WorldWideScience

Sample records for nnos ko mice

  1. Depressed nNOS expression during spine transition in the developing hippocampus of FMR1 KO mice

    International Nuclear Information System (INIS)

    Xu, Qin; Zhu, Zhiwei; Xu, Jialu; Gu, Weizhong; Zhao, Zhengyan

    2012-01-01

    Nitric oxide (NO), synthesized as needed by NO synthase (NOS), is involved in spinogenesis and synaptogenesis. Immature spine morphology is characteristic of fragile X syndrome (FXS). The objective of this research was to investigate and compare changes of postnatal neuronal NOS (nNOS) expression in the hippocampus of male fragile X mental retardation 1 gene knockout mice (FMR1 KO mice, the animal model of FXS) and male wild-type mice (WT) at postnatal day 7 (P7), P14, P21, and P28. nNOS mRNA levels were analyzed by real-time quantitative PCR (N = 4-7) and nNOS protein was estimated by Western blot (N = 3) and immunohistochemistry (N = 1). In the PCR assessment, primers 5′-GTGGCCATCGTGTCCTACCATAC-3′ and 5′-GTTTCGAGGCAGGTGGAAGCTA-3′ were used for the detection of nNOS and primers 5′-CCGTTTCTCCTGGCTCAGTTTA-3′ and 5′-CCCCAATACCACATCATCCAT-3′ were used for the detection of β-actin. Compared to the WT group, nNOS mRNA expression was significantly decreased in FMR1 KO mice at P21 (KO: 0.2857 ± 0.0150, WT: 0.5646 ± 0.0657; P < 0.05). Consistently, nNOS immunoreactivity also revealed reduced staining intensity at P21 in the FMR1 KO group. Western blot analysis validated the immunostaining results by demonstrating a significant reduction in nNOS protein levels in the FMR1 KO group compared to the WT group at P21 (KO: 0.3015 ± 0.0897, WT: 1.7542 ± 0.5455; P < 0.05). These results suggest that nNOS was involved in the postnatal development of the hippocampus in FXS and impaired NO production may retard spine maturation in FXS

  2. Depressed nNOS expression during spine transition in the developing hippocampus of FMR1 KO mice

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qin; Zhu, Zhiwei; Xu, Jialu [Department of Children' s Health Care, Children' s Hospital, Zhejiang University, Hangzhou Zhejiang (China); Gu, Weizhong [Department of Pathology, Children' s Hospital, Zhejiang University, Hangzhou Zhejiang (China); Zhao, Zhengyan [Department of Children' s Health Care, Children' s Hospital, Zhejiang University, Hangzhou Zhejiang (China)

    2012-10-05

    Nitric oxide (NO), synthesized as needed by NO synthase (NOS), is involved in spinogenesis and synaptogenesis. Immature spine morphology is characteristic of fragile X syndrome (FXS). The objective of this research was to investigate and compare changes of postnatal neuronal NOS (nNOS) expression in the hippocampus of male fragile X mental retardation 1 gene knockout mice (FMR1 KO mice, the animal model of FXS) and male wild-type mice (WT) at postnatal day 7 (P7), P14, P21, and P28. nNOS mRNA levels were analyzed by real-time quantitative PCR (N = 4-7) and nNOS protein was estimated by Western blot (N = 3) and immunohistochemistry (N = 1). In the PCR assessment, primers 5′-GTGGCCATCGTGTCCTACCATAC-3′ and 5′-GTTTCGAGGCAGGTGGAAGCTA-3′ were used for the detection of nNOS and primers 5′-CCGTTTCTCCTGGCTCAGTTTA-3′ and 5′-CCCCAATACCACATCATCCAT-3′ were used for the detection of β-actin. Compared to the WT group, nNOS mRNA expression was significantly decreased in FMR1 KO mice at P21 (KO: 0.2857 ± 0.0150, WT: 0.5646 ± 0.0657; P < 0.05). Consistently, nNOS immunoreactivity also revealed reduced staining intensity at P21 in the FMR1 KO group. Western blot analysis validated the immunostaining results by demonstrating a significant reduction in nNOS protein levels in the FMR1 KO group compared to the WT group at P21 (KO: 0.3015 ± 0.0897, WT: 1.7542 ± 0.5455; P < 0.05). These results suggest that nNOS was involved in the postnatal development of the hippocampus in FXS and impaired NO production may retard spine maturation in FXS.

  3. Depressed nNOS expression during spine transition in the developing hippocampus of FMR1 KO mice

    Directory of Open Access Journals (Sweden)

    Qin Xu

    2012-12-01

    Full Text Available Nitric oxide (NO, synthesized as needed by NO synthase (NOS, is involved in spinogenesis and synaptogenesis. Immature spine morphology is characteristic of fragile X syndrome (FXS. The objective of this research was to investigate and compare changes of postnatal neuronal NOS (nNOS expression in the hippocampus of male fragile X mental retardation 1 gene knockout mice (FMR1 KO mice, the animal model of FXS and male wild-type mice (WT at postnatal day 7 (P7, P14, P21, and P28. nNOS mRNA levels were analyzed by real-time quantitative PCR (N = 4-7 and nNOS protein was estimated by Western blot (N = 3 and immunohistochemistry (N = 1. In the PCR assessment, primers 5’-GTGGCCATCGTGTCCTACCATAC-3’ and 5’-GTTTCGAGGCAGGTGGAAGCTA-3’ were used for the detection of nNOS and primers 5’-CCGTTTCTCCTGGCTCAGTTTA-3’ and 5’-CCCCAATACCACATCATCCAT-3’ were used for the detection of β-actin. Compared to the WT group, nNOS mRNA expression was significantly decreased in FMR1 KO mice at P21 (KO: 0.2857 ± 0.0150, WT: 0.5646 ± 0.0657; P < 0.05. Consistently, nNOS immunoreactivity also revealed reduced staining intensity at P21 in the FMR1 KO group. Western blot analysis validated the immunostaining results by demonstrating a significant reduction in nNOS protein levels in the FMR1 KO group compared to the WT group at P21 (KO: 0.3015 ± 0.0897, WT: 1.7542 ± 0.5455; P < 0.05. These results suggest that nNOS was involved in the postnatal development of the hippocampus in FXS and impaired NO production may retard spine maturation in FXS.

  4. Differential response of nNOS knockout mice to MDMA ("ecstasy")- and methamphetamine-induced psychomotor sensitization and neurotoxicity.

    Science.gov (United States)

    Itzhak, Yossef; Anderson, Karen L; Ali, Syed F

    2004-10-01

    It has been shown that mice deficient in neuronal nitric oxide synthase (nNOS) gene are resistant to cocaine-induced psychomotor sensitization and methamphetamine (METH)-induced dopaminergic neurotoxicity. The present study was undertaken to investigate the hypothesis that nNOS has a major role in dopamine (DA)- but not serotonin (5-hydroxytryptamine; 5-HT)-mediated effects of psychostimulants. The response of nNOS knockout (KO) and wild-type (WT) mice to the psychomotor-stimulating and neurotoxic effects of 3,4-methylenedioxymethamphetamine (MDMA; "Ecstasy") and METH were investigated. Repeated administration of MDMA for 5 days resulted in psychomotor sensitization in both WT and nNOS KO mice, while repeated administration of METH caused psychomotor sensitization in WT but not in KO mice. Sensitization to both MDMA and METH was persistent for 40 days in WT mice, but not in nNOS KO mice. These findings suggest that the induction of psychomotor sensitization to MDMA and METH is NO independent and NO dependent, respectively, while the persistence of sensitization to both drugs is NO dependent. For the neurochemical studies, a high dose of MDMA caused marked depletion of 5-HT in several brain regions of both WT and KO mice, suggesting that the absence of the nNOS gene did not afford protection against MDMA-induced depletion of 5-HT. Striatal dopaminergic neurotoxicity caused by high doses of MDMA and METH in WT mice was partially prevented in KO mice administered with MDMA, but it was fully precluded in KO mice administered with METH. The differential response of nNOS KO mice to the behavioral and neurotoxic effects of MDMA and METH suggests that the nNOS gene is required for the expression and persistence of DA-mediated effects of METH and MDMA, while 5-HT-mediated effects of MDMA (induction of sensitization and 5-HT depletion) are not dependent on nNOS.

  5. MGE-derived nNOS+ interneurons promote fear acquisition in nNOS-/- mice.

    Science.gov (United States)

    Zhang, Lin; Yuan, Hong-Jin; Cao, Bo; Kong, Cheng-Cheng; Yuan, Fang; Li, Jun; Ni, Huan-Yu; Wu, Hai-Yin; Chang, Lei; Liu, Yan; Luo, Chun-Xia

    2017-12-02

    Neuronal nitric oxide synthase (nNOS) 1 , mainly responsible for NO release in central nervous system (CNS) 2 , plays a significant role in multiple physiological functions. However, the function of nNOS + interneurons in fear learning has not been much explored. Here we focused on the medial ganglionic eminences (MGE) 3 -derived nNOS + interneurons in fear learning. To determine the origin of nNOS + interneurons, we cultured neurons in vitro from MGE, cortex, lateral ganglionic eminence (LGE) 4 , caudal ganglionic eminences (CGE) 5 and preoptic area (POA) 6 . The results showed that MGE contained the most abundant precursors of nNOS + interneurons. Moreover, donor cells from E12.5 embryos demonstrated the highest positive rate of nNOS + interneurons compared with other embryonic periods (E11.5, E12, E13, E13.5 and E14). Additionally, these cells from E12.5 embryos showed long axonal and abundant dendritic arbors after 10 days culture, indicating the capability to disperse and integrate in host neural circuits after transplantation. To investigate the role of MGE-derived nNOS + interneurons in fear learning, donor MGE cells were transplanted into dentate gyrus (DG) 7 of nNOS knock-out (nNOS -/- ) or wild-type mice. Results showed that the transplantation of MGE cells promoted the acquisition of nNOS -/- but not the wild-type mice, suggesting the importance of nNOS + neurons in fear acquisition. Moreover, we transplanted MGE cells from nNOS -/- mice or wild-type mice into DG of the nNOS -/- mice and found that only MGE cells from wild-type mice but not the nNOS -/- mice rescued the deficit in acquisition of the nNOS -/- mice, further confirming the positive role of nNOS + neurons in fear learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Abnormal social behavior, hyperactivity, impaired remote spatial memory, and increased D1-mediated dopaminergic signaling in neuronal nitric oxide synthase knockout mice

    Directory of Open Access Journals (Sweden)

    Tanda Koichi

    2009-06-01

    Full Text Available Abstract Background Neuronal nitric oxide synthase (nNOS is involved in the regulation of a diverse population of intracellular messenger systems in the brain. In humans, abnormal NOS/nitric oxide metabolism is suggested to contribute to the pathogenesis and pathophysiology of some neuropsychiatric disorders, such as schizophrenia and bipolar disorder. Mice with targeted disruption of the nNOS gene exhibit abnormal behaviors. Here, we subjected nNOS knockout (KO mice to a battery of behavioral tests to further investigate the role of nNOS in neuropsychiatric functions. We also examined the role of nNOS in dopamine/DARPP-32 signaling in striatal slices from nNOS KO mice and the effects of the administration of a dopamine D1 receptor agonist on behavior in nNOS KO mice. Results nNOS KO mice showed hyperlocomotor activity in a novel environment, increased social interaction in their home cage, decreased depression-related behavior, and impaired spatial memory retention. In striatal slices from nNOS KO mice, the effects of a dopamine D1 receptor agonist, SKF81297, on the phosphorylation of DARPP-32 and AMPA receptor subunit GluR1 at protein kinase A sites were enhanced. Consistent with the biochemical results, intraperitoneal injection of a low dose of SKF81297 significantly decreased prepulse inhibition in nNOS KO mice, but not in wild-type mice. Conclusion These findings indicate that nNOS KO upregulates dopamine D1 receptor signaling, and induces abnormal social behavior, hyperactivity and impaired remote spatial memory. nNOS KO mice may serve as a unique animal model of psychiatric disorders.

  7. Neuronal nitric oxide synthase-rescue of dystrophin/utrophin double knockout mice does not require nNOS localization to the cell membrane.

    Directory of Open Access Journals (Sweden)

    Michelle Wehling-Henricks

    Full Text Available Survival of dystrophin/utrophin double-knockout (dko mice was increased by muscle-specific expression of a neuronal nitric oxide synthase (nNOS transgene. Dko mice expressing the transgene (nNOS TG+/dko experienced delayed onset of mortality and increased life-span. The nNOS TG+/dko mice demonstrated a significant decrease in the concentration of CD163+, M2c macrophages that can express arginase and promote fibrosis. The decrease in M2c macrophages was associated with a significant reduction in fibrosis of heart, diaphragm and hindlimb muscles of nNOS TG+/dko mice. The nNOS transgene had no effect on the concentration of cytolytic, CD68+, M1 macrophages. Accordingly, we did not observe any change in the extent of muscle fiber lysis in the nNOS TG+/dko mice. These findings show that nNOS/NO (nitric oxide-mediated decreases in M2c macrophages lead to a reduction in the muscle fibrosis that is associated with increased mortality in mice lacking dystrophin and utrophin. Interestingly, the dramatic and beneficial effects of the nNOS transgene were not attributable to localization of nNOS protein at the cell membrane. We did not detect any nNOS protein at the sarcolemma in nNOS TG+/dko muscles. This important observation shows that sarcolemmal localization is not necessary for nNOS to have beneficial effects in dystrophic tissue and the presence of nNOS in the cytosol of dystrophic muscle fibers can ameliorate the pathology and most importantly, significantly increase life-span.

  8. Loss of nNOS inhibits compensatory muscle hypertrophy and exacerbates inflammation and eccentric contraction-induced damage in mdx mice

    Science.gov (United States)

    Froehner, Stanley C.; Reed, Sarah M.; Anderson, Kendra N.; Huang, Paul L.; Percival, Justin M.

    2015-01-01

    Approaches targeting nitric oxide (NO) signaling show promise as therapies for Duchenne and Becker muscular dystrophies. However, the mechanisms by which NO benefits dystrophin-deficient muscle remain unclear, but may involve nNOSβ, a newly discovered enzymatic source of NO in skeletal muscle. Here we investigate the impact of dystrophin deficiency on nNOSβ and use mdx mice engineered to lack nNOSμ and nNOSβ to discern how the loss of nNOS impacts dystrophic skeletal muscle pathology. In mdx muscle, nNOSβ was mislocalized and its association with the Golgi complex was reduced. nNOS depletion from mdx mice prevented compensatory skeletal muscle cell hypertrophy, decreased myofiber central nucleation and increased focal macrophage cell infiltration, indicating exacerbated dystrophic muscle damage. Reductions in muscle integrity in nNOS-null mdx mice were accompanied by decreases in specific force and increased susceptibility to eccentric contraction-induced muscle damage compared with mdx controls. Unexpectedly, muscle fatigue was unaffected by nNOS depletion, revealing a novel latent compensatory mechanism for the loss of nNOS in mdx mice. Together with previous studies, these data suggest that localization of both nNOSμ and nNOSβ is disrupted by dystrophin deficiency. They also indicate that nNOS has a more complex role as a modifier of dystrophic pathology and broader therapeutic potential than previously recognized. Importantly, these findings also suggest nNOSβ as a new drug target and provide a new conceptual framework for understanding nNOS signaling and the benefits of NO therapies in dystrophinopathies. PMID:25214536

  9. nNOS inhibitors attenuate methamphetamine-induced dopaminergic neurotoxicity but not hyperthermia in mice.

    Science.gov (United States)

    Itzhak, Y; Martin, J L; Ail, S F

    2000-09-11

    Methamphetamine (METH)-induced dopaminergic neurotoxicity is associated with hyperthermia. We investigated the effect of several neuronal nitric oxide synthase (nNOS) inhibitors on METH-induced hyperthermia and striatal dopaminergic neurotoxicity. Administration of METH (5 mg/kg; q. 3 h x 3) to Swiss Webster mice produced marked hyperthermia and 50-60% depletion of striatal dopaminergic markers 72 h after METH administration. Pretreatment with the nNOS inhibitors S-methylthiocitrulline (SMTC; 10 mg/kg) or 3-bromo-7-nitroindazole (3-Br-7-NI; 20 mg/kg) before each METH injection did not affect the persistent hyperthermia produced by METH, but afforded protection against the depletion of dopaminergic markers. A low dose (25 mg/kg) of the nNOS inhibitor 7-nitroindazole (7-NI) did not affect METH-induced hyperthermia, but a high dose (50 mg/kg) produced significant hypothermia. These findings indicate that low dose of selective nNOS inhibitors protect against METH-induced neurotoxicity with no effect on body temperature and support the hypothesis that nitric oxide (NO) and peroxynitrite have a major role in METH-induced dopaminergic neurotoxicity.

  10. Sarcocystis neurona infection in gamma interferon gene knockout (KO) mice: comparative infectivity of sporocysts in two strains of KO mice, effect of trypsin digestion on merozoite viability, and infectivity of bradyzoites to KO mice and cell culture.

    Science.gov (United States)

    Dubey, J P; Sundar, N; Kwok, O C H; Saville, W J A

    2013-09-01

    The protozoan Sarcocystis neurona is the primary cause of Equine Protozoal Myeloencephalitis (EPM). EPM or EPM-like illness has been reported in horses, sea otters, and several other mammals. The gamma interferon gene knockout (KO) mouse is often used as a model to study biology and discovery of new therapies against S. neurona because it is difficult to induce clinical EPM in other hosts, including horses. In the present study, infectivity of three life cycle stages (merozoites, bradyzoites, sporozoites) to KO mice and cell culture was studied. Two strains of KO mice (C57-black, and BALB/c-derived, referred here as black or white) were inoculated orally graded doses of S. neurona sporocysts; 12 sporocysts were infective to both strains of mice and all infected mice died or became ill within 70 days post-inoculation. Although there was no difference in infectivity of sporocysts to the two strains of KO mice, the disease was more severe in black mice. S. neurona bradyzoites were not infectious to KO mice and cell culture. S. neurona merozoites survived 120 min incubation in 0.25% trypsin, indicating that trypsin digestion can be used to recover S. neurona from tissues of acutely infected animals. Published by Elsevier B.V.

  11. Impaired memory of eyeblink conditioning in CaMKIV KO mice.

    Science.gov (United States)

    Lee, Ka Hung; Chatila, Talal A; Ram, Rana A; Thompson, Richard F

    2009-04-01

    The calcium/calmodulin-dependent protein kinase type IV (CaMKIV) is highly expressed in cerebellar cortical granule cells and deep nuclear neurons in the cerebellum. It mediates the phosphorylation and activation of the cAMP-dependent response element binding protein (CREB). In several paradigms CREB-dependent transcription is required for cellular events underlying long-term memory processes. Also, CaMKIV deficiency results in impaired long-term depression (LTD) induction in cerebellar cortex. To investigate the function of CaMKIV in the cerebellum, Wild-type (WT) and CaMKIV KO mice were tested with delay eyeblink conditioning. KO and WT mice did not differ in acquisition, but the KO mice showed a significantly lower conditioned response (CR) percentage than the WT mice in the retention testing and retraining period. The CR peak latencies for the two groups did not differ in acquisition but were shorter for the KO mice in the testing period. No significant differences were found between KO and WT mice in spontaneous eyeblink activity, auditory brainstem response (ABR) amplitudes, and tail-flick latency. The results suggest an important role for CaMKIV in long-term memory in the cerebellum. (c) 2009 APA, all rights reserved.

  12. Characterization of the insulin sensitivity of ghrelin receptor KO mice using glycemic clamps

    Directory of Open Access Journals (Sweden)

    Morgan Kristen

    2011-01-01

    Full Text Available Abstract Background We and others have demonstrated previously that ghrelin receptor (GhrR knock out (KO mice fed a high fat diet (HFD have increased insulin sensitivity and metabolic flexibility relative to WT littermates. A striking feature of the HFD-fed GhrR KO mouse is the dramatic decrease in hepatic steatosis. To characterize further the underlying mechanisms of glucose homeostasis in GhrR KO mice, we conducted both hyperglycemic (HG and hyperinsulinemic-euglycemic (HI-E clamps. Additionally, we investigated tissue glucose uptake and specifically examined liver insulin sensitivity. Results Consistent with glucose tolerance-test data, in HG clamp experiments, GhrR KO mice showed a reduction in glucose-stimulated insulin release relative to WT littermates. Nevertheless, a robust 1st phase insulin secretion was still achieved, indicating that a healthy β-cell response is maintained. Additionally, GhrR KO mice demonstrated both a significantly increased glucose infusion rate and significantly reduced insulin requirement for maintenance of the HG clamp, consistent with their relative insulin sensitivity. In HI-E clamps, both LFD-fed and HFD-fed GhrR KO mice showed higher peripheral insulin sensitivity relative to WT littermates as indicated by a significant increase in insulin-stimulated glucose disposal (Rd, and decreased hepatic glucose production (HGP. HFD-fed GhrR KO mice showed a marked increase in peripheral tissue glucose uptake in a variety of tissues, including skeletal muscle, brown adipose tissue and white adipose tissue. GhrR KO mice fed a HFD also showed a modest, but significant decrease in conversion of pyruvate to glucose, as would be anticipated if these mice displayed increased liver insulin sensitivity. Additionally, the levels of UCP2 and UCP1 were reduced in the liver and BAT, respectively, in GhrR KO mice relative to WT mice. Conclusions These results indicate that improved glucose homeostasis of GhrR KO mice is

  13. Increased adiposity, dysregulated glucose metabolism and systemic inflammation in Galectin-3 KO mice.

    Directory of Open Access Journals (Sweden)

    Jingbo Pang

    Full Text Available Obesity and type 2 diabetes are associated with increased production of Galectin-3 (Gal-3, a protein that modulates inflammation and clearance of glucose adducts. We used Lean and Diet-induced Obese (DIO WT and Gal-3 KO mice to investigate the role of Gal-3 in modulation of adiposity, glucose metabolism and inflammation. Deficiency of Gal-3 lead to age-dependent development of excess adiposity and systemic inflammation, as indicated by elevated production of acute-phase proteins, number of circulating pro-inflammatory Ly6C(high monocytes and development of neutrophilia, microcytic anemia and thrombocytosis in 20-week-old Lean and DIO male Gal-3 KO mice. This was associated with impaired fasting glucose, heightened response to a glucose tolerance test and reduced adipose tissue expression of adiponectin, Gal-12, ATGL and PPARγ, in the presence of maintained insulin sensitivity and hepatic expression of gluconeogenic enzymes in 20-week-old Gal-3 KO mice compared to their diet-matched WT controls. Expression of PGC-1α and FGF-21 in the liver of Lean Gal-3 KO mice was comparable to that observed in DIO animals. Impaired fasting glucose and altered responsiveness to a glucose load preceded development of excess adiposity and systemic inflammation, as demonstrated in 12-week-old Gal-3 KO mice. Finally, a role for the microflora in mediating the fasting hyperglycemia, but not the excessive response to a glucose load, of 12-week-old Gal-3 KO mice was demonstrated by administration of antibiotics. In conclusion, Gal-3 is an important modulator of glucose metabolism, adiposity and inflammation.

  14. Function of brain α2B-adrenergic receptor characterized with subtype-selective α2B antagonist and KO mice.

    Science.gov (United States)

    Luhrs, Lauren; Manlapaz, Cynthia; Kedzie, Karen; Rao, Sandhya; Cabrera-Ghayouri, Sara; Donello, John; Gil, Daniel

    2016-12-17

    Noradrenergic signaling, through the α 2A and α 2C adrenergic receptors modulates the cognitive and behavioral symptoms of disorders such as schizophrenia, attention deficit hyperactivity disorder (ADHD), and addiction. However, it is unknown whether the α 2B receptor has any significant role in CNS function. The present study elucidates the potential role of the α 2B receptor in CNS function via the discovery and use of the first subtype-selective α 2B antagonist (AGN-209419), and behavioral analyses of α-receptor knockout (KO) mice. Using AGN-209419 as radioligand, α 2B receptor binding sites were identified within the olfactory bulb, cortex, thalamus, cerebellum, and striatum. Based on the observed expression patterns of α 2 subtypes in the brain, we compared α 2B KO, α 2A KO and α 2C KO mice behavioral phenotypes with their respective wild-type lines in anxiety (plus maze), compulsive (marble burying), and sensorimotor (prepulse inhibition) tasks. α 2B KO mice exhibited increased marble burying and α 2C KO mice exhibited an increased startle response to a pulse stimulus, but otherwise intact prepulse inhibition. To further explore compulsive behavior, we evaluated novelty-induced locomotor hyperactivity and found that α 2B KO and α 2C KO mice exhibited increased locomotion in the open field. Interestingly, when challenged with amphetamine, α 2C KO mice increased activity at lower doses relative to either α 2A KO or WT mice. However, α 2B KO mice exhibited stereotypy at doses of amphetamine that were only locomotor stimulatory to all other genotypes. Following co-administration of AGN-209419 with low-dose amphetamine in WT mice, stereotypy was observed, mimicking the α 2B KO phenotype. These findings suggest that the α 2B receptor is involved in CNS behaviors associated with sensorimotor gating and compulsivity, and may be therapeutically relevant for disorders such as schizophrenia, ADHD, post-traumatic stress disorder, addiction, and

  15. Experimental transmission of AA amyloidosis by injecting the AA amyloid protein into interleukin-1 receptor antagonist knockout (IL-1raKO) mice.

    Science.gov (United States)

    Watanabe, K; Uchida, K; Chambers, J K; Tei, M; Shoji, A; Ushio, N; Nakayama, H

    2015-05-01

    The incidence of AA amyloidosis is high in humans with rheumatoid arthritis and several animal species, including cats and cattle with prolonged inflammation. AA amyloidosis can be experimentally induced in mice using severe inflammatory stimuli and a coinjection of AA amyloid; however, difficulties have been associated with transmitting AA amyloidosis to a different animal species, and this has been attributed to the "species barrier." The interleukin-1 receptor antagonist knockout (IL-1raKO) mouse, a rodent model of human rheumatoid arthritis, has been used in the transmission of AA amyloid. When IL-1raKO and BALB/c mice were intraperitoneally injected with mouse AA amyloid together with a subcutaneous pretreatment of 2% AgNO3, all mice from both strains that were injected with crude or purified murine AA amyloid developed AA amyloidosis. However, the amyloid index, which was determined by the intensity of AA amyloid deposition, was significantly higher in IL-1raKO mice than in BALB/c mice. When IL-1raKO and BALB/c mice were injected with crude or purified bovine AA amyloid together with the pretreatment, 83% (5/6 cases) and 38% (3/8 cases) of IL-1raKO mice and 17% (1/6 cases) and 0% (0/6 cases) of BALB/c mice, respectively, developed AA amyloidosis. Similarly, when IL-1raKO and BALB/c mice were injected with crude or purified feline AA amyloid, 33% (2/6 cases) and 88% (7/8 cases) of IL-1raKO mice and 0% (0/6 cases) and 29% (2/6 cases) of BALB/c mice, respectively, developed AA amyloidosis. These results indicated that IL-1raKO mice are a useful animal model for investigating AA amyloidogenesis. © The Author(s) 2014.

  16. Functional consequences of brain glycogen deficiency on the sleep-wake cycle regulation in PTG-KO mice

    KAUST Repository

    Burlet-Godinot, S.

    2017-12-31

    Introduction: In the CNS, glycogen is mainly localized in astrocytes where its levels are linked to neuronal activity. Astrocytic glycogen synthesis is regulated by glycogen synthase (GS) activity that is positively controlled by protein targeting to glycogen (PTG) expression levels. Although the role of glycogen in sleep/wake regulation is still poorly understood, we have previously demonstrated that, following a 6 hour gentle sleep deprivation (GSD), PTG mRNA expression and GS activity increased in the brain in mice while glycogen levels were paradoxically maintained and not affected. In order to gain further insight on the role of PTG in this process, we studied the sleep/wake cycle parameters in PTG knockout (PTG-KO) mice under baseline conditions and after a 6 hour GSD. Glycogen levels as well as mRNAs expression of genes related to energy metabolism were also determined in several brain areas. Materials and methods: Adult male C57BL/6J (WT) and PTG-KO mice were sleep-recorded under baseline conditions (24 h recordings, 12 h light/dark cycle) and following 6 hours GSD from ZT00 to ZT06. Vigilance states were visually scored (4 s temporal window). Spectral analysis of the EEG signal was performed using a discrete Fourier transformation. Glycogen measurements and gene expression analysis were assessed using a biochemical assay and quantitative RT-PCR respectively, on separate cohorts in WT vs PTG-KO mice at the end of the 6 hours GSD or in control animals (CTL) in different brain structures. Results: Quantitative analysis of the sleep/wake cycle under baseline conditions did not reveal major differences between the WT and the PTG-KO mice. However, during the dark period, the PTG-KO mice showed a significant increase in the number of wake and slow wave sleep episodes (respectively +26.5±8% and +26.1±8%; p< 0.05) together with a significant shortening in their duration (-21.6±7.2% and -14.3±2.8%; p< 0.01). No such quantitative changes were observed during

  17. Oestrogen-deficient female aromatase knockout (ArKO) mice exhibit depressive-like symptomatology.

    Science.gov (United States)

    Dalla, C; Antoniou, K; Papadopoulou-Daifoti, Z; Balthazart, J; Bakker, J

    2004-07-01

    We recently found that female aromatase knockout (ArKO) mice that are deficient in oestradiol due to a targeted mutation in the aromatase gene show deficits in sexual behaviour that cannot be corrected by adult treatment with oestrogens. We determined here whether these impairments are associated with changes in general levels of activity, anxiety or 'depressive-like' symptomatology due to chronic oestrogen deficiency. We also compared the neurochemical profile of ArKO and wild-type (WT) females, as oestrogens have been shown to modulate dopaminergic, serotonergic and noradrenergic brain activities. ArKO females did not differ from WT in spontaneous motor activity, exploration or anxiety. These findings are in line with the absence of major neurochemical alterations in hypothalamus, prefrontal cortex or striatum, which are involved in the expression of these behaviours. By contrast, ArKO females displayed decreased active behaviours, such as struggling and swimming, and increased passive behaviours, such as floating, in repeated sessions of the forced swim test, indicating that these females exhibit 'depressive-like' symptoms. Adult treatment with oestradiol did not reverse the behavioural deficits observed in the forced swim test, suggesting that they may be due to the absence of oestradiol during development. Accordingly, an increased serotonergic activity was observed in the hippocampus of ArKO females compared with WT, which was also not reversed by adult oestradiol treatment. The possible organizational role of oestradiol on the hippocampal serotonergic system and the 'depressive-like' profile of ArKO females provide new insights into the pathophysiology of depression and the increased vulnerability of women to depression.

  18. Functional consequences of brain glycogen deficiency on the sleep-wake cycle regulation in PTG-KO mice

    KAUST Repository

    Burlet-Godinot, S.; Allaman, I.; Grenningloh, G.; Roach, P.J.; Depaoli-Roach, A.A.; Magistretti, Pierre J.; Petit, J.-M.

    2017-01-01

    in the brain in mice while glycogen levels were paradoxically maintained and not affected. In order to gain further insight on the role of PTG in this process, we studied the sleep/wake cycle parameters in PTG knockout (PTG-KO) mice under baseline conditions

  19. Both chronic treatments by epothilone D and fluoxetine increase the short-term memory and differentially alter the mood status of STOP/MAP6 KO mice.

    Science.gov (United States)

    Fournet, Vincent; de Lavilléon, Gaetan; Schweitzer, Annie; Giros, Bruno; Andrieux, Annie; Martres, Marie-Pascale

    2012-12-01

    Recent evidence underlines the crucial role of neuronal cytoskeleton in the pathophysiology of psychiatric diseases. In this line, the deletion of STOP/MAP6 (Stable Tubule Only Polypeptide), a microtubule-stabilizing protein, triggers various neurotransmission and behavioral defects, suggesting that STOP knockout (KO) mice could be a relevant experimental model for schizoaffective symptoms. To establish the predictive validity of such a mouse line, in which the brain serotonergic tone is dramatically imbalanced, the effects of a chronic fluoxetine treatment on the mood status of STOP KO mice were characterized. Moreover, we determined the impact, on mood, of a chronic treatment by epothilone D, a taxol-like microtubule-stabilizing compound that has previously been shown to improve the synaptic plasticity deficits of STOP KO mice. We demonstrated that chronic fluoxetine was either antidepressive and anxiolytic, or pro-depressive and anxiogenic, depending on the paradigm used to test treated mutant mice. Furthermore, control-treated STOP KO mice exhibited paradoxical behaviors, compared with their clear-cut basal mood status. Paradoxical fluoxetine effects and control-treated STOP KO behaviors could be because of their hyper-reactivity to acute and chronic stress. Interestingly, both epothilone D and fluoxetine chronic treatments improved the short-term memory of STOP KO mice. Such treatments did not affect the serotonin and norepinephrine transporter densities in cerebral areas of mice. Altogether, these data demonstrated that STOP KO mice could represent a useful model to study the relationship between cytoskeleton, mood, and stress, and to test innovative mood treatments, such as microtubule-stabilizing compounds. © 2012 The Authors Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  20. MicroRNA and Transcriptomic Profiling Showed miRNA-Dependent Impairment of Systemic Regulation and Synthesis of Biomolecules in Rag2 KO Mice.

    Science.gov (United States)

    Reza, Abu Musa Md Talimur; Choi, Yun-Jung; Kim, Jin-Hoi

    2018-02-27

    The Rag2 knockout (KO) mouse is a well-established immune-compromised animal model for biomedical research. A comparative study identified the deregulated expression of microRNAs (miRNAs) and messenger RNAs (mRNAs) in Rag2 KO mice. However, the interaction between deregulated genes and miRNAs in the alteration of systemic (cardiac, renal, hepatic, nervous, and hematopoietic) regulations and the synthesis of biomolecules (such as l-tryptophan, serotonin, melatonin, dopamine, alcohol, noradrenaline, putrescine, and acetate) are unclear. In this study, we analyzed both miRNA and mRNA expression microarray data from Rag2 KO and wild type mice to investigate the possible role of miRNAs in systemic regulation and biomolecule synthesis. A notable finding obtained from this analysis is that the upregulation of several genes which are target molecules of the downregulated miRNAs in Rag2 KO mice, can potentially trigger the degradation of l-tryptophan, thereby leading to the systemic impairment and alteration of biomolecules synthesis as well as changes in behavioral patterns (such as stress and fear responses, and social recognition memory) in Rag2 gene-depleted mice. These findings were either not observed or not explicitly described in other published Rag2 KO transcriptome analyses. In conclusion, we have provided an indication of miRNA-dependent regulations of clinical and pathological conditions in cardiac, renal, hepatic, nervous, and hematopoietic systems in Rag2 KO mice. These results may significantly contribute to the prediction of clinical disease caused by Rag2 deficiency.

  1. MicroRNA and Transcriptomic Profiling Showed miRNA-Dependent Impairment of Systemic Regulation and Synthesis of Biomolecules in Rag2 KO Mice

    Directory of Open Access Journals (Sweden)

    Abu Musa Md Talimur Reza

    2018-02-01

    Full Text Available The Rag2 knockout (KO mouse is a well-established immune-compromised animal model for biomedical research. A comparative study identified the deregulated expression of microRNAs (miRNAs and messenger RNAs (mRNAs in Rag2 KO mice. However, the interaction between deregulated genes and miRNAs in the alteration of systemic (cardiac, renal, hepatic, nervous, and hematopoietic regulations and the synthesis of biomolecules (such as l-tryptophan, serotonin, melatonin, dopamine, alcohol, noradrenaline, putrescine, and acetate are unclear. In this study, we analyzed both miRNA and mRNA expression microarray data from Rag2 KO and wild type mice to investigate the possible role of miRNAs in systemic regulation and biomolecule synthesis. A notable finding obtained from this analysis is that the upregulation of several genes which are target molecules of the downregulated miRNAs in Rag2 KO mice, can potentially trigger the degradation of l-tryptophan, thereby leading to the systemic impairment and alteration of biomolecules synthesis as well as changes in behavioral patterns (such as stress and fear responses, and social recognition memory in Rag2 gene-depleted mice. These findings were either not observed or not explicitly described in other published Rag2 KO transcriptome analyses. In conclusion, we have provided an indication of miRNA-dependent regulations of clinical and pathological conditions in cardiac, renal, hepatic, nervous, and hematopoietic systems in Rag2 KO mice. These results may significantly contribute to the prediction of clinical disease caused by Rag2 deficiency.

  2. Estrogen receptor-independent catechol estrogen binding activity: protein binding studies in wild-type, Estrogen receptor-alpha KO, and aromatase KO mice tissues.

    Science.gov (United States)

    Philips, Brian J; Ansell, Pete J; Newton, Leslie G; Harada, Nobuhiro; Honda, Shin-Ichiro; Ganjam, Venkataseshu K; Rottinghaus, George E; Welshons, Wade V; Lubahn, Dennis B

    2004-06-01

    Primary evidence for novel estrogen signaling pathways is based upon well-documented estrogenic responses not inhibited by estrogen receptor antagonists. In addition to 17beta-E2, the catechol estrogen 4-hydroxyestradiol (4OHE2) has been shown to elicit biological responses independent of classical estrogen receptors in estrogen receptor-alpha knockout (ERalphaKO) mice. Consequently, our research was designed to biochemically characterize the protein(s) that could be mediating the biological effects of catechol estrogens using enzymatically synthesized, radiolabeled 4-hydroxyestrone (4OHE1) and 4OHE2. Scatchard analyses identified a single class of high-affinity (K(d) approximately 1.6 nM), saturable cytosolic binding sites in several ERalphaKO estrogen-responsive tissues. Specific catechol estrogen binding was competitively inhibited by unlabeled catechol estrogens, but not by 17beta-E2 or the estrogen receptor antagonist ICI 182,780. Tissue distribution studies indicated significant binding differences both within and among various tissues in wild-type, ERalphaKO, and aromatase knockout female mice. Ligand metabolism experiments revealed extensive metabolism of labeled catechol estrogen, suggesting that catechol estrogen metabolites were responsible for the specific binding. Collectively, our data provide compelling evidence for the interaction of catechol estrogen metabolites with a novel binding protein that exhibits high affinity, specificity, and selective tissue distribution. The extensive biochemical characterization of this binding protein indicates that this protein may be a receptor, and thus may mediate ERalpha/beta-independent effects of catechol estrogens and their metabolites.

  3. Humanized HLA-DR4.RagKO.IL2RγcKO.NOD (DRAG) mice sustain the complex vertebrate life cycle of Plasmodium falciparum malaria.

    Science.gov (United States)

    Wijayalath, Wathsala; Majji, Sai; Villasante, Eileen F; Brumeanu, Teodor D; Richie, Thomas L; Casares, Sofia

    2014-09-30

    Malaria is a deadly infectious disease affecting millions of people in tropical and sub-tropical countries. Among the five species of Plasmodium parasites that infect humans, Plasmodium falciparum accounts for the highest morbidity and mortality associated with malaria. Since humans are the only natural hosts for P. falciparum, the lack of convenient animal models has hindered the understanding of disease pathogenesis and prompted the need of testing anti-malarial drugs and vaccines directly in human trials. Humanized mice hosting human cells represent new pre-clinical models for infectious diseases that affect only humans. In this study, the ability of human-immune-system humanized HLA-DR4.RagKO.IL2RγcKO.NOD (DRAG) mice to sustain infection with P. falciparum was explored. Four week-old DRAG mice were infused with HLA-matched human haematopoietic stem cells (HSC) and examined for reconstitution of human liver cells and erythrocytes. Upon challenge with infectious P. falciparum sporozoites (NF54 strain) humanized DRAG mice were examined for liver stage infection, blood stage infection, and transmission to Anopheles stephensi mosquitoes. Humanized DRAG mice reconstituted human hepatocytes, Kupffer cells, liver endothelial cells, and erythrocytes. Upon intravenous challenge with P. falciparum sporozoites, DRAG mice sustained liver to blood stage infection (average 3-5 parasites/microlitre blood) and allowed transmission to An. stephensi mosquitoes. Infected DRAG mice elicited antibody and cellular responses to the blood stage parasites and self-cured the infection by day 45 post-challenge. DRAG mice represent the first human-immune-system humanized mouse model that sustains the complex vertebrate life cycle of P. falciparum without the need of exogenous injection of human hepatocytes/erythrocytes or P. falciparum parasite adaptation. The ability of DRAG mice to elicit specific human immune responses to P. falciparum parasites may help deciphering immune correlates

  4. Resistance of neuronal nitric oxide synthase-deficient mice to methamphetamine-induced dopaminergic neurotoxicity.

    Science.gov (United States)

    Itzhak, Y; Gandia, C; Huang, P L; Ali, S F

    1998-03-01

    Methamphetamine (METH) is a powerful psychostimulant that produces dopaminergic neurotoxicity manifested by a decrease in the levels of dopamine, tyrosine hydroxylase activity and dopamine transporter (DAT) binding sites in the nigrostriatal system. We have recently reported that blockade of the neuronal nitric oxide synthase (nNOS) isoform by 7-nitroindazole provides protection against METH-induced neurotoxicity in Swiss Webster mice. The present study was undertaken to investigate the effect of a neurotoxic dose of METH on mutant mice lacking the nNOS gene [nNOS(-/-)] and wild-type controls. In addition, we sought to investigate the behavioral outcome of exposure to a neurotoxic dose of METH. Homozygote nNOS(-/-), heterozygote nNOS(+/-) and wild-type animals were administered either saline or METH (5 mg/kg x 3). Dopamine, DOPAC and HVA levels, as well as DAT binding site levels, were determined in striatal tissue derived 72 h after the last METH injection. This regimen of METH given to nNOS(-/-) mice affected neither the tissue content of dopamine and its metabolites nor the number of DAT binding sites. Although a moderate reduction in the levels of dopamine (35%) and DAT binding sites (32%) occurred in striatum of heterozygote nNOS(+/-) mice, a more profound depletion of the dopaminergic markers (up to 68%) was observed in the wild-type animals. METH-induced hyperthermia was observed in all animal strains examined except the nNOS(-/-) mice. Investigation of the animals' spontaneous locomotor activity before and after administration of the neurotoxic dose of METH (5 mg/kg x 3) revealed no differences. A low dose of METH (1.0 mg/kg) administered to naive animals (nNOS(-/-) and wild-type) resulted in a similar intensity of locomotor stimulation. However, 68 to 72 h after exposure to the high-dose METH regimen, a marked sensitized responses to a challenge METH injection was observed in the wild-type mice but not in the nNOS(-/-) mice. Taken together, these results

  5. Adenovirus-mediated sphingomyelin synthase 2 increases atherosclerotic lesions in ApoE KO mice

    Directory of Open Access Journals (Sweden)

    Zhao Yarui

    2011-01-01

    Full Text Available Abstract Background Sphingomyelin synthase 2 (SMS2 contributes to de novo sphingomyelin (SM biosynthesis. Its activity is related to SM levels in the plasma and the cell membrane. In this study, we investigated the possibility of a direct relationship between SMS and atherosclerosis. Methods The Adenovirus containing SMS2 gene was given into 10-week ApoE KO C57BL/6J mice by femoral intravenous injection. In the control group, the Adenovirus containing GFP was given. To confirm this model, we took both mRNA level examination (RT-PCR and protein level examination (SMS activity assay. Result We generated recombinant adenovirus vectors containing either human SMS2 cDNA (AdV-SMS2 or GFP cDNA (AdV-GFP. On day six after intravenous infusion of 2 × 1011 particle numbers into ten-week-old apoE KO mice, AdV-SMS2 treatment significantly increased liver SMS2 mRNA levels and SMS activity (by 2.7-fold, 2.3-fold, p Conclusions Our results present direct morphological evidence for the pro-atherogenic capabilities of SMS2. SMS2 could be a potential target for treating atherosclerosis.

  6. The protein inhibitor of nNOS (PIN/DLC1/LC8) binding does not inhibit the NADPH-dependent heme reduction in nNOS, a key step in NO synthesis

    International Nuclear Information System (INIS)

    Parhad, Swapnil S.; Jaiswal, Deepa; Ray, Krishanu; Mazumdar, Shyamalava

    2016-01-01

    The neuronal nitric oxide synthase (nNOS) is an essential enzyme involved in the synthesis of nitric oxide (NO), a potent neurotransmitter. Although previous studies have indicated that the dynein light chain 1 (DLC1) binding to nNOS could inhibit the NO synthesis, the claim is challenged by contradicting reports. Thus, the mechanism of nNOS regulation remained unclear. nNOS has a heme-bearing, Cytochrome P450 core, and the functional enzyme is a dimer. The electron flow from NADPH to Flavin, and finally to the heme of the paired nNOS subunit within a dimer, is facilitated upon calmodulin (CaM) binding. Here, we show that DLC1 binding to nNOS-CaM complex does not affect the electron transport from the reductase to the oxygenase domain. Therefore, it cannot inhibit the rate of NADPH-dependent heme reduction in nNOS, which results in L-Arginine oxidation. Also, the NO release activity does not decrease with increasing DLC1 concentration in the reaction mix, which further confirmed that DLC1 does not inhibit nNOS activity. These findings suggest that the DLC1 binding may have other implications for the nNOS function in the cell. - Highlights: • The effect of interaction of nNOS with DLC1 has been debatable with contradicting reports in literature. • Purified DLC1 has no effect on electron transport between reductase and oxygenase domain of purified nNOS-CaM. • The NO release activity of nNOS was not altered by DLC1, supporting that DLC1 does not inhibit the enzyme. • These findings suggest that the DLC1 binding may have other implications for the nNOS function in the cell.

  7. The protein inhibitor of nNOS (PIN/DLC1/LC8) binding does not inhibit the NADPH-dependent heme reduction in nNOS, a key step in NO synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Parhad, Swapnil S. [Tata Institute of Fundamental Research (TIFR), Homi Bhabha Road, Mumbai 400 005 (India); Jaiswal, Deepa [Tata Institute of Fundamental Research (TIFR), Homi Bhabha Road, Mumbai 400 005 (India); TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500075 (India); Ray, Krishanu, E-mail: krishanu@tifr.res.in [Tata Institute of Fundamental Research (TIFR), Homi Bhabha Road, Mumbai 400 005 (India); Mazumdar, Shyamalava, E-mail: shyamal@tifr.res.in [Tata Institute of Fundamental Research (TIFR), Homi Bhabha Road, Mumbai 400 005 (India)

    2016-03-25

    The neuronal nitric oxide synthase (nNOS) is an essential enzyme involved in the synthesis of nitric oxide (NO), a potent neurotransmitter. Although previous studies have indicated that the dynein light chain 1 (DLC1) binding to nNOS could inhibit the NO synthesis, the claim is challenged by contradicting reports. Thus, the mechanism of nNOS regulation remained unclear. nNOS has a heme-bearing, Cytochrome P450 core, and the functional enzyme is a dimer. The electron flow from NADPH to Flavin, and finally to the heme of the paired nNOS subunit within a dimer, is facilitated upon calmodulin (CaM) binding. Here, we show that DLC1 binding to nNOS-CaM complex does not affect the electron transport from the reductase to the oxygenase domain. Therefore, it cannot inhibit the rate of NADPH-dependent heme reduction in nNOS, which results in L-Arginine oxidation. Also, the NO release activity does not decrease with increasing DLC1 concentration in the reaction mix, which further confirmed that DLC1 does not inhibit nNOS activity. These findings suggest that the DLC1 binding may have other implications for the nNOS function in the cell. - Highlights: • The effect of interaction of nNOS with DLC1 has been debatable with contradicting reports in literature. • Purified DLC1 has no effect on electron transport between reductase and oxygenase domain of purified nNOS-CaM. • The NO release activity of nNOS was not altered by DLC1, supporting that DLC1 does not inhibit the enzyme. • These findings suggest that the DLC1 binding may have other implications for the nNOS function in the cell.

  8. Endogenous angiotensin II modulates nNOS expression in renovascular hypertension

    Directory of Open Access Journals (Sweden)

    T.M.C. Pereira

    2009-07-01

    Full Text Available Nitric oxide (NO influences renal blood flow mainly as a result of neuronal nitric oxide synthase (nNOS. Nevertheless, it is unclear how nNOS expression is modulated by endogenous angiotensin II, an inhibitor of NO function. We tested the hypothesis that the angiotensin II AT1 receptor and oxidative stress mediated by NADPH oxidase contribute to the modulation of renal nNOS expression in two-kidney, one-clip (2K1C hypertensive rats. Experiments were performed on male Wistar rats (150 to 170 g body weight divided into 2K1C (N = 19 and sham-operated (N = 19 groups. nNOS expression in kidneys of 2K1C hypertensive rats (N = 9 was compared by Western blotting to that of 2K1C rats treated with low doses of the AT1 antagonist losartan (10 mg·kg-1·day-1; N = 5 or the superoxide scavenger tempol (0.2 mmol·kg-1·day-1; N = 5, which still remain hypertensive. After 28 days, nNOS expression was significantly increased by 1.7-fold in the clipped kidneys of 2K1C rats and by 3-fold in the non-clipped kidneys of 2K1C rats compared with sham rats, but was normalized by losartan. With tempol treatment, nNOS expression increased 2-fold in the clipped kidneys and 1.4-fold in the non-clipped kidneys compared with sham rats. The changes in nNOS expression were not followed by changes in the enzyme activity, as measured indirectly by the cGMP method. In conclusion, AT1 receptors and oxidative stress seem to be primary stimuli for increased nNOS expression, but this up-regulation does not result in higher enzyme activity.

  9. The protein inhibitor of nNOS (PIN/DLC1/LC8) binding does not inhibit the NADPH-dependent heme reduction in nNOS, a key step in NO synthesis.

    Science.gov (United States)

    Parhad, Swapnil S; Jaiswal, Deepa; Ray, Krishanu; Mazumdar, Shyamalava

    2016-03-25

    The neuronal nitric oxide synthase (nNOS) is an essential enzyme involved in the synthesis of nitric oxide (NO), a potent neurotransmitter. Although previous studies have indicated that the dynein light chain 1 (DLC1) binding to nNOS could inhibit the NO synthesis, the claim is challenged by contradicting reports. Thus, the mechanism of nNOS regulation remained unclear. nNOS has a heme-bearing, Cytochrome P450 core, and the functional enzyme is a dimer. The electron flow from NADPH to Flavin, and finally to the heme of the paired nNOS subunit within a dimer, is facilitated upon calmodulin (CaM) binding. Here, we show that DLC1 binding to nNOS-CaM complex does not affect the electron transport from the reductase to the oxygenase domain. Therefore, it cannot inhibit the rate of NADPH-dependent heme reduction in nNOS, which results in l-Arginine oxidation. Also, the NO release activity does not decrease with increasing DLC1 concentration in the reaction mix, which further confirmed that DLC1 does not inhibit nNOS activity. These findings suggest that the DLC1 binding may have other implications for the nNOS function in the cell. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Dose-Dependent Rescue of KO Amelogenin Enamel by Transgenes in Vivo

    Directory of Open Access Journals (Sweden)

    Felicitas B. Bidlack

    2017-11-01

    Full Text Available Mice lacking amelogenin (KO have hypoplastic enamel. Overexpression of the most abundant amelogenin splice variant M180 and LRAP transgenes can substantially improve KO enamel, but only ~40% of the incisor thickness is recovered and the prisms are not as tightly woven as in WT enamel. This implies that the compositional complexity of the enamel matrix is required for different aspects of enamel formation, such as organizational structure and thickness. The question arises, therefore, how important the ratio of different matrix components, and in particular amelogenin splice products, is in enamel formation. Can optimal expression levels of amelogenin transgenes representing both the most abundant splice variants and cleavage product at protein levels similar to that of WT improve the enamel phenotype of KO mice? Addressing this question, our objective was here to understand dosage effects of amelogenin transgenes (Tg representing the major splice variants M180 and LRAP and cleavage product CTRNC on enamel properties. Amelogenin KO mice were mated with M180Tg, CTRNCTg and LRAPTg mice to generate M180Tg and CTRNCTg double transgene and M180Tg, CTRNCTg, LRAPTg triple transgene mice with transgene hemizygosity (on one allelle or homozygosity (on both alleles. Transgene homo- vs. hemizygosity was determined by qPCR and relative transgene expression confirmed by Western blot. Enamel volume and mineral density were analyzed by microCT, thickness and structure by SEM, and mechanical properties by Vickers microhardness testing. There were no differences in incisor enamel thickness between amelogenin KO mice with three or two different transgenes, but mice homozygous for a given transgene had significantly thinner enamel than mice hemizygous for the transgene (p < 0.05. The presence of the LRAPTg did not improve the phenotype of M180Tg/CTRNCTg/KO enamel. In the absence of endogenous amelogenin, the addition of amelogenin transgenes representing the most

  11. Dose-Dependent Rescue of KO Amelogenin Enamel by Transgenes in Vivo.

    Science.gov (United States)

    Bidlack, Felicitas B; Xia, Yan; Pugach, Megan K

    2017-01-01

    Mice lacking amelogenin (KO) have hypoplastic enamel. Overexpression of the most abundant amelogenin splice variant M180 and LRAP transgenes can substantially improve KO enamel, but only ~40% of the incisor thickness is recovered and the prisms are not as tightly woven as in WT enamel. This implies that the compositional complexity of the enamel matrix is required for different aspects of enamel formation, such as organizational structure and thickness. The question arises, therefore, how important the ratio of different matrix components, and in particular amelogenin splice products, is in enamel formation. Can optimal expression levels of amelogenin transgenes representing both the most abundant splice variants and cleavage product at protein levels similar to that of WT improve the enamel phenotype of KO mice? Addressing this question, our objective was here to understand dosage effects of amelogenin transgenes ( Tg ) representing the major splice variants M180 and LRAP and cleavage product CTRNC on enamel properties. Amelogenin KO mice were mated with M180 Tg , CTRNC Tg and LRAP Tg mice to generate M180 Tg and CTRNC Tg double transgene and M180 Tg , CTRNC Tg , LRAP Tg triple transgene mice with transgene hemizygosity (on one allelle) or homozygosity (on both alleles). Transgene homo- vs. hemizygosity was determined by qPCR and relative transgene expression confirmed by Western blot. Enamel volume and mineral density were analyzed by microCT, thickness and structure by SEM, and mechanical properties by Vickers microhardness testing. There were no differences in incisor enamel thickness between amelogenin KO mice with three or two different transgenes, but mice homozygous for a given transgene had significantly thinner enamel than mice hemizygous for the transgene ( p structure, but only up to a maximum of ~80% that of molar and ~40% that of incisor wild-type enamel.

  12. Als2 mRNA splicing variants detected in KO mice rescue severe motor dysfunction phenotype in Als2 knock-down zebrafish.

    Science.gov (United States)

    Gros-Louis, Francois; Kriz, Jasna; Kabashi, Edor; McDearmid, Jonathan; Millecamps, Stéphanie; Urushitani, Makoto; Lin, Li; Dion, Patrick; Zhu, Qinzhang; Drapeau, Pierre; Julien, Jean-Pierre; Rouleau, Guy A

    2008-09-01

    Recessive ALS2 mutations are linked to three related but slightly different neurodegenerative disorders: amyotrophic lateral sclerosis, hereditary spastic paraplegia and primary lateral sclerosis. To investigate the function of the ALS2 encoded protein, we generated Als2 knock-out (KO) mice and zAls2 knock-down zebrafish. The Als2(-/-) mice lacking exon 2 and part of exon 3 developed mild signs of neurodegeneration compatible with axonal transport deficiency. In contrast, zAls2 knock-down zebrafish had severe developmental abnormalities, swimming deficits and motor neuron perturbation. We identified, by RT-PCR, northern and western blotting novel Als2 transcripts in mouse central nervous system. These Als2 transcripts were present in Als2 null mice as well as in wild-type littermates and some rescued the zebrafish phenotype. Thus, we speculate that the newly identified Als2 mRNA species prevent the Als2 KO mice from developing severe neurodegenerative disease and might also regulate the severity of the motor neurons phenotype observed in ALS2 patients.

  13. Phenotyping of nNOS neurons in the postnatal and adult female mouse hypothalamus.

    Science.gov (United States)

    Chachlaki, Konstantina; Malone, Samuel A; Qualls-Creekmore, Emily; Hrabovszky, Erik; Münzberg, Heike; Giacobini, Paolo; Ango, Fabrice; Prevot, Vincent

    2017-10-15

    Neurons expressing nitric oxide (NO) synthase (nNOS) and thus capable of synthesizing NO play major roles in many aspects of brain function. While the heterogeneity of nNOS-expressing neurons has been studied in various brain regions, their phenotype in the hypothalamus remains largely unknown. Here we examined the distribution of cells expressing nNOS in the postnatal and adult female mouse hypothalamus using immunohistochemistry. In both adults and neonates, nNOS was largely restricted to regions of the hypothalamus involved in the control of bodily functions, such as energy balance and reproduction. Labeled cells were found in the paraventricular, ventromedial, and dorsomedial nuclei as well as in the lateral area of the hypothalamus. Intriguingly, nNOS was seen only after the second week of life in the arcuate nucleus of the hypothalamus (ARH). The most dense and heavily labeled population of cells was found in the organum vasculosum laminae terminalis (OV) and the median preoptic nucleus (MEPO), where most of the somata of the neuroendocrine neurons releasing GnRH and controlling reproduction are located. A great proportion of nNOS-immunoreactive neurons in the OV/MEPO and ARH were seen to express estrogen receptor (ER) α. Notably, almost all ERα-immunoreactive cells of the OV/MEPO also expressed nNOS. Moreover, the use of EYFP Vglut2 , EYFP Vgat , and GFP Gad67 transgenic mouse lines revealed that, like GnRH neurons, most hypothalamic nNOS neurons have a glutamatergic phenotype, except for nNOS neurons of the ARH, which are GABAergic. Altogether, these observations are consistent with the proposed role of nNOS neurons in physiological processes. © 2017 Wiley Periodicals, Inc.

  14. Heterozygous Che-1 KO mice show deficiencies in object recognition memory persistence.

    Science.gov (United States)

    Zalcman, Gisela; Corbi, Nicoletta; Di Certo, Maria Grazia; Mattei, Elisabetta; Federman, Noel; Romano, Arturo

    2016-10-06

    Transcriptional regulation is a key process in the formation of long-term memories. Che-1 is a protein involved in the regulation of gene transcription that has recently been proved to bind the transcription factor NF-κB, which is known to be involved in many memory-related molecular events. This evidence prompted us to investigate the putative role of Che-1 in memory processes. For this study we newly generated a line of Che-1(+/-) heterozygous mice. Che-1 homozygous KO mouse is lethal during development, but Che-1(+/-) heterozygous mouse is normal in its general anatomical and physiological characteristics. We analyzed the behavioral characteristic and memory performance of Che-1(+/-) mice in two NF-κB dependent types of memory. We found that Che-1(+/-) mice show similar locomotor activity and thigmotactic behavior than wild type (WT) mice in an open field. In a similar way, no differences were found in anxiety-like behavior between Che-1(+/-) and WT mice in an elevated plus maze as well as in fear response in a contextual fear conditioning (CFC) and object exploration in a novel object recognition (NOR) task. No differences were found between WT and Che-1(+/-) mice performance in CFC training and when tested at 24h or 7days after training. Similar performance was found between groups in NOR task, both in training and 24h testing performance. However, we found that object recognition memory persistence at 7days was impaired in Che-1(+/-) heterozygous mice. This is the first evidence showing that Che-1 is involved in memory processes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. mTOR regulates the expression of DNA damage response enzymes in long-lived Snell dwarf, GHRKO, and PAPPA-KO mice.

    Science.gov (United States)

    Dominick, Graham; Bowman, Jacqueline; Li, Xinna; Miller, Richard A; Garcia, Gonzalo G

    2017-02-01

    Studies of the mTOR pathway have prompted speculation that diminished mTOR complex-1 (mTORC1) function may be involved in controlling the aging process. Our previous studies have shown diminished mTORC1 activity in tissues of three long-lived mutant mice: Snell dwarf mice, growth hormone receptor gene disrupted mice (GHRKO), and in this article, mice deficient in the pregnancy-associated protein-A (PAPPA-KO). The ways in which lower mTOR signals slow aging and age-related diseases are, however, not well characterized. Here, we show that Snell, GHKRO, and PAPPA-KO mice express high levels of two proteins involved in DNA repair, O-6-methylguanine-DNA methyltransferase (MGMT) and N-myc downstream-regulated gene 1 (NDRG1). Furthermore, we report that lowering mTOR enhances MGMT and NDRG1 protein expression via post-transcriptional mechanisms. We show that the CCR4-NOT complex, a post-transcriptional regulator of gene expression, is downstream of the mTORC1 pathway and may be responsible for the upregulation of MGMT and NDRG1 in all three varieties of long-lived mice. Our data thus suggest a novel link between DNA repair and mTOR signaling via post-transcriptional regulation involving specific alteration in the CCR4-NOT complex, whose modulation could control multiple aspects of the aging process. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  16. Nitric oxide synthase modulates CFA-induced thermal hyperalgesia through cytokine regulation in mice.

    Science.gov (United States)

    Chen, Yong; Boettger, Michael K; Reif, Andreas; Schmitt, Angelika; Uçeyler, Nurcan; Sommer, Claudia

    2010-03-02

    Although it has been largely demonstrated that nitric oxide synthase (NOS), a key enzyme for nitric oxide (NO) production, modulates inflammatory pain, the molecular mechanisms underlying these effects remain to be clarified. Here we asked whether cytokines, which have well-described roles in inflammatory pain, are downstream targets of NO in inflammatory pain and which of the isoforms of NOS are involved in this process. Intraperitoneal (i.p.) pretreatment with 7-nitroindazole sodium salt (7-NINA, a selective neuronal NOS inhibitor), aminoguanidine hydrochloride (AG, a selective inducible NOS inhibitor), L-N(G)-nitroarginine methyl ester (L-NAME, a non-selective NOS inhibitor), but not L-N(5)-(1-iminoethyl)-ornithine (L-NIO, a selective endothelial NOS inhibitor), significantly attenuated thermal hyperalgesia induced by intraplantar (i.pl.) injection of complete Freund's adjuvant (CFA). Real-time reverse transcription-polymerase chain reaction (RT-PCR) revealed a significant increase of nNOS, iNOS, and eNOS gene expression, as well as tumor necrosis factor-alpha (TNF), interleukin-1 beta (IL-1beta), and interleukin-10 (IL-10) gene expression in plantar skin, following CFA. Pretreatment with the NOS inhibitors prevented the CFA-induced increase of the pro-inflammatory cytokines TNF and IL-1beta. The increase of the anti-inflammatory cytokine IL-10 was augmented in mice pretreated with 7-NINA or L-NAME, but reduced in mice receiving AG or L-NIO. NNOS-, iNOS- or eNOS-knockout (KO) mice had lower gene expression of TNF, IL-1beta, and IL-10 following CFA, overall corroborating the inhibitor data. These findings lead us to propose that inhibition of NOS modulates inflammatory thermal hyperalgesia by regulating cytokine expression.

  17. NCKX3 was compensated by calcium transporting genes and bone resorption in a NCKX3 KO mouse model.

    Science.gov (United States)

    Yang, Hyun; Ahn, Changhwan; Shin, Eun-Kyeong; Lee, Ji-Sun; An, Beum-Soo; Jeung, Eui-Bae

    2017-10-15

    Gene knockout is the most powerful tool for determination of gene function or permanent modification of the phenotypic characteristics of an animal. Existing methods for gene disruption are limited by their efficiency, time required for completion and potential for confounding off-target effects. In this study, a rapid single-step approach to knockout of a targeted gene in mice using zinc-finger nucleases (ZFNs) was demonstrated for generation of mutant (knockout; KO) alleles. Specifically, ZFNs to target the sodium/calcium/potassium exchanger3 (NCKX3) gene in C57bl/6j were designed using the concept of this approach. NCKX3 KO mice were generated and the phenotypic characterization and molecular regulation of active calcium transporting genes was assessed when mice were fed different calcium diets during growth. General phenotypes such as body weight and plasma ion level showed no distinct abnormalities. Thus, the potassium/sodium/calcium exchanger of NCKX3 KO mice proceeded normally in this study. As a result, the compensatory molecular regulation of this mechanism was elucidated. Renal TRPV5 mRNA of NCKX3 KO mice increased in both male and female mice. Expression of TRPV6 mRNA was only down-regulated in the duodenum of male KO mice. Renal- and duodenal expression of PTHR and VDR were not changed; however, GR mRNA expression was increased in the kidney of NCKX3 KO mice. Depletion of the NCKX3 gene in a KO mouse model showed loss of bone mineral contents and increased plasma parathyroid hormone, suggesting that NCKX3 may play a role in regulating calcium homeostasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Diacylglycerol lipase a knockout mice demonstrate metabolic and behavioral phenotypes similar to those of cannabinoid receptor 1 knockout mice

    Directory of Open Access Journals (Sweden)

    David R Powell

    2015-06-01

    Full Text Available After creating >4650 knockouts (KOs of independent mouse genes, we screened them by high-throughput phenotyping and found that cannabinoid receptor 1 (Cnr1 KO mice had the same lean phenotype published by others. We asked if our KOs of DAG lipase a or b (Dagla or Daglb, which catalyze biosynthesis of the endocannabinoid (EC 2-Arachidonoylglycerol (2-AG, or Napepld, which catalyzes biosynthesis of the EC anandamide, shared the lean phenotype of Cnr1 KO mice. We found that Dagla KO mice, but not Daglb or Napepld KO mice, were among the leanest of 3651 chow-fed KO lines screened. In confirmatory studies, chow- or high fat diet-fed Dagla and Cnr1 KO mice were leaner than wild type (WT littermates; when data from multiple cohorts of adult mice were combined, body fat was 47% and 45% lower in Dagla and Cnr1 KO mice, respectively, relative to WT values. In contrast, neither Daglb nor Napepld KO mice were lean. Weanling Dagla KO mice ate less than WT mice and had body weight similar to pair-fed WT mice, and adult Dagla KO mice had normal activity and VO2 levels, similar to Cnr1 KO mice. Our Dagla and Cnr1 KO mice also had low fasting insulin, triglyceride and total cholesterol levels, and after a glucose challenge had normal glucose but very low insulin levels. Dagla and Cnr1 KO mice also showed similar responses to a battery of behavioral tests. These data suggest: 1 the lean phenotype of young Dagla and Cnr1 KO mice is mainly due to hypophagia; 2 in pathways where ECs signal through Cnr1 to regulate food intake and other metabolic and behavioral phenotypes observed in Cnr1 KO mice, Dagla alone provides the 2-AG that serves as the EC signal; and 3 small molecule Dagla inhibitors with a pharmacokinetic profile similar to that of Cnr1 inverse agonists are likely to mirror the ability of these Cnr1 inverse agonists to lower body weight and improve glycemic control in obese patients with type 2 diabetes, but may also induce undesirable neuropsychiatric

  19. Reversal of fragile X phenotypes by manipulation of AβPP/Aβ levels in Fmr1KO mice.

    Directory of Open Access Journals (Sweden)

    Cara J Westmark

    Full Text Available Fragile X syndrome (FXS is the most common form of inherited intellectual disability and the leading known genetic cause of autism. Fragile X mental retardation protein (FMRP, which is absent or expressed at substantially reduced levels in FXS, binds to and controls the postsynaptic translation of amyloid β-protein precursor (AβPP mRNA. Cleavage of AβPP can produce β-amyloid (Aβ, a 39-43 amino acid peptide mis-expressed in Alzheimer's disease (AD and Down syndrome (DS. Aβ is over-expressed in the brain of Fmr1(KO mice, suggesting a pathogenic role in FXS. To determine if genetic reduction of AβPP/Aβ rescues characteristic FXS phenotypes, we assessed audiogenic seizures (AGS, anxiety, the ratio of mature versus immature dendritic spines and metabotropic glutamate receptor (mGluR-mediated long-term depression (LTD in Fmr1(KO mice after removal of one App allele. All of these phenotypes were partially or completely reverted to normal. Plasma Aβ(1-42 was significantly reduced in full-mutation FXS males compared to age-matched controls while cortical and hippocampal levels were somewhat increased, suggesting that Aβ is sequestered in the brain. Evolving therapies directed at reducing Aβ in AD may be applicable to FXS and Aβ may serve as a plasma-based biomarker to facilitate disease diagnosis or assess therapeutic efficacy.

  20. Nitric oxide synthase modulates CFA-induced thermal hyperalgesia through cytokine regulation in mice

    Directory of Open Access Journals (Sweden)

    Üçeyler Nurcan

    2010-03-01

    Full Text Available Abstract Background Although it has been largely demonstrated that nitric oxide synthase (NOS, a key enzyme for nitric oxide (NO production, modulates inflammatory pain, the molecular mechanisms underlying these effects remain to be clarified. Here we asked whether cytokines, which have well-described roles in inflammatory pain, are downstream targets of NO in inflammatory pain and which of the isoforms of NOS are involved in this process. Results Intraperitoneal (i.p. pretreatment with 7-nitroindazole sodium salt (7-NINA, a selective neuronal NOS inhibitor, aminoguanidine hydrochloride (AG, a selective inducible NOS inhibitor, L-N(G-nitroarginine methyl ester (L-NAME, a non-selective NOS inhibitor, but not L-N(5-(1-iminoethyl-ornithine (L-NIO, a selective endothelial NOS inhibitor, significantly attenuated thermal hyperalgesia induced by intraplantar (i.pl. injection of complete Freund's adjuvant (CFA. Real-time reverse transcription-polymerase chain reaction (RT-PCR revealed a significant increase of nNOS, iNOS, and eNOS gene expression, as well as tumor necrosis factor-alpha (TNF, interleukin-1 beta (IL-1β, and interleukin-10 (IL-10 gene expression in plantar skin, following CFA. Pretreatment with the NOS inhibitors prevented the CFA-induced increase of the pro-inflammatory cytokines TNF and IL-1β. The increase of the anti-inflammatory cytokine IL-10 was augmented in mice pretreated with 7-NINA or L-NAME, but reduced in mice receiving AG or L-NIO. NNOS-, iNOS- or eNOS-knockout (KO mice had lower gene expression of TNF, IL-1β, and IL-10 following CFA, overall corroborating the inhibitor data. Conclusion These findings lead us to propose that inhibition of NOS modulates inflammatory thermal hyperalgesia by regulating cytokine expression.

  1. The Coexpression of Reelin and Neuronal Nitric Oxide Synthase in a Subpopulation of Dentate Gyrus Neurons Is Downregulated in Heterozygous Reeler Mice

    Directory of Open Access Journals (Sweden)

    Raquel Romay-Tallón

    2010-01-01

    Full Text Available Reelin is an extracellular matrix protein expressed in several interneuron subtypes in the hippocampus and dentate gyrus. Neuronal nitric oxide synthase (nNOS is also expressed by interneurons in these areas. We investigated whether reelin and nNOS are co-localized in the same population of hippocampal interneurons, and whether this colocalization is altered in the heterozygous reeler mouse. We found colocalization of nNOS in reelin-positive cells in the CA1 stratum radiatum and lacunosum moleculare, the CA3 stratum radiatum, and the dentate gyrus subgranular zone, molecular layer, and hilus. In heterozygous reeler mice, the colocalization of nNOS in reelin-positive cells was significantly decreased only in the subgranular zone and molecular layer. The coexpression of reelin and nNOS in several hippocampal regions suggests that reelin and nNOS may work synergistically to promote glutamatergic function, and the loss of this coexpression in heterozygous reeler mice may underlie some of the behavioral deficits observed in these animals.

  2. Region-Specific Defects of Respiratory Capacities in the Ndufs4(KO Mouse Brain.

    Directory of Open Access Journals (Sweden)

    Ernst-Bernhard Kayser

    Full Text Available Lack of NDUFS4, a subunit of mitochondrial complex I (NADH:ubiquinone oxidoreductase, causes Leigh syndrome (LS, a progressive encephalomyopathy. Knocking out Ndufs4, either systemically or in brain only, elicits LS in mice. In patients as well as in KO mice distinct regions of the brain degenerate while surrounding tissue survives despite systemic complex I dysfunction. For the understanding of disease etiology and ultimately for the development of rationale treatments for LS, it appears important to uncover the mechanisms that govern focal neurodegeneration.Here we used the Ndufs4(KO mouse to investigate whether regional and temporal differences in respiratory capacity of the brain could be correlated with neurodegeneration. In the KO the respiratory capacity of synaptosomes from the degeneration prone regions olfactory bulb, brainstem and cerebellum was significantly decreased. The difference was measurable even before the onset of neurological symptoms. Furthermore, neither compensating nor exacerbating changes in glycolytic capacity of the synaptosomes were found. By contrast, the KO retained near normal levels of synaptosomal respiration in the degeneration-resistant/resilient "rest" of the brain. We also investigated non-synaptic mitochondria. The KO expectedly had diminished capacity for oxidative phosphorylation (state 3 respiration with complex I dependent substrate combinations pyruvate/malate and glutamate/malate but surprisingly had normal activity with α-ketoglutarate/malate. No correlation between oxidative phosphorylation (pyruvate/malate driven state 3 respiration and neurodegeneration was found: Notably, state 3 remained constant in the KO while in controls it tended to increase with time leading to significant differences between the genotypes in older mice in both vulnerable and resilient brain regions. Neither regional ROS damage, measured as HNE-modified protein, nor regional complex I stability, assessed by blue native

  3. Enhanced radiosensitivity in 1,25-dihydroxyvitamin D3 deficient mice

    International Nuclear Information System (INIS)

    Zhang Zengli; Ding Xiaofei; Tong Jian; Li Bingyan

    2011-01-01

    To investigate whether impaired osteogenesis resulting from vitamin D deficiency can influence hematopoiesis recovery after radiation, the 25-hydroxyvitamin D-1α-hydroxylase (1α-hydroxylase) gene knockout (KO) mice and wild type (WT) mice were subjected to different doses of gamma ray. The survival rates, peripheral blood cell counts and bone marrow cellularity were studied after irradiation (IR). The survival rates of the KO mice were significantly lower than that of WT mice after 6 or 8 Gy dose of radiation. The recovery of white blood cells in KO mice was significantly delayed compared with that in WT mice after radiation. The red blood cell number in WT mice was observed to increase more than that in KO mice at days 14 and 28 after radiation. The nadir platelet count in KO mice was nearly half of that in WT mice. Dramatically higher bone marrow cell numbers were found in WT mice compared with KO mice. Our findings demonstrate the enhanced radiosensitivity in 1,25-dihydroxyvitamin D3 (1,25-(OH) 2 D 3 ) deficient mice. (author)

  4. The Growth Hormone Receptor Gene-Disrupted (GHR-KO) Mouse Fails to Respond to an Intermittent Fasting (IF) Diet

    Science.gov (United States)

    Arum, Oge; Bonkowski, Michael S.; Rocha, Juliana S.; Bartke, Andrzej

    2009-01-01

    SUMMARY The interaction of longevity-conferring genes with longevity-conferring diets is poorly understood. The growth hormone receptor gene-disrupted (GHR-KO) mouse is long-lived; and this longevity is not responsive to 30% caloric restriction (CR), in contrast to wild-type animals from the same strain. To determine whether this may have been limited to a particular level of dietary restriction (DR), we subjected GHR-KO mice to a different dietary restriction regimen, an intermittent fasting (IF) diet. The IF diet increased the survivorship and improved insulin sensitivity of normal males, but failed to affect either parameter in GHR-KO mice. From the results of two paradigms of dietary restriction we postulate that GHR-KO mice would be resistant to any manner of DR; potentially due to their inability to further enhance insulin sensitivity. Insulin sensitivity may be a mechanism and/or a marker of the lifespan-extending potential of an intervention. PMID:19747233

  5. IL-4 deficiency is associated with mechanical hypersensitivity in mice.

    Directory of Open Access Journals (Sweden)

    Nurcan Üçeyler

    Full Text Available Interleukin-4 (IL-4 is an anti-inflammatory and analgesic cytokine that induces opioid receptor transcription. We investigated IL-4 knockout (ko mice to characterize their pain behavior before and after chronic constriction injury (CCI of the sciatic nerve as a model for neuropathic pain. We investigated opioid responsivity and measured cytokine and opioid receptor gene expression in the peripheral and central nervous system (PNS, CNS of IL-4 ko mice in comparison with wildtype (wt mice. Naïve IL-4 ko mice displayed tactile allodynia (wt: 0.45 g; ko: 0.18 g; p<0.001, while responses to heat and cold stimuli and to muscle pressure were not different. No compensatory changes in the gene expression of tumor necrosis factor-alpha (TNF, IL-1β, IL-10, and IL-13 were found in the PNS and CNS of naïve IL-4 ko mice. However, IL-1β gene expression was stronger in the sciatic nerve of IL-4 ko mice (p<0.001 28 days after CCI and only IL-4 ko mice had elevated IL-10 gene expression (p = 0.014. Remarkably, CCI induced TNF (p<0.01, IL-1β (p<0.05, IL-10 (p<0.05, and IL-13 (p<0.001 gene expression exclusively in the ipsilateral spinal cord of IL-4 ko mice. The compensatory overexpression of the anti-inflammatory and analgesic cytokines IL-10 and IL-13 in the spinal cord of IL-4 ko mice may explain the lack of genotype differences for pain behavior after CCI. Additionally, CCI induced gene expression of μ, κ, and δ opioid receptors in the contralateral cortex and thalamus of IL-4 ko mice, paralleled by fast onset of morphine analgesia, but not in wt mice. We conclude that a lack of IL-4 leads to mechanical sensitivity; the compensatory hyperexpression of analgesic cytokines and opioid receptors after CCI, in turn, protects IL-4 ko mice from enhanced pain behavior after nerve lesion.

  6. Renal nerves and nNOS

    DEFF Research Database (Denmark)

    Kompanowska-Jezierska, Elzbieta; Wolff, Helle; Kuczeriszka, Marta

    2008-01-01

    ). This was tested by NaLoad after chronic renal denervation with and without inhibition of nNOS by S-methyl-thiocitrulline (SMTC). In addition, the acute effects of renal denervation on MABP and sodium balance were assessed. Rats were investigated in the conscious, catheterized state, in metabolic cages...... of acutely and chronically denervated rats were less than control (15% and 9%, respectively, P reduced by renal denervation (14.5 +/- 0.2 vs. 19.3 +/- 1.3 mIU/l, P reduced...... PRC (P sodium excretion six-fold, irrespective of renal denervation and SMTC. The metabolic data demonstrated that renal denervation lowered sodium balance during the first days after denervation (P

  7. Akt2/LDLr double knockout mice display impaired glucose tolerance and develop more complex atherosclerotic plaques than LDLr knockout mice

    NARCIS (Netherlands)

    Rensing, Katrijn L.; de Jager, Saskia C. A.; Stroes, Erik S.; Vos, Mariska; Twickler, Marcel Th B.; Dallinga-Thie, Geesje M.; de Vries, Carlie J. M.; Kuiper, Johan; Bot, Ilze; von der Thüsen, Jan H.

    2014-01-01

    To characterize the phenotype of Akt2/low-density-lipoprotein receptor double knockout (dKO) (Akt2/LDLr dKO) mice with respect to insulin resistance and features of atherosclerotic plaque progression. Metabolic profile and atherosclerotic plaque progression were compared between LDLr KO mice and

  8. Cardiovascular phenotype in Smad3 deficient mice with renovascular hypertension.

    Science.gov (United States)

    Kashyap, Sonu; Warner, Gina; Hu, Zeng; Gao, Feng; Osman, Mazen; Al Saiegh, Yousif; Lien, Karen R; Nath, Karl; Grande, Joseph P

    2017-01-01

    Renovascular hypertension (RVH) has deleterious effects on both the kidney and the heart. TGF-β signaling through Smad3 directs tissue fibrosis in chronic injury models. In the 2-kidney 1-clip (2K1C) model of RVH, employing mice on the 129 genetic background, Smad3 deficiency (KO) protects the stenotic kidney (STK) from development of interstitial fibrosis. However, these mice have an increased incidence of sudden cardiac death following 2K1C surgery. The purpose of this study was to characterize the cardiovascular phenotype of these mice. Renal artery stenosis (RAS) was established in Wild-type (WT) and Smad3 KO mice (129 genetic background) by placement of a polytetrafluoroethylene cuff on the right renal artery. Mortality was 25.5% for KO mice with RAS, 4.1% for KO sham mice, 1.2% for WT with RAS, and 1.8% for WT sham mice. Myocardial tissue of mice studied at 3 days following surgery showed extensive myocyte necrosis in KO but not WT mice. Myocyte necrosis was associated with a rapid induction of Ccl2 expression, macrophage influx, and increased MMP-9 activity. At later time points, both KO and WT mice developed myocardial fibrosis. No aortic aneurysms or dissections were observed at any time point. Smad3 KO mice were backcrossed to the C57BL/6J strain and subjected to RAS. Sudden death was observed at 10-14 days following surgery in 62.5% of mice; necropsy revealed aortic dissections as the cause of death. As observed in the 129 mice, the STK of Smad3 KO mice on the C57BL/6J background did not develop significant chronic renal damage. We conclude that the cardiovascular manifestations of Smad3 deficient mice are strain-specific, with myocyte necrosis in 129 mice and aortic rupture in C57BL/6J mice. Future studies will define mechanisms underlying this strain-specific effect on the cardiovascular system.

  9. Cardiovascular phenotype in Smad3 deficient mice with renovascular hypertension.

    Directory of Open Access Journals (Sweden)

    Sonu Kashyap

    Full Text Available Renovascular hypertension (RVH has deleterious effects on both the kidney and the heart. TGF-β signaling through Smad3 directs tissue fibrosis in chronic injury models. In the 2-kidney 1-clip (2K1C model of RVH, employing mice on the 129 genetic background, Smad3 deficiency (KO protects the stenotic kidney (STK from development of interstitial fibrosis. However, these mice have an increased incidence of sudden cardiac death following 2K1C surgery. The purpose of this study was to characterize the cardiovascular phenotype of these mice. Renal artery stenosis (RAS was established in Wild-type (WT and Smad3 KO mice (129 genetic background by placement of a polytetrafluoroethylene cuff on the right renal artery. Mortality was 25.5% for KO mice with RAS, 4.1% for KO sham mice, 1.2% for WT with RAS, and 1.8% for WT sham mice. Myocardial tissue of mice studied at 3 days following surgery showed extensive myocyte necrosis in KO but not WT mice. Myocyte necrosis was associated with a rapid induction of Ccl2 expression, macrophage influx, and increased MMP-9 activity. At later time points, both KO and WT mice developed myocardial fibrosis. No aortic aneurysms or dissections were observed at any time point. Smad3 KO mice were backcrossed to the C57BL/6J strain and subjected to RAS. Sudden death was observed at 10-14 days following surgery in 62.5% of mice; necropsy revealed aortic dissections as the cause of death. As observed in the 129 mice, the STK of Smad3 KO mice on the C57BL/6J background did not develop significant chronic renal damage. We conclude that the cardiovascular manifestations of Smad3 deficient mice are strain-specific, with myocyte necrosis in 129 mice and aortic rupture in C57BL/6J mice. Future studies will define mechanisms underlying this strain-specific effect on the cardiovascular system.

  10. DA Negatively Regulates IGF-I Actions Implicated in Cognitive Function via Interaction of PSD95 and nNOS in Minimal Hepatic Encephalopathy.

    Science.gov (United States)

    Ding, Saidan; Zhuge, Weishan; Wang, Xuebao; Yang, Jianjing; Lin, Yuanshao; Wang, Chengde; Hu, Jiangnan; Zhuge, Qichuan

    2017-01-01

    Insulin-like growth factor I (IGF-I) has been positively correlated with cognitive ability. Cognitive decline in minimal hepatic encephalopathy (MHE) was shown to be induced by elevated intracranial dopamine (DA). The beneficial effect of IGF-I signaling in MHE remains unknown. In this study, we found that IGF-I content was reduced in MHE rats and that IGF-I administration mitigated cognitive decline of MHE rats. A protective effect of IGF-I on the DA-induced interaction between postsynaptic density protein 95 (PSD95) and neuronal nitric oxide synthase (nNOS) was found in neurons. Ribosomal S6 protein kinase (RSK) phosphorylated nNOS in response to IGF-I by recruiting extracellular signal-regulated kinase (ERK1/2). In turn, DA inactivated the ERK1/2/RSK pathway and stimulated the PSD95-nNOS interaction by downregulating IGF-I. Inhibition of the interaction between PSD95 and nNOS ameliorated DA-induced memory impairment. As DA induced deficits in the ERK1/2/RSK pathway and the interaction between PSD95 and nNOS in MHE brains, IGF-I administration exerted a protective effect via interruption of the interaction between PSD95 and nNOS. These results suggest that IGF-I antagonizes DA-induced cognitive loss by disrupting PSD95-nNOS interactions in MHE.

  11. Evaluating mice lacking serum carboxylesterase as a behavioral model for nerve agent intoxication.

    Science.gov (United States)

    Dunn, Emily N; Ferrara-Bowens, Teresa M; Chachich, Mark E; Honnold, Cary L; Rothwell, Cristin C; Hoard-Fruchey, Heidi M; Lesyna, Catherine A; Johnson, Erik A; Cerasoli, Douglas M; McDonough, John H; Cadieux, C Linn

    2018-06-07

    Mice and other rodents are typically utilized for chemical warfare nerve agent research. Rodents have large amounts of carboxylesterase in their blood, while humans do not. Carboxylesterase nonspecifically binds to and detoxifies nerve agent. The presence of this natural bioscavenger makes mice and other rodents poor models for studies identifying therapeutics to treat humans exposed to nerve agents. To obviate this problem, a serum carboxylesterase knockout (Es1 KO) mouse was created. In this study, Es1 KO and wild type (WT) mice were assessed for differences in gene expression, nerve agent (soman; GD) median lethal dose (MLD) values, and behavior prior to and following nerve agent exposure. No expression differences were detected between Es1 KO and WT mice in more than 34 000 mouse genes tested. There was a significant difference between Es1 KO and WT mice in MLD values, as the MLD for GD-exposed WT mice was significantly higher than the MLD for GD-exposed Es1 KO mice. Behavioral assessments of Es1 KO and WT mice included an open field test, a zero maze, a Barnes maze, and a sucrose preference test (SPT). While sex differences were observed in various measures of these tests, overall, Es1 KO mice behaved similarly to WT mice. The two genotypes also showed virtually identical neuropathological changes following GD exposure. Es1 KO mice appear to have an enhanced susceptibility to GD toxicity while retaining all other behavioral and physiological responses to this nerve agent, making the Es1 KO mouse a more human-like model for nerve agent research.

  12. Analysis of glomerulosclerosis and atherosclerosis in lecithin cholesterol acyltransferase-deficient mice.

    Science.gov (United States)

    Lambert, G; Sakai, N; Vaisman, B L; Neufeld, E B; Marteyn, B; Chan, C C; Paigen, B; Lupia, E; Thomas, A; Striker, L J; Blanchette-Mackie, J; Csako, G; Brady, J N; Costello, R; Striker, G E; Remaley, A T; Brewer, H B; Santamarina-Fojo, S

    2001-05-04

    To evaluate the biochemical and molecular mechanisms leading to glomerulosclerosis and the variable development of atherosclerosis in patients with familial lecithin cholesterol acyl transferase (LCAT) deficiency, we generated LCAT knockout (KO) mice and cross-bred them with apolipoprotein (apo) E KO, low density lipoprotein receptor (LDLr) KO, and cholesteryl ester transfer protein transgenic mice. LCAT-KO mice had normochromic normocytic anemia with increased reticulocyte and target cell counts as well as decreased red blood cell osmotic fragility. A subset of LCAT-KO mice accumulated lipoprotein X and developed proteinuria and glomerulosclerosis characterized by mesangial cell proliferation, sclerosis, lipid accumulation, and deposition of electron dense material throughout the glomeruli. LCAT deficiency reduced the plasma high density lipoprotein (HDL) cholesterol (-70 to -94%) and non-HDL cholesterol (-48 to -85%) levels in control, apoE-KO, LDLr-KO, and cholesteryl ester transfer protein-Tg mice. Transcriptome and Western blot analysis demonstrated up-regulation of hepatic LDLr and apoE expression in LCAT-KO mice. Despite decreased HDL, aortic atherosclerosis was significantly reduced (-35% to -99%) in all mouse models with LCAT deficiency. Our studies indicate (i) that the plasma levels of apoB containing lipoproteins rather than HDL may determine the atherogenic risk of patients with hypoalphalipoproteinemia due to LCAT deficiency and (ii) a potential etiological role for lipoproteins X in the development of glomerulosclerosis in LCAT deficiency. The availability of LCAT-KO mice characterized by lipid, hematologic, and renal abnormalities similar to familial LCAT deficiency patients will permit future evaluation of LCAT gene transfer as a possible treatment for glomerulosclerosis in LCAT-deficient states.

  13. Disruption of BCAA metabolism in mice impairs exercise metabolism and endurance.

    Science.gov (United States)

    She, Pengxiang; Zhou, Yingsheng; Zhang, Zhiyou; Griffin, Kathleen; Gowda, Kavitha; Lynch, Christopher J

    2010-04-01

    Exercise enhances branched-chain amino acid (BCAA) catabolism, and BCAA supplementation influences exercise metabolism. However, it remains controversial whether BCAA supplementation improves exercise endurance, and unknown whether the exercise endurance effect of BCAA supplementation requires catabolism of these amino acids. Therefore, we examined exercise capacity and intermediary metabolism in skeletal muscle of knockout (KO) mice of mitochondrial branched-chain aminotransferase (BCATm), which catalyzes the first step of BCAA catabolism. We found that BCATm KO mice were exercise intolerant with markedly decreased endurance to exhaustion. Their plasma lactate and lactate-to-pyruvate ratio in skeletal muscle during exercise and lactate release from hindlimb perfused with high concentrations of insulin and glucose were significantly higher in KO than wild-type (WT) mice. Plasma and muscle ammonia concentrations were also markedly higher in KO than WT mice during a brief bout of exercise. BCATm KO mice exhibited 43-79% declines in the muscle concentration of alanine, glutamine, aspartate, and glutamate at rest and during exercise. In response to exercise, the increments in muscle malate and alpha-ketoglutarate were greater in KO than WT mice. While muscle ATP concentration tended to be lower, muscle IMP concentration was sevenfold higher in KO compared with WT mice after a brief bout of exercise, suggesting elevated ammonia in KO is derived from the purine nucleotide cycle. These data suggest that disruption of BCAA transamination causes impaired malate/aspartate shuttle, thereby resulting in decreased alanine and glutamine formation, as well as increases in lactate-to-pyruvate ratio and ammonia in skeletal muscle. Thus BCAA metabolism may regulate exercise capacity in mice.

  14. Narcolepsy susceptibility gene CCR3 modulates sleep-wake patterns in mice.

    Directory of Open Access Journals (Sweden)

    Hiromi Toyoda

    Full Text Available Narcolepsy is caused by the loss of hypocretin (Hcrt neurons and is associated with multiple genetic and environmental factors. Although abnormalities in immunity are suggested to be involved in the etiology of narcolepsy, no decisive mechanism has been established. We previously reported chemokine (C-C motif receptor 3 (CCR3 as a novel susceptibility gene for narcolepsy. To understand the role of CCR3 in the development of narcolepsy, we investigated sleep-wake patterns of Ccr3 knockout (KO mice. Ccr3 KO mice exhibited fragmented sleep patterns in the light phase, whereas the overall sleep structure in the dark phase did not differ between Ccr3 KO mice and wild-type (WT littermates. Intraperitoneal injection of lipopolysaccharide (LPS promoted wakefulness and suppressed both REM and NREM sleep in the light phase in both Ccr3 KO and WT mice. Conversely, LPS suppressed wakefulness and promoted NREM sleep in the dark phase in both genotypes. After LPS administration, the proportion of time spent in wakefulness was higher, and the proportion of time spent in NREM sleep was lower in Ccr3 KO compared to WT mice only in the light phase. LPS-induced changes in sleep patterns were larger in Ccr3 KO compared to WT mice. Furthermore, we quantified the number of Hcrt neurons and found that Ccr3 KO mice had fewer Hcrt neurons in the lateral hypothalamus compared to WT mice. We found abnormalities in sleep patterns in the resting phase and in the number of Hcrt neurons in Ccr3 KO mice. These observations suggest a role for CCR3 in sleep-wake regulation in narcolepsy patients.

  15. Okoljski vplivi planinskih koč v visokogorju Kamniško-Savinjskih Alp

    Directory of Open Access Journals (Sweden)

    Nejc Bobovnik

    2014-12-01

    Full Text Available Planinske koče so v neposeljenem gorskem svetu skoraj edini lokalni vir onesnaževanja. V raziskavi smo opredelili štiri okoljske vplive planinskih koč: oskrbovanje in ravnanje z odpadki, ogrevanje in pridobivanje električne energije, oskrba z vodo in ravnanje z odpadnimi vodami ter število in obnašanje obiskovalcev. S pomočjo ankete smo ocenili okoljske vplive izbranih planinskih koč. Najbolj problematična sta velika količina odpadkov in porabljene vode, kot dobro lahko označimo oskrbovanje, kot zelo dobro ogrevanje koč in pridobivanje električne energije.

  16. Increased anxiety-related behaviour in Hint1 knockout mice.

    Science.gov (United States)

    Varadarajulu, Jeeva; Lebar, Maria; Krishnamoorthy, Gurumoorthy; Habelt, Sonja; Lu, Jia; Bernard Weinstein, I; Li, Haiyang; Holsboer, Florian; Turck, Christoph W; Touma, Chadi

    2011-07-07

    Several reports have implicated a role for the histidine triad nucleotide-binding protein-1 (Hint1) in psychiatric disorders. We have studied the emotional behaviour of male Hint1 knockout (Hint1 KO) mice in a battery of tests and performed biochemical analyses on brain tissue. The behavioural analysis revealed that Hint1 KO mice exhibit an increased emotionality phenotype compared to wildtype (WT) mice, while no significant differences in locomotion or general exploratory activity were noted. In the elevated plus-maze (EPM) test, the Hint1 KO animals entered the open arms of the apparatus less often than WT littermates. Similarly, in the dark-light box test, Hint1 KO mice spent less time in the lit compartment and the number of entries were reduced, which further confirmed an increased anxiety-related behaviour. Moreover, the Hint1 KO animals showed significantly more struggling and less floating behaviour in the forced swim test (FST), indicating an increased emotional arousal in aversive situations. Hint1 is known as a protein kinase C (PKC) interacting protein. Western blot analysis showed that PKCγ expression was elevated in Hint1 KO compared to WT mice. Interestingly, PKCγ mRNA levels of the two groups did not show a significant difference, implying a post-transcriptional PKCγ regulation. In addition, PKC enzymatic activity was increased in Hint1 KO compared to WT mice. In summary, our results indicate a role for Hint1 and PKCγ in modulating anxiety-related and stress-coping behaviour in mice. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Behavioral Characteristics of Ubiquitin-Specific Peptidase 46-Deficient Mice

    Science.gov (United States)

    Imai, Saki; Kano, Makoto; Nonoyama, Keiko; Ebihara, Shizufumi

    2013-01-01

    We have previously identified Usp46, which encodes for ubiquitin-specific peptidase 46, as a quantitative trait gene affecting the immobility time of mice in the tail suspension test (TST) and forced swimming test. The mutation that we identified was a 3-bp deletion coding for lysine (Lys 92), and mice with this mutation (MT mice), as well as Usp46 KO mice exhibited shorter TST immobility times. Behavioral pharmacology suggests that the gamma aminobutyric acid A (GABAA) receptor is involved in regulating TST immobility time. In order to understand how far Usp46 controls behavioral phenotypes, which could be related to mental disorders in humans, we subjected Usp46 MT and KO mice to multiple behavioral tests, including the open field test, ethanol preference test, ethanol-induced loss of righting reflex test, sucrose preference test, novelty-suppressed feeding test, marble burying test, and novel object recognition test. Although behavioral phenotypes of the Usp46 MT and KO mice were not always identical, deficiency of Usp46 significantly affected performance in all these tests. In the open field test, activity levels were lower in Usp46 KO mice than wild type (WT) or MT mice. Both MT and KO mice showed lower ethanol preference and shorter recovery times after ethanol administration. Compared to WT mice, Usp46 MT and KO mice exhibited decreased sucrose preference, took longer latency periods to bite pellets, and buried more marbles in the sucrose preference test, novelty-suppressed feeding test, and marble burying test, respectively. In the novel object recognition test, neither MT nor KO mice showed an increase in exploration of a new object 24 hours after training. These findings indicate that Usp46 regulates a wide range of behavioral phenotypes that might be related to human mental disorders and provides insight into the function of USP46 deubiquitinating enzyme in the neural system. PMID:23472206

  18. Behavioral characteristics of ubiquitin-specific peptidase 46-deficient mice.

    Directory of Open Access Journals (Sweden)

    Saki Imai

    Full Text Available We have previously identified Usp46, which encodes for ubiquitin-specific peptidase 46, as a quantitative trait gene affecting the immobility time of mice in the tail suspension test (TST and forced swimming test. The mutation that we identified was a 3-bp deletion coding for lysine (Lys 92, and mice with this mutation (MT mice, as well as Usp46 KO mice exhibited shorter TST immobility times. Behavioral pharmacology suggests that the gamma aminobutyric acid A (GABAA receptor is involved in regulating TST immobility time. In order to understand how far Usp46 controls behavioral phenotypes, which could be related to mental disorders in humans, we subjected Usp46 MT and KO mice to multiple behavioral tests, including the open field test, ethanol preference test, ethanol-induced loss of righting reflex test, sucrose preference test, novelty-suppressed feeding test, marble burying test, and novel object recognition test. Although behavioral phenotypes of the Usp46 MT and KO mice were not always identical, deficiency of Usp46 significantly affected performance in all these tests. In the open field test, activity levels were lower in Usp46 KO mice than wild type (WT or MT mice. Both MT and KO mice showed lower ethanol preference and shorter recovery times after ethanol administration. Compared to WT mice, Usp46 MT and KO mice exhibited decreased sucrose preference, took longer latency periods to bite pellets, and buried more marbles in the sucrose preference test, novelty-suppressed feeding test, and marble burying test, respectively. In the novel object recognition test, neither MT nor KO mice showed an increase in exploration of a new object 24 hours after training. These findings indicate that Usp46 regulates a wide range of behavioral phenotypes that might be related to human mental disorders and provides insight into the function of USP46 deubiquitinating enzyme in the neural system.

  19. Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition

    Directory of Open Access Journals (Sweden)

    Zhu Zhu

    2016-01-01

    Full Text Available Background. The risk of atherosclerosis is elevated in abnormal lipid metabolism and circadian rhythm disorder. We investigated whether abnormal lighting condition would have influenced the circadian expression of clock genes and clock-controlled lipid metabolism-related genes in ApoE-KO mice. Methods. A mouse model of atherosclerosis with circadian clock genes expression disorder was established using ApoE-KO mice (ApoE-KO LD/DL mice by altering exposure to light. C57 BL/6J mice (C57 mice and ApoE-KO mice (ApoE-KO mice exposed to normal day and night and normal diet served as control mice. According to zeitgeber time samples were acquired, to test atheromatous plaque formation, serum lipids levels and rhythmicity, clock genes, and lipid metabolism-related genes along with Sirtuin 1 (Sirt1 levels and rhythmicity. Results. Atherosclerosis plaques were formed in the aortic arch of ApoE-KO LD/DL mice. The serum lipids levels and oscillations in ApoE-KO LD/DL mice were altered, along with the levels and diurnal oscillations of circadian genes, lipid metabolism-associated genes, and Sirt1 compared with the control mice. Conclusions. Abnormal exposure to light aggravated plaque formation and exacerbated disorders of serum lipids and clock genes, lipid metabolism genes and Sirt1 levels, and circadian oscillation.

  20. Development of Murine Cyp3a Knockout Chimeric Mice with Humanized Liver.

    Science.gov (United States)

    Kato, Kota; Ohbuchi, Masato; Hamamura, Satoko; Ohshita, Hiroki; Kazuki, Yasuhiro; Oshimura, Mitsuo; Sato, Koya; Nakada, Naoyuki; Kawamura, Akio; Usui, Takashi; Kamimura, Hidetaka; Tateno, Chise

    2015-08-01

    We developed murine CYP3A knockout ko chimeric mice with humanized liver expressing human P450S similar to those in humans and whose livers and small intestines do not express murine CYP3A this: approach may overcome effects of residual mouse metabolic enzymes like Cyp3a in conventional chimeric mice with humanized liver, such as PXB-mice [urokinase plasminogen activator/severe combined immunodeficiency (uPA/SCID) mice repopulated with over 70% human hepatocytes] to improve the prediction of drug metabolism and pharmacokinetics in humans. After human hepatocytes were transplanted into Cyp3a KO/uPA/SCID host mice, human albumin levels logarithmically increased until approximately 60 days after transplantation, findings similar to those in PXB-mice. Quantitative real-time-polymerase chain reaction analyses showed that hepatic human P450s, UGTs, SULTs, and transporters mRNA expression levels in Cyp3a KO chimeric mice were also similar to those in PXB-mice and confirmed the absence of Cyp3a11 mRNA expression in mouse liver and intestine. Findings for midazolam and triazolam metabolic activities in liver microsomes were comparable between Cyp3a KO chimeric mice and PXB-mice. In contrast, these activities in the intestine of Cyp3a KO chimeric mice were attenuated compared with PXB-mice. Owing to the knockout of murine Cyp3a, hepatic Cyp2b10 and 2c55 mRNA levels in Cyp3a KO/uPA/SCID mice (without hepatocyte transplants) were 8.4- and 61-fold upregulated compared with PXB-mice, respectively. However, human hepatocyte transplantation successfully restored Cyp2b10 level nearly fully and Cyp2c55 level partly (still 13-fold upregulated) compared with those in PXB-mice. Intestinal Cyp2b10 and 2c55 were also repressed by human hepatocyte transplantation in Cyp3a KO chimeric mice. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  1. Differential regulation of morphine antinociceptive effects by endogenous enkephalinergic system in the forebrain of mice

    Directory of Open Access Journals (Sweden)

    Sun Wei-Zen

    2008-09-01

    Full Text Available Abstract Background Mice lacking the preproenkephalin (ppENK gene are hyperalgesic and show more anxiety and aggression than wild-type (WT mice. The marked behavioral changes in ppENK knock-out (KO mice appeared to occur in supraspinal response to painful stimuli. However the functional role of enkephalins in the supraspinal nociceptive processing and their underlying mechanism is not clear. The aim of present study was to compare supraspinal nociceptive and morphine antinociceptive responses between WT and ppENK KO mice. Results The genotypes of bred KO mice were confirmed by PCR. Met-enkephalin immunoreactive neurons were labeled in the caudate-putamen, intermediated part of lateral septum, lateral globus pallidus, intermediated part of lateral septum, hypothalamus, and amygdala of WT mice. Met-enkephalin immunoreactive neurons were not found in the same brain areas in KO mice. Tail withdrawal and von Frey test results did not differ between WT and KO mice. KO mice had shorter latency to start paw licking than WT mice in the hot plate test. The maximal percent effect of morphine treatments (5 mg/kg and 10 mg/kg, i.p. differed between WT and KO mice in hot plate test. The current source density (CSD profiles evoked by peripheral noxious stimuli in the primary somatosenstory cortex (S1 and anterior cingulate cortex (ACC were similar in WT and KO mice. After morphine injection, the amplitude of the laser-evoked sink currents was decreased in S1 while the amplitude of electrical-evoked sink currents was increased in the ACC. These differential morphine effects in S1 and ACC were enhanced in KO mice. Facilitation of synaptic currents in the ACC is mediated by GABA inhibitory interneurons in the local circuitry. Percent increases in opioid receptor binding in S1 and ACC were 5.1% and 5.8%, respectively. Conclusion The present results indicate that the endogenous enkephalin system is not involved in acute nociceptive transmission in the spinal cord

  2. Contribution of PPARγ in modulation of acrolein-induced inflammatory signaling in gp91phox knock-out mice.

    Science.gov (United States)

    Yousefipour, Zivar; Chug, Neha; Marek, Katarzyna; Nesbary, Alicia; Mathew, Joseph; Ranganna, Kasturi; Newaz, Mohammad A

    2017-08-01

    Oxidative stress and inflammation are major contributors to acrolein toxicity. Peroxisome proliferator activated receptor gamma (PPARγ) has antioxidant and anti-inflammatory effects. We investigated the contribution of PPARγ ligand GW1929 to the attenuation of oxidative stress in acrolein-induced insult. Male gp91 phox knock-out (KO) mice were treated with acrolein (0.5 mg·(kg body mass) -1 by intraperitoneal injection for 7 days) with or without GW1929 (GW; 0.5 mg·(kg body mass) -1 ·day -1 , orally, for 10 days). The livers were processed for further analyses. Acrolein significantly increased 8-isoprostane and reduced PPARγ activity (P acrolein-treated WT mice, and was reduced by GW1929 (by 65%). KO mice exhibited higher xanthine oxidase (XO). Acrolein increased XO and COX in WT mice and XO in KO mice. GW1929 significantly reduced COX in WT and KO mice and reduced XO in KO mice. Acrolein significantly reduced the total antioxidant status in WT and KO mice (P acrolein-treated WT mice. GW1929 reduced NF-κB levels (by 51%) in KO mice. Acrolein increased CD36 in KO mice (by 43%), which was blunted with GW1929. Data confirms that the generation of free radicals by acrolein is mainly through NAD(P)H, but other oxygenates play a role too. GW1929 may alleviate the toxicity of acrolein by attenuating NF-κB, COX, and CD36.

  3. An Essential Physiological Role for MCT8 in Bone in Male Mice.

    Science.gov (United States)

    Leitch, Victoria D; Di Cosmo, Caterina; Liao, Xiao-Hui; O'Boy, Sam; Galliford, Thomas M; Evans, Holly; Croucher, Peter I; Boyde, Alan; Dumitrescu, Alexandra; Weiss, Roy E; Refetoff, Samuel; Williams, Graham R; Bassett, J H Duncan

    2017-09-01

    T3 is an important regulator of skeletal development and adult bone maintenance. Thyroid hormone action requires efficient transport of T4 and T3 into target cells. We hypothesized that monocarboxylate transporter (MCT) 8, encoded by Mct8 on the X-chromosome, is an essential thyroid hormone transporter in bone. To test this hypothesis, we determined the juvenile and adult skeletal phenotypes of male Mct8 knockout mice (Mct8KO) and Mct8D1D2KO compound mutants, which additionally lack the ability to convert the prohormone T4 to the active hormone T3. Prenatal skeletal development was normal in both Mct8KO and Mct8D1D2KO mice, whereas postnatal endochondral ossification and linear growth were delayed in both Mct8KO and Mct8D1D2KO mice. Furthermore, bone mass and mineralization were decreased in adult Mct8KO and Mct8D1D2KO mice, and compound mutants also had reduced bone strength. Delayed bone development and maturation in Mct8KO and Mct8D1D2KO mice is consistent with decreased thyroid hormone action in growth plate chondrocytes despite elevated serum T3 concentrations, whereas low bone mass and osteoporosis reflects increased thyroid hormone action in adult bone due to elevated systemic T3 levels. These studies identify an essential physiological requirement for MCT8 in chondrocytes, and demonstrate a role for additional transporters in other skeletal cells during adult bone maintenance.

  4. Desacyl Ghrelin Decreases Anxiety-like Behavior in Male Mice.

    Science.gov (United States)

    Mahbod, Parinaz; Smith, Eric P; Fitzgerald, Maureen E; Morano, Rachel L; Packard, Benjamin A; Ghosal, Sriparna; Scheimann, Jessie R; Perez-Tilve, Diego; Herman, James P; Tong, Jenny

    2018-01-01

    Ghrelin is a 28-amino acid polypeptide that regulates feeding, glucose metabolism, and emotionality (stress, anxiety, and depression). Plasma ghrelin circulates as desacyl ghrelin (DAG) or, in an acylated form, acyl ghrelin (AG), through the actions of ghrelin O-acyltransferase (GOAT), exhibiting low or high affinity, respectively, for the growth hormone secretagogue receptor (GHSR) 1a. We investigated the role of endogenous AG, DAG, and GHSR1a signaling on anxiety and stress responses using ghrelin knockout (Ghr KO), GOAT KO, and Ghsr stop-floxed (Ghsr null) mice. Behavioral and hormonal responses were tested in the elevated plus maze and light/dark (LD) box. Mice lacking both AG and DAG (Ghr KO) increased anxiety-like behaviors across tests, whereas anxiety reactions were attenuated in DAG-treated Ghr KO mice and in mice lacking AG (GOAT KO). Notably, loss of GHSR1a (Ghsr null) did not affect anxiety-like behavior in any test. Administration of AG and DAG to Ghr KO mice with lifelong ghrelin deficiency reduced anxiety-like behavior and decreased phospho-extracellular signal-regulated kinase phosphorylation in the Edinger-Westphal nucleus in wild-type mice, a site normally expressing GHSR1a and involved in stress- and anxiety-related behavior. Collectively, our data demonstrate distinct roles for endogenous AG and DAG in regulation of anxiety responses and suggest that the behavioral impact of ghrelin may be context dependent. Copyright © 2018 Endocrine Society.

  5. Tissue inhibitor of metalloproteinase-3 knockout mice exhibit enhanced energy expenditure through thermogenesis.

    Directory of Open Access Journals (Sweden)

    Yohsuke Hanaoka

    Full Text Available Tissue inhibitors of metalloproteinases (TIMPs regulate matrix metalloproteinase activity and maintain extracellular matrix homeostasis. Although TIMP-3 has multiple functions (e.g., apoptosis, inhibition of VEGF binding to VEGF receptor, and inhibition of TNFα converting enzyme, its roles in thermogenesis and metabolism, which influence energy expenditure and can lead to the development of metabolic disorders when dysregulated, are poorly understood. This study aimed to determine whether TIMP-3 is implicated in metabolism by analyzing TIMP-3 knockout (KO mice. TIMP-3 KO mice had higher body temperature, oxygen consumption, and carbon dioxide production than wild-type (WT mice, although there were no differences in food intake and locomotor activity. These results suggest that metabolism is enhanced in TIMP-3 KO mice. Real-time PCR analysis showed that the expression of PPAR-δ, UCP-2, NRF-1 and NRF-2 in soleus muscle, and PGC-1α and UCP-2 in gastrocnemius muscle, was higher in TIMP-3 KO mice than in WT mice, suggesting that TIMP-3 deficiency may increase mitochondrial activity. When exposed to cold for 8 hours to induce thermogenesis, TIMP-3 KO mice had a higher body temperature than WT mice. In the treadmill test, oxygen consumption and carbon dioxide production were higher in TIMP-3 KO mice both before and after starting exercise, and the difference was more pronounced after starting exercise. Our findings suggest that TIMP-3 KO mice exhibit enhanced metabolism, as reflected by a higher body temperature than WT mice, possibly due to increased mitochondrial activity. Given that TIMP-3 deficiency increases energy expenditure, TIMP-3 may present a novel therapeutic target for preventing metabolic disorders.

  6. Nitrous oxide discretely up-regulates nNOS and p53 in neonatal rat brain.

    Science.gov (United States)

    Cattano, D; Valleggi, S; Abramo, A; Forfori, F; Maze, M; Giunta, F

    2010-06-01

    Animal studies suggest that neuronal cell death often results from anesthetic administration during synaptogenesis. Volatile anesthetics are strongly involved in triggering neuronal apoptosis, whereas other inhalational agents (xenon) demonstrate protective effects. Nitrous oxide (N2O) has modest pro-apoptotic effects on its own and potent, synergistic toxic effects when combined with volatile agents. Recent findings suggest that, during periods of rapid brain development, the enhanced neurodegeneration triggered by anesthetic drugs may be caused by a compensatory increase in intracellular free calcium, a potent activator of neuronal nitric oxide synthase (nNOS). Anesthesia-induced neuro-apoptosis is also activated via the intrinsic and the extrinsic apoptotic pathways because both pathways involve p53, a key regulatory gene. The molecular events related to neuronal cell apoptosis are not completely understood. To gain further insight into the events underlying neuro-apoptosis, we analyzed the transcriptional consequences of N2O exposure on nNOS, iNOS and p53 mRNA levels. The study used 2 groups of postnatal day seven Sprague/Dawley rats (N=6 each) that were exposed for 120 minutes to air (75% N2, 25% O2) or N2O (75% N2O, 25% O2; this N2O concentration is commonly used to induce anesthesia and has been demonstrated to trigger neurodegeneration in postnatal day seven rats). Total RNA was isolated from each brain and expression analyses on iNOS and nNOS transcripts were performed using relative Real-Time C-reactive protein PCR (using G3PDH as a housekeeping gene). A semi-quantitative RT-PCR analysis was performed on the p53 transcript (using Ciclophylin A as a housekeeping gene). Statistical analysis (REST 2005) revealed a significant, 11-fold up-regulation (P=0.026) of the nNOS transcript but no significant changes in iNOS transcription. The p53 mRNA was up-regulated almost 2-fold (P=0.0002; Student's t-Test; GraphPad Prism 4.00) in N2O-treated samples relative to

  7. Fus1 KO Mouse As a Model of Oxidative Stress-Mediated Sporadic Alzheimer's Disease: Circadian Disruption and Long-Term Spatial and Olfactory Memory Impairments.

    Science.gov (United States)

    Coronas-Samano, Guillermo; Baker, Keeley L; Tan, Winston J T; Ivanova, Alla V; Verhagen, Justus V

    2016-01-01

    Insufficient advances in the development of effective therapeutic treatments of sporadic Alzheimer's Disease (sAD) to date are largely due to the lack of sAD-relevant animal models. While the vast majority of models do recapitulate AD's hallmarks of plaques and tangles by virtue of tau and/or beta amyloid overexpression, these models do not reflect the fact that in sAD (unlike familial AD) these genes are not risk factors per se and that other mechanisms like oxidative stress, metabolic dysregulation and inflammation play key roles in AD etiology. Here we characterize and propose the Fus1 KO mice that lack a mitochondrial protein Fus1/Tusc2 as a new sAD model. To establish sAD relevance, we assessed sAD related deficits in Fus1 KO and WT adult mice of 4-5 months old, the equivalent human age when the earliest cognitive and olfactory sAD symptoms arise. Fus1 KO mice showed oxidative stress (increased levels of ROS, decreased levels of PRDX1), disruption of metabolic homeostasis (decreased levels of ACC2, increased phosphorylation of AMPK), autophagy (decreased levels of LC3-II), PKC (decreased levels of RACK1) and calcium signaling (decreased levels of Calb2) in the olfactory bulb and/or hippocampus. Mice were behaviorally tested using objective and accurate video tracking (Noldus), in which Fus1 KO mice showed clear deficits in olfactory memory (decreased habituation/cross-habituation in the short and long term), olfactory guided navigation memory (inability to reduce their latency to find the hidden cookie), spatial memory (learning impairments on finding the platform in the Morris water maze) and showed more sleep time during the diurnal cycle. Fus1 KO mice did not show clear deficits in olfactory perception (cross-habituation), association memory (passive avoidance) or in species-typical behavior (nest building) and no increased anxiety (open field, light-dark box) or depression/anhedonia (sucrose preference) at this relatively young age. These neurobehavioral

  8. [Effects of electroacupuncture on hippocampal nNOS expression in rats of post-traumatic stress disorder model].

    Science.gov (United States)

    Hou, Liang-Qin; Liu, Song; Xiong, Ke-Ren

    2013-07-01

    To explore the mechanism of electroacupuncture (EA) in the treatment of post-traumatic stress disorder (PTSD). Thirty male Sprague-Dawley rats were randomly divided into a normal group, a model group and an electroacupuncture group. The single prolonged stress (SPS) method was used to set up the PTSD models in latter two groups. After SPS Stimulation, EA group was treated with 2Hz electroacupuncture at Baihui (GV 20) and Zusanli (ST 36) for 30 min, once a day for a week. Reverse transcriptase polymerase chain reaction (RT-PCR) and immuno-histochemistry were used to detect the mRNA and protein expression of nNOS in the hippocampus of rats in the each group. (1) The nNOS mRNA expression in hippocampus in model group was higher than that in normal group (P electroacupuncture treatment, its expression in EA group was lower significantly than that in model group (P Electroacupuncture play a down-regulation effects in the hippocampal nNOS expression, which may be one mechanism of electroacupuncture for treatment of PTSD.

  9. Reduced emotional and corticosterone responses to stress in μ-opioid receptor knockout mice

    Science.gov (United States)

    Ide, Soichiro; Sora, Ichiro; Ikeda, Kazutaka; Minami, Masabumi; Uhl, George R.; Ishihara, Kumatoshi

    2014-01-01

    The detailed mechanisms of emotional modulation in the nervous system by opioids remain to be elucidated, although the opioid system is well known to play important roles in the mechanisms of analgesia and drug dependence. In the present study, we conducted behavioral tests of anxiety and depression and measured corticosterone concentrations in both male and female μ-opioid receptor knockout (MOP-KO) mice to reveal the involvement of μ-opioid receptors in stress-induced emotional responses. MOP-KO mice entered more and spent more time in the open arms of the elevated plus maze compared with wild-type mice. MOP-KO mice also displayed significantly decreased immobility in a 15 min tail-suspension test compared with wild-type mice. Similarly, MOP-KO mice exhibited significantly decreased immobility on days 2, 3, and 4 in a 6 min forced swim test conducted for 5 consecutive days. The increase in plasma corticosterone concentration induced by tail-suspension, repeated forced swim, or restraint stress was reduced in MOP-KO mice compared with wild-type mice. Corticosterone levels were not different between wild-type and MOP-KO mice before stress exposure. In contrast, although female mice tended to exhibit fewer anxiety-like responses in the tail-suspension test in both genotypes, no significant gender differences were observed in stress-induced emotional responses. These results suggest that MOPs play an important facilitatory role in emotional responses to stress, including anxiety- and depression-like behavior and corticosterone levels. PMID:19596019

  10. A conditioned aversion study of sucrose and SC45647 taste in TRPM5 knockout mice.

    Science.gov (United States)

    Eddy, Meghan C; Eschle, Benjamin K; Peterson, Darlene; Lauras, Nathan; Margolskee, Robert F; Delay, Eugene R

    2012-06-01

    Previously, published studies have reported mixed results regarding the role of the TRPM5 cation channel in signaling sweet taste by taste sensory cells. Some studies have reported a complete loss of sweet taste preference in TRPM5 knockout (KO) mice, whereas others have reported only a partial loss of sweet taste preference. This study reports the results of conditioned aversion studies designed to motivate wild-type (WT) and KO mice to respond to sweet substances. In conditioned taste aversion experiments, WT mice showed nearly complete LiCl-induced response suppression to sucrose and SC45647. In contrast, TRPM5 KO mice showed a much smaller conditioned aversion to either sweet substance, suggesting a compromised, but not absent, ability to detect sweet taste. A subsequent conditioned flavor aversion experiment was conducted to determine if TRPM5 KO mice were impaired in their ability to learn a conditioned aversion. In this experiment, KO and WT mice were conditioned to a mixture of SC45647 and amyl acetate (an odor cue). Although WT mice avoided both components of the stimulus mixture, they avoided SC45647 more than the odor cue. The KO mice also avoided both stimuli, but they avoided the odor component more than SC45647, suggesting that while the KO mice are capable of learning an aversion, to them the odor cue was more salient than the taste cue. Collectively, these findings suggest the TRPM5 KO mice have some residual ability to detect SC45647 and sucrose, and, like bitter, there may be a TRPM5-independent transduction pathway for detecting these substances.

  11. Brain GLUT4 Knockout Mice Have Impaired Glucose Tolerance, Decreased Insulin Sensitivity, and Impaired Hypoglycemic Counterregulation

    Science.gov (United States)

    Reno, Candace M.; Puente, Erwin C.; Sheng, Zhenyu; Daphna-Iken, Dorit; Bree, Adam J.; Routh, Vanessa H.; Kahn, Barbara B.

    2017-01-01

    GLUT4 in muscle and adipose tissue is important in maintaining glucose homeostasis. However, the role of insulin-responsive GLUT4 in the central nervous system has not been well characterized. To assess its importance, a selective knockout of brain GLUT4 (BG4KO) was generated by crossing Nestin-Cre mice with GLUT4-floxed mice. BG4KO mice had a 99% reduction in GLUT4 protein expression throughout the brain. Despite normal feeding and fasting glycemia, BG4KO mice were glucose intolerant, demonstrated hepatic insulin resistance, and had reduced glucose uptake in the brain. In response to hypoglycemia, BG4KO mice had impaired glucose sensing, noted by impaired epinephrine and glucagon responses and impaired c-fos activation in the hypothalamic paraventricular nucleus. Moreover, in vitro glucose sensing of glucose-inhibitory neurons from the ventromedial hypothalamus was impaired in BG4KO mice. In summary, BG4KO mice are glucose intolerant, insulin resistant, and have impaired glucose sensing, indicating a critical role for brain GLUT4 in sensing and responding to changes in blood glucose. PMID:27797912

  12. Western Diet-Induced Dysbiosis in Farnesoid X Receptor Knockout Mice Causes Persistent Hepatic Inflammation after Antibiotic Treatment.

    Science.gov (United States)

    Jena, Prasant K; Sheng, Lili; Liu, Hui-Xin; Kalanetra, Karen M; Mirsoian, Annie; Murphy, William J; French, Samuel W; Krishnan, Viswanathan V; Mills, David A; Wan, Yu-Jui Yvonne

    2017-08-01

    Patients who have liver cirrhosis and liver cancer also have reduced farnesoid X receptor (FXR). The current study analyzes the effect of diet through microbiota that affect hepatic inflammation in FXR knockout (KO) mice. Wild-type and FXR KO mice were on a control (CD) or Western diet (WD) for 10 months. In addition, both CD- and WD-fed FXR KO male mice, which had hepatic lymphocyte and neutrophil infiltration, were treated by vancomycin, polymyxin B, and Abx (ampicillin, neomycin, metronidazole, and vancomycin). Mice were subjected to morphological analysis as well as gut microbiota and bile acid profiling. Male WD-fed FXR KO mice had the most severe steatohepatitis. FXR KO also had reduced Firmicutes and increased Proteobacteria, which could be reversed by Abx. In addition, Abx eliminated hepatic neutrophils and lymphocytes in CD-fed, but not WD-fed, FXR KO mice. Proteobacteria and Bacteroidetes persisted in WD-fed FXR KO mice even after Abx treatment. Only polymyxin B could reduce hepatic lymphocytes in WD-fed FXR KO mice. The reduced hepatic inflammation by antibiotics was accompanied by decreased free and conjugated secondary bile acids as well as changes in gut microbiota. Our data revealed that Lactococcus, Lactobacillus, and Coprococcus protect the liver from inflammation. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  13. Large-conductance Ca2+-activated K+ channel β1-subunit knockout mice are not hypertensive

    Science.gov (United States)

    Garver, Hannah; Galligan, James J.; Fink, Gregory D.

    2011-01-01

    Large-conductance Ca2+-activated K+ (BK) channels are composed of pore-forming α-subunits and accessory β1-subunits that modulate Ca2+ sensitivity. BK channels regulate arterial myogenic tone and renal Na+ clearance/K+ reabsorption. Previous studies using indirect or short-term blood pressure measurements found that BK channel β1-subunit knockout (BK β1-KO) mice were hypertensive. We evaluated 24-h mean arterial pressure (MAP) and heart rate in BK β1-KO mice using radiotelemetry. BK β1-KO mice did not have a higher 24-h average MAP when compared with wild-type (WT) mice, although MAP was ∼10 mmHg higher at night. The dose-dependent peak declines in MAP by nifedipine were only slightly larger in BK β1-KO mice. In BK β1-KO mice, giving 1% NaCl to mice to drink for 7 days caused a transient (5 days) elevation of MAP (∼5 mmHg); MAP returned to pre-saline levels by day 6. BK β1-KO mesenteric arteries in vitro demonstrated diminished contractile responses to paxilline, increased reactivity to Bay K 8644 and norepinephrine (NE), and maintained relaxation to isoproterenol. Paxilline and Bay K 8644 did not constrict WT or BK β1-KO mesenteric veins (MV). BK β1-subunits are not expressed in MV. The results indicate that BK β1-KO mice are not hypertensive on normal or high-salt intake. BK channel deficiency increases arterial reactivity to NE and L-type Ca2+ channel function in vitro, but the L-type Ca2+ channel modulation of MAP is not altered in BK β1-KO mice. BK and L-type Ca2+ channels do not modulate murine venous tone. It appears that selective loss of BK channel function in arteries only is not sufficient to cause sustained hypertension. PMID:21131476

  14. Fatty acid desaturase 1 knockout mice are lean with improved glycemic control and decreased development of atheromatous plaque

    Science.gov (United States)

    Powell, David R; Gay, Jason P; Smith, Melinda; Wilganowski, Nathaniel; Harris, Angela; Holland, Autumn; Reyes, Maricela; Kirkham, Laura; Kirkpatrick, Laura L; Zambrowicz, Brian; Hansen, Gwenn; Platt, Kenneth A; van Sligtenhorst, Isaac; Ding, Zhi-Ming; Desai, Urvi

    2016-01-01

    Delta-5 desaturase (D5D) and delta-6 desaturase (D6D), encoded by fatty acid desaturase 1 (FADS1) and FADS2 genes, respectively, are enzymes in the synthetic pathways for ω3, ω6, and ω9 polyunsaturated fatty acids (PUFAs). Although PUFAs appear to be involved in mammalian metabolic pathways, the physiologic effect of isolated D5D deficiency on these pathways is unclear. After generating >4,650 knockouts (KOs) of independent mouse genes and analyzing them in our high-throughput phenotypic screen, we found that Fads1 KO mice were among the leanest of 3,651 chow-fed KO lines analyzed for body composition and were among the most glucose tolerant of 2,489 high-fat-diet-fed KO lines analyzed by oral glucose tolerance test. In confirmatory studies, chow- or high-fat-diet-fed Fads1 KO mice were leaner than wild-type (WT) littermates; when data from multiple cohorts of adult mice were combined, body fat was 38% and 31% lower in Fads1 male and female KO mice, respectively. Fads1 KO mice also had lower glucose and insulin excursions during oral glucose tolerance tests along with lower fasting glucose, insulin, triglyceride, and total cholesterol levels. In additional studies using a vascular injury model, Fads1 KO mice had significantly decreased femoral artery intima/media ratios consistent with a decreased inflammatory response in their arterial wall. Based on this result, we bred Fads1 KO and WT mice onto an ApoE KO background and fed them a Western diet for 14 weeks; in this atherogenic environment, aortic trees of Fads1 KO mice had 40% less atheromatous plaque compared to WT littermates. Importantly, PUFA levels measured in brain and liver phospholipid fractions of Fads1 KO mice were consistent with decreased D5D activity and normal D6D activity. The beneficial metabolic phenotype demonstrated in Fads1 KO mice suggests that selective D5D inhibitors may be useful in the treatment of human obesity, diabetes, and atherosclerotic cardiovascular disease. PMID:27382320

  15. Differential Impact of miR-21 on Pain and Associated Affective and Cognitive Behavior after Spared Nerve Injury in B7-H1 ko Mouse

    Directory of Open Access Journals (Sweden)

    Franziska Karl

    2017-07-01

    Full Text Available MicroRNAs (miRNAs are increasingly recognized as regulators of immune and neuronal gene expression and are potential master switches in neuropathic pain pathophysiology. miR-21 is a promising candidate that may link the immune and the pain system. To investigate the pathophysiological role of miR-21 in neuropathic pain, we assessed mice deficient of B7 homolog 1 (B7-H1, a major inhibitor of inflammatory responses. In previous studies, an upregulation of miR-21 had been shown in mouse lymphocytes. Young (8 weeks, middle-aged (6 months, and old (12 months B7-H1 ko mice and wildtype littermates (WT received a spared nerve injury (SNI. We assessed thermal withdrawal latencies and mechanical withdrawal thresholds. Further, we performed tests for anxiety-like and cognitive behavior. Quantitative real time PCR was used to determine miR-21 relative expression in peripheral nerves, and dorsal root ganglia (DRG at distinct time points after SNI. We found mechanical hyposensitivity with increasing age of naïve B7-H1 ko mice. Young and middle-aged B7-H1 ko mice were more sensitive to mechanical stimuli compared to WT mice (young: p < 0.01, middle-aged: p < 0.05. Both genotypes developed mechanical and heat hypersensitivity (p < 0.05 after SNI, without intergroup differences. No relevant differences were found after SNI in three tests for anxiety like behavior in B7-H1 ko and WT mice. Also, SNI had no effect on cognition. B7-H1 ko and WT mice showed a higher miR-21 expression (p < 0.05 and invasion of macrophages and T cells in the injured nerve 7 days after SNI without intergroup differences. Our study reveals that increased miR-21 expression in peripheral nerves after SNI is associated with reduced mechanical and heat withdrawal thresholds. These results point to a role of miR-21 in the pathophysiology of neuropathic pain, while affective behavior and cognition seem to be spared. Contrary to expectations, B7-H1 ko mice did not show higher miR-21

  16. Fus1 KO mouse as a model of oxidative stress-mediated sporadic Alzheimer’s disease: circadian disruption and long-term spatial and olfactory memory impairments.

    Directory of Open Access Journals (Sweden)

    Guillermo Coronas-Samano

    2016-11-01

    Full Text Available Insufficient advances in the development of effective therapeutic treatments of sporadic Alzheimer's Disease (sAD to date are largely due to the lack of sAD-relevant animal models. While the vast majority of models do recapitulate AD's hallmarks of plaques and tangles by virtue of tau and/or beta amyloid overexpression, these models do not reflect the fact that in sAD (unlike familial AD these genes are not risk factors per se and that other mechanisms like oxidative stress, metabolic dysregulation and inflammation play key roles in AD etiology. Here we characterize and propose the Fus1 KO mice that lack a mitochondrial protein Fus1/Tusc2 as a new sAD model. To establish sAD relevance, we assessed sAD related deficits in Fus1 KO and WT adult mice of 4-5 months old, the equivalent human age when the earliest cognitive and olfactory sAD symptoms arise. Fus1 KO mice showed oxidative stress (increased levels of ROS, decreased levels of PRDX1, disruption of metabolic homeostasis (decreased levels of ACC2, increased phosphorylation of AMPK, autophagy (decreased levels of LC3-II, PKC (decreased levels of RACK1 and calcium signaling (decreased levels of Calb2 in the olfactory bulb and/or hippocampus. Mice were behaviorally tested using objective and accurate video tracking (Noldus, in which Fus1 KO mice showed clear deficits in olfactory memory (decreased habituation/cross-habituation in the short and long term, olfactory guided navigation memory (inability to reduce their latency to find the hidden cookie, spatial memory (learning impairments on finding the platform in the Morris water maze and showed more sleep time during the diurnal cycle. Fus1 KO mice did not show clear deficits in olfactory perception (cross-habituation, association memory (passive avoidance or in species-typical behavior (nest building and no increased anxiety (open field, light-dark box or depression/anhedonia (sucrose preference at this relatively young age. These

  17. Angiotensin-(1-7)/Mas axis modulates fear memory and extinction in mice.

    Science.gov (United States)

    Lazaroni, Thiago Luiz do Nascimento; Bastos, Cristiane Perácio; Moraes, Márcio Flávio Dutra; Santos, Robson Souza; Pereira, Grace Schenatto

    2016-01-01

    Inappropriate defense-alerting reaction to fear is a common feature of neuropsychiatric diseases. Therefore, impairments in brain circuits, as well as in molecular pathways underlying the neurovegetative adjustments to fear may play an essential role on developing neuropsychiatric disorders. Here we tested the hypothesis that interfering with angiotensin-(1-7) [Ang-(1-7)]/Mas receptor axis homeostasis, which appears to be essential to arterial pressure control, would affect fear memory and extinction. Mas knockout (MasKO) mice, in FVB/N background, showed normal cued fear memory and extinction, but increased freezing in response to context. Next, as FVB/N has poor performance in contextual fear memory, we tested MasKO in mixed 129xC57BL/6 background. MasKO mice behaved similarly to wild-type (WT), but memory extinction was slower in contextual fear conditioning to a weak protocol (1CS/US). In addition, delayed extinction in MasKO mice was even more pronounced after a stronger protocol (3CS/US). We showed previously that Angiotensin II receptor AT1 antagonist, losantan, rescued object recognition memory deficit in MasKO mice. Here, losartan was also effective. Memory extinction was accelerated in MasKO mice after treatment with losartan. In conclusion, we showed for the first time that Ang-(1-7)/Mas axis may modulate fear memory extinction. Furthermore, we suggest MasKO mice as an animal model to study post-traumatic stress disorder (PTSD). Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Mice Deficient in NF-κB p50 and p52 or RANK Have Defective Growth Plate Formation and Post-natal Dwarfism

    OpenAIRE

    Xing, Lianping; Chen, Di; Boyce, Brendan F.

    2013-01-01

    NF-κBp50/p52 double knockout (dKO) and RANK KO mice have no osteoclasts and develop severe osteopetrosis associated with dwarfism. In contrast, Op/Op mice, which form few osteoclasts, and Src KO mice, which have osteoclasts with defective resorptive function, are osteopetrotic, but they are not dwarfed. Here, we compared the morphologic features of long bones from p50/p52 dKO, RANK KO, Op/Op and Src KO mice to attempt to explain the differences in their long bone lengths. We found that growth...

  19. Trpc2-deficient lactating mice exhibit altered brain and behavioral responses to bedding stimuli.

    Science.gov (United States)

    Hasen, Nina S; Gammie, Stephen C

    2011-03-01

    The trpc2 gene encodes an ion channel involved in pheromonal detection and is found in the vomeronasal organ. In tprc2(-/-) knockout (KO) mice, maternal aggression (offspring protection) is impaired and brain Fos expression in females in response to a male are reduced. Here we examine in lactating wild-type (WT) and KO mice behavioral and brain responses to different olfactory/pheromonal cues. Consistent with previous studies, KO dams exhibited decreased maternal aggression and nest building, but we also identified deficits in nighttime nursing and increases in pup weight. When exposed to the bedding tests, WT dams typically ignored clean bedding, but buried male-soiled bedding from unfamiliar males. In contrast, KO dams buried both clean and soiled bedding. Differences in brain Fos expression were found between WT and KO mice in response to either no bedding, clean bedding, or soiled bedding. In the accessory olfactory bulb, a site of pheromonal signal processing, KO mice showed suppressed Fos activation in the anterior mitral layer relative to WT mice in response to clean and soiled bedding. However, in the medial and basolateral amygdala, KO mice showed a robust Fos response to bedding, suggesting that regions of the amygdala canonically associated with pheromonal sensing can be active in the brains of KO mice, despite compromised signaling from the vomeronasal organ. Together, these results provide further insights into the complex ways by which pheromonal signaling regulates the brain and behavior of the maternal female. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Comprehensive behavioral analysis of pituitary adenylate cyclase-activating polypeptide (PACAP knockout mice

    Directory of Open Access Journals (Sweden)

    Satoko eHattori

    2012-10-01

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP is a neuropeptide acting as a neurotransmitter, neuromodulator, or neurotrophic factor. PACAP is widely expressed throughout the brain and exerts its functions through the PACAP-specific receptor (PAC1. Recent studies reveal that genetic variants of the PACAP and PAC1 genes are associated with mental disorders, and several behavioral abnormalities of PACAP knockout (KO mice are reported. However, an insufficient number of backcrosses was made using PACAP KO mice on the C57BL/6J background due to their postnatal mortality. To elucidate the effects of PACAP on neuropsychiatric function, the PACAP gene was knocked out in F1 hybrid mice (C57BL/6J x 129SvEv for appropriate control of the genetic background. The PACAP KO mice were then subjected to a behavioral test battery. PACAP deficiency had no significant effects on neurological screen. As shown previously, the mice exhibited significantly increased locomotor activity in a novel environment and abnormal anxiety-like behavior, while no obvious differences between genotypes were shown in home cage activity. In contrast to previous reports, the PACAP KO mice showed normal prepulse inhibition and slightly decreased depression-like behavior. Previous study demonstrates that the social interaction in a resident-intruder test was decreased in PACAP KO mice. On the other hand, we showed that PACAP KO mice exhibited increased social interaction in Crawley’s three-chamber social approach test, although PACAP KO had no significant impact on social interaction in a home cage. PACAP KO mice also exhibited mild performance deficit in working memory in an eight-arm radial maze and the T-maze, while they did not show any significant abnormalities in the left-right discrimination task in the T-maze. These results suggest that PACAP has an important role in the regulation of locomotor activity, social behavior, anxiety-like behavior and, potentially

  1. Dopamine D5 receptor modulates male and female sexual behavior in mice.

    Science.gov (United States)

    Kudwa, A E; Dominguez-Salazar, E; Cabrera, D M; Sibley, D R; Rissman, E F

    2005-07-01

    Dopamine exerts its actions through at least five receptor (DAR) isoforms. In female rats, D5 DAR may be involved in expression of sexual behavior. We used a D5 knockout (D5KO) mouse to assess the role of D5 DAR in mouse sexual behavior. Both sexes of D5KO mice are fertile and exhibit only minor disruptions in exploratory locomotion, startle, and prepulse inhibition responses. This study was conducted to characterize the sexual behavior of male and female D5KO mice relative to their WT littermates. Female WT and D5KO littermates were ovariectomized and given a series of sexual behavior tests after treatment with estradiol benzoate (EB) and progesterone (P). Once sexual performance was optimal the dopamine agonist, apomorphine (APO), was substituted for P. Male mice were observed in pair- and trio- sexual behavior tests. To assess whether the D5 DAR is involved in rewarding aspects of sexual behavior, WT and D5KO male mice were tested for conditioned place preference. Both WT and D5KO females can display receptivity after treatment with EB and P, but APO was only able to facilitate receptivity in EB-primed WT, not in D5KO, mice. Male D5KO mice display normal masculine sexual behavior in mating tests. In conditioned preference tests, WT males formed a conditioned preference for context associated with either intromissions alone or ejaculation as the unconditioned stimulus. In contrast, D5KO males only showed a place preference when ejaculation was paired with the context. In females, the D5 DAR is essential for the actions of dopamine on receptivity. In males, D5 DAR influences rewarding aspects of intromissions. Taken together, the work suggests that the D5 receptor mediates dopamine's action on sexual behavior in both sexes, perhaps via a reward pathway.

  2. Generation and characterization of mice carrying a conditional allele of the Wwox tumor suppressor gene.

    Directory of Open Access Journals (Sweden)

    John H Ludes-Meyers

    2009-11-01

    Full Text Available WWOX, the gene that spans the second most common human chromosomal fragile site, FRA16D, is inactivated in multiple human cancers and behaves as a suppressor of tumor growth. Since we are interested in understanding WWOX function in both normal and cancer tissues we generated mice harboring a conditional Wwox allele by flanking Exon 1 of the Wwox gene with LoxP sites. Wwox knockout (KO mice were developed by breeding with transgenic mice carrying the Cre-recombinase gene under the control of the adenovirus EIIA promoter. We found that Wwox KO mice suffered from severe metabolic defect(s resulting in growth retardation and all mice died by 3 wk of age. All Wwox KO mice displayed significant hypocapnia suggesting a state of metabolic acidosis. This finding and the known high expression of Wwox in kidney tubules suggest a role for Wwox in acid/base balance. Importantly, Wwox KO mice displayed histopathological and hematological signs of impaired hematopoiesis, leukopenia, and splenic atrophy. Impaired hematopoiesis can also be a contributing factor to metabolic acidosis and death. Hypoglycemia and hypocalcemia was also observed affecting the KO mice. In addition, bone metabolic defects were evident in Wwox KO mice. Bones were smaller and thinner having reduced bone volume as a consequence of a defect in mineralization. No evidence of spontaneous neoplasia was observed in Wwox KO mice. We have generated a new mouse model to inactivate the Wwox tumor suppressor gene conditionally. This will greatly facilitate the functional analysis of Wwox in adult mice and will allow investigating neoplastic transformation in specific target tissues.

  3. Mice with a targeted deletion of the type 2 deiodinase are insulin resistant and susceptible to diet induced obesity.

    Directory of Open Access Journals (Sweden)

    Alessandro Marsili

    Full Text Available The type 2 iodothyronine deiodinase (D2 converts the pro-hormone thyroxine into T3 within target tissues. D2 is essential for a full thermogenic response of brown adipose tissue (BAT, and mice with a disrupted Dio2 gene (D2KO have an impaired response to cold. BAT is also activated by overfeeding.After 6-weeks of HFD feeding D2KO mice gained 5.6% more body weight and had 28% more adipose tissue. Oxygen consumption (V0(2 was not different between genotypes, but D2KO mice had an increased respiratory exchange ratio (RER, suggesting preferential use of carbohydrates. Consistent with this, serum free fatty acids and β-hydroxybutyrate were lower in D2KO mice on a HFD, while hepatic triglycerides were increased and glycogen content decreased. Neither genotype showed glucose intolerance, but D2KO mice had significantly higher insulin levels during GTT independent of diet. Accordingly, during ITT testing D2KO mice had a significantly reduced glucose uptake, consistent with insulin resistance. Gene expression levels in liver, muscle, and brown and white adipose tissue showed no differences that could account for the increased weight gain in D2KO mice. However, D2KO mice have higher PEPCK mRNA in liver suggesting increased gluconeogenesis, which could also contribute to their apparent insulin resistance.We conclude that the loss of the Dio2 gene has significant metabolic consequences. D2KO mice gain more weight on a HFD, suggesting a role for D2 in protection from diet-induced obesity. Further, D2KO mice appear to have a greater reliance on carbohydrates as a fuel source, and limited ability to mobilize and to burn fat. This results in increased fat storage in adipose tissue, hepatic steatosis, and depletion of liver glycogen in spite of increased gluconeogenesis. D2KO mice are also less responsive to insulin, independent of diet-induced obesity.

  4. Experimental Demyelination and Axonal Loss Are Reduced in MicroRNA-146a Deficient Mice.

    Science.gov (United States)

    Martin, Nellie A; Molnar, Viktor; Szilagyi, Gabor T; Elkjaer, Maria L; Nawrocki, Arkadiusz; Okarmus, Justyna; Wlodarczyk, Agnieszka; Thygesen, Eva K; Palkovits, Miklos; Gallyas, Ferenc; Larsen, Martin R; Lassmann, Hans; Benedikz, Eirikur; Owens, Trevor; Svenningsen, Asa F; Illes, Zsolt

    2018-01-01

    The cuprizone (CPZ) model of multiple sclerosis (MS) was used to identify microRNAs (miRNAs) related to in vivo de- and remyelination. We further investigated the role of miR-146a in miR-146a-deficient (KO) mice: this miRNA is differentially expressed in MS lesions and promotes differentiation of oligodendrocyte precursor cells (OPCs) during remyelination, but its role has not been examined during demyelination. MicroRNAs were examined by Agilent Mouse miRNA Microarray in the corpus callosum during CPZ-induced demyelination and remyelination. Demyelination, axonal loss, changes in number of oligodendrocytes, OPCs, and macrophages/microglia was compared by histology/immunohistochemistry between KO and WT mice. Differential expression of target genes and proteins of miR-146a was analyzed in the transcriptome (4 × 44K Agilent Whole Mouse Genome Microarray) and proteome (liquid chromatography tandem mass spectrometry) of CPZ-induced de- and remyelination in WT mice. Levels of proinflammatory molecules in the corpus callosum were compared in WT versus KO mice by Meso Scale Discovery multiplex protein analysis. miR-146a was increasingly upregulated during CPZ-induced de- and remyelination. The absence of miR-146a in KO mice protected against demyelination, axonal loss, body weight loss, and atrophy of thymus and spleen. The number of CNP + oligodendrocytes was increased during demyelination in the miR-146a KO mice, while there was a trend of increased number of NG2 + OPCs in the WT mice. miR-146a target genes, SNAP25 and SMAD4, were downregulated in the proteome of demyelinating corpus callosum in WT mice. Higher levels of SNAP25 were measured by ELISA in the corpus callosum of miR-146a KO mice, but there was no difference between KO and WT mice during demyelination. Multiplex protein analysis of the corpus callosum lysate revealed upregulated TNF-RI, TNF-RII, and CCL2 in the WT mice in contrast to KO mice. The number of Mac3 + and Iba1 + macrophages/microglia was

  5. Loss of PDZK1 causes coronary artery occlusion and myocardial infarction in Paigen diet-fed apolipoprotein E deficient mice.

    Directory of Open Access Journals (Sweden)

    Ayce Yesilaltay

    2009-12-01

    Full Text Available PDZK1 is a four PDZ-domain containing protein that binds to the carboxy terminus of the HDL receptor, scavenger receptor class B type I (SR-BI, and regulates its expression, localization and function in a tissue-specific manner. PDZK1 knockout (KO mice are characterized by a marked reduction of SR-BI protein expression ( approximately 95% in the liver (lesser or no reduction in other organs with a concomitant 1.7 fold increase in plasma cholesterol. PDZK1 has been shown to be atheroprotective using the high fat/high cholesterol ('Western' diet-fed murine apolipoprotein E (apoE KO model of atherosclerosis, presumably because of its role in promoting reverse cholesterol transport via SR-BI.Here, we have examined the effects of PDZK1 deficiency in apoE KO mice fed with the atherogenic 'Paigen' diet for three months. Relative to apoE KO, PDZK1/apoE double KO (dKO mice showed increased plasma lipids (33% increase in total cholesterol; 49 % increase in unesterified cholesterol; and 36% increase in phospholipids and a 26% increase in aortic root lesions. Compared to apoE KO, dKO mice exhibited substantial occlusive coronary artery disease: 375% increase in severe occlusions. Myocardial infarctions, not observed in apoE KO mice (although occasional minimal fibrosis was noted, were seen in 7 of 8 dKO mice, resulting in 12 times greater area of fibrosis in dKO cardiac muscle.These results show that Paigen-diet fed PDZK1/apoE dKO mice represent a new animal model useful for studying coronary heart disease and suggest that PDZK1 may represent a valuable target for therapeutic intervention.

  6. The metabotropic glutamate 5 receptor modulates extinction and reinstatement of methamphetamine-seeking in mice.

    Directory of Open Access Journals (Sweden)

    Rose Chesworth

    Full Text Available Methamphetamine (METH is a highly addictive psychostimulant with no therapeutics registered to assist addicts in discontinuing use. Glutamatergic dysfunction has been implicated in the development and maintenance of addiction. We sought to assess the involvement of the metabotropic glutamate 5 receptor (mGlu5 in behaviours relevant to METH addiction because this receptor has been implicated in the actions of other drugs of abuse, including alcohol, cocaine and opiates. mGlu5 knockout (KO mice were tested in intravenous self-administration, conditioned place preference and locomotor sensitization. Self-administration of sucrose was used to assess the response of KO mice to a natural reward. Acquisition and maintenance of self-administration, as well as the motivation to self-administer METH was intact in mGlu5 KO mice. Importantly, mGlu5 KO mice required more extinction sessions to extinguish the operant response for METH, and exhibited an enhanced propensity to reinstate operant responding following exposure to drug-associated cues. This phenotype was not present when KO mice were tested in an equivalent paradigm assessing operant responding for sucrose. Development of conditioned place preference and locomotor sensitization were intact in KO mice; however, conditioned hyperactivity to the context previously paired with drug was elevated in KO mice. These data demonstrate a role for mGlu5 in the extinction and reinstatement of METH-seeking, and suggests a role for mGlu5 in regulating contextual salience.

  7. Mice Deficient in NF-κB p50 and p52 or RANK Have Defective Growth Plate Formation and Post-natal Dwarfism.

    Science.gov (United States)

    Xing, Lianping; Chen, Di; Boyce, Brendan F

    2013-12-01

    NF-κBp50/p52 double knockout (dKO) and RANK KO mice have no osteoclasts and develop severe osteopetrosis associated with dwarfism. In contrast, Op/Op mice, which form few osteoclasts, and Src KO mice, which have osteoclasts with defective resorptive function, are osteopetrotic, but they are not dwarfed. Here, we compared the morphologic features of long bones from p50/p52 dKO, RANK KO, Op/Op and Src KO mice to attempt to explain the differences in their long bone lengths. We found that growth plates in p50/p52 dKO and RANK KO mice are significantly thicker than those in WT mice due to a 2-3-fold increase in the hypertrophic chondrocyte zone associated with normal a proliferative chondrocyte zone. This growth plate abnormality disappears when animals become older, but their dwarfism persists. Op/Op or Src KO mice have relatively normal growth plate morphology. In-situ hybridization study of long bones from p50/p52 dKO mice showed marked thickening of the growth plate region containing type 10 collagen-expressing chondrocytes. Treatment of micro-mass chondrocyte cultures with RANKL did not affect expression levels of type 2 collagen and Sox9, markers for proliferative chondrocytes, but RANKL reduced the number of type 10 collagen-expressing hypertrophic chondrocytes. Thus, RANK/NF-κB signaling plays a regulatory role in post-natal endochondral ossification that maintains hypertrophic conversion and prevents dwarfism in normal mice.

  8. Brain GLUT4 Knockout Mice Have Impaired Glucose Tolerance, Decreased Insulin Sensitivity, and Impaired Hypoglycemic Counterregulation.

    Science.gov (United States)

    Reno, Candace M; Puente, Erwin C; Sheng, Zhenyu; Daphna-Iken, Dorit; Bree, Adam J; Routh, Vanessa H; Kahn, Barbara B; Fisher, Simon J

    2017-03-01

    GLUT4 in muscle and adipose tissue is important in maintaining glucose homeostasis. However, the role of insulin-responsive GLUT4 in the central nervous system has not been well characterized. To assess its importance, a selective knockout of brain GLUT4 (BG4KO) was generated by crossing Nestin-Cre mice with GLUT4-floxed mice. BG4KO mice had a 99% reduction in GLUT4 protein expression throughout the brain. Despite normal feeding and fasting glycemia, BG4KO mice were glucose intolerant, demonstrated hepatic insulin resistance, and had reduced glucose uptake in the brain. In response to hypoglycemia, BG4KO mice had impaired glucose sensing, noted by impaired epinephrine and glucagon responses and impaired c-fos activation in the hypothalamic paraventricular nucleus. Moreover, in vitro glucose sensing of glucose-inhibitory neurons from the ventromedial hypothalamus was impaired in BG4KO mice. In summary, BG4KO mice are glucose intolerant, insulin resistant, and have impaired glucose sensing, indicating a critical role for brain GLUT4 in sensing and responding to changes in blood glucose. © 2017 by the American Diabetes Association.

  9. Ethanol self-administration in serotonin transporter knockout mice: unconstrained demand and elasticity.

    Science.gov (United States)

    Lamb, R J; Daws, L C

    2013-10-01

    Low serotonin function is associated with alcoholism, leading to speculation that increasing serotonin function could decrease ethanol consumption. Mice with one or two deletions of the serotonin transporter (SERT) gene have increased extracellular serotonin. To examine the relationship between SERT genotype and motivation for alcohol, we compared ethanol self-administration in mice with zero (knockout, KO), one (HET) or two copies (WT) of the SERT gene. All three genotypes learned to self-administer ethanol. The SSRI, fluvoxamine, decreased responding for ethanol in the HET and WT, but not the KO mice. When tested under a progressive ratio schedule, KO mice had lower breakpoints than HET or WT. As work requirements were increased across sessions, behavioral economic analysis of ethanol self-administration indicated that the decreased breakpoint in KO as compared to HET or WT mice was a result of lower levels of unconstrained demand, rather than differences in elasticity, i.e. the proportional decreases in ethanol earned with increasing work requirements were similar across genotypes. The difference in unconstrained demand was unlikely to result from motor or general motivational factors, as both WT and KO mice responded at high levels for a 50% condensed milk solution. As elasticity is hypothesized to measure essential value, these results indicate that KO value ethanol similarly to WT or HET mice despite having lower break points for ethanol. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  10. Transthyretin knockout mice display decreased susceptibility to AMPA-induced neurodegeneration

    DEFF Research Database (Denmark)

    Nunes, Ana Filipa; Montero, Maria; Franquinho, Filipa

    2009-01-01

    Transthyretin (TTR) has been regarded as a neuroprotective protein given that TTR knockout (KO) mice display increased susceptibility for amyloid beta deposition and memory deficits during aging. In parallel, TTR KO mice have increased levels of neuropeptide Y (NPY), which promotes neuroprotectio...

  11. Germinated Brown Rice Attenuates Atherosclerosis and Vascular Inflammation in Low-Density Lipoprotein Receptor-Knockout Mice.

    Science.gov (United States)

    Zhao, Ruozhi; Ghazzawi, Nora; Wu, Jiansu; Le, Khuong; Li, Chunyang; Moghadasian, Mohammed H; Siow, Yaw L; Apea-Bah, Franklin B; Beta, Trust; Yin, Zhengfeng; Shen, Garry X

    2018-05-02

    The present study investigates the impact of germinated brown rice (GBR) on atherosclerosis and the underlying mechanism in low-density lipoprotein receptor-knockout (LDLr-KO) mice. The intensity of atherosclerosis in aortas of LDLr-KO mice receiving diet supplemented with 60% GBR (weight/weight) was significantly less than that in mice fed with 60% white rice (WR) or control diet ( p mice fed with WR diet was significantly more than that from mice receiving the control diet ( p mice in comparison to the WR diet ( p mice compared to WR. The anti-atherosclerotic effect of GBR in LDLr-KO mice at least in part results from its anti-inflammatory activity.

  12. DA Negatively Regulates IGF-I Actions Implicated in Cognitive Function via Interaction of PSD95 and nNOS in Minimal Hepatic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Saidan Ding

    2017-09-01

    Full Text Available Insulin-like growth factor I (IGF-I has been positively correlated with cognitive ability. Cognitive decline in minimal hepatic encephalopathy (MHE was shown to be induced by elevated intracranial dopamine (DA. The beneficial effect of IGF-I signaling in MHE remains unknown. In this study, we found that IGF-I content was reduced in MHE rats and that IGF-I administration mitigated cognitive decline of MHE rats. A protective effect of IGF-I on the DA-induced interaction between postsynaptic density protein 95 (PSD95 and neuronal nitric oxide synthase (nNOS was found in neurons. Ribosomal S6 protein kinase (RSK phosphorylated nNOS in response to IGF-I by recruiting extracellular signal-regulated kinase (ERK1/2. In turn, DA inactivated the ERK1/2/RSK pathway and stimulated the PSD95–nNOS interaction by downregulating IGF-I. Inhibition of the interaction between PSD95 and nNOS ameliorated DA-induced memory impairment. As DA induced deficits in the ERK1/2/RSK pathway and the interaction between PSD95 and nNOS in MHE brains, IGF-I administration exerted a protective effect via interruption of the interaction between PSD95 and nNOS. These results suggest that IGF-I antagonizes DA-induced cognitive loss by disrupting PSD95–nNOS interactions in MHE.

  13. Male mice with deleted Wolframin (Wfs1 gene have reduced fertility

    Directory of Open Access Journals (Sweden)

    Aunapuu Marina

    2009-08-01

    Full Text Available Abstract Background Wolfram Syndrome (WS is an autosomal recessive disorder characterised by non-autoimmune diabetes mellitus, optic atrophy, cranial diabetes insipidus and sensorineural deafness. Some reports have described hypogonadism in male WS patients. The aim of our study was to find out whether Wfs1 deficient (Wfs1KO male mice have reduced fertility and, if so, to examine possible causes. Methods Wfs1KO mice were generated by homologous recombination. Both Wfs1KO and wild type (wt male mice were mated with wt female mice. The number of litters and the number of pups were counted and pregnancy rates calculated. The motility and morphology of the sperm and the histology of testes were analysed. Serum testosterone and FSH concentrations were also measured. Results The pregnancy rate in wt females mated with Wfs1KO males was significantly lower than in the control group (15% vs. 32%; p Conclusion The impaired fertility of Wfs1KO male mice is most likely due to changes in sperm morphology and reduced number of spermatogenic cells. The exact mechanism through which the Wfs1 gene influences sperm morphology needs to be clarified in further studies.

  14. Sex differences in insulin resistance in GABAB1 knockout mice.

    Science.gov (United States)

    Bonaventura, M M; Rodriguez, D; Ferreira, M L; Crivello, M; Repetto, E M; Bettler, B; Libertun, C; Lux-Lantos, V A

    2013-02-27

    We have previously demonstrated that the absence of functional GABA B receptors (GABABRs) disturbs glucose homeostasis in GABAB1KO mice. The aim of this work was to extend our studies of these alterations in GABAB1KO mice and investigate the sexual differences therein. Male and female, GABAB1KO and WT mice were used. Glucose and insulin tolerance tests (GTT and ITT), and insulin and glucagon secretion tests (IST and GST) were performed. Blood glucose, serum insulin and hyperglycemic hormones were determined, and HOMA-IR calculated. Skeletal muscle insulin receptor β subunit (IRβ), insulin receptor substrates 1/2 (IRS1, IRS2) and hexokinase-II levels were determined by Western blot. Skeletal muscle insulin sensitivity was assessed by in vivo insulin-induced Akt phosphorylation (Western blot). Food intake and hypothalamic NPY mRNA expression (by qPCR) were also evaluated. Fasted insulin and HOMA-IR were augmented in GABAB1KO males, with no alterations in females. Areas under the curve (AUC) for GTT and ITT were increased in GABAB1KO mice of both genders, indicating compromised insulin sensitivity. No genotype differences were observed in IST, GST or in IRβ, IRS1, IRS2 and hexokinase-II expression. Akt activation was severely impaired in GABAB1KO males while no alterations were observed in females. GABAB1KO mice showed increased food intake and NPY expression. Glucose metabolism and energy balance disruptions were more pronounced in GABAB1KO males, which develop peripheral insulin resistance probably due to augmented insulin secretion. Metabolic alterations in females were milder and possibly due to previously described reproductive disorders, such as persistent estrus. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Cardiac and vascular changes in elderly atherosclerotic mice: the influence of gender

    Directory of Open Access Journals (Sweden)

    Pereira Thiago MC

    2010-08-01

    Full Text Available Abstract Background Although advanced age is considered a risk factor for several diseases, the impact of gender on age-associated cardiovascular diseases, such as atherosclerotic processes and valvular diseases, remains not completely clarified. The present study was designed to assess aortic valve morphology and function and vascular damage in elderly using the apolipoprotein E knockout (ApoE KO mouse. Our hypothesis was that advanced age-related cardiovascular changes are aggravated in atherosclerotic male mice. Methods The grade (0 to 4 of aortic regurgitation was evaluated through angiography. In addition, vascular lipid deposition and senescence were evaluated through histochemical analyses in aged male and female ApoE KO mice, and the results were compared to wild-type C57BL/6J (C57 mice. Results Aortic regurgitation was observed in 92% of the male ApoE KO mice and 100% of the male C57 mice. Comparatively, in age-matched female ApoE KO and C57 mice, aortic regurgitation was observed in a proportion of 58% and 53%, respectively. Histological analysis of the aorta showed an outward (positive remodeling in ApoE KO mice (female: 1.86 ± 0.15; male: 1.89 ± 0.68 using C57 groups as reference values. Histochemical evaluation of the aorta showed lipid deposition and vascular senescence only in the ApoE KO group, which were more pronounced in male mice. Conclusion The data show that male gender contributes to the progression of aortic regurgitation and that hypercholesterolemia and male gender additively contribute to the occurrence of lipid deposition and vascular senescence in elderly mice.

  16. Crucial role of alkaline sphingomyelinase in sphingomyelin digestion: a study on enzyme knockout mice

    DEFF Research Database (Denmark)

    Zhang, Yao; Cheng, Yajun; Hansen, Gert H

    2011-01-01

    ) and KO mice were fed ³H-palmitic acid labeled SM together with milk SM by gavage. The lipids in intestinal content, intestinal tissues, serum, and liver were analyzed by TLC. In KO mice, nondigested ³H-SM in the intestinal content increased by 6-fold and the formation of ³H-ceramide decreased markedly....... The KO mice also showed significantly decreased radioactivity in liver and serum. Furthermore, alkaline phosphatase activity in the mucosa was reduced by 50% and histological comparison of two female littermates preliminarily suggested mucosal hypertrophy in KO mice. This study provides definite proof...... for crucial roles of alk-SMase in SM digestion and points to possible roles in regulating mucosal growth and alkaline phosphatase function....

  17. Lacking Ketohexokinase-A Exacerbates Renal Injury in Streptozotocin-induced Diabetic Mice.

    Science.gov (United States)

    Doke, Tomohito; Ishimoto, Takuji; Hayasaki, Takahiro; Ikeda, Satsuki; Hasebe, Masako; Hirayama, Akiyoshi; Soga, Tomoyoshi; Kato, Noritoshi; Kosugi, Tomoki; Tsuboi, Naotake; Lanaspa, Miguel A; Johnson, Richard J; Kadomatsu, Kenji; Maruyama, Shoichi

    2018-03-28

    Ketohexokinase (KHK), a primary enzyme in fructose metabolism, has two isoforms, namely, KHK-A and KHK-C. Previously, we reported that renal injury was reduced in streptozotocin-induced diabetic mice which lacked both isoforms. Although both isoforms express in kidney, it has not been elucidated whether each isoform plays distinct roles in the development of diabetic kidney disease (DKD). The aim of the study is to elucidate the role of KHK-A for DKD progression. Diabetes was induced by five consecutive daily intraperitoneal injections of streptozotocin (50 mg/kg) in C57BL/6 J wild-type mice, mice lacking KHK-A alone (KHK-A KO), and mice lacking both KHK-A and KHK-C (KHK-A/C KO). At 35 weeks, renal injury, inflammation, hypoxia, and oxidative stress were examined. Metabolomic analysis including polyol pathway, fructose metabolism, glycolysis, TCA (tricarboxylic acid) cycle, and NAD (nicotinamide adenine dinucleotide) metabolism in kidney and urine was done. Diabetic KHK-A KO mice developed severe renal injury compared to diabetic wild-type mice, and this was associated with further increases of intrarenal fructose, dihydroxyacetone phosphate (DHAP), TCA cycle intermediates levels, and severe inflammation. In contrast, renal injury was prevented in diabetic KHK-A/C KO mice compared to both wild-type and KHK-A KO diabetic mice. Further, diabetic KHK-A KO mice contained decreased renal NAD + level with the increase of renal hypoxia-inducible factor 1-alpha expression despite having increased renal nicotinamide (NAM) level. These results suggest that KHK-C might play a deleterious role in DKD progression through endogenous fructose metabolism, and that KHK-A plays a unique protective role against the development of DKD. Copyright © 2018. Published by Elsevier Inc.

  18. Fluoxetine protection in decompression sickness in mice is enhanced by blocking TREK-1 potassium channel with the spadin antidepressant.

    Directory of Open Access Journals (Sweden)

    Nicolas eVallée

    2016-02-01

    Full Text Available In mice, disseminated coagulation, inflammation and ischemia induce neurological damages that can lead to the death. These symptoms result from circulating bubbles generated by a pathogenic decompression. An acute fluoxetine treatment or the presence of the TREK-1 potassium channel increased the survival rate when mice are subjected to an experimental dive/decompression protocol. This is a paradox because fluoxetine is a blocker of TREK-1 channels. First, we studied the effects of an acute dose of fluoxetine (50mg/kg in wild-type (WT and TREK-1 deficient mice (Knockout homozygous KO and heterozygous HET. Then, we combined the same fluoxetine treatment with a five-day treatment by spadin, in order to specifically block TREK-1 activity (KO-like mice. KO and KO-like mice could be regarded as antidepressed models.167 mice (45 WTcont 46 WTflux 30 HETflux and 46 KOflux constituting the flux-pool and 113 supplementary mice (27 KO-like 24 WTflux2 24 KO-likeflux 21 WTcont2 17 WTno dive constituting the spad-pool were included in this study. Only 7% of KO-TREK-1 treated with fluoxetine (KOflux and 4% of mice treated with both spadin and fluoxetine (KO-likeflux died from decompression sickness (DCS symptoms. These values are much lower than those of WT control (62% or KO-like mice (41%. After the decompression protocol, mice showed a significant consumption of their circulating platelets and leukocytes.Spadin antidepressed mice were more likely to declare DCS. Nevertheless, which had both blocked TREK-1 channel and were treated with fluoxetine were better protected against DCS. We conclude that the protective effect of such an acute dose of fluoxetine is enhanced when TREK-1 is inhibited. We confirmed that antidepressed models may have worse DCS outcomes, but a concomitant fluoxetine treatment not only decreases DCS severity but increases the survival rate.

  19. Long-lasting Effects of Minocycline on Behavior in Young but not Adult Fragile X Mice

    Science.gov (United States)

    Dansie, Lorraine E.; Phommahaxay, Kelly; Okusanya, Ayodeji G.; Uwadia, Jessica; Huang, Mike; Rotschafer, Sarah E.; Razak, Khaleel A.; Ethell, Douglas W.; Ethell, Iryna M.

    2013-01-01

    Fragile X Syndrome (FXS) is the most common single-gene inherited form of intellectual disability with behaviors characteristic of autism. People with FXS display childhood seizures, hyperactivity, anxiety, developmental delay, attention deficits, and visual-spatial memory impairment, as well as a propensity for obsessive-compulsive disorder (OCD). Several of these aberrant behaviors and FXS-associated synaptic irregularities also occur in “fragile X mental retardation gene” knock-out (Fmr1 KO) mice. We previously reported that minocycline promotes the maturation of dendritic spines - postsynaptic sites for excitatory synapses - in the developing hippocampus of Fmr1 KO mice, which may underlie the beneficial effects of minocycline on anxiolytic behavior in young Fmr1 KO mice. In this study, we compared the effectiveness of minocycline treatment in young and adult Fmr1 KO mice, and determined the dependence of behavioral improvements on short-term versus long-term minocycline administration. We found that 4 and 8 week long treatments significantly reduced locomotor activity in both young and adult Fmr1 KO mice. Some behavioral improvements persisted in young mice post-treatment, but in adults the beneficial effects were lost soon after minocycline treatment was stopped. We also show, for the first time, that minocycline treatment partially attenuates the number and severity of audiogenic seizures in Fmr1 KO mice. This report provides further evidence that minocycline treatment has immediate and long-lasting benefits on FXS-associated behaviors in the Fmr1 KO mouse model. PMID:23660195

  20. Effect of Lactobacillus delbrueckii on cholesterol metabolism in germ-free mice and on atherogenesis in apolipoprotein E knock-out mice

    Directory of Open Access Journals (Sweden)

    Portugal L.R.

    2006-01-01

    Full Text Available Elevated blood cholesterol is an important risk factor associated with atherosclerosis and coronary heart disease. Several studies have reported a decrease in serum cholesterol during the consumption of large doses of fermented dairy products or lactobacillus strains. The proposed mechanism for this effect is the removal or assimilation of intestinal cholesterol by the bacteria, reducing cholesterol absorption. Although this effect was demonstrated in vitro, its relevance in vivo is still controversial. Furthermore, few studies have investigated the role of lactobacilli in atherogenesis. The aim of the present study was to determine the effect of Lactobacillus delbrueckii on cholesterol metabolism in germ-free mice and the possible hypocholesterolemic and antiatherogenic action of these bacteria using atherosclerosis-prone apolipoprotein E (apo E knock-out (KO mice. For this purpose, Swiss/NIH germ-free mice were monoassociated with L. delbrueckii and fed a hypercholesterolemic diet for four weeks. In addition, apo E KO mice were fed a normal chow diet and treated with L. delbrueckii for 6 weeks. There was a reduction in cholesterol excretion in germ-free mice, which was not associated with changes in blood or liver cholesterol concentration. In apo E KO mice, no effect of L. delbrueckii was detected in blood, liver or fecal cholesterol. The atherosclerotic lesion in the aorta was also similar in mice receiving or not these bacteria. In conclusion, these results suggest that, although L. delbrueckii treatment was able to reduce cholesterol excretion in germ-free mice, no hypocholesterolemic or antiatherogenic effect was observed in apo E KO mice.

  1. Effects of Eaf2 gene knockout on cataract induced by ultraviolet irradiation in mice

    Directory of Open Access Journals (Sweden)

    Yan-Hua Jiang

    2016-02-01

    Full Text Available AIM:To evaluate the effects of Eaf2 gene knockout on cataract in mice induced by ultraviolet irradiation.METHODS:Fifteen wild type mice were used as the control group, and 10 Eaf2 KO mice were used as the experimental group. The 14-week mice were taken as the research objects in the two groups. So the subgroups were: WT -nonUV, WT -UV, Eaf2 KO-nonUV and Eaf2 KO-UV, a total of 4 groups. Observe the lens of mice in vivo with slit lamp microscope, grade the lens opacity with Lens Opacities Classification System II(LOCSII. Then the mice were sacrificed by breaking the neck, the lens were removed and were observed by dark field microscopy. According to the captured images, the proportion of cataract region was analyzed using Image J software. The data of the two groups were statistically analyzed.RESULTS: The results detected by the two methods were similar. In WT-UV group and Eaf2 KO-UV group, the degree of lens opacity was significantly higher than those of WT-nonUV group and Eaf2 KO-nonUV group. The lens opacity of WT-UV group was significantly higher than that in Eaf2 KO-UV group, and the difference was statistically significant(PCONCLUSION: Ultraviolet radiation can lead to the formation of cataract in mice. Eaf2 protein can promote the formation of cataract in mice caused by ultraviolet.

  2. Distinct motor impairments of dopamine D1 and D2 receptor knockout mice revealed by three types of motor behavior

    Directory of Open Access Journals (Sweden)

    Toru eNakamura

    2014-07-01

    Full Text Available Both D1R and D2R knock out (KO mice of the major dopamine receptors show significant motor impairments. However, there are some discrepant reports, which may be due to the differences in genetic background and experimental procedures. In addition, only few studies directly compared the motor performance of D1R and D2R KO mice. In this paper, we examined the behavioral difference among N10 congenic D1R and D2R KO, and wild type (WT mice. First, we examined spontaneous motor activity in the home cage environment for consecutive five days. Second, we examined motor performance using the rota-rod task, a standard motor task in rodents. Third, we examined motor ability with the Step-Wheel task in which mice were trained to run in a motor-driven turning wheel adjusting their steps on foothold pegs to drink water. The results showed clear differences among the mice of three genotypes in three different types of behavior. In monitoring spontaneous motor activities, D1R and D2R KO mice showed higher and lower 24 h activities, respectively, than WT mice. In the rota-rod tasks, at a low speed, D1R KO mice showed poor performance but later improved, whereas D2R KO mice showed a good performance at early days without further improvement. When first subjected to a high speed task, the D2R KO mice showed poorer rota-rod performance at a low speed than the D1R KO mice. In the Step-Wheel task, across daily sessions, D2R KO mice increased the duration that mice run sufficiently close to the spout to drink water, and decreased time to touch the floor due to missing the peg steps and number of times the wheel was stopped, which performance was much better than that of D1R KO mice. These incongruent results between the two tasks for D1R and D2R KO mice may be due to the differences in the motivation for the rota-rod and Step-Wheel tasks, aversion- and reward-driven, respectively. The Step-Wheel system may become a useful tool for assessing the motor ability of WT

  3. Aggressive mammary carcinoma progression in Nrf2 knockout mice treated with 7,12-dimethylbenz[a]anthracene

    International Nuclear Information System (INIS)

    Becks, Lisa; Shi, Runhua; McLarty, Jerry; Pruitt, Kevin; Zhang, Songlin; Kleiner-Hancock, Heather E; Prince, Misty; Burson, Hannah; Christophe, Christopher; Broadway, Mason; Itoh, Ken; Yamamoto, Masayuki; Mathis, Michael; Orchard, Elysse

    2010-01-01

    Activation of nuclear factor erythroid 2-related factor (Nrf2), which belongs to the basic leucine zipper transcription factor family, is a strategy for cancer chemopreventive phytochemicals. It is an important regulator of genes induced by oxidative stress, such as glutathione S-transferases, heme oxygenase-1 and peroxiredoxin 1, by activating the antioxidant response element (ARE). We hypothesized that (1) the citrus coumarin auraptene may suppress premalignant mammary lesions via activation of Nrf2/ARE, and (2) that Nrf2 knockout (KO) mice would be more susceptible to mammary carcinogenesis. Premalignant lesions and mammary carcinomas were induced by medroxyprogesterone acetate and 7,12-dimethylbenz[a]anthracene treatment. The 10-week pre-malignant study was performed in which 8 groups of 10 each female wild-type (WT) and KO mice were fed either control diet or diets containing auraptene (500 ppm). A carcinogenesis study was also conducted in KO vs. WT mice (n = 30-34). Comparisons between groups were evaluated using ANOVA and Kaplan-Meier Survival statistics, and the Mann-Whitney U-test. All mice treated with carcinogen exhibited premalignant lesions but there were no differences by genotype or diet. In the KO mice, there was a dramatic increase in mammary carcinoma growth rate, size, and weight. Although there was no difference in overall survival, the KO mice had significantly lower mammary tumor-free survival. Also, in the KO mammary carcinomas, the active forms of NF-κB and β-catenin were increased ~2-fold whereas no differences in oxidized proteins were observed. Many other tumors were observed, including lymphomas. Interestingly, the incidences of lung adenomas in the KO mice were significantly higher than in the WT mice. We report, for the first time, that there was no apparent difference in the formation of premalignant lesions, but rather, the KO mice exhibited rapid, aggressive mammary carcinoma progression

  4. Host resistance of CD18 knockout mice against systemic infection with Listeria monocytogenes

    Science.gov (United States)

    Wu, Huaizhu; Prince, Joseph E.; Brayton, Cory F.; Shah, Chirayu; Zeve, Daniel; Gregory, Stephen H.; Smith, C. Wayne; Ballantyne, Christie M.

    2003-01-01

    Mice with targeted mutations of CD18, the common beta2 subunit of CD11/CD18 integrins, have leukocytosis, impaired transendothelial neutrophil emigration, and reduced host defense to Streptococcus pneumoniae, a gram-positive extracellular bacterium. Previous studies using blocking monoclonal antibodies suggested roles for CD18 and CD11b in hepatic neutrophil recruitment and host innate response to Listeria monocytogenes, a gram-positive intracellular bacterium. We induced systemic listeriosis in CD18 knockout (CD18-ko) and wild-type (WT) mice by tail vein injection with Listeria. By 14 days postinjection (dpi), 8 of 10 WT mice died, compared with 2 of 10 CD18-ko mice (P Listeria organisms in livers and spleens were similar in both groups at 20 min postinfection. By 3, 5, and 7 dpi, however, numbers of Listeria organisms were significantly lower in livers and spleens of CD18-ko mice than in WT mice. Histopathology showed that following Listeria infection, CD18-ko mice had milder inflammatory and necrotizing lesions in both spleens and livers than did WT mice. Cytokine assays indicated that baseline interleukin-1beta and granulocyte colony-stimulating factor (G-CSF) levels were higher in CD18-ko mice than in WT mice and that CD18-ko splenocytes produced higher levels of interleukin-1beta and G-CSF than WT splenocytes under the same amount of Listeria stimulation. These findings show that CD18 is not an absolute requirement for antilisterial innate immunity or hepatic neutrophil recruitment. We propose that the absence of CD18 in the mice results in the priming of innate immunity, as evidenced by elevated cytokine expression, and neutrophilic leukocytosis, which augments antilisterial defense.

  5. Association of nNOS Gene Polymorphism with Ischemic Stroke in Han Chinese of North China

    Directory of Open Access Journals (Sweden)

    Yingjie Dai

    2013-01-01

    Full Text Available Nitric oxide (NO is an important messenger molecule and effector molecule. This study aimed to investigate the relation of neuronal nitric oxide synthase (nNOS gene polymorphism with ischemic stroke in Han Chinese of North China. This was a case-control study. A total of 413 patients with ischemic stroke were recruited from Han Chinese of North China. There were 201 males and 212 females. In addition, 477 healthy subjects served as controls including 224 males and 253 females. Multiplex SNaPshot was employed to detect nNOS gene polymorphism (rs2293050, rs2139733, rs7308402, and rs1483757. Results showed that the rs1483757, rs2139733, and rs2293050 genotypes and allele frequencies were comparable between patients and controls. However, ischemic stroke patients had significantly reduced AG genotype and A allele frequency when compared with controls (P=0.037, P=0.041. After adjusting confounding factors (gender, age, smoking, history of drinking, hypertension, and diabetes, AG genotype and A allele were still related to ischemic stroke (OR=0.572, 95% CI: 0.335–0.978, P=0.041; OR=0.611, 95% C: 0.378–0.985, and P=0.041 and both were found to be protective factors. Our results showed that rs7308402 gene polymorphism of nNOS is related to ischemic stroke in Han Chinese of North China.

  6. Experimental Demyelination and Axonal Loss Are Reduced in MicroRNA-146a Deficient Mice

    Directory of Open Access Journals (Sweden)

    Nellie A. Martin

    2018-03-01

    Full Text Available BackgroundThe cuprizone (CPZ model of multiple sclerosis (MS was used to identify microRNAs (miRNAs related to in vivo de- and remyelination. We further investigated the role of miR-146a in miR-146a-deficient (KO mice: this miRNA is differentially expressed in MS lesions and promotes differentiation of oligodendrocyte precursor cells (OPCs during remyelination, but its role has not been examined during demyelination.MethodsMicroRNAs were examined by Agilent Mouse miRNA Microarray in the corpus callosum during CPZ-induced demyelination and remyelination. Demyelination, axonal loss, changes in number of oligodendrocytes, OPCs, and macrophages/microglia was compared by histology/immunohistochemistry between KO and WT mice. Differential expression of target genes and proteins of miR-146a was analyzed in the transcriptome (4 × 44K Agilent Whole Mouse Genome Microarray and proteome (liquid chromatography tandem mass spectrometry of CPZ-induced de- and remyelination in WT mice. Levels of proinflammatory molecules in the corpus callosum were compared in WT versus KO mice by Meso Scale Discovery multiplex protein analysis.ResultsmiR-146a was increasingly upregulated during CPZ-induced de- and remyelination. The absence of miR-146a in KO mice protected against demyelination, axonal loss, body weight loss, and atrophy of thymus and spleen. The number of CNP+ oligodendrocytes was increased during demyelination in the miR-146a KO mice, while there was a trend of increased number of NG2+ OPCs in the WT mice. miR-146a target genes, SNAP25 and SMAD4, were downregulated in the proteome of demyelinating corpus callosum in WT mice. Higher levels of SNAP25 were measured by ELISA in the corpus callosum of miR-146a KO mice, but there was no difference between KO and WT mice during demyelination. Multiplex protein analysis of the corpus callosum lysate revealed upregulated TNF-RI, TNF-RII, and CCL2 in the WT mice in contrast to KO mice. The number of Mac3+ and

  7. Mammalian target of rapamycin is essential for cardiomyocyte survival and heart development in mice

    International Nuclear Information System (INIS)

    Zhang, Pengpeng; Shan, Tizhong; Liang, Xinrong; Deng, Changyan; Kuang, Shihuan

    2014-01-01

    Highlights: • mTOR is a critical regulator of many biological processes yet its function in heart is not well understood. • MCK-Cre/Mtor flox/flox mice were established to delete Mtor in cardiomyocytes. • The mTOR-mKO mice developed normally but die prematurely within 5 weeks after birth due to heart disease. • The mTOR-mKO mice had dilated myocardium and increased cell death. • mTOR-mKO hearts had reduced expression of metabolic genes and activation of mTOR target proteins. - Abstract: Mammalian target of rapamycin (mTOR) is a critical regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive knockout of Mtor leads to embryonic lethality, the in vivo function of mTOR in perinatal development and postnatal growth of heart is not well defined. In this study, we established a muscle-specific mTOR conditional knockout mouse model (mTOR-mKO) by crossing MCK-Cre and Mtor flox/flox mice. Although the mTOR-mKO mice survived embryonic and perinatal development, they exhibited severe postnatal growth retardation, cardiac muscle pathology and premature death. At the cellular level, the cardiac muscle of mTOR-mKO mice had fewer cardiomyocytes due to apoptosis and necrosis, leading to dilated cardiomyopathy. At the molecular level, the cardiac muscle of mTOR-mKO mice expressed lower levels of fatty acid oxidation and glycolysis related genes compared to the WT littermates. In addition, the mTOR-mKO cardiac muscle had reduced Myh6 but elevated Myh7 expression, indicating cardiac muscle degeneration. Furthermore, deletion of Mtor dramatically decreased the phosphorylation of S6 and AKT, two key targets downstream of mTORC1 and mTORC2 mediating the normal function of mTOR. These results demonstrate that mTOR is essential for cardiomyocyte survival and cardiac muscle function

  8. Resilience to audiogenic seizures is associated with p-ERK1/2 dephosphorylation in the subiculum of Fmr1 knockout mice

    Directory of Open Access Journals (Sweden)

    Giulia eCuria

    2013-04-01

    Full Text Available Young, but not adult, Fmr1 knockout (KO mice display audiogenic seizures (AGS that can be prevented by inhibiting extracellular signal-regulated kinases 1/2 (ERK1/2 phosphorylation. In order to identify the cerebral regions involved in these phenomena, we characterized the response to AGS in Fmr1 KO mice and wild type (WT controls at postnatal day (P 45 and P90. To characterize the diverse response to AGS in various cerebral regions, we evaluated the activity markers FosB/ΔFosB and phosphorylated ERK1/2 (p-ERK1/2. Wild running (100% of tested mice followed by clonic/tonic seizures (30% were observed in P45 Fmr1 KO mice, but not in WT mice. In P90 Fmr1 KO mice, wild running was only present in 25% of tested animals. Basal FosB/ΔFosB immunoreactivity was higher (P<0.01 vs WT in the CA1 and subiculum of P45 Fmr1 KO mice. Following the AGS test, FosB/ΔFosB expression consistently increased in most of the analyzed regions in both groups at P45, but not at P90. Interestingly, FosB/ΔFosB immunoreactivity was significantly higher in P45 Fmr1 KO mice in the medial geniculate body (P<0.05 vs WT and CA3 (P<0.01. Neurons presenting with immunopositivity to p-ERK1/2 were more abundant in the subiculum of Fmr1 KO mice in control condition (P<0.05 vs WT, in both age groups. In this region, p-ERK1/2-immunopositive cells significantly decreased (-75%, P<0.01 in P90 Fmr1 KO mice exposed to the AGS test, but no changes were found in P45 mice or in other brain regions. In both age groups of WT mice, p-ERK1/2-immunopositive cells increased in the subiculum after exposure to the acoustic test. Our findings illustrate that FosB/ΔFosB markers are overexpressed in the medial geniculate body and CA3 in Fmr1 KO mice experiencing AGS, and that p-ERK1/2 is markedly decreased in the subiculum of Fmr1 KO mice resistant to AGS induction. These findings suggest that resilience to AGS is associated with dephosphorylation of p-ERK1/2 in the subiculum of mature Fmr1 KO mice.

  9. Piroxicam treatment augments bone abnormalities in interleukin-10 knockout mice.

    Science.gov (United States)

    Holgersen, Kristine; Dobie, Ross; Farquharson, Colin; vanʼt Hof, Rob; Ahmed, Syed Faisal; Hansen, Axel Kornerup; Holm, Thomas L

    2015-02-01

    Osteoporosis and fractures are common complications of inflammatory bowel disease. The pathogenesis is multifactorial and has been partly attributed to intestinal inflammation. The aim of this study was to evaluate bone status and assess the association between bone loss and gut inflammation in an experimental colitis model. Colitis was induced in interleukin-10 knockout mice (PAC IL-10 k.o.) by peroral administration of piroxicam for 12 days. The degree of colitis was assessed by clinical, macroscopic, and microscopic evaluation. Trabecular and cortical bone microarchitecture of tibia were determined using micro-computed tomography. Moreover, the serum levels of bone formation and bone resorption biomarkers were measured, and inflammatory protein profiling was performed on colons. PAC IL-10 k.o. mice developed severe colitis, characterized by hyperplasia and focal transmural inflammation, which was consistent with Crohn's disease-like pathology. The gut inflammation was accompanied by a 14% and 12% reduction in trabecular thickness relative to piroxicam-treated wild type and untreated wild type mice, respectively (P < 0.001). The trabecular bone structure was also changed in PAC IL-10 k.o. mice, whereas no differences in cortical bone geometry were observed. The trabecular thickness was inversely correlated with serum levels of CTX (r = -0.93, P = 0.006). Moreover, numerous inflammatory mediators, including RANKL and osteoprotegerin, were significantly increased in the colon of PAC IL-10 k.o. mice. PAC IL-10 k.o. mice develop bone loss and changed trabecular structure, as a result of increased bone resorption. Thus, the PAC IL-10 k.o. model could be a useful experimental model in preclinical research of inflammatory bowel disease-associated bone loss.

  10. Pregnenolone rescues schizophrenia-like behavior in dopamine transporter knockout mice.

    Directory of Open Access Journals (Sweden)

    Peiyan Wong

    Full Text Available Pregnenolone belongs to a class of endogenous neurosteroids in the central nervous system (CNS, which has been suggested to enhance cognitive functions through GABA(A receptor signaling by its metabolites. It has been shown that the level of pregnenolone is altered in certain brain areas of schizophrenic patients, and clozapine enhances pregnenolone in the CNS in rats, suggesting that pregnenolone could be used to treat certain symptoms of schizophrenia. In addition, early phase proof-of-concept clinical trials have indicated that pregnenolone is effective in reducing the negative symptoms and cognitive deficits of schizophrenia patients. Here, we evaluate the actions of pregnenolone on a mouse model for schizophrenia, the dopamine transporter knockout mouse (DAT KO. DAT KO mice mirror certain symptoms evident in patients with schizophrenia, such as the psychomotor agitation, stereotypy, deficits of prepulse inhibition and cognitive impairments. Following acute treatment, pregnenolone was found to reduce the hyperlocomotion, stereotypic bouts and pre-pulse inhibition (PPI deficits in DAT KO mice in a dose-dependent manner. At 60 mg/kg of pregnenolone, there were no significant differences in locomotor activities and stereotypy between wild-type and DAT KO mice. Similarly, acute treatment of 60 mg/kg of pregnenolone fully rescued PPI deficits of DAT KO mice. Following chronic treatment with pregnenolone at 60 mg/kg, the cognitive deficits of DAT KO mice were rescued in the paradigms of novel object recognition test and social transmission of food preference test. Pregnenolone thus holds promise as a therapeutic candidate in schizophrenia.

  11. Effects of gender on locomotor sensitivity to amphetamine, body weight, and fat mass in regulator of G protein signaling 9 (RGS9) knockout mice.

    Science.gov (United States)

    Walker, Paul D; Jarosz, Patricia A; Bouhamdan, Mohamad; MacKenzie, Robert G

    2015-01-01

    Regulator of G-protein signaling (RGS) protein 9-2 is enriched in the striatum where it modulates dopamine and opioid receptor-mediated signaling. RGS9 knockout (KO) mice show increased psychostimulant-induced behavioral sensitization, as well as exhibit higher body weights and greater fat accumulation compared to wild-type (WT) littermates. In the present study, we found gender influences on each of these phenotypic characteristics. Female RGS9 KO mice exhibited greater locomotor sensitization to amphetamine (1.0mg/kg) treatment as compared to male RGS9 KO mice. Male RGS9 KO mice showed increased body weights as compared to male WT littermates, while no such differences were detected in female mice. Quantitative magnetic resonance showed that male RGS9 KO mice accumulated greater fat mass vs. WT littermates at 5months of age. Such observations could not be explained by increased caloric consumption since male and female RGS9 KO mice demonstrated equivalent daily food intake as compared to their respective WT littermates. Although indirect calorimetry methods found decreased oxygen consumption and carbon dioxide production during the 12-hour dark phase in male RGS9 KO vs. WT mice which are indicative of less energy expenditure, male RGS9 KO mice exhibited lower levels of locomotor activity during this period. Genotype had no effect on metabolic activities when KO and WT groups were compared under fasting vs. feeding treatments. In summary, these results highlight the importance of factoring gender into the experimental design since many studies conducted in RGS9 KO mice utilize locomotor activity as a measured outcome. Copyright © 2014. Published by Elsevier Inc.

  12. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium.

    Science.gov (United States)

    Walker, Nancy M; Liu, Jinghua; Stein, Sydney R; Stefanski, Casey D; Strubberg, Ashlee M; Clarke, Lane L

    2016-01-15

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl(-) and HCO3 (-) efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3 (-))-loading proteins and upregulation of the basolateral membrane HCO3 (-)-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl(-)/HCO3 (-) exchange with maximized gradients, it also had increased intracellular Cl(-) concentration relative to wild-type. Pharmacological reduction of intracellular Cl(-) concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl(-) and HCO3 (-) efflux, which impairs pHi regulation by Ae2. Retention of Cl(-) and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine. Copyright © 2016 the American Physiological Society.

  13. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium

    Science.gov (United States)

    Walker, Nancy M.; Liu, Jinghua; Stein, Sydney R.; Stefanski, Casey D.; Strubberg, Ashlee M.

    2015-01-01

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl− and HCO3− efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3−)-loading proteins and upregulation of the basolateral membrane HCO3−-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl−/HCO3− exchange with maximized gradients, it also had increased intracellular Cl− concentration relative to wild-type. Pharmacological reduction of intracellular Cl− concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl− and HCO3− efflux, which impairs pHi regulation by Ae2. Retention of Cl− and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine. PMID:26542396

  14. Increased consumption of ethanol and sugar water in mice lacking the dopamine D2 long receptor.

    Science.gov (United States)

    Bulwa, Zachary B; Sharlin, Jordan A; Clark, Peter J; Bhattacharya, Tushar K; Kilby, Chessa N; Wang, Yanyan; Rhodes, Justin S

    2011-11-01

    Individual differences in dopamine D2 receptor (D2R) expression in the brain are thought to influence motivation and reinforcement for ethanol and other rewards. D2R exists in two isoforms, D2 long (D2LR) and D2 short (D2SR), produced by alternative splicing of the same gene. The relative contributions of D2LR versus D2SR to ethanol and sugar water drinking are not known. Genetic engineering was used to produce a line of knockout (KO) mice that lack D2LR and consequently have increased expression of D2SR. KO and wild-type (WT) mice of both sexes were tested for intake of 20% ethanol, 10% sugar water and plain tap water using established drinking-in-the-dark procedures. Mice were also tested for effects of the D2 antagonist eticlopride on intake of ethanol to determine whether KO responses were caused by lack of D2LR or overrepresentation of D2SR. Locomotor activity on running wheels and in cages without wheels was also measured for comparison. D2L KO mice drank significantly more ethanol than WT in both sexes. KO mice drank more sugar water than WT in females but not in males. Eticlopride dose dependently decreased ethanol intake in all groups except male KO. KO mice were less physically active than WT in cages with or without running wheels. Results suggest that overrepresentation of D2SR contributes to increased intake of ethanol in the KO mice. Decreasing wheel running and general levels of physical activity in the KO mice rules out the possibility that higher intake results from higher motor activity. Results extend the literature implicating altered expression of D2R in risk for addiction by delineating the contribution of individual D2R isoforms. These findings suggest that D2LR and D2SR play differential roles in consumption of alcohol and sugar rewards. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Bex1 knock out mice show altered skeletal muscle regeneration

    International Nuclear Information System (INIS)

    Koo, Jae Hyung; Smiley, Mark A.; Lovering, Richard M.; Margolis, Frank L.

    2007-01-01

    Bex1 and Calmodulin (CaM) are upregulated during skeletal muscle regeneration. We confirm this finding and demonstrate the novel finding that they interact in a calcium-dependent manner. To study the role of Bex1 and its interaction with CaM in skeletal muscle regeneration, we generated Bex1 knock out (Bex1-KO) mice. These mice appeared to develop normally and are fertile, but displayed a functional deficit in exercise performance compared to wild type (WT) mice. After intramuscular injection of cardiotoxin, which causes extensive and reproducible myotrauma followed by recovery, regenerating muscles of Bex1-KO mice exhibited elevated and prolonged cell proliferation, as well as delayed cell differentiation, compared to WT mice. Thus, our results provide the first evidence that Bex1-KO mice show altered muscle regeneration, and allow us to propose that the interaction of Bex1 with Ca 2+ /CaM may be involved in skeletal muscle regeneration

  16. Odor preference and olfactory memory are impaired in Olfaxin-deficient mice.

    Science.gov (United States)

    Islam, Saiful; Ueda, Masashi; Nishida, Emika; Wang, Miao-Xing; Osawa, Masatake; Lee, Dongsoo; Itoh, Masanori; Nakagawa, Kiyomi; Tana; Nakagawa, Toshiyuki

    2018-06-01

    Olfaxin, which is a BNIP2 and Cdc42GAP homology (BCH) domain-containing protein, is predominantly expressed in mitral and tufted (M/T) cells in the olfactory bulb (OB). Olfaxin and Caytaxin, which share 56.3% amino acid identity, are similar in their glutamatergic terminal localization, kidney-type glutaminase (KGA) interaction, and caspase-3 substrate. Although the deletion of Caytaxin protein causes human Cayman ataxia and ataxia in the mutant mouse, the function of Olfaxin is largely unknown. In this study, we generated Prune2 gene mutant mice (Prune2 Ex16-/- ; knock out [KO] mice) using the CRISPR/Cas9 system, during which the exon 16 containing start codon of Olfaxin mRNA was deleted. Exon 16 has 80 nucleotides and is contained in four of five Prune2 isoforms, including PRUNE2, BMCC1, BNIPXL, and Olfaxin/BMCC1s. The levels of Olfaxin mRNA and Olfaxin protein in the OB and piriform cortex of KO mice significantly decreased. Although Prune2 mRNA also significantly decreased in the spinal cord, the gross anatomy of the spinal cord and dorsal root ganglion (DRG) was intact. Further, disturbance of the sensory and motor system was not observed in KO mice. Therefore, in the current study, we examined the role of Olfaxin in the olfactory system where PRUNE2, BMCC1, and BNIPXL are scarcely expressed. Odor preference was impaired in KO mice using opposite-sex urinary scents as well as a non-social odor stimulus (almond). Results of the odor-aversion test demonstrated that odor-associative learning was disrupted in KO mice. Moreover, the NMDAR2A/NMDAR2B subunits switch in the piriform cortex was not observed in KO mice. These results indicated that Olfaxin may play a critical role in odor preference and olfactory memory. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Hes1-deficient mice show precocious differentiation of Paneth cells in the small intestine

    International Nuclear Information System (INIS)

    Suzuki, Katsumasa; Fukui, Hirokazu; Kayahara, Takahisa; Sawada, Mitsutaka; Seno, Hiroshi; Hiai, Hiroshi; Kageyama, Ryoichiro; Okano, Hideyuki; Chiba, Tsutomu

    2005-01-01

    We have previously shown that Hes1 is expressed both in putative epithelial stem cells just above Paneth cells and in the crypt base columnar cells between Paneth cells, while Hes1 is completely absent in Paneth cells. This study was undertaken to clarify the role of Hes1 in Paneth cell differentiation, using Hes1-knockout (KO) newborn (P0) mice. Electron microscopy revealed premature appearance of distinct cells containing cytoplasmic granules in the intervillous region in Hes1-KO P0 mice, whereas those cells were absent in wild-type (WT) P0 mice. In Hes1-KO P0 mice, the gene expressions of cryptdins, exclusively present in Paneth cells, were all enhanced compared with WT P0 mice. Immunohistochemistry demonstrated increased number of both lysozyme-positive and cryptdin-4-positive cells in the small intestinal epithelium of Hes1-KO P0 mice as compared to WT P0 mice. Thus, Hes1 appears to have an inhibitory role in Paneth cell differentiation in the small intestine

  18. Male aromatase-knockout mice exhibit normal levels of activity, anxiety and "depressive-like" symptomatology.

    Science.gov (United States)

    Dalla, C; Antoniou, K; Papadopoulou-Daifoti, Z; Balthazart, J; Bakker, J

    2005-09-08

    It is well known that estradiol derived from neural aromatization of testosterone plays a crucial role in the development of the male brain and the display of sexual behaviors in adulthood. It was recently found that male aromatase knockout mice (ArKO) deficient in estradiol due to a mutation in the aromatase gene have general deficits in coital behavior and are sexually less motivated. We wondered whether these behavioral deficits of ArKO males could be related to changes in activity, exploration, anxiety and "depressive-like" symptomatology. ArKO and wild type (WT) males were subjected to open field (OF), elevated plus maze (EPM), and forced swim tests (FST), after being exposed or not to chronic mild stress (CMS). CMS was used to evaluate the impact of chronic stressful procedures and to unveil possible differences between genotypes. There was no effect of genotype on OF, EPM and FST behavioral parameters. WT and ArKO mice exposed to CMS or not exhibited the same behavioral profile during these three types of tests. However, all CMS-exposed mice (ArKO and WT) spent less time in the center of the EPM. Additionally, floating duration measured in the FST increased between two tests in both WT and ArKO mice, though that increase was less prominent in mice previously subjected to CMS than in controls. Therefore, both ArKO and WT males displayed the same behavior and had the same response to CMS however CMS exposure slightly modified the behavior displayed by mice of both genotypes in the FST and EPM paradigms. These results show that ArKO males display normal levels of activity, exploration, anxiety and "depressive-like" symptomatology and thus their deficits in sexual behavior are specific in nature and do not result indirectly from other behavioral changes.

  19. Sensorimotor Gating in Neurotensin-1 Receptor Null Mice

    Science.gov (United States)

    Feifel, D.; Pang, Z.; Shilling, P.D.; Melendez, G.; Schreiber, R.; Button, D.

    2009-01-01

    BACKGROUND Converging evidence has implicated endogenous neurotensin (NT) in the pathophysiology of brain processes relevant to schizophrenia. Prepulse inhibition of the startle reflex (PPI) is a measure of sensorimotor gating and considered to be of strong relevance to neuropsychiatric disorders associated with psychosis and cognitive dysfunction. Mice genetically engineered to not express NT display deficits in PPI that model the PPI deficits seen in schizophrenia patients. NT1 receptors have been most strongly implicated in mediating the psychosis relevant effects of NT such as attenuating PPI deficits. To investigate the role of NT1 receptors in the regulation of PPI, we measured baseline PPI in wildtype (WT) and NT1 knockout (KO) mice. We also tested the effects of amphetamine and dizocilpine, a dopamine agonist and NMDA antagonist, respectively, that reduce PPI as well as the NT1 selective receptor agonist, PD149163, known to increase PPI in rats. METHODS Baseline PPI and acoustic startle response were measured in WT and NT1 knockout KO mice. After baseline testing, mice were tested again after receiving intraperatoneal (IP) saline or one of three doses of amphetamine (1.0, 3.0 and 10.0 mg/kg), dizocilpine (0.3, 1.0 and 3.0 mg/kg) and PD149163 (0.5, 2.0 and 6.0 mg/kg) on separate test days. RESULTS Baseline PPI and acoustic startle response in NT1 KO mice were not significantly different from NT1 WT mice. WT and KO mice exhibited similar responses to the PPI-disrupting effects of dizocilpine and amphetamine. PD149163 significantly facilitated PPI (P < 0.004) and decreased the acoustic startle response (P < 0.001) in WT but not NT1 KO mice. CONCLUSIONS The data does not support the regulation of baseline PPI or the PPI disruptive effects of amphetamine or dizocilpine by endogenous NT acting at the NT1 receptor, although they support the antipsychotic potential of pharmacological activation of NT1 receptors by NT1 agonists. PMID:19596359

  20. DBI/ACBP loss-of-function does not affect anxiety-like behaviour but reduces anxiolytic responses to diazepam in mice

    DEFF Research Database (Denmark)

    Budry, Lionel; Bouyakdan, Khalil; Tobin, Stephanie

    2016-01-01

    . Male and female ACBP(GFAP) KO and ACBP KO mice do not show significant changes in anxiety-like behaviour compared to control littermates during elevated plus maze (EPM) and open field (OF) tests. Surprisingly, ACBP(GFAP) KO and ACBP KO mice were unresponsive to the anxiolytic effect of a low dose...... of diazepam during EPM tests. In conclusion, our experiments using genetic ACBP loss-of-function models suggest that endozepines deficiency does not affect anxiety-like behaviour in mice and impairs the anxiolytic action of diazepam....

  1. In Vivo Evidence of Increased nNOS Activity in Acute MPTP Neurotoxicity: A Functional Pharmacological MRI Study

    Directory of Open Access Journals (Sweden)

    Tiing Yee Siow

    2013-01-01

    Full Text Available 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP is a neurotoxin commonly used to produce an animal model of Parkinson’s disease. Previous studies have suggested a critical role for neuronal nitric oxide (NO synthase- (nNOS- derived NO in the pathogenesis of MPTP. However, NO activity is difficult to assess in vivo due to its extremely short biological half-life, and so in vivo evidence of NO involvement in MPTP neurotoxicity remains scarce. In the present study, we utilized flow-sensitive alternating inversion recovery sequences, in vivo localized proton magnetic resonance spectroscopy, and diffusion-weighted imaging to, respectively, assess the hemodynamics, metabolism, and cytotoxicity induced by MPTP. The role of NO in MPTP toxicity was clarified further by administering a selective nNOS inhibitor, 7-nitroindazole (7-NI, intraperitoneally to some of the experimental animals prior to MPTP challenge. The transient increase in cerebral blood flow (CBF in the cortex and striatum induced by systemic injection of MPTP was completely prevented by pretreatment with 7-NI. We provide the first in vivo evidence of increased nNOS activity in acute MPTP-induced neurotoxicity. Although the observed CBF change may be independent of the toxicogenesis of MPTP, this transient hyperperfusion state may serve as an early indicator of neuroinflammation.

  2. Mammalian target of rapamycin is essential for cardiomyocyte survival and heart development in mice

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengpeng [Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 (United States); Shan, Tizhong; Liang, Xinrong [Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 (United States); Deng, Changyan [Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Kuang, Shihuan, E-mail: skuang@purdue.edu [Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 (United States)

    2014-09-12

    Highlights: • mTOR is a critical regulator of many biological processes yet its function in heart is not well understood. • MCK-Cre/Mtor{sup flox/flox} mice were established to delete Mtor in cardiomyocytes. • The mTOR-mKO mice developed normally but die prematurely within 5 weeks after birth due to heart disease. • The mTOR-mKO mice had dilated myocardium and increased cell death. • mTOR-mKO hearts had reduced expression of metabolic genes and activation of mTOR target proteins. - Abstract: Mammalian target of rapamycin (mTOR) is a critical regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive knockout of Mtor leads to embryonic lethality, the in vivo function of mTOR in perinatal development and postnatal growth of heart is not well defined. In this study, we established a muscle-specific mTOR conditional knockout mouse model (mTOR-mKO) by crossing MCK-Cre and Mtor{sup flox/flox} mice. Although the mTOR-mKO mice survived embryonic and perinatal development, they exhibited severe postnatal growth retardation, cardiac muscle pathology and premature death. At the cellular level, the cardiac muscle of mTOR-mKO mice had fewer cardiomyocytes due to apoptosis and necrosis, leading to dilated cardiomyopathy. At the molecular level, the cardiac muscle of mTOR-mKO mice expressed lower levels of fatty acid oxidation and glycolysis related genes compared to the WT littermates. In addition, the mTOR-mKO cardiac muscle had reduced Myh6 but elevated Myh7 expression, indicating cardiac muscle degeneration. Furthermore, deletion of Mtor dramatically decreased the phosphorylation of S6 and AKT, two key targets downstream of mTORC1 and mTORC2 mediating the normal function of mTOR. These results demonstrate that mTOR is essential for cardiomyocyte survival and cardiac muscle function.

  3. Increased susceptibility to diet-induced obesity in histamine-deficient mice

    DEFF Research Database (Denmark)

    Jørgensen, Emilie A; Vogelsang, Thomas W; Knigge, Ulrich

    2006-01-01

    in the development of high-fat diet (HFD)-induced obesity. METHODS: Histamine-deficient histidine decarboxylase knock-out (HDC-KO) mice and C57BL/6J wild-type (WT) mice were given either a standard diet (STD) or HFD for 8 weeks. Body weight, 24-hour caloric intake, epididymal adipose tissue size, plasma leptin...... weeks, whereas a significant difference in body weight gain was first observed after 5 weeks in WT mice. After 8 weeks 24-hour caloric intake was significantly lower in HFD- than in STD-fed WT mice. In HDC-KO mice no difference in caloric intake was observed between HFD- and STD-fed mice. After 8 weeks...

  4. Anti-depressant and anxiolytic like behaviors in PKCI/HINT1 knockout mice associated with elevated plasma corticosterone level

    Directory of Open Access Journals (Sweden)

    Wang Jia

    2009-11-01

    Full Text Available Abstract Background Protein kinase C interacting protein (PKCI/HINT1 is a small protein belonging to the histidine triad (HIT family proteins. Its brain immunoreactivity is located in neurons and neuronal processes. PKCI/HINT1 gene knockout (KO mice display hyper-locomotion in response to D-amphetamine which is considered a positive symptom of schizophrenia in animal models. Postmortem studies identified PKCI/HINT1 as a candidate molecule for schizophrenia and bipolar disorder. We investigated the hypothesis that the PKCI/HINT1 gene may play an important role in regulating mood function in the CNS. We submitted PKCI/HINT1 KO mice and their wild type (WT littermates to behavioral tests used to study anti-depressant, anxiety like behaviors, and goal-oriented behavior. Additionally, as many mood disorders coincide with modifications of hypothalamic-pituitary-adrenal (HPA axis function, we assessed the HPA activity through measurement of plasma corticosterone levels. Results Compared to the WT controls, KO mice exhibited less immobility in the forced swim (FST and the tail suspension (TST tests. Activity in the TST tended to be attenuated by acute treatment with valproate at 300 mg/kg in KO mice. The PKCI/HINT1 KO mice presented less thigmotaxis in the Morris water maze and spent progressively more time in the lit compartment in the light/dark test. In a place navigation task, KO mice exhibited enhanced acquisition and retention. Furthermore, the afternoon basal plasma corticosterone level in PKCI/HINT1 KO mice was significantly higher than in the WT. Conclusion PKCI/HINT1 KO mice displayed a phenotype of behavioral and endocrine features which indicate changes of mood function, including anxiolytic-like and anti-depressant like behaviors, in conjunction with an elevated corticosterone level in plasma. These results suggest that the PKCI/HINT 1 gene could be important for the mood regulation function in the CNS.

  5. Diacylglycerol kinase β knockout mice exhibit attention-deficit behavior and an abnormal response on methylphenidate-induced hyperactivity.

    Directory of Open Access Journals (Sweden)

    Mitsue Ishisaka

    Full Text Available BACKGROUND: Diacylglycerol kinase (DGK is an enzyme that phosphorylates diacylglycerol to produce phosphatidic acid. DGKβ is one of the subtypes of the DGK family and regulates many intracellular signaling pathways in the central nervous system. Previously, we demonstrated that DGKβ knockout (KO mice showed various dysfunctions of higher brain function, such as cognitive impairment (with lower spine density, hyperactivity, reduced anxiety, and careless behavior. In the present study, we conducted further tests on DGKβ KO mice in order to investigate the function of DGKβ in the central nervous system, especially in the pathophysiology of attention deficit hyperactivity disorder (ADHD. METHODOLOGY/PRINCIPAL FINDINGS: DGKβ KO mice showed attention-deficit behavior in the object-based attention test and it was ameliorated by methylphenidate (MPH, 30 mg/kg, i.p.. In the open field test, DGKβ KO mice displayed a decreased response to the locomotor stimulating effects of MPH (30 mg/kg, i.p., but showed a similar response to an N-methyl-d-aspartate (NMDA receptor antagonist, MK-801 (0.3 mg/kg, i.p., when compared to WT mice. Examination of the phosphorylation of extracellular signal-regulated kinase (ERK, which is involved in regulation of locomotor activity, indicated that ERK1/2 activation induced by MPH treatment was defective in the striatum of DGKβ KO mice. CONCLUSIONS/SIGNIFICANCE: These findings suggest that DGKβ KO mice showed attention-deficit and hyperactive phenotype, similar to ADHD. Furthermore, the hyporesponsiveness of DGKβ KO mice to MPH was due to dysregulation of ERK phosphorylation, and that DGKβ has a pivotal involvement in ERK regulation in the striatum.

  6. Impact of chronic low to moderate alcohol consumption on blood lipid and heart energy profile in acetaldehyde dehydrogenase 2-deficient mice.

    Science.gov (United States)

    Fan, Fan; Cao, Quan; Wang, Cong; Ma, Xin; Shen, Cheng; Liu, Xiang-wei; Bu, Li-ping; Zou, Yun-zeng; Hu, Kai; Sun, Ai-jun; Ge, Jun-bo

    2014-08-01

    To investigate the roles of acetaldehyde dehydrogenase 2 (ALDH2), the key enzyme of ethanol metabolism, in chronic low to moderate alcohol consumption-induced heart protective effects in mice. Twenty-one male wild-type (WT) or ALDH2-knockout (KO) mice were used in this study. In each genotype, 14 animals received alcohol (2.5%, 5% and 10% in week 1-3, respectively, and 18% in week 4-7), and 7 received water for 7 weeks. After the treatments, survival rate and general characteristics of the animals were evaluated. Serum ethanol and acetaldehyde levels and blood lipids were measured. Metabolomics was used to characterize the heart and serum metabolism profiles. Chronic alcohol intake decreased the survival rate of KO mice by 50%, and significantly decreased their body weight, but did not affect those of WT mice. Chronic alcohol intake significantly increased the serum ethanol levels in both WT and KO mice, but KO mice had significantly higher serum acetaldehyde levels than WT mice. Chronic alcohol intake significantly increased the serum HDL cholesterol levels in WT mice, and did not change the serum HDL cholesterol levels in KO mice. After chronic alcohol intake, WT and KO mice showed differential heart and serum metabolism profiles, including the 3 main energy substrate types (lipids, glucose and amino acids) and three carboxylic acid cycles. Low to moderate alcohol consumption increases HDL cholesterol levels and improves heart energy metabolism profile in WT mice but not in ALDH2-KO mice. Thus, preserved ALDH2 function is essential for the protective effect of low to moderate alcohol on the cardiovascular system.

  7. GPR40/FFAR1 deficient mice increase noradrenaline levels in the brain and exhibit abnormal behavior

    Directory of Open Access Journals (Sweden)

    Fuka Aizawa

    2016-12-01

    Full Text Available The free fatty acid receptor 1 (GPR40/FFAR1 is a G protein-coupled receptor, which is activated by long chain fatty acids. We have previously demonstrated that activation of brain GPR40/FFAR1 exerts an antinociceptive effect that is mediated by the modulation of the descending pain control system. However, it is unclear whether brain GPR40/FFAR1 contributes to emotional function. In this study, we investigated the involvement of GPR40/FFAR1 in emotional behavior using GPR40/FFAR1 deficient (knockout, KO mice. The emotional behavior in wild and KO male mice was evaluated at 9–10 weeks of age by the elevated plus-maze test, open field test, social interaction test, and sucrose preference test. Brain monoamines levels were measured using LC–MS/MS. The elevated plus-maze test and open field tests revealed that the KO mice reduced anxiety-like behavior. There were no differences in locomotor activity or social behavior between the wild and KO mice. In the sucrose preference test, the KO mice showed reduction in sucrose preference and intake. The level of noradrenaline was higher in the hippocampus, medulla oblongata, hypothalamus and midbrain of KO mice. Therefore, these results suggest that brain GPR40/FFAR1 is associated with anxiety- and depression-related behavior regulated by the increment of noradrenaline in the brain.

  8. Behavioral and electrophysiological characterization of Dyt1 heterozygous knockout mice.

    Science.gov (United States)

    Yokoi, Fumiaki; Chen, Huan-Xin; Dang, Mai Tu; Cheetham, Chad C; Campbell, Susan L; Roper, Steven N; Sweatt, J David; Li, Yuqing

    2015-01-01

    DYT1 dystonia is an inherited movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Most of the patients have a trinucleotide deletion (ΔGAG) corresponding to a glutamic acid in the C-terminal region (torsinA(ΔE)). Dyt1 ΔGAG heterozygous knock-in (KI) mice, which mimic ΔGAG mutation in the endogenous gene, exhibit motor deficits and deceased frequency of spontaneous excitatory post-synaptic currents (sEPSCs) and normal theta-burst-induced long-term potentiation (LTP) in the hippocampal CA1 region. Although Dyt1 KI mice show decreased hippocampal torsinA levels, it is not clear whether the decreased torsinA level itself affects the synaptic plasticity or torsinA(ΔE) does it. To analyze the effect of partial torsinA loss on motor behaviors and synaptic transmission, Dyt1 heterozygous knock-out (KO) mice were examined as a model of a frame-shift DYT1 mutation in patients. Consistent with Dyt1 KI mice, Dyt1 heterozygous KO mice showed motor deficits in the beam-walking test. Dyt1 heterozygous KO mice showed decreased hippocampal torsinA levels lower than those in Dyt1 KI mice. Reduced sEPSCs and normal miniature excitatory post-synaptic currents (mEPSCs) were also observed in the acute hippocampal brain slices from Dyt1 heterozygous KO mice, suggesting that the partial loss of torsinA function in Dyt1 KI mice causes action potential-dependent neurotransmitter release deficits. On the other hand, Dyt1 heterozygous KO mice showed enhanced hippocampal LTP, normal input-output relations and paired pulse ratios in the extracellular field recordings. The results suggest that maintaining an appropriate torsinA level is important to sustain normal motor performance, synaptic transmission and plasticity. Developing therapeutics to restore a normal torsinA level may help to prevent and treat the symptoms in DYT1 dystonia.

  9. Behavioral and electrophysiological characterization of Dyt1 heterozygous knockout mice.

    Directory of Open Access Journals (Sweden)

    Fumiaki Yokoi

    Full Text Available DYT1 dystonia is an inherited movement disorder caused by mutations in DYT1 (TOR1A, which codes for torsinA. Most of the patients have a trinucleotide deletion (ΔGAG corresponding to a glutamic acid in the C-terminal region (torsinA(ΔE. Dyt1 ΔGAG heterozygous knock-in (KI mice, which mimic ΔGAG mutation in the endogenous gene, exhibit motor deficits and deceased frequency of spontaneous excitatory post-synaptic currents (sEPSCs and normal theta-burst-induced long-term potentiation (LTP in the hippocampal CA1 region. Although Dyt1 KI mice show decreased hippocampal torsinA levels, it is not clear whether the decreased torsinA level itself affects the synaptic plasticity or torsinA(ΔE does it. To analyze the effect of partial torsinA loss on motor behaviors and synaptic transmission, Dyt1 heterozygous knock-out (KO mice were examined as a model of a frame-shift DYT1 mutation in patients. Consistent with Dyt1 KI mice, Dyt1 heterozygous KO mice showed motor deficits in the beam-walking test. Dyt1 heterozygous KO mice showed decreased hippocampal torsinA levels lower than those in Dyt1 KI mice. Reduced sEPSCs and normal miniature excitatory post-synaptic currents (mEPSCs were also observed in the acute hippocampal brain slices from Dyt1 heterozygous KO mice, suggesting that the partial loss of torsinA function in Dyt1 KI mice causes action potential-dependent neurotransmitter release deficits. On the other hand, Dyt1 heterozygous KO mice showed enhanced hippocampal LTP, normal input-output relations and paired pulse ratios in the extracellular field recordings. The results suggest that maintaining an appropriate torsinA level is important to sustain normal motor performance, synaptic transmission and plasticity. Developing therapeutics to restore a normal torsinA level may help to prevent and treat the symptoms in DYT1 dystonia.

  10. Role of METTL20 in regulating β-oxidation and heat production in mice under fasting or ketogenic conditions.

    Science.gov (United States)

    Shimazu, Tadahiro; Furuse, Tamio; Balan, Shabeesh; Yamada, Ikuko; Okuno, Shuzo; Iwanari, Hiroko; Suzuki, Takehiro; Hamakubo, Takao; Dohmae, Naoshi; Yoshikawa, Takeo; Wakana, Shigeharu; Shinkai, Yoichi

    2018-01-19

    METTL20 is a seven-β-strand methyltransferase that is localised to the mitochondria and tri-methylates the electron transfer flavoprotein (ETF) β subunit (ETFB) at lysines 200 and 203. It has been shown that METTL20 decreases the ability of ETF to extract electrons from medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) and glutaryl-CoA dehydrogenase in vitro. METTL20-mediated methylation of ETFB influences the oxygen consumption rate in permeabilised mitochondria, suggesting that METTL20-mediated ETFB methylation may also play a regulatory role in mitochondrial metabolism. In this study, we generated Mettl20 knockout (KO) mice to uncover the in vivo functions of METTL20. The KO mice were viable, and a loss of ETFB methylation was confirmed. In vitro enzymatic assays revealed that mitochondrial ETF activity was higher in the KO mice than in wild-type mice, suggesting that the KO mice had higher β-oxidation capacity. Calorimetric analysis showed that the KO mice fed a ketogenic diet had higher oxygen consumption and heat production. A subsequent cold tolerance test conducted after 24 h of fasting indicated that the KO mice had a better ability to maintain their body temperature in cold environments. Thus, METTL20 regulates ETF activity and heat production through lysine methylation when β-oxidation is highly activated.

  11. Mice lacking hippocampal left-right asymmetry show non-spatial learning deficits.

    Science.gov (United States)

    Shimbo, Akihiro; Kosaki, Yutaka; Ito, Isao; Watanabe, Shigeru

    2018-01-15

    Left-right asymmetry is known to exist at several anatomical levels in the brain and recent studies have provided further evidence to show that it also exists at a molecular level in the hippocampal CA3-CA1 circuit. The distribution of N-methyl-d-aspartate (NMDA) receptor NR2B subunits in the apical and basal synapses of CA1 pyramidal neurons is asymmetrical if the input arrives from the left or right CA3 pyramidal neurons. In the present study, we examined the role of hippocampal asymmetry in cognitive function using β2-microglobulin knock-out (β2m KO) mice, which lack hippocampal asymmetry. We tested β2m KO mice in a series of spatial and non-spatial learning tasks and compared the performances of β2m KO and C57BL6/J wild-type (WT) mice. The β2m KO mice appeared normal in both spatial reference memory and spatial working memory tasks but they took more time than WT mice in learning the two non-spatial learning tasks (i.e., a differential reinforcement of lower rates of behavior (DRL) task and a straight runway task). The β2m KO mice also showed less precision in their response timing in the DRL task and showed weaker spontaneous recovery during extinction in the straight runway task. These results indicate that hippocampal asymmetry is important for certain characteristics of non-spatial learning. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Rac1 in muscle is dispensable for improved insulin action after exercise in mice

    DEFF Research Database (Denmark)

    Sylow, Lykke; Møller, Lisbeth Liliendal Valbjørn; D'Hulst, Gommaar

    2016-01-01

    sensitivity in inducible muscle-specific Rac1 knockout (mKO) and wildtype littermate (WT) mice. Prior exercise enhanced whole body insulin sensitivity by 40% in WT mice and rescued the insulin intolerance in Rac1 mKO mice by improving whole body insulin sensitivity by 230%. In agreement, prior exercise...... significantly improved insulin sensitivity by 20% in WT and by 40% in Rac1 mKO soleus muscles. These findings suggest that muscle Rac1 is dispensable for the insulin sensitizing effect of exercise. Moreover, insulin resistance in Rac1 mKO mice can be completely normalized by prior exercise explaining why......Exercise has a potent insulin-sensitivity enhancing effect on skeletal muscle but the intracellular mechanisms that mediate this effect are not well understood. In muscle, Rac1 regulates both insulin- and contraction-stimulated glucose transport and is dysregulated in insulin resistant muscle...

  13. Environmental Enrichment Ameliorates Behavioral Impairments Modeling Schizophrenia in Mice Lacking Metabotropic Glutamate Receptor 5.

    Science.gov (United States)

    Burrows, Emma L; McOmish, Caitlin E; Buret, Laetitia S; Van den Buuse, Maarten; Hannan, Anthony J

    2015-07-01

    Schizophrenia arises from a complex interplay between genetic and environmental factors. Abnormalities in glutamatergic signaling have been proposed to underlie the emergence of symptoms, in light of various lines of evidence, including the psychotomimetic effects of NMDA receptor antagonists. Metabotropic glutamate receptor 5 (mGlu5) has also been implicated in the disorder, and has been shown to physically interact with NMDA receptors. To clarify the role of mGlu5-dependent behavioral expression by environmental factors, we assessed mGlu5 knockout (KO) mice after exposure to environmental enrichment (EE) or reared under standard conditions. The mGlu5 KO mice showed reduced prepulse inhibition (PPI), long-term memory deficits, and spontaneous locomotor hyperactivity, which were all attenuated by EE. Examining the cellular impact of genetic and environmental manipulation, we show that EE significantly increased pyramidal cell dendritic branching and BDNF protein levels in the hippocampus of wild-type mice; however, mGlu5 KO mice were resistant to these alterations, suggesting that mGlu5 is critical to these responses. A selective effect of EE on the behavioral response to the NMDA receptor antagonist MK-801 in mGlu5 KO mice was seen. MK-801-induced hyperlocomotion was further potentiated in enriched mGlu5 KO mice and treatment with MK-801 reinstated PPI disruption in EE mGlu5 KO mice only, a response that is absent under standard housing conditions. Together, these results demonstrate an important role for mGlu5 in environmental modulation of schizophrenia-related behavioral impairments. Furthermore, this role of the mGlu5 receptor is mediated by interaction with NMDA receptor function, which may inform development of novel therapeutics.

  14. Multiple sleep alterations in mice lacking cannabinoid type 1 receptors.

    Directory of Open Access Journals (Sweden)

    Alessandro Silvani

    Full Text Available Cannabinoid type 1 (CB1 receptors are highly expressed in the brain and play a role in behavior control. Endogenous cannabinoid signaling is modulated by high-fat diet (HFD. We investigated the consequences of congenital lack of CB1 receptors on sleep in mice fed standard diet (SD and HFD. CB1 cannabinoid receptor knock-out (KO and wild-type (WT mice were fed SD or HFD for 4 months (n = 9-10 per group. Mice were instrumented with electroencephalographic (EEG and electromyographic electrodes. Recordings were performed during baseline (48 hours, sleep deprivation (gentle handling, 6 hours, sleep recovery (18 hours, and after cage switch (insomnia model paradigm, 6 hours. We found multiple significant effects of genotype on sleep. In particular, KO spent more time awake and less time in non-rapid-eye-movement sleep (NREMS and rapid-eye-movement sleep (REMS than WT during the dark (active period but not during the light (rest period, enhancing the day-night variation of wake-sleep amounts. KO had slower EEG theta rhythm during REMS. REMS homeostasis after sleep deprivation was less effective in KO than in WT. Finally, KO habituated more rapidly to the arousing effect of the cage-switch test than WT. We did not find any significant effects of diet or of diet x genotype interaction on sleep. The occurrence of multiple sleep alterations in KO indicates important roles of CB1 cannabinoid receptors in limiting arousal during the active period of the day, in sleep regulation, and in sleep EEG in mice.

  15. The Ghrelin/GOAT System Regulates Obesity-Induced Inflammation in Male Mice.

    Science.gov (United States)

    Harvey, Rebecca E; Howard, Victor G; Lemus, Moyra B; Jois, Tara; Andrews, Zane B; Sleeman, Mark W

    2017-07-01

    Ghrelin plays a key role in appetite, energy homeostasis, and glucose regulation. Recent evidence suggests ghrelin suppresses inflammation in obesity; however, whether this is modulated by the acylated and/or des-acylated peptide is unclear. We used mice deficient in acylated ghrelin [ghrelin octanoyl-acyltransferase (GOAT) knockout (KO) mice], wild-type (WT) littermates, and C57BL/6 mice to examine the endogenous and exogenous effects of acyl and des-acyl ghrelin on inflammatory profiles under nonobese and obese conditions. We demonstrate that in the spleen, both ghrelin and GOAT are localized primarily in the red pulp. Importantly, in the thymus, ghrelin was predominantly localized to the medulla, whereas GOAT was found in the cortex, implying differing roles in T cell development. Acute exogenous treatment with acyl/des-acyl ghrelin suppressed macrophage numbers in spleen and thymus in obese mice, whereas only acyl ghrelin increased CD3+ T cells in the thymus in mice fed both chow and a high-fat-diet (HFD). Consistent with this result, macrophages were increased in the spleen of KO mice on a HFD. Whereas there was no difference in CD3+ T cells in the plasma, spleen, or thymus of WT vs KO mice, KO chow and HFD-fed mice displayed decreased leukocytes. Our results suggest that the acylation status affects the anti-inflammatory properties of ghrelin under chow and HFD conditions. Copyright © 2017 Endocrine Society.

  16. Severe systemic toxicity and urinary bladder cytotoxicity and regenerative hyperplasia induced by arsenite in arsenic (+ 3 oxidation state) methyltransferase knockout mice. A preliminary report

    International Nuclear Information System (INIS)

    Yokohira, Masanao; Arnold, Lora L.; Pennington, Karen L.; Suzuki, Shugo; Kakiuchi-Kiyota, Satoko; Herbin-Davis, Karen; Thomas, David J.; Cohen, Samuel M.

    2010-01-01

    Arsenic (+ 3 oxidation state) methyltransferase (As3mt) catalyzes reactions which convert inorganic arsenic to methylated metabolites. This study determined whether the As3mt null genotype in the mouse modifies cytotoxic and proliferative effects seen in urinary bladders of wild type mice after exposure to inorganic arsenic. Female wild type C57BL/6 mice and As3mt KO mice were divided into 3 groups each (n = 8) with free access to a diet containing 0, 100 or 150 ppm of arsenic as arsenite (As III ). During the first week of As III exposure, As3mt KO mice exhibited severe and lethal systemic toxicity. At termination, urinary bladders of both As3mt KO and wild type mice showed hyperplasia by light microscopy. As expected, arsenic-containing granules were found in the superficial urothelial layer of wild type mice. In As3mt KO mice these granules were present in all layers of the bladder epithelium and were more abundant and larger than in wild type mice. Scanning electron microscopy of the bladder urothelium of As3mt KO mice treated with 100 ppm As III showed extensive superficial necrosis and hyperplastic changes. In As3mt KO mice, livers showed severe acute inflammatory changes and spleen size and lymphoid areas were decreased compared with wild type mice. Thus, diminished arsenic methylation in As3mt KO mice exacerbates systemic toxicity and the effects of As III on the bladder epithelium, showing that altered kinetic and dynamic behavior of arsenic can affect its toxicity.

  17. Beta2-adrenergic activity modulates vascular tone regulation in lecithin:cholesterol acyltransferase knockout mice

    Science.gov (United States)

    Manzini, S.; Pinna, C.; Busnelli, M.; Cinquanta, P.; Rigamonti, E.; Ganzetti, G.S.; Dellera, F.; Sala, A.; Calabresi, L.; Franceschini, G.; Parolini, C.; Chiesa, G.

    2015-01-01

    Lecithin:cholesterol acyltransferase (LCAT) deficiency is associated with hypoalphalipoproteinemia, generally a predisposing factor for premature coronary heart disease. The evidence of accelerated atherosclerosis in LCAT-deficient subjects is however controversial. In this study, the effect of LCAT deficiency on vascular tone and endothelial function was investigated in LCAT knockout mice, which reproduce the human lipoprotein phenotype. Aortas from wild-type (Lcatwt) and LCAT knockout (LcatKO) mice exposed to noradrenaline showed reduced contractility in LcatKO mice (P < 0.005), whereas acetylcholine exposure showed a lower NO-dependent relaxation in LcatKO mice (P < 0.05). Quantitative PCR and Western blotting analyses suggested an adequate eNOS expression in LcatKO mouse aortas. Real-time PCR analysis indicated increased expression of β2-adrenergic receptors vs wild-type mice. Aorta stimulation with noradrenaline in the presence of propranolol, to abolish the β-mediated relaxation, showed the same contractile response in the two mouse lines. Furthermore, propranolol pretreatment of mouse aortas exposed to L-NAME prevented the difference in responses between Lcatwt and LcatKO mice. The results indicate that LCAT deficiency leads to increased β2-adrenergic relaxation and to a consequently decreased NO-mediated vasodilation that can be reversed to guarantee a correct vascular tone. The present study suggests that LCAT deficiency is not associated with an impaired vascular reactivity. PMID:26254103

  18. Beta2-adrenergic activity modulates vascular tone regulation in lecithin:cholesterol acyltransferase knockout mice.

    Science.gov (United States)

    Manzini, S; Pinna, C; Busnelli, M; Cinquanta, P; Rigamonti, E; Ganzetti, G S; Dellera, F; Sala, A; Calabresi, L; Franceschini, G; Parolini, C; Chiesa, G

    2015-11-01

    Lecithin:cholesterol acyltransferase (LCAT) deficiency is associated with hypoalphalipoproteinemia, generally a predisposing factor for premature coronary heart disease. The evidence of accelerated atherosclerosis in LCAT-deficient subjects is however controversial. In this study, the effect of LCAT deficiency on vascular tone and endothelial function was investigated in LCAT knockout mice, which reproduce the human lipoprotein phenotype. Aortas from wild-type (Lcat(wt)) and LCAT knockout (Lcat(KO)) mice exposed to noradrenaline showed reduced contractility in Lcat(KO) mice (P<0.005), whereas acetylcholine exposure showed a lower NO-dependent relaxation in Lcat(KO) mice (P<0.05). Quantitative PCR and Western blotting analyses suggested an adequate eNOS expression in Lcat(KO) mouse aortas. Real-time PCR analysis indicated increased expression of β2-adrenergic receptors vs wild-type mice. Aorta stimulation with noradrenaline in the presence of propranolol, to abolish the β-mediated relaxation, showed the same contractile response in the two mouse lines. Furthermore, propranolol pretreatment of mouse aortas exposed to L-NAME prevented the difference in responses between Lcat(wt) and Lcat(KO) mice. The results indicate that LCAT deficiency leads to increased β2-adrenergic relaxation and to a consequently decreased NO-mediated vasodilation that can be reversed to guarantee a correct vascular tone. The present study suggests that LCAT deficiency is not associated with an impaired vascular reactivity. Copyright © 2015. Published by Elsevier Inc.

  19. Impaired angiogenesis during fracture healing in GPCR kinase 2 interacting protein-1 (GIT1 knock out mice.

    Directory of Open Access Journals (Sweden)

    Guoyong Yin

    Full Text Available G protein coupled receptor kinase 2 (GRK2 interacting protein-1 (GIT1, is a scaffold protein that plays an important role in angiogenesis and osteoclast activity. We have previously demonstrated that GIT1 knockout (GIT1 KO mice have impaired angiogenesis and dysregulated osteoclast podosome formation leading to a reduction in the bone resorbing ability of these cells. Since both angiogenesis and osteoclast-mediated bone remodeling are involved in the fracture healing process, we hypothesized that GIT1 participates in the normal progression of repair following bone injury. In the present study, comparison of fracture healing in wild type (WT and GIT1 KO mice revealed altered healing in mice with loss of GIT1 function. Alcian blue staining of fracture callus indicated a persistence of cartilagenous matrix in day 21 callus samples from GIT1 KO mice which was temporally correlated with increased type 2 collagen immunostaining. GIT1 KO mice also showed a decrease in chondrocyte proliferation and apoptosis at days 7 and 14, as determined by PCNA and TUNEL staining. Vascular microcomputed tomography analysis of callus samples at days 7, 14 and 21 revealed decreased blood vessel volume, number, and connection density in GIT1 KO mice compared to WT controls. Correlating with this, VEGF-A, phospho-VEGFR2 and PECAM1 (CD31 were decreased in GIT1 KO mice, indicating reduced angiogenesis with loss of GIT1. Finally, calluses from GIT1 KO mice displayed a reduced number of tartrate resistant acid phosphatase-positive osteoclasts at days 14 and 21. Collectively, these results indicate that GIT1 is an important signaling participant in fracture healing, with gene ablation leading to reduced callus vascularity and reduced osteoclast number in the healing callus.

  20. PGC-1alpha mediates exercise-induced skeletal muscle VEGF expression in mice

    DEFF Research Database (Denmark)

    Leick, Lotte; Hellsten, Ylva; Fentz, Joachim

    2009-01-01

    The aim of the present study was to test the hypothesis that PGC-1alpha is required for exercise-induced VEGF expression in both young and old mice and that AMPK activation leads to increased VEGF expression through a PGC-1alpha-dependent mechanism. Whole body PGC-1alpha knockout (KO......) and littermate wild-type (WT) mice were submitted to either 1) 5 wk of exercise training, 2) lifelong (from 2 to 13 mo of age) exercise training in activity wheel, 3) a single exercise bout, or 4) 4 wk of daily subcutaneous AICAR or saline injections. In skeletal muscle of PGC-1alpha KO mice, VEGF protein...... expression was approximately 60-80% lower and the capillary-to-fiber ratio approximately 20% lower than in WT. Basal VEGF mRNA expression was similar in WT and PGC-1alpha KO mice, but acute exercise and AICAR treatment increased the VEGF mRNA content in WT mice only. Exercise training of young mice increased...

  1. Seipin knockout in mice impairs stem cell proliferation and progenitor cell differentiation in the adult hippocampal dentate gyrus via reduced levels of PPARγ

    Directory of Open Access Journals (Sweden)

    Guoxi Li

    2015-12-01

    Full Text Available The seipin gene (BSCL2 was originally identified in humans as a loss-of-function gene associated with congenital generalized lipodystrophy type 2 (CGL2. Neuronal seipin-knockout (seipin-nKO mice display a depression-like phenotype with a reduced level of hippocampal peroxisome proliferator-activated receptor gamma (PPARγ. The present study investigated the influence of seipin deficiency on adult neurogenesis in the hippocampal dentate gyrus (DG and the underlying mechanisms of the effects. We show that the proliferative capability of stem cells in seipin-nKO mice was substantially reduced compared to in wild-type (WT mice, and that this could be rescued by the PPARγ agonist rosiglitazone (rosi. In seipin-nKO mice, neuronal differentiation of progenitor cells was inhibited, with the enhancement of astrogliogenesis; both of these effects were recovered by rosi treatment during early stages of progenitor cell differentiation. In addition, rosi treatment could correct the decline in hippocampal ERK2 phosphorylation and cyclin A mRNA level in seipin-nKO mice. The MEK inhibitor U0126 abolished the rosi-rescued cell proliferation and cyclin A expression in seipin-nKO mice. In seipin-nKO mice, the hippocampal Wnt3 protein level was less than that in WT mice, and there was a reduction of neurogenin 1 (Neurog1 and neurogenic differentiation 1 (NeuroD1 mRNA, levels of which were corrected by rosi treatment. STAT3 phosphorylation (Tyr705 was enhanced in seipin-nKO mice, and was further elevated by rosi treatment. Finally, rosi treatment for 10 days could alleviate the depression-like phenotype in seipin-nKO mice, and this alleviation was blocked by the MEK inhibitor U0126. The results indicate that, by reducing PPARγ, seipin deficiency impairs proliferation and differentiation of neural stem and progenitor cells, respectively, in the adult DG, which might be responsible for the production of the depression-like phenotype in seipin-nKO mice.

  2. Epac2a-null mice exhibit obesity-prone nature more susceptible to leptin resistance.

    Science.gov (United States)

    Hwang, M; Go, Y; Park, J-H; Shin, S-K; Song, S E; Oh, B-C; Im, S-S; Hwang, I; Jeon, Y H; Lee, I-K; Seino, S; Song, D-K

    2017-02-01

    The exchange protein directly activated by cAMP (Epac), which is primarily involved in cAMP signaling, has been known to be essential for controlling body energy metabolism. Epac has two isoforms: Epac1 and Epac2. The function of Epac1 on obesity was unveiled using Epac1 knockout (KO) mice. However, the role of Epac2 in obesity remains unclear. To evaluate the role of Epac2 in obesity, we used Epac2a KO mice, which is dominantly expressed in neurons and endocrine tissues. Physiological factors related to obesity were analyzed: body weight, fat mass, food intake, plasma leptin and adiponectin levels, energy expenditure, glucose tolerance, and insulin and leptin resistance. To determine the mechanism of Epac2a, mice received exogenous leptin and then hypothalamic leptin signaling was analyzed. Epac2a KO mice appeared to have normal glucose tolerance and insulin sensitivity until 12 weeks of age, but an early onset increase of plasma leptin levels and decrease of plasma adiponectin levels compared with wild-type mice. Acute leptin injection revealed impaired hypothalamic leptin signaling in KO mice. Consistently, KO mice fed a high-fat diet (HFD) were significantly obese, presenting greater food intake and lower energy expenditure. HFD-fed KO mice were also characterized by greater impairment of hypothalamic leptin signaling and by weaker leptin-induced decrease in food consumption compared with HFD-fed wild-type mice. In wild-type mice, acute exogenous leptin injection or chronic HFD feeding tended to induce hypothalamic Epac2a expression. Considering that HFD is an inducer of hypothalamic leptin resistance and that Epac2a functions in pancreatic beta cells during demands of greater work load, hypothalamic Epac2a may have a role in facilitating leptin signaling, at least in response to higher metabolic demands. Thus, our data indicate that Epac2a is critical for preventing obesity and thus Epac2a activators may be used to manage obesity and obesity-mediated metabolic

  3. GPR40/FFAR1 deficient mice increase noradrenaline levels in the brain and exhibit abnormal behavior.

    Science.gov (United States)

    Aizawa, Fuka; Nishinaka, Takashi; Yamashita, Takuya; Nakamoto, Kazuo; Kurihara, Takashi; Hirasawa, Akira; Kasuya, Fumiyo; Miyata, Atsuro; Tokuyama, Shogo

    2016-12-01

    The free fatty acid receptor 1 (GPR40/FFAR1) is a G protein-coupled receptor, which is activated by long chain fatty acids. We have previously demonstrated that activation of brain GPR40/FFAR1 exerts an antinociceptive effect that is mediated by the modulation of the descending pain control system. However, it is unclear whether brain GPR40/FFAR1 contributes to emotional function. In this study, we investigated the involvement of GPR40/FFAR1 in emotional behavior using GPR40/FFAR1 deficient (knockout, KO) mice. The emotional behavior in wild and KO male mice was evaluated at 9-10 weeks of age by the elevated plus-maze test, open field test, social interaction test, and sucrose preference test. Brain monoamines levels were measured using LC-MS/MS. The elevated plus-maze test and open field tests revealed that the KO mice reduced anxiety-like behavior. There were no differences in locomotor activity or social behavior between the wild and KO mice. In the sucrose preference test, the KO mice showed reduction in sucrose preference and intake. The level of noradrenaline was higher in the hippocampus, medulla oblongata, hypothalamus and midbrain of KO mice. Therefore, these results suggest that brain GPR40/FFAR1 is associated with anxiety- and depression-related behavior regulated by the increment of noradrenaline in the brain. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  4. Distorted leukocyte migration, angiogenesis, wound repair and metastasis in Tspan8 and Tspan8/CD151 double knockout mice indicate complementary activities of Tspan8 and CD51.

    Science.gov (United States)

    Zhao, Kun; Erb, Ulrike; Hackert, Thilo; Zöller, Margot; Yue, Shijing

    2018-02-01

    The tetraspanin Tspan8 supports via associated integrins and proteases tumor progression and angiogenesis. To shed light on its activities in non-transformed cells, we generated a Tspan8 knockout (ko) mouse, comparing leukocyte migration, angiogenesis, wound healing and tumor growth with wild type, CD151ko and Tspan8/CD151ko (dbko) mice. CD151ko mice were included as CD151 activities resemble that of Tspan8, and dbko mice to exclude mutual substitution. Tspan8ko and dbko mice show no pathological phenotype. However, delayed type hypersensitivity reactions are mitigated in Tspan8ko mice, angiogenesis is severely impaired in Tspan8ko, CD151ko and dbko mice, with Tspan8 mostly affecting lymphangiogenesis. Distinct contributions of CD151 and Tspan8 to skin wound healing rely on preferentially CD151 anchoring basal keratinocytes and Tspan8 promoting motility. Proliferation of wounded skin keratinocytes is not affected. Metastasis formation of a melanoma and a Tspan8-expressing pancreatic cancer line was impaired in Tspan8ko and dbko mice, pointing towards a contribution of host Tspan8 to tumor progression. In line with the importance of tetraspanins in exosome-mediated intercellular communication, defects became mitigated by Tspan8/CD151-competent serum exosomes, which offers a most promising therapeutic option for chronic wounds and arteriosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Toll-like receptor 2 promotes neurogenesis from the dentate gyrus after photothrombotic cerebral ischemia in mice.

    Science.gov (United States)

    Seong, Kyung-Joo; Kim, Hyeong-Jun; Cai, Bangrong; Kook, Min-Suk; Jung, Ji-Yeon; Kim, Won-Jae

    2018-03-01

    The subgranular zone (SGZ) of hippocampal dentate gyrus (HDG) is a primary site of adult neurogenesis. Toll-like receptors (TLRs), are involved in neural system development of Drosophila and innate immune response of mammals. TLR2 is expressed abundantly in neurogenic niches such as adult mammalian hippocampus. It regulates adult hippocampal neurogenesis. However, the role of TLR2 in adult neurogenesis is not well studied in global or focal cerebral ischemia. Therefore, this study aimed to investigate the role of TLR2 in adult neurogenesis after photochemically induced cerebral ischemia. At 7 days after photothrombotic ischemic injury, the number of bromodeoxyuridine (BrdU)-positive cells was increased in both TLR2 knock-out (KO) mice and wild-type (WT) mice. However, the increment rate of BrdU-positive cells was lower in TLR2 KO mice compared to that in WT mice. The number of doublecortin (DCX) and neuronal nuclei (NeuN)-positive cells in HDG was decreased after photothrombotic ischemia in TLR2 KO mice compared to that in WT mice. The survival rate of cells in HDG was decreased in TLR2 KO mice compared to that in WT mice. In contrast, the number of cleaved-caspase 3 (apoptotic marker) and the number of GFAP (glia marker)/BrdU double-positive cells in TLR2 KO mice were higher than that in WT mice. These results suggest that TLR2 can promote adult neurogenesis from neural stem cell of hippocampal dentate gyrus through increasing proliferation, differentiation, and survival from neural stem cells after ischemic injury of the brain.

  6. Sortilin 1 Loss-of-Function Protects Against Cholestatic Liver Injury by Attenuating Hepatic Bile Acid Accumulation in Bile Duct Ligated Mice.

    Science.gov (United States)

    Li, Jibiao; Woolbright, Benjamin L; Zhao, Wen; Wang, Yifeng; Matye, David; Hagenbuch, Bruno; Jaeschke, Hartmut; Li, Tiangang

    2018-01-01

    Sortilin 1 (Sort1) is an intracellular trafficking receptor that mediates protein sorting in the endocytic or secretory pathways. Recent studies revealed a role of Sort1 in the regulation of cholesterol and bile acid (BA) metabolism. This study further investigated the role of Sort1 in modulating BA detoxification and cholestatic liver injury in bile duct ligated mice. We found that Sort1 knockout (KO) mice had attenuated liver injury 24 h after bile duct ligation (BDL), which was mainly attributed to less bile infarct formation. Sham-operated Sort1 KO mice had about 20% larger BA pool size than sham-operated wildtype (WT) mice, but 24 h after BDL Sort1 KO mice had significantly attenuated hepatic BA accumulation and smaller BA pool size. After 14 days BDL, Sort1 KO mice showed significantly lower hepatic BA concentration and reduced expression of inflammatory and fibrotic marker genes, but similar degree of liver fibrosis compared with WT mice. Unbiased quantitative proteomics revealed that Sort1 KO mice had increased hepatic BA sulfotransferase 2A1, but unaltered phase-I BA metabolizing cytochrome P450s or phase-III BA efflux transporters. Consistently, Sort1 KO mice showed elevated plasma sulfated taurocholate after BDL. Finally, we found that liver Sort1 was repressed after BDL, which may be due to BA activation of farnesoid x receptor. In conclusion, we report a role of Sort1 in the regulation of hepatic BA detoxification and cholestatic liver injury in mice. The mechanisms underlying increased hepatic BA elimination in Sort1 KO mice after BDL require further investigation. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Loss of epithelial FAM20A in mice causes amelogenesis imperfecta, tooth eruption delay and gingival overgrowth.

    Science.gov (United States)

    Li, Li-Li; Liu, Pei-Hong; Xie, Xiao-Hua; Ma, Su; Liu, Chao; Chen, Li; Qin, Chun-Lin

    2016-06-30

    FAM20A has been studied to a very limited extent. Mutations in human FAM20A cause amelogenesis imperfecta, gingival fibromatosis and kidney problems. It would be desirable to systemically analyse the expression of FAM20A in dental tissues and to assess the pathological changes when this molecule is specifically nullified in individual tissues. Recently, we generated mice with a Fam20A-floxed allele containing the beta-galactosidase reporter gene. We analysed FAM20A expression in dental tissues using X-Gal staining, immunohistochemistry and in situ hybridization, which showed that the ameloblasts in the mouse mandibular first molar began to express FAM20A at 1 day after birth, and the reduced enamel epithelium in erupting molars expressed a significant level of FAM20A. By breeding K14-Cre mice with Fam20A(flox/flox) mice, we created K14-Cre;Fam20A(flox/flox) (conditional knock out, cKO) mice, in which Fam20A was inactivated in the epithelium. We analysed the dental tissues of cKO mice using X-ray radiography, histology and immunohistochemistry. The molar enamel matrix in cKO mice was much thinner than normal and was often separated from the dentinoenamel junction. The Fam20A-deficient ameloblasts were non-polarized and disorganized and were detached from the enamel matrix. The enamel abnormality in cKO mice was consistent with the diagnosis of amelogenesis imperfecta. The levels of enamelin and matrix metalloproteinase 20 were lower in the ameloblasts and enamel of cKO mice than the normal mice. The cKO mice had remarkable delays in the eruption of molars and hyperplasia of the gingival epithelium. The findings emphasize the essential roles of FAM20A in the development of dental and oral tissues.

  8. Successful adaptation to ketosis by mice with tissue-specific deficiency of ketone body oxidation.

    Science.gov (United States)

    Cotter, David G; Schugar, Rebecca C; Wentz, Anna E; d'Avignon, D André; Crawford, Peter A

    2013-02-15

    During states of low carbohydrate intake, mammalian ketone body metabolism transfers energy substrates originally derived from fatty acyl chains within the liver to extrahepatic organs. We previously demonstrated that the mitochondrial enzyme coenzyme A (CoA) transferase [succinyl-CoA:3-oxoacid CoA transferase (SCOT), encoded by nuclear Oxct1] is required for oxidation of ketone bodies and that germline SCOT-knockout (KO) mice die within 48 h of birth because of hyperketonemic hypoglycemia. Here, we use novel transgenic and tissue-specific SCOT-KO mice to demonstrate that ketone bodies do not serve an obligate energetic role within highly ketolytic tissues during the ketogenic neonatal period or during starvation in the adult. Although transgene-mediated restoration of myocardial CoA transferase in germline SCOT-KO mice is insufficient to prevent lethal hyperketonemic hypoglycemia in the neonatal period, mice lacking CoA transferase selectively within neurons, cardiomyocytes, or skeletal myocytes are all viable as neonates. Like germline SCOT-KO neonatal mice, neonatal mice with neuronal CoA transferase deficiency exhibit increased cerebral glycolysis and glucose oxidation, and, while these neonatal mice exhibit modest hyperketonemia, they do not develop hypoglycemia. As adults, tissue-specific SCOT-KO mice tolerate starvation, exhibiting only modestly increased hyperketonemia. Finally, metabolic analysis of adult germline Oxct1(+/-) mice demonstrates that global diminution of ketone body oxidation yields hyperketonemia, but hypoglycemia emerges only during a protracted state of low carbohydrate intake. Together, these data suggest that, at the tissue level, ketone bodies are not a required energy substrate in the newborn period or during starvation, but rather that integrated ketone body metabolism mediates adaptation to ketogenic nutrient states.

  9. NADPH Oxidase Contributes to Resistance against Aggregatibacter actinomycetemcomitans-Induced Periodontitis in Mice.

    Science.gov (United States)

    Bast, Antje; Kubis, Helen; Holtfreter, Birte; Ribback, Silvia; Martin, Heiner; Schreiner, Helen C; Dominik, Malte J; Breitbach, Katrin; Dombrowski, Frank; Kocher, Thomas; Steinmetz, Ivo

    2017-02-01

    Aggregatibacter actinomycetemcomitans is a Gram-negative commensal bacterium of the oral cavity which has been associated with the pathogenesis of periodontitis with severe alveolar bone destruction. The role of host factors such as reactive oxygen and nitrogen intermediates in periodontal A. actinomycetemcomitans infection and progression to periodontitis is still ill-defined. Therefore, this study aimed to analyze the role of NADPH oxidase and inducible nitric oxide synthase (iNOS) in a murine model of A. actinomycetemcomitans-induced periodontitis. NADPH oxidase-deficient (gp91 phox knockout [KO]), iNOS-deficient (iNOS KO), and C57BL/6 wild-type mice were orally infected with A. actinomycetemcomitans and analyzed for bacterial colonization at various time points. Alveolar bone mineral density and alveolar bone volume were quantified by three-dimensional micro-computed tomography, and the degree of tissue inflammation was calculated by histological analyses. At 5 weeks after infection, A. actinomycetemcomitans persisted at significantly higher levels in the murine oral cavities of infected gp91 phox KO mice than in those of iNOS KO and C57BL/6 mice. Concomitantly, alveolar bone mineral density was significantly lower in all three infected groups than in uninfected controls, but with the highest loss of bone density in infected gp91 phox KO mice. Only infected gp91 phox KO mice revealed significant loss of alveolar bone volume and enhanced inflammatory cell infiltration, as well as an increased number of osteoclasts. Our results indicate that NADPH oxidase is important to control A. actinomycetemcomitans infection in the murine oral cavity and to prevent subsequent alveolar bone destruction and osteoclastogenesis. Copyright © 2017 American Society for Microbiology.

  10. IL-1 receptor-antagonist (IL-1Ra) knockout mice show anxiety-like behavior by aging.

    Science.gov (United States)

    Wakabayashi, Chisato; Numakawa, Tadahiro; Odaka, Haruki; Ooshima, Yoshiko; Kiyama, Yuji; Manabe, Toshiya; Kunugi, Hiroshi; Iwakura, Yoichiro

    2015-07-10

    Interleukin 1 (IL-1) plays a critical role in stress responses, and its mRNA is induced in the brain by restraint stress. Previously, we reported that IL-1 receptor antagonist (IL-1Ra) knockout (KO) mice, which lacked IL-1Ra molecules that antagonize the IL-1 receptor, showed anti-depression-like behavior via adrenergic modulation at the age of 8 weeks. Here, we report that IL-1Ra KO mice display an anxiety-like phenotype that is induced spontaneously by aging in the elevated plus-maze (EPM) test. This anxiety-like phenotype was improved by the administration of diazepam. The expression of the anxiety-related molecule glucocorticoid receptor (GR) was significantly reduced in 20-week-old but not in 11-week-old IL-1Ra KO mice compared to wild-type (WT) littermates. The expression of the mineralocorticoid receptor (MR) was not altered between IL-1Ra KO mice and WT littermates at either 11 or 20 weeks old. Analysis of monoamine concentration in the hippocampus revealed that tryptophan, the serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA), and the dopamine metabolite homovanillic acid (HVA) were significantly increased in 20-week-old IL-1Ra KO mice compared to littermate WT mice. These findings strongly suggest that the anxiety-like behavior observed in older mice was caused by the complicated alteration of monoamine metabolism and/or GR expression in the hippocampus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Effects of Nrf2 deficiency on arsenic metabolism in mice.

    Science.gov (United States)

    Wang, Huihui; Zhu, Jiayu; Li, Lu; Li, Yongfang; Lv, Hang; Xu, Yuanyuan; Sun, Guifan; Pi, Jingbo

    2017-12-15

    Inorganic arsenic (iAs) is a known toxicant and carcinogen. Worldwide arsenic exposure has become a threat to human health. The severity of arsenic toxicity is strongly correlated with the speed of arsenic metabolism (methylation) and clearance. Furthermore, oxidative stress is recognized as a major mechanism for arsenic-induced toxicity. Nuclear factor-E2-related factor 2 (Nrf2), a key regulator in cellular adaptive antioxidant response, is clearly involved in alleviation of arsenic-induced oxidative damage. Multiple studies demonstrate that Nrf2 deficiency mice are more vulnerable to arsenic-induced intoxication. However, what effect Nrf2 deficiency might have on arsenic metabolism in mice is still unknown. In the present study, we measured the key enzymes involved in arsenic metabolism in Nrf2-WT and Nrf2-KO mice. Our results showed that basal transcript levels of glutathione S-transferase omega 2 (Gsto2) were significantly higher and GST mu 1 (Gstm1) lower in Nrf2-KO mice compared to Nrf2-WT control. Arsenic speciation and methylation rate in liver and urine was then studied in mice treated with 5mg/kg sodium arsenite for 12h. Although there were some alterations in arsenic metabolism enzymes between Nrf2-WT and Nrf2-KO mice, the Nrf2 deficiency had no significant effect on arsenic methylation. These results suggest that the Nrf2-KO mice are more sensitive to arsenic than Nrf2-WT mainly because of differences in adaptive antioxidant detoxification capacity rather than arsenic methylation capacity. Copyright © 2017. Published by Elsevier Inc.

  12. Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase.

    Science.gov (United States)

    Bárez-López, Soledad; Bosch-García, Daniel; Gómez-Andrés, David; Pulido-Valdeolivas, Irene; Montero-Pedrazuela, Ana; Obregon, Maria Jesus; Guadaño-Ferraz, Ana

    2014-01-01

    Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4) but the intracellular concentrations of 3,5,3'-triiodothyronine (T3; the transcriptionally active hormone) in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2). To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO) did not find gross neurological alterations, possibly due to compensatory mechanisms. This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice). No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction) and skeletal muscle (33% reduction), but not in the cerebellum where other deiodinase (type 1) is expressed. The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders.

  13. Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase.

    Directory of Open Access Journals (Sweden)

    Soledad Bárez-López

    Full Text Available BACKGROUND: Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4 but the intracellular concentrations of 3,5,3'-triiodothyronine (T3; the transcriptionally active hormone in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2. To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO did not find gross neurological alterations, possibly due to compensatory mechanisms. AIM: This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. RESULTS: Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice. No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction and skeletal muscle (33% reduction, but not in the cerebellum where other deiodinase (type 1 is expressed. CONCLUSIONS: The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders.

  14. Salt-Sensitive Hypertension and Cardiac Hypertrophy in Transgenic Mice Expressing a Corin Variant Identified in African Americans

    Science.gov (United States)

    Wang, Wei; Cui, Yujie; Shen, Jianzhong; Jiang, Jingjing; Chen, Shenghan; Peng, Jianhao; Wu, Qingyu

    2012-01-01

    African Americans represent a high risk population for salt-sensitive hypertension and heart disease but the underlying mechanism remains unclear. Corin is a cardiac protease that regulates blood pressure by activating natriuretic peptides. A corin gene variant (T555I/Q568P) was identified in African Americans with hypertension and cardiac hypertrophy. In this study, we test the hypothesis that the corin variant contributes to the hypertensive and cardiac hypertrophic phenotype in vivo. Transgenic mice were generated to express wild-type or T555I/Q568P variant corin in the heart under the control of α-myosin heavy chain promoter. The mice were crossed into a corin knockout background to create KO/TgWT and KO/TgV mice that expressed WT or variant corin, respectively, in the heart. Functional studies showed that KO/TgV mice had significantly higher levels of pro-atrial natriuretic peptide in the heart compared with that in control KO/TgWT mice, indicating that the corin variant was defective in processing natriuretic peptides in vivo. By radiotelemetry, corin KO/TgV mice were found to have hypertension that was sensitive to dietary salt loading. The mice also developed cardiac hypertrophy at 12–14 months of age when fed a normal salt diet or at a younger age when fed a high salt diet. The phenotype of salt-sensitive hypertension and cardiac hypertrophy in KO/TgV mice closely resembles the pathological findings in African Americans who carry the corin variant. The results indicate that corin defects may represent an important mechanism in salt-sensitive hypertension and cardiac hypertrophy in African Americans. PMID:22987923

  15. A strong anti-inflammatory signature revealed by liver transcription profiling of Tmprss6-/- mice.

    Directory of Open Access Journals (Sweden)

    Michela Riba

    Full Text Available Control of systemic iron homeostasis is interconnected with the inflammatory response through the key iron regulator, the antimicrobial peptide hepcidin. We have previously shown that mice with iron deficiency anemia (IDA-low hepcidin show a pro-inflammatory response that is blunted in iron deficient-high hepcidin Tmprss6 KO mice. The transcriptional response associated with chronic hepcidin overexpression due to genetic inactivation of Tmprss6 is unknown. By using whole genome transcription profiling of the liver and analysis of spleen immune-related genes we identified several functional pathways differentially expressed in Tmprss6 KO mice, compared to IDA animals and thus irrespective of the iron status. In the effort of defining genes potentially targets of Tmprss6 we analyzed liver gene expression changes according to the genotype and independently of treatment. Tmprss6 inactivation causes down-regulation of liver pathways connected to immune and inflammatory response as well as spleen genes related to macrophage activation and inflammatory cytokines production. The anti-inflammatory status of Tmprss6 KO animals was confirmed by the down-regulation of pathways related to immunity, stress response and intracellular signaling in both liver and spleen after LPS treatment. Opposite to Tmprss6 KO mice, Hfe(-/- mice are characterized by iron overload with inappropriately low hepcidin levels. Liver expression profiling of Hfe(-/- deficient versus iron loaded mice show the opposite expression of some of the genes modulated by the loss of Tmprss6. Altogether our results confirm the anti-inflammatory status of Tmprss6 KO mice and identify new potential target pathways/genes of Tmprss6.

  16. Effect of adiponectin deficiency on intestinal damage and hematopoietic responses of mice exposed to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ponemone, Venkatesh; Fayad, Raja; Gove, Melissa E.; Pini, Maria [Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612 (United States); Fantuzzi, Giamila, E-mail: giamila@uic.edu [Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612 (United States)

    2010-08-07

    Adiponectin (APN) is an adipose tissue-derived cytokine that regulates insulin sensitivity and inflammation. It is also involved in modulation of cell proliferation by binding to various growth factors. Based on its known effects in modulating cell proliferation and oxidative stress, APN may potentially be involved in regulating tissue damage and repair following irradiation. Adiponectin KO mice and their WT littermates were exposed to a single whole-body dose of 3 or 6 Gy gamma radiation. Radiation-induced alterations were studied in jejunum, blood, bone marrow and thymus at days 1 and 5 post-irradiation and compared with sham-irradiated groups. In WT mice, irradiation did not significantly alter serum APN levels while inducing a significant decrease in serum leptin. Irradiation caused a significant reduction in thymocyte cellularity, with concomitant decrease in CD4{sup +}, CD8{sup +} and CD4{sup +}CD8{sup +} T cell populations, with no significant differences between WT and APN KO mice. Irradiation resulted in a significantly higher increase in the frequency of micronucleated reticulocytes in the blood of APN KO compared with WT mice, whereas frequency of micronucleated normochromatic erythrocytes in the bone marrow at day 5 was significantly higher in WT compared with APN KO mice. Finally, irradiation induced similar alterations in villus height and crypt cell proliferation in the jejunum of WT and APN KO mice. Jejunum explants from sham-irradiated APN KO mice produced higher levels of IL-6 compared with tissue from WT animals, but the difference was no longer apparent following irradiation. Our data indicate that APN deficiency does not play a significant role in modulating radiation-induced gastrointestinal injury in mice, while it may participate in regulation of damage to the hematopoietic system.

  17. Effect of adiponectin deficiency on intestinal damage and hematopoietic responses of mice exposed to gamma radiation

    International Nuclear Information System (INIS)

    Ponemone, Venkatesh; Fayad, Raja; Gove, Melissa E.; Pini, Maria; Fantuzzi, Giamila

    2010-01-01

    Adiponectin (APN) is an adipose tissue-derived cytokine that regulates insulin sensitivity and inflammation. It is also involved in modulation of cell proliferation by binding to various growth factors. Based on its known effects in modulating cell proliferation and oxidative stress, APN may potentially be involved in regulating tissue damage and repair following irradiation. Adiponectin KO mice and their WT littermates were exposed to a single whole-body dose of 3 or 6 Gy gamma radiation. Radiation-induced alterations were studied in jejunum, blood, bone marrow and thymus at days 1 and 5 post-irradiation and compared with sham-irradiated groups. In WT mice, irradiation did not significantly alter serum APN levels while inducing a significant decrease in serum leptin. Irradiation caused a significant reduction in thymocyte cellularity, with concomitant decrease in CD4 + , CD8 + and CD4 + CD8 + T cell populations, with no significant differences between WT and APN KO mice. Irradiation resulted in a significantly higher increase in the frequency of micronucleated reticulocytes in the blood of APN KO compared with WT mice, whereas frequency of micronucleated normochromatic erythrocytes in the bone marrow at day 5 was significantly higher in WT compared with APN KO mice. Finally, irradiation induced similar alterations in villus height and crypt cell proliferation in the jejunum of WT and APN KO mice. Jejunum explants from sham-irradiated APN KO mice produced higher levels of IL-6 compared with tissue from WT animals, but the difference was no longer apparent following irradiation. Our data indicate that APN deficiency does not play a significant role in modulating radiation-induced gastrointestinal injury in mice, while it may participate in regulation of damage to the hematopoietic system.

  18. Effect of GPR84 deletion on obesity and diabetes development in mice fed long chain or medium chain fatty acid rich diets.

    Science.gov (United States)

    Du Toit, Eugene; Browne, Liam; Irving-Rodgers, Helen; Massa, Helen M; Fozzard, Nicolette; Jennings, Michael P; Peak, Ian R

    2017-04-20

    Although there is good evidence showing that diets rich in medium chain fatty acids (MCFAs) have less marked obesogenic and diabetogenic effects than diets rich in long chain fatty acids (LCFAs), the role of the pro-inflammatory, medium chain fatty acid receptor (GPR84) in the aetiology of obesity and glucose intolerance is not well characterised. We set out to determine whether GPR84 expression influences obesity and glucose intolerance susceptibility in MCFA and LCFA rich diet fed mice. Wild type (WT) and GPR84 knockout (KO) mice were fed a control, MCFA or LCFA diet, and body mass, heart, liver and epididymal fat mass was assessed, as well as glucose tolerance and adipocyte size. LCFA diets increased body mass and decreased glucose tolerance in both WT and GPR84 KO animals while MCFA diets had no effect on these parameters. There were no differences in body weight when comparing WT and GPR84 KO mice on the respective diets. Glucose tolerance was also similar in WT and GPR84 KO mice irrespective of diet. Liver mass was increased following LCFA feeding in WT but not GPR84 KO mice. Hepatic triglyceride content was increased in GPR84 KO animals fed MCFA, and myocardial triglyceride content was increased in GPR84 KO animals fed LCFA. GPR84 deletion had no effects on body weight or glucose tolerance in mice fed either a high MCFA or LCFA diet. GPR84 may influence lipid metabolism, as GPR84 KO mice had smaller livers and increased myocardial triglyceride accumulation when fed LCFA diets, and increased liver triglyceride accumulation in responses to increased dietary MCFAs.

  19. Role of surfactant protein-A (SP-A) in lung injury in response to acute ozone exposure of SP-A deficient mice

    International Nuclear Information System (INIS)

    Haque, Rizwanul; Umstead, Todd M.; Ponnuru, Padmavathi; Guo Xiaoxuan; Hawgood, Samuel; Phelps, David S.; Floros, Joanna

    2007-01-01

    Millions are exposed to ozone levels above recommended limits, impairing lung function, causing epithelial damage and inflammation, and predisposing some individuals to pneumonia, asthma, and other lung conditions. Surfactant protein-A (SP-A) plays a role in host defense, the regulation of inflammation, and repair of tissue damage. We tested the hypothesis that the lungs of SP-A(-/-) (KO) mice are more susceptible to ozone-induced damage. We compared the effects of ozone on KO and wild type (WT) mice on the C57BL/6 genetic background by exposing them to 2 parts/million of ozone for 3 or 6 h and sacrificing them 0, 4, and 24 h later. Lungs were subject to bronchoalveolar lavage (BAL) or used to measure endpoints of oxidative stress and inflammation. Despite more total protein in BAL of KO mice after a 3 h ozone exposure, WT mice had increased oxidation of protein and had oxidized SP-A dimers. In KO mice there was epithelial damage as assessed by increased LDH activity and there was increased phospholipid content. In WT mice there were more BAL PMNs and elevated macrophage inflammatory protein (MIP)-2 and monocyte chemoattractant protein (MCP)-1. Changes in MIP-2 and MCP-1 were observed in both KO and WT, however mRNA levels differed. In KO mice MIP-2 mRNA levels changed little with ozone, but in WT levels they were significantly increased. In summary, several aspects of the inflammatory response differ between WT and KO mice. These in vivo findings appear to implicate SP-A in regulating inflammation and limiting epithelial damage in response to ozone exposure

  20. Glutathione-S-transferase-omega [MMA(V) reductase] knockout mice: Enzyme and arsenic species concentrations in tissues after arsenate administration

    International Nuclear Information System (INIS)

    Chowdhury, Uttam K.; Zakharyan, Robert A.; Hernandez, Alba; Avram, Mihaela D.; Kopplin, Michael J.; Aposhian, H. Vasken

    2006-01-01

    Inorganic arsenic is a human carcinogen to which millions of people are exposed via their naturally contaminated drinking water. Its molecular mechanisms of carcinogenicity have remained an enigma, perhaps because arsenate is biochemically transformed to at least five other arsenic-containing metabolites. In the biotransformation of inorganic arsenic, GSTO1 catalyzes the reduction of arsenate, MMA(V), and DMA(V) to the more toxic + 3 arsenic species. MMA(V) reductase and human (hGSTO1-1) are identical proteins. The hypothesis that GST-Omega knockout mice biotransformed inorganic arsenic differently than wild-type mice has been tested. The livers of male knockout (KO) mice, in which 222 bp of Exon 3 of the GSTO1 gene were eliminated, were analyzed by PCR for mRNA. The level of transcripts of the GSTO1 gene in KO mice was 3.3-fold less than in DBA/1lacJ wild-type (WT) mice. The GSTO2 transcripts were about two-fold less in the KO mouse. When KO and WT mice were injected intramuscularly with Na arsenate (4.16 mg As/kg body weight); tissues removed at 0.5, 1, 2, 4, 8, and 12 h after arsenate injection; and the arsenic species measured by HPLC-ICP-MS, the results indicated that the highest concentration of the recently discovered and very toxic MMA(III), a key biotransformant, was in the kidneys of both KO and WT mice. The highest concentration of DMA(III) was in the urinary bladder tissue for both the KO and WT mice. The MMA(V) reducing activity of the liver cytosol of KO mice was only 20% of that found in wild-type mice. There appears to be another enzyme(s) other than GST-O able to reduce arsenic(V) species but to a lesser extent. This and other studies suggest that each step of the biotransformation of inorganic arsenic has an alternative enzyme to biotransform the arsenic substrate

  1. Hyperactivity of Hypothalamic-Pituitary-Adrenal Axis Due to Dysfunction of the Hypothalamic Glucocorticoid Receptor in Sigma-1 Receptor Knockout Mice

    Directory of Open Access Journals (Sweden)

    Tingting Di

    2017-09-01

    Full Text Available Sigma-1 receptor knockout (σ1R-KO mice exhibit a depressive-like phenotype. Because σ1R is highly expressed in the neuronal cells of hypothalamic paraventricular nuclei (PVN, this study investigated the influence of σ1R deficiency on the regulation of the hypothalamic-pituitary-adrenocortical (HPA axis. Here, we show that the levels of basal serum corticosterone (CORT, adrenocorticotropic hormone (ACTH and corticotrophin releasing factor (CRF as well as the level of CRF mRNA in PVN did not significantly differ between adult male σ1R-KO mice and wild-type (WT mice. Acute mild restraint stress (AMRS induced a higher and more sustainable increase in activity of HPA axis and CRF expression in σ1R-KO mice. Percentage of dexamethasone (Dex-induced reduction in level of CORT was markedly attenuated in σ1R−/− mice. The levels of glucocorticoid receptor (GR and protein kinase C (PKC phosphorylation were reduced in the PVN of σ1R-KO mice and σ1R antagonist NE100-treated WT mice. The exposure to AMRS in σ1R-KO mice induced a stronger phosphorylation of cAMP-response element binding protein (CREB in PVN than that in WT mice. Intracerebroventricular (i.c.v. injection of PKC activator PMA for 3 days in σ1R-KO mice not only recovered the GR phosphorylation and the percentage of Dex-reduced CORT but also corrected the AMRS-induced hyperactivity of HPA axis and enhancement of CRF mRNA and CREB phosphorylation. Furthermore, the injection (i.c.v. of PMA in σ1R-KO mice corrected the prolongation of immobility time in forced swim test (FST and tail suspension test (TST. These results indicate that σ1R deficiency causes down-regulation of GR by reducing PKC phosphorylation, which attenuates GR-mediated feedback inhibition of HPA axis and facilitates the stress response of HPA axis leading to the production of depressive-like behaviors.

  2. Inhibitory Effects of North American Wild Rice on Monocyte Adhesion and Inflammatory Modulators in Low-Density Lipoprotein Receptor-Knockout Mice.

    Science.gov (United States)

    Moghadasian, Mohammed H; Zhao, Ruozhi; Ghazawwi, Nora; Le, Khuong; Apea-Bah, Franklin B; Beta, Trust; Shen, Garry X

    2017-10-18

    The present study examined the effects of wild rice on monocyte adhesion, inflammatory and fibrinolytic mediators in low-density lipoprotein receptor-knockout (LDLr-KO) mice. Male LDLr-KO mice received a cholesterol (0.06%, w/w)-supplemented diet with or without white or wild rice (60%, w/w) for 20 weeks. White rice significantly increased monocyte adhesion and abundances of monocyte chemoattractant protein-1, tissue necrosis factor-α, intracellular cell adhesion molecule-1, plasminogen activator inhibitor-1, urokinase plasminogen activator (uPA), and uPA receptor in aortae and hearts of LDLr-KO mice compared to the control diet. Wild rice inhibited monocyte adhesion to the aorta, atherosclerosis, and abundances of the inflammatory and fibrinolytic regulators in the cardiovascular tissue of LDLr-KO mice compared to white rice. White or wild rice did not significantly alter the levels of cholesterol, triglycerides, or antioxidant enzymes in plasma. The anti-atherosclerotic effect of wild rice may result from its inhibition on monocyte adhesion and inflammatory modulators in LDLr-KO mice.

  3. CD44 and Bak expression in IL-6 or TNF-alpha gene knockout mice after whole lung irradiation

    International Nuclear Information System (INIS)

    Sakai, Minako; Iwakawa, Mayumi; Ohta, Toshie; Tsujii, Hirohiko; Imai, Takashi; Iwakura, Yoichiro

    2008-01-01

    To understand the molecular mechanisms that underlie radiation pneumonitis, we examined whether knockout of the tumor necrosis factor (TNF) or the interleukin (IL)-6 gene could give mice an inherent resistance to radiation in the acute phase of alveolar damage after thoracic irradiation. The temporal expression of inflammation (CD44) and apoptosis (Bak) markers in lung after thoracic irradiation was measured to determine the degree of alveolar damage. At 4 weeks post-irradiation (10 Gy), small inflammatory foci were observed in all mice, but there were no obvious histological differences between control (C57BL/6JSlc), TNF-alpha knockout (TNF KO), and IL-6 knockout (IL-6 KO) mice. However, immunohistochemical analysis of CD44 and Bak expression over a time course of 2 weeks highlighted significant differences between the three groups. C57BL/6JSlc and TNF KO mice had increased numbers of both CD44-positive and Bak-positive cells after irradiation, while the IL-6 KO mice showed stable levels of CD44 and Bak. In conclusion, the radioresistant status of IL-6 KO mice in the acute phase of alveolar damage after irradiation suggested an important role for IL-6 in radiation pneumonitis. (author)

  4. A pathophysiological role of TRPV1 in ischemic injury after transient focal cerebral ischemia in mice

    Energy Technology Data Exchange (ETDEWEB)

    Miyanohara, Jun [Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University (Japan); Shirakawa, Hisashi, E-mail: shirakaw@pharm.kyoto-u.ac.jp [Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University (Japan); Sanpei, Kazuaki [Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University (Japan); Nakagawa, Takayuki [Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University (Japan); Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital (Japan); Kaneko, Shuji [Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University (Japan)

    2015-11-20

    Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel with high Ca{sup 2+} permeability, which functions as a polymodal nociceptor activated by heat, protons and several vanilloids, including capsaicin and anandamide. Although TRPV1 channels are widely distributed in the mammalian brain, their pathophysiological roles in the brain remain to be elucidated. In this study, we investigated whether TRPV1 is involved in cerebral ischemic injury using a middle cerebral artery (MCA) occlusion model in wild-type (WT) and TRPV1-knockout (KO) mice. For transient ischemia, the left MCA of C57BL/6 mice was occluded for 60 min and reperfused at 1 and 2 days after ischemia. We found that neurological and motor deficits, and infarct volumes in TRPV1-KO mice were lower than those of WT mice. Consistent with these results, intracerebroventricular injection of a TRPV1 antagonist, capsazepine (20 nmol), 30 min before the onset of ischemia attenuated neurological and motor deficits and improved infarct size without influencing cerebral blood flow in the occluded MCA territory. The protective effect of capsazepine on ischemic brain damage was not observed in TRPV1-KO mice. WT and TRPV1-KO mice did not show any differences with respect to the increased number of Iba1-positive microglia/macrophages, GFAP-positive astrocytes, and Gr1-positive neutrophils at 1 and 2 days after cerebral ischemia. Taken together, we conclude that brain TRPV1 channels are activated by ischemic stroke and cause neurological and motor deficits and infarction after brain ischemia. - Highlights: • We investigated whether TRPV1 is involved in transient ischemic brain damage in mice. • Neurological deficits and infarct volumes were lower in TRPV1-KO mice than in WT mice. • Injection of a TRPV1 antagonist, capsazepine, attenuated neurological deficits and improved infarct size. • No differences in astrocytic or microglial activation were observed between WT and TRPV1-KO mice.

  5. A pathophysiological role of TRPV1 in ischemic injury after transient focal cerebral ischemia in mice

    International Nuclear Information System (INIS)

    Miyanohara, Jun; Shirakawa, Hisashi; Sanpei, Kazuaki; Nakagawa, Takayuki; Kaneko, Shuji

    2015-01-01

    Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel with high Ca"2"+ permeability, which functions as a polymodal nociceptor activated by heat, protons and several vanilloids, including capsaicin and anandamide. Although TRPV1 channels are widely distributed in the mammalian brain, their pathophysiological roles in the brain remain to be elucidated. In this study, we investigated whether TRPV1 is involved in cerebral ischemic injury using a middle cerebral artery (MCA) occlusion model in wild-type (WT) and TRPV1-knockout (KO) mice. For transient ischemia, the left MCA of C57BL/6 mice was occluded for 60 min and reperfused at 1 and 2 days after ischemia. We found that neurological and motor deficits, and infarct volumes in TRPV1-KO mice were lower than those of WT mice. Consistent with these results, intracerebroventricular injection of a TRPV1 antagonist, capsazepine (20 nmol), 30 min before the onset of ischemia attenuated neurological and motor deficits and improved infarct size without influencing cerebral blood flow in the occluded MCA territory. The protective effect of capsazepine on ischemic brain damage was not observed in TRPV1-KO mice. WT and TRPV1-KO mice did not show any differences with respect to the increased number of Iba1-positive microglia/macrophages, GFAP-positive astrocytes, and Gr1-positive neutrophils at 1 and 2 days after cerebral ischemia. Taken together, we conclude that brain TRPV1 channels are activated by ischemic stroke and cause neurological and motor deficits and infarction after brain ischemia. - Highlights: • We investigated whether TRPV1 is involved in transient ischemic brain damage in mice. • Neurological deficits and infarct volumes were lower in TRPV1-KO mice than in WT mice. • Injection of a TRPV1 antagonist, capsazepine, attenuated neurological deficits and improved infarct size. • No differences in astrocytic or microglial activation were observed between WT and TRPV1-KO mice.

  6. Comprehensive behavioral study of mGluR3 knockout mice: implication in schizophrenia related endophenotypes

    Science.gov (United States)

    2014-01-01

    Background We previously performed systematic association studies of glutamate receptor gene family members with schizophrenia, and found positive associations of polymorphisms in the GRM3 (a gene of metabotropic glutamate receptor 3: mGluR3) with the disorder. Physiological roles of GRM3 in brain functions and its functional roles in the pathogenesis of schizophrenia remain to be resolved. Results We generated mGluR3 knockout (KO) mice and conducted comprehensive behavioral analyses. KO mice showed hyperactivity in the open field, light/dark transition, and 24-hour home cage monitoring tests, impaired reference memory for stressful events in the Porsolt forced swim test, impaired contextual memory in cued and contextual fear conditioning test, and impaired working memory in the T-Maze forced alternation task test. Hyperactivity and impaired working memory are known as endophenotypes of schizophrenia. We examined long-term synaptic plasticity by assessing long-term potentiation (LTP) in the CA1 region in the hippocampi of KO and wild-type (WT) mice. We observed no differences in the amplitude of LTP between the two genotypes, suggesting that mGluR3 is not essential for LTP in the CA1 region of the mouse hippocampus. As hyperactivity is typically associated with increased dopaminergic transmission, we performed in vivo microdialysis measurements of extracellular dopamine in the nucleus accumbens of KO and WT mice. We observed enhancements in the methamphetamine (MAP)-induced release of dopamine in KO mice. Conclusions These results demonstrate that a disturbance in the glutamate-dopamine interaction may be involved in the pathophysiology of schizophrenia-like behavior, such as hyperactivity in mGluR3 KO mice. PMID:24758191

  7. Rasgrf2 controls dopaminergic adaptations to alcohol in mice.

    Science.gov (United States)

    Easton, Alanna C; Rotter, Andrea; Lourdusamy, Anbarasu; Desrivières, Sylvane; Fernández-Medarde, Alberto; Biermann, Teresa; Fernandes, Cathy; Santos, Eugenio; Kornhuber, Johannes; Schumann, Gunter; Müller, Christian P

    2014-10-01

    Alcohol abuse leads to serious health problems with no effective treatment available. Recent evidence suggests a role for ras-specific guanine-nucleotide releasing factor 2 (RASGRF2) in alcoholism. Rasgrf2 is a calcium sensor and MAPK/ERK activating protein, which has been linked to neurotransmitter release and monoaminergic receptor adaptations. Rasgrf2 knock out (KO) mice do not develop a dopamine response in the nucleus accumbens after an alcohol challenge and show a reduced consumption of alcohol. The present study aims to further characterise the role of Rasgrf2 in dopaminergic activation beyond the nucleus accumbens following alcohol treatment. Using in vivo microdialysis we found that alcohol induces alterations in dopamine levels in the dorsal striatum between wildtype (WT) and Rasgrf2 KO mice. There was no difference in the expression of dopamine transporter (DAT), dopamine receptor regulating factor (DRRF), or dopamine D2 receptor (DRD2) mRNA in the brain between Rasgrf2 KO and WT mice. After sub-chronic alcohol treatment, DAT and DRRF, but not DRD2 mRNA expression differed between WT and Rasgrf2 KO mice. Brain adaptations were positively correlated with splenic expression levels. These data suggest that Rasgrf2 controls dopaminergic signalling and adaptations to alcohol also in other brain regions, beyond the nucleus accumbens. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. p21WAF1/Cip1/Sdi1 knockout mice respond to doxorubicin with reduced cardiotoxicity

    International Nuclear Information System (INIS)

    Terrand, Jerome; Xu, Beibei; Morrissy, Steve; Dinh, Thai Nho; Williams, Stuart; Chen, Qin M.

    2011-01-01

    Doxorubicin (Dox) is an antineoplastic agent that can cause cardiomyopathy in humans and experimental animals. As an inducer of reactive oxygen species and a DNA damaging agent, Dox causes elevated expression of p21 WAF1/Cip1/Sdi1 (p21) gene. Elevated levels of p21 mRNA and p21 protein have been detected in the myocardium of mice following Dox treatment. With chronic treatment of Dox, wild type (WT) animals develop cardiomyopathy evidenced by elongated nuclei, mitochondrial swelling, myofilamental disarray, reduced cardiac output, reduced ejection fraction, reduced left ventricular contractility, and elevated expression of ANF gene. In contrast, p21 knockout (p21KO) mice did not show significant changes in the same parameters in response to Dox treatment. In an effort to understand the mechanism of the resistance against Dox induced cardiomyopathy, we measured levels of antioxidant enzymes and found that p21KO mice did not contain elevated basal or inducible levels of glutathione peroxidase and catalase. Measurements of 6 circulating cytokines indicated elevation of IL-6, IL-12, IFNγ and TNFα in Dox treated WT mice but not p21KO mice. Dox induced elevation of IL-6 mRNA was detected in the myocardium of WT mice but not p21KO mice. While the mechanism of the resistance against Dox induced cardiomyopathy remains unclear, lack of inflammatory response may contribute to the observed cardiac protection in p21KO mice. -- Highlights: ► Doxorubicin induces p21 elevation in the myocardium. ► Doxorubicin causes dilated cardiomyopathy in wild type mice. ► p21 Knockout mice are resistant against doxorubicin induced cardiomyopathy. ► Lack of inflammatory response correlates with the resistance in p21 knockout mice.

  9. Sarcocystis jamaicensis n. sp., from Red-Tailed Hawks (Buteo jamaicensis) Definitive Host and IFN-γ Gene Knockout Mice as Experimental Intermediate Host.

    Science.gov (United States)

    Verma, S K; von Dohlen, A Rosypal; Mowery, J D; Scott, D; Rosenthal, B M; Dubey, J P; Lindsay, D S

    2017-10-01

    Here, we report a new species of Sarcocystis with red-tailed hawk (RTH, Buteo jamaicensis) as the natural definitive host and IFN-γ gene knockout (KO) mice as an experimental intermediate host in which sarcocysts form in muscle. Two RTHs submitted to the Carolina Raptor Center, Huntersville, North Carolina, were euthanized because they could not be rehabilitated and released. Fully sporulated 12.5 × 9.9-μm sized sporocysts were found in intestinal scrapings of both hawks. Sporocysts were orally fed to laboratory-reared outbred Swiss Webster mice (SW, Mus musculus) and also to KO mice. The sporocysts were infective for KO mice but not for SW mice. All SW mice remained asymptomatic, and neither schizonts nor sarcocysts were found in any SW mice euthanized on days 54, 77, 103 (n = 2) or 137 post-inoculation (PI). The KO mice developed neurological signs and were necropsied between 52 to 68 days PI. Schizonts/merozoites were found in all KO mice euthanized on days 52, 55 (n = 3), 59, 61 (n = 2), 66, and 68 PI and they were confined to the brain. The predominant lesion was meningoencephalitis characterized by perivascular cuffs, granulomas, and necrosis of the neural tissue. The schizonts/merozoites were located in neural tissue and were apparently extravascular. Brain homogenates from infected KO mice were infective to KO mice by subcutaneous inoculation and when seeded on to CV-1 cells. Microscopic sarcocysts were found in skeletal muscles of 5 of 8 KO mice euthanized between 55-61 days PI. Only a few sarcocysts were detected. Sarcocysts were microscopic, up to 3.5 mm long. When viewed with light microscopy, the sarcocyst wall appeared thin (<1 μm thick) and smooth. By transmission electron microscopy, the sarcocyst wall classified as "type 1j" (new designation). Molecular characterization using 18S rRNA, 28S rRNA, ITS-1, and cox1 genes revealed a close relationship with Sarcocystis microti and Sarcocystis glareoli; both species infect birds as definitive hosts

  10. CDKL5 deficiency entails sleep apneas in mice.

    Science.gov (United States)

    Lo Martire, Viviana; Alvente, Sara; Bastianini, Stefano; Berteotti, Chiara; Silvani, Alessandro; Valli, Alice; Viggiano, Rocchina; Ciani, Elisabetta; Zoccoli, Giovanna

    2017-08-01

    A recently discovered neurodevelopmental disorder caused by the mutation of the cyclin-dependent kinase-like 5 gene (CDKL5) entails complex autistic-like behaviours similar to Rett syndrome, but its impact upon physiological functions remains largely unexplored. Sleep-disordered breathing is common and potentially life-threatening in patients with Rett syndrome; however, evidence is limited in children with CDKL5 disorder, and is lacking altogether in adults. The aim of this study was to test whether the breathing pattern during sleep differs between adult Cdkl5 knockout (Cdkl5-KO) and wild-type (WT) mice. Using whole-body plethysmography, sleep and breathing were recorded non-invasively for 8 h during the light period. Sleep apneas occurred more frequently in Cdkl5-KO than in WT mice. A receiver operating characteristic (ROC) analysis discriminated Cdkl5-KO significantly from WT mice based on sleep apnea occurrence. These data demonstrate that sleep apneas are a core feature of CDKL5 disorder and a respiratory biomarker of CDKL5 deficiency in mice, and suggest that sleep-disordered breathing should be evaluated routinely in CDKL5 patients. © 2017 European Sleep Research Society.

  11. Phosphodiesterase-1b (Pde1b) knockout mice are resistant to forced swim and tail suspension induced immobility and show upregulation of Pde10a.

    Science.gov (United States)

    Hufgard, Jillian R; Williams, Michael T; Skelton, Matthew R; Grubisha, Olivera; Ferreira, Filipa M; Sanger, Helen; Wright, Mary E; Reed-Kessler, Tracy M; Rasmussen, Kurt; Duman, Ronald S; Vorhees, Charles V

    2017-06-01

    Major depressive disorder is a leading cause of suicide and disability. Despite this, current antidepressants provide insufficient efficacy in more than 60% of patients. Most current antidepressants are presynaptic reuptake inhibitors; postsynaptic signal regulation has not received as much attention as potential treatment targets. We examined the effects of disruption of the postsynaptic cyclic nucleotide hydrolyzing enzyme, phosphodiesterase (PDE) 1b, on depressive-like behavior and the effects on PDE1B protein in wild-type (WT) mice following stress. Littermate knockout (KO) and WT mice were tested in locomotor activity, tail suspension (TST), and forced swim tests (FST). FST was also used to compare the effects of two antidepressants, fluoxetine and bupropion, in KO versus WT mice. Messenger RNA (mRNA) expression changes were also determined. WT mice underwent acute or chronic stress and markers of stress and PDE1B expression were examined. Pde1b KO mice exhibited decreased TST and FST immobility. When treated with antidepressants, both WT and KO mice showed decreased FST immobility and the effect was additive in KO mice. Mice lacking Pde1b had increased striatal Pde10a mRNA expression. In WT mice, acute and chronic stress upregulated PDE1B expression while PDE10A expression was downregulated after chronic but not acute stress. PDE1B is a potential therapeutic target for depression treatment because of the antidepressant-like phenotype seen in Pde1b KO mice.

  12. Glutathione-S-transferase A3 knockout mice are sensitive to acute cytotoxic and genotoxic effects of aflatoxin B1

    International Nuclear Information System (INIS)

    Ilic, Zoran; Crawford, Dana; Egner, Patricia A.; Sell, Stewart

    2010-01-01

    Aflatoxin B1 (AFB1) is a major risk factor for hepatocellular carcinoma (HCC) in humans. However, mice, a major animal model for the study of AFB1 carcinogenesis, are resistant, due to high constitutive expression, in the mouse liver, of glutathione S-transferase A3 subunit (mGSTA3) that is lacking in humans. Our objective was to establish that a mouse model for AFB1 toxicity could be used to study mechanisms of toxicity that are relevant for human disease, i.e., an mGSTA3 knockout (KO) mouse that responds to toxicants such as AFB1 in a manner similar to humans. Exons 3-6 of the mGSTA3 were replaced with a neomycin cassette by homologous recombination. Southern blotting, RT-PCR, Western blotting, and measurement of AFB1-N 7 -DNA adduct formation were used to evaluate the mGSTA3 KO mice. The KO mice have deletion of exons 3-6 of the mGSTA3 gene, as expected, as well as a lack of mGSTA3 expression at the mRNA and protein levels. Three hours after injection of 5 mg/kg AFB1, mGSTA3 KO mice have more than 100-fold more AFB1-N 7 -DNA adducts in their livers than do similarly treated wild-type (WT) mice. In addition, the mGSTA3 KO mice die of massive hepatic necrosis, at AFB1 doses that have minimal toxic effects in WT mice. We conclude that mGSTA3 KO mice are sensitive to the acute cytotoxic and genotoxic effects of AFB1, confirming the crucial role of GSTA3 subunit in protection of normal mice against AFB1 toxicity. We propose the mGSTA3 KO mouse as a useful model with which to study the interplay of risk factors leading to HCC development in humans, as well as for testing of additional possible functions of mGSTA3.

  13. Endurance performance and energy metabolism during exercise in mice with a muscle-specific defect in the control of branched-chain amino acid catabolism.

    Science.gov (United States)

    Xu, Minjun; Kitaura, Yasuyuki; Ishikawa, Takuya; Kadota, Yoshihiro; Terai, Chihaya; Shindo, Daichi; Morioka, Takashi; Ota, Miki; Morishita, Yukako; Ishihara, Kengo; Shimomura, Yoshiharu

    2017-01-01

    It is known that the catabolism of branched-chain amino acids (BCAAs) in skeletal muscle is suppressed under normal and sedentary conditions but is promoted by exercise. BCAA catabolism in muscle tissues is regulated by the branched-chain α-keto acid (BCKA) dehydrogenase complex, which is inactivated by phosphorylation by BCKA dehydrogenase kinase (BDK). In the present study, we used muscle-specific BDK deficient mice (BDK-mKO mice) to examine the effect of uncontrolled BCAA catabolism on endurance exercise performance and skeletal muscle energy metabolism. Untrained control and BDK-mKO mice showed the same performance; however, the endurance performance enhanced by 2 weeks of running training was somewhat, but significantly less in BDK-mKO mice than in control mice. Skeletal muscle of BDK-mKO mice had low levels of glycogen. Metabolome analysis showed that BCAA catabolism was greatly enhanced in the muscle of BDK-mKO mice and produced branched-chain acyl-carnitine, which induced perturbation of energy metabolism in the muscle. These results suggest that the tight regulation of BCAA catabolism in muscles is important for homeostasis of muscle energy metabolism and, at least in part, for adaptation to exercise training.

  14. Endurance performance and energy metabolism during exercise in mice with a muscle-specific defect in the control of branched-chain amino acid catabolism.

    Directory of Open Access Journals (Sweden)

    Minjun Xu

    Full Text Available It is known that the catabolism of branched-chain amino acids (BCAAs in skeletal muscle is suppressed under normal and sedentary conditions but is promoted by exercise. BCAA catabolism in muscle tissues is regulated by the branched-chain α-keto acid (BCKA dehydrogenase complex, which is inactivated by phosphorylation by BCKA dehydrogenase kinase (BDK. In the present study, we used muscle-specific BDK deficient mice (BDK-mKO mice to examine the effect of uncontrolled BCAA catabolism on endurance exercise performance and skeletal muscle energy metabolism. Untrained control and BDK-mKO mice showed the same performance; however, the endurance performance enhanced by 2 weeks of running training was somewhat, but significantly less in BDK-mKO mice than in control mice. Skeletal muscle of BDK-mKO mice had low levels of glycogen. Metabolome analysis showed that BCAA catabolism was greatly enhanced in the muscle of BDK-mKO mice and produced branched-chain acyl-carnitine, which induced perturbation of energy metabolism in the muscle. These results suggest that the tight regulation of BCAA catabolism in muscles is important for homeostasis of muscle energy metabolism and, at least in part, for adaptation to exercise training.

  15. Metabolomic profiles of arsenic (+3 oxidation state) methyltransferase knockout mice: Effect of sex and arsenic exposure

    Science.gov (United States)

    Huang, Madelyn C.; Douillet, Christelle; Su, Mingming; Zhou, Kejun; Wu, Tao; Chen, Wenlian; Galanko, Joseph A.; Drobná, Zuzana; Saunders, R. Jesse; Martin, Elizabeth; Fry, Rebecca C.; Jia, Wei; Stýblo, Miroslav

    2016-01-01

    Arsenic (+3 oxidation state) methyltransferase (As3mt) is the key enzyme in the pathway for methylation of inorganic arsenic (iAs). Altered As3mt expression and AS3MT polymorphism have been linked to changes in iAs metabolism and in susceptibility to iAs toxicity in laboratory models and in humans. As3mt-knockout mice have been used to study the association between iAs metabolism and adverse effects of iAs exposure. However, little is known about systemic changes in metabolism of these mice and how these changes lead to their increased susceptibility to iAs toxicity. Here, we compared plasma and urinary metabolomes of male and female wild-type (WT) and As3mt-KO (KO) C57BL6 mice and examined metabolomic shifts associated with iAs exposure in drinking water. Surprisingly, exposure to 1 ppm As elicited only small changes in the metabolite profiles of either WT or KO mice. In contrast, comparisons of KO mice with WT mice revealed significant differences in plasma and urinary metabolites associated with lipid (phosphatidylcholines, cytidine, acyl-carnitine), amino acid (hippuric acid, acetylglycine, urea), and carbohydrate (L-sorbose, galactonic acid, gluconic acid) metabolism. Notably, most of these differences were sex-specific. Sex-specific differences were also found between WT and KO mice in plasma triglyceride and lipoprotein cholesterol levels. Some of the differentially changed metabolites (phosphatidylcholines, carnosine, and sarcosine) are substrates or products of reactions catalyzed by other methyltransferases. These results suggest that As3mt KO alters major metabolic pathways in a sex-specific manner, independent of iAs treatment, and that As3mt may be involved in other cellular processes beyond iAs methylation. PMID:26883664

  16. Increased anxiety and fear memory in adult mice lacking type 2 deiodinase.

    Science.gov (United States)

    Bárez-López, Soledad; Montero-Pedrazuela, Ana; Bosch-García, Daniel; Venero, César; Guadaño-Ferraz, Ana

    2017-10-01

    A euthyroid state in the brain is crucial for its adequate development and function. Impairments in thyroid hormones (THs; T3 or 3,5,3'-triiodothyronine and T4 or thyroxine) levels and availability in brain can lead to neurological alterations and to psychiatric disorders, particularly mood disorders. The thyroid gland synthetizes mainly T4, which is secreted to circulating blood, however, most actions of THs are mediated by T3, the transcriptionally active form. In the brain, intracellular concentrations of T3 are modulated by the activity of type 2 (D2) and type 3 (D3) deiodinases. In the present work, we evaluated learning and memory capabilities and anxiety-like behavior at adult stages in mice lacking D2 (D2KO) and we analyzed the impact of D2-deficiency on TH content and on the expression of T3-dependent genes in the amygdala and the hippocampus. We found that D2KO mice do not present impairments in spatial learning and memory, but they display emotional alterations with increased anxiety-like behavior as well as enhanced auditory-cued fear memory and spontaneous recovery of fear memory following extinction. D2KO mice also presented reduced T3 content in the hippocampus and decreased expression of the T3-dependent gene Dio3 in the amygdala suggesting a hypothyroid status in this structure. We propose that the emotional dysfunctions found in D2KO mice can arise from the reduced T3 content in their brain, which consequently leads to alterations in gene expression with functional consequences. We found a downregulation in the gene encoding for the calcium-binding protein calretinin (Calb2) in the amygdala of D2KO mice that could affect the GABAergic transmission. The current findings in D2KO mice can provide insight into emotional disorders present in humans with DIO2 polymorphisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Delayed liver regeneration after partial hepatectomy in adiponectin knockout mice

    International Nuclear Information System (INIS)

    Ezaki, Hisao; Yoshida, Yuichi; Saji, Yukiko; Takemura, Takayo; Fukushima, Juichi; Matsumoto, Hitoshi; Kamada, Yoshihiro; Wada, Akira; Igura, Takumi; Kihara, Shinji; Funahashi, Tohru; Shimomura, Iichiro; Tamura, Shinji; Kiso, Shinichi; Hayashi, Norio

    2009-01-01

    We previously demonstrated that adiponectin has anti-fibrogenic and anti-inflammatory effects in the liver of mouse models of various liver diseases. However, its role in liver regeneration remains unclear. The aim of this study was to determine the role of adiponectin in liver regeneration. We assessed liver regeneration after partial hepatectomy in wild-type (WT) and adiponectin knockout (KO) mice. We analyzed DNA replication and various signaling pathways involved in cell proliferation and metabolism. Adiponectin KO mice exhibited delayed DNA replication and increased lipid accumulation in the regenerating liver. The expression levels of peroxisome proliferator-activated receptor (PPAR) α and carnitine palmitoyltransferase-1 (CPT-1), a key enzyme in mitochondrial fatty acid oxidation, were decreased in adiponectin KO mice, suggesting possible contribution of altered fat metabolism to these phenomena. Collectively, the present results highlight a new role for adiponectin in the process of liver regeneration.

  18. Altered lipid partitioning and glucocorticoid availability in CBG-deficient male mice with diet-induced obesity.

    Science.gov (United States)

    Gulfo, José; Ledda, Angelo; Serra, Elisabet; Cabot, Cristina; Esteve, Montserrat; Grasa, Mar

    2016-08-01

    To evaluate how deficiency in corticosteroid-binding globulin (CBG), the specific carrier of glucocorticoids, affects glucocorticoid availability and adipose tissue in obesity. C57BL/6 (WT) and CBG-deficient (KO) male mice were fed during 12 weeks with standard or hyperlipidic diet (HL). Glucocorticoid availability and metabolic parameters were assessed. Body weight and food intake were increased in KO compared with WT mice fed a standard diet and were similar when fed a HL diet. Expression of CBG was found in white adipose tissue by immunochemistry, real-time PCR, and Western blot. In obesity, the subcutaneous depot developed less in KO mice compared with WT, which was associated with a minor adipocyte area and peroxisome proliferator-activated receptor-γ expression. Conversely, the epididymal depot displayed higher weight and adipocyte area in KO than in WT mice. CBG deficiency caused a fall of hepatic 11β-hydroxysteroid dehydrogenase type 2 expression and an increase in epidymal adipose tissue, particularly in HL mice. Deficiency in CBG drives lipid partitioning from subcutaneous to visceral adipose depot under a context of lipid excess and differentially modulates 11β-hydroxysteroid dehydrogenase type 2 expression. © 2016 The Obesity Society.

  19. p21{sup WAF1/Cip1/Sdi1} knockout mice respond to doxorubicin with reduced cardiotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Terrand, Jerome; Xu, Beibei; Morrissy, Steve; Dinh, Thai Nho [Department of Pharmacology,College of Medicine, University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724 (United States); Williams, Stuart [Biomedical Engineering Program, College of Medicine, University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724 (United States); Chen, Qin M., E-mail: qchen@email.arizona.edu [Department of Pharmacology,College of Medicine, University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724 (United States)

    2011-11-15

    Doxorubicin (Dox) is an antineoplastic agent that can cause cardiomyopathy in humans and experimental animals. As an inducer of reactive oxygen species and a DNA damaging agent, Dox causes elevated expression of p21{sup WAF1/Cip1/Sdi1} (p21) gene. Elevated levels of p21 mRNA and p21 protein have been detected in the myocardium of mice following Dox treatment. With chronic treatment of Dox, wild type (WT) animals develop cardiomyopathy evidenced by elongated nuclei, mitochondrial swelling, myofilamental disarray, reduced cardiac output, reduced ejection fraction, reduced left ventricular contractility, and elevated expression of ANF gene. In contrast, p21 knockout (p21KO) mice did not show significant changes in the same parameters in response to Dox treatment. In an effort to understand the mechanism of the resistance against Dox induced cardiomyopathy, we measured levels of antioxidant enzymes and found that p21KO mice did not contain elevated basal or inducible levels of glutathione peroxidase and catalase. Measurements of 6 circulating cytokines indicated elevation of IL-6, IL-12, IFN{gamma} and TNF{alpha} in Dox treated WT mice but not p21KO mice. Dox induced elevation of IL-6 mRNA was detected in the myocardium of WT mice but not p21KO mice. While the mechanism of the resistance against Dox induced cardiomyopathy remains unclear, lack of inflammatory response may contribute to the observed cardiac protection in p21KO mice. -- Highlights: Black-Right-Pointing-Pointer Doxorubicin induces p21 elevation in the myocardium. Black-Right-Pointing-Pointer Doxorubicin causes dilated cardiomyopathy in wild type mice. Black-Right-Pointing-Pointer p21 Knockout mice are resistant against doxorubicin induced cardiomyopathy. Black-Right-Pointing-Pointer Lack of inflammatory response correlates with the resistance in p21 knockout mice.

  20. Sex-dependent alterations in motor and anxiety-like behavior of aged bacterial peptidoglycan sensing molecule 2 knockout mice.

    Science.gov (United States)

    Arentsen, Tim; Khalid, Roksana; Qian, Yu; Diaz Heijtz, Rochellys

    2018-01-01

    Peptidoglycan recognition proteins (PGRPs) are key sensing-molecules of the innate immune system that specifically detect bacterial peptidoglycan (PGN) and its derivates. PGRPs have recently emerged as potential key regulators of normal brain development and behavior. To test the hypothesis that PGRPs play a role in motor control and anxiety-like behavior in later life, we used 15-month old male and female peptidoglycan recognition protein 2 (Pglyrp2) knockout (KO) mice. Pglyrp2 is an N-acetylmuramyl-l-alanine amidase that hydrolyzes PGN between the sugar backbone and the peptide chain (which is unique among the mammalian PGRPs). Using a battery of behavioral tests, we demonstrate that Pglyrp2 KO male mice display decreased levels of anxiety-like behavior compared with wild type (WT) males. In contrast, Pglyrp2 KO female mice show reduced rearing activity and increased anxiety-like behavior compared to WT females. In the accelerated rotarod test, however, Pglyrp2 KO female mice performed better compared to WT females (i.e., they had longer latency to fall off the rotarod). Further, Pglyrp2 KO male mice exhibited decreased expression levels of synaptophysin, gephyrin, and brain-derived neurotrophic factor in the frontal cortex, but not in the amygdala. Pglyrp2 KO female mice exhibited increased expression levels of spinophilin and alpha-synuclein in the frontal cortex, while exhibiting decreased expression levels of synaptophysin, gephyrin and spinophilin in the amygdala. Our findings suggest a novel role for Pglyrp2asa key regulator of motor and anxiety-like behavior in late life. Copyright © 2017. Published by Elsevier Inc.

  1. Small heterodimer partner (SHP deficiency protects myocardia from lipid accumulation in high fat diet-fed mice.

    Directory of Open Access Journals (Sweden)

    Jung Hun Ohn

    Full Text Available The small heterodimer partner (SHP regulates fatty acid oxidation and lipogenesis in the liver by regulating peroxisome proliferator-activated receptor (PPAR γ expression. SHP is also abundantly expressed in the myocardium. We investigated the effect of SHP expression on myocardia assessing not only heart structure and function but also lipid metabolism and related gene expression in a SHP deletion animal model. Transcriptional profiling with a microarray revealed that genes participating in cell growth, cytokine signalling, phospholipid metabolism, and extracellular matrix are up-regulated in the myocardia of SHP knockout (KO mice compared to those of wild-type (WT mice (nominal p value < 0.05. Consistent with these gene expression changes, the left ventricular masses of SHP KO mice were significantly higher than WT mice (76.8 ± 20.5 mg vs. 52.8 ± 6.8 mg, P = 0.0093. After 12 weeks of high fat diet (HFD, SHP KO mice gained less weight and exhibited less elevation in serum-free fatty acid and less ectopic lipid accumulation in the myocardium than WT mice. According to microarray analysis, genes regulated by PPARγ1 and PPARα were down-regulated in myocardia of SHP KO mice compared to their expression in WT mice after HFD, suggesting that the reduction in lipid accumulation in the myocardium resulted from a decrease in lipogenesis regulated by PPARγ. We confirmed the reduced expression of PPARγ1 and PPARα target genes such as CD36, medium-chain acyl-CoA dehydrogenase, long-chain acyl-CoA dehydrogenase, and very long-chain acyl-CoA dehydrogenase by SHP KO after HFD.

  2. Endogenous murine tau promotes neurofibrillary tangles in 3xTg-AD mice without affecting cognition.

    Science.gov (United States)

    Baglietto-Vargas, David; Kitazawa, Masashi; Le, Elaine J; Estrada-Hernandez, Tatiana; Rodriguez-Ortiz, Carlos J; Medeiros, Rodrigo; Green, Kim N; LaFerla, Frank M

    2014-02-01

    Recent studies on tauopathy animal models suggest that the concomitant expression of the endogenous murine tau delays the pathological accumulation of human tau, and interferes with the disease progression. To elucidate the role of endogenous murine tau in a model with both plaques and tangles, we developed a novel transgenic mouse model by crossing 3xTg-AD with mtauKO mice (referred to as 3xTg-AD/mtauKO mice). Therefore, this new model allows us to determine the pathological consequences of the murine tau. Here, we show that 3xTg-AD/mtauKO mice have lower tau loads in both soluble and insoluble fractions, and lower tau hyperphosphorylation level in the soluble fraction relative to 3xTg-AD mice. In the 3xTg-AD model endogenous mouse tau is hyperphosphorylated and significantly co-aggregates with human tau. Despite the deletion of the endogenous tau gene in 3xTg-AD/mtauKO mice, cognitive dysfunction was equivalent to 3xTg-AD mice, as there was no additional impairment on a spatial memory task, and thus despite increased tau phosphorylation, accumulation and NFTs in 3xTg-AD mice no further effects on cognition are seen. These findings provide better understanding about the role of endogenous tau to Alzheimer's disease (AD) pathology and for developing new AD models. © 2013.

  3. IDH2 Deficiency Aggravates Fructose-Induced NAFLD by Modulating Hepatic Fatty Acid Metabolism and Activating Inflammatory Signaling in Female Mice

    Directory of Open Access Journals (Sweden)

    Jeong Hoon Pan

    2018-05-01

    Full Text Available Fructose is a strong risk factor for non-alcoholic fatty liver disease (NAFLD, resulting from the disruption of redox systems by excessive reactive oxygen species production in the liver cells. Of note, recent epidemiological studies indicated that women are more prone to developing metabolic syndrome in response to fructose-sweetened beverages. Hence, we examined whether disruption of the redox system through a deletion of NADPH supplying mitochondrial enzyme, NADP+-dependent isocitrate dehydrogenase (IDH2, exacerbates fructose-induced NAFLD conditions in C57BL/6 female mice. Wild-type (WT and IDH2 knockout (KO mice were treated with either water or 34% fructose water over six weeks. NAFLD phenotypes and key proteins and mRNAs involved in the inflammatory pathway (e.g., NF-κB p65 and IL-1β were assessed. Hepatic lipid accumulation was significantly increased in IDH2 KO mice fed fructose compared to the WT counterpart. Neutrophil infiltration was observed only in IDH2 KO mice fed fructose. Furthermore, phosphorylation of NF-κB p65 and expression of IL-1β was remarkably upregulated in IDH2 KO mice fed fructose, and expression of IκBα was decreased by fructose treatment in both WT and IDH2 KO groups. For the first time, we report our novel findings that IDH2 KO female mice may be more susceptible to fructose-induced NAFLD and the associated inflammatory response, suggesting a mechanistic role of IDH2 in metabolic diseases.

  4. Minimal Effects of Age and Exposure to a Noisy Environment on Hearing in Alpha9 Nicotinic Receptor Knockout Mice

    Directory of Open Access Journals (Sweden)

    Amanda M. Lauer

    2017-06-01

    Full Text Available Studies have suggested a role of weakened medial olivocochlear (OC efferent feedback in accelerated hearing loss and increased susceptibility to noise. The present study investigated the progression of hearing loss with age and exposure to a noisy environment in medial OC-deficient mice. Alpha9 nicotinic acetylcholine receptor knockout (α9KO and wild types were screened for hearing loss using auditory brainstem responses. α9KO mice housed in a quiet environment did not show increased hearing loss compared to wild types in young adulthood and middle age. Challenging the medial OC system by housing in a noisy environment did not increase hearing loss in α9KO mice compared to wild types. ABR wave 1 amplitudes also did not show differences between α9KO mice and wild types. These data suggest that deficient medial OC feedback does not result in early onset of hearing loss.

  5. Ethanol-related behaviors in mice lacking the sigma-1 receptor.

    Science.gov (United States)

    Valenza, Marta; DiLeo, Alyssa; Steardo, Luca; Cottone, Pietro; Sabino, Valentina

    2016-01-15

    The Sigma-1 receptor (Sig-1R) is a chaperone protein that has been implicated in drug abuse and addiction. Multiple studies have characterized the role the Sig-1R plays in psychostimulant addiction; however, fewer studies have specifically investigated its role in alcohol addiction. We have previously shown that antagonism of the Sig-1R reduces excessive drinking and motivation to drink, whereas agonism induces binge-like drinking in rodents. The objectives of these studies were to investigate the impact of Sig-1R gene deletion in C57Bl/6J mice on ethanol drinking and other ethanol-related behaviors. We used an extensive panel of behavioral tests to examine ethanol actions in male, adult mice lacking Oprs1, the gene encoding the Sig-1R. To compare ethanol drinking behavior, Sig-1 knockout (KO) and wild type (WT) mice were subject to a two-bottle choice, continuous access paradigm with different concentrations of ethanol (3-20% v/v) vs. water. Consumption of sweet and bitter solutions was also assessed in Sig-1R KO and WT mice. Finally, motor stimulant sensitivity, taste aversion and ataxic effects of ethanol were assessed. Sig-1R KO mice displayed higher ethanol intake compared to WT mice; the two genotypes did not differ in their sweet or bitter taste perception. Sig-1R KO mice showed lower sensitivity to ethanol stimulant effects, but greater sensitivity to its taste aversive effects. Ethanol-induced sedation was instead unaltered in the mutants. Our results prove that the deletion of the Sig-1R increases ethanol consumption, likely by decreasing its rewarding effects, and therefore indicating that the Sig-1R is involved in modulation of the reinforcing effects of alcohol. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Glycogen synthase kinase 3α regulates urine concentrating mechanism in mice

    DEFF Research Database (Denmark)

    Nørregaard, Rikke; Tao, Shixin; Nilsson, Line

    2015-01-01

    vasopressin. When water deprived, they failed to concentrate their urine to the same level as WT littermates. The addition of 1-desamino-8-d-arginine vasopressin to isolated inner medullary collecting ducts increased the cAMP response in WT mice, but this response was reduced in GSK3αKO mice, suggesting......KO mice, the polyuric response was markedly reduced. This study demonstrates, for the first time, that GSK3α could play a crucial role in renal urine concentration and suggest that GSK3α might be one of the initial targets of Li(+) in LiCl-induced nephrogenic diabetes insipidus....

  7. D4 receptor deficiency in mice has limited effects on impulsivity and novelty seeking.

    Science.gov (United States)

    Helms, C M; Gubner, N R; Wilhelm, C J; Mitchell, S H; Grandy, D K

    2008-09-01

    Alleles of the human dopamine D(4) receptor (D(4)R) gene (DRD4.7) have repeatedly been found to correlate with novelty seeking, substance abuse, pathological gambling, and attention-deficit hyperactivity disorder (ADHD). If these various psychopathologies are a result of attenuated D(4)R-mediated signaling, mice lacking D(4)Rs (D(4)KO) should be more impulsive than wild-type (WT) mice and exhibit more novelty seeking. However, in our study, D(4)KO and WT mice showed similar levels of impulsivity as measured by delay discounting performance and response inhibition on a Go/No-go test, suggesting that D(4)R-mediated signaling may not affect impulsivity. D(4)KO mice were more active than WT mice in the first 5 min of a novel open field test, suggesting greater novelty seeking. For both genotypes, more impulsive mice habituated less in the novel open field. These data suggest that the absence of D(4)Rs is not sufficient to cause psychopathologies associated with heightened impulsivity and novelty seeking.

  8. Deletion of fibroblast growth factor 22 (FGF22) causes a depression-like phenotype in adult mice.

    Science.gov (United States)

    Williams, Aislinn J; Yee, Patricia; Smith, Mitchell C; Murphy, Geoffrey G; Umemori, Hisashi

    2016-07-01

    Specific growth factors induce formation and differentiation of excitatory and inhibitory synapses, and are essential for brain development and function. Fibroblast growth factor 22 (FGF22) is important for specifying excitatory synapses during development, including in the hippocampus. Mice with a genetic deletion of FGF22 (FGF22KO) during development subsequently have fewer hippocampal excitatory synapses in adulthood. As a result, FGF22KO mice are resistant to epileptic seizure induction. In addition to playing a key role in learning, the hippocampus is known to mediate mood and anxiety. Here, we explored whether loss of FGF22 alters affective, anxiety or social cognitive behaviors in mice. We found that relative to control mice, FGF22KO mice display longer duration of floating and decreased latency to float in the forced swim test, increased immobility in the tail suspension test, and decreased preference for sucrose in the sucrose preference test, which are all suggestive of a depressive-like phenotype. No differences were observed between control and FGF22KO mice in other behavioral assays, including motor, anxiety, or social cognitive tests. These results suggest a novel role for FGF22 specifically in affective behaviors. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Fra halt ko til taberko

    DEFF Research Database (Denmark)

    Thomsen, Peter

    2009-01-01

    En halt ko kan meget nemt ende som en taberko, hvis der ikke gribes ind i tide. Ubehandlede haltheder vil ofte være  starten på en ond cirkel, som ender med, at koen bliver en taberko. Udgivelsesdato: 2009......En halt ko kan meget nemt ende som en taberko, hvis der ikke gribes ind i tide. Ubehandlede haltheder vil ofte være  starten på en ond cirkel, som ender med, at koen bliver en taberko. Udgivelsesdato: 2009...

  10. Elevation of endogenous anandamide impairs LTP, learning, and memory through CB1 receptor signaling in mice.

    Science.gov (United States)

    Basavarajappa, Balapal S; Nagre, Nagaraja N; Xie, Shan; Subbanna, Shivakumar

    2014-07-01

    In rodents, many exogenous and endogenous cannabinoids, such as anandamide (AEA) and 2-arachidonyl glycerol (2-AG), have been shown to play an important role in certain hippocampal memory processes. However, the mechanisms by which endogenous AEA regulate this processes are not well understood. Here the effects of AEA on long-term potentiation (LTP), hippocampal-dependent learning and memory tasks, pERK1/2, pCaMKIV, and pCREB signaling events in both cannabinoid receptor type 1 (CB1R) wild-type (WT) and knockout (KO) mice were assessed following administration of URB597, an inhibitor of the fatty acid amide hydrolase (FAAH). Acute administration of URB597 enhanced AEA levels without affecting the levels of 2-AG or CB1R in the hippocampus and neocortex as compared to vehicle. In hippocampal slices, URB597 impaired LTP in CB1R WT but not in KO littermates. URB597 impaired object recognition, spontaneous alternation and spatial memory in the Y-maze test in CB1R WT mice but not in KO mice. Furthermore, URB597 enhanced ERK phosphorylation in WT without affecting total ERK levels in WT or KO mice. URB597 impaired CaMKIV and CREB phosphorylation in WT but not in KO mice. CB1R KO mice have a lower pCaMKIV/CaMKIV ratio and higher pCREB/CREB ratio as compared to WT littermates. Our results indicate that pharmacologically elevated AEA impair LTP, learning and memory and inhibit CaMKIV and CREB phosphorylation, via the activation of CB1Rs. Collectively, these findings also suggest that pharmacological elevation of AEA beyond normal concentrations is also detrimental for the underlying physiological responses. © 2014 Wiley Periodicals, Inc.

  11. Activation of PPARγ Ameliorates Spatial Cognitive Deficits through Restoring Expression of AMPA Receptors in Seipin Knock-Out Mice.

    Science.gov (United States)

    Zhou, Libin; Chen, Tingting; Li, Guoxi; Wu, Chaoming; Wang, Conghui; Li, Lin; Sha, Sha; Chen, Lei; Liu, George; Chen, Ling

    2016-01-27

    A characteristic phenotype of congenital generalized lipodystrophy 2 (CGL2) that is caused by loss-of-function of seipin gene is mental retardation. Here, we show that seipin deficiency in hippocampal CA1 pyramidal cells caused the reduction of peroxisome proliferator-activated receptor gamma (PPARγ). Twelve-week-old systemic seipin knock-out mice and neuronal seipin knock-out (seipin-nKO) mice, but not adipose seipin knock-out mice, exhibited spatial cognitive deficits as assessed by the Morris water maze and Y-maze, which were ameliorated by the treatment with the PPARγ agonist rosiglitazone (rosi). In addition, seipin-nKO mice showed the synaptic dysfunction and the impairment of NMDA receptor-dependent LTP in hippocampal CA1 regions. The density of AMPA-induced current (IAMPA) in CA1 pyramidal cells and GluR1/GluR2 expression were significantly reduced in seipin-nKO mice, whereas the NMDA-induced current (INMDA) and NR1/NR2 expression were not altered. Rosi treatment in seipin-nKO mice could correct the decrease in expression and activity of AMPA receptor (AMPAR) and was accompanied by recovered synaptic function and LTP induction. Furthermore, hippocampal ERK2 and CREB phosphorylation in seipin-nKO mice were reduced and this could be rescued by rosi treatment. Rosi treatment in seipin-nKO mice elevated BDNF concentration. The MEK inhibitor U0126 blocked rosi-restored AMPAR expression and LTP induction in seipin-nKO mice, but the Trk family inhibitor K252a did not. These findings indicate that the neuronal seipin deficiency selectively suppresses AMPAR expression through reducing ERK-CREB activities, leading to the impairment of LTP and spatial memory, which can be rescued by PPARγ activation. Congenital generalized lipodystrophy 2 (CGL2), caused by loss-of-function mutation of seipin gene, is characterized by mental retardation. By the generation of systemic or neuronal seipin knock-out mice, the present study provides in vivo evidence that neuronal seipin

  12. Partial neuroprotection by nNOS inhibition during profound asphyxia in preterm fetal sheep.

    Science.gov (United States)

    Drury, Paul P; Davidson, Joanne O; van den Heuij, Lotte G; Tan, Sidhartha; Silverman, Richard B; Ji, Haitao; Blood, Arlin B; Fraser, Mhoyra; Bennet, Laura; Gunn, Alistair Jan

    2013-12-01

    Preterm brain injury is partly associated with hypoxia-ischemia starting before birth. Excessive nitric oxide production during HI may cause nitrosative stress, leading to cell membrane and mitochondrial damage. We therefore tested the hypothesis that therapy with a new, selective neuronal nitric oxide synthase (nNOS) inhibitor, JI-10 (0.022mg/kg bolus, n=8), given 30min before 25min of complete umbilical cord occlusion was protective in preterm fetal sheep at 101-104day gestation (term is 147days), compared to saline (n=8). JI-10 had no effect on fetal blood pressure, heart rate, carotid and femoral blood flow, total EEG power, nuchal activity, temperature or intracerebral oxygenation on near-infrared spectroscopy during or after occlusion. JI-10 was associated with later onset of post-asphyxial seizures compared with saline (p<0.05), and attenuation of the subsequent progressive loss of cytochrome oxidase (p<0.05). After 7days recovery, JI-10 was associated with improved neuronal survival in the caudate nucleus (p<0.05), but not the putamen or hippocampus, and more CNPase positive oligodendrocytes in the periventricular white matter (p<0.05). In conclusion, prophylactic nNOS inhibition before profound asphyxia was associated with delayed onset of seizures, slower decline of cytochrome oxidase and partial white and gray matter protection, consistent with protection of mitochondrial function. © 2013.

  13. Mechanism of hyperphagia contributing to obesity in brain-derived neurotrophic factor knockout mice.

    Science.gov (United States)

    Fox, E A; Biddinger, J E; Jones, K R; McAdams, J; Worman, A

    2013-01-15

    Global-heterozygous and brain-specific homozygous knockouts (KOs) of brain-derived neurotrophic factor (BDNF) cause late- and early-onset obesity, respectively, both involving hyperphagia. Little is known about the mechanism underlying this hyperphagia or whether BDNF loss from peripheral tissues could contribute to overeating. Since global-homozygous BDNF-KO is perinatal lethal, a BDNF-KO that spared sufficient brainstem BDNF to support normal health was utilized to begin to address these issues. Meal pattern and microstructure analyses suggested overeating of BDNF-KO mice was mediated by deficits in both satiation and satiety that resulted in increased meal size and frequency and implicated a reduction of vagal signaling from the gut to the brain. Meal-induced c-Fos activation in the nucleus of the solitary tract, a more direct measure of vagal afferent signaling, however, was not decreased in BDNF-KO mice, and thus was not consistent with a vagal afferent role. Interestingly though, meal-induced c-Fos activation was increased in the dorsal motor nucleus of the vagus nerve (DMV) of BDNF-KO mice. This could imply that augmentation of vago-vagal digestive reflexes occurred (e.g., accommodation), which would support increased meal size and possibly increased meal number by reducing the increase in intragastric pressure produced by a given amount of ingesta. Additionally, vagal sensory neuron number in BDNF-KO mice was altered in a manner consistent with the increased meal-induced activation of the DMV. These results suggest reduced BDNF causes satiety and satiation deficits that support hyperphagia, possibly involving augmentation of vago-vagal reflexes mediated by central pathways or vagal afferents regulated by BDNF levels. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Muscarinic supersensitivity and impaired receptor desensitization in G protein-coupled receptor kinase 5-deficient mice.

    Science.gov (United States)

    Gainetdinov, R R; Bohn, L M; Walker, J K; Laporte, S A; Macrae, A D; Caron, M G; Lefkowitz, R J; Premont, R T

    1999-12-01

    G protein-coupled receptor kinase 5 (GRK5) is a member of a family of enzymes that phosphorylate activated G protein-coupled receptors (GPCR). To address the physiological importance of GRK5-mediated regulation of GPCRs, mice bearing targeted deletion of the GRK5 gene (GRK5-KO) were generated. GRK5-KO mice exhibited mild spontaneous hypothermia as well as pronounced behavioral supersensitivity upon challenge with the nonselective muscarinic agonist oxotremorine. Classical cholinergic responses such as hypothermia, hypoactivity, tremor, and salivation were enhanced in GRK5-KO animals. The antinociceptive effect of oxotremorine was also potentiated and prolonged. Muscarinic receptors in brains from GRK5-KO mice resisted oxotremorine-induced desensitization, as assessed by oxotremorine-stimulated [5S]GTPgammaS binding. These data demonstrate that elimination of GRK5 results in cholinergic supersensitivity and impaired muscarinic receptor desensitization and suggest that a deficit of GPCR desensitization may be an underlying cause of behavioral supersensitivity.

  15. LPS-induced systemic inflammation is more severe in P2Y12 null mice.

    Science.gov (United States)

    Liverani, Elisabetta; Rico, Mario C; Yaratha, Laxmikausthubha; Tsygankov, Alexander Y; Kilpatrick, Laurie E; Kunapuli, Satya P

    2014-02-01

    Thienopyridines are a class of antiplatelet drugs that are metabolized in the liver to several metabolites, of which only one active metabolite can irreversibly antagonize the platelet P2Y12 receptor. Possible effects of these drugs and the role of activated platelets in inflammatory responses have also been investigated in a variety of animal models, demonstrating that thienopyridines could alter inflammation. However, it is not clear whether it is caused only by the P2Y12 antagonism or whether off-target effects of other metabolites also intervene. To address this question, we investigated P2Y12 KO mice during a LPS-induced model of systemic inflammation, and we treated these KO mice with a thienopyridine drug (clopidogrel). Contrary to the reported effects of clopidogrel, numbers of circulating WBCs and plasma levels of cytokines were increased in LPS-exposed KO mice compared with WT in this inflammation model. Moreover, both spleen and bone marrow show an increase in cell content, suggesting a role for P2Y12 in regulation of bone marrow and spleen cellular composition. Finally, the injury was more severe in the lungs of KO mice compared with WT. Interestingly, clopidogrel treatments also exerted protective effects in KO mice, suggesting off-target effects for this drug. In conclusion, the P2Y12 receptor plays an important role during LPS-induced inflammation, and this signaling pathway may be involved in regulating cell content in spleen and bone marrow during LPS systemic inflammation. Furthermore, clopidogrel may have effects that are independent of P2Y12 receptor blockade.

  16. Mice deficient in CD38 develop an attenuated form of collagen type II-induced arthritis.

    Science.gov (United States)

    Postigo, Jorge; Iglesias, Marcos; Cerezo-Wallis, Daniela; Rosal-Vela, Antonio; García-Rodríguez, Sonia; Zubiaur, Mercedes; Sancho, Jaime; Merino, Ramón; Merino, Jesús

    2012-01-01

    CD38, a type II transmembrane glycoprotein expressed in many cells of the immune system, is involved in cell signaling, migration and differentiation. Studies in CD38 deficient mice (CD38 KO mice) indicate that this molecule controls inflammatory immune responses, although its involvement in these responses depends on the disease model analyzed. Here, we explored the role of CD38 in the control of autoimmune responses using chicken collagen type II (col II) immunized C57BL/6-CD38 KO mice as a model of collagen-induced arthritis (CIA). We demonstrate that CD38 KO mice develop an attenuated CIA that is accompanied by a limited joint induction of IL-1β and IL-6 expression, by the lack of induction of IFNγ expression in the joints and by a reduction in the percentages of invariant NKT (iNKT) cells in the spleen. Immunized CD38 KO mice produce high levels of circulating IgG1 and low of IgG2a anti-col II antibodies in association with reduced percentages of Th1 cells in the draining lymph nodes. Altogether, our results show that CD38 participates in the pathogenesis of CIA controlling the number of iNKT cells and promoting Th1 inflammatory responses.

  17. Mice deficient in CD38 develop an attenuated form of collagen type II-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Jorge Postigo

    Full Text Available CD38, a type II transmembrane glycoprotein expressed in many cells of the immune system, is involved in cell signaling, migration and differentiation. Studies in CD38 deficient mice (CD38 KO mice indicate that this molecule controls inflammatory immune responses, although its involvement in these responses depends on the disease model analyzed. Here, we explored the role of CD38 in the control of autoimmune responses using chicken collagen type II (col II immunized C57BL/6-CD38 KO mice as a model of collagen-induced arthritis (CIA. We demonstrate that CD38 KO mice develop an attenuated CIA that is accompanied by a limited joint induction of IL-1β and IL-6 expression, by the lack of induction of IFNγ expression in the joints and by a reduction in the percentages of invariant NKT (iNKT cells in the spleen. Immunized CD38 KO mice produce high levels of circulating IgG1 and low of IgG2a anti-col II antibodies in association with reduced percentages of Th1 cells in the draining lymph nodes. Altogether, our results show that CD38 participates in the pathogenesis of CIA controlling the number of iNKT cells and promoting Th1 inflammatory responses.

  18. Autoimmune gastro-pancreatitis with anti-protein disulfide isomerase-associated 2 autoantibody in Aire-deficient BALB/cAnN mice.

    Directory of Open Access Journals (Sweden)

    Hironori Kurisaki

    Full Text Available Although the autoimmune regulator (Aire knockout (KO mouse model has been reported to present various organ-specific autoimmune diseases depending on genetic background, autoimmune pancreatitis in mice of BALB/c background has not yet been reported. Here, we report that Aire KO mice with BALB/cAnN background showed significant lymphoid cell infiltration in the pancreas and stomach. To examine whether the phenotype in the pancreas and stomach is due to autoimmune reaction associated with autoantibody production, indirect immunofluorescence staining followed by Western blot analysis was performed. Consequently, the autoantibody against pancreas and stomach was detected in the sera of Aire KO mice, and the target antigen of the autoantibody was identified as protein disulfide isomerase-associated 2 (Pdia2, which was reported to be expressed preferentially in the pancreas and stomach. Thus, Aire KO mice of BALB/cAnN background can serve as a useful animal model for autoimmune gastro-pancreatitis with anti-Pdia2 autoantibody production.

  19. Autoimmune gastro-pancreatitis with anti-protein disulfide isomerase-associated 2 autoantibody in Aire-deficient BALB/cAnN mice.

    Science.gov (United States)

    Kurisaki, Hironori; Nagao, Yukihiro; Nagafuchi, Seiho; Mitsuyama, Masao

    2013-01-01

    Although the autoimmune regulator (Aire) knockout (KO) mouse model has been reported to present various organ-specific autoimmune diseases depending on genetic background, autoimmune pancreatitis in mice of BALB/c background has not yet been reported. Here, we report that Aire KO mice with BALB/cAnN background showed significant lymphoid cell infiltration in the pancreas and stomach. To examine whether the phenotype in the pancreas and stomach is due to autoimmune reaction associated with autoantibody production, indirect immunofluorescence staining followed by Western blot analysis was performed. Consequently, the autoantibody against pancreas and stomach was detected in the sera of Aire KO mice, and the target antigen of the autoantibody was identified as protein disulfide isomerase-associated 2 (Pdia2), which was reported to be expressed preferentially in the pancreas and stomach. Thus, Aire KO mice of BALB/cAnN background can serve as a useful animal model for autoimmune gastro-pancreatitis with anti-Pdia2 autoantibody production.

  20. Hepatic metabolism affects the atropselective disposition of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) in mice.

    Science.gov (United States)

    Wu, Xianai; Barnhart, Christopher; Lein, Pamela J; Lehmler, Hans-Joachim

    2015-01-06

    To understand the role of hepatic vs extrahepatic metabolism in the disposition of chiral PCBs, we studied the disposition of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) and its hydroxylated metabolites (HO-PCBs) in mice with defective hepatic metabolism due to the liver-specific deletion of cytochrome P450 oxidoreductase (KO mice). Female KO and congenic wild type (WT) mice were treated with racemic PCB 136, and levels and chiral signatures of PCB 136 and HO-PCBs were determined in tissues and excreta 3 days after PCB administration. PCB 136 tissue levels were higher in KO compared to WT mice. Feces was a major route of PCB metabolite excretion, with 2,2',3,3',6,6'-hexachlorobiphenyl-5-ol being the major metabolite recovered from feces. (+)-PCB 136, the second eluting PCB 136 atropisomers, was enriched in all tissues and excreta. The second eluting atropisomers of the HO-PCBs metabolites were enriched in blood and liver; 2,2',3,3',6,6'-hexachlorobiphenyl-5-ol in blood was an exception and displayed an enrichment of the first eluting atropisomers. Fecal HO-PCB levels and chiral signatures changed with time and differed between KO and WT mice, with larger HO-PCB enantiomeric fractions in WT compared to KO mice. Our results demonstrate that hepatic and, possibly, extrahepatic cytochrome P450 (P450) enzymes play a role in the disposition of PCBs.

  1. Mice with ablated adult brain neurogenesis are not impaired in antidepressant response to chronic fluoxetine.

    Science.gov (United States)

    Jedynak, Paulina; Kos, Tomasz; Sandi, Carmen; Kaczmarek, Leszek; Filipkowski, Robert K

    2014-09-01

    The neurogenesis hypothesis of major depression has two main facets. One states that the illness results from decreased neurogenesis while the other claims that the very functioning of antidepressants depends on increased neurogenesis. In order to verify the latter, we have used cyclin D2 knockout mice (cD2 KO mice), known to have virtually no adult brain neurogenesis, and we demonstrate that these mice successfully respond to chronic fluoxetine. After unpredictable chronic mild stress, mutant mice showed depression-like behavior in forced swim test, which was eliminated with chronic fluoxetine treatment, despite its lack of impact on adult hippocampal neurogenesis in cD2 KO mice. Our results suggest that new neurons are not indispensable for the action of antidepressants such as fluoxetine. Using forced swim test and tail suspension test, we also did not observe depression-like behavior in control cD2 KO mice, which argues against the link between decreased adult brain neurogenesis and major depression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Attenuated lung fibrosis in interleukin 6 knock-out mice after C-ion irradiation to lung

    International Nuclear Information System (INIS)

    Saito-Fujita, Tomoko; Iwakawa, Mayumi; Nakamura, Etsuko; Nakawatari, Miyako; Fujita, Hidetoshi; Moritake, Takashi; Imai, Takashi

    2011-01-01

    There is a great deal of evidence that a cyclic cascade of inflammatory cytokines, together with the activation of macrophages, is initiated very early after irradiation to develop lung fibrosis in a late phase. To understand the persistent effects of cytokines, the cytokine gene of knock out or transgenic mouse is one of the useful tools. In this study, we evaluated a role of a key molecule, interleukin-6 (IL-6), in the late-phase inflammatory response and subsequent fibrotic changes after irradiation using wild-type (WT) and IL-6 knock out (IL-6 KO) mice. The mice underwent thoracic irradiation with 10 Gy of C-ion beam or sham-irradiation and were examined by histology. Immunoreactivity for IL-6 was induced at the site of bronchiolar epithelium, in pneumocytes and in monocytes by C-ion irradiation. At 24 weeks after irradiation, the infiltration of macrophages, detected by positive immunohistological staining with Mac3 antibody, was observed in alveolar spaces both in WT and IL-6 KO mice. The thickening of bronchiolar and alveolar walls exhibited in WT mice, but not KO mice, and fibrotic changes detected by Masson-Trichrome staining, were observed only in the lungs of WT mice, while it was attenuated in IL-6 KO mice. These results indicated that IL-6 might not be essential for activating macrophages in the late phase, but plays an important role for fibrotic changes of the alveolar wall after irradiation. (author)

  3. Loss of GluN2D subunit results in social recognition deficit, social stress, 5-HT2C receptor dysfunction, and anhedonia in mice.

    Science.gov (United States)

    Yamamoto, Hideko; Kamegaya, Etsuko; Hagino, Yoko; Takamatsu, Yukio; Sawada, Wakako; Matsuzawa, Maaya; Ide, Soichiro; Yamamoto, Toshifumi; Mishina, Masayoshi; Ikeda, Kazutaka

    2017-01-01

    The N-methyl-d-aspartate (NMDA) receptor channel is involved in various physiological functions, including learning and memory. The GluN2D subunit of the NMDA receptor has low expression in the mature brain, and its role is not fully understood. In the present study, the effects of GluN2D subunit deficiency on emotional and cognitive function were investigated in GluN2D knockout (KO) mice. We found a reduction of motility (i.e., a depressive-like state) in the tail suspension test and a reduction of sucrose preference (i.e., an anhedonic state) in GluN2D KO mice that were group-housed with littermates. Despite apparently normal olfactory function and social interaction, GluN2D KO mice exhibited a decrease in preference for social novelty, suggesting a deficit in social recognition or memory. Golgi-Cox staining revealed a reduction of the complexity of dendritic trees in the accessory olfactory bulb in GluN2D KO mice, suggesting a deficit in pheromone processing pathway activation, which modulates social recognition. The deficit in social recognition may result in social stress in GluN2D KO mice. Isolation housing is a procedure that has been shown to reduce stress in mice. Interestingly, 3-week isolation and treatment with agomelatine or the 5-hydroxytryptamine-2C (5-HT 2C ) receptor antagonist SB242084 reversed the anhedonic-like state in GluN2D KO mice. In contrast, treatment with the 5-HT 2C receptor agonist CP809101 induced depressive- and anhedonic-like states in isolated GluN2D KO mice. These results suggest that social stress that is caused by a deficit in social recognition desensitizes 5-HT 2c receptors, followed by an anhedonic- and depressive-like state, in GluN2D KO mice. The GluN2D subunit of the NMDA receptor appears to be important for the recognition of individuals and development of normal emotionality in mice. 5-HT 2C receptor antagonism may be a therapeutic target for treating social stress-induced anhedonia. This article is part of the Special

  4. Mice deficient in PAPP-A show resistance to the development of diabetic nephropathy.

    Science.gov (United States)

    Mader, Jessica R; Resch, Zachary T; McLean, Gary R; Mikkelsen, Jakob H; Oxvig, Claus; Marler, Ronald J; Conover, Cheryl A

    2013-10-01

    We investigated pregnancy-associated plasma protein-A (PAPP-A) in diabetic nephropathy. Normal human kidney showed specific staining for PAPP-A in glomeruli, and this staining was markedly increased in diabetic kidney. To assess the possible contribution of PAPP-A in the development of diabetic nephropathy, we induced diabetes with streptozotocin in 14-month-old WT and Papp-A knockout (KO) mice. Renal histopathology was evaluated after 4 months of stable hyperglycemia. Kidneys from diabetic WT mice showed multiple abnormalities including thickening of Bowman's capsule (100% of mice), increased glomerular size (80% of mice), tubule dilation (80% of mice), and mononuclear cell infiltration (90% of mice). Kidneys of age-matched non-diabetic WT mice had similar evidence of tubule dilation and mononuclear cell infiltration to those of diabetic WT mice, indicating that these changes were predominantly age-related. However, thickened Bowman's capsule and increased glomerular size appeared specific for the experimental diabetes. Kidneys from diabetic Papp-A KO mice had significantly reduced or no evidence of changes in Bowman's capsule thickening and glomerular size. There was also a shift to larger mesangial area and increased macrophage staining in diabetic WT mice compared with Papp-A KO mice. In summary, elevated PAPP-A expression in glomeruli is associated with diabetic nephropathy in humans and absence of PAPP-A is associated with resistance to the development of indicators of diabetic nephropathy in mice. These data suggest PAPP-A as a potential therapeutic target for diabetic nephropathy.

  5. Dopamine Release and Uptake Impairments and Behavioral Alterations Observed in Mice that Model Fragile X Mental Retardation Syndrome.

    Science.gov (United States)

    Fulks, Jenny L; O'Bryhim, Bliss E; Wenzel, Sara K; Fowler, Stephen C; Vorontsova, Elena; Pinkston, Jonathan W; Ortiz, Andrea N; Johnson, Michael A

    2010-10-20

    In this study we evaluated the relationship between amphetamine-induced behavioral alterations and dopamine release and uptake characteristics in Fmr1 knockout (Fmr1 KO) mice, which model fragile X syndrome. The behavioral analyses, obtained at millisecond temporal resolution and 2 mm spatial resolution using a force-plate actometer, revealed that Fmr1 KO mice express a lower degree of focused stereotypy compared to wild type (WT) control mice after injection with 10 mg/kg (ip) amphetamine. To identify potentially related neurochemical mechanisms underlying this phenomenon, we measured electrically-evoked dopamine release and uptake using fast-scan cyclic voltammetry at carbon-fiber microelectrodes in striatal brain slices. At 10 weeks of age, dopamine release per pulse, which is dopamine release corrected for differences in uptake, was unchanged. However, at 15 (the age of behavioral testing) and 20 weeks of age, dopamine per pulse and the maximum rate of dopamine uptake was diminished in Fmr1 KO mice compared to WT mice. Dopamine uptake measurements, obtained at different amphetamine concentrations, indicated that dopamine transporters in both genotypes have equal affinities for amphetamine. Moreover, dopamine release measurements from slices treated with quinpirole, a D2-family receptor agonist, rule out enhanced D2 autoreceptor sensitivity as a mechanism of release inhibition. However, dopamine release, uncorrected for uptake and normalized against the corresponding pre-drug release peaks, increased in Fmr1 KO mice, but not in WT mice. Collectively, these data are consistent with a scenario in which a decrease in extracellular dopamine levels in the striatum result in diminished expression of focused stereotypy in Fmr1 KO mice.

  6. Altered social behaviours in neurexin 1α knockout mice resemble core symptoms in neurodevelopmental disorders.

    Directory of Open Access Journals (Sweden)

    Hannah Mary Grayton

    Full Text Available BACKGROUND: Copy number variants have emerged as an important genomic cause of common, complex neurodevelopmental disorders. These usually change copy number of multiple genes, but deletions at 2p16.3, which have been associated with autism, schizophrenia and mental retardation, affect only the neurexin 1 gene, usually the alpha isoform. Previous analyses of neurexin 1α (Nrxn1α knockout (KO mouse as a model of these disorders have revealed impairments in synaptic transmission but failed to reveal defects in social behaviour, one of the core symptoms of autism. METHODS: We performed a detailed investigation of the behavioural effects of Nrxn1α deletion in mice bred onto a pure genetic background (C57BL/6J to gain a better understanding of its role in neurodevelopmental disorders. Wildtype, heterozygote and homozygote Nrxn1α KO male and female mice were tested in a battery of behavioural tests (n = 9-16 per genotype, per sex. RESULTS: In homozygous Nrxn1α KO mice, we observed altered social approach, reduced social investigation, and reduced locomotor activity in novel environments. In addition, male Nrxn1α KO mice demonstrated an increase in aggressive behaviours. CONCLUSIONS: These are the first experimental data that associate a deletion of Nrxn1α with alterations of social behaviour in mice. Since this represents one of the core symptom domains affected in autism spectrum disorders and schizophrenia in humans, our findings suggest that deletions within NRXN1 found in patients may be responsible for the impairments seen in social behaviours, and that the Nrxn1α KO mice are a useful model of human neurodevelopmental disorder.

  7. Altered Social Behaviours in Neurexin 1α Knockout Mice Resemble Core Symptoms in Neurodevelopmental Disorders

    Science.gov (United States)

    Grayton, Hannah Mary; Missler, Markus

    2013-01-01

    Background Copy number variants have emerged as an important genomic cause of common, complex neurodevelopmental disorders. These usually change copy number of multiple genes, but deletions at 2p16.3, which have been associated with autism, schizophrenia and mental retardation, affect only the neurexin 1 gene, usually the alpha isoform. Previous analyses of neurexin 1α (Nrxn1α) knockout (KO) mouse as a model of these disorders have revealed impairments in synaptic transmission but failed to reveal defects in social behaviour, one of the core symptoms of autism. Methods We performed a detailed investigation of the behavioural effects of Nrxn1α deletion in mice bred onto a pure genetic background (C57BL/6J) to gain a better understanding of its role in neurodevelopmental disorders. Wildtype, heterozygote and homozygote Nrxn1α KO male and female mice were tested in a battery of behavioural tests (n = 9–16 per genotype, per sex). Results In homozygous Nrxn1α KO mice, we observed altered social approach, reduced social investigation, and reduced locomotor activity in novel environments. In addition, male Nrxn1α KO mice demonstrated an increase in aggressive behaviours. Conclusions These are the first experimental data that associate a deletion of Nrxn1α with alterations of social behaviour in mice. Since this represents one of the core symptom domains affected in autism spectrum disorders and schizophrenia in humans, our findings suggest that deletions within NRXN1 found in patients may be responsible for the impairments seen in social behaviours, and that the Nrxn1α KO mice are a useful model of human neurodevelopmental disorder. PMID:23840597

  8. Knock out of S1P3 receptor signaling attenuates inflammation and fibrosis in bleomycin-induced lung injury mice model.

    Directory of Open Access Journals (Sweden)

    Ken Murakami

    Full Text Available Sphingosine-1-phosphate (S1P is a bioactive sphingolipid metabolite involved in many critical cellular processes, including proliferation, migration, and angiogenesis, through interaction with a family of five G protein-coupled receptors (S1P1-5. Some reports have implicated S1P as an important inflammatory mediator of the pathogenesis of airway inflammation, but the role of S1P3 in the pathogenesis of lung diseases is not completely understood. We used S1P3-deficient (knockout (KO mice to clarify the role of S1P3 receptor signaling in the pathogenesis of pulmonary inflammation and fibrosis using a bleomycin-induced model of lung injury. On the seventh day after bleomycin administration, S1P3 KO mice exhibited significantly less body weight loss and pulmonary inflammation than wild-type (WT mice. On the 28th day, there was less pulmonary fibrosis in S1P3 KO mice than in WT mice. S1P3 KO mice demonstrated a 56% reduction in total cell count in bronchoalveolar lavage fluid (BALF collected on the seventh day compared with WT mice; however, the differential white blood cell profiles were similar. BALF analysis on the seventh day showed that connective tissue growth factor (CTGF levels were significantly decreased in S1P3 KO mice compared with WT mice, although no differences were observed in monocyte chemotactic protein-1 (MCP-1 or transforming growth factor β1 (TGF-β1 levels. Finally, S1P levels in BALF collected on the 7th day after treatment were not significantly different between WT and S1P3 KO mice. Our results indicate that S1P3 receptor signaling plays an important role in pulmonary inflammation and fibrosis and that this signaling occurs via CTGF expression. This suggests that this pathway might be a therapeutic target for pulmonary fibrosis.

  9. Cardiac-specific inducible overexpression of human plasma membrane Ca2+ ATPase 4b is cardioprotective and improves survival in mice following ischemic injury.

    Science.gov (United States)

    Sadi, Al Muktafi; Afroze, Talat; Siraj, M Ahsan; Momen, Abdul; White-Dzuro, Colin; Zarrin-Khat, Dorrin; Handa, Shivalika; Ban, Kiwon; Kabir, M Golam; Trivieri, Maria G; Gros, Robert; Backx, Peter; Husain, Mansoor

    2018-03-30

    Background: Heart failure (HF) is associated with reduced expression of plasma membrane Ca 2+ -ATPase 4 (PMCA4). Cardiac-specific overexpression of human PMCA4b in mice inhibited nNOS activity and reduced cardiac hypertrophy by inhibiting calcineurin. Here we examine temporally regulated cardiac-specific overexpression of hPMCA4b in mouse models of myocardial ischemia reperfusion injury (IRI) ex vivo , and HF following experimental myocardial infarction (MI) in vivo Methods and results: Doxycycline-regulated cardiomyocyte-specific overexpression and activity of hPMCA4b produced adaptive changes in expression levels of Ca 2+ -regulatory genes, and induced hypertrophy without significant differences in Ca 2+ transients or diastolic Ca 2+ concentrations. Total cardiac NOS and nNOS-specific activities were reduced in mice with cardiac overexpression of hPMCA4b while nNOS, eNOS and iNOS protein levels did not differ. hMPCA4b-overexpressing mice also exhibited elevated systolic blood pressure vs. controls, with increased contractility and lusitropy in vivo In isolated hearts undergoing IRI, hPMCA4b overexpression was cardioprotective. NO donor-treated hearts overexpressing hPMCA4b showed reduced LVDP and larger infarct size versus vehicle-treated hearts undergoing IRI, demonstrating that the cardioprotective benefits of hPMCA4b-repressed nNOS are lost by restoring NO availability. Finally, both pre-existing and post-MI induction of hPMCA4b overexpression reduced infarct expansion and improved survival from HF. Conclusions: Cardiac PMCA4b regulates nNOS activity, cardiac mass and contractility, such that PMCA4b overexpression preserves cardiac function following IRI, heightens cardiac performance and limits infarct progression, cardiac hypertrophy and HF, even when induced late post-MI. These data identify PMCA4b as a novel therapeutic target for IRI and HF. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  10. Role of Keap1-Nrf2 signaling in depression and dietary intake of glucoraphanin confers stress resilience in mice

    OpenAIRE

    Yao, Wei; Zhang, Ji-chun; Ishima, Tamaki; Dong, Chao; Yang, Chun; Ren, Qian; Ma, Min; Han, Mei; Wu, Jin; Suganuma, Hiroyuki; Ushida, Yusuke; Yamamoto, Masayuki; Hashimoto, Kenji

    2016-01-01

    The transcription factor Keap1-Nrf2 system plays a key role in inflammation which is involved in depression. We found lower expression of Keap1 and Nrf2 proteins in the prefrontal cortex (PFC), CA3 and dentate gyrus (DG) of hippocampus in mice with depression-like phenotype compared to control mice. Serum levels of pro-inflammatory cytokines in Nrf2 knock-out (KO) mice were higher than those of wild-type mice, suggestive of enhanced inflammation in KO mice. Decreased brain-derived neurotrophi...

  11. Abnormal type I collagen post-translational modification and crosslinking in a cyclophilin B KO mouse model of recessive osteogenesis imperfecta.

    Science.gov (United States)

    Cabral, Wayne A; Perdivara, Irina; Weis, MaryAnn; Terajima, Masahiko; Blissett, Angela R; Chang, Weizhong; Perosky, Joseph E; Makareeva, Elena N; Mertz, Edward L; Leikin, Sergey; Tomer, Kenneth B; Kozloff, Kenneth M; Eyre, David R; Yamauchi, Mitsuo; Marini, Joan C

    2014-06-01

    Cyclophilin B (CyPB), encoded by PPIB, is an ER-resident peptidyl-prolyl cis-trans isomerase (PPIase) that functions independently and as a component of the collagen prolyl 3-hydroxylation complex. CyPB is proposed to be the major PPIase catalyzing the rate-limiting step in collagen folding. Mutations in PPIB cause recessively inherited osteogenesis imperfecta type IX, a moderately severe to lethal bone dysplasia. To investigate the role of CyPB in collagen folding and post-translational modifications, we generated Ppib-/- mice that recapitulate the OI phenotype. Knock-out (KO) mice are small, with reduced femoral areal bone mineral density (aBMD), bone volume per total volume (BV/TV) and mechanical properties, as well as increased femoral brittleness. Ppib transcripts are absent in skin, fibroblasts, femora and calvarial osteoblasts, and CyPB is absent from KO osteoblasts and fibroblasts on western blots. Only residual (2-11%) collagen prolyl 3-hydroxylation is detectable in KO cells and tissues. Collagen folds more slowly in the absence of CyPB, supporting its rate-limiting role in folding. However, treatment of KO cells with cyclosporine A causes further delay in folding, indicating the potential existence of another collagen PPIase. We confirmed and extended the reported role of CyPB in supporting collagen lysyl hydroxylase (LH1) activity. Ppib-/- fibroblast and osteoblast collagen has normal total lysyl hydroxylation, while increased collagen diglycosylation is observed. Liquid chromatography/mass spectrometry (LC/MS) analysis of bone and osteoblast type I collagen revealed site-specific alterations of helical lysine hydroxylation, in particular, significantly reduced hydroxylation of helical crosslinking residue K87. Consequently, underhydroxylated forms of di- and trivalent crosslinks are strikingly increased in KO bone, leading to increased total crosslinks and decreased helical hydroxylysine- to lysine-derived crosslink ratios. The altered crosslink

  12. Accumulation of cytolytic CD8{sup +} T cells in B16-melanoma and proliferation of mature T cells in TIS21-knockout mice after T cell receptor stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Min Sook [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Woo, Min-Yeong [Department of Microbiology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Department of Biomedical Sciences, The Graduate School, Ajou University (Korea, Republic of); Kwon, Daeho [Department of Microbiology, Kwandong University College of Medicine, Gangneung, Gangwon-do 210-701 (Korea, Republic of); Hong, Allen E. [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Song, Kye Yong [Department of Pathology, Chung-Ang University College of Medicine, Dongjak-gu, Seoul 156-756 (Korea, Republic of); Park, Sun [Department of Microbiology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Lim, In Kyoung [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of)

    2014-10-01

    In vivo and in vitro effects of TIS21 gene on the mature T cell activation and antitumor activities were explored by employing MO5 melanoma orthograft and splenocytes isolated from the TIS21-knockout (KO) mice. Proliferation and survival of mature T cells were significantly increased in the KO than the wild type (WT) cells, indicating that TIS21 inhibits the rate of mature T cell proliferation and its survival. In MO5 melanoma orthograft model, the KO mice recruited much more CD8{sup +} T cells into the tumors at around day 14 after tumor cell injection along with reduced tumor volumes compared with the WT. The increased frequency of granzyme B{sup +} CD8{sup +} T cells in splenocytes of the KO mice compared with the WT may account for antitumor-immunity of TIS21 gene in the melanoma orthograft. In contrast, reduced frequencies of CD107a{sup +} CD8{sup +} T cells in the splenocytes of KO mice may affect the loss of CD8{sup +} T cell infiltration in the orthograft at around day 19. These results indicate that TIS21 exhibits antiproliferative and proapoptotic effects in mature T cells, and differentially affects the frequencies of granzyme B{sup +} CD8{sup +} T-cells and CD107a{sup +} CD8{sup +} T-cells, thus transiently regulating in vivo anti-tumor immunity. - Highlights: • Constitutive expression of TIS21 in splenocytes and upregulation by TCR stimulation. • Proliferation of mature T-cells in spleen of TIS21KO mice after TCR stimulation. • Inhibition of cell death in mature T-cells of TIS21KO mice compared with the wild type. • Inhibition of melanoma growth in TIS21KO mice and CD8{sup +} T cell infiltration in tumor. • Reduction of CD 107{sup +}CD8{sup +} T cells, but increased granzyme B{sup +} CD8{sup +} T cells in TIS21KO mice.

  13. Mice deficient in phosphodiesterase-4A display anxiogenic-like behavior.

    Science.gov (United States)

    Hansen, Rolf T; Conti, Marco; Zhang, Han-Ting

    2014-08-01

    Phosphodiesterases (PDEs) are a super family of enzymes responsible for the halting of intracellular cyclic nucleotide signaling and may represent novel therapeutic targets for treatment of cognitive disorders. PDE4 is of considerable interest to cognitive research because it is highly expressed in the brain, particularly in the cognition-related brain regions. Recently, the functional role of PDE4B and PDE4D, two of the four PDE4 subtypes (PDE4A, B, C, and D), in behavior has begun to be identified; however, the role of PDE4A in the regulation of behavior is still unknown. The purpose of this study was to characterize the functional role of PDE4A in behavior. The role of PDE4A in behavior was evaluated through a battery of behavioral tests using PDE4A knockout (KO) mice; urine corticosterone levels were also measured. PDE4A KO mice exhibited improved memory in the step-through-passive-avoidance test. They also displayed anxiogenic-like behavior in elevated-plus maze, holeboard, light-dark transition, and novelty suppressed feeding tests. Consistent with the anxiety profile, PDE4A KO mice had elevated corticosterone levels compared with wild-type controls post-stress. Interestingly, PDE4A KO mice displayed no change in object recognition, Morris water maze, forced swim, tail suspension, and duration of anesthesia induced by co-administration of xylazine and ketamine (suggesting that PDE4A KO may not be emetic). These results suggest that PDE4A may be important in the regulation of emotional memory and anxiety-like behavior, but not emesis. PDE4A could possibly represent a novel therapeutic target in the future for anxiety or disorders affecting memory.

  14. Dyrtid (II): Hvordan vasker man bedst en ko?

    DEFF Research Database (Denmark)

    Gjerløff, Anne Katrine

    2008-01-01

    bagsideartikel om danske landmænds problemer med effektive ko-vaskemidler i 1800-tallets sidste halvdel.......bagsideartikel om danske landmænds problemer med effektive ko-vaskemidler i 1800-tallets sidste halvdel....

  15. Data on IL-10R neutralization-induced chronic colitis in Lipocalin 2 deficient mice on BALB/c background

    Directory of Open Access Journals (Sweden)

    Vishal Singh

    2017-04-01

    Full Text Available The data herein is related to the research article entitled “Microbiota-inducible Innate Immune, Siderophore Binding Protein Lipocalin 2 is Critical for Intestinal Homeostasis” (Singh et al., 2016 [1] where we have demonstrated that C57BL/6 Lipocalin 2 deficient mice (Lcn2KO developed chronic colitis upon anti-interleukin-10 receptor (αIL-10R monoclonal antibody administration. In the present article, we evaluated the susceptibility of BALB/c Lcn2KO mice and their WT littermates to the αIL-10R neutralization-induced chronic colitis. Our data showed that αIL-10R mAb-treated BALB/c Lcn2KO mice exhibited severe chronic colitis (i.e., splenomegaly, colomegaly, colonic pathology, and incidence of rectal prolapse when compared to WT mice.

  16. Mice lacking liver-specific β-catenin develop steatohepatitis and fibrosis after iron overload.

    Science.gov (United States)

    Preziosi, Morgan E; Singh, Sucha; Valore, Erika V; Jung, Grace; Popovic, Branimir; Poddar, Minakshi; Nagarajan, Shanmugam; Ganz, Tomas; Monga, Satdarshan P

    2017-08-01

    Iron overload disorders such as hereditary hemochromatosis and iron loading anemias are a common cause of morbidity from liver diseases and increase risk of hepatic fibrosis and hepatocellular carcinoma (HCC). Treatment options for iron-induced damage are limited, partly because there is lack of animal models of human disease. Therefore, we investigated the effect of iron overload in liver-specific β-catenin knockout mice (KO), which are susceptible to injury, fibrosis and tumorigenesis following chemical carcinogen exposure. Iron overload diet was administered to KO and littermate control (CON) mice for various times. To ameliorate an oxidant-mediated component of tissue injury, N-Acetyl-L-(+)-cysteine (NAC) was added to drinking water of mice on iron overload diet. KO on iron diet (KO +Fe) exhibited remarkable inflammation, followed by steatosis, oxidative stress, fibrosis, regenerating nodules and occurrence of occasional HCC. Increased injury in KO +Fe was associated with activated protein kinase B (AKT), ERK, and NF-κB, along with reappearance of β-catenin and target gene Cyp2e1, which promoted lipid peroxidation and hepatic damage. Addition of NAC to drinking water protected KO +Fe from hepatic steatosis, injury and fibrosis, and prevented activation of AKT, ERK, NF-κB and reappearance of β-catenin. The absence of hepatic β-catenin predisposes mice to hepatic injury and fibrosis following iron overload, which was reminiscent of hemochromatosis and associated with enhanced steatohepatitis and fibrosis. Disease progression was notably alleviated by antioxidant therapy, which supports its chemopreventive role in the management of chronic iron overload disorders. Lack of animal models for iron overload disorders makes it hard to study the disease process for improving therapies. Feeding high iron diet to mice that lack the β-catenin gene in liver cells led to increased inflammation followed by fat accumulation, cell death and wound healing that mimicked

  17. Selegiline Ameliorates Depression-Like Behavior in Mice Lacking the CD157/BST1 Gene, a Risk Factor for Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Satoka Kasai

    2017-05-01

    Full Text Available Parkinson’s disease (PD, a neurodegenerative disorder, is accompanied by various non-motor symptoms including depression and anxiety, which may precede the onset of motor symptoms. Selegiline is an irreversible monoamine oxidase-B (MAO-B inhibitor, and is widely used in the treatment of PD and major depression. However, there are few reports about the effects of selegiline on non-motor symptoms in PD. The aim of this study was to explore the antidepressant and anxiolytic effects of selegiline, using CD157/BST1 knockout (CD157 KO mouse, a PD-related genetic model displaying depression and anxiety, compared with other antiparkinsonian drugs and an antidepressant, and was to investigate the effects of selegiline on biochemical parameters in emotion-related brain regions. A single administration of selegiline (1–10 mg/kg dose-dependently reduced immobility time in the forced swimming test (FST in CD157 KO mice, but not C57BL/6N wild-type (WT mice. At 10 mg/kg, but not 3 mg/kg, selegiline significantly increased climbing time in CD157 KO mice. A single administration of the antiparkinsonian drugs pramipexole (a dopamine (DA D2/D3 receptor agonist or rasagiline (another MAO-B inhibitor, and repeated injections of a noradrenergic and specific serotonergic antidepressant (NaSSA, mirtazapine, also decreased immobility time, but did not increase climbing time, in CD157 KO mice. The antidepressant-like effects of 10 mg/kg selegiline were comparable to those of 10 mg/kg rasagiline, and tended to be stronger than those of 1 mg/kg rasagiline. After the FST, CD157 KO mice showed decreases in striatal and hippocampal serotonin (5-HT content, cortical norepinephrine (NE content, and plasma corticosterone concentration. A single administration of selegiline at 10 mg/kg returned striatal 5-HT, cortical NE, and plasma corticosterone levels to those observed in WT mice. In the open field test (OFT, repeated administration of mirtazapine had anxiolytic effects

  18. Podocyte-specific deletion of Rac1 leads to aggravation of renal injury in STZ-induced diabetic mice

    International Nuclear Information System (INIS)

    Ishizaka, Masanori; Gohda, Tomohito; Takagi, Miyuki; Omote, Keisuke; Sonoda, Yuji; Oliva Trejo, Juan Alejandro; Asao, Rin; Hidaka, Teruo; Asanuma, Katsuhiko; Horikoshi, Satoshi; Tomino, Yasuhiko

    2015-01-01

    Rac1, a GTPase of the Rho subfamily, has a crucial role in cytoskeletal architecture, as well as the regulation of cell migration and growth. However, renal injury in mice with podocyte-specific deletion of Rac1 has yet to be elucidated fully due to conflicting findings. Herein, we identified a possible role for Rac1 in podocytes of streptozotocin- (STZ) induced diabetic mice. The urinary albumin/creatinine ratio (ACR) in the knockout (KO) group was significantly higher than that in the wild type (WT) group at any week of age. A more marked ACR increase was observed in STZ/KO group than STZ/WT group, although ACR did increase with weeks of age in both diabetic groups. The kidney sections from diabetic mice revealed a glomerular hypertrophy with mesangial expansion, but there was no appreciable difference in glomerular findings under a light microscope between STZ/WT and STZ/KO mice. However, an electron microscopy analysis revealed that regardless of the presence or absence of diabetes, both KO (KO and STZ/KO) groups had a higher rate of foot process effacement compared with both WT (WT and STZ/WT) groups. The expression levels of the slit diaphragm protein, podocin, was reduced with the induction of diabetes, and the levels in the STZ/KO group experienced a further reduction compared with the STZ/WT group. The number of WT1-positive cells in the STZ/KO group was more significantly decreased than that in the other three groups. In contrast, the numbers of cleaved caspase 3- and TUNEL-positive cells in the glomeruli of the STZ/KO group were more increased than those in the STZ/WT group. Thus, this study provides evidence that podocyte-specific deletion of Rac1 results in morphological alteration in podocytes, and that the induction of apoptosis or decreased expression of the slit diaphragm proteins by hyperglycemic stimuli are associated with the progression of diabetic nephropathy.

  19. Podocyte-specific deletion of Rac1 leads to aggravation of renal injury in STZ-induced diabetic mice

    Energy Technology Data Exchange (ETDEWEB)

    Ishizaka, Masanori [Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Gohda, Tomohito, E-mail: goda@juntendo.ac.jp [Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Takagi, Miyuki; Omote, Keisuke; Sonoda, Yuji [Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Oliva Trejo, Juan Alejandro [Laboratory for Kidney Research (TMK Project), Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin Kawaharacho, Sakyo-ku, Kyoto 606-8397 (Japan); Asao, Rin; Hidaka, Teruo [Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Asanuma, Katsuhiko [Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Laboratory for Kidney Research (TMK Project), Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin Kawaharacho, Sakyo-ku, Kyoto 606-8397 (Japan); Horikoshi, Satoshi [Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Tomino, Yasuhiko [Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Medical Corporation SHOWAKAI, 3-12-12 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023 (Japan)

    2015-11-20

    Rac1, a GTPase of the Rho subfamily, has a crucial role in cytoskeletal architecture, as well as the regulation of cell migration and growth. However, renal injury in mice with podocyte-specific deletion of Rac1 has yet to be elucidated fully due to conflicting findings. Herein, we identified a possible role for Rac1 in podocytes of streptozotocin- (STZ) induced diabetic mice. The urinary albumin/creatinine ratio (ACR) in the knockout (KO) group was significantly higher than that in the wild type (WT) group at any week of age. A more marked ACR increase was observed in STZ/KO group than STZ/WT group, although ACR did increase with weeks of age in both diabetic groups. The kidney sections from diabetic mice revealed a glomerular hypertrophy with mesangial expansion, but there was no appreciable difference in glomerular findings under a light microscope between STZ/WT and STZ/KO mice. However, an electron microscopy analysis revealed that regardless of the presence or absence of diabetes, both KO (KO and STZ/KO) groups had a higher rate of foot process effacement compared with both WT (WT and STZ/WT) groups. The expression levels of the slit diaphragm protein, podocin, was reduced with the induction of diabetes, and the levels in the STZ/KO group experienced a further reduction compared with the STZ/WT group. The number of WT1-positive cells in the STZ/KO group was more significantly decreased than that in the other three groups. In contrast, the numbers of cleaved caspase 3- and TUNEL-positive cells in the glomeruli of the STZ/KO group were more increased than those in the STZ/WT group. Thus, this study provides evidence that podocyte-specific deletion of Rac1 results in morphological alteration in podocytes, and that the induction of apoptosis or decreased expression of the slit diaphragm proteins by hyperglycemic stimuli are associated with the progression of diabetic nephropathy.

  20. Divergent responses to thermogenic stimuli in BAT and subcutaneous adipose tissue from interleukin 18 and interleukin 18 receptor 1-deficient mice.

    Science.gov (United States)

    Pazos, Patricia; Lima, Luis; Tovar, Sulay; González-Touceda, David; Diéguez, Carlos; García, María C

    2015-12-10

    Brown and beige adipocytes recruitment in brown (BAT) or white adipose tissue, mainly in the inguinal fat pad (iWAT), meet the need for temperature adaptation in cold-exposure conditions and protect against obesity in face of hypercaloric diets. Using interleukin18 (Il18) and Il18 receptor 1- knockout (Il18r1-KO) mice, this study aimed to investigate the role of IL18 signaling in BAT and iWAT activation and thermogenesis under both stimuli. Il18-KO, extremely dietary obesity-prone as previously described, failed to develop diet-induced thermogenesis as assessed by BAT and iWAT Ucp1 mRNA levels. Overweight when fed standard chow but not HFD, HFD-fed Il18r1-KO mice exhibited increased iWAT Ucp1 gene expression. Energy expenditure was reduced in pre-obese Il18r1-KO mice and restored upon HFD-challenge. Cold exposure lead to similar results; Il18r1-KO mice were protected against acute body temperature drop, displaying a more brown-like structure, alternative macrophage activation and thermogenic gene expression in iWAT than WT controls. Opposite effects were observed in Il18-KO mice. Thus, Il18 and Il18r1 genetic ablation disparate effects on energy homeostasis are likely mediated by divergent BAT responses to thermogenic stimuli as well as iWAT browning. These results suggest that a more complex receptor-signaling system mediates the IL18 adipose-tissue specific effects in energy expenditure.

  1. Zfp462 deficiency causes anxiety-like behaviors with excessive self-grooming in mice.

    Science.gov (United States)

    Wang, B; Zheng, Y; Shi, H; Du, X; Zhang, Y; Wei, B; Luo, M; Wang, H; Wu, X; Hua, X; Sun, M; Xu, X

    2017-02-01

    Zfp462 is a newly identified vertebrate-specific zinc finger protein that contains nearly 2500 amino acids and 23 putative C2H2-type zinc finger domains. So far, the functions of Zfp462 remain unclear. In our study, we showed that Zfp462 is expressed predominantly in the developing brain, especially in the cerebral cortex and hippocampus regions from embryonic day 7.5 to early postnatal stage. By using a piggyBac transposon-generated Zfp462 knockout (KO) mouse model, we found that Zfp462 KO mice exhibited prenatal lethality with normal neural tube patterning, whereas heterozygous (Het) Zfp462 KO (Zfp462 +/- ) mice showed developmental delay with low body weight and brain weight. Behavioral studies showed that Zfp462 +/- mice presented anxiety-like behaviors with excessive self-grooming and hair loss, which were similar to the pathological grooming behaviors in Hoxb8 KO mice. Further analysis of grooming microstructure showed the impairment of grooming patterning in Zfp462 +/- mice. In addition, the mRNA levels of Pbx1 (pre-B-cell leukemia homeobox 1, an interacting protein of Zfp462) and Hoxb8 decreased in the brains of Zfp462 +/- mice, which may be the cause of anxiety-like behaviors. Finally, imipramine, a widely used and effective anti-anxiety medicine, rescued anxiety-like behaviors and excessive self-grooming in Zfp462 +/- mice. In conclusion, Zfp462 deficiency causes anxiety-like behaviors with excessive self-grooming in mice. This provides a novel genetic mouse model for anxiety disorders and a useful tool to determine potential therapeutic targets for anxiety disorders and screen anti-anxiety drugs. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  2. Effect of sildenafil on skeletal and cardiac muscle in Becker muscular dystrophy

    DEFF Research Database (Denmark)

    Witting, Nanna; Kruuse, Christina; Nyhuus, Bo

    2014-01-01

    OBJECTIVE: Patients with Becker muscular dystrophy (BMD) and Duchenne muscular dystrophy lack neuronal nitric oxide synthase (nNOS). nNOS mediates physiological sympatholysis, thus ensuring adequate blood supply to working muscle. In mice lacking dystrophin, restoration of nNOS effects...

  3. Difference in Perseverative Errors during a Visual Attention Task with Auditory Distractors in Alpha-9 Nicotinic Receptor Subunit Wild Type and Knock-Out Mice.

    Science.gov (United States)

    Jorratt, Pascal; Delano, Paul H; Delgado, Carolina; Dagnino-Subiabre, Alexies; Terreros, Gonzalo

    2017-01-01

    The auditory efferent system is a neural network that originates in the auditory cortex and projects to the cochlear receptor through olivocochlear (OC) neurons. Medial OC neurons make cholinergic synapses with outer hair cells (OHCs) through nicotinic receptors constituted by α9 and α10 subunits. One of the physiological functions of the α9 nicotinic receptor subunit (α9-nAChR) is the suppression of auditory distractors during selective attention to visual stimuli. In a recent study we demonstrated that the behavioral performance of alpha-9 nicotinic receptor knock-out (KO) mice is altered during selective attention to visual stimuli with auditory distractors since they made less correct responses and more omissions than wild type (WT) mice. As the inhibition of the behavioral responses to irrelevant stimuli is an important mechanism of the selective attention processes, behavioral errors are relevant measures that can reflect altered inhibitory control. Errors produced during a cued attention task can be classified as premature, target and perseverative errors. Perseverative responses can be considered as an inability to inhibit the repetition of an action already planned, while premature responses can be considered as an index of the ability to wait or retain an action. Here, we studied premature, target and perseverative errors during a visual attention task with auditory distractors in WT and KO mice. We found that α9-KO mice make fewer perseverative errors with longer latencies than WT mice in the presence of auditory distractors. In addition, although we found no significant difference in the number of target error between genotypes, KO mice made more short-latency target errors than WT mice during the presentation of auditory distractors. The fewer perseverative error made by α9-KO mice could be explained by a reduced motivation for reward and an increased impulsivity during decision making with auditory distraction in KO mice.

  4. Forkhead Box O6 (FoxO6) Depletion Attenuates Hepatic Gluconeogenesis and Protects against Fat-induced Glucose Disorder in Mice*

    Science.gov (United States)

    Calabuig-Navarro, Virtu; Yamauchi, Jun; Lee, Sojin; Zhang, Ting; Liu, Yun-Zi; Sadlek, Kelsey; Coudriet, Gina M.; Piganelli, Jon D.; Jiang, Chun-Lei; Miller, Rita; Lowe, Mark; Harashima, Hideyoshi; Dong, H. Henry

    2015-01-01

    Excessive endogenous glucose production contributes to fasting hyperglycemia in diabetes. FoxO6 is a distinct member of the FoxO subfamily. To elucidate the role of FoxO6 in hepatic gluconeogenesis and assess its contribution to the pathogenesis of fasting hyperglycemia in diabetes, we generated FoxO6 knock-out (FoxO6-KO) mice followed by determining the effect of FoxO6 loss-of-function on hepatic gluconeogenesis under physiological and pathological conditions. FoxO6 depletion attenuated hepatic gluconeogenesis and lowered fasting glycemia in FoxO6-KO mice. FoxO6-deficient primary hepatocytes were associated with reduced capacities to produce glucose in response to glucagon. When fed a high fat diet, FoxO6-KO mice exhibited significantly enhanced glucose tolerance and reduced blood glucose levels accompanied by improved insulin sensitivity. These effects correlated with attenuated hepatic gluconeogenesis in FoxO6-KO mice. In contrast, wild-type littermates developed fat-induced glucose intolerance with a concomitant induction of fasting hyperinsulinemia and hyperglycemia. Furthermore, FoxO6-KO mice displayed significantly diminished macrophage infiltration into liver and adipose tissues, correlating with the reduction of macrophage expression of C-C chemokine receptor 2 (CCR2), a factor that is critical for regulating macrophage recruitment in peripheral tissues. Our data indicate that FoxO6 depletion protected against diet-induced glucose intolerance and insulin resistance by attenuating hepatic gluconeogenesis and curbing macrophage infiltration in liver and adipose tissues in mice. PMID:25944898

  5. IL-23 p19 knockout mice exhibit minimal defects in responses to primary and secondary infection with Francisella tularensis LVS.

    Directory of Open Access Journals (Sweden)

    Sherry L Kurtz

    Full Text Available Our laboratory's investigations into mechanisms of protective immunity against Francisella tularensis Live Vaccine Strain (LVS have uncovered mediators important in host defense against primary infection, as well as those correlated with successful vaccination. One such potential correlate was IL-12p40, a pleiotropic cytokine that promotes Th1 T cell function as part of IL-12p70. LVS-infected IL-12p40 deficient knockout (KO mice maintain a chronic infection, but IL-12p35 KO mice clear LVS infection; thus the role that IL-12p40 plays in immunity to LVS is independent of the IL-12p70 heterodimer. IL-12p40 can also partner with IL-23p19 to create the heterodimeric cytokine IL-23. Here, we directly tested the role of IL-23 in LVS resistance, and found IL-23 to be largely dispensable for immunity to LVS following intradermal or intranasal infection. IL-23p19 KO splenocytes were fully competent in controlling intramacrophage LVS replication in an in vitro overlay assay. Further, antibody responses in IL-23p19 KO mice were similar to those of normal wild type mice after LVS infection. IL-23p19 KO mice or normal wild type mice that survived primary LVS infection survived maximal doses of LVS secondary challenge. Thus p40 has a novel role in clearance of LVS infection that is unrelated to either IL-12 or IL-23.

  6. Near infrared radiation protects against oxygen-glucose deprivation-induced neurotoxicity by down-regulating neuronal nitric oxide synthase (nNOS) activity in vitro.

    Science.gov (United States)

    Yu, Zhanyang; Li, Zhaoyu; Liu, Ning; Jizhang, Yunneng; McCarthy, Thomas J; Tedford, Clark E; Lo, Eng H; Wang, Xiaoying

    2015-06-01

    Near infrared radiation (NIR) has been shown to be neuroprotective against neurological diseases including stroke and brain trauma, but the underlying mechanisms remain poorly understood. In the current study we aimed to investigate the hypothesis that NIR may protect neurons by attenuating oxygen-glucose deprivation (OGD)-induced nitric oxide (NO) production and modulating cell survival/death signaling. Primary mouse cortical neurons were subjected to 4 h OGD and NIR was applied at 2 h reoxygenation. OGD significantly increased NO level in primary neurons compared to normal control, which was significantly ameliorated by NIR at 5 and 30 min post-NIR. Neither OGD nor NIR significantly changed neuronal nitric oxide synthase (nNOS) mRNA or total protein levels compared to control groups. However, OGD significantly increased nNOS activity compared to normal control, and this effect was significantly diminished by NIR. Moreover, NIR significantly ameliorated the neuronal death induced by S-Nitroso-N-acetyl-DL-penicillamine (SNAP), a NO donor. Finally, NIR significantly rescued OGD-induced suppression of p-Akt and Bcl-2 expression, and attenuated OGD-induced upregulation of Bax, BAD and caspase-3 activation. These results suggest NIR may protect against OGD at least partially through reducing NO production by down-regulating nNOS activity, and modulating cell survival/death signaling.

  7. Impairment in extinction of cued fear memory in syntenin-1 knockout mice.

    Science.gov (United States)

    Talukdar, Gourango; Inoue, Ran; Yoshida, Tomoyuki; Mori, Hisashi

    2018-03-01

    Syntenin-1 is a PDZ domain-containing intracellular scaffold protein involved in exosome production, synapse formation, and synaptic plasticity. We tested whether syntenin-1 can regulate learning and memory through its effects on synaptic plasticity. Specifically, we investigated the role of syntenin-1 in contextual and cued fear conditioning and extinction of conditioned fear using syntenin-1 knockout (KO) mice. Genetic disruption of syntenin-1 had little effect on contextual and cued fear memory. However, syntenin-1 KO mice exhibited selective impairment in cued fear extinction retention. This extinction retention deficit in syntenin-1 KO mice was associated with reduced c-Fos-positive neurons in the basolateral amygdala (BLA) and infralimbic cortex (IL) after extinction training and increased c-Fos-positive neurons in the BLA after an extinction retention test. Our results suggest that syntenin-1 plays an important role in extinction of cued fear memory by modulating neuronal activity in the BLA and IL. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Ghrelin knockout mice show decreased voluntary alcohol consumption and reduced ethanol-induced conditioned place preference.

    Science.gov (United States)

    Bahi, Amine; Tolle, Virginie; Fehrentz, Jean-Alain; Brunel, Luc; Martinez, Jean; Tomasetto, Catherine-Laure; Karam, Sherif M

    2013-05-01

    Recent work suggests that stomach-derived hormone ghrelin receptor (GHS-R1A) antagonism may reduce motivational aspects of ethanol intake. In the current study we hypothesized that the endogenous GHS-R1A agonist ghrelin modulates alcohol reward mechanisms. For this purpose ethanol-induced conditioned place preference (CPP), ethanol-induced locomotor stimulation and voluntary ethanol consumption in a two-bottle choice drinking paradigm were examined under conditions where ghrelin and its receptor were blocked, either using ghrelin knockout (KO) mice or the specific ghrelin receptor (GHS-R1A) antagonist "JMV2959". We showed that ghrelin KO mice displayed lower ethanol-induced CPP than their wild-type (WT) littermates. Consistently, when injected during CPP-acquisition, JMV2959 reduced CPP-expression in C57BL/6 mice. In addition, ethanol-induced locomotor stimulation was lower in ghrelin KO mice. Moreover, GHS-R1A blockade, using JMV2959, reduced alcohol-stimulated locomotion only in WT but not in ghrelin KO mice. When alcohol consumption and preference were assessed using the two-bottle choice test, both genetic deletion of ghrelin and pharmacological antagonism of the GHS-R1A (JMV2959) reduced voluntary alcohol consumption and preference. Finally, JMV2959-induced reduction of alcohol intake was only observed in WT but not in ghrelin KO mice. Taken together, these results suggest that ghrelin neurotransmission is necessary for the stimulatory effect of ethanol to occur, whereas lack of ghrelin leads to changes that reduce the voluntary intake as well as conditioned reward by ethanol. Our findings reveal a major, novel role for ghrelin in mediating ethanol behavior, and add to growing evidence that ghrelin is a key mediator of the effects of multiple abused drugs. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Involvement of interleukin-1 in lead nitrate-induced hypercholesterolemia in mice.

    Science.gov (United States)

    Kojima, Misaki; Ashino, Takashi; Yoshida, Takemi; Iwakura, Yoichiro; Degawa, Masakuni

    2012-01-01

    Hepatic 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) and cholesterol 7α-hydroxylase (Cyp7a1) are rate-limiting enzymes for cholesterol biosynthesis and catabolism, respectively. Involvement of inflammatory cytokines, particularly interleukin-1 (IL-1), in alterations of HMGR and Cyp7a1 gene expression during development of lead nitrate (LN)-induced hypercholesterolemia was examined in IL-1α/β-knockout (IL-1-KO) and wild-type (WT) mice. Lead nitrate treatment of WT mice led to not only a marked downregulation of the Cyp7a1 gene at 6-12 h, but also a significant upregulation of the HMGR gene at 12 h. However, such changes were not observed at significant levels in IL-1-KO mice, although a slight, transient downregulation of the Cyp7a1 gene and a minimal upregulation of the HMGR gene occurred at 6 h and 24 h, respectively. Consequently, LN treatment led to development of hypercholesterolemia at 24 h in WT mice, but not in IL-1-KO mice. Furthermore, in WT mice, significant LN-mediated increases were observed at 3-6 h in hepatic IL-1 levels, which can modulate gene expression of Cyp7a1 and HMGR. These findings indicate that, in mice, LN-mediated increases in hepatic IL-1 levels contribute, at least in part, to altered expressions of Cyp7a1 and HMGR genes, and eventually to hypercholesterolemia development.

  10. Lack of adrenomedullin results in microbiota changes and aggravates azoxymethane and dextran sulfate sodium-induced colitis in mice

    Directory of Open Access Journals (Sweden)

    Sonia Martinez-Herrero

    2016-11-01

    Full Text Available The link between intestinal inflammation, microbiota, and colorectal cancer (CRC is intriguing and the potential underlying mechanisms remain unknown. Here we evaluate the influence of adrenomedullin (AM in microbiota composition and its impact on colitis with an inducible knockout (KO mouse model for AM. Microbiota composition was analyzed in KO and wild type (WT mice by pyrosequencing. Colitis was induced in mice by administration of azoxymethane (AOM followed by dextran sulfate sodium (DSS in the drinking water. Colitis was evaluated using a clinical symptoms index, histopathological analyses, and qRT-PCR. Abrogation of the adm gene in the whole body was confirmed by PCR and qRT-PCR. KO mice exhibit significant changes in colonic microbiota: higher proportion of δ-Proteobacteria class; of Coriobacteriales order; and of other families and genera was observed in KO feces. Meanwhile these mice had a lower proportion of beneficial bacteria, such as Lactobacillus gasseri and Bifidobacterium choerinum. TLR4 gene expression was higher (p<0.05 in KO animals. AM deficient mice treated with DSS exhibited a significantly worse colitis with profound weight loss, severe diarrhea, rectal bleeding, colonic inflammation, edema, infiltration, crypt destruction, and higher levels of pro-inflammatory cytokines. No changes were observed in the expression levels of adhesion molecules. In conclusion, we have shown that lack of AM leads to changes in gut microbiota population and in a worsening of colitis conditions, suggesting that endogenous AM is a protective mediator in this pathology.

  11. Defining Subpopulations of Arcuate Nucleus GABA Neurons in Male, Female, and Prenatally Androgenized Female Mice.

    Science.gov (United States)

    Marshall, Christopher J; Desroziers, Elodie; McLennan, Timothy; Campbell, Rebecca E

    2017-01-01

    Arcuate nucleus (ARN) γ-aminobutyric acid (GABA) neurons are implicated in many critical homeostatic mechanisms, from food intake to fertility. To determine the functional relevance of ARN GABA neurons, it is essential to define the neurotransmitters co-expressed with and potentially co-released from ARN GABA neurons. The present study investigated the expression of markers of specific signaling molecules by ARN GABA neurons in brain sections from male, female, and, in some cases, prenatally androgen-treated (PNA) female, vesicular GABA transporter (VGaT)-ires-Cre/tdTomato reporter mice. Immunofluorescence for kisspeptin, β-endorphin, neuropeptide Y (NPY), tyrosine hydroxylase (TH) and neuronal nitric oxide synthase (nNOS) was detected by confocal microscopy, and co-localization with tdTomato VGaT reporter expression throughout the ARN was quantified. GABA neurons rarely co-localized with kisspeptin (95%) co-localized with VGaT across groups. Both TH and nNOS labeling was co-localized with ∼10% of ARN GABA neurons. The proportion of TH neurons co-localized with VGaT was significantly greater in males than either control or PNA females, and the proportion of nNOS neurons co-localizing VGaT was higher in control and PNA females compared with males. These data highlight NPY as a significant subpopulation of ARN GABA neurons, demonstrate no significant impact of PNA on signal co-expression, and, for the first time, show sexually dimorphic co-expression patterns of TH and nNOS with ARN GABA neurons. © 2016 S. Karger AG, Basel.

  12. Impact of the NO-Sensitive Guanylyl Cyclase 1 and 2 on Renal Blood Flow and Systemic Blood Pressure in Mice.

    Science.gov (United States)

    Mergia, Evanthia; Thieme, Manuel; Hoch, Henning; Daniil, Georgios; Hering, Lydia; Yakoub, Mina; Scherbaum, Christina Rebecca; Rump, Lars Christian; Koesling, Doris; Stegbauer, Johannes

    2018-03-23

    Nitric oxide (NO) modulates renal blood flow (RBF) and kidney function and is involved in blood pressure (BP) regulation predominantly via stimulation of the NO-sensitive guanylyl cyclase (NO-GC), existing in two isoforms, NO-GC1 and NO-GC2. Here, we used isoform-specific knockout (KO) mice and investigated their contribution to renal hemodynamics under normotensive and angiotensin II-induced hypertensive conditions. Stimulation of the NO-GCs by S -nitrosoglutathione (GSNO) reduced BP in normotensive and hypertensive wildtype (WT) and NO-GC2-KO mice more efficiently than in NO-GC1-KO. NO-induced increase of RBF in normotensive mice did not differ between the genotypes, but the respective increase under hypertensive conditions was impaired in NO-GC1-KO. Similarly, inhibition of endogenous NO increased BP and reduced RBF to a lesser extent in NO-GC1-KO than in NO-GC2-KO. These findings indicate NO-GC1 as a target of NO to normalize RBF in hypertension. As these effects were not completely abolished in NO-GC1-KO and renal cyclic guanosine monophosphate (cGMP) levels were decreased in both NO-GC1-KO and NO-GC2-KO, the results suggest an additional contribution of NO-GC2. Hence, NO-GC1 plays a predominant role in the regulation of BP and RBF, especially in hypertension. However, renal NO-GC2 appears to compensate the loss of NO-GC1, and is able to regulate renal hemodynamics under physiological conditions.

  13. Hepatic Metabolism Affects the Atropselective Disposition of 2,2′,3,3′,6,6′-Hexachlorobiphenyl (PCB 136) in Mice

    Science.gov (United States)

    2015-01-01

    To understand the role of hepatic vs extrahepatic metabolism in the disposition of chiral PCBs, we studied the disposition of 2,2′,3,3′,6,6′-hexachlorobiphenyl (PCB 136) and its hydroxylated metabolites (HO-PCBs) in mice with defective hepatic metabolism due to the liver-specific deletion of cytochrome P450 oxidoreductase (KO mice). Female KO and congenic wild type (WT) mice were treated with racemic PCB 136, and levels and chiral signatures of PCB 136 and HO-PCBs were determined in tissues and excreta 3 days after PCB administration. PCB 136 tissue levels were higher in KO compared to WT mice. Feces was a major route of PCB metabolite excretion, with 2,2′,3,3′,6,6′-hexachlorobiphenyl-5-ol being the major metabolite recovered from feces. (+)-PCB 136, the second eluting PCB 136 atropisomers, was enriched in all tissues and excreta. The second eluting atropisomers of the HO-PCBs metabolites were enriched in blood and liver; 2,2′,3,3′,6,6′-hexachlorobiphenyl-5-ol in blood was an exception and displayed an enrichment of the first eluting atropisomers. Fecal HO-PCB levels and chiral signatures changed with time and differed between KO and WT mice, with larger HO-PCB enantiomeric fractions in WT compared to KO mice. Our results demonstrate that hepatic and, possibly, extrahepatic cytochrome P450 (P450) enzymes play a role in the disposition of PCBs. PMID:25420130

  14. Acetaminophen-induced liver damage in mice is associated with gender-specific adduction of peroxiredoxin-6

    Directory of Open Access Journals (Sweden)

    Isaac Mohar

    2014-01-01

    Full Text Available The mechanism by which acetaminophen (APAP causes liver damage evokes many aspects drug metabolism, oxidative chemistry, and genetic-predisposition. In this study, we leverage the relative resistance of female C57BL/6 mice to APAP-induced liver damage (AILD compared to male C57BL/6 mice in order to identify the cause(s of sensitivity. Furthermore, we use mice that are either heterozygous (HZ or null (KO for glutamate cysteine ligase modifier subunit (Gclm, in order to titrate the toxicity relative to wild-type (WT mice. Gclm is important for efficient de novo synthesis of glutathione (GSH. APAP (300 mg/kg, ip or saline was administered and mice were collected at 0, 0.5, 1, 2, 6, 12, and 24 h. Male mice showed marked elevation in serum alanine aminotransferase by 6 h. In contrast, female WT and HZ mice showed minimal toxicity at all time points. Female KO mice, however, showed AILD comparable to male mice. Genotype-matched male and female mice showed comparable APAP–protein adducts, with Gclm KO mice sustaining significantly greater adducts. ATP was depleted in mice showing toxicity, suggesting impaired mitochondria function. Indeed, peroxiredoxin-6, a GSH-dependent peroxiredoxin, was preferentially adducted by APAP in mitochondria of male mice but rarely adducted in female mice. These results support parallel mechanisms of toxicity where APAP adduction of peroxiredoxin-6 and sustained GSH depletion results in the collapse of mitochondria function and hepatocyte death. We conclude that adduction of peroxiredoxin-6 sensitizes male C57BL/6 mice to toxicity by acetaminophen.

  15. Nepro is localized in the nucleolus and essential for preimplantation development in mice.

    Science.gov (United States)

    Hashimoto, Masakazu; Sato, Tatsuya; Muroyama, Yuko; Fujimura, Lisa; Hatano, Masahiko; Saito, Tetsuichiro

    2015-09-01

    We generated knockout (KO) mice of Nepro, which has been shown to be necessary to maintain neural progenitor cells downstream of Notch in the mouse developing neocortex by using knockdown experiments, to explore its function in embryogenesis. Nepro KO embryos were morphologically indistinguishable from wild type (WT) embryos until the morula stage but failed in blastocyst formation, and many cells of the KO embryos resulted in apoptosis. We found that Nepro was localized in the nucleolus at the blastocyst stage. The number of nucleolus precursor bodies (NPBs) and nucleoli per nucleus was significantly higher in Nepro KO embryos compared with WT embryos later than the 2-cell stage. Furthermore, at the morula stage, whereas 18S rRNA and ribosomal protein S6 (rpS6), which are components of the ribosome, were distributed to the cytoplasm in WT embryos, they were mainly localized in the nucleoli in Nepro KO embryos. In addition, in Nepro KO embryos, the amount of the mitochondria-associated p53 protein increased, and Cytochrome c was distributed in the cytoplasm. These findings indicate that Nepro is a nucleolus-associated protein, and its loss leads to the apoptosis before blastocyst formation in mice. © 2015 Japanese Society of Developmental Biologists.

  16. Knockout of the aryl hydrocarbon receptor results in distinct hepatic and renal phenotypes in rats and mice

    Energy Technology Data Exchange (ETDEWEB)

    Harrill, Joshua A. [The Hamner Institute for Health Sciences, Institute for Chemical Safety Sciences, RTP, NC 27709 (United States); Hukkanen, Renee R.; Lawson, Marie; Martin, Greg [The Dow Chemical Company, Midland, MI 48640 (United States); Gilger, Brian [North Carolina State University, College of Veterinary Medicine, Raleigh, NC 27606 (United States); Soldatow, Valerie [University of North Carolina, Department of Environmental Sciences and Engineering, Chapel Hill, NC 27599 (United States); LeCluyse, Edward L. [The Hamner Institute for Health Sciences, Institute for Chemical Safety Sciences, RTP, NC 27709 (United States); Budinsky, Robert A.; Rowlands, J. Craig [The Dow Chemical Company, Midland, MI 48640 (United States); Thomas, Russell S., E-mail: RThomas@thehamner.org [The Hamner Institute for Health Sciences, Institute for Chemical Safety Sciences, RTP, NC 27709 (United States)

    2013-10-15

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor which plays a role in the development of multiple tissues and is activated by a large number of ligands, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In order to examine the roles of the AHR in both normal biological development and response to environmental chemicals, an AHR knockout (AHR-KO) rat model was created and compared with an existing AHR-KO mouse. AHR-KO rats harboring either 2-bp or 29-bp deletion mutation in exon 2 of the AHR were created on the Sprague–Dawley genetic background using zinc-finger nuclease (ZFN) technology. Rats harboring either mutation type lacked expression of AHR protein in the liver. AHR-KO rats were also insensitive to thymic involution, increased hepatic weight and the induction of AHR-responsive genes (Cyp1a1, Cyp1a2, Cyp1b1, Ahrr) following acute exposure to 25 μg/kg TCDD. AHR-KO rats had lower basal expression of transcripts for these genes and also accumulated ∼ 30–45-fold less TCDD in the liver at 7 days post-exposure. In untreated animals, AHR-KO mice, but not AHR-KO rats, had alterations in serum analytes indicative of compromised hepatic function, patent ductus venosus of the liver and persistent hyaloid arteries in the eye. AHR-KO rats, but not AHR-KO mice, displayed pathological alterations to the urinary tract: bilateral renal dilation (hydronephrosis), secondary medullary tubular and uroepithelial degenerative changes and bilateral ureter dilation (hydroureter). The present data indicate that the AHR may play significantly different roles in tissue development and homeostasis and toxicity across rodent species. - Highlights: • An AHR knockout rat was generated on a Sprague–Dawley outbred background. • AHR-KO rats lack expression of AHR protein. • AHR-KO rats are insensitive to TCDD-mediated effects. • Data suggests difference in the role of AHR in tissue development of rats and mice. • Abnormalities in vascular

  17. Knockout of the aryl hydrocarbon receptor results in distinct hepatic and renal phenotypes in rats and mice

    International Nuclear Information System (INIS)

    Harrill, Joshua A.; Hukkanen, Renee R.; Lawson, Marie; Martin, Greg; Gilger, Brian; Soldatow, Valerie; LeCluyse, Edward L.; Budinsky, Robert A.; Rowlands, J. Craig; Thomas, Russell S.

    2013-01-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor which plays a role in the development of multiple tissues and is activated by a large number of ligands, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In order to examine the roles of the AHR in both normal biological development and response to environmental chemicals, an AHR knockout (AHR-KO) rat model was created and compared with an existing AHR-KO mouse. AHR-KO rats harboring either 2-bp or 29-bp deletion mutation in exon 2 of the AHR were created on the Sprague–Dawley genetic background using zinc-finger nuclease (ZFN) technology. Rats harboring either mutation type lacked expression of AHR protein in the liver. AHR-KO rats were also insensitive to thymic involution, increased hepatic weight and the induction of AHR-responsive genes (Cyp1a1, Cyp1a2, Cyp1b1, Ahrr) following acute exposure to 25 μg/kg TCDD. AHR-KO rats had lower basal expression of transcripts for these genes and also accumulated ∼ 30–45-fold less TCDD in the liver at 7 days post-exposure. In untreated animals, AHR-KO mice, but not AHR-KO rats, had alterations in serum analytes indicative of compromised hepatic function, patent ductus venosus of the liver and persistent hyaloid arteries in the eye. AHR-KO rats, but not AHR-KO mice, displayed pathological alterations to the urinary tract: bilateral renal dilation (hydronephrosis), secondary medullary tubular and uroepithelial degenerative changes and bilateral ureter dilation (hydroureter). The present data indicate that the AHR may play significantly different roles in tissue development and homeostasis and toxicity across rodent species. - Highlights: • An AHR knockout rat was generated on a Sprague–Dawley outbred background. • AHR-KO rats lack expression of AHR protein. • AHR-KO rats are insensitive to TCDD-mediated effects. • Data suggests difference in the role of AHR in tissue development of rats and mice. • Abnormalities in vascular

  18. Eicosapentaenoic acid ameliorates non-alcoholic steatohepatitis in a novel mouse model using melanocortin 4 receptor-deficient mice.

    Science.gov (United States)

    Konuma, Kuniha; Itoh, Michiko; Suganami, Takayoshi; Kanai, Sayaka; Nakagawa, Nobutaka; Sakai, Takeru; Kawano, Hiroyuki; Hara, Mitsuko; Kojima, Soichi; Izumi, Yuichi; Ogawa, Yoshihiro

    2015-01-01

    Many attempts have been made to find novel therapeutic strategies for non-alcoholic steatohepatitis (NASH), while their clinical efficacy is unclear. We have recently reported a novel rodent model of NASH using melanocortin 4 receptor-deficient (MC4R-KO) mice, which exhibit the sequence of events that comprise hepatic steatosis, liver fibrosis, and hepatocellular carcinoma with obesity-related phenotypes. In the liver of MC4R-KO mice, there is a unique histological feature termed hepatic crown-like structures (hCLS), where macrophages interact with dead hepatocytes and fibrogenic cells, thereby accelerating inflammation and fibrosis. In this study, we employed MC4R-KO mice to examine the effect of highly purified eicosapentaenoic acid (EPA), a clinically available n-3 polyunsaturated fatty acid, on the development of NASH. EPA treatment markedly prevented the development of hepatocyte injury, hCLS formation and liver fibrosis along with lipid accumulation. EPA treatment was also effective even after MC4R-KO mice developed NASH. Intriguingly, improvement of liver fibrosis was accompanied by the reduction of hCLS formation and plasma kallikrein-mediated transforming growth factor-β activation. Moreover, EPA treatment increased the otherwise reduced serum concentrations of adiponectin, an adipocytokine with anti-inflammatory and anti-fibrotic properties. Collectively, EPA treatment effectively prevents the development and progression of NASH in MC4R-KO mice along with amelioration of hepatic steatosis. This study unravels a novel anti-fibrotic mechanism of EPA, thereby suggesting a clinical implication for the treatment of NASH.

  19. Eicosapentaenoic acid ameliorates non-alcoholic steatohepatitis in a novel mouse model using melanocortin 4 receptor-deficient mice.

    Directory of Open Access Journals (Sweden)

    Kuniha Konuma

    Full Text Available Many attempts have been made to find novel therapeutic strategies for non-alcoholic steatohepatitis (NASH, while their clinical efficacy is unclear. We have recently reported a novel rodent model of NASH using melanocortin 4 receptor-deficient (MC4R-KO mice, which exhibit the sequence of events that comprise hepatic steatosis, liver fibrosis, and hepatocellular carcinoma with obesity-related phenotypes. In the liver of MC4R-KO mice, there is a unique histological feature termed hepatic crown-like structures (hCLS, where macrophages interact with dead hepatocytes and fibrogenic cells, thereby accelerating inflammation and fibrosis. In this study, we employed MC4R-KO mice to examine the effect of highly purified eicosapentaenoic acid (EPA, a clinically available n-3 polyunsaturated fatty acid, on the development of NASH. EPA treatment markedly prevented the development of hepatocyte injury, hCLS formation and liver fibrosis along with lipid accumulation. EPA treatment was also effective even after MC4R-KO mice developed NASH. Intriguingly, improvement of liver fibrosis was accompanied by the reduction of hCLS formation and plasma kallikrein-mediated transforming growth factor-β activation. Moreover, EPA treatment increased the otherwise reduced serum concentrations of adiponectin, an adipocytokine with anti-inflammatory and anti-fibrotic properties. Collectively, EPA treatment effectively prevents the development and progression of NASH in MC4R-KO mice along with amelioration of hepatic steatosis. This study unravels a novel anti-fibrotic mechanism of EPA, thereby suggesting a clinical implication for the treatment of NASH.

  20. Changes in Otx2 and Parvalbumin Immunoreactivity in the Superior Colliculus in the Platelet-Derived Growth Factor Receptor-β Knockout Mice

    Directory of Open Access Journals (Sweden)

    Juanjuan Zhao

    2013-01-01

    Full Text Available The superior colliculus (SC, a relay nucleus in the subcortical visual pathways, is implicated in socioemotional behaviors. Homeoprotein Otx2 and β subunit of receptors of platelet-derived growth factor (PDGFR-β have been suggested to play an important role in development of the visual system and development and maturation of GABAergic neurons. Although PDGFR-β-knockout (KO mice displayed socio-emotional deficits associated with parvalbumin (PV-immunoreactive (IR neurons, their anatomical bases in the SC were unknown. In the present study, Otx2 and PV-immunolabeling in the adult mouse SC were investigated in the PDGFR-β KO mice. Although there were no differences in distribution patterns of Otx2 and PV-IR cells between the wild type and PDGFR-β KO mice, the mean numbers of both of the Otx2- and PV-IR cells were significantly reduced in the PDGFR-β KO mice. Furthermore, average diameters of Otx2- and PV-IR cells were significantly reduced in the PDGFR-β KO mice. These findings suggest that PDGFR-β plays a critical role in the functional development of the SC through its effects on Otx2- and PV-IR cells, provided specific roles of Otx2 protein and PV-IR cells in the development of SC neurons and visual information processing, respectively.

  1. Temporal and Molecular Analyses of Cardiac Extracellular Matrix Remodeling following Pressure Overload in Adiponectin Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Keith Dadson

    Full Text Available Adiponectin, circulating levels of which are reduced in obesity and diabetes, mediates cardiac extracellular matrix (ECM remodeling in response to pressure overload (PO. Here, we performed a detailed temporal analysis of progressive cardiac ECM remodelling in adiponectin knockout (AdKO and wild-type (WT mice at 3 days and 1, 2, 3 and 4 weeks following the induction of mild PO via minimally invasive transverse aortic banding. We first observed that myocardial adiponectin gene expression was reduced after 4 weeks of PO, whereas increased adiponectin levels were detected in cardiac homogenates at this time despite decreased circulating levels of adiponectin. Scanning electron microscopy and Masson's trichrome staining showed collagen accumulation increased in response to 2 and 4 weeks of PO in WT mice, while fibrosis in AdKO mice was notably absent after 2 weeks but highly apparent after 4 weeks of PO. Time and intensity of fibroblast appearance after PO was not significantly different between AdKO and WT animals. Gene array analysis indicated that MMP2, TIMP2, collagen 1α1 and collagen 1α3 were induced after 2 weeks of PO in WT but not AdKO mice. After 4 weeks MMP8 was induced in both genotypes, MMP9 only in WT mice and MMP1α only in AdKO mice. Direct stimulation of primary cardiac fibroblasts with adiponectin induced a transient increase in total collagen detected by picrosirius red staining and collagen III levels synthesis, as well as enhanced MMP2 activity detected via gelatin zymography. Adiponectin also enhanced fibroblast migration and attenuated angiotensin-II induced differentiation to a myofibroblast phenotype. In conclusion, these data indicate that increased myocardial bioavailability of adiponectin mediates ECM remodeling following PO and that adiponectin deficiency delays these effects.

  2. Knockout mice reveal a role for protein tyrosine phosphatase H1 in cognition

    Directory of Open Access Journals (Sweden)

    Ardizzone Michele

    2008-08-01

    Full Text Available Abstract Background The present study has investigated the protein tyrosine phosphatase H1 (PTPH1 expression pattern in mouse brain and its impact on CNS functions. Methods We have previously described a PTPH1-KO mouse, generated by replacing the PTP catalytic and the PDZ domain with a LacZ neomycin cassette. PTPH1 expression pattern was evaluated by LacZ staining in the brain and PTPH1-KO and WT mice (n = 10 per gender per genotype were also behaviorally tested for CNS functions. Results In CNS, PTPH1 is expressed during development and in adulthood and mainly localized in hippocampus, thalamus, cortex and cerebellum neurons. The behavioral tests performed on the PTPH1-KO mice showed an impact on working memory in male mice and an impaired learning performance at rotarod in females. Conclusion These results demonstrate for the first time a neuronal expression of PTPH1 and its functionality at the level of cognition.

  3. Roles of the 15-kDa Selenoprotein (Sep15) in Redox Homeostasis and Cataract Development Revealed by the Analysis of Sep 15 Knockout Mice*

    Science.gov (United States)

    Kasaikina, Marina V.; Fomenko, Dmitri E.; Labunskyy, Vyacheslav M.; Lachke, Salil A.; Qiu, Wenya; Moncaster, Juliet A.; Zhang, Jie; Wojnarowicz, Mark W.; Natarajan, Sathish Kumar; Malinouski, Mikalai; Schweizer, Ulrich; Tsuji, Petra A.; Carlson, Bradley A.; Maas, Richard L.; Lou, Marjorie F.; Goldstein, Lee E.; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2011-01-01

    The 15-kDa selenoprotein (Sep15) is a thioredoxin-like, endoplasmic reticulum-resident protein involved in the quality control of glycoprotein folding through its interaction with UDP-glucose:glycoprotein glucosyltransferase. Expression of Sep15 is regulated by dietary selenium and the unfolded protein response, but its specific function is not known. In this study, we developed and characterized Sep15 KO mice by targeted removal of exon 2 of the Sep15 gene coding for the cysteine-rich UDP-glucose:glycoprotein glucosyltransferase-binding domain. These KO mice synthesized a mutant mRNA, but the shortened protein product could be detected neither in tissues nor in Sep15 KO embryonic fibroblasts. Sep15 KO mice were viable and fertile, showed normal brain morphology, and did not activate endoplasmic reticulum stress pathways. However, parameters of oxidative stress were elevated in the livers of these mice. We found that Sep15 mRNA was enriched during lens development. Further phenotypic characterization of Sep15 KO mice revealed a prominent nuclear cataract that developed at an early age. These cataracts did not appear to be associated with severe oxidative stress or glucose dysregulation. We suggest that the cataracts resulted from an improper folding status of lens proteins caused by Sep15 deficiency. PMID:21768092

  4. Ca2+-clock-dependent pacemaking in the sinus node is impaired in mice with a cardiac specific reduction in SERCA2 abundance

    Directory of Open Access Journals (Sweden)

    Sunil Jit Ramamoorthy Jeewanlal Logantha

    2016-06-01

    Full Text Available Background: The sarcoplasmic reticulum Ca2+-ATPase (SERCA2 pump is an important component of the Ca2+-clock pacemaker mechanism that provides robustness and flexibility to sinus node pacemaking. We have developed transgenic mice with reduced cardiac SERCA2 abundance (Serca2 KO as a model for investigating SERCA2’s role in sinus node pacemaking.Methods and Results: In Serca2 KO mice, ventricular SERCA2a protein content measured by Western blotting was 75% (P70% Serca2 downregulation.Conclusions: Serca2 KO mice show a disrupted Ca2+-clock-dependent pacemaker mechanism contributing to impaired sinus node and atrioventricular node function.

  5. The first Koç Han: Pioneering modern architecture in Ankara

    Directory of Open Access Journals (Sweden)

    Oya Atalay Franck

    2013-01-01

    Full Text Available Koç Holding is the most established conglomerate in Turkey. Th e company’s beginnings date from the mid 1920s, when Ahmet Vehbi Koç, founder of Koç Holding, had his first own company registered with the Ankara Chamber of Commerce. In 1932, Koç moved his business from his father’s store on Anafartalar Street to a new building, the first Koç Han, erected the same year on Çankırı Street Nr.13 in Ulus. Th e building’s designer was Swiss-Austrian architect Ernst Arnold Egli, who had come to Turkey only five years earlier upon invitation by the government to work as chief architect of the Ministry of National Education. During his stay, which lasted from 1927 until 1940, Egli realized about 40 projects and worked on many more. Koç Han is the rare example of a commercial building by Egli. At a time when the urban aspect of the old town center of Ankara consisted mostly of one-or two-storeyed stone-and-wood houses, the first Koç Han represented an altogether new building type for the town, in being a multipurpose edifice with space for shops at street level, with large storage facilities below ground, and providing off ices and housing on the upper fl oors. Th e functional rigor of the plan and the sober modernism of the building’s facades contrasted strongly with the architecture of the time. In this respect, the first Koç Han was a strong statement regarding Ahmet Vehbi Koç’s belief in a modern Turkey and to the contribution of the building’s architect, Ernst Arnold Egli, to this project.

  6. Mice lacking the transcriptional regulator Bhlhe40 have enhanced neuronal excitability and impaired synaptic plasticity in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Kelly A Hamilton

    Full Text Available Bhlhe40 is a transcription factor that is highly expressed in the hippocampus; however, its role in neuronal function is not well understood. Here, we used Bhlhe40 null mice on a congenic C57Bl6/J background (Bhlhe40 KO to investigate the impact of Bhlhe40 on neuronal excitability and synaptic plasticity in the hippocampus. Bhlhe40 KO CA1 neurons had increased miniature excitatory post-synaptic current amplitude and decreased inhibitory post-synaptic current amplitude, indicating CA1 neuronal hyperexcitability. Increased CA1 neuronal excitability was not associated with increased seizure severity as Bhlhe40 KO relative to +/+ (WT control mice injected with the convulsant kainic acid. However, significant reductions in long term potentiation and long term depression at CA1 synapses were observed in Bhlhe40 KO mice, indicating impaired hippocampal synaptic plasticity. Behavioral testing for spatial learning and memory on the Morris Water Maze (MWM revealed that while Bhlhe40 KO mice performed similarly to WT controls initially, when the hidden platform was moved to the opposite quadrant Bhlhe40 KO mice showed impairments in relearning, consistent with decreased hippocampal synaptic plasticity. To investigate possible mechanisms for increased neuronal excitability and decreased synaptic plasticity, a whole genome mRNA expression profile of Bhlhe40 KO hippocampus was performed followed by a chromatin immunoprecipitation sequencing (ChIP-Seq screen of the validated candidate genes for Bhlhe40 protein-DNA interactions consistent with transcriptional regulation. Of the validated genes identified from mRNA expression analysis, insulin degrading enzyme (Ide had the most significantly altered expression in hippocampus and was significantly downregulated on the RNA and protein levels; although Bhlhe40 did not occupy the Ide gene by ChIP-Seq. Together, these findings support a role for Bhlhe40 in regulating neuronal excitability and synaptic plasticity in

  7. Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Yubin Wang

    2016-06-01

    Full Text Available A CAPN1 missense mutation in Parson Russell Terrier dogs is associated with spinocerebellar ataxia. We now report that homozygous or heterozygous CAPN1-null mutations in humans result in cerebellar ataxia and limb spasticity in four independent pedigrees. Calpain-1 knockout (KO mice also exhibit a mild form of ataxia due to abnormal cerebellar development, including enhanced neuronal apoptosis, decreased number of cerebellar granule cells, and altered synaptic transmission. Enhanced apoptosis is due to absence of calpain-1-mediated cleavage of PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1, which results in inhibition of the Akt pro-survival pathway in developing granule cells. Injection of neonatal mice with the indirect Akt activator, bisperoxovanadium, or crossing calpain-1 KO mice with PHLPP1 KO mice prevented increased postnatal cerebellar granule cell apoptosis and restored granule cell density and motor coordination in adult mice. Thus, mutations in CAPN1 are an additional cause of ataxia in mammals, including humans.

  8. Forkhead Box O6 (FoxO6) Depletion Attenuates Hepatic Gluconeogenesis and Protects against Fat-induced Glucose Disorder in Mice.

    Science.gov (United States)

    Calabuig-Navarro, Virtu; Yamauchi, Jun; Lee, Sojin; Zhang, Ting; Liu, Yun-Zi; Sadlek, Kelsey; Coudriet, Gina M; Piganelli, Jon D; Jiang, Chun-Lei; Miller, Rita; Lowe, Mark; Harashima, Hideyoshi; Dong, H Henry

    2015-06-19

    Excessive endogenous glucose production contributes to fasting hyperglycemia in diabetes. FoxO6 is a distinct member of the FoxO subfamily. To elucidate the role of FoxO6 in hepatic gluconeogenesis and assess its contribution to the pathogenesis of fasting hyperglycemia in diabetes, we generated FoxO6 knock-out (FoxO6-KO) mice followed by determining the effect of FoxO6 loss-of-function on hepatic gluconeogenesis under physiological and pathological conditions. FoxO6 depletion attenuated hepatic gluconeogenesis and lowered fasting glycemia in FoxO6-KO mice. FoxO6-deficient primary hepatocytes were associated with reduced capacities to produce glucose in response to glucagon. When fed a high fat diet, FoxO6-KO mice exhibited significantly enhanced glucose tolerance and reduced blood glucose levels accompanied by improved insulin sensitivity. These effects correlated with attenuated hepatic gluconeogenesis in FoxO6-KO mice. In contrast, wild-type littermates developed fat-induced glucose intolerance with a concomitant induction of fasting hyperinsulinemia and hyperglycemia. Furthermore, FoxO6-KO mice displayed significantly diminished macrophage infiltration into liver and adipose tissues, correlating with the reduction of macrophage expression of C-C chemokine receptor 2 (CCR2), a factor that is critical for regulating macrophage recruitment in peripheral tissues. Our data indicate that FoxO6 depletion protected against diet-induced glucose intolerance and insulin resistance by attenuating hepatic gluconeogenesis and curbing macrophage infiltration in liver and adipose tissues in mice. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Infection with koala retrovirus subgroup B (KoRV-B), but not KoRV-A, is associated with chlamydial disease in free-ranging koalas (Phascolarctos cinereus).

    Science.gov (United States)

    Waugh, Courtney A; Hanger, Jonathan; Loader, Joanne; King, Andrew; Hobbs, Matthew; Johnson, Rebecca; Timms, Peter

    2017-03-09

    The virulence of chlamydial infection in wild koalas is highly variable between individuals. Some koalas can be infected (PCR positive) with Chlamydia for long periods but remain asymptomatic, whereas others develop clinical disease. Chlamydia in the koala has traditionally been studied without regard to coinfection with other pathogens, although koalas are usually subject to infection with koala retrovirus (KoRV). Retroviruses can be immunosuppressive, and there is evidence of an immunosuppressive effect of KoRV in vitro. Originally thought to be a single endogenous strain, a new, potentially more virulent exogenous variant (KoRV-B) was recently reported. We hypothesized that KoRV-B might significantly alter chlamydial disease outcomes in koalas, presumably via immunosuppression. By studying sub-groups of Chlamydia and KoRV infected koalas in the wild, we found that neither total KoRV load (either viraemia or proviral copies per genome), nor chlamydial infection level or strain type, was significantly associated with chlamydial disease risk. However, PCR positivity with KoRV-B was significantly associated with chlamydial disease in koalas (p = 0.02961). This represents an example of a recently evolved virus variant that may be predisposing its host (the koala) to overt clinical disease when co-infected with an otherwise asymptomatic bacterial pathogen (Chlamydia).

  10. Methamphetamine- and 1-methyl-4-phenyl- 1,2,3, 6-tetrahydropyridine-induced dopaminergic neurotoxicity in inducible nitric oxide synthase-deficient mice.

    Science.gov (United States)

    Itzhak, Y; Martin, J L; Ali, S F

    1999-12-15

    Previous studies have suggested a role for the retrograde messenger, nitric oxide (NO), in methamphetamine (METH)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- induced dopaminergic neurotoxicity. Since evidence supported the involvement of the neuronal nitric oxide synthase (nNOS) isoform in the dopaminergic neurotoxicity, the present study was undertaken to investigate whether the inducible nitric oxide synthase (iNOS) isoform is also associated with METH- and MPTP-induced neurotoxicity. The administration of METH (5mg/kg x 3) to iNOS deficient mice [homozygote iNOS(-/-)] and wild type mice (C57BL/6) resulted in significantly smaller depletion of striatal dopaminergic markers in the iNOS(-/-) mice compared with the wild-type mice. METH-induced hyperthermia was also significantly lower in the iNOS(-/-) mice than in wild-type mice. In contrast to the outcome of METH administration, MPTP injections (20 mg/kg x 3) resulted in a similar decrease in striatal dopaminergic markers in iNOS(-/-) and wild-type mice. In the set of behavioral experiments, METH-induced locomotor sensitization was investigated. The acute administration of METH (1.0 mg/kg) resulted in the same intensity of locomotor activity in iNOS(-/-) and wild-type mice. Moreover, 68 to 72 h after the exposure to the high-dose METH regimen (5 mg/kg x 3), a marked sensitized response to a challenge injection of METH (1.0 mg/kg) was observed in both the iNOS(-/-) and wild-type mice. The finding that iNOS(-/-) mice were unprotected from MPTP-induced neurotoxicity suggests that the partial protection against METH-induced neurotoxicity observed was primarily associated with the diminished hyperthermic effect of METH seen in the iNOS(-/-) mice. Moreover, in contrast to nNOS deficiency, iNOS deficiency did not affect METH-induced behavioral sensitization. Copyright 1999 Wiley-Liss, Inc.

  11. Predictive validity and immune cell involvement in the pathogenesis of piroxicam-accelerated colitis in interleukin-10 knockout mice

    DEFF Research Database (Denmark)

    Holgersen, Kristine; Kvist, Peter Helding; Hansen, Axel Jacob Kornerup

    2014-01-01

    Piroxicam administration is a method for induction of enterocolitis in interleukin-10 knockout (IL-10 k.o.) mice. The piroxicam-accelerated colitis (PAC) IL-10 k.o. model combines a dysregulated immune response against the gut microbiota with a decreased mucosal integrity. The predictive validity...... and pathogenic mechanisms of the model have not been thoroughly investigated. In this study, IL-10 k.o. mice received piroxicam in the chow, and model qualification was performed by examining the efficacy of prophylactic anti-IL-12/23p40 monoclonal antibody (mAb), anti-TNFαmAb, cyclosporine A (CsA) and oral...

  12. Beta3 adrenoceptors substitute the role of M(2) muscarinic receptor in coping with cold stress in the heart: evidence from M(2)KO mice.

    Science.gov (United States)

    Benes, Jan; Novakova, Martina; Rotkova, Jana; Farar, Vladimir; Kvetnansky, Richard; Riljak, Vladimir; Myslivecek, Jaromir

    2012-07-01

    We investigated the role of beta3-adrenoceptors (AR) in cold stress (1 or 7 days in cold) in animals lacking main cardioinhibitive receptors-M2 muscarinic receptors (M(2)KO). There was no change in receptor number in the right ventricles. In the left ventricles, there was decrease in binding to all cardiostimulative receptors (beta1-, and beta2-AR) and increase in cardiodepressive receptors (beta3-AR) in unstressed KO in comparison to WT. The cold stress in WT animals resulted in decrease in binding to beta1- and beta2-AR (to 37%/35% after 1 day in cold and to 27%/28% after 7 days in cold) while beta3-AR were increased (to 216% of control) when 7 days cold was applied. MR were reduced to 46% and 58%, respectively. Gene expression of M2 MR in WT was not changed due to stress, while M3 was changed. The reaction of beta1- and beta2-AR (binding) to cold was similar in KO and WT animals, and beta3-AR in stressed KO animals did not change. Adenylyl cyclase activity was affected by beta3-agonist CL316243 in cold stressed WT animals but CL316243 had almost no effects on adenylyl cyclase activity in stressed KO. Nitric oxide activity (NOS) was not affected by BRL37344 (beta3-agonist) both in WT and KO animals. Similarly, the stress had no effects on NOS activity in WT animals and in KO animals. We conclude that the function of M2 MR is substituted by beta3-AR and that these effects are mediated via adenylyl cyclase rather than NOS.

  13. Conditional loss of progranulin in neurons is not sufficient to cause neuronal ceroid lipofuscinosis-like neuropathology in mice.

    Science.gov (United States)

    Petkau, Terri L; Blanco, Jake; Leavitt, Blair R

    2017-10-01

    Progranulin deficiency due to heterozygous null mutations in the GRN gene is a common cause of familial frontotemporal lobar degeneration (FTLD), while homozygous loss-of-function GRN mutations cause neuronal ceroid lipofuscinosis (NCL). Aged progranulin-knockout mice display highly exaggerated lipofuscinosis, microgliosis, and astrogliosis, as well as mild cell loss in specific brain regions. Progranulin is a secreted glycoprotein expressed in both neurons and microglia, but not astrocytes, in the brain. We generated conditional progranulin-knockout mice that lack progranulin in nestin-expressing cells (Nes-cKO mice), which include most neurons as well as astrocytes. We confirmed near complete knockout of progranulin in neurons in Nes-cKO mice, while microglial progranulin levels remained similar to that of wild-type animals. Overall brain progranulin levels were reduced by about 50% in Nes-cKO, and no Grn was detected in primary Nes-cKO neurons. Nes-cKO mice aged to 12months did not display any increase in lipofuscin deposition, microgliosis, or astrogliosis in the four brain regions examined, though increases were observed for most of these measures in Grn-null animals. We conclude that neuron-specific loss of progranulin is not sufficient to cause similar neuropathological changes to those seen in constitutive Grn-null animals. Our results suggest that increased lipofuscinosis and gliosis in Grn-null animals are not caused by intrinsic progranulin deficiency in neurons, and that microglia-derived progranulin may be sufficient to maintain neuronal health and homeostasis in the brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Abnormal type I collagen post-translational modification and crosslinking in a cyclophilin B KO mouse model of recessive osteogenesis imperfecta.

    Directory of Open Access Journals (Sweden)

    Wayne A Cabral

    2014-06-01

    Full Text Available Cyclophilin B (CyPB, encoded by PPIB, is an ER-resident peptidyl-prolyl cis-trans isomerase (PPIase that functions independently and as a component of the collagen prolyl 3-hydroxylation complex. CyPB is proposed to be the major PPIase catalyzing the rate-limiting step in collagen folding. Mutations in PPIB cause recessively inherited osteogenesis imperfecta type IX, a moderately severe to lethal bone dysplasia. To investigate the role of CyPB in collagen folding and post-translational modifications, we generated Ppib-/- mice that recapitulate the OI phenotype. Knock-out (KO mice are small, with reduced femoral areal bone mineral density (aBMD, bone volume per total volume (BV/TV and mechanical properties, as well as increased femoral brittleness. Ppib transcripts are absent in skin, fibroblasts, femora and calvarial osteoblasts, and CyPB is absent from KO osteoblasts and fibroblasts on western blots. Only residual (2-11% collagen prolyl 3-hydroxylation is detectable in KO cells and tissues. Collagen folds more slowly in the absence of CyPB, supporting its rate-limiting role in folding. However, treatment of KO cells with cyclosporine A causes further delay in folding, indicating the potential existence of another collagen PPIase. We confirmed and extended the reported role of CyPB in supporting collagen lysyl hydroxylase (LH1 activity. Ppib-/- fibroblast and osteoblast collagen has normal total lysyl hydroxylation, while increased collagen diglycosylation is observed. Liquid chromatography/mass spectrometry (LC/MS analysis of bone and osteoblast type I collagen revealed site-specific alterations of helical lysine hydroxylation, in particular, significantly reduced hydroxylation of helical crosslinking residue K87. Consequently, underhydroxylated forms of di- and trivalent crosslinks are strikingly increased in KO bone, leading to increased total crosslinks and decreased helical hydroxylysine- to lysine-derived crosslink ratios. The altered

  15. Abnormal Type I Collagen Post-translational Modification and Crosslinking in a Cyclophilin B KO Mouse Model of Recessive Osteogenesis Imperfecta

    Science.gov (United States)

    Cabral, Wayne A.; Perdivara, Irina; Weis, MaryAnn; Terajima, Masahiko; Blissett, Angela R.; Chang, Weizhong; Perosky, Joseph E.; Makareeva, Elena N.; Mertz, Edward L.; Leikin, Sergey; Tomer, Kenneth B.; Kozloff, Kenneth M.; Eyre, David R.; Yamauchi, Mitsuo; Marini, Joan C.

    2014-01-01

    Cyclophilin B (CyPB), encoded by PPIB, is an ER-resident peptidyl-prolyl cis-trans isomerase (PPIase) that functions independently and as a component of the collagen prolyl 3-hydroxylation complex. CyPB is proposed to be the major PPIase catalyzing the rate-limiting step in collagen folding. Mutations in PPIB cause recessively inherited osteogenesis imperfecta type IX, a moderately severe to lethal bone dysplasia. To investigate the role of CyPB in collagen folding and post-translational modifications, we generated Ppib−/− mice that recapitulate the OI phenotype. Knock-out (KO) mice are small, with reduced femoral areal bone mineral density (aBMD), bone volume per total volume (BV/TV) and mechanical properties, as well as increased femoral brittleness. Ppib transcripts are absent in skin, fibroblasts, femora and calvarial osteoblasts, and CyPB is absent from KO osteoblasts and fibroblasts on western blots. Only residual (2–11%) collagen prolyl 3-hydroxylation is detectable in KO cells and tissues. Collagen folds more slowly in the absence of CyPB, supporting its rate-limiting role in folding. However, treatment of KO cells with cyclosporine A causes further delay in folding, indicating the potential existence of another collagen PPIase. We confirmed and extended the reported role of CyPB in supporting collagen lysyl hydroxylase (LH1) activity. Ppib−/− fibroblast and osteoblast collagen has normal total lysyl hydroxylation, while increased collagen diglycosylation is observed. Liquid chromatography/mass spectrometry (LC/MS) analysis of bone and osteoblast type I collagen revealed site-specific alterations of helical lysine hydroxylation, in particular, significantly reduced hydroxylation of helical crosslinking residue K87. Consequently, underhydroxylated forms of di- and trivalent crosslinks are strikingly increased in KO bone, leading to increased total crosslinks and decreased helical hydroxylysine- to lysine-derived crosslink ratios. The altered

  16. Decreased Neointimal Extracellular Matrix Formation in RAGE-Knockout Mice After Microvascular Denudation

    Energy Technology Data Exchange (ETDEWEB)

    Groezinger, Gerd, E-mail: gerd.groezinger@med.uni-tuebingen.de; Schmehl, Joerg, E-mail: joerg.schmehl@med.uni-tuebingen.de; Bantleon, Ruediger, E-mail: ruediger.bantleon@med.uni-tuebingen.de; Kehlbach, Rainer, E-mail: rainer.kehlbach@uni-tuebingen.de [University of Tuebingen, Department of Diagnostic and Interventional Radiology (Germany); Mehra, Tarun, E-mail: tarun.mehra@med.uni-tuebingen.de [University of Tuebingen, Department of Dermatology (Germany); Claussen, Claus, E-mail: gerd.groezinger@med.uni-tuebingen.de; Wiesinger, Benjamin, E-mail: benjamin.wiesinger@med.uni-tuebingen.de [University of Tuebingen, Department of Diagnostic and Interventional Radiology (Germany)

    2012-12-15

    Purpose: To evaluate in vivo the role of RAGE (receptor for advanced glycated end products) in the development of restenosis and neointimal proliferation in RAGE-deficient knockout (KO) mice compared with wild-type (WT) mice in an animal model. Materials and Methods: Sixteen WT and 15 RAGE-deficient mice underwent microvascular denudation of the common femoral artery under general anaesthesia. Contralateral arteries underwent a sham operation and served as controls. Four weeks after the intervention, all animals were killed, and paraformaldehyde-fixed specimens of the femoral artery were analysed with different stains (hematoxylin and eosin and Elastica van Gieson) and several different types of immunostaining (proliferating cell nuclear antigen, {alpha}-actin, collagen, von Willebrand factor, RAGE). Luminal area, area of the neointima, and area of the media were measured in all specimens. In addition, colony-formation assays were performed, and collagen production by WT smooth muscle cells (SMCs) and RAGE-KO SMCs was determined. For statistical analysis, P < 0.05 was considered statistically significant. Results: Four weeks after denudation, WT mice showed a 49.6% loss of luminal area compared with 14.9% loss of luminal area in RAGE-deficient mice (sham = 0% loss) (P < 0.001). The neointima was 18.2 (*1000 {mu}m{sup 2} [n = 15) in the WT group compared with only 8.4 (*1000 {mu}m{sup 2} [n = 16]) in the RAGE-KO group. RAGE-KO SMCs showed significantly decreased proliferation activity and production of extracellular matrix protein. Conclusion: RAGE may be shown to play a considerable role in the formation of neointima leading to restenosis after vascular injury.

  17. Glycogen synthase kinase 3α regulates urine concentrating mechanism in mice

    OpenAIRE

    Nørregaard, Rikke; Tao, Shixin; Nilsson, Line; Woodgett, James R.; Kakade, Vijayakumar; Yu, Alan S. L.; Howard, Christiana; Rao, Reena

    2015-01-01

    In mammals, glycogen synthase kinase (GSK)3 comprises GSK3α and GSK3β isoforms. GSK3β has been shown to play a role in the ability of kidneys to concentrate urine by regulating vasopressin-mediated water permeability of collecting ducts, whereas the role of GSK3α has yet to be discerned. To investigate the role of GSK3α in urine concentration, we compared GSK3α knockout (GSK3αKO) mice with wild-type (WT) littermates. Under normal conditions, GSK3αKO mice had higher water intake and urine outp...

  18. Tumor necrosis factor-alpha-independent downregulation of hepatic cholesterol 7alpha-hydroxylase gene in mice treated with lead nitrate.

    Science.gov (United States)

    Kojima, Misaki; Sekikawa, Kenji; Nemoto, Kiyomitsu; Degawa, Masakuni

    2005-10-01

    We previously reported that lead nitrate (LN), an inducer of hepatic tumor necrosis factor-alpha (TNF-alpha), downregulated gene expression of cholesterol 7alpha-hydroxylase. Herein, to clarify the role of TNF-alpha in LN-induced downregulation of cholesterol 7alpha-hydroxylase, effects of LN on gene expression of hepatic cholesterol 7alpha-hydroxylase (Cyp7a1) in TNF-alpha-knockout (KO) and TNF-alpha-wild-type (WT) mice were comparatively examined. Gene expression of hepatic Cyp7a1 in both WT and KO mice decreased to less than 5% of the corresponding controls at 6-12 h after treatment with LN (100 mumol/kg body weight, iv). Levels of hepatic TNF-alpha protein in either WT or KO mice were below the detection limit, although expression levels of the TNF-alpha gene markedly increased at 6 h in WT mice by LN treatment, but not in KO mice. In contrast, in both WT and KO mice, levels of hepatic IL-1beta protein, which is known to be a suppressor of the cholesterol 7alpha-hydroxylase gene in hamsters, were significantly increased 3-6 h after LN treatment. Furthermore, LN-induced downregulation of the Cyp7a1 gene did not necessarily result from altered gene expression of hepatic transcription factors, including positive regulators (liver X receptor alpha, retinoid X receptor alpha, fetoprotein transcription factor, and hepatocyte nuclear factor 4alpha) and a negative regulator small heterodimer partner responsible for expression of the Cyp7a1 gene. The present findings indicated that LN-induced downregulation of the Cyp7a1 gene in mice did not necessarily occur through a TNF-alpha-dependent pathway and might occur mainly through an IL-1beta-dependent pathway.

  19. Mice lacking glutamate carboxypeptidase II develop normally, but are less susceptible to traumatic brain injury.

    Science.gov (United States)

    Gao, Yang; Xu, Siyi; Cui, Zhenwen; Zhang, Mingkun; Lin, Yingying; Cai, Lei; Wang, Zhugang; Luo, Xingguang; Zheng, Yan; Wang, Yong; Luo, Qizhong; Jiang, Jiyao; Neale, Joseph H; Zhong, Chunlong

    2015-07-01

    Glutamate carboxypeptidase II (GCPII) is a transmembrane zinc metallopeptidase found mainly in the nervous system, prostate and small intestine. In the nervous system, glia-bound GCPII mediates the hydrolysis of the neurotransmitter N-acetylaspartylglutamate (NAAG) into glutamate and N-acetylaspartate. Inhibition of GCPII has been shown to attenuate excitotoxicity associated with enhanced glutamate transmission under pathological conditions. However, different strains of mice lacking the GCPII gene are reported to exhibit striking phenotypic differences. In this study, a GCPII gene knockout (KO) strategy involved removing exons 3-5 of GCPII. This generated a new GCPII KO mice line with no overt differences in standard neurological behavior compared to their wild-type (WT) littermates. However, GCPII KO mice were significantly less susceptible to moderate traumatic brain injury (TBI). GCPII gene KO significantly lessened neuronal degeneration and astrocyte damage in the CA2 and CA3 regions of the hippocampus 24 h after moderate TBI. In addition, GCPII gene KO reduced TBI-induced deficits in long-term spatial learning/memory tested in the Morris water maze and motor balance tested via beam walking. Knockout of the GCPII gene is not embryonic lethal and affords histopathological protection with improved long-term behavioral outcomes after TBI, a result that further validates GCPII as a target for drug development consistent with results from studies using GCPII peptidase inhibitors. © 2015 International Society for Neurochemistry.

  20. Regulation of ENaC in mice lacking renal insulin receptors in the collecting duct

    Science.gov (United States)

    Pavlov, Tengis S.; Ilatovskaya, Daria V.; Levchenko, Vladislav; Li, Lijun; Ecelbarger, Carolyn M.; Staruschenko, Alexander

    2013-01-01

    The epithelial sodium channel (ENaC) is one of the central effectors involved in regulation of salt and water homeostasis in the kidney. To study mechanisms of ENaC regulation, we generated knockout mice lacking the insulin receptor (InsR KO) specifically in the collecting duct principal cells. Single-channel analysis in freshly isolated split-open tubules demonstrated that the InsR-KO mice have significantly lower ENaC activity compared to their wild-type (C57BL/6J) littermates when animals were fed either normal or sodium-deficient diets. Immunohistochemical and Western blot assays demonstrated no significant changes in expression of ENaC subunits in InsR-KO mice compared to wild-type littermates. Insulin treatment caused greater ENaC activity in split-open tubules isolated from wild-type mice but did not have this effect in the InsR-KO mice. Thus, these results suggest that insulin increases ENaC activity via its own receptor affecting the channel open probability. To further determine the mechanism of the action of insulin on ENaC, we used mouse mpkCCDc14 principal cells. Insulin significantly augmented amiloride-sensitive transepithelial flux in these cells. Pretreatment of the mpkCCDc14 cells with phosphatidylinositol 3-kinase (LY294002; 10 μM) or mTOR (PP242; 100 nM) inhibitors precluded this effect. This study provides new information about the importance of insulin receptors expressed in collecting duct principal cells for ENaC activity.—Pavlov, T. S., Ilatovskaya, D. V., Levchenko, V., Li, L., Ecelbarger, C. M., Staruschenko, A. Regulation of ENaC in mice lacking renal insulin receptors in the collecting duct. PMID:23558339

  1. FAT10 knock out mice livers fail to develop Mallory-Denk bodies in the DDC mouse model.

    Science.gov (United States)

    French, S W; French, B A; Oliva, J; Li, J; Bardag-Gorce, F; Tillman, B; Canaan, A

    2012-12-01

    Mallory-Denk bodies (MDBs) are aggresomes composed of undigested ubiqutinated short lived proteins which have accumulated because of a decrease in the rate of their degradation by the 26s proteasome. The decrease in the activity of the proteasome is due to a shift in the activity of the 26s proteasome to the immunoproteasome triggered by an increase in expression of the catalytic subunits of the immunoproteasome which replaces the catalytic subunits of the 26s proteasome. This switch in the type of proteasome in liver cells is triggered by the binding of IFNγ to the IFNγ sequence response element (ISRE) located on the FAT10 promoter. To determine if either FAT10 or IFNγ are essential for the formation of MDBs we fed both IFNγ and FAT10 knock out (KO) mice DDC added to the control diet for 10weeks in order to induce MDBs. Mice fed the control diet and Wild type mice fed the DDC or control diet were compared. MDBs were located by immunofluorescent double stains using antibodies to ubiquitin to stain MDBs and FAT10 to localize the increased expression of FAT10 in MDB forming hepatocytes. We found that MDB formation occurred in the IFNγ KO mice but not in the FAT10 KO mice. Western blots showed an increase in the ubiquitin smears and decreases β 5 (chymotrypsin-like 26S proteasome subunit) in the Wild type mice fed DDC but not in the FAT10 KO mice fed DDC. To conclude, we have demonstrated that FAT10 is essential to the induction of MDB formation in the DDC fed mice. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Difference in Perseverative Errors during a Visual Attention Task with Auditory Distractors in Alpha-9 Nicotinic Receptor Subunit Wild Type and Knock-Out Mice

    Directory of Open Access Journals (Sweden)

    Pascal Jorratt

    2017-11-01

    Full Text Available The auditory efferent system is a neural network that originates in the auditory cortex and projects to the cochlear receptor through olivocochlear (OC neurons. Medial OC neurons make cholinergic synapses with outer hair cells (OHCs through nicotinic receptors constituted by α9 and α10 subunits. One of the physiological functions of the α9 nicotinic receptor subunit (α9-nAChR is the suppression of auditory distractors during selective attention to visual stimuli. In a recent study we demonstrated that the behavioral performance of alpha-9 nicotinic receptor knock-out (KO mice is altered during selective attention to visual stimuli with auditory distractors since they made less correct responses and more omissions than wild type (WT mice. As the inhibition of the behavioral responses to irrelevant stimuli is an important mechanism of the selective attention processes, behavioral errors are relevant measures that can reflect altered inhibitory control. Errors produced during a cued attention task can be classified as premature, target and perseverative errors. Perseverative responses can be considered as an inability to inhibit the repetition of an action already planned, while premature responses can be considered as an index of the ability to wait or retain an action. Here, we studied premature, target and perseverative errors during a visual attention task with auditory distractors in WT and KO mice. We found that α9-KO mice make fewer perseverative errors with longer latencies than WT mice in the presence of auditory distractors. In addition, although we found no significant difference in the number of target error between genotypes, KO mice made more short-latency target errors than WT mice during the presentation of auditory distractors. The fewer perseverative error made by α9-KO mice could be explained by a reduced motivation for reward and an increased impulsivity during decision making with auditory distraction in KO mice.

  3. A distinctive patchy osteomalacia characterises Phospho1-deficient mice.

    Science.gov (United States)

    Boyde, Alan; Staines, Katherine A; Javaheri, Behzad; Millan, Jose Luis; Pitsillides, Andrew A; Farquharson, Colin

    2017-08-01

    The phosphatase PHOSPHO1 is involved in the initiation of biomineralisation. Bones in Phospho1 knockout (KO) mice show histological osteomalacia with frequent bowing of long bones and spontaneous fractures: they contain less mineral, with smaller mineral crystals. However, the consequences of Phospho1 ablation on the microscale structure of bone are not yet fully elucidated. Tibias and femurs obtained from wild-type and Phospho1 null (KO) mice (25-32 weeks old) were embedded in PMMA, cut and polished to produce near longitudinal sections. Block surfaces were studied using 20 kV backscattered-electron (BSE) imaging, and again after iodine staining to reveal non-mineralised matrix and cellular components. For 3D characterisation, we used X-ray micro-tomography. Bones opened with carbide milling tools to expose endosteal surfaces were macerated using an alkaline bacterial pronase enzyme detergent, 5% hydrogen peroxide and 7% sodium hypochlorite solutions to produce 3D surfaces for study with 3D BSE scanning electron microscopy (SEM). Extensive regions of both compact cortical and trabecular bone matrix in Phospho1 KO mice contained no significant mineral and/or showed arrested mineralisation fronts, characterised by a failure in the fusion of the calcospherite-like, separately mineralising, individual micro-volumes within bone. Osteoclastic resorption of the uncalcified matrix in Phospho1 KO mice was attenuated compared with surrounding normally mineralised bone. The extent and position of this aberrant biomineralisation varied considerably between animals, contralateral limbs and anatomical sites. The most frequent manifestation lay, however, in the nearly complete failure of mineralisation in the bone surrounding the numerous transverse blood vessel canals in the cortices. In conclusion, SEM disclosed defective mineralising fronts and extensive patchy osteomalacia, which has previously not been recognised. These data further confirm the role of this phosphatase

  4. Rearing-environment-dependent hippocampal local field potential differences in wild-type and inositol trisphosphate receptor type 2 knockout mice.

    Science.gov (United States)

    Tanaka, Mika; Wang, Xiaowen; Mikoshiba, Katsuhiko; Hirase, Hajime; Shinohara, Yoshiaki

    2017-10-15

    Mice reared in an enriched environment are demonstrated to have larger hippocampal gamma oscillations than those reared in isolation, thereby confirming previous observations in rats. To test whether astrocytic Ca 2+ surges are involved in this experience-dependent LFP pattern modulation, we used inositol trisphosphate receptor type 2 (IP 3 R2)-knockout (KO) mice, in which IP 3 /Ca 2+ signalling in astrocytes is largely diminished. We found that this experience-dependent gamma power alteration persists in the KO mice. Interestingly, hippocampal ripple events, the synchronized events critical for memory consolidation, are reduced in magnitude and frequency by both isolated rearing and IP 3 R2 deficiency. Rearing in an enriched environment (ENR) is known to enhance cognitive and memory abilities in rodents, whereas social isolation (ISO) induces depression-like behaviour. The hippocampus has been documented to undergo morphological and functional changes depending on these rearing environments. For example, rearing condition during juvenility alters CA1 stratum radiatum gamma oscillation power in rats. In the present study, hippocampal CA1 local field potentials (LFP) were recorded from bilateral CA1 in urethane-anaesthetized mice that were reared in either an ENR or ISO condition. Similar to previous findings in rats, gamma oscillation power during theta states was higher in the ENR group. Ripple events that occur during non-theta periods in the CA1 stratum pyramidale also had longer intervals in ISO mice. Because astrocytic Ca 2+ elevations play a key role in synaptic plasticity, we next tested whether these changes in LFP are also expressed in inositol trisphosphate receptor type 2 (IP 3 R2)-knockout (KO) mice, in which astrocytic Ca 2+ elevations are largely diminished. We found that the gamma power was also higher in IP 3 R2-KO-ENR mice compared to IP 3 R2-KO-ISO mice, suggesting that the rearing-environment-dependent gamma power alteration does not necessarily

  5. Treatment with the anti-IL-6 receptor antibody attenuates muscular dystrophy via promoting skeletal muscle regeneration in dystrophin-/utrophin-deficient mice.

    Science.gov (United States)

    Wada, Eiji; Tanihata, Jun; Iwamura, Akira; Takeda, Shin'ichi; Hayashi, Yukiko K; Matsuda, Ryoichi

    2017-10-27

    Chronic increases in the levels of the inflammatory cytokine interleukin-6 (IL-6) in serum and skeletal muscle are thought to contribute to the progression of muscular dystrophy. Dystrophin/utrophin double-knockout (dKO) mice develop a more severe and progressive muscular dystrophy than the mdx mice, the most common murine model of Duchenne muscular dystrophy (DMD). In particular, dKO mice have smaller body sizes and muscle diameters, and develop progressive kyphosis and fibrosis in skeletal and cardiac muscles. As mdx mice and DMD patients, we found that IL-6 levels in the skeletal muscle were significantly increased in dKO mice. Thus, in this study, we aimed to analyze the effects of IL-6 receptor (IL-6R) blockade on the muscle pathology of dKO mice. Male dKO mice were administered an initial injection (200 mg/kg intraperitoneally (i.p.)) of either the anti-IL-6R antibody MR16-1 or an isotype-matched control rat IgG at the age of 14 days, and were then given weekly injections (25 mg/kg i.p.) until 90 days of age. Treatment of dKO mice with the MR16-1 antibody successfully inhibited the IL-6 pathway in the skeletal muscle and resulted in a significant reduction in the expression levels of phosphorylated signal transducer and activator of transcription 3 in the skeletal muscle. Pathologically, a significant increase in the area of embryonic myosin heavy chain-positive myofibers and muscle diameter, and reduced fibrosis in the quadriceps muscle were observed. These results demonstrated the therapeutic effects of IL-6R blockade on promoting muscle regeneration. Consistently, serum creatine kinase levels were decreased. Despite these improvements observed in the limb muscles, degeneration of the diaphragm and cardiac muscles was not ameliorated by the treatment of mice with the MR16-1 antibody. As no adverse effects of treatment with the MR16-1 antibody were observed, our results indicate that the anti-IL-6R antibody is a potential therapy for muscular dystrophy

  6. Increased susceptibility to diet-induced obesity in GPRC6A receptor knockout mice

    DEFF Research Database (Denmark)

    Clemmensen, Christoffer; Smajilovic, Sanela; Madsen, Andreas N

    2013-01-01

    locomotor activity. Moreover, diet-induced obese Gprc6a KO mice had increased circulating insulin and leptin levels relative to WT animals, thereby demonstrating that endocrine abnormalities associate with the reported disturbances in energy balance. The phenotype was further accompanied by disruptions...... complications is still elusive. In the present study, we investigated the impact of GPRC6A deficiency in a murine model of diet-induced obesity (DIO). Male Gprc6a knockout (KO) mice and WT littermates were subjected to a high-fat diet (HFD) for 25 weeks and exposed to comprehensive metabolic phenotyping...

  7. Trifluoperazine inhibits acetaminophen-induced hepatotoxicity and hepatic reactive nitrogen formation in mice and in freshly isolated hepatocytes

    Directory of Open Access Journals (Sweden)

    Sudip Banerjee

    Full Text Available The hepatotoxicity of acetaminophen (APAP occurs by initial metabolism to N-acetyl-p-benzoquinone imine which depletes GSH and forms APAP-protein adducts. Subsequently, the reactive nitrogen species peroxynitrite is formed from nitric oxide (NO and superoxide leading to 3-nitrotyrosine in proteins. Toxicity occurs with inhibited mitochondrial function. We previously reported that in hepatocytes the nNOS (NOS1 inhibitor NANT inhibited APAP toxicity, reactive nitrogen and oxygen species formation, and mitochondrial dysfunction. In this work we examined the effect of trifluoperazine (TFP, a calmodulin antagonist that inhibits calcium induced nNOS activation, on APAP hepatotoxicity and reactive nitrogen formation in murine hepatocytes and in vivo. In freshly isolated hepatocytes TFP inhibited APAP induced toxicity, reactive nitrogen formation (NO, GSNO, and 3-nitrotyrosine in protein, reactive oxygen formation (superoxide, loss of mitochondrial membrane potential, decreased ATP production, decreased oxygen consumption rate, and increased NADH accumulation. TFP did not alter APAP induced GSH depletion in the hepatocytes or the formation of APAP protein adducts which indicated that reactive metabolite formation was not inhibited. Since we previously reported that TFP inhibits the hepatotoxicity of APAP in mice without altering hepatic APAP-protein adduct formation, we examined the APAP treated mouse livers for evidence of reactive nitrogen formation. 3-Nitrotyrosine in hepatic proteins and GSNO were significantly increased in APAP treated mouse livers and decreased in the livers of mice treated with APAP plus TFP. These data are consistent with a hypothesis that APAP hepatotoxicity occurs with altered calcium metabolism, activation of nNOS leading to increased reactive nitrogen formation, and mitochondrial dysfunction. Keywords: Acetaminophen, Neuronal nitric oxide, Oxidative stress, Mitochondria

  8. The FKBP5 Gene Affects Alcohol Drinking in Knockout Mice and Is Implicated in Alcohol Drinking in Humans

    Directory of Open Access Journals (Sweden)

    Bin Qiu

    2016-08-01

    Full Text Available FKBP5 encodes FK506-binding protein 5, a glucocorticoid receptor (GR-binding protein implicated in various psychiatric disorders and alcohol withdrawal severity. The purpose of this study is to characterize alcohol preference and related phenotypes in Fkbp5 knockout (KO mice and to examine the role of FKBP5 in human alcohol consumption. The following experiments were performed to characterize Fkpb5 KO mice. (1 Fkbp5 KO and wild-type (WT EtOH consumption was tested using a two-bottle choice paradigm; (2 The EtOH elimination rate was measured after intraperitoneal (IP injection of 2.0 g/kg EtOH; (3 Blood alcohol concentration (BAC was measured after 3 h limited access of alcohol; (4 Brain region expression of Fkbp5 was identified using LacZ staining; (5 Baseline corticosterone (CORT was assessed. Additionally, two SNPs, rs1360780 (C/T and rs3800373 (T/G, were selected to study the association of FKBP5 with alcohol consumption in humans. Participants were college students (n = 1162 from 21–26 years of age with Chinese, Korean or Caucasian ethnicity. The results, compared to WT mice, for KO mice exhibited an increase in alcohol consumption that was not due to differences in taste sensitivity or alcohol metabolism. Higher BAC was found in KO mice after 3 h of EtOH access. Fkbp5 was highly expressed in brain regions involved in the regulation of the stress response, such as the hippocampus, amygdala, dorsal raphe and locus coeruleus. Both genotypes exhibited similar basal levels of plasma corticosterone (CORT. Finally, single nucleotide polymorphisms (SNPs in FKBP5 were found to be associated with alcohol drinking in humans. These results suggest that the association between FKBP5 and alcohol consumption is conserved in both mice and humans.

  9. Janus Kinase 2 (JAK2) Dissociates Hepatosteatosis from Hepatocellular Carcinoma in Mice.

    Science.gov (United States)

    Shi, Sally Yu; Luk, Cynthia T; Schroer, Stephanie A; Kim, Min Jeong; Dodington, David W; Sivasubramaniyam, Tharini; Lin, Lauren; Cai, Erica P; Lu, Shun-Yan; Wagner, Kay-Uwe; Bazinet, Richard P; Woo, Minna

    2017-03-03

    Hepatocellular carcinoma is an end-stage complication of non-alcoholic fatty liver disease (NAFLD). Inflammation plays a critical role in the progression of non-alcoholic fatty liver disease and the development of hepatocellular carcinoma. However, whether steatosis per se promotes liver cancer, and the molecular mechanisms that control the progression in this disease spectrum remain largely elusive. The Janus kinase signal transducers and activators of transcription (JAK-STAT) pathway mediates signal transduction by numerous cytokines that regulate inflammation and may contribute to hepatocarcinogenesis. Mice with hepatocyte-specific deletion of JAK2 (L-JAK2 KO) develop extensive fatty liver spontaneously. We show here that this simple steatosis was insufficient to drive carcinogenesis. In fact, L-JAK2 KO mice were markedly protected from chemically induced tumor formation. Using the methionine choline-deficient dietary model to induce steatohepatitis, we found that steatohepatitis development was completely arrested in L-JAK2 KO mice despite the presence of steatosis, suggesting that JAK2 is the critical factor required for inflammatory progression in the liver. In line with this, L-JAK2 KO mice exhibited attenuated inflammation after chemical carcinogen challenge. This was associated with increased hepatocyte apoptosis without elevated compensatory proliferation, thus thwarting expansion of transformed hepatocytes. Taken together, our findings identify an indispensable role of JAK2 in hepatocarcinogenesis through regulating critical inflammatory pathways. Targeting the JAK-STAT pathway may provide a novel therapeutic option for the treatment of hepatocellular carcinoma. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Elevated blood pressure in cytochrome P4501A1 knockout mice is associated with reduced vasodilation to omega − 3 polyunsaturated fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Agbor, Larry N.; Walsh, Mary T.; Boberg, Jason R.; Walker, Mary K., E-mail: mwalker@salud.unm.edu

    2012-11-01

    In vitro cytochrome P4501A1 (CYP1A1) metabolizes omega − 3 polyunsaturated fatty acids (n − 3 PUFAs); eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), primarily to 17,18-epoxyeicosatetraenoic acid (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP), respectively. These metabolites have been shown to mediate vasodilation via increases in nitric oxide (NO) and activation of potassium channels. We hypothesized that genetic deletion of CYP1A1 would reduce vasodilatory responses to n − 3 PUFAs, but not the metabolites, and increase blood pressure (BP) due to decreases in NO. We assessed BP by radiotelemetry in CYP1A1 wildtype (WT) and knockout (KO) mice ± NO synthase (NOS) inhibitor. We also assessed vasodilation to acetylcholine (ACh), EPA, DHA, 17,18-EEQ and 19,20-EDP in aorta and mesenteric arterioles. Further, we assessed vasodilation to an NO donor and to DHA ± inhibitors of potassium channels. CYP1A1 KO mice were hypertensive, compared to WT, (mean BP in mm Hg, WT 103 ± 1, KO 116 ± 1, n = 5/genotype, p < 0.05), and exhibited a reduced heart rate (beats per minute, WT 575 ± 5; KO 530 ± 7; p < 0.05). However, BP responses to NOS inhibition and vasorelaxation responses to ACh and an NO donor were normal in CYP1A1 KO mice, suggesting that NO bioavailability was not reduced. In contrast, CYP1A1 KO mice exhibited significantly attenuated vasorelaxation responses to EPA and DHA in both the aorta and mesenteric arterioles, but normal vasorelaxation responses to the CYP1A1 metabolites, 17,18-EEQ and 19,20-EDP, and normal responses to potassium channel inhibition. Taken together these data suggest that CYP1A1 metabolizes n − 3 PUFAs to vasodilators in vivo and the loss of these vasodilators may lead to increases in BP. -- Highlights: ► CYP1A1 KO mice are hypertensive. ► CYP1A1 KO mice exhibit reduced vasodilation responses to n-3 PUFAs. ► Constitutive CYP1A1 expression regulates blood pressure and vascular function.

  11. Elevated blood pressure in cytochrome P4501A1 knockout mice is associated with reduced vasodilation to omega − 3 polyunsaturated fatty acids

    International Nuclear Information System (INIS)

    Agbor, Larry N.; Walsh, Mary T.; Boberg, Jason R.; Walker, Mary K.

    2012-01-01

    In vitro cytochrome P4501A1 (CYP1A1) metabolizes omega − 3 polyunsaturated fatty acids (n − 3 PUFAs); eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), primarily to 17,18-epoxyeicosatetraenoic acid (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP), respectively. These metabolites have been shown to mediate vasodilation via increases in nitric oxide (NO) and activation of potassium channels. We hypothesized that genetic deletion of CYP1A1 would reduce vasodilatory responses to n − 3 PUFAs, but not the metabolites, and increase blood pressure (BP) due to decreases in NO. We assessed BP by radiotelemetry in CYP1A1 wildtype (WT) and knockout (KO) mice ± NO synthase (NOS) inhibitor. We also assessed vasodilation to acetylcholine (ACh), EPA, DHA, 17,18-EEQ and 19,20-EDP in aorta and mesenteric arterioles. Further, we assessed vasodilation to an NO donor and to DHA ± inhibitors of potassium channels. CYP1A1 KO mice were hypertensive, compared to WT, (mean BP in mm Hg, WT 103 ± 1, KO 116 ± 1, n = 5/genotype, p < 0.05), and exhibited a reduced heart rate (beats per minute, WT 575 ± 5; KO 530 ± 7; p < 0.05). However, BP responses to NOS inhibition and vasorelaxation responses to ACh and an NO donor were normal in CYP1A1 KO mice, suggesting that NO bioavailability was not reduced. In contrast, CYP1A1 KO mice exhibited significantly attenuated vasorelaxation responses to EPA and DHA in both the aorta and mesenteric arterioles, but normal vasorelaxation responses to the CYP1A1 metabolites, 17,18-EEQ and 19,20-EDP, and normal responses to potassium channel inhibition. Taken together these data suggest that CYP1A1 metabolizes n − 3 PUFAs to vasodilators in vivo and the loss of these vasodilators may lead to increases in BP. -- Highlights: ► CYP1A1 KO mice are hypertensive. ► CYP1A1 KO mice exhibit reduced vasodilation responses to n-3 PUFAs. ► Constitutive CYP1A1 expression regulates blood pressure and vascular function.

  12. Loss of hypothalamic corticotropin-releasing hormone markedly reduces anxiety behaviors in mice

    Science.gov (United States)

    Zhang, Rong; Asai, Masato; Mahoney, Carrie E; Joachim, Maria; Shen, Yuan; Gunner, Georgia; Majzoub, Joseph A

    2016-01-01

    A long-standing paradigm posits that hypothalamic corticotropin-releasing hormone (CRH) regulates neuroendocrine functions such as adrenal glucocorticoid release, while extra-hypothalamic CRH plays a key role in stressor-triggered behaviors. Here we report that hypothalamus-specific Crh knockout mice (Sim1CrhKO mice, created by crossing Crhflox with Sim1Cre mice) have absent Crh mRNA and peptide mainly in the paraventricular nucleus of the hypothalamus (PVH) but preserved Crh expression in other brain regions including amygdala and cerebral cortex. As expected, Sim1CrhKO mice exhibit adrenal atrophy as well as decreased basal, diurnal and stressor-stimulated plasma corticosterone secretion and basal plasma ACTH, but surprisingly, have a profound anxiolytic phenotype when evaluated using multiple stressors including open field, elevated plus maze, holeboard, light-dark box, and novel object recognition task. Restoring plasma corticosterone did not reverse the anxiolytic phenotype of Sim1CrhKO mice. Crh-Cre driver mice revealed that PVHCrh fibers project abundantly to cingulate cortex and the nucleus accumbens shell, and moderately to medial amygdala, locus coeruleus, and solitary tract, consistent with the existence of PVHCrh-dependent behavioral pathways. Although previous, nonselective attenuation of CRH production or action, genetically in mice and pharmacologically in humans, respectively, has not produced the anticipated anxiolytic effects, our data show that targeted interference specifically with hypothalamic Crh expression results in anxiolysis. Our data identify neurons that express both Sim1 and Crh as a cellular entry point into the study of CRH-mediated, anxiety-like behaviors and their therapeutic attenuation. PMID:27595593

  13. Deficiency of the Erc/mesothelin gene ameliorates renal carcinogenesis in Tsc2 knockout mice.

    Science.gov (United States)

    Zhang, Danqing; Kobayashi, Toshiyuki; Kojima, Tetsuo; Kanenishi, Kenji; Hagiwara, Yoshiaki; Abe, Masaaki; Okura, Hidehiro; Hamano, Yoshitomo; Sun, Guodong; Maeda, Masahiro; Jishage, Kou-ichi; Noda, Tetsuo; Hino, Okio

    2011-04-01

    Genetic crossing experiments were performed between tuberous sclerosis-2 (Tsc2) KO and expressed in renal carcinoma (Erc) KO mice to analyze the function of the Erc/mesothelin gene in renal carcinogenesis. We found the number and size of renal tumors were significantly less in Tsc2+/-;Erc-/- mice than in Tsc2+/-;Erc+/+ and Tsc2+/-;Erc+/- mice. Tumors from Tsc2+/-;Erc-/- mice exhibited reduced cell proliferation and increased apoptosis, as determined by proliferating cell nuclear antigen (Ki67) and TUNEL analysis, respectively. Adhesion to collagen-coated plates in vitro was enhanced in Erc-restored cells and decreased in Erc-suppressed cells with siRNA. Tumor formation by Tsc2-deficient cells in nude mice was remarkably suppressed by stable knockdown of Erc with shRNA. Western blot analysis showed that the phosphorylation of focal adhesion kinase, Akt and signal transducer and activator of transcription protein 3 were weaker in Erc-deficient/suppressed cells compared with Erc-expressed cells. These results indicate that deficiency of the Erc/mesothelin gene ameliorates renal carcinogenesis in Tsc2 KO mice and inhibits the phosphorylation of several kinases of cell adhesion mechanism. This suggests that Erc/mesothelin may have an important role in the promotion and/or maintenance of carcinogenesis by influencing cell-substrate adhesion via the integrin-related signal pathway. © 2011 Japanese Cancer Association.

  14. Population trends of Goričko agricultural landscape birds

    Directory of Open Access Journals (Sweden)

    Denac Katarina

    2017-12-01

    Full Text Available Due to numerous bird surveys in the past 20 years, the avifauna of Goričko is relatively well known. For some species, the very first national ecological researches were conducted in this area. The article summarizes all bird surveys so far. It presents population trends of farmland species which is one of the most threatened bird groups in Europe. Most of the qualifying species of this habitat that are protected within the Natura 2000 network have suffered a decline at Goričko, specifically Quail Coturnix coturnix, Scops Owl Otus scops, Hoopoe Upupa epops, Woodlark Lullula arborea and White Stork Ciconia ciconia. The number of breeding pairs of the latter has not changed, but its fecundity has decreased. Furthermore, populations of other farmland bird species have decreased, for example Skylark Alauda arvensis, Stonechat Saxicola rubicola, Serin Serinus serinus and Common Linnet Linaria cannabina, as well as butterfly populations and tracts of grassland habitat types. National agricultural and nature conservation policies are evidently inefficient in protecting the biodiversity of Goričko. The most probable cause for bird population decline is agricultural intensification, which manifests itself at Goričko as disappearance and intensification of meadows, land consolidation, degradation of traditional orchards and use of pesticides. As a result of land consolidation hedges, uncultivated strips between fields, individual trees and bushes and minority habitat types are disappearing, whereas the surface of arable fields is increasing. Nature conservation measures performed by the Public Institute Goričko Nature Park with the support of DOPPS – BirdLife Slovenia volunteers seem to be efficient, but are spatially and temporally constrained. For this reason, they cannot serve as a substitute for insufficient systemic financing which could be improved by substantive and financial reform of the agri-environmental scheme. Currently, a negligible

  15. Hippocampal network oscillations in APP/APLP2-deficient mice.

    Directory of Open Access Journals (Sweden)

    Xiaomin Zhang

    Full Text Available The physiological function of amyloid precursor protein (APP and its two homologues APP-like protein 1 (APLP1 and 2 (APLP2 is largely unknown. Previous work suggests that lack of APP or APLP2 impairs synaptic plasticity and spatial learning. There is, however, almost no data on the role of APP or APLP at the network level which forms a critical interface between cellular functions and behavior. We have therefore investigated memory-related synaptic and network functions in hippocampal slices from three lines of transgenic mice: APPsα-KI (mice expressing extracellular fragment of APP, corresponding to the secreted APPsα ectodomain, APLP2-KO, and combined APPsα-KI/APLP2-KO (APPsα-DM for "double mutants". We analyzed two prominent patterns of network activity, gamma oscillations and sharp-wave ripple complexes (SPW-R. Both patterns were generally preserved in all strains. We find, however, a significantly reduced frequency of gamma oscillations in CA3 of APLP2-KO mice in comparison to APPsα-KI and WT mice. Network activity, basic synaptic transmission and short-term plasticity were unaltered in the combined mutants (APPsα-DM which showed, however, reduced long-term potentiation (LTP. Together, our data indicate that APLP2 and the intracellular domain of APP are not essential for coherent activity patterns in the hippocampus, but have subtle effects on synaptic plasticity and fine-tuning of network oscillations.

  16. 7,8-Dihydroxyflavone Ameliorates Cognitive Impairment by Inhibiting Expression of Tau Pathology in ApoE-Knockout Mice

    Directory of Open Access Journals (Sweden)

    Yang Tan

    2016-11-01

    Full Text Available 7,8-Dihydroxyflavone (7,8-DHF, a tyrosine kinase B (TrkB agonist that mimics the neuroprotective properties of brain-derived neurotrophic factor, which can not efficiently deliver into the brain, has been reported to be useful in ameliorating cognitive impairment in many diseases. Researches have indicated that apolipoprotein E-knockout (ApoE-KO mouse was associated with cognitive alteration via various mechanisms. Our present study investigated the possible mechanisms of cognitive impairment of ApoE-KO mouse fed with western type diet and the protective effects of 7,8-DHF in improving spatial learning and memory in ApoE-KO mouse. 5-weeks-old ApoE-KO mice and C57BL/6 mice were chronically treated with 7,8-DHF (with a dosage of 5mg/kg or vehicles orally for 25 weeks, and then subjected to Morris water maze at the age of 30 weeks to evaluate the cognitive performances. Afterwards, histology analysis and western blotting were performed. Spatial learning and memory deficits were observed in ApoE-KO mice, which were consistent with higher expression of active-asparaginyl endopeptidase (active-AEP as well as AEP-derived truncated tauN368 compared with normal group. In addition to that, long-term treatment of 7,8-DHF dramatically ameliorated cognitive decline in ApoE-KO mice, accompanied by the activation in phosphorylated protein kinase B (Akt/glycogen synthase kinase-3β (GSK-3β pathway and down-regulated expression of tau S396 and PHF-tau (phosphorylated tau at ser396 and ser404 epitope. These findings suggested that cognitive impairment of ApoE-KO mouse might associate with tau pathology and 7,8-DHF could activate AKT and then phosphorylate its downstream molecule to inhibit expression of abnormal tau, meanwhile, 7,8-DHF could reduce the expression of active-AEP and then inhibit production of truncated tauN368.

  17. Shp2 in Forebrain Neurons Regulates Synaptic Plasticity, Locomotion, and Memory Formation in Mice

    Science.gov (United States)

    Kusakari, Shinya; Saitow, Fumihito; Ago, Yukio; Shibasaki, Koji; Sato-Hashimoto, Miho; Matsuzaki, Yasunori; Kotani, Takenori; Murata, Yoji; Hirai, Hirokazu; Matsuda, Toshio; Suzuki, Hidenori

    2015-01-01

    Shp2 (Src homology 2 domain-containing protein tyrosine phosphatase 2) regulates neural cell differentiation. It is also expressed in postmitotic neurons, however, and mutations of Shp2 are associated with clinical syndromes characterized by mental retardation. Here we show that conditional-knockout (cKO) mice lacking Shp2 specifically in postmitotic forebrain neurons manifest abnormal behavior, including hyperactivity. Novelty-induced expression of immediate-early genes and activation of extracellular-signal-regulated kinase (Erk) were attenuated in the cerebral cortex and hippocampus of Shp2 cKO mice, suggestive of reduced neuronal activity. In contrast, ablation of Shp2 enhanced high-K+-induced Erk activation in both cultured cortical neurons and synaptosomes, whereas it inhibited that induced by brain-derived growth factor in cultured neurons. Posttetanic potentiation and paired-pulse facilitation were attenuated and enhanced, respectively, in hippocampal slices from Shp2 cKO mice. The mutant mice also manifested transient impairment of memory formation in the Morris water maze. Our data suggest that Shp2 contributes to regulation of Erk activation and synaptic plasticity in postmitotic forebrain neurons and thereby controls locomotor activity and memory formation. PMID:25713104

  18. Regional registration of [6-14C]glucose metabolism during brain activation of α-syntrophin knockout mice

    Science.gov (United States)

    Cruz, Nancy F.; Ball, Kelly K.; Froehner, Stanley C.; Adams, Marvin E.; Dienel, Gerald A.

    2013-01-01

    α-Syntrophin is a component of the dystrophin scaffold-protein complex that serves as an adaptor for recruitment of key proteins to the cytoplasmic side of plasma membranes. α-Syntrophin knockout (KO) causes loss of the polarized localization of aquaporin4 (AQP4) at astrocytic endfeet and interferes with water and K+ homeostasis. During brain activation, release of ions and metabolites from endfeet is anticipated to increase perivascular fluid osmolarity, AQP4-mediated osmotic water flow from endfeet, and metabolite washout from brain. This study tests the hypothesis that reduced levels of endfoot AQP4 increase retention of [14C]metabolites during sensory stimulation. Conscious KO and wildtype mice were pulse-labeled with [6-14C]glucose during unilateral acoustic stimulation or bilateral acoustic plus whisker stimulation, and label retention was assayed by computer-assisted brain imaging or analysis of [14C]metabolites in extracts, respectively. High-resolution autoradiographic assays detected a 17% side-to-side difference (P<0.05) in inferior colliculus of KO mice, not wildtype mice. However, there were no labeling differences between KO and wildtype mice for five major HPLC fractions from four dissected regions, presumably due to insufficient anatomical resolution. The results suggest a role for AQP4-mediated water flow in support of washout of metabolites, and underscore the need for greater understanding of astrocytic water and metabolite fluxes. PMID:23346911

  19. Elastase-2, a Tissue Alternative Pathway for Angiotensin II Generation, Plays a Role in Circulatory Sympathovagal Balance in Mice.

    Science.gov (United States)

    Becari, Christiane; Durand, Marina T; Guimaraes, Alessander O; Lataro, Renata M; Prado, Cibele M; de Oliveira, Mauro; Candido, Sarai C O; Pais, Paloma; Ribeiro, Mauricio S; Bader, Michael; Pesquero, Joao B; Salgado, Maria C O; Salgado, Helio C

    2017-01-01

    In vitro and ex vivo experiments indicate that elastase-2 (ELA-2), a chymotrypsin-serine protease elastase family member 2A, is an alternative pathway for angiotensin II (Ang II) generation. However, the role played by ELA-2 in vivo is unclear. We examined ELA-2 knockout (ELA-2KO) mice compared to wild-type (WT) mice and determined whether ELA-2 played a role in hemodynamics [arterial pressure (AP) and heart rate (HR)], cardiocirculatory sympathovagal balance and baroreflex sensitivity. The variability of systolic arterial pressure (SAP) and pulse interval (PI) for evaluating autonomic modulation was examined for time and frequency domains (spectral analysis), whereas a symbolic analysis was also used to evaluate PI variability. In addition, baroreflex sensitivity was examined using the sequence method. Cardiac function was evaluated echocardiographically under anesthesia. The AP was normal whereas the HR was reduced in ELA-2KO mice (425 ± 17 vs. 512 ± 13 bpm from WT). SAP variability and baroreflex sensitivity were similar in both strains. The LF power from the PI spectrum (33.6 ± 5 vs. 51.8 ± 4.8 nu from WT) and the LF/HF ratio (0.60 ± 0.1 vs. 1.45 ± 0.3 from WT) were reduced, whereas the HF power was increased (66.4 ± 5 vs. 48.2 ± 4.8 nu from WT) in ELA-2KO mice, indicating a shift toward parasympathetic modulation of HR. Echocardiographic examination showed normal fractional shortening and an ejection fraction in ELA-2KO mice; however, the cardiac output, stroke volume, and ventricular size were reduced. These findings provide the first evidence that ELA-2 acts on the sympathovagal balance of the heart, as expressed by the reduced sympathetic modulation of HR in ELA-2KO mice.

  20. Oral Serum-Derived Bovine Immunoglobulin/Protein Isolate Has Immunomodulatory Effects on the Colon of Mice that Spontaneously Develop Colitis.

    Directory of Open Access Journals (Sweden)

    Anna Pérez-Bosque

    Full Text Available Dietary immunoglobulin concentrates prepared from animal plasma can modulate the immune response of gut-associated lymphoid tissue (GALT. Previous studies have revealed that supplementation with serum-derived bovine immunoglobulin/protein isolate (SBI ameliorates colonic barrier alterations in the mdr1a-/- genetic mouse model of IBD. Here, we examine the effects of SBI on mucosal inflammation in mdr1a-/- mice that spontaneously develop colitis. Wild type (WT mice and mice lacking the mdr1a gene (KO were fed diets supplemented with either SBI (2% w/w or milk proteins (Control diet, from day 21 (weaning until day 56. Leucocytes in mesenteric lymph nodes (MLN and in lamina propria were determined, as was mucosal cytokine production. Neutrophil recruitment and activation in MLN and lamina propria of KO mice were increased, but were significantly reduced in both by SBI supplementation (p < 0.05. The increased neutrophil recruitment and activation observed in KO mice correlated with increased colon oxidative stress (p < 0.05 and SBI supplementation reduced this variable (p < 0.05. The Tact/Treg lymphocyte ratios in MLN and lamina propria were also increased in KO animals, but SBI prevented these changes (both p < 0.05. In the colon of KO mice, there was an increased production of mucosal pro-inflammatory cytokines such as IL-2 (2-fold, IL-6 (26-fold and IL-17 (19-fold, and of chemokines MIP-1β (4.5-fold and MCP-1 (7.2-fold. These effects were significantly prevented by SBI (p < 0.05. SBI also significantly increased TGF-β secretion in the colon mucosa, suggesting a role of this anti-inflammatory cytokine in the modulation of GALT and the reduction of the severity of the inflammatory response during the onset of colitis.

  1. Lycopene attenuated hepatic tumorigenesis via differential mechanisms depending on carotenoid cleavage enzyme in mice

    Science.gov (United States)

    Ip, Blanche C.; Liu, Chun; Ausman, Lynne M.; von Lintig, Johannes; Wang, Xiang-Dong

    2014-01-01

    Obesity is associated with increased liver cancer risks and mortality. We recently showed that apo-10’-lycopenoic acid, a lycopene metabolite generated by beta-carotene-9’,10’-oxygenase (BCO2), inhibited carcinogen-initiated, high-fat diet (HFD)-promoted liver inflammation and hepatic tumorigenesis development. The present investigation examined the outstanding question of whether the lycopene could suppress HFD-promoted hepatocellular carcinoma (HCC) progression, and if BCO2 is important in BCO2-knockout (BCO2-KO) and wild-type male mice. Results showed that lycopene supplementation (100 mg/kg diet) for 24 weeks resulted in comparable accumulation of hepatic lycopene (19.4 vs 18.2 nmol/g) and had similar effects on suppressing HFD-promoted HCC incidence (19% vs 20%) and multiplicity (58% vs 62%) in wild-type and BCO2-KO mice, respectively. Intriguingly, lycopene chemopreventive effects in wild-type mice were associated with reduced hepatic pro-inflammatory signaling (phosphorylation of nuclear factor-κB p65 and signal transducer and activator of transcription 3; interleukin-6 protein) and inflammatory foci. In contrast, the protective effects of lycopene in BCO2-KO but not in wild-type mice were associated with reduced hepatic endoplasmic reticulum stress-mediated unfolded protein response (ERUPR), through decreasing ERUPR-mediated protein kinase RNA-activated like kinase– eukaryotic initiation factor 2α activation, and inositol requiring 1α–X-box binding protein 1 signaling. Lycopene supplementation in BCO2-KO mice suppressed oncogenic signals including Met mRNA, β-catenin protein, and mammalian target of rapamycin (mTOR) complex 1 activation, which was associated with increased hepatic microRNA (miR)-199a/b and miR-214 levels. These results provided novel experimental evidence that dietary lycopene can prevent HFD-promoted HCC incidence and multiplicity in mice, and may elicit different mechanisms depending on BCO2 expression. PMID:25293877

  2. Altered thalamocortical rhythmicity and connectivity in mice lacking CaV3.1 T-type Ca2+ channels in unconsciousness

    Science.gov (United States)

    Choi, Soonwook; Yu, Eunah; Lee, Seongwon; Llinás, Rodolfo R.

    2015-01-01

    In unconscious status (e.g., deep sleep and anesthetic unconsciousness) where cognitive functions are not generated there is still a significant level of brain activity present. Indeed, the electrophysiology of the unconscious brain is characterized by well-defined thalamocortical rhythmicity. Here we address the ionic basis for such thalamocortical rhythms during unconsciousness. In particular, we address the role of CaV3.1 T-type Ca2+ channels, which are richly expressed in thalamic neurons. Toward this aim, we examined the electrophysiological and behavioral phenotypes of mice lacking CaV3.1 channels (CaV3.1 knockout) during unconsciousness induced by ketamine or ethanol administration. Our findings indicate that CaV3.1 KO mice displayed attenuated low-frequency oscillations in thalamocortical loops, especially in the 1- to 4-Hz delta band, compared with control mice (CaV3.1 WT). Intriguingly, we also found that CaV3.1 KO mice exhibited augmented high-frequency oscillations during unconsciousness. In a behavioral measure of unconsciousness dynamics, CaV3.1 KO mice took longer to fall into the unconscious state than controls. In addition, such unconscious events had a shorter duration than those of control mice. The thalamocortical interaction level between mediodorsal thalamus and frontal cortex in CaV3.1 KO mice was significantly lower, especially for delta band oscillations, compared with that of CaV3.1 WT mice, during unconsciousness. These results suggest that the CaV3.1 channel is required for the generation of a given set of thalamocortical rhythms during unconsciousness. Further, that thalamocortical resonant neuronal activity supported by this channel is important for the control of vigilance states. PMID:26056284

  3. Gamma aminobutyric acid transporter subtype 1 gene knockout mice: a new model for attention deficit/hyperactivity disorder

    Institute of Scientific and Technical Information of China (English)

    Ping Yang; Guoqiang Cai; Youqing Cai; Jian Fei; Guoxiang Liu

    2013-01-01

    Attention deficit/hyperactivity disorder (ADHD) is characterized by hyperactivity,impaired sustained attention,impulsivity,and is usually accompanied by varying degrees of learning difficulties and lack of motor coordination.However,the pathophysiology and etiology of ADHD remain inconclusive so far.Our previous studies have demonstrated that the gamma aminobutyric acid transporter subtype 1 (GAT1) gene knockout (ko) mouse (gat1-/-)is hyperactive and exhibited impaired memory performance in the Morris water maze.In the current study,we found that the gat1-/-mice showed low levels of attentional focusing and increased impulsivity.In addition,the gat1-/-mice displayed ataxia characterized by defects in motor coordination and balance skills.The hyperactivity in the ko mice was reduced by both methylphenidate and amphetamine.Collectively,these results suggest that GAT1 ko mouse is a new animal model for ADHD studying and GAT1 may be a new target to treat ADHD.

  4. Liver-specific Aquaporin 11 knockout mice show rapid vacuolization of the rough endoplasmic reticulum in periportal hepatocytes after amino acid feeding

    DEFF Research Database (Denmark)

    Rojek, Aleksandra; Füchtbauer, Ernst-Martin; Füchtbauer, Annette C.

    2013-01-01

    -specific Aqp11 KO mice, allowing us to study the role of AQP11 protein in liver of mice with normal kidney function. The unchallenged liver-specific Aqp11 KO mice have normal longevity, their livers appeared normal, and the plasma biochemistries revealed only a minor defect in lipid handling. Fasting......Aquaporin 11 (AQP11) is a protein channel expressed intracellularly in multiple organs, yet its physiological function is unclear. Aqp11 knockout (KO) mice die early due to malfunction of the kidney, a result of hydropic degeneration of proximal tubule cells. Here we report the generation of liver...... protein or larger doses of various amino acids. The fasting/refeeding challenge is associated with increased expression of markers of ER stress Grp78 and GADD153 and decreased glutathione levels, suggesting that ER stress may play role in the development of vacuoles in the AQP11-deficient hepatocytes. NMR...

  5. Motor and memory testing of long-lived pregnancy-associated plasma protein--a knock-out mice.

    Science.gov (United States)

    Mason, Emily J; Grell, Jacquelyn A; West, Sally A; Conover, Cheryl A

    2014-12-01

    Mice deficient in pregnancy-associated plasma protein-A (PAPP-A), an IGF binding protein protease, have been shown to be resistant to experimentally induced atherosclerosis and diabetic nephropathy, and, in the laboratory environment, live 30-40% longer than wild-type littermates in association with delayed incidence and occurrence of age-related neoplasms and degenerative diseases. PAPP-A is highly expressed in the cerebellum and hippocampus of the mouse brain. Therefore, the studies presented here were aimed at determining motor behavior, learning and retention in PAPP-A knock-out (KO) mice compared to wild-type (WT) littermates with age. Balance and coordination were assessed using an accelerating rotarod; learning and memory were assessed in a Stone T-maze. Time on the rotarod decreased with age but there was no significant difference between PAPP-A KO and WT mice at any of the testing ages. Latency to reach the goal box and number of errors committed in the Stone T-maze did not change with age and there were no significant differences between PAPP-A KO and WT mice. Lack of PAPP-A in mice did not impact central regulation of coordination, learning or memory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Role of alpha2C-adrenoceptor subtype in spatial working memory as revealed by mice with targeted disruption of the alpha2C-adrenoceptor gene.

    Science.gov (United States)

    Tanila, H; Mustonen, K; Sallinen, J; Scheinin, M; Riekkinen, P

    1999-02-01

    The role of the alpha2C-adrenoceptor subtype in mediating the beneficial effect of alpha2-adrenoceptor agonists on spatial working memory was studied in adult mice with targeted inactivation of the alpha2C-receptor gene (KO) and their wild-type controls (WT). A delayed alternation task was run in a T-maze with mixed delays varying from 20 s to 120 s. Dexmedetomidine, a specific but subtype nonselective alpha2-adrenoceptor agonist, dose-dependently decreased the total number of errors. The effect was strongest at the dose of 5 microg/kg (s.c.), and was observed similarly in KO and WT mice. KO mice performed inferior to WT mice due to a higher number of perseverative errors. Dexmedetomidine slowed initiation of the motor response in the start phase at lower doses in WT mice than in KO mice but no such difference was observed in the return phase of the task, suggesting involvement of alpha2C-adrenoceptors in the cognitive aspect of response preparation or in response sequence initiation. According to these findings, enhancement of spatial working memory is best achieved with alpha2-adrenoceptor agonists which have neither agonistic nor antagonistic effects at the alpha2C-adrenoceptor subtype.

  7. Relaxin-3 receptor (RXFP3 signalling mediates stress-related alcohol preference in mice.

    Directory of Open Access Journals (Sweden)

    Andrew W Walker

    Full Text Available Stressful life events are causally linked with alcohol use disorders (AUDs, providing support for a hypothesis that alcohol consumption is aimed at stress reduction. We have previously shown that expression of relaxin-3 mRNA in rat brain correlates with alcohol intake and that central antagonism of relaxin-3 receptors (RXFP3 prevents stress-induced reinstatement of alcohol-seeking. Therefore the objectives of these studies were to investigate the impact of Rxfp3 gene deletion in C57BL/6J mice on baseline and stress-related alcohol consumption. Male wild-type (WT and Rxfp3 knockout (KO (C57/B6JRXFP3TM1/DGen littermate mice were tested for baseline saccharin and alcohol consumption and preference over water in a continuous access two-bottle free-choice paradigm. Another cohort of mice was subjected to repeated restraint followed by swim stress to examine stress-related alcohol preference. Hepatic alcohol and aldehyde dehydrogenase activity was assessed in mice following chronic alcohol intake and in naive controls. WT and Rxfp3 KO mice had similar baseline saccharin and alcohol preference, and hepatic alcohol processing. However, Rxfp3 KO mice displayed a stress-induced reduction in alcohol preference that was not observed in WT littermates. Notably, this phenotype, once established, persisted for at least six weeks after cessation of stress exposure. These findings suggest that in mice, relaxin-3/RXFP3 signalling is involved in maintaining high alcohol preference during and after stress, but does not appear to strongly regulate the primary reinforcing effects of alcohol.

  8. Sex differences in the effects of adolescent social deprivation on alcohol consumption in μ-opioid receptor knockout mice.

    Science.gov (United States)

    Moriya, Yuki; Kasahara, Yoshiyuki; Hall, F Scott; Sakakibara, Yasufumi; Uhl, George R; Tomita, Hiroaki; Sora, Ichiro

    2015-04-01

    Evidence based on clinical and experimental animal studies indicates that adolescent social deprivation influences alcohol consumption in a sex-dependent manner, perhaps by influencing stress responses. However, the mechanisms underlying the interaction between these phenomena remain to be elucidated. Since the μ-opioid receptor (MOP) has been reported to have key roles in social stress responses as well as the reinforcing/addictive effects of ethanol, MOP is a candidate molecule that may link adolescent social deprivation and subsequent alterations in alcohol consumption. To evaluate the involvement of MOP and social isolation-induced changes in alcohol consumption, as well as the effect of sex differences on responses to social isolation, alcohol consumption was assessed using a two-bottle home-cage consumption procedure (8 % ethanol vs. water) in MOP knockout (MOP-KO) and wild type (WT) mice of both sexes exposed to adolescent social deprivation or reared socially. Isolation rearing had no effects upon alcohol consumption of WT mice, whereas it significantly altered alcohol consumption in both male and female MOP-KO mice. Interestingly, social isolation affected ethanol consumption differently in male and female mice. Ethanol consumption was increased in male MOP-KO mice, but decreased in female MOP-KO mice, by isolation rearing. These results indicate that disturbances of MOP function influence the effects of isolation rearing on ethanol consumption in a sex-dependent manner. Consequently, this suggests the possibility that genetic variation that influences MOP function may have differential roles in alcoholism in men and women, and alcoholism treatments that target MOP function may be differentially effective in males and females.

  9. [Effect of Huperzine A on neural lesion of acute organophosphate poisoning in mice].

    Science.gov (United States)

    Liu, Li; Wang, Jian; Xie, Guangyun; Sun, Jinxiu

    2013-05-01

    Effects of neurophathologic changes and expression of Glu and 60 nNOS were observed in acute isocarbophos and phoxim poisoning in mice. KM male mice were randomly divided into three groups, which were control, non-treated and Huperzine A (HupA)-treated groups. The control group was given tween-80. Nontreated group was given isocarbophos (14.7 mg/kg) or phoxim (1702 mg/kg). HupA-treated group was given HupA 2h before phoxim or isocarbophos. Twenty-four hours after exposure, the whole brain was removed and adjacent coronal sections was obtained. One part of sections were stained with toluidine blue. The part of sections were used to assessed the expression of Glu and nNOS in the cortex and hippocampal of brain by immunohistochemistry. Compared to control group, non-treated group was observed nissal body nembers reduced and dyeing light. The animals of HupA protective group were observed nissal body nembers reduced, but the lesional degree was lighter obviously than non-treated group. The statistically reduced of the expression of Glu (PHupA-treated groups. Whereas for phoxim treatment, no changes were observed. HupA have protective effect against glutamatergic systems disorder caused by Isocarbophos poisoning. Administration of HupA have no effects of the neurotransmitter changes induces by acute poisoning of phoxim. It is different for the toxic effect mechanism of the two organophosphate.

  10. Skeletal muscle mass recovery from atrophy in IL-6 knockout mice.

    Science.gov (United States)

    Washington, T A; White, J P; Davis, J M; Wilson, L B; Lowe, L L; Sato, S; Carson, J A

    2011-08-01

    Skeletal muscle interleukin-6 (IL-6) expression is induced by continuous contraction, overload-induced hypertrophy and during muscle regeneration. The loss of IL-6 can alter skeletal muscle's growth and extracellular matrix remodelling response to overload-induced hypertrophy. Insulin-like growth factor-1 (IGF-1) gene expression and related signalling through Akt/mTOR is a critical regulator of muscle mass. The significance of IL-6 expression during the recovery from muscle atrophy is unclear. This study's purpose was to determine the effect of IL-6 loss on mouse gastrocnemius (GAS) muscle mass during recovery from hindlimb suspension (HS)-induced atrophy. Female C57BL/6 [wild type (WT)] and IL-6 knockout (IL-6 KO) mice at 10 weeks of age were assigned to control, HS or HS followed by normal cage ambulation groups. GAS muscle atrophy was induced by 10 days of HS. HS induced a 20% loss of GAS mass in both WT and IL-6 KO mice. HS+7 days of recovery restored WT GAS mass to cage-control values. GAS mass from IL-6 KO mice did not return to cage-control values until HS+14 days of recovery. Both IGF-1 mRNA expression and Akt/mTOR signalling were increased in WT muscle after 1 day of recovery. In IL-6 KO muscle, IGF-1 mRNA expression was decreased and Akt/mTOR signalling was not induced after 1 day of recovery. MyoD and myogenin mRNA expression were both induced in WT muscle after 1 day of recovery, but not in IL-6 KO muscle.   Muscle IL-6 expression appears important for the initial growth response during the recovery from disuse. © 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.

  11. Environmental enrichment reduces innate anxiety with no effect on depression-like behaviour in mice lacking the serotonin transporter.

    Science.gov (United States)

    Rogers, Jake; Li, Shanshan; Lanfumey, Laurence; Hannan, Anthony J; Renoir, Thibault

    2017-08-14

    Along with being the main target of many antidepressant medications, the serotonin transporter (5-HTT) is known to be involved in the pathophysiology of depression and anxiety disorders. In line with this, mice with varying 5-HTT genotypes are invaluable tools to study depression- and anxiety-like behaviours as well as the mechanisms mediating potential therapeutics. There is clear evidence that both genetic and environmental factors play a role in the aetiology of psychiatric disorders. In that regard, housing paradigms which seek to enhance cognitive stimulation and physical activity have been shown to exert beneficial effects in animal models of neuropsychiatric disorders. In the present study, we examined the effects of environmental enrichment on affective-like behaviours and sensorimotor gating function of 5-HTT knock-out (KO) mice. Using the elevated-plus maze and the light-dark box, we found that environmental enrichment ameliorated the abnormal innate anxiety of 5-HTT KO mice on both tests. In contrast, environmental enrichment did not rescue the depression-like behaviour displayed by 5-HTT KO mice in the forced-swim test. Finally, measuring pre-pulse inhibition, we found no effect of genotype or treatment on sensorimotor gating. In conclusion, our data suggest that environmental enrichment specifically reduces innate anxiety of 5-HTT KO mice with no amelioration of the depression-like behaviour. This has implications for the current use of clinical interventions for patients with symptoms of both anxiety and depression. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Decreased in vitro mitochondrial function is associated with enhanced brain metabolism, blood flow, and memory in Surf1-deficient mice

    Science.gov (United States)

    Lin, Ai-Ling; Pulliam, Daniel A; Deepa, Sathyaseelan S; Halloran, Jonathan J; Hussong, Stacy A; Burbank, Raquel R; Bresnen, Andrew; Liu, Yuhong; Podlutskaya, Natalia; Soundararajan, Anuradha; Muir, Eric; Duong, Timothy Q; Bokov, Alex F; Viscomi, Carlo; Zeviani, Massimo; Richardson, Arlan G; Van Remmen, Holly; Fox, Peter T; Galvan, Veronica

    2013-01-01

    Recent studies have challenged the prevailing view that reduced mitochondrial function and increased oxidative stress are correlated with reduced longevity. Mice carrying a homozygous knockout (KO) of the Surf1 gene showed a significant decrease in mitochondrial electron transport chain Complex IV activity, yet displayed increased lifespan and reduced brain damage after excitotoxic insults. In the present study, we examined brain metabolism, brain hemodynamics, and memory of Surf1 KO mice using in vitro measures of mitochondrial function, in vivo neuroimaging, and behavioral testing. We show that decreased respiration and increased generation of hydrogen peroxide in isolated Surf1 KO brain mitochondria are associated with increased brain glucose metabolism, cerebral blood flow, and lactate levels, and with enhanced memory in Surf1 KO mice. These metabolic and functional changes in Surf1 KO brains were accompanied by higher levels of hypoxia-inducible factor 1 alpha, and by increases in the activated form of cyclic AMP response element-binding factor, which is integral to memory formation. These findings suggest that Surf1 deficiency-induced metabolic alterations may have positive effects on brain function. Exploring the relationship between mitochondrial activity, oxidative stress, and brain function will enhance our understanding of cognitive aging and of age-related neurologic disorders. PMID:23838831

  13. Mitogen-activated protein kinase phosphatase-3 (MKP-3 in the surgical wound is necessary for the resolution of postoperative pain in mice

    Directory of Open Access Journals (Sweden)

    Skopelja-Gardner S

    2017-03-01

    Full Text Available Sladjana Skopelja-Gardner,1,* Madhurima Saha,1,* Perla Abigail Alvarado-Vazquez,2 Brenna S Liponis,1 Elena Martinez,1 E Alfonso Romero-Sandoval2 1Department of Anesthesiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 2Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC, USA *These authors contributed equally to this work. Abstract: Mitogen-activated protein kinase (MAPK phosphatase-3 (MKP-3 and its substrates (extracellular signal-regulated kinase [ERK] and p38 play an important role in pathophysiological mechanisms of acute postoperative and chronic neuropathic pain in the spinal cord. This study aimed to understand the role of MKP-3 and its target MAPKs at the site of surgical incision in nociceptive behavior. Wild-type (WT and MKP-3 knockout (KO mice underwent unilateral plantar hind paw incision. Mechanical allodynia was assessed by using von Frey filaments. Peripheral ERK-1/2 and p38 phosphorylation were measured by Western blot. Cell infiltration was determined using hematoxylin and eosin histological staining. Peripheral phosphorylated ERK-1/2 (p-ERK-1/2 inhibition was performed in MKP-3 KO mice. In WT mice, mechanical hypersensitivity was observed on postoperative day 1 (0.69±0.17 g baseline vs 0.13±0.08 g day 1, which resolved normally by postoperative day 12 (0.46±0.08 g, N=6. In MKP-3 KO mice, this hypersensitivity persisted at least 12 days after surgery (0.19±0.06 g; N=6. KO mice displayed higher numbers of infiltrating cells (51.4±6 cells/0.1 mm2 than WT mice (8.7±1.2 cells/0.1 mm2 on postoperative day 1 (vs 5–6 cells/0.1 mm2 at baseline that returned to baseline 12 days after surgery (10–12 cells/0.1 mm2. In WT mice, peripheral p-p38 and p-ERK-1/2 expression increased (5- and 3-fold, respectively on postoperative days 1 and 5, and returned to basal levels 7–12 days after surgery (N=3 per group. Peripheral p-p38 levels in MKP-3 KO mice followed

  14. Decreased levels of free D-aspartic acid in the forebrain of serine racemase (Srr) knock-out mice.

    Science.gov (United States)

    Horio, Mao; Ishima, Tamaki; Fujita, Yuko; Inoue, Ran; Mori, Hisashi; Hashimoto, Kenji

    2013-05-01

    d-Serine, an endogenous co-agonist of the N-methyl-d-aspartate (NMDA) receptor is synthesized from l-serine by serine racemase (SRR). A previous study of Srr knockout (Srr-KO) mice showed that levels of d-serine in forebrain regions, such as frontal cortex, hippocampus, and striatum, but not cerebellum, of mutant mice are significantly lower than those of wild-type (WT) mice, suggesting that SRR is responsible for d-serine production in the forebrain. In this study, we attempted to determine whether SRR affects the level of other amino acids in brain tissue. We found that tissue levels of d-aspartic acid in the forebrains (frontal cortex, hippocampus and striatum) of Srr-KO mice were significantly lower than in WT mice, whereas levels of d-aspartic acid in the cerebellum were not altered. Levels of d-alanine, l-alanine, l-aspartic acid, taurine, asparagine, arginine, threonine, γ-amino butyric acid (GABA) and methionine, remained the same in frontal cortex, hippocampus, striatum and cerebellum of WT and mutant mice. Furthermore, no differences in d-aspartate oxidase (DDO) activity were detected in the forebrains of WT and Srr-KO mice. These results suggest that SRR and/or d-serine may be involved in the production of d-aspartic acid in mouse forebrains, although further detailed studies will be necessary to confirm this finding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Female mice deficient in alpha-fetoprotein show female-typical neural responses to conspecific-derived pheromones.

    Directory of Open Access Journals (Sweden)

    Olivier Brock

    Full Text Available The neural mechanisms controlling sexual behavior are sexually differentiated by the perinatal actions of sex steroid hormones. We recently observed using female mice deficient in alpha-fetoprotein (AFP-KO and which lack the protective actions of AFP against maternal estradiol, that exposure to prenatal estradiol completely defeminized the potential to show lordosis behavior in adulthood. Furthermore, AFP-KO females failed to show any male-directed mate preferences following treatment with estradiol and progesterone, indicating a reduced sexual motivation to seek out the male. In the present study, we asked whether neural responses to male- and female-derived odors are also affected in AFP-KO female mice. Therefore, we compared patterns of Fos, the protein product of the immediate early gene, c-fos, commonly used as a marker of neuronal activation, between wild-type (WT and AFP-KO female mice following exposure to male or estrous female urine. We also tested WT males to confirm the previously observed sex differences in neural responses to male urinary odors. Interestingly, AFP-KO females showed normal, female-like Fos responses, i.e. exposure to urinary odors from male but not estrous female mice induced equivalent levels of Fos protein in the accessory olfactory pathways (e.g. the medial part of the preoptic nucleus, the bed nucleus of the stria terminalis, the amygdala, and the lateral part of the ventromedial hypothalamic nucleus as well as in the main olfactory pathways (e.g. the piriform cortex and the anterior cortical amygdaloid nucleus, as WT females. By contrast, WT males did not show any significant induction of Fos protein in these brain areas upon exposure to either male or estrous female urinary odors. These results thus suggest that prenatal estradiol is not involved in the sexual differentiation of neural Fos responses to male-derived odors.

  16. Unusual social behavior in HPC-1/syntaxin1A knockout mice is caused by disruption of the oxytocinergic neural system.

    Science.gov (United States)

    Fujiwara, Tomonori; Sanada, Masumi; Kofuji, Takefumi; Akagawa, Kimio

    2016-07-01

    HPC-1/syntaxin1A (STX1A), a neuronal soluble N-ethylmaleimide-sensitive fusion attachment protein receptor, contributes to neural function in the CNS by regulating transmitter release. Recent studies reported that STX1A is associated with human neuropsychological disorders, such as autism spectrum disorder and attention deficit hyperactivity disorder. Previously, we showed that STX1A null mutant mice (STX1A KO) exhibit neuropsychological abnormalities, such as fear memory deficits, attenuation of latent inhibition, and unusual social behavior. These observations suggested that STX1A may be involved in the neuropsychological basis of these abnormalities. Here, to study the neural basis of social behavior, we analyzed the profile of unusual social behavior in STX1A KO with a social novelty preference test, which is a useful method for quantification of social behavior. Interestingly, the unusual social behavior in STX1A KO was partially rescued by intracerebroventricular administration of oxytocin (OXT). In vivo microdialysis studies revealed that the extracellular OXT concentration in the CNS of STX1A KO was significantly lower compared with wild-type mice. Furthermore, dopamine-induced OXT release was reduced in STX1A KO. These results suggested that STX1A plays an important role in social behavior through regulation of the OXTergic neural system. Dopamine (DA) release is reduced in CNS of syntaxin1A null mutant mice (STX1A KO). Unusual social behavior was observed in STX1A KO. We found that oxytocin (OXT) release, which was stimulated by DA, was reduced and was rescued the unusual social behavior in STX1A KO was rescued by OXT. These results indicated that STX1A plays an important role in promoting social behavior through regulation of DA-induced OXT release in amygdala. © 2016 International Society for Neurochemistry.

  17. Sex differences between CRF1 receptor deficient mice following naloxone-precipitated morphine withdrawal in a conditioned place aversion paradigm: implication of HPA axis.

    Directory of Open Access Journals (Sweden)

    Juan-Antonio García-Carmona

    Full Text Available Extinction period of positive affective memory of drug taking and negative affective memory of drug withdrawal, as well as the different response of men and women might be important for the clinical treatment of drug addiction. We investigate the role of corticotropin releasing factor receptor type one (CRF1R and the different response of male and female mice in the expression and extinction of the aversive memory.We used genetically engineered male and female mice lacking functional CRF1R. The animals were rendered dependent on morphine by intraperitoneally injection of increasing doses of morphine (10-60 mg/kg. Negative state associated with naloxone (1 mg/kg s.c.-precipitated morphine withdrawal was examined by using conditioned place aversion (CPA paradigm. No sex differences for CPA expression were found in wild-type (n = 29 or CRF1R knockout (KO mice (n = 29. However, CRF1R KO mice presented less aversion score than wild-type mice, suggesting that CRF1R KO mice were less responsive than wild-type to continuous associations between drug administration and environmental stimuli. In addition, CPA extinction was delayed in wild-type and CRF1R KO male mice compared with females of both genotypes. The genetic disruption of the CRF1R pathway decreased the period of extinction in males and females suggesting that CRF/CRF1R is implicated in the duration of aversive memory. Our results also showed that the increase in adrenocorticotropic hormone (ACTH levels observed in wild-type (n = 11 mice after CPA expression, were attenuated in CRF1R KO mice (n = 10. In addition, ACTH returned to the baseline levels in males and females once CPA extinction was finished.These results suggest that, at least, CPA expression is partially due to an increase in plasma ACTH levels, through activation of CRF1R, which can return when CPA extinction is finished.

  18. Inhibiting Heat-Shock Protein 90 Reverses Sensory Hypoalgesia in Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Michael J Urban

    2010-07-01

    Full Text Available Increasing the expression of Hsp70 (heat-shock protein 70 can inhibit sensory neuron degeneration after axotomy. Since the onset of DPN (diabetic peripheral neuropathy is associated with the gradual decline of sensory neuron function, we evaluated whether increasing Hsp70 was sufficient to improve several indices of neuronal function. Hsp90 is the master regulator of the heat-shock response and its inhibition can up-regulate Hsp70. KU-32 (N-{7-[(2R, 3R, 4S, 5R-3, 4-dihydroxy-5-methoxy-6, 6-dimethyl-tetrahydro-2H-pyran-2-yloxy]-8-methyl-2-oxo-2H-chromen-3-yl}acetamide was developed as a novel, novobiocin-based, C-terminal inhibitor of Hsp90 whose ability to increase Hsp70 expression is linked to the presence of an acetamide substitution of the prenylated benzamide moiety of novobiocin. KU-32 protected against glucose-induced death of embryonic DRG (dorsal root ganglia neurons cultured for 3 days in vitro. Similarly, KU-32 significantly decreased neuregulin 1-induced degeneration of myelinated Schwann cell DRG neuron co-cultures prepared from WT (wild-type mice. This protection was lost if the co-cultures were prepared from Hsp70.1 and Hsp70.3 KO (knockout mice. KU-32 is readily bioavailable and was administered once a week for 6 weeks at a dose of 20 mg/kg to WT and Hsp70 KO mice that had been rendered diabetic with streptozotocin for 12 weeks. After 12 weeks of diabetes, both WT and Hsp70 KO mice developed deficits in NCV (nerve conduction velocity and a sensory hypoalgesia. Although KU-32 did not improve glucose levels, HbA1c (glycated haemoglobin or insulin levels, it reversed the NCV and sensory deficits in WT but not Hsp70 KO mice. These studies provide the first evidence that targeting molecular chaperones reverses the sensory hypoalgesia associated with DPN.

  19. Hyperfunction of muscarinic receptor maintains long-term memory in 5-HT4 receptor knock-out mice.

    Directory of Open Access Journals (Sweden)

    Luis Segu

    Full Text Available Patients suffering from dementia of Alzheimer's type express less serotonin 4 receptors (5-HTR(4, but whether an absence of these receptors modifies learning and memory is unexplored. In the spatial version of the Morris water maze, we show that 5-HTR(4 knock-out (KO and wild-type (WT mice performed similarly for spatial learning, short- and long-term retention. Since 5-HTR(4 control mnesic abilities, we tested whether cholinergic system had circumvented the absence of 5-HTR(4. Inactivating muscarinic receptor with scopolamine, at an ineffective dose (0.8 mg/kg to alter memory in WT mice, decreased long-term but not short-term memory of 5-HTR(4 KO mice. Other changes included decreases in the activity of choline acetyltransferase (ChAT, the required enzyme for acetylcholine synthesis, in the septum and the dorsal hippocampus in 5-HTR(4 KO under baseline conditions. Training- and scopolamine-induced increase and decrease, respectively in ChAT activity in the septum in WT mice were not detected in the 5-HTR(4 KO animals. Findings suggest that adaptive changes in cholinergic systems may circumvent the absence of 5-HTR(4 to maintain long-term memory under baseline conditions. In contrast, despite adaptive mechanisms, the absence of 5-HTR(4 aggravates scopolamine-induced memory impairments. The mechanisms whereby 5-HTR(4 mediate a tonic influence on ChAT activity and muscarinic receptors remain to be determined.

  20. Spatial Frequency Selectivity Is Impaired in Dopamine D2 Receptor Knockout Mice

    Science.gov (United States)

    Souza, Bruno Oliveira Ferreira; Abou Rjeili, Mira; Quintana, Clémentine; Beaulieu, Jean M.; Casanova, Christian

    2018-01-01

    Dopamine is a neurotransmitter implicated in several brain functions, including vision. In the present study, we investigated the impacts of the lack of D2 dopamine receptors on the structure and function of the primary visual cortex (V1) of D2-KO mice using optical imaging of intrinsic signals. Retinotopic maps were generated in order to measure anatomo-functional parameters such as V1 shape, cortical magnification factor, scatter, and ocular dominance. Contrast sensitivity and spatial frequency selectivity (SF) functions were computed from responses to drifting gratings. When compared to control mice, none of the parameters of the retinotopic maps were affected by D2 receptor loss of function. While the contrast sensitivity function of D2-KO mice did not differ from their wild-type counterparts, SF selectivity function was significantly affected as the optimal SF and the high cut-off frequency (p D2-KO than in WT mice. These findings show that the lack of function of D2 dopamine receptors had no influence on cortical structure whereas it had a significant impact on the spatial frequency selectivity and high cut-off. Taken together, our results suggest that D2 receptors play a specific role on the processing of spatial features in early visual cortex while they do not seem to participate in its development. PMID:29379422

  1. Ocular Dominance Plasticity after Stroke Was Preserved in PSD-95 Knockout Mice.

    Directory of Open Access Journals (Sweden)

    Franziska Greifzu

    Full Text Available Neuronal plasticity is essential to enable rehabilitation when the brain suffers from injury, such as following a stroke. One of the most established models to study cortical plasticity is ocular dominance (OD plasticity in the primary visual cortex (V1 of the mammalian brain induced by monocular deprivation (MD. We have previously shown that OD-plasticity in adult mouse V1 is absent after a photothrombotic (PT stroke lesion in the adjacent primary somatosensory cortex (S1. Exposing lesioned mice to conditions which reduce the inhibitory tone in V1, such as raising animals in an enriched environment or short-term dark exposure, preserved OD-plasticity after an S1-lesion. Here we tested whether modification of excitatory circuits can also be beneficial for preserving V1-plasticity after stroke. Mice lacking postsynaptic density protein-95 (PSD-95, a signaling scaffold present at mature excitatory synapses, have lifelong juvenile-like OD-plasticity caused by an increased number of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid -silent synapses in V1 but unaltered inhibitory tone. In fact, using intrinsic signal optical imaging, we show here that OD-plasticity was preserved in V1 of adult PSD-95 KO mice after an S1-lesion but not in PSD-95 wildtype (WT-mice. In addition, experience-enabled enhancement of the optomotor reflex of the open eye after MD was compromised in both lesioned PSD-95 KO and PSD-95 WT mice. Basic V1-activation and retinotopic map quality were, however, not different between lesioned PSD-95 KO mice and their WT littermates. The preserved OD-plasticity in the PSD-95 KO mice indicates that V1-plasticity after a distant stroke can be promoted by either changes in excitatory circuitry or by lowering the inhibitory tone in V1 as previously shown. Furthermore, the present data indicate that an increased number of AMPA-silent synapses preserves OD-plasticity not only in the healthy brain, but also in another experimental

  2. Lentivirus-ABCG1 instillation reduces lipid accumulation and improves lung compliance in GM-CSF knock-out mice

    International Nuclear Information System (INIS)

    Malur, Anagha; Huizar, Isham; Wells, Greg; Barna, Barbara P.; Malur, Achut G.; Thomassen, Mary Jane

    2011-01-01

    Highlights: ► Lentivirus-ABCG1 reduces lipid accumulation in lungs of GM-CSF knock-out mice. ► Up-regulation of ABCG1 improves lung function. ► Upregulation of ABCG1 improves surfactant metabolism. -- Abstract: We have shown decreased expression of the nuclear transcription factor, peroxisome proliferator-activated receptor-gamma (PPARγ) and the PPARγ-regulated ATP-binding cassette transporter G1 (ABCG1) in alveolar macrophages from patients with pulmonary alveolar proteinosis (PAP). PAP patients also exhibit neutralizing antibodies to granulocyte–macrophage colony stimulating factor (GM-CSF), an upregulator of PPARγ. In association with functional GM-CSF deficiency, PAP lung is characterized by surfactant-filled alveolar spaces and lipid-filled alveolar macrophages. Similar pathology characterizes GM-CSF knock-out (KO) mice. We reported previously that intratracheal instillation of a lentivirus (lenti)-PPARγ plasmid into GM-CSF KO animals elevated ABCG1 and reduced alveolar macrophage lipid accumulation. Here, we hypothesized that instillation of lenti-ABCG1 might be sufficient to decrease lipid accumulation and improve pulmonary function in GM-CSF KO mice. Animals received intratracheal instillation of lenti-ABCG1 or control lenti-enhanced Green Fluorescent Protein (eGFP) plasmids and alveolar macrophages were harvested 10 days later. Alveolar macrophage transduction efficiency was 79% as shown by lenti-eGFP fluorescence. Quantitative PCR analyses indicated a threefold (p = 0.0005) increase in ABCG1 expression with no change of PPARγ or ABCA1 in alveolar macrophages of lenti-ABCG1 treated mice. ABCG1 was unchanged in control lenti-eGFP and PBS-instilled groups. Oil Red O staining detected reduced intracellular neutral lipid in alveolar macrophages from lenti-ABCG1 treated mice. Extracellular cholesterol and phospholipids were also decreased as shown by analysis of bronchoalveolar lavage fluid. Lung compliance was diminished in untreated GMCSF KO mice

  3. Exercise enhance the ectopic bone formation of calcium phosphate biomaterials in muscles of mice.

    Science.gov (United States)

    Cheng, Lijia; Yan, Shuo; Zhu, Jiang; Cai, Peiling; Wang, Ting; Shi, Zheng

    2017-08-01

    To investigate whether exercise can enhance ectopic bone formation of calcium phosphate (Ca-P) biomaterials in muscles of mice. Firstly, ten transient receptor potential vanilloid subfamily member 1 (TRPV1) knockout mice (group KO) and ten C57BL/6 mice (group WT) were randomly chosen, 10μg Ca-P biomaterials were implanted into the thigh muscle pouch of each mouse which was far away from femur; after that, all animals were kept in open field for free exploration 5min, and the movement time and distance were automatically analyzed. Ten weeks later, the Ca-P samples were harvested for histological staining and immunochemistry. Secondly, the Ca-P biomaterials were implanted into the thigh muscle pouch of C57BL/6 mice the same as previous operation, and then randomly divided into two groups: running group and non-running group (n=10); in running group, all mice run 1h as a speed of 6m/h in a treadmill for 10weeks. Ten weeks later, the blood was collected to detect the interleukin-4 (IL-4) and IL-12 levels by enzyme linked immunosorbent assay (ELISA), and the samples were harvested for histological staining. In groups KO and WT, both the movement time and distance were significant higher in group KO than that in group WT (Pstronger athletic ability of mice, causing better osteoinductivity of Ca-P biomaterials both in TRPV1 -/- mice and running mice; according to this, we want to offer a proposal to patients who suffer from bone defects and artificial bone transplantation: do moderate exercise, don't convalesce all the time. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Impaired associative fear learning in mice with complete loss or haploinsufficiency of AMPA GluR1 receptors

    Directory of Open Access Journals (Sweden)

    Michael Feyder

    2007-12-01

    Full Text Available There is compelling evidence that L-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA glutamate receptors containing the GluR1 subunit contribute to the molecular mechanisms associated with learning. AMPA GluR1 glutamate receptor knockout mice (KO exhibit abnormal hippocampal and amygdala plasticity, and deficits on various assays for cognition including Pavlovian fear conditioning. Here we examined associative fear learning in mice with complete absence (KO or partial loss (heterozygous mutant, HET of GluR1 on multiple fear conditioning paradigms. After multi-trial delay or trace conditioning, KO displayed impaired tone and context fear recall relative to WT, whereas HET were normal. After one-trial delay conditioning, both KO and HET showed impaired tone and context recall. HET and KO showed normal nociceptive sensitivity in the hot plate and tail flick tests. These data demonstrate that the complete absence of GluR1 subunit-containing receptors prevents the formation of associative fear memories, while GluR1 haploinsufficiency is sufficient to impair one-trial fear learning. These findings support growing evidence of a major role for GluR1-containing AMPA receptors in amygdalamediated forms of learning and memory.

  5. Conditional loss of heparin-binding EGF-like growth factor results in enhanced liver fibrosis after bile duct ligation in mice

    Energy Technology Data Exchange (ETDEWEB)

    Takemura, Takayo; Yoshida, Yuichi [Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Osaka (Japan); Kiso, Shinichi, E-mail: kiso@gh.med.osaka-u.ac.jp [Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Osaka (Japan); Kizu, Takashi; Furuta, Kunimaro; Ezaki, Hisao; Hamano, Mina; Egawa, Mayumi; Chatani, Norihiro; Kamada, Yoshihiro [Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Osaka (Japan); Imai, Yasuharu [Department of Gastroenterology, Ikeda Municipal Hospital, Ikeda, Osaka (Japan); Higashiyama, Shigeki [Department of Biochemistry and Molecular Genetics, Ehime University, Graduate School of Medicine and Department of Cell Growth and Tumor Regulation, Proteo-Medicine Research Center (ProMRes), Ehime University, Shitsukawa, Toon, Ehime (Japan); Iwamoto, Ryo; Mekada, Eisuke [Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Takehara, Tetsuo [Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Osaka (Japan)

    2013-07-26

    Highlights: •HB-EGF expression was increased during the development of liver fibrosis. •Conditional HB-EGF knockout mouse showed enhanced experimental liver fibrosis. •HB-EGF antagonized TGF-β-induced activation of hepatic stellate cells. •We report a possible protective role of HB-EGF in cholestatic liver fibrosis. -- Abstract: Our aims were to evaluate the involvement of heparin-binding EGF-like growth factor (HB-EGF) in liver fibrogenesis of humans and mice and to elucidate the effect of HB-EGF deficiency on cholestatic liver fibrosis using conditional HB-EGF knockout (KO) mice. We first demonstrated that gene expression of HB-EGF had a positive significant correlation with that of collagen in human fibrotic livers, and was increased in bile duct ligation (BDL)-induced fibrotic livers in mouse. We then generated conditional HB-EGF knockout (KO) mice using the interferon inducible Mx-1 promoter driven Cre recombinase transgene and wild type (WT) and KO mice were subjected to BDL. After BDL, KO mice exhibited enhanced liver fibrosis with increased expression of collagen, compared with WT mice. Finally, we used mouse hepatic stellate cells (HSCs) to examine the role of HB-EGF in the activation of these cells and showed that HB-EGF antagonized TGF-β-induced gene expression of collagen in mouse primary HSCs. Interestingly, HB-EGF did not prevent the TGF-β-induced nuclear accumulation of Smad3, but did lead to stabilization of the Smad transcriptional co-repressor TG-interacting factor. In conclusion, our data suggest a possible protective role of HB-EGF in cholestatic liver fibrosis.

  6. Conditional loss of heparin-binding EGF-like growth factor results in enhanced liver fibrosis after bile duct ligation in mice

    International Nuclear Information System (INIS)

    Takemura, Takayo; Yoshida, Yuichi; Kiso, Shinichi; Kizu, Takashi; Furuta, Kunimaro; Ezaki, Hisao; Hamano, Mina; Egawa, Mayumi; Chatani, Norihiro; Kamada, Yoshihiro; Imai, Yasuharu; Higashiyama, Shigeki; Iwamoto, Ryo; Mekada, Eisuke; Takehara, Tetsuo

    2013-01-01

    Highlights: •HB-EGF expression was increased during the development of liver fibrosis. •Conditional HB-EGF knockout mouse showed enhanced experimental liver fibrosis. •HB-EGF antagonized TGF-β-induced activation of hepatic stellate cells. •We report a possible protective role of HB-EGF in cholestatic liver fibrosis. -- Abstract: Our aims were to evaluate the involvement of heparin-binding EGF-like growth factor (HB-EGF) in liver fibrogenesis of humans and mice and to elucidate the effect of HB-EGF deficiency on cholestatic liver fibrosis using conditional HB-EGF knockout (KO) mice. We first demonstrated that gene expression of HB-EGF had a positive significant correlation with that of collagen in human fibrotic livers, and was increased in bile duct ligation (BDL)-induced fibrotic livers in mouse. We then generated conditional HB-EGF knockout (KO) mice using the interferon inducible Mx-1 promoter driven Cre recombinase transgene and wild type (WT) and KO mice were subjected to BDL. After BDL, KO mice exhibited enhanced liver fibrosis with increased expression of collagen, compared with WT mice. Finally, we used mouse hepatic stellate cells (HSCs) to examine the role of HB-EGF in the activation of these cells and showed that HB-EGF antagonized TGF-β-induced gene expression of collagen in mouse primary HSCs. Interestingly, HB-EGF did not prevent the TGF-β-induced nuclear accumulation of Smad3, but did lead to stabilization of the Smad transcriptional co-repressor TG-interacting factor. In conclusion, our data suggest a possible protective role of HB-EGF in cholestatic liver fibrosis

  7. Comprehensive behavioral analysis of mice deficient in Rapgef2 and Rapgef6, a subfamily of guanine nucleotide exchange factors for Rap small GTPases possessing the Ras/Rap-associating domain.

    Science.gov (United States)

    Maeta, Kazuhiro; Hattori, Satoko; Ikutomo, Junji; Edamatsu, Hironori; Bilasy, Shymaa E; Miyakawa, Tsuyoshi; Kataoka, Tohru

    2018-05-10

    Rapgef2 and Rapgef6 define a subfamily of guanine nucleotide exchange factors for Rap small GTPases, characterized by the possession of the Ras/Rap-associating domain. Previous genomic analyses suggested their possible involvement in the etiology of schizophrenia. We recently demonstrated the development of an ectopic cortical mass (ECM), which resembles the human subcortical band heterotopia, in the dorsal telencephalon-specific Rapgef2 conditional knockout (Rapgef2-cKO) brains. Additional knockout of Rapgef6 in Rapgef2-cKO mice resulted in gross enlargement of the ECM whereas knockout of Rapgef6 alone (Rapgef6-KO) had no discernible effect on the brain morphology. Here, we performed a battery of behavioral tests to examine the effects of Rapgef2 or Rapgef6 deficiency on higher brain functions. Rapgef2-cKO mice exhibited hyperlocomotion phenotypes. They showed decreased anxiety-like behavior in the elevated plus maze and the open-field tests as well as increased depression-like behavior in the Porsolt forced swim and tail suspension tests. They also exhibited increased sociability especially in novel environments. They showed defects in cognitive function as evidenced by reduced learning ability in the Barnes circular maze test and by impaired working memory in the T maze tests. In contrast, although Rapgef6 and Rapgef2 share similarities in biochemical roles, Rapgef6-KO mice exhibited mild behavioral abnormalities detected with a number of behavioral tests, such as hyperlocomotion phenotype in the open-field test and the social interaction test with a novel environment and working-memory defects in the T-maze test. In conclusion, although there were differences in their brain morphology and the magnitude of the behavioral abnormalities, Rapgef2-cKO mice and Rapgef6-KO mice exhibited hyperlocomotion phenotype and working-memory defect, both of which could be recognized as schizophrenia-like behavior.

  8. Experimental evidence for the involvement of PDLIM5 in mood disorders in hetero knockout mice.

    Directory of Open Access Journals (Sweden)

    Yasue Horiuchi

    Full Text Available BACKGROUND: Reports indicate that PDLIM5 is involved in mood disorders. The PDLIM5 (PDZ and LIM domain 5 gene has been genetically associated with mood disorders; it's expression is upregulated in the postmortem brains of patients with bipolar disorder and downregulated in the peripheral lymphocytes of patients with major depression. Acute and chronic methamphetamine (METH administration may model mania and the evolution of mania into psychotic mania or schizophrenia-like behavioral changes, respectively. METHODS: To address whether the downregulation of PDLIM5 protects against manic symptoms and cause susceptibility to depressive symptoms, we evaluated the effects of reduced Pdlim5 levels on acute and chronic METH-induced locomotor hyperactivity, prepulse inhibition, and forced swimming by using Pdlim5 hetero knockout (KO mice. RESULTS: The homozygous KO of Pdlim5 is embryonic lethal. The effects of METH administration on locomotor hyperactivity and the impairment of prepulse inhibition were lower in Pdlim5 hetero KO mice than in wild-type mice. The transient inhibition of PDLIM5 (achieved by blocking the translocation of protein kinase C epsilon before the METH challenge had a similar effect on behavior. Pdlim5 hetero KO mice showed increased immobility time in the forced swimming test, which was diminished after the chronic administration of imipramine. Chronic METH treatment increased, whereas chronic haloperidol treatment decreased, Pdlim5 mRNA levels in the prefrontal cortex. Imipramine increased Pdlim5 mRNA levels in the hippocampus. CONCLUSION: These findings are partially compatible with reported observations in humans, indicating that PDLIM5 is involved in psychiatric disorders, including mood disorders.

  9. Organelle and cellular abnormalities associated with hippocampal heterotopia in neonatal doublecortin knockout mice.

    Directory of Open Access Journals (Sweden)

    Reham Khalaf-Nazzal

    Full Text Available Heterotopic or aberrantly positioned cortical neurons are associated with epilepsy and intellectual disability. Various mouse models exist with forms of heterotopia, but the composition and state of cells developing in heterotopic bands has been little studied. Dcx knockout (KO mice show hippocampal CA3 pyramidal cell lamination abnormalities, appearing from the age of E17.5, and mice suffer from spontaneous epilepsy. The Dcx KO CA3 region is organized in two distinct pyramidal cell layers, resembling a heterotopic situation, and exhibits hyperexcitability. Here, we characterized the abnormally organized cells in postnatal mouse brains. Electron microscopy confirmed that the Dcx KO CA3 layers at postnatal day (P 0 are distinct and separated by an intermediate layer devoid of neuronal somata. We found that organization and cytoplasm content of pyramidal neurons in each layer were altered compared to wild type (WT cells. Less regular nuclei and differences in mitochondria and Golgi apparatuses were identified. Each Dcx KO CA3 layer at P0 contained pyramidal neurons but also other closely apposed cells, displaying different morphologies. Quantitative PCR and immunodetections revealed increased numbers of oligodendrocyte precursor cells (OPCs and interneurons in close proximity to Dcx KO pyramidal cells. Immunohistochemistry experiments also showed that caspase-3 dependent cell death was increased in the CA1 and CA3 regions of Dcx KO hippocampi at P2. Thus, unsuspected ultrastructural abnormalities and cellular heterogeneity may lead to abnormal neuronal function and survival in this model, which together may contribute to the development of hyperexcitability.

  10. The effects of serotonin1A receptor on female mice body weight and food intake are associated with the differential expression of hypothalamic neuropeptides and the GABAA receptor.

    Science.gov (United States)

    Butt, Isma; Hong, Andrew; Di, Jing; Aracena, Sonia; Banerjee, Probal; Shen, Chang-Hui

    2014-10-01

    Both common eating disorders anorexia nervosa and bulimia nervosa are characteristically diseases of women. To characterize the role of the 5-HT1A receptor (5-HT1A-R) in these eating disorders in females, we investigated the effect of saline or 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) treatment on feeding behavior and body weight in adult WT female mice and in adult 5-HT1A-R knockout (KO) female mice. Our results showed that KO female mice have lower food intake and body weight than WT female mice. Administration of 8-OH-DPAT decreased food intake but not body weight in WT female mice. Furthermore, qRT-PCR was employed to analyze the expression levels of neuropeptides, γ-aminobutyric acid A receptor subunit β (GABAA β subunits) and glutamic acid decarboxylase in the hypothalamic area. The results showed the difference in food intake between WT and KO mice was accompanied by differential expression of POMC, CART and GABAA β2, and the difference in body weight between WT and KO mice was associated with significantly different expression levels of CART and GABAA β2. As such, our data provide new insight into the role of 5-HT1A-R in both feeding behavior and the associated expression of neuropeptides and the GABAA receptor. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. 12/15-lipoxygenase is required for the early onset of high fat diet-induced adipose tissue inflammation and insulin resistance in mice.

    Directory of Open Access Journals (Sweden)

    Dorothy D Sears

    2009-09-01

    Full Text Available Recent understanding that insulin resistance is an inflammatory condition necessitates searching for genes that regulate inflammation in insulin sensitive tissues. 12/15-lipoxygenase (12/15LO regulates the expression of proinflammatory cytokines and chemokines and is implicated in the early development of diet-induced atherosclerosis. Thus, we tested the hypothesis that 12/15LO is involved in the onset of high fat diet (HFD-induced insulin resistance.Cells over-expressing 12/15LO secreted two potent chemokines, MCP-1 and osteopontin, implicated in the development of insulin resistance. We assessed adipose tissue inflammation and whole body insulin resistance in wild type (WT and 12/15LO knockout (KO mice after 2-4 weeks on HFD. In adipose tissue from WT mice, HFD resulted in recruitment of CD11b(+, F4/80(+ macrophages and elevated protein levels of the inflammatory markers IL-1beta, IL-6, IL-10, IL-12, IFNgamma, Cxcl1 and TNFalpha. Remarkably, adipose tissue from HFD-fed 12/15LO KO mice was not infiltrated by macrophages and did not display any increase in the inflammatory markers compared to adipose tissue from normal chow-fed mice. WT mice developed severe whole body (hepatic and skeletal muscle insulin resistance after HFD, as measured by hyperinsulinemic euglycemic clamp. In contrast, 12/15LO KO mice exhibited no HFD-induced change in insulin-stimulated glucose disposal rate or hepatic glucose output during clamp studies. Insulin-stimulated Akt phosphorylation in muscle tissue from HFD-fed mice was significantly greater in 12/15LO KO mice than in WT mice.These results demonstrate that 12/15LO mediates early stages of adipose tissue inflammation and whole body insulin resistance induced by high fat feeding.

  12. Nrf2 represses FGF21 during long-term high-fat diet-induced obesity in mice.

    Science.gov (United States)

    Chartoumpekis, Dionysios V; Ziros, Panos G; Psyrogiannis, Agathoklis I; Papavassiliou, Athanasios G; Kyriazopoulou, Venetsana E; Sykiotis, Gerasimos P; Habeos, Ioannis G

    2011-10-01

    Obesity is characterized by chronic oxidative stress. Fibroblast growth factor 21 (FGF21) has recently been identified as a novel hormone that regulates metabolism. NFE2-related factor 2 (Nrf2) is a transcription factor that orchestrates the expression of a battery of antioxidant and detoxification genes under both basal and stress conditions. The current study investigated the role of Nrf2 in a mouse model of long-term high-fat diet (HFD)-induced obesity and characterized its crosstalk to FGF21 in this process. Wild-type (WT) and Nrf2 knockout (Nrf2-KO) mice were fed an HFD for 180 days. During this period, food consumption and body weights were measured. Glucose metabolism was assessed by an intraperitoneal glucose tolerance test and intraperitoneal insulin tolerance test. Total RNA was prepared from liver and adipose tissue and was used for quantitative real-time RT-PCR. Fasting plasma was collected and analyzed for blood chemistries. The ST-2 cell line was used for transfection studies. Nrf2-KO mice were partially protected from HFD-induced obesity and developed a less insulin-resistant phenotype. Importantly, Nrf2-KO mice had higher plasma FGF21 levels and higher FGF21 mRNA levels in liver and white adipose tissue than WT mice. Thus, the altered metabolic phenotype of Nrf2-KO mice under HFD was associated with higher expression and abundance of FGF21. Consistently, the overexpression of Nrf2 in ST-2 cells resulted in decreased FGF21 mRNA levels as well as in suppressed activity of a FGF21 promoter luciferase reporter. The identification of Nrf2 as a novel regulator of FGF21 expands our understanding of the crosstalk between metabolism and stress defense.

  13. Effect of nerve injury on the number of dorsal root ganglion neurons and autotomy behavior in adult Bax-deficient mice

    Directory of Open Access Journals (Sweden)

    Lyu C

    2017-08-01

    Full Text Available Chuang Lyu,1,2 Gong-Wei Lyu,3 Aurora Martinez,4 Tie-Jun Sten Shi4 1State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China; 2Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; 3Department of Neurology, 1st Hospital of Harbin Medical University, Harbin, People’s Republic of China; 4Department of Biomedicine, University of Bergen, Bergen, Norway Background: The proapoptotic molecule BAX, plays an important role in mitochondrial apoptotic pathway. Dorsal root ganglion (DRG neurons depend on neurotrophic factors for survival at early developmental stages. Withdrawal of neurotrophic factors will induce apoptosis in DRG neurons, but this type of cell death can be delayed or prevented in neonatal Bax knockout (KO mice. In adult animals, evidence also shows that DRG neurons are less dependent upon neurotrophic factors for survival. However, little is known about the effect of Bax deletion on the survival of normal and denervated DRG neurons in adult mice. Methods: A unilateral sciatic nerve transection was performed in adult Bax KO mice and wild-type (WT littermates. Stereological method was employed to quantify the number of lumbar-5 DRG neurons 1 month post-surgery. Nerve injury-induced autotomy behavior was also examined on days 1, 3, and 7 post-surgery. Results: There were significantly more neurons in contralateral DRGs of KO mice as compared with WT mice. The number of neurons was reduced in ipsilateral DRGs in both KO and WT mice. No changes in size distributions of DRG neuron profiles were detected before or after nerve injury. Injury-induced autotomy behavior developed much earlier and was more serious in KO mice. Conclusion: Although postnatal death or loss of DRG neurons is partially prevented by Bax deletion, this effect cannot interfere with long-term nerve injury-induced neuronal loss. The exaggerated self

  14. CDKL5 knockout leads to altered inhibitory transmission in the cerebellum of adult mice.

    Science.gov (United States)

    Sivilia, S; Mangano, C; Beggiato, S; Giuliani, A; Torricella, R; Baldassarro, V A; Fernandez, M; Lorenzini, L; Giardino, L; Borelli, A C; Ferraro, L; Calzà, L

    2016-06-01

    Mutations in the X-linked cyclin-dependent kinase-like 5 gene (CDKL5) are associated to severe neurodevelopmental alterations including motor symptoms. In order to elucidate the neurobiological substrate of motor symptoms in CDKL5 syndrome, we investigated the motor function, GABA and glutamate pathways in the cerebellum of CDKL5 knockout female mice. Behavioural data indicate that CDKL5-KO mice displayed impaired motor coordination on the Rotarod test, and altered steps, as measured by the gait analysis using the CatWalk test. A higher reduction in spontaneous GABA efflux, than that in glutamate, was observed in CDKL5-KO mouse cerebellar synaptosomes, leading to a significant increase of spontaneous glutamate/GABA efflux ratio in these animals. On the contrary, there were no differences between groups in K(+) -evoked GABA and glutamate efflux. The anatomical analysis of cerebellar excitatory and inhibitory pathways showed a selective defect of the GABA-related marker GAD67 in the molecular layer in CDKL5-KO mice, while the glutamatergic marker VGLUT1 was unchanged in the same area. Fine cerebellar structural abnormalities such as a reduction of the inhibitory basket 'net' estimated volume and an increase of the pinceau estimated volume were also observed in CDKL5-KO mice. Finally, the BDNF mRNA expression level in the cerebellum, but not in the hippocampus, was reduced compared with WT animals. These data suggest that CDKL5 deletion during development more markedly impairs the establishment of a correct GABAergic cerebellar network than that of glutamatergic one, leading to the behavioural symptoms associated with CDKL5 mutation. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  15. Hydroxysteroid (17β)-dehydrogenase 1-deficient female mice present with normal puberty onset but are severely subfertile due to a defect in luteinization and progesterone production.

    Science.gov (United States)

    Hakkarainen, Janne; Jokela, Heli; Pakarinen, Pirjo; Heikelä, Hanna; Kätkänaho, Laura; Vandenput, Liesbeth; Ohlsson, Claes; Zhang, Fu-Ping; Poutanen, Matti

    2015-09-01

    Hydroxysteroid (17β)-dehydrogenase type 1 (HSD17B1) catalyzes the conversion of low active 17-ketosteroids, androstenedione (A-dione) and estrone (E1) to highly active 17-hydroxysteroids, testosterone (T) and E2, respectively. In this study, the importance of HSD17B1 in ovarian estrogen production was determined using Hsd17b1 knockout (HSD17B1KO) mice. In these mice, the ovarian HSD17B enzyme activity was markedly reduced, indicating a central role of HSD17B1 in ovarian physiology. The lack of Hsd17b activity resulted in increased ovarian E1:E2 and A-dione:T ratios, but we also observed reduced progesterone concentration in HSD17B1KO ovaries. Accordingly with the altered steroid production, altered expression of Star, Cyp11a1, Lhcgr, Hsd17b7, and especially Cyp17a1 was observed. The ovaries of HSD17B1KO mice presented with all stages of folliculogenesis, while the corpus luteum structure was less defined and number reduced. Surprisingly, bundles of large granular cells of unknown origin appeared in the stroma of the KO ovaries. The HSD17B1KO mice presented with severe subfertility and failed to initiate pseudopregnancy. However, the HSD17B1KO females presented with normal estrous cycle defined by vaginal smears and normal puberty appearance. This study indicates that HSD17B1 is a key enzyme in ovarian steroidogenesis and has a novel function in initiation and stabilization of pregnancy. © FASEB.

  16. CD1d knockout mice exhibit aggravated contact hypersensitivity responses due to reduced interleukin-10 production predominantly by regulatory B cells

    DEFF Research Database (Denmark)

    Fjelbye, Jonas; Antvorskov, Julie C; Buschard, Karsten

    2015-01-01

    .05) and peritoneal cavity (80.8% decrease; P challenge, which suggests an important regulatory and protective role of CD1d-dependent NKT cells in CHS in our model, at least in part via regulation of IL-10 producing B(regs) ....... knockout (CD1d KO) and wild-type (Wt) mice after contact allergen exposure. For induction of CHS, C57BL/6 CD1d KO mice (n = 6) and C57BL/6 Wt mice (n = 6) were sensitised with 1% (w/v) dinitrochlorobenzene (DNCB) or vehicle for three consecutive days and subsequently challenged with a single dose of 0...

  17. Interleukin 6 deficiency modulates the hypothalamic expression of energy balance regulating peptides during pregnancy in mice.

    Science.gov (United States)

    Pazos, Patricia; Lima, Luis; Casanueva, Felipe F; Diéguez, Carlos; García, María C

    2013-01-01

    Pregnancy is associated with hyperphagia, increased adiposity and multiple neuroendocrine adaptations. Maternal adipose tissue secretes rising amounts of interleukin 6 (IL6), which acts peripherally modulating metabolic function and centrally increasing energy expenditure and reducing body fat. To explore the role of IL6 in the central mechanisms governing dam's energy homeostasis, early, mid and late pregnant (gestational days 7, 13 and 18) wild-type (WT) and Il6 knockout mice (Il6-KO) were compared with virgin controls at diestrus. Food intake, body weight and composition as well as indirect calorimetry measurements were performed in vivo. Anabolic and orexigenic peptides: neuropeptide Y (Npy) and agouti-related peptide (Agrp); and catabolic and anorectic neuropeptides: proopiomelanocortin (Pomc), corticotrophin and thyrotropin-releasing hormone (Crh and Trh) mRNA levels were determined by in situ hybridization. Real time-PCR and western-blot were used for additional tissue gene expression and protein studies. Non-pregnant Il6-KO mice were leaner than WT mice due to a decrease in fat but not in lean body mass. Pregnant Il6-KO mice had higher fat accretion despite similar body weight gain than WT controls. A decreased fat utilization in absence of Il6 might explain this effect, as shown by increased respiratory exchange ratio (RER) in virgin Il6-KO mice. Il6 mRNA levels were markedly enhanced in adipose tissue but reduced in hypothalamus of mid and late pregnant WT mice. Trh expression was also stimulated at gestational day 13 and lack of Il6 blunted this effect. Conversely, in late pregnant mice lessened hypothalamic Il6 receptor alpha (Il6ra), Pomc and Crh mRNA were observed. Il6 deficiency during this stage up-regulated Npy and Agrp expression, while restoring Pomc mRNA levels to virgin values. Together these results demonstrate that IL6/IL6Ra system modulates Npy/Agrp, Pomc and Trh expression during mouse pregnancy, supporting a role of IL6 in the central

  18. Superoxide Stabilization and a Universal KO2 Growth Mechanism in Potassium-Oxygen Batteries.

    Science.gov (United States)

    Wang, Wanwan; Lai, Nien-Chu; Liang, Zhuojian; Wang, Yu; Lu, Yi-Chun

    2018-04-23

    Rechargeable potassium-oxygen (K-O 2 ) batteries promise to provide higher round-trip efficiency and cycle life than other alkali-oxygen batteries with satisfactory gravimetric energy density (935 Wh kg -1 ). Exploiting a strong electron-donating solvent, for example, dimethyl sulfoxide (DMSO) strongly stabilizes the discharge product (KO 2 ), resulting in significant improvement in electrode kinetics and chemical/electrochemical reversibility. The first DMSO-based K-O 2 battery demonstrates a much higher energy efficiency and stability than the glyme-based electrolyte. A universal KO 2 growth model is developed and it is demonstrated that the ideal solvent for K-O 2 batteries should strongly stabilize superoxide (strong donor ability) to obtain high electrode kinetics and reversibility while providing fast oxygen diffusion to achieve high discharge capacity. This work elucidates key electrolyte properties that control the efficiency and reversibility of K-O 2 batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Transgenic Expression of the Vitamin D Receptor Restricted to the Ileum, Cecum, and Colon of Vitamin D Receptor Knockout Mice Rescues Vitamin D Receptor-Dependent Rickets.

    Science.gov (United States)

    Dhawan, Puneet; Veldurthy, Vaishali; Yehia, Ghassan; Hsaio, Connie; Porta, Angela; Kim, Ki-In; Patel, Nishant; Lieben, Liesbet; Verlinden, Lieve; Carmeliet, Geert; Christakos, Sylvia

    2017-11-01

    Although the intestine plays the major role in 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] action on calcium homeostasis, the mechanisms involved remain incompletely understood. The established model of 1,25(OH)2D3-regulated intestinal calcium absorption postulates a critical role for the duodenum. However, the distal intestine is where 70% to 80% of ingested calcium is absorbed. To test directly the role of 1,25(OH)2D3 and the vitamin D receptor (VDR) in the distal intestine, three independent knockout (KO)/transgenic (TG) lines expressing VDR exclusively in the ileum, cecum, and colon were generated by breeding VDR KO mice with TG mice expressing human VDR (hVDR) under the control of the 9.5-kb caudal type homeobox 2 promoter. Mice from one TG line (KO/TG3) showed low VDR expression in the distal intestine (rickets, but less severely than VDR KO mice. These findings show that expression of VDR exclusively in the distal intestine can prevent abnormalities in calcium homeostasis and bone mineralization associated with systemic VDR deficiency. Copyright © 2017 Endocrine Society.

  20. Sickness behaviour after lipopolysaccharide treatment in ghrelin deficient mice.

    Science.gov (United States)

    Szentirmai, Éva; Krueger, James M

    2014-02-01

    Ghrelin is an orexigenic hormone produced mainly by the gastrointestinal system and the brain. Much evidence also indicates a role for ghrelin in sleep and thermoregulation. Further, ghrelin was recently implicated in immune system modulation. Administration of bacterial lipopolysaccharide (LPS) induces fever, anorexia, and increased non-rapid-eye movement sleep (NREMS) and these actions are mediated primarily by proinflammatory cytokines. Ghrelin reduces LPS-induced fever, suppresses circulating levels of proinflammatory cytokines and reduces the severity and mortality of various models of experimental endotoxemia. In the present study, we determined the role of intact ghrelin signaling in LPS-induced sleep, feeding, and thermoregulatory responses in mice. Sleep-wake activity was determined after intraperitoneal, dark onset administration of 0.4, 2 and 10 μg LPS in preproghrelin knockout (KO) and wild-type (WT) mice. In addition, body temperature, motor activity and changes in 24-h food intake and body weight were measured. LPS induced dose-dependent increases in NREMS, and suppressed rapid-eye movement sleep, electroencephalographic slow-wave activity, motor activity, food intake and body weight in both Ppg KO and WT mice. Body temperature changes showed a biphasic pattern with a decrease during the dark period followed by an increase in the light phase. The effects of the low and middle doses of LPS were indistinguishable between the two genotypes. Administration of 10 μg LPS, however, induced significantly larger changes in NREMS and wakefulness amounts, body temperature, food intake and body weight in the Ppg KO mice. These findings support a role for ghrelin as an endogenous modulator of inflammatory responses and a central component of arousal and feeding circuits. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Branched-chain amino acid (BCAA) supplementation enhances adaptability to exercise training of mice with a muscle-specific defect in the control of BCAA catabolism.

    Science.gov (United States)

    Xu, Minjun; Kitaura, Yasuyuki; Shindo, Daichi; Shimomura, Yoshiharu

    2018-03-01

    Branched-chain α-keto acid dehydrogenase (BCKDH) kinase (BDK) suppresses the branched-chain amino acid (BCAA) catabolism by inactivation of the BCKDH complex. The muscle-specific BDK-deficient (BDK-mKO) mice showed accelerated BCAA oxidation in muscle and decreased endurance capacity after training (Xu et al. PLoS One. 12 (2017) e0180989). We here report that BCAA supplementation overcompensated endurance capacity in BDK-mKO mice after training.

  2. Mice Lacking the β2 Adrenergic Receptor Have a Unique Genetic Profile before and after Focal Brain Ischaemia

    Directory of Open Access Journals (Sweden)

    Robin E White

    2012-08-01

    Full Text Available The role of the β2AR (β2 adrenergic receptor after stroke is unclear as pharmacological manipulations of the β2AR have produced contradictory results. We previously showed that mice deficient in the β2AR (β2KO had smaller infarcts compared with WT (wild-type mice (FVB after MCAO (middle cerebral artery occlusion, a model of stroke. To elucidate mechanisms of this neuroprotection, we evaluated changes in gene expression using microarrays comparing differences before and after MCAO, and differences between genotypes. Genes associated with inflammation and cell deaths were enriched after MCAO in both genotypes, and we identified several genes not previously shown to increase following ischaemia (Ccl9, Gem and Prg4. In addition to networks that were similar between genotypes, one network with a central core of GPCR (G-protein-coupled receptor and including biological functions such as carbohydrate metabolism, small molecule biochemistry and inflammation was identified in FVB mice but not in β2KO mice. Analysis of differences between genotypes revealed 11 genes differentially expressed by genotype both before and after ischaemia. We demonstrate greater Glo1 protein levels and lower Pmaip/Noxa mRNA levels in β2KO mice in both sham and MCAO conditions. As both genes are implicated in NF-κB (nuclear factor κB signalling, we measured p65 activity and TNFα (tumour necrosis factor α levels 24 h after MCAO. MCAO-induced p65 activation and post-ischaemic TNFα production were both greater in FVB compared with β2KO mice. These results suggest that loss of β2AR signaling results in a neuroprotective phenotype in part due to decreased NF-κB signalling, decreased inflammation and decreased apoptotic signalling in the brain.

  3. Editor's Highlight: Complete Attenuation of Mouse Lung Cell Proliferation and Tumorigenicity in CYP2F2 Knockout and CYP2F1 Humanized Mice Exposed to Inhaled Styrene for up to 2 Years Supports a Lack of Human Relevance.

    Science.gov (United States)

    Cruzan, George; Bus, James S; Banton, Marcy I; Sarang, Satinder S; Waites, Robbie; Layko, Debra B; Raymond, James; Dodd, Darol; Andersen, Melvin E

    2017-10-01

    Styrene is a mouse-specific lung carcinogen, and short-term mode of action studies have demonstrated that cytotoxicity and/or cell proliferation, and genomic changes are dependent on CYP2F2 metabolism. The current study examined histopathology, cell proliferation, and genomic changes in CD-1, C57BL/6 (WT), CYP2F2(-/-) (KO), and CYP2F2(-/-) (CYP2F1, 2B6, 2A13-transgene) (TG; humanized) mice following exposure for up to 104 weeks to 0- or 120-ppm styrene vapor. Five mice per treatment group were sacrificed at 1, 26, 52, and 78 weeks. Additional 50 mice per treatment group were followed until death or 104 weeks of exposure. Cytotoxicity was present in the terminal bronchioles of some CD-1 and WT mice exposed to styrene, but not in KO or TG mice. Hyperplasia in the terminal bronchioles was present in CD-1 and WT mice exposed to styrene, but not in KO or TG mice. Increased cell proliferation, measured by KI-67 staining, occurred in CD-1 and WT mice exposed to styrene for 1 week, but not after 26, 52, or 78 weeks, nor in KO or TG mice. Styrene increased the incidence of bronchioloalveolar adenomas and carcinomas in CD-1 mice. No increase in lung tumors was found in WT despite clear evidence of lung toxicity, or, KO or TG mice. The absence of preneoplastic lesions and tumorigenicity in KO and TG mice indicates that mouse-specific CYP2F2 metabolism is responsible for both the short-term and chronic toxicity and tumorigenicity of styrene, and activation of styrene by CYP2F2 is a rodent MOA that is neither quantitatively or qualitatively relevant to humans. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Prevajanje športne terminologije v priročniku Osnove košarke NBA

    OpenAIRE

    Kajič, Matic

    2016-01-01

    Pri prevajanju strokovnih besedil ne gre le za vestno opravljanje veščin, ampak za visoko intelektualno delovanje: reševanje vedno novih problemov. To velja tudi za košarkarsko terminologijo, saj obstaja veliko ameriških košarkarskih izrazov, za katere nimamo ustreznic v slovenskem jeziku. Posebnost priročnika Osnove košarke NBA avtorja Marka Vancila se kaže v velikem številu strokovnega košarkarskega izrazja, ki od prevajalca zahteva veliko mero strokovnega poznavanja področja. V diplomskem ...

  5. Sdhd and SDHD/H19 knockout mice do not develop paraganglioma or pheochromocytoma.

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Bayley

    Full Text Available BACKGROUND: Mitochondrial succinate dehydrogenase (SDH is a component of both the tricarboxylic acid cycle and the electron transport chain. Mutations of SDHD, the first protein of intermediary metabolism shown to be involved in tumorigenesis, lead to the human tumors paraganglioma (PGL and pheochromocytoma (PC. SDHD is remarkable in showing an 'imprinted' tumor suppressor phenotype. Mutations of SDHD show a very high penetrance in man and we postulated that knockout of Sdhd would lead to the development of PGL/PC, probably in aged mice. METHODOLOGY/PRINCIPAL FINDINGS: We generated a conventional knockout of Sdhd in the mouse, removing the entire third exon. We also crossed this mouse with a knockout of H19, a postulated imprinted modifier gene of Sdhd tumorigenesis, to evaluate if loss of these genes together would lead to the initiation or enhancement of tumor development. Homozygous knockout of Sdhd results in embryonic lethality. No paraganglioma or other tumor development was seen in Sdhd KO mice followed for their entire lifespan, in sharp contrast to the highly penetrant phenotype in humans. Heterozygous Sdhd KO mice did not show hyperplasia of paraganglioma-related tissues such as the carotid body or of the adrenal medulla, or any genotype-related pathology, with similar body and organ weights to wildtype mice. A cohort of Sdhd/H19 KO mice developed several cases of profound cardiac hypertrophy, but showed no evidence of PGL/PC. CONCLUSIONS: Knockout of Sdhd in the mouse does not result in a disease phenotype. H19 may not be an initiator of PGL/PC tumorigenesis.

  6. Isolation of a third species of Sarcocystis in immunodeficient mice fed feces from opossums (Didelphis virginiana) and its differentiation from Sarcocystis falcatula and Sarcocystis neurona.

    Science.gov (United States)

    Dubey, J P; Speer, C A; Lindsay, D S

    1998-12-01

    Opossums (Didelphis virginiana) were found to be hosts for 3 species of Sarcocystis: Sarcocystis falcatula with an avian intermediate host, S. neurona with an undetermined intermediate host, and a third, unnamed, species. Sporocysts from the intestines of 2 opossums (nos. 26 and 47) were fed to budgerigars (Melopsittacus undulatus), nude mice, and gamma-interferon knockout (KO) mice. Sporocysts of S. falcatula were not infective to nude or KO mice. Sporocysts of S. neurona induced encephalitis in KO and nude mice; only schizonts and merozoites were found in tissues of mice, and they reacted with anti-S. neurona serum raised against the SN-2 isolate of S. neurona originally obtained from tissues of a paralyzed horse. All 3 species of Sarcocystis were present in opossum no. 47. Sarcocystis neurona was isolated in cell culture from this opossum. Sporocysts from opossum no. 47 were lethal to budgerigars, indicating S. falcatula infection. Only 1 species of Sarcocystis (the third species) was found in opossum no. 26; the sporocysts were infective to KO and nude mice. Schizonts and merozoites of this species were predominantly in the liver but were also found in other tissues; schizonts did not react with anti-S. neurona serum. Merozoites of the third species were ultrastructurally distinct from S. falcatula and S. neurona merozoites. Sarcocysts were found in leg muscles of 2 mice killed 50 and 54 days after they were fed sporocysts from opossum no. 26. These sarcocysts had steeple-shaped protrusions on the cyst wall and were distinct from sarcocysts of S. falcatula and any other species of Sarcocystis.

  7. Dampened dopamine-mediated neuromodulation in prefrontal cortex of fragile X mice.

    Science.gov (United States)

    Paul, Kush; Venkitaramani, Deepa V; Cox, Charles L

    2013-02-15

    Fragile X syndrome (FXS) is the most common form of inheritable mental retardation caused by transcriptional silencing of the Fmr1 gene resulting in the absence of fragile X mental retardation protein (FMRP). The role of this protein in neurons is complex and its absence gives rise to diverse alterations in neuronal function leading to neurological disorders including mental retardation, hyperactivity, cognitive impairment, obsessive-compulsive behaviour, seizure activity and autism. FMRP regulates mRNA translation at dendritic spines where synapses are formed, and thus the lack of FMRP can lead to disruptions in synaptic transmission and plasticity. Many of these neurological deficits in FXS probably involve the prefrontal cortex, and in this study, we have focused on modulatory actions of dopamine in the medial prefrontal cortex. Our data indicate that dopamine produces a long-lasting enhancement of evoked inhibitory postsynaptic currents (IPSCs) mediated by D1-type receptors seen in wild-type mice; however, such enhancement is absent in the Fmr1 knock-out (Fmr1 KO) mice. The facilitation of IPSCs produced by direct cAMP stimulation was unaffected in Fmr1 KO, but D1 receptor levels were reduced in these animals. Our results show significant disruption of dopaminergic modulation of synaptic transmission in the Fmr1 KO mice and this alteration in inhibitory activity may provide insight into potential targets for the rescue of deficits associated with FXS.

  8. The roles of testicular nuclear receptor 4 (TR4 in male fertility-priapism and sexual behavior defects in TR4 knockout mice

    Directory of Open Access Journals (Sweden)

    Bao Bo-Ying

    2011-10-01

    Full Text Available Abstract Background Successful reproductive efforts require the establishment of a situation favorable for reproduction that requires integration of both behavior and internal physiological events. TR4 nuclear receptor is known to be involved in male fertility via controlling spermatogenesis, yet its roles in regulating other biological events related to reproduction have not been completely revealed. Methods Male TR4 knockout (TR4-/- and wild type mice were used for the sexual behavior and penile dysfunction studies. Mice were sacrificed for histological examination and corresponding genes profiles were analyzed by quantitative RT-PCR. Reporter gene assays were performed. Results We describe an unexpected finding of priapism in TR4-/- mice. As a transcriptional factor, we demonstrated that TR4 transcriptionally modulates a key enzyme regulating penis erection and neuronal nitric oxide synthese NOS (nNOS. Thereby, elimination of TR4 results in nNOS reduction in both mRNA and protein levels, consequently may lead to erectile dysfunction. In addition, male TR4-/- mice display defects in sexual and social behavior, with increased fear or anxiety, as well as reduced mounting, intromission, and ejaculation. Reduction of ER alpha, ER beta, and oxytocin in the hypothalamus may contribute to defects in sexual behavior and stress response. Conclusions Together, these results provide in vivo evidence of important TR4 roles in penile physiology, as well as in male sexual behavior. In conjunction with previous finding, TR4 represents a key factor that controls male fertility via regulating behavior and internal physiological events.

  9. St36 electroacupuncture activates nNOS, iNOS and ATP-sensitive potassium channels to promote orofacial antinociception in rats.

    Science.gov (United States)

    Almeida, R T; Galdino, G; Perez, A C; Silva, G; Romero, T R; Duarte, I D

    2017-02-01

    Orofacial pain is pain perceived in the face and/or oral cavity, generally caused by diseases or disorders of regional structures, by dysfunction of the nervous system, or through referral from distant sources. Treatment of orofacial pain is mainly pharmacological, but it has increased the number of reports demonstrating great clinical results with the use of non-pharmacological therapies, among them electroacupuncture. However, the mechanisms involved in the electroacupuncture are not well elucidated. Thus, the present study investigate the involvement of the nitric oxide synthase (NOS) and ATP sensitive K + channels (KATP) in the antinociception induced by electroacupuncture (EA) at acupoint St36. Thermal nociception was applied in the vibrissae region of rats, and latency time for face withdrawal was measured. Electrical stimulation of acupoint St36 for 20 minutes reversed the thermal withdrawal latency and this effect was maintained for 150 min. Intraperitoneal administration of specific inhibitors of neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS) and a KATP channels blocker reversed the antinociception induced by EA. Furthermore, nitrite concentration in cerebrospinal fluid (CSF) and plasma, increased 4 and 3-fold higher, respectively, after EA. This study suggests that NO participates of antinociception induced by EA by nNOS, iNOS and ATP-sensitive K + channels activation.

  10. Lentivirus-ABCG1 instillation reduces lipid accumulation and improves lung compliance in GM-CSF knock-out mice

    Energy Technology Data Exchange (ETDEWEB)

    Malur, Anagha; Huizar, Isham [Program in Lung Cell Biology and Translational Research, Division of Pulmonary, Critical Care and Sleep Medicine, East Carolina University, Greenville, NC (United States); Wells, Greg [Department of Microbiology and Immunology, East Carolina University, Greenville, NC (United States); Barna, Barbara P. [Program in Lung Cell Biology and Translational Research, Division of Pulmonary, Critical Care and Sleep Medicine, East Carolina University, Greenville, NC (United States); Malur, Achut G. [Department of Microbiology and Immunology, East Carolina University, Greenville, NC (United States); Thomassen, Mary Jane, E-mail: thomassenm@ecu.edu [Program in Lung Cell Biology and Translational Research, Division of Pulmonary, Critical Care and Sleep Medicine, East Carolina University, Greenville, NC (United States); Department of Microbiology and Immunology, East Carolina University, Greenville, NC (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Lentivirus-ABCG1 reduces lipid accumulation in lungs of GM-CSF knock-out mice. Black-Right-Pointing-Pointer Up-regulation of ABCG1 improves lung function. Black-Right-Pointing-Pointer Upregulation of ABCG1 improves surfactant metabolism. -- Abstract: We have shown decreased expression of the nuclear transcription factor, peroxisome proliferator-activated receptor-gamma (PPAR{gamma}) and the PPAR{gamma}-regulated ATP-binding cassette transporter G1 (ABCG1) in alveolar macrophages from patients with pulmonary alveolar proteinosis (PAP). PAP patients also exhibit neutralizing antibodies to granulocyte-macrophage colony stimulating factor (GM-CSF), an upregulator of PPAR{gamma}. In association with functional GM-CSF deficiency, PAP lung is characterized by surfactant-filled alveolar spaces and lipid-filled alveolar macrophages. Similar pathology characterizes GM-CSF knock-out (KO) mice. We reported previously that intratracheal instillation of a lentivirus (lenti)-PPAR{gamma} plasmid into GM-CSF KO animals elevated ABCG1 and reduced alveolar macrophage lipid accumulation. Here, we hypothesized that instillation of lenti-ABCG1 might be sufficient to decrease lipid accumulation and improve pulmonary function in GM-CSF KO mice. Animals received intratracheal instillation of lenti-ABCG1 or control lenti-enhanced Green Fluorescent Protein (eGFP) plasmids and alveolar macrophages were harvested 10 days later. Alveolar macrophage transduction efficiency was 79% as shown by lenti-eGFP fluorescence. Quantitative PCR analyses indicated a threefold (p = 0.0005) increase in ABCG1 expression with no change of PPAR{gamma} or ABCA1 in alveolar macrophages of lenti-ABCG1 treated mice. ABCG1 was unchanged in control lenti-eGFP and PBS-instilled groups. Oil Red O staining detected reduced intracellular neutral lipid in alveolar macrophages from lenti-ABCG1 treated mice. Extracellular cholesterol and phospholipids were also decreased as shown by

  11. Spaced training rescues memory and ERK1/2 signaling in fragile X syndrome model mice.

    Science.gov (United States)

    Seese, Ronald R; Wang, Kathleen; Yao, Yue Qin; Lynch, Gary; Gall, Christine M

    2014-11-25

    Recent studies have shown that short, spaced trains of afferent stimulation produce much greater long-term potentiation (LTP) than that obtained with a single, prolonged stimulation episode. The present studies demonstrate that spaced training regimens, based on these LTP timing rules, facilitate learning in wild-type (WT) mice and can offset learning and synaptic signaling impairments in the fragile X mental retardation 1 (Fmr1) knockout (KO) model of fragile X syndrome. We determined that 5 min of continuous training supports object location memory (OLM) in WT but not Fmr1 KO mice. However, the same amount of training distributed across three short trials, spaced by one hour, produced robust long-term memory in the KOs. At least three training trials were needed to realize the benefit of spacing, and intertrial intervals shorter or longer than 60 min were ineffective. Multiple short training trials also rescued novel object recognition in Fmr1 KOs. The spacing effect was surprisingly potent: just 1 min of OLM training, distributed across three trials, supported robust memory in both genotypes. Spacing also rescued training-induced activation of synaptic ERK1/2 in dorsal hippocampus of Fmr1 KO mice. These results show that a spaced training regimen designed to maximize synaptic potentiation facilitates recognition memory in WT mice and can offset synaptic signaling and memory impairments in a model of congenital intellectual disability.

  12. Mice Lacking the Alpha9 Subunit of the Nicotinic Acetylcholine Receptor Exhibit Deficits in Frequency Difference Limens and Sound Localization

    Directory of Open Access Journals (Sweden)

    Amanda Clause

    2017-06-01

    Full Text Available Sound processing in the cochlea is modulated by cholinergic efferent axons arising from medial olivocochlear neurons in the brainstem. These axons contact outer hair cells in the mature cochlea and inner hair cells during development and activate nicotinic acetylcholine receptors composed of α9 and α10 subunits. The α9 subunit is necessary for mediating the effects of acetylcholine on hair cells as genetic deletion of the α9 subunit results in functional cholinergic de-efferentation of the cochlea. Cholinergic modulation of spontaneous cochlear activity before hearing onset is important for the maturation of central auditory circuits. In α9KO mice, the developmental refinement of inhibitory afferents to the lateral superior olive is disturbed, resulting in decreased tonotopic organization of this sound localization nucleus. In this study, we used behavioral tests to investigate whether the circuit anomalies in α9KO mice correlate with sound localization or sound frequency processing. Using a conditioned lick suppression task to measure sound localization, we found that three out of four α9KO mice showed impaired minimum audible angles. Using a prepulse inhibition of the acoustic startle response paradigm, we found that the ability of α9KO mice to detect sound frequency changes was impaired, whereas their ability to detect sound intensity changes was not. These results demonstrate that cholinergic, nicotinic α9 subunit mediated transmission in the developing cochlear plays an important role in the maturation of hearing.

  13. Deletion of Lkb1 in pro-opiomelanocortin neurons impairs peripheral glucose homeostasis in mice.

    Science.gov (United States)

    Claret, Marc; Smith, Mark A; Knauf, Claude; Al-Qassab, Hind; Woods, Angela; Heslegrave, Amanda; Piipari, Kaisa; Emmanuel, Julian J; Colom, André; Valet, Philippe; Cani, Patrice D; Begum, Ghazala; White, Anne; Mucket, Phillip; Peters, Marco; Mizuno, Keiko; Batterham, Rachel L; Giese, K Peter; Ashworth, Alan; Burcelin, Remy; Ashford, Michael L; Carling, David; Withers, Dominic J

    2011-03-01

    AMP-activated protein kinase (AMPK) signaling acts as a sensor of nutrients and hormones in the hypothalamus, thereby regulating whole-body energy homeostasis. Deletion of Ampkα2 in pro-opiomelanocortin (POMC) neurons causes obesity and defective neuronal glucose sensing. LKB1, the Peutz-Jeghers syndrome gene product, and Ca(2+)-calmodulin-dependent protein kinase kinase β (CaMKKβ) are key upstream activators of AMPK. This study aimed to determine their role in POMC neurons upon energy and glucose homeostasis regulation. Mice lacking either Camkkβ or Lkb1 in POMC neurons were generated, and physiological, electrophysiological, and molecular biology studies were performed. Deletion of Camkkβ in POMC neurons does not alter energy homeostasis or glucose metabolism. In contrast, female mice lacking Lkb1 in POMC neurons (PomcLkb1KO) display glucose intolerance, insulin resistance, impaired suppression of hepatic glucose production, and altered expression of hepatic metabolic genes. The underlying cellular defect in PomcLkb1KO mice involves a reduction in melanocortin tone caused by decreased α-melanocyte-stimulating hormone secretion. However, Lkb1-deficient POMC neurons showed normal glucose sensing, and body weight was unchanged in PomcLkb1KO mice. Our findings demonstrate that LKB1 in hypothalamic POMC neurons plays a key role in the central regulation of peripheral glucose metabolism but not body-weight control. This phenotype contrasts with that seen in mice lacking AMPK in POMC neurons with defects in body-weight regulation but not glucose homeostasis, which suggests that LKB1 plays additional functions distinct from activating AMPK in POMC neurons.

  14. Establishment of mitochondrial pyruvate carrier 1 (MPC1) gene knockout mice with preliminary gene function analyses

    Science.gov (United States)

    Li, Xiaoli; Li, Yaqing; Han, Gaoyang; Li, Xiaoran; Ji, Yasai; Fan, Zhirui; Zhong, Yali; Cao, Jing; Zhao, Jing; Mariusz, Goscinski; Zhang, Mingzhi; Wen, Jianguo; Nesland, Jahn M.; Suo, Zhenhe

    2016-01-01

    Pyruvate plays a critical role in the mitochondrial tricarboxylic acid (TCA) cycle, and it is the center product for the synthesis of amino acids, carbohydrates and fatty acids. Pyruvate transported across the inner mitochondrial membrane appears to be essential in anabolic and catabolic intermediary metabolism. The mitochondrial pyruvate carrier (MPC) mounted in the inner membrane of mitochondria serves as the channel to facilitate pyruvate permeating. In mammals, the MPC is formed by two paralogous subunits, MPC1 and MPC2. It is known that complete ablation of MPC2 in mice causes death on the 11th or 12th day of the embryonic period. However, MPC1 deletion and the knowledge of gene function in vivo are lacking. Using the new technology of gene manipulation known as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9 (CRISPR/Cas9) systems, we gained stable MPC1 gene heterozygous mutation mice models, and the heterozygous mutations could be stably maintained in their offsprings. Only one line with homozygous 27 bases deletion in the first exon was established, but no offsprings could be obtained after four months of mating experiments, indicating infertility of the mice with such homozygous deletion. The other line of MPC1 knockout (KO) mice was only heterozygous, which mutated in the first exon with a terminator shortly afterwards. These two lines of MPC1 KO mice showed lower fertility and significantly higher bodyweight in the females. We concluded that heterozygous MPC1 KO weakens fertility and influences the metabolism of glucose and fatty acid and bodyweight in mice. PMID:27835892

  15. The role of macrophage migration inhibitory factor in obesity-associated type 2 diabetes in mice

    Directory of Open Access Journals (Sweden)

    Saksida Tamara

    2013-01-01

    Full Text Available Macrophage migration inhibitory factor (MIF is implicated in the pathogenesis of several inflammationrelated diseases, including obesity and type 2 diabetes (T2D. However, MIF deficiency itself promotes obesity and glucose intolerance in mice. Here we show that the introduction of a high-fat diet (HFD further aggravates the parameters of obesity-associated T2D: weight gain and glucose intolerance. Furthermore, in contrast to MIF-KO mice on standard chow, HFD-fed MIF-KO mice develop insulin resistance. Although the clinical signs of obesity-associated T2D are upgraded, inflammation in MIF-deficient mice on HFD is significantly lower. These results imply that MIF possesses a complex role in glucose metabolism and the development of obesity-related T2D. However, the downregulation of inflammation upon MIF inhibition could be a useful tool in short-term T2D therapy for preventing pancreatic islet deterioration. [Projekat Ministarstva nauke Republike Srbije, br. 173013

  16. Genetic Mapping in Mice Reveals the Involvement of Pcdh9 in Long-Term Social and Object Recognition and Sensorimotor Development.

    Science.gov (United States)

    Bruining, Hilgo; Matsui, Asuka; Oguro-Ando, Asami; Kahn, René S; Van't Spijker, Heleen M; Akkermans, Guus; Stiedl, Oliver; van Engeland, Herman; Koopmans, Bastijn; van Lith, Hein A; Oppelaar, Hugo; Tieland, Liselotte; Nonkes, Lourens J; Yagi, Takeshi; Kaneko, Ryosuke; Burbach, J Peter H; Yamamoto, Nobuhiko; Kas, Martien J

    2015-10-01

    Quantitative genetic analysis of basic mouse behaviors is a powerful tool to identify novel genetic phenotypes contributing to neurobehavioral disorders. Here, we analyzed genetic contributions to single-trial, long-term social and nonsocial recognition and subsequently studied the functional impact of an identified candidate gene on behavioral development. Genetic mapping of single-trial social recognition was performed in chromosome substitution strains, a sophisticated tool for detecting quantitative trait loci (QTL) of complex traits. Follow-up occurred by generating and testing knockout (KO) mice of a selected QTL candidate gene. Functional characterization of these mice was performed through behavioral and neurological assessments across developmental stages and analyses of gene expression and brain morphology. Chromosome substitution strain 14 mapping studies revealed an overlapping QTL related to long-term social and object recognition harboring Pcdh9, a cell-adhesion gene previously associated with autism spectrum disorder. Specific long-term social and object recognition deficits were confirmed in homozygous (KO) Pcdh9-deficient mice, while heterozygous mice only showed long-term social recognition impairment. The recognition deficits in KO mice were not associated with alterations in perception, multi-trial discrimination learning, sociability, behavioral flexibility, or fear memory. Rather, KO mice showed additional impairments in sensorimotor development reflected by early touch-evoked biting, rotarod performance, and sensory gating deficits. This profile emerged with structural changes in deep layers of sensory cortices, where Pcdh9 is selectively expressed. This behavior-to-gene study implicates Pcdh9 in cognitive functions required for long-term social and nonsocial recognition. This role is supported by the involvement of Pcdh9 in sensory cortex development and sensorimotor phenotypes. Copyright © 2015 Society of Biological Psychiatry. Published

  17. Selective deletion of apolipoprotein E in astrocytes ameliorates the spatial learning and memory deficits in Alzheimer's disease (APP/PS1) mice by inhibiting TGF-β/Smad2/STAT3 signaling.

    Science.gov (United States)

    Zheng, Jin-Yu; Sun, Jian; Ji, Chun-Mei; Shen, Lin; Chen, Zhong-Jun; Xie, Peng; Sun, Yuan-Zhao; Yu, Ru-Tong

    2017-06-01

    Astrocytes and apolipoprotein E (apoE) play critical roles in cognitive function, not only under physiological conditions but also in some pathological situations, particularly in the pathological progression of Alzheimer's disease (AD). The regulatory mechanisms underlying the effect of apoE, derived from astrocytes, on cognitive deficits during AD pathology development are unclear. In this study, we generated amyloid precursor protein/apoE knockout (APP/apoE KO ) and APP/glial fibrillary acidic protein (GFAP)-apoE KO mice (the AD mice model used in this study was based on the APP-familial Alzheimer disease overexpression) to investigate the role of apoE, derived from astrocytes, in AD pathology and cognitive function. To explore the mechanism, we investigated the amyloidogenic process related transforming growth factor β/mothers against decapentaplegic homolog 2/signal transducer and activator of transcription 3 (TGF-β/Smad2/STAT3) signaling pathway and further confirmed by administering TGF-β-overexpression adeno-associated virus (specific to astrocytes) to APP/GFAP-apoE KO mice and TGF-β-inhibition adeno-associated virus (specific to astrocytes) to APP/WT mice. Whole body deletion of apoE significantly ameliorated the spatial learning and memory impairment, reduced amyloid β-protein production and inhibited astrogliosis in APP/apoE KO mice, as well as specific deletion apoE in astrocytes in APP/GFAP-apoE KO mice. Moreover, amyloid β-protein accumulation was increased due to promotion of amyloidogenesis of APP, and astrogliosis was upregulated by activation of TGF-β/Smad2/STAT3 signaling. Furthermore, the overexpression of TGF-β in astrocytes in APP/GFAP-apoE KO mice abrogated the effects of apoE knockout. In contrast, repression of TGF-β in astrocytes of APP/WT mice exerted a therapeutic effect similar to apoE knockout. These data suggested that apoE derived from astrocytes contributes to the risk of AD through TGF-β/Smad2/STAT3 signaling activation

  18. Metabolomics of the Wolfram Syndrome 1 Gene (Wfs1) Deficient Mice.

    Science.gov (United States)

    Porosk, Rando; Terasmaa, Anton; Mahlapuu, Riina; Soomets, Ursel; Kilk, Kalle

    2017-12-01

    Wolfram syndrome 1 is a rare autosomal recessive neurodegenerative disease characterized by diabetes insipidus, diabetes mellitus, optic atrophy, and deafness. Mutations in the WFS1 gene encoding the wolframin glycoprotein can lead to endoplasmic reticulum stress and unfolded protein responses in cells, but the pathophysiology at whole organism level is poorly understood. In this study, several organs (heart, liver, kidneys, and pancreas) and bodily fluids (trunk blood and urine) of 2- and 6-month old Wfs1 knockout (KO), heterozygote (HZ), and wild-type (WT) mice were analyzed by untargeted and targeted metabolomics using liquid chromatography-mass spectrometry. The key findings were significant perturbations in the metabolism of pancreas and heart before the onset of related clinical signs such as glycosuria that precedes hyperglycemia and thus implies a kidney dysfunction before the onset of classical diabetic nephropathy. The glucose use and gluconeogenesis in KO mice are intensified in early stages, but later the energetic needs are mainly covered by lipolysis. Furthermore, in young mice liver and trunk blood hypouricemia, which in time turns to hyperuricemia, was detected. In summary, we show that the metabolism in Wfs1-deficient mice markedly differs from the metabolism of WT mice in many aspects and discuss the future biological and clinical relevance of these observations.

  19. Generation and testing anti-influenza human monoclonal antibodies in a new humanized mouse model (DRAGA: HLA-A2. HLA-DR4. Rag1 KO. IL-2Rγc KO. NOD).

    Science.gov (United States)

    Mendoza, Mirian; Ballesteros, Angela; Qiu, Qi; Pow Sang, Luis; Shashikumar, Soumya; Casares, Sofia; Brumeanu, Teodor-D

    2018-02-01

    Pandemic outbreaks of influenza type A viruses have resulted in numerous fatalities around the globe. Since the conventional influenza vaccines (CIV) provide less than 20% protection for individuals with weak immune system, it has been considered that broadly cross-neutralizing antibodies may provide a better protection. Herein, we showed that a recently generated humanized mouse (DRAGA mouse; HLA-A2. HLA-DR4. Rag1KO. IL-2Rgc KO. NOD) that lacks the murine immune system and expresses a functional human immune system can be used to generate cross-reactive, human anti-influenza monoclonal antibodies (hu-mAb). DRAGA mouse was also found to be suitable for influenza virus infection, as it can clear a sub-lethal infection and sustain a lethal infection with PR8/A/34 influenza virus. The hu-mAbs were designed for targeting a human B-cell epitope ( 180 WGIHHPPNSKEQ QNLY 195 ) of hemagglutinin (HA) envelope protein of PR8/A/34 (H1N1) virus with high homology among seven influenza type A viruses. A single administration of HA 180-195 specific hu-mAb in PR8-infected DRAGA mice significantly delayed the lethality by reducing the lung damage. The results demonstrated that DRAGA mouse is a suitable tool to (i) generate heterotype cross-reactive, anti-influenza human monoclonal antibodies, (ii) serve as a humanized mouse model for influenza infection, and (iii) assess the efficacy of anti-influenza antibody-based therapeutics for human use.

  20. Interleukin-1 receptor antagonist modulates the early phase of liver regeneration after partial hepatectomy in mice.

    Directory of Open Access Journals (Sweden)

    Antonino Sgroi

    Full Text Available BACKGROUND: Cytokine administration is a potential therapy for acute liver failure by reducing inflammatory responses and favour hepatocyte regeneration. The aim of this study was to evaluate the role of interleukin-1 receptor antagonist (IL-1ra during liver regeneration and to study the effect of a recombinant human IL-1ra on liver regeneration. METHODS: We performed 70%-hepatectomy in wild type (WT mice, IL-1ra knock-out (KO mice and in WT mice treated by anakinra. We analyzed liver regeneration at regular intervals by measuring the blood levels of cytokines, the hepatocyte proliferation by bromodeoxyuridin (BrdU incorporation, proliferating cell nuclear antigen (PCNA and Cyclin D1 expression. The effect of anakinra on hepatocyte proliferation was also tested in vitro using human hepatocytes. RESULTS: At 24h and at 48 h after hepatectomy, IL-1ra KO mice had significantly higher levels of pro-inflammatory cytokines (IL-6, IL-1β and MCP-1 and a reduced and delayed hepatocyte proliferation measured by BrdU incorporation, PCNA and Cyclin D1 protein levels, when compared to WT mice. IGFBP-1 and C/EBPβ expression was significantly decreased in IL-1ra KO compared to WT mice. WT mice treated with anakinra showed significantly decreased levels of IL-6 and significantly higher hepatocyte proliferation at 24h compared to untreated WT mice. In vitro, primary human hepatocytes treated with anakinra showed significantly higher proliferation at 24h compared to hepatocytes without treatment. CONCLUSION: IL1ra modulates the early phase of liver regeneration by decreasing the inflammatory stress and accelerating the entry of hepatocytes in proliferation. IL1ra might be a therapeutic target to improve hepatocyte proliferation.

  1. Effect of a Traditional Herbal Prescription, Kyung-Ok-Ko, on Male Mouse Spermatogenic Ability after Heat-Induced Damage

    Directory of Open Access Journals (Sweden)

    Deok-Sang Hwang

    2015-01-01

    Full Text Available Kyung-Ok-Ko (KOK, a well-known traditional Korean medicinal formula, has long been used to invigorate the essential qi. This use of KOK may be associated with reproductive ability as a more modern concept. The protective effect of KOK was evaluated against deterioration of testicular function induced by heat exposure in male mice. Male fertility was disrupted by scrotal heat stress at 43°C for 5 weeks. KOK (0.25, 0.50, and 2.00 g/kg/day was administered orally at 3 h after the stress. To evaluate the protective effect of KOK, body weight, testicular weight, sperm count, sperm motility, and histopathological changes in the testes were evaluated. KOK-treated mice significantly recovered their general health, as evidenced by body weight. KOK-treated mice also showed significantly higher testes weights, sperm counts, and sperm motility than did the heat stress group. KOK-treated mice significantly recovered the morphological appearance of the seminiferous tubules and seminiferous epithelium. Furthermore, KOK-treated mice significantly increased antioxidant enzyme activities and reduced the protein expressions of apoptosis in the testes. KOK significantly protects against heat-induced damage to testicular function in male mice by inhibiting oxidative stress and apoptosis, indicating that KOK may be an effective agent for treatment of heat-induced male infertility.

  2. Pervasive and stochastic changes in the TCR repertoire of regulatory T-cell-deficient mice.

    Science.gov (United States)

    Zheng, Lingjie; Sharma, Rahul; Kung, John T; Deshmukh, Umesh S; Jarjour, Wael N; Fu, Shu Man; Ju, Shyr-Te

    2008-04-01

    We hypothesize that regulatory T-cell (Treg)-deficient strains have an altered TCR repertoire in part due to the expansion of autoimmune repertoire by self-antigen. We compared the Vbeta family expression profile between B6 and Treg-lacking B6.Cg-Foxp3(sf)(/Y) (B6.sf) mice using fluorescent anti-Vbeta mAbs and observed no changes. However, while the spectratypes of 20 Vbeta families among B6 mice were highly similar, the Vbeta family spectratypes of B6.sf mice were remarkably different from B6 mice and from each other. Significant spectratype changes in many Vbeta families were also observed in Treg-deficient IL-2 knockout (KO) and IL-2Ralpha KO mice. Such changes were not observed with anti-CD3 mAb-treated B6 mice or B6 CD4+CD25- T cells. TCR transgenic (OT-II.sf) mice displayed dramatic reduction of clonotypic TCR with concomitant increase in T cells bearing non-transgenic Vbeta and Valpha families, including T cells with dual receptors expressing reduced levels of transgenic Valpha and endogenous Valpha. Collectively, the data demonstrate that Treg deficiency allows polyclonal expansion of T cells in a stochastic manner, resulting in widespread changes in the TCR repertoire.

  3. An extremely high dietary iodide supply forestalls severe hypothyroidism in Na+/I- symporter (NIS) knockout mice.

    Science.gov (United States)

    Ferrandino, Giuseppe; Kaspari, Rachel R; Reyna-Neyra, Andrea; Boutagy, Nabil E; Sinusas, Albert J; Carrasco, Nancy

    2017-07-13

    The sodium/iodide symporter (NIS) mediates active iodide (I - ) accumulation in the thyroid, the first step in thyroid hormone (TH) biosynthesis. Mutations in the SLC5A5 gene encoding NIS that result in a non-functional protein lead to congenital hypothyroidism due to I - transport defect (ITD). ITD is a rare autosomal disorder that, if not treated promptly in infancy, can cause mental retardation, as the TH decrease results in improper development of the nervous system. However, in some patients, hypothyroidism has been ameliorated by unusually large amounts of dietary I - . Here we report the first NIS knockout (KO) mouse model, obtained by targeting exons 6 and 7 of the Slc5a5 gene. In NIS KO mice, in the thyroid, stomach, and salivary gland, NIS is absent, and hence there is no active accumulation of the NIS substrate pertechnetate ( 99m TcO 4 - ). NIS KO mice showed undetectable serum T 4 and very low serum T 3 levels when fed a diet supplying the minimum I - requirement for rodents. These hypothyroid mice displayed oxidative stress in the thyroid, but not in the brown adipose tissue or liver. Feeding the mice a high-I - diet partially rescued TH biosynthesis, demonstrating that, at high I - concentrations, I - enters the thyroid through routes other than NIS.

  4. Depletion of cytotoxic T-cells does not protect NUP98-HOXD13 mice from myelodysplastic syndrome but reveals a modest tumor immunosurveillance effect.

    Directory of Open Access Journals (Sweden)

    Sheryl M Gough

    Full Text Available Myelodysplastic syndrome (MDS and aplastic anemia (AA patients both present with symptoms of bone marrow failure. In many AA patients, these features are thought to result from an oligoclonal expansion of cytotoxic T-cells that destroy haematopoietic stem or progenitor cells. This notion is supported by the observation that AA patients respond to immunosuppressive therapy. A fraction of MDS patients also respond well to immunosuppressive therapy suggesting a similar role for cytotoxic T-cells in the etiology of MDS, however the role of cytotoxic T-cells in MDS remains unclear. Mice that express a NUP98-HOXD13 (NHD13 transgene develop a MDS that closely mimics the human condition in terms of dysplasia, ineffective hematopoiesis, and transformation to acute myeloid leukemia (AML. We followed a cohort of NHD13 mice lacking the Rag1 protein (NHD13/Rag1KO to determine if the absence of lymphocytes might 1 delay the onset and/or diminish the severity of the MDS, or 2 effect malignant transformation and survival of the NHD13 mice. No difference was seen in the onset or severity of MDS between the NHD13 and NHD13/Rag1KO mice. However, NHD13/Rag1KO mice had decreased survival and showed a trend toward increased incidence of transformation to AML compared to the NHD13 mice, suggesting protection from AML transformation by a modest immuno-surveillance effect. In the absence of functional Tcrb signaling in the NHD13/Rag1KO T-cell tumors, Pak7 was identified as a potential Tcrb surrogate survival signal.

  5. Mast cell histamine-mediated transient inflammation following exposure to nickel promotes nickel allergy in mice.

    Science.gov (United States)

    Kinbara, Masayuki; Bando, Kanan; Shiraishi, Daisuke; Kuroishi, Toshinobu; Nagai, Yasuhiro; Ohtsu, Hiroshi; Takano-Yamamoto, Teruko; Sugawara, Shunji; Endo, Yasuo

    2016-06-01

    We previously reported that allergic responses to nickel (Ni) were minimal in mice deficient in the histamine-forming enzyme histidine decarboxylase (HDC-KO), suggesting an involvement of histamine in allergic responses to Ni. However, it remains unclear how histamine is involved in the process of Ni allergy. Here, we examined the role of histamine in Ni allergy using a murine model previously established by us. Mice were sensitized to Ni by intraperitoneal injection of a NiCl2 -lipopolysaccharide (LPS) mixture. Ten days later, allergic inflammation was elicited by challenging ear-pinnas intradermally with NiCl2 . Then, ear-swelling was measured. Pyrilamine (histamine H1-receptor antagonist) or cromoglicate (mast cell stabilizer) was intravenously injected 1 h before the sensitization or the challenge. In cell-transfer experiments, spleen cells from Ni-sensitized donor mice were intravenously transferred into non-sensitized recipient mice. In both sensitized and non-sensitized mice, 1 mm or more NiCl2 (injected into ear-pinnas) induced transient non-allergic inflammation (Ni-TI) with accompanying mast cell degranulation. LPS did not affect the magnitude of this Ni-TI. Pyrilamine and cromoglicate reduced either the Ni-TI or the ensuing allergic inflammation when administered before Ni-TI (at either the sensitization or elicitation step), but not if administered when the Ni-TI had subsided. Experiments on HDC-KO and H1-receptor-KO mice, and also cell-transfer experiments using these mice, demonstrated histamine's involvement in both the sensitization and elicitation steps. These results suggest that mast cell histamine-mediated Ni-TI promotes subsequent allergic inflammatory responses to Ni, raising the possibility that control of Ni-TI by drugs may be effective at preventing or reducing Ni allergy. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Comparative studies between mice molars and incisors are required to draw an overview of enamel structural complexity

    Directory of Open Access Journals (Sweden)

    MICHEL eGOLDBERG

    2014-09-01

    Full Text Available In the field of dentistry, the murine incisor has long been considered as an outstanding model to study amelogenesis. However, it clearly appears that enamel from wild type mouse incisors and molars presents several structural differences. In incisor, exclusively radial enamel is observed. In molars, enamel displays a high level of complexity since the inner part is lamellar whereas the outer enamel shows radial and tangential structures. Recently, the serotonin 2B receptor (5-HT2BR was shown to be involved in ameloblast function and enamel mineralization. The incisors from 5HT2BR knockout (KO mice exhibit mineralization defects mostly in the outer maturation zone and porous matrix network in the inner zone. In the molars, the mutation affects both secretory and maturation stages of amelogenesis since pronounced alterations concern overall enamel structures. Molars from 5HT2BR KO mice display reduction in enamel thickness, alterations of inner enamel architecture including defects in Hunter-Schreger Bands arrangements, and altered maturation of the outer radial enamel. Differences of enamel structure were also observed between incisor and molar from other KO mice depleted for genes encoding enamel extracellular matrix proteins.

  7. iNOS inhibits hair regeneration in obese diabetic (ob/ob) mice.

    Science.gov (United States)

    Sasaki, Mari; Shinozaki, Shohei; Morinaga, Hironobu; Kaneki, Masao; Nishimura, Emi; Shimokado, Kentaro

    2018-07-02

    Previous studies have shown that androgenic alopecia is associated with metabolic syndrome and diabetes. However, the detailed mechanism whereby diabetes causes alopecia still remains unclear. We focused on the inflammatory response that is caused by diabetes or obesity, given that inflammation is a risk factor for hair loss. Inducible nitric oxide synthase (iNOS) is known to be upregulated under conditions of acute or chronic inflammation. To clarify the potential role of iNOS in diabetes-related alopecia, we generated obese diabetic iNOS-deficient (ob/ob; iNOS-KO mice). We observed that ob/ob; iNOS-KO mice were potentiated for the transition from telogen (rest phase) to anagen (growth phase) in the hair cycle compared with iNOS-proficient ob/ob mice. To determine the effect of nitric oxide (NO) on the hair cycle, we administered an iNOS inhibitor intraperitoneally (compound 1400 W, 10 mg/kg) or topically (10% aminoguanidine) in ob/ob mice. We observed that iNOS inhibitors promoted anagen transition in ob/ob mice. Next, we administered an NO donor (S-nitrosoglutathione, GSNO), to test whether NO has the telogen elongation effects. The NO donor was sufficient to induce telogen elongation in wild-type mice. Together, our data indicate that iNOS-derived NO plays a role in telogen elongation under the inflammatory conditions associated with diabetes in mice. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  8. GSK-3α is a central regulator of age-related pathologies in mice.

    Science.gov (United States)

    Zhou, Jibin; Freeman, Theresa A; Ahmad, Firdos; Shang, Xiying; Mangano, Emily; Gao, Erhe; Farber, John; Wang, Yajing; Ma, Xin-Liang; Woodgett, James; Vagnozzi, Ronald J; Lal, Hind; Force, Thomas

    2013-04-01

    Aging is regulated by conserved signaling pathways. The glycogen synthase kinase-3 (GSK-3) family of serine/threonine kinases regulates several of these pathways, but the role of GSK-3 in aging is unknown. Herein, we demonstrate premature death and acceleration of age-related pathologies in the Gsk3a global KO mouse. KO mice developed cardiac hypertrophy and contractile dysfunction as well as sarcomere disruption and striking sarcopenia in cardiac and skeletal muscle, a classical finding in aging. We also observed severe vacuolar degeneration of myofibers and large tubular aggregates in skeletal muscle, consistent with impaired clearance of insoluble cellular debris. Other organ systems, including gut, liver, and the skeletal system, also demonstrated age-related pathologies. Mechanistically, we found marked activation of mTORC1 and associated suppression of autophagy markers in KO mice. Loss of GSK-3α, either by pharmacologic inhibition or Gsk3a gene deletion, suppressed autophagy in fibroblasts. mTOR inhibition rescued this effect and reversed the established pathologies in the striated muscle of the KO mouse. Thus, GSK-3α is a critical regulator of mTORC1, autophagy, and aging. In its absence, aging/senescence is accelerated in multiple tissues. Strategies to maintain GSK-3α activity and/or inhibit mTOR in the elderly could retard the appearance of age-related pathologies.

  9. Impaired cognitive discrimination and discoordination of coupled theta-gamma oscillations in Fmr1 knockout mice

    Science.gov (United States)

    Radwan, Basma; Dvorak, Dino; Fenton, André

    2016-01-01

    Fragile X syndrome (FXS) patients do not make the fragile X mental retardation protein (FMRP). Absence of FMRP causes dysregulated translation, abnormal synaptic plasticity and the most common form of inherited intellectual disability. But FMRP loss has minimal effects on memory itself, making it difficult to understand why absence of FMRP impairs memory discrimination and increases risk of autistic symptoms in patients, such as exaggerated responses to environmental changes. While Fmr1 knockout (KO) and wild-type (WT) mice perform cognitive discrimination tasks, we find abnormal patterns of coupling between theta and gamma oscillations in perisomatic and dendritic hippocampal CA1 local field potentials of the KO. Perisomatic CA1 theta-gamma phase-amplitude coupling (PAC) decreases with familiarity in both the WT and KO, but activating an invisible shock zone, subsequently changing its location, or turning it off, changes the pattern of oscillatory events in the LFPs recorded along the somato-dendritic axis of CA1. The cognition-dependent changes of this pattern of neural activity are relatively constrained in WT mice compared to KO mice, which exhibit abnormally weak changes during the cognitive challenge caused by changing the location of the shock zone and exaggerated patterns of change when the shock zone is turned off. Such pathophysiology might explain how dysregulated translation leads to intellectual disability in FXS. These findings demonstrate major functional abnormalities after the loss of FMRP in the dynamics of neural oscillations and that these impairments would be difficult to detect by steady-state measurements with the subject at rest or in steady conditions. PMID:26792400

  10. Commensal microbiota contributes to chronic endocarditis in TAX1BP1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Satoko Nakano

    Full Text Available Tax1-binding protein 1 (Tax1bp1 negatively regulates NF-κB by editing the ubiquitylation of target molecules by its catalytic partner A20. Genetically engineered TAX1BP1-deficient (KO mice develop age-dependent inflammatory constitutions in multiple organs manifested as valvulitis or dermatitis and succumb to premature death. Laser capture dissection and gene expression microarray analysis on the mitral valves of TAX1BP1-KO mice (8 and 16 week old revealed 588 gene transcription alterations from the wild type. SAA3 (serum amyloid A3, CHI3L1, HP, IL1B and SPP1/OPN were induced 1,180-, 361-, 187-, 122- and 101-fold respectively. WIF1 (Wnt inhibitory factor 1 exhibited 11-fold reduction. Intense Saa3 staining and significant I-κBα reduction were reconfirmed and massive infiltration of inflammatory lymphocytes and edema formation were seen in the area. Antibiotics-induced 'germ free' status or the additional MyD88 deficiency significantly ameliorated TAX1BP1-KO mice's inflammatory lesions. These pathological conditions, as we named 'pseudo-infective endocarditis' were boosted by the commensal microbiota who are usually harmless by their nature. This experimental outcome raises a novel mechanistic linkage between endothelial inflammation caused by the ubiquitin remodeling immune regulators and fatal cardiac dysfunction.

  11. Mice Lacking Pannexin 1 Release ATP and Respond Normally to All Taste Qualities.

    Science.gov (United States)

    Vandenbeuch, Aurelie; Anderson, Catherine B; Kinnamon, Sue C

    2015-09-01

    Adenosine triphosphate (ATP) is required for the transmission of all taste qualities from taste cells to afferent nerve fibers. ATP is released from Type II taste cells by a nonvesicular mechanism and activates purinergic receptors containing P2X2 and P2X3 on nerve fibers. Several ATP release channels are expressed in taste cells including CALHM1, Pannexin 1, Connexin 30, and Connexin 43, but whether all are involved in ATP release is not clear. We have used a global Pannexin 1 knock out (Panx1 KO) mouse in a series of in vitro and in vivo experiments. Our results confirm that Panx1 channels are absent in taste buds of the knockout mice and that other known ATP release channels are not upregulated. Using a luciferin/luciferase assay, we show that circumvallate taste buds from Panx1 KO mice normally release ATP upon taste stimulation compared with wild type (WT) mice. Gustatory nerve recordings in response to various tastants applied to the tongue and brief-access behavioral testing with SC45647 also show no difference between Panx1 KO and WT. These results confirm that Panx1 is not required for the taste evoked release of ATP or for neural and behavioral responses to taste stimuli. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Growth hormone receptor deficiency in mice results in reduced systolic blood pressure and plasma renin, increased aortic eNOS expression, and altered cardiovascular structure and function

    DEFF Research Database (Denmark)

    Egecioglu, E; Andersson, I J; Bollano, E

    2007-01-01

    To study the role of the growth hormone receptor (GHR) in the development of cardiovascular structure and function, female GHR gene-disrupted or knockout (KO) and wild-type (WT) mice at age 18 wk were used. GHR KO mice had lower plasma renin levels (12 +/- 2 vs. 20 +/- 4 mGU/ml, P < 0.05) and inc....... These data suggest an important role for an intact GH/IGF-I axis in the maintenance of a normal cardiovascular system....

  13. Overview of the KoRIA Facility for Rare Isotope Beams

    International Nuclear Information System (INIS)

    Hong, S.W.; Bak, S.I.; Chai, J.S.; Ahn, J.K.; Blumenfeld, Y.; Cheon, B.-G.; Choi, C.I.; Cheoun, M.-K.; Cho, D.; Cho, Y.S.; Choi, B.H.; Choi, E.M.; And others

    2013-01-01

    The Korea Rare Isotope Accelerator, currently referred to as KoRIA, is briefly presented. The KoRIA facility is aimed to enable cutting-edge sciences in a wide range of fields. It consists of a 70 kW isotope separator on-line (ISOL) facility driven by a 70 MeV, 1 mA proton cyclotron and a 400 kW in-flight fragmentation (IFF) facility. The ISOL facility uses a superconducting (SC) linac for post-acceleration of rare isotopes up to about 18 MeV/u, while the SC linac of IFF facility is capable of accelerating uranium beams up to 200 MeV/u, 8 pμA and proton beams up to 600 MeV, 660 μA. Overall features of the KoRIA facility are presented with a focus on the accelerator design. (author)

  14. Hypothalamic-pituitary thyroid axis alterations in female mice with deletion of the neuromedin B receptor gene.

    Science.gov (United States)

    Oliveira, Karen J; Paula, Gabriela S M; Império, Guinever E; Bressane, Nina O; Magalhães, Carolina M A; Miranda-Alves, Leandro; Ortiga-Carvalho, Tania M; Pazos-Moura, Carmen C

    2014-11-01

    Neuromedin B, a peptide highly expressed at the pituitary, has been shown to act as autocrine/paracrine inhibitor of thyrotropin (TSH) release. Here we studied the thyroid axis of adult female mice lacking neuromedin B receptor (NBR-KO), compared to wild type (WT) littermates. They exhibited slight increase in serum TSH (18%), with normal pituitary expression of mRNA coding for α-glycoprotein subunit (Cga), but reduced TSH β-subunit mRNA (Tshb, 41%), lower intra-pituitary TSH content (24%) and increased thyroid hormone transporter MCT-8 (Slc16a2, 44%) and thyroid hormone receptor β mRNA expression (Thrb, 39%). NBR-KO mice exhibited normal thyroxine (T4) and reduced triiodothyronine (T3) (30%), with no alterations in the intra-thyroidal content of T4 and T3 or thyroid morphological changes. Hypothalamic thyrotropin-releasing hormone (TRH) mRNA (Trh) was increased (68%), concomitant with a reduction in type 2 deiodinase mRNA (Dio2, 30%) and no changes in MCT-8 and thyroid hormone receptor mRNA expression. NBR-KO mice exhibited a 56% higher increase in serum TSH in response to an acute single intraperitoneal injection of TRH concomitant with a non-significant increase in pituitary TRH receptor (Trhr) mRNA at basal state. The phenotype of female NBR-KO mice at the hypothalamus-pituitary axis revealed alterations in pituitary and hypothalamic gene expression, associated with reduced serum T3, and higher TSH response to TRH, with apparently normal thyroid morphology and hormonal production. Thus, results confirm that neuromedin B pathways are importantly involved in secretory pathways of TSH and revealed its participation in the in vivo regulation of gene expression of TSH β-subunit and pituitary MCT8 and Thrb and hypothalamic TRH and type 2 deiodinase. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Deletion of Lkb1 in Pro-Opiomelanocortin Neurons Impairs Peripheral Glucose Homeostasis in Mice

    Science.gov (United States)

    Claret, Marc; Smith, Mark A.; Knauf, Claude; Al-Qassab, Hind; Woods, Angela; Heslegrave, Amanda; Piipari, Kaisa; Emmanuel, Julian J.; Colom, André; Valet, Philippe; Cani, Patrice D.; Begum, Ghazala; White, Anne; Mucket, Phillip; Peters, Marco; Mizuno, Keiko; Batterham, Rachel L.; Giese, K. Peter; Ashworth, Alan; Burcelin, Remy; Ashford, Michael L.; Carling, David; Withers, Dominic J.

    2011-01-01

    OBJECTIVE AMP-activated protein kinase (AMPK) signaling acts as a sensor of nutrients and hormones in the hypothalamus, thereby regulating whole-body energy homeostasis. Deletion of Ampkα2 in pro-opiomelanocortin (POMC) neurons causes obesity and defective neuronal glucose sensing. LKB1, the Peutz-Jeghers syndrome gene product, and Ca2+-calmodulin–dependent protein kinase kinase β (CaMKKβ) are key upstream activators of AMPK. This study aimed to determine their role in POMC neurons upon energy and glucose homeostasis regulation. RESEARCH DESIGN AND METHODS Mice lacking either Camkkβ or Lkb1 in POMC neurons were generated, and physiological, electrophysiological, and molecular biology studies were performed. RESULTS Deletion of Camkkβ in POMC neurons does not alter energy homeostasis or glucose metabolism. In contrast, female mice lacking Lkb1 in POMC neurons (PomcLkb1KO) display glucose intolerance, insulin resistance, impaired suppression of hepatic glucose production, and altered expression of hepatic metabolic genes. The underlying cellular defect in PomcLkb1KO mice involves a reduction in melanocortin tone caused by decreased α-melanocyte–stimulating hormone secretion. However, Lkb1-deficient POMC neurons showed normal glucose sensing, and body weight was unchanged in PomcLkb1KO mice. CONCLUSIONS Our findings demonstrate that LKB1 in hypothalamic POMC neurons plays a key role in the central regulation of peripheral glucose metabolism but not body-weight control. This phenotype contrasts with that seen in mice lacking AMPK in POMC neurons with defects in body-weight regulation but not glucose homeostasis, which suggests that LKB1 plays additional functions distinct from activating AMPK in POMC neurons. PMID:21266325

  16. Dwarf Mice and Aging.

    Science.gov (United States)

    Masternak, Michal M; Darcy, Justin; Victoria, Berta; Bartke, Andrzej

    2018-01-01

    Dwarf mice have been studied for many decades, however, the focus of these studies shifted in 1996 when it was shown by Brown-Borg and her coworkers that Ames dwarf (Prop1 df ) mice are exceptionally long-lived. Since then, Snell dwarf (Pit1 dw ) and growth hormone receptor knockout (GHR-KO, a.k.a. Laron dwarf) mice were also shown to be exceptionally long-lived, presumably due to their growth hormone (GH)-deficiency or -resistance, respectively. What is of equal importance in these dwarf mice is their extended health span, that is, these animals have a longer period of life lived free of frailty and age-related diseases. This review article focuses on recent studies conducted in these dwarf mice, which concerned brown and white adipose tissue biology, microRNA (miRNA) profiling, as well as early-life dietary and hormonal interventions. Results of these studies identify novel mechanisms linking reduced GH action with extensions of both life span and health span. Copyright © 2017. Published by Elsevier Inc.

  17. Mechanism by which arylamine N-acetyltransferase 1 ablation causes insulin resistance in mice

    DEFF Research Database (Denmark)

    Camporez, João Paulo; Wang, Yongliang; Faarkrog, Kasper

    2017-01-01

    A single-nucleotide polymorphism in the human arylamine N-acetyltransferase 2 (Nat2) gene has recently been identified as associated with insulin resistance in humans. To understand the cellular and molecular mechanisms by which alterations in Nat2 activity might cause insulin resistance, we...... examined murine ortholog Nat1 knockout (KO) mice. Nat1 KO mice manifested whole-body insulin resistance, which could be attributed to reduced muscle, liver, and adipose tissue insulin sensitivity. Hepatic and muscle insulin resistance were associated with marked increases in both liver and muscle...... adipose tissue, and hepatocytes. Taken together, these studies demonstrate that Nat1 deletion promotes reduced mitochondrial activity and is associated with ectopic lipid-induced insulin resistance. These results provide a potential genetic link among mitochondrial dysfunction with increased ectopic lipid...

  18. Development of a Murine Model for Aerosolized Ebolavirus Infection Using a Panel of Recombinant Inbred Mice

    Directory of Open Access Journals (Sweden)

    Malak Kotb

    2012-12-01

    Full Text Available Countering aerosolized filovirus infection is a major priority of biodefense research.  Aerosol models of filovirus infection have been developed in knock-out mice, guinea pigs and non-human primates; however, filovirus infection of immunocompetent mice by the aerosol route has not been reported.  A murine model of aerosolized filovirus infection in mice should be useful for screening vaccine candidates and therapies.  In this study, various strains of wild-type and immunocompromised mice were exposed to aerosolized wild-type (WT or mouse-adapted (MA Ebola virus (EBOV.  Upon exposure to aerosolized WT-EBOV, BALB/c, C57BL/6 (B6, and DBA/2 (D2 mice were unaffected, but 100% of severe combined immunodeficiency (SCID and 90% of signal transducers and activators of transcription (Stat1 knock-out (KO mice became moribund between 7–9 days post-exposure (dpe.  Exposure to MA-EBOV caused 15% body weight loss in BALB/c, but all mice recovered.  In contrast, 10–30% lethality was observed in B6 and D2 mice exposed to aerosolized MA-EBOV, and 100% of SCID, Stat1 KO, interferon (IFN-γ KO and Perforin KO mice became moribund between 7–14 dpe. In order to identify wild-type, inbred, mouse strains in which exposure to aerosolized MA-EBOV is uniformly lethal, 60 BXD (C57BL/6 crossed with DBA/2 recombinant inbred (RI and advanced RI (ARI mouse strains were exposed to aerosolized MA-EBOV, and monitored for disease severity. A complete spectrum of disease severity was observed. All BXD strains lost weight but many recovered. However, infection was uniformly lethal within 7 to 12 days post-exposure in five BXD strains.  Aerosol exposure of these five BXD strains to 10-fold less MA-EBOV resulted in lethality ranging from 0% in two strains to 90–100% lethality in two strains.  Analysis of post-mortem tissue from BXD strains that became moribund and were euthanized at the lower dose of MA-EBOV, showed liver damage in all mice as well as lung lesions in

  19. Prohormone convertase 2 activity is increased in the hippocampus of Wfs1 knockout mice

    Directory of Open Access Journals (Sweden)

    Karin eTein

    2015-08-01

    Full Text Available BackgroundMutations in WFS1 gene cause Wolfram syndrome, which is a rare autosomal recessive disorder, characterized by diabetes insipidus, diabetes mellitus, optic nerve atrophy and deafness (DIDMOAD. The WFS1 gene product wolframin is located in the endoplasmic reticulum. Mice lacking this gene exhibit disturbances in the processing and secretion of peptides, such as vasopressin and insulin. In the brain, high levels of the wolframin protein have been observed in the hippocampus, amygdala and limbic structures. The aim of this study was to investigate the effect of Wfs1 knockout on peptide processing in mouse hippocampus. A peptidomic approach was used to characterize individual peptides in the hippocampus of wild-type and Wfs1 knockout mice. ResultsWe identified 126 peptides in hippocampal extracts and the levels of 10 peptides differed between Wfs1 KO and wild-type mice at P<0.05. The peptide with the largest alteration was little-LEN, which level was 25 times higher in the hippocampus of Wfs1 KO mice compared to wild-type mice. Processing (cleavage of little-LEN from the Pcsk1n gene product proSAAS involves prohormone convertase 2 (PC2. Thus, PC2 activity was measured in extracts prepared from the hippocampus of Wfs1 knockout mice. The activity of PC2 in Wfs1 mutant mice was significantly higher (149.9±2.3%, p<0.0001, n=8 than in wild-type mice (100.0±7.0%, n=8. However, Western blot analysis showed that protein levels of 7B2, proPC2 and PC2 were same in both groups, and so were gene expression levels.ConclusionsProcessing of proSAAS is altered in the hippocampus of Wfs1-KO mice, which is caused by increased activity of PC2. Increased activity of PC2 in Wfs1 knockout mice is not caused by alteration in the levels of PC2 protein. Our results suggest a functional link between Wfs1 and PC2. Thus, the detailed molecular mechanism of the role of Wfs1 in the regulation of PC2 activity needs further investigation.

  20. Neurobeachin, a Regulator of Synaptic Protein Targeting, Is Associated with Body Fat Mass and Feeding Behavior in Mice and Body-Mass Index in Humans

    Science.gov (United States)

    Olszewski, Pawel K.; Rozman, Jan; Jacobsson, Josefin A.; Rathkolb, Birgit; Strömberg, Siv; Hans, Wolfgang; Klockars, Anica; Alsiö, Johan; Risérus, Ulf; Becker, Lore; Hölter, Sabine M.; Elvert, Ralf; Ehrhardt, Nicole; Gailus-Durner, Valérie; Fuchs, Helmut; Fredriksson, Robert; Wolf, Eckhard; Klopstock, Thomas; Wurst, Wolfgang; Levine, Allen S.; Marcus, Claude; Hrabě de Angelis, Martin; Klingenspor, Martin; Schiöth, Helgi B.; Kilimann, Manfred W.

    2012-01-01

    Neurobeachin (Nbea) regulates neuronal membrane protein trafficking and is required for the development and functioning of central and neuromuscular synapses. In homozygous knockout (KO) mice, Nbea deficiency causes perinatal death. Here, we report that heterozygous KO mice haploinsufficient for Nbea have higher body weight due to increased adipose tissue mass. In several feeding paradigms, heterozygous KO mice consumed more food than wild-type (WT) controls, and this consumption was primarily driven by calories rather than palatability. Expression analysis of feeding-related genes in the hypothalamus and brainstem with real-time PCR showed differential expression of a subset of neuropeptide or neuropeptide receptor mRNAs between WT and Nbea+/− mice in the sated state and in response to food deprivation, but not to feeding reward. In humans, we identified two intronic NBEA single-nucleotide polymorphisms (SNPs) that are significantly associated with body-mass index (BMI) in adult and juvenile cohorts. Overall, data obtained in mice and humans suggest that variation of Nbea abundance or activity critically affects body weight, presumably by influencing the activity of feeding-related neural circuits. Our study emphasizes the importance of neural mechanisms in body weight control and points out NBEA as a potential risk gene in human obesity. PMID:22438821

  1. Reduced blood brain barrier breakdown in P-selectin deficient mice following transient ischemic stroke: a future therapeutic target for treatment of stroke

    Directory of Open Access Journals (Sweden)

    Petterson Jodie

    2010-02-01

    Full Text Available Abstract Background The link between early blood- brain barrier (BBB breakdown and endothelial cell activation in acute stroke remain poorly defined. We hypothesized that P-selectin, a mediator of the early phase of leukocyte recruitment in acute ischemia is also a major contributor to early BBB dysfunction following stroke. This was investigated by examining the relationship between BBB alterations following transient ischemic stroke and expression of cellular adhesion molecule P-selectin using a combination of magnetic resonance molecular imaging (MRMI, intravital microscopy and immunohistochemistry. MRMI was performed using the contrast, gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA conjugated to Sialyl Lewis X (Slex where the latter is known to bind to activated endothelium via E- or P selectins. Middle cerebral artery occlusion was induced in male C57/BL 6 wild-type (WT mice and P-selectin-knockout (KO mice. At 24 hours following middle cerebral artery occlusion, T1 maps were acquired prior to and following contrast injection. In addition to measuring P- and E-selectin expression in brain homogenates, alterations in BBB function were determined immunohistochemically by assessing the extravasation of immunoglobulin G (IgG or staining for polymorphonuclear (PMN leukocytes. In vivo assessment of BBB dysfunction was also investigated optically using intravital microscopy of the pial circulation following the injection of Fluorescein Isothiocyanate (FITC-dextran (MW 2000 kDa. Results MRI confirmed similar infarct sizes and T1 values at 24 hours following stroke for both WT and KO animals. However, the blood to brain transfer constant for Gd DTPA (Kgd demonstrated greater tissue extravasation of Gd DTPA in WT animals than KO mice (P 1 stroke -Δ T1 contralateral control cortex, decreased significantly in the Gd-DTPA(sLeX group compared to Gd-DTPA, indicative of sLeX mediated accumulation of the targeted contrast agent. Regarding BBB

  2. Cellular and Molecular Mechanisms of Anterior Chamber-Associated Immune Deviation (ACAID: What We Have Learned from Knockout Mice

    Directory of Open Access Journals (Sweden)

    Julie Vendomèle

    2017-11-01

    Full Text Available Anterior chamber-associated immune deviation (ACAID is a well-known phenomenon that can occur after an antigen is introduced without any danger signal into the anterior chamber of a murine eye. It is reported to lead to an antigen-specific immune deviation throughout the body. Despite the relatively little evidence of this phenomenon in humans, it has been suggested as a potential prophylactic strategy in allograft rejections and in several autoimmune diseases. Cellular and molecular mechanisms of ACAID have been explored in different murine models mainly as proofs of concept, first by direct analyses of immune components in normal immunocompetent settings and by cell transfer experiments. Later, use of knockout (KO mice has helped considerably to decipher ACAID mechanisms. However, several factors raise questions about the reliability and validity of studies using KO murine models. This mini-review summarizes results obtained with KO mice and discusses their advantages, their potential weaknesses, and their potential methods for further progress.

  3. Null mutation for Macrophage Migration Inhibitory Factor (MIF is associated with less aggressive bladder cancer in mice

    Directory of Open Access Journals (Sweden)

    Tsimikas John

    2007-07-01

    Full Text Available Abstract Background Inflammatory cytokines may promote tumorigenesis. Macrophage migration inhibitory factor (MIF is a proinflammatory cytokine with regulatory properties over tumor suppressor proteins involved in bladder cancer. We studied the development of bladder cancer in wild type (WT and MIF knockout (KO mice given N-butyl-N-(4-hydroxybutyl-nitrosamine (BBN, a known carcinogen, to determine the role of MIF in bladder cancer initiation and progression. Methods 5-month old male C57Bl/6 MIF WT and KO mice were treated with and without BBN. Animals were sacrificed at intervals up to 23 weeks of treatment. Bladder tumor stage and grade were evaluated by H&E. Immunohistochemical (IHC analysis was performed for MIF and platelet/endothelial cell adhesion molecule 1 (PECAM-1, a measure of vascularization. MIF mRNA was analyzed by quantitative real-time polymerase chain reaction. Results Poorly differentiated carcinoma developed in all BBN treated mice by week 20. MIF WT animals developed T2 disease, while KO animals developed only T1 disease. MIF IHC revealed predominantly urothelial cytoplasmic staining in the WT control animals and a shift toward nuclear staining in WT BBN treated animals. MIF mRNA levels were 3-fold higher in BBN treated animals relative to controls when invasive cancer was present. PECAM-1 staining revealed significantly more stromal vessels in the tumors in WT animals when compared to KOs. Conclusion Muscle invasive bladder cancer with increased stromal vascularity was associated with increased MIF mRNA levels and nuclear redistribution. Consistently lower stage tumors were seen in MIF KO compared to WT mice. These data suggest that MIF may play a role in the progression to invasive bladder cancer.

  4. Differentially regulated protein kinase A (PKA) activity in adipose tissue and liver is associated with resistance to diet-induced obesity and glucose intolerance in mice that lack PKA regulatory subunit type IIα.

    Science.gov (United States)

    London, Edra; Nesterova, Maria; Sinaii, Ninet; Szarek, Eva; Chanturiya, Tatyana; Mastroyannis, Spyridon A; Gavrilova, Oksana; Stratakis, Constantine A

    2014-09-01

    The cAMP-dependent protein kinase A (PKA) signaling system is widely expressed and has a central role in regulating cellular metabolism in all organ systems affected by obesity. PKA has four regulatory (RIα, RIIα, RIβ, RIIβ) and four catalytic (Cα, Cβ, Cγ, Prkx) subunit isoforms that have tissue-specific expression profiles. In mice, knockout (KO) of RIIβ, the primary PKA regulatory subunit in adipose tissue or knockout of the catalytic subunit Cβ resulted in a lean phenotype that resists diet-induced obesity and associated metabolic complications. Here we report that the disruption of the ubiquitously expressed PKA RIIα subunit in mice (RIIαKO) confers resistance to diet-induced obesity, glucose intolerance, and hepatic steatosis. After 2-week high-fat diet exposure, RIIαKO mice weighed less than wild-type littermates. Over time this effect was more pronounced in female mice that were also leaner than their wild-type counterparts, regardless of the diet. Decreased intake of a high-fat diet contributed to the attenuated weight gain in RIIαKO mice. Additionally, RIIα deficiency caused differential regulation of PKA in key metabolic organs: cAMP-stimulated PKA activity was decreased in liver and increased in gonadal adipose tissue. We conclude that RIIα represents a potential target for therapeutic interventions in obesity, glucose intolerance, and nonalcoholic fatty liver disease.

  5. Genetic deletion of GPR52 enhances the locomotor-stimulating effect of an adenosine A2A receptor antagonist in mice: A potential role of GPR52 in the function of striatopallidal neurons.

    Science.gov (United States)

    Nishiyama, Keiji; Suzuki, Hirobumi; Maruyama, Minoru; Yoshihara, Tomoki; Ohta, Hiroyuki

    2017-09-01

    G protein-coupled receptor 52 (GPR52) is largely co-expressed with dopamine D 2 receptor (DRD2) in the striatum and nucleus accumbens, and this expression pattern is similar to that of adenosine A 2A receptor (ADORA2A). GPR52 has been proposed as a therapeutic target for positive symptoms of schizophrenia, based on observations from pharmacological and transgenic mouse studies. However, the physiological role of GPR52 in dopaminergic functions in the basal ganglia remains unclear. Here, we used GPR52 knockout (KO) mice to examine the role of GPR52 in dopamine receptor-mediated and ADORA2A-mediated locomotor activity and dopamine receptor signaling. High expression of GPR52 protein in the striatum, nucleus accumbens, and lateral globus pallidus of wild type (WT) littermates was confirmed by immunohistochemical analysis. GPR52 KO and WT mice exhibited almost identical locomotor responses to the dopamine releaser methamphetamine and the N-methyl-d-aspartate antagonist MK-801. In contrast, the locomotor response to the ADORA2A antagonist istradefylline was significantly augmented in GPR52 KO mice compared to WT mice. Gene expression analysis revealed that striatal expression of DRD2, but not of dopamine D 1 receptor and ADORA2A, was significantly decreased in GPR52 KO mice. Moreover, a significant reduction in the mRNA expression of enkephalin, a marker of the activity of striatopallidal neurons, was observed in the striatum of GPR52 KO mice, suggesting that GPR52 deletion could enhance DRD2 signaling. Taken together, these results imply the physiological relevance of GPR52 in modulating the function of striatopallidal neurons, possibly by interaction of GPR52 with ADORA2A and DRD2. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A neuron-specific deletion of the microRNA-processing enzyme DICER induces severe but transient obesity in mice.

    Directory of Open Access Journals (Sweden)

    Géraldine M Mang

    Full Text Available MicroRNAs (miRNAs are small, non-coding RNA molecules that regulate gene expression post-transcriptionally. MiRNAs are implicated in various biological processes associated with obesity, including adipocyte differentiation and lipid metabolism. We used a neuronal-specific inhibition of miRNA maturation in adult mice to study the consequences of miRNA loss on obesity development. Camk2a-CreERT2 (Cre+ and floxed Dicer (Dicerlox/lox mice were crossed to generate tamoxifen-inducible conditional Dicer knockouts (cKO. Vehicle- and/or tamoxifen-injected Cre+;Dicerlox/lox and Cre+;Dicer+/+ served as controls. Four cohorts were used to a measure body composition, b follow food intake and body weight dynamics, c evaluate basal metabolism and effects of food deprivation, and d assess the brain transcriptome consequences of miRNA loss. cKO mice developed severe obesity and gained 18 g extra weight over the 5 weeks following tamoxifen injection, mainly due to increased fat mass. This phenotype was highly reproducible and observed in all 38 cKO mice recorded and in none of the controls, excluding possible effects of tamoxifen or the non-induced transgene. Development of obesity was concomitant with hyperphagia, increased food efficiency, and decreased activity. Surprisingly, after reaching maximum body weight, obese cKO mice spontaneously started losing weight as rapidly as it was gained. Weight loss was accompanied by lowered O2-consumption and respiratory-exchange ratio. Brain transcriptome analyses in obese mice identified several obesity-related pathways (e.g. leptin, somatostatin, and nemo-like kinase signaling, as well as genes involved in feeding and appetite (e.g. Pmch, Neurotensin and in metabolism (e.g. Bmp4, Bmp7, Ptger1, Cox7a1. A gene cluster with anti-correlated expression in the cerebral cortex of post-obese compared to obese mice was enriched for synaptic plasticity pathways. While other studies have identified a role for miRNAs in obesity, we

  7. Olfactory Dysfunctions and Decreased Nitric Oxide Production in the Brain of Human P301L Tau Transgenic Mice.

    Science.gov (United States)

    Hu, Yang; Ding, Wenting; Zhu, Xiaonan; Chen, Ruzhu; Wang, Xuelan

    2016-04-01

    Different patterns of olfactory dysfunction have been found in both patients and mouse models of Alzheimer's Disease. However, the underlying mechanism of the dysfunction remained unknown. Deficits of nitric oxide production in brain can cause olfactory dysfunction by preventing the formation of olfactory memory. The aim of this study was to investigate the behavioral changes in olfaction and alterations in metabolites of nitric oxide, nitrate/nitrite concentration, in the brain of human P301L tau transgenic mice. The tau mice showed impairments in olfaction and increased abnormal phosphorylation of Tau protein at AT8 in different brain areas, especially in olfactory bulb. We now report that these olfactory deficits and Tau pathological changes were accompanied by decreased nitrate/nitrite concentration in the brain, especially in the olfactory bulb, and reduced expression of nNOS in the brain of tau mice. These findings provided evidence of olfactory dysfunctions correlated with decreased nitric oxide production in the brain of tau mice.

  8. Predictive validity and immune cell involvement in the pathogenesis of piroxicam-accelerated colitis in interleukin-10 knockout mice.

    Science.gov (United States)

    Holgersen, Kristine; Kvist, Peter Helding; Hansen, Axel Kornerup; Holm, Thomas Lindebo

    2014-07-01

    Piroxicam administration is a method for induction of enterocolitis in interleukin-10 knockout (IL-10 k.o.) mice. The piroxicam-accelerated colitis (PAC) IL-10 k.o. model combines a dysregulated immune response against the gut microbiota with a decreased mucosal integrity. The predictive validity and pathogenic mechanisms of the model have not been thoroughly investigated. In this study, IL-10 k.o. mice received piroxicam in the chow, and model qualification was performed by examining the efficacy of prophylactic anti-IL-12/23p40 monoclonal antibody (mAb), anti-TNFα mAb, cyclosporine A (CsA) and oral prednisolone treatment. To evaluate cell involvement in the disease pathogenesis, specific cell subsets were depleted by treatment with anti-CD4 mAb, anti-CD8 mAb or clodronate-encapsulated liposomes. T cell receptor co-stimulation was blocked by CTLA4-Ig. Cytokine profiling ELISAs and calprotectin immunohistochemistry were performed on colon tissue. Treatments with anti-IL-12/23p40 mAb and CsA prevented disease in PAC IL-10 k.o. mice and reduced IFNγ, IL-17A, MPO and calprotectin levels in colon. Anti-TNFα mAb treatment caused amelioration of selected clinical parameters. No effect of prednisolone was detected. Depletion of CD8(+) cells tended to increase mortality, whereas treatment with anti-CD4 mAb or CTLA4-Ig had no significant effect on disease development. Clodronate liposome treatment induced a loss of body weight; nevertheless macrophage depletion was associated with a significant reduction in colonic pathology. In conclusion, reference drugs with known efficacy in severe inflammatory bowel disease were efficacious in the PAC IL-10 k.o. model. Our data indicate that in this model macrophages are a main driver of colitis, whereas CD4(+) cells are not. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. UTP reduces infarct size and improves mice heart function after myocardial infarct via P2Y2 receptor

    DEFF Research Database (Denmark)

    Cohen, A; Shainberg, Asher; Hochhauser, E

    2011-01-01

    Pyrimidine nucleotides are signaling molecules, which activate G protein-coupled membrane receptors of the P2Y family. P2Y(2) and P2Y(4) receptors are part of the P2Y family, which is composed of 8 subtypes that have been cloned and functionally defined. We have previously found that uridine-5......'-triphosphate (UTP) reduces infarct size and improves cardiac function following myocardial infarct (MI). The aim of the present study was to determine the role of P2Y(2) receptor in cardiac protection following MI using knockout (KO) mice, in vivo and wild type (WT) for controls. In both experimental groups...... used (WT and P2Y(2)(-/-) receptor KO mice) there were 3 subgroups: sham, MI, and MI+UTP. 24h post MI we performed echocardiography and measured infarct size using triphenyl tetrazolium chloride (TTC) staining on all mice. Fractional shortening (FS) was higher in WT UTP-treated mice than the MI group...

  10. Datengeleitetes Lernen im studienbegleitenden Deutschunterricht am Beispiel des KoGloss-Ansatzes

    OpenAIRE

    Dubova, Agnese; Proveja, Egita

    2016-01-01

    Der vorliegende Aufsatz stellt den sprachdidaktischen Ansatz KoGloss vor und beschreibt die Möglichkeiten seines Einsatzes im studienbegleitenden Deutschunterricht. Als eine der Formen des datengeleiteten Lernens ermöglicht der KoGloss-Ansatz eine forschungsorientierte und lernerzentrierte Herangehensweise, die insbesondere im akademischen Sprachunterricht gefragt ist. Eine korpusbasierte Erschließung von (Fach-)Wörtern und komplexen sprachlichen Mustern, das learning by doing, die Kooperatio...

  11. Gut microbiota is a key modulator of insulin resistance in TLR 2 knockout mice.

    Directory of Open Access Journals (Sweden)

    Andréa M Caricilli

    2011-12-01

    Full Text Available Environmental factors and host genetics interact to control the gut microbiota, which may have a role in the development of obesity and insulin resistance. TLR2-deficient mice, under germ-free conditions, are protected from diet-induced insulin resistance. It is possible that the presence of gut microbiota could reverse the phenotype of an animal, inducing insulin resistance in an animal genetically determined to have increased insulin sensitivity, such as the TLR2 KO mice. In the present study, we investigated the influence of gut microbiota on metabolic parameters, glucose tolerance, insulin sensitivity, and signaling of TLR2-deficient mice. We investigated the gut microbiota (by metagenomics, the metabolic characteristics, and insulin signaling in TLR2 knockout (KO mice in a non-germ free facility. Results showed that the loss of TLR2 in conventionalized mice results in a phenotype reminiscent of metabolic syndrome, characterized by differences in the gut microbiota, with a 3-fold increase in Firmicutes and a slight increase in Bacteroidetes compared with controls. These changes in gut microbiota were accompanied by an increase in LPS absorption, subclinical inflammation, insulin resistance, glucose intolerance, and later, obesity. In addition, this sequence of events was reproduced in WT mice by microbiota transplantation and was also reversed by antibiotics. At the molecular level the mechanism was unique, with activation of TLR4 associated with ER stress and JNK activation, but no activation of the IKKβ-IκB-NFκB pathway. Our data also showed that in TLR2 KO mice there was a reduction in regulatory T cell in visceral fat, suggesting that this modulation may also contribute to the insulin resistance of these animals. Our results emphasize the role of microbiota in the complex network of molecular and cellular interactions that link genotype to phenotype and have potential implications for common human disorders involving obesity, diabetes

  12. Effects of the Loss of Conjunctival Muc16 on Corneal Epithelium and Stroma in Mice

    Science.gov (United States)

    Shirai, Kumi; Okada, Yuka; Cheon, Dong-Joo; Miyajima, Masayasu; Behringer, Richard R.; Yamanaka, Osamu; Saika, Shizuya

    2014-01-01

    Purpose. To examine the role of conjunctival Muc16 in the homeostasis of the ocular surface epithelium and stroma using Muc16-null knockout (KO) mice. Methods. We used KO mice (n = 58) and C57/BL6 (WT) mice (n = 58). Histology and immunohistochemistry were employed to analyze the phenotypes in the ocular surface epithelium. The expression of phospho-Stat3, AP-1 components, interleukin 6 (IL-6), and tumor necrosis factor-α (TNFα) in the cornea and conjunctiva was examined. The shape of the nuclei of corneal epithelial cells was examined to evaluate intraepithelial cell differentiation. Epithelial cell proliferation was studied using bromo-deoxyuridine labeling. Finally, the wound healing of a round defect (2-mm diameter) in the corneal epithelium was measured. The keratocyte phenotype and macrophage invasion in the stroma were evaluated after epithelial repair. Results. The loss of Muc16 activated Stat3 signal, affected JunB signal, and upregulated the expression of IL-6 in the conjunctiva. Basal-like cells were observed in the suprabasal layer of the corneal epithelium with an increase in proliferation. The loss of Muc16 accelerated the wound healing of the corneal epithelium. The incidence of myofibroblast appearance and macrophage invasion were more marked in KO stroma than in WT stroma after epithelial repair. Conclusions. The loss of Muc16 in the conjunctiva affected the homeostasis of the corneal epithelium and stroma. The mechanism might include the upregulation of the inflammatory signaling cascade (i.e., Stat3 signal, and IL-6 expression in the KO conjunctiva). Current data provides insight into the research of the pathophysiology of dry eye syndrome. PMID:24812549

  13. BOLD Imaging in Awake Wild-Type and Mu-Opioid Receptor Knock-Out Mice Reveals On-Target Activation Maps in Response to Oxycodone

    Directory of Open Access Journals (Sweden)

    Kelsey Moore

    2016-11-01

    Full Text Available Blood oxygen level dependent (BOLD imaging in awake mice was used to identify differences in brain activity between wild-type, and Mu (µ opioid receptor knock-outs (MuKO in response to oxycodone (OXY. Using a segmented, annotated MRI mouse atlas and computational analysis, patterns of integrated positive and negative BOLD activity were identified across 122 brain areas. The pattern of positive BOLD showed enhanced activation across the brain in WT mice within 15 min of intraperitoneal administration of 2.5 mg of OXY. BOLD activation was detected in 72 regions out of 122, and was most prominent in areas of high µ opioid receptor density (thalamus, ventral tegmental area, substantia nigra, caudate putamen, basal amygdala and hypothalamus, and focus on pain circuits indicated strong activation in major pain processing centers (central amygdala, solitary tract, parabrachial area, insular cortex, gigantocellularis area, ventral thalamus primary sensory cortex and prelimbic cortex. Importantly, the OXY-induced positive BOLD was eliminated in MuKO mice in most regions, with few exceptions (some cerebellar nuclei, CA3 of the hippocampus, medial amygdala and preoptic areas. This result indicates that most effects of OXY on positive BOLD are mediated by the µ opioid receptor (on-target effects. OXY also caused an increase in negative BOLD in WT mice in few regions (16 out of 122 and, unlike the positive BOLD response the negative BOLD was only partially eliminated in the MuKO mice (cerebellum, and in some case intensified (hippocampus. Negative BOLD analysis therefore shows activation and deactivation events in the absence of the µ receptor for some areas where receptor expression is normally extremely low or absent (off-target effects. Together, our approach permits establishing opioid-induced BOLD activation maps in awake mice. In addition, comparison of WT and MuKO mutant mice reveals both on-target and off-target activation events, and set an OXY

  14. CMKLR1 deficiency maintains ovarian steroid production in mice treated chronically with dihydrotestosterone.

    Science.gov (United States)

    Tang, Mi; Huang, Chen; Wang, Yu-Fei; Ren, Pei-Gen; Chen, Li; Xiao, Tian-Xia; Wang, Bao-Bei; Pan, Yan-Fei; Tsang, Benjamin K; Zabel, Brian A; Ma, Bao-Hua; Zhao, Hui-Ying; Zhang, Jian V

    2016-02-19

    Elevated serum chemerin levels correlate with increased severity of polycystic ovary syndrome (PCOS). However, the role of CMKLR1 signaling in ovarian biology under conditions of excess DHT remains unclear. In this study we compared the effects of continuous 90-day high dose DHT exposure (83.3 □g/day) on wild type and CMKLR1-deficient mice. DHT induced PCOS-like clinical signs in wild type mice as well as significant changes in the expression of hormone receptors, steroid synthesis enzymes, and BMPs and their receptors. In contrast, CMKLR1-deficient mice significantly attenuated DHT-induced clinical signs of PCOS and alterations in ovarian gene expression. To determine whether the BMP4 signaling pathway was involved in the pathogenic effects of CMKLR1 signaling in DHT-induced ovarian steroidogenesis, antral follicles were isolated from wild type and CMKLR1 knockout (KO) mice and treated in vitro with combinations of hCG, DHT, and BMP4 inhibitors. BMP4 inhibition attenuated the induction effects of hCG and DHT on estrogen and progesterone secretion in CMKLR1 KO mice, but not in WT mice, implicating the BMP4 signaling pathway in the CMKLR1-dependent response to DHT. In conclusion, CMKLR1 gene deletion attenuates the effects of chronic DHT treatment on ovarian function in experimental PCOS, likely via BMP4 signaling.

  15. Impaired inflammatory response and increased oxidative stress and neurodegeneration after brain injury in interleukin-6-deficient mice

    DEFF Research Database (Denmark)

    Penkowa, M; Giralt, M; Carrasco, J

    2000-01-01

    of the antioxidants Cu/Zn-superoxide dismutase (Cu/Zn-SOD), Mn-SOD, and catalase remained unaffected by the IL-6 deficiency. The lesioned mice showed increased oxidative stress, as judged by malondialdehyde (MDA) and nitrotyrosine (NITT) levels and by formation of inducible nitric oxide synthase (iNOS). IL-6KO mice...

  16. Ketogenic diet exposure during the juvenile period increases social behaviors and forebrain neural activation in adult Engrailed 2 null mice.

    Science.gov (United States)

    Verpeut, Jessica L; DiCicco-Bloom, Emanuel; Bello, Nicholas T

    2016-07-01

    Prolonged consumption of ketogenic diets (KD) has reported neuroprotective benefits. Several studies suggest KD interventions could be useful in the management of neurological and developmental disorders. Alterations in the Engrailed (En) genes, specifically Engrailed 2 (En2), have neurodevelopmental consequences and produce autism-related behaviors. The following studies used En2 knockout (KO; En2(-/-)), and wild-type (WT; En2(+/+)), male mice fed either KD (80% fat, 0.1% carbohydrates) or control diet (CD; 10% fat, 70% carbohydrates). The objective was to determine whether a KD fed from weaning at postnatal day (PND) 21 to adulthood (PND 60) would alter brain monoamines concentrations, previously found dysregulated, and improve social outcomes. In WT animals, there was an increase in hypothalamic norepinephrine content in the KD-fed group. However, regional monoamines were not altered in KO mice in KD-fed compared with CD-fed group. In order to determine the effects of juvenile exposure to KD in mice with normal blood ketone levels, separate experiments were conducted in mice removed from the KD or CD and fed standard chow for 2days (PND 62). In a three-chamber social test with a novel mouse, KO mice previously exposed to the KD displayed similar social and self-grooming behaviors compared with the WT group. Groups previously exposed to a KD, regardless of genotype, had more c-Fos-positive cells in the cingulate cortex, lateral septal nuclei, and anterior bed nucleus of the stria terminalis. In the novel object condition, KO mice previously exposed to KD had similar behavioral responses and pattern of c-Fos immunoreactivity compared with the WT group. Thus, juvenile exposure to KD resulted in short-term consequences of improving social interactions and appropriate exploratory behaviors in a mouse model that displays autism-related behaviors. Such findings further our understanding of metabolic-based therapies for neurological and developmental disorders

  17. Expression of GAD67 and Dlx5 in the taste buds of mice genetically lacking Mash1.

    Science.gov (United States)

    Kito-Shingaki, Ayae; Seta, Yuji; Toyono, Takashi; Kataoka, Shinji; Kakinoki, Yasuaki; Yanagawa, Yuchio; Toyoshima, Kuniaki

    2014-06-01

    It has been reported that a subset of type III taste cells express glutamate decarboxylase (GAD)67, which is a molecule that synthesizes gamma-aminobutyric acid (GABA), and that Mash1 could be a potential regulator of the development of GABAnergic neurons via Dlx transcription factors in the central nervous system. In this study, we investigated the expression of GAD67 and Dlx in the embryonic taste buds of the soft palate and circumvallate papilla using Mash1 knockout (KO)/GAD67-GFP knock-in mice. In the wild-type animal, a subset of type III taste cells contained GAD67 in the taste buds of the soft palate and the developing circumvallate papilla, whereas GAD67-expressing taste bud cells were missing from Mash1 KO mice. A subset of type III cells expressed mRNA for Dlx5 in the wild-type animals, whereas Dlx5-expressing cells were not evident in the apical part of the circumvallate papilla and taste buds in the soft palate of Mash1 KO mice. Our results suggest that Mash1 is required for the expression of GAD67 and Dlx5 in taste bud cells. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice.

    Science.gov (United States)

    Zhang, Hongsheng; Kang, Eunchai; Wang, Yaqing; Yang, Chaojuan; Yu, Hui; Wang, Qin; Chen, Zheyu; Zhang, Chen; Christian, Kimberly M; Song, Hongjun; Ming, Guo-Li; Xu, Zhiheng

    2016-06-01

    Several genome- and proteome-wide studies have associated transcription and translation changes of CRMP2 (collapsing response mediator protein 2) with psychiatric disorders, yet little is known about its function in the developing or adult mammalian brain in vivo. Here we show that brain-specific Crmp2 knockout (cKO) mice display molecular, cellular, structural and behavioural deficits, many of which are reminiscent of neural features and symptoms associated with schizophrenia. cKO mice exhibit enlarged ventricles and impaired social behaviour, locomotor activity, and learning and memory. Loss of Crmp2 in the hippocampus leads to reduced long-term potentiation, abnormal NMDA receptor composition, aberrant dendrite development and defective synapse formation in CA1 neurons. Furthermore, knockdown of crmp2 specifically in newborn neurons results in stage-dependent defects in their development during adult hippocampal neurogenesis. Our findings reveal a critical role for CRMP2 in neuronal plasticity, neural function and behavioural modulation in mice.

  19. Characterization of intracellular inclusions in the urothelium of mice exposed to inorganic arsenic.

    Science.gov (United States)

    Dodmane, Puttappa R; Arnold, Lora L; Muirhead, David E; Suzuki, Shugo; Yokohira, Masanao; Pennington, Karen L; Dave, Bhavana J; Lu, Xiufen; Le, X Chris; Cohen, Samuel M

    2014-01-01

    Inorganic arsenic (iAs) is a known human carcinogen at high exposures, increasing the incidences of urinary bladder, skin, and lung cancers. In most mammalian species, ingested iAs is excreted mainly through urine primarily as dimethylarsinic acid (DMA(V)). In wild-type (WT) mice, iAs, DMA(V), and dimethylarsinous acid (DMA(III)) exposures induce formation of intramitochondrial urothelial inclusions. Arsenite (iAs(III)) also induced intranuclear inclusions in arsenic (+3 oxidation state) methyltransferase knockout (As3mt KO) mice. The arsenic-induced formation of inclusions in the mouse urothelium was dose and time dependent. The inclusions do not occur in iAs-treated rats and do not appear to be related to arsenic-induced urothelial cytotoxicity. Similar inclusions in exfoliated urothelial cells from humans exposed to iAs have been incorrectly identified as micronuclei. We have characterized the urothelial inclusions using transmission electron microscopy (TEM), DNA-specific 4',6-diamidino-2-phenylindole (DAPI), and non-DNA-specific Giemsa staining and determined the arsenical content. The mouse inclusions stained with Giemsa but not with the DAPI stain. Analysis of urothelial mitochondrial- and nuclear-enriched fractions isolated from WT (C57BL/6) and As3mt KO mice exposed to arsenate (iAs(V)) for 4 weeks showed higher levels of iAs(V) in the treated groups. iAs(III) was the major arsenical present in the enriched nuclear fraction from iAs(V)-treated As3mt KO mice. In conclusion, the urothelial cell inclusions induced by arsenicals appear to serve as a detoxifying sequestration mechanism similar to other metals, and they do not represent micronuclei.

  20. Different Sex-Based Responses of Gut Microbiota During the Development of Hepatocellular Carcinoma in Liver-Specific Tsc1-Knockout Mice.

    Science.gov (United States)

    Huang, Rong; Li, Ting; Ni, Jiajia; Bai, Xiaochun; Gao, Yi; Li, Yang; Zhang, Peng; Gong, Yan

    2018-01-01

    Gut microbial dysbiosis is correlated with the development of hepatocellular carcinoma (HCC). Therefore, analyzing the changing patterns in gut microbiota during HCC development, especially before HCC occurrence, is essential for the diagnosis and prevention of HCC based on gut microbial composition. However, these changing patterns in HCC are poorly understood, especially considering the sex differences in HCC incidence and mortality. Here, with an aim to determine the relationship between gut microbiota and HCC development in both sexes, and to screen potential microbial biomarkers for HCC diagnosis, we studied the changing patterns in the gut microbiota from mice of both sexes with liver-specific knockout of Tsc1 ( LTsc1KO ) that spontaneously developed HCC by 9-10 months of age and compared them to the patterns observed in their wide-type Tsc1 fl/fl cohorts using high-throughput sequencing. Using the LTsc1KO model, we were able to successfully exclude the continuing influence of diet on the gut microbiota. Based on gut microbial composition, the female LTsc1KO mice exhibited gut microbial disorder earlier than male LTsc1KO mice during the development of HCC. Our findings also indicated that the decrease in the relative abundance of anaerobic bacteria and the increase in the relative abundance of facultative anaerobic bacteria can be used as risk indexes of female HCC, but would be invalid for male HCC. Most of the changes in the gut bacteria were different between female and male LTsc1KO mice. In particular, the increased abundances of Allobaculum , Erysipelotrichaceae, Neisseriaceae, Sutterella , Burkholderiales, and Prevotella species have potential for use as risk indicators of female HCC, and the increased abundances of Paraprevotella, Paraprevotellaceae, and Prevotella can probably be applied as risk indicators of male HCC. These relationships between the gut microbiota and HCC discovered in the present study may serve as a platform for the identification

  1. KoFlux: Korean Regional Flux Network in AsiaFlux

    Science.gov (United States)

    Kim, J.

    2002-12-01

    AsiaFlux, the Asian arm of FLUXNET, held the Second International Workshop on Advanced Flux Network and Flux Evaluation in Jeju Island, Korea on 9-11 January 2002. In order to facilitate comprehensive Asia-wide studies of ecosystem fluxes, the meeting launched KoFlux, a new Korean regional network of long-term micrometeorological flux sites. For a successful assessment of carbon exchange between terrestrial ecosystems and the atmosphere, an accurate measurement of surface fluxes of energy and water is one of the prerequisites. During the 7th Global Energy and Water Cycle Experiment (GEWEX) Asian Monsoon Experiment (GAME) held in Nagoya, Japan on 1-2 October 2001, the Implementation Committee of the Coordinated Enhanced Observing Period (CEOP) was established. One of the immediate tasks of CEOP was and is to identify the reference sites to monitor energy and water fluxes over the Asian continent. Subsequently, to advance the regional and global network of these reference sites in the context of both FLUXNET and CEOP, the Korean flux community has re-organized the available resources to establish a new regional network, KoFlux. We have built up domestic network sites (equipped with wind profiler and radiosonde measurements) over deciduous and coniferous forests, urban and rural rice paddies and coastal farmland. As an outreach through collaborations with research groups in Japan, China and Thailand, we also proposed international flux sites at ecologically and climatologically important locations such as a prairie on the Tibetan plateau, tropical forest with mixed and rapid land use change in northern Thailand. Several sites in KoFlux already begun to accumulate interesting data and some highlights are presented at the meeting. The sciences generated by flux networks in other continents have proven the worthiness of a global array of micrometeorological flux towers. It is our intent that the launch of KoFlux would encourage other scientists to initiate and

  2. Deletion of Protein Tyrosine Phosphatase 1B (PTP1B Enhances Endothelial Cyclooxygenase 2 Expression and Protects Mice from Type 1 Diabetes-Induced Endothelial Dysfunction.

    Directory of Open Access Journals (Sweden)

    David J Herren

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B dephosphorylates receptors tyrosine kinase and acts as a molecular brake on insulin signaling pathway. Conditions of metabolic dysfunction increase PTP1B, when deletion of PTP1B protects against metabolic disorders by increasing insulin signaling. Although vascular insulin signaling contributes to the control of glucose disposal, little is known regarding the direct role of PTP1B in the control of endothelial function. We hypothesized that metabolic dysfunctions increase PTP1B expression in endothelial cells and that PTP1B deletion prevents endothelial dysfunction in situation of diminished insulin secretion. Type I diabetes (T1DM was induced in wild-type (WT and PTP1B-deficient mice (KO with streptozotocin (STZ injection. After 28 days of T1DM, KO mice exhibited a similar reduction in body weight and plasma insulin levels and a comparable increase in glycemia (WT: 384 ± 20 vs. Ko: 432 ± 29 mg/dL, cholesterol and triglycerides, as WT mice. T1DM increased PTP1B expression and impaired endothelial NO-dependent relaxation, in mouse aorta. PTP1B deletion did not affect baseline endothelial function, but preserved endothelium-dependent relaxation, in T1DM mice. NO synthase inhibition with L-NAME abolished endothelial relaxation in control and T1DM WT mice, whereas L-NAME and the cyclooxygenases inhibitor indomethacin were required to abolish endothelium relaxation in T1DM KO mice. PTP1B deletion increased COX-2 expression and PGI2 levels, in mouse aorta and plasma respectively, in T1DM mice. In parallel, simulation of diabetic conditions increased PTP1B expression and knockdown of PTP1B increased COX-2 but not COX-1 expression, in primary human aortic endothelial cells. Taken together these data indicate that deletion of PTP1B protected endothelial function by compensating the reduction in NO bioavailability by increasing COX-2-mediated release of the vasodilator prostanoid PGI2, in T1DM mice.

  3. Food-induced reinforcement is abrogated by the genetic deletion of the MT1 or MT2 melatonin receptor in C3H/HeN mice.

    Science.gov (United States)

    Clough, Shannon J; Hudson, Randall L; Dubocovich, Margarita L

    2018-05-02

    Palatable food is known for its ability to enhance reinforcing responses. Studies have suggested a circadian variation in both drug and natural reinforcement, with each following its own time course. The goal of this study was to determine the role of the MT 1 and MT 2 melatonin receptors in palatable snack food-induced reinforcement, as measured by the conditioned place preference (CPP) paradigm during the light and dark phases. C3H/HeN wild-type mice were trained for snack food-induced CPP at either ZT 6 - 8 (ZT: Zeitgeber time; ZT 0 = lights on), when endogenous melatonin levels are low, or ZT 19 - 21, when melatonin levels are high. These time points also correspond to the high and low points for expression of the circadian gene Period1, respectively. The amount of snack food (chow, Cheetos®, Froot Loops® and Oreos®) consumed was of similar magnitude at both times, however only C3H/HeN mice conditioned to snack food at ZT 6 - 8 developed a place preference. C3H/HeN mice with a genetic deletion of either the MT 1 (MT 1 KO) or MT 2 (MT 2 KO) receptor tested at ZT 6 - 8 did not develop a place preference for snack food. Although the MT 2 KO mice showed a similar amount of snack food consumed when compared to wild-type mice, the MT 1 KO mice consumed significantly less than either genotype. We conclude that in our mouse model snack food-induced CPP is dependent on time of day and the presence of the MT 1 or MT 2 receptors, suggesting a role for melatonin and its receptors in snack food-induced reinforcement. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Predicting Maps of Green Growth in Košice

    Science.gov (United States)

    Poorova, Zuzana; Vranayova, Zuzana

    2017-10-01

    The paper deals with the changing of the traditional roofs in the city of Košice into green roofs. Possible areas of city housing estates, after taking into account the conditions of each of them (types of buildings, statics of buildings), are listed in the paper. The research is picturing the prediction maps of Košice city from 2017 to 2042 in 5-years interval. The paper is a segment of a dissertation work focusing on changing traditional roofs into green roofs with the aim to retain water, calculate the amount of retained water and show possibilities how to use this water.

  5. Dual specificity phosphatase 6 deficiency is associated with impaired systemic glucose tolerance and reversible weight retardation in mice.

    Directory of Open Access Journals (Sweden)

    Katrin Pfuhlmann

    Full Text Available Here, we aimed to investigate the potential role of DUSP6, a dual specificity phosphatase, that specifically inactivates extracellular signal-regulated kinase (ERK, for the regulation of body weight and glucose homeostasis. We further assessed whether metabolic challenges affect Dusp6 expression in selected brain areas or white adipose tissue. Hypothalamic Dusp6 mRNA levels remained unchanged in chow-fed lean vs. high fat diet (HFD fed obese C57Bl/6J mice, and in C57Bl/6J mice undergoing prolonged fasting or refeeding with fat free diet (FFD or HFD. Similarly, Dusp6 expression levels were unchanged in selected brain regions of Lepob mice treated with 1 mg/kg of leptin for 6 days, compared to pair-fed or saline-treated Lepob controls. Dusp6 expression levels remained unaltered in vitro in primary adipocytes undergoing differentiation, but were increased in eWAT of HFD-fed obese C57Bl/6J mice, compared to chow-fed lean controls. Global chow-fed DUSP6 KO mice displayed reduced body weight and lean mass and slightly increased fat mass at a young age, which is indicative for early-age weight retardation. Subsequent exposure to HFD led to a significant increase in lean mass and body weight in DUSP6 deficient mice, compared to WT controls. Nevertheless, after 26 weeks of high-fat diet exposure, we observed comparable body weight, fat and lean mass in DUSP6 WT and KO mice, suggesting overall normal susceptibility to develop obesity. In line with the increased weight gain to compensate for early-age weight retardation, HFD-fed DUSP6 KO displayed increased expression levels of anabolic genes involved in lipid and cholesterol metabolism in the epididymal white adipose tissue (eWAT, compared to WT controls. Glucose tolerance was perturbed in both chow-fed lean or HFD-fed obese DUSP6 KO, compared to their respective WT controls. Overall, our data indicate that DUSP6 deficiency has limited impact on the regulation of energy metabolism, but impairs systemic

  6. Altered Sleep Homeostasis in Rev-erbα Knockout Mice.

    Science.gov (United States)

    Mang, Géraldine M; La Spada, Francesco; Emmenegger, Yann; Chappuis, Sylvie; Ripperger, Jürgen A; Albrecht, Urs; Franken, Paul

    2016-03-01

    The nuclear receptor REV-ERBα is a potent, constitutive transcriptional repressor critical for the regulation of key circadian and metabolic genes. Recently, REV-ERBα's involvement in learning, neurogenesis, mood, and dopamine turnover was demonstrated suggesting a specific role in central nervous system functioning. We have previously shown that the brain expression of several core clock genes, including Rev-erbα, is modulated by sleep loss. We here test the consequences of a loss of REV-ERBα on the homeostatic regulation of sleep. EEG/EMG signals were recorded in Rev-erbα knockout (KO) mice and their wild type (WT) littermates during baseline, sleep deprivation, and recovery. Cortical gene expression measurements after sleep deprivation were contrasted to baseline. Although baseline sleep/wake duration was remarkably similar, KO mice showed an advance of the sleep/wake distribution relative to the light-dark cycle. After sleep onset in baseline and after sleep deprivation, both EEG delta power (1-4 Hz) and sleep consolidation were reduced in KO mice indicating a slower increase of homeostatic sleep need during wakefulness. This slower increase might relate to the smaller increase in theta and gamma power observed in the waking EEG prior to sleep onset under both conditions. Indeed, the increased theta activity during wakefulness predicted delta power in subsequent NREM sleep. Lack of Rev-erbα increased Bmal1, Npas2, Clock, and Fabp7 expression, confirming the direct regulation of these genes by REV-ERBα also in the brain. Our results add further proof to the notion that clock genes are involved in sleep homeostasis. Because accumulating evidence directly links REV-ERBα to dopamine signaling the altered homeostatic regulation of sleep reported here are discussed in that context. © 2016 Associated Professional Sleep Societies, LLC.

  7. Altered learning, memory, and social behavior in type 1 taste receptor subunit 3 knock-out mice are associated with neuronal dysfunction.

    Science.gov (United States)

    Martin, Bronwen; Wang, Rui; Cong, Wei-Na; Daimon, Caitlin M; Wu, Wells W; Ni, Bin; Becker, Kevin G; Lehrmann, Elin; Wood, William H; Zhang, Yongqing; Etienne, Harmonie; van Gastel, Jaana; Azmi, Abdelkrim; Janssens, Jonathan; Maudsley, Stuart

    2017-07-07

    The type 1 taste receptor member 3 (T1R3) is a G protein-coupled receptor involved in sweet-taste perception. Besides the tongue, the T1R3 receptor is highly expressed in brain areas implicated in cognition, including the hippocampus and cortex. As cognitive decline is often preceded by significant metabolic or endocrinological dysfunctions regulated by the sweet-taste perception system, we hypothesized that a disruption of the sweet-taste perception in the brain could have a key role in the development of cognitive dysfunction. To assess the importance of the sweet-taste receptors in the brain, we conducted transcriptomic and proteomic analyses of cortical and hippocampal tissues isolated from T1R3 knock-out (T1R3KO) mice. The effect of an impaired sweet-taste perception system on cognition functions were examined by analyzing synaptic integrity and performing animal behavior on T1R3KO mice. Although T1R3KO mice did not present a metabolically disrupted phenotype, bioinformatic interpretation of the high-dimensionality data indicated a strong neurodegenerative signature associated with significant alterations in pathways involved in neuritogenesis, dendritic growth, and synaptogenesis. Furthermore, a significantly reduced dendritic spine density was observed in T1R3KO mice together with alterations in learning and memory functions as well as sociability deficits. Taken together our data suggest that the sweet-taste receptor system plays an important neurotrophic role in the extralingual central nervous tissue that underpins synaptic function, memory acquisition, and social behavior. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Angiotensin AT2-receptor stimulation improves survival and neurological outcome after experimental stroke in mice

    DEFF Research Database (Denmark)

    Schwengel, Katja; Namsolleck, Pawel; Lucht, Kristin

    2016-01-01

    /BL6J or AT2R-knockout mice (AT2-KO) underwent MCAO for 30 min followed by reperfusion. Starting 45 min after MCAO, mice were treated once daily for 4 days with either vehicle or C21 (0.03 mg/kg ip). Neurological deficits were scored daily. Infarct volumes were measured 96 h post-stroke by MRI. C21...

  9. Zika (PRVABC59 Infection Is Associated with T cell Infiltration and Neurodegeneration in CNS of Immunocompetent Neonatal C57Bl/6 Mice.

    Directory of Open Access Journals (Sweden)

    Mohanraj Manangeeswaran

    2016-11-01

    Full Text Available The recent spread of Zika virus (ZIKV and its association with increased rates of Guillain Barre and other neurological disorders as well as congenital defects that include microcephaly has created an urgent need to develop animal models to examine the pathogenesis of the disease and explore the efficacy of potential therapeutics and vaccines. Recently developed infection models for ZIKV utilize mice defective in interferon responses. In this study we establish and characterize a new model of peripheral ZIKV infection using immunocompetent neonatal C57BL/6 mice and compare its clinical progression, virus distribution, immune response, and neuropathology with that of C57BL/6-IFNAR KO mice. We show that while ZIKV infected IFNAR KO mice develop bilateral hind limb paralysis and die 5-6 days post-infection (dpi, immunocompetent B6 WT mice develop signs of neurological disease including unsteady gait, kinetic tremors, severe ataxia and seizures by 13 dpi that subside gradually over 2 weeks. Immunohistochemistry show viral antigen predominantly in cerebellum at the peak of the disease in both models. However, whereas IFNAR KO mice showed infiltration by neutrophils and macrophages and higher expression of IL-1, IL-6 and Cox2, B6 WT mice show a cellular infiltration in the CNS composed predominantly of T cells, particularly CD8+ T cells, and increased mRNA expression levels of IFNg, GzmB and Prf1 at peak of disease. Lastly, the CNS of B6 WT mice shows evidence of neurodegeneration predominantly in the cerebellum that are less prominent in mice lacking the IFN response possibly due to the difference in cellular infiltrates and rapid progression of the disease in that model. The development of the B6 WT model of ZIKV infection will provide insight into the immunopathology of the virus and facilitate assessments of possible therapeutics and vaccines.

  10. In vitro activated CD4+ T cells from interferon-gamma (IFN-gamma)-deficient mice induce intestinal inflammation in immunodeficient hosts

    DEFF Research Database (Denmark)

    Bregenholt, S; Brimnes, J; Nissen, Mogens Holst

    1999-01-01

    To investigate the role of IFN-gamma in the immunopathogenesis of inflammatory bowel disease (IBD), severe combined immunodeficient (SCID) mice were transplanted with in vitro activated CD4+ T cells from either wild-type (WT) or IFN-gamma-deficient (IFN-gammaKO) BALB/c mice. In vitro, the two types...... of T cells displayed comparable proliferation rates and production of tumour necrosis factor-alpha (TNF-alpha), IL-2, IL-4 and IL-10 after concanavalin A (Con A) stimulation. When transplanted into SCID mice, WT CD4+ blasts induced a lethal IBD, whereas IFN-gammaKO blasts induced a less severe...... intestinal inflammation with moderate weight loss. Intracellular cytokine staining of lamina propria lymphocytes (LPL) revealed comparable fractions of CD4+ T cells positive for TNF-alpha, IL-2 and IL-10 in the two groups of transplanted SCID mice, whereas a two-to-three-fold increase in the fraction of IL-4...

  11. Selective depletion of microglial progranulin in mice is not sufficient to cause neuronal ceroid lipofuscinosis or neuroinflammation.

    Science.gov (United States)

    Petkau, Terri L; Kosior, Natalia; de Asis, Kathleen; Connolly, Colúm; Leavitt, Blair R

    2017-11-17

    Progranulin deficiency due to heterozygous null mutations in the GRN gene are a common cause of familial frontotemporal lobar degeneration (FTLD), while homozygous loss-of-function GRN mutations are thought to be a rare cause of neuronal ceroid lipofuscinosis (NCL). Aged progranulin-knockout (Grn-null) mice display highly exaggerated lipofuscinosis, microgliosis, and astrogliosis, as well as mild cell loss in specific brain regions. In the brain, progranulin is predominantly expressed in neurons and microglia, and previously, we demonstrated that neuronal-specific depletion of progranulin does not recapitulate the neuropathological phenotype of Grn-null mice. In this study, we evaluated whether selective depletion of progranulin expression in myeloid-lineage cells, including microglia, causes NCL-like neuropathology or neuroinflammation in mice. We generated mice with progranulin depleted in myeloid-lineage cells by crossing mice homozygous for a floxed progranulin allele to mice expressing Cre recombinase under control of the LyzM promotor (Lyz-cKO). Progranulin expression was reduced by approximately 50-70% in isolated microglia compared to WT levels. Lyz-cKO mice aged to 12 months did not display any increase in lipofuscin deposition, microgliosis, or astrogliosis in the four brain regions examined, though increases were observed for many of these measures in Grn-null animals. To evaluate the functional effect of reduced progranulin expression in isolated microglia, primary cultures were stimulated with controlled standard endotoxin and cytokine release was measured. While Grn-null microglia display a hyper-inflammatory phenotype, Lyz-cKO and WT microglia secreted similar levels of inflammatory cytokines. We conclude that progranulin expression from either microglia or neurons is sufficient to prevent the development of NCL-like neuropathology in mice. Furthermore, microglia that are deficient for progranulin expression but isolated from a progranulin

  12. Sensitivity to Chronic Methamphetamine Administration and Withdrawal in Mice with Relaxin-3/RXFP3 Deficiency.

    Science.gov (United States)

    Haidar, Mouna; Lam, Monica; Chua, Berenice E; Smith, Craig M; Gundlach, Andrew L

    2016-03-01

    Methamphetamine (METH) is a highly addictive psychostimulant, and cessation of use is associated with reduced monoamine signalling, and increased anxiety/depressive states. Neurons expressing the neuropeptide, relaxin-3 (RLN3), and its cognate receptor, RXFP3, constitute a putative 'ascending arousal system', which shares neuroanatomical and functional similarities with serotonin (5-HT)/dorsal raphe and noradrenaline (NA)/locus coeruleus monoamine systems. In light of possible synergistic roles of RLN3 and 5-HT/NA, endogenous RLN3/RXFP3 signalling may compensate for the temporary reduction in monoamine signalling associated with chronic METH withdrawal, which could alter the profile of 'behavioural despair', bodyweight reductions, and increases in anhedonia and anxiety-like behaviours observed following chronic METH administration. In studies to test this theory, Rln3 and Rxfp3 knockout (KO) mice and their wildtype (WT) littermates were injected once daily with saline or escalating doses of METH (2 mg/kg, i.p. on day 1, 4 mg/kg, i.p. on day 2 and 6 mg/kg, i.p. on day 3-10). WT and Rln3 and Rxfp3 KO mice displayed an equivalent sensitivity to behavioural despair (Porsolt swim) during the 2-day METH withdrawal and similar bodyweight reductions on day 3 of METH treatment. Furthermore, during a 3-week period after the cessation of chronic METH exposure, Rln3 KO, Rxfp3 KO and corresponding WT mice displayed similar behavioural responses in paradigms that measured anxiety (light/dark box, elevated plus maze), anhedonia (saccharin preference), and social interaction. These findings indicate that a whole-of-life deficiency in endogenous RLN3/RXFP3 signalling does not markedly alter behavioural sensitivity to chronic METH treatment or withdrawal, but leave open the possibility of a more significant interaction with global or localised manipulations of this peptide system in the adult brain.

  13. Sost Deficiency does not Alter Bone’s Lacunar or Vascular Porosity in Mice

    Directory of Open Access Journals (Sweden)

    Henry Mosey

    2017-09-01

    Full Text Available SCLEROSTIN (Sost is expressed predominantly in osteocytes acting as a negative regulator of bone formation. In humans, mutations in the SOST gene lead to skeletal overgrowth and increased bone mineral density, suggesting that SCLEROSTIN is a key regulator of bone mass. The function of SCLEROSTIN as an inhibitor of bone formation is further supported by Sost knockout (KO mice which display a high bone mass with elevated bone formation. Previous studies have indicated that Sost exerts its effect on bone formation through Wnt-mediated regulation of osteoblast differentiation, proliferation, and activity. Recent in vitro studies have also suggested that SCLEROSTIN regulates angiogenesis and osteoblast-to-osteocyte transition. Despite this wealth of knowledge of the mechanisms responsible for SCLEROSTIN action, no previous studies have examined whether SCLEROSTIN regulates osteocyte and vascular configuration in cortices of mouse tibia. Herein, we image tibiae from Sost KO mice and their wild-type (WT counterparts with high-resolution CT to examine whether lack of SCLEROSTIN influences the morphometric properties of lacunae and vascular canal porosity relating to osteocytes and vessels within cortical bone. Male Sost KO and WT mice (n = 6/group were sacrificed at 12 weeks of age. Fixed tibiae were analyzed using microCT to examine cortical bone mass and architecture. Then, samples were imaged by using benchtop and synchrotron nano-computed tomography at the tibiofibular junction. Our data, consistent with previous studies show that, Sost deficiency leads to significant enhancement of bone mass by cortical thickening and bigger cross-sectional area and we find that this occurs without modifications of tibial ellipticity, a measure of bone shape. In addition, our data show that there are no significant differences in any lacunar or vascular morphometric or geometric parameters between Sost KO mouse tibia and WT counterparts. We, therefore

  14. Effects of cyclooxygenase inhibitor pretreatment on nitric oxide production, nNOS and iNOS expression in rat cerebellum.

    Science.gov (United States)

    Di Girolamo, G; Farina, M; Riberio, M L; Ogando, D; Aisemberg, J; de los Santos, A R; Martí, M L; Franchi, A M

    2003-07-01

    1. The therapeutic effect of nonsteroidal anti-inflammatory drugs (NSAIDs) is thought to be due mainly to its inhibition of cyclooxygenase (COX) enzymes, but there is a growing body of research that now demonstrates a variety of NSAIDs effects on cellular signal transduction pathways other than those involving prostaglandins. 2. Nitric oxide (NO) as a free radical and an agent that gives rise to highly toxic oxidants (peroxynitrile, nitric dioxide, nitron ion), becomes a cause of neuronal damage and death in some brain lesions such as Parkinson and Alzheimer disease, and Huntington's chorea. 3. In the present study, the in vivo effect of three NSAIDs (lysine clonixinate (LC), indomethacine (INDO) and meloxicam (MELO)) on NO production and nitric oxide synthase expression in rat cerebellar slices was analysed. Rats were treated with (a) saline, (b) lipopolysaccharide (LPS) (5 mg kg(-1), i.p.), (c) saline in combination with different doses of NSAIDs and (d) LPS in combination with different doses of NSAIDs and then killed 6 h after treatment. 4. NO synthesis, evaluated by Bred and Snyder technique, was increased by LPS. This augmentation was inhibited by coadministration of the three NSAIDs assayed. None of the NSAIDs tested was able to modify control NO synthesis. 5. Expression of iNOS and neural NOS (nNOS) was detected by Western blotting in control and LPS-treated rats. LC and INDO, but not MELO, were able to inhibit the expression of these enzymes. 6. Therefore, reduction of iNOS and nNOS levels in cerebellum may explain, in part, the anti-inflammatory effect of these NSAIDs and may also have importance in the prevention of NO-mediated neuronal injury.

  15. Loss of aryl hydrocarbon receptor promotes gene changes associated with premature hematopoietic stem cell exhaustion and development of a myeloproliferative disorder in aging mice.

    Science.gov (United States)

    Singh, Kameshwar P; Bennett, John A; Casado, Fanny L; Walrath, Jason L; Welle, Stephen L; Gasiewicz, Thomas A

    2014-01-15

    Loss of immune function and increased hematopoietic disease are among the most clinically significant consequences of aging. Hematopoietic stem cells (HSCs) from mice lacking aryl hydrocarbon receptor (AhR) have high rates of cell division. Studies were designed to test the hypothesis that aging AhR-null allele (AhR-KO) mice develop premature HSC exhaustion, and changes leading to hematological disease. Compared to wild-type, aging AhR-KO mice showed a decreased survival rate, splenomegaly, increased circulating white blood cells, hematopoietic cell accumulation in tissues, and anemia. Analysis of bone marrow indicated increased numbers of stem/progenitor and lineage-committed cells, but decreased erythroid progenitors. There was also decreased self-renewal capacity of HSCs determined by competitive repopulation and serial transplantation. HSCs also showed increased levels of reactive oxygen species (ROS), Ki-67, and γ-H2A.X, but decreased p16(Ink4a). Splenic cells from aging KO mice had abnormal expression of genes, including Gata-1, Sh2d3c, Gfi-1, p21, and c-myc, involved in trafficking and associated with leukemia. HSCs from AhR-KO mice had gene changes related to HSC maintenance and consistent with phenotype observed. The most prominent gene changes (overexpression of Srpk2, Creb1, Hes1, mtor, pdp1) have been associated with HSC hyperproliferation, leukemia, and accelerated aging. Pathway analyses also indicated an enrichment of genes associated with oxidative stress, acute myelogenous leukemia, aging, and heat shock response, and the β-catenin/Wnt pathways. These data indicate that loss of AhR and associated changes in multiple signaling pathways promote premature HSC exhaustion and development of a myeloproliferative disorder. They also implicate a critical role of the AhR in the regulation of HSCs.

  16. Ekološko oblikovana embalaža za naravno kozmetiko

    OpenAIRE

    Šepec, Urša

    2017-01-01

    Namen diplomskega dela je bil raziskati področje ekološkega oblikovanja, zahteve in priporočila pri embaliranju na področju kozmetične industrije ter načrtovati in izdelati inovativno ekološko oblikovano funkcionalno embalažo za kolekcijo trdnih mil in šamponov, ki po odprtju služi kot podstavek za milo na umivalniku. Poleg embalaže smo izdelali tudi etikete za ostale kozmetične izdelke, kot so losjoni, kreme in mazila. V teoretičnem delu je opredeljeno ekološko oblikovanje embalaže ter s...

  17. The founder of the church of Saint George at Pološko

    Directory of Open Access Journals (Sweden)

    Pavlović Dragana

    2015-01-01

    Full Text Available The paper seeks to establish who was the founder of the church of Saint George at Pološko and revise the conclusions of previous researchers regarding this issue. According to the opinion commonly adopted in the scholarly literature, Jovan Dragušin, a cousin of King Dušan, had merely undertaken the construction of church at Pološko, whereas his mother was responsible for the completion of construction and painting of frescoes in the church. Through an analysis of written and visual sources the conclusion is reached that the sole person responsible for the construction and painting of the church at Pološko was the nun Maria, the mother of Jovan Dragušin. [Projekat Ministarstva nauke Republike Srbije, br. 177036: Srpska srednjovekovna umetnost i njen evropski kontekst

  18. Altered Immune Cytokine Expression Associated with KoRV B Infection and Season in Captive Koalas

    Science.gov (United States)

    Higgins, Damien P.

    2016-01-01

    Koala (Phascolarctos cinereus) populations are increasingly vulnerable and one of the main threats is chlamydial infection. Koala retrovirus (KoRV) has been proposed as an underlying cause of the koala’s susceptibility to infection with Chlamydia and high rates of lymphoid neoplasia; however, the regionally ubiquitous, endogenous nature of this virus suggests that KoRV A infection is not sufficient for immune suppression to occur. A recently discovered exogenous variant of KoRV, KoRV B, has several structural elements that cause increased pathogenicity in related retroviruses and was associated with lymphoid neoplasia in one study. The present study assesses whether KoRV B infection is associated with alterations in immune function. Cytokine gene expression by mitogen stimulated lymphocytes of KoRV B positive (n = 5–6) and negative (n = 6–7) captive koalas was evaluated by qPCR four times (April 2014-February 2015) to control for seasonal variation. Key immune genes in the Th1 pathway (IFNγ, TNFα), Th2 pathway (IL 10, IL4, IL6) and Th17 pathway (IL17A), along with CD4:CD8 ratio, were assessed. KoRV B positive koalas showed significantly increased up-regulation of IL17A and IL10 in three out of four sampling periods and IFNγ, IL6, IL4 and TNFα in two out of four. IL17A is an immune marker for chlamydial pathogenesis in the koala; increased expression of IL17A in KoRV B positive koalas, and concurrent immune dysregulation, may explain the differences in susceptibility to chlamydial infection and severity of disease seen between individuals and populations. There was also marked seasonal variation in up-regulation for most of the cytokines and the CD4:CD8 ratio. The up-regulation in both Th1 and Th2 cytokines mirrors changes associated with immune dysregulation in humans and felids as a result of retroviral infections. This is the first report of altered immune expression in koalas infected by an exogenous variant of KoRV and also the first report of

  19. Increased Tim-3 expression alleviates liver injury by regulating macrophage activation in MCD-induced NASH mice.

    Science.gov (United States)

    Du, Xianhong; Wu, Zhuanchang; Xu, Yong; Liu, Yuan; Liu, Wen; Wang, Tixiao; Li, Chunyang; Zhang, Cuijuan; Yi, Fan; Gao, Lifen; Liang, Xiaohong; Ma, Chunhong

    2018-05-07

    As an immune checkpoint, Tim-3 plays roles in the regulation of both adaptive and innate immune cells including macrophages and is greatly involved in chronic liver diseases. However, the precise roles of Tim-3 in nonalcoholic steatohepatitis (NASH) remain unstated. In the current study, we analyzed Tim-3 expression on different subpopulations of liver macrophages and further investigated the potential roles of Tim-3 on hepatic macrophages in methionine and choline-deficient diet (MCD)-induced NASH mice. The results of flow cytometry demonstrated the significantly increased expression of Tim-3 on all detected liver macrophage subsets in MCD mice, including F4/80 + CD11b + , F4/80 + CD68 + , and F4/80 + CD169 + macrophages. Remarkably, Tim-3 knockout (KO) significantly accelerated MCD-induced liver steatosis, displaying higher serum ALT, larger hepatic vacuolation, more liver lipid deposition, and more severe liver fibrosis. Moreover, compared with wild-type C57BL/6 mice, Tim-3 KO MCD mice demonstrated an enhanced expression of NOX2, NLRP3, and caspase-1 p20 together with increased generation of IL-1β and IL-18 in livers. In vitro studies demonstrated that Tim-3 negatively regulated the production of reactive oxygen species (ROS) and related downstream pro-inflammatory cytokine secretion of IL-1β and IL-18 in macrophages. Exogenous administration of N-Acetyl-L-cysteine (NAC), a small molecular inhibitor of ROS, remarkably suppressed caspase-1 p20 expression and IL-1β and IL-18 production in livers of Tim-3 KO mice, thus significantly reducing the severity of steatohepatitis induced by MCD. In conclusion, Tim-3 is a promising protector in MCD-induced steatohepatitis by controlling ROS and the associated pro-inflammatory cytokine production in macrophages.

  20. Effect of constitutive inactivation of the myostatin gene on the gain in muscle strength during postnatal growth in two murine models.

    Science.gov (United States)

    Stantzou, Amalia; Ueberschlag-Pitiot, Vanessa; Thomasson, Remi; Furling, Denis; Bonnieu, Anne; Amthor, Helge; Ferry, Arnaud

    2017-02-01

    The effect of constitutive inactivation of the gene encoding myostatin on the gain in muscle performance during postnatal growth has not been well characterized. We analyzed 2 murine myostatin knockout (KO) models, (i) the Lee model (KO Lee ) and (ii) the Grobet model (KO Grobet ), and measured the contraction of tibialis anterior muscle in situ. Absolute maximal isometric force was increased in 6-month-old KO Lee and KO Grobet mice, as compared to wild-type mice. Similarly, absolute maximal power was increased in 6-month-old KO Lee mice. In contrast, specific maximal force (relative maximal force per unit of muscle mass was decreased in all 6-month-old male and female KO mice, except in 6-month-old female KO Grobet mice, whereas specific maximal power was reduced only in male KO Lee mice. Genetic inactivation of myostatin increases maximal force and power, but in return it reduces muscle quality, particularly in male mice. Muscle Nerve 55: 254-261, 2017. © 2016 Wiley Periodicals, Inc.

  1. Endothelial Estrogen Receptor-α Does Not Protect Against Vascular Stiffness Induced by Western Diet in Female Mice.

    Science.gov (United States)

    Manrique, Camila; Lastra, Guido; Ramirez-Perez, Francisco I; Haertling, Dominic; DeMarco, Vincent G; Aroor, Annayya R; Jia, Guanghong; Chen, Dongqing; Barron, Brady J; Garro, Mona; Padilla, Jaume; Martinez-Lemus, Luis A; Sowers, James R

    2016-04-01

    Consumption of a diet high in fat and refined carbohydrates (Western diet [WD]) is associated with obesity and insulin resistance, both major risk factors for cardiovascular disease (CVD). In women, obesity and insulin resistance abrogate the protection against CVD likely afforded by estrogen signaling through estrogen receptor (ER)α. Indeed, WD in females results in increased vascular stiffness, which is independently associated with CVD. We tested the hypothesis that loss of ERα signaling in the endothelium exacerbates WD-induced vascular stiffening in female mice. We used a novel model of endothelial cell (EC)-specific ERα knockout (EC-ERαKO), obtained after sequential crossing of the ERα double floxed mice and VE-Cadherin Cre-recombinase mice. Ten-week-old females, EC-ERαKO and aged-matched genopairs were fed either a regular chow diet (control diet) or WD for 8 weeks. Vascular stiffness was measured in vivo by pulse wave velocity and ex vivo in aortic explants by atomic force microscopy. In addition, vascular reactivity was assessed in isolated aortic rings. Initial characterization of the model fed a control diet did not reveal changes in whole-body insulin sensitivity, aortic vasoreactivity, or vascular stiffness in the EC-ERαKO mice. Interestingly, ablation of ERα in ECs reduced WD-induced vascular stiffness and improved endothelial-dependent dilation. In the setting of a WD, endothelial ERα signaling contributes to vascular stiffening in females. The precise mechanisms underlying the detrimental effects of endothelial ERα in the setting of a WD remain to be elucidated.

  2. Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: the role of CD4+ T cells and IFN-gamma.

    Science.gov (United States)

    Day, Yuan-Ji; Huang, Liping; Ye, Hong; Li, Li; Linden, Joel; Okusa, Mark D

    2006-03-01

    A(2A) adenosine receptor (A(2A)R)-expressing bone marrow (BM)-derived cells contribute to the renal protective effect of A(2A) agonists in renal ischemia-reperfusion injury (IRI). We performed IRI in mice lacking T and B cells to determine whether A(2A)R expressed in CD4+ cells mediate protection from IRI. Rag-1 knockout (KO) mice were protected in comparison to wild-type (WT) mice when subjected to IRI. ATL146e, a selective A(2A) agonist, did not confer additional protection. IFN-gamma is an important early signal in IRI and is thought to contribute to reperfusion injury. Because IFN-gamma is produced by kidney cells and T cells we performed IRI in BM chimeras in which the BM of WT mice was reconstituted with BM from IFN-gamma KO mice (IFN-gamma KO-->WT chimera). We observed marked reduction in IRI in comparison to WT-->WT chimeras providing additional indirect support for the role of T cells. To confirm the role of CD4+ A(2A)R in mediating protection from IRI, Rag-1 KO mice were subjected to ischemia-reperfusion. The protection observed in Rag-1 KO mice was reversed in Rag-1 KO mice that were adoptively transferred WT CD4+ cells (WT CD4+-->Rag-1 KO) or A(2A) KO CD4+ cells (A(2A) KO CD4+-->Rag-1 KO). ATL146e reduced injury in WT CD4+-->Rag-1 KO mice but not in A(2A) KO CD4+-->Rag-1 KO mice. Rag-1 KO mice reconstituted with CD4+ cells derived from IFN-gamma KO mice (IFN-gamma CD4+-->Rag-1 KO) were protected from IRI; ATL146e conferred no additional protection. These studies demonstrate that CD4+ IFN-gamma contributes to IRI and that A(2A) agonists mediate protection from IRI through action on CD4+ cells.

  3. Hydrogen-rich pure water prevents cigarette smoke-induced pulmonary emphysema in SMP30 knockout mice.

    Science.gov (United States)

    Suzuki, Yohei; Sato, Tadashi; Sugimoto, Masataka; Baskoro, Hario; Karasutani, Keiko; Mitsui, Aki; Nurwidya, Fariz; Arano, Naoko; Kodama, Yuzo; Hirano, Shin-Ichi; Ishigami, Akihito; Seyama, Kuniaki; Takahashi, Kazuhisa

    2017-10-07

    Chronic obstructive pulmonary disease (COPD) is predominantly a cigarette smoke (CS)-triggered disease with features of chronic systemic inflammation. Oxidants derived from CS can induce DNA damage and stress-induced premature cellular senescence in the respiratory system, which play significant roles in COPD. Therefore, antioxidants should provide benefits for the treatment of COPD; however, their therapeutic potential remains limited owing to the complexity of this disease. Recently, molecular hydrogen (H 2 ) has been reported as a preventive and therapeutic antioxidant. Molecular H 2 can selectively reduce hydroxyl radical accumulation with no known side effects, showing potential applications in managing oxidative stress, inflammation, apoptosis, and lipid metabolism. However, there have been no reports on the efficacy of molecular H 2 in COPD patients. In the present study, we used a mouse model of COPD to investigate whether CS-induced histological damage in the lungs could be attenuated by administration of molecular H 2 . We administered H 2 -rich pure water to senescence marker protein 30 knockout (SMP30-KO) mice exposed to CS for 8 weeks. Administration of H 2 -rich water attenuated the CS-induced lung damage in the SMP30-KO mice and reduced the mean linear intercept and destructive index of the lungs. Moreover, H 2 -rich water significantly restored the static lung compliance in the CS-exposed mice compared with that in the CS-exposed H 2 -untreated mice. Moreover, treatment with H 2 -rich water decreased the levels of oxidative DNA damage markers such as phosphorylated histone H2AX and 8-hydroxy-2'-deoxyguanosine, and senescence markers such as cyclin-dependent kinase inhibitor 2A, cyclin-dependent kinase inhibitor 1, and β-galactosidase in the CS-exposed mice. These results demonstrated that H 2 -rich pure water attenuated CS-induced emphysema in SMP30-KO mice by reducing CS-induced oxidative DNA damage and premature cell senescence in the lungs. Our

  4. Attenuation of Cerebral Ischemic Injury in Smad1 Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Jamie K Wong

    Full Text Available Stroke results in brain tissue damage from ischemia and oxidative stress. Molecular regulators of the protective versus deleterious cellular responses after cerebral ischemia remain to be identified. Here, we show that deletion of Smad1, a conserved transcription factor that mediates canonical bone morphogenetic protein (BMP signaling, results in neuroprotection in an ischemia-reperfusion (I/R stroke model. Uninjured mice with conditional deletion of Smad1 in the CNS (Smad1 cKO displayed upregulation of the reactive astrocyte marker GFAP and hypertrophic morphological changes in astrocytes compared to littermate controls. Additionally, cultured Smad1(-/- astrocytes exhibited an enhanced antioxidant capacity. When subjected to I/R injury by transient middle cerebral artery occlusion (tMCAO, Smad1 cKO mice showed enhanced neuronal survival and improved neurological recovery at 7 days post-stroke. This neuroprotective phenotype is associated with attenuated reactive astrocytosis and neuroinflammation, along with reductions in oxidative stress, p53 induction, and apoptosis. Our data suggest that Smad1-mediated signaling pathway is involved in stroke pathophysiology and may present a new potential target for stroke therapy.

  5. Abnormalities in brain structure and behavior in GSK-3alpha mutant mice

    Directory of Open Access Journals (Sweden)

    Kaidanovich-Beilin Oksana

    2009-11-01

    Full Text Available Abstract Background Glycogen synthase kinase-3 (GSK-3 is a widely expressed and highly conserved serine/threonine protein kinase encoded by two genes that generate two related proteins: GSK-3α and GSK-3β. Mice lacking a functional GSK-3α gene were engineered in our laboratory; they are viable and display insulin sensitivity. In this study, we have characterized brain functions of GSK-3α KO mice by using a well-established battery of behavioral tests together with neurochemical and neuroanatomical analysis. Results Similar to the previously described behaviours of GSK-3β+/-mice, GSK-3α mutants display decreased exploratory activity, decreased immobility time and reduced aggressive behavior. However, genetic inactivation of the GSK-3α gene was associated with: decreased locomotion and impaired motor coordination, increased grooming activity, loss of social motivation and novelty; enhanced sensorimotor gating and impaired associated memory and coordination. GSK-3α KO mice exhibited a deficit in fear conditioning, however memory formation as assessed by a passive avoidance test was normal, suggesting that the animals are sensitized for active avoidance of a highly aversive stimulus in the fear-conditioning paradigm. Changes in cerebellar structure and function were observed in mutant mice along with a significant decrease of the number and size of Purkinje cells. Conclusion Taken together, these data support a role for the GSK-3α gene in CNS functioning and possible involvement in the development of psychiatric disorders.

  6. NLRP3 inflammasome activation mediates fatigue-like behaviors in mice via neuroinflammation.

    Science.gov (United States)

    Zhang, Ziteng; Ma, Xiujuan; Xia, Zhenna; Chen, Jikuai; Liu, Yangang; Chen, Yongchun; Zhu, Jiangbo; Li, Jinfeng; Yu, Huaiyu; Zong, Ying; Lu, Guocai

    2017-09-01

    Numerous experimental and clinical studies have suggested that the interaction between the immune system and the brain plays an important role in the pathophysiology of chronic fatigue syndrome (CFS). The NLRP3 inflammasome is an important part of the innate immune system. This complex regulates proinflammatory cytokine interleukin-1β (IL-1β) maturation, which triggers different kinds of immune-inflammatory reactions. We employed repeated forced swims to establish a model of CFS in mice. NLRP3 knockout (KO) mice were also used to explore NLRP3 inflammasome activation in the mechanisms of CFS, using the same treatment. After completing repeated swim tests, the mice displayed fatigue-like behaviors, including locomotor activity and reduced fall-off time on the rota-rod test, which was accompanied by significantly higher mature IL-1β level in the prefrontal cortex (PFC) and malondialdehyde (MDA) level in serum. We also found increased NLRP3 protein expression, NLRP3 inflammasome formation and increased mature IL-1β production in the PFC, relative to untreated mice. The NLRP3 KO mice displayed significantly moderated fatigue behaviors along with decreased PFC and serum IL-1β levels under the same treatment. These findings demonstrated the involvement of NLRP3 inflammasome activation in the mechanism of swimming-induced fatigue. Future therapies targeting the NLRP3/IL-1β pathway may have significant potential for fatigue prevention and treatment. Copyright © 2017. Published by Elsevier Ltd.

  7. Selective Disruption of Metabotropic Glutamate Receptor 5-Homer Interactions Mimics Phenotypes of Fragile X Syndrome in Mice.

    Science.gov (United States)

    Guo, Weirui; Molinaro, Gemma; Collins, Katie A; Hays, Seth A; Paylor, Richard; Worley, Paul F; Szumlinski, Karen K; Huber, Kimberly M

    2016-02-17

    Altered function of the Gq-coupled, Group 1 metabotropic glutamate receptors, specifically mGlu5, is implicated in multiple mouse models of autism and intellectual disability. mGlu5 dysfunction has been most well characterized in the fragile X syndrome mouse model, the Fmr1 knock-out (KO) mouse, where pharmacological and genetic reduction of mGlu5 reverses many phenotypes. mGlu5 is less associated with its scaffolding protein Homer in Fmr1 KO mice, and restoration of mGlu5-Homer interactions by genetic deletion of a short, dominant negative of Homer, H1a, rescues many phenotypes of Fmr1 KO mice. These results suggested that disruption of mGlu5-Homer leads to phenotypes of FXS. To test this idea, we examined mice with a knockin mutation of mGlu5 (F1128R; mGlu5(R/R)) that abrogates binding to Homer. Although FMRP levels were normal, mGlu5(R/R) mice mimicked multiple phenotypes of Fmr1 KO mice, including reduced mGlu5 association with the postsynaptic density, enhanced constitutive mGlu5 signaling to protein synthesis, deficits in agonist-induced translational control, protein synthesis-independent LTD, neocortical hyperexcitability, audiogenic seizures, and altered behaviors, including anxiety and sensorimotor gating. These results reveal new roles for the Homer scaffolds in regulation of mGlu5 function and implicate a specific molecular mechanism in a complex brain disease. Abnormal function of the metabotropic, or Gq-coupled, glutamate receptor 5 (mGlu5) has been implicated in neurodevelopmental disorders, including a genetic cause of intellectual disability and autism called fragile X syndrome. In brains of a mouse model of fragile X, mGlu5 is less associated with its binding partner Homer, a scaffolding protein that regulates mGlu5 localization to synapses and its ability to activate biochemical signaling pathways. Here we show that a mouse expressing a mutant mGlu5 that cannot bind to Homer is sufficient to mimic many of the biochemical, neurophysiological, and

  8. Sox4 Links Tumor Suppression to Accelerated Aging in Mice by Modulating Stem Cell Activation

    Directory of Open Access Journals (Sweden)

    Miguel Foronda

    2014-07-01

    Full Text Available Sox4 expression is restricted in mammals to embryonic structures and some adult tissues, such as lymphoid organs, pancreas, intestine, and skin. During embryogenesis, Sox4 regulates mesenchymal and neural progenitor survival, as well as lymphocyte and myeloid differentiation, and contributes to pancreas, bone, and heart development. Aberrant Sox4 expression is linked to malignant transformation and metastasis in several types of cancer. To understand the role of Sox4 in the adult organism, we first generated mice with reduced whole-body Sox4 expression. These mice display accelerated aging and reduced cancer incidence. To specifically address a role for Sox4 in adult stem cells, we conditionally deleted Sox4 (Sox4cKO in stratified epithelia. Sox4cKO mice show increased skin stem cell quiescence and resistance to chemical carcinogenesis concomitantly with downregulation of cell cycle, DNA repair, and activated hair follicle stem cell pathways. Altogether, these findings highlight the importance of Sox4 in regulating adult tissue homeostasis and cancer.

  9. Effects of Altered Levels of Extracellular Superoxide Dismutase and Irradiation on Hippocampal Neurogenesis in Female Mice

    International Nuclear Information System (INIS)

    Zou, Yani; Leu, David; Chui, Jennifer; Fike, John R.; Huang, Ting-Ting

    2013-01-01

    Purpose: Altered levels of extracellular superoxide dismutase (EC-SOD) and cranial irradiation have been shown to affect hippocampal neurogenesis. However, previous studies were only conducted in male mice, and it was not clear if there was a difference between males and females. Therefore, female mice were studied and the results compared with those generated in male mice from an earlier study. Methods and Materials: Female wild-type, EC-SOD-null (KO), and EC-SOD bigenic mice with neuronal-specific expression of EC-SOD (OE) were subjected to a single dose of 5-Gy gamma rays to the head at 8 weeks of age. Progenitor cell proliferation, differentiation, and long-term survival of newborn neurons were determined. Results: Similar to results from male mice, EC-SOD deficiency and irradiation both resulted in significant reductions in mature newborn neurons in female mice. EC-SOD deficiency reduced long-term survival of newborn neurons whereas irradiation reduced progenitor cell proliferation. Overexpression of EC-SOD corrected the negative impacts from EC-SOD deficiency and irradiation and normalized the production of newborn neurons in OE mice. Expression of neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 were significantly reduced by irradiation in wild-type mice, but the levels were not changed in KO and OE mice even though both cohorts started out with a lower baseline level. Conclusion: In terms of hippocampal neurogenesis, EC-SOD deficiency and irradiation have the same overall effects in males and females at the age the studies were conducted

  10. Altered calcium pump and secondary deficiency of γ-sarcoglycan and microspan in sarcoplasmic reticulum membranes isolated from δ-sarcoglycan knockout mice

    Science.gov (United States)

    Solares-Pérez, Alhondra; Álvarez, Rocío; Crosbie, Rachelle H.; Vega-Moreno, Jesús; Medina-Monares, Joel; Estrada, Francisco J.; Ortega, Alicia; Coral-Vazquez, Ramón

    2016-01-01

    Sarcoglycans (SGs) and sarcospan (SSPN) are transmembrane proteins of the dystrophin-glycoprotein complex. Mutations in the genes encoding SGs cause many inherited forms of muscular dystrophy. In this study, using purified membranes of wild-type (WT) and δ-SG knockout (KO) mice, we found the specific localization of the SG-SSPN isoforms in transverse tubules (TT) and sarcoplasmic reticulum (SR) membranes. Immunoblotting revealed that the absence of δ-SG isoforms in TT and SR results in a secondary deficiency of γ-SG and µSPN. Our results showed augmented ATP hydrolytic activity, ATP-dependent calcium uptake and passive calcium efflux, probably through SERCA1 in KO compared to WT mice. Furthermore, we found a conformational change in SERCA1 isolated from KO muscle as demonstrated by calorimetric analysis. Following these alterations with mechanical properties, we found an increase in force in KO muscle with the same rate of fatigue but with a decreased fatigue recovery compared to WT. Together our observations suggest, for the first time, that the δ-SG isoforms may stabilize the expression of γ-SG and µSPN in the TT and SR membranes and that this possible complex may play a role in the maintenance of a stable level of resting cytosolic calcium concentration in skeletal muscle. PMID:20638123

  11. Heat Flux Tests of the ITER FWQMs at KoHLT-1

    International Nuclear Information System (INIS)

    Bae, Young Dug; Kim, Suk Kwon; Shin, Hee Yun; Lee, Dong Won; Hong, Bong Guen

    2009-05-01

    As a party of the ITER, especially as a procurement party of the ITER blanket, we have designed the First Wall Qualification Mockup (FWQM) and fabricated five FWQMs. Two of them have been tested up to 12,690/12,020 cycles at a heat flux higher than 0.625 MW/m 2 at the KoHLT-1 facility established in the Korea Atomic Energy Research Institute (KAERI). Two KO FWQMs successfully passed the normal heat flux tests, and there was no indication of defect in the Be-to-CuCrZr joints

  12. Common arterial trunk and ventricular non-compaction in Lrp2 knockout mice indicate a crucial role of LRP2 in cardiac development

    NARCIS (Netherlands)

    T. Baardman (Taco); M.V. Zwier (Mathijs V.); L.J. Wisse (Lambertus); A.C. Gittenberger-De Groot (Adriana); W.S. Kerstjens-Frederikse (Wilhelmina); R.M.W. Hofstra (Robert); A. Jurdzinski (Angelika); B.P. Hierck (Beerend); M.R.M. Jongbloed (Monique); R.M.F. Berger (Rolf); T. Plösch (Torsten); M.C. DeRuiter (Marco)

    2016-01-01

    textabstractLipoprotein-related receptor protein 2 (LRP2) is important for development of the embryonic neural crest and brain in both mice and humans. Although a role in cardiovascular development can be expected, the hearts of Lrp2 knockout (KO) mice have not yet been investigated. We studied the

  13. Common arterial trunk and ventricular non-compaction in Lrp2 knockout mice indicate a crucial role of LRP2 in cardiac development

    NARCIS (Netherlands)

    Baardman, Maria E.; Zwier, Mathijs V.; Wisse, Lambertus J.; Gittenberger-de Groot, Adriana C.; Kerstjens-Frederikse, Wilhelmina S.; Hofstra, Robert M. W.; Jurdzinski, Angelika; Hierck, Beerend P.; Jongbloed, Monique R. M.; Berger, Rolf M. F.; Plosch, Torsten; DeRuiter, Marco C.

    2016-01-01

    Lipoprotein-related receptor protein 2 (LRP2) is important for development of the embryonic neural crest and brain in both mice and humans. Although a role in cardiovascular development can be expected, the hearts of Lrp2 knockout (KO) mice have not yet been investigated. We studied the

  14. Estrous cycle influences the expression of neuronal nitric oxide synthase in the hypothalamus and limbic system of female mice

    Directory of Open Access Journals (Sweden)

    Viglietti-Panzica Carla

    2009-07-01

    Full Text Available Abstract Background Nitric oxide plays an important role in the regulation of male and female sexual behavior in rodents, and the expression of the nitric oxide synthase (NOS is influenced by testosterone in the male rat, and by estrogens in the female. We have here quantitatively investigated the distribution of nNOS immunoreactive (ir neurons in the limbic hypothalamic region of intact female mice sacrificed during different phases of estrous cycle. Results Changes were observed in the medial preoptic area (MPA (significantly higher number in estrus and in the arcuate nucleus (Arc (significantly higher number in proestrus. In the ventrolateral part of the ventromedial nucleus (VMHvl and in the bed nucleus of the stria terminalis (BST no significant changes have been observed. In addition, by comparing males and females, we observed a stable sex dimorphism (males have a higher number of nNOS-ir cells in comparison to almost all the different phases of the estrous cycle in the VMHvl and in the BST (when considering only the less intensely stained elements. In the MPA and in the Arc sex differences were detected only comparing some phases of the cycle. Conclusion These data demonstrate that, in mice, the expression of nNOS in some hypothalamic regions involved in the control of reproduction and characterized by a large number of estrogen receptors is under the control of gonadal hormones and may vary according to the rapid variations of hormonal levels that take place during the estrous cycle.

  15. Knocking out or pharmaceutical inhibition of fatty acid binding protein 4 (FABP4) alleviates osteoarthritis induced by high-fat diet in mice.

    Science.gov (United States)

    Zhang, C; Chiu, K Y; Chan, B P M; Li, T; Wen, C; Xu, A; Yan, C H

    2018-06-01

    Adipokines play roles in the pathogenesis of osteoarthritis (OA). Fatty acid binding protein 4 (FABP4) is a novel adipokine that is closely associated with obesity and metabolic diseases. The aim of this study was to discover the potential role of FABP4 in OA. Seventy-two FABP4 knockout mice (KO) in C57BL/6N background and wild-type littermates (WT) (male, 6-week-old) were fed with a high-fat diet (HFD, 60% calorie) or standard diet (STD, 11.6% calorie) for 3 months, 6 months and 9 months (n = 6 each). In the parallel study, forty-eight 6-week-old male WT mice were fed with HFD or STD, and simultaneously treated with daily oral gavage of selective FABP4 inhibitor BMS309403 (15 mg/kg/d) or vehicle for 4 months and 6 months (n = 6 each). Serum FABP4 and cartilage oligomeric matrix protein (COMP) concentration was quantified. Histological assessment of knee OA and micro-CT analysis of subchondral bone were performed. HFD induced obesity in mice. After 3 months and 6 months of HFD, KO mice showed alleviated cartilage degradation and synovitis, with significantly lower COMP, modified Mankin OA score, and MMP-13/ADAMTS4 expression. After 6 months and 9 months of HFD, KO mice showed less osteophyte formation and subchondral bone sclerosis. Chronic treatment of BMS309403 for 4 months and 6 months significantly alleviated cartilage degradation, but had no effects on the subchondral bone. Knocking out or pharmaceutical inhibition of FABP4 did not have significant effects on lean mice fed with STD. Knocking out or pharmaceutical inhibition of FABP4 alleviates OA induced by HFD in mice. Copyright © 2018 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  16. Absence of ERRalpha in female mice confers resistance to bone loss induced by age or estrogen-deficiency.

    Directory of Open Access Journals (Sweden)

    Catherine Teyssier

    Full Text Available BACKGROUND: ERRalpha is an orphan member of the nuclear hormone receptor superfamily, which acts as a transcription factor and is involved in various metabolic processes. ERRalpha is also highly expressed in ossification zones during mouse development as well as in human bones and cell lines. Previous data have shown that this receptor up-modulates the expression of osteopontin, which acts as an inhibitor of bone mineralization and whose absence results in resistance to ovariectomy-induced bone loss. Altogether this suggests that ERRalpha may negatively regulate bone mass and could impact on bone fragility that occurs in the absence of estrogens. METHODS/PRINCIPAL FINDINGS: In this report, we have determined the in vivo effect of ERRalpha on bone, using knock-out mice. Relative to wild type animals, female ERRalphaKO bones do not age and are resistant to bone loss induced by estrogen-withdrawal. Strikingly male ERRalphaKO mice are indistinguishable from their wild type counterparts, both at the unchallenged or gonadectomized state. Using primary cell cultures originating from ERRalphaKO bone marrow, we also show that ERRalpha acts as an inhibitor of osteoblast differentiation. CONCLUSION/SIGNIFICANCE: Down-regulating ERRalpha could thus be beneficial against osteoporosis.

  17. Dissociation Between Brown Adipose Tissue 18F-FDG Uptake and Thermogenesis in Uncoupling Protein 1-Deficient Mice.

    Science.gov (United States)

    Hankir, Mohammed K; Kranz, Mathias; Keipert, Susanne; Weiner, Juliane; Andreasen, Sille G; Kern, Matthias; Patt, Marianne; Klöting, Nora; Heiker, John T; Brust, Peter; Hesse, Swen; Jastroch, Martin; Fenske, Wiebke K

    2017-07-01

    18 F-FDG PET imaging is routinely used to investigate brown adipose tissue (BAT) thermogenesis, which requires mitochondrial uncoupling protein 1 (UCP1). It remains uncertain, however, whether BAT 18 F-FDG uptake is a reliable surrogate measure of UCP1-mediated heat production. Methods: UCP1 knockout (KO) and wild-type (WT) mice housed at thermoneutrality were treated with the selective β3 adrenergic receptor agonist CL 316, 243 and underwent metabolic cage, infrared thermal imaging and 18 F-FDG PET/MRI experiments. Primary brown adipocytes were additionally examined for their bioenergetics by extracellular flux analysis as well as their uptake of 2-deoxy- 3 H-glucose. Results: In response to CL 316, 243 treatments, oxygen consumption, and BAT thermogenesis were diminished in UCP1 KO mice, but BAT 18 F-FDG uptake was fully retained. Isolated UCP1 KO brown adipocytes exhibited defective induction of uncoupled respiration whereas their glycolytic flux and 2-deoxy- 3 H-glucose uptake rates were largely unaffected. Conclusion: Adrenergic stimulation can increase BAT 18 F-FDG uptake independently of UCP1 thermogenic function. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  18. Loss of the zona pellucida-binding protein 2 (Zpbp2) gene in mice impacts airway hypersensitivity and lung lipid metabolism in a sex-dependent fashion.

    Science.gov (United States)

    Kanagaratham, Cynthia; Chiwara, Victoria; Ho, Bianca; Moussette, Sanny; Youssef, Mina; Venuto, David; Jeannotte, Lucie; Bourque, Guillaume; de Sanctis, Juan Bautista; Radzioch, Danuta; Naumova, Anna K

    2018-04-01

    The human chromosomal region 17q12-q21 is one of the best replicated genome-wide association study loci for childhood asthma. The associated SNPs span a large genomic interval that includes several protein-coding genes. Here, we tested the hypothesis that the zona pellucida-binding protein 2 (ZPBP2) gene residing in this region contributes to asthma pathogenesis using a mouse model. We tested the lung phenotypes of knock-out (KO) mice that carry a deletion of the Zpbp2 gene. The deletion attenuated airway hypersensitivity (AHR) in female, but not male, mice in the absence of allergic sensitization. Analysis of the lipid profiles of their lungs showed that female, but not male, KO mice had significantly lower levels of sphingosine-1-phosphate (S1P), very long-chain ceramides (VLCCs), and higher levels of long-chain ceramides compared to wild-type controls. Furthermore, in females, lung resistance following methacholine challenge correlated with lung S1P levels (Pearson correlation coefficient 0.57) suggesting a link between reduced AHR in KO females, Zpbp2 deletion, and S1P level regulation. In livers, spleens and blood plasma, however, VLCC, S1P, and sphingosine levels were reduced in both KO females and males. We also find that the Zpbp2 deletion was associated with gain of methylation in the adjacent DNA regions. Thus, we demonstrate that the mouse ortholog of ZPBP2 has a role in controlling AHR in female mice. Our data also suggest that Zpbp2 may act through regulation of ceramide metabolism. These findings highlight the importance of phospholipid metabolism for sexual dimorphism in AHR.

  19. Mixed municipal solid waste (MSW) treatment in Waste centre Spodnji Stari Grad, Krško

    OpenAIRE

    Kortnik, Jože; Leskovar, Jože

    2015-01-01

    Review paper Received: October 25, 2013 Accepted: November 7, 2013 Mixed municipal solid waste (MSW) treatment in Waste centre Spodnji Stari Grad, Krško Ravnanje z mešanimi komunalnimi odpadki v Zbirnem centru Spodnji Stari Grad, Krško Jože Kortnik1'*, Jože Leskovar2 University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Mining and Geotechnology, Aškerčeva 12, 1000 Ljubljana, Slovenia 2Kostak, d. d., Leskovška cesta 2a, 8270 Krško, Slovenia Correspo...

  20. Spin-orbital superexchange physics emerging from interacting oxygen molecules in KO2

    International Nuclear Information System (INIS)

    Solovyev, I V

    2008-01-01

    We propose that the spin-orbital-lattice coupled phenomena, widely known for the transition-metal oxides, can be realized in molecular solids, comprising of orbitally degenerate magnetic O 2 - ions. KO 2 is one such system. Using the first-principles electronic structure calculations, we set-up an effective spin-orbital superexchange model for the low-energy molecular bands and argue that many anomalous properties of KO 2 indeed replicate the status of its orbital system in different temperature regimes

  1. The Probiotic Lactobacillus Prevents Citrobacter rodentium-Induced Murine Colitis in a TLR2-Dependent Manner.

    Science.gov (United States)

    Ryu, Seung-Hyun; Park, Jong-Hyung; Choi, Soo-Young; Jeon, Hee-Yeon; Park, Jin-Il; Kim, Jun-Young; Ham, Seung-Hoon; Choi, Yang-Kyu

    2016-07-28

    The main objective of this study was to investigate whether Lactobacillus rhamnosus GG (LGG) ameliorated the effects of Citrobactor rodentium infection in Toll-like receptor 2 (TLR2) knockout (KO) and TLR4 KO mice, as well as in wild-type C57BL/6 (B6) mice. TLR2 KO, TLR4 KO, and B6 mice were divided into three groups per each strain. Each group had an uninfected control group (n = 5), C. rodentium-infected group (n = 8), and LGG-pretreated C. rodentium-infected group (n = 8). The survival rate of B6 mice infected with C. rodentium was higher when pretreated with LGG. Pretreatment with LGG ameliorated C. rodentium-induced mucosal hyperplasia in B6 and TLR4 KO mice. However, in C-rodentium-infected TLR2 KO mice, mucosal hyperplasia persisted, regardless of pretreatment with LGG. In addition, LGG-pretreated B6 and TLR4 KO mice showed a decrease in spleen weight and downregulation of tumor necrosis factor alpha, interferon gamma, and monocyte chemotactic protein 1 mRNA expression compared with the non-pretreated group. In contrast, such changes were not observed in TLR2 KO mice, regardless of pretreatment with LGG. From the above results, we conclude that pretreatment with LGG ameliorates C. rodentium-induced colitis in B6 and TLR4 KO mice, but not in TLR2 KO mice. Therefore, LGG protects mice from C. rodentium-induced colitis in a TLR2-dependent manner.

  2. Female Mice Deficient in Alpha-Fetoprotein Show Female-Typical Neural Responses to Conspecific-Derived Pheromones

    NARCIS (Netherlands)

    Brock, O.; Keller, M.; Douhard, Q.; Bakker, J.

    2012-01-01

    The neural mechanisms controlling sexual behavior are sexually differentiated by the perinatal actions of sex steroid hormones. We recently observed using female mice deficient in alpha-fetoprotein (AFP-KO) and which lack the protective actions of AFP against maternal estradiol, that exposure to

  3. Irgm1-deficient mice exhibit Paneth cell abnormalities and increased susceptibility to acute intestinal inflammation.

    Science.gov (United States)

    Liu, Bo; Gulati, Ajay S; Cantillana, Viviana; Henry, Stanley C; Schmidt, Elyse A; Daniell, Xiaoju; Grossniklaus, Emily; Schoenborn, Alexi A; Sartor, R Balfour; Taylor, Gregory A

    2013-10-15

    Crohn's disease (CD) is a chronic, immune-mediated, inflammatory disorder of the intestine that has been linked to numerous susceptibility genes, including the immunity-related GTPase (IRG) M (IRGM). IRGs comprise a family of proteins known to confer resistance to intracellular infections through various mechanisms, including regulation of phagosome processing, cell motility, and autophagy. However, despite its association with CD, the role of IRGM and other IRGs in regulating intestinal inflammation is unclear. We investigated the involvement of Irgm1, an ortholog of IRGM, in the genesis of murine intestinal inflammation. After dextran sodium sulfate exposure, Irgm1-deficient [Irgm1 knockout (KO)] mice showed increased acute inflammation in the colon and ileum, with worsened clinical responses. Marked alterations of Paneth cell location and granule morphology were present in Irgm1 KO mice, even without dextran sodium sulfate exposure, and were associated with impaired mitophagy and autophagy in Irgm1 KO intestinal cells (including Paneth cells). This was manifested by frequent tubular and swollen mitochondria and increased LC3-positive autophagic structures. Interestingly, these LC3-positive structures often contained Paneth cell granules. These results suggest that Irgm1 modulates acute inflammatory responses in the mouse intestine, putatively through the regulation of gut autophagic processes, that may be pivotal for proper Paneth cell functioning.

  4. Comprehensive behavioral analysis of voltage-gated calcium channel beta-anchoring and -regulatory protein knockout mice

    Science.gov (United States)

    Nakao, Akito; Miki, Takafumi; Shoji, Hirotaka; Nishi, Miyuki; Takeshima, Hiroshi; Miyakawa, Tsuyoshi; Mori, Yasuo

    2015-01-01

    Calcium (Ca2+) influx through voltage-gated Ca2+ channels (VGCCs) induces numerous intracellular events such as neuronal excitability, neurotransmitter release, synaptic plasticity, and gene regulation. It has been shown that genes related to Ca2+ signaling, such as the CACNA1C, CACNB2, and CACNA1I genes that encode VGCC subunits, are associated with schizophrenia and other psychiatric disorders. Recently, VGCC beta-anchoring and -regulatory protein (BARP) was identified as a novel regulator of VGCC activity via the interaction of VGCC β subunits. To examine the role of the BARP in higher brain functions, we generated BARP knockout (KO) mice and conducted a comprehensive battery of behavioral tests. BARP KO mice exhibited greatly reduced locomotor activity, as evidenced by decreased vertical activity, stereotypic counts in the open field test, and activity level in the home cage, and longer latency to complete a session in spontaneous T-maze alteration test, which reached “study-wide significance.” Acoustic startle response was also reduced in the mutants. Interestingly, they showed multiple behavioral phenotypes that are seemingly opposite to those seen in the mouse models of schizophrenia and its related disorders, including increased working memory, flexibility, prepulse inhibition, and social interaction, and decreased locomotor activity, though many of these phenotypes are statistically weak and require further replications. These results demonstrate that BARP is involved in the regulation of locomotor activity and, possibly, emotionality. The possibility was also suggested that BARP KO mice may serve as a unique tool for investigating the pathogenesis/pathophysiology of schizophrenia and related disorders. Further evaluation of the molecular and physiological phenotypes of the mutant mice would provide new insights into the role of BARP in higher brain functions. PMID:26136667

  5. Interleukin-6-deficient mice refractory to IgA dysregulation but not anorexia induction by vomitoxin (deoxynivalenol) ingestion.

    Science.gov (United States)

    Pestka, J J; Zhou, H R

    2000-07-01

    Dietary exposure to the trichothecene vomitoxin (VT) causes feed refusal and elevates IgA production in the mouse. Based on the observations that IL-6 can cause anorexia and promote IgA production and that gene expression of this cytokine is increased in vivo and ex vivo on VT exposure, we hypothesized that IL-6 is an essential cytokine in VT-induced feed refusal and IgA dysregulation. To test this hypothesis, the effects of dietary VT on feed intake, weight gain, serum IgA levels and kidney mesangial IgA deposition in an IL-6-"knockout" mouse (B6129-IL6(tmi Kopf)) were compared to those in both a corresponding "wildtype" (B6129F2) and a previously characterized "sentinel" strain (B6C3F1) that possess the intact gene for this cytokine. IL-6 deficiency did not alter the capacity of VT to cause feed refusal or impair weight gain. VT-fed B6129F2 and B6C3F1 mice had significantly higher serum IgA concentrations than did their corresponding controls fed clean diet, whereas significant differences were not observed between IL-6 KO mice fed VT or control diets. Kidneys taken from VT-fed wild-type and sentinel mice had significantly increased mesangial IgA deposition as compared to controls. While slight increases in mesangial IgA were observed in VT-fed IL-6 KO mice, mean fluorescence intensities were significantly less than that found in the corresponding wild-type and sentinel strains. IL-6 KO mice appeared to be less prone to the development of microscopic haematuria following VT exposure than were the corresponding wild-type and sentinel strains. In total, the results suggested that IL-6-deficient mice were refractory to VT-induced dysregulation of IgA production and development of IgA nephropathy, whereas chronic VT-mediated nutritional effects related to feed intake and weight gain were unaffected.

  6. Explosive hazards analysis of the eutectic solution NaK and KO2

    International Nuclear Information System (INIS)

    Commander, J.C.

    1975-06-01

    Planning, preparation, conductance, and evaluation of field tests are reported to determine the explosive hazards associated with the combining of the sodium-potassium eutectic alloy (NaK) with the superoxide of potassium (KO 2 ) under various conditions of state, contamination, and detonation initiation. The planning and preparation was conducted by Aerojet Nuclear Company (ANC) at the Idaho National Engineering Laboratory, and the explosive hazards testing was done by Cook Associates, Inc., at IRECO Chemicals Pelican Point Research and Development facility in Utah. The test results showed that binary combinations of pure NaK and KO 2 could not be made to detonate, although the mixtures will spontaneously ignite and burn. However, tertiary combinations of NaK, KO 2 plus a water or hydrocarbon contaminant produced explosive hazards under a variety of conditions. The work was performed as part of the Decontamination and Decommissioning (D and D) of the first Experimental Breeder Reactor (EBR-I) and was funded by 189c I-215. (U.S.)

  7. Pielāgojama norēķinu sistēma mākoņskaitļošanas pakalpojumiem

    OpenAIRE

    Surženko, Dmitrijs

    2013-01-01

    Šajā darbā apskatīts mākoņskaitļošanas jēdziens un mākoņskaitļošanas mākoņu veidi un to funkcionālā klasifikācija. Apskatīti norēķinu sistēmas pamati balstoties uz telekomunikāciju norēķinu sistēmas pamatiem. Aprakstīta uzņēmuma N mākoņa pārvaldības infrastruktūra. Definētas mākoņskaitļošanas brokera prasības uz uzņēmuma N piemēra. Veikts vairāku mākoņskaitļošanas pakalpojumu norēķinu sistēmas apskats un aprakstīta to atbilstība pielāgojamai norēķinu sistēmai un mākoņskaitļošanas brokera pras...

  8. Differences Between Tg2576 and Wild Type Mice in the NMDA Receptor-Nitric Oxide Pathway After Prolonged Application of a Diet High in Advanced Glycation End Products.

    Science.gov (United States)

    Kristofikova, Zdena; Ricny, Jan; Sirova, Jana; Ripova, Daniela; Lubitz, Irit; Schnaider-Beeri, Michal

    2015-08-01

    It has been suggested that advanced glycation end (AGE) products, via cognate receptor activation, are implicated in several diseases, including Alzheimer's disease. The NMDA receptor-nitric oxide pathway appears to be influenced by AGE products and involved in the pathogenesis of this type of dementia. In this study, C57BL/6J (WT) and transgenic (Tg2576) mice expressing human mutant amyloid precursor protein were kept on prolonged (8 months) diets containing regular or high amounts of AGE products. After the decapitation of 11-months old mice, brain tissue analyses were performed [expressions of the NR1, NR2A and NR2B subunits of NMDA receptors, activities of neuronal, endothelial and inducible nitric oxide synthase (nNOS, eNOS and iNOS)]. Moreover, levels of malondialdehyde and of human amyloid β 1-42 were estimated. We found increased activity of nNOS in WT mice maintained on a high compared to regular AGE diet; however, no similar differences were found in Tg2576 mice. In addition, we observed an increase in NR1 expression in Tg2576 compared to WT mice, both kept on a diet high in AGE products. Correlation analyses performed on mice kept on the regular AGE diet supported close links between particular subunits (NR2A-NR2B, in WT as well as in Tg2576 mice), between subunits and synthase (NR2A/NR2B-nNOS, only in WT mice) or between particular synthases (nNOS-iNOS, only in WT). Correlation analysis also revealed differences between WT mice kept on both diets (changed correlations between NR2A/NR2B-nNOS, between nNOS-eNOS and between eNOS-iNOS). Malondialdehyde levels were increased in both Tg2576 groups when compared to the corresponding WT mice, but no effects of the diets were observed. Analogously, no significant effects of diets were found in the levels of soluble or insoluble amyloid β 1-42 in Tg2576 mice. Our results demonstrate that prolonged ingestion of AGE products can influence the NMDA receptor-nitric oxide pathway in the brain and that only WT mice

  9. Natural killer T (NKT cells accelerate Shiga toxin type 2 (Stx2 pathology in mice

    Directory of Open Access Journals (Sweden)

    Fumiko eObata

    2015-04-01

    Full Text Available Shiga toxin-producing Escherichia coli (STEC is a leading cause of childhood renal disease He-molytic Uremic Syndrome (HUS. The involvement of renal cytokines and chemokines is sus-pected to play a critical role in disease progression. In current article, we tested the hypothesis that NKT cells are involved in Stx2-induced pathology in vivo. To address this hypothesis we compared Stx2 toxicity in WT and CD1 knockout (KO mice. In CD1KO mice, which lack nat-ural killer T (NKT cells, Stx2-induced pathologies such as weight loss, renal failure, and death were delayed. In WT mice, Stx2-specific selective increase in urinary albumin occurs in later time points, and this was also delayed in NKT cell deficient mice. NKT cell-associated cytokines such as IL-2, IL-4, IFN-γ and IL-17 were detected in kidney lysates of Stx2-injected WT mice with the peak around 36 h after Stx2 injection. In CD1KO, there was a delay in the kinetics, and increases in these cytokines were observed 60 h post Stx2 injection. These data suggest that NKT cells accelerate Stx2-induced pathology in mouse kidneys. To determine the mechanism by which NKT cells promote Stx2-associated disease, in vitro studies were performed using murine renal cells. We found that murine glomerular endothelial cells and podocytes express functional CD1d molecules and can present exogenous antigen to NKT cells. Moreover, we observed the direct interaction between Stx2 and the receptor Gb3 on the surface of mouse renal cells by 3D STORM-TIRF which provides single molecule imaging. Collectively, these data suggest that Stx2 binds to Gb3 on renal cells and leads to aberrant CD1d-mediated NKT cell activation. Therefore, strategies targeting NKT cells could have a significant impact on Stx2-associated renal pathology in STEC disease.

  10. Natural killer T (NKT) cells accelerate Shiga toxin type 2 (Stx2) pathology in mice.

    Science.gov (United States)

    Obata, Fumiko; Subrahmanyam, Priyanka B; Vozenilek, Aimee E; Hippler, Lauren M; Jeffers, Tynae; Tongsuk, Methinee; Tiper, Irina; Saha, Progyaparamita; Jandhyala, Dakshina M; Kolling, Glynis L; Latinovic, Olga; Webb, Tonya J

    2015-01-01

    Shiga toxin-producing Escherichia coli (STEC) is a leading cause of childhood renal disease Hemolytic Uremic Syndrome (HUS). The involvement of renal cytokines and chemokines is suspected to play a critical role in disease progression. In current article, we tested the hypothesis that NKT cells are involved in Stx2-induced pathology in vivo. To address this hypothesis we compared Stx2 toxicity in WT and CD1 knockout (KO) mice. In CD1KO mice, which lack natural killer T (NKT) cells, Stx2-induced pathologies such as weight loss, renal failure, and death were delayed. In WT mice, Stx2-specific selective increase in urinary albumin occurs in later time points, and this was also delayed in NKT cell deficient mice. NKT cell-associated cytokines such as IL-2, IL-4, IFN-γ, and IL-17 were detected in kidney lysates of Stx2-injected WT mice with the peak around 36 h after Stx2 injection. In CD1KO, there was a delay in the kinetics, and increases in these cytokines were observed 60 h post Stx2 injection. These data suggest that NKT cells accelerate Stx2-induced pathology in mouse kidneys. To determine the mechanism by which NKT cells promote Stx2-associated disease, in vitro studies were performed using murine renal cells. We found that murine glomerular endothelial cells and podocytes express functional CD1d molecules and can present exogenous antigen to NKT cells. Moreover, we observed the direct interaction between Stx2 and the receptor Gb3 on the surface of mouse renal cells by 3D STORM-TIRF which provides single molecule imaging. Collectively, these data suggest that Stx2 binds to Gb3 on renal cells and leads to aberrant CD1d-mediated NKT cell activation. Therefore, strategies targeting NKT cells could have a significant impact on Stx2-associated renal pathology in STEC disease.

  11. Model validation of GAMMA code with heat transfer experiment for KO TBM in ITER

    International Nuclear Information System (INIS)

    Yum, Soo Been; Lee, Eo Hwak; Lee, Dong Won; Park, Goon Cherl

    2013-01-01

    Highlights: ► In this study, helium supplying system was constructed. ► Preparation for heat transfer experiment in KO TBM condition using helium supplying system was progressed. ► To get more applicable results, test matrix was made to cover the condition for KO TBM. ► Using CFD code; CFX 11, validation and modification for system code GAMMA was performed. -- Abstract: By considering the requirements for a DEMO-relevant blanket concept, Korea (KO) has proposed a He cooled molten lithium (HCML) test blanket module (TBM) for testing in ITER. A performance analysis for the thermal–hydraulics and a safety analysis for the KO TBM have been carried out using a commercial CFD code, ANSYS-CFX, and a system code, GAMMA (GAs multicomponent mixture analysis), which was developed by the gas cooled reactor in Korea. To verify the codes, a preliminary study was performed by Lee using a single TBM first wall (FW) mock-up made from the same material as the KO TBM, ferritic martensitic steel, using a 6 MPa nitrogen gas loop. The test was performed at pressures of 1.1, 1.9 and 2.9 MPa, and under various ranges of flow rate from 0.0105 to 0.0407 kg/s with a constant wall temperature condition. In the present study, a thermal–hydraulic test was performed with the newly constructed helium supplying system, in which the design pressure and temperature were 9 MPa and 500 °C, respectively. In the experiment, the same mock-up was used, and the test was performed under the conditions of 3 MPa pressure, 30 °C inlet temperature and 70 m/s helium velocity, which are almost same conditions of the KO TBM FW. One side of the mock-up was heated with a constant heat flux of 0.3–0.5 MW/m 2 using a graphite heating system, KoHLT-2 (Korea heat load test facility-2). Because the comparison result between CFX 11 and GAMMA showed a difference tendency, the modification of heat transfer correlation included in GAMMA was performed. And the modified GAMMA showed the strong parity with CFX

  12. Gul'ko, descriptive, and Gruenhage compact spaces

    Czech Academy of Sciences Publication Activity Database

    Fabian, Marián; Montesinos, V.; Zizler, Václav

    2010-01-01

    Roč. 104, č. 2 (2010), s. 201-220 ISSN 1578-7303 R&D Projects: GA AV ČR IAA100190901; GA AV ČR(CZ) IAA100190610 Institutional research plan: CEZ:AV0Z10190503 Keywords : Gul'ko * descriptive * fragmentable compact spaces * network Subject RIV: BA - General Mathematics Impact factor: 0.400, year: 2010 http://link.springer.com/article/10.5052%2FRACSAM.2010.14

  13. Expression of HLA Class II Molecules in Humanized NOD.Rag1KO.IL2RgcKO Mice is Critical for Development and Function of Human T and B Cells

    Science.gov (United States)

    2011-05-17

    class switch was preserved in DRAG mice. The human identity of Ig heavy and Figure 4. Human T cells developed by DRAG mice are functional. At 6 months...HSC-infused DRAG and control mice were immunized with 1 flocculation unit of TT vaccine (Sanofi Pasteur ) by the intramuscular route, and the titers...and CD8 T cells with preserved integrity of both TCR and non-TCR signaling pathways. It has been suggested that low frequency and functional

  14. Long Non-Coding RNA Malat-1 Is Dispensable during Pressure Overload-Induced Cardiac Remodeling and Failure in Mice.

    Directory of Open Access Journals (Sweden)

    Tim Peters

    Full Text Available Long non-coding RNAs (lncRNAs are a class of RNA molecules with diverse regulatory functions during embryonic development, normal life, and disease in higher organisms. However, research on the role of lncRNAs in cardiovascular diseases and in particular heart failure is still in its infancy. The exceptionally well conserved nuclear lncRNA Metastasis associated in lung adenocarcinoma transcript 1 (Malat-1 is a regulator of mRNA splicing and highly expressed in the heart. Malat-1 modulates hypoxia-induced vessel growth, activates ERK/MAPK signaling, and scavenges the anti-hypertrophic microRNA-133. We therefore hypothesized that Malat-1 may act as regulator of cardiac hypertrophy and failure during cardiac pressure overload induced by thoracic aortic constriction (TAC in mice.Absence of Malat-1 did not affect cardiac hypertrophy upon pressure overload: Heart weight to tibia length ratio significantly increased in WT mice (sham: 5.78±0.55, TAC 9.79±1.82 g/mm; p<0.001 but to a similar extend also in Malat-1 knockout (KO mice (sham: 6.21±1.12, TAC 8.91±1.74 g/mm; p<0.01 with no significant difference between genotypes. As expected, TAC significantly reduced left ventricular fractional shortening in WT (sham: 38.81±6.53%, TAC: 23.14±11.99%; p<0.01 but to a comparable degree also in KO mice (sham: 37.01±4.19%, TAC: 25.98±9.75%; p<0.05. Histological hallmarks of myocardial remodeling, such as cardiomyocyte hypertrophy, increased interstitial fibrosis, reduced capillary density, and immune cell infiltration, did not differ significantly between WT and KO mice after TAC. In line, the absence of Malat-1 did not significantly affect angiotensin II-induced cardiac hypertrophy, dysfunction, and overall remodeling. Above that, pressure overload by TAC significantly induced mRNA levels of the hypertrophy marker genes Nppa, Nppb and Acta1, to a similar extend in both genotypes. Alternative splicing of Ndrg2 after TAC was apparent in WT (isoform ratio

  15. Quinine controls body weight gain without affecting food intake in male C57BL6 mice

    Directory of Open Access Journals (Sweden)

    Cettour-Rose Philippe

    2013-02-01

    Full Text Available Abstract Background Quinine is a natural molecule commonly used as a flavouring agent in tonic water. Diet supplementation with quinine leads to decreased body weight and food intake in rats. Quinine is an in vitro inhibitor of Trpm5, a cation channel expressed in taste bud cells, the gastrointestinal tract and pancreas. The objective of this work is to determine the effect of diet supplementation with quinine on body weight and body composition in male mice, to investigate its mechanism of action, and whether the effect is mediated through Trpm5. Results Compared with mice consuming AIN, a regular balanced diet, mice consuming AIN diet supplemented with 0.1% quinine gained less weight (2.89 ± 0.30 g vs 5.39 ± 0.50 g and less fat mass (2.22 ± 0.26 g vs 4.33 ± 0.43 g after 13 weeks of diet, and had lower blood glucose and plasma triglycerides. There was no difference in food intake between the mice consuming quinine supplemented diet and those consuming control diet. Trpm5 knockout mice gained less fat mass than wild-type mice. There was a trend for a diet-genotype interaction for body weight and body weight gain, with the effect of quinine less pronounced in the Trpm5 KO than in the WT background. Faecal weight, energy and lipid contents were higher in quinine fed mice compared to regular AIN fed mice and in Trpm5 KO mice compared to wild type mice. Conclusion Quinine contributes to weight control in male C57BL6 mice without affecting food intake. A partial contribution of Trpm5 to quinine dependent body weight control is suggested.

  16. Cooperation of Rho family proteins Rac1 and Cdc42 in cartilage development and calcified tissue formation.

    Science.gov (United States)

    Ikehata, Mikiko; Yamada, Atsushi; Fujita, Koji; Yoshida, Yuko; Kato, Tadashi; Sakashita, Akiko; Ogata, Hiroaki; Iijima, Takehiko; Kuroda, Masahiko; Chikazu, Daichi; Kamijo, Ryutaro

    2018-04-20

    Rac1 and Cdc42, Rho family low molecular weight G proteins, are intracellular signaling factors that transmit various information from outside to inside cells. Primarily, they are known to control various biological activities mediated by actin cytoskeleton reorganization, such as cell proliferation, differentiation, and apoptosis. In order to investigate the functions of Rac1 and Cdc42 in bone formation, we prepared cartilage-specific double conditional knockout mice, Rac1 fl/fl ; Cdc42 fl/fl ; Col2-Cre (Rac1: Cdc42 dcKO mice), which died just after birth, similar to Cdc42 fl/fl ; Col2-Cre mice (Cdc42 cKO mice). Our findings showed that the long tubule bone in Rac1: Cdc42 dcKO mice was shorter than that in Rac1 fl/fl ; Col2-Cre mice (Rac1 cKO mice) and Cdc42 cKO mice. Abnormal skeleton formation was also observed and disordered columnar formation in the growth plate of the Rac1: Cdc42 dcKO mice was more severe as compared to the Rac1 cKO and Cdc42 cKO mice. Together, these results suggest that Rac1 and Cdc42 have cooperating roles in regulation of bone development. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Endogenous Sonic Hedgehog limits inflammation and angiogenesis in the ischaemic skeletal muscle of mice.

    Science.gov (United States)

    Caradu, Caroline; Guy, Alexandre; James, Chloé; Reynaud, Annabel; Gadeau, Alain-Pierre; Renault, Marie-Ange

    2018-04-01

    Hedgehog (Hh) signalling has been shown to be re-activated in ischaemic tissues and participate in ischaemia-induced angiogenesis. Sonic Hedgehog (Shh) is upregulated by more than 80-fold in the ischaemic skeletal muscle, however its specific role in ischaemia-induced angiogenesis has not yet been fully investigated. The purpose of the present study was to investigate the role of endogenous Shh in ischaemia-induced angiogenesis. To this aim, we used inducible Shh knock-out (KO) mice and unexpectedly found that capillary density was significantly increased in re-generating muscle of Shh deficient mice 5 days after hind limb ischaemia was induced, demonstrating that endogenous Shh does not promote angiogenesis but more likely limits it. Myosin and MyoD expression were equivalent in Shh deficient mice and control mice, indicating that endogenous Shh is not required for ischaemia-induced myogenesis. Additionally, we observed a significant increase in macrophage infiltration in the ischaemic muscle of Shh deficient mice. Our data indicate that this was due to an increase in chemokine expression by myoblasts in the setting of impaired Hh signalling, using tissue specific Smoothened conditional KO mice. The increased macrophage infiltration in mice deficient for Hh signalling in myocytes was associated with increased VEGFA expression and a transiently increased angiogenesis, demonstrating that Shh limits inflammation and angiogenesis indirectly by signalling to myocytes. Although ectopic administration of Shh has previously been shown to promote ischaemia-induced angiogenesis, the present study reveals that endogenous Shh does not promote ischaemia-induced angiogenesis. On the contrary, the absence of Shh leads to aberrant ischaemic tissue inflammation and a transiently increased angiogenesis.

  18. Improved motor performance in Dyt1 ΔGAG heterozygous knock-in mice by cerebellar Purkinje-cell specific Dyt1 conditional knocking-out.

    Science.gov (United States)

    Yokoi, Fumiaki; Dang, Mai Tu; Li, Yuqing

    2012-05-01

    Early-onset generalized torsion dystonia (dystonia 1) is an inherited movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Most patients have a 3-base pair deletion (ΔGAG) in one allele of DYT1, corresponding to a loss of a glutamic acid residue (ΔE) in the C-terminal region of the protein. Functional alterations in basal ganglia circuits and the cerebellum have been reported in dystonia. Pharmacological manipulations or mutations in genes that result in functional alterations of the cerebellum have been reported to have dystonic symptoms and have been used as phenotypic rodent models. Additionally, structural lesions in the abnormal cerebellar circuits, such as cerebellectomy, have therapeutic effects in these models. A previous study has shown that the Dyt1 ΔGAG heterozygous knock-in (KI) mice exhibit motor deficits in the beam-walking test. Both Dyt1 ΔGAG heterozygous knock-in (KI) and Dyt1 Purkinje cell-specific knockout (Dyt1 pKO) mice exhibit dendritic alterations of cerebellar Purkinje cells. Here, Dyt1 pKO mice exhibited significantly less slip numbers in the beam-walking test, suggesting better motor performance than control littermates, and normal gait. Furthermore, Dyt1 ΔGAG KI/Dyt1 pKO double mutant mice exhibited significantly lower numbers of slips than Dyt1 ΔGAG heterozygous KI mice, suggesting Purkinje-cell specific knockout of Dyt1 wild-type (WT) allele in Dyt1 ΔGAG heterozygous KI mice rescued the motor deficits. The results suggest that molecular lesions of torsinA in Purkinje cells by gene therapy or intervening in the signaling pathway downstream of the cerebellar Purkinje cells may rescue motor symptoms in dystonia 1. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Giardia muris infection in mice is associated with a protective interleukin 17A response and induction of peroxisome proliferator-activated receptor alpha.

    Science.gov (United States)

    Dreesen, Leentje; De Bosscher, Karolien; Grit, Grietje; Staels, Bart; Lubberts, Erik; Bauge, Eric; Geldhof, Peter

    2014-08-01

    The protozoan parasite Giardia duodenalis (Giardia lamblia) is one of the most commonly found intestinal pathogens in mammals, including humans. In the current study, a Giardia muris-mouse model was used to analyze cytokine transcription patterns and histological changes in intestinal tissue at different time points during infection in C57BL/6 mice. Since earlier work revealed the upregulation of peroxisome proliferator-activated receptors (PPARs) in Giardia-infected calves, a second aim was to investigate the potential activation of PPARs in the intestines of infected mice. The most important observation in all mice was a strong upregulation of il17a starting around 1 week postinfection. The significance of interleukin 17A (IL-17A) in orchestrating a protective immune response was further demonstrated in an infection trial or experiment using IL-17 receptor A (IL-17RA) knockout (KO) mice: whereas in wild-type (WT) mice, cyst secretion dropped significantly after 3 weeks of infection, the IL-17RA KO mice were unable to clear the infection. Analysis of the intestinal response further indicated peroxisome proliferator-activated receptor alpha (PPARα) induction soon after the initial contact with the parasite, as characterized by the transcriptional upregulation of ppara itself and several downstream target genes such as pltp and cpt1. Overall, PPARα did not seem to have any influence on the immune response against G. muris, since PPARα KO animals expressed il-17a and could clear the infection similar to WT controls. In conclusion, this study shows for the first time the importance of IL-17 production in the clearance of a G. muris infection together with an early induction of PPARα. The effect of the latter, however, is still unclear. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Hypocretin-2 saporin lesions of the ventrolateral periaquaductal gray (vlPAG increase REM sleep in hypocretin knockout mice.

    Directory of Open Access Journals (Sweden)

    Satvinder Kaur

    2009-07-01

    Full Text Available Ten years ago the sleep disorder narcolepsy was linked to the neuropeptide hypocretin (HCRT, also known as orexin. This disorder is characterized by excessive day time sleepiness, inappropriate triggering of rapid-eye movement (REM sleep and cataplexy, which is a sudden loss of muscle tone during waking. It is still not known how HCRT regulates REM sleep or muscle tone since HCRT neurons are localized only in the lateral hypothalamus while REM sleep and muscle atonia are generated from the brainstem. To identify a potential neuronal circuit, the neurotoxin hypocretin-2-saporin (HCRT2-SAP was used to lesion neurons in the ventral lateral periaquaductal gray (vlPAG. The first experiment utilized hypocretin knock-out (HCRT-ko mice with the expectation that deletion of both HCRT and its target neurons would exacerbate narcoleptic symptoms. Indeed, HCRT-ko mice (n = 8 given the neurotoxin HCRT2-SAP (16.5 ng/23nl/sec each side in the vlPAG had levels of REM sleep and sleep fragmentation that were considerably higher compared to HCRT-ko given saline (+39%; n = 7 or wildtype mice (+177%; n = 9. However, cataplexy attacks did not increase, nor were levels of wake or non-REM sleep changed. Experiment 2 determined the effects in mice where HCRT was present but the downstream target neurons in the vlPAG were deleted by the neurotoxin. This experiment utilized an FVB-transgenic strain of mice where eGFP identifies GABA neurons. We verified this and also determined that eGFP neurons were immunopositive for the HCRT-2 receptor. vlPAG lesions in these mice increased REM sleep (+79% versus saline controls and it was significantly correlated (r = 0.89 with loss of eGFP neurons. These results identify the vlPAG as one site that loses its inhibitory control over REM sleep, but does not cause cataplexy, as a result of hypocretin deficiency.

  1. P2Y2 receptor knock-out mice display normal NaCl absorption in medullary thick ascending limb

    Directory of Open Access Journals (Sweden)

    Rita Delgado Marques

    2013-10-01

    Full Text Available Local purinergic signals modulate renal tubular transport. Acute activation of renal epithelial P2 receptors causes inhibition of epithelial transport and thus, should favor increased water and salt excretion by the kidney. So far only a few studies have addressed the effects of extracellular nucleotides on ion transport in the thick ascending limb. In the medullary thick ascending limb (mTAL, basolateral P2X receptors markedly (~25% inhibit NaCl absorption. Although this segment does express both apical and basolateral P2Y2 receptors, acute activation of the basolateral P2Y2 receptors had no apparent effect on transepithelial ion transport. Here we studied, if the absence of the P2Y2 receptor causes chronic alterations in mTAL NaCl absorption by comparing basal and AVP-stimulated transepithelial transport rates. We used perfused mouse mTALs to electrically measure NaCl absorption in juvenile (35 days male mice. Using microelectrodes, we determined the transepithelial voltage (Vte and the transepithelial resistance (Rte and thus, transepithelial NaCl absorption (equivalent short circuit current, I’sc.We find that mTALs from adult wild type (WT mice have significantly lower NaCl absorption rates when compared to mTALs from juvenile WT mice. This could be attributed to significantly higher Rte values in mTALs from adult WT mice. This pattern was not observed in mTALs from P2Y2 receptor knockout (KO mice. In addition, adult P2Y2 receptor KO mTALs have significantly lower Vte values compared to the juvenile. No difference in absolute I´sc was observed when comparing mTALs from WT and KO mice. AVP stimulated the mTALs to similar increases of NaCl absorption irrespective of the absence of the P2Y2 receptor. No difference was observed in the medullary expression level of NKCC2 in between the genotypes.These data indicate that the lack of P2Y2 receptors does not cause substantial differences in resting and AVP-stimulated NaCl absorption in

  2. Defective bone formation and anabolic response to exogenous estrogen in mice with targeted disruption of endothelial nitric oxide synthase.

    Science.gov (United States)

    Armour, K E; Armour, K J; Gallagher, M E; Gödecke, A; Helfrich, M H; Reid, D M; Ralston, S H

    2001-02-01

    Nitric oxide (NO) is a pleiotropic signaling molecule that is produced by bone cells constitutively and in response to diverse stimuli such as proinflammatory cytokines, mechanical strain, and sex hormones. Endothelial nitric oxide synthase (eNOS) is the predominant NOS isoform expressed in bone, but its physiological role in regulating bone metabolism remains unclear. Here we studied various aspects of bone metabolism in female mice with targeted disruption of the eNOS gene. Mice with eNOS deficiency (eNOS KO) had reduced bone mineral density, and cortical thinning when compared with WT controls and histomorphometric analysis of bone revealed profound abnormalities of bone formation, with reduced osteoblast numbers, surfaces and mineral apposition rate. Studies in vitro showed that osteoblasts derived from eNOS KO mice had reduced rates of growth when compared with WT and were less well differentiated as reflected by lower levels of alkaline phosphatase activity. Mice with eNOS deficiency lost bone normally following ovariectomy but exhibited a significantly blunted anabolic response to high dose exogenous estrogen. We conclude that the eNOS pathway plays an essential role in regulating bone mass and bone turnover by modulating osteoblast function.

  3. TRPV1 deletion exacerbates hyperthermic seizures in an age-dependent manner in mice.

    Science.gov (United States)

    Barrett, Karlene T; Wilson, Richard J A; Scantlebury, Morris H

    2016-12-01

    Febrile seizures (FS) are the most common seizure disorder to affect children. Although there is mounting evidence to support that FS occur when children have fever-induced hyperventilation leading to respiratory alkalosis, the underlying mechanisms of hyperthermia-induced hyperventilation and links to FS remain poorly understood. As transient receptor potential vanilloid-1 (TRPV1) receptors are heat-sensitive, play an important role in adult thermoregulation and modulate respiratory chemoreceptors, we hypothesize that TRPV1 activation is important for hyperthermia-induced hyperventilation leading to respiratory alkalosis and decreased FS thresholds, and consequently, TRPV1 KO mice will be relatively protected from hyperthermic seizures. To test our hypothesis we subjected postnatal (P) day 8-20 TRPV1 KO and C57BL/6 control mice to heated dry air. Seizure threshold temperature, latency and the rate of rise of body temperature during hyperthermia were assessed. At ages where differences in seizure thresholds were identified, head-out plethysmography was used to assess breathing and the rate of expired CO 2 in response to hyperthermia, to determine if the changes in seizure thresholds were related to respiratory alkalosis. Paradoxically, we observed a pro-convulsant effect of TRPV1 deletion (∼4min decrease in seizure latency), and increased ventilation in response to hyperthermia in TRPV1 KO compared to control mice at P20. This pro-convulsant effect of TRPV1 absence was not associated with an increased rate of expired CO 2 , however, these mice had a more rapid rise in body temperature following exposure to hyperthermia than controls, and the expected linear relationship between body weight and seizure latency was absent. Based on these findings, we conclude that deletion of the TRPV1 receptor prevents reduction in hyperthermic seizure susceptibility in older mouse pups, via a mechanism that is independent of hyperthermia-induced respiratory alkalosis, but

  4. Perbandingan Ko-kultur 2D dan 3D dengan Metode Hanging Drop untuk Menghasilkan Micro-environment yang Lebih Relevan Secara Klinis

    Directory of Open Access Journals (Sweden)

    Radiana Dhewayani Antarianto

    2017-09-01

    Full Text Available Ko-kultur sel 2 dimensi (2D kurang menyerupai micro-environment seperti in vivo sedangkan ko-kultur 3 dimensi (3D membentuk mikromassa yang lebih mirip micro-environment in vivo sehingga bermanfaat dalam penelitian biologi dasar. Penelitian ini membandingkan ko-kultur 2D dan 3D sel punca serta sel stelata hepatik dengan metode hanging drop untuk menilai morfologi sel dan pembentukan sferoid dari mikromassa yang terbentuk. Studi in vitro ini dilakukan di Pusat Virologi dan Kanker Patobiologi (PRVKP UI dan laboratorium histologi FKUI pada bulan September 2015 sampai Oktober 2016 menggunakan sel punca yang diisolasi dari darah tali pusat manusia dan sel lestari LX2 (stelata hepatik manusia. Darah tali pusat disortir dengan MACS CD34 dan dianalisis flowcytometry. Ko-kultur sel punca sumsum tulang atau darah tali pusat dan LX2 dilakukan dengan metode hanging drop untuk ko-kultur 2D dan ko-kultur 3D. Triplikasi eksperimen dilakukan untuk tiap set ko-kultur. Hasilnya menunjukkan terdapat perbedaan morfologi ko-kultur 2D dan 3D hanging drop dibandingkan monokultur. Di ko-kultur 2D terdapat mikromassa dan di monokultur 2D tidak terbentuk mikromassa. Di ko-kultur 3D hanging drop, terdapat sferoid yang lebih kecil dibandingkan monokultur 3D hanging drop. Morfologi sel ko-kultur 2D dan 3D dengan metode hanging drop dibandingkan monokultur menunjukkan perubahan fenotip sel-sel yang tergabung dalam mikromassa. Normal 0 false false false false IN X-NONE X-NONE Normal 0 false false false false IN X-NONE X-NONE Influence of sex and genetic background on anxiety-related and stress-induced behaviour of prodynorphin-deficient mice.

    Directory of Open Access Journals (Sweden)

    Iris Kastenberger

    Full Text Available The role of dynorphin/kappa opioid receptors in epilepsy and addiction are well accepted, but their function in emotional control is not yet fully understood. Data obtained from different strains of prodynorphin (Pdyn- and kappa opioid receptor (KOP-deficient mice do not provide a consistent picture of the functions of Dyn/KOP in anxiety, suggesting the influence of testing conditions and/or genetic background. Therefore, we investigated the behaviour and neurochemistry of male and female Pdyn KO mice on the balb/c and C57Bl/6N background. Consistent with our results obtained from male mice on the C57bl/6N background, we observed a less anxious phenotype in the elevated plus maze, open-field and light-dark test in male mice on the balb/c background. Female mice on the balb/c background also displayed less anxiety like behaviour; however these data reflect high trait anxiety and inter-individual differences. In contrast, female mice on the C57Bl/6N background displayed low trait anxiety and a paradigm-dependent reduction of anxiety. No differences were observed in the forced swim test, while balb/c Pdyn KO mice displayed prolonged immobility in the tail suspension test. In line with our previous results, we observed reduced CRH mRNA in the central amygdala in all groups of mice. In contrast, the recently observed CRH mRNA reduction in the hypothalamic paraventricular nucleus appears restricted to male, but not female mice. Our data support previous data suggesting a pronounced impact of endogenous prodynorphin-derived peptides on anxiety. Moreover, our data support the idea that the less anxious phenotype manifests only at elevated stress levels.

  5. Heavy metals in the air between Krompachy and Košice

    Directory of Open Access Journals (Sweden)

    Slanèo Pavel

    2000-09-01

    Full Text Available The metallurgic activity of Kovohuty Krompachy (Non-ferrous Metal Works in Krompachy in the past left its visible devastation sign on the nature. It was evident that the dispersion of some elements, especially Cu, Pb, Sb and As, in the air was caused by the activity of metal works and their point sources. The properties of these metals may cause changes in health of biological objects as a result of long-term effect on the natural or communal spheres. After the treatment activities in ŽB Rudòany enterprise ended, Kovohuty Krompachy bought a treatment concentrate from ŽB Rudòany, which was freed from mercury. This concentrate still contained a lot of Cu, Sb, As, Bi and it should have been processed in Kovohuty to the so called black copper. The Municipality of the city of Košice, its department of the environment, expressed its apprehension of the possibility that this processing could cause that heavy metals may be spread in a direction of prevailing winds, i.e. south-east direction, where the city of Košice is situated. This was a reason for a task to monitor movement and occurrence of heavy metals on the route between Krompachy and Košice, as well as to monitor the share of individual sources of pollution on the quality of air in Košice urban agglomeration.Two methods applied were chosen for research purposes. The dust deposition was monitored, i.e. dust that sediments from air, its value is stated in g.m-2. 30 days-1. Another method used was the so called aspiration dust content, when air is sucked through a suitable filter and the value is stated in mg.m-3. In the given locality, there were 15 newly built or renovated sedimentation stations, where samples of sedimented dust were taken by the end of 1999 in six stages. They are marked by letters A to F. The samples of dust were analysed by atomic absorption spectrophotometry. The presented paper shows the results of phases A and D, or B and D.Aspiration method was used for fine

  6. Aromatase deficiency causes altered expression of molecules critical for calcium reabsorption in the kidneys of female mice *.

    NARCIS (Netherlands)

    Oz, O.K.; Hajibeigi, A.; Howard, K.; Cummins, C.L.; Abel, M. van; Bindels, R.J.M.; Word, R.A.; Kuro-o, M.; Pak, C.Y.; Zerwekh, J.E.

    2007-01-01

    Kidney stones increase after menopause, suggesting a role for estrogen deficiency. ArKO mice have hypercalciuria and lower levels of calcium transport proteins, whereas levels of the klotho protein are elevated. Thus, estrogen deficiency is sufficient to cause altered renal calcium handling.

  7. Anti-Trichomonas vaginalis properties of the oil of Amomum tsao-ko and its major component, geraniol.

    Science.gov (United States)

    Dai, Min; Peng, Cheng; Peng, Fu; Xie, Chengbin; Wang, Pinjia; Sun, Fenghui

    2016-01-01

    Trichomonosis, caused by the flagellate protozoan Trichomonas vaginalis, is the most common non-viral sexually transmitted disease (STD) and 5-nitroimidazole drugs are used for the treatment. However, a growing number of T. vaginalis isolates are resistant to these drugs, which make it becomes an urgent issue. The current study was designed to evaluate the anti-T. vaginalis activity of the essential oil from A. tsao-ko used in traditional Chinese medicine and as a spice and its main component, geraniol. The anti-T. vaginalis activities of A. tsao-ko essential oil and geraniol were evaluated by the minimum lethal concentration (MLC) and 50% inhibitory concentration (IC50) in vitro. The morphological changes of T. vaginalis were observed by transmission electron microscopy (TEM). Additionally, sub-MLC concentration treatment with sub-MLC A. tsao-ko essential oil and geraniol was also performed. This study shows that MLC/IC50 of A. tsao-ko essential oil was 44.97 µg/ml/22.49 µg/ml for T. vaginalis isolate Tv1, and 89.93 µg/ml/44.97 µg/ml for T. vaginalis isolate Tv2. Those of geraniol were 342.96 µg/ml/171.48 µg/ml, respectively. After A. tsao-ko essential oil or geraniol treatment, obvious similar morphological changes of T. vaginalis were observed by TEM: the nuclear membrane was damaged, nuclei were dissolved, and the chromatin was accumulated; in the cytoplasm, numerous vacuoles appeared, rough endoplasmic reticulum dilated, the number of ribosomes were reduced, organelles disintegrated, the cell membrane was partially damaged, with cytoplasmic leakage, and cell disintegration was observed. The action time did not increase the effect of A. tsao-ko essential oil or geraniol against T. vaginalis, as no significant difference was observed after sub-MLC concentration treatment for 1, 3, and 5 h with A. tsao-ko essential oil and geraniol. The study describes the first report on the activity and morphological changes of A. tsao-ko essential oil and

  8. Magnetic properties of the alkali metal ozonides KO3, RbO3, and CsO3

    International Nuclear Information System (INIS)

    Lueken, H.; Deussen, M.; Jansen, M.; Hesse, W.; Schnick, W.

    1987-01-01

    The magnetic susceptibilities of KO 3 , RbO 3 and CsO 3 have been determined between 3.6 and 250 K. Above 50 K Curie-Weiss behaviour is observed. Magnetic moments of 1.74 μ B (KO 3 , CsO 3 ) and 1.80 μ B (RbO 3 ) calculated from the Curie-Weiss straight lines correspond with spin-only moments expected for isolated O 3 - species with one unpaired electron. The Weiss constants Θ are -34 K (KO 3 ), -23 K (RbO 3 ) and -10 K (CsO 3 ). The low temperature behaviour of KO 3 and RbO 3 (broad maxima in susceptibility at 20 and 17 K, respectively, and minima at 6 K) is typical of systems which show with decreasing temperature low-dimensional antiferromagnetic and three-dimensional magnetic ordering. Inspecting the intermolecular distances between oxygen atoms the pathways of exchange interactions are discussed. (author)

  9. Paluch koślawy w stopie reumatycznej – leczenie operacyjne i rehabilitacja

    Directory of Open Access Journals (Sweden)

    Agnieszka Prusinowska

    2011-04-01

    Full Text Available Paluch koślawy jest deformacją stopy często występującą u chorychreumatycznych (ryc. 1. W znacznym stopniu zaburza funkcjępodporową w czasie chodu oraz czynności związane z większymdynamicznym obciążeniem stopy (bieganie, skakanie. Deformacjata nasila ból, który wynika również z niedopasowania obuwia.Usprawnianie chorych z rozpoznaniem reumatoidalnego zapaleniastawów (RZS zawsze jest uzależnione od aktualnego stanu funkcjonalnegopacjenta i przeprowadzonego zabiegu operacyjnego.W artykule opisano mechanizm powstawania typowych zniekształceńprzodostopia w przebiegu RZS oraz przegląd technikoperacyjnych stosowanych w leczeniu palucha koślawego (ryc. 2.Autorzy skoncentrowali się na przedstawieniu usprawniania pokorekcji palucha koślawego z wykorzystaniem zarówno metod stosowanychw celu zmniejszenia obrzęków pooperacyjnych, jak i stabilizacjiskorygowanego chirurgicznie stawu. Do metod tych zaliczasię zarówno zabiegi z zakresu fizykoterapii, jak i ćwiczenia czynneze wsparciem kinesiotapingu (ryc. 3.

  10. Deletion of SHP-2 in mesenchymal stem cells causes growth retardation, limb and chest deformity, and calvarial defects in mice

    Directory of Open Access Journals (Sweden)

    Philip E. Lapinski

    2013-11-01

    In mice, induced global disruption of the Ptpn11 gene, which encodes the SHP-2 tyrosine phosphatase, results in severe skeletal abnormalities. To understand the extent to which skeletal abnormalities can be attributed to perturbation of SHP-2 function in bone-forming osteoblasts and chondrocytes, we generated mice in which disruption of Ptpn11 is restricted to mesenchymal stem cells (MSCs and their progeny, which include both cell types. MSC-lineage-specific SHP-2 knockout (MSC SHP-2 KO mice exhibited postnatal growth retardation, limb and chest deformity, and calvarial defects. These skeletal abnormalities were associated with an absence of mature osteoblasts and massive chondrodysplasia with a vast increase in the number of terminally differentiated hypertrophic chondrocytes in affected bones. Activation of mitogen activated protein kinases (MAPKs and protein kinase B (PKB; also known as AKT was impaired in bone-forming cells of MSC SHP-2 KO mice, which provides an explanation for the skeletal defects that developed. These findings reveal a cell-autonomous role for SHP-2 in bone-forming cells in mice in the regulation of skeletal development. The results add to our understanding of the pathophysiology of skeletal abnormalities observed in humans with germline mutations in the PTPN11 gene (e.g. Noonan syndrome and LEOPARD syndrome.

  11. Novel, high incidence exercise-induced muscle bleeding model in hemophilia B mice

    DEFF Research Database (Denmark)

    Tranholm, M.; Kristensen, Annemarie Thuri; Broberg, M. L.

    2015-01-01

    INTRODUCTION: Muscle hematomas are the second most common complication of hemophilia and insufficient treatment may result in serious and even life-threatening complications. Hemophilic dogs and rats do experience spontaneous muscle bleeding, but currently, no experimental animal model is available...... specifically investigating spontaneous muscle bleeds in a hemophilic setting. AIM: The objective of this study was to develop a model of spontaneous muscle bleeds in hemophilia B mice. We hypothesized that treadmill exercise would induce muscle bleeds in hemophilia B mice but not in normal non-hemophilic mice...... and that treatment with recombinant factor IX (rFIX) before treadmill exercise could prevent the occurrence of pathology. METHODS: A total of 203 mice (123 F9-KO and 80 C57BL/6NTac) were included in three separate studies: (i) the model implementation study investigating the bleeding pattern in hemophilia B mice...

  12. PEPCK-C reexpression in the liver counters neonatal hypoglycemia in Pck1 del/del mice, unmasking role in non-gluconeogenic tissues.

    Science.gov (United States)

    Semakova, Jana; Hyroššová, Petra; Méndez-Lucas, Andrés; Cutz, Ernest; Bermudez, Jordi; Burgess, Shawn; Alcántara, Soledad; Perales, José C

    2017-02-01

    Whole body cytosolic phosphoenolpyruvate carboxykinase knockout (PEPCK-C KO) mice die early after birth with profound hypoglycemia therefore masking the role of PEPCK-C in adult, non-gluconeogenic tissues where it is expressed. To investigate whether PEPCK-C deletion in the liver was critically responsible for the hypoglycemic phenotype, we reexpress this enzyme in the liver of PEPCK-C KO pups by early postnatal administration of PEPCK-C-expressing adenovirus. This maneuver was sufficient to partially rescue hypoglycemia and allow the pups to survive and identifies the liver as a critical organ, and hypoglycemia as the critical pathomechanism, leading to early postnatal death in the whole-body PEPCK-C knockout mice. Pathology assessment of survivors also suggest a possible role for PEPCK-C in lung maturation and muscle metabolism.

  13. Global IP6K1 deletion enhances temperature modulated energy expenditure which reduces carbohydrate and fat induced weight gain

    Directory of Open Access Journals (Sweden)

    Qingzhang Zhu

    2017-01-01

    Full Text Available Objective: IP6 kinases (IP6Ks regulate cell metabolism and survival. Mice with global (IP6K1-KO or adipocyte-specific (AdKO deletion of IP6K1 are protected from diet induced obesity (DIO at ambient (23 °C temperature. AdKO mice are lean primarily due to increased AMPK mediated thermogenic energy expenditure (EE. Thus, at thermoneutral (30 °C temperature, high fat diet (HFD-fed AdKO mice expend energy and gain body weight, similar to control mice. IP6K1 is ubiquitously expressed; thus, it is critical to determine to what extent the lean phenotype of global IP6K1-KO mice depends on environmental temperature. Furthermore, it is not known whether IP6K1 regulates AMPK mediated EE in cells, which do not express UCP1. Methods: Q-NMR, GTT, food intake, EE, QRT-PCR, histology, mitochondrial oxygen consumption rate (OCR, fatty acid metabolism assays, and immunoblot studies were conducted in IP6K1-KO and WT mice or cells. Results: Global IP6K1 deletion mediated enhancement in EE is impaired albeit not abolished at 30 °C. As a result, IP6K1-KO mice are protected from DIO, insulin resistance, and fatty liver even at 30 °C. Like AdKO, IP6K1-KO mice display enhanced adipose tissue browning. However, unlike AdKO mice, thermoneutrality only partly abolishes browning in IP6K1-KO mice. Cold (5 °C exposure enhances carbohydrate expenditure, whereas 23 °C and 30 °C promote fat oxidation in HFD-KO mice. Furthermore, IP6K1 deletion diminishes cellular fat accumulation via activation of the AMPK signaling pathway. Conclusions: Global deletion of IP6K1 ameliorates obesity and insulin resistance irrespective of the environmental temperature conditions, which strengthens its validity as an anti-obesity target. Keywords: IP6K, Obesity, Diabetes, Energy expenditure, β-oxidation

  14. Lack of Pannexin 1 Alters Synaptic GluN2 Subunit Composition and Spatial Reversal Learning in Mice.

    Science.gov (United States)

    Gajardo, Ivana; Salazar, Claudia S; Lopez-Espíndola, Daniela; Estay, Carolina; Flores-Muñoz, Carolina; Elgueta, Claudio; Gonzalez-Jamett, Arlek M; Martínez, Agustín D; Muñoz, Pablo; Ardiles, Álvaro O

    2018-01-01

    Long-term potentiation (LTP) and long-term depression (LTD) are two forms of synaptic plasticity that have been considered as the cellular substrate of memory formation. Although LTP has received considerable more attention, recent evidences indicate that LTD plays also important roles in the acquisition and storage of novel information in the brain. Pannexin 1 (Panx1) is a membrane protein that forms non-selective channels which have been shown to modulate the induction of hippocampal synaptic plasticity. Animals lacking Panx1 or blockade of Pannexin 1 channels precludes the induction of LTD and facilitates LTP. To evaluate if the absence of Panx1 also affects the acquisition of rapidly changing information we trained Panx1 knockout (KO) mice and wild type (WT) littermates in a visual and hidden version of the Morris water maze (MWM). We found that KO mice find the hidden platform similarly although slightly quicker than WT animals, nonetheless, when the hidden platform was located in the opposite quadrant (OQ) to the previous learned location, KO mice spent significantly more time in the previous quadrant than in the new location indicating that the absence of Panx1 affects the reversion of a previously acquired spatial memory. Consistently, we observed changes in the content of synaptic proteins critical to LTD, such as GluN2 subunits of N-methyl-D-aspartate receptors (NMDARs), which changed their contribution to synaptic plasticity in conditions of Panx1 ablation. Our findings give further support to the role of Panx1 channels on the modulation of synaptic plasticity induction, learning and memory processes.

  15. TWEAK Receptor Deficiency Has Opposite Effects on Female and Male Mice Subjected to Neonatal Hypoxia–Ischemia

    Directory of Open Access Journals (Sweden)

    Anton Kichev

    2018-04-01

    Full Text Available Tumor necrosis factor (TNF-like weak inducer of apoptosis (TWEAK is a multifunctional cytokine member of the TNF family. TWEAK binds to its only known receptor, Fn14, enabling it to activate downstream signaling processes in response to tissue injury. The aim of this study was to investigate the role of TWEAK signaling in neonatal hypoxia–ischemia (HI. We found that after neonatal HI, both TWEAK and Fn14 expression were increased to a greater extent in male compared with female mice. To assess the role of TWEAK signaling after HI, the size of the injury was measured in neonatal mice genetically deficient in Fn14 and compared with their wild-type and heterozygote littermates. A significant sex difference in the Fn14 knockout (KO animals was observed. Fn14 gene KO was beneficial in females; conversely, reducing Fn14 expression exacerbated the brain injury in male mice. Our findings indicate that the TWEAK/Fn14 pathway is critical for development of hypoxic–ischemic brain injury in immature animals. However, as the responses are different in males and females, clinical implementation depends on development of sex-specific therapies.

  16. Öko tähendab edu / Liis Kängsepp

    Index Scriptorium Estoniae

    Kängsepp, Liis, 1981-

    2008-01-01

    Kaubandusturul on populaarsust kogumas mahe- ja ausalt toodetud (fair trade) kaubad. Vt. samas: Mis on mahetoit; Fair Trade; Roheline liikumine: tarbi vähem!; Mätas: pane öko peale ja müüb!; Treener Kristel Tamm jõudis ökoni oma lapsele head pakkuda tahtes

  17. A comparison of osteoclast-rich and osteoclast-poor osteopetrosis in adult mice sheds light on the role of the osteoclast in coupling bone resorption and bone formation

    DEFF Research Database (Denmark)

    Thudium, Christian S; Moscatelli, Ilana; Flores, Carmen

    2014-01-01

    that osteoclasts are important for regulating osteoblast activity. To illuminate the role of the osteoclast in controlling bone remodeling, we transplanted irradiated skeletally mature 3-month old wild-type mice with hematopoietic stem cells (HSCs) to generate either an osteoclast-rich or osteoclast-poor adult......Osteopetrosis due to lack of acid secretion by osteoclasts is characterized by abolished bone resorption, increased osteoclast numbers, but normal or even increased bone formation. In contrast, osteoclast-poor osteopetrosis appears to have less osteoblasts and reduced bone formation, indicating...... osteopetrosis model. We used fetal liver HSCs from (1) oc/oc mice, (2) RANK KO mice, and (3) compared these to wt control cells. TRAP5b activity, a marker of osteoclast number and size, was increased in the oc/oc recipients, while a significant reduction was seen in the RANK KO recipients. In contrast, the bone...

  18. Promjene na koži lica inducirane UV-zračenjem

    OpenAIRE

    Bojčić, Zrinka

    2016-01-01

    Promjene inducirane UV zračenjem obuhvaćaju različite kliničke entitete. Zbog svoje biološke aktivnosti i sposobnosti da induciraju oštećenje DNK, UV-B zrake najvažniji su etiološki čimbenik u nastanku opeklina i karcinoma kože. Iako je UV-A zračenje glavna komponenta ultraljubičastog zračenja, manje je biološki aktivna od UV-B. UV-A zračenje ima posebno važnu ulogu u fotostarenju kože. Klinička slika akutnih promjena induciranih UV zračenjem ovisi o količini energije apsorbirane u jednoj ...

  19. Light-dependant intraretinal ion regulation by melanopsin in young awake and free moving mice evaluated with manganese-enhanced MRI

    OpenAIRE

    Berkowitz, Bruce A.; Roberts, Robin; Bissig, David

    2010-01-01

    Purpose To test the hypothesis that in young, functionally blind mice, light-dependent intraretinal ion regulation occurs via melanopsin. Methods Postnatal day (P) 7 wild type (WT, C57Bl/6) and melanopsin knockout (KO, opn4−/−, B6129) mice were light or dark adapted. Awake and freely moving animals were injected intraperitoneally (ip) with MnCl2. Four hours later, the mice in both groups were anesthetized and studied with manganese-enhanced MRI (MEMRI) to measure the extent of intraretinal up...

  1. Molecular characterization and development of Sarcocystis speeri sarcocysts in gamma interferon gene knockout mice.

    Science.gov (United States)

    Dubey, J P; Verma, S K; Dunams, D; Calero-Bernal, R; Rosenthal, B M

    2015-11-01

    The North American opossum (Didelphis virginiana) is the definitive host for at least three named species of Sarcocystis: Sarcocystis falcatula, Sarcocystis neurona and Sarcocystis speeri. The South American opossums (Didelphis albiventris, Didelphis marsupialis and Didelphis aurita) are definitive hosts for S. falcatula and S. lindsayi. The sporocysts of these Sarcocystis species are similar morphologically. They are also not easily distinguished genetically because of the difficulties of DNA extraction from sporocysts and availability of distinguishing genetic markers. Some of these species can be distinguished by bioassay; S. neurona and S. speeri are infective to gamma interferon gene knockout (KO) mice, but not to budgerigars (Melopsittacus undulatus); whereas S. falcatula and S. lindsayi are infective to budgerigars but not to KO mice. The natural intermediate host of S. speeri is unknown. In the present study, development of sarcocysts of S. speeri in the KO mice is described. Sarcocysts were first seen at 12 days post-inoculation (p.i.), and they became macroscopic (up to 4 mm long) by 25 days p.i. The structure of the sarcocyst wall did not change from the time bradyzoites had formed at 50-220 days p.i. Sarcocysts contained unique villar protrusions, 'type 38'. The polymerase chain reaction amplifications and sequences analysis of three nuclear loci (18S rRNA, 28S rRNA and ITS1) and two mitochondrial loci (cox1 and cytb) of S. speeri isolate from an Argentinean opossum (D. albiventris) confirmed its membership among species of Sarcocystis and indicated an especially close relationship to another parasite in this genus that employs opossums as its definitive host, S. neurona. These results should be useful in finding natural intermediate host of S. speeri.

  2. Interferon regulatory factor-7 modulates experimental autoimmune encephalomyelitis in mice

    DEFF Research Database (Denmark)

    Salem, Mohammad; Mony, Jyothi T; Lobner, Morten

    2011-01-01

    . Furthermore, IRF7-deficient mice developed more severe disease. Flow cytometric analysis showed that the extent of leukocyte infiltration into the CNS was higher in IRF7-deficient mice with significantly higher number of infiltrating macrophages and T cells, and the distribution of infiltrates within......ABSTRACT: BACKGROUND: Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) with unknown etiology. Interferon-beta (IFN-beta), a member of the type I IFN family, is used as a therapeutic for MS and the IFN signaling pathway is implicated in MS susceptibility...... of MS-like disease in mice. Methods The role of IRF7 in development of EAE was studied by immunizing IRF7-KO and C57BL/6 (WT) mice with myelin oligodendrocyte glycoprotein using a standard protocol for the induction of EAE. We measured leukocyte infiltration and localization in the CNS using flow...

  3. Experimental demyelination and axonal loss are reduced in MicroRNA-146a deficient mice

    DEFF Research Database (Denmark)

    Martin, Nellie A.; Molnar, Viktor; Szilagyi, Gabor T.

    2018-01-01

    Background: The cuprizone (CPZ) model of multiple sclerosis (MS) was used to identify microRNAs (miRNAs) related to in vivo de- and remyelination. We further investigated the role of miR-146a in miR-146a-deficient (KO) mice: this miRNA is differentially expressed in MS lesions and promotes differ...

  4. Chronic minocycline treatment improves social recognition memory in adult male Fmr1 knockout mice.

    Science.gov (United States)

    Yau, Suk Yu; Chiu, Christine; Vetrici, Mariana; Christie, Brian R

    2016-10-01

    Fragile X syndrome (FXS) is caused by a mutation in the Fmr1 gene that leads to silencing of the gene and a loss of its gene product, Fragile X mental retardation protein (FMRP). Some of the key behavioral phenotypes for FXS include abnormal social anxiety and sociability. Here we show that Fmr1 knock-out (KO) mice exhibit impaired social recognition when presented with a novel mouse, and they display normal social interactions in other sociability tests. Administering minocycline to Fmr1 KO mice throughout critical stages of neural development improved social recognition memory in the novel mouse recognition task. To determine if synaptic changes in the prefrontal cortex (PFC) could have played a role in this improvement, we examined PSD-95, a member of the membrane-associated guanylate kinase family, and signaling molecules (ERK1/2, and Akt) linked to synaptic plasticity in the PFC. Our analyses indicated that while minocycline treatment can enhance behavioral performance, it does not enhance expression of PSD-95, ERK1/2 or Akt in the PFC. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Crucial Role of Mesangial Cell-derived Connective Tissue Growth Factor in a Mouse Model of Anti-Glomerular Basement Membrane Glomerulonephritis.

    Science.gov (United States)

    Toda, Naohiro; Mori, Kiyoshi; Kasahara, Masato; Ishii, Akira; Koga, Kenichi; Ohno, Shoko; Mori, Keita P; Kato, Yukiko; Osaki, Keisuke; Kuwabara, Takashige; Kojima, Katsutoshi; Taura, Daisuke; Sone, Masakatsu; Matsusaka, Taiji; Nakao, Kazuwa; Mukoyama, Masashi; Yanagita, Motoko; Yokoi, Hideki

    2017-02-13

    Connective tissue growth factor (CTGF) coordinates the signaling of growth factors and promotes fibrosis. Neonatal death of systemic CTGF knockout (KO) mice has hampered analysis of CTGF in adult renal diseases. We established 3 types of CTGF conditional KO (cKO) mice to investigate a role and source of CTGF in anti-glomerular basement membrane (GBM) glomerulonephritis. Tamoxifen-inducible systemic CTGF (Rosa-CTGF) cKO mice exhibited reduced proteinuria with ameliorated crescent formation and mesangial expansion in anti-GBM nephritis after induction. Although CTGF is expressed by podocytes at basal levels, podocyte-specific CTGF (pod-CTGF) cKO mice showed no improvement in renal injury. In contrast, PDGFRα promoter-driven CTGF (Pdgfra-CTGF) cKO mice, which predominantly lack CTGF expression by mesangial cells, exhibited reduced proteinuria with ameliorated histological changes. Glomerular macrophage accumulation, expression of Adgre1 and Ccl2, and ratio of M1/M2 macrophages were all reduced both in Rosa-CTGF cKO and Pdgfra-CTGF cKO mice, but not in pod-CTGF cKO mice. TGF-β1-stimulated Ccl2 upregulation in mesangial cells and macrophage adhesion to activated mesangial cells were decreased by reduction of CTGF. These results reveal a novel mechanism of macrophage migration into glomeruli with nephritis mediated by CTGF derived from mesangial cells, implicating the therapeutic potential of CTGF inhibition in glomerulonephritis.

  6. Selective Attention to Visual Stimuli Using Auditory Distractors Is Altered in Alpha-9 Nicotinic Receptor Subunit Knock-Out Mice.

    Science.gov (United States)

    Terreros, Gonzalo; Jorratt, Pascal; Aedo, Cristian; Elgoyhen, Ana Belén; Delano, Paul H

    2016-07-06

    During selective attention, subjects voluntarily focus their cognitive resources on a specific stimulus while ignoring others. Top-down filtering of peripheral sensory responses by higher structures of the brain has been proposed as one of the mechanisms responsible for selective attention. A prerequisite to accomplish top-down modulation of the activity of peripheral structures is the presence of corticofugal pathways. The mammalian auditory efferent system is a unique neural network that originates in the auditory cortex and projects to the cochlear receptor through the olivocochlear bundle, and it has been proposed to function as a top-down filter of peripheral auditory responses during attention to cross-modal stimuli. However, to date, there is no conclusive evidence of the involvement of olivocochlear neurons in selective attention paradigms. Here, we trained wild-type and α-9 nicotinic receptor subunit knock-out (KO) mice, which lack cholinergic transmission between medial olivocochlear neurons and outer hair cells, in a two-choice visual discrimination task and studied the behavioral consequences of adding different types of auditory distractors. In addition, we evaluated the effects of contralateral noise on auditory nerve responses as a measure of the individual strength of the olivocochlear reflex. We demonstrate that KO mice have a reduced olivocochlear reflex strength and perform poorly in a visual selective attention paradigm. These results confirm that an intact medial olivocochlear transmission aids in ignoring auditory distraction during selective attention to visual stimuli. The auditory efferent system is a neural network that originates in the auditory cortex and projects to the cochlear receptor through the olivocochlear system. It has been proposed to function as a top-down filter of peripheral auditory responses during attention to cross-modal stimuli. However, to date, there is no conclusive evidence of the involvement of olivocochlear

  7. Implementation of KoHLT-EB DAQ System using compact RIO with EPICS

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Dae-Sik; Kim, Suk-Kwon; Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    EPICS (Experimental Physics and Industrial Control System) is a collection of software tools collaboratively developed which can be integrated to provide a comprehensive and scalable control system. Currently there is an increase in use of such systems in large Physics experiments like KSTAR, ITER and DAIC (Daejeon Accelerator Ion Complex). The Korean heat load test facility (KoHLT-EB) was installed at KAERI. This facility is utilized for a qualification test of the plasma facing component (PFC) for the ITER first wall and DEMO divertor, and the thermo-hydraulic experiments. The existing data acquisition device was Agilent 34980A multifunction switch and measurement unit and controlled by Agilent VEE. In the present paper, we report the EPICS based newly upgraded KoHLT-EB DAQ system which is the advanced data acquisition system using FPGA-based reconfigurable DAQ devices like compact RIO. The operator interface of KoHLT-EB DAQ system is composed of Control-System Studio (CSS) and another server is able to archive the related data using the standalone archive tool and the archiveviewer can retrieve that data at any time in the infra-network.

  8. Advanced RF-KO slow-extraction method for the reduction of spill ripple

    CERN Document Server

    Noda, K; Shibuya, S; Uesugi, T; Muramatsu, M; Kanazawa, M; Takada, E; Yamada, S

    2002-01-01

    Two advanced RF-knockout (RF-KO) slow-extraction methods have been developed at HIMAC in order to reduce the spill ripple for accurate heavy-ion cancer therapy: the dual frequency modulation (FM) method and the separated function method. As a result of simulations and experiments, it was verified that the spill ripple could be considerably reduced using these advanced methods, compared with the ordinary RF-KO method. The dual FM method and the separated function method bring about a low spill ripple within standard deviations of around 25% and of 15% during beam extraction within around 2 s, respectively, which are in good agreement with the simulation results.

  9. Muscle Structure Influences Utrophin Expression in mdx Mice

    Science.gov (United States)

    Banks, Glen B.; Combs, Ariana C.; Odom, Guy L.; Bloch, Robert J.; Chamberlain, Jeffrey S.

    2014-01-01

    Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder caused by mutations in the dystrophin gene. To examine the influence of muscle structure on the pathogenesis of DMD we generated mdx4cv:desmin double knockout (dko) mice. The dko male mice died of apparent cardiorespiratory failure at a median age of 76 days compared to 609 days for the desmin−/− mice. An ∼2.5 fold increase in utrophin expression in the dko skeletal muscles prevented necrosis in ∼91% of 1a, 2a and 2d/x fiber-types. In contrast, utrophin expression was reduced in the extrasynaptic sarcolemma of the dko fast 2b fibers leading to increased membrane fragility and dystrophic pathology. Despite lacking extrasynaptic utrophin, the dko fast 2b fibers were less dystrophic than the mdx4cv fast 2b fibers suggesting utrophin-independent mechanisms were also contributing to the reduced dystrophic pathology. We found no overt change in the regenerative capacity of muscle stem cells when comparing the wild-type, desmin−/−, mdx4cv and dko gastrocnemius muscles injured with notexin. Utrophin could form costameric striations with α-sarcomeric actin in the dko to maintain the integrity of the membrane, but the lack of restoration of the NODS (nNOS, α-dystrobrevin 1 and 2, α1-syntrophin) complex and desmin coincided with profound changes to the sarcomere alignment in the diaphragm, deposition of collagen between the myofibers, and impaired diaphragm function. We conclude that the dko mice may provide new insights into the structural mechanisms that influence endogenous utrophin expression that are pertinent for developing a therapy for DMD. PMID:24922526

  10. Metabotropic glutamate receptor subtype 7 has critical roles in regulation of the endocrine system and social behaviours.

    Science.gov (United States)

    Masugi-Tokita, M; Yoshida, T; Kageyama, S; Kawata, M; Kawauchi, A

    2018-03-01

    Metabotropic glutamate receptor subtype 7 (mGluR7) is one of the group III mGluRs, which are negatively coupled to adenylate cyclase via Gi/Go proteins and localised to presynaptic active zones of the mammalian central nervous system. We previously reported that mGluR7 is essential for intermale aggression and amygdala-dependent fear learning. To elucidate the role of mGluR7 in the neuroendocrine system, we performed biochemical analyses and found a significant reduction of testosterone levels in mGluR7 knockout (KO) mice. Testosterone replacement restored intermale aggressive behaviour in castrated wild-type mice to the level of gonadally intact wild-type mice. However, given the same dosage of testosterone replacement, mGluR7 KO mice showed almost no aggressive behaviour. These results indicate that reduction of plasma testosterone is unrelated to the deficit in intermale aggression in mGluR7 KO mice. Social investigating behaviour of intact mGluR7 KO mice also differed from that of wild-type mice; e.g. the KO mice showing less frequent anogenital sniffing and more frequent grooming behaviour. Testosterone replacement increased anogenital sniffing and grooming behaviour in castrated mGluR7 KO mice, while the differences were still present between castrated wild-type mice and KO mice after both underwent testosterone replacement. These results imply that reduction of plasma testosterone may partially inhibit social investigating behaviours in intact mGluR7 KO mice. Furthermore, castrated mGluR7 KO mice have smaller seminal vesicles than those of castrated wild-type mice, although seminal vesicle weights were normal in intact mice. These observations suggest that, besides testicular testosterone, some other hormone levels may be dysregulated in mGluR7 KO mice, and indicate a critical role of mGluR7 in the endocrine system. Taken together, our findings demonstrate that mGluR7 is essential for the regulation of the endocrine system, in addition to innate behaviours

  11. Evidence for CB2 receptor involvement in LPS-induced reduction of cAMP intracellular levels in uterine explants from pregnant mice: pathophysiological implications.

    Science.gov (United States)

    Salazar, Ana Inés; Carozzo, Alejandro; Correa, Fernando; Davio, Carlos; Franchi, Ana María

    2017-07-01

    What is the role of the endocannabinoid system (eCS) on the lipopolysaccharide (LPS) effects on uterine explants from 7-day pregnant mice in a murine model of endotoxin-induced miscarriage? We found evidence for cannabinoid receptor type2 (CB2) involvement in LPS-induced increased prostaglandin-F2α (PGF2α) synthesis and diminished cyclic adenosine monophosphate (cAMP) intracellular content in uterine explants from early pregnant mice. Genital tract infections by Gram-negative bacteria are a common complication of human pregnancy that results in an increased risk of pregnancy loss. LPS, the main component of the Gram-negative bacterial wall, elicits a strong maternal inflammatory response that results in embryotoxicity and embryo resorption in a murine model endotoxin-induced early pregnancy loss. We have previously shown that the eCS mediates the embryotoxic effects of LPS, mainly via CB1 receptor activation. An in vitro study of mice uterine explants was performed to investigate the eCS in mediating the effects of LPS on PGF2α production and cAMP intracellular content. Eight to 12-week-old virgin female BALB/c or CD1 (wild-type [WT] or CB1-knockout [CB1-KO]) mice were paired with 8- to 12-week-old BALB/c or CD1 (WT or CB1-KO) males, respectively. On day 7 of pregnancy, BALB/c, CD1 WT or CD1 CB1-KO mice were euthanized, the uteri were excised, implantation sites were removed and the uterine tissues were separated from decidual and embryo tissues. Uterine explants were cultured and exposed for an appropriate amount of time to different pharmacological treatments. The tissues were then collected for cAMP assay and PGF2α content determination by radioimmunoassay. In vitro treatment of uteri explants from 7-day pregnant BALB/c or CD1 (WT or CB1-KO) mice with LPS induced an increased production of PGF2α (P Investigaciones Científicas y Técnicas (PIP 2012/0061). Dr Carlos Davio was funded by Agencia Nacional para la Promoción Científica y Tecnológica (PICT 2013

  12. koņdatošanas izmantošana informātikas priekšmetā vidusskolā.

    OpenAIRE

    Jēkabsone, Kristīne

    2013-01-01

    Izanalizējot informātikas standartu vidusskolā izpētīta mākoņdatošanas izmantošanas iespējas vidusskolā. Veikta aptauja vidusskolas klases skolēnu vidū. Aplūkots vidusskolas izglītojamo pieejamais tehnoloģiju klāsts. Meklēta atbilde uz pētniecisko jautājumu: kādas ir mākoņdatošanas izmantošanas iespējas informātikas priekšmeta apguvē vidusskolā? Sniegti ieteikumi skolotājiem strādājot ar mākoņdatošanu. Atslēgas vārdi: informātika, mākoņdatošana, Google Drive, Skydrive, Dropbox....

  13. Martwica kości szczęk związana ze stosowaniem bifosfonianów. Opis przypadków

    Directory of Open Access Journals (Sweden)

    Wojciech Leśniak

    2013-06-01

    Full Text Available Bifosfoniany należą do silnych inhibitorów osteoklastów. Znajdują szerokie zastosowanie w leczeniu chorób przebiegających ze wzmożoną resorpcją kości: osteoporozy, choroby Pageta i osteogenesis imperfecta. Leki te zmniejszają adhezję komórek nowotworowych do kości, ograniczają osteolizę wywołaną nowotworem i hiper‑ kalcemię. Zmniejszają dolegliwości bólowe w szpiczaku mnogim i w przerzutach do kości. Powszechnie panu‑ jące przekonanie o bezpieczeństwie spowodowało rozszerzenie wskazań do ich stosowania. Pacjenci onkolo‑ giczni przyjmujący bifosfoniany dożylnie, w wysokich dawkach są bardziej narażeni na działania niepożądane terapii niż pacjenci przyjmujący je doustnie. Jednym z najpoważniejszych powikłań jest martwica kości szczęk. W 2003 roku opisano po raz pierwszy związek pomiędzy terapią bifosfonianami a martwicą kości szczęk. W piśmiennictwie znajdujemy coraz więcej przykładów tego działania niepożądanego, także po stosowaniu leków doustnie. Mogą pojawiać się ból, obrzęk, owrzodzenie, odsłonięcie kości, przetoki, złamania patologiczne, uciążliwe dla pacjenta i obniżające jakość życia. Leczenie martwicy kości szczęk jest trudne i rzadko przynosi spodziewany efekt. Główną rolę odgrywa leczenie zachowawcze i redukcja objawów. Odstawienie bifosfonia‑ nów nie ma bezpośredniego wpływu na przebieg martwicy kości szczęk, ze względu na kumulację leku w kości. Istotne jest przygotowanie pacjenta przed rozpoczęciem podawania bifosfonianów, wymagające stałej współ‑ pracy pomiędzy lekarzami onkologami, ortopedami i chirurgami szczękowo-twarzowymi. Higiena jamy ustnej i leczenie chorób współistniejących stanowi ważny element postępowania. Celem pracy jest przedstawienie trzech przypadków martwicy kości szczęk u pacjentów poddanych leczeniu bifosfonianami.

  14. Lack of Pannexin 1 Alters Synaptic GluN2 Subunit Composition and Spatial Reversal Learning in Mice

    Science.gov (United States)

    Gajardo, Ivana; Salazar, Claudia S.; Lopez-Espíndola, Daniela; Estay, Carolina; Flores-Muñoz, Carolina; Elgueta, Claudio; Gonzalez-Jamett, Arlek M.; Martínez, Agustín D.; Muñoz, Pablo; Ardiles, Álvaro O.

    2018-01-01

    Long-term potentiation (LTP) and long-term depression (LTD) are two forms of synaptic plasticity that have been considered as the cellular substrate of memory formation. Although LTP has received considerable more attention, recent evidences indicate that LTD plays also important roles in the acquisition and storage of novel information in the brain. Pannexin 1 (Panx1) is a membrane protein that forms non-selective channels which have been shown to modulate the induction of hippocampal synaptic plasticity. Animals lacking Panx1 or blockade of Pannexin 1 channels precludes the induction of LTD and facilitates LTP. To evaluate if the absence of Panx1 also affects the acquisition of rapidly changing information we trained Panx1 knockout (KO) mice and wild type (WT) littermates in a visual and hidden version of the Morris water maze (MWM). We found that KO mice find the hidden platform similarly although slightly quicker than WT animals, nonetheless, when the hidden platform was located in the opposite quadrant (OQ) to the previous learned location, KO mice spent significantly more time in the previous quadrant than in the new location indicating that the absence of Panx1 affects the reversion of a previously acquired spatial memory. Consistently, we observed changes in the content of synaptic proteins critical to LTD, such as GluN2 subunits of N-methyl-D-aspartate receptors (NMDARs), which changed their contribution to synaptic plasticity in conditions of Panx1 ablation. Our findings give further support to the role of Panx1 channels on the modulation of synaptic plasticity induction, learning and memory processes. PMID:29692709

  15. Lack of Pannexin 1 Alters Synaptic GluN2 Subunit Composition and Spatial Reversal Learning in Mice

    Directory of Open Access Journals (Sweden)

    Ivana Gajardo

    2018-04-01

    Full Text Available Long-term potentiation (LTP and long-term depression (LTD are two forms of synaptic plasticity that have been considered as the cellular substrate of memory formation. Although LTP has received considerable more attention, recent evidences indicate that LTD plays also important roles in the acquisition and storage of novel information in the brain. Pannexin 1 (Panx1 is a membrane protein that forms non-selective channels which have been shown to modulate the induction of hippocampal synaptic plasticity. Animals lacking Panx1 or blockade of Pannexin 1 channels precludes the induction of LTD and facilitates LTP. To evaluate if the absence of Panx1 also affects the acquisition of rapidly changing information we trained Panx1 knockout (KO mice and wild type (WT littermates in a visual and hidden version of the Morris water maze (MWM. We found that KO mice find the hidden platform similarly although slightly quicker than WT animals, nonetheless, when the hidden platform was located in the opposite quadrant (OQ to the previous learned location, KO mice spent significantly more time in the previous quadrant than in the new location indicating that the absence of Panx1 affects the reversion of a previously acquired spatial memory. Consistently, we observed changes in the content of synaptic proteins critical to LTD, such as GluN2 subunits of N-methyl-D-aspartate receptors (NMDARs, which changed their contribution to synaptic plasticity in conditions of Panx1 ablation. Our findings give further support to the role of Panx1 channels on the modulation of synaptic plasticity induction, learning and memory processes.

  16. An Examination of the Role of L-Glutamate and Inosine 5'-Monophosphate in Hedonic Taste-Guided Behavior by Mice Lacking the T1R1 + T1R3 Receptor.

    Science.gov (United States)

    Blonde, Ginger D; Spector, Alan C

    2017-06-01

    The heterodimeric T1R1 + T1R3 receptor is considered critical for normal signaling of L-glutamate and 5'-ribonucleotides in the oral cavity. However, some taste-guided responsiveness remains in mice lacking one subunit of the receptor, suggesting that other receptors are sufficient to support some behaviors. Here, mice lacking both receptor subunits (KO) and wild-type (WT, both n = 13) mice were tested in a battery of behavioral tests. Mice were trained and tested in gustometers with a concentration series of Maltrin-580, a maltodextrin, in a brief-access test (10-s trials) as a positive control. Similar tests followed with monosodium glutamate (MSG) with and without the ribonucleotide inosine 5'-monophosphate (IMP), but always in the presence of the epithelial sodium channel blocker amiloride (A). Brief-access tests were repeated following short-term (30-min) and long-term (48-h) exposures to MSG + A + IMP and were also conducted with sodium gluconate replacing MSG. Finally, progressive ratio tests were conducted with Maltrin-580 or MSG + A + IMP, to assess appetitive behavior while minimizing satiation. Overall, MSG generated little concentration-dependent responding in either food-restricted WT or KO mice, even in combination with IMP. However, KO mice licked less to the amino acid stimuli, a measure of consummatory behavior in the brief-access tests. In contrast, both groups initiated a similar number of trials and had a similar breakpoint in the progressive ratio task, both measures of appetitive (approach) behavior. Collectively, these results suggest that while the T1R1 + T1R3 receptor is necessary for consummatory responding to MSG (+IMP), other receptors are sufficient to maintain appetitive responding to this "umami" stimulus complex in food-restricted mice. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. 2-Methyl-6-(phenylethynyl pyridine (MPEP reverses maze learning and PSD-95 deficits in Fmr1 knock-out mice.

    Directory of Open Access Journals (Sweden)

    Réno Michelle Gandhi

    2014-03-01

    Full Text Available Fragile X syndrome (FXS is caused by the lack of expression of the fragile X mental retardation protein (FMRP, which results in intellectual disability and other debilitating symptoms including impairment of visual-spatial functioning. FXS is the only single-gene disorder that is highly co-morbid with autism spectrum disorder and can therefore provide insight into its pathophysiology. Lack of FMRP results in altered group I metabotropic glutamate receptor (mGluR signalling, which is a target for putative treatments. The Hebb-Williams (H-W mazes are a set of increasingly complex spatial navigation problems that depend on intact hippocampal and thus mGluR-5 functioning. In the present investigation, we examined whether an antagonist of mGluR-5 would reverse previously described behavioural deficits in Fmr1 KO mice. Mice were trained on a subset of the H-W mazes and then treated with either 20 mg/kg of an mGluR-5 antagonist, 2-Methyl-6-(phenylethynyl pyridine (MPEP; n = 11 or an equivalent dose of saline (n = 11 prior to running test mazes. Latency and errors were dependent variables recorded during the test phase. Immediately after completing each test, marble-burying behavior was assessed which confirmed that the drug treatment was pharmacologically active during maze learning. Although latency was not statistically different between the groups, MPEP treated Fmr1 KO mice made significantly fewer errors on mazes deemed more difficult suggesting a reversal of the behavioural deficit. MPEP treated mice were also less perseverative and impulsive when navigating mazes. Furthermore, MPEP treatment reversed PSD-95 protein deficits in Fmr1 KO treated mice, whereas levels of a control protein (β-tubulin remained unchanged. These data further validate MPEP as a potentially beneficial treatment for FXS. Our findings also suggest that adapted H-W mazes may be a useful tool to document alterations in behavioural functioning following pharmacological

  18. The Sleep–Wake Cycle in the Nicotinic Alpha-9 Acetylcholine Receptor Subunit Knock-Out Mice

    Directory of Open Access Journals (Sweden)

    Natalia Madrid-López

    2017-10-01

    Full Text Available There is a neural matrix controlling the sleep–wake cycle (SWC embedded within high ranking integrative mechanisms in the central nervous system. Nicotinic alpha-9 acetylcholine receptor subunit (alpha-9 nAChR participate in physiological processes occurring in sensory, endocrine and immune systems. There is a relationship between the SWC architecture, body homeostasis and sensory afferents so that disruption of afferent signaling is expected to affect the temporal organization of sleep and wake states. The analysis of the SWC of 9 nAChR knock-out animals may help to reveal the contribution of alpha-9 nAChR to sleep chronobiological determinants. Here we explore the polysomnogram in chronically implanted alpha-9 nAChR knock-out (KO and wild-type (WT individuals of the hybrid CBA/Sv129 mouse strain. Records were obtained in isolation chambers under a stable 12:12 light:dark cycle (LD. To unmask the 24-h modulation of the SWC a skeleton photoperiod (SP protocol was performed. Under LD the daily quota (in % of wakefulness (W, NREM sleep and REM sleep obtained in KO and WT animals were 45, 48 and 7, and 46, 46 and 8 respectively. Both groups exhibit nocturnal phase preference of W as well as diurnal and unimodal phase preference of NREM and REM sleep. The acrophase mean angles of KO vs. WT genotypes were not different (Zeitgeber Time: 6.5 vs. 14.9 for W, 4.3 vs. 2.8 for NREM sleep and 5.3 vs. 3.4 for REM sleep, respectively. Transference to SP do not affect daily state quotas, phase preferences and acrophases among genotypes. Unmasking phenomena of the SWC such as wake increment during the rest phase under SP was evident only among WT mice suggesting the involvement of retinal structures containing alpha-9 nAChR in masking processes. Furthermore, KO animals exhibit longer NREM and REM sleep episodes that is independent of illumination conditions. Consolidated diurnal NREM sleep contributed to obtain higher values of NREM sleep delta-EEG activity

  19. Double blind, placebo controlled trial of two probiotic strains in interleukin 10 knockout mice and mechanistic link with cytokine balance

    NARCIS (Netherlands)

    McCarthy, J.; O'Mahony, L.; O'Callaghan, L.; Sheil, B.; Vaughan, E.E.; Fitzsimons, N.A.; Fitzgibbon, J.; O'Sullivan, G.C.; Kiely, B.; Collins, J.K.; Shanahan, F.

    2003-01-01

    Background: Prophylactic efficacy against colitis following lactobacillus consumption in interleukin 10 (IL-10) knockout ( KO) mice has been reported. Whether this applies equally to other probiotic strains is unknown, and the mechanism is unclear. Aims: ( 1) To compare the effect of feeding

  20. Cyp26b1 within the growth plate regulates bone growth in juvenile mice

    International Nuclear Information System (INIS)

    Minegishi, Yoshiki; Sakai, Yasuo; Yahara, Yasuhito; Akiyama, Haruhiko; Yoshikawa, Hideki; Hosokawa, Ko; Tsumaki, Noriyuki

    2014-01-01

    Highlights: • Retinoic acid and Cyp26b1 were oppositely localized in growth plate cartilage. • Cyp26b1 deletion in chondrocytes decreased bone growth in juvenile mice. • Cyp26b1 deletion reduced chondrocyte proliferation and growth plate height. • Vitamin A-depletion partially reversed growth plate abnormalities caused by Cyp26b1 deficiency. • Cyp26b1 regulates bone growth by controlling chondrocyte proliferation. - Abstract: Retinoic acid (RA) is an active metabolite of vitamin A and plays important roles in embryonic development. CYP26 enzymes degrade RA and have specific expression patterns that produce a RA gradient, which regulates the patterning of various structures in the embryo. However, it has not been addressed whether a RA gradient also exists and functions in organs after birth. We found localized RA activities in the diaphyseal portion of the growth plate cartilage were associated with the specific expression of Cyp26b1 in the epiphyseal portion in juvenile mice. To disturb the distribution of RA, we generated mice lacking Cyp26b1 specifically in chondrocytes (Cyp26b1 Δchon cKO). These mice showed reduced skeletal growth in the juvenile stage. Additionally, their growth plate cartilage showed decreased proliferation rates of proliferative chondrocytes, which was associated with a reduced height in the zone of proliferative chondrocytes, and closed focally by four weeks of age, while wild-type mouse growth plates never closed. Feeding the Cyp26b1 cKO mice a vitamin A-deficient diet partially reversed these abnormalities of the growth plate cartilage. These results collectively suggest that Cyp26b1 in the growth plate regulates the proliferation rates of chondrocytes and is responsible for the normal function of the growth plate and growing bones in juvenile mice, probably by limiting the RA distribution in the growth plate proliferating zone

  1. Rate constant and thermochemistry for K + O2 + N2 = KO2 + N2

    DEFF Research Database (Denmark)

    Sorvajärvi, Tapio; Viljanen, Jan; Toivonen, Juha

    2015-01-01

    in the form of double exponential decays of [K], which yielded both kR1 and the equilibrium constant for KO2 formation. kR1 can be summarized as 1.07 × 10-30(T/1000 K)-0.733 cm6 molecule-2 s-1. Combination with literature values leads to a recommended kR1 of 5.5 × 10-26T-1.55 exp(-10/T) cm6 molecule-2 s-1...... over 250-1320 K, with an error limit of a factor of 1.5. A vant Hoff analysis constrained to fit the computed ΔS298 yields a K-O2 bond dissociation enthalpy of 184.2 ± 4.0 kJ mol-1 at 298 K and ΔfH298(KO2) = -95.2 ± 4.1 kJ mol-1. The corresponding D0 is 181.5 ± 4.0 kJ mol-1. This value compares well...

  2. Increased lipolysis and energy expenditure in a mouse model with severely impaired glucagon secretion

    DEFF Research Database (Denmark)

    Lou, Phing-How; Gustavsson, Natalia; Wang, Yue

    2011-01-01

    and increased capacity for fatty acid transport and oxidation in synaptotagmin-7 KO mice. Furthermore, expression of uncoupling protein 3 (UCP3) in skeletal muscle was approximately doubled in the KO mice compared with control mice. CONCLUSIONS: These results show that the lean phenotype in synaptotagmin-7 KO...

  3. β2-Adrenoceptor is involved in connective tissue remodeling in regenerating muscles by decreasing the activity of MMP-9.

    Science.gov (United States)

    Silva, Meiricris T; Nascimento, Tábata L; Pereira, Marcelo G; Siqueira, Adriane S; Brum, Patrícia C; Jaeger, Ruy G; Miyabara, Elen H

    2016-07-01

    We investigated the role of β2-adrenoceptors in the connective tissue remodeling of regenerating muscles from β2-adrenoceptor knockout (β2KO) mice. Tibialis anterior muscles from β2KO mice were cryolesioned and analyzed after 3, 10, and 21 days. Regenerating muscles from β2KO mice showed a significant increase in the area density of the connective tissue and in the amount of collagen at 10 days compared with wild-type (WT) mice. A greater increase occurred in the expression levels of collagen I, III, and IV in regenerating muscles from β2KO mice evaluated at 10 days compared with WT mice; this increase continued at 21 days, except for collagen III. Matrix metalloproteinase (MMP-2) activity increased to a similar extent in regenerating muscles from both β2KO and WT mice at 3 and 10 days. This was also the case for MMP-9 activity in regenerating muscles from both β2KO and WT mice at 3 days; however, at 10 days post-cryolesion, this activity returned to baseline levels only in WT mice. MMP-3 activity was unaltered in regenerating muscles at 10 days. mRNA levels of tumor necrosis factor-α increased in regenerating muscles from WT and β2KO mice at 3 days and, at 10 days post-cryolesion, returned to baseline only in WT mice. mRNA levels of interleukin-6 increased in muscles from WT mice at 3 days post-cryolesion and returned to baseline at 10 days post-cryolesion but were unchanged in β2KO mice. Our results suggest that the β2-adrenoceptor contributes to collagen remodeling during muscle regeneration by decreasing MMP-9 activity.

  4. Calcium current homeostasis and synaptic deficits in hippocampal neurons from Kelch-like 1 knockout mice

    Directory of Open Access Journals (Sweden)

    Paula Patricia Perissinotti

    2015-01-01

    Full Text Available Kelch-like 1 (KLHL1 is a neuronal actin-binding protein that modulates voltage-gated CaV2.1 (P/Q-type and CaV3.2 (α1H T-type calcium channels; KLHL1 knockdown experiments (KD cause down-regulation of both channel types and altered synaptic properties in cultured rat hippocampal neurons (Perissinotti et al., 2014. Here, we studied the effect of ablation of KLHL1 on calcium channel function and synaptic properties in cultured hippocampal neurons from KLHL1 knockout (KO mice. Western blot data showed the P/Q-type channel α1A subunit was less abundant in KO hippocampus compared to wildtype (WT; and PQ-type calcium currents were smaller in KO neurons than WT during early days in vitro, although this decrease was compensated for at late stages by increases in L-type calcium current. In contrast, T-type currents did not change in culture. However, biophysical properties and western blot analysis revealed a differential contribution of T-type channel isoforms in the KO, with CaV3.2 α1H subunit being down-regulated and CaV3.1 α1G up-regulated. Synapsin I levels were reduced in the KO hippocampus; cultured neurons displayed a concomitant reduction in synapsin I puncta and decreased miniature excitatory postsynaptic current (mEPSC frequency. In summary, genetic ablation of the calcium channel modulator resulted in compensatory mechanisms to maintain calcium current homeostasis in hippocampal KO neurons; however, synaptic alterations resulted in a reduction of excitatory synapse number, causing an imbalance of the excitatory-inhibitory synaptic input ratio favoring inhibition.

  5. Rapamycin-ameliorated diabetic symptoms involved in increasing adiponectin expression in diabetic mice on a high-fat diet.

    Science.gov (United States)

    Gong, Fang-Hua; Ye, Yan-Na; Li, Jin-Meng; Zhao, Hai-Yang; Li, Xiao-Kun

    2017-07-01

    Recent studies showed that rapamycin improved diabetic complications. Here, we investigated the metabolic effects of rapamycin in type 2 diabetes model (T2DM) mice. Mice were treated with a daily intraperitoneal injection of rapamycin at 2 mg/kg or vehicle only for 3 weeks and were maintained on a high-fat diet. The treated diabetic mice exhibited decreased body weight, blood glucose levels, and fat mass. FGF21 expression was suppressed in C57B/L6 mice, but adiponectin expression increased both in FGF21 KO and C57B/L6 mice. These results suggest that rapamycin may alleviate FGF21 resistance in mice on a high-fat diet. The reduction of adipose tissue mass of the diabetic mice may be due to the increased adiponectin. Copyright © 2017. Published by Elsevier Taiwan.

  6. V labyrintech Holanovy pozdní lyriky : Nad knihou Zdeňka Kožmína

    OpenAIRE

    Křivánek, Vladimír

    2005-01-01

    This essay on the late lyric verse of Vladimír Holan, inspired by Zdeněk Kožmín’s Existencionalita, also presents an overview of previous important interpretations of Holan’s work – apart from Kožmín, it mentions the work of Přemysl Blažíček and Jiří Opelík.

  7. Secreted protein acidic and rich in cysteine functions in colitis via IL17A regulation in mucosal CD4+ T cells.

    Science.gov (United States)

    Tanaka, Makoto; Takagi, Tomohisa; Naito, Yuji; Uchiyama, Kazuhiko; Hotta, Yuma; Toyokawa, Yuki; Ushiroda, Chihiro; Hirai, Yasuko; Aoi, Wataru; Higashimura, Yasuki; Mizushima, Katsura; Okayama, Tetsuya; Katada, Kazuhiro; Kamada, Kazuhiro; Ishikawa, Takeshi; Handa, Osamu; Itoh, Yoshito

    2018-03-01

    Secreted protein acidic and rich in cysteine (SPARC) is a matricellular glycol that regulates cell proliferation, tissue repair, and tumorigenesis. Despite evidence linking SPARC to inflammation, the mechanisms are unclear. Accordingly, the role of SPARC in intestinal inflammation was investigated. Colitis was induced in wild-type (WT) and SPARC knockout (KO) mice using trinitrobenzene sulfonic acid (TNBS). Colons were assessed for damage; leukocyte infiltration; Tnf, Ifng, Il17a, and Il10 mRNA expression; and histology. Cytokine profiling of colonic lamina propria mononuclear cells (LPMCs) was performed by flow cytometry. Naïve CD4 + T cells were isolated from WT and SPARC KO mouse spleens, and the effect of SPARC on Th17 cell differentiation was examined. Recombination activating gene 1 knockout (RAG1 KO) mice reconstituted with T cells from either WT or SPARC KO mice were investigated. Trinitrobenzene sulfonic acid exposure significantly reduced bodyweight and increased mucosal inflammation, leukocyte infiltration, and Il17a mRNA expression in WT relative to SPARC KO mice. The percentage of IL17A-producing CD4 + T cells among LPMCs from KO mice was lower than that in WT mice when both groups were exposed to TNBS. Th17 cell differentiation was suppressed in cells from SPARC KO mice. In the T cell transfer colitis model, RAG1 KO mice receiving T cells from WT mice were more severely affected than those reconstituted with cells from SPARC KO mice. Secreted protein acidic and rich in cysteine accelerates colonic mucosal inflammation via modulation of IL17A-producing CD4 + T cells. SPARC is a potential therapeutic target for conditions involving intestinal inflammation. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  8. Adipose tissue (P)RR regulates insulin sensitivity, fat mass and body weight.

    Science.gov (United States)

    Shamansurova, Zulaykho; Tan, Paul; Ahmed, Basma; Pepin, Emilie; Seda, Ondrej; Lavoie, Julie L

    2016-10-01

    We previously demonstrated that the handle-region peptide, a prorenin/renin receptor [(P)RR] blocker, reduces body weight and fat mass and may improve insulin sensitivity in high-fat fed mice. We hypothesized that knocking out the adipose tissue (P)RR gene would prevent weight gain and insulin resistance. An adipose tissue-specific (P)RR knockout (KO) mouse was created by Cre-loxP technology using AP2-Cre recombinase mice. Because the (P)RR gene is located on the X chromosome, hemizygous males were complete KO and had a more pronounced phenotype on a normal diet (ND) diet compared to heterozygous KO females. Therefore, we challenged the female mice with a high-fat diet (HFD) to uncover certain phenotypes. Mice were maintained on either diet for 9 weeks. KO mice had lower body weights compared to wild-types (WT). Only hemizygous male KO mice presented with lower total fat mass, higher total lean mass as well as smaller adipocytes compared to WT mice. Although food intake was similar between genotypes, locomotor activity during the active period was increased in both male and female KO mice. Interestingly, only male KO mice had increased O2 consumption and CO2 production during the entire 24-hour period, suggesting an increased basal metabolic rate. Although glycemia during a glucose tolerance test was similar, KO males as well as HFD-fed females had lower plasma insulin and C-peptide levels compared to WT mice, suggesting improved insulin sensitivity. Remarkably, all KO animals exhibited higher circulating adiponectin levels, suggesting that this phenotype can occur even in the absence of a significant reduction in adipose tissue weight, as observed in females and, thus, may be a specific effect related to the (P)RR. (P)RR may be an important therapeutic target for the treatment of obesity and its associated complications such as type 2 diabetes.

  9. Bach2 Controls Homeostasis of Eosinophils by Restricting the Type-2 Helper Function of T Cells.

    Science.gov (United States)

    Sato, Yuki; Kato, Hiroki; Ebina-Shibuya, Risa; Itoh-Nakadai, Ari; Okuyama, Ryuhei; Igarashi, Kazuhiko

    2017-03-01

    Bach2 is a transcription factor which represses its target genes and plays important roles in the differentiation of B and T lymphoid cells. Bach2-deficient (KO) mice develop severe pulmonary alveolar proteinosis, which is associated with increased numbers of granulocytes and T cells. Bach2 is essential for the regulation of T cells, but its role in the regulation of granulocytes is not clear. Here, we observed increased numbers of eosinophils but not neutrophils in the bone marrow, spleen, peripheral blood, and bronchoalveolar lavage fluids of Bach2 KO mice compared with those of wild-type (WT) mice. Upon co-transplantation of the bone marrow cells from CD45.2 Bach2 KO and CD45.1/CD45.2 double-positive WT mice to irradiated WT CD45.1/CD45.2 mice, the reconstituted numbers of eosinophils were similar between Bach2 KO and WT cells. These results showed that the deficiency of Bach2 in eosinophils did not directly drive the differentiation of eosinophils. To investigate the effect of Bach2 KO CD4 + T cells upon eosinophils, we analyzed Rag2/Bach2-double deficient (dKO) mice which lack lymphocytes including CD4 + T cells. Rag2/Bach2 dKO mice did not show any increase in the numbers of eosinophils. Importantly, Bach2 KO mice showed an increase of interleukin-5 (Il-5) in the sera compared with WT mice. These results suggest that up-regulated functions of CD4 + T cells including secretion of Il-5 resulted in proliferation and/or migration to peripheral tissues of eosinophils in Bach2 KO mice. We propose that Bach2 controls homeostasis of eosinophils via restricting the production of Il-5 in CD4 + T cells.

  10. Parvalbumin-expressing ependymal cells in rostral lateral ventricle wall adhesions contribute to aging-related ventricle stenosis in mice.

    Science.gov (United States)

    Filice, Federica; Celio, Marco R; Babalian, Alexandre; Blum, Walter; Szabolcsi, Viktoria

    2017-10-15

    Aging-associated ependymal-cell pathologies can manifest as ventricular gliosis, ventricle enlargement, or ventricle stenosis. Ventricle stenosis and fusion of the lateral ventricle (LV) walls is associated with a massive decline of the proliferative capacities of the stem cell niche in the affected subventricular zone (SVZ) in aging mice. We examined the brains of adult C57BL/6 mice and found that ependymal cells located in the adhesions of the medial and lateral walls of the rostral LVs upregulated parvalbumin (PV) and displayed reactive phenotype, similarly to injury-reactive ependymal cells. However, PV+ ependymal cells in the LV-wall adhesions, unlike injury-reactive ones, did not express glial fibrillary acidic protein. S100B+/PV+ ependymal cells found in younger mice diminished in the LV-wall adhesions throughout aging. We found that periventricular PV-immunofluorescence showed positive correlation to the grade of LV stenosis in nonaged mice (wall adhesions and LV stenosis was significantly lower in mid-aged (>10-month-old) PV-knock out (PV-KO) mice. This suggests an involvement of PV+ ependymal cells in aging-associated ventricle stenosis. Additionally, we observed a time-shift in microglial activation in the LV-wall adhesions between age-grouped PV-KO and wild-type mice, suggesting a delay in microglial activation when PV is absent from ependymal cells. Our findings implicate that compromised ependymal cells of the adhering ependymal layers upregulate PV and display phenotype shift to "reactive" ependymal cells in aging-related ventricle stenosis; moreover, they also contribute to the progression of LV-wall fusion associated with a decline of the affected SVZ-stem cell niche in aged mice. © 2017 Wiley Periodicals, Inc.

  11. Glutamate Cysteine Ligase—Modulatory Subunit Knockout Mouse Shows Normal Insulin Sensitivity but Reduced Liver Glycogen Storage

    KAUST Repository

    Lavoie, Suzie

    2016-04-21

    Glutathione (GSH) deficits have been observed in several mental or degenerative illness, and so has the metabolic syndrome. The impact of a decreased glucose metabolism on the GSH system is well-known, but the effect of decreased GSH levels on the energy metabolism is unclear. The aim of the present study was to investigate the sensitivity to insulin in the mouse knockout (KO) for the modulatory subunit of the glutamate cysteine ligase (GCLM), the rate-limiting enzyme of GSH synthesis. Compared to wildtype (WT) mice, GCLM-KO mice presented with reduced basal plasma glucose and insulin levels. During an insulin tolerance test, GCLM-KO mice showed a normal fall in glycemia, indicating normal insulin secretion. However, during the recovery phase, plasma glucose levels remained lower for longer in KO mice despite normal plasma glucagon levels. This is consistent with a normal counterregulatory hormonal response but impaired mobilization of glucose from endogenous stores. Following a resident-intruder stress, during which stress hormones mobilize glucose from hepatic glycogen stores, KO mice showed a lower hyperglycemic level despite higher plasma cortisol levels when compared to WT mice. The lower hepatic glycogen levels observed in GCLM-KO mice could explain the impaired glycogen mobilization following induced hypoglycemia. Altogether, our results indicate that reduced liver glycogen availability, as observed in GCLM-KO mice, could be at the origin of their lower basal and challenged glycemia. Further studies will be necessary to understand how a GSH deficit, typically observed in GCLM-KO mice, leads to a deficit in liver glycogen storage.

  12. Loss of TRPV4 Function Suppresses Inflammatory Fibrosis Induced by Alkali-Burning Mouse Corneas.

    Directory of Open Access Journals (Sweden)

    Yuka Okada

    Full Text Available In humans suffering from pulmonary disease and a mouse model, transient receptor potential vanilloid 4 (TRPV4 channel activation contributes to fibrosis. As a corneal alkali burn induces the same response, we determined if such an effect is also attributable to TRPV4 activation in mice. Accordingly, we determined if the alkali burn wound healing responses in wild-type (WT mice are different than those in their TRPV4-null (KO counterpart. Stromal opacification due to fibrosis in KO (n = 128 mice was markedly reduced after 20 days relative to that in WT (n = 157 mice. Immunohistochemistry revealed that increases in polymorphonuclear leukocytes and macrophage infiltration declined in KO mice. Semi-quantitative real time RT-PCR of ocular KO fibroblast cultures identified increases in proinflammatory and monocyte chemoattractant protein-1 chemoattractant gene expression after injury. Biomarker gene expression of fibrosis, collagen1a1 and α-smooth muscle actin were attenuated along with macrophage release of interleukin-6 whereas transforming growth factor β, release was unchanged. Tail vein reciprocal bone marrow transplantation between WT and KO chimera mouse models mice showed that reduced scarring and inflammation in KO mice are due to loss of TRPV4 expression on both corneal resident immune cells, fibroblasts and infiltrating polymorphonuclear leukocytes and macrophages. Intraperitoneal TRPV4 receptor antagonist injection of HC-067047 (10 mg/kg, daily into WT mice reproduced the KO-phenotype. Taken together, alkali-induced TRPV4 activation contributes to inducing fibrosis and inflammation since corneal transparency recovery was markedly improved in KO mice.

  13. Glutamate Cysteine Ligase—Modulatory Subunit Knockout Mouse Shows Normal Insulin Sensitivity but Reduced Liver Glycogen Storage

    KAUST Repository

    Lavoie, Suzie; Steullet, Pascal; Kulak, Anita; Preitner, Frederic; Do, Kim Q.; Magistretti, Pierre J.

    2016-01-01

    Glutathione (GSH) deficits have been observed in several mental or degenerative illness, and so has the metabolic syndrome. The impact of a decreased glucose metabolism on the GSH system is well-known, but the effect of decreased GSH levels on the energy metabolism is unclear. The aim of the present study was to investigate the sensitivity to insulin in the mouse knockout (KO) for the modulatory subunit of the glutamate cysteine ligase (GCLM), the rate-limiting enzyme of GSH synthesis. Compared to wildtype (WT) mice, GCLM-KO mice presented with reduced basal plasma glucose and insulin levels. During an insulin tolerance test, GCLM-KO mice showed a normal fall in glycemia, indicating normal insulin secretion. However, during the recovery phase, plasma glucose levels remained lower for longer in KO mice despite normal plasma glucagon levels. This is consistent with a normal counterregulatory hormonal response but impaired mobilization of glucose from endogenous stores. Following a resident-intruder stress, during which stress hormones mobilize glucose from hepatic glycogen stores, KO mice showed a lower hyperglycemic level despite higher plasma cortisol levels when compared to WT mice. The lower hepatic glycogen levels observed in GCLM-KO mice could explain the impaired glycogen mobilization following induced hypoglycemia. Altogether, our results indicate that reduced liver glycogen availability, as observed in GCLM-KO mice, could be at the origin of their lower basal and challenged glycemia. Further studies will be necessary to understand how a GSH deficit, typically observed in GCLM-KO mice, leads to a deficit in liver glycogen storage.

  14. Loss of TRPV4 Function Suppresses Inflammatory Fibrosis Induced by Alkali-Burning Mouse Corneas.

    Science.gov (United States)

    Okada, Yuka; Shirai, Kumi; Miyajima, Masayasu; Reinach, Peter S; Yamanaka, Osamu; Sumioka, Takayoshi; Kokado, Masahide; Tomoyose, Katsuo; Saika, Shizuya

    2016-01-01

    In humans suffering from pulmonary disease and a mouse model, transient receptor potential vanilloid 4 (TRPV4) channel activation contributes to fibrosis. As a corneal alkali burn induces the same response, we determined if such an effect is also attributable to TRPV4 activation in mice. Accordingly, we determined if the alkali burn wound healing responses in wild-type (WT) mice are different than those in their TRPV4-null (KO) counterpart. Stromal opacification due to fibrosis in KO (n = 128) mice was markedly reduced after 20 days relative to that in WT (n = 157) mice. Immunohistochemistry revealed that increases in polymorphonuclear leukocytes and macrophage infiltration declined in KO mice. Semi-quantitative real time RT-PCR of ocular KO fibroblast cultures identified increases in proinflammatory and monocyte chemoattractant protein-1 chemoattractant gene expression after injury. Biomarker gene expression of fibrosis, collagen1a1 and α-smooth muscle actin were attenuated along with macrophage release of interleukin-6 whereas transforming growth factor β, release was unchanged. Tail vein reciprocal bone marrow transplantation between WT and KO chimera mouse models mice showed that reduced scarring and inflammation in KO mice are due to loss of TRPV4 expression on both corneal resident immune cells, fibroblasts and infiltrating polymorphonuclear leukocytes and macrophages. Intraperitoneal TRPV4 receptor antagonist injection of HC-067047 (10 mg/kg, daily) into WT mice reproduced the KO-phenotype. Taken together, alkali-induced TRPV4 activation contributes to inducing fibrosis and inflammation since corneal transparency recovery was markedly improved in KO mice.

  15. Lycopene and Apo-10′-lycopenoic Acid Have Differential Mechanisms of Protection against Hepatic Steatosis in β-Carotene-9′,10′-oxygenase Knockout Male Mice123

    Science.gov (United States)

    Ip, Blanche C; Liu, Chun; Lichtenstein, Alice H; von Lintig, Johannes; Wang, Xiang-Dong

    2015-01-01

    Background: Nonalcoholic fatty liver disease is positively associated with obesity and cardiovascular disease risk. Apo-10′-lycopenoic acid (APO10LA), a potential oxidation product of apo-10′-lycopenal that is generated endogenously by β-carotene-9′,10′-oxygenase (BCO2) cleavage of lycopene, inhibited hepatic steatosis in BCO2-expressing mice. Objective: The present study evaluated lycopene and APO10LA effects on hepatic steatosis in mice without BCO2 expression. Methods: Male and female BCO2-knockout (BCO2-KO) mice were fed a high saturated fat diet (HSFD) with or without APO10LA (10 mg/kg diet) or lycopene (100 mg/kg diet) for 12 wk. Results: Lycopene or APO10LA supplementation reduced hepatic steatosis incidence (78% and 72%, respectively) and severity in BCO2-KO male mice. Female mice did not develop steatosis, had greater hepatic total cholesterol (3.06 vs. 2.31 mg/g tissue) and cholesteryl ester (1.58 vs. 0.86 mg/g tissue), but had lower plasma triglyceride (TG) (229 vs. 282 mg/dL) and cholesterol (97.1 vs. 119 mg/dL) than male mice. APO10LA-mitigated steatosis in males was associated with reduced hepatic total cholesterol (18%) and activated sirtuin 1 signaling, which resulted in reduced fatty acids (FAs) and TG synthesis markers [stearoyl-coenzyme A (CoA) desaturase protein, 71%; acetyl-CoA carboxylase phosphorylation, 79%; AMP-activated protein kinase phosphorylation, 67%], and elevated cholesterol efflux genes (cytochrome P450 family 7A1, 65%; ATP-binding cassette transporter G5/8, 11%). These APO10LA-mediated effects were not mimicked by lycopene supplementation. Intriguingly, steatosis inhibition by lycopene induced peroxisome proliferator–activated receptor (PPAR)α- and PPARγ-related genes in mesenteric adipose tissue (MAT) that increases mitochondrial uncoupling [cell death–inducing DNA fragmentation factor, α subunit-like effector a, 55%; PR domain-containing 16, 47%; uncoupling protein 3 (Ucp3), 55%], FA β-oxidation (PPARα, 53

  16. High ethanol and acetaldehyde impair spatial memory in mouse models: opposite effects of aldehyde dehydrogenase 2 and apolipoprotein E on memory.

    Science.gov (United States)

    Jamal, Mostofa; Ameno, Kiyoshi; Miki, Takanori; Tanaka, Naoko; Ono, Junichiro; Shirakami, Gotaro; Sultana, Ruby; Yu, Nakamura; Kinoshita, Hiroshi

    2012-05-01

    Aldehyde dehydrogenase 2 deficiency may directly contribute to excess acetaldehyde (AcH) accumulation after ethanol (EtOH) drinking and AcH mediates some of the behavioral effects of EtOH. Apolipoprotein E has been suggested to be involved in the alteration of attention and memory. We have chosen Aldh2-knockout (Aldh2-KO), ApoE-KO, and their wild-type (WT) control mice to examine the effects of EtOH and AcH on spatial memory and to compare the possible relationship between genetic deficiency and memory using two behavioral assessments. Mice were trained for 4 days, with EtOH (0.5, 1.0, 2.0 g/kg) being given intraperitoneally on day 4. A probe trial was given on day 5 in the non-EtOH state in the Morris water maze (MWM). The results showed that 2.0 g/kg EtOH increased errors, indicating memory impairment on the eight-arm radial maze (RAM) for all the mice studied. One gram per kilogram EtOH impaired the performance of Aldh2-KO and ApoE-KO mice, but not WT mice. We found similar effects of EtOH on the MWM performance, with 2.0 g/kg EtOH increasing the latencies. One gram per kilogram EtOH increased the latencies of Aldh2-KO and WT mice, but not ApoE-KO mice. The 2.0 g/kg EtOH-induced memory impairment in Aldh2-KO mice was greater, suggesting an AcH effect. Furthermore, time spent on the probe trial was shorter in mice that had previously received 2.0 g/kg EtOH. ApoE-KO mice learned more slowly, while Aldh2-KO mice learned more quickly. Both the RAM and MWM results suggest that high EtOH and AcH impair spatial memory in mice, while lower doses do not have consistent memory effects. In addition, we conclude that genetic differences might underlie some of EtOH's effects on memory. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Mutant Brucella abortus membrane fusogenic protein induces protection against challenge infection in mice.

    Science.gov (United States)

    de Souza Filho, Job Alves; de Paulo Martins, Vicente; Campos, Priscila Carneiro; Alves-Silva, Juliana; Santos, Nathalia V; de Oliveira, Fernanda Souza; Menezes, Gustavo B; Azevedo, Vasco; Cravero, Silvio Lorenzo; Oliveira, Sergio Costa

    2015-04-01

    Brucella species can cause brucellosis, a zoonotic disease that causes serious livestock economic losses and represents a public health threat. The mechanism of virulence of Brucella spp. is not yet fully understood. Therefore, it is crucial to identify new molecules that serve as virulence factors to better understand this host-pathogen interplay. Here, we evaluated the role of the Brucella membrane fusogenic protein (Mfp) and outer membrane protein 19 (Omp19) in bacterial pathogenesis. In this study, we showed that B. abortus Δmfp::kan and Δomp19::kan deletion mutant strains have reduced persistence in vivo in C57BL/6 and interferon regulatory factor 1 (IRF-1) knockout (KO) mice. Additionally, 24 h after macrophage infection with a Δmfp::kan or Δomp19::kan strain expressing green fluorescent protein (GFP) approximately 80% or 65% of Brucella-containing vacuoles (BCVs) retained the late endosomal/lysosomal marker LAMP-1, respectively, whereas around 60% of BCVs containing wild-type S2308 were found in LAMP-1-negative compartments. B. abortus Δomp19::kan was attenuated in vivo but had a residual virulence in C57BL/6 and IRF-1 KO mice, whereas the Δmfp::kan strain had a lower virulence in these same mouse models. Furthermore, Δmfp::kan and Δomp19::kan strains were used as live vaccines. Challenge experiments revealed that in C57BL/6 and IRF-1 KO mice, the Δmfp::kan strain induced greater protection than the vaccine RB51 and protection similar that of vaccine S19. However, a Δomp19::kan strain induced protection similar to that of RB51. Thus, these results demonstrate that Brucella Mfp and Omp19 are critical for full bacterial virulence and that the Δmfp::kan mutant may serve as a potential vaccine candidate in future studies. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Proglucagon Promoter Cre-Mediated AMPK Deletion in Mice Increases Circulating GLP-1 Levels and Oral Glucose Tolerance.

    Directory of Open Access Journals (Sweden)

    Sophie R Sayers

    Full Text Available Enteroendocrine L-cells synthesise and release the gut hormone glucagon-like peptide-1 (GLP-1 in response to food transit. Deletion of the tumour suppressor kinase LKB1 from proglucagon-expressing cells leads to the generation of intestinal polyps but no change in circulating GLP-1 levels. Here, we explore the role of the downstream kinase AMP-activated protein kinase (AMPK in these cells.Loss of AMPK from proglucagon-expressing cells was achieved using a preproglucagon promoter-driven Cre (iGluCre to catalyse recombination of floxed alleles of AMPKα1 and α2. Oral and intraperitoneal glucose tolerance were measured using standard protocols. L-cell mass was measured by immunocytochemistry. Hormone and peptide levels were measured by electrochemical-based luminescence detection or radioimmunoassay.Recombination with iGluCre led to efficient deletion of AMPK from intestinal L- and pancreatic alpha-cells. In contrast to mice rendered null for LKB1 using the same strategy, mice deleted for AMPK displayed an increase (WT: 0.05 ± 0.01, KO: 0.09±0.02%, p<0.01 in L-cell mass and elevated plasma fasting (WT: 5.62 ± 0.800 pg/ml, KO: 14.5 ± 1.870, p<0.01 and fed (WT: 15.7 ± 1.48pg/ml, KO: 22.0 ± 6.62, p<0.01 GLP-1 levels. Oral, but not intraperitoneal, glucose tolerance was significantly improved by AMPK deletion, whilst insulin and glucagon levels were unchanged despite an increase in alpha to beta cell ratio (WT: 0.23 ± 0.02, KO: 0.33 ± 0.03, p<0.01.AMPK restricts L-cell growth and GLP-1 secretion to suppress glucose tolerance. Targeted inhibition of AMPK in L-cells may thus provide a new therapeutic strategy in some forms of type 2 diabetes.

  19. Deletion of Rac1GTPase in the Myeloid Lineage Protects against Inflammation-Mediated Kidney Injury in Mice.

    Directory of Open Access Journals (Sweden)

    Miki Nagase

    Full Text Available Macrophage-mediated inflammation has been implicated in various kidney diseases. We previously reported that Rac1, a Rho family small GTP-binding protein, was overactivated in several chronic kidney disease models, and that Rac1 inhibitors ameliorated renal injury, in part via inhibition of inflammation, but the detailed mechanisms have not been clarified. In the present study, we examined whether Rac1 in macrophages effects cytokine production and the inflammatory mechanisms contributing to kidney derangement. Myeloid-selective Rac1 flox control (M-Rac1 FC and knockout (M-Rac1 KO mice were generated using the cre-loxP system. Renal function under basal conditions did not differ between M-Rac1 FC and KO mice. Accordingly, lipopolysaccharide (LPS-evoked kidney injury model was created. LPS elevated blood urea nitrogen and serum creatinine, enhanced expressions of kidney injury biomarkers, Kim-1 and Ngal, and promoted tubular injury in M-Rac1 FC mice. By contrast, deletion of myeloid Rac1 almost completely prevented the LPS-mediated renal impairment. LPS triggered a marked induction of macrophage-derived inflammatory cytokines, IL-6 and TNFα, in M-Rac1 FC mice, which was accompanied by Rac1 activation, stimulation of reduced nicotinamide-adenine dinucleotide phosphate (NADPH oxidase, and reactive oxygen species overproduction. These changes were inhibited in M-Rac1 KO mice. LPS evoked F4/80-positive macrophages accumulation in the kidney, which was not affected by myeloid Rac1 deficiency. We further tested the role of Rac1 signaling in cytokine production using macrophage cell line, RAW264.7. Exposure to LPS increased IL-6 and TNFα mRNA expression. The LPS-driven cytokine induction was dose-dependently blocked by the Rac1 inhibitor EHT1864, NADPH oxidase inhibitor diphenyleneiodonium, and NF-κB inhibitor BAY11-7082. In conclusion, genetic ablation of Rac1 in the myeloid lineage protected against LPS-induced renal inflammation and injury, by

  20. Hyperactivity and lack of social discrimination in the adolescent Fmr1 knockout mouse.

    Science.gov (United States)

    Sørensen, Emilie M; Bertelsen, Freja; Weikop, Pia; Skovborg, Maria M; Banke, Tue; Drasbek, Kim R; Scheel-Krüger, Jørgen

    2015-12-01

    The aims of this study were to investigate behaviour relevant to human autism spectrum disorder (ASD) and the fragile X syndrome in adolescent Fmr1 knockout (KO) mice and to evaluate the tissue levels of striatal monoamines. Fmr1 KO mice were evaluated in the open field, marble burying and three-chamber test for the presence of hyperactivity, anxiety, repetitive behaviour, sociability and observation of social novelty compared with wild-type (WT) mice. The Fmr1 KO mice expressed anxiety and hyperactivity in the open field compared with WT mice. This increased level of hyperactivity was confirmed in the three-chamber test. Fmr1 KO mice spent more time with stranger mice compared with the WT. However, after a correction for hyperactivity, their apparent increase in sociability became identical to that of the WT. Furthermore, the Fmr1 KO mice could not differentiate between a familiar or a novel mouse. Monoamines were measured by HPLC: Fmr1 KO mice showed an increase in the striatal dopamine level. We conclude that the fragile X syndrome model seems to be useful for understanding certain aspects of ASD and may have translational interest for studies of social behaviour when hyperactivity coexists in ASD patients.