivity and Activity Impairment questionnaire. The prevalence of primary care consultation for heartburn and nocturnal heartburn was 4.7% and 1.9%, respectively. Health-related quality of life, sleep, and productivity were significantly impaired in patients with frequent nocturnal heartburn symptoms as compared with those of the patients without nocturnal symptoms or patients with hypertension. Nocturnal heartburn poses a considerable burden for the sufferer because of the impact on quality of life, sleep, and daily activities.

  18. The risk of hyponatremia with desmopressin use for nocturnal polyuria.

    Science.gov (United States)

    Choi, Eun Young; Park, Joon-Sung; Kim, Yong Tae; Park, Sung Yul; Kim, Gheun-Ho

    2015-01-01

    Desmopressin is used for treating nocturnal polyuria, but hyponatremia is an associated concern in the elderly due to impaired urinary dilution. This study was undertaken to characterize hyponatremia occurring in adults using desmopressin for nocturnal polyuria. Data from 172 patients who were prescribed desmopressin for nocturnal polyuria at a urology clinic from September 2010 through February 2013 were retrospectively analyzed. Demographic and laboratory parameters were investigated to examine the risk factors for desmopressin-associated hyponatremia. The average follow-up serum sodium measured 21 ± 22 days after using desmopressin was 138 ± 5 mmol/l. Hyponatremia (<135 mmol/l) was found in 24 patients (14%), and it was severe in 7 (<126 mmol/l). In the hyponatremic patients, serum sodium decreased by 11 ± 6 mmol/l. Patients with hyponatremia were older than those with normonatremia (78 ± 7 vs. 68 ± 9 years, p < 0.0001). The presence of either hyponatremia-predisposing comorbidities or concurrent medications was associated with hyponatremia. Patients with hyponatremia had lower basal hemoglobin (11 ± 2 vs. 13 ± 2 g/dl, p < 0.001) and serum sodium (139 ± 2 vs. 140 ± 2 mmol/l, p < 0.05) than those with normonatremia. Multivariate logistic regression after adjustment for basal serum sodium showed that advanced age (OR 1.15; 95% CI 1.03-1.27) and lower hemoglobin level (OR 0.64; 95% CI 0.43-0.94) were independently associated with hyponatremia. Hyponatremia is not infrequently associated with desmopressin use. Those with advanced age (≥65 years) and lower hemoglobin are at risk of desmopressin-associated hyponatremia and need to be carefully monitored. © 2015 S. Karger AG, Basel.

  19. Sleep Apnea and Nocturnal Cardiac Arrhythmia: A Populational Study

    Directory of Open Access Journals (Sweden)

    Fatima Dumas Cintra

    2014-11-01

    Full Text Available Background: The mechanisms associated with the cardiovascular consequences of obstructive sleep apnea include abrupt changes in autonomic tone, which can trigger cardiac arrhythmias. The authors hypothesized that nocturnal cardiac arrhythmia occurs more frequently in patients with obstructive sleep apnea. Objective: To analyze the relationship between obstructive sleep apnea and abnormal heart rhythm during sleep in a population sample. Methods: Cross-sectional study with 1,101 volunteers, who form a representative sample of the city of São Paulo. The overnight polysomnography was performed using an EMBLA® S7000 digital system during the regular sleep schedule of the individual. The electrocardiogram channel was extracted, duplicated, and then analyzed using a Holter (Cardio Smart® system. Results: A total of 767 participants (461 men with a mean age of 42.00 ± 0.53 years, were included in the analysis. At least one type of nocturnal cardiac rhythm disturbance (atrial/ventricular arrhythmia or beat was observed in 62.7% of the sample. The occurrence of nocturnal cardiac arrhythmias was more frequent with increased disease severity. Rhythm disturbance was observed in 53.3% of the sample without breathing sleep disorders, whereas 92.3% of patients with severe obstructive sleep apnea showed cardiac arrhythmia. Isolated atrial and ventricular ectopy was more frequent in patients with moderate/severe obstructive sleep apnea when compared to controls (p < 0.001. After controlling for potential confounding factors, age, sex and apnea-hypopnea index were associated with nocturnal cardiac arrhythmia. Conclusion: Nocturnal cardiac arrhythmia occurs more frequently in patients with obstructive sleep apnea and the prevalence increases with disease severity. Age, sex, and the Apnea-hypopnea index were predictors of arrhythmia in this sample.

  20. Influence of tree canopy on N{sub 2} fixation by pasture legumes and soil rhizobial abundance in Mediterranean oak woodlands

    Energy Technology Data Exchange (ETDEWEB)

    Carranca, C., E-mail: corina.carranca@iniav.pt [INIAV, Qta Marquês, 2784-505 Oeiras (Portugal); Castro, I.V.; Figueiredo, N. [INIAV, Qta Marquês, 2784-505 Oeiras (Portugal); Redondo, R. [Laboratorio de Isotopos Estables, Universidade Autonoma, Madrid (Spain); Rodrigues, A.R.F. [Centro de Estudos Florestais, ISA/UL, Tapada Ajuda, 1349-017 Lisboa (Portugal); Saraiva, I.; Maricato, R. [INIAV, Qta Marquês, 2784-505 Oeiras (Portugal); Madeira, M.A.V. [Centro de Estudos Florestais, ISA/UL, Tapada Ajuda, 1349-017 Lisboa (Portugal)

    2015-02-15

    Symbiotic N{sub 2} fixation is of primordial significance in sustainable agro-forestry management as it allows reducing the use of mineral N in the production of mixed stands and by protecting the soils from degradation. Thereby, on a 2-year basis, N{sub 2} fixation was evaluated in four oak woodlands under Mediterranean conditions using a split-plot design and three replicates. {sup 15}N technique was used for determination of N{sub 2} fixation rate. Variations in environmental conditions (temperature, rainfall, radiation) by the cork tree canopy as well as the age of stands and pasture management can cause great differences in vegetation growth, legume N{sub 2} fixation, and soil rhizobial abundance. In the present study, non-legumes dominated the swards, in particular beneath the tree canopy, and legumes represented only 42% of total herbage. A 2-fold biomass reduction was observed in the oldest sown pasture in relation to the medium-age sward (6 t DW ha{sup −1} yr{sup −1}). Overall, competition of pasture growth for light was negligible, but soil rhizobial abundance and symbiotic N{sub 2} fixation capacity were highly favored by this environmental factor in the spring and outside the influence of tree canopy. Nitrogen derived from the atmosphere was moderate to high (54–72%) in unsown and sown swards. Inputs of fixed N2 increased from winter to spring due to more favorable climatic conditions (temperature and light intensity) for both rhizobia and vegetation growths. Assuming a constant fixation rate at each seasonal period, N{sub 2} fixation capacity increased from about 0.10 kg N ha{sup −1} per day in the autumn–winter period to 0.15 kg N ha{sup −1} per day in spring. Belowground plant material contributed to 11% of accumulated N in pasture legumes and was not affected by canopy. Size of soil fixing bacteria contributed little to explain pasture legumes N. - Highlights: • Legumes fixation in oak woodlands was quantified in terms of biomass and N

  1. [Long-term efficacy of open reduction and internal fixation versus external fixation for unstable distal radius fractures: a meta-analysis].

    Science.gov (United States)

    Yang, Z; Yuan, Z Z; Ma, J X; Ma, X L

    2017-11-07

    Objective: To make a systematic assessment of the Long-term efficacy of open reduction and internal fixation versus external fixation for unstable distal radius fractures. Methods: A computer-based online search of PubMed, ScienceDirect, EMBASE, BIOSIS, Springer and Cochrane Library were performed. The randomized and controlled trials of open reduction and internal fixation versus external fixation for unstable distal radius fractures were collected. The included trials were screened out strictly based on the criterion of inclusion and exclusion. The quality of included trials was evaluated. RevMan 5.0 was used for data analysis. Results: Sixteen studies involving 1 268 patients were included. There were 618 patients with open reduction and internal fixation and 650 with external fixation. The results of meta-analysis indicated that there were statistically significant differences with regard to the complications postoperatively (infection( I (2)=0%, RR =0.27, 95% CI 0.16-0.45, Z =4.92, P internal fixation and external fixation are effective treatment for unstable distal radius fractures. Compared with external fixation, open reduction and internal fixation provides reduced complications postoperatively, lower DASH scores and better restoration of volar tilt for treatment of distal radius fractures.

  2. Running Club - Nocturne des Evaux

    CERN Multimedia

    Running club

    2017-01-01

    Les coureurs du CERN sont encore montés sur les plus hautes marches du podium lors de la course interentreprises. Cette course d’équipe qui se déroule de nuit et par équipe de 3 à 4 coureurs est unique dans la région de par son originalité : départ groupé toutes les 30 secondes, les 3 premiers coureurs doivent passer la ligne d’arrivée ensemble. Double victoire pour le running club a la nocturne !!!! 1ère place pour les filles et 22e au classement général; 1ère place pour l'équipe mixte et 4e au général, battant par la même occasion le record de l'épreuve en mixte d'environ 1 minute; 10e place pour l'équipe homme. Retrouvez tous les résultats sur http://www.chp-geneve.ch/web-cms/index.php/nocturne-des-evaux

  3. Termites create spatial structure and govern ecosystem function by affecting N2 fixation in an East African savanna.

    Science.gov (United States)

    Fox-Dobbs, Kena; Doak, Daniel F; Brody, Alison K; Palmer, Todd M

    2010-05-01

    The mechanisms by which even the clearest of keystone or dominant species exert community-wide effects are only partially understood in most ecosystems. This is especially true when a species or guild influences community-wide interactions via changes in the abiotic landscape. Using stable isotope analyses, we show that subterranean termites in an East African savanna strongly influence a key ecosystem process: atmospheric nitrogen fixation by a monodominant tree species and its bacterial symbionts. Specifically, we applied the 15N natural abundance method in combination with other biogeochemical analyses to assess levels of nitrogen fixation by Acacia drepanolobium and its effects on co-occurring grasses and forbs in areas near and far from mounds and where ungulates were or were not excluded. We find that termites exert far stronger effects than do herbivores on nitrogen fixation. The percentage of nitrogen derived from fixation in Acacia drepanolobium trees is higher (55-80%) away from mounds vs. near mounds (40-50%). Mound soils have higher levels of plant available nitrogen, and Acacia drepanolobium may preferentially utilize soil-based nitrogen sources in lieu of fixed nitrogen when these sources are readily available near termite mounds. At the scale of the landscape, our models predict that termite/soil derived nitrogen sources influence >50% of the Acacia drepanolobium trees in our system. Further, the spatial extent of these effects combine with the spacing of termite mounds to create highly regular patterning in nitrogen fixation rates, resulting in marked habitat heterogeneity in an otherwise uniform landscape. In summary, we show that termite-associated effects on nitrogen processes are not only stronger than those of more apparent large herbivores in the same system, but also occur in a highly regular spatial pattern, potentially adding to their importance as drivers of community and ecosystem structure.

  4. Diurnal and Nocturnal Pollination of Marginatocereus marginatus (Pachycereeae: Cactaceae) in Central Mexico

    Science.gov (United States)

    DAR, SALEEM; ARIZMENDI, Ma. del CORO; VALIENTE-BANUET, ALFONSO

    2006-01-01

    • Background and Aims Chiropterophillous and ornithophillous characteristics can form part of a single reproductive strategy in plants that have flowers with diurnal and nocturnal anthesis. This broader pollination strategy can ensure seed set when pollinators are scarce or unpredictable. This appears to be true of hummingbirds, which presumably pollinate Marginatocereus marginatus, a columnar cactus with red nocturnal and diurnal flowers growing as part of dense bat-pollinated columnar cacti forests in arid regions of central Mexico. The aim of this study was to study the floral biology of M. marginatus, and evaluate the effectiveness of nocturnal vs. diurnal pollinators and the contribution of each pollinator group to overall plant fitness. • Methods Individual flower buds were marked and followed to evaluate flower phenology and anthesis time. Flowers and nectar production were measured. An exclusion experiment was conducted to measure the relative contribution of nocturnal and diurnal pollinators to seed set. • Key Results Marginatocereus marginatus has red hermaphroditic flowers with nocturnal and diurnal anthesis. The plant cannot produce seeds by selfing and was pollinated during the day by hummingbirds and during the night by bats, demonstrating that both pollinator groups were important for plant reproduction. Strong pollen limitation was found in the absence of one of the pollinator guilds. • Conclusions Marginatocereus marginatus has an open pollination system in which both diurnal and nocturnal pollinators are needed to set seeds. This represents a fail-safe pollination system that can ensure both pollination, in a situation of low abundance of one of the pollinator groups (hummingbirds), and high competition for nocturnal pollinators with other columnar cacti that bloom synchronously with M. marginatus in the Tehuacan Valley, Mexico. PMID:16394025

  5. Nitrogen fixation in denitrified marine waters.

    Directory of Open Access Journals (Sweden)

    Camila Fernandez

    Full Text Available Nitrogen fixation is an essential process that biologically transforms atmospheric dinitrogen gas to ammonia, therefore compensating for nitrogen losses occurring via denitrification and anammox. Currently, inputs and losses of nitrogen to the ocean resulting from these processes are thought to be spatially separated: nitrogen fixation takes place primarily in open ocean environments (mainly through diazotrophic cyanobacteria, whereas nitrogen losses occur in oxygen-depleted intermediate waters and sediments (mostly via denitrifying and anammox bacteria. Here we report on rates of nitrogen fixation obtained during two oceanographic cruises in 2005 and 2007 in the eastern tropical South Pacific (ETSP, a region characterized by the presence of coastal upwelling and a major permanent oxygen minimum zone (OMZ. Our results show significant rates of nitrogen fixation in the water column; however, integrated rates from the surface down to 120 m varied by ∼30 fold between cruises (7.5±4.6 versus 190±82.3 µmol m(-2 d(-1. Moreover, rates were measured down to 400 m depth in 2007, indicating that the contribution to the integrated rates of the subsurface oxygen-deficient layer was ∼5 times higher (574±294 µmol m(-2 d(-1 than the oxic euphotic layer (48±68 µmol m(-2 d(-1. Concurrent molecular measurements detected the dinitrogenase reductase gene nifH in surface and subsurface waters. Phylogenetic analysis of the nifH sequences showed the presence of a diverse diazotrophic community at the time of the highest measured nitrogen fixation rates. Our results thus demonstrate the occurrence of nitrogen fixation in nutrient-rich coastal upwelling systems and, importantly, within the underlying OMZ. They also suggest that nitrogen fixation is a widespread process that can sporadically provide a supplementary source of fixed nitrogen in these regions.

  6. Nitrogen Fixation in Denitrified Marine Waters

    Science.gov (United States)

    Fernandez, Camila; Farías, Laura; Ulloa, Osvaldo

    2011-01-01

    Nitrogen fixation is an essential process that biologically transforms atmospheric dinitrogen gas to ammonia, therefore compensating for nitrogen losses occurring via denitrification and anammox. Currently, inputs and losses of nitrogen to the ocean resulting from these processes are thought to be spatially separated: nitrogen fixation takes place primarily in open ocean environments (mainly through diazotrophic cyanobacteria), whereas nitrogen losses occur in oxygen-depleted intermediate waters and sediments (mostly via denitrifying and anammox bacteria). Here we report on rates of nitrogen fixation obtained during two oceanographic cruises in 2005 and 2007 in the eastern tropical South Pacific (ETSP), a region characterized by the presence of coastal upwelling and a major permanent oxygen minimum zone (OMZ). Our results show significant rates of nitrogen fixation in the water column; however, integrated rates from the surface down to 120 m varied by ∼30 fold between cruises (7.5±4.6 versus 190±82.3 µmol m−2 d−1). Moreover, rates were measured down to 400 m depth in 2007, indicating that the contribution to the integrated rates of the subsurface oxygen-deficient layer was ∼5 times higher (574±294 µmol m−2 d−1) than the oxic euphotic layer (48±68 µmol m−2 d−1). Concurrent molecular measurements detected the dinitrogenase reductase gene nifH in surface and subsurface waters. Phylogenetic analysis of the nifH sequences showed the presence of a diverse diazotrophic community at the time of the highest measured nitrogen fixation rates. Our results thus demonstrate the occurrence of nitrogen fixation in nutrient-rich coastal upwelling systems and, importantly, within the underlying OMZ. They also suggest that nitrogen fixation is a widespread process that can sporadically provide a supplementary source of fixed nitrogen in these regions. PMID:21687726

  7. Nocturnal uptake and assimilation of nitrogen dioxide by C3 and CAM plants.

    Science.gov (United States)

    Takahashi, Misa; Konaka, Daisuke; Sakamoto, Atsushi; Morikawa, Hiromichi

    2005-01-01

    In order to investigate nocturnal uptake and assimilation of NO2 by C3 and crassulacean acid metabolism (CAM) plants, they were fumigated with 4 microl l(-1) 15N-labeled nitrogen dioxide (NO2) for 8 h. The amount of NO2 and assimilation of NO2 by plants were determined by mass spectrometry and Kjeldahl-nitrogen based mass spectrometry, respectively. C3 plants such as kenaf (Hibiscus cannabinus), tobacco (Nicotiana tabacum) and ground cherry (Physalis alkekengi) showed a high uptake and assimilation during daytime as high as 1100 to 2700 ng N mg(-1) dry weight. While tobacco and ground cherry strongly reduced uptake and assimilation of NO2 during nighttime, kenaf kept high nocturnal uptake and assimilation of NO2 as high as about 1500 ng N mg(-1) dry weight. Stomatal conductance measurements indicated that there were no significant differences to account for the differences in the uptake of NO2 by tobacco and kenaf during nighttime. CAM plants such as Sedum sp., Kalanchoe blossfeldiana (kalanchoe) and Aloe arborescens exhibited nocturnal uptake and assimilation of NO2. However, the values of uptake and assimilation of NO2 both during daytime and nighttime was very low (at most about 500 ng N mg(-1) dry weight) as compared with those of above mentioned C3 plants. The present findings indicate that kenaf is an efficient phytoremediator of NO2 both during daytime and nighttime.

  8. Geochemical Influence on Microbial Communities at CO2-Leakage Analog Sites.

    Science.gov (United States)

    Ham, Baknoon; Choi, Byoung-Young; Chae, Gi-Tak; Kirk, Matthew F; Kwon, Man Jae

    2017-01-01

    Microorganisms influence the chemical and physical properties of subsurface environments and thus represent an important control on the fate and environmental impact of CO 2 that leaks into aquifers from deep storage reservoirs. How leakage will influence microbial populations over long time scales is largely unknown. This study uses natural analog sites to investigate the long-term impact of CO 2 leakage from underground storage sites on subsurface biogeochemistry. We considered two sites with elevated CO 2 levels (sample groups I and II) and one control site with low CO 2 content (group III). Samples from sites with elevated CO 2 had pH ranging from 6.2 to 4.5 and samples from the low-CO 2 control group had pH ranging from 7.3 to 6.2. Solute concentrations were relatively low for samples from the control group and group I but high for samples from group II, reflecting varying degrees of water-rock interaction. Microbial communities were analyzed through clone library and MiSeq sequencing. Each 16S rRNA analysis identified various bacteria, methane-producing archaea, and ammonia-oxidizing archaea. Both bacterial and archaeal diversities were low in groundwater with high CO 2 content and community compositions between the groups were also clearly different. In group II samples, sequences classified in groups capable of methanogenesis, metal reduction, and nitrate reduction had higher relative abundance in samples with relative high methane, iron, and manganese concentrations and low nitrate levels. Sequences close to Comamonadaceae were abundant in group I, while the taxa related to methanogens, Nitrospirae , and Anaerolineaceae were predominant in group II. Our findings provide insight into subsurface biogeochemical reactions that influence the carbon budget of the system including carbon fixation, carbon trapping, and CO 2 conversion to methane. The results also suggest that monitoring groundwater microbial community can be a potential tool for tracking CO 2

  9. Geochemical Influence on Microbial Communities at CO2-Leakage Analog Sites

    Directory of Open Access Journals (Sweden)

    Baknoon Ham

    2017-11-01

    Full Text Available Microorganisms influence the chemical and physical properties of subsurface environments and thus represent an important control on the fate and environmental impact of CO2 that leaks into aquifers from deep storage reservoirs. How leakage will influence microbial populations over long time scales is largely unknown. This study uses natural analog sites to investigate the long-term impact of CO2 leakage from underground storage sites on subsurface biogeochemistry. We considered two sites with elevated CO2 levels (sample groups I and II and one control site with low CO2 content (group III. Samples from sites with elevated CO2 had pH ranging from 6.2 to 4.5 and samples from the low-CO2 control group had pH ranging from 7.3 to 6.2. Solute concentrations were relatively low for samples from the control group and group I but high for samples from group II, reflecting varying degrees of water-rock interaction. Microbial communities were analyzed through clone library and MiSeq sequencing. Each 16S rRNA analysis identified various bacteria, methane-producing archaea, and ammonia-oxidizing archaea. Both bacterial and archaeal diversities were low in groundwater with high CO2 content and community compositions between the groups were also clearly different. In group II samples, sequences classified in groups capable of methanogenesis, metal reduction, and nitrate reduction had higher relative abundance in samples with relative high methane, iron, and manganese concentrations and low nitrate levels. Sequences close to Comamonadaceae were abundant in group I, while the taxa related to methanogens, Nitrospirae, and Anaerolineaceae were predominant in group II. Our findings provide insight into subsurface biogeochemical reactions that influence the carbon budget of the system including carbon fixation, carbon trapping, and CO2 conversion to methane. The results also suggest that monitoring groundwater microbial community can be a potential tool for tracking

  10. Responses of photosynthetic O2 evolution to PPFD in the CAM epiphyte Tillandsia usneoides L. (Bromeliaceae).

    Science.gov (United States)

    Martin, C E; McKee, J M; Schmitt, A K

    1989-09-01

    Past studies of the effects of varying levels of photosynthetic photon flux density (PPFD) on the morphology and physiology of the epiphytic Crassulacean acid metabolism (CAM) plant Tillandsia usneoides L. (Bromeliaceae) have resulted in two important findings: (1) CAM, measured as integrated nocturnal CO2 uptake or as nocturnal increases in tissue acidity, saturates at relatively low PPFD, and (2) this plant does not acclimate to different PPFD levels, these findings require substantiation using photosynthetic responses immediately attributable to different PPFD levels, e.g., O2 evolution, as opposed to the delayed, nocturnal responses (CO2 uptake and acid accumulation). In the present study, instantaneous responses of O2 evolution to PPFD level were measured using plants grown eight weeks at three PPFD (20-45, 200-350, and 750-800 μmol m(-2)s(-1)) in a growth chamber, and using shoots taken from the exposed upper portions (maximum PPFD of 800 μmol m(-2)s(-1)) and shaded lower portions (maximum PPFD of 140 μmol m(-2)s(-1)) of plants grown ten years in a greenhouse. In addition, nocturnal increases in acidity were measured in the growth chamber plants. Regardless of the PPFD levels during growth, O2 evolution rates saturated around 500 μmol m(-2)s(-1). Furthermore, nocturnal increases in tissue acidity saturated at much lower PPFD. Thus, previous results were confirmed: photosynthesis saturated at low PPFD, and this epiphyte does not acclimate to different levels of PPFD.

  11. Advanced emission control system: CO2 sequestration using algae integrated management system (AIMS)

    International Nuclear Information System (INIS)

    Syed Isa Syed Alwi; Mohd Norsham Che Yahya; Ruzanna Abdul Rahman

    2010-01-01

    One of the companies under Algae tech, Sasaran Bio fuel Sdn. Bhd. provides project management, technology transfer and technical expertise to develop a solution to minimize and mitigate Carbon Dioxide (CO 2 ) emissions through the diversion of the CO 2 to open algal ponds and enclosed photo-bioreactors as algal propagation technologies to consume CO 2 waste stream. The company is presently consulting a listed company from Indonesia to address the technology know-how and implementation of microalgae development from the flue gas of the Groups power plants. Nowadays, one of the aspects that contribute to the air pollution is the emission of flue gases from the factories. So, we provide a system that can reduce the emission of flue gas to the atmosphere and at the same time, cultivate certain strain of algae. With the technology, Algae Integrated Management System (AIMS), it will be for sure a new beginning for way to reduce air pollution. The utilization of power plant resources for growing selected microalgae at a low energy cost for valuable products and bio-fuels while providing CO 2 sequestering. In the same time, it also a low cost algae agriculture. By doing so, it provides all year algae production which can be an income. This residual energy used CO 2 produced from power stations and industrial plants to feed the process (CO 2 recycling and bio-fixation) in cultivation of algae. This will be a low cost flue gas (CO 2 ) to the developer. In a nutshell, CO 2 Sequestration by algae reactors is a potential to reduce greenhouse gas emission by using the CO 2 in the stack gases to produce algae. (author)

  12. The multidimensional correlates associated with short nocturnal sleep duration and subjective insomnia among Taiwanese adolescents.

    Science.gov (United States)

    Yen, Cheng-Fang; Ko, Chih-Hung; Yen, Ju-Yu; Cheng, Chung-Ping

    2008-11-01

    The aim of this study was to examine the correlates associated with short nocturnal sleep duration and subjective insomnia, including individual factors, family factors, peer factors, school factors, and the problematic use of high-tech devices among a large-scale representative population of Taiwanese adolescents. Cross-sectional study. A total of 23 junior high and 29 senior high/vocational schools were randomly selected across southern Taiwan. Eight thousand four adolescent students. N/A. The multidimensional correlates associated with short nocturnal sleep duration and subjective insomnia were examined using chi2 automatic interaction detection analysis and logistic regression analysis models. The results indicated that an older age, self-reported depression, being in the third year of school, drinking coffee at night, and problematic Internet use were significantly associated with short nocturnal sleep duration in adolescents. Furthermore, self-reported depression, low school affinity, high family conflict, low connectedness to their peer group, and problematic Internet use were associated with subjective insomnia in adolescents. The results of this study indicate that a variety of individual, family, peer, and school factors were associated with short nocturnal sleep duration and subjective insomnia in adolescents. Furthermore, the correlates of short sleep duration were not identical to those of subjective insomnia. Parents and health professionals should be wary of sleep patterns among adolescents who have the identified correlates of short nocturnal sleep duration and subjective insomnia.

  13. REVISION ANKLE SYNDESMOSIS FIXATION - FUNCTIONAL OUTCOME AFTER TIGHTROPE ® FIXATION

    Directory of Open Access Journals (Sweden)

    Sendhilvelan Rajagopalan

    2016-07-01

    Full Text Available BACKGROUND Syndesmotic disruptions are often seen in ankle fractures. Malreduction of these fractures can result in arthritis and instability. A proportion of these patients with malreduction require revision fixation. This study presents the results of revision fixation in such patients, using the Ankle TightRope ® (Arthrex system. METHODS Between January 2000 to December 2009, 124 patients who underwent ankle fracture fixations with syndesmotic stabilisation were analysed. Out of 124 patients, 8 patients were diagnosed with failure of primary stabilisation (based on radiological and clinical criteria and subjected to revision fixation using the Ankle TightRope ® (Arthrex system. Followup was done at periodic time intervals of 3, 6 and 12 months. Both clinical and radiological assessment was performed. Complications and duration of hospital stay was recorded. Functional evaluation was performed using the American Orthopaedic Foot and Ankle Society (AOFAS scoring system. RESULTS Five patients had good results, one satisfactory and two had poor outcomes. CONCLUSIONS Ankle TightRope ® fixation is an alternative method of stabilisation in patients who require revision syndesmosis fixation. Further studies are required to evaluate this method of revision stabilisation as compared to screws.

  14. [Urodynamic changes in patients with obstructive sleep apnea-hypopnea syndrome and nocturnal polyuria].

    Science.gov (United States)

    Hu, Ke; Tu, Zuo-sheng; Lü, Sheng-qi; Li, Qing-quan; Chen, Xue-qin

    2011-03-01

    To investigate the urodynamic changes in patients with obstructive sleep apnea-hypopnea syndrome (OSAHS) and nocturnal polyuria. From Sept. 2002 to Jun. 2008, 23 patients with nocturnal polyuria were diagnosed as having OSAHS by polysomnography (PSG). The number and output of nocturia, the osmotic pressure and the excretion of Na(+) were recorded during both the PSG night and CPAP titrating night. Plasma levels of brain natriuretic peptide (BNP) and atrial natriuretic peptides (ANP) were also measured at 11PM in the 2 nights and 7AM in the next mornings. Urodynamic studies including urine flow, bladder pressure during filling, pressure-flow study during voiding and urethral pressure were carried out in these patients. Urodynamic studies were performed again after treatment with CPAP for 3 months. PSG showed that the patients with nocturnal polyuria had moderate to severe OSAHS, in which the apnea-hypopnea index (AHI) being 48 ± 15 events per hour. The number of nocturnal voiding during the PSG night was more than that during the CPAP titrating night. During the PSG night, the output of nocturia, the nocturia excretion of Na(+), ANP levels (at 7am in the next morning after PSG night) increased and the osmotic pressure of nocturia decreased. CPAP therapy could reverse these abnormalities. The main characteristics of urodynamics in these patients included weak detrusor contraction, hypoesthesia in filling cystometry, and decreased bladder compliance, and detrusor external sphincter dyssynergia. After 3 months of CPAP treatment, both the motility of the detrusor of bladder and the bladder compliance improved. CPAP therapy can effectively reverse the nocturnal polyuria in OSAHS patients. In OSAHS patients, the features of nocturia, including the changes of output, osmotic pressure and the excretion of Na(+), may be related to the secretion of high-level of ANP. During the course of chronic progressively OSAHS pathophysiology, detrusor function of bladder may be damaged

  15. Comparing effects of insulin analogues and human insulin on nocturnal glycaemia in hypoglycaemia-prone people with Type 1 diabetes

    DEFF Research Database (Denmark)

    Kristensen, P. L.; Tarnow, L.; Bay, C.

    2017-01-01

    . Conclusions: Treatment with insulin analogue reduces the occurrence of nocturnal hypoglycaemia assessed by nocturnal glucose profiles in people with Type 1 diabetes prone to severe hypoglycaemia. Nocturnal glucose profiles provide a more comprehensive assessment of clinical benefit of insulin regimens......Aims: To assess the difference between analogue and human insulin with regard to nocturnal glucose profiles and risk of hypoglycaemia in people with recurrent severe hypoglycaemia. Methods: A total of 72 people [46 men, mean ± sd age 54 ± 12 years, mean ± sd HbA1c 65 ± 12 mmol/mol (8.1 ± 1.1......%), mean ± sd duration of diabetes 30 ± 14 years], who participated in a 2-year randomized, crossover trial of basal-bolus therapy with insulin detemir/insulin aspart or human NPH insulin/human regular insulin (the HypoAna trial) were studied for 2 nights during each treatment. Venous blood was drawn...

  16. Nodulation and N2 fixation effectiveness of Bradyrhizobium strains in symbiosis with Adzuki Bean, Vigna angularis

    Directory of Open Access Journals (Sweden)

    Dušica Delić

    2010-04-01

    Full Text Available In pot experiment, one isolate Knj from a Serbian soil, four strains of Bradyrhizobium japonicum and three strains of Bradyrhizobium spp. were examined for the effect on adzuki bean nodulation and effectiveness in symbiotic N2 fixation. All the tested strains produced root nodules in adzuki bean. Strains of B. japonicum showed high potential of N2 fixation, particularly 525 and 542. B. japonicum strains resulted 65-71% shoot dry weight and 99-138% total N content of uninoculated control with full N content (100%. No significant difference was found between the plants inoculated with Bradyrhizobium spp. strains and uninoculated control plants without N (40-42 and 42% shoot dry weight, respectively, which indicated symbiotic N2 fixation inactivity of the Bradyrhizobium spp. strains. Knj strain had the middle position (56% shoot dry weight. These data showed that B. japonicum 525 and 542 strains could be used in further investigations in order to apply them as inoculants in microbiological N fertilizers.

  17. Selection and breeding of grain legumes in Australia for enhanced nodulation and N2 fixation

    International Nuclear Information System (INIS)

    Herridge, D.F.; Holland, J.F.; Rose, I.A.; Redden, R.J.

    1998-01-01

    During the period 1980-87, the areas sown to grain legumes in Australia increased dramatically, from 0.25 Mha to 1.65 Mha. These increases occurred in the western and southern cereal belts, but not in the north which N continued to be supplied by the mineralization of soil organic matter. Therefore, there was a need to promote the use of N 2 -fixing legumes in the cereal-dominated northern cropping belt. Certain problems had to be addressed before farmers would accept legumes and change established patterns of cropping. Here we describe our efforts to improve N 2 fixation by soybean, common bean and pigeon pea. Selection and breeding for enhanced N 2 fixation of soybean commenced at Tamworth in 1980 after surveys of commercial crops indicated that nodulation was sometimes inadequate, particularly on new land, and that the levels of fixed-N inputs were variable and often low. Similar programmes were established in 1985 (common bean) and 1988 (pigeon bean). Progress was made in increasing N 2 fixation by these legumes towards obtaining economic yields without fertilizer N and contributing organic N for the benefit of subsequent cereal crops

  18. Sensor-based evaluation and treatment of nocturnal hypokinesia in Parkinson's disease: An evidence-based review.

    Science.gov (United States)

    Bhidayasiri, Roongroj; Sringean, Jirada; Thanawattano, Chusak

    2016-01-01

    The manifestations of nocturnal movements in Parkinson's disease (PD) are protean, with major disabilities related to nocturnal hypokinesia. While it can be assessed by clinical interviews and screening instruments, these are often inaccurate and prone to recall bias. In light of advances in sensor technology, we explored the use of sensors in the study of nocturnal hypokinesia, by performing a systematic review of the professional literature on this topic. Evidence suggests that nocturnal hypokinesia exists even in patients in the early stages, and PD patients turned significantly less and with much slower speed and acceleration than controls, partly related to low nocturnal dopamine level. We conducted another systematic review to evaluate the evidence of the efficacy of dopaminergic agents in the treatment of nocturnal hypokinesia. Several lines of evidence support the use of long-acting drugs or by continuous administration of short-acting agents to control symptoms. Sensor parameters could be considered as one of the important objective outcomes in future clinical trials investigating potential drugs to treat nocturnal hypokinesia. Physicians should be aware of this technology as it can aid the clinical assessment of nocturnal hypokinesia and enhance the quality of patient care. In addition, the use of sensors currently is being considered for various aspects of research on early diagnosis, treatment, and rehabilitation of PD patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Threshold of carbonate saturation state determined by CO2 control experiment

    Directory of Open Access Journals (Sweden)

    A. Negishi

    2012-04-01

    Full Text Available Acidification of the oceans by increasing anthropogenic CO2 emissions will cause a decrease in biogenic calcification and an increase in carbonate dissolution. Previous studies have suggested that carbonate dissolution will occur in polar regions and in the deep sea where saturation state with respect to carbonate minerals (Ω will be a (aragonite saturation state value of >1. This is probably related to the dissolution of reef carbonate (Mg-calcite, which is more soluble than aragonite. However, the threshold of Ω for the dissolution of natural sediments has not been clearly determined. We designed an experimental dissolution system with conditions mimicking those of a natural coral reef, and measured the dissolution rates of aragonite in corals, and of Mg-calcite excreted by other marine organisms, under conditions of Ωa > 1, with controlled seawater pCO2. The experimental data show that dissolution of bulk carbonate sediments sampled from a coral reef occurs at Ωa values of 3.7 to 3.8. Mg-calcite derived from foraminifera and coralline algae dissolves at Ωa values between 3.0 and 3.2, and coralline aragonite starts to dissolve when Ωa = 1.0. We show that nocturnal carbonate dissolution of coral reefs occurs mainly by the dissolution of foraminiferans and coralline algae in reef sediments.

  20. Rates and Controls of N2 Fixation in Sphagnum spp. along the Hydrological Gradient - Beaver Pond to Bog Transition at Mer Bleue, Ontario, Canada

    Science.gov (United States)

    Zivkovic, T.; Moore, T. R.

    2014-12-01

    Many northern bogs with low atmospheric N inputs acquire N only via N2-fixation. Little is known about rates and controls on N2-fixation in bogs. The aim of this study was to: 1) test the important ecological drivers for N2-fixation, 2) investigate seasonal and temporal patterns of N2 fixation, and 3) to estimate current N2-fixation rates at Mer Bleue bog. We used acetylene reduction assay (ARA) to measure N2-fixation from June-October 2013 and 2014 (currently ongoing field season) along a hydrological gradient (beaver pond, hollows and hummocks). The highest ARA rates in 2013 growing season occurred in the pond in floating Sphagnum cuspidatum mats (50.3 ± 12.9 μmol m-2 d-1 Mean ± Std Err) which were up to 2.5 times latger than the rates found in the hummock with the lowest water table depth throughout the season. Two rain events during the summer 2013 increased ARA rates in all plots by 1 to 4 times, suggesting that moisture availability may play a crucial role on N2 fixation potential in the field. We are currently investigating the role of moisture, temperature, PAR and nutrient content (N, phosphorous and metals) on ARA along the gradient. In addition, we are using 15N2 enrichment method to estimate N2 fixation rates and compare them to ARA method at Mer Bleue bog.

  1. The LysR-type transcriptional regulator CbbR controlling autotrophic CO2 fixation by Xanthobacter flavus is an NADPH sensor

    NARCIS (Netherlands)

    van Keulen, G; Girbal, L; van den Bergh, E.R E; Dijkhuizen, L.; Meijer, W.G

    Autotrophic growth of Xanthobacter flavus is dependent on the fixation of carbon dioxide via the Calvin cycle and on the oxidation of simple organic and inorganic compounds to provide the cell with energy. Maximal induction of the cbb and gap-pgk operons encoding enzymes of the Calvin cycle occurs

  2. Vehicle emissions of greenhouse gases and related tracers from a tunnel study: : CO: CO2, N2O: CO2, CH4: CO2, O2: CO2 ratios, and the stable isotopes 13C and 18O in CO2 and CO

    NARCIS (Netherlands)

    Popa, Maria Elena; Vollmer, M. K.; Jordan, A.; Brand, W. A.; Pathirana, S. L.; Rothe, M.; Röckmann, T.

    2014-01-01

    Measurements of CO2, CO, N2O and CH4 mole fractions, O2/N2 ratios and the stable isotopes 13C and 18O in CO2 and CO have been performed in air samples from the Islisberg highway tunnel (Switzerland). The molar CO : CO2 ratios, with an average of (4.15 ± 0.34) ppb:ppm, are lower than reported in

  3. Nocturnal thoracoabdominal asynchrony in house dust mite-sensitive nonhuman primates

    Directory of Open Access Journals (Sweden)

    XiaoJia Wang

    2010-07-01

    Full Text Available XiaoJia Wang, Shaun Reece, Stephen Olmstead, Robert L Wardle, Michael R Van ScottDepartment of Physiology, East Carolina University, Greenville, North Carolina, USAAbstract: Nocturnal bronchoconstriction is a common symptom of asthma in humans, but is poorly documented in animal models. Thoracoabdominal asynchrony (TAA is a noninvasive clinical indication of airway obstruction. In this study, respiratory inductive plethysmography (RIP was used to document nocturnal TAA in house dust mite (HDM-sensitive Cynomolgus macaques. Dynamic compliance (Cdyn and lung resistance (RL measured in anesthetized ­animals at rest and following exposure to HDM allergen, methacholine, and albuterol were highly ­correlated with three RIP parameters associated with TAA, ie, phase angle of the rib cage and abdomen waveforms (PhAng, baseline effort phase relation (eBPRL and effort phase relation (ePhRL. Twenty-one allergic subjects were challenged with HDM early in the morning, and eBPRL and ePhRL were monitored for 20 hours after provocation. Fifteen of the allergic subjects exhibited gradual increases in eBPRL and ePhRL between midnight and 6 am, with peak activity at 4 am. However, as in humans, this nocturnal response was highly variable both between subjects and within subjects over time. The results document that TAA in this nonhuman primate model of asthma is highly correlated with Cdyn and RL, and demonstrate that animals exhibiting acute responses to allergen exposure during the day also exhibit nocturnal TAA.Keywords: nocturnal asthma, late phase asthmatic response, respiratory inductive plethysmography

  4. A Novel Miniature Culture System to Screen CO2-Sequestering Microalgae

    Directory of Open Access Journals (Sweden)

    Xiaoling Miao

    2012-11-01

    Full Text Available In this study, a novel 96-well microplate swivel system (M96SS was built for high-throughput screening of microalgal strains for CO2 fixation. Cell growth under different CO2 supply conditions (0.2, 0.4, 0.8, and 1.2 g L−1 d−1, residual nitrate, and pH value of Chlorella sp. SJTU-3, Chlorella pyrenoidosa SJTU-2, and Scenedesmus obliquus SJTU-3 were examined in the M96SS and traditional flask cultures. The dynamic data showed there was a good agreement between the systems. Two critical problems in miniature culture systems (intra-well mixing and evaporation loss were improved by sealed vertical mixing of the M96SS. A sample screen of six microalgal species (Chlorella sp. SJTU-3, Chlorella pyrenoidosa SJTU-2, Selenastrum capricornutum, Scenedesmus obliquus SJTU-3, Chlamydomonas sajao, Dunaliella primolecta was carried out in flasks and the M96SS. Chlamydomonas sajao appeared to be a robust performer (highest cell density: 1.437 g L−1 in anaerobic pond water with 0.8, and 1.2 g L−1 d−1 CO2. The reliability and efficiency of the M96SS were verified through a comparison of traditional flask culture, M96SS, Lukavský’s system, and a microplate shaker.

  5. The vomeronasal complex of nocturnal strepsirhines and implications for the ancestral condition in primates.

    Science.gov (United States)

    Garrett, Eva C; Dennis, John C; Bhatnagar, Kunwar P; Durham, Emily L; Burrows, Anne M; Bonar, Christopher J; Steckler, Natalie K; Morrison, Edward E; Smith, Timothy D

    2013-12-01

    This study investigates the vomeronasal organ in extant nocturnal strepsirhines as a model for ancestral primates. Cadaveric samples from 10 strepsirhine species, ranging from fetal to adult ages, were studied histologically. Dimensions of structures in the vomeronasal complex, such as the vomeronasal neuroepithelium (VNNE) and vomeronasal cartilage (VNC) were measured in serial sections and selected specimens were studied immunohistochemically to determine physiological aspects of the vomeronasal sensory neurons (VSNs). Osteological features corresponding to vomeronasal structures were studied histologically and related to 3-D CT reconstructions. The VNC consistently rests in a depression on the palatal portion of the maxilla, which we refer to as the vomeronasal groove (VNG). Most age comparisons indicate that in adults VNNE is about twice the length compared with perinatal animals. In VNNE volume, adults are 2- to 3-fold larger compared with perinatal specimens. Across ages, a strong linear relationship exists between VNNE dimensions and body length, mass, and midfacial length. Results indicate that the VNNE of nocturnal strepsirhines is neurogenic postnatally based on GAP43 expression. In addition, based on Olfactory Marker Protein expression, terminally differentiated VSNs are present in the VNNE. Therefore, nocturnal strepsirhines have basic similarities to rodents in growth and maturational characteristics of VSNs. These results indicate that a functional vomeronasal system is likely present in all nocturnal strepsirhines. Finally, given that osteological features such as the VNG are visible on midfacial bones, primate fossils can be assessed to determine whether primate ancestors possessed a vomeronasal complex morphologically similar to that of modern nocturnal strepsirhines. Copyright © 2013 Wiley Periodicals, Inc.

  6. Fixation and escape times in stochastic game learning

    International Nuclear Information System (INIS)

    Realpe-Gomez, John; Szczesny, Bartosz; Galla, Tobias; Dall’Asta, Luca

    2012-01-01

    Evolutionary dynamics in finite populations is known to fixate eventually in the absence of mutation. We here show that a similar phenomenon can be found in stochastic game dynamical batch learning, and investigate fixation in learning processes in a simple 2×2 game, for two-player games with cyclic interaction, and in the context of the best-shot network game. The analogues of finite populations in evolution are here finite batches of observations between strategy updates. We study when and how such fixation can occur, and present results on the average time-to-fixation from numerical simulations. Simple cases are also amenable to analytical approaches and we provide estimates of the behaviour of so-called escape times as a function of the batch size. The differences and similarities with escape and fixation in evolutionary dynamics are discussed. (paper)

  7. How Closely Do the δ13C Values of Crassulacean Acid Metabolism Plants Reflect the Proportion of CO2 Fixed during Day and Night?1

    Science.gov (United States)

    Winter, Klaus; Holtum, Joseph A.M.

    2002-01-01

    The extent to which Crassulacean acid metabolism (CAM) plant δ13C values provide an index of the proportions of CO2 fixed during daytime and nighttime was assessed. Shoots of seven CAM species (Aloe vera, Hylocereus monocanthus, Kalanchoe beharensis, Kalanchoe daigremontiana, Kalanchoe pinnata, Vanilla pauciflora, and Xerosicyos danguyi) and two C3 species (teak [Tectona grandis] and Clusia sp.) were grown in a cuvette, and net CO2 exchange was monitored for up to 51 d. In species exhibiting net dark CO2 fixation, between 14% and 73.3% of the carbon gain occurred in the dark. δ13C values of tissues formed inside the cuvette ranged between −28.7‰ and −11.6‰, and correlated linearly with the percentages of carbon gained in the light and in the dark. The δ13C values for new biomass obtained solely during the dark and light were estimated as −8.7‰ and −26.9‰, respectively. For each 10% contribution of dark CO2 fixation integrated over the entire experiment, the δ13C content of the tissue was, thus, approximately 1.8‰ less negative. Extrapolation of the observations to plants previously surveyed under natural conditions suggests that the most commonly expressed version of CAM in the field, “the typical CAM plant,” involves plants that gain about 71% to 77% of their carbon by dark fixation, and that the isotopic signals of plants that obtain one-third or less of their carbon in the dark may be confused with C3 plants when identified on the basis of carbon isotope content alone. PMID:12177497

  8. Internal Versus External Fixation of Charcot Midfoot Deformity Realignment.

    Science.gov (United States)

    Lee, Daniel J; Schaffer, Joseph; Chen, Tien; Oh, Irvin

    2016-07-01

    Internal and external fixation techniques have been described for realignment and arthrodesis of Charcot midfoot deformity. There currently is no consensus on the optimal method of surgical reconstruction. This systematic review compared the clinical results of surgical realignment with internal and external fixation, specifically in regard to return to functional ambulation, ulcer occurrence, nonunion, extremity amputation, unplanned further surgery, deep infection, wound healing problems, peri- or intraoperative fractures, and total cases with any complication. A search of multiple databases for all relevant articles published from January 1, 1990, to March 22, 2014, was performed. A logistic regression model evaluated each of the outcomes and its association with the type of fixation method. The odds of returning to functional ambulation were 25% higher for internal fixation (odds ratio [OR], 1.259). Internal fixation had a 42% reduced rate of ulcer occurrence (OR, 0.578). External fixation was 8 times more likely to develop radiographic nonunion than internal fixation (OR, 8.2). Internal fixation resulted in a 1.5-fold increase in extremity amputation (OR, 1.488), a 2-fold increase in deep infection (OR, 2.068), a 3.4-fold increase in wound healing complications (OR, 3.405), and a 1.5-fold increase in the total number of cases experiencing any complication (OR, 1.525). This was associated with a 20% increase in the need for unplanned further surgery with internal fixation (OR, 1.221). Although internal fixation may decrease the risk of nonunion and increase return to functional ambulation, it had a higher rate of overall complications than external fixation for realignment and arthrodesis of Charcot midfoot deformity. [Orthopedics. 2016; 39(4):e595-e601.]. Copyright 2016, SLACK Incorporated.

  9. Nocturia in men is a chaotic condition dominated by nocturnal polyuria.

    Science.gov (United States)

    Fujimura, Tetsuya; Yamada, Yuta; Sugihara, Toru; Azuma, Takeshi; Suzuki, Motofumi; Fukuhara, Hiroshi; Nakagawa, Tohru; Kume, Haruki; Igawa, Yasuhiko; Homma, Yukio

    2015-05-01

    To characterize nocturia in men based on frequency volume chart data and symptom profiles assessed using the Core Lower Urinary Tract Symptom Score and Athens Insomnia Scale questionnaires. The Core Lower Urinary Tract Symptom Score and Athens Insomnia Scale questionnaires were administered to 299 consecutive treatment naïve men with nocturia (≥one time per night). Frequency volume chart data were recorded for 2 days. Correlations between nocturia and clinical characteristics including symptom scores, clinical diagnosis, Charlson Comorbidity Index, estimated glomerular filtration rate, uroflowmetry and prostate volume were analyzed. Patients were divided into five groups: one time (n = 36), two times (n = 65), three times (n = 85), four times (n = 78) and five times (n = 34) of nocturia. Age, prevalence or severity of chronic kidney disease, hyperlipidemia, low bladder capacity, nocturnal polyuria, urgency, bladder pain and sleep disorders were significantly correlated with the severity of nocturia. The Spearman correlation analysis identified eight possible independent factors for nocturia: age, estimated glomerular filtration rate, urgency, bladder pain, sleep quality, sleepiness during the day, average voided volume and nocturnal volume divided by body weight. Logistic regression analysis showed that nocturnal volume divided by body weight was the strongest factor of nocturia, and ≥7, 9 and 9.7 mL/kg were practical cut-off values of three, four and five times per night of nocturia, respectively. Nocturia in men is a chaotic condition dominated by nocturnal polyuria, and related to multiple factors including age, renal function, urgency, bladder pain, insomnia and bladder volume. © 2015 The Japanese Urological Association.

  10. The Relationship Between Child Anxiety Related Disorders and Primary Nocturnal Enuresis.

    Science.gov (United States)

    Salehi, Bahman; Yousefichaijan, Parsa; Rafeei, Mohammad; Mostajeran, Mahssa

    2016-06-01

    Nocturnal enuresis, often called bedwetting or sleep wetting, is a common problem in children after the age of five and may lead to symptoms such as infection, incontinence and frequent urination. This problem refers to a state in which children after the age of five have no control of their urine for six continuous months and it cannot be attributed to any organic factors or drug use. In this study we aimed to study generalized anxiety disorder as one of the possible causes of primary nocturnal enuresis. In this case-control study 180 children with primary nocturnal enuresis and same number of healthy children with a mean age of 7 - 17 years old with the same demographic characteristics were selected. The study took place at Amir Kabir hospital of Arak, Iran during year 2014. After collecting the information, diagnosis was verified based on the diagnostic and statistical manual of mental disorders (DSM) IV-TR criteria. Results were analyzed using the SPSS software (IBM Corp. Released 2011. IBM SPSS Statistics for Windows, version 20.0. Armonk, NY: IBM Corp.). Frequency of generalized anxiety disorder, panic disorder, school phobia, social anxiety, separation anxiety, history of anxiety in mother, history of primary nocturnal enuresis in parent's family and body mass index had a significant difference between the two groups (P = 0.005). With the results obtained from this study we could say that there was a clear significant difference between the two control and patient groups for all subgroups of anxiety disorders such as generalized anxiety disorder and their relationship with primary nocturnal enuresis. Given the higher prevalence of generalized anxiety disorder, panic disorder, school phobia, social anxiety, separation anxiety and comparison with healthy children, it is recommended for all children with primary nocturnal enuresis to be investigated and treated for generalized anxiety disorder.

  11. The nocturnal bottleneck and the evolution of activity patterns in mammals

    Science.gov (United States)

    Gerkema, Menno P.; Davies, Wayne I. L.; Foster, Russell G.; Menaker, Michael; Hut, Roelof A.

    2013-01-01

    In 1942, Walls described the concept of a ‘nocturnal bottleneck’ in placental mammals, where these species could survive only by avoiding daytime activity during times in which dinosaurs were the dominant taxon. Walls based this concept of a longer episode of nocturnality in early eutherian mammals by comparing the visual systems of reptiles, birds and all three extant taxa of the mammalian lineage, namely the monotremes, marsupials (now included in the metatherians) and placentals (included in the eutherians). This review describes the status of what has become known as the nocturnal bottleneck hypothesis, giving an overview of the chronobiological patterns of activity. We review the ecological plausibility that the activity patterns of (early) eutherian mammals were restricted to the night, based on arguments relating to endothermia, energy balance, foraging and predation, taking into account recent palaeontological information. We also assess genes, relating to light detection (visual and non-visual systems) and the photolyase DNA protection system that were lost in the eutherian mammalian lineage. Our conclusion presently is that arguments in favour of the nocturnal bottleneck hypothesis in eutherians prevail. PMID:23825205

  12. Anterior fixation of the axis.

    Science.gov (United States)

    Traynelis, Vincent C; Fontes, Ricardo B V

    2010-09-01

    Although anterior fixation of the axis is not commonly performed, plate fixation of C2 is an important technique for treating select upper cervical traumatic injuries and is also useful in the surgical management of spondylosis. To report the technique and outcomes of C2 anterior plate fixation for a series of patients in which the majority presented with symptomatic degenerative spondylosis. Forty-six consecutive patients underwent single or multilevel fusions over a 7-year period; 30 of these had advanced degenerative disease manifested by myelopathy or deformity. Exposure was achieved with rostral extension of the standard anterior cervical exposure via careful soft tissue dissection, mobilization of the superior thyroid artery, and the use of a table-mounted retractor. It was not necessary to remove the submandibular gland, section the digastric muscle, or make additional skin incisions. Screws were placed an average of 4.6 mm (+/- 2.3 mm) from the inferior C2 endplate with a mean sagittal trajectory of 15.7 degrees (+/- 7.6 degrees). Short- and long-term procedure-related mortality was 4.4%, and perioperative morbidity was 8.9%. Patients remained intubated an average of 2.5 days following surgery. Dysphagia was initially reported by 15.2% of patients but resolved by the 8th postoperative week in all patients. Arthrodesis was achieved in all patients available for long-term follow-up. Multilevel fusions were not associated with longer hospitalization or morbidity. Anterior plate fixation of the axis for degenerative disease can be accomplished with acceptable morbidity employing an extension of the standard anterolateral route.

  13. Levels of daily light doses under changed day-night cycles regulate temporal segregation of photosynthesis and N2 Fixation in the cyanobacterium Trichodesmium erythraeum IMS101.

    Science.gov (United States)

    Cai, Xiaoni; Gao, Kunshan

    2015-01-01

    While the diazotrophic cyanobacterium Trichodesmium is known to display inverse diurnal performances of photosynthesis and N2 fixation, such a phenomenon has not been well documented under different day-night (L-D) cycles and different levels of light dose exposed to the cells. Here, we show differences in growth, N2 fixation and photosynthetic carbon fixation as well as photochemical performances of Trichodesmium IMS101 grown under 12L:12D, 8L:16D and 16L:8D L-D cycles at 70 μmol photons m-2 s-1 PAR (LL) and 350 μmol photons m-2 s-1 PAR (HL). The specific growth rate was the highest under LL and the lowest under HL under 16L:8D, and it increased under LL and decreased under HL with increased levels of daytime light doses exposed under the different light regimes, respectively. N2 fixation and photosynthetic carbon fixation were affected differentially by changes in the day-night regimes, with the former increasing directly under LL with increased daytime light doses and decreased under HL over growth-saturating light levels. Temporal segregation of N2 fixation from photosynthetic carbon fixation was evidenced under all day-night regimes, showing a time lag between the peak in N2 fixation and dip in carbon fixation. Elongation of light period led to higher N2 fixation rate under LL than under HL, while shortening the light exposure to 8 h delayed the N2 fixation peaking time (at the end of light period) and extended it to night period. Photosynthetic carbon fixation rates and transfer of light photons were always higher under HL than LL, regardless of the day-night cycles. Conclusively, diel performance of N2 fixation possesses functional plasticity, which was regulated by levels of light energy supplies either via changing light levels or length of light exposure.

  14. Nocturnal insomnia symptoms and stress-induced cognitive intrusions in risk for depression: A 2-year prospective study.

    Science.gov (United States)

    Kalmbach, David A; Pillai, Vivek; Drake, Christopher L

    2018-01-01

    Nearly half of US adults endorse insomnia symptoms. Sleep problems increase risk for depression during stress, but the mechanisms are unclear. During high stress, individuals having difficulty falling or staying asleep may be vulnerable to cognitive intrusions after stressful events, given that the inability to sleep creates a period of unstructured and socially isolated time in bed. We investigated the unique and combined effects of insomnia symptoms and stress-induced cognitive intrusions on risk for incident depression. 1126 non-depressed US adults with no history of DSM-5 insomnia disorder completed 3 annual web-based surveys on sleep, stress, and depression. We examined whether nocturnal insomnia symptoms and stress-induced cognitive intrusions predicted depression 1y and 2y later. Finally, we compared depression-risk across four groups: non-perseverators with good sleep, non-perseverators with insomnia symptoms, perseverators with good sleep, and perseverators with insomnia symptoms. Insomnia symptoms (β = .10-.13, p good sleeping non-perseverators had the lowest rates (3.3%, Relative Risk = 3.94). Perseverators with sleep latency >30 m reported greater depression than good sleeping perseverators (t = 2.09, p stress creates a depressogenic mindset, and nocturnal wakefulness may augment the effects of cognitive arousal on depression development. Poor sleepers may be especially vulnerable to cognitive intrusions when having difficulty initiating sleep. As treatable behaviors, nighttime wakefulness and cognitive arousal may be targeted to reduce risk for depression in poor sleepers.

  15. Endovascular Treatment of a Vertebral Artery Pseudoaneurysm Following Posterior C1-C2 Transarticular Screw Fixation

    International Nuclear Information System (INIS)

    Mendez, Jose C.; Gonzalez-Llanos, Francisco

    2005-01-01

    We present a case of vertebral artery pseudoaneurysm after a posterior C1-C2 transarticular screw fixation procedure that was effectively treated with endovascular coil occlusion. Vertebral artery pseudoaneurysm complicating posterior C1-C2 transarticular fixation is extremely rare, with only one previous case having been reported previously. Endovascular occlusion is better achieved in the subacute phase of the pseudoaneurysm, when the wall of the pseudoaneurysm has matured and stabilized. Further follow-up angiographies are mandatory in order to confirm that there is no recurrence of the lesion

  16. Mini-Fragment Fixation Is Equivalent to Bicortical Screw Fixation for Horizontal Medial Malleolus Fractures.

    Science.gov (United States)

    Wegner, Adam M; Wolinsky, Philip R; Robbins, Michael A; Garcia, Tanya C; Amanatullah, Derek F

    2018-05-01

    Horizontal fractures of the medial malleolus occur through application of valgus or abduction force through the ankle that creates a tension failure of the medial malleolus. The authors hypothesize that mini-fragment T-plates may offer improved fixation, but the optimal fixation construct for these fractures remains unclear. Forty synthetic distal tibiae with identical osteotomies were randomized into 4 fixation constructs: (1) two parallel unicortical cancellous screws; (2) two parallel bicortical cortical screws; (3) a contoured mini-fragment T-plate with 2 unicortical screws in the fragment and 2 bicortical screws in the shaft; and (4) a contoured mini-fragment T-plate with 2 bicortical screws in the fragment and 2 unicortical screws in the shaft. Specimens were subjected to offset axial tension loading on a servohydraulic testing system and tracked using high-resolution video. Failure was defined as 2 mm of articular displacement. Analysis of variance followed by a Tukey-Kramer post hoc test was used to assess for differences between groups, with significance defined as Pfragment T-plate constructs (239±83 N/mm and 190±37 N/mm) and the bicortical screw construct (240±17 N/mm) were not statistically different. The mean stiffness values of both mini-fragment T-plate constructs and the bicortical screw construct were higher than that of a parallel unicortical screw construct (102±20 N/mm). Contoured T-plate constructs provide stiffer initial fixation than a unicortical cancellous screw construct. The T-plate is biomechanically equivalent to a bicortical screw construct, but may be superior in capturing small fragments of bone. [Orthopedics. 2018; 41(3):e395-e399.]. Copyright 2018, SLACK Incorporated.

  17. N2 fixation as a dominant new N source in the western tropical South Pacific Ocean (OUTPACE cruise)

    Science.gov (United States)

    Caffin, Mathieu; Moutin, Thierry; Foster, Rachel Ann; Bouruet-Aubertot, Pascale; Michelangelo Doglioli, Andrea; Berthelot, Hugo; Guieu, Cécile; Grosso, Olivier; Helias-Nunige, Sandra; Leblond, Nathalie; Gimenez, Audrey; Petrenko, Anne Alexandra; de Verneil, Alain; Bonnet, Sophie

    2018-05-01

    We performed nitrogen (N) budgets in the photic layer of three contrasting stations representing different trophic conditions in the western tropical South Pacific (WTSP) Ocean during austral summer conditions (February-March 2015). Using a Lagrangian strategy, we sampled the same water mass for the entire duration of each long-duration (5 days) station, allowing us to consider only vertical exchanges for the budgets. We quantified all major vertical N fluxes both entering (N2 fixation, nitrate turbulent diffusion, atmospheric deposition) and leaving the photic layer (particulate N export). The three stations were characterized by a strong nitracline and contrasted deep chlorophyll maximum depths, which were lower in the oligotrophic Melanesian archipelago (MA, stations LD A and LD B) than in the ultra-oligotrophic waters of the South Pacific Gyre (SPG, station LD C). N2 fixation rates were extremely high at both LD A (593 ± 51 µmol N m-2 d-1) and LD B (706 ± 302 µmol N m-2 d-1), and the diazotroph community was dominated by Trichodesmium. N2 fixation rates were lower (59 ± 16 µmol N m-2 d-1) at LD C, and the diazotroph community was dominated by unicellular N2-fixing cyanobacteria (UCYN). At all stations, N2 fixation was the major source of new N (> 90 %) before atmospheric deposition and upward nitrate fluxes induced by turbulence. N2 fixation contributed circa 13-18 % of primary production in the MA region and 3 % in the SPG water and sustained nearly all new primary production at all stations. The e ratio (e ratio = particulate carbon export / primary production) was maximum at LD A (9.7 %) and was higher than the e ratio in most studied oligotrophic regions (leading to N accumulation in the upper layer appears as a characteristic of the WTSP during the summer season.

  18. Comparison of Outcomes of Operatively Treated Bicondylar Tibial Plateau Fractures by External Fixation and Internal Fixation

    Directory of Open Access Journals (Sweden)

    CC Chan

    2012-03-01

    Full Text Available The outcome of bicondylar tibial plateau fractures treated with either external fixation (35 patients or internal fixation (24 patients was reviewed. Outcome measures included the Rasmussen score, clinical complications, development of osteoarthritis and the requirement for total knee replacement (TKR. Twenty-two (92% anatomical reductions were achieved in the internal fixation group compared to 27 (77% in the external fixation group. Infective complications were more common in the external fixation group (9 patients, 26% due to pin tract infection. There were no deep infections in the internal fixation group. The mean Rasmussen score was not significantly different (mean score 32 in external fixation and 29 in internal fixation between the two groups and the incidence of osteoarthritis was the same in both groups. Four patients in the external fixation group underwent a TKR compared to 5 patients in the internal fixation group. Bicondylar tibial plateau fractures have similar outcomes following external or internal fixation.

  19. Breeding for high N2 fixation in groundnut and soybean in Viet Nam

    International Nuclear Information System (INIS)

    Nguyen Xuan Hong

    1998-01-01

    Groundnut (Arachis hypogaea L.) and soybean (Glycine max (L.) Mer.) are grown mainly on two types of soil in Viet Nam: coastal-sandy and upland-degraded soils. These soils are deficient in N, and considering that fertilizer N is not only costly to farmers but also a threat to the environment, it is important to maximize productivity by exploiting the ability of these legumes to fix N 2 symbiotically in their root nodules. We initiated programmes of breeding and selection to combine high N 2 fixation and high grain-yielding capacity. In the spring of 1992, breeding lines of groundnut and soybean were tested under greenhouse conditions for varietal differences in the capacity to fix N 2 using the acetylene reduction assay and the 15 N-dilution technique, with upland rice as reference plants. Varietal differences were found in nitrogenase activity, and percent N derived from fixation (%Ndfa) ranged from 11 to 63% for groundnut and from 9 to 79% for soybean. Field experiments in the autumn-winter season of 1992 again revealed significant varietal differences; %Ndfa ranged from 36 to 56% for groundnut and from 28 to 58% for soybean. Gamma-irradiated seeds of soybean were propagated in bulk from M 1 to M 4 . Five high-yielding mutant lines of both species were selected from the M 5 populations, and N 2 fixation was estimated using the 15 N-dilution technique. The average values for %Ndfa of the mutants were 55 and 57%, significant improvements over the parent-cultivar values of 25 and 29% for soybean and groundnut, respectively

  20. Feasibility of biodiesel production and CO2 emission reduction by Monoraphidium dybowskii LB50 under semi-continuous culture with open raceway ponds in the desert area.

    Science.gov (United States)

    Yang, Haijian; He, Qiaoning; Hu, Chunxiang

    2018-01-01

    Compared with other general energy crops, microalgae are more compatible with desert conditions. In addition, microalgae cultivated in desert regions can be used to develop biodiesel. Therefore, screening oil-rich microalgae, and researching the algae growth, CO 2 fixation and oil yield in desert areas not only effectively utilize the idle desertification lands and other resources, but also reduce CO 2 emission. Monoraphidium dybowskii LB50 can be efficiently cultured in the desert area using light resources, and lipid yield can be effectively improved using two-stage induction and semi-continuous culture modes in open raceway ponds (ORPs). Lipid content (LC) and lipid productivity (LP) were increased by 20% under two-stage industrial salt induction, whereas biomass productivity (BP) increased by 80% to enhance LP under semi-continuous mode in 5 m 2 ORPs. After 3 years of operation, M. dybowskii LB50 was successfully and stably cultivated under semi-continuous mode for a month during five cycles of repeated culture in a 200 m 2 ORP in the desert area. This culture mode reduced the supply of the original species. The BP and CO 2 fixation rate were maintained at 18 and 33 g m -2  day -1 , respectively. Moreover, LC decreased only during the fifth cycle of repeated culture. Evaporation occurred at 0.9-1.8 L m -2  day -1 , which corresponded to 6.5-13% of evaporation loss rate. Semi-continuous and two-stage salt induction culture modes can reduce energy consumption and increase energy balance through the energy consumption analysis of life cycle. This study demonstrates the feasibility of combining biodiesel production and CO 2 fixation using microalgae grown as feedstock under culture modes with ORPs by using the resources in the desert area. The understanding of evaporation loss and the sustainability of semi-continuous culture render this approach practically viable. The novel strategy may be a promising alternative to existing technology for CO 2 emission

  1. Can observed ecosystem responses to elevated CO2 and N fertilisation be explained by optimal plant C allocation?

    Science.gov (United States)

    Stocker, Benjamin; Prentice, I. Colin

    2016-04-01

    The degree to which nitrogen availability limits the terrestrial C sink under rising CO2 is a key uncertainty in carbon cycle and climate change projections. Results from ecosystem manipulation studies and meta-analyses suggest that plant C allocation to roots adjusts dynamically under varying degrees of nitrogen availability and other soil fertility parameters. In addition, the ratio of biomass production to GPP appears to decline under nutrient scarcity. This reflects increasing plant C export into the soil and to symbionts (Cex) with decreasing nutrient availability. Cex is consumed by an array of soil organisms and may imply an improvement of nutrient availability to the plant. These concepts are left unaccounted for in Earth system models. We present a model for the coupled cycles of C and N in grassland ecosystems to explore optimal plant C allocation under rising CO2 and its implications for the ecosystem C balance. The model follows a balanced growth approach, accounting for the trade-offs between leaf versus root growth and Cex in balancing C fixation and N uptake. We further model a plant-controlled rate of biological N fixation (BNF) by assuming that Cex is consumed by N2-fixing processes if the ratio of Nup:Cex falls below the inverse of the C cost of N2-fixation. The model is applied at two temperate grassland sites (SwissFACE and BioCON), subjected to factorial treatments of elevated CO2 (FACE) and N fertilization. Preliminary simulation results indicate initially increased N limitation, evident by increased relative allocation to roots and Cex. Depending on the initial state of N availability, this implies a varying degree of aboveground growth enhancement, generally consistent with observed responses. On a longer time scale, ecosystems are progressively released from N limitation due tighter N cycling. Allowing for plant-controlled BNF implies a quicker release from N limitation and an adjustment to more open N cycling. In both cases, optimal plant

  2. Studies in Sri Lanka on cowpea: N2 fixation, growth, yield, and effects on cereals

    International Nuclear Information System (INIS)

    Senaratne, R.; Dayatilake, G.A.; Subasinghe, S.

    1998-01-01

    The impact of seed inoculation and N-fertilization on nodulation, plant dry-matter production, and seed yield was studied through a series of field experiments with cultivars of cowpea. In some instances there were positive growth responses to applied N, indicating the potential to improve N 2 fixation and yields by combining compatible genotypes and bradyrhizobial strains. Beneficial residual effects on growth of subsequent maize could not be related to N 2 fixation by the preceding cowpea. Although there was no evidence of direct transfer of N from cowpea to intercropped maize, there was greater efficiency of use of N for total crop production during intercropping

  3. Nitrogen fixation by legumes in retorted shale

    Energy Technology Data Exchange (ETDEWEB)

    Hersman, L E; Molitoris, E; Klein, D A

    1981-01-01

    A study was made to determine whether retorted shale additions would significantly affect symbiotic N/sub 2/ fixation. Results indicate that small additions of the shale may stimulate plant growth but with higher concentrations plants are stressed, resulting in a decreased biomass and a compensatory effect of an increased number of nodules and N/sub 2/ fixation potential. (JMT)

  4. Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes

    Science.gov (United States)

    2012-01-01

    Background The metabolic capacity for nitrogen fixation is known to be present in several prokaryotic species scattered across taxonomic groups. Experimental detection of nitrogen fixation in microbes requires species-specific conditions, making it difficult to obtain a comprehensive census of this trait. The recent and rapid increase in the availability of microbial genome sequences affords novel opportunities to re-examine the occurrence and distribution of nitrogen fixation genes. The current practice for computational prediction of nitrogen fixation is to use the presence of the nifH and/or nifD genes. Results Based on a careful comparison of the repertoire of nitrogen fixation genes in known diazotroph species we propose a new criterion for computational prediction of nitrogen fixation: the presence of a minimum set of six genes coding for structural and biosynthetic components, namely NifHDK and NifENB. Using this criterion, we conducted a comprehensive search in fully sequenced genomes and identified 149 diazotrophic species, including 82 known diazotrophs and 67 species not known to fix nitrogen. The taxonomic distribution of nitrogen fixation in Archaea was limited to the Euryarchaeota phylum; within the Bacteria domain we predict that nitrogen fixation occurs in 13 different phyla. Of these, seven phyla had not hitherto been known to contain species capable of nitrogen fixation. Our analyses also identified protein sequences that are similar to nitrogenase in organisms that do not meet the minimum-gene-set criteria. The existence of nitrogenase-like proteins lacking conserved co-factor ligands in both diazotrophs and non-diazotrophs suggests their potential for performing other, as yet unidentified, metabolic functions. Conclusions Our predictions expand the known phylogenetic diversity of nitrogen fixation, and suggest that this trait may be much more common in nature than it is currently thought. The diverse phylogenetic distribution of nitrogenase

  5. Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes

    Directory of Open Access Journals (Sweden)

    Dos Santos Patricia C

    2012-05-01

    Full Text Available Abstract Background The metabolic capacity for nitrogen fixation is known to be present in several prokaryotic species scattered across taxonomic groups. Experimental detection of nitrogen fixation in microbes requires species-specific conditions, making it difficult to obtain a comprehensive census of this trait. The recent and rapid increase in the availability of microbial genome sequences affords novel opportunities to re-examine the occurrence and distribution of nitrogen fixation genes. The current practice for computational prediction of nitrogen fixation is to use the presence of the nifH and/or nifD genes. Results Based on a careful comparison of the repertoire of nitrogen fixation genes in known diazotroph species we propose a new criterion for computational prediction of nitrogen fixation: the presence of a minimum set of six genes coding for structural and biosynthetic components, namely NifHDK and NifENB. Using this criterion, we conducted a comprehensive search in fully sequenced genomes and identified 149 diazotrophic species, including 82 known diazotrophs and 67 species not known to fix nitrogen. The taxonomic distribution of nitrogen fixation in Archaea was limited to the Euryarchaeota phylum; within the Bacteria domain we predict that nitrogen fixation occurs in 13 different phyla. Of these, seven phyla had not hitherto been known to contain species capable of nitrogen fixation. Our analyses also identified protein sequences that are similar to nitrogenase in organisms that do not meet the minimum-gene-set criteria. The existence of nitrogenase-like proteins lacking conserved co-factor ligands in both diazotrophs and non-diazotrophs suggests their potential for performing other, as yet unidentified, metabolic functions. Conclusions Our predictions expand the known phylogenetic diversity of nitrogen fixation, and suggest that this trait may be much more common in nature than it is currently thought. The diverse phylogenetic

  6. Phytotherapy for children's nocturnal enuresis | Ahmadipour ...

    African Journals Online (AJOL)

    Results have shown that Zingiber officinale, Valeriana officinalis, Alcea rosea, Elettaria cardamomum, Cinnamomum verum, Ribes uva-crispa, Cornus mas, Juglans regia, Vitis vinifera, Sinapis spp., Olea europaea, and Prunus cerasus are a number of important plants that are effective on nocturnal enuresis in traditional ...

  7. A nocturnal decline of salivary pH associated with airway hyperresponsiveness in asthma.

    Science.gov (United States)

    Watanabe, Masanari; Sano, Hiroyuki; Tomita, Katsuyuki; Yamasaki, Akira; Kurai, Jun; Hasegawa, Yasuyuki; Igishi, Tadashi; Okazaki, Ryota; Tohda, Yuji; Burioka, Naoto; Shimizu, Eiji

    2010-08-01

    Salivary pH is associated with esophageal acid reflux and neutralization of esophageal acid. In this study, we assessed the association between nocturnal decline of salivary pH and airway hyperresponsiveness. Salivary pH was serially assessed in 9 patients with mild asthma (7 men and 2 women; mean age 33.3 years; mean %predicted FEV(1.0) 89.4%) and 10 healthy volunteers (6 men and 4 women; mean age 31.2 years) using a pH indicator tape. The buffering capacity of saliva was defined as the median effective dose (ED(50)) for acidification of saliva with 0.01 N HCl, and airway responsiveness was defined as the dose of methacholine producing a 35% fall in Grs (PD(35)-Grs). There was a significant correlation between the values obtained from the pH indicator tape and those obtained from the electrometric pH meter. Using the indicator tape for sequential monitoring, we observed a nocturnal fall (ΔpH) in salivary pH in all subjects. A significant correlation was found between airway hyperresponsiveness (PD(35)-Grs) and either ΔpH or ED(50) in mildly asthmatic patients. Vagal reflux dysfunction might contribute to nocturnal salivary pH as well as to airway hyperresponsiveness in mild asthmatics.

  8. Production of N2O5 and ClNO2 through Nocturnal Processing of Biomass-Burning Aerosol.

    Science.gov (United States)

    Ahern, Adam T; Goldberger, Lexie; Jahl, Lydia; Thornton, Joel; Sullivan, Ryan C

    2018-01-16

    Biomass burning is a source of both particulate chloride and nitrogen oxides, two important precursors for the formation of nitryl chloride (ClNO 2 ), a source of atmospheric oxidants that is poorly prescribed in atmospheric models. We investigated the ability of biomass burning to produce N 2 O 5 (g) and ClNO 2 (g) through nocturnal chemistry using authentic biomass-burning emissions in a smog chamber. There was a positive relationship between the amount of ClNO 2 formed and the total amount of particulate chloride emitted and with the chloride fraction of nonrefractory particle mass. In every fuel tested, dinitrogen pentoxide (N 2 O 5 ) formed quickly, following the addition of ozone to the smoke aerosol, and ClNO 2 (g) production promptly followed. At atmospherically relevant relative humidities, the particulate chloride in the biomass-burning aerosol was rapidly but incompletely displaced, likely by the nitric acid produced largely by the heterogeneous uptake of N 2 O 5 (g). Despite this chloride acid displacement, the biomass-burning aerosol still converted on the order of 10% of reacted N 2 O 5 (g) into ClNO 2 (g). These experiments directly confirm that biomass burning is a potentially significant source of atmospheric N 2 O 5 and ClNO 2 to the atmosphere.

  9. Mesopelagic N2 Fixation Related to Organic Matter Composition in the Solomon and Bismarck Seas (Southwest Pacific.

    Directory of Open Access Journals (Sweden)

    Mar Benavides

    Full Text Available Dinitrogen (N2 fixation was investigated together with organic matter composition in the mesopelagic zone of the Bismarck (Transect 1 and Solomon (Transect 2 Seas (Southwest Pacific. Transparent exopolymer particles (TEP and the presence of compounds sharing molecular formulae with saturated fatty acids and sugars, as well as dissolved organic matter (DOM compounds containing nitrogen (N and phosphorus (P were higher on Transect 1 than on Transect 2, while oxygen concentrations showed an opposite pattern. N2 fixation rates (up to ~1 nmol N L-1 d-1 were higher in Transect 1 than in Transect 2, and correlated positively with TEP, suggesting a dependence of diazotroph activity on organic matter. The scores of the multivariate ordination of DOM molecular formulae and their relative abundance correlated negatively with bacterial abundances and positively with N2 fixation rates, suggesting an active bacterial exploitation of DOM and its use to sustain diazotrophic activity. Sequences of the nifH gene clustered with Alpha-, Beta-, Gamma- and Deltaproteobacteria, and included representatives from Clusters I, III and IV. A third of the clone library included sequences close to the potentially anaerobic Cluster III, suggesting that N2 fixation was partially supported by presumably particle-attached diazotrophs. Quantitative polymerase chain reaction (qPCR primer-probe sets were designed for three phylotypes and showed low abundances, with a phylotype within Cluster III at up to 103 nifH gene copies L-1. These results provide new insights into the ecology of non-cyanobacterial diazotrophs and suggest that organic matter sustains their activity in the mesopelagic ocean.

  10. A Review of the Role of Vegetal Ecosystems in CO2 Capture

    Directory of Open Access Journals (Sweden)

    Giuseppe Di Vita

    2017-10-01

    Full Text Available The reduction of carbon emissions is a worldwide global challenge and represents the objective of many scientists that are trying to modify the role of carbon, turning a problem into an opportunity. The potential of CO2 capture and storage by vegetal species is significant because of their capacity to absorb exceeding carbon emission. The purpose of the present paper is to draw a picture of the role of vegetal ecosystems on carbon fixation by identifying the most significant scientific contributions related to the absorption by vegetal species. In particular the aim of this paper is to examine different forms of CO2 sequestration made by plants and crops involved in reducing greenhouse gas (GHG emission. Results highlight the important role played by agricultural soils, forests, perennial plants, and algae, looking at the overall reduction of carbon emissions. In addition, results show that some bioenergy crops allow substantial storage of carbon dioxide, providing a significant contribution to climate change mitigation.

  11. Anatomical specializations for nocturnality in a critically endangered parrot, the Kakapo (Strigops habroptilus.

    Directory of Open Access Journals (Sweden)

    Jeremy R Corfield

    Full Text Available The shift from a diurnal to nocturnal lifestyle in vertebrates is generally associated with either enhanced visual sensitivity or a decreased reliance on vision. Within birds, most studies have focused on differences in the visual system across all birds with respect to nocturnality-diurnality. The critically endangered Kakapo (Strigops habroptilus, a parrot endemic to New Zealand, is an example of a species that has evolved a nocturnal lifestyle in an otherwise diurnal lineage, but nothing is known about its' visual system. Here, we provide a detailed morphological analysis of the orbits, brain, eye, and retina of the Kakapo and comparisons with other birds. Morphometric analyses revealed that the Kakapo's orbits are significantly more convergent than other parrots, suggesting an increased binocular overlap in the visual field. The Kakapo exhibits an eye shape that is consistent with other nocturnal birds, including owls and nightjars, but is also within the range of the diurnal parrots. With respect to the brain, the Kakapo has a significantly smaller optic nerve and tectofugal visual pathway. Specifically, the optic tectum, nucleus rotundus and entopallium were significantly reduced in relative size compared to other parrots. There was no apparent reduction to the thalamofugal visual pathway. Finally, the retinal morphology of the Kakapo is similar to that of both diurnal and nocturnal birds, suggesting a retina that is specialised for a crepuscular niche. Overall, this suggests that the Kakapo has enhanced light sensitivity, poor visual acuity and a larger binocular field than other parrots. We conclude that the Kakapo possesses a visual system unlike that of either strictly nocturnal or diurnal birds and therefore does not adhere to the traditional view of the evolution of nocturnality in birds.

  12. A cutoff value based on analysis of a reference population decreases overestimation of the prevalence of nocturnal polyuria.

    Science.gov (United States)

    van Haarst, Ernst P; Bosch, J L H Ruud

    2012-09-01

    We sought criteria for nocturnal polyuria in asymptomatic, nonurological adults of all ages by reporting reference values of the ratio of daytime and nighttime urine volumes, and finding nocturia predictors. Data from a database of frequency-volume charts from a reference population of 894 nonurological, asymptomatic volunteers of all age groups were analyzed. The nocturnal polyuria index and the nocturia index were calculated and factors influencing these values were determined by multivariate analysis. The nocturnal polyuria index had wide variation but a normal distribution with a mean ± SD of 30% ± 12%. The 95th percentile of the values was 53%. Above this cutoff a patient had nocturnal polyuria. This value contrasts with the International Continence Society definition of 33% but agrees with several other reports. On multivariate regression analysis with the nocturnal polyuria index as the dependent variable sleeping time, maximum voided volume and age were the covariates. However, the increase in the nocturnal polyuria index by age was small. Excluding polyuria and nocturia from analysis did not alter the results in a relevant way. The nocturnal voiding frequency depended on sleeping time and maximum voided volume but most of all on the nocturia index. The prevalence of nocturnal polyuria is overestimated. We suggest a new cutoff value for the nocturnal polyuria index, that is nocturnal polyuria exists when the nocturnal polyuria index exceeds 53%. The nocturia index is the best predictor of nocturia. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  13. "Two-step" technique with OsiriXTM to evaluate feasibility of C2 pedicle for surgical fixation

    Directory of Open Access Journals (Sweden)

    Luis Miguel Sousa Marques

    2016-01-01

    Full Text Available Background: Surgical treatment of craniovertebral junction pathology has evolved considerably in recent decades with the implementation of short atlanto-axial fixation techniques, notwhithstanding increasing neurovascular risks. Also, there is strong evidence that fixation of C2 anatomical pedicle has the best biomechanical profile of the entire cervical spine. However, it is often difficult and misleading, to evaluate anatomical bony and vascular anomalies using the three orthogonal planes (axial, coronal, and sagittal of CT. Objectives: The authors describe an innovative and simple technique to evaluate the feasibility of C2 pedicle for surgical screw fixation using preoperative planning with the free DICOM (Digital Imaging and Communications in Medicine software OsiriX TM . Materials and Methods: The authors report the applicatin of this novel technique in 5 cases (3 traumatic, 1 Os Odontoideum, and 1 complex congenital malformation collected from our general case series of the Department in the last 5 years. Results: In this "proof of concept" study, the pre-operative analysis with the "two-step" tecnique was detrimental for choosing the surgical tecnique. Detailed post-operative analysis confirmed correct position of C2 screws without cortical breach. There were no complications or mortality reported. Conclusion: This "two-step" technique is an easy and reliable way to determine the feasibility of C2 pedicle for surgical fixation. The detailed tridimensional radiological preoperative evaluation of craniovertebral junction anatomy is critical to the sucess and safety of this surgeries, and can avoid, to certain degree, expensive intra-operative tridimensional imaging facilities.

  14. Spatial and temporal variability in forest-atmosphere CO2 exchange

    Science.gov (United States)

    D.Y. Hollinger; J. Aber; B. Dail; E.A. Davidson; S.M. Goltz; et al.

    2004-01-01

    Seven years of carbon dioxide flux measurements indicate that a ∼ 90-year-old spruce dominated forest in Maine, USA, has been sequestering 174±46 gCm-2 yr-1 (mean±1 standard deviation, nocturnal friction velocity (u*) threshold >0.25ms-1...

  15. Estimation of N2 fixation in winter and spring sown chickpea and in lentil grown under rainfed conditions using 15 N

    International Nuclear Information System (INIS)

    Kurdali, F.; Khalifa, Kh.; Al-Asfari, F.

    1996-03-01

    A field experiment was conducted under rainfed conditions to asses N 2 fixation in one cultivar of lentil and in two cultivars of chickpea (Gab 1 for winter and spring sowing, and Baladi for spring sowing). Moreover, the effect of P fertilizer on dry matter production, percentages and amounts of different N sources was studied using 15 N isotope dilution method. Wheat was used as a reference crop. The rate of N 2 fixation affected by several factors such as plant species, cultivar, date of sowing, P-fertilizer and the growing season. The highest amount of N 2 fixation obtained in winter sown chickpea was 126 Kg N ha -1 . Whereas, that of spring sowing for the same cultivar was 30 Kg N ha -1 . For Baladi cultivar, the highest amount of N-fixed was 55 Kg N ha -1 . While it was 104 Kg N ha -1 in lentil. Generally, N 2 -fixation affected positively by P-application. In the first growing season, N 2 -fixation increased from 33 to %58 by P application in spring sown chickpea (Baladi), and from 20 to %35 in spring sown chickpea (Gab 1). Whereas, no significant differences were observed upon P application in winter sown chickpea and in lentil. In the second growing season, P-fertilizer increased the percentage of N 2 fixation from 54 to %64 in winter sown chickpea, and from 45 to %64 in spring sown chickpea (Gab 1), and from 49 to %60 in spring sown chickpea (Baladi). While, in lentil it was from 66 to %72. The rate of N 2 fixation in winter sown chickpea was clearly higher than that of spring sowings. Moreover, this last one absorbed more N from the soil. Our results indicate the importance of winter sown chickpea in terms of N 2 fixation, seed yield and the reduction of soil N-uptake, besides a positive P-fertilizer response, especially when suitable rain fall occurs during the season. Moreover, the importance of these results from agronomical point of view was discussed. (author). 24 refs., 6 figs., 7 tabs

  16. Childhood nocturnal enuresis in the Netherlands

    NARCIS (Netherlands)

    Spee-van der Wekke, J.; Hirasing, R.A.; Meulmeester, J.F.; Radder, J.J.

    1998-01-01

    Objectives. To assess the prevalence of nocturnal enuresis in school children aged 5 to 15 years, and to investigate the association of bedwetting with ethnicity, the educational level of the parents, and the type of education (mainstream or special) received by the child. Methods. Data were

  17. The effect of lateral decubitus position on nocturnal intraocular pressure over a habitual 24-hour period in healthy adults.

    Science.gov (United States)

    Hao, Jie; Zhen, Yi; Wang, Hao; Yang, Diya; Wang, Ningli

    2014-01-01

    To investigate the effect of lateral decubitus position (LDP) on nocturnal intraocular pressure (IOP) and the effect of LDP on 24-hour habitual IOP pattern in healthy subjects. Intraocular pressure was measured every 2-hours using an Accupen Applanation Tonometer (Accutome, USA). During the diurnal period (7:30 am, 9:30 am, 11:30 am, 1:30 pm, 3:30 pm, 5:30 pm, 7:30 pm, and 9:30 pm), IOP was measured in the sitting position under bright light (500-1000 lux) after the subjects had been seated for 5 min. The nocturnal IOP was measured in the supine position, right LDP, and left LDP, with randomized sequences, under dim light (hour habitual IOP patterns were obtained according to the nocturnal position (supine, right LDP and left LDP) for either eye. Phour period, the effect of LDP on habitual IOP pattern was not statistically significant, although the mean nocturnal IOP and the diurnal-nocturnal IOP change for the right and the left eye in the LDP pattern was slightly higher than that in the sitting-supine pattern. Significant nocturnal IOP differences existed between the dependent eye and the supine, but did not occur consistently for all time points. Over a 24-hour period, the effect of LDP on habitual IOP pattern was not statistically significant in healthy subjects.

  18. Sleep - nocturnal traffic noise - stress - health: Fundamentals and recent research results. Pt. 2. Recent research results; Schlaf - naechtlicher Verkehrslaerm - Stress - Gesundheit: Grundlagen und aktuelle Forschungsergebnisse. T. 2. Aktuelle Forschungsergebnisse

    Energy Technology Data Exchange (ETDEWEB)

    Maschke, C. [Technische Univ. Berlin (Germany). Inst. fuer Technische Akustik; Ising, H. [Umweltbundesamt, Berlin (Germany). Inst. fuer Wasser-, Boden- und Lufthygiene; Hecht, K. [Inst. fuer Stressforschung, Berlin (Germany)

    1997-03-01

    In part 2 of the review, an evaluation is given from the angle of prophylactic medicine, of the results of several experimental and epidemiologic studies on the excretion of stress hormones induced by nocturnal traffic noise. (orig./MG) [Deutsch] In Teil 2 der Uebersichtsarbeit werden Ergebnisse mehrerer experimenteller und epidemiologischer Studien ueber die Stresshormonausscheidung bei naechtlichem Verkehrslaerm vorgestellt und praeventivmedizinisch bewertet. (orig./MG)

  19. Studies on phosphorus fixation and release in coffee growing oxisols

    International Nuclear Information System (INIS)

    Naik, C.S.K.; Ramaiah, P.K.; Deb, D.L.

    1988-01-01

    A laboratory investigation was made to study the fixation and release of 32 P labelled KH 2 PO 4 in a coffee growing oxisol of Karnataka in presence of certain soil amendments at different incubation periods. The per cent recovery of applied P in 0.01 M CaCl 2 and Bray-1 extractants decreased with increased period of contact with soil. About 70 to 80 per cent of applied P could be recovered from the soil by sequential extraction up to 21 days of incubation. Application of sodium citrate to soil gave higher recovery of applied P than CaCO 3 and FYM by both the extractants. (author). 1 tab

  20. Immaturity of Visual Fixations in Dyslexic Children.

    Directory of Open Access Journals (Sweden)

    TIADI eBi Kuyami Guy Aimé

    2016-02-01

    Full Text Available To our knowledge, behavioral studies recording visual fixations abilities in dyslexic children are scarce. The object of this paper is to explore further the visual fixation ability in dyslexics compared to chronological age-matched and reading age-matched non-dyslexic children. Fifty-five dyslexic children from 7 to 14 years old, fifty-five chronological age-matched non-dyslexic children and fifty-five reading age-matched non-dyslexic children participated to this study. Eye movements from both eyes were recorded horizontally and vertically by a video-oculography system (EyeBrain® T2. The fixation task consisted in fixating a white-filled circle appearing in the centre of the screen for 30 seconds. Results showed that dyslexic children produced a significantly higher number of unwanted saccades than both groups of non-dyslexic children. Moreover, the number of unwanted saccades significantly decreased with age in both groups of non-dyslexic children, but not in dyslexics. Furthermore, dyslexics made more saccades during the last 15 sec of fixation period with respect to both groups of non-dyslexic children. Such poor visual fixation capability in dyslexic children could be due to impaired attention abilities, as well as to an immaturity of the cortical areas controlling the fixation system.

  1. Growth under elevated atmospheric CO(2) concentration accelerates leaf senescence in sunflower (Helianthus annuus L.) plants.

    Science.gov (United States)

    de la Mata, Lourdes; Cabello, Purificación; de la Haba, Purificación; Agüera, Eloísa

    2012-09-15

    Some morphogenetic and metabolic processes were sensitive to a high atmospheric CO(2) concentration during sunflower primary leaf ontogeny. Young leaves of sunflower plants growing under elevated CO(2) concentration exhibited increased growth, as reflected by the high specific leaf mass referred to as dry weight in young leaves (16 days). The content of photosynthetic pigments decreased with leaf development, especially in plants grown under elevated CO(2) concentrations, suggesting that high CO(2) accelerates chlorophyll degradation, and also possibly leaf senescence. Elevated CO(2) concentration increased the oxidative stress in sunflower plants by increasing H(2)O(2) levels and decreasing activity of antioxidant enzymes such as catalase and ascorbate peroxidase. The loss of plant defenses probably increases the concentration of reactive oxygen species in the chloroplast, decreasing the photosynthetic pigment content as a result. Elevated CO(2) concentration was found to boost photosynthetic CO(2) fixation, especially in young leaves. High CO(2) also increased the starch and soluble sugar contents (glucose and fructose) and the C/N ratio during sunflower primary leaf development. At the beginning of senescence, we observed a strong increase in the hexoses to sucrose ratio that was especially marked at high CO(2) concentration. These results indicate that elevated CO(2) concentration could promote leaf senescence in sunflower plants by affecting the soluble sugar levels, the C/N ratio and the oxidative status during leaf ontogeny. It is likely that systemic signals produced in plants grown with elevated CO(2), lead to early senescence and a higher oxidation state of the cells of these plant leaves. Copyright © 2012 Elsevier GmbH. All rights reserved.

  2. C-2 anterior plate-screw fixation: a quantitative anatomical and morphometric evaluation.

    Science.gov (United States)

    Senoglu, M; Ozbag, D; Gumusalan, Y

    2010-01-01

    Discectomy and inter-vertebral body fusion combined with the anterior plate-screw fixa tion is the common procedure in cervical spine surgery. But the anterior plate-screw fixation of the C2 spine has been the uncommon surgical procedure. In this study, we analyze the anatomy of the C2 body relevant to C2 anterior plate-screw fixation. Eighty-six dried C2 spines were evaluated directly for this study. Measurements were made on the C2 body width and midsagittal anteroposterior (AP) depth and the anteroposterior parasagittal depth 5 mm lateral to midline on the inferior endplates, in addition to on the middle body. Measurements also were made of anteroposterior parasagittal vertebral depth with both medial and lateral inclination of 10 degrees, with respect to the parasagittal plane of the vertebral body. The ideal maximum screw length and trajectory was found to be AP medial parasagittal depth of inferior surface of the C2 body [Right: 13.7 +/- 1.4 mm (11.0-17.9), Left: 13.6 +/- 1.5 mm (10.7-17.8)]. We report the measurements of the vertebral body of the C2. We think these measurements provide guidelines for operating on the anterior C2 spine, and enhance the confidence interval for the surgeon (Tab. 3, Fig. 1, Ref. 24).

  3. A cell shrinkage artefact in growth plate chondrocytes with common fixative solutions: importance of fixative osmolarity for maintaining morphology

    Directory of Open Access Journals (Sweden)

    MY Loqman

    2010-05-01

    Full Text Available The remarkable increase in chondrocyte volume is a major determinant in the longitudinal growth of mammalian bones. To permit a detailed morphological study of hypertrophic chondrocytes using standard histological techniques, the preservation of normal chondrocyte morphology is essential. We noticed that during fixation of growth plates with conventional fixative solutions, there was a marked morphological (shrinkage artifact, and we postulated that this arose from the hyper-osmotic nature of these solutions. To test this, we fixed proximal tibia growth plates of 7-day-old rat bones in either (a paraformaldehyde (PFA; 4%, (b glutaraldehyde (GA; 2% with PFA (2% with ruthenium hexamine trichloride (RHT; 0.7%, (c GA (2% with RHT (0.7%, or (d GA (1.3% with RHT (0.5% and osmolarity adjusted to a ‘physiological’ level of ~280mOsm. Using conventional histological methods, confocal microscopy, and image analysis on fluorescently-labelled fixed and living chondrocytes, we then quantified the extent of cell shrinkage and volume change. Our data showed that the high osmolarity of conventional fixatives caused a shrinkage artefact to chondrocytes. This was particularly evident when whole bones were fixed, but could be markedly reduced if bones were sagittally bisected prior to fixation. The shrinkage artefact could be avoided by adjusting the osmolarity of the fixatives to the osmotic pressure of normal extracellular fluids (~280mOsm. These results emphasize the importance of fixative osmolarity, in order to accurately preserve the normal volume/morphology of cells within tissues.

  4. Heterologous expression of a plastid EF-Tu reduces protein thermal aggregation and enhances CO2 fixation in wheat (Triticum aestivum) following heat stress.

    Science.gov (United States)

    Fu, Jianming; Momcilović, Ivana; Clemente, Thomas E; Nersesian, Natalya; Trick, Harold N; Ristic, Zoran

    2008-10-01

    Heat stress is a major constraint to wheat production and negatively impacts grain quality, causing tremendous economic losses, and may become a more troublesome factor due to global warming. At the cellular level, heat stress causes denaturation and aggregation of proteins and injury to membranes leading to alterations in metabolic fluxes. Protein aggregation is irreversible, and protection of proteins from thermal aggregation is a strategy a cell uses to tolerate heat stress. Here we report on the development of transgenic wheat (Triticum aestivum) events, expressing a maize gene coding for plastidal protein synthesis elongation factor (EF-Tu), which, compared to non-transgenic plants, display reduced thermal aggregation of leaf proteins, reduced heat injury to photosynthetic membranes (thylakoids), and enhanced rate of CO(2) fixation after exposure to heat stress. The results support the concept that EF-Tu ameliorates negative effects of heat stress by acting as a molecular chaperone. This is the first demonstration of the introduction of a plastidal EF-Tu in plants that leads to protection against heat injury and enhanced photosynthesis after heat stress. This is also the first demonstration that a gene other than HSP gene can be used for improvement of heat tolerance and that the improvement is possible in a species that has a complex genome, hexaploid wheat. The results strongly suggest that heat tolerance of wheat, and possibly other crop plants, can be improved by modulating expression of plastidal EF-Tu and/or by selection of genotypes with increased endogenous levels of this protein.

  5. Social support and nocturnal blood pressure dipping: a systematic review.

    Science.gov (United States)

    Fortmann, Addie L; Gallo, Linda C

    2013-03-01

    Attenuated nocturnal blood pressure (BP) dipping is a better predictor of cardiovascular disease (CVD) morbidity and mortality than resting BP measurements. Studies have reported associations between social support, variously defined, and BP dipping. A systematic review of the literature was conducted to investigate associations of functional and structural social support with nocturnal BP dipping assessed over a minimum of 24 hours. A total of 297 articles were identified. Of these, 11 met criteria for inclusion; all studies were cross-sectional in design and included adult participants only (mean age = 19 to 72 years). Evidence was most consistent for an association between functional support and BP dipping, such that 5 of 7 studies reported statistically (or marginally) significant positive associations with BP dipping. Statistically significant functional support-BP dipping associations were moderate (standardized effect size (d) = 0.41) to large (d = 2.01) in magnitude. Studies examining structural support were fewer and relatively less consistent; however, preliminary evidence was observed for associations of marital status and social contact frequency with BP dipping. Statistically significant structural support findings were medium (d = 0.53) to large (d = 1.13) in magnitude. Overall, findings suggest a link between higher levels of functional support and greater nocturnal BP dipping; preliminary evidence was also observed for the protective effects of marriage and social contact frequency. Nonetheless, the relatively small number of studies conducted to date and the heterogeneity of findings across meaningful subgroups suggest that additional research is needed to substantiate these conclusions.

  6. Innovative Visualizations Shed Light on Avian Nocturnal Migration.

    Directory of Open Access Journals (Sweden)

    Judy Shamoun-Baranes

    Full Text Available Globally, billions of flying animals undergo seasonal migrations, many of which occur at night. The temporal and spatial scales at which migrations occur and our inability to directly observe these nocturnal movements makes monitoring and characterizing this critical period in migratory animals' life cycles difficult. Remote sensing, therefore, has played an important role in our understanding of large-scale nocturnal bird migrations. Weather surveillance radar networks in Europe and North America have great potential for long-term low-cost monitoring of bird migration at scales that have previously been impossible to achieve. Such long-term monitoring, however, poses a number of challenges for the ornithological and ecological communities: how does one take advantage of this vast data resource, integrate information across multiple sensors and large spatial and temporal scales, and visually represent the data for interpretation and dissemination, considering the dynamic nature of migration? We assembled an interdisciplinary team of ecologists, meteorologists, computer scientists, and graphic designers to develop two different flow visualizations, which are interactive and open source, in order to create novel representations of broad-front nocturnal bird migration to address a primary impediment to long-term, large-scale nocturnal migration monitoring. We have applied these visualization techniques to mass bird migration events recorded by two different weather surveillance radar networks covering regions in Europe and North America. These applications show the flexibility and portability of such an approach. The visualizations provide an intuitive representation of the scale and dynamics of these complex systems, are easily accessible for a broad interest group, and are biologically insightful. Additionally, they facilitate fundamental ecological research, conservation, mitigation of human-wildlife conflicts, improvement of meteorological

  7. Origin of the Reductive Tricarboxylic Acid (rTCA Cycle-Type CO2 Fixation: A Perspective

    Directory of Open Access Journals (Sweden)

    Norio Kitadai

    2017-10-01

    Full Text Available The reductive tricarboxylic acid (rTCA cycle is among the most plausible candidates for the first autotrophic metabolism in the earliest life. Extant enzymes fixing CO2 in this cycle contain cofactors at the catalytic centers, but it is unlikely that the protein/cofactor system emerged at once in a p