WorldWideScience

Sample records for no-till cover crop

  1. Cover Crop (Rye) and No-Till System in Wisconsin

    OpenAIRE

    Alföldi, Thomas

    2014-01-01

    Erin Silva, University of Wisconsin, describes an organic no-till production technique using rye as cover crop to suppress weeds in the following production season. Using a roller-crimper, the overwintering rye is terminated at the time of cash crop planting, leaving a thick mat of plant residue on the soil surface. Soybeans are sown directly into the cover crop residue, allowing the cash crop to emerge through the terminated cover crop while suppressing weeds throughout the season. W...

  2. Using Winter Annual Cover Crops in a Virginia No-till Cotton Production System

    OpenAIRE

    Daniel, James B. II

    1997-01-01

    Cotton (Gossypium hirsutum L.) is a low residue crop, that may not provide sufficient surface residue to reduce erosion and protect the soil. A winter annual cover crop could alleviate erosion between cotton crops. Field experiments were conducted to evaluate selected winter annual cover crops for biomass production, ground cover, and N assimilation. The cover crop treatments were monitored under no-till and conventional tillage systems for the effects on soil moisture, cotton yield and qu...

  3. Cover Crop-Based, Organic Rotational No-Till Corn and Soybean Production Systems in the Mid-Atlantic United States

    Directory of Open Access Journals (Sweden)

    John M. Wallace

    2017-04-01

    Full Text Available Cover crop-based, organic rotational no-till (CCORNT corn and soybean production is becoming a viable strategy for reducing tillage in organic annual grain systems in the mid-Atlantic, United States. This strategy relies on mechanical termination of cover crops with a roller-crimper and no-till planting corn and soybean into cover crop mulches. Here, we report on recent research that focuses on integrated approaches for crop, nutrient and pest management in CCORNT systems that consider system and regional constraints for adoption in the mid-Atlantic. Our research suggests that no-till planting soybean into roller-crimped cereal rye can produce consistent yields. However, constraints to fertility management have produced less consistent no-till corn yields. Our research shows that grass-legume mixtures can improve N-release synchrony with corn demand and also improve weed suppression. Integration of high-residue inter-row cultivation improves weed control consistency and may reduce reliance on optimizing cover crop biomass accumulation for weed suppression. System-specific strategies are needed to address volunteer cover crops in later rotational phases, which result from incomplete cover crop termination with the roller crimper. The paucity of adequate machinery for optimizing establishment of cash crops into thick residue mulch remains a major constraint on CCORNT adoption. Similarly, breeding efforts are needed to improve cover crop germplasm and develop regionally-adapted varieties.

  4. Influence of cover crops on arthropods, free-living nematodes, and yield in a succeeding no-till soybean crop

    Science.gov (United States)

    Production practices that incorporate fall-planted cover crops into no-till agronomic crop rotations have become increasingly popular across the Northeastern United States for weed suppression and enhancing environmental stewardship. Field experiments were conducted in 2011 and 2012 to investigate e...

  5. Long-term use of cover crops and no-till shift soil microbial community life strategies in agricultural soil

    Science.gov (United States)

    Mitchell, Jeffrey; Scow, Kate

    2018-01-01

    Reducing tillage and growing cover crops, widely recommended practices for boosting soil health, have major impacts on soil communities. Surprisingly little is known about their impacts on soil microbial functional diversity, and especially so in irrigated Mediterranean ecosystems. In long-term experimental plots at the West Side Research and Extension Center in California’s Central Valley, we characterized soil microbial communities in the presence or absence of physical disturbance due to tillage, in the presence or absence of cover crops, and at three depths: 0–5, 5–15 and 15–30 cm. This characterization included qPCR for bacterial and archaeal abundances, DNA sequencing of the 16S rRNA gene, and phylogenetic estimation of two ecologically important microbial traits (rRNA gene copy number and genome size). Total (bacterial + archaeal) diversity was higher in no-till than standard till; diversity increased with depth in no-till but decreased with depth in standard till. Total bacterial numbers were higher in cover cropped plots at all depths, while no-till treatments showed higher numbers in 0–5 cm but lower numbers at lower depths compared to standard tillage. Trait estimates suggested that different farming practices and depths favored distinctly different microbial life strategies. Tillage in the absence of cover crops shifted microbial communities towards fast growing competitors, while no-till shifted them toward slow growing stress tolerators. Across all treatment combinations, increasing depth resulted in a shift towards stress tolerators. Cover crops shifted the communities towards ruderals–organisms with wider metabolic capacities and moderate rates of growth. Overall, our results are consistent with decreasing nutrient availability with soil depth and under no-till treatments, bursts of nutrient availability and niche homogenization under standard tillage, and increases in C supply and variety provided by cover crops. Understanding how

  6. Cover crops and crop residue management under no-till systems improve soils and environmental quality

    Science.gov (United States)

    Kumar, Sandeep; Wegner, Brianna; Vahyala, Ibrahim; Osborne, Shannon; Schumacher, Thomas; Lehman, Michael

    2015-04-01

    Crop residue harvest is a common practice in the Midwestern USA for the ethanol production. However, excessive removal of crop residues from the soil surface contributes to the degradation of important soil quality indicators such as soil organic carbon (SOC). Addition of a cover crop may help to mitigate these negative effects. The present study was set up to assess the impacts of corn (Zea mays L.) residue removal and cover crops on various soil quality indicators and surface greenhouse gas (GHG) fluxes. The study was being conducted on plots located at the North Central Agricultural Research Laboratory (NCARL) in Brookings, South Dakota, USA. Three plots of a corn and soybean (Glycine max (L.) Merr.) rotation under a no-till (NT) system are being monitored for soils and surface gas fluxes. Each plot has three residue removal (high residue removal, HRR; medium residue removal, MRR; and low residue removal, LRR) treatments and two cover crops (cover crops and no cover crops) treatments. Both corn and soybean are represented every year. Gas flux measurements were taken weekly using a closed static chamber method. Data show that residue removal significantly impacted soil quality indicators while more time was needed for an affect from cover crop treatments to be noticed. The LRR treatment resulted in higher SOC concentrations, increased aggregate stability, and increased microbial activity. The LRR treatment also increased soil organic matter (SOM) and particulate organic matter (POM) concentrations. Cover crops used in HRR (high corn residue removal) improved SOC (27 g kg-1) by 6% compared to that without cover crops (25.4 g kg-1). Cover crops significantly impacted POM concentration directly after the residue removal treatments were applied in 2012. CO2 fluxes were observed to increase as temperature increased, while N2O fluxes increased as soil moisture increased. CH4 fluxes were responsive to both increases in temperature and moisture. On average, soils under

  7. PRACT (Prototyping Rotation and Association with Cover crop and no Till) - a tool for designing conservation agriculture systems

    NARCIS (Netherlands)

    Naudin, K.; Husson, M.O.; Scopel, E.; Auzoux, S.; Giller, K.E.

    2015-01-01

    Moving to more agroecological cropping systems implies deep changes in the organization of cropping systems. We propose a method for formalizing the process of innovating cropping system prototype design using a tool called PRACT (Prototyping Rotation and Association with Cover crop and no Till)

  8. Cover crop root, shoot, and rhizodeposit contributions to soil carbon in a no- till corn bioenergy cropping system

    Science.gov (United States)

    Austin, E.; Grandy, S.; Wickings, K.; McDaniel, M. D.; Robertson, P.

    2016-12-01

    Crop residues are potential biofuel feedstocks, but residue removal may result in reduced soil carbon (C). The inclusion of a cover crop in a corn bioenergy system could provide additional biomass and as well as help to mitigate the negative effects of residue removal by adding belowground C to stable soil C pools. In a no-till continuous corn bioenergy system in the northern portion of the US corn belt, we used 13CO2 pulse labeling to trace C in a winter rye (secale cereale) cover crop into different soil C pools for two years following rye termination. Corn stover contributed 66 (another 163 was in harvested corn stover), corn roots 57, rye shoot 61, rye roots 59, and rye rhizodeposits 27 g C m-2 to soil C. Five months following cover crop termination, belowground cover crop inputs were three times more likely to remain in soil C pools and much of the root-derived C was in mineral- associated soil fractions. Our results underscore the importance of cover crop roots vs. shoots as a source of soil C. Belowground C inputs from winter cover crops could substantially offset short term stover removal in this system.

  9. Carbon supply and storage in tilled and nontilled soils as influenced by cover crops and nitrogen fertilization.

    Science.gov (United States)

    Sainju, Upendra M; Singh, Bharat P; Whitehead, Wayne F; Wang, Shirley

    2006-01-01

    Soil carbon (C) sequestration in tilled and nontilled areas can be influenced by crop management practices due to differences in plant C inputs and their rate of mineralization. We examined the influence of four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secale cereale L.)], biculture of legume and nonlegume (vetch and rye), and no cover crops (or winter weeds)} and three nitrogen (N) fertilization rates (0, 60 to 65, and 120 to 130 kg N ha(-1)) on C inputs from cover crops, cotton (Gossypium hirsutum L.), and sorghum [Sorghum bicolor (L.) Moench)], and soil organic carbon (SOC) at the 0- to 120-cm depth in tilled and nontilled areas. A field experiment was conducted on Dothan sandy loam (fine-loamy, siliceous, thermic Plinthic Paleudults) from 1999 to 2002 in central Georgia. Total C inputs to the soil from cover crops, cotton, and sorghum from 2000 to 2002 ranged from 6.8 to 22.8 Mg ha(-1). The SOC at 0 to 10 cm fluctuated with C input from October 1999 to November 2002 and was greater from cover crops than from weeds in no-tilled plots. In contrast, SOC values at 10 to 30 cm in no-tilled and at 0 to 60 cm in chisel-tilled plots were greater for biculture than for weeds. As a result, C at 0 to 30 cm was sequestered at rates of 267, 33, -133, and -967 kg C ha(-1) yr(-1) for biculture, rye, vetch, and weeds, respectively, in the no-tilled plot. In strip-tilled and chisel-tilled plots, SOC at 0 to 30 cm decreased at rates of 233 to 1233 kg C ha(-1) yr(-1). The SOC at 0 to 30 cm increased more in cover crops with 120 to 130 kg N ha(-1) yr(-1) than in weeds with 0 kg N ha(-1) yr(-1), regardless of tillage. In the subtropical humid region of the southeastern United States, cover crops and N fertilization can increase the amount of C input and storage in tilled and nontilled soils, and hairy vetch and rye biculture was more effective in sequestering C than monocultures or no cover crop.

  10. Allelopathic influence of a wheat or rye cover crop on growth and yield of no-till cotton

    Science.gov (United States)

    TECHNICAL ABSTRACT No-till planting cotton into small grain cover crops has many benefits including reducing soil erosion and allelopathic suppression of weeds. It is suggested that the potentials of allelopathy on cotton plants. Nevertheless, little is known about the actual effects of alleloche...

  11. Release of Phosphorus Forms from Cover Crop Residues in Agroecological No-Till Onion Production

    Directory of Open Access Journals (Sweden)

    Rodolfo Assis de Oliveira

    Full Text Available ABSTRACT Cover crops grown alone or in association can take up different amounts of phosphorus (P from the soil and accumulate it in different P-forms in plant tissue. Cover crop residues with a higher content of readily decomposed forms may release P more quickly for the next onion crop. The aim of this study was to evaluate the release of P forms from residues of single and mixed cover crops in agroecological no-till onion (Allium cepa L. production. The experiment was conducted in Ituporanga, Santa Catarina (SC, Brazil, in an Inceptisol, with the following treatments: weeds, black oat (Avena sativa L., rye (Secale cereale L., oilseed radish (Raphanus sativus L., oilseed radish + black oat, and oilseed radish + rye. Cover crops were sown in April 2013. In July 2013, plant shoots were cut close to the soil surface and part of the material was placed in litterbags. The bags were placed on the soil surface and residues were collected at 0, 15, and 45 days after deposition (DAD. Residues were dried and ground and P in the plant tissue was determined through chemical fractionation. The release of P contained in the tissue of cover crops depends not only on total P content in the tissue, but also on the accumulation of P forms and the quality of the residue in decomposition. The highest accumulation of P in cover crops occurred in the soluble inorganic P fraction, which is the fraction of fastest release in plants. Black oat had the highest initial release rate of soluble inorganic P, which became equal to the release rate of other cover crop residues at 45 DAD. Weeds released only half the amount of soluble inorganic P in the same period, despite accumulating a considerable amount of P in their biomass. The mixtures of oilseed radish + rye and oilseed radish + black oat showed higher release of P associated with RNA at 45 DAD in comparison to the single treatments.

  12. The Current State and Future Directions of Organic No-Till Farming with Cover Crops in Canada, with Case Study Support

    Directory of Open Access Journals (Sweden)

    Heather M. Beach

    2018-01-01

    Full Text Available Eliminating regular tillage practices in agriculture has numerous ecological benefits that correspond to the intentions of organic agriculture; yet, more tillage is conducted in organic agriculture than in conventional agriculture. Organic systems face more management challenges to avoid tillage. This paper identifies factors to consider when implementing no-till practices particularly in organic agronomic and vegetable crop agriculture and describes techniques to address these factors. In some cases, future research is recommended to effectively address the current limitations. The format includes a literature review of organic no-till (OrgNT research and two case studies of Ontario organic farmers that highlight no-till challenges and practices to overcome these challenges. Cover crops require significant consideration because they are the alternative to herbicides and fertilizers to manage weeds and provide nutrients in the OrgNT system. Equipment requirements have also proven to be unique in OrgNT systems. In the future, it is recommended that researchers involve organic farmers closely in studies on no-till implementation, so that the farmers’ concerns are effectively addressed, and research is guided by possibilities recognized by the practitioners.

  13. Effects of Cover Crops to Offset Soil Carbon Changes Under No-till on an Ohio farm when Biomass is Harvested

    Science.gov (United States)

    Kimble, J. M.; Everett, L. R.; Richards, W.

    2003-12-01

    The results of a long term experiment to look at the use of cover crops and there effect on soil organic carbon. No-till has been shown to increase SOC and improve the overall soil quality under conditions where the biomass has been returned to the field. However, biomass may be removed as silage or for use in biofuels. The removal will reduce the inputs to the field so to overcome the amount of biomass not returned to the soil different cover crops were used. This experiment was done on a working farm where the corn biomass was being removed as silage. Four cover crops were planted in early September of 2002: rye, oats, clover, and canola with two controls, one with no cover crop and one where corn stubble was left on the field. The soils were sampled soon after the crops were planted and again in the spring of 2003 before the cover crops were killed just prior to planting. The first results indicate that the most root biomass was produced by the rye followed by oats then canola and then clover.

  14. The suitability of non-legume cover crops for inorganic soil nitrogen immobilisation in the transition period to an organic no-till system

    Directory of Open Access Journals (Sweden)

    Lars Rühlemann

    2016-01-01

    Full Text Available The aim of the study was to evaluate non-legume cover crops for growing no-till grain legumes in organic farming systems. Evaluated cover crops should be able to suppress weed growth, reduce plant available nitrogen in the soil and produce large amounts of biomass with slow N mineralisation. Six non-legume species; spring rye (Secale cereale L., black oat (Avena sativa L., sunflower (Helianthus annuus L., white mustard (Sinapis alba L., buckwheat (Fagopyrum esculentum Moench and hemp (Cannabis sativa L. were tested. Plots with organic fertiliser (50 kg N ha−1 and without fertiliser incorporation at three locations in south-east Germany were trialled and the cover crops’ ability to produce biomass and accumulate N in plant compartments was evaluated. The N mineralisation from stem and leaf material was simulated using the STICS model. The biomass production ranged from 0.95 to 7.73 Mg ha−1, with fertiliser increasing the total biomass at locations with low-N status. Sunflower consistently displayed large biomass and N accumulation at all locations and fertiliser variations, although not always significantly more than other species. Most N was stored in sunflower leaf material, which can be easily mineralised making it less suited as cover crop before no-till sown spring grain legumes. Rye, which produced slightly less biomass, but accumulated more N in the stem biomass, would be better suited than sunflower in this type of system. The N mineralisation simulation from rye biomass indicated long N immobilisation periods potentially improving weed suppression within no-till sown legume cash crops.

  15. Qualitative attributes and postharvest conservation of green ears of maize grown on different cover crops in organic no-till system

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Favarato

    Full Text Available ABSTRACT Postharvest quality of sweet maize varies depending on the type of seed, soil, quality of fertilizer, climatic conditions, and stage of maturation. This study aimed to evaluate the post-harvest quality and shelf life of green ears of maize grown on three soil covers in organic no-till sytem. The study was conducted in the municipality of Domingos Martins, ES (20° 22'16.91" S and 41° 03' 41.83" W. The experiment was arranged in a randomized block design with six replications and five treatments, consisting of three cover crops in organic no-till system: black-oat straw, white lupin, oat/lupin intercrop and two systems, organic and conventional, without straw. Maize double hybrid AG-1051 was sown in a spacing of 1.00 x 0.20 m. The variables evaluated included relative percentage of grain, straw and cob, pH, titratable acidity, soluble solids, grain moisture and shelf life. The use of different straws in the organic no-till system does not influence the postharvest quality of green ears. Ears packed in polystyrene trays with plastic film are suitable for marketing until the fifth day of storage at room temperature.

  16. Indicators of soil quality in the implantation of no-till system with winter crops

    Directory of Open Access Journals (Sweden)

    Marco Antonio Nogueira

    Full Text Available We assessed the effect of different winter crops on indicators of soil quality related to C and N cycling and C fractions in a Rhodic Kandiudult under no-till system at implantation, during two growing seasons, in Londrina PR Brazil. The experimental design was randomized blocks with split-plot in time arrangement, with four replications. The parcels were the winter crops: multicropping of cover crops with black oat (Avena strigosa, hairy vetch (Vicia villosa and fodder radish (Raphanus sativus; sunflower (Heliantus annuus intercropped with Urochloa ruziziensis; corn (Zea mays intercropped with Urochloa; and corn; fodder radish; or wheat (Triticum aestivum as sole crops. The subplots were the years: 2008 and 2009. Determinations consisted of total organic C, labile and resistant C, total N, microbial biomass C and N, the C/N ratio of soil organic matter, and the microbial quotient (qMic, besides microbiological and biochemical attributes, assessed only in 2009. The attributes significantly changed with the winter crops, especially the multicropping of cover crops and fodder radish, as well as effect of years. Despite stimulating the microbiological/biochemical activity, fodder radish cropping decreased the soil C in the second year, likewise the wheat cropping. The multicropping of cover crops in winter is an option for management in the establishment of no-till system, which contributes to increase the concentrations of C and stimulate the soil microbiological/biochemical activity.

  17. Indicators of soil quality in the implantation of no-till system with winter crops.

    OpenAIRE

    NOGUEIRA, M. A.; TELLES, T. S.; FAGOTTI, D. dos S. L.; BRITO, O. R.; PRETE, C. E. C.; GUIMARÃES, M. de F.

    2014-01-01

    We assessed the effect of different winter crops on indicators of soil quality related to C and N cycling and C fractions in a Rhodic Kandiudult under no-till system at implantation, during two growing seasons, in Londrina PR Brazil. The experimental design was randomized blocks with split-plot in time arrangement, with four replications. The parcels were the winter crops: multicropping of cover crops with black oat (Avena strigosa), hairy vetch (Vicia villosa) and fodder radish (Raphanus sat...

  18. Weed Control with Cover Crops in Irrigated Potatoes

    Directory of Open Access Journals (Sweden)

    G.H. Mehring

    2016-01-01

    Full Text Available Field experiments at Oakes, ND, USA in 2010 and Carrington, ND, USA in 2011 were conducted to evaluate the potential for cover crops grown in the Northern Great Plains, USA in order to reduce weed emergence and density in irrigated potatoes. Treatments included five cover crop treatments and three cover crop termination treatments. Termination of cover crops was done with glyphosate, disk-till, and roto-till. Cover crop biomass accumulation was greatest for rye/canola and triticale at Oakes, and hairy vetch and hairy vetch/rye at Carrington. Cover crop and termination affected weed control 14, 29, and 51 days after planting (DAP at Oakes. Weed control at Carrington was at least 90% for all cover crop and termination treatments at all three evaluation timings. Marketable yield at Oakes was greater when roto-till was used to terminate the cover crops compared with disk-till or herbicide, which is beneficial for organic systems where herbicides are not used. Marketable yield at Carrington was not affected by cover crop or termination treatments. Results suggest that cover crops can successfully be integrated into irrigated potato production for weed control with yields equal to no cover crop, and with attention to potential mechanical difficulties.

  19. Effects of No-Till on Yields as Influenced by Crop and Environmental Factors

    Energy Technology Data Exchange (ETDEWEB)

    Toliver, Dustin K.; Larson, James A.; Roberts, Roland K.; English, B.C.; De La Torre Ugarte, D. G.; West, Tristram O.

    2012-02-07

    Th is research evaluated diff erences in yields and associated downside risk from using no-till and tillage practices. Yields from 442 paired tillage experiments across the United States were evaluated with respect to six crops and environmental factors including geographic location, annual precipitation, soil texture, and time since conversion from tillage to no-till. Results indicated that mean yields for sorghum [Sorghum bicolor (L.) Moench] and wheat (Triticum aestivum L.) with no-till were greater than with tillage. In addition, no-till tended to produce similar or greater mean yields than tillage for crops grown on loamy soils in the Southern Seaboard and Mississippi Portal regions. A warmer and more humid climate and warmer soils in these regions relative to the Heartland, Basin and Range, and Fruitful Rim regions appear to favor no-till on loamy soils. With the exception of corn (Zea mays L.) and cotton (Gossypium hirsutum L.) in the Southern Seaboard region, no-till performed poorly on sandy soils. Crops grown in the Southern Seaboard were less likely to have lower no-till yields than tillage yields on loamy soils and thus had lower downside yield risk than other farm resource regions. Consistent with mean yield results, soybean [Glycine max (L.) Merr.] and wheat grown on sandy soils in the Southern Seaboard region using no-till had larger downside yield risks than when produced with no-till on loamy soils. Th e key fi ndings of this study support the hypothesis that soil and climate factors impact no-till yields relative to tillage yields and may be an important factor infl uencing risk and expected return and the adoption of the practice by farmers.

  20. Impact of no-till cover cropping of Italian ryegrass on above and below ground faunal communities inhabiting a soybean field with special emphasis on soybean cyst nematodes

    Science.gov (United States)

    Two field trials were conducted in Maryland to evaluate the ability of an Italian ryegrass (IR) (Lolium multiflorum) cover crop in a no-till soybean (Glycine max) planting to 1) reduce populations of plant-parasitic nematodes (i.e., the soybean cyst nematode, Heterodera glycines and lesion nematodes...

  1. Organic No-Till Systems in Eastern Canada: A Review

    Directory of Open Access Journals (Sweden)

    Caroline Halde

    2017-04-01

    Full Text Available For more than a decade, studies have aimed to adapt the agronomy of organic no-till systems for the environmental conditions of Eastern Canada. Most research on organic no-till practices in Eastern Canada has been conducted in the province of Québec, where 4% of farms are certified organic, and results from these trials have been published in technical reports available in French. The objective of this review was to revisit previous research work on organic farming in Eastern Canada—the majority of which has been published as technical reports in the French language—in order to highlight important findings and to identify information gaps. Cover crop-based rotational no-till systems for organic grain and horticultural cropping systems will be the main focus of this review. Overall, a few trials have demonstrated that organic rotational no-till can be successful and profitable in warmer and more productive regions of Eastern Canada, but its success can vary over years. The variability in the success of organic rotational no-till systems is the reason for the slow adoption of the system by organic farmers. On-going research focuses on breeding early-maturing fall rye, and terminating cover crops and weeds with the use of bioherbicides.

  2. Impact of No-till Cover Cropping of Italian Ryegrass on Above and Below Ground Faunal Communities Inhabiting a Soybean Field with Emphasis on Soybean Cyst Nematodes.

    Science.gov (United States)

    Hooks, Cerruti R R; Wang, Koon-Hui; Meyer, Susan L F; Lekveishvili, Mariam; Hinds, Jermaine; Zobel, Emily; Rosario-Lebron, Armando; Lee-Bullock, Mason

    2011-09-01

    Two field trials were conducted between 2008 and 2010 in Maryland to evaluate the ability of an Italian ryegrass (IR) (Lolium multiflorum) cover crop to reduce populations of plant-parasitic nematodes while enhancing beneficial nematodes, soil mites and arthropods in the foliage of a no-till soybean (Glycine max) planting. Preplant treatments were: 1) previous year soybean stubble (SBS); and 2) herbicide-killed IR cover crop + previous year soybean stubble (referred to as IR). Heterodera glycines population densities were very low and no significant difference in population densities of H. glycines or Pratylenchus spp. were observed between IR and SBS. Planting of IR increased abundance of bacterivorous nematodes in 2009. A reverse trend was observed in 2010 where SBS had higher abundance of bacterivorous nematodes and nematode richness at the end of the cover cropping period. Italian ryegrass also did not affect insect pests on soybean foliage. However, greater populations of spiders were found on soybean foliage in IR treatments during both field trials. Potential causes of these findings are discussed.

  3. Rye cover crop effects on soil properties in no-till corn silage/soybean agroecosystems

    Science.gov (United States)

    Farmers in the U.S. Corn Belt are showing increasing interest in winter cover crops. Known benefits of winter cover crops include reductions in nutrient leaching, erosion mitigation, and weed suppression, however little research has investigated the effects of winter cover crops on soil properties. ...

  4. Weed Control with Cover Crops in Irrigated Potatoes

    OpenAIRE

    G.H. Mehring; J.E. Stenger; H.M. Hatterman-Valenti

    2016-01-01

    Field experiments at Oakes, ND, USA in 2010 and Carrington, ND, USA in 2011 were conducted to evaluate the potential for cover crops grown in the Northern Great Plains, USA in order to reduce weed emergence and density in irrigated potatoes. Treatments included five cover crop treatments and three cover crop termination treatments. Termination of cover crops was done with glyphosate, disk-till, and roto-till. Cover crop biomass accumulation was greatest for rye/canola and triticale at Oakes, ...

  5. No-till Organic Soybean Production Following a Fall-planted Rye Cover Crop

    OpenAIRE

    Porter, Paul; Feyereisen, Gary; De Bruin, Jason; Johnson, Gregg

    2005-01-01

    The conventional corn-soybean rotation in the United States (USA) is a leaky system with respect to nitrate-nitrogen (nitrate-N), in part because these crops grow only five months of the year. Ecosystem functioning can be improved with the use of an appropriate fall-planted cover crop, but this practice is not common. Organic soybean production in the USA typically relies on delayed planting, crop rotation, intensive harrowing and interrow cultivation for weed control. Research on timing of ...

  6. Estratégias de manejo de coberturas de solo no inverno para cultivo do milho em sucessão no sistema semeadura direta Management strategies of winter cover crops to maize grown in succession in no-till system

    Directory of Open Access Journals (Sweden)

    Paulo Regis Ferreira da Silva

    2006-06-01

    Full Text Available A maioria dos produtores do estado do Rio Grande do Sul adota o sistema de semeadura direta, em que não há revolvimento do solo para preparo da área para semeadura. A adoção de um sistema de rotação e sucessão de culturas diversificado, que produza adequada quantidade de resíduos culturais na superfície do solo, é fundamental para sustentabilidade do sistema de semeadura direta. Os agricultores dispõem de várias espécies de cobertura de solo no inverno com potencial para anteceder a cultura do milho em sucessão. Na família das poáceas, destaca-se a aveia preta (Avena strigosa como a mais cultivada. No entanto, o seu uso continuado pode causar prejuízos ao cultivo do milho em sucessão. Objetivando minimizar os efeitos das poáceas e ao mesmo tempo atender às exigências do sistema de semeadura direta, novas espécies de inverno pertencentes a famílias botânicas distintas, como fabáceas e brassicáceas, têm sido estudadas, tanto em cultivos solteiros quanto em consórcio com poáceas, como alternativas para anteceder o cultivo do milho. Assim, esta revisão bibliográfica tem como objetivos descrever as principais vantagens e limitações do uso de coberturas de solo no inverno, em cultivos solteiros ou consorciados, como culturas antecessoras ao milho no sistema de semeadura direta e discutir estratégias de manejo destas coberturas que resultem em maiores benefícios para o milho.The no-tillage system is adopted by most of the farmers in Rio Grande do Sul, Southern Brazil. No-till system requires no ploughing and only a narrow and superficial band or slot is opened in the soil to allow sowing. The sustainability of this system is dependent on a diversified system of crop rotation and succession able to leave on the soil an adequate amount of crop residues. In Rio Grande do Sul black oat (Avena strigosa L. is the most cultivated cover crop, in spite of fact that different cover crops are available to precede the maize crop

  7. Grazing winter rye cover crop in a cotton no-till system: yield and economics

    Science.gov (United States)

    Winter cover crop adoption in conservation management systems continues to be limited in the US but could be encouraged if establishment costs could be offset. A 4-yr field experiment was conducted near Watkinsville, Georgia in which a rye (Secale cereale L.) cover crop was either grazed by catt...

  8. Cover crop rotations in no-till system: short-term CO2 emissions and soybean yield

    Directory of Open Access Journals (Sweden)

    João Paulo Gonsiorkiewicz Rigon

    Full Text Available ABSTRACT: In addition to improving sustainability in cropping systems, the use of a spring and winter crop rotation system may be a viable option for mitigating soil CO2 emissions (ECO2. This study aimed to determine short-term ECO2 as affected by crop rotations and soil management over one soybean cycle in two no-till experiments, and to assess the soybean yields with the lowest ECO2. Two experiments were carried out in fall-winter as follows: i triticale and sunflower were grown in Typic Rhodudalf (TR, and ii ruzigrass, grain sorghum, and ruzigrass + grain sorghum were grown in Rhodic Hapludox (RH. In the spring, pearl millet, sunn hemp, and forage sorghum were grown in both experiments. In addition, in TR a fallow treatment was also applied in the spring. Soybean was grown every year in the summer, and ECO2 were recorded during the growing period. The average ECO2 was 0.58 and 0.84 g m2 h–1 with accumulated ECO2 of 5,268 and 7,813 kg ha–1 C-CO2 in TR and RH, respectively. Sunn hemp, when compared to pearl millet, resulted in lower ECO2 by up to 12 % and an increase in soybean yield of 9% in TR. In RH, under the winter crop Ruzigrazz+Sorghum, ECO2 were lower by 17%, although with the same soybean yield. Soil moisture and N content of crop residues are the main drivers of ECO2 and soil clay content seems to play an important role in ECO2 that is worthy of further studies. In conclusion, sunn hemp in crop rotation may be utilized to mitigate ECO2 and improve soybean yield.

  9. Biomass production of 12 winter cereal cover crop cultivars and their effect on subsequent no-till corn yield

    Science.gov (United States)

    Cover crops can improve the sustainability and resilience of corn and soybean production systems. However, there have been isolated reports of corn yield reductions following winter rye cover crops. Although there are many possible causes of corn yield reductions following winter cereal cover crops,...

  10. Steers grazing of a rye cover crop influences growth of rye and no-till cotton

    Science.gov (United States)

    Small grain cover crops offer opportunities for grazing but effects on following row crops are not well understood. From 1999 through 2008, stocker steers sequence grazed small grains in a 2-paddock rye-cotton-wheat-fallow- rye rotation. Treatments imposed on rye included 1) zero-grazing from 1999; ...

  11. Runoff losses of sediment and phosphorus from no-till and cultivated soils receiving dairy manure.

    Science.gov (United States)

    Verbree, David A; Duiker, Sjoerd W; Kleinman, Peter J A

    2010-01-01

    Managing manure in no-till systems is a water quality concern because surface application of manure can enrich runoff with dissolved phosphorus (P), and incorporation by tillage increases particulate P loss. This study compared runoff from well-drained and somewhat poorly drained soils under corn (Zea mays, L.) production that had been in no-till for more than 10 yr. Dairy cattle (Bos taurus L.) manure was broadcast into a fall planted cover crop before no-till corn planting or incorporated by chisel/disk tillage in the absence of a cover crop. Rainfall simulations (60 mm h(-1)) were performed after planting, mid-season, and post-harvest in 2007 and 2008. In both years and on both soils, no-till yielded significantly less sediment than did chisel/disking. Relative effects of tillage on runoff and P loss differed with soil. On the well-drained soil, runoff depths from no-till were much lower than with chisel/disking, producing significantly lower total P loads (22-50% less). On the somewhat poorly drained soil, there was little to no reduction in runoff depth with no-till, and total P loads were significantly greater than with chisel/disking (40-47% greater). Particulate P losses outweighed dissolved P losses as the major concern on the well-drained soil, whereas dissolved P from surface applied manure was more important on the somewhat poorly drained soil. This study confirms the benefit of no-till to erosion and total P runoff control on well-drained soils but highlights trade-offs in no-till management on somewhat poorly drained soils where the absence of manure incorporation can exacerbate total P losses.

  12. Effect of roller/crimper designs in terminating rye cover crop in small-scale conservation systems

    Science.gov (United States)

    In recent years, use of cover crops in no-till organic production systems has steadily increased. When cover crops are terminated at an appropriate growth stage, the unincorporated residue mulch protects the soil from erosion, runoff, soil compaction, and weed pressure, and conserves soil water. In ...

  13. Rye cover crop and gamagrass strip effects on NO3 concentration and load in tile drainage.

    Science.gov (United States)

    Kaspar, T C; Jaynes, D B; Parkin, T B; Moorman, T B

    2007-01-01

    A significant portion of the NO3 from agricultural fields that contaminates surface waters in the Midwest Corn Belt is transported to streams or rivers by subsurface drainage systems or "tiles." Previous research has shown that N fertilizer management alone is not sufficient for reducing NO3 concentrations in subsurface drainage to acceptable levels; therefore, additional approaches need to be devised. We compared two cropping system modifications for NO3 concentration and load in subsurface drainage water for a no-till corn (Zea mays L.)-soybean (Glycine max [L.] Merr.) management system. In one treatment, eastern gamagrass (Tripsacum dactyloides L.) was grown in permanent 3.05-m-wide strips above the tiles. For the second treatment, a rye (Secale cereale L.) winter cover crop was seeded over the entire plot area each year near harvest and chemically killed before planting the following spring. Twelve 30.5x42.7-m subsurface-drained field plots were established in 1999 with an automated system for measuring tile flow and collecting flow-weighted samples. Both treatments and a control were initiated in 2000 and replicated four times. Full establishment of both treatments did not occur until fall 2001 because of dry conditions. Treatment comparisons were conducted from 2002 through 2005. The rye cover crop treatment significantly reduced subsurface drainage water flow-weighted NO3 concentrations and NO3 loads in all 4 yr. The rye cover crop treatment did not significantly reduce cumulative annual drainage. Averaged over 4 yr, the rye cover crop reduced flow-weighted NO3 concentrations by 59% and loads by 61%. The gamagrass strips did not significantly reduce cumulative drainage, the average annual flow-weighted NO3 concentrations, or cumulative NO3 loads averaged over the 4 yr. Rye winter cover crops grown after corn and soybean have the potential to reduce the NO3 concentrations and loads delivered to surface waters by subsurface drainage systems.

  14. Relationships between Fungal Biomass and Nitrous Oxide Emission in Upland Rice Soils under No Tillage and Cover Cropping Systems.

    Science.gov (United States)

    Zhaorigetu; Komatsuzaki, Masakazu; Sato, Yoshinori; Ohta, Hiroyuki

    2008-01-01

    The relationships between soil microbial properties and nitrous oxide emission were examined in upland soil under different tillage systems [no tillage (NT), rotary and plow tillage] and cover crop systems (fallow, cereal rye, and hairy vetch) in 2004 and 2005. Microbiological analyses included the determination of soil ergosterol as an indicator of fungal biomass, bacterial plate counting, and MPN estimations of ammonia oxidizers and denitrifiers. The combined practice of NT with rye-cover crop treatment increased fungal biomass but not bacterial populations in 0-10 cm deep soils. Such increase in fungal biomass was not found in 10-20 cm and 20-30 cm deep cover-cropped NT soil. The combined practice of NT with rye-cover cropping resulted in higher in situ N(2)O emission rates compared with rotary- and plow-till treatments. N(2)O flux was positively correlated with soil ergosterol content but not with denitrifier MPN and other soil chemical properties. These results suggested a significant contribution of fungi to N(2)O emission in cover-cropped NT soils.

  15. Remediation of Stratified Soil Acidity Through Surface Application of Lime in No-Till Cropping Systems

    Science.gov (United States)

    Yield reduction and reduced crop vigor, resulting from soil acidification, are of increasing concern in eastern Washington and northern Idaho. In this region, soil pH has been decreasing at an accelerated rate, primarily due to the long-term use of ammonium based fertilizers. In no-till systems, the...

  16. No till system of maize and crop-livestock integration

    Directory of Open Access Journals (Sweden)

    Edmar Eduardo Bassan Mendes

    2013-12-01

    Full Text Available The aim of this work was to evaluate the implementation of the Integrated Crop-Livestock (ICL in beef cattle farms where the corn was planted directly on the pasture, under no-till system, in the first year. The Crop-Livestock Integration (CLI models evaluated consisted of Brachiaria decumbens pastures intercropped with corn in the no tillage system. However, the evaluated CLI system differed from the usual system because it did not use the conventional tillage in the first year, while the conventional soil preparation and sowing of grass is used by most of the Brazilian farms. The results show that in the first year the period of time spent planting and side-dressing nitrogen   on corn was longer compared to the following years, mainly due to the lack of uniformity of the ground surface, once no conventional tillage was used to prepare the soil and these operations were performed with own implements for direct planting. Therefore, many seeds were placed either very deep or not buried, thus compromising the crop and becoming necessary to replant the corn with a manual planter. From the second year on, even though the conditions were not ideal, the ground surface became more accessible for the sowing and cultivation of corn, after the tillage of the first year. The time spent in most operations performed was longer than usual, especially planting and side-dressing nitrogen on the corn so that the discs did not chop off plants due to the irregularities of the ground surface. Productivity dropped due to the problems already discussed that contributed to a lower income. It is therefore concluded that, under these experimental conditions, the conventional tillage is imperative when implementing the CLI system, even considering the soil management improvements observed from the first to the second year.

  17. Multivariate analysis and visualization of soil quality data for no-till systems.

    Science.gov (United States)

    Villamil, M B; Miguez, F E; Bollero, G A

    2008-01-01

    To evidence the multidimensionality of the soil quality concept, we propose the use of data visualization as a tool for exploratory data analyses, model building, and diagnostics. Our objective was to establish the best edaphic indicators for assessing soil quality in four no-till systems with regard to functioning as a medium for crop production and nutrient cycling across two Illinois locations. The compared situations were no-till corn-soybean rotations including either winter fallowing (C/S) or cover crops of rye (Secale cereale; C-R/S-R), hairy vetch (Vicia villosa; C-R/S-V), or their mixture (C-R/S-VR). The dataset included the variables bulk density (BD), penetration resistance (PR), water aggregate stability (WAS), soil reaction (pH), and the contents of soil organic matter (SOM), total nitrogen (TN), soil nitrates (NO(3)-N), and available phosphorus (P). Interactive data visualization along with canonical discriminant analysis (CDA) allowed us to show that WAS, BD, and the contents of P, TN, and SOM have the greatest potential as soil quality indicators in no-till systems in Illinois. It was more difficult to discriminate among WCC rotations than to separate these from C/S, considerably inflating the error rate associated with CDA. We predict that observations of no-till C/S will be classified correctly 51% of the time, while observations of no-till WCC rotations will be classified correctly 74% of the time. High error rates in CDA underscore the complexity of no-till systems and the need in this area for more long-term studies with larger datasets to increase accuracy to acceptable levels.

  18. Impact of no-till and conventional tillage practices on soil chemical properties

    International Nuclear Information System (INIS)

    Aziz, A.; Bangash, N.

    2015-01-01

    There is a global concern about progressive increase in the emission of greenhouse gases especially atmosphere CO/sub 2/. An increasing awareness about environmental pollution by CO/sub 2/ emission has led to recognition of the need to enhance soil C sequestration through sustainable agricultural management practices. Conservation management systems such as no-till (NT) with appropriate crop rotation have been reported to increase soil organic C content by creating less disturbed environment. The present study was conducted on Vanmeter farm of The Ohio State University South Centers at Piketon Ohio, USA to estimate the effect of different tillage practices with different cropping system on soil chemical properties. Tillage treatments were comprised of conventional tillage (CT) and No-till (NT).These treatments were applied under continuous corn (CC), corn-soybean (CS) and corn soybean-wheat-cowpea (CSW) cropping system following randomized complete block design. No-till treatment showed significant increase in total C (30%), active C (10%), and passive salt extractable (18%) and microwave extractable C (8%) and total nitrogen (15%) compared to conventional tillage practices. Total nitrogen increased significantly 23 % in NT over time. Maximum effect of no-till was observed under corn-soybean-wheat-cowpea crop rotation. These findings illustrated that no-till practice could be useful for improving soil chemical properties. (author)

  19. Effect of Different Tillage Methods and Cover Crop Types on Yield and Yield Components of Wheat

    Directory of Open Access Journals (Sweden)

    Z Sharefee

    2018-05-01

    Full Text Available Introduction Conservation agriculture is an appropriate strategy for maintaining and improving agricultural resources which increases crop production and stability and also provides environmental protection. This attitude contributes to the conservation of natural resources (soil, water, and air and is one of the most effective ways to overcome the drought crisis, water management and compensation of soil organic matter in arid and semi-arid regions. The practice of zero-tillage decreases the mineralization of organic matter and contributes to the sequestration of organic carbon in the soil. Higher amounts of organic matter in the soil improve soil structure and root growth, water infiltration and retention, and cation exchange capacity. In addition, zero-tillage reduces soil compaction and crop production costs. Cover crops are cultivated to protect the soil from erosion and elements loss by leaching or runoff and also improve the soil moisture and temperature. Given that South Khorasan farmers still use traditional methods of cultivation of wheat, and cover crops have no place in their farming systems, the aim of this study was to investigate the effect of cover crops types and tillage systems on yield and yield components of wheat in Birjand region. Materials and Methods A split plot field experiment was conducted based on randomized complete block design with three replications at the Research Farm of the University of Birjand over the growing season of 2014-2015. The main factor was the type of tillage (no-till, reduced tillage and conventional tillage and cover crop type (chickling pea (Lathyrus sativus, rocket salad (Eruca sativa, triticale (X Triticosecale witmack, barley (Hordeum vulgaris and control (no cover crop was considered as sub plots. Cover crops were planted on July 2014. Before planting wheat, cover crops were dried through spraying paraquat herbicide using a backpack sprayer at a rate of 3 L ha-1. Then the three tillage

  20. PORE SIZE DISTRIBUTION AND SOIL HYDRO PHYSICAL PROPERTIES UNDER DIFFERENT TILLAGE PRACTICES AND COVER CROPS IN A TYPIC HAPLUSULT IN NORTHERN NIGERIA

    Directory of Open Access Journals (Sweden)

    Halima Mohammed Lawal

    2017-05-01

    Full Text Available Tillage practices influence soil physical, chemical and biological qualities which in-turn alters plant growth and crop yield. In the Northern Guinea Savanna (NGS ecological zone of Nigeria, agricultural production is mainly constrained by low soil nutrient and water holding capacity, it is therefore, imperative to develop appropriate management practices that will give optimal soil hydro-physical properties for proper plant growth, effective soil and water management and environmental conservation. This study investigated the effect of three tillage practices (no till, reduced till and conventional till and four cover crops (Centrosema pascuorum, Macrotyloma uniflorum, Cucurbita maxima and Glyine max and a bare/control (no cover crop on some soil physical properties of a Typic Haplusult during the rainy seasons of 2011, 2012 and 2013 in Samaru, NGS ecological zone of Nigeria. The field trials were laid out in a split plot arrangement with tillage practices in the main plots and cover crops in the subplots, all treatments were replicated three times. Auger and core soil samples were collected at the end of each cropping season each year in three replicates from each treatment plot at four depths (0-5, 5-10, 10-15 and 15-20 cm. Particle size distribution, bulk density, total pore volume and water retention at various soil matric potentials were determined using standard methods. Data obtained were compared with optimum values and fitted into a RETC computer code for quantifying soil hydraulic behavior and physical quality. Results showed that different tillage practices had varied effect on soil physical properties. No-till had the highest water holding capacity at most suction points evaluated, it had 4.3 % and 12.9 % more soil moisture than the reduced till  and conventionally tilled systems across all matric potentials while Centrosema pascuorum (3.1% and Cucurbita maxima (5.5% were best among evaluated cover crops in retaining soil moisture

  1. Effect of tillage and crop residue management on nematode densities on corn.

    Science.gov (United States)

    McSorley, R; Gallaher, R N

    1994-12-01

    Effects of winter cover crop management on nematode densities associated with a subsequent corn (Zea mays) crop were examined in five sites in north Florida. Two sites had received winter cover crops of lupine (Lupinus angustifolius), and one site each had rye (Secale cereale), hairy vetch (Vicia villosa), and crimson clover (Trifolium incarnatum). In each site, five different management regimes were compared: 1) conventional tillage after the cover crop was removed for forage; 2) conventional tillage with the cover crop retained as green manure; 3) no-till with the cover crop mowed and used as a mulch; 4) no-till with the cover crop removed as forage; and 5) fallow. Sites were sampled at corn planting and harvest for estimates of initial (Pi) and final (Pf) nematode population densities, respectively. Whether the cover crop was removed as forage or retained as green manure or mulch had no effect (P > 0.10) on population densities of any plant-parasitic nematode before or after corn at any site. Differences between conventional-till and no-till treatments were significant (P cover crop residues had little consistent effect on nematodes, and these practices should be considered based on agronomic benefits rather than for nematode management.

  2. Cover crops support ecological intensification of arable cropping systems

    Science.gov (United States)

    Wittwer, Raphaël A.; Dorn, Brigitte; Jossi, Werner; van der Heijden, Marcel G. A.

    2017-02-01

    A major challenge for agriculture is to enhance productivity with minimum impact on the environment. Several studies indicate that cover crops could replace anthropogenic inputs and enhance crop productivity. However, so far, it is unclear if cover crop effects vary between different cropping systems, and direct comparisons among major arable production systems are rare. Here we compared the short-term effects of various cover crops on crop yield, nitrogen uptake, and weed infestation in four arable production systems (conventional cropping with intensive tillage and no-tillage; organic cropping with intensive tillage and reduced tillage). We hypothesized that cover cropping effects increase with decreasing management intensity. Our study demonstrated that cover crop effects on crop yield were highest in the organic system with reduced tillage (+24%), intermediate in the organic system with tillage (+13%) and in the conventional system with no tillage (+8%) and lowest in the conventional system with tillage (+2%). Our results indicate that cover crops are essential to maintaining a certain yield level when soil tillage intensity is reduced (e.g. under conservation agriculture), or when production is converted to organic agriculture. Thus, the inclusion of cover crops provides additional opportunities to increase the yield of lower intensity production systems and contribute to ecological intensification.

  3. Long-term no-till: A major driver of fungal communities in dryland wheat cropping systems.

    Directory of Open Access Journals (Sweden)

    Dipak Sharma-Poudyal

    Full Text Available In the dryland Pacific Northwest wheat cropping systems, no-till is becoming more prevalent as a way to reduce soil erosion and fuel inputs. Tillage can have a profound effect on microbial communities and soilborne fungal pathogens, such as Rhizoctonia. We compared the fungal communities in long-term no-till (NT plots adjacent to conventionally tilled (CT plots, over three years at two locations in Washington state and one location in Idaho, US. We used pyrosequencing of the fungal ITS gene and identified 422 OTUs after rarefication. Fungal richness was higher in NT compared to CT, in two of the locations. Humicola nigrescens, Cryptococcus terreus, Cadophora spp. Hydnodontaceae spp., and Exophiala spp. were more abundant in NT, while species of Glarea, Coniochaetales, Mycosphaerella tassiana, Cryptococcus bhutanensis, Chaetomium perlucidum, and Ulocladium chartarum were more abundant in CT in most locations. Other abundant groups that did not show any trends were Fusarium, Mortierella, Penicillium, Aspergillus, and Macroventuria. Plant pathogens such as Rhizoctonia (Ceratobasidiaceae were not abundant enough to see tillage differences, but Microdochium bolleyi, a weak root pathogen, was more abundant in NT. Our results suggest that NT fungi are better adapted at utilizing intact, decaying roots as a food source and may exist as root endophytes. CT fungi can utilize mature plant residues that are turned into the soil with tillage as pioneer colonizers, and then produce large numbers of conidia. But a larger proportion of the fungal community is not affected by tillage and may be niche generalists.

  4. Thrips (Thysanoptera: Thripidae) mitigation in seedling cotton using strip tillage and winter cover crops.

    Science.gov (United States)

    Toews, Michael D; Tubbs, R Scott; Wann, Dylan Q; Sullivan, Dana

    2010-10-01

    Thrips are the most consistent insect pests of seedling cotton in the southeastern United States, where symptoms can range from leaf curling to stand loss. In a 2 year study, thrips adults and immatures were sampled at 14, 21 and 28 days after planting on cotton planted with a thiamethoxam seed treatment in concert with crimson clover, wheat or rye winter cover crops and conventional or strip tillage to investigate potential differences in thrips infestations. Densities of adult thrips, primarily Frankliniella fusca (Hinds), peaked on the first sampling date, whereas immature densities peaked on the second sampling date. Regardless of winter cover crop, plots that received strip tillage experienced significantly fewer thrips at each sampling interval. In addition, assessment of percentage ground cover 42 days after planting showed that there was more than twice as much ground cover in the strip-tilled plots compared with conventionally tilled plots. Correlation analyses showed that increased ground cover was inversely related to thrips densities that occurred on all three sampling dates in 2008 and the final sampling date in 2009. Growers who utilize strip tillage and a winter cover crop can utilize seed treatments for mitigation of early-season thrips infestation.

  5. Do cover crop mixtures have the same ability to suppress weeds as competitive monoculture cover crops?

    Directory of Open Access Journals (Sweden)

    Brust, Jochen

    2014-02-01

    Full Text Available An increasing number of farmers use cover crop mixtures instead of monoculture cover crops to improve soil and crop quality. However, only little information is available about the weed suppression ability of cover crop mixtures. Therefore, two field experiments were conducted in Baden-Württemberg between 2010 and 2012, to compare growth and weed suppression of monoculture cover crops and cover crop mixtures. In the first experiment, heterogeneous results between yellow mustard and the cover crop mixture occurred. For further research, a field experiment was conducted in 2012 to compare monocultures of yellow mustard and hemp with three cover crop mixtures. The evaluated mixtures were: “MELO”: for soil melioration; “BETA”: includes only plant species with no close relation to main cash crops in Central Europe and “GPS”: for usage as energy substrate in spring. Yellow mustard, MELO, BETA and GPS covered 90% of the soil in less than 42 days and were able to reduce photosynthetically active radiation (PAR on soil surface by more than 96% after 52 days. Hemp covered 90% of the soil after 47 days and reduced PAR by 91% after 52 days. Eight weeks after planting, only BETA showed similar growth to yellow mustard which produced the highest dry matter. The GPS mixture had comparatively poor growth, while MELO produced similar dry matter to hemp. Yellow mustard, MELO and BETA reduced weed growth by 96% compared with a no cover crop control, while hemp and GPS reduced weeds by 85% and 79%. In spring, weed dry matter was reduced by more than 94% in plots with yellow mustard and all mixtures, while in hemp plots weeds were only reduced by 71%. The results suggest that the tested cover crop mixtures offer similar weed suppression ability until spring as the monoculture of the competitive yellow mustard.

  6. Microbial biomass and soil fauna during the decomposition of cover crops in no-tillage system

    Directory of Open Access Journals (Sweden)

    Luciano Colpo Gatiboni

    2011-08-01

    Full Text Available The decomposition of plant residues is a biological process mediated by soil fauna, but few studies have been done evaluating its dynamics in time during the process of disappearance of straw. This study was carried out in Chapecó, in southern Brazil, with the objective of monitoring modifications in soil fauna populations and the C content in the soil microbial biomass (C SMB during the decomposition of winter cover crop residues in a no-till system. The following treatments were tested: 1 Black oat straw (Avena strigosa Schreb.; 2 Rye straw (Secale cereale L.; 3 Common vetch straw (Vicia sativa L.. The cover crops were grown until full flowering and then cut mechanically with a rolling stalk chopper. The soil fauna and C content in soil microbial biomass (C SMB were assessed during the period of straw decomposition, from October 2006 to February 2007. To evaluate C SMB by the irradiation-extraction method, soil samples from the 0-10 cm layer were used, collected on eight dates, from before until 100 days after residue chopping. The soil fauna was collected with pitfall traps on seven dates up to 85 days after residue chopping. The phytomass decomposition of common vetch was faster than of black oat and rye residues. The C SMB decreased during the process of straw decomposition, fastest in the treatment with common vetch. In the common vetch treatment, the diversity of the soil fauna was reduced at the end of the decomposition process.

  7. Cover Crops for Managing Stream Water Quantity and Improving Stream Water Quality of Non-Tile Drained Paired Watersheds

    Directory of Open Access Journals (Sweden)

    Gurbir Singh

    2018-04-01

    Full Text Available In the Midwestern United States, cover crops are being promoted as a best management practice for managing nutrient and sediment losses from agricultural fields through surface and subsurface water movement. To date, the water quality benefits of cover crops have been inferred primarily from plot scale studies. This project is one of the first to analyze the impacts of cover crops on stream water quality at the watershed scale. The objective of this research was to evaluate nitrogen, phosphorus, and sediment loss in stream water from a no-till corn-soybean rotation planted with winter cover crops cereal rye (Secale cereale and hairy vetch (Vicia villosa in non-tile drained paired watersheds in Illinois, USA. The paired watersheds are under mixed land use (agriculture, forest, and pasture. The control watershed had 27 ha of row-crop agriculture, and the treatment watershed had 42 ha of row crop agriculture with cover crop treatment (CC-treatment. During a 4-year calibration period, 42 storm events were collected and Event Mean Concentrations (EMCs for each storm event were calculated for total suspended solids (TSS, nitrate-N (NO3-N, ammonia-N (NH4-N, dissolved reactive phosphorus (DRP, and total discharge. Predictive regression equations developed from the calibration period were used for calculating TSS, NO3-N, NH4-N, and DRP losses of surface runoff for the CC-treatment watershed. The treatment period consisted of total 18 storm events, seven of which were collected during the cereal rye, eight in the hairy vetch cover crop season and three during cash crop season. Cover crops reduced TSS and discharge by 33% and 34%, respectively in the CC-treatment watershed during the treatment period. However, surprisingly, EMCs for NO3-N, NH4-N, and DRP did not decrease. Stream discharge from the paired-watersheds will continue to be monitored to determine if the current water quality results hold or new patterns emerge.

  8. Simulating the impact of no-till systems on field water fluxes and maize productivity under semi-arid conditions

    Science.gov (United States)

    Mupangwa, W.; Jewitt, G. P. W.

    Crop output from the smallholder farming sector in sub-Saharan Africa is trailing population growth leading to widespread household food insecurity. It is therefore imperative that crop production in semi-arid areas be improved in order to meet the food demand of the ever increasing human population. No-till farming practices have the potential to increase crop productivity in smallholder production systems of sub-Saharan Africa, but rarely do because of the constraints experienced by these farmers. One of the most significant of these is the consumption of mulch by livestock. In the absence of long term on-farm assessment of the no-till system under smallholder conditions, simulation modelling is a tool that provides an insight into the potential benefits and can highlight shortcomings of the system under existing soil, climatic and socio-economic conditions. Thus, this study was designed to better understand the long term impact of no-till system without mulch cover on field water fluxes and maize productivity under a highly variable rainfall pattern typical of semi-arid South Africa. The simulated on-farm experiment consisted of two tillage treatments namely oxen-drawn conventional ploughing (CT) and ripping (NT). The APSIM model was applied for a 95 year period after first being calibrated and validated using measured runoff and maize yield data. The predicted results showed significantly higher surface runoff from the conventional system compared to the no-till system. Predicted deep drainage losses were higher from the NT system compared to the CT system regardless of the rainfall pattern. However, the APSIM model predicted 62% of the annual rainfall being lost through soil evaporation from both tillage systems. The predicted yields from the two systems were within 50 kg ha -1 difference in 74% of the years used in the simulation. In only 9% of the years, the model predicted higher grain yield in the NT system compared to the CT system. It is suggested that

  9. Earthworm populations are affected from Long-Term Crop Sequences and Bio-Covers under No-Tillage

    Science.gov (United States)

    Earthworms are crucial for improving soil biophysical properties in cropping systems. Consequently, effects of cropping rotation and bio-covers were assessed on earthworm populations under no-tillage sites. Main effects of 6 different cropping sequences [corn (Zea mays), cotton (Gossypium hirsutum),...

  10. Influence of cover crop treatments on the performance of a vineyard in a humid region

    Energy Technology Data Exchange (ETDEWEB)

    Trigo-Córdoba, E.; Bouzas-Cid, Y.; Orriols-Fernández, I.; Díaz-Losada, E.; Mirás-Avalos, J.M.

    2015-07-01

    Vineyards are usually managed by tilling the inter-rows to avoid competition from other plants for soil water and nutrients. However, in humid and sub-humid climates, such as that of NW Spain, cover crops may be an advantage for controlling vine vegetative growth and improving berry composition, while reducing management costs. The current study was conducted over three consecutive growing seasons (2012-2014) to assess the effects of establishing three permanent cover crop treatments on water relations, vine physiology, yield and berry composition of a vineyard of the red cultivar ‘Mencía’ (Vitis vinifera L.) located in Leiro, Ourense. Treatments consisted of four different soil management systems: ST, soil tillage; NV, native vegetation; ER, English ryegrass (Lolium perenne L.); and SC, subterranean clover (Trifolium subterraneum L.). Midday stem water potential was more negative in the native vegetation treatment, causing significant reductions in leaf stomatal conductance on certain dates. Total vine leaf area and pruning weight was reduced in the cover crop treatments in the last year of the experiment. Yield was unaffected by the presence of a cover crop. No significant differences among treatments were observed for berry composition; however, wines were positively affected by the SC treatment (higher tannin content and colour intensity and lower malic acid concentration when compared with ST). Wines from the cover crop treatments were preferred by taste panelists. These results indicate that in humid climates cover crop treatments can be useful for reducing vine vegetative growth without compromising yield and berry quality. (Author)

  11. No-till systems on the Chequen Farm in Chile: A success story in bringing practice and science together

    Directory of Open Access Journals (Sweden)

    D. Reicosky

    2014-03-01

    Full Text Available No-till cropping systems provide an opportunity to protect the soil from erosion, while contemporaneously maintaining high yields and contributing to global food security. The historical aspects and the remarkable development of no-till systems on the Chequen Farm in Chile are reviewed. The adoption of no-till over the last 40 years has been a major turning point in reducing the devastating effects of soil erosion and a model for the evolution of sustainable crop production in highly erodible terrain in other parts of the world. The process of adoption of no-till systems in severely eroded foothills of Chile is described, as well as the environmental benefits and the sustainability of the system. The practical aspects of these developments are supported by scientific literature where appropriate, illustrating the value and coincident knowledge gained when combining analogue observations and information with scientific principles.

  12. Crop Response to Gypsum Application to Subtropical Soils Under No-Till in Brazil: a Systematic Review

    Directory of Open Access Journals (Sweden)

    Tales Tiecher

    2018-02-01

    Full Text Available ABSTRACT The use of gypsum to improve the root environment in tropical soils in the southeastern and central-western regions of Brazil is a widespread practice with well-established recommendation criteria. However, only recently gypsum began to be used on subtropical soils in South of Brazil, so available knowledge of its effect on crop yield is incipient and mainly for soils under no-till (NT systems. Avaiable studies span a wide range of responses, from a substantial increase to a slight reduction in crop yield. Also, the specific conditions leading to a favorable effect of gypsum application on crop yield are yet to be accurately identified. The primary objectives of this study were to examine previously reported results to assess the likelihood of a crop response to gypsum and to develop useful recommendation criteria for gypsum application to subtropical soils under NT in Brazil. For this purpose, we examined the results of a total of 73 growing seasons, reported in 20 different scientific publications that assessed grain yield as a function of gypsum rates. Four different scenarios were examined, by the occurrence or not of high subsurface acidity (viz., Al saturation >20 % and/or exchangeable Ca 3 cmolc dm-3 failed to increase crop yield, irrespective of the soil water status. Under these conditions, high gypsum rates (6-15 Mg ha−1 may even reduce grain yield, possibly by inducing K and Mg deficiency. On the other hand, applying gypsum to soils with high subsurface acidity increased yield by 16 % in corn (87 % of cases and by 19 % in winter cereals (83 % of cases, whether or not the soil was water-deficient. By contrast, soybean yield was only increased by gypsum applied in the simultaneous presence of high soil subsurface acidity and water deficiency (average increase 27 %, 100 % of cases.

  13. Adaptability of Wheat Cultivars to a Late-Planted No-Till Fallow Production System

    OpenAIRE

    Arron H. Carter; Stephen S. Jones; Ryan W. Higginbotham

    2011-01-01

    In Washington, over fifty percent of the wheat produced under rainfed conditions receives less than 300 mm of annual precipitation. Hence, a winter wheat-summer fallow cropping system has been adopted to obtain adequate moisture for winter wheat production. Current tilled fallow systems are exposed to significant soil degradation from wind and water erosion. As a result, late-planted no-till fallow systems are being evaluated to mitigate erosion concerns. The objective of this study was to ev...

  14. Morphostructural characterization of soil conventionally tilled with mechanized and animal traction with and without cover crop

    Directory of Open Access Journals (Sweden)

    Ricardo Ralisch

    2010-12-01

    Full Text Available The structural stability and restructuring ability of a soil are related to the methods of crop management and soil preparation. A recommended strategy to reduce the effects of soil preparation is to use crop rotation and cover crops that help conserve and restore the soil structure. The aim of this study was to evaluate and quantify the homogeneous morphological units in soil under conventional mechanized tillage and animal traction, as well as to assess the effect on the soil structure of intercropping with jack bean (Canavalia ensiformis L.. Profiles were analyzed in April of 2006, in five counties in the Southern-Central region of Paraná State (Brazil, on family farms producing maize (Zea mays L., sometimes intercropped with jack bean. The current structures in the crop profile were analyzed using Geographic Information Systems (GIS and subsequently principal component analysis (PCA to generate statistics. Morphostructural soil analysis showed a predominance of compact units in areas of high-intensity cultivation under mechanized traction. The cover crop did not improve the structure of the soil with low porosity and compact units that hamper the root system growth. In areas exposed to animal traction, a predominance of cracked units was observed, where roots grew around the clods and along the gaps between them.

  15. Effect of different cover crops on C and N cycling in sorghum NT systems.

    Science.gov (United States)

    Frasier, Ileana; Quiroga, Alberto; Noellemeyer, Elke

    2016-08-15

    In many no-till (NT) systems, residue input is low and fallow periods excessive, for which reasons soil degradation occurs. Cover crops could improve organic matter, biological activity, and soil structure. In order to study changes in soil carbon, nitrogen and microbial biomass a field experiment (2010-2012) was set up with sorghum (Sorghum bicolor Moench.) monoculture and with cover crops. Treatments were control (NT with bare fallow), rye (Secale cereale L.) (R), rye with nitrogen fertilization (R+N), vetch (Vicia villosa Roth.) (V), and rye-vetch mixture (VR) cover crops. A completely randomized block design with 4 replicates was used. Soil was sampled once a year at 0.06 and 0.12m depth for total C, microbial biomass carbon (MBC) and-nitrogen (MBN) determinations. Shoot and root biomass of sorghum and cover crops, litter biomass, and their respective carbon and nitrogen contents were determined. Soil temperatures at 0.06 and 0.12m depth, volumetric water contents and nitrate concentrations were determined at sowing, and harvest of each crop, and during sorghum's vegetative phase. NT led to a small increase in MBC and MBN, despite low litter and root biomass residue. Cover crops increased litter, root biomass, total C, MBC, and MBN. Relationships between MBC, MBN, and root-C and -N adjusted to logistic models (R(2)=0.61 and 0.43 for C and N respectively). Litter cover improved soil moisture to 45-50% water filled pore space and soil temperatures not exceeding 25°C during the warmest month. Microbial biomass stabilized at 20.1gCm(-2) and 1.9gNm(-2) in the upper 0.06m. Soil litter disappearance was a good indicator of mineral N availability. These findings support the view that cover crops, specifically legumes in NT systems can increase soil ecosystem services related to water and carbon storage, habitat for biodiversity, and nutrient availability. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The Effect of Conservation Tillage and Cover Crop Residue on Beneficial Arthropods and Weed Seed Predation in Acorn Squash.

    Science.gov (United States)

    Quinn, N F; Brainard, D C; Szendrei, Z

    2016-12-01

    Conservation tillage combined with cover crops or mulching may enhance natural enemy activity in agroecosystems by reducing soil disturbance and increasing habitat structural complexity. In particular, weed seed predation can increase with vegetation cover and reduced tillage, indicating that mulches may improve the quality of the habitat for weed seed foraging. The purpose of this study was to quantify the effects of tillage and mulching for conservation biological control in cucurbit fields. The effects of mulch and reduced tillage on arthropods and rates of weed seed loss from arenas were examined in field trials on sandy soils in 2014 and 2015. Experimental factors included tillage and cover crop, each with two levels: strip-tillage or full-tillage, and cover crop mulch (rye residue) or no cover crop mulch (unmulched). Arthropod abundance on the crop foliage was not affected by tillage or cover crops. Contrary to expectations, epigeal natural enemies of insects and rates of weed seed removal either did not respond to treatments or were greater in full-tilled plots and plots without mulch. Our study demonstrates the potential importance of weed seed predators in reducing weed seedbanks in vegetable agroecosystems, and suggests that early-season tillage may not be detrimental to epigeal predator assemblages. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Influence of cover crops on insect pests and predators in conservation tillage cotton.

    Science.gov (United States)

    Tillman, Glynn; Schomberg, Harry; Phatak, Sharad; Mullinix, Benjamin; Lachnicht, Sharon; Timper, Patricia; Olson, Dawn

    2004-08-01

    In fall 2000, an on-farm sustainable agricultural research project was established for cotton, Gossypium hirsutum L., in Tift County, Georgia. The objective of our 2-yr research project was to determine the impact of several cover crops on pest and predator insects in cotton. The five cover crop treatments included 1) cereal rye, Secale cereale L., a standard grass cover crop; 2) crimson clover, Trifolium incarnatum L., a standard legume cover crop; 3) a legume mixture of balansa clover, Trifolium michelianum Savi; crimson clover; and hairy vetch, Vicia villosa Roth; 4) a legume mixture + rye combination; and 5) no cover crop in conventionally tilled fields. Three main groups or species of pests were collected in cover crops and cotton: 1) the heliothines Heliothis virescens (F.) and Helicoverpa zea (Boddie); 2) the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois); and 3) stink bugs. The main stink bugs collected were the southern green stink bug, Nezara viridula (L.); the brown stink bug, Euschistus servus (Say); and the green stink bug, Acrosternum hilare (Say). Cotton aphids, Aphis gossypii Glover, were collected only on cotton. For both years of the study, the heliothines were the only pests that exceeded their economic threshold in cotton, and the number of times this threshold was exceeded in cotton was higher in control cotton than in crimson clover and rye cotton. Heliothine predators and aphidophagous lady beetles occurred in cover crops and cotton during both years of the experiment. Geocoris punctipes (Say), Orius insidiosus (Say), and red imported fire ant, Solenopsis invicta Buren were relatively the most abundant heliothine predators observed. Lady beetles included the convergent lady beetle, Hippodamia convergens Guérin-Méneville; the sevenspotted lady beetle, Coccinella septempunctata L.; spotted lady beetle, Coleomegilla maculata (DeGeer); and the multicolored Asian lady beetle, Harmonia axyridis (Pallas). Density of G. punctipes was

  18. Doses and application seasons of potassium on soybean crop in succession the cover crops

    Directory of Open Access Journals (Sweden)

    Amilton Ferreira Silva

    2014-02-01

    Full Text Available Potassium (K is the second nutrient that is required in larger amounts by soybean crop. With the use of high doses of that nutrient and increase of no-tillage areas in last years, some changes occurred in ways of this nutrient application, as well as the introduction of cover crops in the system for straw formation. Due those facts, the aim with this work was to study doses and times of potassium application for soybean sowed as succession for cover crops in no-tillage system, in a clayey Distrofic Red Latosol, in cerrado region. The experimental design was a randomized block with treatments arranged in 3x3x5 factorial scheme, with the following factors, cover crops: Pearl millet (Pennisetum glaucum and Proso millet (Panicum miliaceum and a control (fallow area, rates of K2O (0, 50 e 100 kg ha-1 and K2O application forms (100% in the cover crops; 100% at sowing of soybean; 100% in topdressing in soybean; 50% at sowing cover crops + 50% at soybean sowing; 50% at soybean sowing + 50% in topdressing in the soybean with four replicates. The Pennisetum glaucum as soybean predecessor crop yields higher dry matter content than the Panicum miliaceum in a short period of time. In clay soil with high content of potassium there was no response to the applied potassium levels. Full doses of potassium maintenance fertilization can be applied in the predecessor cover crop, at sowing or topdressing in soybean crop.

  19. Stratification of soil chemical and microbial properties under no-till management after lime amendment

    Science.gov (United States)

    Adoption of no-till (NT) technology in the dryland cropping region of the inland Pacific Northwest (iPNW) has dramatically reduced soil erosion compared to conventional tillage. Soils under continuous NT, however, often produce stratified soil acidification compared with conventional tillage due to ...

  20. Winter cover crops as a best management practice for reducing nitrogen leaching

    Science.gov (United States)

    Ritter, W. F.; Scarborough, R. W.; Chirnside, A. E. M.

    1998-10-01

    The role of rye as a winter cover crop to reduce nitrate leaching was investigated over a three-year period on a loamy sand soil. A cover crop was planted after corn in the early fall and killed in late March or early April the following spring. No-tillage and conventional tillage systems were compared on large plots with irrigated corn. A replicated randomized block design experiment was conducted on small plots to evaluate a rye cover crop under no-tillage and conventional tillage and with commercial fertilizer, poultry manure and composted poultry manure as nitrogen fertilizer sources. Nitrogen uptake by the cover crop along with nitrate concentrations in groundwater and the soil profile (0-150 cm) were measured on the large plots. Soil nitrate concentrations and nitrogen uptake by the cover crop were measured on the small plots. There was no significant difference in nitrate concentrations in the groundwater or soil profile with and without a cover crop in either no-tillage or conventional tillage. Annual amounts of nitrate-N leached to the water-table varied from 136.0 to 190.1 kg/ha in 1989 and from 82.4 to 116.2 kg/ha in 1991. Nitrate leaching rates were somewhat lower with a cover crop in 1989, but not in 1990. There was no statistically significant difference in corn grain yields between the cover crop and non-cover crop treatments. The planting date and adequate rainfall are very important in maximizing nitrogen uptake in the fall with a rye cover crop. On the Delmarva Peninsula, the cover crop should probably be planted by October 1 to maximize nitrogen uptake rates in the fall. On loamy sand soils, rye winter cover crops cannot be counted on as a best management practice for reducing nitrate leaching in the Mid-Atlantic states.

  1. Climate Impacts of Cover Crops

    Science.gov (United States)

    Lombardozzi, D.; Wieder, W. R.; Bonan, G. B.; Morris, C. K.; Grandy, S.

    2016-12-01

    Cover crops are planted in agricultural rotation with the intention of protecting soil rather than harvest. Cover crops have numerous environmental benefits that include preventing soil erosion, increasing soil fertility, and providing weed and pest control- among others. In addition to localized environmental benefits, cover crops can have important regional or global biogeochemical impacts by increasing soil organic carbon, changing emissions of greenhouse trace gases like nitrous oxide and methane, and reducing hydrologic nitrogen losses. Cover crops may additionally affect climate by changing biogeophysical processes, like albedo and latent heat flux, though these potential changes have not yet been evaluated. Here we use the coupled Community Atmosphere Model (CAM5) - Community Land Model (CLM4.5) to test how planting cover crops in the United States may change biogeophysical fluxes and climate. We present seasonal changes in albedo, heat fluxes, evaporative partitioning, radiation, and the resulting changes in temperature. Preliminary analyses show that during seasons when cover crops are planted, latent heat flux increases and albedo decreases, changing the evaporative fraction and surface temperatures. Understanding both the biogeophysical changes caused by planting cover crops in this study and the biogeochemical changes found in other studies will give a clearer picture of the overall impacts of cover crops on climate and atmospheric chemistry, informing how this land use strategy will impact climate in the future.

  2. Impacts of Cover Crops on Water and Nutrient Dynamics in Agroecosystems

    Science.gov (United States)

    Williard, K.; Swanberg, S.; Schoonover, J.

    2013-05-01

    Intensive cropping systems of corn (Zea Mays L.) and soybeans (Glycine max) are commonly leaky systems with respect to nitrogen (N). Reactive N outputs from agroecosystems can contribute to eutrophication and hypoxic zones in downstream water bodies and greenhouse gas (N2O) emissions. Incorporating cover crops into temperate agroecosystem rotations has been promoted as a tool to increase nitrogen use efficiency and thus limit reactive N outputs to the environment. Our objective was determine how cereal rye (Secale cereal L.) and annual ryegrass (Lolium multiflorum) cover crops impact nutrient and soil water dynamics in an intensive corn and soybean cropping rotation in central Illinois. Cover crops were planted in mid to late October and terminated in early April prior to corn or soybean planting. In the spring just prior to cover crop termination, soil moisture levels were lower in the cover crop plots compared to no cover plots. This can be a concern for the subsequent crop in relatively dry years, which the Midwestern United States experienced in 2012. No cover plots had greater nutrient leaching below the rooting zone compared to cover crop areas, as expected. The cover crops were likely scavenging nutrients during the fall and early spring and should provide nutrients to the subsequent crop via decomposition and mineralization of the cover crop residue. Over the long term, cover crop systems should produce greater inputs and cycling of carbon and N, increasing the productivity of crops due to the long-term accumulation of soil organic matter. This study demonstrates that there may be short term trade-offs in reduced soil moisture levels that should be considered alongside the long term nutrient scavenging and recycling benefits of cover crops.

  3. Cover crops and pruning in Bobal and Tempranillo vineyards have little influence on grapevine nutrition

    Directory of Open Access Journals (Sweden)

    Pedro Pérez-Bermúdez

    2016-06-01

    Full Text Available ABSTRACT Cover crops may improve vineyard soil properties, grapevine nutrient status and berry composition, however, factors such as cover crop type, annual rainfall, climate and irrigation may change their effects on vineyards. From 2008 to 2011, the effects of a non-permanent cover crop and two pruning techniques on soil as well as vine nutrients and grapevine performance of two vineyards (cv. Tempranillo and cv. Bobal were evaluated. For that purpose, two legumes were sown in inter-rows of hand-pruned vines in February and were tilled at flowering. Soil tillage, or cover cropping, was combined with either light pruning or severe pruning to study foliar nutrient variations. Soil N, P, K and total organic carbon (TOC were determined in samples taken from the Ap1 horizon in January prior to vine pruning. Foliar N, P, K contents were measured in leaves sampled upon grape veraison. The differences between vineyards with cover cropping and bare soils suggest that legumes positively affected soil N (1.55 vs. 1.68 g kg−1 and 1.49 vs. 1.76 g kg−1 in Bobal and Tempranillo vineyards, respectively and soil organic matter (SOM (12.5 vs. 15.5 g kg−1 and 12.9 vs. 17.2 g kg−1 in Bobal and Tempranillo vineyards, respectively. The use of cover crops did not affect grapevine yields nor quality of Bobal and Tempranillo berry . Cover crops, or light pruning, did not alter the foliar N, P, K contents of both cultivars since their concentrations were similar to those found in the leaves from vineyards with soil tillage or severe pruning.

  4. Nitrate Leaching from Winter Cereal Cover Crops Using Undisturbed Soil-Column Lysimeters.

    Science.gov (United States)

    Meisinger, John J; Ricigliano, Kristin A

    2017-05-01

    Cover crops are important management practices for reducing nitrogen (N) leaching, especially in the Chesapeake Bay watershed, which is under total maximum daily load (TMDL) restraints. Winter cereals are common cool-season crops in the Bay watershed, but studies have not directly compared nitrate-N (NO-N) leaching losses from these species. A 3-yr cover crop lysimeter study was conducted in Beltsville, MD, to directly compare NO-N leaching from a commonly grown cultivar of barley ( L.), rye ( L.), and wheat ( L.), along with a no-cover control, using eight tension-drained undisturbed soil column lysimeters in a completely randomized design with two replicates. The lysimeters were configured to exclude runoff and to estimate NO-N leaching and flow-weighted NO-N concentration (FWNC). The temporal pattern of NO-N leaching showed a consistent highly significant ( leaching with cover crops compared with no cover but showed only small and periodically significant ( leaching was more affected by the quantity of establishment-season (mid-October to mid-December) precipitation than by cover crop species. For example, compared with no cover, winter cereal covers reduced NO-N leaching 95% in a dry year and 50% in wet years, with corresponding reductions in FWNC of 92 and 43%, respectively. These results are important for scientists, nutrient managers, and policymakers because they directly compare NO-N leaching from winter cereal covers and expand knowledge for developing management practices for winter cereals that can improve water quality and increase N efficiency in cropping systems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. Effects of Cover Crop Species and Season on Population Dynamics of Escherichia coli and Listeria innocua in Soil.

    Science.gov (United States)

    Reed-Jones, Neiunna L; Marine, Sasha Cahn; Everts, Kathryne L; Micallef, Shirley A

    2016-01-04

    Cover crops provide several ecosystem services, but their impact on enteric bacterial survival remains unexplored. The influence of cover cropping on foodborne pathogen indicator bacteria was assessed in five cover crop/green manure systems: cereal rye, hairy vetch, crimson clover, hairy vetch-rye and crimson clover-rye mixtures, and bare ground. Cover crop plots were inoculated with Escherichia coli and Listeria innocua in the fall of 2013 and 2014 and tilled into the soil in the spring to form green manure. Soil samples were collected and the bacteria enumerated. Time was a factor for all bacterial populations studied in all fields (P cover crop was a factor for E. coli in year 1 (P = 0.004) and for L. innocua in year 2 (P = 0.011). In year 1, E. coli levels were highest in the rye and hairy vetch-rye plots. In year 2, L. innocua levels were higher in hairy vetch-rye (P = 0.01) and hairy vetch (P = 0.03) plots than in the rye plot. Bacterial populations grew (P cover crops/green manures on bacterial population dynamics in soil varied, being influenced by bacterial species, time from inoculation, soil temperature, rainfall, and tillage; this reveals the need for long-term studies. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. The impact of no-tillage cultivation and white mustard as a cover crop on weed infestation and yield of carrot and red beet

    Directory of Open Access Journals (Sweden)

    Andrzej Borowy

    2015-03-01

    Full Text Available In a two-year field experiment, no-tillage cultivation using white mustard (Sinapis alba L. ‘Bardena’, 30 kg ha−1, as a cover crop did not influence emergence of red beet (Beta vulgaris L. ‘Czerwona Kula REW’ and had a favorable effect on emergence of carrot (Daucus carota L. ‘Berlikumer 2 – Perfekcja REW’. However, further growth of both vegetables was significantly slower under no-tillage cultivation. Both vegetables produced a higher yield of roots and the diameter of these roots was bigger under conventional cultivation. The effect of cultivation method on the content of total nitrogen, phosphorus, potassium, calcium and magnesium in carrot and red beet leaves varied, while the content of dry matter, monosaccharides and total sugars was significantly higher in the roots of both vegetables harvested under no-tillage cultivation. The number of weeds growing on no-tilled plots covered with mustard mulch 4 weeks after seed sowing was lower by about 75%, but their fresh weight was higher more than 6 times in comparison to that under conventional cultivation. This was caused by the emergence of wintering and winter hardy weeds in places not covered by mustard plants in the autumn of the year preceding the cultivation of vegetables. Next year, they started to grow in the early spring and some of them produced a considerable amount of fresh weight and attained the flowering stage in the middle of April.

  7. Effect of cover crops on emergence and growth of carrot (Daucus carota L. in no-plow and traditional tillage

    Directory of Open Access Journals (Sweden)

    Marzena Błażewicz-Woźniak

    2015-03-01

    Full Text Available The aim of the experiment was to determine the influence of cover crop biomass incorporated into the soil at different times and using different treatments on carrot emergence and growth. 7 species of cover crops were included in the study: Secale cereale, Avena sativa, Vicia sativa, Sinapis alba, Phacelia tanacetifolia, Fagopyrum esculentum, and Helianthus annuus.  Number of emerged carrot plants significantly depended on the cover crop used and on the method of pre-winter and spring pre-sowing tillage. Carrot emerged best after a rye or oats cover crop. Regardless of the cover crop species used, the largest number of carrots emerged in cultivation on ridges. In other variants of no-plow tillage, number of seedlings was significantly lower and did not differ from that under traditional plow tillage. The highest leaf rosettes were formed by carrot growing after a rye or oats cover crop. The highest rosettes were produced by carrots in the treatments where tillage was limited to the use of a tillage implement in spring and the lowest ones after pre-winter plowing. The effect of tillage on the emergence and height of carrot leaves largely depended on weather conditions in the successive years of the study. The largest number of leaves was found in carrots grown after a buckwheat cover crop and in cultivation without cover crop, while the smallest one after phacelia and white mustard. Carrots produced the largest number of leaves after a sunflower cover crop and the use of a tillage implement in spring, while the number of leaves was lowest when the mustard biomass was incorporated into the soil in spring. The use of cover crops significantly increased the mass of leaves produced by carrot as compared to the cultivation without cover crop. The largest mass of leaves was produced by carrots grown after the phacelia and mustard cover crops. Conventional plow tillage and pre-winter tillage using a stubble cultivator promoted an increase in the mass

  8. Influence of nitrogen fertilization and green manure on the economic feasibility of no-tilled wheat in the Cerrado

    Directory of Open Access Journals (Sweden)

    Douglas de Castilho Gitti

    2012-04-01

    Full Text Available The search for higher profitability in wheat crop with cost reduction technologies that may promote sustainability is an important matter in Brazilian agriculture. This study evaluated the profitability of no-tilled wheat, reducing nitrogen topdressing doses with the cultivation of green manure before the wheat crop. The experiment was carried out in Selvíria (MS, Brazil, in 2009/10. The experiment was arranged in a randomized block design with 36 treatments in splitplots and four replicates. The plots were formed by six types of green manure: Cajanus cajan L. BRS Mandarin, Crotalaria juncea L., Pennisetum americanum L. BRS 1501, fallow area and mixed cropping of Pennisetum americanum L. + Cajanus cajan L. and Pennisetum americanum L. + crotalaria which provided straw for no-tilled wheat in the winter, following the rice crop in the summer. The subplots were formed by six levels of topdressing nitrogen (0, 25, 50, 75, 100 and 125 kg N ha-1 using urea as a nitrogen source. The wheat grown after green manure in the previous winter crop, with no nitrogen topdressing and a rate of 25 kg ha-1 N, had more frequently production costs above the gross income. Wheat production cost after the mixed cropping Pennisetum americanum L. + Cajanus cajan L. and Pennisetum americanum L. + Crotalaria juncea L. from the previous winter crop, combined with nitrogen rates of 50 and 75 kg N ha-1, provided better profitability compared with the other green manures evaluated.

  9. Winter cover crops on processing tomato yield, quality, pest pressure, nitrogen availability, and profit margins.

    Science.gov (United States)

    Belfry, Kimberly D; Trueman, Cheryl; Vyn, Richard J; Loewen, Steven A; Van Eerd, Laura L

    2017-01-01

    Much of cover crop research to date focuses on key indicators of impact without considering the implications over multiple years, in the absence of a systems-based approach. To evaluate the effect of three years of autumn cover crops on subsequent processing tomato (Solanum lycopersicum L.) production in 2010 and 2011, a field split-split-plot factorial design trial with effects of cover crop type, urea ammonium nitrate fertilizer rate (0 or 140 kg N ha-1 preplant broadcast incorporated) and tomato cultivar (early vs. late) was conducted. The main plot factor, cover crop, included a no cover crop control, oat (Avena sativa L.), winter cereal rye (hereafter referred to as rye) (Secale cereale L.), oilseed radish (OSR) (Raphanus sativus L. var. oleiferus Metzg Stokes), and mix of OSR and rye (OSR + rye) treatments. Cover crop biomass of 0.5 to 2.8 and 1.7 to 3.1 Mg ha-1 was attained in early Oct. and the following early May, respectively. In general, OSR increased soil mineral N during cover crop growth and into the succeeding summer tomato growing season, while the remaining cover crops did not differ from the no cover crop control. The lack of a cover crop by N rate interaction in soil and plant N analyses at harvest suggests that growers may not need to modify N fertilizer rates to tomatoes based on cover crop type. Processing tomato fruit quality at harvest (rots, insect or disease damage, Agtron colour, pH, or natural tomato soluble solids (NTSS)) was not affected by cover crop type. In both years, marketable yield in the no cover crop treatment was lower or not statistically different than all planted cover crops. Partial profit margins over both years were 1320 $ ha-1 higher with OSR and $960 higher with oat compared to the no cover crop control. Thus, results from a systems-based approach suggest that the cover crops tested had no observed negative impact on processing tomato production and have the potential to increase marketable yield and profit margins.

  10. Winter cover crops on processing tomato yield, quality, pest pressure, nitrogen availability, and profit margins.

    Directory of Open Access Journals (Sweden)

    Kimberly D Belfry

    Full Text Available Much of cover crop research to date focuses on key indicators of impact without considering the implications over multiple years, in the absence of a systems-based approach. To evaluate the effect of three years of autumn cover crops on subsequent processing tomato (Solanum lycopersicum L. production in 2010 and 2011, a field split-split-plot factorial design trial with effects of cover crop type, urea ammonium nitrate fertilizer rate (0 or 140 kg N ha-1 preplant broadcast incorporated and tomato cultivar (early vs. late was conducted. The main plot factor, cover crop, included a no cover crop control, oat (Avena sativa L., winter cereal rye (hereafter referred to as rye (Secale cereale L., oilseed radish (OSR (Raphanus sativus L. var. oleiferus Metzg Stokes, and mix of OSR and rye (OSR + rye treatments. Cover crop biomass of 0.5 to 2.8 and 1.7 to 3.1 Mg ha-1 was attained in early Oct. and the following early May, respectively. In general, OSR increased soil mineral N during cover crop growth and into the succeeding summer tomato growing season, while the remaining cover crops did not differ from the no cover crop control. The lack of a cover crop by N rate interaction in soil and plant N analyses at harvest suggests that growers may not need to modify N fertilizer rates to tomatoes based on cover crop type. Processing tomato fruit quality at harvest (rots, insect or disease damage, Agtron colour, pH, or natural tomato soluble solids (NTSS was not affected by cover crop type. In both years, marketable yield in the no cover crop treatment was lower or not statistically different than all planted cover crops. Partial profit margins over both years were 1320 $ ha-1 higher with OSR and $960 higher with oat compared to the no cover crop control. Thus, results from a systems-based approach suggest that the cover crops tested had no observed negative impact on processing tomato production and have the potential to increase marketable yield and profit

  11. Creating Carbon Offsets in Agriculture through No-Till Cultivation. A Meta-Analysis of Costs and Carbon Benefits

    International Nuclear Information System (INIS)

    Manley, J.; Van Kooten, G.C.; Moeltner, K.; Johnson, D.W.

    2005-01-01

    Carbon terrestrial sinks are often seen as a low-cost alternative to fuel switching and reduced fossil fuel use for lowering atmospheric CO2. To determine whether this is true for agriculture, one meta-regression analysis (52 studies, 536 observations) examines the costs of switching from conventional tillage to no-till, while another (51 studies, 374 observations) compares carbon accumulation under the two practices. Costs per ton of carbon uptake are determined by combining the two results. The viability of agricultural carbon sinks is found to vary by region and crop, with no-till representing a low-cost option in some regions (costs of less than $10 per tC), but a high-cost option in others (costs of 100-$400 per tC). A particularly important finding is that no-till cultivation may store no carbon at all if measurements are taken at sufficient depth. In some circumstances no-till cultivation may yield a triple dividend of carbon storage, increased returns and reduced soil erosion, but in many others creating carbon offset credits in agricultural soils is not cost effective because reduced tillage practices store little or no carbon

  12. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    Directory of Open Access Journals (Sweden)

    Moslem Ladoni

    Full Text Available Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover and non-leguminous (winter rye cover crops on potentially mineralizable N (PMN and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management

  13. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    Science.gov (United States)

    Ladoni, Moslem; Kravchenko, Alexandra N; Robertson, G Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop

  14. Produção de fitomassa por plantas de cobertura e mineralização de seus resíduos em plantio direto Cover crops biomass production and its residues mineralization in a Brazilian no-till Oxisol

    Directory of Open Access Journals (Sweden)

    Jose Luiz Rodrigues Torres

    2008-03-01

    Full Text Available O objetivo deste trabalho foi avaliar a produção de fitomassa seca, a taxa de decomposição das palhadas e as quantidades de macronutrientes (N, P, Ca, Mg e S liberadas dos resíduos vegetais de sete plantas de cobertura de solo, em condições de Cerrado, por dois anos. As plantas de cobertura avaliadas foram: milheto (Pennisetum americanum sin. typhoides, braquiária (Brachiaria brizantha cv. Marandu, sorgo forrageiro [Sorghum bicolor (L. Moench], guandu [Cajanus cajan (L. Millsp.], crotalária juncea (Crotalaria juncea L., aveia-preta (Avena strigosa Schreb e a vegetação espontânea de uma parcela em pousio. Utilizou-se o delineamento em blocos ao acaso, com quatro repetições, implantado em um Latossolo Vermelho, textura média. Avaliou-se a produção de fitomassa seca 110 dias após a semeadura. A taxa de decomposição foi quantificada por meio de sacolas de náilon contendo os resíduos culturais, coletadas em intervalos regulares. Observou-se que milheto e crotalária são as coberturas gramínea e leguminosa com maior produção de fitomassa seca e acúmulo de N, nos dois períodos avaliados. A maior taxa de decomposição das plantas de cobertura e de liberação de nutrientes ocorre aos 42 dias após a dessecação. Os maiores tempos de meia-vida foram observados no período de menor precipitação pluvial.The objective of this work was to evaluate dry biomass production, decomposition rate and macronutrients release (N, P, Ca, Mg and S of cover crops cultural residues, in a no-till savanna soil. The cover crops tested were: pearl millet (Pennisetum americanum sin. typhoides, brachiaria grass (Brachiaria brizantha cv. Marandu, sorghum [Sorghum bicolor (L. Moench], pigeon pea [Cajanus cajan (L. Millsp.], sunn hemp (Crotalaria juncea L. and black oat (Avena strigosa Schreb, compared to a fallow plot (control. The experiment was carried out in an Oxisol, medium texture. A randomized block design, in a split-plot array in time

  15. Soil Aggregation, Organic Carbon Concentration, and Soil Bulk Density As Affected by Cover Crop Species in a No-Tillage System

    Directory of Open Access Journals (Sweden)

    Adriano Stephan Nascente

    2015-06-01

    Full Text Available Soil aggregation and the distribution of total organic carbon (TOC may be affected by soil tillage and cover crops. The objective of this study was to determine the effects of crop rotation with cover crops on soil aggregation, TOC concentration in the soil aggregate fractions, and soil bulk density under a no-tillage system (NTS and conventional tillage system (CTS, one plowing and two disking. This was a three-year study with cover crop/rice/cover crop/rice rotations in the Brazilian Cerrado. A randomized block experimental design with six treatments and three replications was used. The cover crops (treatments were: fallow, Panicum maximum, Brachiaria ruziziensis, Brachiaria brizantha, and millet (Pennisetum glaucum. An additional treatment, fallow plus CTS, was included as a control. Soil samples were collected at the depths of 0.00-0.05 m, 0.05-0.10 m, and 0.10-0.20 m after the second rice harvest. The treatments under the NTS led to greater stability in the soil aggregates (ranging from 86.33 to 95.37 % than fallow plus CTS (ranging from 74.62 to 85.94 %. Fallow plus CTS showed the highest number of aggregates smaller than 2 mm. The cover crops affected soil bulk density differently, and the millet treatment in the NTS had the lowest values. The cover crops without incorporation provided the greatest accumulation of TOC in the soil surface layers. The TOC concentration was positively correlated with the aggregate stability index in all layers and negatively correlated with bulk density in the 0.00-0.10 m layer.

  16. Soil Water Improvements with the Long Term Use of a Winter Rye Cover Crop

    Science.gov (United States)

    Basche, A.; Kaspar, T.; Archontoulis, S.; Jaynes, D. B.; Sauer, T. J.; Parkin, T.; Miguez, F.

    2015-12-01

    The Midwestern United States, a region that produces one-third of maize and one-quarter of soybeans globally, is projected to experience increasing rainfall variability with future climate change. One approach to mitigate climate impacts is to utilize crop and soil management practices that enhance soil water storage, reducing the risks of flooding and runoff as well as drought-induced crop water stress. While some research indicates that a winter cover crop in a maize-soybean rotation increases soil water, producers continue to be concerned that water use by cover crops will reduce water for a following cash crop. We analyzed continuous in-field soil moisture measurements over from 2008-2014 at a Central Iowa research site that has included a winter rye cover crop in a maize-soybean rotation for thirteen years. This period of study included years in the top third of wettest years on record (2008, 2010, 2014) as well as years in the bottom third of driest years (2012, 2013). We found the cover crop treatment to have significantly higher soil water storage from 2012-2014 when compared to the no cover crop treatment and in most years greater soil water content later in the growing season when a cover crop was present. We further found that the winter rye cover crop significantly increased the field capacity water content and plant available water compared to the no cover crop treatment. Finally, in 2012 and 2013, we measured maize and soybean biomass every 2-3 weeks and did not see treatment differences in crop growth, leaf area or nitrogen uptake. Final crop yields were not statistically different between the cover and no cover crop treatment in any of the years of this analysis. This research indicates that the long-term use of a winter rye cover crop can improve soil water dynamics without sacrificing cash crop growth.

  17. Wheat Cultivar Performance and Stability between No-Till and Conventional Tillage Systems in the Pacific Northwest of the United States

    Directory of Open Access Journals (Sweden)

    Arron H. Carter

    2013-02-01

    Full Text Available In Washington, over fifty percent of the wheat produced under rainfed conditions receives less than 300 mm of annual precipitation. Hence, a winter wheat-summer fallow cropping system has been established to obtain adequate moisture for winter wheat production. Current tilled fallow systems receive significant soil erosion through both wind and water. As a result, no-till chemical fallow systems are being adopted to mitigate erosion concerns. The objective of this study was to evaluate current Pacific Northwest cultivars under no-till chemical fallow and tilled fallow systems to identify cultivars adapted to a late-planted no-till system. Twenty-one cultivars were planted in a split-plot design with fallow type as the main plot and genotype as the sub-plot. Four replications were planted at two locations over three years. Data was collected on heading date, grain yield and grain volume weight. Analysis of variance was conducted on data from each year and location. Results were significant for all traits. Cultivars in the late-planted no-till system yielded an average of 39% less than the tilled fallow system. It is evident that cultivars vary in their adaptability and yield stability across production systems. Chukar and Eltan displayed the highest levels of yield stability, and growers who wish to plant winter wheat in a late-planted no-till system may benefit from choosing these cultivars.

  18. Crop rotation and seasonal effects on fatty acid profiles of neutral and phospholipids extracted from no-till agricultural soils

    DEFF Research Database (Denmark)

    Ferrari, Alejandro E.; Ravnskov, Sabine; Larsen, John

    2015-01-01

    practices while NLFA 20:0 appears to be a good marker of HRsoils despite season or location. The PLFA-based taxonomic biomarkers for total bacteria, Gramnegativebacteria and arbuscular mycorrhiza showed a significant trend NE>HR>LR in the wintersampling. HR management was also characterized by high levels......Analysis of phospholipids (PLFA) and neutral lipids fatty acids (NLFA) was used to characterizeno-till productive agricultural soils associated with different crop rotation levels, replicated across a400 km transect in the Argentinean pampas, during two sampling seasons, summer and winter...

  19. Allelopathic cover crop of rye for integrated weed control in sustainable agroecosystems

    Directory of Open Access Journals (Sweden)

    Vincenzo Tabaglio

    2013-02-01

    Full Text Available The allelopathic potential of rye (Secale cereale L. is mainly due to phytotoxic benzoxazinones, compounds that are produced and accumulated in young tissues to different degrees depending on cultivar and environmental influences. Living rye plants exude low levels of benzoxazinones, while cover crop residues can release from 12 to 20 kg ha–1. This paper summarizes the results obtained from several experiments performed in both controlled and field environments, in which rye was used as a cover crop to control summer weeds in a following maize crop. Significant differences in benzoxazinoid content were detected between rye cultivars. In controlled environments, rye mulches significantly reduced germination of some broadleaf weeds. Germination and seedling growth of Amaranthus retroflexus and Portulaca oleracea were particularly affected by the application of rye mulches, while Chenopodium album was hardly influenced and Abutilon theophrasti was advantaged by the presence of the mulch. With reference to the influence of agronomic factors on the production of benzoxazinoids, nitrogen fertilization increased the content of allelochemicals, although proportionally less than dry matter. The field trial established on no-till maize confirmed the significant weed suppressiveness of rye mulch, both for grass and broadleaf weeds. A significant positive interaction between nitrogen (N fertilization and notillage resulting in the suppression of broadleaf weeds was observed. The different behavior of the weeds in the presence of allelochemicals was explained in terms of differential uptake and translocation capabilities. The four summer weeds tested were able to grow in the presence of low amounts of benzoxazolin-2(3H-one (BOA, between 0.3 and 20 mmol g–1 fresh weight. Although there were considerable differences in their sensitivity to higher BOA concentrations, P. oleracea, A. retroflexus, and Ch. album represented a group of species with a consistent

  20. ORGANIC MATTER FRACTIONS OF AN IRRIGATED OXISOL UNDER NO - TILL AND CONVENTIONAL TILLAGE IN THE BRAZILIAN SEMI - ARID REGION

    Directory of Open Access Journals (Sweden)

    RAFAEL PEREIRA SALES

    2017-01-01

    Full Text Available The replacement of natural vegetation by crop systems directly impacts the soil organic matter fractions. The objective of this study was to evaluate the total organic carbon (TOC and nitrogen (TN contents in different fractions of the soil organic matter (SOM of an Oxisol of the Brazilian semiarid region under different irrigated crops and different soil management systems. Seven treatments were evaluated, which consisted of two soil management systems (no - till and conventional tillage and three crops (maize, sunflower and sorghum, using as reference the soil under a native forest (NF. The summer crops preceded common bean crops in the autumn - winter. The total organic carbon content, total nitrogen, carbon content in humic substances and their constituents (fulvic acids, humic acids and humin and labile, non - labile and water - soluble carbon contents were evaluated two years and three months after the experiment implementation to determine the carbon lability (L lability index (LI, partitioning index (CPI and management index (CMI. The greatest carbon, nitrogen and organic matter contents in the soil surface layer (0.00 - 0.05 m were found in crops under no - till system (NTS, especially maize. The crops under NTS presented greater carbon content in humic substances than the conventional tillage system (CTS ones in the layer 0.05 - 0.10 m. The crops under NTS presented greater sustainability in the Brazilian semiarid region compared with those under CTS, as shown by their higher CMI in the soil surface layer.

  1. Soil Organic Carbon Response to Cover Crop and Nitrogen Fertilization under Bioenergy Sorghum

    Science.gov (United States)

    Sainju, U. M.; Singh, H. P.; Singh, B. P.

    2015-12-01

    Removal of aboveground biomass for bioenergy/feedstock in bioenergy cropping systems may reduce soil C storage. Cover crop and N fertilization may provide additional crop residue C and sustain soil C storage compared with no cover crop and N fertilization. We evaluated the effect of four winter cover crops (control or no cover crop, cereal rye, hairy vetch, and hairy vetch/cereal rye mixture) and two N fertilization rates (0 and 90 kg N ha-1) on soil organic C (SOC) at 0-5, 5-15, and 15-30 cm depths under forage and sweet sorghums from 2010 to 2013 in Fort Valley, GA. Cover crop biomass yield and C content were greater with vetch/rye mixture than vetch or rye alone and the control, regardless of sorghum species. Soil organic C was greater with vetch/rye than rye at 0-5 and 15-30 cm in 2011 and 2013 and greater with vetch than rye at 5-15 cm in 2011 under forage sorghum. Under sweet sorghum, SOC was greater with cover crops than the control at 0-5 cm, but greater with vetch and the control than vetch/rye at 15-30 cm. The SOC increased at the rates of 0.30 Mg C ha-1 yr-1 at 0-5 cm for rye and the control to 1.44 Mg C ha-1 yr-1 at 15-30 cm for vetch/rye and the control from 2010 to 2013 under forage sorghum. Under sweet sorghum, SOC also increased linearly at all depths from 2010 to 2013, regardless of cover crops. Nitrogen fertilization had little effect on SOC. Cover crops increased soil C storage compared with no cover crop due to greater crop residue C returned to the soil under forage and sweet sorghum and hairy vetch/cereal rye mixture had greater C storage than other cover crops under forage sorghum.

  2. Nitrate Leaching From Grain Maize After Different Tillage Methods and Long/Short Term Cover Cropping

    DEFF Research Database (Denmark)

    Hansen, Elly Møller

    trial initiated in 1968 on a coarse sandy soil. The previous trial included spring sown crops undersown (with or without) perennial ryegrass (Lolium perenne L.) as cover crop, two N-rates (90 and 120 kg N ha-1) and different tillage methods (shallow tillage and ploughing autumn or spring). With maize......) previous history of long-term cover cropping, ii) soil tillage methods, iii) N rates and iv) present short-term use of cover cropping in maize. Preliminary results from 2009 – 2011 suggest that leaching after a history of cover cropping tended to be higher than after no history of cover cropping......, but the effect was insignificant. The effect of tillage and previous N rates were also insignificant but the present use of cover crops had a small but significant decreasing effect on leaching compared to no cover cropping. The cover crop was well established in both years but grew less vigorously during autumn...

  3. Use of nitrogen from fertilizer and cover crops by upland rice in an Oxisol under no-tillage in the Cerrado

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Edson Cabral da; Muraoka, Takashi; Bendassolli, Jose Alberto, E-mail: edsoncabralsilva@gmail.com, E-mail: muraoka@cena.usp.br, E-mail: jab@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Franzini, Vinicius Ide, E-mail: vinicius.franzini@embrapa.br [Embrapa Amazonia Oriental, Belem, PA (Brazil); Sakadevan, Karuppan, E-mail: K.Sakadevan@iaea.org [Joint FAO/IAEA, Division of Nuclear Techniques in Food and Agriculture, Soil and Water Management and Crop Nutrition Subprogram, Vienna International Centre, Vienna (Austria); Buzetti, Salatier; Arf, Orivaldo, E-mail: sbuzetti@agr.feis.unesp.br, E-mail: arf@agr.feis.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Ilha Solteira, SP (Brazil). Faculdade de Engenharia; Soares, Frederico Antonio Loureiro, E-mail: fredalsoares@hotmail.com [Instituto Federal Goiano, Rio Verde, GO (Brazil)

    2016-06-15

    The objective of this work was to evaluate the effects of cover crops on the yield of upland rice (Oryza sativa) grown under no-tillage system, in the presence and absence of N fertilizer, as well as to quantify, in the field, the use efficiency of N from urea and cover crops by upland rice, through the {sup 15}N isotope dilution technique. The field experiment was carried out in the municipality of Selviria, in the state of Mato Grosso do Sul, Brazil, in an Oxisol (Rhodic Hapludox) in the Cerrado (Brazilian savanna) region. The experimental design was a randomized complete block with 15 treatments and four replicates, in a 5 x 3 factorial arrangement. The treatments were four cover crops (Crotalaria juncea, Cajanus cajan, Mucuna pruriens, and Pennisetum glaucum) + spontaneous vegetation (fallow in off-season), combined with three forms of N fertilization: control treatment, without N fertilizer application; 20 kg ha{sup -1} N at sowing; and 20 kg ha{sup -1} N at sowing plus 60 kg ha{sup -1} N as topdressing. Rice is not affected by N fertilizer application as topdressing, when legume cover crops are used. The use of legume cover crops provides higher grain yield and use of fertilizer-N by rice than that of millet or fallow. Legume cover crops promote an effect equivalent to that of the application of 60 kg ha{sup -1} N as urea on rice yield. (author)

  4. Use of nitrogen from fertilizer and cover crops by upland rice in an Oxisol under no-tillage in the Cerrado

    International Nuclear Information System (INIS)

    Silva, Edson Cabral da; Muraoka, Takashi; Bendassolli, Jose Alberto; Franzini, Vinicius Ide; Sakadevan, Karuppan; Buzetti, Salatier; Arf, Orivaldo

    2016-01-01

    The objective of this work was to evaluate the effects of cover crops on the yield of upland rice (Oryza sativa) grown under no-tillage system, in the presence and absence of N fertilizer, as well as to quantify, in the field, the use efficiency of N from urea and cover crops by upland rice, through the 15 N isotope dilution technique. The field experiment was carried out in the municipality of Selviria, in the state of Mato Grosso do Sul, Brazil, in an Oxisol (Rhodic Hapludox) in the Cerrado (Brazilian savanna) region. The experimental design was a randomized complete block with 15 treatments and four replicates, in a 5 x 3 factorial arrangement. The treatments were four cover crops (Crotalaria juncea, Cajanus cajan, Mucuna pruriens, and Pennisetum glaucum) + spontaneous vegetation (fallow in off-season), combined with three forms of N fertilization: control treatment, without N fertilizer application; 20 kg ha -1 N at sowing; and 20 kg ha -1 N at sowing plus 60 kg ha -1 N as topdressing. Rice is not affected by N fertilizer application as topdressing, when legume cover crops are used. The use of legume cover crops provides higher grain yield and use of fertilizer-N by rice than that of millet or fallow. Legume cover crops promote an effect equivalent to that of the application of 60 kg ha -1 N as urea on rice yield. (author)

  5. Soybean growth and yield under cover crops

    Directory of Open Access Journals (Sweden)

    Priscila de Oliveira

    2013-04-01

    Full Text Available The use of cover crops in no-tillage systems can provide better conditions for the development of soybean plants with positive effects on grain yield and growth analysis techniques allow researchers to characterize and understand the behavior of soybean plants under different straw covers. Thus, the aim of this study was to characterize, using growth analysis, yield components and agronomic performance of soybean under common bean, Brachiaria brizantha and pearl millet straws. The experiment was performed on a soil under cerrado in the municipality of Santo Antônio de Goiás, GO. The experiment was arranged in a randomized complete block design with three treatments (cover crops and five replications. Soybean grain yield was lower in the B. brizantha straw treatment (3,708 kg ha-1 than both in the pearl millet (4.772 kg ha-1 and common bean straw treatments (5,200 kg ha-1. The soybean growth analysis in B. brizantha, pearl millet and common bean allowed characterizing the variation in the production of dry matter of leaves, stems, pods and total and leaf area index that provided different grain yields. The cover crop directly affects the soybean grain yield.

  6. Winter cover crop effect on corn seedling pathogens

    Science.gov (United States)

    Cover crops are an excellent management tool to improve the sustainability of agriculture. Winter rye cover crops have been used successfully in Iowa corn-soybean rotations. Unfortunately, winter rye cover crops occasionally reduce yields of the following corn crop. We hypothesize that one potential...

  7. Long-term agroecosystem research in the Central Mississippi River Basin: hydrogeologic controls and crop management influence on nitrates in loess and fractured glacial till

    Science.gov (United States)

    Nitrogen (N) from agricultural activities has been suspected as a primary source of elevated ground water nitrate (NO3-N). The objective of this research was to assess the impact of common cropping systems on NO3-N levels for a glacial till aquifer underlying claypan soils in a predominantly agricul...

  8. Cover cropping to reduce nitrate loss through subsurface drainage in the northern U.S. corn belt.

    Science.gov (United States)

    Strock, J S; Porter, P M; Russelle, M P

    2004-01-01

    Despite the use of best management practices for nitrogen (N) application rate and timing, significant losses of nitrate nitrogen (NO3(-)-N) in drainage discharge continue to occur from row crop cropping systems. Our objective was to determine whether a autumn-seeded winter rye (Secale cereale L.) cover crop following corn (Zea mays L.) would reduce NO3(-)-N losses through subsurface tile drainage in a corn-soybean [Glycine mar (L.) Merr.] cropping system in the northern Corn Belt (USA) in a moderately well-drained soil. Both phases of the corn-soybean rotation, with and without the winter rye cover crop following corn, were established in 1998 in a Normania clay loam (fine-loamy, mixed, mesic Aquic Haplustoll) soil at Lamberton, MN. Cover cropping did not affect subsequent soybean yield, but reduced drainage discharge, flow-weighted mean nitrate concentration (FWMNC), and NO3(-)-N loss relative to winter fallow, although the magnitude of the effect varied considerably with annual precipitation. Three-year average drainage discharge was lower with a winter rye cover crop than without (p = 0.06). Over three years, subsurface tile-drainage discharge was reduced 11% and NO3(-)-N loss was reduced 13% for a corn-soybean cropping system with a rye cover crop following corn than with no rye cover crop. We estimate that establishment of a winter rye cover crop after corn will be successful in one of four years in southwestern Minnesota. Cover cropping with rye has the potential to be an effective management tool for reducing NO3(-)-N loss from subsurface drainage discharge despite challenges to establishment and spring growth in the north-central USA.

  9. The Use of Cover Crops as Climate-Smart Management in Midwest Cropping Systems

    Science.gov (United States)

    Basche, A.; Miguez, F.; Archontoulis, S.; Kaspar, T.

    2014-12-01

    The observed trends in the Midwestern United States of increasing rainfall variability will likely continue into the future. Events such as individual days of heavy rain as well as seasons of floods and droughts have large impacts on agricultural productivity and the natural resource base that underpins it. Such events lead to increased soil erosion, decreased water quality and reduced corn and soybean yields. Winter cover crops offer the potential to buffer many of these impacts because they essentially double the time for a living plant to protect and improve the soil. However, at present, cover crops are infrequently utilized in the Midwest (representing 1-2% of row cropped land cover) in particular due to producer concerns over higher costs and management, limited time and winter growing conditions as well as the potential harm to corn yields. In order to expand their use, there is a need to quantify how cover crops impact Midwest cropping systems in the long term and namely to understand how to optimize the benefits of cover crops while minimizing their impacts on cash crops. We are working with APSIM, a cropping systems platform, to specifically quantify the long term future impacts of cover crop incorporation in corn-based cropping systems. In general, our regional analysis showed only minor changes to corn and soybean yields (<1% differences) when a cover crop was or was not included in the simulation. Further, a "bad spring" scenario (where every third year had an abnormally wet/cold spring and cover crop termination and planting cash crop were within one day) did not result in any major changes to cash crop yields. Through simulations we estimate an average increase of 4-9% organic matter improvement in the topsoil and an average decrease in soil erosion of 14-32% depending on cover crop planting date and growth. Our work is part of the Climate and Corn-based Cropping Systems Coordinated Agriculture Project (CSCAP), a collaboration of eleven Midwestern

  10. Brassica cover crops for nitrogen retention in the Mid-Atlantic coastal plain.

    Science.gov (United States)

    Dean, Jill E; Weil, Ray R

    2009-01-01

    Brassica cover crops are new to the mid-Atlantic region, and limited information is available on their N uptake capabilities for effective N conservation. Forage radish (Raphanus sativus L. cv. Daikon), oilseed radish (Raphanus sativus L. cv. Adagio), and rape (Brassica napus L. cv. Dwarf Essex) were compared with rye (Secale cereale L. cv. Wheeler), a popular cover crop in the region, with regard to N uptake ability and potential to decrease N leaching at two sites in Maryland. Plants were harvested in fall and spring for dry matter and N analysis. Soil samples from 0 cm to 105 to 180 cm depth were obtained in fall and spring for NH(4)-N and NO(3)-N analyses. Ceramic cup tension lysimeters were installed at depths of 75 to 120 cm to monitor NO(3)-N in soil pore water. Averaged across 3 site-years, forage radish and rape shoots had greater dry matter production and captured more N in fall than rye shoots. Compared with a weedy fallow control, rape and rye caused similar decreases in soil NO(3)-N in fall and spring throughout the sampled profile. Cover crops had no effect on soil NH(4)-N. During the spring on coarse textured soil, pore water NO(3)-N concentrations in freeze-killed Brassica (radish) plots were greater than in control and overwintering Brassica (rape) and rye plots. On fine textured soil, all cover crops provided a similar decrease in pore water NO(3)-N concentration compared with control. On coarse textured soils, freeze-killed Brassica cover crops should be followed by an early-planted spring main crop.

  11. Effect of Winter Cover Crops on Soil Nitrogen Availability, Corn Yield, and Nitrate Leaching

    Directory of Open Access Journals (Sweden)

    S. Kuo

    2001-01-01

    Full Text Available Biculture of nonlegumes and legumes could serve as cover crops for increasing main crop yield, while reducing NO3 leaching. This study, conducted from 1994 to 1999, determined the effect of monocultured cereal rye (Secale cereale L., annual ryegrass (Lolium multiflorum, and hairy vetch (Vicia villosa, and bicultured rye/vetch and ryegrass/vetch on N availability in soil, corn (Zea mays L. yield, and NO3-N leaching in a silt loam soil. The field had been in corn and cover crop rotation since 1987. In addition to the cover crop treatments, there were four N fertilizer rates (0, 67, 134, and 201 kg N ha-1, referred to as N0, N1, N2, and N3, respectively applied to corn. The experiment was a randomized split-block design with three replications for each treatment. Lysimeters were installed in 1987 at 0.75 m below the soil surface for leachate collection for the N0, N2, and N3 treatments. The result showed that vetch monoculture had the most influence on soil N availability and corn yield, followed by the bicultures. Rye or ryegrass monoculture had either no effect or an adverse effect on corn yield and soil N availability. Leachate NO3-N concentration was highest where vetch cover crop was planted regardless of N rates, which suggests that N mineralization of vetch N continued well into the fall and winter. Leachate NO3-N concentration increased with increasing N fertilizer rates and exceeded the U.S. Environmental Protection Agency’s drinking water standard of 10 mg N l�1 even at recommended N rate for corn in this region (coastal Pacific Northwest. In comparisons of the average NO3-N concentration during the period of high N leaching, monocultured rye and ryegrass or bicultured rye/vetch and ryegrass/vetch very effectively decreased N leaching in 1998 with dry fall weather. The amount of N available for leaching (determined based on the presidedress nitrate test, the amount of N fertilizer applied, and N uptake correlated well with average NO3

  12. Effect of winter cover crops on soil nitrogen availability, corn yield, and nitrate leaching.

    Science.gov (United States)

    Kuo, S; Huang, B; Bembenek, R

    2001-10-25

    Biculture of nonlegumes and legumes could serve as cover crops for increasing main crop yield, while reducing NO3 leaching. This study, conducted from 1994 to 1999, determined the effect of monocultured cereal rye (Secale cereale L.), annual ryegrass (Lolium multiflorum), and hairy vetch (Vicia villosa), and bicultured rye/vetch and ryegrass/vetch on N availability in soil, corn (Zea mays L.) yield, and NO3-N leaching in a silt loam soil. The field had been in corn and cover crop rotation since 1987. In addition to the cover crop treatments, there were four N fertilizer rates (0, 67, 134, and 201 kg N ha(-1), referred to as N0, N1, N2, and N3, respectively) applied to corn. The experiment was a randomized split-block design with three replications for each treatment. Lysimeters were installed in 1987 at 0.75 m below the soil surface for leachate collection for the N 0, N 2, and N 3 treatments. The result showed that vetch monoculture had the most influence on soil N availability and corn yield, followed by the bicultures. Rye or ryegrass monoculture had either no effect or an adverse effect on corn yield and soil N availability. Leachate NO3-N concentration was highest where vetch cover crop was planted regardless of N rates, which suggests that N mineralization of vetch N continued well into the fall and winter. Leachate NO3-N concentration increased with increasing N fertilizer rates and exceeded the U.S. Environmental Protection Agency's drinking water standard of 10 mg N l(-1) even at recommended N rate for corn in this region (coastal Pacific Northwest). In comparisons of the average NO3-N concentration during the period of high N leaching, monocultured rye and ryegrass or bicultured rye/vetch and ryegrass/vetch very effectively decreased N leaching in 1998 with dry fall weather. The amount of N available for leaching (determined based on the presidedress nitrate test, the amount of N fertilizer applied, and N uptake) correlated well with average NO3-N during

  13. Cover crop and nitrogen fertilization influence soil carbon and nitrogen under bioenergy sweet sorghum

    Science.gov (United States)

    Cover crop and N fertilization may maintain soil C and N levels under sweet sorghum (Sorghum bicolor [L.] Moench) biomass harvested for bioenergy production. The effect of cover crops (hairy vetch [Vicia villosa Roth], rye [Secaele cereale L.], hairy vetch/rye mixture, and the control [no cover crop...

  14. Four planting devices for planting no-till maize

    Directory of Open Access Journals (Sweden)

    Osei Bonsu Patterson

    2015-05-01

    Full Text Available An experiment was conducted at the CSIR-Crops Research Institute (CSIR-CRI Experimental station at Ejura in Ghana to compare the efficiency of four devices for planting no-till maize: Tractor drawn seeder, Chinese made jab planter, Locally made jab planter and a Cutlass. It took two (2 hours 48 minutes to plant one hectare of maize with the tractor drawn seeder, which was significantly (p less than 1% faster than all the planting methods. Cutlass was the slowest planting device lasting more than 14 hours per hectare. There was no significant difference in planting time between the Chinese planter and local planter. Economic analysis showed that cutlass planting produced the highest net benefit, whilst tractor drawn seeder produced the least benefit. In this study cutlass planting was done with precision by collaborating farmers. In actual farm situation however, hired laborers (planting gangs often plant in haste which often results in poor plant population leading to low yields. Tractor drawn seeders or jab planters could reduce drudgery in planting and encourage farm expansion.

  15. Replacing fallow by cover crops: economic sustainability

    Science.gov (United States)

    Gabriel, José Luis; Garrido, Alberto; Quemada, Miguel

    2013-04-01

    Replacing fallow by cover crops in intensive fertilized systems has been demonstrated as an efficient tool for reducing nitrate leaching. However, despite the evident environmental services provided and the range of agronomic benefits documented in the literature, farmers' adoption of this new technology is still limited because they are either unwilling or unable, although adoption reluctance is frequently rooted in low economic profitability, low water se efficiency or poor knowledge. Economic analyses permit a comparison between the profit that farmers obtain from agricultural products and the cost of adopting specific agricultural techniques. The goal of this study was to evaluate the economic impact of replacing the usual winter fallow with cover crops (barley (Hordeum vulgare L., cv. Vanessa), vetch (Vicia villosa L., cv. Vereda) and rapeseed (Brassica napus L., cv. Licapo)) in irrigated maize systems and variable Mediterranean weather conditions using stochastic Monte-Carlo simulations of key farms' financial performance indicators. The three scenarios studied for each cover crop were: i) just leaving the cover crop residue in the ground, ii) leaving the cover crop residue but reduce following maize fertilization according to the N available from the previous cover crop and iii) selling the cover crop residue for animal feeding. All the scenarios were compared with respect to a typical maize-fallow rotation. With observed data from six different years and in various field trials, looking for different weather conditions, probability distribution functions of maize yield, cover crop biomass production and N fertilizer saving was fitted. Based in statistical sources maize grain price, different forage prices and the cost of fertilizer were fitted to probability distribution functions too. As result, introducing a cover crop involved extra costs with respect to fallow as the initial investment, because new seed, herbicide or extra field operations. Additional

  16. First TILLING platform in Cucurbita pepo: a new mutant resource for gene function and crop improvement.

    Science.gov (United States)

    Vicente-Dólera, Nelly; Troadec, Christelle; Moya, Manuel; del Río-Celestino, Mercedes; Pomares-Viciana, Teresa; Bendahmane, Abdelhafid; Picó, Belén; Román, Belén; Gómez, Pedro

    2014-01-01

    Although the availability of genetic and genomic resources for Cucurbita pepo has increased significantly, functional genomic resources are still limited for this crop. In this direction, we have developed a high throughput reverse genetic tool: the first TILLING (Targeting Induced Local Lesions IN Genomes) resource for this species. Additionally, we have used this resource to demonstrate that the previous EMS mutant population we developed has the highest mutation density compared with other cucurbits mutant populations. The overall mutation density in this first C. pepo TILLING platform was estimated to be 1/133 Kb by screening five additional genes. In total, 58 mutations confirmed by sequencing were identified in the five targeted genes, thirteen of which were predicted to have an impact on the function of the protein. The genotype/phenotype correlation was studied in a peroxidase gene, revealing that the phenotype of seedling homozygous for one of the isolated mutant alleles was albino. These results indicate that the TILLING approach in this species was successful at providing new mutations and can address the major challenge of linking sequence information to biological function and also the identification of novel variation for crop breeding.

  17. The impacts of no-till practice on nitrate and phosphorus loss: A meta-analysis

    Science.gov (United States)

    Wang, L.; Daryanto, S.; Jacinthe, P. A.

    2017-12-01

    Although no-till (NT) has been promoted as an alternative land management practice to conventional tillage (CT), its impact on water quality, especially nitrate (NO3-) and phosphorus (P) loss remain controversial. We conducted a meta-analysis to compare NO3- and P (dissolved P, particulate P and total P) concentration and load in NT and CT systems, including the co-varying physical (e.g., climate region, rainfall variability, transport pathways, slope gradient) and management variables (e.g., NT duration, crop species). In general, NT increased the amount of dissolved nutrient loss (both NO3- and P), but reduced that of particulate nutrient (particulate P). Specifically, NT resulted in an overall increase of runoff NO3- concentration in comparison to CT, but similar runoff NO3- load. In contrast, NO3- load via leaching was greater under NT than under CT, although NO3- concentration in leachate was similar under both tillage practices, indicating that the effect of NT on NO3- load was largely determined by changes in water flux. NT adoption, in comparison to CT, reduced particulate P concentration by 45% and load by 55%, but increased dissolved P loss by 35% (for both concentration and load). Some variations, however, were recorded with different co-varying variables. NT was, for example, least effective in reducing leachate NO3- concentration in fields planted with wheat, but generated lower leachate NO3- concentration from soybean fields (no N fertilizer applied). In contrast, total P concentration was similar with CT at NT fields planted with soybean and at sites under prolonged NT duration ( 10 years). The limited impact of NT on dissolved nutrient loss (both NO3- and P) remains a serious impediment toward harnessing the water quality benefits of this management practice and suggests that NT needs to be complemented with other management practices (e.g., cover crops, split fertilizer application, occasional tillage).

  18. The Weeds Response to the Winter Vetch (Vicia villosa and Chicklingpea (Lathyrus sativus Cover Crops under Different Tillage Methods in Corn Fields

    Directory of Open Access Journals (Sweden)

    Javad Hamzei

    2017-01-01

    Full Text Available Introduction: Using cover crops in conservation tillage systems offers many advantages, one of which is weed control through physical and chemical interferences. Most of the benefits of cover crops are well known. They prevent form wind and water erosions, conserve soil moisture by reducing evaporation and increasing infiltration, increase the content of organic matter, increase fertility by recycling nutrients, add nitrogen if they are legumes, and improve soil structure. Proper cover crops can also suppress weed growth by allelopathic activities and light interference. They impact on environmental quality through the protection of surface water and groundwater, as well as eliminating the need for using preemergence herbicides. Either increase or decreases have been reported for crop yields when the crop residues remain on soil surface. No-till system has been reported to increase the presence of certain difficult to control weeds. Therefore, the aim of this study was to investigate the effect of tillage systems and cover crops on weed control and corn yield. Materials and Methods: Experiment was carried out as split plot based on randomized complete block design with three replications at the Bu-Ali Sina University in growing season of 2011. Tillage with moldboard, tillage with chisel (minimum tillage, and no tillage were considered as main plots and two cover crops, winter vetch and chicklingpea, chemical weed control and weed-infest treatment (control were considered as sub-plots. Cover crops were cultivated in late March 2011. In early June 2011, cover crops were harvested and were spread over the soil surface. The Plot size was 22.50 m-2. Five rows were in each plot with 75 cm intervals among rows and 18 cm among seedlings. 2 square were picked in the three central rows of each plot in order to determine the yield and yield components. From each plot three quadrants (1×1 mrandomly were picked and weeds and cover crops was separated. All

  19. Winter rye cover crop effect on corn seedling pathogens

    Science.gov (United States)

    Cover crops have been grown successfully in Iowa, but sometimes a cereal rye cover crop preceding corn can reduce corn yields. Our research examines the effect of a rye cover crop on infections of the succeeding corn crop by soil fungal pathogens. Plant measurements included: growth stage, height, r...

  20. Growth and yield of cucumber under no-tillage cultivation using rye as a cover crop

    Directory of Open Access Journals (Sweden)

    Małgorzata Jelonkiewicz

    2012-12-01

    Full Text Available In the first two years of study, method of cultivation did not affect the emergence of cucumber seedlings. In the third year, a drought occurring during the spring was the cause of poor seedling emergence on no-tilled plots. Six weeks after seed sowing, the shoots of cucumbers grown on the no-tilled plots were much shorter, especially in the last study year. At the time of cucumber seed sowing, no-tilled soil contained less phosphorus and potassium and in the middle of the fructification period the content of these elements in cucumber leaves was higher under no-tillage cultivation. Additional spring fertilization of rye with ammonium nitrate resulted in a higher N-NO3 content in soil and later in a higher nitrogen content of cucumber leaves. The content of calcium and magnesium in soil and than in cucumber leaves was independent of the cultivation method. In the first two years, method of cultivation did not affect the yield of cucumber fruits and in the third year the yield was much lower under no-tillage because of poor seedling emergence. Moreover, in the third year the fruits were smaller and dry matter content of the fruit was significantly higer under no-tillage cultivation.

  1. Swine manure injection with low-disturbance applicator and cover crops reduce phosphorus losses.

    Science.gov (United States)

    Kovar, J L; Moorman, T B; Singer, J W; Cambardella, C A; Tomer, M D

    2011-01-01

    Injection of liquid swine manure disturbs surface soil so that runoff from treated lands can transport sediment and nutrients to surface waters. We determined the effect of two manure application methods on P fate in a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] production system, with and without a winter rye (Secale cereale L.)-oat (Avena sativa L.) cover crop. Treatments included: (i) no manure; (ii) knife injection; and (iii) low-disturbance injection, each with and without the cover crop. Simulated rainfall runoff was analyzed for dissolved reactive P (DRP) and total P (TP). Rainfall was applied 8 d after manure application (early November) and again in May after emergence of the corn crop. Manure application increased soil bioavailable P in the 20- to 30-cm layer following knife injection and in the 5- to 20-cm layer following low-disturbance injection. The low-disturbance system caused less damage to the cover crop, so that P uptake was more than threefold greater. Losses of DRP were greater in both fall and spring following low-disturbance injection; however, application method had no effect on TP loads in runoff in either season. The cover crop reduced fall TP losses from plots with manure applied by either method. In spring, DRP losses were significantly higher from plots with the recently killed cover crop, but TP losses were not affected. Low-disturbance injection of swine manure into a standing cover crop can minimize plant damage and P losses in surface runoff while providing optimum P availability to a subsequent agronomic crop.

  2. Long-term conventional and no-tillage effects on field hydrology and yields of a dryland crop rotation

    Science.gov (United States)

    Semiarid dryland crop yields with no-till, NT, residue management are often greater than stubble-mulch, SM, tillage as a result of improved soil conditions and water conservation, but information on long-term tillage effects on field hydrology and sustained crop production are needed. Our objective ...

  3. Cover crops knowledge and implementation willingness by producers of several crops

    Directory of Open Access Journals (Sweden)

    Robin Gómez Gómez

    2017-04-01

    Full Text Available The objective of this study was to assess the knowledge on cover crops and native vegetation mulches and the willingness to implement them by papaya, oil palm, and banana producers in Costa Rica. An evaluation instrument with twenty eight questions to be answered as true or false was developed, and it was used to yield a knowledge indicator. Seven additional questions with responses on a scale from 0 to 5 were included to explore producers’ willingness to implement cover crops or native vegetation mulches on their farms. The evaluation was completed in 2014, and was filled out by 36 papaya producers, 30 oil palm producers, and 57 banana producers. Item analyses to determine reliability produced Cronbach’s alpha values above 90%. For this study a factors analysis was performed in order to determine the measurement of one single variable, knowledge on cover crops and native vegetation mulches. Global knowledge scores varied signi cantly between producer groups. Banana producers assessments yielded the highest mean with the lowest variability, whereas papaya producers had the lower mean and the highest variability. Likewise, answers to each of the questions differed importantly between producer groups. It was also determined that producers of these crops are willing to implement and get training on cover crops and native vegetation mulches.

  4. Effect of Winter Cover Crops on Soil Nitrogen Availability, Corn Yield, and Nitrate Leaching

    OpenAIRE

    Kuo, S.; Huang, B.; Bembenek, R.

    2001-01-01

    Biculture of nonlegumes and legumes could serve as cover crops for increasing main crop yield, while reducing NO3 leaching. This study, conducted from 1994 to 1999, determined the effect of monocultured cereal rye (Secale cereale L.), annual ryegrass (Lolium multiflorum), and hairy vetch (Vicia villosa), and bicultured rye/vetch and ryegrass/vetch on N availability in soil, corn (Zea mays L.) yield, and NO3-N leaching in a silt loam soil. The field had been in corn and cover crop rotation sin...

  5. Nitrogen Fertilizer Source, Rates, and Timing for a Cover Crop and Subsequent Cotton Crop

    Science.gov (United States)

    The objectives were to compare N fertilizer sources, rates, and time of application for a rye winter cover crop to determine optimal biomass production for conservation tillage production, compare recommended and no additional N fertilizer rates across different biomass levels for cotton, and determ...

  6. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems

    OpenAIRE

    Ladoni, Moslem; Kravchenko, Alexandra N.; Robertson, G. Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on poten...

  7. Biochar Effects on Soil Aggregate Properties Under No-Till Maize

    DEFF Research Database (Denmark)

    Khademalrasoul, Ataalah; Naveed, Muhammad; Heckrath, Goswin Johann

    2014-01-01

    of biochar particles had higher TS and SRE probably because of bonding effects. Based on the improved soil aggregate properties, we suggest that biochar can be effective for increasing and sustaining overall soil quality, for example, related to minimizing the soil erosion potential.......Soil aggregates are useful indicators of soil structure and stability, and the impact on physical and mechanical aggregate properties is critical for the sustainable use of organic amendments in agricultural soil. In this work, we evaluated the short-term soil quality effects of applying biochar (0......–10 kg m−2), in combination with swine manure (2.1 and 4.2 kg m−2), to a no-till maize (Zea mays L.) cropping system on a sandy loam soil in Denmark. Topsoil (0–20 cm) aggregates were analyzed for clay dispersibility, aggregate stability, tensile strength (TS), and specific rupture energy (SRE) using end...

  8. Do green manures as winter cover crops impact the weediness and crop yield in an organic crop rotation?

    OpenAIRE

    Madsen, Helena; Talgre, Liina; Eremeev, Viacheslav; Alaru, Maarika; Kauer, Karin; Luik, Anne

    2016-01-01

    The effects of different winter cover crops and their combination with composted cattle manure on weeds and crop yields were investigated within a five-field crop rotation (barley undersown with red clover, red clover, winter wheat, pea, potato) in three organic cropping systems. The control system (Org 0) followed the rotation. In organic systems Org I and Org II the winter cover crops were used as follows: ryegrass (Lolium perenne L. in 2011/2012) and a mixture of winter oilseed-rape (Brass...

  9. Establishment and function of cover crops interseeded into corn

    Science.gov (United States)

    Cover crops can provide ecological services and improve the resiliency of annual cropping systems; however, cover crop use is low in corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotations in the upper Midwest due to challenges with establishment. Our objective was to compare three planting me...

  10. Benefits of Vetch and Rye Cover Crops to Sweet Corn under No-Tillage

    NARCIS (Netherlands)

    Zotarelli, L.; Avila, L.; Scholberg, J.M.S.; Alves, B.J.R.

    2009-01-01

    Leguminous cover crops (CCs) may reduce N fertilizer requirements by fixing N biologically and storing leftover N-fertilizer applied in the previous year. The objective of this study was to determine the contribution of CCs [rye (Secale cereal L.) and hairy vetch (Vicia villosa Roth)] on plant N

  11. Fluorescence imaging to quantify crop residue cover

    Science.gov (United States)

    Daughtry, C. S. T.; Mcmurtrey, J. E., III; Chappelle, E. W.

    1994-01-01

    Crop residues, the portion of the crop left in the field after harvest, can be an important management factor in controlling soil erosion. Methods to quantify residue cover are needed that are rapid, accurate, and objective. Scenes with known amounts of crop residue were illuminated with long wave ultraviolet (UV) radiation and fluorescence images were recorded with an intensified video camera fitted with a 453 to 488 nm band pass filter. A light colored soil and a dark colored soil were used as background for the weathered soybean stems. Residue cover was determined by counting the proportion of the pixels in the image with fluorescence values greater than a threshold. Soil pixels had the lowest gray levels in the images. The values of the soybean residue pixels spanned nearly the full range of the 8-bit video data. Classification accuracies typically were within 3(absolute units) of measured cover values. Video imaging can provide an intuitive understanding of the fraction of the soil covered by residue.

  12. Glyphosate Dissipation in Different Soils Under No-Till and Conventional Till

    Science.gov (United States)

    Okada, Elena; Costa, Jose Luis; Francisco, Bedmar

    2017-04-01

    Glyphosate is the most used herbicide in Argentina, accounting for 62% of the commercialized pesticides in the market. It is used as a weed controller in chemical fallow under no-till systems, and it is also applied in various genetically modified crops (e.g. soybean, corn, cotton). Though it has a high solubility in water, it tends to adsorb and accumulate in agricultural soils. The description of glyphosate biodegradation in soils with a long term history under agricultural practices is of interest. The main objectives of this work were to compare the dissipation of glyphosate and the accumulation of its metabolite aminomethylphosphonic acid (AMPA) over time in three soils from Argentina. The studied soils belong to areas of high agronomic land use and different edaphoclimatic conditions, situated in Manfredi (MAN), Pergamino (PER) and Paraná (PAR). Soil samples were taken from long-term field trials with a history of more than 16 years under no-till and conventional tillage management. To study glyphosate dissipation in soil under controlled laboratory conditions, 400 g of dry soil sample were placed in 1.5 L flasks. A dose corresponding to 6 L ha-1 of commercial glyphosate ATANOR II® (35.6 % a.i.) was applied on day 0. The dose applied was equivalent to a final concentration in soil of 4000 μg Kg-1 of active ingredient. The moisture of the soil samples was kept at 60 % of the field capacity. Samples were incubated in the dark at a constant temperature of 22°C ± 1°C. A sub-sample of 5 g was taken from each flask at day 0 (after application), 1, 3, 7, 15, 20, 28, 44 and 62. Glyphosate and AMPA in soil samples was extracted with a strong basic solution (100 mM Na2B4O7•10H2O/ 100 mM K3PO4, pH=9) and then derivitazed with FMOC-Cl. Detection and quantification of the compounds was performed by ultra-performance liquid chromatography coupled with a mass spectrometer (UPLC MS/MS). The results showed that forty percent of the applied glyphosate was degraded

  13. Effect of winter cover crops on nematode population levels in north Florida.

    Science.gov (United States)

    Wang, K-H; McSorley, R; Gallaher, R N

    2004-12-01

    Two experiments were conducted in north-central Florida to examine the effects of various winter cover crops on plant-parasitic nematode populations through time. In the first experiment, six winter cover crops were rotated with summer corn (Zea mays), arranged in a randomized complete block design. The cover crops evaluated were wheat (Triticum aestivum), rye (Secale cereale), oat (Avena sativa), lupine (Lupinus angustifolius), hairy vetch (Vicia villosa), and crimson clover (Trifolium incarnatum). At the end of the corn crop in year 1, population densities of Meloidogyne incognita were lowest on corn following rye or oat (P rye or lupine was planted into field plots with histories of five tropical cover crops: soybean (Glycine max), cowpea (Vigna unguiculata), sorghum-sudangrass (Sorghum bicolor x S. sudanense), sunn hemp (Crotalaria juncea), and corn. Population densities of M. incognita and Helicotylenchus dihystera were affected by previous tropical cover crops (P cover crops present at the time of sampling. Plots planted to sunn hemp in the fall maintained the lowest M. incognita and H. dihystera numbers. Results suggest that winter cover crops tested did not suppress plant-parasitic nematodes effectively. Planting tropical cover crops such as sunn hemp after corn in a triple-cropping system with winter cover crops may provide more versatile nematode management strategies in northern Florida.

  14. Cover Crops Effects on Soil Chemical Properties and Onion Yield

    Directory of Open Access Journals (Sweden)

    Rodolfo Assis de Oliveira

    2016-01-01

    Full Text Available ABSTRACT Cover crops contribute to nutrient cycling and may improve soil chemical properties and, consequently, increase crop yield. The aim of this study was to evaluate cover crop residue decomposition and nutrient release, and the effects of these plants on soil chemical properties and on onion (Allium cepa L. yield in a no-tillage system. The experiment was carried out in an Inceptisol in southern Brazil, where cover crops were sown in April 2012 and 2013. In July 2013, shoots of weeds (WD, black oats (BO, rye (RY, oilseed radish (RD, oilseed radish + black oats (RD + BO, and oilseed radish + rye (RD + RY were cut at ground level and part of these material from each treatment was placed in litter bags. The litter bags were distributed on the soil surface and were collected at 0, 30, 45, 60, 75, and 90 days after distribution (DAD. The residues in the litter bags were dried, weighed, and ground, and then analyzed to quantify lignin, cellulose, non-structural biomass, total organic carbon (TOC, N, P, K, Ca, and Mg. In November 2012 and 2013, onion crops were harvested to quantify yield, and bulbs were classified according to diameter, and the number of rotted and flowering bulbs was determined. Soil in the 0.00-0.10 m layer was collected for chemical analysis before transplanting and after harvesting onion in December 2012 and 2013. The rye plant residues presented the highest half-life and they released less nutrients until 90 DAD. The great permanence of rye residue was considered a protection to soil surface, the opposite was observed with spontaneous vegetation. The cultivation and addition of dry residue of cover crops increased the onion yield at 2.5 Mg ha-1.

  15. The effect of cover crop and crop rotation on soil water storage and on sorghum yield Efeito de cultura de cobertura e de rotação de cultura no armazenamento de água do solo e no rendimento de sorgo

    Directory of Open Access Journals (Sweden)

    Demóstenes Marcos Pedrosa de Azevedo

    1999-03-01

    Full Text Available Crop rotation and cover crop can be important means for enhancing crop yield in rainfed areas such as the lower Coastal Bend Region of Texas, USA. A trial was conducted in 1995 as part of a long-term cropping experiment (7 years to investigate the effect of oat (Avena sativa L. cover and rotation on soil water storage and yield of sorghum (Sorghum bicolor L.. The trial design was a RCB in a split-plot arrangement with four replicates. Rotation sequences were the main plots and oat cover crop the subplots. Cover crop reduced sorghum grain yield. This effect was attributed to a reduced concentration of available soil N and less soil water storage under this treatment. By delaying cover termination, the residue with a high C/N acted as an N sink through competition and/or immobilization instead of an N source to sorghum plants. Crop rotation had a significantly positive effect on sorghum yield and this effect was attributed to a significantly larger amount of N concentration under these rotation sequences.Rotação de cultura e cultura de cobertura constituem importantes meios para melhoria do rendimento de culturas em áreas de sequeiro como a região "Coastal Bend" do Estado do Texas. Um ensaio foi conduzido em 1995, como parte de um experimento de longa duração (7 anos, com o objetivo de investigar o efeito da aveia (Avena sativa L. como cultura de cobertura, e da rotação de cultura, no armazenamento da água do solo e no rendimento do sorgo (Sorghum bicolor L.. O delineamento experimental adotado foi o de blocos ao acaso, em parcelas subdivididas, com quatro repetições. As rotações foram alocadas nas parcelas, e a cultura de cobertura, nas subparcelas. A cultura de cobertura reduziu o rendimento do sorgo. Este efeito foi atribuído à reduzida concentração de N disponível do solo. Por atraso no extermínio e incorporação da aveia, seu resíduo, com elevada relação C/N, atuou como dreno, pela imobilização, em lugar de ser fonte

  16. Humic substances and its distribution in coffee crop under cover crops and weed control methods

    Directory of Open Access Journals (Sweden)

    Bruno Henrique Martins

    2016-08-01

    Full Text Available ABSTRACT Humic substances (HS comprise the passive element in soil organic matter (SOM, and represent one of the soil carbon pools which may be altered by different cover crops and weed control methods. This study aimed to assess HS distribution and characteristics in an experimental coffee crop area subjected to cover crops and cultural, mechanical, and chemical weed control. The study was carried out at Londrina, in the state of Paraná, southern Brazil (23°21’30” S; 51°10’17” W. In 2008, seven weed control/cover crops were established in a randomized block design between two coffee rows as the main-plot factor per plot and soil sampling depths (0-10 cm, 10-20 cm, 20-30 cm and 30-40 cm as a split-plot. HS were extracted through alkaline and acid solutions and analyzed by chromic acid wet oxidation and UV-Vis spectroscopy. Chemical attributes presented variations in the topsoil between the field conditions analyzed. Cover crop cutting and coffee tree pruning residues left on the soil surface may have interfered in nutrient cycling and the humification process. Data showed that humic substances comprised about 50 % of SOM. Although different cover crops and weed control methods did not alter humic and fulvic acid carbon content, a possible incidence of condensed aromatic structures at depth increments in fulvic acids was observed, leading to an average decrease of 53 % in the E4/E6 ratio. Humin carbon content increased 25 % in the topsoil, particularly under crop weed-control methods, probably due to high incorporation of recalcitrant structures from coffee tree pruning residues and cover crops.

  17. Cover crops do not increase C sequestration in production crops: evidence from 12 years of continuous measurements

    Science.gov (United States)

    Buysse, Pauline; Bodson, Bernard; Debacq, Alain; De Ligne, Anne; Heinesch, Bernard; Manise, Tanguy; Moureaux, Christine; Aubinet, Marc

    2017-04-01

    The numerous reports on carbon (C) loss from cropland soils have recently raised awareness on the climate change mitigation potential of these ecosystems, and on the necessity to improve C sequestration in these soils. Among the multiple solutions that are proposed, several field measurement and modelling studies reported that growing cover crops over fall and winter time could appear as an efficient solution. However, while the large majority of these studies are based on SOC stock inventories and very few information exists from the CO2 flux dynamics perspective. In the present work, we use the results from long-term (12 years) eddy-covariance measurements performed at the Lonzée Terrestrial Observatory (LTO, candidate ICOS site, Belgium) and focus on six intercrop periods managed with (3) and without (3) cover crops after winter wheat main crops, in order to compare their response to environmental factors and to investigate the impact of cover crops on Net Ecosystem Exchange (NEE). Our results showed that cumulated NEE was not significantly affected by the presence of cover crops. Indeed, while larger CO2 assimilation occurred during cover crop growth, this carbon gain was later lost by larger respiration rates due to larger crop residue amounts brought to the soil. As modelled by a Q10-like relationship, significantly larger R10 values were indeed observed during the three intercrop periods cultivated with cover crops. These CO2 flux-based results therefore tend to moderate the generally acknowledged positive impact of cover crops on net C sequestration by croplands. Our results indicate that the effect of growing cover crops on C sequestration could be less important than announced, at least at certain sites.

  18. Does grazing of cover crops impact biologically active soil C and N fractions under inversion and no tillage management

    Science.gov (United States)

    Cover crops are a key component of conservation cropping systems. They can also be a key component of integrated crop-livestock systems by offering high-quality forage during short periods between cash crops. The impact of cattle grazing on biologically active soil C and N fractions has not receiv...

  19. Cover crop-based ecological weed management: exploration and optimization

    NARCIS (Netherlands)

    Kruidhof, H.M.

    2008-01-01

    Keywords: organic farming, ecologically-based weed management, cover crops, green manure, allelopathy, Secale cereale, Brassica napus, Medicago sativa

    Cover crop-based ecological weed management: exploration and optimization. In organic farming systems, weed control is recognized as one

  20. Reducing nitrate loss in tile drainage water with cover crops and water-table management systems.

    Science.gov (United States)

    Drury, C F; Tan, C S; Welacky, T W; Reynolds, W D; Zhang, T Q; Oloya, T O; McLaughlin, N B; Gaynor, J D

    2014-03-01

    Nitrate lost from agricultural soils is an economic cost to producers, an environmental concern when it enters rivers and lakes, and a health risk when it enters wells and aquifers used for drinking water. Planting a winter wheat cover crop (CC) and/or use of controlled tile drainage-subirrigation (CDS) may reduce losses of nitrate (NO) relative to no cover crop (NCC) and/or traditional unrestricted tile drainage (UTD). A 6-yr (1999-2005) corn-soybean study was conducted to determine the effectiveness of CC+CDS, CC+UTD, NCC+CDS, and NCC+UTD treatments for reducing NO loss. Flow volume and NO concentration in surface runoff and tile drainage were measured continuously, and CC reduced the 5-yr flow-weighted mean (FWM) NO concentration in tile drainage water by 21 to 38% and cumulative NO loss by 14 to 16% relative to NCC. Controlled tile drainage-subirrigation reduced FWM NO concentration by 15 to 33% and cumulative NO loss by 38 to 39% relative to UTD. When CC and CDS were combined, 5-yr cumulative FWM NO concentrations and loss in tile drainage were decreased by 47% (from 9.45 to 4.99 mg N L and from 102 to 53.6 kg N ha) relative to NCC+UTD. The reductions in runoff and concomitant increases in tile drainage under CC occurred primarily because of increases in near-surface soil hydraulic conductivity. Cover crops increased corn grain yields by 4 to 7% in 2004 increased 3-yr average soybean yields by 8 to 15%, whereas CDS did not affect corn or soybean yields over the 6 yr. The combined use of a cover crop and water-table management system was highly effective for reducing NO loss from cool, humid agricultural soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. EFFECT OF COVER CROPS ON SOIL ATTRIBUTES, PLANT NUTRITION, AND IRRIGATED TROPICAL RICE YIELD

    Directory of Open Access Journals (Sweden)

    ANDRE FROES DE BORJA REIS

    2017-01-01

    Full Text Available In flood plains, cover crops are able to alter soil properties and significantly affect rice nutrition and yield. The aims of this study were to determine soil properties, plant nutrition, and yield of tropical rice cultivated on flood plains after cover crop cultivation with conventional tillage (CT and no-tillage system (NTS at low and high nitrogen (N fertilization levels. The experimental design was a randomized block in a split-split-plot scheme with four replications. In the main plots were cover crops sunhemp (Crotalaria juncea and C. spectabilis, velvet bean (Mucuna aterrima, jackbean (Canavalia ensiformis, pigeon pea (Cajanus cajan, Japanese radish (Raphanus sativus, cowpea (Vigna unguiculata and a fallow field. In the subplots were the tillage systems (CT or NTS. The nitrogen fertilization levels in the sub-subplots were (10 kg N ha-1 and 45 kg N ha-1. All cover crops except Japanese radish significantly increased mineral soil nitrogen and nitrate concentrations. Sunhemp, velvet bean, and cowpea significantly increased soil ammonium content. The NTS provides higher mineral nitrogen and ammonium content than that by CT. Overall, cover crops provided higher levels of nutrients to rice plants in NTS than in CT. Cover crops provide greater yield than fallow treatments. Rice yield was higher in NTS than in CT, and greater at a higher rather than lower nitrogen fertilization level.

  2. Remote sensing to monitor cover crop adoption in southeastern Pennsylvania

    Science.gov (United States)

    In the Chesapeake Bay watershed, winter cereal cover crops are often planted in rotation with summer crops to reduce the loss of nutrients and sediment from agricultural systems. Cover crops can also improve soil health, control weeds and pests, supplement forage needs, and support resilient croppin...

  3. Structure of bacterial communities in soil following cover crop and organic fertilizer incorporation.

    Science.gov (United States)

    Fernandez, Adria L; Sheaffer, Craig C; Wyse, Donald L; Staley, Christopher; Gould, Trevor J; Sadowsky, Michael J

    2016-11-01

    Incorporation of organic material into soils is an important element of organic farming practices that can affect the composition of the soil bacterial communities that carry out nutrient cycling and other functions crucial to crop health and growth. We conducted a field experiment to determine the effects of cover crops and fertilizers on bacterial community structure in agricultural soils under long-term organic management. Illumina sequencing of 16S rDNA revealed diverse communities comprising 45 bacterial phyla in corn rhizosphere and bulk field soil. Community structure was most affected by location and by the rhizosphere effect, followed by sampling time and amendment treatment. These effects were associated with soil physicochemical properties, including pH, moisture, organic matter, and nutrient levels. Treatment differences were apparent in bulk and rhizosphere soils at the time of peak corn growth in the season following cover crop and fertilizer application. Cover crop and fertilizer treatments tended to lower alpha diversity in early season samples. However, winter rye, oilseed radish, and buckwheat cover crop treatments increased alpha diversity in some later season samples compared to a no-amendment control. Fertilizer treatments and some cover crops decreased relative abundance of members of the ammonia-oxidizing family Nitrosomonadaceae. Pelleted poultry manure and Sustane® (a commercial fertilizer) decreased the relative abundance of Rhizobiales. Our data point to a need for future research exploring how (1) cover crops influence bacterial community structure and functions, (2) these effects differ with biomass composition and quantity, and (3) existing soil conditions and microbial community composition influence how soil microbial populations respond to agricultural management practices.

  4. Profitability of cover crops for single and twin row cotton

    Science.gov (United States)

    With the increased interest in cover crops, the impact of adoption on profitability of cash crops is a common question from producers. The objective of this study was to evaluate the profitability of cover crops for single and twin row cotton (Gossypium hirsutum L.) in Alabama. This experiment inclu...

  5. Molecular, Genetic and Agronomic Approaches to Utilizing Pulses as Cover Crops and Green Manure into Cropping Systems.

    Science.gov (United States)

    Tani, Eleni; Abraham, Eleni; Chachalis, Demosthenis; Travlos, Ilias

    2017-06-05

    Cover crops constitute one of the most promising agronomic practices towards a more sustainable agriculture. Their beneficial effects on main crops, soil and environment are many and various, while risks and disadvantages may also appear. Several legumes show a high potential but further research is required in order to suggest the optimal legume cover crops for each case in terms of their productivity and ability to suppress weeds. The additional cost associated with cover crops should also be addressed and in this context the use of grain legumes such as cowpea, faba bean and pea could be of high interest. Some of the aspects of these grain legumes as far as their use as cover crops, their genetic diversity and their breeding using conventional and molecular approaches are discussed in the present review. The specific species seem to have a high potential for use as cover crops, especially if their noticeable genetic diversity is exploited and their breeding focuses on several desirable traits.

  6. Molecular, Genetic and Agronomic Approaches to Utilizing Pulses as Cover Crops and Green Manure into Cropping Systems

    Science.gov (United States)

    Tani, Eleni; Abraham, Eleni; Chachalis, Demosthenis; Travlos, Ilias

    2017-01-01

    Cover crops constitute one of the most promising agronomic practices towards a more sustainable agriculture. Their beneficial effects on main crops, soil and environment are many and various, while risks and disadvantages may also appear. Several legumes show a high potential but further research is required in order to suggest the optimal legume cover crops for each case in terms of their productivity and ability to suppress weeds. The additional cost associated with cover crops should also be addressed and in this context the use of grain legumes such as cowpea, faba bean and pea could be of high interest. Some of the aspects of these grain legumes as far as their use as cover crops, their genetic diversity and their breeding using conventional and molecular approaches are discussed in the present review. The specific species seem to have a high potential for use as cover crops, especially if their noticeable genetic diversity is exploited and their breeding focuses on several desirable traits. PMID:28587254

  7. The effect of species, planting date, and management of cover crops on weed community in hybrid sunflower (Helianthus annuus

    Directory of Open Access Journals (Sweden)

    M. Bolandi Amoughein

    2016-02-01

    Full Text Available Introduction: Studies showed that if mixed populations of annual weeds grow with the sunflower, for every 10% increase in weed biomass, seed yield would decrease by 13% (Van Gessel & Renner, 2000. In addition to control weeds using herbicides multi-stage spraying is required. In organic farming systems mulch is used to control weeds, protection, fertility and improve soil quality (Glab & Kulig, 2008; Kuchaki et al., 2001. Surface mulches from cover crops suppress weed growth by reducing light levels at the soil surface, thereby slowing photosynthesis. In return, these conditions reduce seed germination and act as a physical barrier to seedling emergence and growth (Teasdale et al., 2007. Materials and Methods: The experiment was carried out in Ardabil Agricultural Research Station, as a factorial experiment based on randomized complete block design with three replications during 1390-1391. The first factor was considered four types of cover crops including winter rye (Secale cereal, spring barley (Hordeum vulgare, winter wheat (Triticum aestivum and control (no cover crop, no weeding.The second factor was mulch management at two levels (living mulch and dead mulch and the third factor was two planting dates for cover crops (synchronous with sunflower planting and 45 days after sunflower planting. Sunflower seeding performed manually on 23 May on the ridges with 50 cm row distance and spacing between plants was 25 cm in depth of 5 cm. Cover crops seeds, rye, barley and wheat, were planted between rows of sunflower. Due to the low density of weeds in study field, complete weeding and sampling of weeds in one session was performed (60 days after planting date sunflower. Statistical analysis of data performed using SAS software and mean comparison performed using Duncan's test with probability level of 5% and 1%. Diagrams drawn using Excel (Version 8.2. Results and Discussion\t: Density and dry weight of Field bindweed (Convolvulus arvensis L

  8. The effect of different tillage and cover crops on soil quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    This paper examines the effect of different tillage treatments and cover crop on soil physical, chemical and biological properties of a sandy loam soil in a long-term field trial set up in 2007 at Foulum, Denmark. The experimental design is a split plot design with different tillage practices (di...... that P improved soil quality compared to H and D, especially when combined with cover crop. We also conclude that D may benefit from cover crop to yield better soil friability and hence soil quality.......This paper examines the effect of different tillage treatments and cover crop on soil physical, chemical and biological properties of a sandy loam soil in a long-term field trial set up in 2007 at Foulum, Denmark. The experimental design is a split plot design with different tillage practices...... (direct drilling (D), harrowing (H) to a depth of 8 cm and ploughing to a depth of 20 cm (P)) as main plot. The soil was cropped with cover crop (+CC) or left without cover crop (-CC) as split plot treatments in the main plots with different tillage treatments. We assessed topsoil structural quality...

  9. Tillage System and Cover Crop Effects on Soil Quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    2014-01-01

    Information about the quantitative effect of conservation tillage combined with a cover crop on soil structure is still limited. This study examined the effect of these management practices on soil pore characteristics of a sandy loam soil in a long-term field trial. The tillage treatments (main...... plots) included direct drilling (D), harrowing to a depth of 8 to 10 cm (H), and moldboard plowing (MP). The cover crop treatments were subplot with cover crop (+CC) and without cover crop (−CC). Minimally disturbed soil cores were taken from the 4- to 8-, 12- to 16-, and 18- to 27-cm depth intervals...... in the spring of 2012 before cultivation. Soil water retention and air permeability were measured for matric potentials ranging from −1 to −30 kPa. Gas diffusivity was measured at −10 kPa. Computed tomography (CT) scanning was also used to characterize soil pore characteristics. At the 4- to 8- and 18- to 27-cm...

  10. Kenaf and cowpea as sugarcane cover crops

    Science.gov (United States)

    The use of cover crops during the fallow period prior to planting sugarcane has the potential to influence not only the following sugarcane crop, but the economics of the production system as a whole. Typically, a Louisiana sugarcane field is replanted every four years due to declining yields, and,...

  11. Mycorrhiza formation and nutrient concentration in leeks (¤Allium porrum¤) in relation to previous crop and cover crop management on high P soils

    DEFF Research Database (Denmark)

    Sørensen, J.N.; Larsen, J.; Jakobsen, I.

    2005-01-01

    An improved integration of mycorrhizas may increase the sustainability in plant production. Two strategies for increasing the soil inoculum potential of mycorrhizal fungi were investigated in field experiments with leeks: Pre-cropping with mycorrhizal main crops and pre-establishment of mycorrhizal......, increased the colonization of leek roots by mycorrhizal fungi. During early growth stages, this increase was 45-95% relative to no cover crop. However, cover cropping did not significantly increase nutrient concentration or growth. These variables were not influenced by the time of cover crop incorporation...... or tillage treatments. Differences in colonization, nutrient uptake and plant growth diminished during the growing period and at the final harvest date, the effects on plant production disappeared. High soil P level or high soil inoculum level was most likely responsible for the limited response of increased...

  12. Cover Crop Species and Management Influence Predatory Arthropods and Predation in an Organically Managed, Reduced-Tillage Cropping System.

    Science.gov (United States)

    Rivers, Ariel N; Mullen, Christina A; Barbercheck, Mary E

    2018-04-05

    Agricultural practices affect arthropod communities and, therefore, have the potential to influence the activities of arthropods. We evaluated the effect of cover crop species and termination timing on the activity of ground-dwelling predatory arthropods in a corn-soybean-wheat rotation in transition to organic production in Pennsylvania, United States. We compared two cover crop treatments: 1) hairy vetch (Vicia villosa Roth) planted together with triticale (×Triticosecale Wittmack) after wheat harvest, and 2) cereal rye (Secale cereale Linnaeus) planted after corn harvest. We terminated the cover crops in the spring with a roller-crimper on three dates (early, middle, and late) based on cover crop phenology and standard practices for cash crop planting in our area. We characterized the ground-dwelling arthropod community using pitfall traps and assessed relative predation using sentinel assays with live greater waxworm larvae (Galleria mellonella Fabricius). The activity density of predatory arthropods was significantly higher in the hairy vetch and triticale treatments than in cereal rye treatments. Hairy vetch and triticale favored the predator groups Araneae, Opiliones, Staphylinidae, and Carabidae. Specific taxa were associated with cover crop condition (e.g., live or dead) and termination dates. Certain variables were positively or negatively associated with the relative predation on sentinel prey, depending on cover crop treatment and stage, including the presence of predatory arthropods and various habitat measurements. Our results suggest that management of a cover crop by roller-crimper at specific times in the growing season affects predator activity density and community composition. Terminating cover crops with a roller-crimper can conserve generalist predators.

  13. Cover Crops and Fertilization Alter Nitrogen Loss in Organic and Conventional Conservation Agriculture Systems

    Science.gov (United States)

    Shelton, Rebecca E.; Jacobsen, Krista L.; McCulley, Rebecca L.

    2018-01-01

    Agroecosystem nitrogen (N) loss produces greenhouse gases, induces eutrophication, and is costly for farmers; therefore, conservation agricultural management practices aimed at reducing N loss are increasingly adopted. However, the ecosystem consequences of these practices have not been well-studied. We quantified N loss via leaching, NH3 volatilization, N2O emissions, and N retention in plant and soil pools of corn conservation agroecosystems in Kentucky, USA. Three systems were evaluated: (1) an unfertilized, organic system with cover crops hairy vetch (Vicia villosa), winter wheat (Triticum aestivum), or a mix of the two (bi-culture); (2) an organic system with a hairy vetch cover crop employing three fertilization schemes (0 N, organic N, or a fertilizer N-credit approach); and (3) a conventional system with a winter wheat cover crop and three fertilization schemes (0 N, urea N, or organic N). In the unfertilized organic system, cover crop species affected NO3-N leaching (vetch > bi-culture > wheat) and N2O-N emissions and yield during corn growth (vetch, bi-culture > wheat). Fertilization increased soil inorganic N, gaseous N loss, N leaching, and yield in the organic vetch and conventional wheat systems. Fertilizer scheme affected the magnitude of growing season N2O-N loss in the organic vetch system (organic N > fertilizer N-credit) and the timing of loss (organic N delayed N2O-N loss vs. urea) and NO3-N leaching (urea >> organic N) in the conventional wheat system, but had no effect on yield. Cover crop selection and N fertilization techniques can reduce N leaching and greenhouse gas emissions without sacrificing yield, thereby enhancing N conservation in both organic and conventional conservation agriculture systems. PMID:29403512

  14. Cover Crops and Fertilization Alter Nitrogen Loss in Organic and Conventional Conservation Agriculture Systems

    Directory of Open Access Journals (Sweden)

    Rebecca E. Shelton

    2018-01-01

    Full Text Available Agroecosystem nitrogen (N loss produces greenhouse gases, induces eutrophication, and is costly for farmers; therefore, conservation agricultural management practices aimed at reducing N loss are increasingly adopted. However, the ecosystem consequences of these practices have not been well-studied. We quantified N loss via leaching, NH3 volatilization, N2O emissions, and N retention in plant and soil pools of corn conservation agroecosystems in Kentucky, USA. Three systems were evaluated: (1 an unfertilized, organic system with cover crops hairy vetch (Vicia villosa, winter wheat (Triticum aestivum, or a mix of the two (bi-culture; (2 an organic system with a hairy vetch cover crop employing three fertilization schemes (0 N, organic N, or a fertilizer N-credit approach; and (3 a conventional system with a winter wheat cover crop and three fertilization schemes (0 N, urea N, or organic N. In the unfertilized organic system, cover crop species affected NO3-N leaching (vetch > bi-culture > wheat and N2O-N emissions and yield during corn growth (vetch, bi-culture > wheat. Fertilization increased soil inorganic N, gaseous N loss, N leaching, and yield in the organic vetch and conventional wheat systems. Fertilizer scheme affected the magnitude of growing season N2O-N loss in the organic vetch system (organic N > fertilizer N-credit and the timing of loss (organic N delayed N2O-N loss vs. urea and NO3-N leaching (urea >> organic N in the conventional wheat system, but had no effect on yield. Cover crop selection and N fertilization techniques can reduce N leaching and greenhouse gas emissions without sacrificing yield, thereby enhancing N conservation in both organic and conventional conservation agriculture systems.

  15. Winter Cover Crop Effects on Nitrate Leaching in Subsurface Drainage as Simulated by RZWQM-DSSAT

    Science.gov (United States)

    Malone, R. W.; Chu, X.; Ma, L.; Li, L.; Kaspar, T.; Jaynes, D.; Saseendran, S. A.; Thorp, K.; Yu, Q.

    2007-12-01

    Planting winter cover crops such as winter rye (Secale cereale L.) after corn and soybean harvest is one of the more promising practices to reduce nitrate loss to streams from tile drainage systems without negatively affecting production. Because availability of replicated tile-drained field data is limited and because use of cover crops to reduce nitrate loss has only been tested over a few years with limited environmental and management conditions, estimating the impacts of cover crops under the range of expected conditions is difficult. If properly tested against observed data, models can objectively estimate the relative effects of different weather conditions and agronomic practices (e.g., various N fertilizer application rates in conjunction with winter cover crops). In this study, an optimized winter wheat cover crop growth component was integrated into the calibrated RZWQM-DSSAT hybrid model and then we compare the observed and simulated effects of a winter cover crop on nitrate leaching losses in subsurface drainage water for a corn-soybean rotation with N fertilizer application rates over 225 kg N ha-1 in corn years. Annual observed and simulated flow-weighted average nitrate concentration (FWANC) in drainage from 2002 to 2005 for the cover crop treatments (CC) were 8.7 and 9.3 mg L-1 compared to 21.3 and 18.2 mg L-1 for no cover crop (CON). The resulting observed and simulated FWANC reductions due to CC were 59% and 49%. Simulations with the optimized model at various N fertilizer rates resulted in average annual drainage N loss differences between CC and CON to increase exponentially from 12 to 34 kg N ha-1 for rates of 11 to 261 kg N ha-1. The results suggest that RZWQM-DSSAT is a promising tool to estimate the relative effects of a winter crop under different conditions on nitrate loss in tile drains and that a winter cover crop can effectively reduce nitrate losses over a range of N fertilizer levels.

  16. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model

    Science.gov (United States)

    Yeo, In-Young; Lee, Sangchui; Sadeghi, Ali M.; Beeson, Peter C.; Hively, W. Dean; McCarty, Greg W.; Lang, Megan W.

    2013-01-01

    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay Watershed (CBW), which is located in the Mid-Atlantic US, winter cover crop use has been emphasized and federal and state cost-share programs are available to farmers to subsidize the cost of winter cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops at the watershed scale and to identify critical source areas of high nitrate export. A physically-based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data and satellite-based estimates of winter cover crop species performance to simulate hydrological processes and nutrient cycling over the period of 1991–2000. Multiple scenarios were developed to obtain baseline information on nitrate loading without winter cover crops planted and to investigate how nitrate loading could change with different winter cover crop planting scenarios, including different species, planting times, and implementation areas. The results indicate that winter cover crops had a negligible impact on water budget, but significantly reduced nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading was approximately 14 kg ha−1, but it decreased to 4.6–10.1 kg ha−1 with winter cover crops resulting in a reduction rate of 27–67% at the watershed scale. Rye was most effective, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of winter cover crops (~30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~2 kg ha−1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of winter cover crop implementation. Agricultural fields with well-drained soils

  17. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model

    Science.gov (United States)

    Yeo, I.-Y.; Lee, S.; Sadeghi, A. M.; Beeson, P. C.; Hively, W. D.; McCarty, G. W.; Lang, M. W.

    2014-12-01

    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay watershed (CBW), which is located in the mid-Atlantic US, winter cover crop use has been emphasized, and federal and state cost-share programs are available to farmers to subsidize the cost of cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops to improve water quality at the watershed scale (~ 50 km2) and to identify critical source areas of high nitrate export. A physically based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data to simulate hydrological processes and agricultural nutrient cycling over the period of 1990-2000. To accurately simulate winter cover crop biomass in relation to growing conditions, a new approach was developed to further calibrate plant growth parameters that control the leaf area development curve using multitemporal satellite-based measurements of species-specific winter cover crop performance. Multiple SWAT scenarios were developed to obtain baseline information on nitrate loading without winter cover crops and to investigate how nitrate loading could change under different winter cover crop planting scenarios, including different species, planting dates, and implementation areas. The simulation results indicate that winter cover crops have a negligible impact on the water budget but significantly reduce nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading from agricultural lands was approximately 14 kg ha-1, but decreased to 4.6-10.1 kg ha-1 with cover crops resulting in a reduction rate of 27-67% at the watershed scale. Rye was the most effective species, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of cover crops (~ 30

  18. The Effect of Biofertilizers and Winter Cover Crops on Essential Oil Production and Some Agroecological Characteristics of Basil (Ocimum basilicum L.

    Directory of Open Access Journals (Sweden)

    M Jahan

    2013-04-01

    Full Text Available In searching for new strategies of medicinal plant production with high yield but without undesirable compounds or effects, it is important to investigate unconventional alternatives such as application of PGPR and cover crops cultivation. This experiment was conducted in a split plots arrangement with two factors based on randomized complete block design with three replications during years 2009-10, at Research Farm of Ferdowsi University of Mashhad. Cultivation and no cultivation of cover crops in autumn assigned to the main plots. The sub factor was biofertilizer application with four levels, included 1-Nitroxin (containing Azotobacter spp. and Azospirillum spp., 2-Biophosphorous (Bacillus sp. and Pseudomonas sp., 3-Nitroxin + Biophosphorous and 4-Control. During growing season plants were harvested by three cuts. Results showed that total shoots dry weight, leaves yield and LAI in plants under no cover crop cultivation had a significant advantage. Biofertilizers increased most characteristics e.g. fresh and dry total shoot yield, dry leaves and LAI. The interaction between fertilizer and cover crop was significant, as the highest yield of fresh shoots was observed in mix of nitroxin and biophosphorous with no cover crop, the highest and the lowest of leaf and green area index were obtained in plants treated by nitroxin without cover crop and biophosphorous with cover crop, respectively. Plants harvested in cut 3 had the lowest LAI and other two cuts had no significant difference concerning this trait. The highest and the lowest fresh and dry shoot yield were observed in cut 2 and 1, respectively. The most essential oil yield was in cut 2 and 3 (without significant difference and cut 1 was the lowest. The results showed that the interaction between biofertilizers and no cover crop cultivation was significant, as use of the biofertilizers especially nitroxin and biophosphorous in no cover crop condition enhanced the most characteristics of

  19. Reproduction of Meloidogyne incognita on Winter Cover Crops Used in Cotton Production.

    Science.gov (United States)

    Timper, Patricia; Davis, Richard F; Tillman, P Glynn

    2006-03-01

    Substantial reproduction of Meloidogyne incognita on winter cover crops may lead to damaging populations in a subsequent cotton (Gossypium hirsutum) crop. The amount of population increase during the winter depends on soil temperature and the host status of the cover crop. Our objectives were to quantify M. incognita race 3 reproduction on rye (Secale cereale) and several leguminous cover crops and to determine if these cover crops increase population densities of M. incognita and subsequent damage to cotton. The cover crops tested were 'Bigbee' berseem clover (Trifolium alexandrinum), 'Paradana' balansa clover (T. balansae), 'AU Sunrise' and 'Dixie' crimson clover (T. incarnatum), 'Cherokee' red clover (T. pratense), common and 'AU Early Cover' hairy vetch (Vicia villosa), 'Cahaba White' vetch (V. sativa), and 'Wrens Abruzzi' rye. In the greenhouse tests, egg production was greatest on berseem clover, Dixie crimson clover, AU Early Cover hairy vetch, and common hairy vetch; intermediate on Balansa clover and AU Sunrise crimson clover; and least on rye, Cahaba White vetch, and Cherokee red clover. In both 2002 and 2003 field tests, enough heat units were accumulated between 1 January and 20 May for the nematode to complete two generations. Both AU Early Cover and common hairy vetch led to greater root galling than fallow in the subsequent cotton crop; they also supported high reproduction of M. incognita in the greenhouse. Rye and Cahaba White vetch did not increase root galling on cotton and were relatively poor hosts for M. incognita. Only those legumes that increased populations of M. incognita reduced cotton yield. In the southern US, M. incognita can complete one to two generations on a susceptible winter cover crop, so cover crops that support high nematode reproduction may lead to damage and yield losses in the following cotton crop. Planting rye or Meloidogyne-resistant legumes as winter cover crops will lower the risk of increased nematode populations

  20. Winter rye cover crops as a host for corn seedling pathogens

    Science.gov (United States)

    Cover cropping is a prevalent conservation practice that offers substantial benefits to soil protection, soil health and water quality. However, emerging implementations of cover cropping, such as winter cereals preceding corn, may dampen beneficial rotation effects by putting similar crop species i...

  1. Cover Crop Biomass Harvest Influences Cotton Nitrogen Utilization and Productivity

    Directory of Open Access Journals (Sweden)

    F. Ducamp

    2012-01-01

    Full Text Available There is a potential in the southeastern US to harvest winter cover crops from cotton (Gossypium hirsutum L. fields for biofuels or animal feed use, but this could impact yields and nitrogen (N fertilizer response. An experiment was established to examine rye (Secale cereale L. residue management (RM and N rates on cotton productivity. Three RM treatments (no winter cover crop (NC, residue removed (REM and residue retained (RET and four N rates for cotton were studied. Cotton population, leaf and plant N concentration, cotton biomass and N uptake at first square, and cotton biomass production between first square and cutout were higher for RET, followed by REM and NC. However, leaf N concentration at early bloom and N concentration in the cotton biomass between first square and cutout were higher for NC, followed by REM and RET. Seed cotton yield response to N interacted with year and RM, but yields were greater with RET followed by REM both years. These results indicate that a rye cover crop can be beneficial for cotton, especially during hot and dry years. Long-term studies would be required to completely understand the effect of rye residue harvest on cotton production under conservation tillage.

  2. The efficacy of winter cover crops to stabilize soil inorganic nitrogen after fall-applied anhydrous ammonia.

    Science.gov (United States)

    Lacey, Corey; Armstrong, Shalamar

    2015-03-01

    There is a dearth of knowledge on the ability of cover crops to increase the effectiveness of fall-applied nitrogen (N). The objective of this study was to investigate the efficacy of two cover crop species to stabilize inorganic soil N after a fall application of N. Fall N was applied at a rate of 200 kg N ha into living stands of cereal rye, tillage radish, and a control (no cover crop) at the Illinois State University Research and Teaching Farm in Lexington, Illinois. Cover crops were sampled to determine N uptake, and soil samples were collected in the spring at four depths to 80 cm to determine the distribution of inorganic N within the soil profile. Tillage radish (131.9-226.8 kg ha) and cereal rye (188.1-249.9 kg ha N) demonstrated the capacity to absorb a minimum of 60 to 80% of the equivalent rate of fall-applied N, respectively. Fall applying N without cover crops resulted in a greater percentage of soil NO-N (40%) in the 50- to 80-cm depth, compared with only 31 and 27% when tillage radish and cereal rye were present at N application. At planting, tillage radish stabilized an average of 91% of the equivalent rate of fall-applied N within the 0- to 20-cm, depth compared with 66 and 57% for the cereal rye and control treatments, respectively. This study has demonstrated that fall applying N into a living cover crop stand has the potential to reduce the vulnerability of soil nitrate and to stabilize a greater concentration of inorganic N within the agronomic depths of soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. MICRONUTRIENTS USE EFFICIENCY IN TROPICAL COVER CROPS AS INFLUENCED BY PHOSPHORUS FERTILIZATION

    Directory of Open Access Journals (Sweden)

    NAND KUMAR FAGERIA

    2015-01-01

    Full Text Available Deficiency of micronutrients is increasing in the recent years in cropping systems in many parts of the world and cover crops are important components of cropping systems. A greenhouse experiment was conducted to evaluate copper (Cu, iron (Fe, manganese (Mn and zinc (Zn use efficiency in 14 tropical leg-ume cover crops grown on an Oxisol. The P levels used were low (0 mg kg-1, medium (100 mg kg-1 and high (200 mg kg-1. The P X cover crops interactions were significant for Cu, Fe, Mn, and Zn use efficiency (tops dry weight/unit nutrient uptake. Hence, cover crop species varied in nutrient use efficiency with change in P levels. The micronutrient use efficiency was in the order of Cu > Zn > Mn > Fe. Higher Cu use efficiency was associated with lower uptake of this element, in the cover crop tops compared to other micronutrients. Similar-ly, lower efficiency of Fe and Mn was associated with their higher uptake in the tops of cover crops. Overall, Cu and Mn use efficiency was decreased when P level was raised from low to medium level and then it was constant. Iron use efficiency was increased with increasing P level but Zn use efficiency was constant with the addition of P fertilizer

  4. The Potential for Cereal Rye Cover Crops to Host Corn Seedling Pathogens.

    Science.gov (United States)

    Bakker, Matthew G; Acharya, Jyotsna; Moorman, Thomas B; Robertson, Alison E; Kaspar, Thomas C

    2016-06-01

    Cover cropping is a prevalent conservation practice that offers substantial benefits to soil and water quality. However, winter cereal cover crops preceding corn may diminish beneficial rotation effects because two grass species are grown in succession. Here, we show that rye cover crops host pathogens capable of causing corn seedling disease. We isolated Fusarium graminearum, F. oxysporum, Pythium sylvaticum, and P. torulosum from roots of rye and demonstrate their pathogenicity on corn seedlings. Over 2 years, we quantified the densities of these organisms in rye roots from several field experiments and at various intervals of time after rye cover crops were terminated. Pathogen load in rye roots differed among fields and among years for particular fields. Each of the four pathogen species increased in density over time on roots of herbicide-terminated rye in at least one field site, suggesting the broad potential for rye cover crops to elevate corn seedling pathogen densities. The radicles of corn seedlings planted following a rye cover crop had higher pathogen densities compared with seedlings following a winter fallow. Management practices that limit seedling disease may be required to allow corn yields to respond positively to improvements in soil quality brought about by cover cropping.

  5. Summer Flowering Cover Crops Support Wild Bees in Vineyards.

    Science.gov (United States)

    Wilson, Houston; Wong, Jessica S; Thorp, Robbin W; Miles, Albie F; Daane, Kent M; Altieri, Miguel A

    2018-02-08

    Agricultural expansion and intensification negatively affect pollinator populations and has led to reductions in pollination services across multiple cropping systems. As a result, growers and researchers have utilized the restoration of local and landscape habitat diversity to support pollinators, and wild bees in particular. Although a majority of studies to date have focussed on effects in pollinator-dependent crops such as almond, tomato, sunflower, and watermelon, supporting wild bees in self-pollinated crops, such as grapes, can contribute to broader conservation goals as well as provide other indirect benefits to growers. This study evaluates the influence of summer flowering cover crops and landscape diversity on the abundance and diversity of vineyard bee populations. We showed that diversity and abundance of wild bees were increased on the flowering cover crop, but were unaffected by changes in landscape diversity. These findings indicate that summer flowering cover crops can be used to support wild bees and this could be a useful strategy for grape growers interested in pollinator conservation as part of a broader farmscape sustainability agenda. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Nitrous oxide emissions in cover crop-based corn production systems

    Science.gov (United States)

    Davis, Brian Wesley

    Nitrous oxide (N2O) is a potent greenhouse gas; the majority of N2O emissions are the result of agricultural management, particularly the application of N fertilizers to soils. The relationship of N2O emissions to varying sources of N (manures, mineral fertilizers, and cover crops) has not been well-evaluated. Here we discussed a novel methodology for estimating precipitation-induced pulses of N2O using flux measurements; results indicated that short-term intensive time-series sampling methods can adequately describe the magnitude of these pulses. We also evaluated the annual N2O emissions from corn-cover crop (Zea mays; cereal rye [Secale cereale], hairy vetch [Vicia villosa ], or biculture) production systems when fertilized with multiple rates of subsurface banded poultry litter, as compared with tillage incorporation or mineral fertilizer. N2O emissions increased exponentially with total N rate; tillage decreased emissions following cover crops with legume components, while the effect of mineral fertilizer was mixed across cover crops.

  7. Monitoring cover crops using radar remote sensing in southern Ontario, Canada

    Science.gov (United States)

    Shang, J.; Huang, X.; Liu, J.; Wang, J.

    2016-12-01

    Information on agricultural land surface conditions is important for developing best land management practices to maintain the overall health of the fields. The climate condition supports one harvest per year for the majority of the field crops in Canada, with a relative short growing season between May and September. During the non-growing-season months (October to the following April), many fields are traditionally left bare. In more recent year, there has been an increased interest in planting cover crops. Benefits of cover crops include boosting soil organic matters, preventing soil from erosion, retaining soil moisture, and reducing surface runoff hence protecting water quality. Optical remote sensing technology has been exploited for monitoring cover crops. However limitations inherent to optical sensors such as cloud interference and signal saturation (when leaf area index is above 2.5) impeded its operational application. Radar remote sensing on the other hand is not hindered by unfavorable weather conditions, and the signal continues to be sensitive to crop growth beyond the saturation point of optical sensors. It offers a viable means for capturing timely information on field surface conditions (with or without crop cover) or crop development status. This research investigated the potential of using multi-temporal RADARSAT-2 C-band synthetic aperture radar (SAR) data collected in 2015 over multiple fields of winter wheat, corn and soybean crops in southern Ontario, Canada, to retrieve information on the presence of cover crops and their growth status. Encouraging results have been obtained. This presentation will report the methodology developed and the results obtained.

  8. Exploring economically and environmentally viable northeastern US dairy farm strategies for coping with rising corn grain prices.

    Science.gov (United States)

    Ghebremichael, L T; Veith, T L; Cerosaletti, P E; Dewing, D E; Rotz, C A

    2009-08-01

    In 2008, corn grain prices rose $115/t of DM above the 2005 average. Such an increase creates tight marginal profits for small (profit losses by growing more corn silage and reducing corn grain purchases. This study applies the Integrated Farm Systems Model to 1 small and 1 medium-sized New York State dairy farm to predict 1) sediment and P loss impacts from expanding corn fields, 2) benefits of no-till or cover cropping on corn fields, and 3) alternatives to the economic challenge of the current farming system as the price ratio of milk to corn grain continues to decline. Based on the simulation results, expanding corn silage production by 3% of the cultivated farm area increased sediment and sediment-bound P losses by 41 and 18%, respectively. Implementing no-till controlled about 84% of the erosion and about 75% of the sediment-bound P that would have occurred from the conventionally tilled, expanded corn production scenario. Implementing a conventionally tilled cover crop with the conventionally tilled, expanded corn production scenario controlled both erosion and sediment-bound P, but to a lesser extent than no-till corn with no cover crop. However, annual farm net return using cover crops was slightly less than when using no-till. Increasing on-farm grass productivity while feeding cows a high-quality, high-forage diet and precise dietary P levels offered dual benefits: 1) improved farm profitability from reduced purchases of dietary protein and P supplements, and 2) decreased runoff P losses from reduced P-levels in applied manure. Moreover, alternatives such as growing additional small grains on marginal lands and increasing milk production levels demonstrated great potential in increasing farm profitability. Overall, it is crucial that conservation measures such as no-till and cover cropping be implemented on new or existing corn lands as these areas often pose the highest threat for P losses through runoff. Although alternatives that would likely provide

  9. Soil and Foliar Arthropod Abundance and Diversity in Five Cropping Systems in the Coastal Plains of North Carolina.

    Science.gov (United States)

    Adams, Paul R; Orr, David B; Arellano, Consuelo; Cardoza, Yasmin J

    2017-08-01

    Soil and foliar arthropod populations in agricultural settings respond to environmental disturbance and degradation, impacting functional biodiversity in agroecosystems. The objective of this study was to evaluate system level management effects on soil and foliar arthropod abundance and diversity in corn and soybean. Our field experiment was a completely randomized block design with three replicates for five farming systems which included: Conventional clean till, conventional long rotation, conventional no-till, organic clean till, and organic reduced till. Soil arthropod sampling was accomplished by pitfall trapping. Foliar arthropod sampling was accomplished by scouting corn and sweep netting soybean. Overall soil arthropod abundance was significantly impacted by cropping in corn and for foliar arthropods in soybeans. Conventional long rotation and organic clean till systems were highest in overall soil arthropod abundance for corn while organic reduced till systems exceeded all other systems for overall foliar arthropod abundance in soybeans. Foliar arthropod abundance over sampling weeks was significantly impacted by cropping system and is suspected to be the result of in-field weed and cover crop cultivation practices. This suggests that the sum of management practices within production systems impact soil and foliar arthropod abundance and diversity and that the effects of these systems are dynamic over the cropping season. Changes in diversity may be explained by weed management practices as sources of disturbance and reduced arthropod refuges via weed reduction. Furthermore, our results suggest agricultural systems lower in management intensity, whether due to organic practices or reduced levels of disturbance, foster greater arthropod diversity. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Cover Crops in Hillside Agriculture

    International Development Research Centre (IDRC) Digital Library (Canada)

    Our study focuses on the wet tropical hillsides of northern Honduras (Figure 1). ..... The eastern extreme of the region (Jutiapa) is a dry spot, with less rainfall (2 000 mm a-1) as a result ...... Paper presented at the International Workshop on Green Manure–Cover Crops for Smallholders in ..... Lamaster, J.P.; Jones, I.R. 1923.

  11. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model

    OpenAIRE

    Yeo, I.-Y.; Lee, S.; Sadeghi, A. M.; Beeson, P. C.; Hively, W. D.; McCarty, G. W.; Lang, M. W.

    2014-01-01

    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay watershed (CBW), which is located in the mid-Atlantic US, winter cover crop use has been emphasized, and federal and state cost-share programs are available to farmers to subsidize the cost of cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops to improve water quality a...

  12. Impact of preceding crop on alfalfa competitiveness with weeds

    Science.gov (United States)

    Organic producers would like to include no-till practices in their farming systems. We are seeking to develop a continuous no-till system for organic farming, based on a complex rotation that includes a 3-year sequence of alfalfa. In this study, we evaluated impact of preceding crop on weed infest...

  13. Benefits from cover crops based on plant-microbial interaction

    OpenAIRE

    Manici , L.M.; Kelderer, M.; Caputo, F.; De Luca Picione , F.; Topp, A.

    2014-01-01

    This study was performed on the impact of two different cover crops (cereal and legume) on composition of root fungal endophytes and rhizospheric bacterial communities as a function of crop health in replanted apple orchards.

  14. SOIL CHEMICAL ATTRIBUTES AND LEAF NUTRIENTS OF ‘PACOVAN’ BANANA UNDER TWO COVER CROPS

    Directory of Open Access Journals (Sweden)

    JOSÉ EGÍDIO FLORI

    2016-01-01

    Full Text Available Banana is one of the most consumed fruits in the world, which is grown in most tropical countries. The objective of this work was to evaluate the main attributes of soil fertility in a banana crop under two cover crops and two root development locations. The work was conducted in Curaçá, BA, Brazil, between October 2011 and May 2013, using a randomized block design in split plot with five repetitions. Two cover crops were assessed in the plots, the cover 1 consisting of Pueraria phaseoloides, and the cover 2 consisting of a crop mix with Sorghum bicolor, Ricinus communis L., Canavalia ensiformis, Mucuna aterrima and Zea mays, and two soil sampling locations in the subplots, between plants in the banana rows (location 1 and between the banana rows (location 2. There were significant and independent effects for the cover crop and sampling location factors for the variables organic matter, Ca and P, and significant effects for the interaction between cover crops and sampling locations for the variables potassium, magnesium and total exchangeable bases. The cover crop mix and the between-row location presented the highest organic matter content. Potassium was the nutrient with the highest negative variation from the initial content and its leaf content was below the reference value, however not reducing the crop yield. The banana crop associated with crop cover using the crop mix provided greater availability of nutrients in the soil compared to the coverage with tropical kudzu.

  15. Impact of cover crops and tillage on porosity of podzolic soil

    Science.gov (United States)

    Błażewicz-Woźniak, M.; Konopiñski, M.

    2013-09-01

    The aim of the study was to determine the influence of cover crops biomass, mixed with the soil on different dates and with the use of different tools in field conditions. The cover crop biomass had a beneficial influence on the total porosity of the 0-20 cm layer of the soil after winter. The highest porosity was achievedwith cover crops of buckwheat, phacelia and mustard, the lowest with rye. During the vegetation period the highest porosity of soil was observed in the ridges. Among the remaining non-ploughing cultivations, pre-winter use of stubble cultivator proved to have a beneficial influence on the soil porosity, providing results comparable to those achieved in conventional tillage. The differential porosity of the soil was modified not only by the catch crops and the cultivation methods applied, but also by the sample collection dates, and it did change during the vegetation period. The highest content of macropores after winter was observed for the phacelia cover crop, and the lowest in the case of cultivation without any cover crops. Pre-winter tillage with the use of a stubble cultivator increased the amount of macropores in soil in spring, and caused the biggest participation of mesopores as compared with other non-ploughing cultivation treatments of the soil. The smallest amount of mesopores was found in the ridges.

  16. Why does carbon increase in highly weathered soil under no-till upon lime and gypsum use?

    Science.gov (United States)

    Inagaki, Thiago Massao; de Moraes Sá, João Carlos; Caires, Eduardo Fávero; Gonçalves, Daniel Ruiz Potma

    2017-12-01

    Field experiments have been used to explain how soil organic carbon (SOC) dynamics is affected by lime and gypsum applications, however, how SOC storage occurs is still debatable. We hypothesized that although many studies conclude that Ca-based soil amendments such as lime and gypsum may lead to SOC depletion due to the enhancement of microbial activity, the same does not occur under conservation agriculture conditions. Thus, the objective of this study was to elucidate the effects of lime and gypsum applications on soil microbial activity and SOC stocks in a no-till field and in a laboratory incubation study simulating no-till conditions. The field experiment was established in 1998 in a clayey Oxisol in southern Brazil following a completely randomized blocks design with a split-plot arrangement and three replications. Lime and gypsum were surface applied in 1998 and reapplied in 2013. Undisturbed soil samples were collected before the treatments reapplications, and one year after. The incubation experiment was carried out during 16months using these samples adding crop residues on the soil surface to simulate no-till field conditions. Lime and gypsum applications significantly increased the labile SOC stocks, microbial activity and soil fertility attributes in both field and laboratory experiments. Although the microbial activity was increased, no depletion of SOC stocks was observed in both experiments. Positive correlations were observed between microbial activity increase and SOC gains. Labile SOC and Ca 2+ content increase leads to forming complex with mineral soil fractions. Gypsum applications performed a higher influence on labile SOC pools in the field than in the laboratory experiment, which may be related to the presence of active root system in the soil profile. We conclude that incubation experiments using lime and gypsum in undisturbed samples confirm that soil microbial activity increase does not deplete SOC stocks under conservation agriculture

  17. Nitrogen source and placement effects on soil nitrous oxide emissions from no-till corn.

    Science.gov (United States)

    Halvorson, Ardell D; Del Grosso, Stephen J

    2012-01-01

    A nitrogen (N) source comparison study was conducted to further evaluate the effects of inorganic N source and placement on growing-season and non-crop period soil nitrous oxide (NO). Commercially available controlled-release N fertilizers were evaluated for their potential to reduce NO emissions from a clay loam soil compared with conventionally used granular urea and urea-ammonium nitrate (UAN) fertilizers in an irrigated no-till (NT) corn ( L.) production system. Controlled-release N fertilizers evaluated were: a polymer-coated urea (ESN), stabilized urea (SuperU), and UAN+AgrotainPlus (SuperU and AgrotainPlus contain nitrification and urease inhibitors). Each N source was surface band applied (202 kg N ha) near the corn row at emergence and watered into the soil the next day. Subsurface banded ESN (ESNssb) and check (no N applied) treatments were included. Nitrous oxide fluxes were measured during two growing seasons and after harvest using static, vented chambers. All N sources had significantly lower growing-season NO emissions than granular urea (0.7% of applied N), with UAN+AgrotainPlus (0.2% of applied N) and ESN (0.3% of applied N) having lower emissions than UAN (0.4% of applied N). Similar trends were observed when expressing NO emissions on a grain yield and N uptake basis. Corn grain yields were not different among N sources but were greater than the check. Selection of N fertilizer source can be a mitigation practice for reducing NO emissions in NT, irrigated corn in semiarid areas. In our study, UAN+AgrotainPlus consistently had the lowest level of NO emissions with no yield loss. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Allelopathic cover crop prior to seeding is more important than subsequent grazing/mowing in grassland establishment

    Science.gov (United States)

    Milchunas, Daniel G.; Vandever, Mark W.; Ball, Leonard O.; Hyberg, Skip

    2011-01-01

    The effects of grazing, mowing, and type of cover crop were evaluated in a previous winter wheat–fallow cropland seeded to grassland under the Conservation Reserve Program in eastern Colorado. Prior to seeding, the fallow strips were planted to forage sorghum or wheat in alternating strips (cover crops), with no grazing, moderate to heavy grazing, and mowing (grazing treatments) superimposed 4 yr after planting and studied for 3 yr. Plots previously in wheat had more annual and exotic species than sorghum plots. Concomitantly, there were much greater abundances of perennial native grass and all native species in sorghum than wheat cropped areas. The competitive advantage gained by seeded species in sorghum plots resulted in large increases in rhizomatous western wheatgrass. Sorghum is known to be allelopathic and is used in crop agriculture rotations to suppress weeds and increase crop yields, consistent with the responses of weed and desired native species in this study. Grazing treatment had relatively minor effects on basal and canopy cover composition of annual or exotic species versus perennial native grass or native species. Although grazing treatment never was a significant main effect, it occasionally modified cover crop or year effects. Opportunistic grazing reduced exotic cheatgrass by year 3 but also decreased the native palatable western wheatgrass. Mowing was a less effective weed control practice than grazing. Vegetative basal cover and aboveground primary production varied primarily with year. Common management practices for revegetation/restoration currently use herbicides and mowing as weed control practices and restrict grazing in all stages of development. Results suggest that allelopathic cover crop selection and opportunistic grazing can be effective alternative grass establishment and weed control practices. Susceptibility, resistance, and interactions of weed and seeded species to allelopathic cover species/cultivars may be a fruitful area

  19. Developing methods of strip cropping cucumbers with rye/vetch

    OpenAIRE

    Ogutu, Maurice Okendo

    2000-01-01

    The purpose of this research carried out in 1998 and 1999 was to develop methods for strip cropping of cucumbers with rye/vetch and black plastic mulch. Effects of planting methods, weed control measures, and cover crop management techniques on pest and beneficial insects, petiole sap nitrate-nitrogen, soil moisture, yields and economic viability were assessed. Four treatments, namely cucumber direct seeded in black plastic mulch on tilled bare ground (conventional); cucumber d...

  20. Effect of Soybean and Wheat as Cover Crops on Corn Yield and Weed Control using Different Fertilizer Sources

    Directory of Open Access Journals (Sweden)

    F. Dadashi

    2016-02-01

    Full Text Available Introduction: According to the importance of corn in supplying the human food directly and indirectly, it is one of the most important plants among crops. One of the major problems in corn production systems, is competition with weeds that reduce corn yield significantly. Weeds not only reduce crop yields but also decrease the commercial quality and the feeding palatability of main crops. They enhance the soil seed bank of weeds, which may cause continuous weed infestation of field crops as well. Herbicide application is a reliable and highly effective method for weed control. However, demand for safe food products that have been produced with a minimum application of chemical inputs is increasing. Therefore, farmers interested in weed management have to rely on other control approaches. An alternative weed control method is the use of cover crops, which can suppress the growth of weeds by preventing them from light and by producing allelopathic compounds. Cover crops successfully have been integrated into conservational agriculture systems in many areas of the world. Legumes are used as cover crop because of their rapid growth, in addition their potential to provide further nitrogen,along with high ability to compete with weeds. Materials and Methods: In order to study the effect of cover crops (soybean and wheat and different fertilizers sources on yield of corn and weed control, a filed experiment was conducted in randomized complete block design with three replications in 2012. Treatments included two cover crop (wheat and soybean and three fertilizer (no fertilizer, chemical fertilizer and compost..Fertilizer treatments was used according to soil analysis and requirement of corn (as a main plant. Weed-infestation and weed-free plots were used as controls. Study cultivars of corn, wheat and soybean were NS-640, Milan and Sari, respectively. Planting of corn was in June and cover crop was planted with corn simultaneously and between corn rows

  1. Intensity of Ground Cover Crop Arachis pintoi, Rhizobium Inoculation and Phosphorus Application and Their Effects on Field Growth and Nutrient Status of Cocoa Plants

    Directory of Open Access Journals (Sweden)

    John Bako Baon

    2006-08-01

    Full Text Available Arachis pintoiis potentially as a cover crop for cocoa (Theobroma cacaoL. farm, however information regarding its effect on the growth of cocoa plants in the field is very limited. The objective of this experiment is to investigate the combined influence of ground cover crop A. pintoi, rhizobial bacterial inoculation and phosphorus (P fertilizer on the growth of cocoa in the field and nutrient status. This experiment laid out in split-split plot design consisted of three levels of cover crop (without, A. pintoiand Calopogonium caeruleum, two levels of rhizobium inoculation (not inoculated and inoculated and two levels of phosphorus application (no P added and P added. The results showed that in field condition the presence of A. pintoias cover crop did not affect the growth of cocoa. On the other hand, C. caeruleumas cover crop tended to restrict cocoa growth compared to A. pintoi. Application of P increased leaf number of cocoa plant. Biomass production of A. pintoiwas 40% higher than C. caeruleum. Soil organic carbon and nitrogen contents were not affected by ground cover crops, though higher value (0.235% N and 1.63% organic C was obtained from combined treatments of inoculation and P addition or neither inoculation nor P addition. In the case of no rhizobium inoculation, soil N content in cocoa farm with A. pintoicover crop was lower than that of without cover crop or with C. caeruleum. Cover crop increased plant N content when there was no inoculation, on the other hand rhizobium inoculation decreased N content of cocoa tissue. Tissue P content of cocoa plant was not influenced by A. Pintoicover crop or by rhizobium inoculation, except that the P tissue content of cocoa was 28% higher when the cover crop was C. caeruleumand inoculated. Key words : Arachis pintoi, Theobroma cacao, Calopogonium caeruleum, rhizobium, nitrogen, phosphorus.

  2. Utilization of residual nitrogen (15N) from cover crop and urea by corn

    International Nuclear Information System (INIS)

    Silva, Edson Cabral da; Muraoka, Takashi; Trivelin, Paulo Cesar Ocheuze; Buzetti, Salatier; Veloso, Marcos Emanuel da Costa

    2006-01-01

    The majority of N from mineral fertilizers and cover crops is usually not used by the very next corn crop, but can be absorbed by follow-up crops. The objective of this study was to evaluate the use of residual nitrogen from urea, sunnhemp (Crotalaria juncea) and millet (Pennisetum americanum) labeled with 15 N, applied to no-tillage corn in the previous growing season, in a Red Latosol of the Cerrado. The study was conducted in an experimental farm of the Sao Paulo State University (UNESP), Ilha Solteira, in Selviria county (MS), Brazil, in different areas. The experiment had a randomized complete block design, with 15 treatments and four replications. Treatments were applied to corn crop in the 2001/02 and 2003/04 growing seasons. They were distributed in a 3 x 5 factorial layout, representing the combination of three cover crops: sunnhemp, millet and spontaneous vegetation (fallow) and five N rates (as urea): 0, 30, 80, 130, and 180 kg ha-1 of N. After corn harvest, the two areas were followed in the dry season and were followed by corn crop in the 2002/03 (experiment 1) and 2003/04 (experiment 2) growing seasons, using the same fertilizer rate on all plots to distinguish the residual effect of N sources. The average use of residual N from the millet and sunnhemp residues (above-ground part) by corn crop was less than 3.5 and 3 %, respectively, of the initial amount. The corn uptake of residual N from urea increased in a quadratic manner in experiment 1 and linearly in experiment Two as a response to the applied N rates, and the recover was below 3 %. The cover crop type did not affect the use of residual N of urea by corn, and vice-versa. (author)

  3. Limited Impact of a Fall-Seeded, Spring-Terminated Rye Cover Crop on Beneficial Arthropods.

    Science.gov (United States)

    Dunbar, Mike W; Gassmann, Aaron J; O'Neal, Matthew E

    2017-04-01

    Cover crops are beneficial to agroecosystems because they decrease soil erosion and nutrient loss while increasing within-field plant diversity. Greater plant diversity within cropping systems can positively affect beneficial arthropod communities. We hypothesized that increasing plant diversity within annually rotated corn and soybean with the addition of a rye cover crop would positively affect the beneficial ground and canopy-dwelling communities compared with rotated corn and soybean grown without a cover crop. From 2011 through 2013, arthropod communities were measured at two locations in Iowa four times throughout each growing season. Pitfall traps were used to sample ground-dwelling arthropods within the corn and soybean plots and sweep nets were used to measure the beneficial arthropods in soybean canopies. Beneficial arthropods captured were identified to either class, order, or family. In both corn and soybean, community composition and total community activity density and abundance did not differ between plots that included the rye cover crop and plots without the rye cover crop. Most taxa did not significantly respond to the presence of the rye cover crop when analyzed individually, with the exceptions of Carabidae and Gryllidae sampled from soybean pitfall traps. Activity density of Carabidae was significantly greater in soybean plots that included a rye cover crop, while activity density of Gryllidae was significantly reduced in plots with the rye cover crop. Although a rye cover crop may be agronomically beneficial, there may be only limited effects on beneficial arthropods when added within an annual rotation of corn and soybean. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Suitability of peanut residue as a nitrogen source for a rye cover crop

    OpenAIRE

    Balkcom,Kipling Shane; Wood,Charles Wesley; Adams,James Fredrick; Meso,Bernard

    2007-01-01

    Leguminous winter cover crops have been utilized in conservation systems to partially meet nitrogen (N) requirements of succeeding summer cash crops, but the potential of summer legumes to reduce N requirements of a winter annual grass, used as a cover crop, has not been extensively examined. This study assessed the N contribution of peanut (Arachis hypogaea L.) residues to a subsequent rye (Secale cereale L.) cover crop grown in a conservation system on a Dothan sandy loam (fine-loamy, kaoli...

  5. Carbon balance and crop residue management in dynamic equilibrium under a no-till system in Campos Gerais

    Directory of Open Access Journals (Sweden)

    Ademir de Oliveira Ferreira

    2012-11-01

    Full Text Available The adoption of no-tillage systems (NT and the maintenance of crop residues on the soil surface result in the long-term increase of carbon (C in the system, promoting C sequestration and reducing C-CO2 emissions to the atmosphere. The purpose of this study was to evaluate the C sequestration rate and the minimum amount of crop residues required to maintain the dynamic C equilibrium (dC/dt = 0 of two soils (Typic Hapludox with different textural classes. The experiment was arranged in a 2 x 2 x 2 randomized block factorial design. The following factors were analyzed: (a two soil types: Typic Hapludox (Oxisol with medium texture (LVTM and Oxisol with clay texture (LVTA, (b two sampling layers (0-5 and 5-20 cm, and (c two sampling periods (P1 - October 2007; P2 - September 2008. Samples were collected from fields under a long-term (20 years NT system with the following crop rotations: wheat/soybean/black oat + vetch/maize (LVTM and wheat/maize/black oat + vetch/soybean (LVTA. The annual C sequestration rates were 0.83 and 0.76 Mg ha-1 for LVTM and LVTA, respectively. The estimates of the minimum amount of crop residues required to maintain a dynamic equilibrium (dC/dt = 0 were 7.13 and 6.53 Mg ha-1 year-1 for LVTM and LVTA, respectively. The C conversion rate in both studied soils was lower than that reported in other studies in the region, resulting in a greater amount of crop residues left on the soil surface.

  6. Summer cover crops and soil amendments to improve growth and nutrient uptake of okra

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q.R.; Li, Y.C.; Klassen, W. [University of Florida, Homestead, FL (United States). Center for Tropical Research & Education

    2006-04-15

    A pot experiment with summer cover crops and soil amendments was conducted in two consecutive years to elucidate the effects of these cover crops and soil amendments on 'Clemson Spineless 80' okra (Abelmoschus esculentus) yields and biomass production, and the uptake and distribution of soil nutrients and trace elements. The cover crops were sunn hemp (Crotalaria juncea), cowpea (Vigna unguiculata), velvetbean (Mucuna deeringiana), and sorghum sudan-grass (Sorghum bicolor x S. bicolor var. sudanense) with fallow as the control. The organic soil amendments were biosolids (sediment from wastewater plants), N-Viro Soil (a mixture of biosolids and coal ash), coal ash (a combustion by-product from power plants), co-compost (a mixture of 3 biosolids: 7 yard waste), and yard waste compost (mainly from leaves and branches of trees and shrubs, and grass clippings) with a soil-incorporated cover crop as the control. As a subsequent vegetable crop, okra was grown after the cover crops, alone or together with the organic soil amendments, had been incorporated. All of the cover crops, except sorghum sudangrass in 2002-03, significantly improved okra fruit yields and the total biomass production. Both cover crops and soil amendments can substantially improve nutrient uptake and distribution. The results suggest that cover crops and appropriate amounts of soil amendments can be used to improve soil fertility and okra yield without adverse environmental effects or risk of contamination of the fruit. Further field studies will be required to confirm these findings.

  7. Microbial community responses to soil tillage and crop rotation in a corn/soybean agroecosystem.

    Science.gov (United States)

    Smith, Chris R; Blair, Peter L; Boyd, Charlie; Cody, Brianne; Hazel, Alexander; Hedrick, Ashley; Kathuria, Hitesh; Khurana, Parul; Kramer, Brent; Muterspaw, Kristin; Peck, Charles; Sells, Emily; Skinner, Jessica; Tegeler, Cara; Wolfe, Zoe

    2016-11-01

    The acreage planted in corn and soybean crops is vast, and these crops contribute substantially to the world economy. The agricultural practices employed for farming these crops have major effects on ecosystem health at a worldwide scale. The microbial communities living in agricultural soils significantly contribute to nutrient uptake and cycling and can have both positive and negative impacts on the crops growing with them. In this study, we examined the impact of the crop planted and soil tillage on nutrient levels, microbial communities, and the biochemical pathways present in the soil. We found that farming practice, that is conventional tillage versus no-till, had a much greater impact on nearly everything measured compared to the crop planted. No-till fields tended to have higher nutrient levels and distinct microbial communities. Moreover, no-till fields had more DNA sequences associated with key nitrogen cycle processes, suggesting that the microbial communities were more active in cycling nitrogen. Our results indicate that tilling of agricultural soil may magnify the degree of nutrient waste and runoff by altering nutrient cycles through changes to microbial communities. Currently, a minority of acreage is maintained without tillage despite clear benefits to soil nutrient levels, and a decrease in nutrient runoff-both of which have ecosystem-level effects and both direct and indirect effects on humans and other organisms.

  8. Effects of early compost application on no-till organic soybean Resposta à antecipação da adubação com composto orgânico na soja orgânica em plantio direto

    Directory of Open Access Journals (Sweden)

    L.A.O. Penha

    2012-03-01

    Full Text Available Weed control has always been an important issue in agriculture. With the advent of no-till systems, soil erosion was reduced but herbicide use was increased. Organic no-till systems try to adjust reduced erosion to the no use of herbicides. Nevertheless, this adjustment is limited by the cost of mechanical weed control. This cost may be reduced by improved cultural weed control with cover crops mulches. In this paper we report a study on the application of compost manure on an oats winter cover crop, preceding soybean, instead of on the soybean summer crop. Treatments comprised a control without compost manure, and compost manure doses of 4 and 8 Mg ha-1 applied either on oats in winter or soybean in summer, organized in a randomized block design, with five replications. In summer, plots were split into weed-controlled or not controlled subplots. The timing of application and the manure doses did not affect the oats biomass or the soybean performance. However, in summer, without water stress, the application of manure at 8 Mg ha-1 directly on soybean has reduced weed biomass in this crop.O controle de plantas daninhas sempre foi um fator importante na agricultura. Com o advento do plantio direto reduziu-se a erosão do solo, mas houve aumento no uso de herbicidas. O plantio direto orgânico busca conciliar o controle da erosão com a eliminação do uso de herbicidas, porém o custo de produção é onerado pela necessidade de controle mecânico das plantas daninhas. Esse custo poderia ser reduzido por um melhor controle cultural com palhas produzidas por plantas de cobertura no inverno. Neste trabalho, antecipou-se a adubação da soja para a aveia, aplicando na aveia o adubo que seria aplicado na soja, de modo a aumentar a quantidade de palha de aveia sobre a qual a soja seria semeada no verão seguinte. O delineamento experimental foi em blocos ao acaso com parcelas subdivididas. Os tratamentos foram uma testemunha sem adubação e duas doses

  9. Evaluation of native bees as pollinators of cucurbit crops under floating row covers.

    Science.gov (United States)

    Minter, Logan M; Bessin, Ricardo T

    2014-10-01

    Production of cucurbit crops presents growers with numerous challenges. Several severe pests and diseases can be managed through the use of rotation, trap cropping, mechanical barriers, such as row covers, and chemical applications. However, considerations must also be made for pollinating insects, as adequate pollination affects the quantity and quality of fruit. Insecticides may negatively affect pollinators; a concern enhanced in recent years due to losses in managed Apis melifera L. colonies. Row covers can be used in place of chemical control before pollination, but when removed, pests have access to fields along with the pollinators. If pollination services of native bees could be harnessed for use under continuous row covers, both concerns could be balanced for growers. The potential of two bee species which specialize on cucurbit flowers, Peponapis pruinosa Say and Xenoglossa strenua Cresson, were assessed under continuous row covers, employed over acorn squash. Experimental treatments included plots with either naturally or artificially introduced bees under row covers and control plots with row covers either permanently removed at crop flowering, or employed continuously with no added pollinating insects. Pests in plots with permanently removed row covers were managed using standard practices used in certified organic production. Marketable yields from plots inoculated with bees were indistinguishable from those produced under standard practices, indicating this system would provide adequate yields to growers without time and monetary inputs of insecticide applications. Additionally, application of this technique was investigated for muskmelon production and discussed along with considerations for farm management.

  10. Salt and N leaching and soil accumulation due to cover cropping practices

    Science.gov (United States)

    Gabriel, J. L.; Quemada, M.

    2012-04-01

    Nitrate leaching beyond the root zone can increase water contamination hazards and decrease crop available N. Cover crops used in spite of fallow are an alternative to reduce nitrate contamination in the vadose zone, because reducing drainage and soil mineral N accumulation. Cover crops can improve important characteristics in irrigated land as water retention capacity or soil aggregate stability. However, increasing evapotranspiration and consequent drainage below the root system reduction, could lead to soil salt accumulation. Salinity affects more than 80 million ha of arable land in many areas of the world, and one of the principal causes for yield reduction and even land degradation in the Mediterranean region. Few studies dealt with both problems at the same time. Therefore, it is necessary a long-term evaluation of the potential effect on soil salinity and nitrate leaching, in order to ensure that potential disadvantages that could originate from soil salt accumulation are compensated with all advantages of cover cropping. A study of the soil salinity and nitrate leaching was conducted during 4 years in a semiarid irrigated agricultural area of Central Spain. Three treatments were studied during the intercropping period of maize (Zea mays L.): barley (Hordeum vulgare L.), vetch (Vicia villosa L.) and fallow. Cover crops were killed in March allowing seeding of maize of the entire trial in April, and all treatments were irrigated and fertilised following the same procedure. Before sowing, and after harvesting maize and cover crops, soil salt and nitrate accumulation was determined along the soil profile. Soil analysis was conducted at six depths every 0.20 m in each plot in samples from four 0 to 1.2-m depth holes dug. The electrical conductivity of the saturated paste extract and soil mineral nitrogen was measured in each soil sample. A numerical model based on the Richards water balance equation was applied in order to calculate drainage at 1.2 m depth

  11. Increased Risk of Insect Injury to Corn Following Rye Cover Crop.

    Science.gov (United States)

    Dunbar, Mike W; O'Neal, Matthew E; Gassmann, Aaron J

    2016-08-01

    Decreased pest pressure is sometimes associated with more diverse agroecosystems, including the addition of a rye cover crop (Secale cereale L.). However, not all pests respond similarly to greater vegetational diversity. Polyphagous pests, such as true armyworm (Mythimna unipuncta Haworth), black cutworm (Agrotis ipsilon Hufnagel), and common stalk borer (Papaipema nebris Guenee), whose host range includes rye have the potential to cause injury to crops following a rye cover crop. The objectives of this study were to compare the abundance of early-season insect pests and injury to corn (Zea mays L.) from fields with and without a rye cover crop on commercial farms. Fields were sampled weekly to quantify adult and larval pests and feeding injury to corn plants from mid-April until corn reached V8 stage, during 2014 and 2015. Measurements within fields were collected along transects that extended perpendicularly from field edges into the interior of cornfields. Adult true armyworm and adult black cutworm were captured around all cornfields, but most lepidopteran larvae captured within cornfields were true armyworm and common stalk borer. Cornfields with a rye cover crop had significantly greater abundance of true armyworm and greater proportion of injured corn. Both true armyworm abundance and feeding injury were significantly greater in the interior of cornfields with rye. Common stalk borer abundance did not differ between cornfields with or without rye cover. Farmers planting corn following a rye cover crop should be aware of the potential for increased presence of true armyworm and for greater injury to corn. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Plantas de cobertura no controle de plantas daninhas na cultura do tomate em plantio direto Cover crops used to control weeds under the no-tillage tomato production system

    Directory of Open Access Journals (Sweden)

    A.C. Silva Hirata

    2009-01-01

    Full Text Available O plantio direto do tomateiro é um sistema que busca maior sustentabilidade, porém são escassas as informações sobre o manejo de plantas daninhas nessa nova modalidade de cultivo. O objetivo deste trabalho foi avaliar cinco tipos de cobertura do solo (Brachiaria decumbens, B. ruziziensis, Pennisetum glaucum, comunidade infestante e tratamento sem cobertura vegetal para plantio direto do tomateiro rasteiro, conduzido no sistema meia estaca, em complementação ao controle químico com herbicidas. P. glaucum foi a espécie que proporcionou maior cobertura do solo até a colheita do tomate; todavia, a taxa de decomposição da palha foi maior que a das demais coberturas. As coberturas de solo compostas pelas gramíneas forrageiras B. decumbens, B. ruziziensis e Pennisetum glaucum reduziram a densidade e a massa seca das plantas daninhas. O uso da comunidade infestante para obtenção de palha promoveu reduzida cobertura do solo e elevada emergência de plantas daninhas, semelhantes às do solo sem cobertura. B. decumbens apresentou rebrota durante o ciclo do tomateiro, o que não ocorreu com B. ruziziensis.Tomato no tillage system is a more sustainable system. However, information about weed management in this new cultivation modality is scarce. The objective of this work was to evaluate five vegetation covers (Brachiaria decumbens, B. ruziziensis, Pennisetum glaucum, community weed and the treatment without vegetable covering for no tillage system of the staked processing tomato crop combined with weed chemical control. P. glaucum provided the most soil cover to the tomato crop, although straw decomposition rate was higher than those of the other covers. The soil cover by the forage grasses B. decumbens, B. ruziziensis and Pennisetum glaucum reduced the density and dry mass of the weeds. The use of the community weeds for straw obtaining promoted reduced covering of the soil and larger emergency of weeds, similar to the treatment without

  13. Water Quality Impacts of Cover Crop/Manure Management Systems

    OpenAIRE

    Kern, James Donald

    1997-01-01

    Crop production, soil system, water quality, and economic impacts of four corn silage production systems were compared through a field study including 16 plots (4 replications of each treatment). Systems included a rye cover crop and application of liquid dairy manure in the spring and fall. The four management systems were: 1) traditional, 2) double- crop, 3) roll-down, and 4) undercut. In the fourth system, manure was applied below the soil surface during the ...

  14. Influence of Seeding Ratio, Planting Date, and Termination Date on Rye-Hairy Vetch Cover Crop Mixture Performance under Organic Management.

    Directory of Open Access Journals (Sweden)

    Andrew Lawson

    Full Text Available Cover crop benefits include nitrogen accumulation and retention, weed suppression, organic matter maintenance, and reduced erosion. Organic farmers need region-specific information on winter cover crop performance to effectively integrate cover crops into their crop rotations. Our research objective was to compare cover crop seeding mixtures, planting dates, and termination dates on performance of rye (Secale cereale L. and hairy vetch (Vicia villosa Roth monocultures and mixtures in the maritime Pacific Northwest USA. The study included four seed mixtures (100% hairy vetch, 25% rye-75% hairy vetch, 50% rye-50% hairy vetch, and 100% rye by seed weight, two planting dates, and two termination dates, using a split-split plot design with four replications over six years. Measurements included winter ground cover; stand composition; cover crop biomass, N concentration, and N uptake; and June soil NO3(--N. Rye planted in mid-September and terminated in late April averaged 5.1 Mg ha(-1 biomass, whereas mixtures averaged 4.1 Mg ha(-1 and hairy vetch 2.3 Mg ha(-1. Delaying planting by 2.5 weeks reduced average winter ground cover by 65%, biomass by 50%, and cover crop N accumulation by 40%. Similar reductions in biomass and N accumulation occurred for late March termination, compared with late April termination. Mixtures had less annual biomass variability than rye. Mixtures accumulated 103 kg ha(-1 N and had mean C:N ratio <17:1 when planted in mid-September and terminated in late April. June soil NO3(--N (0 to 30 cm depth averaged 62 kg ha(-1 for rye, 97 kg ha(-1 for the mixtures, and 119 kg ha(-1 for hairy vetch. Weeds comprised less of the mixtures biomass (20% weeds by weight at termination compared with the monocultures (29%. Cover crop mixtures provided a balance between biomass accumulation and N concentration, more consistent biomass over the six-year study, and were more effective at reducing winter weeds compared with monocultures.

  15. How are arbuscular mycorrhizal associations related to maize growth performance during short-term cover crop rotation?

    Science.gov (United States)

    Higo, Masao; Takahashi, Yuichi; Gunji, Kento; Isobe, Katsunori

    2018-03-01

    Better cover crop management options aiming to maximize the benefits of arbuscular mycorrhizal fungi (AMF) to subsequent crops are largely unknown. We investigated the impact of cover crop management methods on maize growth performance and assemblages of AMF colonizing maize roots in a field trial. The cover crop treatments comprised Italian ryegrass, wheat, brown mustard and fallow in rotation with maize. The diversity of AMF communities among cover crops used for maize management was significantly influenced by the cover crop and time course. Cover crops did not affect grain yield and aboveground biomass of subsequent maize but affected early growth. A structural equation model indicated that the root colonization, AMF diversity and maize phosphorus uptake had direct strong positive effects on yield performance. AMF variables and maize performance were related directly or indirectly to maize grain yield, whereas root colonization had a positive effect on maize performance. AMF may be an essential factor that determines the success of cover crop rotational systems. Encouraging AMF associations can potentially benefit cover cropping systems. Therefore, it is imperative to consider AMF associations and crop phenology when making management decisions. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Comparison of species-rich cover crop mixtures in Hungarian vineyards

    Science.gov (United States)

    Donkó, Adam; Miglécz, Tamas; Valkó, Orsolya; Török, Peter; Deák, Balazs; Kelemen, Andras; Zanathy, Gabor; Drexler, Dora

    2014-05-01

    In case of vine growing, agricultural practices of the past decades - as mechanical cultivation on steep vineyard slopes - can endanger the soil of vineyards. Moreover, climate change scenarios predict heavier rainstorms, which can also promote the degradation of the soil. These are some of the reasons why sustainable floor management plays an increasingly important role in viticulture recently. The use of cover crops in the inter-row has a special importance, especially on steep slopes and in case of organic farming to provide conditions for environmental friendly soil management. Species-rich cover crop seed mixtures may help to prevent erosion and create easier cultivation circumstances. Furthermore they have a positive effect on soil structure, soil fertility and ecosystem functions. However, it is important to find suitable seed mixtures for specific production sites, consisting ideally of native species from local provenance, adapted to the local climate/vine region/vineyard. Requirements for suitable cover crop species are as follows: they should save the soil from erosion and also from compaction caused by the movement of workers and machines, they should not compete significantly with the grapevines, or influence produce quality. We started to develop and apply several species-rich cover crop seed mixtures in spring 2012. During the experiments, three cover crop seed mixtures (Biocont-Ecovin mixture, mixture of legumes, mixture of grasses and herbs) were compared in vineyards of the Tokaj and Szekszárd vine regions of Hungary. Each mixture was sown in three consecutive inter-rows at each experimental site (all together 10 sites). Besides botanical measurements, yield, must quality, and pruning weight was studied in every treatment. The botanical survey showed that the following species of the mixtures established successfully and prospered during the years 2012 and 2013: Coronilla varia, Lotus corniculatus, Medicago lupulina, Onobrychis viciifolia

  17. Cover crop frequency and compost effects on a legume-rye cover crop during 8 years of organic vegetables

    Science.gov (United States)

    Organic matter inputs from compost or cover crops (CC) are important to maintain or improve soil quality, but their impact in high-value vegetable production systems are not well understood. Therefore, we evaluated the effects of CC frequency (every winter versus every 4th winter) and yard-waste co...

  18. Root characteristics of cover crops and their erosion-reducing potential during concentrated runoff

    Science.gov (United States)

    de Baets, S.; Poesen, J.

    2009-04-01

    In the loam region in central Belgium, a lot of research has been conducted on the effects of cover crops for preventing splash and interrill erosion and on their nutrient pumping effectiveness. As this is a very effective erosion and environment conservation technique, planting cover crops during the winter season is widely applied in the loess belt. Most of these cover crops freeze at the beginning of the winter period. Consequently, the above-ground biomass becomes less effective in protecting the soil from water erosion. Apart from the effects of the above-ground biomass in protecting the soil against raindrop impacts and reducing flow velocities by the retarding effects of their stems, plant roots also play an important role in improving soil strength. Previous research showed that roots contribute to a large extent to the resistance of topsoils against concentrated flow erosion. Unfortunately, information on root properties of common cover crops (e.g. Sinapis alba, Phacelia tanacetifoli, Lolium perenne, Avena sativa, Secale cereale, Raphanus sativus subsp. oleiferus) is very scarce. Therefore, root density distribution with depth and their erosion-reducing effects during concentrated flow erosion were assessed by conducting root auger measurements and concentrated flow experiments at the end of the growth period (December). The preliminary results indicate that the studied cover crops are not equally effective in preventing soil loss by concentrated flow erosion at the end of the growing season. Cover crops with thick roots, such as Sinapis alba and Raphanus sativus subsp. oleiferus are less effective than cover crops with fine-branched roots such as Phacelia tanacetifoli, Lolium perenne (Ryegrass), Avena sativa (Oats) and Secale cereale (Rye) in preventing soil losses by concentrated flow erosion. These results enable soil managers to select the most suitable crops and maximize soil protection.

  19. Nitrate leaching from winter cereal cover crops using undisturbed soil-column lysimeters

    Science.gov (United States)

    Cover crops are important management practices for reducing nitrogen (N) leaching in the Chesapeake Bay watershed, which is under Total Maximum Daily Load restraints. Cool-season annual grasses such as barley, rye, or wheat are common cover crops, but studies are needed to directly compare field ni...

  20. Effect of Cover Crop Residues on Some Physicochemical Properties of Soil and Emergence Rate of Potato

    Directory of Open Access Journals (Sweden)

    M. Ghaffari

    2012-07-01

    Full Text Available The aim of this study, was to evaluate the effect of winter cover crop residues on speed of seed  potato emergence and percentage of organic carbon, soil specific weight and soil temperature. An experiment was carried out at the Research Farm of Agriculture Faculty, Bu-AliSinaUniversity, in 2008-2009. The experiment was a randomized complete block design with three replications. Winter cover crops consisted of rye, barley and oilseed rape, each one with common plant density (rye and barley at 190 kg.ha-1 and oilseed rape at 9 kg.ha-1 and triple plant densities(rye and barley 570 kg.ha-1 and oilseed rape, 27 kg.ha-1 and control (without cover crop. The results showed that rye and barley with triple plant densities produced higher biomass (1503.5 and 1392.2 g/m2, respectively than other treatments.Soil physicochemical properties were affected significantly by using cover crops. Rye, barley, and oilseed rape with triple rate and rye with common rape of plant densities produced, the highest organic carbon. Green manure of rye and barley with triple and rye with common rate plant densities, reduced soil specific weights by 17.3, 18 and 18 percent as compared with the control treatment (without cover crop planting. Rye and barley with triple plant densities increased average soil temperature by 12 and 11 percent respectively in comparison with control treatment. These treatments increased speed of seed potato emergence by 20 and 12 percent respectively as compared with that of control treatment, respectively. Other treatments showed no significant difference as compared to control. Cover crop residues increased plants speed of seed potato emergence through improving soil conditions.

  1. Produtividade do algodoeiro herbáceo em plantio direto no Cerrado com rotação de culturas Herbaceous cotton yield in no-till system in rainfed Savannah conditions with crop rotation

    Directory of Open Access Journals (Sweden)

    José Carlos Corrêa

    2004-01-01

    Full Text Available O experimento, instalado em um Latossolo Vermelho-Amarelo muito argiloso, teve o objetivo de avaliar o efeito da rotação de culturas na produtividade do algodoeiro herbáceo (Gossypium hirsutum L. r. latifolium Hutch em plantio direto sob condições de sequeiro no Cerrado. O delineamento experimental foi de blocos casualizados com cinco tratamentos e quatro repetições. Os tratamentos consistiram das rotações soja-milheto-soja-milheto-algodoeiro; soja-amaranto-soja-nabo forrageiro-soja-algodoeiro; soja-sorgo granífero-soja-sorgo granífero-algodoeiro; soja-aveia preta-soja-aveia preta-algodoeiro e soja-soja-algodoeiro. A maior produtividade do algodoeiro foi obtida com a rotação de soja e milheto, em que houve melhor controle de plantas daninhas.The experiment was carried out in a heavy red yellow latosol and aimed at evaluating crop rotation on herbaceous cotton yields in no-till system under rainfed Savannah conditions. The experimental design used was a completely randomised blocks with five treatments: soybean-millet-soybean-millet-cotton; soybean-amaranth-soybean-forage radish-soybean-cotton; soybean-grain sorghum-soybean-grain sorghum-cotton; soybean-black rye-soybean-black rye-cotton and soybean-soybean-cotton and four replications. The highest cotton seed yield was obtained in the sequence soybean-millet-soybean-millet-cotton, in which best weed control also occurred.

  2. Weed control and cover crop management affect mycorrhizal colonization of grapevine roots and arbuscular mycorrhizal fungal spore populations in a California vineyard.

    Science.gov (United States)

    Baumgartner, Kendra; Smith, Richard F; Bettiga, Larry

    2005-03-01

    Arbuscular mycorrhizal (AM) fungi naturally colonize grapevines in California vineyards. Weed control and cover cropping may affect AM fungi directly, through destruction of extraradical hyphae by soil disruption, or indirectly, through effects on populations of mycorrhizal weeds and cover crops. We examined the effects of weed control (cultivation, post-emergence herbicides, pre-emergence herbicides) and cover crops (Secale cereale cv. Merced rye, x Triticosecale cv.Trios 102) on AM fungi in a Central Coast vineyard. Seasonal changes in grapevine mycorrhizal colonization differed among weed control treatments, but did not correspond with seasonal changes in total weed frequency. Differences in grapevine colonization among weed control treatments may be due to differences in mycorrhizal status and/or AM fungal species composition among dominant weed species. Cover crops had no effect on grapevine mycorrhizal colonization, despite higher spring spore populations in cover cropped middles compared to bare middles. Cover crops were mycorrhizal and shared four AM fungal species (Glomus aggregatum, G. etunicatum, G. mosseae, G. scintillans) in common with grapevines. Lack of contact between grapevine roots and cover crop roots may have prevented grapevines from accessing higher spore populations in the middles.

  3. Influence of cover crops on citrus crops on arbuscular mycorrhizal fungi development in the Colombian piedmont Oxisols

    Directory of Open Access Journals (Sweden)

    Hernán Javier Monroy L.

    2013-01-01

    Full Text Available Native arbuscular mycorrhizal fungi associated with grassand legume cover crops established on Oxisol soils in the Colombian piedmont (Meta were identified morphologically and the ability to colonize was evaluated. The experimental area consisted of cover crops Arachispintoi (CIAT 18744, Brachiaria brizantha cv. Toledo, B. dictyoneura cv. Llanero, Desmodium ovalifolium c v. Maquenque, Panicum maximum (CIAT 36000, Paspalumnotatum, and a chemical control (Glyphosate and mechanical control established in the rows in a Valencia orange grove. The experiment followed a complete randomized block design (8 cover crops and three replications, evaluated during the wet and dry seasons. Rhizosphere soil and grass and legumes roots were sampled in order to identified AMF and quantify the number of spores and the percentage of colonization. A total of 26 species were identified, including Acaulosporascrobiculata, A. morrowiae and, Scutellospora heterogama, which accounted for over 65% of the population. Thepercentage of root colonization ranged between 47% and 94% with spore counts between 63 and 300/100 g of dry soil. Cover crops with the highest colonization percentage and AMF diversity were B. brizantha, B. dictyoneura and P. notatumin their respective order. Glyphosate and mechanical control had a negative influence on the sporulation and colonization of the arbuscular mycorrhizal fungi in the root system

  4. The latest progress of TILLING technique and its prospects in irradiation mutation breeding

    International Nuclear Information System (INIS)

    Du Yan; Yu Lixia; Liu Qingfang; Zhou Libin; Li Wenjian

    2011-01-01

    TILLING (Targeting Induced Local Lesions IN Genomes) is a novel, high-throughput and low-cost reverse genetics technique. In recent years, with innovation of the mutation screening techniques, TILLING platform has become more diversified, which makes the operation of TILLING technique more simple and rapid. For this reason, it is widely used in crop breeding research. In this paper, we summarized the latest progress of TILLING technique, meanwhile, we also discussed the prospect of combining irradiation mutation with the high-throughput TILLING technique in mutation breeding. (authors)

  5. Estimation of runoff mitigation by morphologically different cover crop root systems

    Science.gov (United States)

    Yu, Yang; Loiskandl, Willibald; Kaul, Hans-Peter; Himmelbauer, Margarita; Wei, Wei; Chen, Liding; Bodner, Gernot

    2016-07-01

    Hydrology is a major driver of biogeochemical processes underlying the distinct productivity of different biomes, including agricultural plantations. Understanding factors governing water fluxes in soil is therefore a key target for hydrological management. Our aim was to investigate changes in soil hydraulic conductivity driven by morphologically different root systems of cover crops and their impact on surface runoff. Root systems of twelve cover crop species were characterized and the corresponding hydraulic conductivity was measured by tension infiltrometry. Relations of root traits to Gardner's hydraulic conductivity function were determined and the impact on surface runoff was estimated using HYDRUS 2D. The species differed in both rooting density and root axes thickness, with legumes distinguished by coarser axes. Soil hydraulic conductivity was changed particularly in the plant row where roots are concentrated. Specific root length and median root radius were the best predictors for hydraulic conductivity changes. For an intensive rainfall simulation scenario up to 17% less rainfall was lost by surface runoff in case of the coarsely rooted legumes Melilotus officinalis and Lathyrus sativus, and the densely rooted Linum usitatissimum. Cover crops with coarse root axes and high rooting density enhance soil hydraulic conductivity and effectively reduce surface runoff. An appropriate functional root description can contribute to targeted cover crop selection for efficient runoff mitigation.

  6. High quality residues from cover crops favor changes in microbial community and enhance C and N sequestration

    Directory of Open Access Journals (Sweden)

    Ileana Frasier

    2016-04-01

    Full Text Available The objective of the study was to evaluate the effect of a change in management on the soil microbial community and C sequestration. We conducted a 3-year field study in La Pampa (Argentina with rotation of sorghum (Sorghum bicolor in zero tillage alternating with rye (Secale cereale and vetch (Vicia villosa ssp. dasycarpa. Soil was sampled once a year at two depths. Soil organic matter fractions, dissolved organic matter, microbial biomass (MBC and community composition (DNA extraction, qPCR, and phospholipid FAME profiles were determined. Litter, aerial- and root biomass were collected and all material was analyzed for C and N. Results showed a rapid response of microbial biomass to a bacterial dominance independent of residue quality. Vetch had the highest diversity index, while the fertilized treatment had the lowest one. Vetch–sorghum rotation with high N mineralization rates and diverse microbial community sequestered more C and N in stable soil organic matter fractions than no-till sorghum alone or with rye, which had lower N turnover rates. These results reaffirm the importance of enhanced soil biodiversity for maintaining soil ecosystem functioning and services. The supply of high amounts of N-rich residues as provided by grass–legume cover crops could fulfill this objective.

  7. Influence of Seeding Ratio, Planting Date, and Termination Date on Rye-Hairy Vetch Cover Crop Mixture Performance under Organic Management.

    Science.gov (United States)

    Lawson, Andrew; Cogger, Craig; Bary, Andy; Fortuna, Ann-Marie

    2015-01-01

    Cover crop benefits include nitrogen accumulation and retention, weed suppression, organic matter maintenance, and reduced erosion. Organic farmers need region-specific information on winter cover crop performance to effectively integrate cover crops into their crop rotations. Our research objective was to compare cover crop seeding mixtures, planting dates, and termination dates on performance of rye (Secale cereale L.) and hairy vetch (Vicia villosa Roth) monocultures and mixtures in the maritime Pacific Northwest USA. The study included four seed mixtures (100% hairy vetch, 25% rye-75% hairy vetch, 50% rye-50% hairy vetch, and 100% rye by seed weight), two planting dates, and two termination dates, using a split-split plot design with four replications over six years. Measurements included winter ground cover; stand composition; cover crop biomass, N concentration, and N uptake; and June soil NO3(-)-N. Rye planted in mid-September and terminated in late April averaged 5.1 Mg ha(-1) biomass, whereas mixtures averaged 4.1 Mg ha(-1) and hairy vetch 2.3 Mg ha(-1). Delaying planting by 2.5 weeks reduced average winter ground cover by 65%, biomass by 50%, and cover crop N accumulation by 40%. Similar reductions in biomass and N accumulation occurred for late March termination, compared with late April termination. Mixtures had less annual biomass variability than rye. Mixtures accumulated 103 kg ha(-1) N and had mean C:N ratio rye, 97 kg ha(-1) for the mixtures, and 119 kg ha(-1) for hairy vetch. Weeds comprised less of the mixtures biomass (20% weeds by weight at termination) compared with the monocultures (29%). Cover crop mixtures provided a balance between biomass accumulation and N concentration, more consistent biomass over the six-year study, and were more effective at reducing winter weeds compared with monocultures.

  8. Consorciação de plantas de cobertura antecedendo o milho em plantio direto: I - Dinâmica do nitrogênio no solo Cover crop mixtures preceding no-till corn: I - Soil nitrogen dynamics

    Directory of Open Access Journals (Sweden)

    C. Aita

    2004-08-01

    ém que o potencial de perdas de N por lixiviação foi maior após a ervilhaca solteira do que após a aveia e o nabo solteiros e os consórcios de aveia e ervilhaca.The dynamics of nitrogen in soils under no-tillage in Southern Brazil are poorly studied so far. A field experiment on a typic Hapludalf on the experimental area of the Soil Science Department, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul State, Brazil, was carried out in 1998/99 and 1999/00 to evaluate the effect of single crop and mixtures of black oat (BO (Avena strigosa Schieb, common vetch (CV (Vicia sativa L. and oilseed radish (OR (Raphanus sativus L. var. oleiferus Metzg. on the soil nitrogen (N dynamics. The experiment was set in a complete randomized block design with four replications. The treatments were: 100 % BO (80 kg ha-1 of seeds, 100 % CV (80 kg ha-1, 100 % OR (14 kg ha-1, 15 % BO + 85 % CV, 45 % BO + 55 % CV, and 30 % BO + 70 % OR. Additionally, two plots under winter fallow were also used for comparison. Other two control treatments were corn cultivated without N fertilizer in one plot and fertilized with 180 kg ha-1 of N-urea in another one. Mineral soil N was measured nine times, beginning ten days after cover crops were killed. Samples were taken from the 0-5, 5-15, 15-30, 30-60, and 60-90 cm soil layers. The sum of mineral N in the five soil depths was greater for single common vetch than for fallow and single BO treatment. At the end of the first month, common vetch had already approximately 30 kg ha-1 more N than the other treatments. The soil under oilseed radish had lower mineral N contents than single common vetch and similar values to those of the mixture between oat and common vetch. The results of this study indicated that the oat-vetch mixture reduced the amount of mineral soil N in relation to single vetch and this effect was proportional to the amount of oat in the crop mixture. It was also verified that the potential N loss by leaching was greater

  9. Short-term contributions of cover crop surface residue return to soil carbon and nitrogen contents in temperate Australia.

    Science.gov (United States)

    Zhou, Xiaoqi; Wu, Hanwen; Li, Guangdi; Chen, Chengrong

    2016-11-01

    Cover crop species are usually grown to control weeds. After cover crop harvest, crop residue is applied on the ground to improve soil fertility and crop productivity. Little information is available about quantifying the contributions of cover crop application to soil total carbon (C) and nitrogen (N) contents in temperate Australia. Here, we selected eight cover crop treatments, including two legume crops (vetch and field pea), four non-legume crops (rye, wheat, Saia oat, and Indian mustard), a mixture of rye and vetch, and a nil-crop control in temperate Australia to calculate the contributions of cover crops (crop growth + residue decomposition) to soil C and N contents. Cover crops were sown in May 2009 (autumn). After harvest, the crop residue was placed on the soil surface in October 2009. Soil and crop samples were collected in October 2009 after harvest and in May 2010 after 8 months of residue decomposition. We examined cover crop residue biomass, soil and crop total C and N contents, and soil microbial biomass C and N contents. The results showed that cover crop application increased the mean soil total C by 187-253 kg ha -1 and the mean soil total N by 16.3-19.1 kg ha -1 relative to the nil-crop treatment, except for the mixture treatment, which had similar total C and N contents to the nil-crop control. Cover crop application increased the mean soil microbial biomass C by 15.5-20.9 kg ha -1 and the mean soil microbial biomass N by 4.5-10.2 kg ha -1 . We calculated the apparent percentage of soil total C derived from cover crop residue C losses and found that legume crops accounted for 10.6-13.9 %, whereas non-legume crops accounted for 16.4-18.4 % except for the mixture treatment (0.2 %). Overall, short-term cover crop application increased soil total C and N contents and microbial biomass C and N contents, which might help reduce N fertilizer use and improve sustainable agricultural development.

  10. Impact of vetch cover crop on runoff, soil loss, soil chemical properties and yield of chickpea in North Gondar, Ethiopia

    Science.gov (United States)

    Demelash, Nigus; Klik, Andreas; Holzmann, Hubert; Ziadat, Feras; Strohmeier, Stefan; Bayu, Wondimu; Zucca, Claudio; Abera, Atikilt

    2016-04-01

    Cover crops improve the sustainability and quality of both natural system and agro ecosystem. In Gumara-Maksegnit watershed which is located in Lake Tana basin, farmers usually use fallow during the rainy season for the preceding chickpea production system. The fallowing period can lead to soil erosion and nutrient losses. A field experiment was conducted during growing seasons 2014 and 2015 to evaluate the effect of cover crops on runoff, soil loss, soil chemical properties and yield of chickpea in North Gondar, Ethiopia. The plot experiment contained four treatments arranged in Randomized Complete Block Design with three replications: 1) Control plot (Farmers' practice: fallowing- without cover crop), 2) Chickpea planted with Di-ammonium phosphate (DAP) fertilizer with 46 k ha-1 P2O5 and 23 k ha-1 nitrogen after harvesting vetch cover crop, 3) Chick pea planted with vetch cover crop incorporated with the soil as green manure without fertilizer, 4) Chick pea planted with vetch cover crop and incorporated with the soil as green manure and with 23 k ha-1 P2O5 and 12.5 k ha-1 nitrogen. Each plot with an area of 36 m² was equipped with a runoff monitoring system. Vetch (Vicia sativa L.) was planted as cover crop at the onset of the rain in June and used as green manure. The results of the experiment showed statistically significant (P plant, above ground biomass and grain yield of chick pea. However, there was no statistically significant difference (P > 0.05) on average plant height, average number of branches and hundred seed weight. Similarly, the results indicated that cover crop has a clear impact on runoff volume and sediment loss. Plots with vetch cover crop reduce the average runoff by 65% and the average soil loss decreased from 15.7 in the bare land plot to 8.6 t ha-1 with plots covered by vetch. In general, this result reveales that the cover crops, especially vetch, can be used to improve chickpea grain yield in addition to reduce soil erosion in the

  11. An early-killed rye cover crop has potential for weed management in edamame

    Science.gov (United States)

    The potential role of fall-seeded cover crops for weed management in edamame is unknown. Field experiments were conducted over three edamame growing seasons to test the following objectives: 1) determine the extent to which cover crop residue management systems influence edamame emergence while sele...

  12. Effect of management systems and cover crops on organic matter dynamics of soil under vegetables

    Directory of Open Access Journals (Sweden)

    Rodrigo Fernandes de Souza

    2014-06-01

    Full Text Available Vegetable production in conservation tillage has increased in Brazil, with positive effects on the soil quality. Since management systems alter the quantity and quality of organic matter, this study evaluated the influence of different management systems and cover crops on the organic matter dynamics of a dystrophic Red Latosol under vegetables. The treatments consisted of the combination of three soil tillage systems: no-tillage (NT, reduced tillage (RT and conventional tillage (CT and of two cover crops: maize monoculture and maize-mucuna intercrop. Vegetables were grown in the winter and the cover crops in the summer for straw production. The experiment was arranged in a randomized block design with four replications. Soil samples were collected between the crop rows in three layers (0.0-0.05, 0.05-0.10, and 0.10-0.30 m twice: in October, before planting cover crops for straw, and in July, during vegetable cultivation. The total organic carbon (TOC, microbial biomass carbon (MBC, oxidizable fractions, and the carbon fractions fulvic acid (C FA, humic acid (C HA and humin (C HUM were determined. The main changes in these properties occurred in the upper layers (0.0-0.05 and 0.05-0.10 m where, in general, TOC levels were highest in NT with maize straw. The MBC levels were lowest in CT systems, indicating sensitivity to soil disturbance. Under mucuna, the levels of C HA were lower in RT than NT systems, while the C FA levels were lower in RT than CT. For vegetable production, the C HUM values were lowest in the 0.05-0.10 m layer under CT. With regard to the oxidizable fractions, the tillage systems differed only in the most labile C fractions, with higher levels in NT than CT in the 0.0-0.05 m layer in both summer and winter, with no differences between these systems in the other layers. The cabbage yield was not influenced by the soil management system, but benefited from the mulch production of the preceding maize-mucuna intercrop as cover

  13. Ecological weed management by cover cropping : effects on weed growth in autumn and weed establishment in spring

    NARCIS (Netherlands)

    Kruidhof, H.M.; Bastiaans, L.; Kropff, M.J.

    2008-01-01

    Cover crops grown in the period between two main crops have potential as an important component of a system-oriented ecological weed management strategy. In late summer and autumn, the cover crop can suppress growth and seed production of weeds, whereas the incorporation of cover crop residues in

  14. Population dynamics of caterpillars on three cover crops before sowing cotton in Mato Grosso (Brazil).

    Science.gov (United States)

    Silvie, P J; Menzel, C A; Mello, A; Coelho, A G

    2010-01-01

    Direct seeding mulch-based cropping systems under a preliminary cover crop such as millet are common in some areas of Brazil. Lepidopteran pests that damage cotton, soybean and maize crops can proliferate on cover crops, so preventive chemical treatments are necessary. Very little data is available on these pests on cover crops. This paper presents the dynamics of Spodoptera frugiperda, S. eridania, Mocis latipes and Diatraea saccharalis caterpillars monitored at Primavera do Leste, Mato Grosso state (Brazil) during the of 2005/2006 and 2006/2007 cropping seasons on four cover crops, i.e. finger millet (Eleusine coracana), pearl millet (Pennisetum glaucum), sorghum (Sorghum bicolor) and ruzigrass (Brachiaria ruziziensis). The pests were visually counted on plants within a 1 m2 transect (wooden frame). Caterpillars were reared to facilitate identification of collected species and parasitoids. Many S. frugiperda caterpillars were observed on millet in 2005, with a maximum of 37 caterpillars/m2. On sorghum, we found 30 caterpillars/m2, or 0.83 caterpillars/plant. The Diatraea borer attacked sorghum later than the other pests. M. latipes was also observed on millet. The millet cover crop had to be dried for at least 1 month before direct drilling the main cotton crop in order to impede S. frugiperda infestations on cotton plantlets, thus avoiding the need for substantial resowing. The comparative methodological aspects are discussed.

  15. Cover crop biomass production and water use in the central great plains under varying water availability

    Science.gov (United States)

    The water-limited environment of the semi-arid central Great Plains may not have potential to produce enough cover crop biomass to generate benefits associated with cover crop use in more humid regions. There have been reports that cover crops grown in mixtures produce more biomass with greater wate...

  16. Can phosphorus application and cover cropping alter arbuscular mycorrhizal fungal communities and soybean performance after a five-year phosphorus-unfertilized crop rotational system?

    Science.gov (United States)

    Higo, Masao; Sato, Ryohei; Serizawa, Ayu; Takahashi, Yuichi; Gunji, Kento; Tatewaki, Yuya; Isobe, Katsunori

    2018-01-01

    Understanding diversity of arbuscular mycorrhizal fungi (AMF) is important for optimizing their role for phosphorus (P) nutrition of soybeans ( Glycine max (L.) Merr.) in P-limited soils. However, it is not clear how soybean growth and P nutrition is related to AMF colonization and diversity of AMF communities in a continuous P-unfertilized cover cropping system. Thus, we investigated the impact of P-application and cover cropping on the interaction among AMF colonization, AMF diversity in soybean roots, soybean growth and P nutrition under a five-year P-unfertilized crop rotation. In this study, we established three cover crop systems (wheat, red clover and oilseed rape) or bare fallow in rotation with soybean. The P-application rates before the seeding of soybeans were 52.5 and 157.5 kg ha -1 in 2014 and 2015, respectively. We measured AMF colonization in soybean roots, soybean growth parameters such as aboveground plant biomass, P uptake at the flowering stage and grain yields at the maturity stage in both years. AMF community structure in soybean roots was characterized by specific amplification of small subunit rDNA. The increase in the root colonization at the flowering stage was small as a result of P-application. Cover cropping did not affect the aboveground biomass and P uptake of soybean in both years, but the P-application had positive effects on the soybean performance such as plant P uptake, biomass and grain yield in 2015. AMF communities colonizing soybean roots were also significantly influenced by P-application throughout the two years. Moreover, the diversity of AMF communities in roots was significantly influenced by P-application and cover cropping in both years, and was positively correlated with the soybean biomass, P uptake and grain yield throughout the two years. Our results indicated that P-application rather than cover cropping may be a key factor for improving soybean growth performance with respect to AMF diversity in P-limited cover

  17. Cover crops effect on farm benefits and nitrate leaching: linking economic and environmental analysis

    Science.gov (United States)

    Gabriel, José Luis; Vanclooster, Marnik; Garrido, Alberto; Quemada, Miguel

    2013-04-01

    Introducing cover crops interspersed with intensively fertilized crops in rotation has the potential to reduce nitrate leaching. However, despite the evident environmental services provided and the range of agronomic benefits documented in the literature, farmers' adoption of the technique is still limited because growing CC could lead to extra costs for the farm in three different forms: direct, indirect, and opportunity costs. Environmental studies are complex, and evaluating the indicators that are representative of the environmental impact of an agricultural system is a complicated task that is conducted by specialized groups and methodologies. Multidisciplinary studies may help to develop reliable approaches that would contribute to choosing the best agricultural strategies based on linking economic and environmental benefits. This study evaluates barley (Hordeum vulgare L., cv. Vanessa), vetch (Vicia villosa L., cv. Vereda) and rapeseed (Brassica napus L., cv. Licapo) as cover crops between maize, leaving the residue in the ground or selling it for animal feeding, and compares the economic and environmental results with respect to a typical maize-fallow rotation. Nitrate leaching for different weather conditions was calculated using the mechanistic-deterministic WAVE model, using the Richards equation parameterised with a conceptual model for the soil hydraulic properties for describing the water flow in the vadose zone, combined with field observed data. The economic impact was evaluated through stochastic (Monte-Carlo) simulation models of farms' profits using probability distribution functions of maize yield and cover crop biomass developed fitted with data collected from various field trials (during more than 5 years) and probability distribution functions of maize and different cover crop forage prices fitted from statistical sources. Stochastic dominance relationships are obtained to rank the most profitable strategies from a farm financial perspective

  18. Effects of cover crops incorporation and nitrogen fertilization on N2O and CO2 emissions

    Science.gov (United States)

    Kandel, T. P.; Gowda, P. H.; Northup, B. K.; DuPont, J.; Somenahally, A. C.; Rocateli, A.

    2017-12-01

    In this study, we measured N2O and CO2 fluxes from plots planted to hairy vetch (winter cover crop) and broadleaf vetch (spring cover crop) as N sources for the following crabgrass (summer forage crop) in El Reno, Oklahoma, USA. Comparisons also included 0 and 60 kg ha-1 mineral N fertilizer supplied as dry urea. No significant N2O fluxes were observed during rapid growing periods of cover crops (March-April, 2017), however, large fluxes were observed after hairy vetch incorporation. Immediately after the hairy vetch biomass incorporation, large rainfall events were recorded. The fluxes subsided gradually with drying soil condition but were enhanced after every consecutive rainfall events. A rainfall induced flux measuring up to 8.2 kg N2O ha-1 day-1 was observed after 26 days of biomass incorporation. In total, 29 kg N2O ha-1 (18 kg N ha-1) was emitted within a month after biomass incorporation from hairy vetch plots. Growth of broadleaf vetch was poor and N2O fluxes were also lower. Similarly, plots fertilized with 60 kg N ha-1 had significant fluxes of N2O but the magnitude was much lower than the hairy vetch plots. Dynamics of N2O and CO fluxes correlated strongly. The results thus indicated that although cover crops may provide many environmental/agronomic benefits such as N fixation, soil carbon built-up, weed suppression and erosion control, high N2O emissions may dwarf these benefits.

  19. Effects of grain-producing cover crops on rice grain yield in Cabo Delgado, Mozambique

    Directory of Open Access Journals (Sweden)

    Adriano Stephan Nascente

    Full Text Available ABSTRACT Besides providing benefits to the environment such as soil protection, release of nutrients, soil moisture maintenance, and weed control, cover crops can increase food production for grain production. The aim of this study was to evaluate the production of biomass and grain cover crops (and its respective effects on soil chemical and physical attributes, yield components, and grain yield of rice in Mozambique. The study was conducted in two sites located in the province of Cabo Delgado, in Mozambique. The experimental design was a randomized block in a 2 × 6 factorial, with four repetitions. Treatments were carried out in two locations (Cuaia and Nambaua with six cover crops: Millet (Pennisetum glaucum L.; namarra bean (Lablab purpureus (L. Sweet, velvet beans (Mucuna pruriens L., oloco beans (Vigna radiata (L. R. Wilczek, cowpea (Vigna unguiculata L., and fallow. Cover crops provided similar changes in chemical and physical properties of the soil. Lablab purpureus, Vigna unguiculata, and Mucuna pruriens produced the highest dry matter biomass. Vigna unguiculada produced the highest amount of grains. Rice grain yields were similar under all cover crops and higher in Cuaia than Nambaua.

  20. Nutrient cycling potential of camelina (Camelina sativa L. Crantz.) as a cover crop in the US Northern Great Plains

    Science.gov (United States)

    Berti, Marisol; Samarappuli, Dulan

    2017-04-01

    Camelina [Camelina sativa (L.) Crantz.] is an industrial oilseed crop in the Brassicaceae family with multiple uses. Currently, camelina is not used as a cover crop, but it has the potential to be used as such in maize-soybean-wheat cropping systems. The objectives of this study were to determine the agronomic performance and nutrient scavenging potential of winter camelina in comparison with other common cover crops. Experiments were conducted in Fargo, ND in 2015 and 2016, and in Prosper, ND in 2015. The experimental design was a randomized complete block design with a split-plot arrangement with three replicates. The main plot was the sowing date and the subplot were camelina cultivars as well as other common cover crops in the area. Sowing dates were targeted to 15 August and September 1, although the final dates varied slightly each year. Biomass yield, N content of the biomass N uptake and P uptake was evaluated. Winter camelina N and P uptake ranged between 21 and 30.5 kg N ha-1 and 3.4 to 5.3 kg P ha-1. The nutrient scavenging potential of winter camelina was similar to other cover crops although slightly lower than turnip (Brassica rapa L.), radish (Raphanus sativus L.), and rape (Brassica napus L.) cultivars which had significantly higher P uptake than winter camelina and the other cover crops in the study. An evaluation of spring regrowth and cover indicated that only rye, winter camelina, and pennycress (Thlaspi arvense L.) survived the winter, although a few plants of triticale (x Trticosecale Witt.) and rape were found on a few plots. Because of the high variability on the plots there were no significant differences among the surviving cover crops on soil coverage. The soil coverage for rye cultivars was 25 and 35% and for camelina cv. Bison was 27%.In 2016, biomass yield was not significant for sowing date, cultivars, or their interaction. Winter camelina cultivars biomass yield fluctuated between 1.15 and 2.33 Mg dry matter ha-1 on the first sowing

  1. Applications of 15N-isotopic dilution techniques to study the recovery of nitrogen fertilizer in the soil and plant uptake in wheat cropping system

    International Nuclear Information System (INIS)

    Rouanet, Juan Luis; Godoy, Alejandra; Montenegro, Adolfo; Mera, Mario; Uribe, Hamil; Pino, Ines; Parada, Ana Maria; Nario, Adriana

    1999-01-01

    Soil erosion is a major concern of the Chilean Ministry of Agriculture, which supports actions to develop new approaches in order to decrease the loss of this fragile natural resource and to promote sustainable production systems. This study, based on the management of biological, chemical and physical characteristics of the soil, was aimed to save nitrogen fertilizer. Nitrogen fertilization is the most costly production factor in wheat cropping systems on Ultisols, one of the most eroded soil types in southern Chile. A field experiment was undertaken on a Ultisol (''Buenos Aires'' Farm) at Imperial, IX Region, during 1997 and 1998, in order to assess the nitrogen and water use efficiency by a wheat crop (cv. Dalcahue-INIA) under alternative soil tillage systems. 15 N-isotopic dilution techniques allowed determining aspects of plant nutrition, nitrogen and water movement in the soil, processes not evaluated so far under these conditions. A strip-plot field layout with four replications was used , with soil tillage systems (traditional, burning/no-till, and no burning/no-till) as the main plots and crop successions (wheat-lupin-wheat and lupin-wheat-oat) as the subplots (30 m-2). In each subplot, a microplot (1m-2 ) was delimited. N fertilizer in the form of urea was added on subplots, except the microplot, at the rate of 150 kg N ha-1. 15N-labelled urea at c. 10 atom % excess, at the rate of 150 kg N ha-1, was added to the microplots. The fertilizer was split three times, 10% at planting, 45% at tillering and 45% jointing stage. No significant differences were found for wheat grain yield among tillage treatments. N fertilizer recovery by the wheat crop was 43%, and 56% on the nitrogen found in plants was derived from soil. No significant differences for these proportions were found among treatments. Although the wheat crop did not respond to tillage treatments in terms of 15N recovery, the physiological nitrogen use efficiency, or grain production per unit of

  2. Effect of date of termination of a winter cereal rye cover crop (Secale cereale) on corn seedling disease

    Science.gov (United States)

    Cover cropping is an expanding conservation practice that offers substantial benefits to soil protection, soil health, water quality, and potentially crop yields. Presently, winter cereals are the most widely used cover crops in the upper Midwest. However, winter cereal cover crops preceding corn, ...

  3. Integrated Palmer Amaranth Management in Glufosinate-Resistant Cotton: I. Soil-Inversion, High-Residue Cover Crops and Herbicide Regimes

    Directory of Open Access Journals (Sweden)

    Michael G. Patterson

    2012-11-01

    Full Text Available A three year field experiment was conducted to evaluate the role of soil-inversion, cover crops and herbicide regimes for Palmer amaranth between-row (BR and within-row (WR management in glufosinate-resistant cotton. The main plots were two soil-inversion treatments: fall inversion tillage (IT and non-inversion tillage (NIT. The subplots were three cover crop treatments: crimson clover, cereal rye and winter fallow; and sub subplots were four herbicide regimes: preemergence (PRE alone, postemergence (POST alone, PRE + POST and a no herbicide check (None. The PRE herbicide regime consisted of a single application of pendimethalin at 0.84 kg ae ha−1 plus fomesafen at 0.28 kg ai ha−1. The POST herbicide regime consisted of a single application of glufosinate at 0.60 kg ai ha−1 plus S-metolachlor at 0.54 kg ai ha−1 and the PRE + POST regime combined the prior two components. At 2 weeks after planting (WAP cotton, Palmer amaranth densities, both BR and WR, were reduced ≥90% following all cover crop treatments in the IT. In the NIT, crimson clover reduced Palmer amaranth densities >65% and 50% compared to winter fallow and cereal rye covers, respectively. At 6 WAP, the PRE and PRE + POST herbicide regimes in both IT and NIT reduced BR and WR Palmer amaranth densities >96% over the three years. Additionally, the BR density was reduced ≥59% in no-herbicide (None following either cereal rye or crimson clover when compared to no-herbicide in the winter fallow. In IT, PRE, POST and PRE + POST herbicide regimes controlled Palmer amaranth >95% 6 WAP. In NIT, Palmer amaranth was controlled ≥79% in PRE and ≥95% in PRE + POST herbicide regimes over three years. POST herbicide regime following NIT was not very consistent. Averaged across three years, Palmer amaranth controlled ≥94% in PRE and PRE + POST herbicide regimes regardless of cover crop. Herbicide regime effect on cotton yield was highly significant; the maximum cotton yield was

  4. Impact of long-term conservation management on soil microbial N cycling and greenhouse gas emissions in a humid agroecosystem in West Tennessee

    Science.gov (United States)

    Schaeffer, S. M.; Konkel, J. M.; Jin, V.

    2017-12-01

    Conservation practices such as no-tillage, cover crops, and reduced mineral fertilizer application are thought to help mitigate atmospheric greenhouse gas (GHG) concentrations through building soil organic matter. However, some studies have shown that both no-till and cover crops can increase GHG emissions, perhaps due to increased microbial activity. It is possible that these results are confounded by perturbations caused when management practices are newly implemented. There is a clear lack of data from long-term sites where experimental plots are well equilibrated to the management systems. Starting in 2016, we measured fluxes of nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) in twelve combinations of tillage (disk, no-till), N fertilizer rate (0, 67 kg N ha-1), and winter cover crops (none, hairy vetch, winter wheat) under continuous cotton production for 35 years. During the cotton growing season, the largest daily fluxes of N2O (36.9±11.9 g N ha-1 d-1) occurred in tilled plots regardless of cover crop or fertilization rate. However, over the entire year, the largest fluxes were observed during winter cover crop growth (63.0±21.4 g N ha-1 d-1). Overall, N2O fluxes were lower in no-till compared to tilled soils, save those under hairy vetch, a nitrogen fixing cover crop. These results, combined with our observation of higher rates of microbial N mineralization and nitrification in no-till and vetch plots, suggest vetch cover crops may stimulate both GHG and inorganic N production. We observed seasonal patterns in CH4 flux with net CH4 production during Spring and early Summer (from 0.2±0.8 to 4.8±3.2 g C ha-1 d-1), switching to net CH4 consumption by late summer (from -6.3±3.4 to 0.8±0.5 g C ha-1 d-1). Cumulative CH4 fluxes suggest that reduced tillage and fertilization may change these agroecosystems from weak sources to weak sinks for CH4. Our results highlight the impact of nitrogen availability on GHG emissions, and the need for improved

  5. Plantas de cobertura, manejo da palhada e produtividade da mamoneira no sistema plantio direto Cover crops, straw mulch management and castor bean yield in no-tillage system

    Directory of Open Access Journals (Sweden)

    Jayme Ferrari Neto

    2011-12-01

    Full Text Available Espécies de cobertura que apresentem elevada produção de fitomassa e reciclagem de nutrientes são essenciais para maximizar a produtividade das culturas em sucessão, no sistema plantio direto. O presente trabalho teve por objetivo avaliar a produção de massa de matéria seca e o acúmulo de nutrientes pelo guandu-anão (Cajanus cajan e o milheto (Pennisetum glaucum, em cultivo solteiro e consorciado, e o efeito do manejo mecânico da palhada na produtividade da mamoneira de safrinha, na fase de implantação do sistema plantio direto. O experimento foi instalado em um Nitossolo Vermelho, em Botucatu, SP. O delineamento foi o de blocos ao acaso, em parcelas subdivididas, com quatro repetições. As parcelas foram constituídas por três coberturas vegetais (guandu-anão, milheto e o cultivo consorciado das duas espécies e as subparcelas pela ausência ou presença do manejo mecânico da palhada com triturador horizontal, 20 dias após o manejo químico. O milheto solteiro produziu maior quantidade de massa de matéria seca (14.040 kg ha-1, apresentou maiores concentrações de K e Mg e acumulou maiores quantidades de macronutrientes na parte aérea. A mamoneira apresentou maior produtividade de grãos em sucessão ao consórcio guandu-anão + milheto. A produtividade de grãos da mamoneira foi maior na ausência do manejo mecânico da palhada.Cover crops that have high phytomass production and nutrient cycling are essential to maximize the crop yields in succession under no-tillage system. This study aimed to evaluate dry matter production and nutrients accumulation by pigeonpea (Cajanus cajan and pearl millet (Pennisetum glaucum, in sole crop and intercropped, and the effect of straw mulch mechanical management on out-of-season castor bean performance, in no-tillage system establishment. The experiment was carried out on a Rhodic Nitisol, in Botucatu, SP, Brazil. A randomized blocks design, in a split-plot scheme, with four replications

  6. Modeled Impacts of Cover Crops and Vegetative Barriers on Corn Stover Availability and Soil Quality

    Energy Technology Data Exchange (ETDEWEB)

    Ian J. Bonner; David J. Muth Jr.; Joshua B. Koch; Douglas L. Karlen

    2014-06-01

    Environmentally benign, economically viable, and socially acceptable agronomic strategies are needed to launch a sustainable lignocellulosic biofuel industry. Our objective was to demonstrate a landscape planning process that can ensure adequate supplies of corn (Zea mays L.) stover feedstock while protecting and improving soil quality. The Landscape Environmental Assessment Framework (LEAF) was used to develop land use strategies that were then scaled up for five U.S. Corn Belt states (Nebraska, Iowa, Illinois, Indiana, and Minnesota) to illustrate the impact that could be achieved. Our results show an annual sustainable stover supply of 194 million Mg without exceeding soil erosion T values or depleting soil organic carbon [i.e., soil conditioning index (SCI)?>?0] when no-till, winter cover crop, and vegetative barriers were incorporated into the landscape. A second, more rigorous conservation target was set to enhance soil quality while sustainably harvesting stover. By requiring erosion to be <1/2 T and the SCI-organic matter (OM) subfactor to be >?0, the annual sustainable quantity of harvestable stover dropped to148 million Mg. Examining removal rates by state and soil resource showed that soil capability class and slope generally determined the effectiveness of the three conservation practices and the resulting sustainable harvest rate. This emphasizes that sustainable biomass harvest must be based on subfield management decisions to ensure soil resources are conserved or enhanced, while providing sufficient biomass feedstock to support the economic growth of bioenergy enterprises.

  7. Microbial biomass and nutrient dynamics during decomposition of cover crop mixtures

    NARCIS (Netherlands)

    Drost, S.M.

    2016-01-01

    Sustainable agriculture is needed to reduce losses of soil organic matter (SOM) and to ensure crop production with a minimum of negative impact on the environment. Cover crops, planted in the fallow season, are commonly used to improve soil functions, such as soil structure, nutrient cycling,

  8. Biological and microbiological attributes in Oxisol managed with cover crops

    Directory of Open Access Journals (Sweden)

    Rodrigo Ferreira da Silva

    2017-05-01

    Full Text Available The inclusion of winter cover crops and fertilization with nitrogen to the soil can have an effect on their biological and microbiological attributes. The aim of this study was to evaluate biological and microbiological attributes in soil under different winter cover crops and nitrogen doses. The experiment was conducted at the Frederico Westphalen-RS campus of the Federal University of Santa Maria (UFSM in a Rhodic Hapludox soil. The experimental design was a randomized block in factorial arrangement (2 x 10: 10 winter cover crops systems (Fallow [control], black oats, white oats, ryegrass, forage turnip, vetch, white lupine; black oat + forage turnip; black oat + vetch and black oat + vetch + fodder turnip, and two nitrogen rates in the form of urea applied in successive crops of beans common and maize, with four replications. We assessed the biological attributes (Margalef’s richness, Simpson’s dominance, Shannon’s diversity and abundance of organisms and microbiological (carbon and nitrogen microbial biomass, basal respiration, metabolic quotient and microbial quotient of the soil. The fallow with wild species and white lupine showed greater Simpson’s dominance and abundance of organisms due to the increase in the number of individuals of the order Collembola. Vetch improved the biological attributes of the soil with increase in Collembola abundance and diversity of organisms of soil fauna. The application of nitrogen favored the microbial biomass carbon and reduced the metabolic quotient.

  9. Efficacy of Cotton Root Destruction and Winter Cover Crops for Suppression of Hoplolaimus columbus.

    Science.gov (United States)

    Davis, R F; Baird, R E; McNeil, R D

    2000-12-01

    The efficacy of rye (Secale cereale) and wheat (Triticum aestivum) winter cover crops and cotton stalk and root destruction (i.e., pulling them up) were evaluated in field tests during two growing seasons for Hoplolaimus columbus management in cotton. The effect of removing debris from the field following root destruction also was evaluated. Wheat and rye produced similar amounts of biomass, and both crops produced more biomass (P Cover crops did not suppress H. columbus population levels or increase subsequent cotton yields. Cotton root destruction did not affect cotton stand or plant height the following year. Cotton root destruction lowered (P rye or wheat cover crop or cotton root destruction following harvest is ineffective for H. columbus management in cotton.

  10. Nitrous oxide emissions from corn-soybean systems in the midwest.

    Science.gov (United States)

    Parkin, Timothy B; Kaspar, Thomas C

    2006-01-01

    Soil N2O emissions from three corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] systems in central Iowa were measured from the spring of 2003 through February 2005. The three managements systems evaluated were full-width tillage (fall chisel plow, spring disk), no-till, and no-till with a rye (Secale cereale L. 'Rymin') winter cover crop. Four replicate plots of each treatment were established within each crop of the rotation and both crops were present in each of the two growing seasons. Nitrous oxide fluxes were measured weekly during the periods of April through October, biweekly during March and November, and monthly in December, January, and February. Two polyvinyl chloride rings (30-cm diameter) were installed in each plot (in and between plant rows) and were used to support soil chambers during the gas flux measurements. Flux measurements were performed by placing vented chambers on the rings and collecting gas samples 0, 15, 30, and 45 min following chamber deployment. Nitrous oxide fluxes were computed from the change in N2O concentration with time, after accounting for diffusional constraints. We observed no significant tillage or cover crop effects on N2O flux in either year. In 2003 mean N2O fluxes were 2.7, 2.2, and 2.3 kg N2O-N ha(-1) yr(-1) from the soybean plots under chisel plow, no-till, and no-till + cover crop, respectively. Emissions from the chisel plow, no-till, and no-till + cover crop plots planted to corn averaged 10.2, 7.9, and 7.6 kg N2O-N ha(-1) yr(-1), respectively. In 2004 fluxes from both crops were higher than in 2003, but fluxes did not differ among the management systems. Fluxes from the corn plots were significantly higher than from the soybean plots in both years. Comparison of our results with estimates calculated using the Intergovernmental Panel on Climate Change default emission factor of 0.0125 indicate that the estimated fluxes underestimate measured emissions by a factor of 3 at our sites.

  11. Cover cropping alters the diet of arthropods in a banana plantation: a metabarcoding approach.

    Directory of Open Access Journals (Sweden)

    Gregory Mollot

    Full Text Available Plant diversification using cover crops may promote natural regulation of agricultural pests by supporting alternative prey that enable the increase of arthropod predator densities. However, the changes in the specific composition of predator diet induced by cover cropping are poorly understood. Here, we hypothesized that the cover crop can significantly alter the diet of predators in agroecosystems. The cover crop Brachiaria decumbens is increasingly used in banana plantations to control weeds and improve physical soil properties. In this paper, we used a DNA metabarcoding approach for the molecular analysis of the gut contents of predators (based on mini-COI to identify 1 the DNA sequences of their prey, 2 the predators of Cosmopolites sordidus (a major pest of banana crops, and 3 the difference in the specific composition of predator diets between a bare soil plot (BSP and a cover cropped plot (CCP in a banana plantation. The earwig Euborellia caraibea, the carpenter ant Camponotus sexguttatus, and the fire ant Solenopsis geminata were found to contain C. sordidus DNA at frequencies ranging from 1 to 7%. While the frequencies of predators positive for C. sordidus DNA did not significantly differ between BSP and CCP, the frequency at which E. caraibea was positive for Diptera was 26% in BSP and 80% in CCP; the frequency at which C. sexguttatus was positive for Jalysus spinosus was 14% in BSP and 0% in CCP; and the frequency at which S. geminata was positive for Polytus mellerborgi was 21% in BSP and 3% in CCP. E. caraibea, C. sexguttatus and S. geminata were identified as possible biological agents for the regulation of C. sordidus. The detection of the diet changes of these predators when a cover crop is planted indicates the possible negative effects on pest regulation if predators switch to forage on alternative prey.

  12. Cover cropping alters the diet of arthropods in a banana plantation: a metabarcoding approach.

    Science.gov (United States)

    Mollot, Gregory; Duyck, Pierre-François; Lefeuvre, Pierre; Lescourret, Françoise; Martin, Jean-François; Piry, Sylvain; Canard, Elsa; Tixier, Philippe

    2014-01-01

    Plant diversification using cover crops may promote natural regulation of agricultural pests by supporting alternative prey that enable the increase of arthropod predator densities. However, the changes in the specific composition of predator diet induced by cover cropping are poorly understood. Here, we hypothesized that the cover crop can significantly alter the diet of predators in agroecosystems. The cover crop Brachiaria decumbens is increasingly used in banana plantations to control weeds and improve physical soil properties. In this paper, we used a DNA metabarcoding approach for the molecular analysis of the gut contents of predators (based on mini-COI) to identify 1) the DNA sequences of their prey, 2) the predators of Cosmopolites sordidus (a major pest of banana crops), and 3) the difference in the specific composition of predator diets between a bare soil plot (BSP) and a cover cropped plot (CCP) in a banana plantation. The earwig Euborellia caraibea, the carpenter ant Camponotus sexguttatus, and the fire ant Solenopsis geminata were found to contain C. sordidus DNA at frequencies ranging from 1 to 7%. While the frequencies of predators positive for C. sordidus DNA did not significantly differ between BSP and CCP, the frequency at which E. caraibea was positive for Diptera was 26% in BSP and 80% in CCP; the frequency at which C. sexguttatus was positive for Jalysus spinosus was 14% in BSP and 0% in CCP; and the frequency at which S. geminata was positive for Polytus mellerborgi was 21% in BSP and 3% in CCP. E. caraibea, C. sexguttatus and S. geminata were identified as possible biological agents for the regulation of C. sordidus. The detection of the diet changes of these predators when a cover crop is planted indicates the possible negative effects on pest regulation if predators switch to forage on alternative prey.

  13. Nitrogen source effects on soil nitrous oxide emissions from strip-till corn.

    Science.gov (United States)

    Halvorson, Ardell D; Del Grosso, Stephen J; Jantalia, Claudia Pozzi

    2011-01-01

    Nitrogen (N) application to crops generally results in increased nitrous oxide (NO) emissions. Commercially available, enhanced-efficiency N fertilizers were evaluated for their potential to reduce NO emissions from a clay loam soil compared with conventionally used granular urea and urea-ammonium nitrate (UAN) fertilizers in an irrigated strip-till (ST) corn ( L.) production system. Enhanced-efficiency N fertilizers evaluated were a controlled-release, polymer-coated urea (ESN), stabilized urea, and UAN products containing nitrification and urease inhibitors (SuperU and UAN+AgrotainPlus), and UAN containing a slow-release N source (Nfusion). Each N source was surface-band applied (202 kg N ha) at corn emergence and watered into the soil the next day. A subsurface-band ESN treatment was included. Nitrous oxide fluxes were measured during two growing seasons using static, vented chambers and a gas chromatograph analyzer. All N sources had significantly lower growing season NO emissions than granular urea, with UAN+AgrotainPlus and UAN+Nfusion having lower emissions than UAN. Similar trends were observed when expressing NO emissions on a grain yield and N uptake basis. Loss of NO-N per kilogram of N applied was <0.8% for all N sources. Corn grain yields were not different among N sources but greater than treatments with no N applied. Selection of N fertilizer source can be a mitigation practice for reducing NO emissions in strip-till, irrigated corn in semiarid areas. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Winter cover crops on processing tomato yield, quality, pest pressure, nitrogen availability, and profit margins

    OpenAIRE

    Belfry, Kimberly D.; Trueman, Cheryl; Vyn, Richard J.; Loewen, Steven A.; Van Eerd, Laura L.

    2017-01-01

    Much of cover crop research to date focuses on key indicators of impact without considering the implications over multiple years, in the absence of a systems-based approach. To evaluate the effect of three years of autumn cover crops on subsequent processing tomato (Solanum lycopersicum L.) production in 2010 and 2011, a field split-split-plot factorial design trial with effects of cover crop type, urea ammonium nitrate fertilizer rate (0 or 140 kg N ha-1 preplant broadcast incorporated) and ...

  15. Tillage System and Cover Crop Effects on Soil Quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    2014-01-01

    ), and moldboard plowing (MP) with and without a cover crop were evaluated in a long-term experiment on a sandy loam soil in Denmark. Chemical, physical, and biological soil properties were measured in the spring of 2012. The field measurements included mean weight diameter (MWD) after the drop-shatter test......, penetration resistance, and visual evaluation of soil structure (VESS). In the laboratory, aggregate strength, water-stable aggregates (WSA), and clay dispersibility were measured. The analyzed chemical and biological properties included soil organic C (SOC), total N, microbial biomass C, labile P and K......Optimal use of management systems including tillage and winter cover crops is recommended to improve soil quality and sustain agricultural production. The effects on soil properties of three tillage systems (as main plot) including direct drilling (D), harrowing to a depth of 8 to 10 cm (H...

  16. The role of leguminous cover crops in sustainable production of oil ...

    African Journals Online (AJOL)

    Leguminous cover crops have the potential for obtaining high and sustainable crop yields. They have been shown to play an important role in weed suppression, nutrition, growth and yield of oil palm. They also play an important role in soil erosion control and soil moisture conservation in plantations. The development of ...

  17. Timing of glyphosate applications to wheat cover crops to reduce onion stunting caused by Rhizoctonia solani

    Science.gov (United States)

    Stunting caused by Rhizoctonia spp. is economically important in irrigated onion bulb crops in the semi-arid Columbia Basin of Oregon and Washington, where cereal winter cover crops commonly are planted the previous fall to prevent wind erosion of soil. The cover crop is killed with herbicide applic...

  18. An innovative approach for Predicting Farmers' Adaptive Behavior at the Large Watershed Scale: Implications for Water Quality and Crop Yields

    Science.gov (United States)

    Valcu-Lisman, A. M.; Gassman, P. W.; Arritt, R. W.; Kling, C.; Arbuckle, J. G.; Roesch-McNally, G. E.; Panagopoulos, Y.

    2017-12-01

    Projected changes in the climatic patterns (higher temperatures, changes in extreme precipitation events, and higher levels of humidity) will affect agricultural cropping and management systems in major agricultural production areas. The concept of adaption to new climatic or economic conditions is an important aspect of the agricultural decision-making process. Adopting cover crops, reduced tillage, extending the drainage systems and adjusting crop management are only a few examples of adaptive actions. These actions can be easily implemented as long as they have private benefits (increased profits, reduced risk). However, each adaptive action has a different impact on water quality. Cover crops and no till usually have a positive impact on water quality, but increased tile drainage typically results in more degraded water quality due primarily to increased export of soluble nitrogen and phosphorus. The goal of this research is to determine the changes in water quality as well in crop yields as farmers undertake these adaptive measures. To answer this research question, we need to estimate the likelihood that these actions will occur, identify the agricultural areas where these actions are most likely to be implemented, and simulate the water quality impacts associated with each of these scenarios. We apply our modeling efforts to the whole Upper-Mississippi River Basin Basin (UMRB) and the Ohio-Tennessee River Basin (OTRB). These two areas are critical source regions for the re-occurring hypoxic zone in the gulf of Mexico. The likelihood of each adaptive agricultural action is estimated using data from a survey conducted in 2012. A large, representative sample of farmers in the Corn Belt was used in the survey to elicit behavioral intentions regarding three of the most important agricultural adaptation strategies (no-till, cover crops and tile drainage). We use these data to study the relationship between intent to adapt, farmer characteristics, farm

  19. Increasing diveristy of arbuscular mycorrhizal fungi in agroecosystems using specific cover crops

    Science.gov (United States)

    Fall-planted cover crops provide a plant host for obligate symbiotic arbuscular mycorrhizal fungi (AMF) during otherwise fallow periods and thus may increase AMF numbers in agroecosystems. Increased AMF numbers should increase mycorrhizal colonization of the subsequent cash crops, which has been li...

  20. Sudex cover crops can kill and stunt subsequent tomato, 
lettuce and broccoli transplants through allelopathy

    OpenAIRE

    Summers, Charles G.; Mitchell, Jeffrey P.; Prather, Timothy S.; Stapleton, James J.

    2009-01-01

    Grass cover crops can be harvested for biomass or used as a surface mulch to reduce erosion, improve soil structure, suppress weeds and conserve moisture. There is concern, however, that such plantings may affect subsequent crops. We studied the effects of sudex, a sorghum hybrid used as a cover crop, on subsequent crops of tomato, broccoli and lettuce started from transplants. Within 3 to 5 days of being transplanted into recently killed sudex, all three crops showed symptoms of phytotoxicit...

  1. Farm-level economics of innovative tillage technologies: the case of no-till in the Altai Krai in Russian Siberia.

    Science.gov (United States)

    Bavorova, Miroslava; Imamverdiyev, Nizami; Ponkina, Elena

    2018-01-01

    In the agricultural Altai Krai in Russian Siberia, soil degradation problems are prevalent. Agronomists recommend "reduced tillage systems," especially no-till, as a sustainable way to cultivate land that is threatened by soil degradation. In the Altai Krai, less is known about the technologies in practice. In this paper, we provide information on plant cultivation technologies used in the Altai Krai and on selected factors preventing farm managers in this region from adopting no-till technology based on our own quantitative survey conducted across 107 farms in 2015 and 2016. The results of the quantitative survey show that farm managers have high uncertainty regarding the use of no-till technology including its economics. To close this gap, we provide systematic analysis of factors influencing the economy of the plant production systems by using a farm optimization model (linear programming) for a real farm, together with expert estimations. The farm-specific results of the optimization model show that under optimal management and climatic conditions, the expert Modern Canadian no-till technology outperforms the farm min-till technology, but this is not the case for suboptimal conditions with lower yields.

  2. Tillage effects on N2O emissions as influenced by a winter cover crop

    DEFF Research Database (Denmark)

    Petersen, Søren O; Mutegi, James; Hansen, Elly Møller

    2011-01-01

    emissions may be more important than the effect on soil C. This study monitored emissions of N2O between September 2008 and May 2009 in three tillage treatments, i.e., conventional tillage (CT), reduced tillage (RT) and direct drilling (DD), all with (+CC) or without (−CC) fodder radish as a winter cover...... application by direct injection N2O emissions were stimulated in all tillage treatments, reaching 250–400 μg N m−2 h−1 except in the CT + CC treatment, where emissions peaked at 900 μg N m−2 h−1. Accumulated emissions ranged from 1.6 to 3.9 kg N2O ha−1. A strong positive interaction between cover crop......Conservation tillage practices are widely used to protect against soil erosion and soil C losses, whereas winter cover crops are used mainly to protect against N losses during autumn and winter. For the greenhouse gas balance of a cropping system the effect of reduced tillage and cover crops on N2O...

  3. Vegetative, productive and qualitative performance of grapevine "Cabernet Sauvignon" according to the use of winter cover crops

    Directory of Open Access Journals (Sweden)

    Jean Carlos Bettoni

    Full Text Available ABSTRACT To study the effect of winter cover crops on the vegetative, productive and qualitative behavior of "Cabernet Sauvignon" grapevines, an experiment was conducted in two wine harvests by sowing different species of winter cover crops and additional treatments with manual weeding and mechanical mowing in an experimental vineyard located at the Experimental Station of Epagri in Videira, state of Santa Catarina, Brazil. Plant attributes of the grapevine, such as number of rods and weight of pruned material and number of branches per plant. At the time of skin color change, petioles of recently matured leaves were collected for analysis of the levels of N, P, K, Ca, Mg, Fe, Mn, Zn and B. Moments before harvest, 100 grape berries were collected randomly to determine the total soluble solids, titratable acidity and pH. At harvest, the number of bunches per branch, the number and mass of clusters per plant and the average mass of clusters per plot were determined. Fresh and dry matter yields of the cover crop and weed plants were also determined when coverage reached full bloom. The winter cover crops did not alter the yield and quality of "Cabernet Sauvignon" grapes and showed no differences from each other for the management of spontaneous vegetation by hand weeding or mechanical mowing. Rye and ryegrass are effective alternatives for weed control alternatives. The species of white and red clover present difficulty in initial establishment, producing a small amount of biomass.

  4. The effect of plant growth promoting rhizobacteria (PGPR on quantitative and qualitative characteristics of Sesamum indicum L. with application of cover crops of Lathyrus sp. and Persian clover (Trifolium resopinatum L.

    Directory of Open Access Journals (Sweden)

    M. Jahan

    2016-05-01

    Full Text Available Cover crops cultivation and application of plant growth rhizobacteria are the key factors to enhance agroecosystem health. A field experiment was conducted at the Research Farm of Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, during growing season of 2009-2010. A split plot arrangement based on a complete randomized block design with three replications was used. Cultivation and no cultivation of Lathyrus sp. and Persian clover (Trifolium resopinatum in autumn assigned to the main plots. The sub plot factor consisted of three different types of biofertilizers plus control, including 1-nitroxin (containing of Azotobacter sp. and Azospirillum sp., 2- phosphate solubilizing bacteria (PSB (containing of Bacillus sp. and Pseudomonas sp., 3- biosulfur (containing of Thiobacillus ssp. and 4- control (no fertilizer. The results showed the effect of cover crops on seed number and seed weight per plant, biological and seed yield was significant, as the seed yield increased of 9 %. In general, biofertilizers showed superiority due to the most studied traits compared to control. Nitroxin, PSB and biosulfur increased biological yield of 44, 28 and 26 % compared to control, respectively. Cover crops and biofertilizers interactions, showed significant effect on all studied traits, as the highest and the lowest harvest index resulted in cover crop combined with biofertilizers (22.1% and cultivation and no cultivation of cover crops combined with control (15.3%, respectively. The highest seed oil and protein content resulted from cover crops plus biofertilizers (42.4% and cover crops plus PSB (22.5%, respectively. In general, the results showed cover crops cultivation in combination with biofertilizers application could be an ecological alternative for chemical fertilizers, in addition of achieving advantages of cover crops. According to the results, it should be possible to design an ecological cropping system and produce appropriate and healthy

  5. Phosphatase activity in sandy soil influenced by mycorrhizal and non-mycorrhizal cover crops

    Directory of Open Access Journals (Sweden)

    Alceu Kunze

    2011-06-01

    Full Text Available Cover crops may difffer in the way they affect rhizosphere microbiota nutrient dynamics. The purpose of this study was to evaluate the effect of mycorrhizal and non-mycorrhizal cover crops on soil phosphatase activity and its persistence in subsequent crops. A three-year experiment was carried out with a Typic Quartzipsamment. Treatments were winter species, either mycorrhizal black oat (Avena strigosa Schreb or the non-mycorrhizal species oilseed radish (Raphanus sativus L. var. oleiferus Metzg and corn spurry (Spergula arvensis L.. The control treatment consisted of resident vegetation (fallow in the winter season. In the summer, a mixture of pearl millet (Pennisetum americanum L. with sunnhemp (Crotalaria juncea L. or with soybean (Glycine max L. was sown in all plots. Soil cores (0-10 cm and root samples were collected in six growing seasons (winter and summer of each year. Microbial biomass P was determined by the fumigation-extraction method and phosphatase activity using p-nitrophenyl-phosphate as enzyme substrate. During the flowering stage of the winter cover crops, acid phosphatase activity was 30-35 % higher in soils with the non-mycorrhizal species oilseed radish, than in the control plots, regardless of the amount of P immobilized in microbial biomass. The values of enzyme activity were intermediate in the plots with corn spurry and black oat. Alkaline phosphatase activity was 10-fold lower and less sensitive to the treatments, despite the significant relationship between the two phosphatase activities. The effect of plant species on the soil enzyme profile continued in the subsequent periods, during the growth of mycorrhizal summer crops, after completion of the life cycle of the cover crops.

  6. Soil physical and X-ray computed tomographic measurements to investigate small-scale structural differences under strip tillage compared to mulch till and no-till

    Science.gov (United States)

    Pöhlitz, Julia; Rücknagel, Jan; Schlüter, Steffen; Vogel, Hans-Jörg

    2017-04-01

    In recent years there has been an increasing application of conservation tillage techniques where the soil is no longer turned, but only loosened or left completely untilled. Dead plant material remains on the soil surface, which provides environmental and economic benefits such as the conservation of water, preventing soil erosion and saving time during seedbed preparation. There is a variety of conservation tillage systems, e.g. mulch till, no-till and strip tillage, which is a special feature. In strip tillage, the seed bed is divided into a seed zone (strip-till within the seed row: STWS) and a soil management zone (strip-till between the seed row: STBS). However, each tillage application affects physical soil properties and processes. Here, the combined application of classical soil mechanical and computed tomographic methods is used on a Chernozem (texture 0-30 cm: silt loam) to show small-scale structural differences under strip tillage (STWS, STBS) compared to no-till (NT) and mulch till (MT). In addition to the classical soil physical parameters dry bulk density and saturated conductivity (years: 2012, 2014, 2015) at soil depths 2-8 and 12-18 cm, stress-strain tests were carried out to map mechanical behavior. The stress-strain tests were performed for a load range from 5-550 kPa at 12-18 cm depth (year 2015). Mechanical precompression stress was determined on the stress-dry bulk density curves. Further, CT image cross sections and computed tomographic examinations (average pore size, porosity, connectivity, and anisotropy) were used from the same soil samples. For STBS and NT, a significant increase in dry bulk density was observed over the course of time compared to STWS and MT, which was more pronounced at 2-8 cm than at 12-18 cm depth. Despite higher dry bulk density, STBS displayed higher saturated conductivity in contrast to STWS, which can be attributed to higher earthworm abundance. In strip tillage, structural differences were identified

  7. Influence of Seeding Ratio, Planting Date, and Termination Date on Rye-Hairy Vetch Cover Crop Mixture Performance under Organic Management

    OpenAIRE

    Lawson, Andrew; Cogger, Craig; Bary, Andy; Fortuna, Ann-Marie

    2015-01-01

    Cover crop benefits include nitrogen accumulation and retention, weed suppression, organic matter maintenance, and reduced erosion. Organic farmers need region-specific information on winter cover crop performance to effectively integrate cover crops into their crop rotations. Our research objective was to compare cover crop seeding mixtures, planting dates, and termination dates on performance of rye (Secale cereale L.) and hairy vetch (Vicia villosa Roth) monocultures and mixtures in the ma...

  8. Feasibility of winter cover crop production under rainfed conditions

    African Journals Online (AJOL)

    ACSS

    CONDITIONS IN THE EASTERN CAPE PROVINCE OF SOUTH AFRICA. L. MUZANGWA, C. ... planting, resulting in higher weed dry weights at 3 and 6 weeks after planting (WAP). April planted cover crops ...... of micro-arthropods in a sub-tropical forest ecosystem ... American Association of Cereal Chemists, Inc. St. Paul ...

  9. Use of no-till winter wheat by nesting ducks in North Dakota

    Science.gov (United States)

    Duebbert, H.F.; Kantrud, H.A.

    1987-01-01

    Nesting of dabbling ducks (Anatinae) was studied in fields of no-till winter wheat (Triticum aestivum) in the prairie pothole region of North Dakota during 1984 and 1985. Total area of 59 fields searched in 1984 was 1,135 ha and total area of 70 fields searched in 1985 was 1,175 ha. Field sizes ranged from 3 ha to 110 ha. Nests of five duck species were found: blue-winged teal (Anas discors), 55 nests; northern pintail (A. acuta), 44; mallard (A. platyrhynchos), 29; gadwall (A. strepera), 15; and northern shoveler (A. clypeata), 8. The average number of nests found was 8/100 ha in 1984 and 6/100 ha in 1985. Nest success for all species averaged 26% in 1984 and 29% in 1985. Predation by mammals was the principal cause of nest destruction. No egg or hen mortality could be attributed to pesticide use. Only 6 of 151 nests (4%) were abandoned during the two years. We also found 29 nests of seven other ground-nesting bird species. The trend toward increased planting of no-till winter wheat in the prairie pothole region should benefit production of ducks and other ground-nesting birds.

  10. Drainage water management combined with cover crop enhances reduction of soil phosphorus loss.

    Science.gov (United States)

    Zhang, T Q; Tan, C S; Zheng, Z M; Welacky, T; Wang, Y T

    2017-05-15

    Integrating multiple practices for mitigation of phosphorus (P) loss from soils may enhance the reduction efficiency, but this has not been studied as much as individual ones. A four-year study was conducted to determine the effects of cover crop (CC) (CC vs. no CC, NCC) and drainage water management (DWM) (controlled drainage with sub-irrigation, CDS, vs. regular free tile drainage, RFD) and their interaction on P loss through both surface runoff (SR) and tile drainage (TD) water in a clay loam soil of the Lake Erie region. Cover crop reduced SR flow volume by 32% relative to NCC, regardless of DWM treatment. In contrast, CC increased TD flow volume by 57 and 9.4% with CDS and RFD, respectively, compared to the corresponding DWM treatment with NCC. The total (SR+TD) field water discharge volumes were comparable amongst all the treatments. Cover crop reduced flow-weighted mean (FWM) concentrations of particulate P (PP) by 26% and total P (TP) by 12% in SR, while it didn't affect the FWM dissolved reactive P (DRP) concentration, regardless of DWM treatments. Compared with RFD, CDS reduced FWM DRP concentration in TD water by 19%, while CC reduced FWM PP and TP concentrations in TD by 21 and 17%, respectively. Total (SR+TD) soil TP loss was the least with CDS-CC followed by RFD-CC, CDS-NCC, and RFD-NCC. Compared with RFD-NCC, currently popular practice in the region, total TP loss was reduced by 23% with CDS-CC. The CDS-CC system can be an effective practice to ultimately mitigate soil P loading to water resource. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Cover crops affecting levels of ammonium and nitrate in the soil and upland rice developmentPlantas de cobertura afetando os níveis de nitrato e amônio no solo e o desenvolvimento do arroz de terras altas

    Directory of Open Access Journals (Sweden)

    Adriano Stephan Nascente

    2013-10-01

    Full Text Available The use of cover crops in no-tillage systems (NTS increases the levels of organic matter and could increase the nitrogen content of the soil, contributing to reduce fertilizers costs. The knowledge of these processes is fundamental for deciding whether cover crops can be effectively incorporated into the agricultural production system. The objective of this study was to evaluate the effect of cover crop species on the levels of nitrate and ammonium in the soil in early upland rice development, as well upland rice yield. A field experiment was performed and treatments consisted of growing rice on five cover crops (Panicum maximum, Brachiaria ruziziensis, Brachiaria brizantha, millet and fallow in an NTS and two control treatments (Brachiaria brizantha and fallow under a conventional tillage system, CTS, (one plowing and two disking. The experimental design was a complete randomized block with three replications. The soil samples were collected during a period of six weeks (0, 7, 14, 21, 28 and 35 days in relation to upland rice sowing. The cover crops Brachiaria brizantha, Panicum maximum and Brachiaria ruziziensis in the NTS and B. brizantha fallow incorporated into the CTS favored higher levels of nitrate in the soil. In contrast, B. brizantha and fallow in the CTS and millet and P. maximum in the NTS favored the buildup of high levels of ammonium in the soil. The treatments under the plowed cover crops millet and fallow allowed for a higher upland rice yield. The tillage system and nature of the cover crops could be used to achieve the desired levels and forms of nitrogen in soil. O uso de plantas de cobertura no sistema plantio direto (SPD aumenta os níveis de matéria orgânica e pode ajudar a aumentar os teores de nitrogênio no solo contribuindo para reduzir os custos de fertilizantes. O conhecimento desse processo é fundamental para que as plantas de cobertura possam ser efetivamente incorporadas aos sistemas de produção agrícola. O

  12. Cover crops for managing weeds, soil chemical fertility and nutritional status of organically grown orange orchard in Sicily

    Directory of Open Access Journals (Sweden)

    Rosario Paolo Mauro

    2015-06-01

    Full Text Available Cover crops can offer significant advantages in the agronomic management of citrus orchards in Mediterranean environments. Therefore, a three-year research was conducted in eastern Sicily aimed at studying the effects of four cover crop sequences (Sinapis arvensis-Trigonella foenum-graecum-T. foenum-graecum; Medicago scutellata-Avena sativa-Lolium perenne; Vicia faba minor-A. sativa-A. sativa; A. sativa-V. faba. minor-L. perenne on weeds, major soil chemical properties and nutritional status of an organically grown orange orchard. The results highlighted that, among the studied cover crop sequences, Vicia faba-Avena-Avena was the most beneficial for weeds control within the orchard (92%, of cover crop cover, and 586 and 89 g DW m–2 of cover crop aboveground biomass and weeds aboveground biomass, respectively. Overall, the chemical fertility of the soil was positively influenced. In particular, it was observed an increase of the content of total nitrogen and available phosphorus in the soil by both Sinapis-Trigonella-Trigonella (0.75 g kg–1 and 59.0 mg kg–1, respectively and Vicia faba-Avena-Avena (0.70 g kg–1 and 56.0 mg kg–1, respectively cover crop sequences. Medicago-Avena-Lolium sequence seemed to be the most useful to ensure a better nutritional status of the orange orchard.

  13. Continuous cropping with 13 - 15 inches of precipitation

    Science.gov (United States)

    Producers in the Great Plains have use fallow to adjust for inconsistent and often, inadequate rainfall. The prevalent rotation in this region is winter wheat-fallow. Fallow, however, is damaging to soil health. No-till practices have enabled producers to include more crops in the rotation. This...

  14. High-residue cultivation timing impact on organic no-till soybean weed management

    Science.gov (United States)

    A cereal rye cover crop mulch can suppress summer annual weeds early in the soybean growing season. However, a multi-tactic weed management approach is required when annual weed seedbanks are large or perennial weeds are present. In such situations, the weed suppression from a cereal rye mulch can b...

  15. Cover crops mitigate direct greenhouse gases balance but reduce drainage under climate change scenarios in temperate climate with dry summers.

    Science.gov (United States)

    Tribouillois, Hélène; Constantin, Julie; Justes, Eric

    2018-02-14

    Cover crops provide ecosystem services such as storing atmospheric carbon in soils after incorporation of their residues. Cover crops also influence soil water balance, which can be an issue in temperate climates with dry summers as for example in southern France and Europe. As a consequence, it is necessary to understand cover crops' long-term influence on greenhouse gases (GHG) and water balances to assess their potential to mitigate climate change in arable cropping systems. We used the previously calibrated and validated soil-crop model STICS to simulate scenarios of cover crop introduction to assess their influence on rainfed and irrigated cropping systems and crop rotations distributed among five contrasted sites in southern France from 2007 to 2052. Our results showed that cover crops can improve mean direct GHG balance by 315 kg CO 2 e ha -1  year -1 in the long term compared to that of bare soil. This was due mainly to an increase in carbon storage in the soil despite a slight increase in N 2 O emissions which can be compensated by adapting fertilization. Cover crops also influence the water balance by reducing mean annual drainage by 20 mm/year but increasing mean annual evapotranspiration by 20 mm/year compared to those of bare soil. Using cover crops to improve the GHG balance may help to mitigate climate change by decreasing CO 2 e emitted in cropping systems which can represent a decrease from 4.5% to 9% of annual GHG emissions of the French agriculture and forestry sector. However, if not well managed, they also could create water management issues in watersheds with shallow groundwater. Relationships between cover crop biomass and its influence on several variables such as drainage, carbon sequestration, and GHG emissions could be used to extend our results to other conditions to assess the cover crops' influence in a wider range of areas. © 2018 John Wiley & Sons Ltd.

  16. Impacts of Watershed Characteristics and Crop Rotations on Winter Cover Crop Nitrate-Nitrogen Uptake Capacity within Agricultural Watersheds in the Chesapeake Bay Region.

    Science.gov (United States)

    Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M; McCarty, Gregory W; Hively, W Dean; Lang, Megan W

    2016-01-01

    The adoption rate of winter cover crops (WCCs) as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB) is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT) and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE) reduced NO3-N loads by ~49.3% compared to the baseline (no WCC). The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean), with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic

  17. Impacts of Watershed Characteristics and Crop Rotations on Winter Cover Crop Nitrate-Nitrogen Uptake Capacity within Agricultural Watersheds in the Chesapeake Bay Region.

    Directory of Open Access Journals (Sweden)

    Sangchul Lee

    Full Text Available The adoption rate of winter cover crops (WCCs as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE reduced NO3-N loads by ~49.3% compared to the baseline (no WCC. The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean, with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic

  18. Novel manure management technologies in no-till and forage introduction to the special series.

    Science.gov (United States)

    Maguire, Rory O; Kleinman, Peter J A; Beegle, Douglas B

    2011-01-01

    Surface application of manures leaves nitrogen (N) and phosphorus (P) susceptible to being lost in runoff, and N can also be lost to the atmosphere through ammonia (IH3) volatilization. Tillage immediately after surface application of manure moves manure nutrients under the soil surface, where they are less vulnerable to runoff and volatilization loss. Tillage, however, destroys soil structure, can lead to soil erosion, and is incompatible with forage and no-till systems. A variety of technologies are now available to place manure nutrients under the soil surface, but these are not widely used as surface broadcasting is cheap and long established as the standard method for land application of manure. This collection of papers includes agronomic, environmental, and economic assessments of subsurface manure application technologies, many of which clearly show benefits when comparedwith surface broadcasting. However, there remain significant gaps in our current knowledge, some related to the site-specific nature of technological performance, others related to the nascent and incomplete nature of the assessment process. Thus, while we know that we can improve land application of manure and the sustainability of farming systems with alternatives to surface broadcasting, many questions remain concerning which technologies work best for particular soils, manure types, and farming and cropping systems.

  19. Soil physical properties and grape yield influenced by cover crops and management systems

    Directory of Open Access Journals (Sweden)

    Jaqueline Dalla Rosa

    2013-10-01

    Full Text Available The use of cover crops in vineyards is a conservation practice with the purpose of reducing soil erosion and improving the soil physical quality. The objective of this study was to evaluate cover crop species and management systems on soil physical properties and grape yield. The experiment was carried out in Bento Gonçalves, RS, Southern Brazil, on a Haplic Cambisol, in a vineyard established in 1989, using White and Rose Niagara grape (Vitis labrusca L. in a horizontal, overhead trellis system. The treatments were established in 2002, consisting of three cover crops: spontaneous species (SS, black oat (Avena strigosa Schreb (BO, and a mixture of white clover (Trifolium repens L., red clover (Trifolium pratense L. and annual rye-grass (Lolium multiflorum L. (MC. Two management systems were applied: desiccation with herbicide (D and mechanical mowing (M. Soil under a native forest (NF area was collected as a reference. The experimental design consisted of completely randomized blocks, with three replications. The soil physical properties in the vine rows were not influenced by cover crops and were similar to the native forest, with good quality of the soil structure. In the inter-rows, however, there was a reduction in biopores, macroporosity, total porosity and an increase in soil density, related to the compaction of the surface soil layer. The M system increased soil aggregate stability compared to the D system. The treatments affected grapevine yield only in years with excess or irregular rainfall.

  20. Effect of Cover Crops and Nitrogen Fertilizer on Total Production of Forage Corn and Dry Weight of Weeds

    Directory of Open Access Journals (Sweden)

    R Fakhari

    2014-10-01

    Full Text Available To evaluate the effect of cover crops, split application of nitrogen and control weeds on forage corn and weed biomass a factorial experiment based on randomized complete block design with three replications and three factors was conducted at the Agricultural Research Station of Ardabil (Iran during 2012 crop year. The first factor was cover crops (consisting of winter rye, hairy vetch, berseem clover, with and without weeding as controls. The second factor was two levels of split application of 225 kg.ha-1 urea at two growth stages forage corn: the first level (N1= 1/2 at planting and 1/2 at 8-10 leaf stage, second level (N2= 1/3 at planting, 1/3 at 8-10 leaf and 1/3 one week before tasselling stage. The third factor consisted of two levels of weed control: weeding at 8 leaves and weeding one week before tasselling. Results showed that winter rye, hairy vetch and berseem clover cover crops decreased total weed dry weights up to 87, 82 and 65 % respectively as compared to control (without weeding. Cover crops and nitrogen application time had a significant effect on yield of fresh forage corn and cover crops. Based on the advantages of effective weed control and higher forage production of hairy vetch it can be recommended as proper cover crop.

  1. Cloud Cover Assessment for Operational Crop Monitoring Systems in Tropical Areas

    Directory of Open Access Journals (Sweden)

    Isaque Daniel Rocha Eberhardt

    2016-03-01

    Full Text Available The potential of optical remote sensing data to identify, map and monitor croplands is well recognized. However, clouds strongly limit the usefulness of optical imagery for these applications. This paper aims at assessing cloud cover conditions over four states in the tropical and sub-tropical Center-South region of Brazil to guide the development of an appropriate agricultural monitoring system based on Landsat-like imagery. Cloudiness was assessed during overlapping four months periods to match the typical length of crop cycles in the study area. The percentage of clear sky occurrence was computed from the 1 km resolution MODIS Cloud Mask product (MOD35 considering 14 years of data between July 2000 and June 2014. Results showed high seasonality of cloud occurrence within the crop year with strong variations across the study area. The maximum seasonality was observed for the two states in the northern part of the study area (i.e., the ones closer to the Equator line, which also presented the lowest averaged values (15% of clear sky occurrence during the main (summer cropping period (November to February. In these locations, optical data faces severe constraints for mapping summer crops. On the other hand, relatively favorable conditions were found in the southern part of the study region. In the South, clear sky values of around 45% were found and no significant clear sky seasonality was observed. Results underpin the challenges to implement an operational crop monitoring system based solely on optical remote sensing imagery in tropical and sub-tropical regions, in particular if short-cycle crops have to be monitored during the cloudy summer months. To cope with cloudiness issues, we recommend the use of new systems with higher repetition rates such as Sentinel-2. For local studies, Unmanned Aircraft Vehicles (UAVs might be used to augment the observing capability. Multi-sensor approaches combining optical and microwave data can be another

  2. Water erosion in surface soil conditions: runoff velocity, concentration and D50 index of sediments in runoff

    OpenAIRE

    Ramos,Júlio César; Bertol,Ildegardis; Barbosa,Fabrício Tondello; Bertól,Camilo; Mafra,Álvaro Luiz; Miquelluti,David José; Mecabô Júnior,José

    2016-01-01

    ABSTRACT Water erosion and contamination of water resources are influenced by concentration and diameter of sediments in runoff. This study aimed to quantify runoff velocity and concentration and the D50 index of sediments in runoff under different soil surface managements, in the following treatments: i) cropped systems: no-tilled soil covered by ryegrass (Lolium multiflorum Lam.) residue, with high soil cover and minimal roughness (HCR); no tilled soil covered by vetch (Vicia sativa L.) res...

  3. Ecological Weed Management by Cover Cropping: Effect on Winter Weeds and Summer Weeds Establishment in Potato

    Directory of Open Access Journals (Sweden)

    M Ghaffari

    2012-07-01

    Full Text Available Now a day winter cover crops planting has been attended to reduce herbicide application. An experiment was carried out at the Research Farm of Agriculture Faculty, Bu- Ali Sina, University, in 2009. The experiment was a randomized complete block design with three replications. The trial included of five treatments consists of no cover crop, rye, winter oilseed rape, barley and triticale. The results showed that winter cereals were produced more biomass than winter oilseed rape. living mulch of rye, barley, oilseed rape and triticale reduced winter weeds biomass 89, 86, 82 and 70 percent respectively, in compare to control. Cover crop treatments showed significant different weeds control of potato at 3 time (15, 45 and 75 DAPG compare to control treatment. Residues mixed to soil of oilseed rape and rye had the most inhibition affects on summer weeds. These treatments, average weeds biomass decreased 61 and 57 percent respectively, in compare to control. Oilseed rape and rye in compare to control reduced weeds density in potato 36 and 35 percent, respectively. Significant negation correlations of weeds plant population, weeds dry matter with average tuber weight and potato yield. The treatments, oilseed rape and rye in compare to control increased tuber yield of potato 54 and 50 percent, respectively. These treatments, the average tuber weight increased 74 and 38 percent in compare with control, respectively.

  4. Long-term monitoring of nitrate transport to drainage from three agricultural clayey till fields

    Science.gov (United States)

    Ernstsen, V.; Olsen, P.; Rosenbom, A. E.

    2015-08-01

    The application of nitrogen (N) fertilisers to crops grown on tile-drained fields is required to sustain most modern crop production, but it poses a risk to the aquatic environment since tile drains facilitate rapid transport pathways with no significant reduction in nitrate. To maintain the water quality of the aquatic environment and the provision of food from highly efficient agriculture in line with the EU's Water Framework Directive and Nitrates Directive, field-scale knowledge is essential for introducing water management actions on-field or off-field and producing an optimal differentiated N-regulation in future. This study strives to provide such knowledge by evaluating on 11 years of nitrate-N concentration measurements in drainage from three subsurface-drained clayey till fields (1.3-2.3 ha) representing approximately 71 % of the surface sediments in Denmark dominated by clay. The fields differ in their inherent hydrogeological field settings (e.g. soil-type, geology, climate, drainage and groundwater table) and the agricultural management of the fields (e.g. crop type, type of N fertilisers and agricultural practices). The evaluation revealed three types of clayey till fields characterised by: (i) low net precipitation, high concentration of nitrate-N, and short-term low intensity drainage at air temperatures often below 5 °C; (ii) medium net precipitation, medium concentration of nitrate-N, and short-term medium-intensity drainage at air temperatures often above 5 °C; and (iii) high net precipitation, low concentration of nitrate-N and long-term high intensity drainage at air temperatures above 5 °C. For each type, on-field water management actions, such as the selection of crop types and introduction of catch crops, appeared relevant, whereas off-field actions only seemed relevant for the latter two field types given the temperature-dependent reduction potential of nitrate off-field. This initial well-documented field-scale knowledge from fields

  5. Effect of a Terminated Cover Crop and Aldicarb on Cotton Yield and Meloidogyne incognita Population Density.

    Science.gov (United States)

    Wheeler, T A; Leser, J F; Keeling, J W; Mullinix, B

    2008-06-01

    Terminated small grain cover crops are valuable in light textured soils to reduce wind and rain erosion and for protection of young cotton seedlings. A three-year study was conducted to determine the impact of terminated small grain winter cover crops, which are hosts for Meloidogyne incognita, on cotton yield, root galling and nematode midseason population density. The small plot test consisted of the cover treatment as the main plots (winter fallow, oats, rye and wheat) and rate of aldicarb applied in-furrow at-plant (0, 0.59 and 0.84 kg a.i./ha) as subplots in a split-plot design with eight replications, arranged in a randomized complete block design. Roots of 10 cotton plants per plot were examined at approximately 35 days after planting. Root galling was affected by aldicarb rate (9.1, 3.8 and 3.4 galls/root system for 0, 0.59 and 0.84 kg aldicarb/ha), but not by cover crop. Soil samples were collected in mid-July and assayed for nematodes. The winter fallow plots had a lower density of M. incognita second-stage juveniles (J2) (transformed to Log(10) (J2 + 1)/500 cm(3) soil) than any of the cover crops (0.88, 1.58, 1.67 and 1.75 Log(10)(J2 + 1)/500 cm(3) soil for winter fallow, oats, rye and wheat, respectively). There were also fewer M. incognita eggs at midseason in the winter fallow (3,512, 7,953, 8,262 and 11,392 eggs/500 cm(3) soil for winter fallow, oats, rye and wheat, respectively). Yield (kg lint per ha) was increased by application of aldicarb (1,544, 1,710 and 1,697 for 0, 0.59 and 0.84 kg aldicarb/ha), but not by any cover crop treatments. These results were consistent over three years. The soil temperature at 15 cm depth, from when soils reached 18 degrees C to termination of the grass cover crop, averaged 9,588, 7,274 and 1,639 centigrade hours (with a minimum threshold of 10 degrees C), in 2005, 2006 and 2007, respectively. Under these conditions, potential reproduction of M. incognita on the cover crop did not result in a yield penalty.

  6. C and N accumulations in soil aggregates determine nitrous oxide emissions from cover crop treated rice paddy soils during fallow season

    International Nuclear Information System (INIS)

    Pramanik, Prabhat; Haque, Md. Mozammel; Kim, Sang Yoon; Kim, Pil Joo

    2014-01-01

    Combination of leguminous and non-leguminous plant residues are preferably applied in rice paddy soils to increase the rate of organic matter mineralization and to improve plant growth. However, organic matter addition facilitates methane (CH 4 ) emission from rice paddy soil. Mineralization of organic nitrogen (N) increases NO 3 –N concentrations in soil, which are precursors for the formation of nitrous oxide (N 2 O). However, N 2 O is a minor greenhouse gas emitted from submerged rice field and hence is not often considered during calculation of total global warming potential (GWP) during rice cultivation. The hypothesis of this study was that fluxes of N 2 O emissions might be changed after removal of flooded water from rice field and the effect of cover crops on N 2 O emissions in the fallow season might be interesting. However, the effects of N-rich plant residues on N 2 O emission rates in the fallow season and its effect on annual GWP were not studied before. In this experiment, combination of barley (non-leguminous) and hairy vetch (leguminous) biomasses were applied at 9 Mg ha −1 and 27 Mg ha −1 rates in rice paddy soil. Cover crop application significantly increased CH 4 emission flux while decreased N 2 O emissions during rice cultivation. The lowest N 2 O emission was observed in 27 Mg ha −1 cover crop treated plots. Cover crop applications increased N contents in soil aggregates especially in smaller aggregates (< 250 μm), and that proportionately increased the N 2 O emission potentials of these soil aggregates. Fluxes of N 2 O emissions in the fallow season were influenced by the N 2 O emission potentials of soil aggregates and followed opposite trends as those observed during rice cultivation. Therefore, it could be concluded that the doses of cover crop applications for rice cultivation should not be optimized considering only CH 4 , but N 2 O should also be considered especially for fallow season to calculate total GWP. - Highlights:

  7. Tillage systems and cover crops on soil physical properties after soybean cultivation

    Directory of Open Access Journals (Sweden)

    Rafael B. Teixeira

    Full Text Available ABSTRACT Soil management alters soil physical attributes and may affect crop yield. In order to evaluate soil physical attributes in layers from 0 to 0.40 m and soybean grain yield, in the 2012/2013 agricultural year, an essay was installed in the experimental area of the Federal University of Mato Grosso do Sul (UFMS/CPCS. Soil tillage systems were: conventional tillage (CT, minimum tillage (MT and no tillage (DS, the cover crops used were millet, sunn hemp and fallow. The experimental design was randomized blocks with split plots. For the layer of 0.20-0.30 m, millet provided the best results for soil bulk density, macro and microporosity. The resistance to penetration (RP was influenced in the layer of 0-0.10 m, and millet provided lower RP. The DS provided the lowest RP values for the layer of 0.10-0.20 m. The treatments did not influence yield or thousand-seed weight.

  8. Cover Crops for Managing Stream Water Quantity and Improving Stream Water Quality of Non-Tile Drained Paired Watersheds

    OpenAIRE

    Gurbir Singh; Jon E. Schoonover; Karl W. J. Williard

    2018-01-01

    In the Midwestern United States, cover crops are being promoted as a best management practice for managing nutrient and sediment losses from agricultural fields through surface and subsurface water movement. To date, the water quality benefits of cover crops have been inferred primarily from plot scale studies. This project is one of the first to analyze the impacts of cover crops on stream water quality at the watershed scale. The objective of this research was to evaluate nitrogen, phosphor...

  9. Recharge and flow processes in a till aquitard

    DEFF Research Database (Denmark)

    Schrøder, Thomas Morville; Høgh Jensen, Karsten; Dahl, Mette

    1999-01-01

    Eastern Denmark is primarily covered by clay till. The transformation of the excess rainfall into laterally diverted groundwater flow, drain flow, stream flow, and recharge to the underlying aquifer is governed by complicatedinterrelated processes. Distributed hydrological models provide a framew......Eastern Denmark is primarily covered by clay till. The transformation of the excess rainfall into laterally diverted groundwater flow, drain flow, stream flow, and recharge to the underlying aquifer is governed by complicatedinterrelated processes. Distributed hydrological models provide...... a framework for assessing the individual flow components and forestablishing the overall water balance. Traditionally such models are calibrated against measurements of stream flow, head in the aquiferand perhaps drainage flow. The head in the near surface clay till deposits have generally not been measured...... the shallow wells and one in the valley adjacent to the stream. Precipitation and stream flow gauging along with potential evaporation estimates from a nearby weather station provide the basic data for the overall water balance assessment. The geological composition was determined from geoelectrical surveys...

  10. Impact of cover crops in vineyard on the aroma compounds of Vitis vinifera L. cv Cabernet Sauvignon wine.

    Science.gov (United States)

    Xi, Zhu-Mei; Tao, Yong-Sheng; Zhang, Li; Li, Hua

    2011-07-15

    This study compared the influence of different cover crops with clean tillage on wine aroma compounds of 5-year-old Cabernet Sauvignon vines. White clover, alfalfa, and tall fescue were used in the vineyard and compared with clean tillage. Aroma compounds of wine were analysed by solid-phase microextraction gas chromatography-mass spectrometry (SPME-GC/MS). Forty-seven volatile compounds were identified and quantified. Wines made from grapes grown with various cover crops had higher levels of aroma compounds. Ethyl acetate, isoamyl acetate, ethyl octanoate, ethyl hexanoate, phenylethyl acetate, isoamyl alcohol, linalool, citronellol, β-damascenone, α-ionone, and 5-amyl-dihydro-2(3H)-furan were the impact odorants of sample wines. Wines from cover crop also had higher contents of these impact odorants than the control. For different cover crops, alfalfa sward yielded the highest levels, followed by the tall fescue treatment. According to the data analysis of aroma compounds and sensory assess, permanent cover crop may have the potential to improve wine quality. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  11. Cover cropping impacts on arbuscular mycorrhizal fungi and soil aggregation

    Science.gov (United States)

    Cover crops are a management tool which can extend the period of time that a living plant is growing and conducting photosynthesis. This is critical for soil health, because most of the soil organisms, particularly the arbuscular mycorrhizal fungi, are limited by carbon. Research, on-farm, and demon...

  12. Soil fertility, nutrition and yield of maize and barley with gypsum application on soil surface in no-till

    Directory of Open Access Journals (Sweden)

    Leandro Michalovicz

    2014-10-01

    Full Text Available Annual crop yield and nutrition have shown differentiated responses to modifications in soil chemical properties brought about by gypsum application. The aim of this study was to evaluate the effect of gypsum application rates on the chemical properties of a Latossolo Bruno (Clayey Oxisol, as well as on the nutrition and yield of a maize-barley succession under no-till. The experiment was set up in November 2009 in Guarapuava, Parana, Brazil, applying gypsum rates of 0.0, 1.5, 3.0, 4.5, and 6.0 Mg ha-1 to the soil surface upon sowing maize, with crop succession of barley. Gypsum application decreased the levels of Al3+ and Mg2+ in the 0.0-0.1 m layer and increased soil pH in the layers from 0.2-0.6 m depth. Gypsum application has increased the levels of Ca2+ in all soil layers up to 0.6 m, and the levels of S-SO4(2- up to 0.8 m. In both crops, the leaf concentrations of Ca and S were increased while Mg concentrations have decreased as a function of gypsum rates. There was also an effect of gypsum rates on grain yield, with a quadratic response of maize and a linear increase for barley. Yield increases were up to 11 and 12 % in relation to control for the maximum technical efficiency (MTE rates of 3.8 and 6.0 Mg ha-1 of gypsum, respectively. Gypsum application improved soil fertility in the profile, especially in the subsurface, as well as plant nutrition, increasing the yields of maize and barley.

  13. Cover plants with potential use for crop-livestock integrated systems in the Cerrado region

    Directory of Open Access Journals (Sweden)

    Arminda Moreira de Carvalho

    2011-10-01

    Full Text Available The objective of this work was to evaluate the effects of lignin, hemicellulose, and cellulose concentrations in the decomposition process of cover plant residues with potential use in no-tillage with corn, for crop-livestock integrated system, in the Cerrado region. The experiment was carried out at Embrapa Cerrados, in Planaltina, DF, Brazil in a split plot experimental design. The plots were represented by the plant species and the subplots by harvesting times, with three replicates. The cover plants Urochloa ruziziensis, Canavalia brasiliensis, Cajanus cajan, Pennisetum glaucum, Mucuna aterrima, Raphanus sativus, Sorghum bicolor were evaluated together with spontaneous plants in the fallow. Cover plants with lower lignin concentrations and, consequently, higher residue decomposition such as C. brasiliensis and U. ruziziensis promoted higher corn yield. High concentrations of lignin inhibit plant residue decomposition and this is favorable for the soil cover. Lower concentrations of lignin result in accelerated plant decomposition, more efficient nutrient cycling, and higher corn yield.

  14. Effects of cover crops on the nitrogen fluxes in a silage maize production system

    NARCIS (Netherlands)

    Schröder, J.J.; Dijk, van W.; Groot, de W.J.M.

    1996-01-01

    Rye and grass cover crops can potentially intercept residual soil mineral nitrogen (SMN), reduce overwinter leaching, transfer SMN to next growing seasons and reduce the fertilizer need of subsequent crops. These aspects were studied for 6 years in continuous silage maize cv. LG 2080 production

  15. Long-term no-till and stover retention each decrease the global warming potential of irrigated continuous corn.

    Science.gov (United States)

    Jin, Virginia L; Schmer, Marty R; Stewart, Catherine E; Sindelar, Aaron J; Varvel, Gary E; Wienhold, Brian J

    2017-07-01

    Over the last 50 years, the most increase in cultivated land area globally has been due to a doubling of irrigated land. Long-term agronomic management impacts on soil organic carbon (SOC) stocks, soil greenhouse gas (GHG) emissions, and global warming potential (GWP) in irrigated systems, however, remain relatively unknown. Here, residue and tillage management effects were quantified by measuring soil nitrous oxide (N 2 O) and methane (CH 4 ) fluxes and SOC changes (ΔSOC) at a long-term, irrigated continuous corn (Zea mays L.) system in eastern Nebraska, United States. Management treatments began in 2002, and measured treatments included no or high stover removal (0 or 6.8 Mg DM ha -1  yr -1 , respectively) under no-till (NT) or conventional disk tillage (CT) with full irrigation (n = 4). Soil N 2 O and CH 4 fluxes were measured for five crop-years (2011-2015), and ΔSOC was determined on an equivalent mass basis to ~30 cm soil depth. Both area- and yield-scaled soil N 2 O emissions were greater with stover retention compared to removal and for CT compared to NT, with no interaction between stover and tillage practices. Methane comprised <1% of total emissions, with NT being CH 4 neutral and CT a CH 4 source. Surface SOC decreased with stover removal and with CT after 14 years of management. When ΔSOC, soil GHG emissions, and agronomic energy usage were used to calculate system GWP, all management systems were net GHG sources. Conservation practices (NT, stover retention) each decreased system GWP compared to conventional practices (CT, stover removal), but pairing conservation practices conferred no additional mitigation benefit. Although cropping system, management equipment/timing/history, soil type, location, weather, and the depth to which ΔSOC is measured affect the GWP outcomes of irrigated systems at large, this long-term irrigated study provides valuable empirical evidence of how management decisions can impact soil GHG emissions and surface

  16. The role of rabbit density and the diversity of weeds in the development of cover crops in olive groves

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero-Casado, J.; Carpio, A.J.; Prada, L.M.; Tortosa, F.S.

    2015-07-01

    Cover crops are an effective means to reduce soil erosion and to provide food and shelter for wildlife. However, in areas of intensive farming, which are characterised by the scarcity of weed communities, wild herbivores may focus their grazing on cover crops, which could make their implementation difficult. In this work, we test whether rabbit grazing can prevent the growth of herbaceous cover crops in olive groves in Southern Spain in addition to assessing the role of rabbit abundance and diversity of weeds in the development of cover crops. This question has been addressed by sowing Bromus rubens between the rows of five olive groves in Cordoba province (Spain). We then monitored the surface covered by B. rubens, along with both diversity of weed communities and rabbit abundance. Two rabbit exclusion areas were also placed in each olive grove in order to assess the impact of rabbits on the development of cover crops. Our results showed that the surface occupied by B. rubens was considerably higher in the rabbit exclusion areas (mean 56.8 ± 5.65 %) than in those areas in which they could feed (mean 35.6 ± 4.32 %). The coverage occupied by cover crops was higher in areas with lower rabbit density, although this relationship was modulated by the weed diversity index, since in areas with the same rabbit abundance the coverage was higher in those with a richer weed community. These findings suggest that high rabbit abundances can prevent the development of herbaceous cover crops in olive groves, particularly in areas in which alternative food resources (measured as weed diversity) are scarce. (Author)

  17. The role of rabbit density and the diversity of weeds in the development of cover crops in olive groves

    Directory of Open Access Journals (Sweden)

    José Guerrero-Casado

    2015-09-01

    Full Text Available Cover crops are an effective means to reduce soil erosion and to provide food and shelter for wildlife. However, in areas of intensive farming, which are characterised by the scarcity of weed communities, wild herbivores may focus their grazing on cover crops, which could make their implementation difficult. In this work, we test whether rabbit grazing can prevent the growth of herbaceous cover crops in olive groves in Southern Spain in addition to assessing the role of rabbit abundance and diversity of weeds in the development of cover crops. This question has been addressed by sowing Bromus rubens between the rows of five olive groves in Cordoba province (Spain. We then monitored the surface covered by B. rubens, along with both diversity of weed communities and rabbit abundance. Two rabbit exclusion areas were also placed in each olive grove in order to assess the impact of rabbits on the development of cover crops. Our results showed that the surface occupied by B. rubens was considerably higher in the rabbit exclusion areas (mean 56.8 ± 5.65 % than in those areas in which they could feed (mean 35.6 ± 4.32 %. The coverage occupied by cover crops was higher in areas with lower rabbit density, although this relationship was modulated by the weed diversity index, since in areas with the same rabbit abundance the coverage was higher in those with a richer weed community. These findings suggest that high rabbit abundances can prevent the development of herbaceous cover crops in olive groves, particularly in areas in which alternative food resources (measured as weed diversity are scarce.

  18. Estimation of Evapotranspiration from Fields with and without Cover Crops Using Remote Sensing and in situ Methods

    Directory of Open Access Journals (Sweden)

    Christopher Hay

    2012-11-01

    Full Text Available Estimation of actual evapotranspiration (ETa based on remotely sensed imagery is very valuable in agricultural regions where ETa rates can vary greatly from field to field. This research utilizes the image processing model METRIC (Mapping Evapotranspiration at high Resolution with Internalized Calibration to estimate late season, post-harvest ETa rates from fields with a cover crop planted after a cash crop (in this case, a rye/radish/pea mixture planted after spring wheat. Remotely sensed EToF (unit-less fraction of grass-based reference ET, ETo maps were generated using Erdas Imagine software for a 260 km2 area in northeastern South Dakota, USA. Meteorological information was obtained from a Bowen-Ratio Energy Balance System (BREBS located within the image. Nine image dates were used for the growing season, from May through October. Five of those nine were captured during the cover crop season. METRIC was found to successfully differentiate between fields with and without cover crops. In a blind comparison, METRIC compared favorably with the estimated ETa rates found using the BREBS (ETλE, with a difference in total estimated ETa for the cover crop season of 7%.

  19. Green manuring effect of pure and mixed barley - hairy vetch winter cover crops on maize and processing tomato N nutrition

    DEFF Research Database (Denmark)

    Tosti, Giacomo; Benincasa, Paolo; Farneselli, Michela

    2012-01-01

    this can influence the N uptake and N status of different subsequent summer cash crops. In this study the N effect of barley (Hordeum vulgare L.) and hairy vetch (Vicia villosa Roth.) grown in pure stands or in mixtures with different sowing proportion was tested on maize (Zea Mays L.) and processing......Adopting mixtures between legumes and non legumes can be an efficient tool to merge the advantages of the single species in the fall-sown cover crop practice. Nevertheless there is a lack of information on how the species proportion may affect N accumulation and C/N of the cover crops and how...... of the relationship between cover crop C/N and Neff was confirmed, so mixtures can be used to adjust the extent and timing of mineralisation of the incorporated biomass to the subsequent cash crop requirements. Prediction of the cash crops N status on the cover crop C/N appears to be a useful approach, but, it may...

  20. Characterization of cover crops by NMR spectroscopy: impacts on soil carbon, nitrogen and phosphorus under tillage regimes

    Directory of Open Access Journals (Sweden)

    Arminda Moreira de Carvalho

    Full Text Available The objective of this study was to investigate the chemical composition of cover crops by solid-state CPMAS 13C NMR spectroscopy and its effects on carbon, nitrogen and phosphorus in a Typic Acrustox. Cover crops (Crotalaria juncea, Canavalia brasiliensis, Cajanus cajan, Mucuna pruriens and Raphanus sativus and natural fallow were studied in rotation with maize under conventional and no-tillage regimes. Tissues of Crotalaria juncea, Canavalia brasiliensis, Mucuna pruriens and Raphanus sativus were analyzed using CPMAS 13C NMR spectroscopy. Soil samples were collected at the end of the growing season of the cover crops (September 2002 and during the grain filling period in corn from 0-5 and 5-10 cm layers. Cajanus cajan presented the lowest content of polysaccharides and along with Mucuna pruriens presented the highest percentage of aromatic carbon compounds, reflecting the slow decomposition of highly lignified material. Carbon stocks were higher in the superficial soil layer and under no-tillage due to the accumulation and slower decomposition of plant tissues under these conditions. Increases in the C/N ratio of the soil with Mucuna pruriens and the C/P ratio with Cajanus cajan in the dry season were also related to slower rates of decomposition, caused by the large concentration of aromatic compounds in the tissues of these species. The higher C/P ratios found at 0-5 cm layer are due to higher values of P (Mehlich-1 at 5-10 cm (25 mg kg-1 layer and the higher concentration of carbon in the superficial soil layer as a result of the accumulation of plant residues.

  1. Modelagem da proteção do solo por plantas de cobertura no sul de Minas Gerais = Modeling of soil protection by cover crops in southern Minas Gerais, Brazil.

    Directory of Open Access Journals (Sweden)

    Diego Antonio França de Freitas

    2012-08-01

    Full Text Available A cobertura do solo é o fator de maior importância relativa no controle da erosão hídrica. Assim, objetivou-se no presente estudo elaborar a modelagem da cobertura vegetal de vinte e quatro plantas de cobertura, em diversos sistemas de plantio e históricos de uso, com potencial para cultivo no Sul de Minas Gerais. Para avaliação da cobertura vegetal foram realizadas avaliações no campo utilizando uma régua de classificação da cobertura vegetal, sendo o delineamento experimental inteiramente casualizado, com três repetições, utilizado neste experimento. As plantas cultivadas sobre a palhada de feijãoirrigado apresentaram alto índice de cobertura do solo, o que pode estar relacionado à maior disponibilidade de nutrientes deixado por esta cultura na palhada e a maior reserva de água no solo, promovido pela irrigação do feijão. O milheto cultivado em nível e sobre a palhada de milheto e feijão-de-porco apresentou o menor índice de cobertura entre as plantas testadas. Na região sul de Minas Gerais os padrões de chuvas ocorrem em maior quantidade nos períodos de outubro a março, com elevação em dezembro e janeiro. Neste período o solo deve estar protegido do impacto da gota de chuva, pois o risco de erosão hídrica é maior. Assim, a utilização das plantas de cobertura é de grande importância, pois estas protegem o solo do impacto direto dasgotas de chuvas e diminuem os picos de temperatura do solo, sendo que estas devem ser cultivadas, preferencialmente, sobre a palhada de feijão.The ground cover is the most important factor relative to control erosion. Thus, the objective of this study was to develop a model plant cover for 24 cover crops used in several cropping systems and historical use, with potential for cultivation in southern Minas Gerais State, Brazil. To evaluate the vegetation cover field assessments using the strip land cover classification. A completely randomized design with three replications was

  2. C and N accumulations in soil aggregates determine nitrous oxide emissions from cover crop treated rice paddy soils during fallow season

    Energy Technology Data Exchange (ETDEWEB)

    Pramanik, Prabhat, E-mail: prabhat2003@gmail.com; Haque, Md. Mozammel; Kim, Sang Yoon; Kim, Pil Joo, E-mail: pjkim@gnu.ac.kr

    2014-08-15

    Combination of leguminous and non-leguminous plant residues are preferably applied in rice paddy soils to increase the rate of organic matter mineralization and to improve plant growth. However, organic matter addition facilitates methane (CH{sub 4}) emission from rice paddy soil. Mineralization of organic nitrogen (N) increases NO{sub 3}–N concentrations in soil, which are precursors for the formation of nitrous oxide (N{sub 2}O). However, N{sub 2}O is a minor greenhouse gas emitted from submerged rice field and hence is not often considered during calculation of total global warming potential (GWP) during rice cultivation. The hypothesis of this study was that fluxes of N{sub 2}O emissions might be changed after removal of flooded water from rice field and the effect of cover crops on N{sub 2}O emissions in the fallow season might be interesting. However, the effects of N-rich plant residues on N{sub 2}O emission rates in the fallow season and its effect on annual GWP were not studied before. In this experiment, combination of barley (non-leguminous) and hairy vetch (leguminous) biomasses were applied at 9 Mg ha{sup −1} and 27 Mg ha{sup −1} rates in rice paddy soil. Cover crop application significantly increased CH{sub 4} emission flux while decreased N{sub 2}O emissions during rice cultivation. The lowest N{sub 2}O emission was observed in 27 Mg ha{sup −1} cover crop treated plots. Cover crop applications increased N contents in soil aggregates especially in smaller aggregates (< 250 μm), and that proportionately increased the N{sub 2}O emission potentials of these soil aggregates. Fluxes of N{sub 2}O emissions in the fallow season were influenced by the N{sub 2}O emission potentials of soil aggregates and followed opposite trends as those observed during rice cultivation. Therefore, it could be concluded that the doses of cover crop applications for rice cultivation should not be optimized considering only CH{sub 4}, but N{sub 2}O should also be

  3. In Winter Wheat, No-Till Increases Mycorrhizal Colonization thus Reducing the Need for Nitrogen Fertilization

    Directory of Open Access Journals (Sweden)

    Julien Verzeaux

    2016-06-01

    Full Text Available Arbuscular mycorrhizal fungi (AMF play a major role in the uptake of nutrients by agricultural plants. Nevertheless, some agricultural practices can interrupt fungal-plant signaling and thus impede the establishment of the mycorrhizal symbiosis. A field experiment performed over a 5-year period demonstrated that both the absence of tillage and of nitrogen (N fertilization improved AMF colonization of wheat roots. Moreover, under no-till conditions, N uptake and aboveground biomass production did not vary significantly between N-fertilized and N-unfertilized plots. In contrast, both N uptake and above ground biomass were much lower when N fertilizer was not added during conventional tillage. This finding strongly suggests that for wheat, no-till farming is a sustainable agricultural system that allows a gradual reduction in N fertilizer use by promoting AMF functionality and at the same time increasing N uptake.

  4. Biomass and energy production of catch crops in areas with deficiency of precipitation during summer period in central Bohemia

    International Nuclear Information System (INIS)

    Brant, V.; Pivec, J.; Fuksa, P.; Neckar, K.; Kocourkova, D.; Venclova, V.

    2011-01-01

    The biomass production dynamics of catch crops, volunteers and weeds in dependence on precipitation and air temperature, was studied in central Bohemia from 2004 to 2006. The cover of individual components of the growth was monitored during the same period. Also measured were energy and efficiency of utilization of global radiation by catch crops and volunteers. The catch crops included the following species: Brassica napus, Lolium multiflorum, Lolium perenne, Phacelia tanacetifolia, Sinapis alba, Trifolium incarnatum, Raphanus sativus var. oleiformis and Trifolium subterraneum. The highest biomass production and the highest cover of catch crops were observed in treatments with S. alba (1382.0 kg ha -1 , 47.8%). The average biomass production (sum of catch crops, volunteers and weeds) was highest in treatments with S. alba, R. sativus, and P. tanacetifolia and lowest in treatments with B. napus, L. multiflorum and L. perenne. It was demonstrated that an increase in the percentage share of volunteers caused a decrease in the biomass production of catch crops. The average energy production ranged from 0.31 to 2.37 MJ m -2 in treatments with catch crops, and from 0.25 to 0.89 MJ m -2 in treatments with cereal volunteers. The highest effectivity of global radiation utilization, was determined in treatments with S. alba (0.11-0.47%). Based on regression analysis the closest dependence between biomass production from all treatments on the experimental site and precipitation was observed from 1st May till the time of sowing and the average air temperatures from the sowing period till the time of the last biomass production assessment.

  5. Effect of water content and organic carbon on remote sensing of crop residue cover

    Science.gov (United States)

    Serbin, G.; Hunt, E. R., Jr.; Daughtry, C. S. T.; McCarty, G. W.; Brown, D. J.; Doraiswamy, P. C.

    2009-04-01

    Crop residue cover is an important indicator of tillage method. Remote sensing of crop residue cover is an attractive and efficient method when compared with traditional ground-based methods, e.g., the line-point transect or windshield survey. A number of spectral indices have been devised for residue cover estimation. Of these, the most effective are those in the shortwave infrared portion of the spectrum, situated between 1950 and 2500 nm. These indices include the hyperspectral Cellulose Absorption Index (CAI), and advanced multispectral indices, i.e., the Lignin-Cellulose Absorption (LCA) index and the Shortwave Infrared Normalized Difference Residue Index (SINDRI), which were devised for the NASA Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor. Spectra of numerous soils from U.S. Corn Belt (Indiana and Iowa) were acquired under wetness conditions varying from saturation to oven-dry conditions. The behavior of soil reflectance with water content was also dependent on the soil organic carbon content (SOC) of the soils, and the location of the spectral bands relative to significant water absorptions. High-SOC soils showed the least change in spectral index values with increase in soil water content. Low-SOC soils, on the other hand, showed measurable difference. For CAI, low-SOC soils show an initial decrease in index value followed by an increase, due to the way that water content affects CAI spectral bands. Crop residue CAI values decrease with water content. For LCA, water content increases decrease crop residue index values and increase them for soils, resulting in decreased contrast. SINDRI is also affected by SOC and water content. As such, spatial information on the distribution of surface soil water content and SOC, when used in a geographic information system (GIS), will improve the accuracy of remotely-sensed crop residue cover estimates.

  6. Quantities and qualities of physical and chemical fractions of soil organic matter under a rye cover crop

    Science.gov (United States)

    To detect the effects of a rye cover crop on labile soil carbon, the light fraction, large particulate organic matter (POM), small POM, and two NaOH-extractable humic fractions were extracted from three depths of a corn soil in central Iowa having an overwinter rye cover crop treatment and a contro...

  7. Responses of reniform nematode and browntop millet to tillage, cover crop, and herbicides in cotton

    Science.gov (United States)

    Cropping practices that reduce competition from reniform nematode (Rotylenchulus reniformis) and browntop millet (Urochlora ramosum) may help minimize losses in cotton (Gossypium hirsutum). The impacts of tillage, rye cover crop, and preemergence and postemergence herbicides on cotton yields, renifo...

  8. Coupling Cover Crops with Alternative Swine Manure Application Strategies: Manure-15N Tracer Studies

    Science.gov (United States)

    Integration of rye cover crops with alternative liquid swine (Sus scrofa L.) manure application strategies may enhance retention of manure N in corn (Zea mays L.) - soybean [Glycine max (L.) Merr] cropping systems. The objective of this study was to quantify uptake of manure derived-N by a rye (Seca...

  9. Influence on wine biogenic amine composition of modifications to soil N availability and grapevine N by cover crops.

    Science.gov (United States)

    Pérez-Álvarez, Eva P; Garde-Cerdán, Teresa; Cabrita, Maria João; García-Escudero, Enrique; Peregrina, Fernando

    2017-11-01

    Vineyard soil management can modify the nitrogen soil availability and, therefore, grape amino acid content. These compounds are precursors of biogenic amines, which have negative effects on wine quality and human health. The objective was to study whether the effect of conventional tillage and two cover crops (barley and clover) on grapevine nitrogen status could be related to wine biogenic amines. Over 4 years, soil NO 3 - -N, nitrogen content in leaf and wine biogenic amine concentration were determined. Barley reduced soil NO 3 - -N availability and clover increased it. In 2011, at bloom, nitrogen content decreased with barley treatment in both blade and petiole. In 2012, nitrogen content in both leaf tissues at bloom was greater with clover than with tillage and barley treatments. Also, total biogenic amines decreased in barley with respect to tillage and clover treatments. There were correlations between some individual and total biogenic amine concentrations with respect to nitrogen content in leaf tissues. Wine biogenic amine concentration can be affected by the grapevine nitrogen status, provoked by changes in the soil NO 3 - -N availability with both cover crop treatments. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Annual and perennial alleyway cover crops vary in their effects on Pratylenchus penetrans in Pacific Northwest red raspberry (Rubus idaeus)

    Science.gov (United States)

    Cover crop use is not common in established red raspberry (Rubus idaeus) fields in the Pacific Northwest. Raspberry growers are concerned about resource competition between the cover crop and raspberry crop, as well as increasing population densities of the plant-parasitic nematode Pratylenchus pene...

  11. Entisol land characteristics with and without cover crop (Mucuna bracteata) on rubber plantation

    Science.gov (United States)

    Sakiah; Sembiring, M.; Hasibuan, J.

    2018-02-01

    Optimal nutrient delivery is one way to improve the quality and quantity of crop production. This is because the crops needs for nutrient is quite high, while the soil capacity in providing nutrients is limited. In addition to fertilization, nutrients can be given in the form of added organic material or planted as cover crop. The research took place from April to August 2016 in Bandar Pinang, Bandar Sumatera Indonesia Ltd. (SIPEF Group) plantation, with survey method. Soil samples were taken based on: Topography (flat and slope 15-30%), cover crop (with or without Mucuna bracteata) and plant age (seedling periods 1, 2 and 3). The soil sample is taken composite by zig zag method. The observed parameters were organic matter, N total, soil texture, bulk density and infiltration rate. Mucuna bracteata planting increased the contain of soil organic matter by 30.43% in flat area and 53.33% in hilly area, amount of N total soil by 27.27% in flat area and 7.69% at hilly area, bulk density 3.73 % In flat area and 0.41% in hilly area, soil infiltration by 48.88% with sandy clay dominant soil texture.

  12. Ambient and elevated carbon dioxide on growth, physiological and nutrient uptake parameters of perennial leguminous cover crops under low light intensities

    Science.gov (United States)

    Adaptability and optimum growth of cover crops in plantation crops is affected by the inherent nature of the cover crop species and the light intensity at canopy levels. Globally concentrations of atmospheric CO2 are increasing and this creates higher photosynthesis and nutrient demand by crops as l...

  13. Artichoke (Cynara scolymus L. as cash-cover crop in an organic vegetable system

    Directory of Open Access Journals (Sweden)

    Anna LENZI

    2015-11-01

    Full Text Available In organic vegetable systems green manure crops play an important role as a nitrogen source, but they cover the soil for several months without producing a direct income. Globe artichoke (Cynara scolymus L. provides both heads to be harvested and particularly abundant plant residues to be possibly incorporated into the soil, so it may play a double role of cash and cover crop. This paper describes an on-farm study in which seed-propagated artichoke, cultivated as an annual crop, preceded zucchini squash and lettuce cultivated in sequence within a vegetable organic system. Artichoke produced about 7 t ha-1 of saleable heads and left, after harvest, 50.3 t ha-1 of fresh biomass usable as green manure. Zucchini squash and lettuce following artichoke showed a significant increase in yield when artichoke residues were incorporated into the soil. Furthermore, a residual positive effect of green manure on soil fertility was detected after lettuce harvest. 

  14. Nitrogen Transfer from Cover Crop Residues to Onion Grown under Minimum Tillage in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Leoncio de Paula Koucher

    2017-08-01

    Full Text Available ABSTRACT Nitrogen derived from cover crop residues may contribute to the nutrition of onion grown under minimum tillage (MT and cultivated in rotation. The aim of this study was to evaluate the N transferred from different cover crop residues to the onion crop cultivated under MT in southern Brazil. In June 2014, oilseed radish, black oat, and oilseed radish + black oat residues labeled with 15N were deposited on the soil surface before transplanting onions. During the growth season and at harvest, young expanded onion leaves, complete plants, and samples from different soil layers were collected and analyzed for recovery of 15N-labeled residue. Oilseed radish decomposed faster than other residues and 4 % of residue N was recovered in leaves and bulbs at harvest, but in general, N in plant organs was derived from sources other than the cover crop residues. In addition, leaf N was in the proper range for all treatments and was adequately mobilized to the bases for bulbing. The N derived from decomposing residues contributed little to onion development and the use of these plants should be chosen based on their advantages for physical and biological soil quality.

  15. PERFORMANCE OF ‘NANICÃO JANGADA’ BANANA PLANTS INTERCROPPED WITH WINTER COVER CROPS

    Directory of Open Access Journals (Sweden)

    RICARDO SFEIR DE AGUIAR

    Full Text Available ABSTRACT The use of cover crops species may be an important strategy in the pursuit of sustainability of agroecosystems, considering benefits to soil, such as improvements of physical and chemical characteristics, and weed control. The objective of this study was to evaluate the effect of winter cover crops and other soil managements on chemical soil properties, on the cycle, on the production of the first cycle and on the fruit quality of banana cv. Nanicão Jangada in Andirá – PR, Brazil. The experiment was carried out in a commercial. Planting of banana suckers from the grower area occurred in the first half of March 2011, with a spacing of 2.40 m between rows and 1.90 m between plants. The experiment was designed in randomized blocks with four replications and six plants per plot. The six treatments were: black oat (Avenastrigosa Schreb, forage turnip (Raphanus sativus L. var. oleiferus, consortium of black oat and forage turnip, chicken litter, residues of banana plants, and bare ground. The evaluations were vegetative development and life cycle of banana plants, yield and quality of fruits, soil chemical characterstics, and fresh and dry mass of green manures. The results were submitted to ANOVA (F Test, and Tukey test at 5 % probability. Black oat and black oat with forage turnip consortium were superior in biomass production. Systems of soil management had no effect on the variables, except in the periods between planting and flowering and between planting and harvest, which were shorter in the treatment of soil management with crop residues, longer in the treatment with forage turnip, and intermediate in the other treatments.

  16. What is the potential of cropland albedo management in the fight against global warming? A case study based on the use of cover crops

    Science.gov (United States)

    Carrer, Dominique; Pique, Gaétan; Ferlicoq, Morgan; Ceamanos, Xavier; Ceschia, Eric

    2018-04-01

    Land cover management in agricultural areas is a powerful tool that could play a role in the mitigation of climate change and the counterbalance of global warming. First, we attempted to quantify the radiative forcing that would increase the surface albedo of croplands in Europe following the inclusion of cover crops during the fallow period. This is possible since the albedo of bare soil in many areas of Europe is lower than the albedo of vegetation. By using satellite data, we demonstrated that the introduction of cover crops into the crop rotation during the fallow period would increase the albedo over 4.17% of Europe’s surface. According to our study, the effect resulting from this increase in the albedo of the croplands would be equivalent to a mitigation of 3.16 MtCO2-eq.year‑1 over a 100 year time horizon. This is equivalent to a mitigation potential per surface unit (m2) of introduced cover crop over Europe of 15.91 gCO2-eq.year‑1.m‑2. This value, obtained at the European scale, is consistent with previous estimates. We show that this mitigation potential could be increased by 27% if the cover crop is maintained for a longer period than 3 months and reduced by 28% in the case of no irrigation. In the second part of this work, based on recent studies estimating the impact of cover crops on soil carbon sequestration and the use of fertilizer, we added the albedo effect to those estimates, and we argued that, by considering areas favourable to their introduction, cover crops in Europe could mitigate human-induced agricultural greenhouse gas emissions by up to 7% per year, using 2011 as a reference. The impact of the albedo change per year would be between 10% and 13% of this total impact. The countries showing the greatest mitigation potentials are France, Bulgaria, Romania, and Germany.

  17. Racial Coverage of the 1950s Print Media and the Case of Emmett Till.

    Science.gov (United States)

    Rhodes, Jane

    The Emmett Till murder case in 1955 marked the turning point in the coverage of blacks by the white American press. Till, a black teenager from Chicago, was murdered in 1955 while visiting relatives in Mississippi. The Till murder was covered extensively in the press, since the two white men charged with killing him were acquitted by an all-white,…

  18. Nitrogen source effects on nitrous oxide emissions from irrigated no-till corn.

    Science.gov (United States)

    Halvorson, Ardell D; Del Grosso, Stephen J; Francesco, Alluvione

    2010-01-01

    Nitrogen fertilization is essential for optimizing crop yields; however, it may potentially increase nitrous oxide (N2O) emissions. The study objective was to assess the ability of commercially available enhanced-efficiency N fertilizers to reduce N2O emissions following their application in comparison with conventional dry granular urea and liquid urea-ammonium nitrate (UAN) fertilizers in an irrigated no-till (NT) corn (Zea mays L.) production system. Four enhanced-efficiency fertilizers were evaluated: two polymer-coated urea products (ESN and Duration III) and two fertilizers containing nitrification and urease inhibitors (SuperU and UAN+AgrotainPlus). Nitrous oxide fluxes were measured during two growing seasons using static, vented chambers and a gas chromatograph analyzer. Enhanced-efficiency fertilizers significantly reduced growing-season N2O-N emissions in comparison with urea, including UAN. SuperU and UAN+AgrotainPlus had significantly lower N2O-N emissions than UAN. Compared with urea, SuperU reduced N2O-N emissions 48%, ESN 34%, Duration III 31%, UAN 27%, and UAN+AgrotainPlus 53% averaged over 2 yr. Compared with UAN, UAN+AgrotainPlus reduced N2O emissions 35% and SuperU 29% averaged over 2 yr. The N2O-N loss as a percentage of N applied was 0.3% for urea, with all other N sources having significantly lower losses. Grain production was not reduced by the use of alternative N sources. This work shows that enhanced-efficiency N fertilizers can potentially reduce N2O-N emissions without affecting yields from irrigated NT corn systems in the semiarid central Great Plains.

  19. Weed infestation of spring barley (Hordeum vulgare L. depending on the cover crop and weed control method

    Directory of Open Access Journals (Sweden)

    Dorota Gawęda

    2014-04-01

    Full Text Available The aim of this 3-year field study was to evaluate the effect of some stubble crops and weed control methods on the species composition, number and air-dry weight of weeds in a spring barley crop grown in short-term monoculture. The study was conducted in the period 2009–2011 at the Uhrusk Experimental Farm, on mixed rendzina soil classified as very good rye soil complex. It included stubble crops which were ploughed under in each year (control treatment without cover crop, white mustard, lacy phacelia, a mixture of legumes – narrow-leaf lupin + field pea and 3 weed control methods used in spring barley crops (mechanical, mechanical and chemical, chemical weed control. Veronica persica was the weed species that occurred in greatest numbers in the spring barley crop sown after stubble crops. All cover crops reduced the numbers of Avena fatua which was the dominant species in the control treatment. Chemical as well as chemical and mechanical weed control significantly reduced the numbers of Avena fatua compared to the treatment where only double harrowing was used for weed control. The stubble crops did not reduce weed infestation of spring barley. Compared to the control treatment, the ploughing-in of white mustard and the mixture of legumes reduced the dry weight of weeds by 49.1 and 22.7%, respectively. Mechanical weed management proved to be less effective in reducing the number and dry weight of weeds compared to the other weed control methods. A significant negative correlation was found between the dry weight of weeds in the spring barley crop and the dry weight of the ploughed-in white mustard cover crop under the conditions of chemical weed control as well as in the case of the mixture of legumes when complete mechanical and chemical weed control was used.

  20. Effect of tillage and crop residue on soil temperature following planting for a Black soil in Northeast China.

    Science.gov (United States)

    Shen, Yan; McLaughlin, Neil; Zhang, Xiaoping; Xu, Minggang; Liang, Aizhen

    2018-03-14

    Crop residue return is imperative to maintain soil health and productivity but some farmers resist adopting conservation tillage systems with residue return fearing reduced soil temperature following planting and crop yield. Soil temperatures were measured at 10 cm depth for one month following planting from 2004 to 2007 in a field experiment in Northeast China. Tillage treatments included mouldboard plough (MP), no till (NT), and ridge till (RT) with maize (Zea mays L.) and soybean (Glycine max Merr.) crops. Tillage had significant effects on soil temperature in 10 of 15 weekly periods. Weekly average NT soil temperature was 0-1.5 °C lower than MP, but the difference was significant (P Northeast China representative of a cool to temperate zone.

  1. Short-term winter wheat (Triticum aestivum L.) cover crop grazing influence on calf growth, grain yield, and soil properties

    Science.gov (United States)

    Winter cover cropping has many agronomic benefits and can provide forages base for spring livestock grazing. Winter cover crop grazing has shown immediate economic benefits through increased animal production. Winter wheat pasture grazing is common in beef cow-calf production and stocker operations....

  2. Seasonal Soil Nitrogen Mineralization within an Integrated Crop and Livestock System in Western North Dakota, USA

    Science.gov (United States)

    Landblom, Douglas; Senturklu, Songul; Cihacek, Larry; Pfenning, Lauren; Brevik, Eric C.

    2015-04-01

    Protecting natural resources while maintaining or maximizing crop yield potential is of utmost importance for sustainable crop and livestock production systems. Since soil organic matter and its decomposition by soil organisms is at the very foundation of healthy productive soils, systems research at the North Dakota State University Dickinson Research Extension Center is evaluating seasonal soil nitrogen fertility within an integrated crop and livestock production system. The 5-year diverse crop rotation is: sunflower (SF) - hard red spring wheat (HRSW) - fall seeded winter triticale-hairy vetch (THV; spring harvested for hay)/spring seeded 7-species cover crop (CC) - Corn (C) (85-90 day var.) - field pea-barley intercrop (PBY). The HRSW and SF are harvested as cash crops and the PBY, C, and CC are harvested by grazing cattle. In the system, yearling beef steers graze the PBY and C before feedlot entry and after weaning, gestating beef cows graze the CC. Since rotation establishment, four crop years have been harvested from the crop rotation. All crops have been seeded using a JD 1590 no-till drill except C and SF. Corn and SF were planted using a JD 7000 no-till planter. The HRSW, PBY, and CC were seeded at a soil depth of 3.8 cm and a row width of 19.1 cm. Seed placement for the C and SF crops was at a soil depth of 5.1 cm and the row spacing was 0.762 m. The plant population goal/ha for C, SF, and wheat was 7,689, 50,587, and 7,244 p/ha, respectively. During the 3rd cropping year, soil bulk density was measured and during the 4th cropping year, seasonal nitrogen fertility was monitored throughout the growing season from June to October. Seasonal nitrate nitrogen (NO3-N), ammonium nitrogen (NH4-N), total season mineral nitrogen (NO3-N + NH4-N), cropping system NO3-N, and bulk density were measured in 3 replicated non-fertilized field plot areas within each 10.6 ha triple replicated crop fields. Within each plot area, 6 - 20.3 cm x 0.61 m aluminum irrigation

  3. Compressibility of Oxisol aggregates under no-till in response to soil water potential Compressibilidade de agregados de Latossolo Vermelho sob plantio direto em resposta ao potencial da água do solo

    Directory of Open Access Journals (Sweden)

    João Tavares Filho

    2009-12-01

    Full Text Available The system of no-till sowing stands out as being a technology that suits the objectives of more rational use of the soil and greater protection against the erosion. However, through till, any of it, occurs modifications of the soil's structure. This current work aims to study the influence of the energy state of the water and of the organic matter on the mechanism of compaction of Red Oxisol under no-till management system. Humid and non-deformed sample were collected in horizon AP of two agricultural areas under no-till, with and without rotation of cultures. In the laboratory, these samples were broken into fragments and sifted to obtain aggregates of 4 to 5 mm sized, which were placed in equilibrium under four matrix potentials. Thereafter, they were exposed to uni-dimensional compression with pressures varying from 32 to 1,000 kPa. The results in such a way show that the highest compressibility of aggregates both for the tilling with rotation of cultures as for the tilling without rotation of cultures, occurred for matrix potential -32 kPa (humidity of 0.29-0.32 kg kg-1, respectively, while the minor occurred for the potentials of -1 and -1,000 kPa (humidity of 0.35 and 0.27 kg kg-1, respectively, indicating that this soil should not be worked with humidity ranging around 0.29 to 0.32 kg kg-1 and the highest reduction of volume of aggregates was obtained for the mechanical pressures lower than 600 inferior kPa, indicating that these soils showed to be very influenced by compression, when exposed to mechanical work. Also, the aggregates of soil under no-till and rotation of crops presented higher sensitivity to the compression than the aggregates of soil under no-till and without rotation of crops, possibly for having better structural conditions given to a higher content of organic matter.O sistema de semeadura direta destaca-se como uma tecnologia que atende aos objetivos de uso mais racional do solo e maior proteção contra a eros

  4. Synergistic Effects of Agronet Covers and Companion Cropping on Reducing Whitefly Infestation and Improving Yield of Open Field-Grown Tomatoes

    Directory of Open Access Journals (Sweden)

    Stella Mutisya

    2016-09-01

    Full Text Available Tomatoes (Lycopersicon esculentum Mill are one of the biggest vegetable crops in the world, supplying a wide range of vitamins, minerals and fibre in human diets. In the tropics, tomatoes are predominantly grown under sub-optimal conditions by subsistence farmers, with exposure to biotic and abiotic stresses in the open field. Whitefly (Bemisia tabaci Gennadius is one of the major pests of the tomato, potentially causing up to 100% yield loss. To control whitefly, most growers indiscriminately use synthetic insecticides which negatively impact the environment, humans, and other natural pest management systems, while also increasing cost of production. This study sought to investigate the effectiveness of agronet covers and companion planting with aromatic basil (Ocimum basilicum L. as an alternative management strategy for whitefly in tomatoes and to evaluate the use of these treatments ontomato growth and yield. Two trials were conducted at the Horticulture Research and Training Field, Egerton University, Njoro, Kenya. Treatments comprised a combination of two factors, (1 growing environment (agronet and no agronet and (2 companion planting with a row of basil surrounding tomato plants, a row of basil in between adjacent rows of tomato, no companion planting. Agronet covers and companion cropping with a row of basil planted between adjacent tomato rows significantly lowered B. tabaci infestation in tomatoes by 68.7%. Better tomato yields were also recorded in treatments where the two treatments were used in combination. Higher yield (13.75 t/ha was obtained from tomatoes grown under agronet cover with a basil row planted in between adjacent rows of the tomato crop compared to 5.9 t/ha in the control. Non-marketable yield was also lowered to5.9 t/ha compared to 9.8 t/ha in the control following the use of the two treatments in combination. The results of this study demonstrate the potential viability of using companion cropping and agronet

  5. Soil microbial communities under cacao agroforestry and cover crop systems in Peru

    Science.gov (United States)

    Cacao (Theobroma cacao) trees are grown in tropical regions worldwide for chocolate production. We studied the effects of agroforestry management systems and cover cropping on soil microbial communities under cacao in two different replicated field experiments in Peru. Two agroforestry systems, Imp...

  6. Nitrogen and Winter Cover Crop Effects on Spring and Summer Nutrient Uptake

    Science.gov (United States)

    Fertilization of bermudagrass [Cynodon dactylon (L.) Pers.] with swine-lagoon effluent in summer, April to September, does not match the period of productivity of the winter annual cover crops, annual ryegrass (Lolium multiflorum L.), cereal rye (Secale cereale), and berseem clover (Trifolium alexan...

  7. Mechanical wounding under field conditions: A potential tool to increase the allelopathic inhibitory effect of cover crops on weeds?

    NARCIS (Netherlands)

    Kruidhof, H.M.; Dam, van N.M.; Ritz, C.; Lotz, L.A.P.; Kropff, M.J.; Bastiaans, L.

    2014-01-01

    To increase the inhibitory effect of soil-incorporated cover crop residues on germination and early growth of weeds, the allelochemical content of the cover crop at the time of soil incorporation should be maximal. We investigated whether mechanical damaging in spring induced the production of

  8. Enhancing Soil Productivity Using a Multi-Crop Rotation and Beef Cattle Grazing

    Science.gov (United States)

    Şentürklü, Songül; Landblom, Douglas; Cihacek, Larry; Brevik, Eric

    2016-04-01

    Agricultural production systems that include complimentary plant, soil and animal interaction contribute to sustainability. In sustainable livestock systems integrated with crop production, the soil resource is impacted positively. The goal of this research was to maximize beef cattle and crop economic yield, while improving the soil resource by increasing soil organic matter (SOM) and subsequently seasonal soil nitrogen fertility over a 5-year period (2011-2015). Each experimental crop field used in the study was 1.74 ha. Small-seeded crops were planted using a JD 1590 No-Till drill. Corn (C) and sunflowers (SF) were planted using a JD 7000 No-Till planter. The cropping sequence used in the study was SF, hard red spring wheat (HRSW), fall seeded winter triticale-hairy vetch (T-HV), spring harvested for hay/mid-June seeded 7-species cover crop (CC; SF, Everleaf Oat, Flex Winter Pea, HV, Winfred Forage Rape, Ethiopian Cabbage, Hunter Leaf Turnip), C (85-day var.), and field pea-barley intercrop (PBY). The HRSW and SF were harvested as cash crops and the PBY, C, and CC were harvested by grazing cattle. In the system, yearling beef steers grazed PBY and unharvested C before feedlot entry, and after weaning, gestating cows grazed CC. Seasonal soil nitrogen fertility was measured at 0-15, 15-30, and 30-61 cm depths approximately every two weeks from June to October, 2014. The regression illustrating the relationship between SOM and average seasonal available mineral nitrogen shows that for each percentage increase in SOM there is a corresponding N increase of 1.47 kg/ha. Nitrogen fertilizer applications for the 5-year period of the study were variable; however, the overall trend was for reduced fertilizer requirement as SOM increased. At the same time, grain, oilseed, and annual forage crop yields increased year over year (2011-2015) except for the 2014 crop year, when above average precipitation delayed seeding and early frost killed the C and SF crops prematurely

  9. Efeito de coberturas de inverno e sua época de manejo sobre a infestação de plantas daninhas na cultura de milho Effect of winter cover crops and their management timing on weed infestation in maize crop

    Directory of Open Access Journals (Sweden)

    A.A. Balbinot Jr.

    2007-09-01

    Full Text Available No sistema de plantio direto, a presença de palha sobre o solo proporciona significativa supressão de plantas daninhas. O objetivo deste trabalho foi avaliar o potencial de coberturas de inverno e sua época de manejo em reduzir a infestação de plantas daninhas na cultura de milho quando semeada em sucessão. Dois experimentos foram realizados em Canoinhas, SC, nas safras 2003/04 e 2004/05. No primeiro experimento, avaliaram-se seis coberturas de solo no inverno: nabo forrageiro, aveia-preta, centeio, azevém, consórcio entre aveia-preta e ervilhaca e o consórcio entre nabo forrageiro, aveia-preta, centeio, azevém e ervilhaca. Essas coberturas foram roçadas em três épocas antes da semeadura do milho: 1, 10 e 25 dias. Já no segundo experimento, foram avaliados os efeitos de supressão de plantas daninhas pela palha das seis coberturas citadas anteriormente, mais a ervilhaca. As palhas de azevém e do consórcio das cinco espécies utilizadas no experimento apresentaram alta capacidade em suprimir a emergência e o acúmulo de massa seca das plantas daninhas, enquanto a palha de nabo forrageiro apresentou baixo potencial de supressão. O manejo das coberturas próximo à semeadura da cultura de milho reduziu a infestação de plantas daninhas.Straw on the soil significantly reduces weed infestation under the no-tillage system. The aim of this research was to evaluate the potential of winter cover crops and their management timing in reducing weed infestation in maize crop. Two experiments were carried out in Canoinhas, SC, Brazil, in 2003/2004 and 2004/2005. In the first experiment, six winter cover crops were investigated: oilseed radish, black oat, rye, rye grass, intercropped among black oat and common vetch and among oilseed radish, black oat, rye, ryegrass and common vetch. These cover crops were slashed down at three different times before maize seeding (1, 10 and 25 days. In the second experiment, the potential to reduce weed

  10. Organic management and cover crop species steer soil microbial community structure and functionality along with soil organic matter properties

    NARCIS (Netherlands)

    Martínez-García, Laura B.; Korthals, Gerard; Brussaard, Lijbert; Jørgensen, Helene Bracht; Deyn, de Gerlinde B.

    2018-01-01

    It is well recognized that organic soil management stimulates bacterial biomass and activity and that including cover crops in the rotation increases soil organic matter (SOM). Yet, to date the relative impact of different cover crop species and organic vs. non-organic soil management on soil

  11. Establishment of five cover crops and total soil nutrient extraction in a humid tropical soil in the Peruvian Amazon

    Science.gov (United States)

    In order to evaluate the establishment of five cover crops and their potential to increase soil fertility through nutrient extraction, an experiment was installed in the Research Station of Choclino, San Martin, Peru. Five cover crops were planted: Arachis pintoi Krapov. & W.C. Greg, Calopogonium m...

  12. Effect of Cover Crop Residues on Some Physicochemical Properties of Soil and Emergence Rate of Potato

    OpenAIRE

    M. Ghaffari; G. Ahmadvand; M.R. Ardakani; M.R. Mosaddeghi; F. Yeganehehpoor; M. Gaffari; M. Mirakhori

    2012-01-01

    The aim of this study, was to evaluate the effect of winter cover crop residues on speed of seed  potato emergence and percentage of organic carbon, soil specific weight and soil temperature. An experiment was carried out at the Research Farm of Agriculture Faculty, Bu-AliSinaUniversity, in 2008-2009. The experiment was a randomized complete block design with three replications. Winter cover crops consisted of rye, barley and oilseed rape, each one with common plant density (rye and barley at...

  13. A rich TILLING resource for studying gene function in Brassica rapa

    Directory of Open Access Journals (Sweden)

    Amoah Stephen

    2010-04-01

    Full Text Available Abstract Background The Brassicaceae family includes the model plant Arabidopsis thaliana as well as a number of agronomically important species such as oilseed crops (in particular Brassica napus, B. juncea and B. rapa and vegetables (eg. B. rapa and B. oleracea. Separated by only 10-20 million years, Brassica species and Arabidopsis thaliana are closely related, and it is expected that knowledge obtained relating to Arabidopsis growth and development can be translated into Brassicas for crop improvement. Moreover, certain aspects of plant development are sufficiently different between Brassica and Arabidopsis to warrant studies to be carried out directly in the crop species. However, mutating individual genes in the amphidiploid Brassicas such as B. napus and B. juncea may, on the other hand, not give rise to expected phenotypes as the genomes of these species can contain up to six orthologues per single-copy Arabidopsis gene. In order to elucidate and possibly exploit the function of redundant genes for oilseed rape crop improvement, it may therefore be more efficient to study the effects in one of the diploid Brassica species such as B. rapa. Moreover, the ongoing sequencing of the B. rapa genome makes this species a highly attractive model for Brassica research and genetic resource development. Results Seeds from the diploid Brassica A genome species, B. rapa were treated with ethyl methane sulfonate (EMS to produce a TILLING (Targeting Induced Local Lesions In Genomes population for reverse genetics studies. We used the B. rapa genotype, R-o-18, which has a similar developmental ontogeny to an oilseed rape crop. Hence this resource is expected to be well suited for studying traits with relevance to yield and quality of oilseed rape. DNA was isolated from a total of 9,216 M2 plants and pooled to form the basis of the TILLING platform. Analysis of six genes revealed a high level of mutations with a density of about one per 60 kb. This

  14. CHANGE OF CHOSEN SOIL PHYSICAL PROPERTIES OF CHERNOZEM AFTER SEVEN YEARS OF NO-TILL SOIL CULTIVATION

    Directory of Open Access Journals (Sweden)

    Katarna Hrckov

    2014-09-01

    Full Text Available Soil physical properties were investigated in two types of growing systems - integrated no-till system and conventional system with ploughing, in 1999 2005 on chernozem in maize growing region. Bulk density decreased and total porosity increased during 7 years in both growing systems. In integrated system the improvement of soil physical properties could be explained by remaining of plant residues on soil surface. In conventional system the plant residues were incorporated into soil by ploughing. This led to the higher proportion of organic matter in soil. Soil cultivated conventionally had significantly higher value of reduced bulk density, significantly lower porosity and significantly higher values of soil moisture compared to soil in integrated no-till system. Maximum capillary water capacity was not significantly influenced by soil cultivation. Values of investigated soil physical properties in both systems were not markedly different from the typical values of cultivated chernozem.

  15. Selective weed suppression by cover crop residues: effects of seed mass and timing of species’sensitivity

    NARCIS (Netherlands)

    Kruidhof, H.M.; Gallandt, E.R.; Haramoto, E.R.; Bastiaans, L.

    2011-01-01

    Laboratory bioassays have shown that large-seeded species better tolerate cover crop residue–mediated stress than small-seeded species. This provides the potential for selective suppression of small-seeded weeds in large-seeded crops. We conducted two field experiments in which seedling emergence of

  16. Vegetative, productive and qualitative performance of grapevine "Cabernet Sauvignon" according to the use of winter cover crops

    OpenAIRE

    Bettoni, Jean Carlos; Feldberg, Nelson Pires; Nava, Gilberto; Veiga, Milton da; Wildner, Leandro do Prado

    2016-01-01

    ABSTRACT To study the effect of winter cover crops on the vegetative, productive and qualitative behavior of "Cabernet Sauvignon" grapevines, an experiment was conducted in two wine harvests by sowing different species of winter cover crops and additional treatments with manual weeding and mechanical mowing in an experimental vineyard located at the Experimental Station of Epagri in Videira, state of Santa Catarina, Brazil. Plant attributes of the grapevine, such as number of rods and weight ...

  17. Soil microbial functionality in response to the inclusion of cover crop mixtures in agricultural systems

    Directory of Open Access Journals (Sweden)

    Diego N. Chavarría

    2016-06-01

    Full Text Available Agricultural systems where monoculture prevails are characterized by fertility losses and reduced contribution to ecosystem services. Including cover crops (CC as part of an agricultural system is a promising choice in sustainable intensification of those demanding systems. We evaluated soil microbial functionality in cash crops in response to the inclusion of CC by analyzing soil microbial functions at two different periods of the agricultural year (cash crop harvest and CC desiccation during 2013 and 2014. Three plant species were used as CC: oat (Avena sativa L., vetch (Vicia sativa L. and radish (Raphanus sativus L. which were sown in two different mixtures of species: oat and radish mix (CC1 and oat, radish and vetch mix (CC2, with soybean monoculture and soybean/corn being the cash crops. The study of community level physiological profiles showed statistical differences in respiration of specific C sources indicating an improvement of catabolic diversity in CC treatments. Soil enzyme activities were also increased with the inclusion of CC mixtures, with values of dehydrogenase activity and fluorescein diacetate hydrolysis up to 38.1% and 35.3% higher than those of the control treatment, respectively. This research evidenced that CC inclusion promotes soil biological quality through a contribution of soil organic carbon, improving the sustainability of agrosystems. The use of a CC mixture of three plant species including the legume vetch increased soil biological processes and catabolic diversity, with no adverse effects on cash crop grain yield.

  18. Soil microbial functionality in response to the inclusion of cover crop mixtures in agricultural systems

    Energy Technology Data Exchange (ETDEWEB)

    Chavarría, D.N.; Verdenelli, R.A.; Muñoz, M.J.; Conforto, C.; Restovich, S.B.; Andriulo, A.E.; Meriles, J.M.; Vargas-Gil, S.

    2016-11-01

    Agricultural systems where monoculture prevails are characterized by fertility losses and reduced contribution to ecosystem services. Including cover crops (CC) as part of an agricultural system is a promising choice in sustainable intensification of those demanding systems. We evaluated soil microbial functionality in cash crops in response to the inclusion of CC by analyzing soil microbial functions at two different periods of the agricultural year (cash crop harvest and CC desiccation) during 2013 and 2014. Three plant species were used as CC: oat (Avena sativa L.), vetch (Vicia sativa L.) and radish (Raphanus sativus L.) which weresown in two different mixtures of species: oat and radish mix (CC1) and oat, radish and vetch mix (CC2), with soybean monoculture and soybean/corn being the cash crops. The study of community level physiological profiles showed statistical differences in respiration of specific C sources indicating an improvement of catabolic diversity in CC treatments. Soil enzyme activities were also increased with the inclusion of CC mixtures, with values of dehydrogenase activity and fluorescein diacetate hydrolysis up to 38.1% and 35.3% higher than those of the control treatment, respectively. This research evidenced that CC inclusion promotes soil biological quality through a contribution of soil organic carbon, improving the sustainability of agrosystems. The use of a CC mixture of three plant species including the legume vetch increased soil biological processes and catabolic diversity, with no adverse effects on cash crop grain yield. (Author)

  19. Organic farming and cover crops as an alternative to mineral fertilizers to improve soil physical properties

    Science.gov (United States)

    Sánchez de Cima, Diego; Luik, Anne; Reintam, Endla

    2015-10-01

    For testing how cover crops and different fertilization managements affect the soil physical properties in a plough based tillage system, a five-year crop rotation experiment (field pea, white potato, common barley undersown with red clover, red clover, and winter wheat) was set. The rotation was managed under four different farming systems: two conventional: with and without mineral fertilizers and two organic, both with winter cover crops (later ploughed and used as green manure) and one where cattle manure was added yearly. The measurements conducted were penetration resistance, soil water content, porosity, water permeability, and organic carbon. Yearly variations were linked to the number of tillage operations, and a cumulative effect of soil organic carbon in the soil as a result of the different fertilization amendments, organic or mineral. All the systems showed similar tendencies along the three years of study and differences were only found between the control and the other systems. Mineral fertilizers enhanced the overall physical soil conditions due to the higher yield in the system. In the organic systems, cover crops and cattle manure did not have a significant effect on soil physical properties in comparison with the conventional ones, which were kept bare during the winter period. The extra organic matter boosted the positive effect of crop rotation, but the higher number of tillage operations in both organic systems counteracted this effect to a greater or lesser extent.

  20. Development and characterization of a new TILLING population of common bread wheat (Triticum aestivum L..

    Directory of Open Access Journals (Sweden)

    Liang Chen

    Full Text Available Mutagenesis is an important tool in crop improvement. However, the hexaploid genome of wheat (Triticum aestivum L. presents problems in identifying desirable genetic changes based on phenotypic screening due to gene redundancy. TILLING (Targeting Induced Local Lesions IN Genomes, a powerful reverse genetic strategy that allows the detection of induced point mutations in individuals of the mutagenized populations, can address the major challenge of linking sequence information to the biological function of genes and can also identify novel variation for crop breeding. Wheat is especially well-suited for TILLING due to the high mutation densities tolerated by polyploids. However, only a few wheat TILLING populations are currently available in the world, which is far from satisfying the requirement of researchers and breeders in different growing environments. In addition, current TILLING screening protocols require costly fluorescence detection systems, limiting their use, especially in developing countries. We developed a new TILLING resource comprising 2610 M(2 mutants in a common wheat cultivar 'Jinmai 47'. Numerous phenotypes with altered morphological and agronomic traits were observed from the M(2 and M(3 lines in the field. To simplify the procedure and decrease costs, we use unlabeled primers and either non-denaturing polyacrylamide gels or agarose gels for mutation detection. The value of this new resource was tested using PCR with RAPD and Intron-spliced junction (ISJ primers, and also TILLING in three selected candidate genes, in 300 and 512 mutant lines, revealing high mutation densities of 1/34 kb by RAPD/ISJ analysis and 1/47 kb by TILLING. In total, 31 novel alleles were identified in the 3 targeted genes and confirmed by sequencing. The results indicate that this mutant population represents a useful resource for the wheat research community. We hope that the use of this reverse genetics resource will provide novel allelic

  1. Fate of glyphosate and degradates in cover crop residues and underlying soil: A laboratory study

    Energy Technology Data Exchange (ETDEWEB)

    Cassigneul, A. [Université de Toulouse — École d' ingénieurs de Purpan, UMR 1248 AGIR — 75, Voie du TOEC BP 57 611, 31 076, Toulouse cedex 3 (France); INRA, UMR 1402 ECOSYS, 78850 Thiverval-Grignon (France); Benoit, P.; Bergheaud, V.; Dumeny, V.; Etiévant, V. [INRA, UMR 1402 ECOSYS, 78850 Thiverval-Grignon (France); Goubard, Y. [AgroParisTech, UMR 1402 ECOSYS, 78850 Thiverval-Grignon (France); Maylin, A. [Université de Toulouse — École d' ingénieurs de Purpan, UMR 1248 AGIR — 75, Voie du TOEC BP 57 611, 31 076, Toulouse cedex 3 (France); Justes, E. [INRA, UMR 1248 AGIR Auzeville — BP 52 627, 31 326, Castanet-Tolosan cedex (France); Alletto, L. [Université de Toulouse — École d' ingénieurs de Purpan, UMR 1248 AGIR — 75, Voie du TOEC BP 57 611, 31 076, Toulouse cedex 3 (France)

    2016-03-01

    The increasing use of cover crops (CC) may lead to an increase in glyphosate application for their destruction. Sorption and degradation of {sup 14}C-glyphosate on and within 4 decaying CC-amended soils were compared to its fate in a bare soil. {sup 14}C-Glyphosate and its metabolites distribution between mineralized, water-soluble, NH{sub 4}OH-soluble and non-extractable fractions was determined at 5 dates during a 20 °C/84-d period. The presence of CC extends {sup 14}C-glyphosate degradation half-life from 7 to 28 days depending on the CC. {sup 14}C-Glyphosate dissipation occurred mainly through mineralization in soils and through mineralization and bound residue formation in decaying CC. Differences in sorption and degradation levels were attributed to differences in composition and availability to microorganisms. CC- and soil-specific dissipation patterns were established with the help of explicit relationships between extractability and microbial activity. - Highlights: • Glyphosate sorption on cover crop residues increases with their decomposition degree. • Glyphosate degradation and mineralization are lower in mulch than in soil. • Nonextractable residue formation is one of the main dissipation pathways of glyphosate in cover crop mulch.

  2. Fate of glyphosate and degradates in cover crop residues and underlying soil: A laboratory study

    International Nuclear Information System (INIS)

    Cassigneul, A.; Benoit, P.; Bergheaud, V.; Dumeny, V.; Etiévant, V.; Goubard, Y.; Maylin, A.; Justes, E.; Alletto, L.

    2016-01-01

    The increasing use of cover crops (CC) may lead to an increase in glyphosate application for their destruction. Sorption and degradation of "1"4C-glyphosate on and within 4 decaying CC-amended soils were compared to its fate in a bare soil. "1"4C-Glyphosate and its metabolites distribution between mineralized, water-soluble, NH_4OH-soluble and non-extractable fractions was determined at 5 dates during a 20 °C/84-d period. The presence of CC extends "1"4C-glyphosate degradation half-life from 7 to 28 days depending on the CC. "1"4C-Glyphosate dissipation occurred mainly through mineralization in soils and through mineralization and bound residue formation in decaying CC. Differences in sorption and degradation levels were attributed to differences in composition and availability to microorganisms. CC- and soil-specific dissipation patterns were established with the help of explicit relationships between extractability and microbial activity. - Highlights: • Glyphosate sorption on cover crop residues increases with their decomposition degree. • Glyphosate degradation and mineralization are lower in mulch than in soil. • Nonextractable residue formation is one of the main dissipation pathways of glyphosate in cover crop mulch.

  3. Macronutrients use efficiency and changes in chemical properties of an oxisol as influenced by phosphorus fertilization and tropical cover crops

    Science.gov (United States)

    Cover crops are important components of copping systems due to their beneficial effects on soil physical, chemical and biological properties. A green house experiment was conducted to evaluate influence of phosphorus (P) fertilization on nutrient use efficiency of 14 tropical cover crops. The P leve...

  4. Studies on the injuries of crops by harmful gases under covering. I. Injuries of vegetables by gaseous nitrogen dioxide and the conditions affecting crop susceptibility. [Eggplant

    Energy Technology Data Exchange (ETDEWEB)

    Kato, T; Tachibana, S; Inden, T

    1974-09-01

    The effects of environmental conditions such as soil-moisture humidity, and light on injuries to crops such as kidney bean, cucumber, tomato, and egg plant as well as the relationships between injury occurrence and plant nutrition, age of seedlings, and leaf position were investigated when the crops were exposed to gaseous nitrogen dioxide under a covering. The injury was severer when the soil moisture was richer and the humidity was higher. Injury was greater under dark conditions as opposed to light conditions before, during, and after NO/sub 2/ exposure. The first leaves of kidney bean plants were more susceptible to the gas when they were younger. Leaves with active metabolism (in the middle position) were the most susceptible to NO/sub 2/. Vegetables grown in fields or cultures poor in nitrogen were apparently susceptible to the gas, and those grown in ammonia-nitrogen rich cultures were more severely injured than those grown on nitrate-nitrogen rich cultures. Those grown in iron-deficient cultures were more susceptible to NO/sub 2/ than controls.

  5. Consorciação de plantas de cobertura antecedendo o milho em plantio direto: II - Nitrogênio acumulado pelo milho e produtividade de grãos Cover crop mixtures preceding no-till corn: II - Nitrogen accumulation by corn and grain yield

    Directory of Open Access Journals (Sweden)

    S. J. Giacomini

    2004-08-01

    possível atingir uma produtividade de grãos de milho equivalente àquela da ervilhaca solteira e a 70 % daquela obtida com o uso de 180 kg ha-1 de N-uréia no pousio.No-tillage has been increasingly adopted by farmers in South Brazil and it has increased the interest for the mixtures of cover crops in the autumn/winter as source of nitrogen to the corn in succession. A field experiment was carried out on a typic Hapludalf at the experimental area of the Soil Science Department, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul State, Brazil, in 1998/99 and 1999/00 to evaluate the effect of single crop and mixtures of black oat (BO (Avena strigosa Schieb, common vetch (CV (Vicia sativa L. and oilseed radish (OR (Raphanus sativus L. var. oleiferus Metzg. on N accumulation and grain yield by corn. The experiment was set in a complete randomized block design with four replications. The treatments were: 100 % BO (80 kg ha-1 of seeds, 100 % CV (80 kg ha-1, 100 % OR (14 kg ha-1, 15 % BO + 85 % CV, 30 % BO + 70 % CV, 45 % BO + 55 % CV, 15 % BO + 85 % OR and 30 % BO + 70 % OR. Two additional plots under winter fallow were also used for comparison. Other control treatments were corn cultivated without N fertilizer in one plot and fertilized with 180 kg ha-1 of N-urea in another one. Corn grain yield, dry matter and total N concentration in corn biomass was evaluated at different crop stages. The amount of N accumulated by corn and the grain yield in succession of oat + vetch mixtures were not different from the single vetch, and were proportional to the N amount in the vetch biomass of the crop mixtures. Vetch and oilseed radish as single crop or in mixtures with black oat provided a higher corn grain yield than after fallow and single oat. Results of this study indicated that oat + vetch mixtures, up to a maximum proportion of 30 % of oat, attained a productivity of corn grain equivalent to the single vetch and 70 % of that obtained with the use of 180 kg ha-1

  6. Índice de cobertura vegetal pela cultura do milho no período de chuvas intensas no sul de Minas Gerais Plant cover index in the period of intensive rainfall for corn crop at south of Minas Gerais state, Brazil

    Directory of Open Access Journals (Sweden)

    Fabiana Silva de Souza

    2010-04-01

    Full Text Available A cobertura vegetal é a defesa natural do solo contra a erosão hídrica. Nos modelos de estimativas de perdas de solo, o efeito da cobertura vegetal na interceptação da energia cinética da chuva é a variável chave na modelagem do processo erosivo. Assim sendo, objetivou-se avaliar a eficiência da cobertura vegetal, proporcionada pela cultura do milho, e suas relações com os atributos fitotécnicos desta cultura para alguns híbridos. O estudo foi realizado no campo demonstrativo de híbridos de milho da Universidade Federal de Lavras, localizada no município de Lavras, MG. Para determinação da cobertura vegetal utilizou-se um aparato que consiste em uma estrutura horizontal, contendo orifícios para visualização dos pontos com cobertura e sem cobertura vegetal, sendo as leituras feitas de forma aleatória e transversalmente às linhas da cultura. Os atributos fitotécnicos avaliados foram altura da planta, estande, matéria seca e produção de grãos. Diante dos resultados pode-se concluir que o maior índice de cobertura vegetal foi observado para os híbridos de milho P 30F33, P 30F90, P 3021, STRIKE, FORT, VALENT, UFLA 2001, UFLA 2004, CO 32, D 8480, D 8420 DKB 333B, DKB 440, evidenciando boa qualidade como planta protetora do solo. No período de maior ocorrência de chuvas, na região sul de Minas Gerais, a cultura do milho pode minimizar o efeito do processo erosivo. A produção de matéria seca relacionou-se bem com o índice de cobertura vegetal, podendo ser um indicativo quanto à proteção do solo.The plant cover is a natural protection of soil against water erosion. In estimative models of soil loss, the effect of plant cover in the interception of rainfall kinetic energy is the key variable in the modeling of the erosive process. Thus, the aim of this work is to evaluate the efficiency of the plant cover provided by the corn crop and their relations with the phytotechnical attributes of this crop for its respective

  7. Cover crops growth under water deficitCrescimento de plantas de cobertura sob déficit hídrico

    Directory of Open Access Journals (Sweden)

    Edison Ulisses Ramos Junior

    2013-03-01

    Full Text Available One of the challenges to be overcome in no till deploying in tropical regions is the production of straw in the offseason, a period commonly with low water availability. To help in the choice of species to be used as cover crop in dry winter regions, the aim of this work was to evaluate the effect of soil water potential on growth of black oat (Avena strigosa Sckreb, pearl millet (Pennisetum glaucum (L. R. Brown, grain sorghum (Sorghum bicolor L. Moench. e guinea sorghum (Sorghum bicolor subespécie bicolor raça guinea. Pearl millet is a good option to be cropped during offseason by show high yield potencial, even been more sensitive to water deficit. Grain sorghum and guinea sorghum are also good options, particularly by showed abundant root system, which possibly gives them a certain tolerance to low water availability conditions. The black oat, even with high tolerance to water stress (tolerance conferred by highest percentage of fine roots, seems to be much affected by higher temperatures, common to these regions. Um dos desafios a serem vencidos na implantação do sistema de semeadura direta em regiões tropicais é a produção de palhada na entressafra, período comumente com baixa disponibilidade hídrica. Visando auxiliar a escolha das espéciesa serem empregadas como planta de cobertura em regiões de inverno seco, objetivou-se com este trabalho avaliar o efeito de potenciais de água no solo no crescimento de aveia preta (Avena strigosa Sckreb, milheto (Pennisetum glaucum (L. R. Brown, sorgogranífero (Sorghum bicolor L. Moench. esorgo-de-guiné(Sorghum bicolor subespécie bicolor raça guinea, bem como detectar possíveis estratégias destas espécies para contornarem condições de baixa disponibilidade hídrica. O milheto, mesmo sendo mais sensível ao déficit hídrico, é uma boa opção a ser cultivado na entressafra pelo seu elevado potencial produtivo. O sorgo granífero e o sorgo-de-guiné também são boas opções, em

  8. Effect of Cover Crops on Vertical Distribution of Leaf Area and Dry Matter of Soybean (Glycine max L. in Competition with Weeds

    Directory of Open Access Journals (Sweden)

    seyyedeh samaneh hashemi

    2017-08-01

    Full Text Available Introduction Amount and vertical distribution of leaf area are essential for estimating interception and utilization of solar radiation of crop canopies and, consequently dry matter accumulation (Valentinuz & Tollenaar, 2006. Vertical distribution of leaf area is leaf areas per horizontal layers, based on height (Boedhram et al., 2001. Above-ground biomass is one of the central traits in functional plant ecology and growth analysis. It is a key parameter in many allometric relationships (Niklas & Enquist, 2002. The vertical biomass distribution is considered to be the main determinant of competitive strength in plant species. The presence of weeds intensifies competition for light, with the effect being determined by plant height, position of the branches, and location of the maximum leaf area. So, this experiment was conducted to study the vertical distribution of leaf area and dry matter of soybean canopy in competition with weeds and cover crops. Materials and methods This experiment was performed based on complete randomized block design with 3 replications in center of Agriculture of Joybar in 2013. Soybean was considered as main crop and soybean and Persian clover (Trifolium resupinatum L., fenugreek (Trigonella foenum–graecum L., chickling pea (Lathyrus sativus L. and winter vetch (Vicia sativa L. were the cover crops. Treatments were included cover crops (Persian clover, fenugreek, chickling pea and winter vetch and cover crop planting times (simultaneous planting of soybean with cover crops and planting cover crops three weeks after planting of soybeans and also monoculture of soybeans both in weedy and weed free conditions were considered as controls. Soybean planted in 50 cm row spacing with 5 cm between plants in the same row. Each plot was included 5 rows soybeans. Cover crop inter-seeded simultaneously in the main crop. Crops were planted on 19 May 2013 for simultaneous planting of soybean. The dominant weed species were green

  9. Effects of Planting Dates, Irrigation Management and Cover Crops on Growth and Yield of Saffron (Crocus sativus L.

    Directory of Open Access Journals (Sweden)

    A Koocheki

    2017-08-01

    coming spring (May, 2010. Therefore, data were analyzed as split-plot in the first year and split-split-plot in the second year. Data analysis was done using SAS 9.1 and means were compared using Duncan multiple range test in 5% level of probability. Results and discussion Results showed that most growth and flowering indices of saffron were significantly affected by experimental factors. Quantitative indices of saffron were decreased considerably by delaying in planting date in both studied years. The highest flower yield was obtained in June planting date (28 and 98 kg.ha-1 in 2009 and 2010, respectively, while the lowest was shown in October planting date (18 and 34 kg.ha-1 in 2009 and 2010, respectively. Enhanced growth and yield of saffron in spring planting date is because of real dormancy stage of corms in this time. All studied indices were superior in no-irrigated treatments after planting in both studied years. The flower yield was 9 and 43 kg.ha-1 in 2009 and 2010 in irrigated treatments, respectively, while these values were 37 and 78 kg.ha-1in 2009 and 2010 in no-irrigation treatment, respectively. It has been reported that irrigation during the creation of the primary leaves in the corm buds is negative, while irrigation after this period and simultaneous with the beginning of primary reproductive organs creation is suitable for saffron flowering. The application of cover crops improved partially the quantitative indices of saffron, particularly in Bitter vetch treatment. In addition, the highest flowering rate and the lowest leaf appearance rate were observed in June planting date, no-irrigation and Bitter vetch cover crop treatment. The positive effects of short-growth cycle companion crops on saffron is related to improvement of soil physical, biological and chemical properties, soil temperature regulation, prevention from nutrient leaching, N-fixation by Fabaceae species and help to weeds control. Conclusion In total, saffron corm planting few days

  10. Soil Temperature Moderation by Crop Residue Mulch, Grevilla Robusta Tillage Mode

    International Nuclear Information System (INIS)

    Oteng'i, S.B.B.

    2006-01-01

    The effects of mulching with crop residues and shading by Grevillea robust trees on the soil temperatures of Mt. Kenya Volcanic soils at Matanya area, Laikipia district, were studied. Soil thermistors connected to data-loggers(type Grant squirrel)were used to record soil temperaturs. The soils were mulched and minimum tilled (depths of 0.04 till 0.05m), and unmulched and deep tilled (depths 0.20till 0.25m) in plots of pruned and unpruned trees and also to cotrol (non-agroforestry) plots. The results showed that closer tp the trees, canopy differences ionfluenced changes in soil temperatures of about ≠2.0 degrees centrigrade. The dumping depth and Stigters ratio values showed soil temperatures were modified by treatment and tree canopy differences. The modified soil temperatures resulted in better crop performance when the soil water was adequate.(author)

  11. analysis of the productivity of upland rice and cover crops in relay ...

    African Journals Online (AJOL)

    AISA

    system will be identified. MATERIALS AND METHODS. FIELD EXPERIMENT. Field experiments, comprising monocultures of two rice cultivars, two cover crop ..... Value of SLAnew of the cultivars fluctuated around 23 m2 kg-1, with the values for V4 slightly higher than for WAB56-50 during the first part of development (Table ...

  12. Rye cover crop effects on nitrous oxide emissions from a corn-soybean system

    Science.gov (United States)

    Agricultural activities are a major source nitrous oxide emitted to the atmosphere. Development of management practices to reduce these emissions is needed. Non-leguminous cover crops are efficient scavengers of residual soil nitrate, but their effects on nitrous oxide emissions have not been well d...

  13. Eficácia de glyphosate em plantas de cobertura Efficacy of glyphosate in cover crops

    Directory of Open Access Journals (Sweden)

    P.C. Timossi

    2006-09-01

    Full Text Available Objetivou-se comparar a eficácia de três dosagens do herbicida glyphosate para a dessecação de Brachiaria decumbens, B. brizantha cv. Marandu e vegetação espontânea, visando a adoção do sistema plantio direto. Utilizou-se delineamento experimental de blocos ao acaso, num esquema fatorial 3 x 3, com quatro repetições. Testaram-se três tipos de cobertura vegetal e três dosagens de glyphosate (1,44, 2,16 e 2,88 kg ha-1. Aos 7, 14, 21 e 28 dias após a aplicação (DAA, foram feitas avaliações visuais da porcentagem de controle das coberturas vegetais e, aos 45 DAA, avaliações visuais da porcentagem de reinfestação da área. Conclui-se que, para as espécies que compunham a vegetação espontânea, o uso de 1,44 kg ha-1 proporcionou bom controle, sem no entanto evitar rebrotes de Digitaria insularis. Para as braquiárias, a mesma taxa de controle foi observada a partir de 2,16 kg ha-1. A camada de palha das braquiárias sobre o solo não foi capaz de suprimir a emergência de Cyperus rotundus, Alternanthera tenella, Raphanus raphanistrum, Bidens pilosa e Euphorbia heterophylla.This work aimed to compare rates of glyphosate to desiccate Brachiaria decumbens, B. brizantha cv. Marandu and spontaneous plants (weeds, aiming to adopt the no-tillage system. A randomized block experimental design in a factorial scheme was used (3x3, with four replications. The factors consisted of three species of cover crops and three rates of glyphosate (1.44, 2.16 and 2.88 kg ha-1. At 7, 14, 21 and 28 days after application of the herbicide, visual evaluations of the percentage of cover crop control were carried out and at 45 days of the reinfestation percentage of the area. It was concluded that the spontaneous plants presented a good control at 1.44 kg ha-1, without, however, preventing Digitaria insularis sprouts. The same control rate starting at 2.16 kg ha-1 was observed for the Brachiaria species. The straw layer of these cover crops on the soil

  14. Soil Carbon Changes in Transitional Grain Crop Production Systems in South Dakota

    Science.gov (United States)

    Woodard, H. J.

    2004-12-01

    Corn-C (Zea Mays L.), soybean-S (Glycine max L.) and spring wheat-W (Triticum aestivum L.) crops were seeded as a component of either a C-S, S-W, or C-S-W crop rotation on silt-loam textured soils ranging from 3.0-5.0% organic matter. Conservation tillage(chisel plow-field cultivator) was applied to half of the plots. The other plots were direct seeded as a no-till (zero-tillage) treatment. Grain yield and surface crop residues were weighed from each treatment plot. Crop residue (stover and straw) was removed from half of the plots. After four years, soil samples were removed at various increments of depth and soil organic carbon (C) and nitrogen (N) was measured. The ranking of crop residue weights occurred by the order corn>>soybean>wheat. Surface residue accumulation was also greatest with residue treatments that were returned to the plots, those rotations in which maize was a component, and those without tillage. Mean soil organic carbon levels in the 0-7.5cm depth decreased from 3.41% to 3.19% (- 0.22%) with conventional tillage (chisel plow/field cultivator) as compared to a decrease from 3.19% to 3.05% (-0.14%) in plots without tillage over a four year period. Organic carbon in the 0-7.5cm depth decreased from 3.21% to 3.01% (- 0.20%) after residue removed as compared to a decrease from 3.39% to 3.23% (-0.17%) in plots without tillage applied after four years. The soil C:N ratio (0-7.5cm) decreased from 10.63 to 10.37 (-0.26 (unitless)) in the tilled plots over a four-year period. Soil C:N ratio at the 0-7.5cm depth decreased from 10.72 to 10.04 (-0.68) in the no-till plots over a four year period. Differences in the soil C:N ratio comparing residue removed and residue returned were similar (-0.51 vs. -0.43 respectively). These soils are highly buffered for organic carbon changes. Many cropping cycles are required to determine how soil carbon storage is significantly impacted by production systems.

  15. US-1136, US-1137, and US-1138 cowpea lines for cover crop use

    Science.gov (United States)

    Following five years of field evaluation, three cowpea populations were selected as best adapted for use as a cover crop. A pure line selection procedure was used to develop genetically uniform lines from the segregating populations. Field evaluations demonstrated that the lines grow rapidly for u...

  16. Soil Erodibility Parameters Under Various Cropping Systems of Maize

    Science.gov (United States)

    van Dijk, P. M.; van der Zijp, M.; Kwaad, F. J. P. M.

    1996-08-01

    For four years, runoff and soil loss from seven cropping systems of fodder maize have been measured on experimental plots under natural and simulated rainfall. Besides runoff and soil loss, several variables have also been measured, including rainfall kinetic energy, degree of slaking, surface roughness, aggregate stability, soil moisture content, crop cover, shear strength and topsoil porosity. These variables explain a large part of the variance in measured runoff, soil loss and splash erosion under the various cropping systems. The following conclusions were drawn from the erosion measurements on the experimental plots (these conclusions apply to the spatial level at which the measurements were carried out). (1) Soil tillage after maize harvest strongly reduced surface runoff and soil loss during the winter; sowing of winter rye further reduced winter erosion, though the difference with a merely tilled soil is small. (2) During spring and the growing season, soil loss is reduced strongly if the soil surface is partly covered by plant residues; the presence of plant residue on the surface appeared to be essential in achieving erosion reduction in summer. (3) Soil loss reductions were much higher than runoff reductions; significant runoff reduction is only achieved by the straw system having flat-lying, non-fixed plant residue on the soil surface; the other systems, though effective in reducing soil loss, were not effective in reducing runoff.

  17. Protection against productivity versus erosion vineyards. Testing of vegetal covers in slope crops

    International Nuclear Information System (INIS)

    Marques, M. J.; Ruiz-Colmenero, M.; Garcia-Munoz, S.; Cabello, F.; Munoz-Organero, G.; Perez-Jimenez, M. A.; Bienes, R.

    2009-01-01

    Temporary and permanent cover crops were used in three rain fed vineyards in the Center of Spain. They were sown in the middle of the strips to assess their ability to control erosion as well as their influence on grape production. Data from the year 2008 are compared with those obtained with traditional tillage treatment. The permanent cover formed by Brachypodium distachyon showed better ability to control erosion but it produced a decrease in production in young vines. barley and rye treatments were temporary covers, mowed in spring. They also reduced the erosion compared with the tillage however they did not appear to affect the vineyard production. (Author)

  18. Determination of Germination Response to Temperature and Water Potential for a Wide Range of Cover Crop Species and Related Functional Groups.

    Science.gov (United States)

    Tribouillois, Hélène; Dürr, Carolyne; Demilly, Didier; Wagner, Marie-Hélène; Justes, Eric

    2016-01-01

    A wide range of species can be sown as cover crops during fallow periods to provide various ecosystem services. Plant establishment is a key stage, especially when sowing occurs in summer with high soil temperatures and low water availability. The aim of this study was to determine the response of germination to temperature and water potential for diverse cover crop species. Based on these characteristics, we developed contrasting functional groups that group species with the same germination ability, which may be useful to adapt species choice to climatic sowing conditions. Germination of 36 different species from six botanical families was measured in the laboratory at eight temperatures ranging from 4.5-43°C and at four water potentials. Final germination percentages, germination rate, cardinal temperatures, base temperature and base water potential were calculated for each species. Optimal temperatures varied from 21.3-37.2°C, maximum temperatures at which the species could germinate varied from 27.7-43.0°C and base water potentials varied from -0.1 to -2.6 MPa. Most cover crops were adapted to summer sowing with a relatively high mean optimal temperature for germination, but some Fabaceae species were more sensitive to high temperatures. Species mainly from Poaceae and Brassicaceae were the most resistant to water deficit and germinated under a low base water potential. Species were classified, independent of family, according to their ability to germinate under a range of temperatures and according to their base water potential in order to group species by functional germination groups. These groups may help in choosing the most adapted cover crop species to sow based on climatic conditions in order to favor plant establishment and the services provided by cover crops during fallow periods. Our data can also be useful as germination parameters in crop models to simulate the emergence of cover crops under different pedoclimatic conditions and crop

  19. Investigation the Vertical Distribution of Leaf Area and Dry Matter of Sweet Basil (Ocimum basilicum L., Borage (Borago officinalis L. and Cover Crops in Competition with Weeds

    Directory of Open Access Journals (Sweden)

    zeinab shirzadi margavi

    2017-10-01

    Full Text Available Introduction Distribution of leaf area and dry matter are the effective factors that influence on absorption the radiation, evaporation and transpiration of canopy and eventually dry matter accumulation and grain yield in plants. Plant canopy is the spatial arrangement of shoots in a plant population. In plant canopy, leaves are responsible for radiation absorption and gas exchange with the outside. Stem and branches arrange photosynthetic organs somehow, which gas exchange and light distribution best done. The effect of canopy structure on gas exchange and absorption of radiation in plant communities caused detailed study of the canopy structure to be more important. Materials and methods In order to investigate the vertical distribution of leaf area and dry matter of borage and sweet basil in competition with weeds by cover crops treatments, a field experiment was carried out in a randomized complete block design with 8 treatments and 3 replications in Agricultural Sciences and Natural Resources University of Sari in 2013. Treatments were cover crops mung bean (Vigna radiata L. and Persian clover (Trifolium resupinatum L. in the rows between the sweet basil (Ocimum basilicum L. and borage (Borago officinalis L.. Moreover, in order to evaluate the effectiveness of cover crops to control weeds, pure stand of sweet basil and borage in terms of weeding and no weed controls per replicates were used. Each plot was included 5 rows of medicinal plants. Cover crop inter-seeded simultaneously in the main crop. Estimation of leaf area and dry matter of each plant in different canopy layers (0-20, 20-40, 40-60, 80.100, 100-120 and 120-140 cm were done after 75 planting days, with 1 m × 1 m quadrate per plot. For this purpose a vertical card board frame marked in 20-cm increments was used in the field as a guide to cut standing plants (crops, cover crops and weeds into 20-cm strata increments (Mosier & Oliver, 1995. All samples were transferred to the

  20. Modeling the long-term effect of winter cover crops on nitrate transport in artificially drained fields across the Midwest U.S.

    Science.gov (United States)

    A fall-planted cover crop is a management practice with multiple benefits including reducing nitrate losses from artificially drained fields. We used the Root Zone Water Quality Model (RZWQM) to simulate the impact of a cereal rye cover crop on reducing nitrate losses from drained fields across five...

  1. Allelopathic effects of two cover crops Commelina diffusa Burm. F. and Tradescantia zebrina Shunltz on Coffea arabica L.

    Directory of Open Access Journals (Sweden)

    Georgina Berroa Navarro

    2016-03-01

    Full Text Available Allelopathic effect of the cover crops Tradescantia zebrina Shunltz (cucaracha and Commelina diffusa Burm. F. (canutillo were evaluated on Coffea arabica Lin. seeds Caturra Rojo variety. Germination tests were carried out “in vitro” and it was evaluated the root longitude, percentage of total germination and period of germination, as well as the height of the plant and the emergency percentage for the incorporation tests to the soil. It was also carried out, to both over crops, the preliminary chemical qualitative characterization. The results showed that the extracts of T. zebrina and of C. diffusa stimulated the “in vitro” germination and growth of C. arabica at different concentration levels. The incorporation to the soil of the extracts of C. diffusa stimulated the development of the plants of C. arabica, in a significant way, that supposes a considerable advantage in that concerns to the employment of these cover crops, when not implying noxious effects beside all the benefits implied when using cover crops. These last ones go from the protection and improvement of the properties of the soil, to the control of the spontaneous flora in the coffee agroecosystems.

  2. Sistemas de preparo do solo, plantas de cobertura e produtividade da cultura da mandioca Soil tillage systems, cover crops and productivity in cassava

    Directory of Open Access Journals (Sweden)

    Auro Akio Otsubo

    2008-03-01

    Full Text Available O objetivo deste trabalho foi avaliar os efeitos do uso de plantas de cobertura e de sistemas de preparo do solo, no desenvolvimento e na produtividade da cultura da mandioca (Manihot esculenta Crantz. O trabalho foi conduzido em Argissolo Vermelho, sob sistema convencional de preparo do solo, e em cultivo mínimo sobre palhada de mucuna-cinza (Stizolobium cinereum Piper & Tracy, sorgo granífero [Sorghum bicolor (L. Moench] e milheto [Pennisetum americanum (L. K. Schum.]. Aos dezoito meses após o plantio da mandioca, foram avaliados: altura de plantas, produção de massa de matéria seca da parte aérea, número de raízes tuberosas, produtividade, percentagem de matéria seca e de amido nas raízes tuberosas e índice de colheita. Observou-se que o sistema convencional de preparo do solo pode ser substituído, na cultura da mandioca, pela prática do cultivo mínimo, associada ao uso de coberturas vegetais, por promover incrementos significativos na produtividade da cultura, especialmente, quando se utiliza o milheto como planta de cobertura. O uso de plantas de cobertura no pré-cultivo de mandioca, em sistema de preparo mínimo do solo, representa uma alternativa eficiente para um melhor manejo dessa cultura.The objective of this work was to evaluate the effects of cover crops and soil tillage systems in the development and yield of cassava (Manihot esculenta Crantz. The experiment was carried out in an Arenic Hapludult under conventional tillage, and in a minimum tillage system over mucuna (Stizolobium cinereum Piper & Tracy, sorghum [Sorghum bicolor (L. Moench] and millet straw [Pennisetum americanum (L. K. Schum.]. Eighteen months after cassava planting, the following variables were evaluated: plant height, shoot dry matter production, number of roots, yield, dry matter and starch content on storage roots, and harvest index. It was observed that conventional tillage could be replaced by minimum tillage in cassava crop, when associated

  3. Weed infestation of spring common wheat (Triticum aestivum L. grown in monoculture depending on the cover crop and weed control method

    Directory of Open Access Journals (Sweden)

    Dorota Gawęda

    2012-10-01

    Full Text Available The aim of this 3-year field study was to evaluate the effect of some stubble crops and in-crop weed control methods on the species composition, number and air-dry weight of weeds in a wheat crop grown in short-term monoculture. The study was conducted in the period 2009-2011 in the Uhrusk Experimental Farm on mixed rendzina soil classified as very good rye soil complex. It included various types of stubble crops ploughed in each year (control treatment without cover crop, white mustard, lacy phacelia, a mixture of legumes – narrow-leaf lupin + field pea and methods of weed control in spring wheat (mechanical, mechanical and chemical, chemical weed control. On average during the study period, all stubble crops used reduced the air-dry weight of weds in the treatments with mechanical weed management relative to the control treatment. Irrespective of the weed control method, the number of weeds in the wheat crop was significantly lower only after the ploughing in of white mustard. Mechanical weed management proved to be less effective in reducing the number and dry weight of weeds compared to other weed control methods. The white mustard and legume mixture cover crops had a reducing effect on the number of weed species in relation to the treatment without cover crops. The highest floristic diversity of weed communities was found in the spring wheat crop in which only mechanical weeding alone was used.

  4. Riparian buffer zones as pesticide filters of no-till crops.

    Science.gov (United States)

    Aguiar, Terencio R; Bortolozo, F R; Hansel, F A; Rasera, K; Ferreira, M T

    2015-07-01

    Several studies have pointed to the potential benefits of riparian vegetation as buffer zones for agricultural and industrial pollutants harmful to aquatic ecosystems. However, other studies have called into question its use as an ecological filter, questioning the widths and conditions for which they are effective as a filter. In this work, we have investigated the buffering capacity of the riparian one to retain pesticides in the water-saturated zone, on 27 sites composed by riparian buffer zones with different vegetation structure (woody, shrubs, or grass vegetation) and width (12, 36, and 60 m). Five pesticides were analyzed. The effectiveness of the filtering was largely influenced by the width and vegetation type of the buffer zone. In general, decreasing pesticide removal followed in this order wood > shrubs > grass. The 60 m woody buffer zone was the most effective in the removal of all the pesticides. Only atrazine was detected in this case (0.3 μg L(-1)). Furthermore, a linear correlation (R (2) > 0.97) was observed in their removal for all compounds and buffer zones studied. Thus, preserving the woody vegetation in the riparian zone is important for watershed management and groundwater quality in the no-tillage system in temperate climate.

  5. Fall cover crops boost soil arbuscular mycorrhizal fungi which can lead to reduced inputs

    Science.gov (United States)

    Fall cover crops provide multiple benefits to producers. These benefits include pathogen and pest protection, drought protection, weed control, reduced soil erosion, nutrient acquisition and retention, increased soil organic matter, and conservation of soil water by improvement of soil structure th...

  6. Quantification of tillage, plant cover, and cumulative rainfall effects on soil surface microrelief by statistical, geostatistical and fractal indices

    Science.gov (United States)

    Paz-Ferreiro, J.; Bertol, I.; Vidal Vázquez, E.

    2008-07-01

    Changes in soil surface microrelief with cumulative rainfall under different tillage systems and crop cover conditions were investigated in southern Brazil. Surface cover was none (fallow) or the crop succession maize followed by oats. Tillage treatments were: 1) conventional tillage on bare soil (BS), 2) conventional tillage (CT), 3) minimum tillage (MT) and 4) no tillage (NT) under maize and oats. Measurements were taken with a manual relief meter on small rectangular grids of 0.234 and 0.156 m2, throughout growing season of maize and oats, respectively. Each data set consisted of 200 point height readings, the size of the smallest cells being 3×5 cm during maize and 2×5 cm during oats growth periods. Random Roughness (RR), Limiting Difference (LD), Limiting Slope (LS) and two fractal parameters, fractal dimension (D) and crossover length (l) were estimated from the measured microtopographic data sets. Indices describing the vertical component of soil roughness such as RR, LD and l generally decreased with cumulative rain in the BS treatment, left fallow, and in the CT and MT treatments under maize and oats canopy. However, these indices were not substantially affected by cumulative rain in the NT treatment, whose surface was protected with previous crop residues. Roughness decay from initial values was larger in the BS treatment than in CT and MT treatments. Moreover, roughness decay generally tended to be faster under maize than under oats. The RR and LD indices decreased quadratically, while the l index decreased exponentially in the tilled, BS, CT and MT treatments. Crossover length was sensitive to differences in soil roughness conditions allowing a description of microrelief decay due to rainfall in the tilled treatments, although better correlations between cumulative rainfall and the most commonly used indices RR and LD were obtained. At the studied scale, parameters l and D have been found to be useful in interpreting the configuration properties of

  7. Effects of Carbon and Cover Crop Residues on N2O and N2 Emissions

    Science.gov (United States)

    Burger, M.; Cooperman, Y.; Horwath, W. R.

    2016-12-01

    In Mediterranean climate, nitrous oxide emissions occurring with the first rainfall after the dry summer season can contribute up to 50% of agricultural systems' total annual emissions, but the drivers of these emissions have not been clearly identified, and there are only few measurements of atmospheric nitrogen (N2) production (denitrification) during these events. In lab incubations, we investigated N2O and N2 production, gross ammonification and nitrification, and microbial N immobilization with wet-up in soil from a vineyard that was previously fallow or where cover crop residue had been incorporated the previous spring. Before the first rainfall, we measured 120 mg dissolved organic carbon (DOC-C) kg-1 soil in the 0-5 cm layer of this vineyard, and after the rain 10 mg DOC-C kg-1, while nitrate levels before the rain were cover cropped soil. The N2O/N2 production was 2, 7, 9, and 86% in fallow, legume-grass mixture, rye, and legume cover cropped soil. The N2O/N2 ratio tended to increase with lower DOC (post-rain) levels in the soil. The results suggest that accumulated carbon in dry surface soil is the main driving factor of N2O and N2 emissions through denitrification with the first rainfall after prolonged dry periods.

  8. Cover crop and CO2 emissions

    Science.gov (United States)

    Agricultural land management practices account for about 50% of soil organic carbon (SOC) loss. Restoring SOC is important to soil productivity and fertility. Management strategies to rebuild SOC include addition of manure or other organic amendments, increasing root biomass from crops, leaving crop...

  9. Combining mechanical rhizome removal and cover crops for Elytrigia repens control in organic barley systems

    DEFF Research Database (Denmark)

    Melander, B; Nørremark, M; Kristensen, E F

    2013-01-01

    of vegetative propagules located within the plough layer to allow for quick re-establishment of a plant cover. A field experiment comparing the effects of conventional practices (stubble cultivation) with different combinations of rotary cultivation (One, Two or four passes) and cover crops (none vs. rye......-vetch-mustard mixture) on Elytrigia repens rhizome removal, shoot growth and suppression of a subsequent barley crop was examined in two growing seasons. Four passes with a modified rotary cultivator, where each pass was followed by rhizome removal, reduced E. repens shoot growth in barley by 84% and 97%. In general...

  10. Harvesting fertilized rye cover crop: simulated revenue, net energy, and drainage Nitrogen loss

    Science.gov (United States)

    Food and biofuel production along with global N use are expected to increase over the next few decades, which complicates the goal of reducing N loss to the environment. Including winter rye as a cover crop in corn-soybean rotations reduces N loss to drainage. A few studies suggest that harvesting r...

  11. Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland, United States

    Science.gov (United States)

    Prabhakara, Kusuma; Hively, W. Dean; McCarty, Gregory W.

    2015-07-01

    Winter cover crops are an essential part of managing nutrient and sediment losses from agricultural lands. Cover crops lessen sedimentation by reducing erosion, and the accumulation of nitrogen in aboveground biomass results in reduced nutrient runoff. Winter cover crops are planted in the fall and are usually terminated in early spring, making them susceptible to senescence, frost burn, and leaf yellowing due to wintertime conditions. This study sought to determine to what extent remote sensing indices are capable of accurately estimating the percent groundcover and biomass of winter cover crops, and to analyze under what critical ranges these relationships are strong and under which conditions they break down. Cover crop growth on six fields planted to barley, rye, ryegrass, triticale or wheat was measured over the 2012-2013 winter growing season. Data collection included spectral reflectance measurements, aboveground biomass, and percent groundcover. Ten vegetation indices were evaluated using surface reflectance data from a 16-band CROPSCAN sensor. Restricting analysis to sampling dates before the onset of prolonged freezing temperatures and leaf yellowing resulted in increased estimation accuracy. There was a strong relationship between the normalized difference vegetation index (NDVI) and percent groundcover (r2 = 0.93) suggesting that date restrictions effectively eliminate yellowing vegetation from analysis. The triangular vegetation index (TVI) was most accurate in estimating high ranges of biomass (r2 = 0.86), while NDVI did not experience a clustering of values in the low and medium biomass ranges but saturated in the higher range (>1500 kg/ha). The results of this study show that accounting for index saturation, senescence, and frost burn on leaves can greatly increase the accuracy of estimates of percent groundcover and biomass for winter cover crops.

  12. Cover cropping in Vitis vinifera L. cv. Manto Negro vineyards under Mediterranean conditions: effects on plant vigour, yield and grape quality

    Directory of Open Access Journals (Sweden)

    Alícia Pou

    2011-12-01

    Significance and impact of the study: This study showed that the use of specific cover crops in vineyards under Mediterranean climates helps to reduce vegetative vigour. Nevertheless, yield reduction and slight quality improvement suggest that cover crops should be adjusted in order to reduce competition for water and thus prevent these negative effects of water scarcity.

  13. Sustainable Agriculture: Cover Cropping

    Science.gov (United States)

    Webster, Megan

    2018-01-01

    Sustainable agriculture practices are increasingly being used by farmers to maintain soil quality, increase biodiversity, and promote production of food that is environmentally safe. There are several types of sustainable agriculture practices such as organic farming, crop rotation, and aquaculture. This lesson plan focuses on the sustainable…

  14. Energy efficiency of conventional, organic, and alternative cropping systems for food and fuel at a site in the U.S. Midwest.

    Science.gov (United States)

    Gelfand, Ilya; Snapp, Sieglinde S; Robertson, G Philip

    2010-05-15

    The prospect of biofuel production on a large scale has focused attention on energy efficiencies associated with different agricultural systems and production goals. We used 17 years of detailed data on agricultural practices and yields to calculate an energy balance for different cropping systems under both food and fuel scenarios. We compared four grain and one forage systems in the U.S. Midwest: corn (Zea mays) - soybean (Glycine max) - wheat (Triticum aestivum) rotations managed with (1) conventional tillage, (2) no till, (3) low chemical input, and (4) biologically based (organic) practices, and (5) continuous alfalfa (Medicago sativa). We compared energy balances under two scenarios: all harvestable biomass used for food versus all harvestable biomass used for biofuel production. Among the annual grain crops, average energy costs of farming for the different systems ranged from 4.8 GJ ha(-1) y(-1) for the organic system to 7.1 GJ ha(-1) y(-1) for the conventional; the no-till system was also low at 4.9 GJ ha(-1) y(-1) and the low-chemical input system intermediate (5.2 GJ ha(-1) y(-1)). For each system, the average energy output for food was always greater than that for fuel. Overall energy efficiencies ranged from output:input ratios of 10 to 16 for conventional and no-till food production and from 7 to 11 for conventional and no-till fuel production, respectively. Alfalfa for fuel production had an efficiency similar to that of no-till grain production for fuel. Our analysis points to a more energetically efficient use of cropland for food than for fuel production and large differences in efficiencies attributable to management, which suggests multiple opportunities for improvement.

  15. EFFECT OF DIFFERENT COVER CROP RESIDUES, MANAGEMENT PRACTICES ON SOIL MOISTURE CONTENT UNDER A TOMATO CROP (LYCOPERSICON ESCULENTUM

    Directory of Open Access Journals (Sweden)

    George Njomo Karuku

    2014-12-01

    Full Text Available SUMMARYThe soil water storage, soil water content, available water content and soil water balance under various cover crop residue management practices in a Nitisol were evaluated in a field experiment at the Kabete Field Station, University of Nairobi. The effects of surface mulching, above and below ground biomass and roots only incorporated of (mucuna pruriens, Tanzanian sunnhemp (Crotalaria ochroleuca and Vetch (Vicia benghalensis cover crops, fertilizer and non fertilized plots on soil water balance were studied. Tomato (Lycopersicon esculentum was used as the test crop. Since water content was close to field capacity, the drainage component at 100 cm soil depth was negligible and evapotranspiration was therefore derived from the change in soil moisture storage and precipitation. Residue management showed that above and below ground biomass incorporated optimized the partitioning of the water balance components, increasing moisture storage, leading to increased tomato yields and water use efficiency. Furthermore, vetch above and below ground biomass incorporated significantly improved the quantity and frequency of deep percolation. Soil fertilization (F and non fertilization (NF caused the most unfavourable partitioning of water balance, leading to the lowest yield and WUE. Tomato yields ranged from 4.1 in NF to 7.4 Mg ha-1 in Vetch treated plots. Vetch above and belowground biomass incorporated had significant (p ≤ 0.1 yields of 11.4 Mg ha-1 compared to all other residue management systems. Vetch residue treatment had the highest WUE (22.7 kg mm-1 ha-1 followed by mucuna treated plots (20.7 kg mm-1 ha-1 and both were significantly different (p ≤ 0.05 compared to the others irrespective of residue management practices.

  16. RNA interference: a promising technique for the improvement of traditional crops.

    Science.gov (United States)

    Katoch, Rajan; Thakur, Neelam

    2013-03-01

    RNA interference (RNAi) is a homology-dependent gene-silencing technology that involves double-stranded RNA directed against a target gene. This technique has emerged as powerful tool in understanding the functions of a number of genes in recent years. For the improvement in the nutritional status of the plants and reduction in the level of antinutrients, the conventional breeding methods were not completely successful in achieving the tissue-specific regulation of some genes. RNAi has shown successful results in a number of plant species for nutritional improvement, change in morphology and alteration in metabolite synthesis. This technology has been applied mostly in genetic engineering of important crop plants, and till date there are no reports of its application for the improvement of traditional/underutilized crops. In this study, we discuss current knowledge of RNAi function and concept and strategies for the improvement of traditional crops. Practical application. Although RNAi has been extensively used for the improvement of popular crops, no attention has been given for the use of this technology for the improvement of underutilized crops. This study describes the importance of use of this technology for the improvement of underutilized crops.

  17. Satellite Estimation of Fractional Cover in Several California Specialty Crops

    Science.gov (United States)

    Johnson, L.; Cahn, M.; Rosevelt, C.; Guzman, A.; Lockhart, T.; Farrara, B.; Melton, F. S.

    2016-12-01

    Past research in California and elsewhere has revealed strong relationships between satellite NDVI, photosynthetically active vegetation fraction (Fc), and crop evapotranspiration (ETc). Estimation of ETc can support efficiency of irrigation practice, which enhances water security and may mitigate nitrate leaching. The U.C. Cooperative Extension previously developed the CropManage (CM) web application for evaluation of crop water requirement and irrigation scheduling for several high-value specialty crops. CM currently uses empirical equations to predict daily Fc as a function of crop type, planting date and expected harvest date. The Fc prediction is transformed to fraction of reference ET and combined with reference data from the California Irrigation Management Information System to estimate daily ETc. In the current study, atmospherically-corrected Landsat NDVI data were compared with in-situ Fc estimates on several crops in the Salinas Valley during 2011-2014. The satellite data were observed on day of ground collection or were linearly interpolated across no more than an 8-day revisit period. Results will be presented for lettuce, spinach, celery, broccoli, cauliflower, cabbage, peppers, and strawberry. An application programming interface (API) allows CM and other clients to automatically retrieve NDVI and associated data from NASA's Satellite Irrigation Management Support (SIMS) web service. The SIMS API allows for queries both by individual points or user-defined polygons, and provides data for individual days or annual timeseries. Updates to the CM web app will convert these NDVI data to Fc on a crop-specific basis. The satellite observations are expected to play a support role in Salinas Valley, and may eventually serve as a primary data source as CM is extended to crop systems or regions where Fc is less predictable.

  18. Assessing the impacts of climate change and tillage practices on stream flow, crop and sediment yields from the Mississippi River Basin

    Science.gov (United States)

    P.B. Parajuli; P. Jayakody; G.F. Sassenrath; Y. Ouyang

    2016-01-01

    This study evaluated climate change impacts on stream flow, crop and sediment yields from three differ-ent tillage systems (conventional, reduced 1–close to conservation, and reduced 2–close to no-till), in theBig Sunflower River Watershed (BSRW) in Mississippi. The Soil and Water Assessment Tool (SWAT) modelwas applied to the BSRW using observed stream flow and crop...

  19. Does nitrogen fertilizer application rate to corn affect nitrous oxide emissions from the rotated soybean crop?

    Science.gov (United States)

    Iqbal, Javed; Mitchell, David C; Barker, Daniel W; Miguez, Fernando; Sawyer, John E; Pantoja, Jose; Castellano, Michael J

    2015-05-01

    Little information exists on the potential for N fertilizer application to corn ( L.) to affect NO emissions during subsequent unfertilized crops in a rotation. To determine if N fertilizer application to corn affects NO emissions during subsequent crops in rotation, we measured NO emissions for 3 yr (2011-2013) in an Iowa, corn-soybean [ (L.) Merr.] rotation with three N fertilizer rates applied to corn (0 kg N ha, the recommended rate of 135 kg N ha, and a high rate of 225 kg N ha); soybean received no N fertilizer. We further investigated the potential for a winter cereal rye ( L.) cover crop to interact with N fertilizer rate to affect NO emissions from both crops. The cover crop did not consistently affect NO emissions. Across all years and irrespective of cover crop, N fertilizer application above the recommended rate resulted in a 16% increase in mean NO flux rate during the corn phase of the rotation. In 2 of the 3 yr, N fertilizer application to corn (0-225 kg N ha) did not affect mean NO flux rates from the subsequent unfertilized soybean crop. However, in 1 yr after a drought, mean NO flux rates from the soybean crops that received 135 and 225 kg N ha N application in the corn year were 35 and 70% higher than those from the soybean crop that received no N application in the corn year. Our results are consistent with previous studies demonstrating that cover crop effects on NO emissions are not easily generalizable. When N fertilizer affects NO emissions during a subsequent unfertilized crop, it will be important to determine if total fertilizer-induced NO emissions are altered or only spread across a greater period of time. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Stabilization of soil hydraulic properties under a long term no-till system

    Directory of Open Access Journals (Sweden)

    Luis Alberto Lozano

    2014-08-01

    Full Text Available The area under the no-tillage system (NT has been increasing over the last few years. Some authors indicate that stabilization of soil physical properties is reached after some years under NT while other authors debate this. The objective of this study was to determine the effect of the last crop in the rotation sequence (1st year: maize, 2nd year: soybean, 3rd year: wheat/soybean on soil pore configuration and hydraulic properties in two different soils (site 1: loam, site 2: sandy loam from the Argentinean Pampas region under long-term NT treatments in order to determine if stabilization of soil physical properties is reached apart from a specific time in the crop sequence. In addition, we compared two procedures for evaluating water-conducting macroporosities, and evaluated the efficiency of the pedotransfer function ROSETTA in estimating the parameters of the van Genuchten-Mualem (VGM model in these soils. Soil pore configuration and hydraulic properties were not stable and changed according to the crop sequence and the last crop grown in both sites. For both sites, saturated hydraulic conductivity, K0, water-conducting macroporosity, εma, and flow-weighted mean pore radius, R0ma, increased from the 1st to the 2nd year of the crop sequence, and this was attributed to the creation of water-conducting macropores by the maize roots. The VGM model adequately described the water retention curve (WRC for these soils, but not the hydraulic conductivity (K vs tension (h curve. The ROSETTA function failed in the estimation of these parameters. In summary, mean values of K0 ranged from 0.74 to 3.88 cm h-1. In studies on NT effects on soil physical properties, the crop effect must be considered.

  1. Interactions of tillage and cover crop on water, sediment, and pre-emergence herbicide loss in glyphosate-resistant cotton: implications for the control of glyphosate-resistant weed biotypes.

    Science.gov (United States)

    Krutz, L Jason; Locke, Martin A; Steinriede, R Wade

    2009-01-01

    The need to control glyphosate [N-(phosphonomethyl)glycine]-resistant weed biotypes with tillage and preemergence herbicides in glyphosate-resistant crops (GRCs) is causing a reduction in no-tillage hectarage thereby threatening the advances made in water quality over the past decade. Consequently, if environmental gains afforded by GRCs are to be maintained, then an in-field best management practice (BMP) compatible with tillage is required for hectarage infested with glyphosate-resistant weed biotypes. Thus, 1 d after a preemergent application of fluometuron [N,N-dimethyl-N'-(3-(trifluoromethyl)phenyl)urea] (1.02 kg ha(-1)) and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] (1.18 kg ha(-1)) to a Dundee silt loam (fine-silty, mixed, active, thermic Typic Endoaqualf), simulated rainfall (60 mm h(-1)) was applied to 0.0002-ha microplots for approximately 1.25 h to elucidate tillage (no tillage [NT] and reduced tillage [RT])and cover crop (no cover [NC] and rye cover [RC]) effects on water, sediment, and herbicide loss in surface runoff. Regardless of tillage, RC delayed time-to-runoff 1.3-fold, reduced cumulative runoff volume 1.4-fold, and decreased cumulative sediment loss 4.7-fold. Cumulative fluometuron loss was not affected by tillage or cover crop. Conversely, total metolachlor loss was 1.3-fold lower in NT than RT and 1.4-fold lower in RC than NC. These data indicate that RC can be established in hectarage requiring tillage and potentially curtail water, sediment, and preemergence herbicide losses in the spring to levels equivalent to or better than that of NT, thereby protecting environmental gains provided by GRCs.

  2. Vägen till projektledarrollen : En kvalitativ studie om projektledares väg till projektledarrollen

    OpenAIRE

    Björlin, Sandra; Troedsson Rundqvist, Emma

    2017-01-01

    Denna studie belyser hur projektledares väg till projektledarrollen ser ut. Det är en kvalitativ studie baserad på berättelser från åtta personer aktiva inom fyra olika organisationer. Syftet med undersökningen var att studera hur yrkesverksamma projektledares väg till projektledarrollen ser ut. Genom semistrukturerade intervjuer tog vi del av hur respondenternas aktiva och mindre aktiva val, från studier till yrkesliv, påverkat deras väg till projektledarrollen. Vi har valt att avgränsa unde...

  3. Effect of sugarcane cropping systems on herbicide losses in surface runoff.

    Science.gov (United States)

    Nachimuthu, Gunasekhar; Halpin, Neil V; Bell, Michael J

    2016-07-01

    Herbicide runoff from cropping fields has been identified as a threat to the Great Barrier Reef ecosystem. A field investigation was carried out to monitor the changes in runoff water quality resulting from four different sugarcane cropping systems that included different herbicides and contrasting tillage and trash management practices. These include (i) Conventional - Tillage (beds and inter-rows) with residual herbicides used; (ii) Improved - only the beds were tilled (zonal) with reduced residual herbicides used; (iii) Aspirational - minimum tillage (one pass of a single tine ripper before planting) with trash mulch, no residual herbicides and a legume intercrop after cane establishment; and (iv) New Farming System (NFS) - minimum tillage as in Aspirational practice with a grain legume rotation and a combination of residual and knockdown herbicides. Results suggest soil and trash management had a larger effect on the herbicide losses in runoff than the physico-chemical properties of herbicides. Improved practices with 30% lower atrazine application rates than used in conventional systems produced reduced runoff volumes by 40% and atrazine loss by 62%. There were a 2-fold variation in atrazine and >10-fold variation in metribuzin loads in runoff water between reduced tillage systems differing in soil disturbance and surface residue cover from the previous rotation crops, despite the same herbicide application rates. The elevated risk of offsite losses from herbicides was illustrated by the high concentrations of diuron (14μgL(-1)) recorded in runoff that occurred >2.5months after herbicide application in a 1(st) ratoon crop. A cropping system employing less persistent non-selective herbicides and an inter-row soybean mulch resulted in no residual herbicide contamination in runoff water, but recorded 12.3% lower yield compared to Conventional practice. These findings reveal a trade-off between achieving good water quality with minimal herbicide contamination and

  4. High Resolution Melt (HRM) analysis is an efficient tool to genotype EMS mutants in complex crop genomes.

    Science.gov (United States)

    Lochlainn, Seosamh Ó; Amoah, Stephen; Graham, Neil S; Alamer, Khalid; Rios, Juan J; Kurup, Smita; Stoute, Andrew; Hammond, John P; Østergaard, Lars; King, Graham J; White, Phillip J; Broadley, Martin R

    2011-12-08

    Targeted Induced Loci Lesions IN Genomes (TILLING) is increasingly being used to generate and identify mutations in target genes of crop genomes. TILLING populations of several thousand lines have been generated in a number of crop species including Brassica rapa. Genetic analysis of mutants identified by TILLING requires an efficient, high-throughput and cost effective genotyping method to track the mutations through numerous generations. High resolution melt (HRM) analysis has been used in a number of systems to identify single nucleotide polymorphisms (SNPs) and insertion/deletions (IN/DELs) enabling the genotyping of different types of samples. HRM is ideally suited to high-throughput genotyping of multiple TILLING mutants in complex crop genomes. To date it has been used to identify mutants and genotype single mutations. The aim of this study was to determine if HRM can facilitate downstream analysis of multiple mutant lines identified by TILLING in order to characterise allelic series of EMS induced mutations in target genes across a number of generations in complex crop genomes. We demonstrate that HRM can be used to genotype allelic series of mutations in two genes, BraA.CAX1a and BraA.MET1.a in Brassica rapa. We analysed 12 mutations in BraA.CAX1.a and five in BraA.MET1.a over two generations including a back-cross to the wild-type. Using a commercially available HRM kit and the Lightscanner™ system we were able to detect mutations in heterozygous and homozygous states for both genes. Using HRM genotyping on TILLING derived mutants, it is possible to generate an allelic series of mutations within multiple target genes rapidly. Lines suitable for phenotypic analysis can be isolated approximately 8-9 months (3 generations) from receiving M3 seed of Brassica rapa from the RevGenUK TILLING service.

  5. High Resolution Melt (HRM analysis is an efficient tool to genotype EMS mutants in complex crop genomes

    Directory of Open Access Journals (Sweden)

    Lochlainn Seosamh Ó

    2011-12-01

    Full Text Available Abstract Background Targeted Induced Loci Lesions IN Genomes (TILLING is increasingly being used to generate and identify mutations in target genes of crop genomes. TILLING populations of several thousand lines have been generated in a number of crop species including Brassica rapa. Genetic analysis of mutants identified by TILLING requires an efficient, high-throughput and cost effective genotyping method to track the mutations through numerous generations. High resolution melt (HRM analysis has been used in a number of systems to identify single nucleotide polymorphisms (SNPs and insertion/deletions (IN/DELs enabling the genotyping of different types of samples. HRM is ideally suited to high-throughput genotyping of multiple TILLING mutants in complex crop genomes. To date it has been used to identify mutants and genotype single mutations. The aim of this study was to determine if HRM can facilitate downstream analysis of multiple mutant lines identified by TILLING in order to characterise allelic series of EMS induced mutations in target genes across a number of generations in complex crop genomes. Results We demonstrate that HRM can be used to genotype allelic series of mutations in two genes, BraA.CAX1a and BraA.MET1.a in Brassica rapa. We analysed 12 mutations in BraA.CAX1.a and five in BraA.MET1.a over two generations including a back-cross to the wild-type. Using a commercially available HRM kit and the Lightscanner™ system we were able to detect mutations in heterozygous and homozygous states for both genes. Conclusions Using HRM genotyping on TILLING derived mutants, it is possible to generate an allelic series of mutations within multiple target genes rapidly. Lines suitable for phenotypic analysis can be isolated approximately 8-9 months (3 generations from receiving M3 seed of Brassica rapa from the RevGenUK TILLING service.

  6. Avaliação de diferentes coberturas na supressão de plantas daninhas no cerrado Evaluation of weed suppression using different crop covers under Brazilian cerrado soil conditions

    Directory of Open Access Journals (Sweden)

    D.K. Meschede

    2007-09-01

    Full Text Available A definição de espécies com elevada produtividade de fitomassa para cobertura do solo é um dos fatores de sucesso do sistema plantio direto. O cultivo de solos tropicais e subtropicais, baseado em práticas de preparo com intenso revolvimento, normalmente resulta na maior incidência de plantas invasoras. Objetivou-se neste trabalho comparar diferentes tipos de cobertura vegetal quanto ao potencial de supressão das plantas invasoras em áreas do cerrado. Foram avaliados sete tipos de cobertura (milheto ADR500, milheto ADR 300, sorgo, milho, crotalária, mamona e vegetação espontânea mais a testemunha mantida no limpo (capinada. O delineamento foi em blocos casualizados, com quatro repetições. O sorgo apresentou maior peso de cobertura seca (11.890 kg ha-1 e, juntamente com o milheto e a crotalária, demonstrou maior capacidade de supressão das plantas invasoras, pela maior capacidade de cobertura do solo. A vegetação espontânea apresentou os menores valores de biomassa. O milho e a mamona são culturas com menor potencial de cobertura do solo. O acúmulo de biomassa pelas coberturas foi inversamente proporcional ao da biomassa das plantas invasoras.The definition of plant species with higher production for soil mulching is one of the main factors for a successful no-tillage system. The practice of soil tillage in tropical and subtropical regions based on intensive soil revolving results in decreased organic matter and increased weed incidence. Thus, the aim of this work was to compare the potential of different soil mulching to suppress weeds under no-tillage system in Brazilian cerrado areas. Thus, seven treatments were evaluated consisting of the following soil crop covers: Millet ADR 500 (Penisetum americanum L., Millet ADR300, Sorghum (Sorghum bicolor L., Maize (Zea mays L., Crotalaria (Crotalaria juncea L., Castorbean plant (Ricinus communis L. and spontaneous vegetation. A randomized block experimental design with 4

  7. Dinâmica do potássio nos resíduos vegetais de plantas de cobertura no Cerrado Potassium dynamics in crop residues of cover plants in Cerrado

    Directory of Open Access Journals (Sweden)

    José Luiz Rodrigues Torres

    2008-08-01

    Full Text Available A produção de biomassa, a manutenção dos resíduos vegetais sobre o solo e sua posterior decomposição são fatores de grande importância no estudo da ciclagem de nutrientes. Este estudo foi desenvolvido na área experimental do CEFET-Uberaba-MG, onde foram avaliados oito tipos de coberturas vegetais: milheto (Pennisetum americanum sin. tiphoydes, braquiária (Brachiaria brizantha, sorgo-forrageiro (Sorghum bicolor L. Moench, guandu (Cajanus cajan (L. Mill sp., crotalária (Crotalarea juncea, aveia-preta (Avena strigosa Schreb, pousio e área em preparo convencional de solo (testemunha em área de Cerrado, na região do Triângulo Mineiro. Avaliaram-se a fitomassa seca (FS, a decomposição dos resíduos em bolsas de decomposição, e a liberação de K. Utilizou-se um modelo matemático para descrever a decomposição dos resíduos e a liberação de K, e calcularam-se a constante de decomposição (k e o tempo de meia-vida (T½. O milheto, o sorgo e a crotalária foram as coberturas que apresentaram maiores produções de matéria seca. O maior acúmulo de K ocorreu em gramíneas e a maior liberação de K ocorreu no milheto, aveia, braquiária e crotalária nos primeiros 42 dias após manejo, nos dois períodos avaliados. A braquiária apresentou o menor T½ vida e a maior taxa de liberação de K.Crop residue production, plant residue maintenance and their decomposition are important factors in the understanding of nutrient recycling process. To evaluate K accumulation and release a study with eight cover crops types was developed: pearl millet (Pennisetum americanum sin. tiphoydes, brachiaria grass (Brachiaria brizantha, sorghum (Sorghum bicolor L. Moench, pigeonpea (Cajanus cajan (L. Millsp, sunn hemp (Crotalarea juncea and black oats (Avena strigosa Schreb, fallow land and conventional culture (control in the experimental area of CEFET-Uberaba-MG, in a Cerrado area. The dry mass production, crop residue decomposition in litter bags

  8. Symbiotic N2-fixation by the cover crop Pueraria phaseoloides as influenced by litter mineralization

    DEFF Research Database (Denmark)

    Vesterager, J.M.; Østerby, S.; Jensen, E.S.

    1995-01-01

    The perennial legume Pueraria phaseoloides is widely used as a cover crop in rubber and oil palm plantations. However, very little knowledge exists on the effect of litter mineralization from P. phaseoloides on its symbiotic N-2- fixation. The contribution from symbiotic N-2-fixation (Ndfa...

  9. Effects of land cover change on moisture availability and potential crop yield in the world’s breadbaskets

    International Nuclear Information System (INIS)

    Bagley, Justin E; Desai, Ankur R; Dirmeyer, Paul A; Foley, Jonathan A

    2012-01-01

    The majority of the world’s food production capability is inextricably tied to global precipitation patterns. Changes in moisture availability—whether from changes in climate from anthropogenic greenhouse gas emissions or those induced by land cover change (LCC)—can have profound impacts on food production. In this study, we examined the patterns of evaporative sources that contribute to moisture availability over five major global food producing regions (breadbaskets), and the potential for land cover change to influence these moisture sources by altering surface evapotranspiration. For a range of LCC scenarios we estimated the impact of altered surface fluxes on crop moisture availability and potential yield using a simplified linear hydrologic model and a state-of-the-art ecosystem and crop model. All the breadbasket regions were found to be susceptible to reductions in moisture owing to perturbations in evaporative source (ES) from LCC, with reductions in moisture availability ranging from 7 to 17% leading to potential crop yield reductions of 1–17%, which are magnitudes comparable to the changes anticipated with greenhouse warming. The sensitivity of these reductions in potential crop yield to varying magnitudes of LCC was not consistent among regions. Two variables explained most of these differences: the first was the magnitude of the potential moisture availability change, with regions exhibiting greater reductions in moisture availability also tending to exhibit greater changes in potential yield; the second was the soil moisture within crop root zones. Regions with mean growing season soil moisture fractions of saturation >0.5 typically had reduced impacts on potential crop yield. Our results indicate the existence of LCC thresholds that have the capability to create moisture shortages adversely affecting crop yields in major food producing regions, which could lead to future food supply disruptions in the absence of increased irrigation or other

  10. Manejo de rebrotes de Digitaria insularis no plantio direto de milho Management of Digitaria insularis sprouts under no-till corn cultivation

    Directory of Open Access Journals (Sweden)

    P.C. Timossi

    2009-03-01

    Full Text Available Com a dessecação da vegetação espontânea, nem sempre se consegue obter controle total das espécies daninhas, o que leva à perenização e ao aumento da importância daquelas selecionadas. Em área de plantio direto com predominância de rebrotes de Digitaria insularis, foi testado nicosulfuron isolado (60 g ha-1 e em mistura em tanque com atrazine (40 + 1.500 g ha-1, foramsulfuron + iodosulfuron-methyl (45 + 3 g ha-1 e mesotrione em mistura em tanque com atrazine (144 + 1.500 g ha-1 sob delineamento de blocos ao acaso, com quatro repetições. Cada parcela apresentava 6 x 4 m, contendo seis linhas de milho. A aplicação dos herbicidas foi feita com pulverizador costal na pressão constante de 30 lbf pol-2, com gasto de 200L ha-1 de calda. Foram avaliadas a eficácia e a intoxicação dos herbicidas aos 7, 15 e 30 dias após a aplicação na cultura. Na época da colheita, realizouse levantamento da cobertura vegetal reinfestante e do seu grau de dificuldade de colheita mecanizada, além da produtividade da cultura. Pode-se inferir que o melhor resultado para o manejo de rebrotes de D. insularis foi com a utilização de nicosulfuron isolado a 60 g ha-1.Total weed control is not always possible under no-till desiccation leading to perennial and increased number of weeds. In no-till cultivation areas with predominant occurrence of Digitaria insularis sprouts, nicosulfuron alone (60 g ha-1 and in tank mix with atrazine (40 + 1.500 g ha-1, foramsulfuron + iodosulfuron-methyl (45 + 3 g ha-1 and mesotrione in tank mix with atrazine (144 + 1.500 g ha-1 were tested in a randomized block design, with four replications. Each plot was 6 x 4 m, containing six corn culture rows. The herbicides were applied with a back spray at a constant pressure of 30 lbf pol-2, using 200 L ha-1 solution. Herbicide efficacy and toxicity were evaluated at 7, 15 and 30 days after application. During harvest, reinfesting plant cover and its degree of mechanized harvest

  11. The iPot Project: improved potato monitoring in Belgium using remote sensing and crop growth modelling

    Science.gov (United States)

    Piccard, Isabelle; Nackaerts, Kris; Gobin, Anne; Goffart, Jean-Pierre; Planchon, Viviane; Curnel, Yannick; Tychon, Bernard; Wellens, Joost; Cools, Romain; Cattoor, Nele

    2015-04-01

    Belgian potato processors, traders and packers are increasingly working with potato contracts. The close follow up of contracted parcels on the land as well as from above is becoming an important tool to improve the quantity and quality of the potato crop and reduce risks in order to plan the storage, packaging or processing and as such to strengthen the competitiveness of the Belgian potato chain in a global market. At the same time, precision agriculture continues to gain importance and progress. Farmers are obligated to invest in new technologies. Between mid-May and the end of June 2014 potato fields in Gembloux were monitored from emergence till canopy closure. UAV images (RGB) and digital (hemispherical) photographs were taken at ten-daily intervals. Crop emergence maps show the time (date) and degree of crop emergence and crop closure (in terms of % cover). For three UAV flights during the growing season RGB images at 3 cm resolution were processed using a K-means clustering algorithm to classify the crop according to its greenness. Based on the greenness %cover and daily cover growth were derived for 5x5m pixels and 25x25m pixels. The latter resolution allowed for comparison with high resolution satellite imagery. Vegetation indices such as %Cover and LAI were calculated with the Cyclopes algorithm (INRA-EMMAH) from high resolution satellite images (DMC/Deimos, 22m pixel size). DMC based cover maps showed similar patterns as compared with the UAV-based cover maps, and allows for further applications of the data in crop management. Today the use of geo-information by the (private) agricultural sector in Belgium is rather limited, notwithstanding the great benefits this type of information may offer, as recognized by the sector. The iPot project, financed by the Belgian Science Policy Office (BELSPO), aims to provide the Belgian potato sector, represented by Belgapom, with near real time information on field condition (weather-soil) and crop development and

  12. Rhizosphere microorganisms affected by soil solarization and cover cropping in Capsicum annuum and Phaseolus lunatus agroecosystems

    Science.gov (United States)

    Field experiments were conducted to evaluate the effects of soil solarization or cover cropping on bell pepper (Capsicum annuum) and lima bean (Phaseolus lunatus, L.) rhizosphere microorganisms. In Experiment I, flat surface solarization (FSS), raised bed solarization (RBS), cowpea (Vigna unguiculat...

  13. 'Cabernet Sauvignon' grape anthocyanin increased by soil conservation practices

    Science.gov (United States)

    Cover crops and no-till (mown) systems provide multiple benefits to vineyard soils such as improvements in soil organic matter and reductions in erosion and dust generation. Understanding the effects of such practices on grape attributes will contribute to the sustainability of the production system...

  14. Effect of intercropping period management on runoff and erosion in a maize cropping system.

    Science.gov (United States)

    Laloy, Eric; Bielders, C L

    2010-01-01

    The management of winter cover crops is likely to influence their performance in reducing runoff and erosion during the intercropping period that precedes spring crops but also during the subsequent spring crop. This study investigated the impact of two dates of destruction and burial of a rye (Secale cereale L.) and ryegrass (Lolium multiflorum Lam.) cover crop on runoff and erosion, focusing on a continuous silage maize (Zea mays L.) cropping system. Thirty erosion plots with various intercrop management options were monitored for 3 yr at two sites. During the intercropping period, cover crops reduced runoff and erosion by more than 94% compared with untilled, post-maize harvest plots. Rough tillage after maize harvest proved equally effective as a late sown cover crop. There was no effect of cover crop destruction and burial dates on runoff and erosion during the intercropping period, probably because rough tillage for cover crop burial compensates for the lack of soil cover. During two of the monitored maize seasons, it was observed that plots that had been covered during the previous intercropping period lost 40 to 90% less soil compared with maize plots that had been left bare during the intercropping period. The burial of an aboveground cover crop biomass in excess of 1.5 t ha(-1) was a necessary, yet not always sufficient, condition to induce a residual effect. Because of the possible beneficial residual effect of cover crop burial on erosion reduction, the sowing of a cover crop should be preferred over rough tillage after maize harvest.

  15. Switchgrass as a biofuels crop for the upper Southeast

    Energy Technology Data Exchange (ETDEWEB)

    Parrish, D.J.; Wolf, D.D. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)

    1993-12-31

    Switchgrass (Panicum virgatum) has been identified in DOE-sponsored studies as a widely adapted, productive herbaceous candidate for biofuels cropping. It is a perennial that has been planted using no-till procedures, and it appears to have positive effects on the soils in which it grows. We have been looking at this species as a potential fuelcrop (as well as a valuable forage) for several years. In this presentation, we note several {open_quotes}lessons learned{close_quotes} about switchgrass establishment and management as an energy crop. Data include results from recent plantings in the upper Southeast USA and from cutting management studies. Six varieties of switchgrass (Alamo, Cave-in-Rock, Kanlow, Shelter, and two breeder`s lines) varied markedly in the success of their no-till establishment at eight locations across the upper Southeast. Better weed control, which was achieved at later planting dates, seemed to be the key. Yields obtained in the establishment stands revealed that two harvests per season are more productive (by 2 to 3 Mg/ha) than one, but the date of first cutting is crucial. First cutting should be from late-June to mid-July. A two-cut system may not be economically advantageous, however. Another cutting-management study detected losses of standing biomass at the end of the growing season. As much as 15% of the above-ground biomass present in early-September was no longer harvestable in early-November. We think this loss results from translocation of dry matter to below-ground parts.

  16. Carbon dioxide efflux from soil with poultry litter applications in conventional and conservation tillage systems in northern Alabama.

    Science.gov (United States)

    Roberson, T; Reddy, K C; Reddy, S S; Nyakatawa, E Z; Raper, R L; Reeves, D W; Lemunyon, J

    2008-01-01

    Increased CO2 release from soils resulting from agricultural practices such as tillage has generated concerns about contributions to global warming. Maintaining current levels of soil C and/or sequestering additional C in soils are important mechanisms to reduce CO2 in the atmosphere through production agriculture. We conducted a study in northern Alabama from 2003 to 2006 to measure CO2 efflux and C storage in long-term tilled and non-tilled cotton (Gossypium hirsutum L.) plots receiving poultry litter or ammonium nitrate (AN). Treatments were established in 1996 on a Decatur silt loam (clayey, kaolinitic thermic, Typic Paleudults) and consisted of conventional-tillage (CT), mulch-tillage (MT), and no-tillage (NT) systems with winter rye [Secale cereale (L.)] cover cropping and AN and poultry litter (PL) as nitrogen sources. Cotton was planted in 2003, 2004, and 2006. Corn was planted in 2005 as a rotation crop using a no-till planter in all plots, and no fertilizer was applied. Poultry litter application resulted in higher CO2 emission from soil compared with AN application regardless of tillage system. In 2003 and 2006, CT (4.39 and 3.40 micromol m(-2) s(-1), respectively) and MT (4.17 and 3.39 micromol m(-2) s(-1), respectively) with PL at 100 kg N ha(-1) (100 PLN) recorded significantly higher CO2 efflux compared with NT with 100 PLN (2.84 and 2.47 micromol m(-2) s(-1), respectively). Total soil C at 0- to 15-cm depth was not affected by tillage but significantly increased with PL application and winter rye cover cropping. In general, cotton produced with NT conservation tillage in conjunction with PL and winter rye cover cropping reduced CO2 emissions and sequestered more soil C compared with control treatments.

  17. Towards a TILLING platform for functional genomics in Piel de Sapo melons

    Directory of Open Access Journals (Sweden)

    Pujol Marta

    2011-08-01

    Full Text Available Abstract Background The availability of genetic and genomic resources for melon has increased significantly, but functional genomics resources are still limited for this crop. TILLING is a powerful reverse genetics approach that can be utilized to generate novel mutations in candidate genes. A TILLING resource is available for cantalupensis melons, but not for inodorus melons, the other main commercial group. Results A new ethyl methanesulfonate-mutagenized (EMS melon population was generated for the first time in an andromonoecious non-climacteric inodorus Piel de Sapo genetic background. Diverse mutant phenotypes in seedlings, vines and fruits were observed, some of which were of possible commercial interest. The population was first screened for mutations in three target genes involved in disease resistance and fruit quality (Cm-PDS, Cm-eIF4E and Cm-eIFI(iso4E. The same genes were also tilled in the available monoecious and climacteric cantalupensis EMS melon population. The overall mutation density in this first Piel de Sapo TILLING platform was estimated to be 1 mutation/1.5 Mb by screening four additional genes (Cm-ACO1, Cm-NOR, Cm-DET1 and Cm-DHS. Thirty-three point mutations were found for the seven gene targets, six of which were predicted to have an impact on the function of the protein. The genotype/phenotype correlation was demonstrated for a loss-of-function mutation in the Phytoene desaturase gene, which is involved in carotenoid biosynthesis. Conclusions The TILLING approach was successful at providing new mutations in the genetic background of Piel de Sapo in most of the analyzed genes, even in genes for which natural variation is extremely low. This new resource will facilitate reverse genetics studies in non-climacteric melons, contributing materially to future genomic and breeding studies.

  18. Can Subglacial Meltwater Films Carve Into the till Beneath? Insights from a Coupled Till-Water Model

    Science.gov (United States)

    Kasmalkar, I.; Mantelli, E.; Suckale, J.

    2017-12-01

    Networks of water channels are known to exist beneath regions of the continental ice sheets such as Antarctica and Greenland. These channels are fed by meltwater and form along the interface between the ice and the underlying till layer. Their presence localizes basal strength by reducing pore pressure and hence alters the resistance to ice slip provided by the till. Subglacial channels thus play a major role in determining the rate of ice flow for glaciers and ice streams. It is unclear whether subglacial meltwater can evolve from a thin film into a network of distributed channels by erosion of the sediment bed. Models that involve hard-rock beds can only account for water channels that carve into the ice and not the till. Alternative approaches that include erodible sediment mostly assume viscous behavior in the till layer, which is not well supported by laboratory experiments of till failure. To better understand the physical processes that govern channelization, we couple water flow in a thin film with sediment transport to capture the dynamic interactions between water and till. We present a two-dimensional model which consists of a thin subglacial water film that is in the laminar regime and an erodible till layer that obeys the Shield's criterion. We use analytic techniques to study the long-term behavior of perturbations of the water-till interface. We discuss the stability of the system under such perturbations in the context of channel formation.

  19. Subsurface phosphorus transport through a no-till field in the semi arid Palouse region

    Science.gov (United States)

    Norby, J. C.; Brooks, E. S.; Strawn, D. G.

    2017-12-01

    Excess application of fertilizers containing nitrogen and phosphorus for farming use has led to ongoing water quality issues in the United States. When these nutrients leave agronomic systems, and enter water bodies in large quantities, algal bloom and eutrophication can occur. Extensive studies focusing on phosphorus as a pollutant from agronomic systems have been conducted in the many regions of the United States; however, there has been a lack of studies completed in the semiarid Palouse region of eastern Washington and western Idaho. The goal of this research study was to better understand how no-till farm management has altered soil P temporally and the current availability for off-site transport of P throughout an artificially drained catchment at the Cook Agronomy Farm in Pullman, WA. We also attempted to determine the processes responsible for subsurface flow of phosphorus, specifically through preferential flow pathways. Dissolved reactive P (DRP)concentrations of subsurface drainage from a artificial drain exceeded TMDL threshold concentrations during numerous seasonal high flow events over the two-year study time frame. Soil analyses show a highly variable distribution of water-extractable P across the sub-catchment area and initial results suggest a translocation of P species deeper into the soil profile after implementing no-till practices in 1998. We hypothesized that a greater network of macropores from lack of soil disturbance allow for preferential flow of nutrient-laden water deeper into the subsurface and to the artificial drain system. Simulated flow experiments on soil cores from the study site showed large-scale macropore development, extreme variability in soil conductivity, and high P adsorption potential for the soils, suggesting a disconnect between P movement through macropore soil and subsurface drainage water rich in DRP at the artificial drain line outlet.

  20. Time interval between cover crop termination and planting influences corn seedling disease, plant growth, and yield

    Science.gov (United States)

    Experiments were established in controlled and field environment to evaluate the effect of time intervals between cereal rye cover crop termination and corn planting on corn seedling disease, corn growth, and grain yield in 2014 and 2015. Rye termination dates ranged from 25 days before planting (DB...

  1. Efeito da cobertura vegetal sobre a pérola-da-terra (Hemiptera: Margarodidae na cultura da videira = Effect of cover crops on brazilian ground pearl (Hemiptera: Margarodidae in vineyards

    Directory of Open Access Journals (Sweden)

    Marcos Botton

    2010-10-01

    Full Text Available O uso da cobertura vegetal em vinhedos é uma prática empregada paraminimizar a erosão e melhorar as qualidades químicas e físicas do solo. Neste trabalho, foi avaliado o efeito de coberturas vegetais sobre a população da pérola-da-terra Eurhizococcus brasiliensis (Hemiptera: Margarodidae na cultura da videira. No primeiro experimento, o vinhedo foi mantido sem cobertura vegetal por meio da aplicação trimestral do herbicida glifosato comparado com o uso de vegetação espontânea, durante o ano, de vegetação espontânea, no verão, e de aveia preta no inverno. No segundo experimento foi avaliado o efeito da mucuna-preta (Stizolobium aterrimum cultivada no vinhedo durante o verão comparado com a vegetação espontânea. No primeiro experimento, a população da pérolada-terra nas raízes de plantas de videira foi maior em áreas mantidas sem cobertura vegetal emostrou-se semelhante em áreas onde se manteve a vegetação espontânea, ao longo do ano, e com aveia preta no inverno e vegetação espontânea no verão. A infestação das plantas de videira em áreas onde foi empregada a mucuna-preta durante o verão foi equivalente à da vegetação espontânea. S. aterrimum foi registrada pela primeira vez como hospedeira de E. brasiliensis. The use of cover crops is an important strategy to reduce erosion and improve chemical and physical soil properties. In this work, we evaluate the effect of cover crops to reduce Brazilian ground pearl Eurhizococcus brasiliensis (Hemiptera: Margarodidae infestation in vineyards. In the first experiment, glyphosate was sprayed each three months to avoid cover crops. This treatment was compared with naturally occurring vegetation during the year and the use of Avena sativa in the winter. In a second experiment, Stizolobium aterrimum was cultivated during the summer compared with naturally occurringvegetation. Brazilian ground pearl population was higher in glyphosate sprayed areas than where cover

  2. Cover crops influence soil microorganisms and phytoextraction of copper from a moderately contaminated vineyard.

    Science.gov (United States)

    Mackie, K A; Schmidt, H P; Müller, T; Kandeler, E

    2014-12-01

    We investigated the ability of summer (Avena sativa [oat], Trifolium incarnatum [crimson clover], Chenopodium [goosefoot]) and winter (Vicia villosa [hairy vetch], Secale Cereale L. [Rye], Brassica napus L. partim [rape]) cover crops, including a mixed species treatment, to extract copper from an organic vineyard soil in situ and the microbial communities that may support it. Clover had the highest copper content (14.3mgCukg(-1) DM). However, it was the amount of total biomass production that determined which species was most effective at overall copper removal per hectare. The winter crop rye produced significantly higher amounts of biomass (3532kgDMha(-1)) and, therefore, removed significantly higher amounts of copper (14,920mgCuha(-1)), despite less accumulation of copper in plant shoots. The maximum annual removal rate, a summation of best performing summer and winter crops, would be 0.033kgCuha(-1)y(-1). Due to this low annual extraction efficiency, which is less than the 6kgCuha(-1)y(-1) permitted for application, phytoextraction cannot be recommended as a general method of copper extraction from vineyards. Copper concentration did not influence aboveground or belowground properties, as indicated by sampling at two distances from the grapevine row with different soil copper concentrations. Soil microorganisms may have become tolerant to the copper levels at this site. Microbial biomass and soil enzyme activities (arylsulfatase and phosphatase) were instead driven by seasonal fluxes of resource pools. Gram+ bacteria were associated with high soil moisture, while fungi seemed to be driven by extractable carbon, which was linked to high plant biomass. There was no microbial group associated with the increased phytoextraction of copper. Moreover, treatment did not influence the abundance, activity or community structure of soil microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Cover crop residue effects on machine-induced soil compaction

    OpenAIRE

    Ess, Daniel R.

    1994-01-01

    Crop production systems which utilize the biomass produced by rye (Secale cereale ) to suppress weed growth and conserve soil moisture have been developed at Virginia Tech. The success of alternative, reduced-input crop production systems has encouraged research into the potential for breaking the traffic-tillage cycle associated with conventional tillage crop production systems. The fragile residues encountered in agricultural crop production, whether incorporated into the ...

  4. Atributos físicos do solo e produtividade de milho em resposta a culturas de pré-safra Soil physical attributes and corn yield as a response to cover crops prior to corn

    Directory of Open Access Journals (Sweden)

    Eurico Lucas de Sousa Neto

    2008-02-01

    Full Text Available O objetivo deste trabalho foi avaliar os atributos físicos de um Latossolo Vermelho distrófico argiloso e a produtividade de milho em sistemas de manejo que incluem plantas de cobertura cultivadas em pré-safra (setembro a novembro. Foram utilizadas, durante quatro anos, as seguintes plantas de cobertura: crotalária (Crotalaria juncea; milheto (Pennisetum americanum sin. tiphoydes; lab-lab (Dolichus lablab em sistema de semeadura direta; e pousio cultivado em sistema de preparo convencional, antecedendo o cultivo de milho. O delineamento experimental foi de blocos ao acaso com parcelas subdivididas e quatro repetições. Amostras de solo indeformadas foram coletadas para determinações físicas e avaliou-se a produtividade de milho em área de 22,5 m². As plantas de cobertura no sistema de semeadura direta promoveram maior estabilidade de agregados e maior densidade do solo na camada superficial, sem alteração do conteúdo de água disponível às plantas. A utilização de lab-lab, em pré-safra, promoveu a menor produtividade de milho. A utilização de plantas de cobertura em pré-safra no sistema de semeadura direta de milho é viável no Estado de São Paulo.The objective of this work was to evaluate soil physical attributes and corn productivity of a Typic Hapludox in system including cover crops before corn. During four years the following cover crop species were used: sunn hemp (Crotalaria juncea; millet (Pennisetum americanum sin. tiphoydes; lab-lab (Dolichus lablab in no-tillage system. An additional treatment was used with a tillage system composed of a disk plow and two harrowing. The experiment was set up in randomized block with split-plot design, with four repetitions. Undisturbed soil samples were collected for physical determinations and corn yield was evaluated in 22.5 m² areas. The cover crop treatments in no-tillage promoted bigger aggregate stability and bulk density in the superficial layer, but did not affect the

  5. Matéria seca de plantas de cobertura, produção de cebola e atributos químicos do solo em sistema plantio direto agroecológico Dry matter of cover crops, onion yield and soil chemical attributes in agroecological no-tillage system

    Directory of Open Access Journals (Sweden)

    Monique Souza

    2013-01-01

    Full Text Available O cultivo e a deposição de resíduos de plantas de cobertura em sistema plantio direto podem afetar os atributos químicos do solo e a produção de cebola. O trabalho objetivou avaliar a interferência do cultivo de plantas de cobertura sobre a produção de cebola e sobre os atributos químicos do solo em sistema plantio direto (SPD agroecológico. O experimento foi conduzido na EPAGRI, em Ituporanga (SC, em um Cambissolo Húmico, nas safras de 2010 e 2011. Em abril, foram implantados os tratamentos: testemunha com vegetação espontânea (T1; cevada (2010/aveia-preta (2011 (T2; centeio (T3; nabo-forrageiro (T4; centeio + nabo-forrageiro (T5; e cevada (2010/aveia-preta (2011 + nabo-forrageiro (T6. Aos 60, 80 e 95 dias após a semeadura (DAS das espécies de inverno, coletou-se a parte aérea das plantas e determinou-se a produção de matéria seca por hectare. Em julho, foram transplantadas mudas de cebola e, em novembro, avaliou-se a produção. Após o acamamento das plantas de cobertura de inverno e a colheita da cebola, foi coletado solo na camada de 0-10 cm e submetido à análise de atributos químicos. O cultivo e a deposição dos resíduos de matéria seca das espécies de plantas de cobertura em SPD contribuíram para o aumento e a manutenção da produção total de cebola ao longo dos anos. Os atributos químicos do solo, com exceção do K trocável, P disponível e valores de saturação da CTCpH7,0 por bases não foram afetados pelo cultivo de plantas de cobertura.The cultivation and deposition of waste from cover crops in no-tillage can affect soil chemical attributes and onion yield. The aim of this study was to evaluate the dry matter yield of plant species from winter cover crops, onion yield and chemical attributes of soil in agroecological no-tillage system. The experiment was carried out at EPAGRI Experimental Station in Ituporanga (SC under Humic Haplumbrept in the agricultural years of 2010 and 2011. The following

  6. Demand and energy efficiency in the soybean crop in no tillage; Demanda e eficiencia energetica no cultivo da soja em plantio direto

    Energy Technology Data Exchange (ETDEWEB)

    Riquetti, Neilor Bugoni; Seki, Andre Satoshi [Universidade Estadual Paulista (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Programa Energia na Agricultura], E-mail: neilor@fca.unesp.br; Sousa, Saulo Fernando Gomes de [Universidade Estadual Paulista (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Fazenda de Ensino Pesquisa e Producao; Silva, Paulo Roberto Arbex; Benez, Sergio Hugo [Universidade Estadual Paulista (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas

    2010-07-01

    The increase in energy use in agriculture, combined with rising costs and possible stores for the future have led to the need for farming systems more efficient in the use of non-renewable resource. Based on this work was undertaken to determine the efficiency of cultivation of soybean in no-till system. For the calculations were quantified all operations that involve expenditure of energy from the drying up of the harvest, including depreciation of machinery energy, calculated in accordance with its life, weight, and the days of actual use. Energy efficiency was calculated by dividing the total energy produced by the grain and dry matter divided by the total input energy. The highest spending power in this culture system were due to the use of pesticides and fertilizers. The demand for energy was 7956.54 MJ.ha{sup 1} from the harvest desiccation. Energy efficiency was calculated at 5.95, ie for each unit of energy used was taken from 5.95 units in the form of grain. When calculated the energy of matter left by the crop after harvest coupled with the energy of the grains, the efficiency was 7.94. (author)

  7. Assessing Natural Isothiocyanate Air Emissions after Field Incorporation of Mustard Cover Crop

    Energy Technology Data Exchange (ETDEWEB)

    Trott, Donna M.; LePage, Jane; Hebert, Vincent

    2012-01-01

    A regional air assessment was performed to characterize volatile natural isothiocyanate (NITC) compounds in air during soil incorporation of mustard cover crops in Washington State. Field air sampling and analytical methods were developed specific to three NITCs known to be present in air at appreciable concentrations during/after field incorporation. The maximum observed concentrations in air for the allyl, benzyl, and phenethyl isothiocyanates were respectively 188, 6.1, and 0.7 lg m-3 during mustard incorporation. Based on limited inhalation toxicity information, airborne NITC concentrations did not appear to pose an acute human inhalation exposure concern to field operators and bystanders.

  8. A meta-analysis of pesticide loss in runoff under conventional tillage and no-till management.

    Science.gov (United States)

    Elias, Daniel; Wang, Lixin; Jacinthe, Pierre-Andre

    2018-01-12

    Global agricultural intensification has led to increased pesticide use (37-fold from 1960 to 2005) and soil erosion (14% since 2000). Conservation tillage, including no-till (NT), has been proposed as an alternative to conventional plow till (PT) to mitigate soil erosion, but past studies have reported mixed results on the effect of conservation tillage on pesticide loss. To explore the underlying factors of these differences, a meta-analysis was conducted using published data on pesticide concentration and load in agricultural runoff from NT and PT fields. Peer-reviewed articles (1985-2016) were compiled to build a database for analysis. Contrary to expectations, results showed greater concentration of atrazine, cyanazine, dicamba, and simazine in runoff from NT than PT fields. Further, we observed greater load of dicamba and metribuzin, but reduced load of alachlor from NT fields. Overall, the concentration and the load of pesticides were greater in runoff from NT fields, especially pesticides with high solubility and low affinity for solids. Thus, NT farming affects soil properties that control pesticide retention and interactions with soils, and ultimately their mobility in the environment. Future research is needed for a more complete understanding of pesticide-soil interactions in NT systems. This research could inform the selection of pesticides by farmers and improve the predictive power of pesticide transport models.

  9. On the Ground or in the Air? A Methodological Experiment on Crop Residue Cover Measurement in Ethiopia.

    Science.gov (United States)

    Kosmowski, Frédéric; Stevenson, James; Campbell, Jeff; Ambel, Alemayehu; Haile Tsegay, Asmelash

    2017-10-01

    Maintaining permanent coverage of the soil using crop residues is an important and commonly recommended practice in conservation agriculture. Measuring this practice is an essential step in improving knowledge about the adoption and impact of conservation agriculture. Different data collection methods can be implemented to capture the field level crop residue coverage for a given plot, each with its own implication on survey budget, implementation speed and respondent and interviewer burden. In this paper, six alternative methods of crop residue coverage measurement are tested among the same sample of rural households in Ethiopia. The relative accuracy of these methods are compared against a benchmark, the line-transect method. The alternative methods compared against the benchmark include: (i) interviewee (respondent) estimation; (ii) enumerator estimation visiting the field; (iii) interviewee with visual-aid without visiting the field; (iv) enumerator with visual-aid visiting the field; (v) field picture collected with a drone and analyzed with image-processing methods and (vi) satellite picture of the field analyzed with remote sensing methods. Results of the methodological experiment show that survey-based methods tend to underestimate field residue cover. When quantitative data on cover are needed, the best estimates are provided by visual-aid protocols. For categorical analysis (i.e., >30% cover or not), visual-aid protocols and remote sensing methods perform equally well. Among survey-based methods, the strongest correlates of measurement errors are total farm size, field size, distance, and slope. Results deliver a ranking of measurement options that can inform survey practitioners and researchers.

  10. On the Ground or in the Air? A Methodological Experiment on Crop Residue Cover Measurement in Ethiopia

    Science.gov (United States)

    Kosmowski, Frédéric; Stevenson, James; Campbell, Jeff; Ambel, Alemayehu; Haile Tsegay, Asmelash

    2017-10-01

    Maintaining permanent coverage of the soil using crop residues is an important and commonly recommended practice in conservation agriculture. Measuring this practice is an essential step in improving knowledge about the adoption and impact of conservation agriculture. Different data collection methods can be implemented to capture the field level crop residue coverage for a given plot, each with its own implication on survey budget, implementation speed and respondent and interviewer burden. In this paper, six alternative methods of crop residue coverage measurement are tested among the same sample of rural households in Ethiopia. The relative accuracy of these methods are compared against a benchmark, the line-transect method. The alternative methods compared against the benchmark include: (i) interviewee (respondent) estimation; (ii) enumerator estimation visiting the field; (iii) interviewee with visual-aid without visiting the field; (iv) enumerator with visual-aid visiting the field; (v) field picture collected with a drone and analyzed with image-processing methods and (vi) satellite picture of the field analyzed with remote sensing methods. Results of the methodological experiment show that survey-based methods tend to underestimate field residue cover. When quantitative data on cover are needed, the best estimates are provided by visual-aid protocols. For categorical analysis (i.e., >30% cover or not), visual-aid protocols and remote sensing methods perform equally well. Among survey-based methods, the strongest correlates of measurement errors are total farm size, field size, distance, and slope. Results deliver a ranking of measurement options that can inform survey practitioners and researchers.

  11. Leguminous cover crops differentially affect maize yields in three contrasting soil types of Kakamega, Western Kenya

    Directory of Open Access Journals (Sweden)

    Kelvin Mark Mtei

    2011-06-01

    Full Text Available Maize production in smallholder farming systems in Kenya is largely limited by low soil fertility. As mineral fertilizer is expensive, green manuring using leguminous cover crops could be an alternative strategy for farmers to enhance farm productivity. However due to variability in soil type and crop management, the effects of green manure are likely to differ with farms. The objectives of this study were to evaluate Mucuna pruriens and Arachis pintoi on (i biomass and nitrogen fixation (15N natural abundance, (ii soil carbon and nitrogen stocks and (iii their effects on maize yields over two cropping seasons in Kakamega, Western Kenya. Mucuna at 6 weeks accumulated 1–1.3 Mg ha^{-1} of dry matter and 33–56 kg ha^{-1} nitrogen of which 70% was nitrogen derived from the atmosphere (Ndfa. Arachis after 12 months accumulated 2–2.7 Mg ha^{-1} of dry matter and 51–74 kg N ha^{-1} of which 52-63 % was from Ndfa. Soil carbon and nitrogen stocks at 0–15 cm depth were enhanced by 2-4 Mg C ha^{-1} and 0.3–1.0 Mg N ha^{-1} under Mucuna and Arachis fallow, irrespective of soil type. Maize yield increased by 0.5-2 Mg ha^{-1} in Mucuna and 0.5–3 Mg ha^{-1} in Arachis and the response was stronger on Nitisol than on Acrisol or Ferralsol. We concluded that leguminous cover crops seem promising in enhancing soil fertility and maize yields in Kenya, provided soil conditions and rainfall are suitable.

  12. Nutritional composition and in vitro digestibility of grass and legume winter (cover) crops.

    Science.gov (United States)

    Brown, A N; Ferreira, G; Teets, C L; Thomason, W E; Teutsch, C D

    2018-03-01

    In dairy farming systems, growing winter crops for forage is frequently limited to annual grasses grown in monoculture. The objectives of this study were to determine how cropping grasses alone or in mixtures with legumes affects the yield, nutritional composition, and in vitro digestibility of fresh and ensiled winter crops and the yield, nutritional composition, and in vitro digestibility of the subsequent summer crops. Experimental plots were planted with 15 different winter crops at 3 locations in Virginia. At each site, 4 plots of each treatment were planted in a randomized complete block design. The 15 treatments included 5 winter annual grasses [barley (BA), ryegrass (RG), rye (RY), triticale (TR), and wheat (WT)] in monoculture [i.e., no legumes (NO)] or with 1 of 2 winter annual legumes [crimson clover (CC) and hairy vetch (HV)]. After harvesting the winter crops, corn and forage sorghum were planted within the same plots perpendicular to the winter crop plantings. The nutritional composition and the in vitro digestibility of winter and summer crops were determined for fresh and ensiled samples. Growing grasses in mixtures with CC increased forage dry matter (DM) yield (2.84 Mg/ha), but the yield of mixtures with HV (2.47 Mg/ha) was similar to that of grasses grown in monoculture (2.40 Mg/ha). Growing grasses in mixtures with legumes increased the crude protein concentration of the fresh forage from 13.0% to 15.5% for CC and to 17.3% for HV. For neutral detergent fiber (NDF) concentrations, the interaction between grasses and legumes was significant for both fresh and ensiled forages. Growing BA, RY, and TR in mixtures with legumes decreased NDF concentrations, whereas growing RG and WT with legumes did not affect the NDF concentrations of either the fresh or the ensiled forages. Growing grasses in mixtures with legumes decreased the concentration of sugars of fresh forages relative to grasses grown in monoculture. Primarily, this decrease can be

  13. Atributos biológicos do solo sob influência da cobertura vegetal e do sistema de manejo Soil biological attributes influenced by cover crops and management systems

    Directory of Open Access Journals (Sweden)

    Mozaniel Batista da Silva

    2007-12-01

    Full Text Available O objetivo deste trabalho foi avaliar os efeitos de culturas de cobertura e dos sistemas plantio direto (PD e convencional (PC sobre indicadores biológicos do solo, cultivado com feijoeiro-comum, no inverno, sob irrigação. O experimento foi conduzido em Santo Antônio de Goiás, GO, em Latossolo Vermelho distrófico textura argilosa. Culturas de cobertura foram implantadas anualmente no verão, desde 2001, sendo utilizadas a braquiária, guandu, milheto, capim-mombaça, sorgo, estilosantes, braquiária consorciada com milho, e mata nativa, como tratamento referência. Em 2005, 60 dias após o corte das culturas de cobertura foi implantada a cultura do feijoeiro, cultivar BRS Valente, sob irrigação, com semeadura realizada em 16/6/2005 e colheita efetuada em 19/9/2005. Coletaram-se amostras de solo, na profundidade de 0-10 cm, em três épocas: novembro de 2004 (pré-plantio das culturas de coberturas, junho (pré-plantio do feijoeiro e julho (florescimento do feijoeiro de 2005. Avaliaram-se a respiração basal, o carbono e o nitrogênio da biomassa microbiana, a razão carbono da biomassa microbiana/carbono orgânico, a razão nitrogênio da biomassa microbiana/nitrogênio total e o quociente metabólico do solo. Esses atributos biológicos do solo são influenciados pelas culturas de cobertura, manejo do solo e épocas de amostragem.The objective of this work was to evaluate the effects of cover crops and direct and conventional tillage systems on soil biological attributes when cultivated with dry bean in winter under sprinkle irrigation. The experiment was conducted in Santo Antônio de Goiás, GO, Brazil, in a clayey Rhodic Haplustox. Cover crops were cultivated annually in the summer since 2001, using Brachiaria brizantha, Cajanus cajan, Pennisetum glaucum, Panicum maximum, sorghum, Stylosanthes guianensis, brachiaria in association with corn, and native vegetation as reference. In 2005, 60 days after cutting the cover crops, BRS

  14. Aplicação superficial de calcário e diferentes resíduos em soja cultivada no sistema plantio direto Surface application of limestone and different residues on soybean grown in no-till system

    Directory of Open Access Journals (Sweden)

    Juliano Corulli Corrêa

    2009-01-01

    Full Text Available A prática da correção da acidez do solo pela aplicação superficial de corretivos sobre a palha no sistema plantio direto se restringe ao calcário, não havendo maiores estudos em relação à escória de aciaria, lama cal e lodo de esgoto centrifugado. O objetivo do trabalho foi avaliar os índices de acidez do solo e a produtividade da soja em função da aplicação superficial de lodo de esgoto centrifugado, lama cal, escória de aciaria e calcário dolomítico. O trabalho foi desenvolvido em Latossolo Vermelho distrófico, durante os anos agrícolas de 2002 a 2005, sob sistema plantio direto. Os tratamentos constituíram da aplicação superficial de escória de aciaria (E, lama cal (Lcal, lodo de esgoto centrifugado (LC, calcário dolomítico e sem aplicação de corretivo, em delineamento em blocos ao acaso, com quatro repetições. A aplicação superficial de escória de aciaria, lama cal e lodo de esgoto centrifugado permite a correção da acidez do solo, o deslocamento do Ca2+, o aumento da saturação por bases e redução do Al3+ até 40 cm, e para o calcário, até 20 cm, fatores que condicionaram o aumento da produtividade da soja para os tratamentos LC, E e Lcal em 2003/2004 e 2004/2005 e para LC e E em 2002/2003 no sistema plantio direto.The practice of correcting soil acidity by surface application of pH-correcting materials on crop residues in the no-till system is restricted to limestone. No further studies are available on the use of steel slag, lime mud, and centrifuged sewage sludge. The objective of this study was to evaluate soil acidity and yield of soybean as a function of surface application of centrifuged sewage sludge, lime mud, steel slag, and dolomitic limestone. The study was conducted on a dystrophic Clayey Rhodic Hapludox soil, during the 2002_2005 cropping seasons, under notill system. Treatments consisted on surface application of slag _ E, lime mud _ Lcal, centrifuged sewage sludge _ LC, dolomitic

  15. Tillage practices in the conterminous United States, 1989-2004-Datasets Aggregated by Watershed

    Science.gov (United States)

    Baker, Nancy T.

    2011-01-01

    This report documents the methods used to aggregate county-level tillage practices to the 8-digit hydrologic unit (HU) watershed. The original county-level data were collected by the Conservation Technology Information Center (CTIC). The CTIC collects tillage data by conducting surveys about tillage systems for all counties in the United States. Tillage systems include three types of conservation tillage (no-till, ridge-till, and mulch-till), reduced tillage, and intensive tillage. Total planted acreage for each tillage practice for each crop grown is reported to the CTIC. The dataset includes total planted acreage by tillage type for selected crops (corn, cotton, grain sorghum, soybeans, fallow, forage, newly established permanent pasture, spring and fall seeded small grains, and 'other' crops) for 1989-2004. Two tabular datasets, based on the 1992 enhanced and 2001 National Land Cover Data (NLCD), are provided as part of this report and include the land-cover area-weighted interpolation and aggregation of acreage for each tillage practice in each 8-digit HU watershed in the conterminous United States for each crop. Watershed aggregations were done by overlying the 8-digit HU polygons with a raster of county boundaries and a raster of either the enhanced 1992 or the 2001 NLCD for cultivated land to derive a county/land-cover area weighting factor. The weighting factor then was applied to the county-level tillage data for the counties within each 8-digit HU and summed to yield the total acreage of each tillage type within each 8-digit HU watershed.

  16. Emergency and growth of cover crops in function of the sowing depth / Emergência e crescimento de plantas de cobertura em função da profundidade de semeadura

    Directory of Open Access Journals (Sweden)

    Fabiano André Petter

    2009-07-01

    Full Text Available The objective of this study was evaluated emergence of four cover crops at different seeding depths, in order to use them intercropped and oversown with annual crops. The experiment was installed in a greenhouse, and it was organized as a 5 × 7 factorial combination, with crop of fve cover crops: Pennisetum glaucum var. ADR 300, ADR 500, and BN2, Eleusine coracana (fnger millet, and a cober crop( hybrid sorghum with sudan-grass [Sorghum bicolor x Sorghum sudanese]; seven cover crops seeding depths: (0 cm without any mulch; 0 cm with a mulch of leaves over the seeds;1; 4; 8; 10; and 15 cm.The cover crops were cropping in vases for 40 days. It was evaluated emergence index, emergence time, plant height, green biomass and dry biomass of the above-ground part, leaf area, root dry biomass and root length density. There was reduction of emergence when cover crops was seeded at zero cm depth with a mulch of leaves, except for the E. coracana, that had a better performance in the oversown. Pearl millets and hybrid S. bicolor x S. sudanense show up some restrictions when used in simultaneous consortium. The 15 cm sowing depth must not be used.O objetivo do trabalho foi avaliar a emergência de cinco plantas de cobertura em diferentes profundidades de semeadura, visando à obtenção de informações que subsidiem sua utilização na consorciação e sobressemeadura de culturas anuais. O experimento foi conduzido em casa-de-vegetação, no delineamento experimental de blocos ao acaso, em esquema fatorial 5 x 7, composto pelas plantas de cobertura Pennisetum glaucum var. ADR 300, ADR 500 e BN2, Eleusine coracana e cober crop [híbrido de sorgo com capim-sudão (Sorghum bicolor x Sorghum sudanense], e por sete profundidades de semeadura das plantas de cobertura (0 cm sem presença de folhas de soja sobre as sementes, 0 com presença de folhas de soja sobre as sementes, 1, 4, 8, 10 e 15 cm. As sementes foram semeadas em vasos e as plantas cultivadas por 40

  17. Biomass and nitrogen accumulation of hairy vetch-cereal rye cover crop mixtures as influenced by species proportions

    Science.gov (United States)

    The performance and suitability of a legume-grass cover crop mixture for specific functions may be influenced by the proportions of each species in the mixture. The objectives of this study were to: 1) evaluate aboveground biomass and species biomass proportions at different hairy vetch (Vicia villo...

  18. Effects of seeding rate and poultry litter on weed suppression from a rolled cereal rye cover crop

    Science.gov (United States)

    Growing enough cover crop biomass to adequately suppress weeds is one of the primary challenges in reduced-tillage systems that rely on mulch-based weed suppression. We investigated two approaches to increasing cereal rye biomass for improved weed suppression: (1) increasing soil fertility and (2) i...

  19. Rye cover crop increases earthworm populations and reduces losses of broadcast, fall-applied, fertilizers in surface runoff

    Science.gov (United States)

    Corn (Zea mays L.) silage and soybean [Glycine max (L.) Merr.] rotations in the US Upper Midwest leave minimal amounts of surface residues, which can contribute to soil degradation and a reduction in water quality. Planting cover crops after harvest can reduce these concerns, but their effectiveness...

  20. Data on the abundance of the banana weevil Cosmopolites sordidus and of the earwig Euborellia caraibea in bare soil and cover crop plots.

    Science.gov (United States)

    Carval, Dominique; Resmond, Rémi; Achard, Raphaël; Tixier, Philippe

    2016-06-01

    The data presented in this article are related to the research article entitled "Cover cropping reduces the abundance of the banana weevil Cosmopolites sordidus but does not reduce its damage to the banana plants" (Carval et al., in press) [1]. This article describes how the abundance of the banana weevil, Cosmopolites sordidus, and the abundance of the earwig Euborellia caraibea were affected by the addition of a cover crop. The field data set is made publicly available to enable critical or extended analyzes.

  1. Data on the abundance of the banana weevil Cosmopolites sordidus and of the earwig Euborellia caraibea in bare soil and cover crop plots

    OpenAIRE

    Carval, Dominique; Resmond, Rémi; Achard, Raphaël; Tixier, Philippe

    2016-01-01

    The data presented in this article are related to the research article entitled “Cover cropping reduces the abundance of the banana weevil Cosmopolites sordidus but does not reduce its damage to the banana plants” (Carval et al., in press) [1]. This article describes how the abundance of the banana weevil, Cosmopolites sordidus, and the abundance of the earwig Euborellia caraibea were affected by the addition of a cover crop. The field data set is made publicly available to enable critical or...

  2. Effect of a 5-Year Multi-Crop Rotation on Mineral N and Hard Red Spring Wheat Yield, Protein, Test Weight and Economics in Western North Dakota, USA

    Science.gov (United States)

    Landblom, Douglas; Senturklu, Songul; Cihacek, Larry; Brevik, Eric

    2016-04-01

    The objectives of this non-irrigated cropping study was to employ the principles of soil health and determine the effect of rotation on seasonal mineral N, HRSW production, protein, test weight, and economics. Prior to the initiation of this research, the cropping study area had been previously seeded to hard red spring wheat (HRSW). The cropping systems consisted of a continuous HRSW control (C) compared to HRSW grown in a multi-crop 5-year rotation (R). The 5-yr rotation consisted of HRSW, cover crop (dual crop winter triticale-hairy vetch harvested for hay in June and immediately reseeded to a 7-species cover crop mix grazed by cows after weaning from mid-November to mid-December), forage corn, field pea-forage barley, and sunflower. The cereal grains, cover crops, and pea-barley intercrop were seeded using a JD 1590 no-till drill, 19 cm row spacing, and seed depth of 2.54 cm Cereal grain plant population was 3,088,750 plants/ha. The row crops were planted using a JD 7000 no-till planter, 76.2 cm row spacing, and seed depth of 5.08 cm. Plant population for the row crops was 46,947 plants/ha. Weeds were controlled using a pre-plant burn down and post-emergence control except for cover crops and pea-barley where a pre-plant burn down was the only chemical applied. Fertilizer application was based on soil test results and recommendations from the North Dakota State University Soil Testing Laboratory. During the 1st three years of the study 31.8 kg of N was applied to the C HRSW and then none the last two years of the 5-year period. The R HRSW was fertilized with 13.6 kg of N the 1st two years of the study and none the remaining three years of the 5-year period. However, chloride was low; therefore, 40.7-56.1 kg/ha were applied each year to both the C and R treatments. Based on 2014 and 2015 seasonal mineral N values, the data suggests that N levels were adequate to meet the 2690 kg/ha yield goal. In 2015, however, the R yield goal was exceeded by 673 kg/ha whereas

  3. Syskonplaceringens relation till personligheten hos vuxna personer

    OpenAIRE

    Lindberg, Charlotta

    2015-01-01

    Individers placering i syskonskaran och dess relation till beteenden har varit i fokus för otaliga studier. Det finns dock relativt lite forskning kring syskonplaceringens relation till personlighet i Sverige. Syftet med denna studie var att undersöka syskonplaceringens relation till personligheten enligt Big Five-Inventory (Zakrisson, 2010). Studien inkluderade vuxna personer (N=1070) som var relaterade till Stockholms universitets databas och svarade elektroniskt på enkäten (BFI). Fyra grup...

  4. Associations between soil bacterial community structure and nutrient cycling functions in long-term organic farm soils following cover crop and organic fertilizer amendment.

    Science.gov (United States)

    Fernandez, Adria L; Sheaffer, Craig C; Wyse, Donald L; Staley, Christopher; Gould, Trevor J; Sadowsky, Michael J

    2016-10-01

    Agricultural management practices can produce changes in soil microbial populations whose functions are crucial to crop production and may be detectable using high-throughput sequencing of bacterial 16S rRNA. To apply sequencing-derived bacterial community structure data to on-farm decision-making will require a better understanding of the complex associations between soil microbial community structure and soil function. Here 16S rRNA sequencing was used to profile soil bacterial communities following application of cover crops and organic fertilizer treatments in certified organic field cropping systems. Amendment treatments were hairy vetch (Vicia villosa), winter rye (Secale cereale), oilseed radish (Raphanus sativus), buckwheat (Fagopyrum esculentum), beef manure, pelleted poultry manure, Sustane(®) 8-2-4, and a no-amendment control. Enzyme activities, net N mineralization, soil respiration, and soil physicochemical properties including nutrient levels, organic matter (OM) and pH were measured. Relationships between these functional and physicochemical parameters and soil bacterial community structure were assessed using multivariate methods including redundancy analysis, discriminant analysis, and Bayesian inference. Several cover crops and fertilizers affected soil functions including N-acetyl-β-d-glucosaminidase and β-glucosidase activity. Effects, however, were not consistent across locations and sampling timepoints. Correlations were observed among functional parameters and relative abundances of individual bacterial families and phyla. Bayesian analysis inferred no directional relationships between functional activities, bacterial families, and physicochemical parameters. Soil functional profiles were more strongly predicted by location than by treatment, and differences were largely explained by soil physicochemical parameters. Composition of soil bacterial communities was predictive of soil functional profiles. Differences in soil function were

  5. Weed control in organic rice using plastic mulch and water seeding methods in addition to cover crops

    Science.gov (United States)

    Weeds are a major yield limiting factor in organic rice farming and are more problematic than in conventional production systems. Water seeding is a common method of reducing weed pressure in rice fields as many weeds connot tolerate flooded field conditions. The use of cover crops is another method...

  6. Nitrogen fertilizer split-application for corn in no-till succession to black oats

    Directory of Open Access Journals (Sweden)

    Ceretta Carlos Alberto

    2002-01-01

    Full Text Available The studies of fertilization splitting are necessary specially for the grass succession black oat-corn where N immobilization is very common. Four experiments were carried out in commercial farms under no-tillage, in four counties - Itaara, Santo Ângelo, Júlio de Castilhos and Tupanciretã, all of Rio Grande do Sul, Brazil, with the objective of evaluating the splitting of N application in a corn/black oat crop rotation, during the 97/98 and 98/99 cropping seasons. The N was applied at three times -- pre-planted, starter and sidedressed. The pre-planted applied N for corn, corresponding to total or partial rates that would be sidedressed presented similar results in relation to the sidedress application, however, years of above average rainfall presented N deficiency for corn, reducing yield, which indicates that N application as starter or sidedress is recommended.

  7. Linking Land Cover Data and Crop Yields for Mapping and Assessment of Pollination Services in Europe

    Directory of Open Access Journals (Sweden)

    Maria Luisa Paracchini

    2013-09-01

    Full Text Available Pollination is a key ecosystem service as many crops but in particular, fruits and vegetables are partially dependent on pollinating insects to produce food for human consumption. Here we assessed how pollination services are delivered at the European scale. We used this assessment to estimate the relative contribution of wild pollinators to crop production. We developed an index of relative pollination potential, which is defined as the relative potential or relative capacity of ecosystems to support crop pollination. The model for relative pollination potential is based on the assumption that different habitats, but in particular forest edges, grasslands rich in flowers and riparian areas, offer suitable sites for wild pollinator insects. Using data of the foraging range of wild bees with short flight distances, we linked relative pollination potential to regional statistics of crop production. At aggregated EU level, the absence of insect pollination would result in a reduction of between 25% and 32% of the total production of crops which are partially dependent on insect pollination, depending on the data source used for the assessment. This production deficit decreases to 2.5% if only the relative pollination potential of a single guild of pollinators is considered. A strength of our approach is the spatially-explicit link between land cover based relative pollination potential and crop yield which enables a general assessment of the benefits that are derived from pollination services in Europe while providing insight where pollination gaps in the landscape occur.

  8. Engineering melon plants with improved fruit shelf life using the TILLING approach.

    Directory of Open Access Journals (Sweden)

    Fatima Dahmani-Mardas

    2010-12-01

    Full Text Available Fruit ripening and softening are key traits that have an effect on food supply, fruit nutritional value and consequently, human health. Since ethylene induces ripening of climacteric fruit, it is one of the main targets to control fruit over ripening that leads to fruit softening and deterioration. The characterization of the ethylene pathway in Arabidopsis and tomato identified key genes that control fruit ripening.To engineer melon fruit with improved shelf-life, we conducted a translational research experiment. We set up a TILLING platform in a monoecious and climacteric melon line, cloned genes that control ethylene production and screened for induced mutations that lead to fruits with enhanced shelf life. Two missense mutations, L124F and G194D, of the ethylene biosynthetic enzyme, ACC oxidase 1, were identified and the mutant plants were characterized with respect to fruit maturation. The L124F mutation is a conservative mutation occurring away from the enzyme active site and thus was predicted to not affect ethylene production and thus fruit ripening. In contrast, G194D modification occurs in a highly conserved amino acid position predicted, by crystallographic analysis, to affect the enzymatic activity. Phenotypic analysis of the G194D mutant fruit showed complete delayed ripening and yellowing with improved shelf life and, as predicted, the L124F mutation did not have an effect.We constructed a mutant collection of 4023 melon M2 families. Based on the TILLING of 11 genes, we calculated the overall mutation rate of one mutation every 573 kb and identified 8 alleles per tilled kilobase. We also identified a TILLING mutant with enhanced fruit shelf life. This work demonstrates the effectiveness of TILLING as a reverse genetics tool to improve crop species. As cucurbits are model species in different areas of plant biology, we anticipate that the developed tool will be widely exploited by the scientific community.

  9. Dinâmica do nitrogênio no solo e produção de fitomassa por plantas de cobertura no outono/inverno com o uso de dejetos de suínos Dynamics of soil nitrogen and cover crops dry matter production in the fall/winter as affected by pig slurry use

    Directory of Open Access Journals (Sweden)

    Celso Aita

    2006-10-01

    favoreceu o crescimento da aveia em detrimento da ervilhaca, ocorrendo o melhor equilíbrio entre a produção de fitomassa e a adição de N na dose de 20 m³ ha-1 de dejetos. Os resultados deste estudo evidenciam a eficiência das plantas de cobertura no outono/inverno em ciclar nutrientes fornecidos pelos dejetos de suínos e a importância da utilização de espécies com elevado potencial de produção de matéria seca e que sejam exigentes em N.The use of pig slurry before implanting cover crops in the fall/winter is becoming a common practice in southern Brazil, although its effects on crops and soil are still poorly investigated. The objective of the present study was to analyze the dynamics of soil N as well as to study the cover crop yields under use of pig slurry in the fall/winter. The study was developed in the growing season 2000 on an experimental area of the Soils Department of UFSM, RS. The experiment was set up in a randomized complete block design with split-plots and three replications. The main plots had black oat, black oat (30 % + common vetch (70 % mixture and spontaneous vegetation of the area (fallow. Four pig slurry rates (0, 20, 40 and 80 m³ ha-1 were applied on the split-plots. The mineral N contents (N-NH4+ and N-NO2- + N-NO3- were evaluated at seven dates in the layers of 0-5, 5-15, 15-30 and 30-60 cm depth. The dry matter production and N, P and K concentration of cover crops and spontaneous vegetation were evaluated. Mineral soil N increased with liquid manure application, with similar N dynamics when applied on residues of oat/corn or on weeds/corn residues. After application of 80 m³ ha-1 there was evidence of N-NO3- leaching to depths below 60 cm, higher in weeds/corn system than oat/corn crop system. Dry matter production as well as the content of N, P and K in cover crops increased with the use of slurry. For single oat the increase of dry matter production with a slurry dose of 40 was 2.7 mg ha-1 compared to no-slurry treatment. In

  10. Cultivos de cobertura: efectos sobre la macroporosidad y la estabilidad estructural de un suelo franco-limoso Cover crops: effects on soil macroporosity and soil structural stability in a silt loam soil

    Directory of Open Access Journals (Sweden)

    María Florencia Varela

    2011-07-01

    Full Text Available Los suelos franco-limosos manejados con siembra directa a menudo poseen porosidad estructural baja e inestable. Con el objetivo de determinar la capacidad de los cultivos de cobertura (CC de mejorar la porosidad y estabilidad estructural de estos suelos se llevaron a cabo experimentos de campo y de invernáculo. Ambos tuvieron tratamientos con y sin CC (avena, Avena sativa L., en rotación con soja (Glicine max L. Merr.. Luego de los CC se midieron densidad aparente (DA, el índice de inestabilidad estructural (IE y en el ensayo de invernáculo además, se midió la evolución de la distribución de tamaño de poros (DTP. En ambos ensayos la introducción de CC no disminuyó la DA, aunque incrementó la estabilidad del suelo (PNo- till (NT silt loam topsoils have often a low and unstable structural porosity. The objective of this study was to determine the capability of cover crops (CC of improving the structural porosity and stability of silt loam soils under NT. Greenhouse and field experiments were carried out on a silt loam soil (Typic Argiudoll with and without CC (oat, Avena sativa L. in crop sequences with soybean (Glicine max L. Merr.. Soil bulk density (DA and aggregate instability index (IE were measured after the CC in both experiments. In the greenhouse experiment, soil pore size distribution (DTP was measured. The use of CC did not change DA, but soil IE was significantly lower in crop sequences with CC (P < 0.05 both under field and greenhouse conditions. Stability increases were likely due to the effect of CC residues and root mass. No differences in DTP were found between treatments, although a significant effect of sampling date was observed (P<0.05. Changes in DTP were due to significant increases in mesopore (517.5% and macropore (52.7% volumes. Such changes occurred in all the treatments, probably due to the soil wetting-drying cycles. The results found in this study agree with other studies carried out on silt loams in the

  11. Data on the abundance of the banana weevil Cosmopolites sordidus and of the earwig Euborellia caraibea in bare soil and cover crop plots

    Directory of Open Access Journals (Sweden)

    Dominique Carval

    2016-06-01

    Full Text Available The data presented in this article are related to the research article entitled “Cover cropping reduces the abundance of the banana weevil Cosmopolites sordidus but does not reduce its damage to the banana plants” (Carval et al., in press [1]. This article describes how the abundance of the banana weevil, Cosmopolites sordidus, and the abundance of the earwig Euborellia caraibea were affected by the addition of a cover crop. The field data set is made publicly available to enable critical or extended analyzes.

  12. Evaluation of Insecticides and Agril Polyester Cover against Whitefly (Bemisia Tabaci Gennadius in Tomato Crops

    Directory of Open Access Journals (Sweden)

    K.M. Azam

    1996-01-01

    Full Text Available Field experiments were conducted on tomato crops over a two year period to evaluate the efficacy of six insecticides, viz., triazophos, phosphamidon, dimethoate, buprofezin and Aflix (endosulfan + dimethoate each at 0.05% and Repelin (plant insecticide at 1% concentration along With a cultural treatment by covering the plants with Agril (a polyester material for the control of whitefly, Bemisia tabaci. The insecticides were applied eight times at weekly interval immediately after transplantation. The whitefly eggs,  nymphal population counts and the per cent incidence of tomato leaf curl virus (TLCV were recorded every week for eight weeks in all the treatments including untreated control. The incidence of whitefly was more severe in the second year (i.e, 1992-93 as compared to the previous season. Among the various treatments, the Agril cover, a newly introduced cultural practice, recorded the least incidence of whitefly and of TLCV. The average of counts of eggs were 0.0 and 5.47 and of nymphs 0.54 and 0.58 per 10 leaflets and TLCV were 4.32% and 4.76% in Agril cover treatment during the first and second year, respectively. Among the insecticides tested only Aflix recorded less incidence of the pest, being 3.46 and 30.4 eggs per 10 leaflets and 0.94 and 5.34 nymphs per 10 leaflets during the two years of study, respectively. The other treatments were less effective in reducing pest and disease incidence. The crop under Agril-cover recorded the maximum yield of 34.57 and 26.15 t/ha of tomatoes as compared to 16.48 and 10.82 t/ha in control during the first and second year, respectively.

  13. Coberturas vegetais, doses de nitrogênio e inoculação de sementes com Azospirillum brasilense em arroz de terras altas no sistema plantio direto Cover crops, nitrogen rates and seeds inoculation with Azospirillum brasilense in upland rice under no-tillage

    Directory of Open Access Journals (Sweden)

    Douglas de Castilho Gitti

    2012-01-01

    Full Text Available O arroz é importante fonte de energia e proteínas para a população mundial, principalmente na Ásia e Oceania. No Brasil, juntamente com o feijão, constitui a base da alimentação. Tecnologias sustentáveis que reduzam custos da produção e aumentem a produtividade do arroz podem garantir seu suprimento em períodos de alta demanda. O objetivo deste trabalho foi avaliar diferentes coberturas vegetais antecessoras (milheto [Pennisetum americanum], crotalária [Crotalaria juncea], guandu [Cajanus cajan], braquiária [Brachiaria ruziziensis], milheto + crotalária e milheto + guandu, doses de nitrogênio (N em cobertura (0, 40, 80 e 120 kg ha-1 e o efeito da inoculação de sementes com Azospirillum brasilense no arroz de terras altas em sistema plantio direto no desenvolvimento e na produtividade. Utilizou-se o delineamento experimental em blocos casualizados em esquema fatorial 6x4x2 com quatro repetições. O estudo foi desenvolvido em um Latossolo Vermelho, em Selvíria, Estado do Mato Grosso do Sul, Brasil, em 2011/2012. O cultivo do guandu antecedendo o arroz proporcionou maior produtividade do arroz somente em comparação a B. ruziziensi. A produtividade do arroz em função das doses de N em cobertura se ajustou a uma função quadrática. Não houve influência da inoculação de sementes com A. brasilense sobre a produtividade do arroz, porém houve interação entre a inoculação e as coberturas vegetais sobre o teor de N foliar, número de panículas por m², matéria seca de plantas de arroz e a massa de cem grãos.Rice is an important source of energy and protein for the world population, mainly in Asia and Oceania. In Brazil, together with common beans, it is the population's basic food. Sustainable technologies that reduce rice production costs and increase productivity can warrant its supply on period of high demand. The objective of this study was to evaluate different preceding cover crops (millet [Pennisetum americanum

  14. Coberturas vegetais, doses de nitrogênio e inoculação de sementes com Azospirillum brasilense em arroz de terras altas no sistema plantio direto Cover crops, nitrogen rates and seeds inoculation with Azospirillum brasilense in upland rice under no-tillage

    Directory of Open Access Journals (Sweden)

    Douglas de Castilho Gitti

    2013-01-01

    Full Text Available O arroz é importante fonte de energia e proteínas para a população mundial, principalmente na Ásia e Oceania. No Brasil, juntamente com o feijão, constitui a base da alimentação. Tecnologias sustentáveis que reduzam custos da produção e aumentem a produtividade do arroz podem garantir seu suprimento em períodos de alta demanda. O objetivo deste trabalho foi avaliar diferentes coberturas vegetais antecessoras (milheto [Pennisetum americanum], crotalária [Crotalaria juncea], guandu [Cajanus cajan], braquiária [Brachiaria ruziziensis], milheto + crotalária e milheto + guandu, doses de nitrogênio (N em cobertura (0, 40, 80 e 120 kg ha-1 e o efeito da inoculação de sementes com Azospirillum brasilense no arroz de terras altas em sistema plantio direto no desenvolvimento e na produtividade. Utilizou-se o delineamento experimental em blocos casualizados em esquema fatorial 6x4x2 com quatro repetições. O estudo foi desenvolvido em um Latossolo Vermelho, em Selvíria, Estado do Mato Grosso do Sul, Brasil, em 2011/2012. O cultivo do guandu antecedendo o arroz proporcionou maior produtividade do arroz somente em comparação a B. ruziziensi. A produtividade do arroz em função das doses de N em cobertura se ajustou a uma função quadrática. Não houve influência da inoculação de sementes com A. brasilense sobre a produtividade do arroz, porém houve interação entre a inoculação e as coberturas vegetais sobre o teor de N foliar, número de panículas por m², matéria seca de plantas de arroz e a massa de cem grãos.Rice is an important source of energy and protein for the world population, mainly in Asia and Oceania. In Brazil, together with common beans, it is the population's basic food. Sustainable technologies that reduce rice production costs and increase productivity can warrant its supply on period of high demand. The objective of this study was to evaluate different preceding cover crops (millet [Pennisetum americanum

  15. Ciclagem de nutrientes por plantas de cobertura na entressafra em um solo de cerrado Nutrient cycling in off-season cover crops on a Brazilian savanna soil

    Directory of Open Access Journals (Sweden)

    Carlo Adriano Boer

    2007-09-01

    Full Text Available O objetivo deste trabalho foi avaliar o acúmulo e a liberação de nutrientes (N, P, K, Ca, Mg e S de resíduos culturais de plantas de cobertura na entressafra, em condições de Cerrado. O experimento foi conduzido em um Latossolo Vermelho distroférrico com textura argilosa. As plantas de cobertura avaliadas foram: amaranto (Amaranthus cruentus L., milheto (Pennisetum glaucum L. e capim-pé-de-galinha (Eleusine coracana (L. Gaertn.. O delineamento experimental utilizado foi o de blocos ao acaso, no esquema de parcelas subdivididas, com quatro repetições. Na fase de florescimento das espécies, foi avaliada a produção de matéria seca e o acúmulo de nutrientes. A fim de avaliar a liberação de nutrientes dos resíduos culturais, o material vegetal de cada espécie foi acondicionado em sacolas de náilon, as quais foram dispostas sobre o solo e seu conteúdo analisado em intervalos de 30 dias, até 240 dias após sua instalação. As maiores quantidades de nutrientes acumulados na fitomassa das plantas de cobertura foram observadas no milheto e no capim-pé-de-galinha. O potássio foi o nutriente acumulado em maior quantidade, chegando a atingir 416,9 kg ha-1 no milheto. As maiores taxas de liberação de nutrientes foram observadas nos resíduos culturais do amaranto.The objective of this work was to evaluate the accumulation and the liberation of nutrients (N, P, K, Ca, Mg and S of cultural residues by three species of cover crops, in off-season. Tested cover crops were amaranthus (Amaranthus cruentus L., pearl millet (Pennisetum glaucum L. and finger millet (Eleusine coracana (L. Gaertn.. The experiment was carried out in a Typic Haplorthox clay texture soil. A randomized block desing in a split-plot array in time, with four replications, was used. At the flowering of the species, the production of dry matter and the accumulation of nutrients were evaluated. Proportional samples of dry matter of each cover crop species were placed in

  16. Atributos químicos e estabilidade de agregados sob diferentes culturas de cobertura em Latossolo do cerrado Chemical properties and aggregate stability under different cover crops in cerrado Oxisol

    Directory of Open Access Journals (Sweden)

    Glenio G. Santos

    2012-11-01

    Full Text Available Objetivou-se, com este trabalho, avaliar o efeito de diferentes culturas de cobertura sobre os atributos químicos e a estabilidade de agregados de um Latossolo do cerrado, sob plantio direto. O estudo foi conduzido em área experimental na Embrapa Arroz e Feijão, em Santo Antônio de Goiás, GO. As culturas de cobertura avaliadas foram: braquiária, milho em consórcio com braquiária (integração lavoura-pecuária, guandu anão, milheto, capim mombaça, sorgo granífero, estilosantes e crotalária. As amostras foram coletadas em abril de 2005 e 2006. O delineamento experimental foi o de blocos completos ao acaso com quatro repetições e os tratamentos arranjados em esquema fatorial 8 x 2, sendo oito culturas de cobertura e duas profundidades de amostragem do solo: 0-0,10 e 0,10-0,20 m. As culturas de cobertura influenciam, de forma diferenciada, os valores de pH e os teores de cálcio, magnésio, alumínio, fósforo, potássio, cobre, zinco e ferro do solo. O tratamento estilosantes tem maior poder em acidificar o solo. A agregação do solo varia com as culturas de cobertura e com a profundidade.The objective of this study was to evaluate the effect of different cover crops on chemical properties and aggregate stability in a cerrado Oxisol under no-tillage. The study was carried out in Embrapa Rice and Beans, in Santo Antônio de Goiás, GO, Brazil. The cover crops evaluated were: Urochloa brizantha, Urochloa brizantha and corn in association (crop-livestock integrated, Cajanus cajan, Pennisetum glaucum, Panicum maximum, Sorghum bicolor, Stylosanthes guianensis and Crotalaria juncea. The soil samples were collected in April and September 2005 and April 2006. The experimental design was in completely randomized blocks with four replications and treatments arranged in factorial scheme 8 x 2, eight cover crops and two soil sampling depths, 0-0.10 and 0.10-0.20 m. The different cover crops affect pH values and calcium, magnesium, aluminum

  17. Sustainability of corn stover harvest strategies in Pennsylvania

    Science.gov (United States)

    Paul R. Adler; Benjamin M. Rau; Gregory W. Roth

    2015-01-01

    Pennsylvania farmers have a long history of harvesting corn (Zea mays L.) stover after grain harvest for animal bedding and feed or as a component of mushroom compost, or as silage for dairy cattle feed. With the shallow soils and rolling topography, soil erosion and carbon losses have been minimized through extensive use of cover crops, no-till, and...

  18. Discovering and verifying DNA polymorphisms in a mung bean [V. radiata (L. R. Wilczek] collection by EcoTILLING and sequencing

    Directory of Open Access Journals (Sweden)

    Dean Rob E

    2008-06-01

    Full Text Available Abstract Background Vigna radiata, which is classified in the family Fabaceae, is an important economic crop and a dietary staple in many developing countries. The species radiata can be further subdivided into varieties of which the variety sublobata is currently acknowledged as the putative progenitor of radiata. EcoTILLING was employed to identify single nucleotide polymorphisms (SNPs and small insertions/deletions (INDELS in a collection of Vigna radiata accessions. Findings A total of 157 DNA polymorphisms in the collection were produced from ten primer sets when using V. radiata var. sublobata as the reference. The majority of polymorphisms detected were found in putative introns. The banding patterns varied from simple to complex as the number of DNA polymorphisms between two pooled samples increased. Numerous SNPs and INDELS ranging from 4–24 and 1–6, respectively, were detected in all fragments when pooling V. radiata var. sublobata with V. radiata var. radiata. On the other hand, when accessions of V. radiata var. radiata were mixed together and digested with CEL I relatively few SNPs and no INDELS were detected. Conclusion EcoTILLING was utilized to identify polymorphisms in a collection of mung bean, which previously showed limited molecular genetic diversity and limited morphological diversity in the flowers and pod descriptors. Overall, EcoTILLING proved to be a powerful genetic analysis tool providing the rapid identification of naturally occurring variation.

  19. Sensitivity analysis of the STICS-MACRO model to identify cropping practices reducing pesticides losses.

    Science.gov (United States)

    Lammoglia, Sabine-Karen; Makowski, David; Moeys, Julien; Justes, Eric; Barriuso, Enrique; Mamy, Laure

    2017-02-15

    STICS-MACRO is a process-based model simulating the fate of pesticides in the soil-plant system as a function of agricultural practices and pedoclimatic conditions. The objective of this work was to evaluate the influence of crop management practices on water and pesticide flows in contrasted environmental conditions. We used the Morris screening sensitivity analysis method to identify the most influential cropping practices. Crop residues management and tillage practices were shown to have strong effects on water percolation and pesticide leaching. In particular, the amount of organic residues added to soil was found to be the most influential input. The presence of a mulch could increase soil water content so water percolation and pesticide leaching. Conventional tillage was also found to decrease pesticide leaching, compared to no-till, which is consistent with many field observations. The effects of the soil, crop and climate conditions tested in this work were less important than those of cropping practices. STICS-MACRO allows an ex ante evaluation of cropping systems and agricultural practices, and of the related pesticides environmental impacts. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Spatial Variability Mapping of Crop Residue Using Hyperion (EO-1 Hyperspectral Data

    Directory of Open Access Journals (Sweden)

    Abderrazak Bannari

    2015-06-01

    Full Text Available Soil management practices that maintain crop residue cover and reduce tillage improve soil structure, increase organic matter content in the soil, positively influence water infiltration, evaporation and soil temperature, and play an important role in fixing CO2 in the soil. Consequently, good residue management practices on agricultural land have many positive impacts on soil quality, crop production quality and decrease the rate of soil erosion. Several studies have been undertaken to develop and test methods to derive information on crop residue cover and soil tillage using empirical and semi-empirical methods in combination with remote sensing data. However, these methods are generally not sufficiently rigorous and accurate for characterizing the spatial variability of crop residue cover in agricultural fields. The goal of this research is to investigate the potential of hyperspectral Hyperion (Earth Observing-1, EO-1 data and constrained linear spectral mixture analysis (CLSMA for percent crop residue cover estimation and mapping. Hyperion data were acquired together with ground-reference measurements for validation purposes at the beginning of the agricultural season (prior to spring crop planting in Saskatchewan (Canada. At this time, only bare soil and crop residue were present with no crop cover development. In order to extract the crop residue fraction, the images were preprocessed, and then unmixed considering the entire spectral range (427 nm–2355 nm and the pure spectra (endmember. The results showed that the correlation between ground-reference measurements and extracted fractions from the Hyperion data using CLMSA showed that the model was overall a very good predictor for crop residue percent cover (index of agreement (D of 0.94, coefficient of determination (R2 of 0.73 and root mean square error (RMSE of 8.7% and soil percent cover (D of 0.91, R2 of 0.68 and RMSE of 10.3%. This performance of Hyperion is mainly due to the

  1. Effects of Intra-Storm Soil Moisture and Runoff Characteristics on Ephemeral Gully Development: Evidence from a No-Till Field Study

    Directory of Open Access Journals (Sweden)

    Vladimir R. Karimov

    2017-09-01

    Full Text Available Ephemeral gully erosion, prevalent on agricultural landscapes of the Great Plains, is recognized as a large source of soil loss and a substantial contributor to the sedimentation of small ponds and large reservoirs. Multi-seasonal field studies can provide needed information on ephemeral gully development and its relationship to physical factors associated with field characteristics, rainfall patterns, runoff hydrograph, and management practices. In this study, an ephemeral gully on a no-till cultivated crop field in central Kansas, U.S., was monitored in 2013 and 2014. Data collection included continuous sub-hourly precipitation, soil moisture, soil temperature, and 15 field surveys of cross-sectional profiles in the headcut and channelized parts of the gully. Rainfall excess from a contributing catchment was calculated with the Water Erosion Prediction Project (WEPP model for all storm events and validated on channel flow measurements. Twelve significant runoff events with hydraulic shear stresses higher than the critical value were identified to potentially cause soil erosion in three out of fourteen survey periods. Analysis of shear stress imposed by peak channel flow on soil surface, antecedent soil moisture condition, and channel shape at individual events provided the basis on which to extend the definition of the critical shear stress function by incorporating the intra-storm changes in soil moisture content. One potential form of this function was suggested and tested with collected data. Similar field studies in other agriculturally-dominated areas and laboratory experiments can develop datasets for a better understanding of the physical mechanisms associated with ephemeral gully progression.

  2. Effect of resource conserving techniques on crop productivity in rice-wheat cropping system

    International Nuclear Information System (INIS)

    Mann, R.A.; Munir, M.; Haqqani, A.M.

    2004-01-01

    Rice-wheat cropping system is the most important one in Pakistan. The system provides food and livelihood for more than 15 million people in the country. The productivity of the system is much lower than the potential yields of both rice and wheat crops. With the traditional methods, rice-wheat system is not a profitable one to many farmers. Hence, Cost of cultivation must be reduced and at the same time, efficiency of resources like irrigation water, fuel, and fertilizers must be improved to make the crop production system more viable and eco- friendly. Resource conserving technology (RCT) must figure highly in this equation, since they play a major role in achieving the above goals. The RCT include laser land leveling, zero-tillage, bed furrow irrigation method and crop residue management. These technologies were evaluated in irrigated areas of Punjab where rice follows wheat. The results showed that paddy yield was not affected by the new methods. Direct seeding of rice crop saved irrigation water by 13% over the conventionally planted crop. Weeds were the major problem indirect seeded crop, which could be eliminated through cultural, mechanical and chemical means. Wheat crop on beds produced the highest yield but cost of production was minimum in the zero-till wheat crop. Planting of wheat on raised beds in making headway in low- lying and poorly drained areas. Thus, resource conserving tillage technology provides a tool for making progress towards improving and sustaining wheat production system, helping with food security and poverty alleviation in Pakistan in the next few decades. (author)

  3. Suppression of downy brome by red clover as a cover crop

    Science.gov (United States)

    Weeds are one of the primary obstacles to successful organic farming. Organic producers till to control weeds, but soil health is being damaged by the extensive tillage. Therefore, organic producers are interested in reducing the amount of tillage in their production systems. This study examined t...

  4. Toward cropping systems that enhance productivity and sustainability

    Science.gov (United States)

    Cook, R. James

    2006-01-01

    The defining features of any cropping system are (i) the crop rotation and (ii) the kind or intensity of tillage. The trend worldwide starting in the late 20th century has been (i) to specialize competitively in the production of two, three, a single, or closely related crops such as different market classes of wheat and barley, and (ii) to use direct seeding, also known as no-till, to cut costs and save soil, time, and fuel. The availability of glyphosate- and insect-resistant varieties of soybeans, corn, cotton, and canola has helped greatly to address weed and insect pest pressures favored by direct seeding these crops. However, little has been done through genetics and breeding to address diseases caused by residue- and soil-inhabiting pathogens that remain major obstacles to wider adoption of these potentially more productive and sustainable systems. Instead, the gains have been due largely to innovations in management, including enhancement of root defense by antibiotic-producing rhizosphere-inhabiting bacteria inhibitory to root pathogens. Historically, new varieties have facilitated wider adoption of new management, and changes in management have facilitated wider adoption of new varieties. Although actual yields may be lower in direct-seed compared with conventional cropping systems, largely due to diseases, the yield potential is higher because of more available water and increases in soil organic matter. Achieving the full production potential of these more-sustainable cropping systems must now await the development of varieties adapted to or resistant to the hazards shown to account for the yield depressions associated with direct seeding. PMID:17130454

  5. Comparison of effects of machine performance parameters and energy indices of soybean production in conservation and conventional tillage systems

    Directory of Open Access Journals (Sweden)

    A Sharifi

    2016-09-01

    Full Text Available Introduction Nowadays, agricultural systems are seeking economic, ecological and bioenvironmental goals for production of agricultural crops with protection and sustainability of the environment. Therefore, there is need to extend sustainable agricultural systems such as conservation agriculture. One of the principles of conservation agriculture is conservation tillage. Conservation tillage is a kind of tillage that retains crop residues on the soil surface or mixes it with soil using related machines. It could also affect on machine performance parameters. Energy consumption for producing one kilogram crop could be studied for conservation tillage. Several researchers have conducted studies on this issue for production of different crops including wheat, sunflower and forage crops. This study conducted to assess machine performance parameters and energy indices of conservation tillage systems for soybean cultivation in Golestan province. Materials and Methods This study was conducted to investigate the effects of conservation tillage systems on machine performance and energy indices in soybean production at the Gorgan research station of Golestan Agricultural and Natural Resource Research Center in 2012. The precipitation was 450 mm. Soil texture was silty clay loam. Treatments were four tillage methods, including no-till using row crop direct planter, no-till using grain direct drill, conventional tillage usin a disk harrow with working depth of 10-15 cm and minimum tillage using chisel packer with a working depth of 20 cm. Machine performance parameters and energy indices studied in a farm covered by wheat residues in a randomized complete block design (RCBD with four treatments and four replications. Machine performance parameters consisted of field efficiency, field capacity, total field capacity and planting uniformity index were measured. Energy indices such as energy ratio, energy productivity, energy intensity and net energy gain were

  6. Energy efficiency for establishment and management of cover crops; Eficiencia energetica na implantacao e manejo de plantas de cobertura do solo

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, R.; Gamero, C.A.; Boller, W.

    2000-07-01

    An experiment was conducted in Botucatu, SP, Brazil to evaluate the energy balance involved in the establishment and management of cover crops and also to determine specific heating seeds and biomass of different species of cover crops. Black oat (Avena strigosa Schreb), forage radish (Raphanus sativus L. var. oleiferus Metzg) and lupinus (Lupinus angustifolius L.) were grown in a randomized block design, in twelve replicates. Oat showed higher energy production as compared to lupinus, while higher specific heat were determined for forage radish seeds and also for lupinus and oat biomass. While fuel and fertilizers were the most important energy inputs for the establishment and management of oat and forage radish, seeds and fuel were the most used energy input for lupinus. (author)

  7. Soil carbon management in large-scale Earth system modelling: implications for crop yields and nitrogen leaching

    Directory of Open Access Journals (Sweden)

    S. Olin

    2015-11-01

    levels, assessment of how these different services will vary in space and time, especially in response to cropland management, are scarce. We explore cropland management alternatives and the effect these can have on future C and N pools and fluxes using the land-use-enabled dynamic vegetation model LPJ-GUESS (Lund–Potsdam–Jena General Ecosystem Simulator. Simulated crop production, cropland carbon storage, carbon sequestration and nitrogen leaching from croplands are evaluated and discussed. Compared to the version of LPJ-GUESS that does not include land-use dynamics, estimates of soil carbon stocks and nitrogen leaching from terrestrial to aquatic ecosystems were improved. Our model experiments allow us to investigate trade-offs between these ecosystem services that can be provided from agricultural fields. These trade-offs are evaluated for current land use and climate and further explored for future conditions within the two future climate change scenarios, RCP (Representative Concentration Pathway 2.6 and 8.5. Our results show that the potential for carbon sequestration due to typical cropland management practices such as no-till management and cover crops proposed in previous studies is not realised, globally or over larger climatic regions. Our results highlight important considerations to be made when modelling C–N interactions in agricultural ecosystems under future environmental change and the effects these have on terrestrial biogeochemical cycles.

  8. Fitomassa e decomposição de resíduos de plantas de cobertura puras e consorciadas Biomass and decomposition of cover crop residues in monoculture and intercropping

    Directory of Open Access Journals (Sweden)

    Alexandre Doneda

    2012-12-01

    Full Text Available O cultivo de plantas de cobertura, no outono/inverno, na região do Planalto do Rio Grande Sul contribui para o sucesso do sistema plantio direto. No entanto, informações relativas à produção de fitomassa e decomposição de resíduos dessas espécies ainda são escassas para a região, sobretudo para espécies consorciadas. O experimento foi conduzido em Não-Me-Toque, RS, em um Latossolo Vermelho distrófico típico, avaliando-se nove tratamentos, sendo quatro constituídos por plantas de cobertura em culturas puras [centeio (Secale cereale L., aveia-preta (Avena strigosa Schreb, ervilha forrageira (Pisum sativum subesp. arvense e nabo forrageiro (Raphanus sativus L. var. oleiferus Metzg] e cinco por consórcios [(centeio + ervilha forrageira, centeio + nabo forrageiro, aveia + nabo forrageiro, centeio + ervilhaca (Vicia sativa L. e aveia + ervilhaca]. A dinâmica de decomposição dos resíduos culturais das plantas de cobertura foi avaliada em bolsas de decomposição, as quais foram distribuídas na superfície do solo e coletadas aos sete, 14, 21, 28, 57, 117 e 164 dias. O consórcio entre leguminosas e crucífera com gramíneas resultou em maior produção de fitomassa em relação ao cultivo destas em culturas puras. O nitrogênio (N acumulado na parte aérea dos consórcios formados por ervilha forrageira e nabo com centeio e aveia foi semelhante ao da leguminosa e da crucífera em culturas puras e superou em 220,4 % os valores de N observados para as gramíneas em culturas puras. Por meio do consórcio entre as espécies de cobertura foi possível reduzir a taxa de decomposição dos resíduos culturais, em comparação com as culturas puras da leguminosa e da crucífera.The use of cover crops in autumn/winter, in the Planalto region of Rio Grande do Sul, contributes to the success of the no-tillage system. However, information about the biomass production and decomposition of such species in the region is still scarce, especially

  9. Biotechnology: herbicide-resistant crops

    Science.gov (United States)

    Transgenic, herbicide-resistant (HR) crops are planted on about 80% of the land covered by transgenic crops. More than 90% of HR crios are glyphosate-resistant (GR) crops, the others being resistant to glufosinate. The wide-scale adoption of HR crops, largely for economic reasons, has been the mos...

  10. Soybean growth and yield under cover crops Análise de crescimento e produtividade de grãos de soja sobre plantas de cobertura

    Directory of Open Access Journals (Sweden)

    Priscila de Oliveira

    2013-04-01

    Full Text Available The use of cover crops in no-tillage systems can provide better conditions for the development of soybean plants with positive effects on grain yield and growth analysis techniques allow researchers to characterize and understand the behavior of soybean plants under different straw covers. Thus, the aim of this study was to characterize, using growth analysis, yield components and agronomic performance of soybean under common bean, Brachiaria brizantha and pearl millet straws. The experiment was performed on a soil under cerrado in the municipality of Santo Antônio de Goiás, GO. The experiment was arranged in a randomized complete block design with three treatments (cover crops and five replications. Soybean grain yield was lower in the B. brizantha straw treatment (3,708 kg ha-1 than both in the pearl millet (4.772 kg ha-1 and common bean straw treatments (5,200 kg ha-1. The soybean growth analysis in B. brizantha, pearl millet and common bean allowed characterizing the variation in the production of dry matter of leaves, stems, pods and total and leaf area index that provided different grain yields. The cover crop directly affects the soybean grain yield.O uso de plantas de cobertura no sistema plantio direto pode proporcionar melhores condições para o desenvolvimento da cultura da soja com reflexos positivos na produtividade de grãos, e o uso da técnica de análise de crescimento permitirá caracterizar e entender o comportamento das plantas de soja sobre diferentes palhadas. Dessa forma, o objetivo deste trabalho foi caracterizar, por meio da análise de crescimento, os componentes e o desempenho agronômico da soja sobre as palhadas de feijão-comum, Brachiaria brizantha e milheto. O experimento foi conduzido em solo de cerrado no município de Santo Antônio de Goiás, Estado de Goiás. O delineamento experimental foi o de blocos completos casualizados, com três tratamentos (palhadas de cobertura e cinco repetições. A

  11. Forms of phosphorus in an oxisol under different soil tillage systems and cover plants in rotation with maize

    Directory of Open Access Journals (Sweden)

    Arminda Moreira de Carvalho

    2014-06-01

    Full Text Available Phosphorus fractions play a key role in sustaining the productivity of acid-savanna Oxisols and are influenced by tillage practices. The aim of this study was to quantify different P forms in an Oxisol (Latossolo Vermelho-Amarelo from the central savanna region of Brazil under management systems with cover crops in maize rotation. Three cover crops (Canavalia brasiliensis, Cajanus cajan (L., and Raphanus sativus L. were investigated in maize rotation systems. These cover crops were compared to spontaneous vegetation. The inorganic forms NaHCO3-iP and NaOH-iP represented more than half of the total P in the samples collected at the depth of 5-10 cm during the rainy season when the maize was grown. The concentration of inorganic P of greater availability (NaHCO3-iP and NaOH-iP was higher in the soil under no-tillage at the depth of 5-10 cm during the rainy season. Concentrations of organic P were higher during the dry season, when the cover crops were grown. At the dry season, organic P constituted 70 % of the labile P in the soil planted to C. cajan under no-tillage. The cover crops were able to maintain larger fractions of P available to the maize, resulting in reduced P losses to the unavailable pools, mainly in no-tillage systems.

  12. Effect of cover crops on greenhouse gas emissions in an irrigated field under integrated soil fertility management

    Science.gov (United States)

    Guardia, Guillermo; Abalos, Diego; García-Marco, Sonia; Quemada, Miguel; Alonso-Ayuso, María; Cárdenas, Laura M.; Dixon, Elizabeth R.; Vallejo, Antonio

    2016-09-01

    Agronomical and environmental benefits are associated with replacing winter fallow by cover crops (CCs). Yet, the effect of this practice on nitrous oxide (N2O) emissions remains poorly understood. In this context, a field experiment was carried out under Mediterranean conditions to evaluate the effect of replacing the traditional winter fallow (F) by vetch (Vicia sativa L.; V) or barley (Hordeum vulgare L.; B) on greenhouse gas (GHG) emissions during the intercrop and the maize (Zea mays L.) cropping period. The maize was fertilized following integrated soil fertility management (ISFM) criteria. Maize nitrogen (N) uptake, soil mineral N concentrations, soil temperature and moisture, dissolved organic carbon (DOC) and GHG fluxes were measured during the experiment. Our management (adjusted N synthetic rates due to ISFM) and pedo-climatic conditions resulted in low cumulative N2O emissions (0.57 to 0.75 kg N2O-N ha-1 yr-1), yield-scaled N2O emissions (3-6 g N2O-N kg aboveground N uptake-1) and N surplus (31 to 56 kg N ha-1) for all treatments. Although CCs increased N2O emissions during the intercrop period compared to F (1.6 and 2.6 times in B and V, respectively), the ISFM resulted in similar cumulative emissions for the CCs and F at the end of the maize cropping period. The higher C : N ratio of the B residue led to a greater proportion of N2O losses from the synthetic fertilizer in these plots when compared to V. No significant differences were observed in CH4 and CO2 fluxes at the end of the experiment. This study shows that the use of both legume and nonlegume CCs combined with ISFM could provide, in addition to the advantages reported in previous studies, an opportunity to maximize agronomic efficiency (lowering synthetic N requirements for the subsequent cash crop) without increasing cumulative or yield-scaled N2O losses.

  13. Integração lavoura e pecuária e os atributos físicos de solo manejado sob sistema plantio direto Livestock-crop integration effects on physical attributes of a soil under no-till

    Directory of Open Access Journals (Sweden)

    Silvio Tulio Spera

    2009-02-01

    evaluated: I wheat/soybean, white oat/soybean, and common vetch/corn; II wheat/soybean, white oat/soybean, and annual forages (black oat + common vetch/corn; III perennial cool season forages (fescue + white clover + red clover + birdsfoot trefoil; and IV perennial warm season forages (bahiagrass + black oat + rye grass + white clover + red clover + birdsfoot trefoil. System V alfalfa as hay crop was established in an adjacent area in 1994. Half of the areas under the systems III, IV, and V returned to system I after the summer of 1996 (southern hemisphere. The crops, both summer and winter, were grown under no-till. The treatments were arranged in a randomized complete block design, with four replications. Soil core samples were also collected in a subtropical forest fragment adjacent to the experimental area. The variations in soil bulk density, total porosity, microporosity and macroporosity due to grain production systems with forages were not severe enough to cause soil degradation. The soil bulk density in the production systems with perennial forages was lower and total porosity and macroporosity, in the 0-2 cm layer, higher than in the production systems of grain or of grain with annual forages.

  14. A mutant Brassica napus (canola population for the identification of new genetic diversity via TILLING and next generation sequencing.

    Directory of Open Access Journals (Sweden)

    Erin J Gilchrist

    Full Text Available We have generated a Brassica napus (canola population of 3,158 EMS-mutagenised lines and used TILLING to demonstrate that the population has a high enough mutation density that it will be useful for identification of mutations in genes of interest in this important crop species. TILLING is a reverse genetics technique that has been successfully used in many plant and animal species. Classical TILLING involves the generation of a mutagenised population, followed by screening of DNA samples using a mismatch-specific endonuclease that cleaves only those PCR products that carry a mutation. Polyacrylamide gel detection is then used to visualise the mutations in any gene of interest. We have used this TILLING technique to identify 432 unique mutations in 26 different genes in B. napus (canola cv. DH12075. This reflects a mutation density ranging from 1/56 kb to 1/308 kb (depending on the locus with an average of 1/109 kb. We have also successfully verified the utility of next generation sequencing technology as a powerful approach for the identification of rare mutations in a population of plants, even in polyploid species such as B. napus. Most of the mutants we have identified are publically available.

  15. Pesticide and transformation product detections and age-dating relations from till and sand deposits

    Science.gov (United States)

    Warner, K.L.; Morrow, W.S.

    2007-01-01

    Pesticide and transformation product concentrations and frequencies in ground water from areas of similar crop and pesticide applications may vary substantially with differing lithologies. Pesticide analysis data for atrazine, metolachlor, alachlor, acetochlor, and cyanazine and their pesticide transformation products were collected at 69 monitoring wells in Illinois and northern Indiana to document occurrence of pesticides and their transformation products in two agricultural areas of differing lithologies, till, and sand. The till is primarily tile drained and has preferential fractured flow, whereas the sand primarily has surface water drainage and primary porosity flow. Transformation products represent most of the agricultural pesticides in ground water regardless of aquifer material - till or sand. Transformation products were detected more frequently than parent pesticides in both the till and sand, with metolachlor ethane sulfonic acid being most frequently detected. Estimated ground-water recharge dates for the sand were based on chlorofluorocarbon analyses. These age-dating data indicate that ground water recharged prior to 1990 is more likely to have a detection of a pesticide or pesticide transformation product. Detections were twice as frequent in ground water recharged prior to 1990 (82%) than in ground water recharged on or after 1990 (33%). The highest concentrations of atrazine, alachlor, metolachlor, and their transformation products, also were detected in samples from ground water recharged prior to 1990. These age/pesticide detection relations are opposite of what would normally be expected, and may be the result of preferential flow and/or ground-water mixing between aquifers and aquitards as evident by the detection of acetochlor transformation products in samples with estimated ground-water ages predating initial pesticide application. ?? 2007 American Water Resources Association.

  16. Long-term monitoring of nitrate transport to drainage from three agricultural clayey till fields

    DEFF Research Database (Denmark)

    Ernstsen, Vibeke; Olsen, Preben; Rosenbom, Annette E.

    2015-01-01

    -regulation in future. This study strives to provide such knowledge by evaluating on 11 years of nitrate-N con-centration measurements in drainage from three subsurface-drained clayey till fields (1.3–2.3 ha) representing approxi-mately 71 % of the surface sediments in Denmark dominated by clay. The fields differ...... in their inherent hydrogeological field settings (e.g. soil-type, geology, climate, drainage and groundwater table) and the agricultural management of the fields (e.g. crop type, type of N fertilisers and agricultural practices). The evaluation revealed three types of clayey till fields characterised by: (i) low net...... precipitation, high concen-tration of nitrate-N, and short-term low intensity drainage at air temperatures often below 5 ◦C; (ii) medium net precip-itation, medium concentration of nitrate-N, and short-term medium-intensity drainage at air temperatures often above 5 ◦C; and (iii) high net precipitation, low...

  17. Conservation agriculture among small scale farmers in semi-arid region of Kenya does improve soil biological quality and soil organic carbon

    Science.gov (United States)

    Waweru, Geofrey; Okoba, Barrack; Cornelis, Wim

    2016-04-01

    The low food production in Sub-Saharan Africa (SSA) has been attributed to declining soil quality. This is due to soil degradation and fertility depletion resulting from unsustainable conventional farming practices such as continuous tillage, crop residue burning and mono cropping. To overcome these challenges, conservation agriculture (CA) is actively promoted. However, little has been done in evaluating the effect of each of the three principles of CA namely: minimum soil disturbance, maximum surface cover and diversified/crop rotation on soil quality in SSA. A study was conducted for three years from 2012 to 2015 in Laikipia East sub county in Kenya to evaluate the effect of tillage, surface cover and intercropping on a wide variety of physical, chemical and biological soil quality indicators, crop parameters and the field-water balance. This abstract reports on soil microbial biomass carbon (SMBC) and soil organic carbon (SOC). The experimental set up was a split plot design with tillage as main treatment (conventional till (CT), no-till (NT) and no-till with herbicide (NTH)), and intercropping and surface cover as sub treatment (intercropping maize with: beans, MB; beans and leucaena, MBL; beans and maize residues at 1.5 Mg ha-1 MBMu, and dolichos, MD). NT had significantly higher SMBC by 66 and 31% compared with CT and NTH respectively. SOC was significantly higher in NTH than CT and NT by 15 and 4%, respectively. Intercropping and mulching had significant effect on SMBC and SOC. MBMu resulted in higher SMBC by 31, 38 and 43%, and SOC by 9, 20 and 22% as compared with MBL, MD and MB, respectively. SMBC and SOC were significantly affected by the interaction between tillage, intercropping and soil cover with NTMBMu and NTHMBMu having the highest SMBC and SOC, respectively. We conclude that indeed tillage, intercropping and mulching substantially affect SMBC and SOC. On the individual components of CA, tillage and surface cover had the highest effect on SMBC and

  18. DHPLC technology for high-throughput detection of mutations in a durum wheat TILLING population.

    Science.gov (United States)

    Colasuonno, Pasqualina; Incerti, Ornella; Lozito, Maria Luisa; Simeone, Rosanna; Gadaleta, Agata; Blanco, Antonio

    2016-02-17

    Durum wheat (Triticum turgidum L.) is a cereal crop widely grown in the Mediterranean regions; the amber grain is mainly used for the production of pasta, couscous and typical breads. Single nucleotide polymorphism (SNP) detection technologies and high-throughput mutation induction represent a new challenge in wheat breeding to identify allelic variation in large populations. The TILLING strategy makes use of traditional chemical mutagenesis followed by screening for single base mismatches to identify novel mutant loci. Although TILLING has been combined to several sensitive pre-screening methods for SNP analysis, most rely on expensive equipment. Recently, a new low cost and time saving DHPLC protocol has been used in molecular human diagnostic to detect unknown mutations. In this work, we developed a new durum wheat TILLING population (cv. Marco Aurelio) using 0.70-0.85% ethyl methane sulfonate (EMS). To investigate the efficiency of the mutagenic treatments, a pilot screening was carried out on 1,140 mutant lines focusing on two target genes (Lycopene epsilon-cyclase, ε-LCY, and Lycopene beta-cyclase, β-LCY) involved in carotenoid metabolism in wheat grains. We simplify the heteroduplex detection by two low cost methods: the enzymatic cleavage (CelI)/agarose gel technique and the denaturing high-performance liquid chromatography (DHPLC). The CelI/agarose gel approach allowed us to identify 31 mutations, whereas the DHPLC procedure detected a total of 46 mutations for both genes. All detected mutations were confirmed by direct sequencing. The estimated overall mutation frequency for the pilot assay by the DHPLC methodology resulted to be of 1/77 kb, representing a high probability to detect interesting mutations in the target genes. We demonstrated the applicability and efficiency of a new strategy for the detection of induced variability. We produced and characterized a new durum wheat TILLING population useful for a better understanding of key gene functions

  19. Produtividade de feijão-guará e efeito supressivo de culturas de cobertura de inverno em espontâneas de verão = Common bean yield and the suppressive effect of winter cover crops on summer weeds

    Directory of Open Access Journals (Sweden)

    Henrique von Hertwig Bittencourt

    2009-10-01

    Full Text Available Investigou-se o efeito das coberturas de inverno centeio, aveia, azevém, ervilhaca e nabo forrageiro (e suas associações, em sistema de plantio direto, sobre a cobertura do solo e a produção de biomassa das coberturas de inverno, sobre a biomassa de plantas espontâneas deverão, no período crítico de competição, e sobre a produtividade do feijão, cv Guará. O experimento foi instalado em delineamento experimental constituído por blocos ao acaso com quatro repetições. Observaram-se as maiores percentagens de cobertura do solo no inverno, com os tratamentos centeio + ervilhaca, centeio + ervilhaca + nabo forrageiro e aveia + ervilhaca; a produção de biomassa de cobertura foi maior com centeio + ervilhaca + nabo forrageiro. Oefeito de supressão observado foi maior no monocultivo de azevém e no consórcio de centeio + ervilhaca + nabo forrageiro, porém não foi detectada correlação da biomassa de cobertura com a supressão de plantas espontâneas de verão. Os melhores rendimentos de feijão foram obtidos com o monocultivo de azevém, monocultivo de aveia e combinação centeio + ervilhaca, que atingiram 1.950, 1.730 e 1.790 kg ha-1, respectivamente. O azevém e a aveia em monocultivo apresentaram os menores custos com sementes e as maiores receitas, ou seja, os maiores retornos por unidade monetária investida.The effect of the winter cover crops rye, oat, ryegrass, vetch and fodder radish (and their mixtures in no-tillage systems was investigated on soil cover, cover crop biomass and summer weed biomass during the critical competition stage with common bean. Bean yield was also evaluated. The experimental design was randomized complete blocks and four repetitions. The highest soil cover during winter was observed in the treatments rye + vetch, rye + vetch +fodder radish and oat + vetch. The highest values of cover crops biomass production were observed in the treatments rye + vetch + fodder radish. Weed suppression was higher

  20. Integrated Soil, Water and Nitrogen Management For Sustainable Rice–Wheat Cropping System in Pakistan

    International Nuclear Information System (INIS)

    Hussain, F.; Yasin, M.; Gurmani, A.R.; Zia, M.S.

    2016-01-01

    The area under the rice–wheat (R–W) cropping system in Pakistan is about 2.2 Mha and despite its great importance as staple foods for the local population, the productivity of the system is poor due to several constraints. Rice (Oryza sativa L.) and wheat (Triticum aestivum L.) are normally grown in sequence on the same land in the same year. Field experiments with rice and wheat were conducted during four years on a Typic Halorthid soil at Lahore, in the alluvial plain of Punjab, Pakistan to assess nitrogen use efficiency and water productivity under both traditional and emerging crop establishment methods (raised beds, unpuddled soil, direct seeding). The climate in this region is semiarid. The experimental design was a randomized complete block design with five crop establishment methods as treatments and four replications. One micro-plot was laid down in each main plot to apply 15 N labelled urea (5 atom % 15 N). Both wheat and rice received a uniform application of 120 kg N ha -1 as urea, 30 kg P ha -1 as triple super phosphate, 50 kg K ha -1 as potassium sulphate and 5 kg Zn ha -1 as zinc sulphate. Pooled data of wheat grown in 2002–03, 2004–05 and 2005–06 showed that the highest wheat grain yield (3.89 t ha -1 ) was produced with conventional flatbed sowing (well pulverised soil) followed by raised bed sowing (3.79–3.82 t ha -1 ), whereas the lowest yield (3.45 t ha -1 ) was obtained in flat bed sowing with zero till rice in sequence. The highest rice paddy yield (4.15 t ha -1 ) was achieved with conventional flooded transplanted rice at 20 × 20 cm spacing and the lowest paddy yield (3.57 t ha -1 ) was recorded with direct seeding of rice in zero tilled soil. Total N uptake in wheat was maximum (117 kg ha -1 ) with conventional flatbed sowing and it was lowest with zero tilled soil. The highest total N uptake by rice (106 kg ha -1 ) was recorded with conventional flooded transplanted rice at 20 × 20 cm spacing and the lowest (89 kg ha -1 ) with

  1. Rootstock and vineyard floor management influence on 'Cabernet Sauvignon' grape yeast assimilable nitrogen (YAN)

    Science.gov (United States)

    This is a preliminary study on the influence two rootstocks (110R, high vigor; 420A, low vigor) grafted to scion 'Cabernet Sauvignon' clone 8, and three vineyard floor management regimes (tilled resident vegetation – usual practice in California, and barley cover crops that were either mowed or till...

  2. Comparative performance of annual and perennial energy cropping systems under different management regimes

    Energy Technology Data Exchange (ETDEWEB)

    Boehmel, Ute Constanze

    2007-07-18

    The theme of this thesis was chosen against the background of the necessary substitution of fossil fuels and the need to reduce greenhouse gas emissions. One major solution for these topics may be the energy generation from domestically produced biomass. The overall aim of this thesis was the identification of one or more efficient energy cropping systems for Central Europe. The existence of diverse production environments necessitates further diversification and the identification of several energy crops and the development of energy cropping systems suited to those diverse environments. This thesis starts with an introductory essay (chapter 1), which provides the background for renewable energy production, its features, demands and potentials, and the scientific basis of this thesis. Chapters 2 to 6 consist of five manuscripts to be published in reviewed journals (Papers I, II, IV and V) or in a multi-author book (Paper III). Subsequently, the results from all papers are discussed in a general setting (chapter 7), from which a general conclusion is formulated (chapter 8). The basis of the research formed four field experiments, which were conducted at the experimental sites Ihinger Hof, Oberer Lindenhof and Goldener Acker of the University of Hohenheim, in south-western Germany. Paper I addresses the overall objective of this thesis. Selected cropping systems for this experiment were short rotation willow, miscanthus, switchgrass, energy maize and two different crop rotation systems including winter oilseed rape, winter wheat and winter triticale with either conventional tillage or no-till. The systems were cultivated with three different nitrogen fertilizer applications. An energy balance was calculated to evaluate the biomass and energy yields of the different cropping systems. Results indicate that perennial lignocellulosic crops combine high biomass and net energy yields with low input and potential ecological impacts. Switchgrass, which produced low yields

  3. Expression of allelopathy in the soil environment: Soil concentration and activity of benzoxazinoid compounds released by rye cover crop residue

    Science.gov (United States)

    The activity of allelopathic compounds is often reduced in the soil environment where processes involving release from donor plant material, soil adsorption and degradation, and uptake by receptor plants naturally result in complex interactions. Rye (Secale cereale L.) cover crops are known to supp...

  4. Effect of the different cover crops on the soil moisture in a Hungarian vineyard

    Science.gov (United States)

    Donkó, Ádám; Miglécz, Tamás; Valkó, Orsolya; Deák, Balázs; Kelemen, András; Török, Péter; Tóthmérész, Béla; Drexler, Dóra

    2017-04-01

    Since many years it is well known that the one-sided mechanical soil cultivation of vineyard inter-rows has many disadvantages. Growers can choose from alternative tillage technologies, such as the usage of green manure, or covering the inter-rows with straw mulch. Another possible technology is tto cover the inter-rows with species-rich seed mixtures. However, selection of the most suitable species is crucial; we have to take into consideration the age of the vines, and the specific characteristics of the vineyards involved. Species rich cover crop technology has many advantages: 1) it helps to prevent erosion and creates easier cultivation circumstances, 2) it has a positive effect on soil structure, soil fertility and ecosystem services, 3) we can create native mixtures from local provenance, adapted to the local climate/vine region/vineyard which enhances the nature conservation value of our site. But, they should not compete significantly with the grapevines, or negatively influence produce quality. In the year of 2012 we created, and started to study three different cover-crop mixtures in Hungarian wine regions under on-farm conditions: Biocont-Ecovin mixture, Mixture of Legumes, Mixture of Grass and Herbs. The results of the botanical surveys, yield and pruning weight were published in many papers and presentations before (e.g. Miglécz et al. 2015, Donkó et al. 2016). Besides the above measures, one key point of the effectiveness and sustainability of the living mulch vegetation is the level of soil moisture. That is why we started to investigate the soil moisture (vol %) of different treatments (Biocont-Ecovin mixture, Mixture of Legumes, Mixture of Grass and Herbs, coverage with Lolium perenne, and Control (spontaneous weed flora)) in at the Feind Winery in Balatonfőkajár (Hungary). The investigated variety is Welschriesling on loamy soil (Tihany Formation), planted in 2010. The seed mixtures were sown in the spring of 2013. We measured soil moisture

  5. Suitability of peanut residue as a nitrogen source for a rye cover crop Resíduos da cultura de amendoim como fonte de nitrogênio para uma cultura de cobertura de centeio

    Directory of Open Access Journals (Sweden)

    Kipling Shane Balkcom

    2007-01-01

    Full Text Available Leguminous winter cover crops have been utilized in conservation systems to partially meet nitrogen (N requirements of succeeding summer cash crops, but the potential of summer legumes to reduce N requirements of a winter annual grass, used as a cover crop, has not been extensively examined. This study assessed the N contribution of peanut (Arachis hypogaea L. residues to a subsequent rye (Secale cereale L. cover crop grown in a conservation system on a Dothan sandy loam (fine-loamy, kaolinitic, thermic Plinthic Kandiudults at Headland, AL USA during the 2003-2005 growing seasons. Treatments were arranged in a split plot design, with main plots of peanut residue retained or removed from the soil surface, and subplots as N application rates (0, 34, 67 and 101 kg ha-1 applied in the fall. Peanut residue had minimal to no effect on rye biomass yields, N content, carbon (C /N ratio, or N, P, K, Ca and Zn uptake. Additional N increased rye biomass yield, and N, P, K, Ca, and Zn uptakes. Peanut residue does not contribute significant amounts of N to a rye cover crop grown as part of a conservation system, but retaining peanut residue on the soil surface could protect the soil from erosion early in the fall and winter before a rye cover crop grows sufficiently to protect the typically degraded southeastern USA soils.Culturas leguminosas de inverno tem sido utilizadas em sistemas conservacionistas para suprimento parcial das necessidades de nitrogênio (N de culturas subseqüentes de verão, mas o potencial destas culturas leguminosas de verão no sentido de reduzir as necessidades de N de gramíneas anuais de inverno, utilizadas como culturas de cobertura, ainda não foi extensivamente estudado. Este trabalho avaliou a contribuição dos resíduos de uma cultura de amendoim (Arachis hypogaea L. sobre as necessidades de N de uma cultura subsequente de centeio (Secale cereale L. como cobertura desenvolvida dentro de um sistema conservacionista, em um

  6. Performance of fall and winter crops in a no tillage system in west Paraná State

    Directory of Open Access Journals (Sweden)

    Leandro Paiola Albrecht

    2017-11-01

    Full Text Available The long-term exploitation of natural resources by agricultural activities has resulted in the need for alternative measures to restore degraded soil. The cultivation of cover crops can generate great benefits for agricultural systems, enabling the exploitation of natural resources, including water, light and nutrients, as well as the recovery of degraded soils. This work aimed to assess the coverage rate, fresh mass and dry mass of cover crops from fall and winter as well as the floristic composition of the weeds. The work was conducted in field conditions in soil classified as eutroferric Red Oxisol in the region of the city of Palotina, Paraná State, Brazil, using a random block experimental design with four replications. The treatments consisted of seven cover cultures: wild radish, linseed, triticale, rye, rapeseed, crambe, oats and fallow. The species with the highest coverage rates and fresh mass and dry mass values were wild radish, rapeseed and crambe. In the floristic and phytosociological data, the species with the highest incidence were Amaranthus retroflexus, Commelina benghalensis L., Brachiaria plantaginea and Gnaphalium spicatum.

  7. Cover crop management in the weed control and productive performance in cornManejo de plantas de cobertura no controle de plantas daninhas e desempenho produtivo da cultura do milho

    Directory of Open Access Journals (Sweden)

    Pedro Valério Dutra de Moraes

    2013-05-01

    Full Text Available Objetivou-se avaliar espécies vegetais com potencial alelopático, associados às práticas de manejo e ao uso de herbicida nicosulfuron, no controle de plantas daninhas e nos componentes de produtividade da cultura do milho. O delineamento experimental utilizado foi em blocos ao acaso, com quatro repetições. O experimento foi composto por três fatores: espécies de cobertura, manejo das coberturas e aplicação ou não de herbicida nicosulfuron em pós-emergência. As variáveis avaliadas foram: número de plantas daninhas, número de fileiras de grãos, número de grãos por fileira, número de grãos por espiga e produtividade de grãos de milho. A cobertura de azevém, em geral, reduz o número de plantas daninhas emergidas e favorece o desempenho produtivo do milho. O manejo das plantas de cobertura com roçada e retirada da palha reduz a produtividade do milho. A maior produtividade do milho, foi observada com a aplicação de nicosulfuron em pós-emergência, independente da cultura de cobertura ou do manejo adotado. The objective of the study was evaluate the allelopathy of cover species, associated to management practices and use of nicosulfuron herbicide on the productive performance of corn. The experimental design consisted of complete randomized block with four replications. The treatments were: cover species, cover management and application or not of post-emergence herbicide. The variables evaluated were: number of weeds, number of rows kernels, number of kernels rows, number of kernels ear and grain yield of corn. Lolium multiflorum, reduced the number of emerged weeds and provides the best results in productive performance. The management simulated grazing, does not favor the yield of corn. The application of nicosulfuron in post-emergence, along with the allelopathic activity increases the productive performance of corn, regardless of cover crop or soil management.

  8. Nitrate-nitrogen losses through subsurface drainage under various agricultural land covers.

    Science.gov (United States)

    Qi, Zhiming; Helmers, Matthew J; Christianson, Reid D; Pederson, Carl H

    2011-01-01

    Nitrate-nitrogen (NO₃-N) loading to surface water bodies from subsurface drainage is an environmental concern in the midwestern United States. The objective of this study was to investigate the effect of various land covers on NO₃-N loss through subsurface drainage. Land-cover treatments included (i) conventional corn ( L.) (C) and soybean [ (L.) Merr.] (S); (ii) winter rye ( L.) cover crop before corn (rC) and before soybean (rS); (iii) kura clover ( M. Bieb.) as a living mulch for corn (kC); and (iv) perennial forage of orchardgrass ( L.) mixed with clovers (PF). In spring, total N uptake by aboveground biomass of rye in rC, rye in rS, kura clover in kC, and grasses in PF were 14.2, 31.8, 87.0, and 46.3 kg N ha, respectively. Effect of land covers on subsurface drainage was not significant. The NO₃-N loss was significantly lower for kC and PF than C and S treatments (p rye cover crop did not reduce NO₃-N loss, but NO₃-N concentration was significantly reduced in rC during March to June and in rS during July to November (p rye cover crop on NO-N loss reduction needs further investigation under conditions of different N rates, wider weather patterns, and fall tillage. by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Preliminary investigations to assess the usefulness of Be-7 as a radiotracer in soil covered by vegetation [Activities of the Soil and Water Management and Crop Nutrition Laboratory, Seibersdorf

    Energy Technology Data Exchange (ETDEWEB)

    Iurian, Andra-Rada [Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca (Romania); Dercon, Gerd; Adu-Gyamfi, Joseph; Mabit, Lionel [Soil and Water Management and Crop Nutrition Laboratory, Joint FAO/IAEA Division for Nuclear Techniques in Food and Agriculture, Seibersdorf (Austria); Kis-Benedek, Gyula; Ceccatelli, Alessia; Tarjan, Sandor [3Terrestrial Environment Laboratory, IAEA Environment Laboratories, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Seibersdorf (Austria); Blake, William [School of Geography, University of Plymouth, Plymouth (United Kingdom); others, and

    2014-07-15

    Different factors may affect the extent of radionuclides’ interception by plants and therewith their inventories in soil covered areas. In particular, there is interest in assessing the impact of the vegetation factor for different soil coverage conditions, when using {sup 7}Be as radiotracer of soil redistribution in cropped farmland. Our results suggest that {sup 7}Be foliar interception of bean plants is likely to affect the radionuclide inventories and their spatial uniformity in covered soil. Reliable results on short-term erosion using {sup 7}Be can be obtained in cropped farmland with limited cover, but only when taking into account the interception factor. The impact of the interception factor is highly dependent on rainfall intensity and duration, crop species and the growing stage of the plants. Further investigations into these variables are required.

  10. Preliminary investigations to assess the usefulness of Be-7 as a radiotracer in soil covered by vegetation [Activities of the Soil and Water Management and Crop Nutrition Laboratory, Seibersdorf

    International Nuclear Information System (INIS)

    Iurian, Andra-Rada; Dercon, Gerd; Adu-Gyamfi, Joseph; Mabit, Lionel; Kis-Benedek, Gyula; Ceccatelli, Alessia; Tarjan, Sandor; Blake, William

    2014-01-01

    Different factors may affect the extent of radionuclides’ interception by plants and therewith their inventories in soil covered areas. In particular, there is interest in assessing the impact of the vegetation factor for different soil coverage conditions, when using 7 Be as radiotracer of soil redistribution in cropped farmland. Our results suggest that 7 Be foliar interception of bean plants is likely to affect the radionuclide inventories and their spatial uniformity in covered soil. Reliable results on short-term erosion using 7 Be can be obtained in cropped farmland with limited cover, but only when taking into account the interception factor. The impact of the interception factor is highly dependent on rainfall intensity and duration, crop species and the growing stage of the plants. Further investigations into these variables are required

  11. Frost risk for overwintering crops in a changing climate

    Science.gov (United States)

    Vico, Giulia; Weih, Martin

    2013-04-01

    Climate change scenarios predict a general increase in daily temperatures and a decline in snow cover duration. On the one hand, higher temperature in fall and spring may facilitate the development of overwintering crops and allow the expansion of winter cropping in locations where the growing season is currently too short. On the other hand, higher temperatures prior to winter crop dormancy slow down frost hardening, enhancing crop vulnerability to temperature fluctuation. Such vulnerability may be exacerbated by reduced snow cover, with potential further negative impacts on yields in extremely low temperatures. We propose a parsimonious probabilistic model to quantify the winter frost damage risk for overwintering crops, based on a coupled model of air temperature, snow cover, and crop minimum tolerable temperature. The latter is determined by crop features, previous history of temperature, and snow cover. The temperature-snow cover model is tested against meteorological data collected over 50 years in Sweden and applied to winter wheat varieties differing in their ability to acquire frost resistance. Hence, exploiting experimental results assessing crop frost damage under limited temperature and snow cover realizations, this probabilistic framework allows the quantification of frost risk for different crop varieties, including in full temperature and precipitation unpredictability. Climate change scenarios are explored to quantify the effects of changes in temperature mean and variance and precipitation regime over crops differing in winter frost resistance and response to temperature.

  12. Characterization of sand lenses embedded in tills

    DEFF Research Database (Denmark)

    Kessler, Timo Christian; Klint, K.E.S.; Nilsson, B.

    2012-01-01

    Tills dominate large parts of the superficial sediments on the Northern hemisphere. These glacial diamictons are extremely heterogeneous and riddled with fractures and lenses of sand or gravel. The frequency and geometry of sand lenses within tills are strongly linked to glaciodynamic processes...

  13. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    We would like to invite you to submit your latest research accomplishments to The Crop Journal,an international,peer‐reviewed research publication covering all aspects of crop sciences including crop genetics,breeding,agronomy,crop physiology,germplasm resources,grain chemistry,grain storage and processing,crop management practices,crop biotechnology,and biomathematics on a bimonthly basis.

  14. The Crop Journal Call for Papers

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    We would like to invite you to submit your latest research accomplishments to The Crop Journal,an international,peer‐reviewed research publication covering all aspects of crop sciences including crop genetics,breeding,agronomy,crop physiology,germplasm resources,grain chemistry,grain storage and processing,crop management practices,crop biotechnology,and biomathematics on a bimonthly basis.

  15. The Crop Journal Call for Papers

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    We would like to invite you to submit your latest research accomplishments to The Crop Journal,an international,peer-reviewed research publication covering all aspects of crop sciences including crop genetics,breeding,agronomy,crop physiology,germplasm resources,grain chemistry,grain storage and processing,crop management practices,crop biotechnology,and biomathematics on a bimonthly basis.

  16. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    We would like to invite you to submit your latest research accomplishments to The Crop Journal,an international,peer‐reviewed research publication covering all aspects of crop sciences including crop genetics,breeding,agronomy,crop physiology,germplasm resources,grain chemistry,grain storage and processing,crop management practices,crop biotechnology,and biomathematics on a bimonthly basis.

  17. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    We would like to invite you to submit your latest research accomplishments to The Crop Journal,an international,peer-reviewed research publication covering all aspects of crop sciences including crop genetics,breeding,agronomy,crop physiology,germplasm resources,grain chemistry,grain storage and processing,crop management practices,crop biotechnology,and biomathematics on a bimonthly basis.

  18. Effects of over-winter green cover on soil solution nitrate concentrations beneath tillage land.

    Science.gov (United States)

    Premrov, Alina; Coxon, Catherine E; Hackett, Richard; Kirwan, Laura; Richards, Karl G

    2014-02-01

    There is a growing need to reduce nitrogen losses from agricultural systems to increase food production while reducing negative environmental impacts. The efficacy of vegetation cover for reducing nitrate leaching in tillage systems during fallow periods has been widely investigated. Nitrate leaching reductions by natural regeneration (i.e. growth of weeds and crop volunteers) have been investigated to a lesser extent than reductions by planted cover crops. This study compares the efficacy of natural regeneration and a sown cover crop (mustard) relative to no vegetative cover under both a reduced tillage system and conventional plough-based system as potential mitigation measures for reducing over-winter soil solution nitrate concentrations. The study was conducted over three winter fallow seasons on well drained soil, highly susceptible to leaching, under temperate maritime climatic conditions. Mustard cover crop under both reduced tillage and conventional ploughing was observed to be an effective measure for significantly reducing nitrate concentrations. Natural regeneration under reduced tillage was found to significantly reduce the soil solution nitrate concentrations. This was not the case for the natural regeneration under conventional ploughing. The improved efficacy of natural regeneration under reduced tillage could be a consequence of potential stimulation of seedling germination by the autumn reduced tillage practices and improved over-winter plant growth. There was no significant effect of tillage practices on nitrate concentrations. This study shows that over winter covers of mustard and natural regeneration, under reduced tillage, are effective measures for reducing nitrate concentrations in free draining temperate soils. © 2013.

  19. Effect of length of interval between cereal rye cover crop termination and corn planting on seedling root disease and corn growth

    Science.gov (United States)

    Cereal rye cover crops terminated immediately before corn planting can sometimes reduce corn population, early growth, and yield. We hypothesized that cereal rye may act as a green bridge for corn pathogens and may increase corn seedling root disease. A field experiment was conducted over two years ...

  20. Soil Hydrological Attributes of an Integrated Crop-Livestock Agroecosystem: Increased Adaptation through Resistance to Soil Change

    International Nuclear Information System (INIS)

    Liebig, M.A; Tanaka, D.L; Kronberg, S.L; Karn, J.F; Scholljegerdes, E.J

    2011-01-01

    Integrated crop-livestock systems have been purported to have significant agronomic and environmental benefits compared to specialized, single-enterprise production systems. However, concerns exist regarding the effect of livestock in integrated systems to cause soil compaction, thereby decreasing infiltration of water into soil. Such concerns are compounded by projections of more frequent high-intensity rainfall events from anticipated climate change, which would act to increase surface runoff and soil erosion. A study was conducted to evaluate the effects of residue management, frequency of hoof traffic, season, and production system (e.g., integrated annual cropping versus perennial grass) on infiltration rates from 2001 through 2008 in central North Dakota, USA. Imposed treatments had no effect on infiltration rate at three, six, and nine years after study establishment, implying that agricultural producers should not be concerned with inhibited infiltration in integrated annual cropping systems, where winter grazing is used. The use of no-till management, coupled with annual freeze/thaw and wet/dry cycles, likely conferred an inherent resistance to change in near-surface soil properties affecting soil hydrological attributes. Accordingly, caution should be exercised in applying these results to other regions or management systems.

  1. Long-term monitoring of nitrate-N transport to drainage from three agricultural clayey till fields

    Science.gov (United States)

    Ernstsen, V.; Olsen, P.; Rosenbom, A. E.

    2015-01-01

    The application of nitrogen (N) fertilisers to crops grown on tile-drained fields is necessary to sustain most modern crop production, but poses a risk to the aquatic environment since tile drains facilitate rapid transport pathways with no significant reduction in nitrate. To maintain the water quality of the aquatic environment and the provision of food from highly efficient agriculture in line with the EU's Water Framework Directive and Nitrates Directive, field-scale knowledge is imperative if there is to be differentiated N-regulation in future. This study describes nitrate-N leaching to drainage based on coherent monitoring of nitrate-N concentrations, the climate, the groundwater table and crop-specific parameters obtained over eleven years (2001-2011) at three subsurface-drained clayey till fields (1.3-2.3 ha). The monitoring results showed significant field differences in nitrate-N transport to drainage. Not only were these caused by periods of bare soil after short-season crops and N-fixing crops (pea), which have been shown to generate high nitrate-N concentrations in drainage, but by the hydrogeological field conditions that were shown to be the controlling factor of nitrate-N transport to drainage. The fields had the following characteristics: (A) the lowest mass transport (13 kg N ha-1) and fertiliser input had short-term and low-intensity drainage with the highest nitrate-N concentrations detected, representing 40% of net precipitation (226 mm) combined with low air temperatures, (B) the medium mass transport (14 kg N ha-1) had medium-term and medium-intensity drainage, representing 42% of net precipitation (471 mm) combined with periods of both low and higher air temperatures, (C) the highest mass transport (19 kg N ha-1) had long-term drainage, representing 68% of net precipitation (617 mm), but had the highest potential for in-situ soil denitrification and post-treatment (e.g. constructed wetlands) due to long periods with both high water

  2. Developmental morphology of cover crop species exhibit contrasting behaviour to changes in soil bulk density, revealed by X-ray computed tomography.

    Science.gov (United States)

    Burr-Hersey, Jasmine E; Mooney, Sacha J; Bengough, A Glyn; Mairhofer, Stefan; Ritz, Karl

    2017-01-01

    Plant roots growing through soil typically encounter considerable structural heterogeneity, and local variations in soil dry bulk density. The way the in situ architecture of root systems of different species respond to such heterogeneity is poorly understood due to challenges in visualising roots growing in soil. The objective of this study was to visualise and quantify the impact of abrupt changes in soil bulk density on the roots of three cover crop species with contrasting inherent root morphologies, viz. tillage radish (Raphanus sativus), vetch (Vicia sativa) and black oat (Avena strigosa). The species were grown in soil columns containing a two-layer compaction treatment featuring a 1.2 g cm-3 (uncompacted) zone overlaying a 1.4 g cm-3 (compacted) zone. Three-dimensional visualisations of the root architecture were generated via X-ray computed tomography, and an automated root-segmentation imaging algorithm. Three classes of behaviour were manifest as a result of roots encountering the compacted interface, directly related to the species. For radish, there was switch from a single tap-root to multiple perpendicular roots which penetrated the compacted zone, whilst for vetch primary roots were diverted more horizontally with limited lateral growth at less acute angles. Black oat roots penetrated the compacted zone with no apparent deviation. Smaller root volume, surface area and lateral growth were consistently observed in the compacted zone in comparison to the uncompacted zone across all species. The rapid transition in soil bulk density had a large effect on root morphology that differed greatly between species, with major implications for how these cover crops will modify and interact with soil structure.

  3. Phosphorus sources and fractions in an oxisol under no-tilled soybean Fontes e frações de fósforo num latossolo sob semeadura direta de soja

    Directory of Open Access Journals (Sweden)

    Raquel Galvani

    2008-01-01

    Full Text Available Phosphorus dynamics in soil can be modified by the use of no-till systems. Brazilian farmers have applied phosphorus fertilizers onto the soil surface to optimize machine field operations despite the lack of research supporting this practice. An experiment was conducted to study the effects of the application of two P sources onto soil surface and soybean seed furrows. The treatments consisted either of the application or not of 80 kg ha-1 of total P2O5 as natural reactive rock phosphate and superphosphate spread on the soil surface over the standing plant residues. At soybean planting, additional treatments (80 kg ha-1 of Natural Phosphate or Superphosphate were applied at seed furrows. Soil was sampled down to 40 cm deep before soybean planting and after harvest. A control sample was taken from an adjacent non-cropped area. Phosphorus contents increased down to 40 cm after the soybean crop, and the increase was observed mainly in Ca-bound P and organic phosphorus. However, there was a decrease in Fe-bound P, showing that P availability to soybeans was likely related also to this fraction. Phosphorus fertilization with both phosphates decreased occluded P contents on the soil surface layer when compared with the non-cropped area.A dinâmica do P no solo pode ser modificada em sistemas com semeadura direta. Os agricultores brasileiros vêm aplicando fósforo na superfície do solo para otimizar a operação de máquinas, embora não seja uma prática recomendada pela pesquisa. Foi conduzido um experimento para estudar os efeitos da aplicação de duas fontes de fósforo na superfície do solo e no sulco de semeadura da soja. Os tratamentos consistiram da aplicação ou não de 80 kg ha-1 de P total como fosfato natural reativo e superfosfato, aplicados na superfície do solo, sobre os resíduos da cultura anterior. Na semeadura da soja, tratamentos adicionais (80 kg ha-1 de fosfato natural ou superfosfato foram aplicados ao sulco de semeadura. O

  4. Lixiviação de potássio da palha de espécies de cobertura de solo de acordo com a quantidade de chuva aplicada Potassium leaching from green cover crop residues as affected by rainfall amount

    Directory of Open Access Journals (Sweden)

    C. A. Rosolem

    2003-04-01

    Full Text Available Os restos vegetais deixados na superfície do solo em sistemas de semeadura direta, além de proteger o solo da erosão, constituem considerável reserva de nutrientes que podem ser disponibilizados para a cultura principal, subseqüente. Avaliou-se a lixiviação de K da palha de seis espécies vegetais com potencial de uso como plantas para cobertura do solo de acordo com a quantidade de chuva recebida após o manejo. Milheto (Pennisetum americanum, var. BN-2, sorgo de guiné (Sorghum vulgare, aveia preta (Avena strigosa, triticale (Triticum secale, crotalária juncea (Crotalaria juncea e braquiária (Brachiaria decumbens foram cultivados em vasos com terra, em casa de vegetação, em Botucatu (SP. Aos 45 dias da emergência, as plantas foram cortadas na altura do colo, secas em estufa e submetidas a chuvas simuladas de 4,4, 8,7, 17,4, 34,9 e 69,8 mm, considerando uma quantidade de palha equivalente a 8,0 t ha-1. A máxima retenção de água pela palha corresponde a uma lâmina de até 3,0 mm, independentemente da espécie, praticamente não ocorrendo lixiviação do potássio com chuvas da ordem de 5 mm. A máxima liberação de K por unidade de chuva ocorre com lâminas de até 20 mm, decrescendo a partir deste ponto. A quantidade de K liberado da palha logo após o manejo depende da espécie vegetal, não ultrapassando, no entanto, 24 kg ha-1 com chuvas da ordem de 70 mm, apresentando correlação positiva com a concentração do nutriente no tecido vegetal. O triticale e a aveia são mais eficientes na ciclagem do potássio.Besides protecting soil from erosion, plant residues left on the soil surface by green cover crops in no-till cropping systems represent a considerable nutrient source of nutrients that can be made available for the following crop. Potassium leaching from the straw of six cover crop species was evaluated, in relation to the amount of rain on the residues. Pearl millet (Pennisetum americanum, guinea sorghum (Sorghum

  5. Effect of Nutrient Management Planning on Crop Yield, Nitrate Leaching and Sediment Loading in Thomas Brook Watershed

    Science.gov (United States)

    Amon-Armah, Frederick; Yiridoe, Emmanuel K.; Ahmad, Nafees H. M.; Hebb, Dale; Jamieson, Rob; Burton, David; Madani, Ali

    2013-11-01

    Government priorities on provincial Nutrient Management Planning (NMP) programs include improving the program effectiveness for environmental quality protection, and promoting more widespread adoption. Understanding the effect of NMP on both crop yield and key water-quality parameters in agricultural watersheds requires a comprehensive evaluation that takes into consideration important NMP attributes and location-specific farming conditions. This study applied the Soil and Water Assessment Tool (SWAT) to investigate the effects of crop and rotation sequence, tillage type, and nutrient N application rate on crop yield and the associated groundwater leaching and sediment loss. The SWAT model was applied to the Thomas Brook Watershed, located in the most intensively managed agricultural region of Nova Scotia, Canada. Cropping systems evaluated included seven fertilizer application rates and two tillage systems (i.e., conventional tillage and no-till). The analysis reflected cropping systems commonly managed by farmers in the Annapolis Valley region, including grain corn-based and potato-based cropping systems, and a vegetable-horticulture system. ANOVA models were developed and used to assess the effects of crop management choices on crop yield and two water-quality parameters (i.e., leaching and sediment loading). Results suggest that existing recommended N-fertilizer rate can be reduced by 10-25 %, for grain crop production, to significantly lower leaching ( P > 0.05) while optimizing the crop yield. The analysis identified the nutrient N rates in combination with specific crops and rotation systems that can be used to manage leaching while balancing impacts on crop yields within the watershed.

  6. Nutrients and sediment in frozen-ground runoff from no-till fields receiving liquid-dairy and solid-beef manures

    Science.gov (United States)

    Komiskey, Matthew J.; Stuntebeck, Todd D.; Frame, Dennis R.; Madison, Fred W.

    2011-01-01

    Nutrients and sediment in surface runoff from frozen agricultural fields were monitored within three small (16.0 ha [39.5 ac] or less), adjacent basins at a no-till farm in southwest Wisconsin during four winters from 2003 to 2004 through 2006 to 2007. Runoff depths and flow-weighted constituent concentrations were compared to determine the impacts of surface-applied liquid-dairy or solid-beef manure to frozen and/or snow-covered ground. Despite varying the manure type and the rate and timing of applications, runoff depths were not significantly different among basins within each winter period. Sediment losses were low (generally less than 22 kg ha−1 [20 lb ac−1] in any year) and any statistical differences in sediment concentrations among basins were not related to the presence or absence of manure or the amount of runoff. Concentrations and losses of total nitrogen and total phosphorus were significantly increased in basins that had either manure type applied less than one week preceding runoff. These increases occurred despite relatively low application rates. Lower concentrations and losses were measured in basins that had manure applied in fall and early winter and an extended period of time (months) had elapsed before the first runoff event. The highest mean, flow-weighted concentrations of total nitrogen (31.8 mg L−1) and total phosphorus (10.9 mg L−1) occurred in winter 2003 to 2004, when liquid-dairy manure was applied less than one week before runoff. On average, dissolved phosphorus accounted for over 80% of all phosphorus measured in runoff during frozen-ground periods. The data collected as part of this study add to the limited information on the quantity and quality of frozen-ground runoff at field edges, and the results highlight the importance of manure management decisions during frozen-ground periods to minimize nutrients lost in surface runoff.

  7. Improvement of soil carbon sink by cover crops in olive orchards under semiarid conditions. Influence of the type of soil and weed

    Directory of Open Access Journals (Sweden)

    F. Márquez-García

    2013-05-01

    Full Text Available The olive tree is one of the most important crops in Spain, and the main one in the region of Andalusia. Most orchards are rain-fed, with high slopes where conventional tillage (CT is the primary soil management system used. These conditions lead to high erosion and a significant transport of organic carbon (OC. Moreover, soil tillage accelerates the oxidation of the OC. Cover crops (CC are the conservation agriculture (CA approach for woody crops. They are grown in-between tree rows to protect the soil against water erosion and their organic residues also help to increase the soil carbon (C sink. Soil and OC losses associated to the sediment were measured over four seasons (2003-07 using micro-plots for the collection of runoff and sediment in five experimental fields located in rain-fed olive orchards in Andalusia. Two soil management systems were followed, CC and CT. Furthermore, the changes in soil C in both systems were analyzed at a depth of 0-25 cm. CC reduced erosion by 80.5%, and also OC transport by 67.7%. In addition, Cover crops increased soil C sink by 12.3 Mg ha-1 year-1 of carbon dioxide (CO2 equivalent, with respect to CT. CC in rainfed olive orchards in a Mediterranean climate could be an environmental friendly and profitable system for reducing erosion and increasing the soil C sink. However, C fixing rate is not regular, being very high for the initial years after shifting from CT to CC and gradually decreasing over time.

  8. Cover crop residue management for optimizing weed control

    NARCIS (Netherlands)

    Kruidhof, H.M.; Bastiaans, L.; Kropff, M.J.

    2009-01-01

    Although residue management seems a key factor in residue-mediated weed suppression, very few studies have systematically compared the influence of different residue management strategies on the establishment of crop and weed species. We evaluated the effect of several methods of pre-treatment and

  9. Sediment and PM10 flux from no-tillage cropping systems in the Pacific Northwest

    Science.gov (United States)

    Wind erosion is a concern in the Inland Pacific Northwest (PNW) United States where the emission of fine particulates from winter wheat – summer fallow (WW/SF) dryland cropping systems during high winds degrade air quality. Although no-tillage cropping systems are not yet economically viable, these ...

  10. CO2 Dynamics in winter wheat and canola under different management practices in the Southern Great Plains

    Science.gov (United States)

    Wagle, P.; Manjunatha, P.; Gowda, P. H.; Northup, B. K.; Neel, J. P. S.; Turner, K.; Steiner, J. L.

    2017-12-01

    Rising atmospheric carbon dioxide (CO2) concentration and increased air temperature and climatic variability concerns have prompted considerable interest regarding CO2 dynamics of terrestrial ecosystems in response to major climatic and biophysical factors. However, detailed information on CO2 dynamics in winter wheat (Triticum aestivum L.) and canola (Brassica napus L.) under different agricultural management practices is lacking. As a part of the GRL-FLUXNET, a cluster of eight eddy covariance (EC) systems was deployed on the 420-ha Grazinglands Research on agroEcosystems and the ENvironment (GREEN) Farm at the United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Grazinglands Research Laboratory (GRL), El Reno, OK. The GRL is also one of 18 USDA-ARS Long-Term Agroecosystem Research (LTAR) network sites in the United States. A 4-year crop rotation plan at the farm includes winter wheat for grain only, graze-grain, and graze-out, and canola under conventional till and no-till management conditions. Biometric measurements such as biomass, leaf area index (LAI), canopy cover %, canopy height, and chlorophyll content were collected approximately every 16 days to coincide with Landsat satellite overpass dates. As expected, biomass and LAI were highest in the grain only wheat fields followed by graze-grain and graze-out wheat fields, but they were similar for till and no-till wheat fields within the same grazing practice. Biomass and LAI were similar in till and no-till canola in fall 2016, but both were substantially lower in no-till compared to tilled canola during spring 2017 due to more severe winter damage. Because net ecosystem CO2 exchange (NEE) is strongly regulated by vegetation cover, the magnitudes of NEE were highest in the grain only wheat fields due to more biomass and LAI, followed by graze-grain and graze-out wheat fields. Similarly, the magnitudes of NEE were also higher in tilled canola (i.e., higher biomass and LAI) than

  11. Weed Population Dynamics, Water Productivity and Grain Yield of Durum Wheat (Triticum durum L. in No-Tillage and Conventional Tillage Systems

    Directory of Open Access Journals (Sweden)

    Mehdi Mojab

    2016-09-01

    yield in no-tillage plots was significantly greater in the second year of the experiment than that of the first year. Low weed densities and high WP were observed under no-tillage conditions, although the crop yield was greater in conventional tillage plots. It seems that this yield reduction in no-tillage plots is mostly due to greater C/N ratio in no-tillage plots than conventional tillage ones. Conclusion: According to the results, although wheat yield decreased under no-till system, increased water productivity, weed control and reduced cultivation costs might justify the adoption of no-tillage cropping systems by local farmers. Other principles of conservation agriculture including suitable crop rotation systems and planting cover crops must be incorporated into the no-till cropping system. As the occurrence of autumn rainfall is usual in these dry regions, employment of the stale seedbed might be another promising technique which controls early season weed species in no-tillage systems.

  12. Productivity limits and potentials of the principles of conservation agriculture.

    Science.gov (United States)

    Pittelkow, Cameron M; Liang, Xinqiang; Linquist, Bruce A; van Groenigen, Kees Jan; Lee, Juhwan; Lundy, Mark E; van Gestel, Natasja; Six, Johan; Venterea, Rodney T; van Kessel, Chris

    2015-01-15

    One of the primary challenges of our time is to feed a growing and more demanding world population with reduced external inputs and minimal environmental impacts, all under more variable and extreme climate conditions in the future. Conservation agriculture represents a set of three crop management principles that has received strong international support to help address this challenge, with recent conservation agriculture efforts focusing on smallholder farming systems in sub-Saharan Africa and South Asia. However, conservation agriculture is highly debated, with respect to both its effects on crop yields and its applicability in different farming contexts. Here we conduct a global meta-analysis using 5,463 paired yield observations from 610 studies to compare no-till, the original and central concept of conservation agriculture, with conventional tillage practices across 48 crops and 63 countries. Overall, our results show that no-till reduces yields, yet this response is variable and under certain conditions no-till can produce equivalent or greater yields than conventional tillage. Importantly, when no-till is combined with the other two conservation agriculture principles of residue retention and crop rotation, its negative impacts are minimized. Moreover, no-till in combination with the other two principles significantly increases rainfed crop productivity in dry climates, suggesting that it may become an important climate-change adaptation strategy for ever-drier regions of the world. However, any expansion of conservation agriculture should be done with caution in these areas, as implementation of the other two principles is often challenging in resource-poor and vulnerable smallholder farming systems, thereby increasing the likelihood of yield losses rather than gains. Although farming systems are multifunctional, and environmental and socio-economic factors need to be considered, our analysis indicates that the potential contribution of no-till to the

  13. Cover plants and mineral nitrogen: effects on organic matter fractions in an oxisol under no-tillage in the cerrado

    Directory of Open Access Journals (Sweden)

    Isis Lima dos Santos

    2014-12-01

    Full Text Available Cover plants are essential for the sustainability of no-tillage systems in tropical regions. However, information on the effects of these plants and N fertilization on soil organic matter fractions is still scarce. This study evaluated the effect of cover crops with different chemical composition and of N topdressing on the labile and humified organic matter fractions of an Oxisol of the Cerrado (savanna-like vegetation. The study in a randomized complete block design was arranged in split-plots with three replications. Four cover species were tested in the plots and the presence or absence of N topdressing in the subplot. The following cover species were planted in succession to corn for eight years: Urochloa ruziziensis; Canavalia brasiliensis M. ex Benth; Cajanus cajan (L. Millsp; and Sorghum bicolor (L. Moench. In general, the cultivation of U. ruziziensis increased soil C levels, particularly of C in the humic acid and particulate organic C fractions, which are quality indicators of soil organic matter. The C in humic substances and mineral organic C accounted for the highest proportions of total organic C, demonstrating the strong interaction between organic matter, Fe and Al oxides and kaolinite, which are predominant in these weathered soils of the Cerrado.

  14. Color variations within glacial till, east-central North Dakota--A preliminary investigation

    Science.gov (United States)

    Kelly, T.E.; Baker, Claud H.

    1966-01-01

    Color variations (orange zones within buff-colored till) in drift in east-central North Dakota are believed to represent two tills of separate origin. Mean size, standard deviation, and number and type of pebbles show greater difference between the two tills than do skewness, kurtosis, and partial chemical analyses. Probably blocks of older till were moved by the last glacier crossing the area and were redeposited in a matrix of younger till.

  15. Manejo de nitrogênio no milho sob plantio direto com diferentes plantas de cobertura, em Latossolo Vermelho Nitrogen management in corn under no-tillage with different cover crops in a Rhodic Hapludox soil

    Directory of Open Access Journals (Sweden)

    Edson Cabral da Silva

    2006-03-01

    Full Text Available O objetivo deste trabalho foi definir a melhor dose e época de aplicação, e a eficiência de utilização do N, utilizando-se uréia marcada com 15N, pelo milho cultivado sob plantio direto, em sucessão à crotalária (Crotalaria juncea, ao milheto (Pennisetum americanum e à vegetação espontânea (pousio, em um Latossolo Vermelho no Cerrado. O delineamento experimental foi o de blocos ao acaso, com 24 tratamentos e quatro repetições, em esquema fatorial incompleto, 3x3x2 + 6: três doses de N (80, 130 e 180 kg ha-1; três sistemas de cobertura do solo (crotalária, milheto e pousio; duas épocas de aplicação do N (estádio quatro ou oito folhas; e seis tratamentos adicionais (três sem aplicação de N e três que receberam 30 kg ha-1 de N na semeadura. O cultivo do milho em sucessão à crotalária proporciona maior quantidade na planta e aproveitamento pela planta do N proveniente do fertilizante e maior produtividade de grãos. A aplicação do N ao milho com quatro folhas proporciona maior produtividade de grãos, comparada à aplicação com oito folhas, quando em sucessão ao milheto.The objective of this work was to evaluate the best rate and time for N application, and N utilization using urea-15N, by corn crop grown under no-tillage system, in succession to sun hemp (Crotalaria juncea L., millet (Pennisetum americanum and to the spontaneous vegetation (fallow ground, in a Rhodic Hapludox soil in Cerrrado. The experimental design was randomized complete blocks, with 24 treatments and four replications, in an incomplete factorial 3x3x2 + 6: three N rates (80, 130 and 180 kg ha-1 N; three preceding cover crops (sun hemp, millet and fallow ground; two N application time (four leaves or eight leaves stage; and six additional treatments (three without N application and three that received 30 kg ha-1 N at seeding. The corn grown in succession to sun hemp provided higher amount of N derived from fertilizer, N utilization efficiency

  16. Adubação nitrogenada para milho com o uso de plantas de cobertura e modos de aplicação de calcário Forms of lime application, cover crops and nitrogen rates in maize

    Directory of Open Access Journals (Sweden)

    Aguinaldo José Freitas Leal

    2013-04-01

    Full Text Available O sistema plantio direto (SPD é uma realidade na região dos Cerrados, mas alguns questionamentos persistem nesse tipo de manejo como o modo de realização da calagem e a dose de nitrogênio (N a ser adotada em cultura comercial, em relação às culturas precedentes. Desse modo, objetivou-se avaliar modos de aplicar o calcário na implantação do SPD e o efeito de culturas de cobertura precedentes sobre a necessidade de adubação nitrogenada da cultura do milho, durante diferentes anos agrícolas. O delineamento experimental utilizado foi de blocos casualizados, em esquema fatorial 5 x 2 (modos de aplicação do calcário x culturas de cobertura e posterior divisão em três subparcelas, referentes às doses de N (0, 90 e 180 kg ha-1. Foram avaliados quatro modos de aplicação de calcário: incorporado a 0-0,2 m, em out./2001; dose total em superfície aplicada, em out./2001; aplicação de 1/2 da dose, em out./2001, e 1/2, em ago./2002, na superfície; e aplicação de 1/3 da dose recomendada, em mar./2001, + 1/3, em out./2001, e 1/3, em ago./2002, também em superfície. Além de um tratamento testemunha (sem calcário e duas culturas de cobertura, crotalária e milheto. Os diferentes modos de calagem não alteraram a produtividade de grãos de milho. O cultivo de milho após crotalária apresentou melhor desempenho e menor demanda de adubação nitrogenada, quando comparado ao cultivado após milheto.The no-tillage (NT management is widely used in the Cerrado region, but some questions remain unanswered, for example about the need of liming and adequate nitrogen rates for commercial crops when preceded by cover crops. Our objective was to evaluate the effect of precedent cover crops on the maize demand for nitrogen fertilization and forms of liming preceding the adoption of no-tillage management (NT in different growing seasons. The experiment was arranged in a randomized block factorial design 5 x 2 (liming forms x cover crops and

  17. GEOGLAM Crop Monitor Assessment Tool: Developing Monthly Crop Condition Assessments

    Science.gov (United States)

    McGaughey, K.; Becker Reshef, I.; Barker, B.; Humber, M. L.; Nordling, J.; Justice, C. O.; Deshayes, M.

    2014-12-01

    The Group on Earth Observations (GEO) developed the Global Agricultural Monitoring initiative (GEOGLAM) to improve existing agricultural information through a network of international partnerships, data sharing, and operational research. This presentation will discuss the Crop Monitor component of GEOGLAM, which provides the Agricultural Market Information System (AMIS) with an international, multi-source, and transparent consensus assessment of crop growing conditions, status, and agro-climatic conditions likely to impact global production. This activity covers the four primary crop types (wheat, maize, rice, and soybean) within the main agricultural producing regions of the AMIS countries. These assessments have been produced operationally since September 2013 and are published in the AMIS Market Monitor Bulletin. The Crop Monitor reports provide cartographic and textual summaries of crop conditions as of the 28th of each month, according to crop type. This presentation will focus on the building of international networks, data collection, and data dissemination.

  18. Hydrogeology in Clay Tills

    DEFF Research Database (Denmark)

    Kessler, Timo Christian; Klint, Knud Erik; Nilsson, Bertel

    2012-01-01

    function of such layers. They potentially facilitate vertical migration and horizontal spreading of pesticides, chlorinated solvents and other pollutants into deeper aquifers. This paper presents methods how to analyse and describe the spatial distribution of sand lenses in tills and what impact they may...

  19. STRAW DEGRADATION AND NITROGEN RELEASE FROM COVER CROPS UNDER NO-TILLAGE

    Directory of Open Access Journals (Sweden)

    ADRIANO STEPHAN NASCENTE

    2014-01-01

    Full Text Available Culturas de cobertura são usadas para cobrir o solo e também podem liberar nitrogênio para o solo durante a mineralização. No entanto, é necessário identificar espécies que combinem liberação rápida de nutri- entes com maior persistência da palhada na superfície do solo. O objetivo deste estudo foi investigar a degrada- ção da palha e a liberação de nitrogênio por culturas de cobertura sob plantio direto. O experimento de campo foi conduzido durante dois anos no verão (2008/2009 e 2009/2010 na região do Cerrado do Brasil. O delinea- mento experimental foi em blocos ao acaso no esquema fatorial. Os tratamentos foram a combinação de cinco plantas (quatro espécies de plantas de cobertura 1- Panicum maximum, 2- Brachiaria ruziziensis, 3- Brachiaria brizantha e 4- Pennisetum glaucum [milheto] e pousio como controle com seis épocas de avaliação (seis pri- meiras semanas após a aplicação de glifosato nessas plantas de cobertura. Entre as espécies avaliadas, Penise- tum glaucum e pousio tiveram rápida degradação da palhada e liberação de nitrogênio. As culturas de cobertura Panicum maximum, Brachiaria brizantha e Brachiaria ruziziensis se destacaram na produção de biomassa e na quantidade de nitrogênio nas suas palhadas, mas apresentaram baixos coeficientes de degradação e persistiram por mais tempo na superfície do solo em relação a Pennisetum glaucum e pousio.

  20. Economic analysis of nitrogen fertilization in winter bean plant under no-tillage system

    Directory of Open Access Journals (Sweden)

    Michelle Traete Sabundjian

    2014-09-01

    Full Text Available With the expansion and diversity of the no-tillage system, it is necessary to evaluate the economic benefits generated throughout the production cycle, especially those related to remnants of previous crops and nitrogen fertilizer management of succeeding crops. This study aimed to evaluate the economic viability of four cover nitrogen doses on winter bean grain yield grown under no-tillage system after different crops. The experimental design was randomized blocks with four replications, in a 8x4 factorial scheme, with 32 treatments consisting of a combination of crop remnants (mayze; mayze - Azospirillum brasilense; Urochloa ruziziensis; Urochloa ruziziensis - Azospirillum brasilense; mayze + U. ruziziensis; mayze -A. brasilense + U. ruziziensis; mayze + U. ruziziensis - A. brasilense; mayze -A. brasilense + U. ruziziensis - A. brasilense and cover nitrogen doses (0 kg ha-1, 30 kg ha-1, 60 kg ha-1 and 90 kg ha-1. It was possible to conclude that the highest grain yield of winter bean plants irrigated by aspersion was obtained with the use of 90 kg ha-1 of cover nitrogen in succession to Urochloa ruziziensis without the inoculation of Azospirillum brasilense. In order to improve profits, it is recommended to apply 90 kg ha-1 of cover nitrogen to bean crops succeeding the other crops, except for inoculated Urochloa ruziziensis.

  1. Properties of the subglacial till inferred from supraglacial lake drainage

    Science.gov (United States)

    Neufeld, J. A.; Hewitt, D.

    2017-12-01

    The buildup and drainage of supraglacial lakes along the margins of the Greenland ice sheet has been previously observed using detailed GPS campaigns which show that rapid drainage events are often preceded by localised, transient uplift followed by rapid, and much broader scale, uplift and flexure associated with the main drainage event [1,2]. Previous models of these events have focused on fracturing during rapid lake drainage from an impermeable bedrock [3] or a thin subglacial film [4]. We present a new model of supraglacial drainage that couples the water flux from rapid lake drainage events to a simplified model of the pore-pressure in a porous, subglacial till along with a simplified model of the flexure of glacial ice. Using a hybrid mathematical model we explore the internal transitions between turbulent and laminar flow throughout the evolving subglacial cavity and porous till. The model predicts that an initially small water flux may locally increase pore-pressure in the till leading to uplift and a local divergence in the ice velocity that may ultimately be responsible for large hydro-fracturing and full-scale drainage events. Furthermore, we find that during rapid drainage while the presence of a porous, subglacial till is crucial for propagation, the manner of spreading is remarkably insensitive to the properties of the subglacial till. This is in stark contrast to the post-drainage relaxation of the pore pressure, and hence sliding velocity, which is highly sensitive to the permeability, compressibility and thickness of subglacial till. We use our model, and the inferred sensitivity to the properties of the subglacial till after the main drainage event, to infer the properties of the subglacial till. The results suggest that a detailed interpretation of supraglacial lake drainage may provide important insights into the hydrology of the subglacial till along the margins of the Greenland ice sheet, and the coupling of pore pressure in subglacial till

  2. Influence of Conservation Tillage on some Soil Physical Properties and Crop Yield in Vetch-Wheat Rotation in Dryland Cold Region

    Directory of Open Access Journals (Sweden)

    I Eskandari

    2017-10-01

    pass of a disk harrow (CT; (2 reduced tillage:chisel packer (CH; (3 minimum tillage: Stubble mulch cultivator (MT; and (4 no-till (NT with retained previous crop residue. At beginning prior to the tillage operation, only wheat stubble was present on the soil surface. A uniform tillage treatment was applied to all plots using a chisel packer in October. A shallow tillage was also performed using a tandem disk harrow just prior to winter vetch planting. In the second, third, fourth and fifth years, the tillage treatments for the vetch and wheat planting were similar. A winter wheat cultivar (Azar 2 was sown 6 cm depth at a rate of 350 seeds per square meter with an Alvand conventional and Baldan NT 250 no-till drill. Vetch cultivar Golsefied was drilled 8 cm depth at a seeding rate of 85 kg ha−1 using Alvand drill. The following parameters were measured: heads of wheat per square meter, 1000-kernel weight, kernels per head, head length, plant height, and wheat grain yield. Grain yield was obtained with a plot combine harvester. The dry matter content was determined and yield corrected to a standard moisture content of 130 g kg−1. Rain use efficiency (RUE was calculated by dividing dry weight of grain yield by growing season precipitation. Soil water content and dry bulk density were measured gravimetrically (drying method, w/w in cropping seasons. Results and Discussion Conservation tillage treatments resulted in water saving in soil layers. In both stages of soil sampling, the most soil moisture variability to initial state was observed in plots which planted as no-tillage. The moisture variability of no-tillage system was 23.4% higher than that of conventional tillage system at 10-20 cm soil layer in flowering stage of wheat. Effect of treatments on soil bulk density in different soil depths illustrated that conservation tillage can reduce soil bulk density during four years. According to the results of this study the overall infiltration in no-tillage was 1

  3. Derived crop management data for the LandCarbon Project

    Science.gov (United States)

    Schmidt, Gail; Liu, Shu-Guang; Oeding, Jennifer

    2011-01-01

    The LandCarbon project is assessing potential carbon pools and greenhouse gas fluxes under various scenarios and land management regimes to provide information to support the formulation of policies governing climate change mitigation, adaptation and land management strategies. The project is unique in that spatially explicit maps of annual land cover and land-use change are created at the 250-meter pixel resolution. The project uses vast amounts of data as input to the models, including satellite, climate, land cover, soil, and land management data. Management data have been obtained from the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) and USDA Economic Research Service (ERS) that provides information regarding crop type, crop harvesting, manure, fertilizer, tillage, and cover crop (U.S. Department of Agriculture, 2011a, b, c). The LandCarbon team queried the USDA databases to pull historic crop-related management data relative to the needs of the project. The data obtained was in table form with the County or State Federal Information Processing Standard (FIPS) and the year as the primary and secondary keys. Future projections were generated for the A1B, A2, B1, and B2 Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) scenarios using the historic data values along with coefficients generated by the project. The PBL Netherlands Environmental Assessment Agency (PBL) Integrated Model to Assess the Global Environment (IMAGE) modeling framework (Integrated Model to Assess the Global Environment, 2006) was used to develop coefficients for each IPCC SRES scenario, which were applied to the historic management data to produce future land management practice projections. The LandCarbon project developed algorithms for deriving gridded data, using these tabular management data products as input. The derived gridded crop type, crop harvesting, manure, fertilizer, tillage, and cover crop

  4. Development of Trombay pulse crop varieties mutation through induced mutation

    International Nuclear Information System (INIS)

    Dhole, V.J.; Reddy, K.S.

    2016-01-01

    The food prices including pulses were beginning to increase from 2008, something that was not expected to happen before 2020. It was due to climate change, a scarcity of good arable land, water and nutrients. With these obstacles, we must produce almost double than what we are producing now to achieve food security by 2050. It can be achieved through crop improvement. Crop improvement is the art and science of changing the genetic make of crop plant in desire direction through various method of plant breeding. Mutation breeding is one of the techniques which utilize the physical and chemical mutagens to create genetic variability. Till date more than 3200 mutant varieties have been developed worldwide in which two physical mutagens i.e. X-rays and gamma rays have major contributions. Bhabha Atomic Research Centre is one of the leading institutes in India where nuclear energy is used for crop improvement, which resulted in to development of 43 improved high yielding varieties in different crops including 19 varieties of pulse crops. These varieties are contributing significantly to production of pulses and ultimately to national food security. (author)

  5. Produtividade e composição de uva e de vinho de videiras consorciadas com plantas de cobertura Productivity and composition of grapes and wine of vines intercropped with cover crops

    Directory of Open Access Journals (Sweden)

    Jovani Zalamena

    2013-02-01

    Full Text Available O objetivo deste trabalho foi avaliar a influência de plantas de cobertura verde sobre a produtividade das videiras e sobre a composição da uva e do vinho. Durante duas safras, foram feitas avaliações de três tipos de consórcio, dois manejos das coberturas e de um tratamento controle, com plantas espontâneas controladas por herbicidas e roçagem. Utilizou-se vinhedo de uvas 'Cabernet Sauvignon', localizado a 1.130 m de altitude, em um Cambissolo Húmico distrófico, em São Joaquim, SC. Os consórcios foram realizados com a sucessão de cultivos anuais de moha (Setaria italica com azevém (Lolium multiflorum e de trigo mourisco (Fagopyrum esculentum com aveia‑branca (Avena sativa, bem como com a planta perene festuca (Fetusca sp.. Os manejos consistiram da transferência ou não do resíduo cultural da linha para a entrelinha. As videiras apresentaram maior produtividade de uva no consórcio com as plantas anuais, em comparação ao tratamento controle, ou com a planta perene festuca. O manejo da cobertura verde não teve influência sobre as variáveis avaliadas. Os consórcios não influenciaram de forma consistente os teores de N da uva nem a composição do mosto, embora, na última safra, o teor de sólidos solúveis totais do mosto tenha sido maior nos tratamentos com consórcio, em comparação ao controle. Além disso, as videiras consorciadas com festuca podem proporcionar vinho com maior teor de antocianinas e polifenóis totais.The objective of this work was to evaluate the influence of green cover crops on vine productivity and on grape and wine composition. For two growing seasons, evaluations were done for three intercrops, two managements of the cover crops, and for a control treatment with weeds controlled by herbicides and mowing. A vineyard of 'Cabernet Sauvignon', located at 1,130 m altitude in a Haplumbrept soil, in São Joaquim, SC, Brazil was used. Intercropping was done with a succession of the cover crops moha

  6. TILLING in the two-rowed barley cultivar 'Barke' reveals preferred sites of functional diversity in the gene HvHox1

    Directory of Open Access Journals (Sweden)

    Komatsuda Takao

    2009-12-01

    Full Text Available Abstract Background The economic importance of cereals such as barley, and the demand for improved yield and quality require a better understanding of the genetic components that modulate biologically and commercially relevant traits. While Arabidopsis thaliana is the premiere model plant system, the spectrum of its traits cannot address all of the fundamental questions of crop plant development. Unlike Arabidopsis, barley is both a crop and a model system for scientific research, and it is increasingly being used for genetic and molecular investigations into the conserved biological processes of cereals. A common challenge in genetic studies in plants with large genomes arises from the very time-consuming work of associating mutant phenotypes with gene sequence information, especially if insertion mutagenesis is not routine, as in barley. Reverse genetics based on chemical mutagenesis represents the best solution to this obstacle. Findings In barley, we generated a new TILLING (Targeting Local Lesions IN Genomes resource comprising 10,279 M2 mutants in the two-rowed malting cultivar 'Barke,' which has been used in the generation of other genomic resources in barley (~150,000 ESTs, DH mapping population. The value of this new resource was tested using selected candidate genes. An average frequency of approximately one mutation per 0.5 Mb was determined by screening ten fragments of six different genes. The ethyl methanesulphonate (EMSmutagenesis efficiency was studied by recording and relating the mutagenesis-dependent effects found in the three mutant generations (M1-M3. A detailed analysis was performed for the homeodomain-leucine-zipper (HD-ZIP gene HvHox1. Thirty-one mutations were identified by screening a 1,270-bp fragment in 7,348 M2 lines. Three of the newly identified mutants exhibited either a six-rowed or an intermedium-spike phenotype, and one mutant displayed a significantly altered spikelet morphology compared to that of the 'Barke

  7. Cover Crops in West Africa: Contributing to Sustainable Agriculture ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    It documents past experiences withcover cropping in Africa and will hopefully ... Adaptation strategies for two Colombian cities were discussed at ADAPTO's ... International Water Resources Association, in close collaboration with IDRC, ...

  8. Studies on the injuries of crops by harmful gases under covering. II. On the mechanism of crop injury due to gaseous nitrogen dioxide. [Eggplant

    Energy Technology Data Exchange (ETDEWEB)

    Kato, T; Tachibana, S; Inden, T

    1974-12-01

    The mechanism of crop injury by nitrogen dioxide gas was investigated by exploring kidney bean, cucumber, tomato, egg plant, and spinach plants 6.0 to 17 ppM NO/sub 2/ under various conditions. The application of aqueous oxyethylene decasanol on crop leaves reduced the injury due to the gas, expecially on the lower leaf sides. Leaves exposed to NO/sub 2/ in the dark showed severer injury and contained more nitrite anion than those exposed to NO/sub 2/ in the light. Leaves smeared with an aqueous sodium nitrite solution showed the same type of injury as that induced by NO/sub 2/. After treatment with 3-(3,4-dichlorophenyl)-1,1- dimethylurea, the leaves became more susceptible to the gas even under light and formed more nitrite anion than controls. Plants grown in nitrate-nitrogen cultures were less susceptible to NO/sub 2/ damage than those grown in ammonia-nitrogen cultures or cultures without nitrogen and contained less nitrite anion than others. Plant injury by gaseous nitrogen dioxide appeared to be caused by nitrite anion. Susceptibility to NO/sub 2/ depended on the amount of the gas taken in by stomata and on the physiological activity of the plant which reduces the anion. The reduction is carried out by nitrite reductase. The photochemical reduction by reductase in chloroplasts appears to be related to the injury-reducing effect of light.

  9. From the Academy: Colloquium perspective. Toward cropping systems that enhance productivity and sustainability.

    Science.gov (United States)

    Cook, R James

    2006-12-05

    The defining features of any cropping system are (i) the crop rotation and (ii) the kind or intensity of tillage. The trend worldwide starting in the late 20th century has been (i) to specialize competitively in the production of two, three, a single, or closely related crops such as different market classes of wheat and barley, and (ii) to use direct seeding, also known as no-till, to cut costs and save soil, time, and fuel. The availability of glyphosate- and insect-resistant varieties of soybeans, corn, cotton, and canola has helped greatly to address weed and insect pest pressures favored by direct seeding these crops. However, little has been done through genetics and breeding to address diseases caused by residue- and soil-inhabiting pathogens that remain major obstacles to wider adoption of these potentially more productive and sustainable systems. Instead, the gains have been due largely to innovations in management, including enhancement of root defense by antibiotic-producing rhizosphere-inhabiting bacteria inhibitory to root pathogens. Historically, new varieties have facilitated wider adoption of new management, and changes in management have facilitated wider adoption of new varieties. Although actual yields may be lower in direct-seed compared with conventional cropping systems, largely due to diseases, the yield potential is higher because of more available water and increases in soil organic matter. Achieving the full production potential of these more-sustainable cropping systems must now await the development of varieties adapted to or resistant to the hazards shown to account for the yield depressions associated with direct seeding.

  10. Temporal expansion of annual crop classification layers for the CONUS using the C5 decision tree classifier

    Science.gov (United States)

    Friesz, Aaron M.; Wylie, Bruce K.; Howard, Daniel M.

    2017-01-01

    Crop cover maps have become widely used in a range of research applications. Multiple crop cover maps have been developed to suite particular research interests. The National Agricultural Statistics Service (NASS) Cropland Data Layers (CDL) are a series of commonly used crop cover maps for the conterminous United States (CONUS) that span from 2008 to 2013. In this investigation, we sought to contribute to the availability of consistent CONUS crop cover maps by extending temporal coverage of the NASS CDL archive back eight additional years to 2000 by creating annual NASS CDL-like crop cover maps derived from a classification tree model algorithm. We used over 11 million records to train a classification tree algorithm and develop a crop classification model (CCM). The model was used to create crop cover maps for the CONUS for years 2000–2013 at 250 m spatial resolution. The CCM and the maps for years 2008–2013 were assessed for accuracy relative to resampled NASS CDLs. The CCM performed well against a withheld test data set with a model prediction accuracy of over 90%. The assessment of the crop cover maps indicated that the model performed well spatially, placing crop cover pixels within their known domains; however, the model did show a bias towards the ‘Other’ crop cover class, which caused frequent misclassifications of pixels around the periphery of large crop cover patch clusters and of pixels that form small, sparsely dispersed crop cover patches.

  11. Disaggregating and mapping crop statistics using hypertemporal remote sensing

    Science.gov (United States)

    Khan, M. R.; de Bie, C. A. J. M.; van Keulen, H.; Smaling, E. M. A.; Real, R.

    2010-02-01

    Governments compile their agricultural statistics in tabular form by administrative area, which gives no clue to the exact locations where specific crops are actually grown. Such data are poorly suited for early warning and assessment of crop production. 10-Daily satellite image time series of Andalucia, Spain, acquired since 1998 by the SPOT Vegetation Instrument in combination with reported crop area statistics were used to produce the required crop maps. Firstly, the 10-daily (1998-2006) 1-km resolution SPOT-Vegetation NDVI-images were used to stratify the study area in 45 map units through an iterative unsupervised classification process. Each unit represents an NDVI-profile showing changes in vegetation greenness over time which is assumed to relate to the types of land cover and land use present. Secondly, the areas of NDVI-units and the reported cropped areas by municipality were used to disaggregate the crop statistics. Adjusted R-squares were 98.8% for rainfed wheat, 97.5% for rainfed sunflower, and 76.5% for barley. Relating statistical data on areas cropped by municipality with the NDVI-based unit map showed that the selected crops were significantly related to specific NDVI-based map units. Other NDVI-profiles did not relate to the studied crops and represented other types of land use or land cover. The results were validated by using primary field data. These data were collected by the Spanish government from 2001 to 2005 through grid sampling within agricultural areas; each grid (block) contains three 700 m × 700 m segments. The validation showed 68%, 31% and 23% variability explained (adjusted R-squares) between the three produced maps and the thousands of segment data. Mainly variability within the delineated NDVI-units caused relatively low values; the units are internally heterogeneous. Variability between units is properly captured. The maps must accordingly be considered "small scale maps". These maps can be used to monitor crop performance of

  12. Water erosion during a 17-year period under two crop rotations in four soil management systems on a Southbrazilian Inceptisol

    Science.gov (United States)

    Bertol, Ildegardis; Vidal Vázquez, Eva; Paz Ferreiro, Jorge

    2010-05-01

    Soil erosion still remains a persistent issue in the world, and this in spite of the efforts to ameliorate soil management systems taken into account the point of view of environmental protection against soil losses. In South Brazil water erosion is mainly associated to rainfall events with a great volume and high intensity, which are more or less evenly distributed all over the year. Nowadays, direct drilling is the most widely soil management system used for the main crops of the region. However, some crops still are grown on conventionally tilled soils, which means mainly ploughing and harrowing and less frequently chisel ploughing. In Lages-Santa Catarina State, Brazil, a plot experiment under natural rain was started in 1992 on an Inceptisol with the aim of quantifying soil and water losses. Treatments included bare and vegetated plots. The crop succession was: oats (Avena strigosa), soybean (Glycine max), vetch (Vicia sativa), maize (Zea mays), fodder radish (Raphanus sativus) and beans (Phaseolus vulgaris). Soil tillage systems investigated in this study were: i) conventional tillage (CT), ii) reduced tillage (MT), iii) no tillage (NT) under crop rotation and iv) conventional tillage on bare soil (BS). Treatments CT and BS involved ploughing plus twice harrowing, whereas MT involved chisel ploughing plus harrowing. Rainfall erosivity from January 1 1992 to December 31 2009 was calculated. Soil losses from the BS treatment along the 17 year study period were higher than 1200 Mg ha-1. Crop cover significantly reduced erosion, so that under some crops soil losses in the CT treatment were 80% lower than in the BS treatment. In turn soil losses in the MT treatment, where tillage was performed by chiselling and harrowing, were on average about 50% lower than in the CT treatment. No tillage was the most efficient soil management system in reducing soil erosion, so that soil losses in the NT treatment were about 98% lower than in the BS treatment. The three

  13. Soybean growth and yield after single tillage and species mixture of cover plants

    Directory of Open Access Journals (Sweden)

    Gislaine Piccolo de Lima

    2012-10-01

    Full Text Available The use of cover crops is important for the agricultural crop and soil management in order to improve the system and, consequently, to increase yield. Therefore, the present study analyzed the effect of crop residues of black oat (Avena strigosa Schreb. (BO and a cocktail (CO of BO, forage turnip (Raphanus sativus L. (FT and common vetch (Vicia sativa L. (V on the emergence speed index (ESI, seedling emergence speed (SES plant height and soybean yield in different intervals between cover crop desiccation with glyphosate 480 (3 L ha-1 and BRS 232 cultivar sowing. Plots of 5 x 2.5 m with 1 m of border received four treatments with BO cover crops and four with CO as well as a control for each cover crop, at random, with five replications. The plots were desiccated in intervals of 1, 10, 20 and 30 days before soybean seeding. The harvest was manual while yield was adjusted to 13% of moisture content. The experimental design was completely randomized with splitplots and means compared by the Scott and Knott test at 5% of significance. The results showed that CO of cover crops can be recommended for soybean to obtain a more vigorous seedling emergence, from 10 days after cover crop desiccation.

  14. Efeitos da cobertura do solo com filme de polietileno azul no consumo de água da cultura da alface cultivada em estufa Effects of the soil covering with blue colored polyethylene film on lettuce crop consumptive water-use in a gree

    Directory of Open Access Journals (Sweden)

    Alexandre O. Gonçalves

    2005-12-01

    the carbohydrates storage. The current trial intended to evaluate the effect of soil covering with blue colored film on consumptive water-use in a lettuce crop (Lactuca sativa, L.. The experiment was carried out in a plastic greenhouse in Araras - São Paulo State, Brazil from March 3rd, 2001 to May 5th, 2001. The consumptive water-use was measured through two weighing lysimeter installed inside the greenhouse. Crop spacing was 0.25 m x 0.25 m and the color of the film above soil was blue. Leaf area index (IAF, was measured six times (7; 14; 21; 28; 35; 40 days after transplant and the water-use efficiency (EU was measured at the end. The experimental design was subdivided portions with two treatments, "bare soil" and "covered soil". The average consumptive water-use was 4.17 mm day-1 to the "bare soil" treatment and 3.11 mm day-1 to the "covered soil" treatment. The final leaf area index was 25.23 to the "bare soil" treatment and 24.39 to the "covered soil" treatment, and there was no statistical difference between then.

  15. POTASSIUM FERTILIZATION AND SOIL MANAGEMENT SYSTEMS FOR COTTON CROPS

    Directory of Open Access Journals (Sweden)

    VITOR MARQUES VIDAL

    2017-01-01

    Full Text Available Cotton has great socio-economic importance due to its use in textile industry, edible oil and biodiesel production and animal feed. Thus, the objective of this work was to identify the best potassium rate and soil management for cotton crops and select among cultivars, the one that better develops in the climatic conditions of the Cerrado biome in the State of Goiás, Brazil. Thus, the effect of five potassium rates (100, 150, 200, 250 and 300 kg ha-1 of K2O and two soil management systems (no-till and conventional tillage on the growth, development and reproduction of four cotton cultivars (BRS-371, BRS-372, BRS-286 and BRS-201 was evaluated. The data on cotton growth and development were subjected to analysis of variance; the data on potassium rates were subjected to regression analysis; and the data on cultivars and soil management to mean test. The correlation between the vegetative and reproductive variables was also assessed. The conventional tillage system provides the best results for the herbaceous cotton, regardless of the others factors evaluated. The cultivar BRS-286 has the best results in the conditions evaluated. The cultivar BRS-371 under no-till system present the highest number of fruiting branches at a potassium rate of 105.5% and highest number of floral buds at a potassium rate of 96.16%. The specific leaf area was positively correlated with the number of bolls per plant at 120 days after emergence of the herbaceous cotton.

  16. Environmental impact of almond crop in strong slope with two vegetable covers: bush and leguminous

    International Nuclear Information System (INIS)

    Carceles Rodriguez, B.; Francia Martinez, J. R.; Martinez Raya, A.

    2009-01-01

    Soil erosion is one of the main physical processes of land degradation in Spain. Several studies in the Mediterranean environment have demonstrated the positive effect of vegetation covers on the reduction of water erosion and their indirect improvement of the soil physical and chemical properties, essentially by the incorporation of organic matter. Sol loss and surface runoff patterns over a four-year period were monitors in erosion plots from hill slope with two different cover-crop strips: (1) non-tillage with leguminous (Lens esculenta Moench) and (2) non-tillage with and a mixture of autochthonous thymes (Thymus baeticus Boiss. ex Lacaita, Thymus capitatus (L) Hoffmanns and Link., Thymus vulgaris L.) of 3 m with, in Lanjaron (Granada) on the south flank of the Sierra Nevada of southeast Spain. The erosion plots were located on the hill slope at 35% incline, at 580 m in altitude and with 144 m 2 (24 m x 6 m) in area. the area selected for the experiment is the part of the rainfed orchard given entirely with almond (Prunus amygdalus Basch cv. Desmayo Largueta) trees, the planting gird were 6 x 7 m. (Author) 10 refs.

  17. Updating the Micro-Tom TILLING platform.

    Science.gov (United States)

    Okabe, Yoshihiro; Ariizumi, Tohru; Ezura, Hiroshi

    2013-03-01

    The dwarf tomato variety Micro-Tom is regarded as a model system for functional genomics studies in tomato. Various tomato genomic tools in the genetic background of Micro-Tom have been established, such as mutant collections, genome information and a metabolomic database. Recent advances in tomato genome sequencing have brought about a significant need for reverse genetics tools that are accessible to the larger community, because a great number of gene sequences have become available from public databases. To meet the requests from the tomato research community, we have developed the Micro-Tom Targeting-Induced Local Lesions IN Genomes (TILLING) platform, which is comprised of more than 5000 EMS-mutagenized lines. The platform serves as a reverse genetics tool for efficiently identifying mutant alleles in parallel with the development of Micro-Tom mutant collections. The combination of Micro-Tom mutant libraries and the TILLING approach enables researchers to accelerate the isolation of desirable mutants for unraveling gene function or breeding. To upgrade the genomic tool of Micro-Tom, the development of a new mutagenized population is underway. In this paper, the current status of the Micro-Tom TILLING platform and its future prospects are described.

  18. Cover crops impact on excess rainfall and soil erosion rates in orchards and potato fields, Israel

    Science.gov (United States)

    Egozi, Roey; Gil, Eshel

    2015-04-01

    Bare soil and high drainage densities are common characteristics of intensive agriculture land. The couplings of these characteristics lead to high runoff and eroded soil volumes leaving the field or the orchard via the local drainage system into the fluvial system. This process increase flood risk due to massive deposition of the coarse fraction of the eroded soil and therefore reduces channel capacity to discharge the increase volumes of concentrated runoff. As a result drainage basin authorities are forced to invest large amount of money in maintaining and enlarging the drainage network. However this approach is un-sustainable. On the other hand, implementing cover crops (CC) and modification to current agricultural practices over the contributing area of the watershed seems to have more benefits and provide sustainable solution. A multi-disciplinary approach applied in commercial potatoes fields and orchards that utilize the benefit of CC shows great success as means of soil and water conservation and weed disinfestation without reduction in the yield, its quality or its profitability. The results indicate that it is possible to grow potatoes and citrus trees under CC with no reduction in yield or nutrient uptake, with more than 95% reduction in soil loss and more than 60% in runoff volumes and peak discharges.

  19. Variations in thematic mapper spectra of soil related to tillage and crop residue management - Initial evaluation

    Science.gov (United States)

    Seeley, M. W.; Ruschy, D. L.; Linden, D. R.

    1983-01-01

    A cooperative research project was initiated in 1982 to study differences in thematic mapper spectral characteristics caused by variable tillage and crop residue practices. Initial evaluations of radiometric data suggest that spectral separability of variably tilled soils can be confounded by moisture and weathering effects. Separability of bare tilled soils from those with significant amounts of corn residue is enhanced by wet conditions, but still possible under dry conditions when recent tillage operations have occurred. In addition, thematic mapper data may provide an alternative method to study the radiant energy balance at the soil surface in conjunction with variable tillage systems.

  20. Lime and phosphogypsum impacts on soil organic matter pools in a tropical Oxisol under long-term no-till conditions

    Science.gov (United States)

    Improving soil organic matter (SOM) quality in tropical acid soils is important for increasing the sustainability of agricultural ecosystems. This research evaluated the effect of the surface application of lime and phosphogypsum on the quality and amount of SOM in a long-term crop rotation under no...

  1. Till Moritz Karbach, Scientific Legacy

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; d'Argent, Philippe; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Bellee, Violaine; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Birnkraut, Alex; Bizzeti, Andrea; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Demmer, Moritz; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Ruscio, Francesco; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fohl, Klaus; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gastaldi, Ugo; Gauld, Rhorry; Gavardi, Laura; Gazzoni, Giulio; Geraci, Angelo; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gligorov, Vladimir; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Humair, Thibaud; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Kenzie, Matthew; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozeiha, Mohamad; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kurek, Krzysztof; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Xuesong; Loh, David; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lowdon, Peter; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Maciuc, Florin; Maev, Oleg; Maguire, Kevin; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; Meadows, Brian; Meier, Frank; Meissner, Marco; Melnychuk, Dmytro; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Janine; Müller, Katharina; Müller, Vanessa; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Ninci, Daniele; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Osorio Rodrigues, Bruno; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Pappenheimer, Cheryl; Parkes, Christopher; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Piucci, Alessio; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Ronayne, John William; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skillicorn, Ian; Skwarnicki, Tomasz; Smith, Edmund; Smith, Eluned; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Sterpka, Christopher Francis; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Tekampe, Tobias; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Todd, Jacob; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wiedner, Dirk; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xu, Zhirui; Yang, Zhenwei; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang

    2015-01-01

    We are deeply touched by the sudden loss of our dear friend and colleague Till Moritz Karbach. With this memorial book we wish to commemorate Moritz’ scientific legacy, and what Moritz meant to us as a friend.

  2. The spatial distribution of microfabric around gravel grains: indicator of till formation processes

    Science.gov (United States)

    KalväNs, Andis; Saks, Tomas

    2010-05-01

    Till micromorphology studies in thin sections is an established tool in the field of glacial geology. Often the thin sections are inspected only visually with help of mineralogical microscope. This can lead to subjective interpretation of observed structures. More objective method used in till micromorphology is measurement of apparent microfabric, usually seen as preferred orientation of elongated sand grains. In theses studies only small fraction of elongated sand grains often confined to small area of thin section usually are measured. We present a method for automated measurement of almost all elongated sand grains across the full area of the thin section. Apparently elongated sand grains are measured using simple image analysis tools, the data are processed in a way similar to regular till fabric data and visualised as a grid of rose diagrams. The method allows to draw statistical information about spatial variation of microfabric preferred orientation and fabric strength with resolution as fine as 1 mm. Late Weichselian tills from several sites in Western Latvia were studied and large variations in fabric strength and spatial distribution were observed in macroscopically similar till units. The observed types of microfabric spatial distributions include strong, monomodal and uniform distribution; weak and highly variable in small distances distribution; consistently bimodal distribution and domain-like pattern of preferred sand grain orientation. We suggest that the method can be readily used to identify the basic deformation and sedimentation processes active during the final stages of till formation. It is understood that the microfabric orientation will be significant affected by nearby large particles. The till is highly heterogonous sediment and the source of microfabric perturbations observed in thin section might lie outside the section plane. Therefore we suggest that microfabric distribution around visible sources of perturbation - gravel grains cut

  3. Residue management increases fallow water conservation and yield deficit irrigated crops grown in rotation with wheat

    Science.gov (United States)

    No-tillage (NT) residue management provides cover to increase precipitation capture compared with disk tillage (DT) or in the absence of a cover crop. Therefore, NT has the potential to reduce irrigation withdrawals from the declining Ogallala Aquifer. In a 4-year study, we quantified DT and NT effe...

  4. Symbiotic Performance of Herbaceous Legumes in Tropical Cover Cropping Systems

    Directory of Open Access Journals (Sweden)

    Basil Ibewiro

    2001-01-01

    Full Text Available Increasing use of herbaceous legumes such as mucuna (Mucuna pruriens var. utilis [Wright] Bruck and lablab (Lablab purpureus [L.] Sweet in the derived savannas of West Africa can be attributed to their potential to fix atmospheric nitrogen (N2. The effects of management practices on N2 fixation in mucuna and lablab were examined using 15N isotope dilution technique. Dry matter yield of both legumes at 12 weeks was two to five times more in in situ mulch (IM than live mulch (LM systems. Land Equivalent Ratios, however, showed 8 to 30% more efficient utilization of resources required for biomass production under LM than IM systems. Live mulching reduced nodule numbers in the legumes by one third compared to values in the IM systems. Similarly, nodule mass was reduced by 34 to 58% under LM compared to the IM systems. The proportion of fixed N2 in the legumes was 18% higher in LM than IM systems. Except for inoculated mucuna, the amounts of N fixed by both legumes were greater in IM than LM systems. Rhizobia inoculation of the legumes did not significantly increase N2 fixation compared to uninoculated plots. Application of N fertilizer reduced N2 fixed in the legumes by 36 to 51% compared to inoculated or uninoculated systems. The implications of cover cropping, N fertilization, and rhizobia inoculation on N contributions of legumes into tropical low-input systems were discussed.

  5. Development of reflectance-based crop coefficients for corn

    International Nuclear Information System (INIS)

    Neale, C.M.U.; Bausch, W.C.; Heermann, D.F.

    1989-01-01

    Concurrent measurements of reflected canopy radiation and the basal crop coefficient (K^b) for corn were conducted throughout a season in order to develop a reflectance-based crop coefficient model. Reflectance was measured in Landsat Thematic Mapper bands TM3 (0.63 - 0.69 um) and TM4 (0.76 - 0.90 um) and used in the calculation of a vegetation index called the normalized difference (ND). A linear transformation of the ND was used as the reflectance-based crop coefficient (Kcr). The transformation equates the ND for dry bare soil and the ND at effective cover, to the basal crop coefficient for dry soil evaporation and at effective cover, respectively. Basal crop coefficient values for com were obtained from daily evapotranspiration measurements of corn and alfalfa, using hydraulic weighing lysimeters. The Richards growth curve function was fitted to both sets of data. The K^b values were determined to be within -2.6% and 4.7% of the K^^ values. The date of effective cover obtained from the K^b data was within four days of the date on which the ND curve reached its maxima according to the Richards function. A comparison of the Kcr with basal crop curves from the literature for several years of data indicated good agreement. Reflectance-based crop coefficients are sensitive to periods of slow and fast growth induced by weather conditions, resulting in a real time coefficient, independent from the traditional time base parameters based on the day of planting and effective cover

  6. Assessing climate change impacts on winter cover crop nitrate uptake efficiency on the coastal plain of the Chesapeake Bay watershed using the SWAT model

    Science.gov (United States)

    Climate change is expected to exacerbate water quality degradation in the Chesapeake Bay watershed (CBW). Winter cover crops (WCCs) have been widely implemented in this region owing to their high effectiveness at reducing nitrate loads. However, little is known about climate change impacts on the ef...

  7. Effect of temperature and precipitation on nitrate leaching from organic cereal cropping systems in Denmark

    DEFF Research Database (Denmark)

    Jabloun, Mohamed; Schelde, Kirsten; Tao, F

    2015-01-01

    The effect of variation in seasonal temperature and precipitation on soil water nitrate (NO3single bondN) concentration and leaching from winter and spring cereals cropping systems was investigated over three consecutive four-year crop rotation cycles from 1997 to 2008 in an organic farming crop...... rotation experiment in Denmark. Three experimental sites, varying in climate and soil type from coarse sand to sandy loam, were investigated. The experiment included experimental treatments with different rotations, manure rate and cover crop, and soil nitrate concentrations was monitored using suction......N concentration for winter and spring cereals, respectively, and 68% and 77% of the variation in the square root transform of annual NO3single bondN leaching for winter and spring cereals, respectively. Nitrate concentration and leaching were shown to be site specific and driven by climatic factors and crop...

  8. Improving runoff prediction using agronomical information in a cropped, loess covered catchment

    NARCIS (Netherlands)

    Lefrancq, Marie; Van Dijk, Paul; Jetten, Victor; Schwob, Matthieu; Payraudeau, Sylvain

    2017-01-01

    Predicting runoff hot spots and hot-moments within a headwater crop-catchment is of the utmost importance to reduce adverse effects on aquatic ecosystems by adapting land use management to control runoff. Reliable predictions of runoff patterns during a crop growing season remain challenging. This

  9. Cover cropping under temperate conditions: influence of growth period and incorporation time

    DEFF Research Database (Denmark)

    Thomsen, Ingrid Kaag; Hansen, Elly Møller

    . To encourage increased use of CC and to lessen the consequences on choice of main crop new innovative ways of using CC should be considered. This study tested the potential for using CC that could allow for repeated winter wheat growing and still permit CC in breaks between crops. Cruciferous CC (Raphanus...... sativus L., Sinapis alba L.) spread in a growing winter wheat crop in July and incorporated in September (Autumn CC) before sowing the following winter wheat was compared with the same CC cultivars sown after harvest and incorporated in spring (Winter CC). The cruciferous CC were compared with Winter CC...

  10. Utilização do nitrogênio (15N residual de coberturas de solo e da uréia pela cultura do milho Utilization of residual nitrogen (15N from cover crop and urea by corn

    Directory of Open Access Journals (Sweden)

    Edson Cabral da Silva

    2006-12-01

    Full Text Available Geralmente, grande parte do N de fertilizantes minerais e de plantas de cobertura de solo não é aproveitada pelo milho no cultivo imediato à aplicação, o qual pode ser absorvido pelas culturas cultivadas subseqüentemente. O objetivo deste trabalho foi avaliar o aproveitamento pelo milho do N residual da uréia, da crotalária (Crotalaria juncea e do milheto (Pennisetum americanum marcados com 15N, aplicados ao milho cultivado em sistema plantio direto, no ano agrícola anterior, num Latossolo Vermelho distroférrico no Cerrado. O estudo foi desenvolvido na fazenda experimental da Faculdade de Engenharia de Ilha Solteira-UNESP, Selvíria (MS, em áreas distintas. O delineamento experimental foi de blocos ao acaso com 15 tratamentos e quatro repetições, aplicados ao milho em 2001/02 e 2002/03. Os tratamentos foram dispostos em esquema fatorial 3 x 5, compreendendo a combinação de três coberturas de solo: crotalária juncea, milheto e vegetação espontânea (pousio, e cinco doses de N-uréia: 0, 30, 80, 130 e 180 kg ha-1. Após a colheita do milho, as duas áreas permaneceram em pousio nas entressafras e, em seguida, cultivadas novamente com milho, safras 2002/03 (experimento 1 e 2003/04 (experimento 2, utilizando adubação similar em todas as parcelas, para distinguir o efeito do N residual. O aproveitamento médio do N residual da parte aérea do milheto e da crotalária pelo milho foi inferior a 3,5 e 3 %, respectivamente, da quantidade inicial. A quantidade de N residual da uréia absorvida pelo milho aumentou de forma quadrática, no experimento 1, e linear, no experimento 2, em relação à dose de N aplicada, sendo o aproveitamento desta inferior a 3 %. As coberturas de solo não influenciaram o aproveitamento pelo milho do N residual da uréia, e vice-versa.The majority of N from mineral fertilizers and cover crops is usually not used by the very next corn crop, but can be absorbed by follow-up crops. The objective of this

  11. Lasting effects of soil health improvements with management changes in cotton-based cropping systems in a sandy soil

    Science.gov (United States)

    The soil microbial component is essential for sustainable agricultural systems and soil health. This study evaluated the lasting impacts of 5 years of soil health improvements from alternative cropping systems compared to intensively tilled continuous cotton (Cont. Ctn) in a low organic matter sandy...

  12. EFEITO DA COBERTURA VEGETAL DO SOLO SOBRE A ABUNDÂNCIA E DIVERSIDADE DE INIMIGOS NATURAIS DE PRAGAS EM VINHEDOS EFFECTS OF COVER CROPS ON THE ABUNDANCE AND DIVERSITY OF NATURAL ENEMIES OF GRAPEVINE PEST

    Directory of Open Access Journals (Sweden)

    MARCOS ANTÔNIO MATIELLO FADINI

    2001-12-01

    Full Text Available O controle de pragas da videira no Brasil restringe-se basicamente ao uso de inseticidas, devido à inexistência de trabalhos que visem a complementar o manejo de pragas através de controle biológico. Neste trabalho, objetivou-se verificar o efeito de diferentes coberturas vegetais nas entrelinhas de plantio de videira sobre a abundância e diversidade de potenciais inimigos naturais de pragas da videira no município de Caldas, região Sul do Estado de Minas Gerais. Foram testadas sete diferentes coberturas de solo (aveia-preta, aveia-preta e ervilhaca, ervilhaca, cobertura morta, uso de herbicida, capina mecânica e mato roçado. A cobertura vegetal do solo influenciou tanto a diversidade quanto a abundância de inimigos naturais, sendo o consórcio de aveia-preta e ervilhaca, cultivadas simultaneamente, o tratamento que proporcionou maior diversidade e abundância de inimigos naturais. Assim, a cobertura vegetal do solo pode, potencialmente, ser um componente importante em programas de manejo integrado de pragas na cultura da videira.The control of grapevine pests in Brazil is only based in the use of chemical products. It is due to the whole absence of experimental works developed to test and evaluate alternative control systems, like the biological control. The objective of this work was to evaluate the effect of different types of cover crops, placed between the cultivation lines of grapevine, in the abundance and diversity of natural control arthropods of grapevine pests. The experiment was conduced in the EPAMIG, Caldas Research Farm, located in the Minas Gerais State, Brazil. They Were tested seven different systems of soil covering. The presence of vegetal covering was beneficial to improve the diversity as well as the abundance of biological control agents present on the grapevine crop. The cultivation of black oat and pea together, was the treatment that showed the better result to diversity and abundance. Therefore, the cover

  13. Yield and yield structure of spring barley (Hodeum vulgare L. grown in monoculture after different stubble crops

    Directory of Open Access Journals (Sweden)

    Dorota Gawęda

    2012-12-01

    Full Text Available A field experiment was conducted in the period 2006- 2008 in the Uhrusk Experimental Farm belonging to the University of Life Sciences in Lublin. The experimental factor was the type of stubble crop ploughed in each year after harvest of spring barley: white mustard, lacy phacelia, winter rape, and a mixture of narrow-leaf lupin with field pea. In the experiment, successive spring barley crops were grown one after the other (in continuous monoculture. The aim of the experiment was to evaluate the effect of stubble crops used on the size and structure of barley yield. The three-year study showed an increasing trend in grain yield of spring barley grown after the mixture of legumes, lacy phacelia, and white mustard compared to its size in the treatment with no cover crop. Straw yield was significantly higher when barley was grown after the mixture of narrowleaf lupin with field pea than in the other treatments of the experiment. The type of ploughed-in stubble crop did not modify significantly plant height, ear length, and grain weight per ear. Growing the mixture of leguminous plants as a cover crop resulted in a significant increase in the density of ears per unit area in barley by an average of 14.7% relative to the treatment with winter rape. The experiment also showed the beneficial effect of the winter rape cover crop on 1000-grain weight of spring barley compared to that obtained in the treatments with white mustard and the mixture of legumes. All the cover crops caused an increase in the number of grains per ear of barley relative to that found in the control treatment. However, this increase was statistically proven only for the barley crops grown after lacy phacelia and the mixture of legumes.

  14. Assessing the impact of Cross Compliance measures on nitrogen fluxes from European farmlands with DNDC-EUROPE

    Energy Technology Data Exchange (ETDEWEB)

    Follador, Marco, E-mail: marco.follador@jrc.ec.europa.eu [European Commission, DG Joint Research Centre, Institute for Environment and Sustainability, Climate Change Unit, Via E. Fermi 2749, I-21027 Ispra, Varese (Italy); Leip, Adrian [European Commission, DG Joint Research Centre, Institute for Environment and Sustainability, Climate Change Unit, Via E. Fermi 2749, I-21027 Ispra, Varese (Italy); Orlandini, Lorenzo [European Commission, DG Agriculture and Rural Development, L2 Economic Analysis of EU Agriculture, B-1049 Brussels (Belgium)

    2011-11-15

    We investigated the effects of the agricultural Cross Compliance measures for European cultivated lands, focusing on nitrogen (N) fluxes from corn fields. Four scenarios have been designed according to some conservation farming practices, namely no-till, max manure, catch crop and N splitting. Results indicated that (1) in the no-till scenario the N{sub 2}O fluxes are decreased during the first simulated years, with a return to default fluxes in following years; no-till particularly decreased N{sub 2}O emission in the dryer and colder simulation spatial units (HSMUs); (2) the no-till and the N splitting scenarios slightly increased the N surplus because of a decrease in plant uptake; (3) introducing a rotation with alfalfa decreased the N leaching in the corn crops following the catch crops; and (4) the application of fertilizer and manure during the cold and wet seasons led to an increase of N leaching. - Highlights: > Cross Compliance measures reduced the environmental impact of farming activities. > No-tillage decreased N{sub 2}O emissions especially in the dryer and colder regions. > The manure limit amendment decreased the N{sub 2}O emission, N leaching and surplus. > The rotation yield-catch crops decreased the N leaching. > The N input during cold and wet periods significantly augmented the N leaching. - Model simulations suggested that Cross Compliance measures can help reducing the environmental impact of corn cultivation.

  15. Weeds occurrence in areas submitted to distinct winter crops Ocorrência de plantas daninhas em áreas submetidas a manejos de inverno

    Directory of Open Access Journals (Sweden)

    G. Concenço

    2012-12-01

    Full Text Available In the Western Region of Brazil, it is usual to have two agricultural harvests in the same cropping season. Usually the first crop is soybean, followed by corn. In areas where corn is not planted due to a delayed harvest of soybean, farmers generally do not use winter crops. For these areas, the planting of winter oilseed crops aiming at the production of bio-fuels is one of the best alternatives; in addition, this would help in reducing the occurrence of weed species at the following summer crop. This study aimed to assessing the weed community in distinct winter crops post soybean crop, in terms of species composition, level of infestation and severity of occurrence. The following treatments were evaluated: agriculture under a no-till system with winter fallow, winter oilseed crops (crambe, radish, rapeseed with no-till agriculture in the summer, and agriculture under a conventional tillage system with winter fallow. Phytosociological evaluations of all treatments were carried out 75 DAE of the oilseed crops, and the diversity indexes of Margalef, Menhinick, Simpson, and Shannon-Weiner were determined. Areas were also grouped by cluster analysis based on UPGMA applied at Jaccard's similarity matrix. Among the treatments with winter coverage, radish was the most efficient crop in suppressing the occurrence of weed species. The area with conventional tillage agriculture and winter fallow allowed for a higher occurrence of troublesome weeds. On the other hand, the area under fallow showed the highest absolute level of infestation. Overall, oilseed crops in the winter contribute to lower levels of infestation by weed species in these areas.Na região Centro-Oeste do Brasil, é usual a obtenção de duas colheitas na mesma safra agrícola. Normalmente o primeiro cultivo é de soja, seguida por milho. Em áreas onde o milho não é cultivado devido à colheita tardia da soja, os produtores normalmente não utilizam culturas ou coberturas no per

  16. Nitrous oxide emissions from a Northern Great Plains soil as influenced by nitrogen management and cropping systems.

    Science.gov (United States)

    Dusenbury, M P; Engel, R E; Miller, P R; Lemke, R L; Wallander, R

    2008-01-01

    Field measurements of N2O emissions from soils are limited for cropping systems in the semiarid northern Great Plains (NGP). The objectives were to develop N2O emission-time profiles for cropping systems in the semiarid NGP, define important periods of loss, determine the impact of best management practices on N2O losses, and estimate direct N fertilizer-induced emissions (FIE). No-till (NT) wheat (Triticum Aestivum L.)-fallow, wheat-wheat, and wheat-pea (Pisum sativum), and conventional till (CT) wheat-fallow, all with three N regimes (200 and 100 kg N ha(-1) available N, unfertilized control); plus a perennial grass-alfalfa (Medicago sativa L.) system were sampled over 2 yr using vented chambers. Cumulative 2-yr N2O emissions were modest in contrast to reports from more humid regions. Greatest N2O flux activity occurred following urea-N fertilization (10-wk) and during freeze-thaw cycles. Together these periods comprised up to 84% of the 2-yr total. Nitrification was probably the dominant process responsible for N2O emissions during the post-N fertilization period, while denitrification was more important during freeze-thaw cycles. Cumulative 2-yr N2O-N losses from fertilized regimes were greater for wheat-wheat (1.31 kg N ha(-1)) than wheat-fallow (CT and NT) (0.48 kg N ha(-1)), and wheat-pea (0.71 kg N ha(-1)) due to an additional N fertilization event. Cumulative losses from unfertilized cropping systems were not different from perennial grass-alfalfa (0.28 kg N ha(-1)). Tillage did not affect N2O losses for the wheat-fallow systems. Mean FIE level was equivalent to 0.26% of applied N, and considerably below the Intergovernmental Panel on Climate Change mean default value (1.25%).

  17. Water use and onion crop production in no-tillage and conventional cropping systems Uso de água e produção de cebola em sistemas de plantio direto e convencional

    Directory of Open Access Journals (Sweden)

    Waldir Aparecido Marouelli

    2010-03-01

    Full Text Available The objective of the present study was to evaluate the effects of crop residue covers (0.0; 4.5; 9.0; 13.5 t ha-1 millet dry matter on water use and production of onion cultivated in no-tillage planting system (NT as compared to conventional tillage system (CT. The study was carried out at Embrapa Hortaliças, Brazil, under the typical Savanna biome. Irrigations were performed using a sprinkle irrigation system when soil-water tension reached between 25 and 30 kPa. The experimental design was randomized blocks with three replications. Total net water depth applied to NT treatment was 19% smaller than the CT treatment, however, water savings increased to 30% for the first 30 days following seedlings transplant. Crop biomass, bulb size and yield, and rate of rotten bulbs were not significantly affected by treatments. The water productivity index increased linearly with increasing crop residue in NT conditions. Water productivity index of NT treatments with crop residue was on average 30% higher than that in the CT system (8.13 kg m-3.O objetivo do presente estudo foi avaliar o efeito do nível de palhada no solo (0,0; 4,5; 9,0; 13,5 t ha-1 de matéria seca de milheto em sistema de plantio direto (PD sobre o uso de água e produção de cebola, tendo como controle o sistema de plantio convencional (PC. O ensaio foi conduzido na Embrapa Hortaliças, em região típica do bioma Cerrado. As irrigações foram realizadas por aspersão a todo o momento que a tensão de água no solo atingiu entre 25 e 30 kPa. O delineamento experimental foi blocos ao acaso com três repetições. A lâmina de água aplicada em PD foi de até 19% menor que no tratamento PC durante o ciclo da cultura, sendo que durante os primeiros 30 dias do ciclo após o transplante das mudas a economia chegou a 30%. O desenvolvimento de plantas, o tamanho e o rendimento de bulbos, e a taxa de bulbos podres não foram afetados significativamente pelos tratamentos. O índice de

  18. Strip-till seeder for sugar beets

    Directory of Open Access Journals (Sweden)

    Peter Schulze Lammers

    2014-06-01

    Full Text Available Strip-till save costs by reducing tillage on the area of sugar beet rows only. The seeding system is characterized by a deep loosening of soil with a tine combined with a share and by following tools generating fine-grained soil as seed bed. In cooperation with the Kverneland company group Soest/Germany a strip tiller combined with precision seeder was designed and tested in field experiments. Tilling and seeding was performed in one path on fields with straw and mustard mulch. Even the plant development was slower as compared to conventional sawn sugar beets the yield was on equivalent level. Further field experiments are planned to attest constant yield, cost and energy efficiency of the seeding system.

  19. Övergången till IFRS : Konsekvenser

    OpenAIRE

    Wetterholm, Emelie; Bergström, Mari

    2005-01-01

    Bakgrund : EU: s antagande av förordningen (EG) nr. 1606/2002 om tillämpning av internationella redovisningsstandarder innebär att alla börsnoterade bolag i medlemsländerna måste tillämpa de i förordningen angivna IFRS-standarderna i sin koncernredovisning från och med 2005. Problem: Införandet av IFRS för noterade bolags koncernredovisningar kommer att innebära olika konsekvenser för berörda bolag. Trots att svenska bolag tidigare redovisat enligt RR kommer övergången att innebära vissa väse...

  20. Sedimentation and lithostratigraphy of the Vuosaari multiple till sequence in Helsinki, southern Finland

    Directory of Open Access Journals (Sweden)

    Hirvas, H.

    1995-12-01

    Full Text Available A multiple till sequence interbedded with sorted sediments has been investigated at Vuosaari, Helsinki, Finland. The investigation was carried out using standard sedimentological procedures combined with microfossil analysis in order to determine the genesis of the exposed sediments. This evidence is used to correlate lithostratigraphically the sequence with adjacent multiple till sequences in other parts of southern Finland (south of the Salpausselkä zone. It is concluded that all three till beds at Vuosaari are of basal origin that were laid down by separate ice flow phases. In contrast two rhythmite beds between the tills are thought to have been deposited in open water. The sediments at Vuosaari may have been laid down during the Weichselian glaciation although it is also possible that the lowermost till bed represents Saalian till.