WorldWideScience

Sample records for nmr-based metabolomics approach

  1. NMR-based milk metabolomics

    DEFF Research Database (Denmark)

    Sundekilde, Ulrik; Larsen, Lotte Bach; Bertram, Hanne Christine S.

    2013-01-01

    and processing capabilities of bovine milk is closely associated to milk composition. Metabolomics is ideal in the study of the low-molecular-weight compounds in milk, and this review focuses on the recent nuclear magnetic resonance (NMR)-based metabolomics trends in milk research, including applications linking...... the milk metabolite profiling with nutritional aspects, and applications which aim to link the milk metabolite profile to various technological qualities of milk. The metabolite profiling studies encompass the identification of novel metabolites, which potentially can be used as biomarkers or as bioactive...... compounds. Furthermore, metabolomics applications elucidating how the differential regulated genes affects milk composition are also reported. This review will highlight the recent advances in NMR-based metabolomics on milk, as well as give a brief summary of when NMR spectroscopy can be useful for gaining...

  2. NMR-based metabolomics applications

    DEFF Research Database (Denmark)

    Iaccarino, Nunzia

    juice from ancient Danish apple cultivars. Both studies revealed variety-related peculiarities that would have been difficult to detect by means of traditional analysis. The second part of the project includes four metabolomics studies performed on samples of biological origin. In particular, the first......Metabolomics is the scientific discipline that identifies and quantifies endogenous and exogenous metabolites in different biological samples. Metabolites are crucial components of a biological system and they are highly informative about its functional state, due to their closeness to the organism...... focused on the analysis of various samples covering a wide range of fields, namely, food and nutraceutical sciences, cell metabolomics and medicine using a metabolomics approach. Indeed, the first part of the thesis describes two exploratory studies performed on Algerian extra virgin olive oil and apple...

  3. 1H NMR- based metabolomics approaches as non- invasive tools for diagnosis of endometriosis

    Directory of Open Access Journals (Sweden)

    Negar Ghazi

    2016-01-01

    Full Text Available Background: So far, non-invasive diagnostic approaches such as ultrasound, magnetic resonance imaging, or blood tests do not have sufficient diagnostic power for endometriosis disease. Lack of a non-invasive diagnostic test contributes to the long delay between onset of symptoms and diagnosis of endometriosis. Objective: The present study focuses on the identification of predictive biomarkers in serum by pattern recognition techniques and uses partial least square discriminant analysis, multi-layer feed forward artificial neural networks (ANNs and quadratic discriminant analysis (QDA modeling tools for the early diagnosis of endometriosis in a minimally invasive manner by 1H- NMR based metabolomics. Materials and Methods: This prospective cohort study was done in Pasteur Institute, Iran in June 2013. Serum samples of 31 infertile women with endometriosis (stage II and III who confirmed by diagnostic laparoscopy and 15 normal women were collected and analyzed by nuclear magnetic resonance spectroscopy. The model was built by using partial least square discriminant analysis, QDA, and ANNs to determine classifier metabolites for early prediction risk of disease. Results: The levels of 2- methoxyestron, 2-methoxy estradiol, dehydroepiandrostion androstendione, aldosterone, and deoxy corticosterone were enhanced significantly in infertile group. While cholesterol and primary bile acids levels were decreased. QDA model showed significant difference between two study groups. Positive and negative predict value levels obtained about 71% and 78%, respectively. ANNs provided also criteria for detection of endometriosis. Conclusion: The QDA and ANNs modeling can be used as computational tools in noninvasive diagnose of endometriosis. However, the model designed by QDA methods is more efficient compared to ANNs in diagnosis of endometriosis patients.

  4. NMR-based metabolomics approach to study the toxicity of lambda-cyhalothrin to goldfish (Carassius auratus)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Minghui [State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009 (China); Wang, Junsong, E-mail: wang.junsong@gmail.com [Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094 (China); Lu, Zhaoguang; Wei, Dandan; Yang, Minghua [State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009 (China); Kong, Lingyi, E-mail: cpu_lykong@126.com [State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009 (China)

    2014-01-15

    Highlights: •A goldfish model was established to investigate the toxicity of lambda-cyhalothrin (LCT) exposure on multiple organs. •NMR based metabolomics approach were firstly used to provide a global view of the toxicity of LCT. •LCT induced neurotransmitters and osmoregulatory imbalances, oxidative stress, energy and amino acid metabolic disorders. •Glutamate–glutamine–GABA axis as a potential target for LCT toxicity was first found. -- Abstract: In this study, a {sup 1}H nuclear magnetic resonance (NMR) based metabolomics approach was applied to investigate the toxicity of lambda-cyhalothrin (LCT) in goldfish (Carassius auratus). LCT showed tissue-specific damage to gill, heart, liver and kidney tissues of goldfish. NMR profiling combined with statistical methods such as orthogonal partial least squares discriminant analysis (OPLS-DA) and two-dimensional statistical total correlation spectroscopy (2D-STOCSY) was developed to discern metabolite changes occurring after one week LCT exposure in brain, heart and kidney tissues of goldfish. LCT exposure influenced levels of many metabolites (e.g., leucine, isoleucine and valine in brain and kidney; lactate in brain, heart and kidney; alanine in brain and kidney; choline in brain, heart and kidney; taurine in brain, heart and kidney; N-acetylaspartate in brain; myo-inositol in brain; phosphocreatine in brain and heart; 2-oxoglutarate in brain; cis-aconitate in brain, and etc.), and broke the balance of neurotransmitters and osmoregulators, evoked oxidative stress, disturbed metabolisms of energy and amino acids. The implication of glutamate–glutamine–gamma-aminobutyric axis in LCT induced toxicity was demonstrated for the first time. Our findings demonstrated the applicability and potential of metabolomics approach for the elucidation of toxicological effects of pesticides and the underlying mechanisms, and the discovery of biomarkers for pesticide pollution in aquatic environment.

  5. Acute psychoactive and toxic effects of D. metel on mice explained by 1H NMR based metabolomics approach.

    Science.gov (United States)

    Fu, Yonghong; Si, Zhihong; Li, Pumin; Li, Minghui; Zhao, He; Jiang, Lei; Xing, Yuexiao; Hong, Wei; Ruan, Lingyu; Wang, Jun-Song

    2017-08-01

    Datura metel L. (D. metel) is one well-known folk medical herb with wide application and also the most abused plants all over the world, mainly for spiritual or religious purpose, over-dosing of which often produces poisonous effects. In this study, mice were orally administered with the extract of D. metel once a day at doses for 10 mg/kg and 40 mg/kg for consecutive 4 days, 1 H NMR based metabolomics approach aided with histopathological inspection and biochemical assays were used for the first time to study the psychoactive and toxic effects of D. metel. Histopathological inspection revealed obvious hypertrophy of hepatocytes, karyolysis and karyorrhexis in livers as well as distinct nerve cell edema, chromatolysis and lower nuclear density in brains. The increased tissue level of methane dicarboxylic aldehyde (MDA) and superoxide dismutase (SOD), decreased tissue level of glutathione (GSH) along with increased serum level of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) suggested brain and liver injury induced by D. metel. Orthogonal signal correction-partial least squares-discriminant analysis (OSC-PLS-DA) of NMR profiles supplemented with correlation network analysis revealed significant altered metabolites and related pathway that contributed to oxidative stress, energy metabolism disturbances, neurotransmitter imbalance and amino acid metabolism disorders.

  6. An NMR-based metabolomic approach to investigate the effects of supplementation with glutamic acid in piglets challenged with deoxynivalenol.

    Science.gov (United States)

    Wu, Miaomiao; Xiao, Hao; Ren, Wenkai; Yin, Jie; Hu, Jiayu; Duan, Jielin; Liu, Gang; Tan, Bie; Xiong, Xia; Oso, Abimbola Oladele; Adeola, Olayiwola; Yao, Kang; Yin, Yulong; Li, Tiejun

    2014-01-01

    Deoxynivalenol (DON) has various toxicological effects in humans and pigs that result from the ingestion of contaminated cereal products. This study was conducted to investigate the protective effects of dietary supplementation with glutamic acid on piglets challenged with DON. A total of 20 piglets weaned at 28 d of age were randomly assigned to receive 1 of 4 treatments (5 piglets/treatment): 1) basal diet, negative control (NC); 2) basal diet +4 mg/kg DON (DON); 3) basal diet +2% (g/g) glutamic acid (GLU); 4) basal diet +4 mg/kg DON +2% glutamic acid (DG). A 7-d adaptation period was followed by 30 days of treatment. A metabolite analysis using nuclear magnetic resonance spectroscopy (1H-NMR)-based metabolomic technology and the determination of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities for plasma, as well as the activity of Caspase-3 and the proliferation of epithelial cells were conducted. The results showed that contents of low-density lipoprotein, alanine, arginine, acetate, glycoprotein, trimethylamine-N-oxide (TMAO), glycine, lactate, and urea, as well as the glutamate/creatinine ratio were higher but high-density lipoprotein, proline, citrate, choline, unsaturated lipids and fumarate were lower in piglets of DON treatment than that of NC treatment (Pglutamic acid increased the plasma concentrations of proline, citrate, creatinine, unsaturated lipids, and fumarate, and decreased the concentrations of alanine, glycoprotein, TMAO, glycine, and lactate, as well as the glutamate/creatinine ratio (Pglutamic acid to DON treatment increased the plasma activities of SOD and GSH-Px and the proliferating cell nuclear antigen (PCNA) labeling indexes for the jejunum and ileum (Pglutamic acid has the potential to repair the injuries associated with oxidative stress as well as the disturbances of energy and amino acid metabolism induced by DON.

  7. Investigating correlations in the altered metabolic profiles of obese and diabetic subjects in a South Indian Asian population using an NMR-based metabolomic approach.

    Science.gov (United States)

    Gogna, Navdeep; Krishna, Murahari; Oommen, Anup Mammen; Dorai, Kavita

    2015-02-01

    It is well known that obesity/high body mass index (BMI) plays a key role in the evolution of insulin resistance and type-2 diabetes mellitus (T2DM). However, the exact mechanism underlying its contribution is still not fully understood. This work focuses on an NMR-based metabolomic investigation of the serum profiles of diabetic, obese South Indian Asian subjects. (1)H 1D and 2D NMR experiments were performed to profile the altered metabolic patterns of obese diabetic subjects and multivariate statistical methods were used to identify metabolites that contributed significantly to the differences in the samples of four different subject groups: diabetic and non-diabetic with low and high BMIs. Our analysis revealed that the T2DM-high BMI group has higher concentrations of saturated fatty acids, certain amino acids (leucine, isoleucine, lysine, proline, threonine, valine, glutamine, phenylalanine, histidine), lactic acid, 3-hydroxybutyric acid, choline, 3,7-dimethyluric acid, pantothenic acid, myoinositol, sorbitol, glycerol, and glucose, as compared to the non-diabetic-low BMI (control) group. Of these 19 identified significant metabolites, the levels of saturated fatty acids, lactate, valine, isoleucine, and phenylalanine are also higher in obese non-diabetic subjects as compared to control subjects, implying that this set of metabolites could be identified as potential biomarkers for the onset of diabetes in subjects with a high BMI. Our work validates the utility of NMR-based metabolomics in conjunction with multivariate statistical analysis to provide insights into the underlying metabolic pathways that are perturbed in diabetic subjects with a high BMI.

  8. (1)H-NMR-based metabolomic analysis of the effect of moderate wine consumption on subjects with cardiovascular risk factors

    OpenAIRE

    Vázquez Fresno, Rosa; Llorach, Rafael; Alcaro, Francesca; Rodríguez Martínez, Miguel Ángel; Vinaixa Crevillent, Maria; Chiva Blanch, Gemma; Estruch Riba, Ramon; Correig Blanchar, Xavier; Andrés Lacueva, Ma. Cristina

    2012-01-01

    Moderate wine consumption is associated with health-promoting activities. An H-NMR-based metabolomic approach was used to identify urinary metabolomic differences of moderate wine intake in the setting of a prospective, randomized, crossover, and controlled trial. Sixty-one male volunteers with high cardiovascular risk factors followed three dietary interventions (28 days): dealcoholized red wine (RWD) (272mL/day, polyphenol control), alcoholized red wine (RWA) (272mL/day) and gin (GIN) (100m...

  9. NMR-based metabolomics in human disease diagnosis: Applications, limitations, and recommendations

    KAUST Repository

    Emwas, Abdul-Hamid M.

    2013-04-03

    Metabolomics is a dynamic and emerging research field, similar to proteomics, transcriptomics and genomics in affording global understanding of biological systems. It is particularly useful in functional genomic studies in which metabolism is thought to be perturbed. Metabolomics provides a snapshot of the metabolic dynamics that reflect the response of living systems to both pathophysiological stimuli and/or genetic modification. Because this approach makes possible the examination of interactions between an organism and its diet or environment, it is particularly useful for identifying biomarkers of disease processes that involve the environment. For example, the interaction of a high fat diet with cardiovascular disease can be studied via such a metabolomics approach by modeling the interaction between genes and diet. The high reproducibility of NMR-based techniques gives this method a number of advantages over other analytical techniques in large-scale and long-term metabolomic studies, such as epidemiological studies. This approach has been used to study a wide range of diseases, through the examination of biofluids, including blood plasma/serum, urine, blister fluid, saliva and semen, as well as tissue extracts and intact tissue biopsies. However, complicating the use of NMR spectroscopy in biomarker discovery is the fact that numerous variables can effect metabolic composition including, fasting, stress, drug administration, diet, gender, age, physical activity, life style and the subject\\'s health condition. To minimize the influence of these variations in the datasets, all experimental conditions including sample collection, storage, preparation as well as NMR spectroscopic parameters and data analysis should be optimized carefully and conducted in an identical manner as described by the local standard operating protocol. This review highlights the potential applications of NMR-based metabolomics studies and gives some recommendations to improve sample

  10. Chemical Composition and Seasonality of Aromatic Mediterranean Plant Species by NMR-Based Metabolomics

    Directory of Open Access Journals (Sweden)

    Monica Scognamiglio

    2015-01-01

    Full Text Available An NMR-based metabolomic approach has been applied to analyse seven aromatic Mediterranean plant species used in traditional cuisine. Based on the ethnobotanical use of these plants, the approach has been employed in order to study the metabolic changes during different seasons. Primary and secondary metabolites have been detected and quantified. Flavonoids (apigenin, quercetin, and kaempferol derivatives and phenylpropanoid derivatives (e.g., chlorogenic and rosmarinic acid are the main identified polyphenols. The richness in these metabolites could explain the biological properties ascribed to these plant species.

  11. Chemical Composition and Seasonality of Aromatic Mediterranean Plant Species by NMR-Based Metabolomics.

    Science.gov (United States)

    Scognamiglio, Monica; D'Abrosca, Brigida; Esposito, Assunta; Fiorentino, Antonio

    2015-01-01

    An NMR-based metabolomic approach has been applied to analyse seven aromatic Mediterranean plant species used in traditional cuisine. Based on the ethnobotanical use of these plants, the approach has been employed in order to study the metabolic changes during different seasons. Primary and secondary metabolites have been detected and quantified. Flavonoids (apigenin, quercetin, and kaempferol derivatives) and phenylpropanoid derivatives (e.g., chlorogenic and rosmarinic acid) are the main identified polyphenols. The richness in these metabolites could explain the biological properties ascribed to these plant species.

  12. Urine metabolite analysis as a function of deoxynivalenol exposure: an NMR-based metabolomics investigation.

    Science.gov (United States)

    Hopton, R P; Turner, E; Burley, V J; Turner, P C; Fisher, J

    2010-02-01

    Deoxynivalenol (DON) is a toxic fungal metabolite that frequently contaminates cereal crops including wheat, maize and barley. Despite knowledge of frequent exposure through diet, our understanding of the potential consequences of human exposure remains limited, in part due to the lack of validated exposure biomarkers. In this study, we interrogated the urinary metabolome using nuclear magnetic resonance (NMR) spectroscopy to compare individuals with known low and high DON exposure through consumption of their normal diet. Urine samples from 22 adults from the UK (seven males, 15 females; age range = 21-59 years) had previously determined urinary DON levels using an established liquid chromatography-mass spectrometry (LC-MS) assay. Urine samples were subsequently analysed using an NMR-based metabolomics approach coupled with multivariate statistical analysis. Metabolic profiling suggested that hippurate levels could be used to distinguish between groups with low (3.6 ng DON mg(-1) creatinine: 95% CI = 2.6, 5.0 ng mg(-1)) and high (11.1 ng mg(-1): 95% CI = 8.1, 15.5 ng mg(-1)) DON exposure, with the concentration of hippurate being significantly (1.5 times) higher for people with high DON exposure than for those with low DON exposure (p = 0.047). This, to our knowledge, is the first report of a metabolomics-derived biomarker of DON exposure in humans.

  13. NMR-based metabolomics of mammalian cell and tissue cultures

    International Nuclear Information System (INIS)

    Aranibar, Nelly; Borys, Michael; Mackin, Nancy A.; Ly, Van; Abu-Absi, Nicholas; Abu-Absi, Susan; Niemitz, Matthias; Schilling, Bernhard; Li, Zheng Jian; Brock, Barry; Russell, Reb J.; Tymiak, Adrienne; Reily, Michael D.

    2011-01-01

    NMR spectroscopy was used to evaluate growth media and the cellular metabolome in two systems of interest to biomedical research. The first of these was a Chinese hamster ovary cell line engineered to express a recombinant protein. Here, NMR spectroscopy and a quantum mechanical total line shape analysis were utilized to quantify 30 metabolites such as amino acids, Krebs cycle intermediates, activated sugars, cofactors, and others in both media and cell extracts. The impact of bioreactor scale and addition of anti-apoptotic agents to the media on the extracellular and intracellular metabolome indicated changes in metabolic pathways of energy utilization. These results shed light into culture parameters that can be manipulated to optimize growth and protein production. Second, metabolomic analysis was performed on the superfusion media in a common model used for drug metabolism and toxicology studies, in vitro liver slices. In this study, it is demonstrated that two of the 48 standard media components, choline and histidine are depleted at a faster rate than many other nutrients. Augmenting the starting media with extra choline and histidine improves the long-term liver slice viability as measured by higher tissues levels of lactate dehydrogenase (LDH), glutathione and ATP, as well as lower LDH levels in the media at time points out to 94 h after initiation of incubation. In both models, media components and cellular metabolites are measured over time and correlated with currently accepted endpoint measures.

  14. [Monitoring of chemical components with different color traits of Tussilago farfara using NMR-based metabolomics].

    Science.gov (United States)

    Mi, Xi; Li, Zhen-yu; Qin, Xue-mei; Zhang, Li-zeng

    2013-11-01

    The quality and grade of traditional Chinese medicinal herbs were assessed by their characteristics traditionally. According to traditional experience, the quality of the purple Flos Farfarae is better than that of yellow buds. NMR-based metabolomic approach combined with significant analysis of microarray (SAM) and Spearman rank correlation analysis were used to investigate the different metabolites of the Flos Farfarae with different color feature. Principal component analysis (PCA) showed clear distinction between the purple and yellow flower buds of Tussilago farfara. The S-plot of orthogonal PLS-DA (OPLS-DA) and t test revealed that the levels of threonine, proline, phosphatidylcholine, creatinine, 4, 5-dicaffeoylquinic acid, rutin, caffeic acid, kaempferol analogues, and tussilagone were higher in the purple flower buds than that in the yellow buds, in agreement with the results of SAM and Spearman rank correlation analysis. The results confirmed the traditional medication experience that "purple flower bud is better than the yellow ones", and provide a scientific basis for assessing the quality of Flos Farfarae by the color features.

  15. Application of NMR-based metabolomics for environmental assessment in the Great Lakes using zebra mussel (Dreissena polymorpha).

    Science.gov (United States)

    Watanabe, Miki; Meyer, Kathryn A; Jackson, Tyler M; Schock, Tracey B; Johnson, W Edward; Bearden, Daniel W

    Zebra mussel, Dreissena polymorpha , in the Great Lakes is being monitored as a bio-indicator organism for environmental health effects by the National Oceanic and Atmospheric Administration's Mussel Watch program. In order to monitor the environmental effects of industrial pollution on the ecosystem, invasive zebra mussels were collected from four stations-three inner harbor sites (LMMB4, LMMB1, and LMMB) in Milwaukee Estuary, and one reference site (LMMB5) in Lake Michigan, Wisconsin. Nuclear magnetic resonance (NMR)-based metabolomics was used to evaluate the metabolic profiles of the mussels from these four sites. The objective was to observe whether there were differences in metabolite profiles between impacted sites and the reference site; and if there were metabolic profile differences among the impacted sites. Principal component analyses indicated there was no significant difference between two impacted sites: north Milwaukee harbor (LMMB and LMMB4) and the LMMB5 reference site. However, significant metabolic differences were observed between the impacted site on the south Milwaukee harbor (LMMB1) and the LMMB5 reference site, a finding that correlates with preliminary sediment toxicity results. A total of 26 altered metabolites (including two unidentified peaks) were successfully identified in a comparison of zebra mussels from the LMMB1 site and LMMB5 reference site. The application of both uni- and multivariate analysis not only confirmed the variability of altered metabolites but also ensured that these metabolites were identified via unbiased analysis. This study has demonstrated the feasibility of the NMR-based metabolomics approach to assess whole-body metabolomics of zebra mussels to study the physiological impact of toxicant exposure at field sites.

  16. Metabolic Effect of Dietary Taurine Supplementation on Nile Tilapia (Oreochromis nilotictus) Evaluated by NMR-Based Metabolomics.

    Science.gov (United States)

    Shen, Guiping; Huang, Ying; Dong, Jiyang; Wang, Xuexi; Cheng, Kian-Kai; Feng, Jianghua; Xu, Jingjing; Ye, Jidan

    2018-01-10

    Taurine is indispensable in aquatic diets that are based solely on plant protein, and it promotes growth of many fish species. However, the physiological and metabolome effects of taurine on fish have not been well described. In this study, 1 H NMR-based metabolomics approaches were applied to investigate the metabolite variations in Nile tilapia (Oreochromis nilotictus) muscle in order to visualize the metabolic trajectory and reveal the possible mechanisms of metabolic effects of dietary taurine supplementation on tilapia growth. After extraction using aqueous and organic solvents, 19 taurine-induced metabolic changes were evaluated in our study. The metabolic changes were characterized by differences in carbohydrate, amino acid, lipid, and nucleotide contents. The results indicate that taurine supplementation could significantly regulate the physiological state of fish and promote growth and development. These results provide a basis for understanding the mechanism of dietary taurine supplementation in fish feeding. 1 H NMR spectroscopy, coupled with multivariate pattern recognition technologies, is an efficient and useful tool to map the fish metabolome and identify metabolic responses to different dietary nutrients in aquaculture.

  17. NMR-based metabolomics for simultaneously evaluating multiple determinants of primary beef quality in Japanese Black cattle.

    Science.gov (United States)

    Kodani, Yoshinori; Miyakawa, Takuya; Komatsu, Tomohiko; Tanokura, Masaru

    2017-05-02

    Analytical methodologies to comprehensively evaluate beef quality are increasingly needed to accelerate improvement in both breeding and post-mortem processing. Consumer palatability towards beef is generally attributed to tenderness, flavor, and/or juiciness. These primary qualities are modified by post-mortem aging and the crude content and fatty acid composition of intramuscular fat. In this study, we report a nuclear magnetic resonance (NMR)-based metabolic profiles of Japanese Black cattle to evaluate the compositional attributes of intramuscular fat and the long-term post-mortem aging. The unsaturation degree of triacylglycerol was estimated by the 1 H NMR spectra and was correlated with the content ratio of unsaturated fatty acids (R 2  = 0.944) and the melting point of intramuscular fat (R 2  = 0.871). NMR-detected profiles of water-soluble metabolites revealed overall metabolic change (R 2  = 0.951) and several metabolites (R 2  > 0.818) linearly correlated with long-term aging duration, which can be used to evaluate the aging rate and aging duration of beef. This approach also provided the pH profile during aging, which is related to the water-holding capacity of beef. Thus, NMR-based metabolomics has the potential to evaluate multiple parameters related to the beef qualities of Japanese Black cattle.

  18. Influence of Freezing and Storage Procedure on Human Urine Samples in NMR-Based Metabolomics

    Directory of Open Access Journals (Sweden)

    Burkhard Luy

    2013-04-01

    Full Text Available It is consensus in the metabolomics community that standardized protocols should be followed for sample handling, storage and analysis, as it is of utmost importance to maintain constant measurement conditions to identify subtle biological differences. The aim of this work, therefore, was to systematically investigate the influence of freezing procedures and storage temperatures and their effect on NMR spectra as a potentially disturbing aspect for NMR-based metabolomics studies. Urine samples were collected from two healthy volunteers, centrifuged and divided into aliquots. Urine aliquots were frozen either at −20 °C, on dry ice, at −80 °C or in liquid nitrogen and then stored at −20 °C, −80 °C or in liquid nitrogen vapor phase for 1–5 weeks before NMR analysis. Results show spectral changes depending on the freezing procedure, with samples frozen on dry ice showing the largest deviations. The effect was found to be based on pH differences, which were caused by variations in CO2 concentrations introduced by the freezing procedure. Thus, we recommend that urine samples should be frozen at −20 °C and transferred to lower storage temperatures within one week and that freezing procedures should be part of the publication protocol.

  19. (13)C NMR-based metabolomics for the classification of green coffee beans according to variety and origin.

    Science.gov (United States)

    Wei, Feifei; Furihata, Kazuo; Koda, Masanori; Hu, Fangyu; Kato, Rieko; Miyakawa, Takuya; Tanokura, Masaru

    2012-10-10

    (13)C NMR-based metabolomics was demonstrated as a useful tool for distinguishing the species and origins of green coffee bean samples of arabica and robusta from six different geographic regions. By the application of information on (13)C signal assignment, significantly different levels of 14 metabolites of green coffee beans were identified in the classifications, including sucrose, caffeine, chlorogenic acids, choline, amino acids, organic acids, and trigonelline, as captured by multivariate analytical models. These studies demonstrate that the species and geographical origin can be quickly discriminated by evaluating the major metabolites of green coffee beans quantitatively using (13)C NMR-based metabolite profiling.

  20. Comparison of Fruits of Forsythia suspensa at Two Different Maturation Stages by NMR-Based Metabolomics

    Directory of Open Access Journals (Sweden)

    Jinping Jia

    2015-05-01

    Full Text Available Forsythiae Fructus (FF, the dried fruit of Forsythia suspensa, has been widely used as a heat-clearing and detoxifying herbal medicine in China. Green FF (GF and ripe FF (RF are fruits of Forsythia suspensa at different maturity stages collected about a month apart. FF undergoes a complex series of physical and biochemical changes during fruit ripening. However, the clinical uses of GF and RF have not been distinguished to date. In order to comprehensively compare the chemical compositions of GF and RF, NMR-based metabolomics coupled with HPLC and UV spectrophotometry methods were adopted in this study. Furthermore, the in vitro antioxidant and antibacterial activities of 50% methanol extracts of GF and RF were also evaluated. A total of 27 metabolites were identified based on NMR data, and eight of them were found to be different between the GF and RF groups. The GF group contained higher levels of forsythoside A, forsythoside C, cornoside, rutin, phillyrin and gallic acid and lower levels of rengyol and β-glucose compared with the RF group. The antioxidant activity of GF was higher than that of RF, but no significant difference was observed between the antibacterial activities of GF and RF. Given our results showing their distinct chemical compositions, we propose that NMR-based metabolic profiling can be used to discriminate between GF and RF. Differences in the chemical and biological activities of GF and RF, as well as their clinical efficacies in traditional Chinese medicine should be systematically investigated in future studies.

  1. 1H NMR-based metabolomics of time-dependent responses of Eisenia fetida to sub-lethal phenanthrene exposure

    International Nuclear Information System (INIS)

    Lankadurai, Brian P.; Wolfe, David M.; Simpson, Andre J.; Simpson, Myrna J.

    2011-01-01

    1 H NMR-based metabolomics was used to examine the response of the earthworm Eisenia fetida after exposure to sub-lethal concentrations of phenanthrene over time. Earthworms were exposed to 0.025 mg/cm 2 of phenanthrene (1/64th of the LC 50 ) via contact tests over four days. Earthworm tissues were extracted using a mixture of chloroform, methanol and water, resulting in polar and non-polar fractions that were analyzed by 1 H NMR after one, two, three and four days. NMR-based metabolomic analyses revealed heightened E. fetida responses with longer phenanthrene exposure times. Amino acids alanine and glutamate, the sugar maltose, the lipids cholesterol and phosphatidylcholine emerged as potential indicators of phenanthrene exposure. The conversion of succinate to fumarate in the Krebs cycle was also interrupted by phenanthrene. Therefore, this study shows that NMR-based metabolomics is a powerful tool for elucidating time-dependent relationships in addition to the mode of toxicity of phenanthrene in earthworm exposure studies. - Highlights: → NMR-based earthworm metabolomic analysis of the mode of action of phenanthrene is presented. → The earthworm species E. fetida were exposed to sub-lethal phenanthrene concentrations. → Both polar and non-polar metabolites of E. fetida tissue extracts were analyzed by 1 H NMR. → Longer phenanthrene exposure times resulted in heightened earthworm responses. → An interruption of the Krebs cycle was also observed due to phenanthrene exposure. - 1 H NMR metabolomics is used to determine the relationship between phenanthrene exposure and the metabolic response of the earthworm E. fetida over time and also to elucidate the phenanthrene mode of toxicity.

  2. NMR-based metabolomics reveals urinary metabolome modifications in female Sprague-Dawley rats by cranberry procyanidins.

    Science.gov (United States)

    Liu, Haiyan; Tayyari, Fariba; Edison, Arthur S; Su, Zhihua; Gu, Liwei

    2016-08-01

    A (1)H NMR global metabolomics approach was used to investigate the urinary metabolome changes in female rats gavaged with partially purified cranberry procyanidins (PPCP) or partially purified apple procyanidins (PPAP). After collecting 24-h baseline urine, 24 female Sprague-Dawley rats were randomly separated into two groups and gavaged with PPCP or PPAP twice using a dose of 250 mg extracts per kilogram body weight. The 24-h urine samples were collected after the gavage. Urine samples were analyzed using (1)H NMR. Multivariate analyses showed that the urinary metabolome in rats was modified after administering PPCP or PPAP compared to baseline urine metabolic profiles. 2D (1)H-(13)C HSQC NMR was conducted to assist identification of discriminant metabolites. An increase of hippurate, lactate and succinate and a decrease of citrate and α-ketoglutarate were observed in rat urine after administering PPCP. Urinary levels of d-glucose, d-maltose, 3-(3'-hydroxyphenyl)-3-hydroxypropanoic acid, p-hydroxyphenylacetic acid, formate and phenol increased but citrate, α-ketoglutarate and creatinine decreased in rats after administering PPAP. Furthermore, the NMR analysis showed that the metabolome in the urine of rats administered with PPCP differed from those gavaged with PPAP. Compared to PPAP, PPCP caused an increase of urinary excretion of hippurate but a decrease of 3-(3'-hydroxyphenyl)-3-hydroxypropanoic acid, p-hydroxyphenylacetic acid and phenol. These metabolome changes caused by cranberry procyanidins may help to explain its reported health benefits and identify biomarkers of cranberry procyanidin intake. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Evaluation of Pacific white shrimp (Litopenaeus vannamei) health during a superintensive aquaculture growout using NMR-based metabolomics.

    Science.gov (United States)

    Schock, Tracey B; Duke, Jessica; Goodson, Abby; Weldon, Daryl; Brunson, Jeff; Leffler, John W; Bearden, Daniel W

    2013-01-01

    Success of the shrimp aquaculture industry requires technological advances that increase production and environmental sustainability. Indoor, superintensive, aquaculture systems are being developed that permit year-round production of farmed shrimp at high densities. These systems are intended to overcome problems of disease susceptibility and of water quality issues from waste products, by operating as essentially closed systems that promote beneficial microbial communities (biofloc). The resulting biofloc can assimilate and detoxify wastes, may provide nutrition for the farmed organisms resulting in improved growth, and may aid in reducing disease initiated from external sources. Nuclear magnetic resonance (NMR)-based metabolomic techniques were used to assess shrimp health during a full growout cycle from the nursery phase through harvest in a minimal-exchange, superintensive, biofloc system. Aberrant shrimp metabolomes were detected from a spike in total ammonia nitrogen in the nursery, from a reduced feeding period that was a consequence of surface scum build-up in the raceway, and from the stocking transition from the nursery to the growout raceway. The biochemical changes in the shrimp that were induced by the stressors were essential for survival and included nitrogen detoxification and energy conservation mechanisms. Inosine and trehalose may be general biomarkers of stress in Litopenaeus vannamei. This study demonstrates one aspect of the practicality of using NMR-based metabolomics to enhance the aquaculture industry by providing physiological insight into common environmental stresses that may limit growth or better explain reduced survival and production.

  4. Evaluation of Pacific white shrimp (Litopenaeus vannamei health during a superintensive aquaculture growout using NMR-based metabolomics.

    Directory of Open Access Journals (Sweden)

    Tracey B Schock

    Full Text Available Success of the shrimp aquaculture industry requires technological advances that increase production and environmental sustainability. Indoor, superintensive, aquaculture systems are being developed that permit year-round production of farmed shrimp at high densities. These systems are intended to overcome problems of disease susceptibility and of water quality issues from waste products, by operating as essentially closed systems that promote beneficial microbial communities (biofloc. The resulting biofloc can assimilate and detoxify wastes, may provide nutrition for the farmed organisms resulting in improved growth, and may aid in reducing disease initiated from external sources. Nuclear magnetic resonance (NMR-based metabolomic techniques were used to assess shrimp health during a full growout cycle from the nursery phase through harvest in a minimal-exchange, superintensive, biofloc system. Aberrant shrimp metabolomes were detected from a spike in total ammonia nitrogen in the nursery, from a reduced feeding period that was a consequence of surface scum build-up in the raceway, and from the stocking transition from the nursery to the growout raceway. The biochemical changes in the shrimp that were induced by the stressors were essential for survival and included nitrogen detoxification and energy conservation mechanisms. Inosine and trehalose may be general biomarkers of stress in Litopenaeus vannamei. This study demonstrates one aspect of the practicality of using NMR-based metabolomics to enhance the aquaculture industry by providing physiological insight into common environmental stresses that may limit growth or better explain reduced survival and production.

  5. Evaluation of Pacific White Shrimp (Litopenaeus vannamei) Health during a Superintensive Aquaculture Growout Using NMR-Based Metabolomics

    Science.gov (United States)

    Schock, Tracey B.; Duke, Jessica; Goodson, Abby; Weldon, Daryl; Brunson, Jeff; Leffler, John W.; Bearden, Daniel W.

    2013-01-01

    Success of the shrimp aquaculture industry requires technological advances that increase production and environmental sustainability. Indoor, superintensive, aquaculture systems are being developed that permit year-round production of farmed shrimp at high densities. These systems are intended to overcome problems of disease susceptibility and of water quality issues from waste products, by operating as essentially closed systems that promote beneficial microbial communities (biofloc). The resulting biofloc can assimilate and detoxify wastes, may provide nutrition for the farmed organisms resulting in improved growth, and may aid in reducing disease initiated from external sources. Nuclear magnetic resonance (NMR)-based metabolomic techniques were used to assess shrimp health during a full growout cycle from the nursery phase through harvest in a minimal-exchange, superintensive, biofloc system. Aberrant shrimp metabolomes were detected from a spike in total ammonia nitrogen in the nursery, from a reduced feeding period that was a consequence of surface scum build-up in the raceway, and from the stocking transition from the nursery to the growout raceway. The biochemical changes in the shrimp that were induced by the stressors were essential for survival and included nitrogen detoxification and energy conservation mechanisms. Inosine and trehalose may be general biomarkers of stress in Litopenaeus vannamei. This study demonstrates one aspect of the practicality of using NMR-based metabolomics to enhance the aquaculture industry by providing physiological insight into common environmental stresses that may limit growth or better explain reduced survival and production. PMID:23555690

  6. Recommendations and Standardization of Biomarker Quantification Using NMR-Based Metabolomics with Particular Focus on Urinary Analysis.

    Science.gov (United States)

    Emwas, Abdul-Hamid; Roy, Raja; McKay, Ryan T; Ryan, Danielle; Brennan, Lorraine; Tenori, Leonardo; Luchinat, Claudio; Gao, Xin; Zeri, Ana Carolina; Gowda, G A Nagana; Raftery, Daniel; Steinbeck, Christoph; Salek, Reza M; Wishart, David S

    2016-02-05

    NMR-based metabolomics has shown considerable promise in disease diagnosis and biomarker discovery because it allows one to nondestructively identify and quantify large numbers of novel metabolite biomarkers in both biofluids and tissues. Precise metabolite quantification is a prerequisite to move any chemical biomarker or biomarker panel from the lab to the clinic. Among the biofluids commonly used for disease diagnosis and prognosis, urine has several advantages. It is abundant, sterile, and easily obtained, needs little sample preparation, and does not require invasive medical procedures for collection. Furthermore, urine captures and concentrates many "unwanted" or "undesirable" compounds throughout the body, providing a rich source of potentially useful disease biomarkers; however, incredible variation in urine chemical concentrations makes analysis of urine and identification of useful urinary biomarkers by NMR challenging. We discuss a number of the most significant issues regarding NMR-based urinary metabolomics with specific emphasis on metabolite quantification for disease biomarker applications and propose data collection and instrumental recommendations regarding NMR pulse sequences, acceptable acquisition parameter ranges, relaxation effects on quantitation, proper handling of instrumental differences, sample preparation, and biomarker assessment.

  7. Recommendations and Standardization of Biomarker Quantification Using NMR-based Metabolomics with Particular Focus on Urinary Analysis

    KAUST Repository

    Emwas, Abdul-Hamid M.

    2016-01-08

    NMR-based metabolomics has shown considerable promise in disease diagnosis and biomarker discovery because it allows one to non-destructively identify and quantify large numbers of novel metabolite biomarkers in both biofluids and tissues. Indeed, precise metabolite quantification is a necessary prerequisite to move any chemical biomarker or biomarker panel from the lab into the clinic. Among the many biofluids (urine, serum, plasma, cerebrospinal fluid and saliva) commonly used for disease diagnosis and prognosis, urine has several advantages. It is abundant, sterile, easily obtained, needs little sample preparation and does not require any invasive medical procedures for collection. Furthermore, urine captures and concentrates many “unwanted” or “undesirable” compounds throughout the body, thereby providing a rich source of potentially useful disease biomarkers. However, the incredible variation in urine chemical concentrations due to effects such as gender, age, diet, life style, health conditions, and physical activity make the analysis of urine and the identification of useful urinary biomarkers by NMR quite challenging. In this review, we discuss a number of the most significant issues regarding NMR-based urinary metabolomics with a specific emphasis on metabolite quantification for disease biomarker applications. We also propose a number of data collection and instrumental recommendations regarding NMR pulse sequences, acceptable acquisition parameter ranges, relaxation effects on quantitation, proper handling of instrumental differences, as well as recommendations regarding sample preparation and biomarker assessment.

  8. (1)H NMR-based metabolomics of Daphnia magna responses after sub-lethal exposure to triclosan, carbamazepine and ibuprofen.

    Science.gov (United States)

    Kovacevic, Vera; Simpson, André J; Simpson, Myrna J

    2016-09-01

    Pharmaceuticals and personal care products are a class of emerging contaminants that are present in wastewater effluents, surface water, and groundwater around the world. There is a need to determine rapid and reliable bioindicators of exposure and the toxic mode of action of these contaminants to aquatic organisms. (1)H nuclear magnetic resonance (NMR)-based metabolomics in combination with multivariate statistical analysis was used to determine the metabolic profile of Daphnia magna after exposure to a range of sub-lethal concentrations of triclosan (6.25-100μg/L), carbamazepine (1.75-14mg/L) and ibuprofen (1.75-14mg/L) for 48h. Sub-lethal triclosan exposure suggested a general oxidative stress condition and the branched-chain amino acids, glutamine, glutamate, and methionine emerged as potential bioindicators. The aromatic amino acids, serine, glycine and alanine are potential bioindicators for sub-lethal carbamazepine exposure that may have altered energy metabolism. The potential bioindicators for sub-lethal ibuprofen exposure are serine, methionine, lysine, arginine and leucine, which showed a concentration-dependent response. The differences in the metabolic changes were related to the dissimilar modes of toxicity of triclosan, carbamazepine and ibuprofen. (1)H NMR-based metabolomics gave an improved understanding of how these emerging contaminants impact the keystone species D. magna. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Introducing Undergraduate Students to Metabolomics Using a NMR-Based Analysis of Coffee Beans

    Science.gov (United States)

    Sandusky, Peter Olaf

    2017-01-01

    Metabolomics applies multivariate statistical analysis to sets of high-resolution spectra taken over a population of biologically derived samples. The objective is to distinguish subpopulations within the overall sample population, and possibly also to identify biomarkers. While metabolomics has become part of the standard analytical toolbox in…

  10. Nutri-metabolomics: subtle serum metabolic differences in healthy subjects by NMR-based metabolomics after a short-term nutritional intervention with two tomato sauces.

    Science.gov (United States)

    Bondia-Pons, Isabel; Cañellas, Nicolau; Abete, Itziar; Rodríguez, Miguel Ángel; Perez-Cornago, Aurora; Navas-Carretero, Santiago; Zulet, M Ángeles; Correig, Xavier; Martínez, J Alfredo

    2013-12-01

    Postgenomics research and development is witnessing novel intersections of omics data intensive technology and applications in health and personalized nutrition. Chief among these is the nascent field of nutri-metabolomics that harnesses metabolomics platforms to discern person-to-person variations in nutritional responses. To this end, differences in the origin and ripening stage of fruits might have a strong impact on their phytochemical composition, and consequently, on their potential nutri-metabolomics effects on health. The objective of the present study was to evaluate the effects of a 4-week cross-over nutritional intervention on the metabolic status of 24 young healthy subjects. The intervention was carried out with two tomato sauces differing in their natural lycopene content, which was achieved by using tomatoes harvested at different times. Blood samples were drawn from each subject before and after each intervention period. Aqueous and lipid extracts from serum samples were analyzed by 1H-NMR metabolic profiling combined with analysis of variance simultaneous component analysis (ASCA) and multilevel simultaneous component analysis (MSCA). These methods allowed the interpretation of the variation induced by the main factors of the study design (sauce treatment and time). The levels of creatine, creatinine, leucine, choline, methionine, and acetate in aqueous extracts were increased after the intervention with the high-lycopene content sauce, while those of ascorbic acid, lactate, pyruvate, isoleucine, alanine were increased after the normal-lycopene content sauce. In conclusion, NMR-based metabolomics of aqueous and lipid extracts allowed the detection of different metabolic changes after the nutritional intervention. This outcome might partly be due to the different ripening state of the fruits used in production of the tomato sauces. The findings presented herein collectively attest to the emergence of the field of nutri-metabolomics as a novel

  11. Assessment of clam ruditapes philippinarum as Heavy metal bioindicators using NMR-based metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoli; Zhang, Linbao; You, Liping [Key Laboratory of Coastal Zone Environment Processes, CAS, Shandong Provincial Key Laboratory of Coastal Zone Environment Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai (China); The Graduate School of Chinese Academy of Sciences, Beijing (China); Yu, Junbao; Cong, Ming; Wang, Qing; Li, Fei; Li, Lianzhen; Zhao, Jianmin; Li, Chenghua; Wu, Huifeng [Key Laboratory of Coastal Zone Environment Processes, CAS, Shandong Provincial Key Laboratory of Coastal Zone Environment Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai (China)

    2011-08-15

    There are mainly distributed three pedigrees (White, Liangdao Red, and Zebra) of Manila clam Ruditapes philippinarum in Yantai population along the Bohai marine and coast. However, the biological differences to environmental stressors have been ignored in toxicology studies, which could lead to the distortion of biological interpretations of toxicological effects induced by environmental contaminants. In this study, we applied a system biology approach, metabolomics to compare the metabolic profiles in digestive gland from three pedigrees of clam and characterize and compare the metabolic responses induced by mercury in clam digestive gland tissues to determine a sensitive pedigree of clam as a preferable bioindicator for metal pollution monitoring and toxicology research. The most abundant metabolites, respectively, included branched-chain amino acids, alanine, and arginine in White samples, glutamate, dimethylglycine, and glycine in Zebra clams and acetylcholine, betaine, glucose, and glycogen in Liangdao Red clams. After 48 h exposure of 20 {mu}g L{sup -1} Hg{sup 2+}, the metabolic profiles from the three pedigrees of clams showed differentially significant changes in alanine, glutamate, succinate, taurine, hypotaurine, glycine, arginine, glucose, etc. Our findings indicate the toxicological effects of mercury exposure in Manila clams including the neurotoxicity, disturbances in energetic metabolisms and osmoregulation in the digestive glands and suggest that Liangdao Red pedigree of clam could be a preferable bioindicator for the metal pollution monitoring based on the more sensitive classes of metabolic changes from digestive glands compared with other two (White and Zebra) pedigrees of clams. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. 1H NMR-based serum metabolomics reveals erythromycin-induced liver toxicity in albino Wistar rats

    Directory of Open Access Journals (Sweden)

    Atul Rawat

    2016-01-01

    Full Text Available Introduction: Erythromycin (ERY is known to induce hepatic toxicity which mimics other liver diseases. Thus, ERY is often used to produce experimental models of drug-induced liver-toxicity. The serum metabolic profiles can be used to evaluate the liver-toxicity and to further improve the understanding of underlying mechanism. Objective: To establish the serum metabolic patterns of Erythromycin induced hepatotoxicity in albino wistar rats using 1H NMR based serum metabolomics. Experimental: Fourteen male rats were randomly divided into two groups (n = 7 in each group: control and ERY treated. After 28 days of intervention, the metabolic profiles of sera obtained from ERY and control groups were analyzed using high-resolution 1D 1H CPMG and diffusion-edited nuclear magnetic resonance (NMR spectra. The histopathological and SEM examinations were employed to evaluate the liver toxicity in ERY treated group. Results: The serum metabolic profiles of control and ERY treated rats were compared using multivariate statistical analysis and the metabolic patterns specific to ERY-induced liver toxicity were established. The toxic response of ERY was characterized with: (a increased serum levels of Glucose, glutamine, dimethylamine, malonate, choline, phosphocholine and phospholipids and (b decreased levels of isoleucine, leucine, valine, alanine, glutamate, citrate, glycerol, lactate, threonine, circulating lipoproteins, N-acetyl glycoproteins, and poly-unsaturated lipids. These metabolic alterations were found to be associated with (a decreased TCA cycle activity and enhanced fatty acid oxidation, (b dysfunction of lipid and amino acid metabolism and (c oxidative stress. Conclusion and Recommendations: Erythromycin is often used to produce experimental models of liver toxicity; therefore, the established NMR-based metabolic patterns will form the basis for future studies aiming to evaluate the efficacy of anti-hepatotoxic agents or the hepatotoxicity of new

  13. {sup 1}H NMR-based metabolomics of time-dependent responses of Eisenia fetida to sub-lethal phenanthrene exposure

    Energy Technology Data Exchange (ETDEWEB)

    Lankadurai, Brian P.; Wolfe, David M.; Simpson, Andre J. [Department of Chemistry, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4 Canada (Canada); Simpson, Myrna J., E-mail: myrna.simpson@utoronto.ca [Department of Chemistry, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4 Canada (Canada)

    2011-10-15

    {sup 1}H NMR-based metabolomics was used to examine the response of the earthworm Eisenia fetida after exposure to sub-lethal concentrations of phenanthrene over time. Earthworms were exposed to 0.025 mg/cm{sup 2} of phenanthrene (1/64th of the LC{sub 50}) via contact tests over four days. Earthworm tissues were extracted using a mixture of chloroform, methanol and water, resulting in polar and non-polar fractions that were analyzed by {sup 1}H NMR after one, two, three and four days. NMR-based metabolomic analyses revealed heightened E. fetida responses with longer phenanthrene exposure times. Amino acids alanine and glutamate, the sugar maltose, the lipids cholesterol and phosphatidylcholine emerged as potential indicators of phenanthrene exposure. The conversion of succinate to fumarate in the Krebs cycle was also interrupted by phenanthrene. Therefore, this study shows that NMR-based metabolomics is a powerful tool for elucidating time-dependent relationships in addition to the mode of toxicity of phenanthrene in earthworm exposure studies. - Highlights: > NMR-based earthworm metabolomic analysis of the mode of action of phenanthrene is presented. > The earthworm species E. fetida were exposed to sub-lethal phenanthrene concentrations. > Both polar and non-polar metabolites of E. fetida tissue extracts were analyzed by {sup 1}H NMR. > Longer phenanthrene exposure times resulted in heightened earthworm responses. > An interruption of the Krebs cycle was also observed due to phenanthrene exposure. - {sup 1}H NMR metabolomics is used to determine the relationship between phenanthrene exposure and the metabolic response of the earthworm E. fetida over time and also to elucidate the phenanthrene mode of toxicity.

  14. 1H NMR-based metabolomics investigation of copper-laden rat: a model of Wilson's disease.

    Directory of Open Access Journals (Sweden)

    Jingjing Xu

    Full Text Available Wilson's disease (WD, also known as hepatoleticular degeneration (HLD, is a rare autosomal recessive genetic disorder of copper metabolism, which causes copper to accumulate in body tissues. In this study, rats fed with copper-laden diet are used to render the clinical manifestations of WD, and their copper toxicity-induced organ lesions are studied. To investigate metabolic behaviors of 'decoppering' process, penicillamine (PA was used for treating copper-laden rats as this chelating agent could eliminate excess copper through the urine. To date, there has been limited metabolomics study on WD, while metabolic impacts of copper accumulation and PA administration have yet to be established.A combination of 1HNMR spectroscopy and multivariate statistical analysis was applied to examine the metabolic profiles of the urine and blood serum samples collected from the copper-laden rat model of WD with PA treatment.Copper accumulation in the copper-laden rats is associated with increased lactate, creatinine, valine and leucine, as well as decreased levels of glucose and taurine in the blood serum. There were also significant changes in p-hydroxyphenylacetate (p-HPA, creatinine, alpha-ketoglutarate (α-KG, dimethylamine, N-acetylglutamate (NAG, N-acetylglycoprotein (NAC in the urine of these rats. Notably, the changes in p-HPA, glucose, lactate, taurine, valine, leucine, and NAG were found reversed following PA treatment. Nevertheless, there were no changes for dimethylamine, α-KG, and NAC as a result of the treatment. Compared with the controls, the concentrations of hippurate, formate, alanine, and lactate were changed when PA was applied and this is probably due to its side effect. A tool named SMPDB (Small Molecule Pathway Database is introduced to identify the metabolic pathway influenced by the copper-laden diet.The study has shown the potential application of NMR-based metabolomic analysis in providing further insights into the molecular

  15. Toxicological effects induced by cadmium in gills of Manila clam ruditapes philippinarum using NMR-based metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Linbao; Liu, Xiaoli; You, Liping; Zhou, Di [Key Laboratory of Coastal Zone Environment Processes, CAS, Shandong Provincial Key Laboratory of Coastal Zone Environment Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai (China); The Graduate School of Chinese Academy of Sciences, Beijing (China); Yu, Junbao; Zhao, Jianmin; Wu, Huifeng [Key Laboratory of Coastal Zone Environment Processes, CAS, Shandong Provincial Key Laboratory of Coastal Zone Environment Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai (China); Feng, Jianghua [Department of Electronic Science, Fujian Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen (China)

    2011-11-15

    Cadmium (Cd) has become an important heavy metal contaminant in the sediment and seawater along the Bohai Sea and been of great ecological risk due to its toxic effects to marine organisms. In this work, the toxicological effects caused by environmentally relevant concentrations (10 and 40 {mu}g L{sup -1}) of Cd were studied in the gill tissues of Manila clam Ruditapes philippinarum after exposure for 24, 48, and 96 h. Both low (10 {mu}g L{sup -1}) and high (40 {mu}g L{sup -1}) doses of Cd caused the disturbances in energy metabolism and osmotic regulation and neurotoxicity based on the metabolic biomarkers such as succinate, alanine, branched chain amino acids, betaine, hypotaurine, and glutamate in clam gills after 24 h of exposure. However, the recovery of toxicological effects of Cd after exposure for 96 h was obviously observed in clam to Cd exposures. Overall, these results indicated that NMR-based metabolomics was applicable to elucidate the toxicological effects of heavy metal contaminants in the marine bioindicator. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Comparison of Chemical Compositions in Pseudostellariae Radix from Different Cultivated Fields and Germplasms by NMR-Based Metabolomics

    Directory of Open Access Journals (Sweden)

    Yujiao Hua

    2016-11-01

    Full Text Available Pseudostellariae Radix (PR is an important traditional Chinese medicine (TCM, which is consumed commonly for its positive health effects. However, the chemical differences of PR from different cultivated fields and germplasms are still unknown. In order to comprehensively compare the chemical compositions of PR from different cultivated fields, in this study, 1H-NMR-based metabolomics coupled with high performance liquid chromatography (HPLC were used to investigate the different metabolites in PR from five germplasms (jr, zs1, zs2, sb, and xc cultivated in traditional fields (Jurong, Jiangsu, JSJR and cultivated fields (Zherong, Fujian, FJZR. A total of 34 metabolites were identified based on 1H-NMR data, and fourteen of them were found to be different in PR from JSJR and FJZR. The relative contents of alanine, lactate, lysine, taurine, sucrose, tyrosine, linolenic acid, γ-aminobutyrate, and hyperoside in PR from JSJR were higher than that in PR from FJZR, while PR from FJZR contained higher levels of glutamine, raffinose, xylose, unsaturated fatty acid, and formic acid. The contents of Heterophyllin A and Heterophyllin B were higher in PR from FJZR. This study will provide the basic information for exploring the influence law of ecological environment and germplasm genetic variation on metabolite biosynthesis of PR and its quality formation mechanism.

  17. NMR-based microbial metabolomics and the temperature-dependent coral pathogen Vibrio coralliilyticus.

    Science.gov (United States)

    Boroujerdi, Arezue F B; Vizcaino, Maria I; Meyers, Alexander; Pollock, Elizabeth C; Huynh, Sara Lien; Schock, Tracey B; Morris, Pamela J; Bearden, Daniel W

    2009-10-15

    Coral bleaching occurs when the symbioses between coral animals and their zooxanthellae is disrupted, either as part of a natural cycle or as the result of unusual events. The bacterium Vibrio coralliilyticus (type strain ATCC BAA-450) has been linked to coral disease globally (for example in the Mediterranean, Red Sea, Indian Ocean, and Great Barrier Reef) and like many other Vibrio species exhibits a temperature-dependent pathogenicity. The temperature-dependence of V. corallillyticus in regard to its metabolome was investigated. Nuclear magnetic resonance (NMR) spectra were obtained of methanol-water extracts of intracellula rmetabolites (endometabolome) from multiple samples of the bacteria cultured into late stationary phase at 27 degrees C (virulent form) and 24 degrees C (avirulent form). The spectra were subjected to principal components analysis (PCA), and significant temperature-based separations in PC1, PC2, and PC3 dimensions were observed. Betaine, succinate, and glutamate were identified as metabolites that caused the greatest temperature-based separations in the PC scores plots. With increasing temperature, betaine was shown to be down regulated, while succinate and glutamate were up regulated.

  18. 1H NMR-Based Metabolomic Analysis of Sub-Lethal Perfluorooctane Sulfonate Exposure to the Earthworm, Eisenia fetida, in Soil

    Directory of Open Access Journals (Sweden)

    Myrna J. Simpson

    2013-08-01

    Full Text Available 1H NMR-based metabolomics was used to measure the response of Eisenia fetida earthworms after exposure to sub-lethal concentrations of perfluorooctane sulfonate (PFOS in soil. Earthworms were exposed to a range of PFOS concentrations (five, 10, 25, 50, 100 or 150 mg/kg for two, seven and fourteen days. Earthworm tissues were extracted and analyzed by 1H NMR. Multivariate statistical analysis of the metabolic response of E. fetida to PFOS exposure identified time-dependent responses that were comprised of two separate modes of action: a non-polar narcosis type mechanism after two days of exposure and increased fatty acid oxidation after seven and fourteen days of exposure. Univariate statistical analysis revealed that 2-hexyl-5-ethyl-3-furansulfonate (HEFS, betaine, leucine, arginine, glutamate, maltose and ATP are potential indicators of PFOS exposure, as the concentrations of these metabolites fluctuated significantly. Overall, NMR-based metabolomic analysis suggests elevated fatty acid oxidation, disruption in energy metabolism and biological membrane structure and a possible interruption of ATP synthesis. These conclusions obtained from analysis of the metabolic profile in response to sub-lethal PFOS exposure indicates that NMR-based metabolomics is an excellent discovery tool when the mode of action (MOA of contaminants is not clearly defined.

  19. Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review

    KAUST Repository

    Emwas, Abdul-Hamid M.

    2014-11-21

    The metabolic composition of human biofluids can provide important diagnostic and prognostic information. Among the biofluids most commonly analyzed in metabolomic studies, urine appears to be particularly useful. It is abundant, readily available, easily stored and can be collected by simple, noninvasive techniques. Moreover, given its chemical complexity, urine is particularly rich in potential disease biomarkers. This makes it an ideal biofluid for detecting or monitoring disease processes. Among the metabolomic tools available for urine analysis, NMR spectroscopy has proven to be particularly well-suited, because the technique is highly reproducible and requires minimal sample handling. As it permits the identification and quantification of a wide range of compounds, independent of their chemical properties, NMR spectroscopy has been frequently used to detect or discover disease fingerprints and biomarkers in urine. Although protocols for NMR data acquisition and processing have been standardized, no consensus on protocols for urine sample selection, collection, storage and preparation in NMR-based metabolomic studies have been developed. This lack of consensus may be leading to spurious biomarkers being reported and may account for a general lack of reproducibility between laboratories. Here, we review a large number of published studies on NMR-based urine metabolic profiling with the aim of identifying key variables that may affect the results of metabolomics studies. From this survey, we identify a number of issues that require either standardization or careful accounting in experimental design and provide some recommendations for urine collection, sample preparation and data acquisition.

  20. NMR-based Metabolomics Analysis of Liver from C57BL/6 Mouse Exposed to Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiongjie [Pacific Northwest National Laboratory, Richland, Washington 99352; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, China; Hu, Mary [Pacific Northwest National Laboratory, Richland, Washington 99352; Zhang, Xu [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan, 430071, PR China; Hu, Jian Zhi [Pacific Northwest National Laboratory, Richland, Washington 99352

    2017-07-01

    The health effects of exposing to ionizing radiation are attracting great interest in the space exploration community and patients considering radiotherapy. However, the impact to metabolism after exposure to high dose radiation has not yet been clearly defined in livers. In the present study, 1H nuclear magnetic resonance (NMR) based metabolomics combined with multivariate data analysis are applied to study the changes of metabolism in the liver of C57BL/6 mouse after whole body exposure to either gamma (3.0 and 7.8 Gy) or proton (3.0 Gy) radiation. Principal component analysis (PCA) and orthogonal projection to latent structures analysis (OPLS) are employed for classification and identification of potential biomarkers associated with gamma and proton irradiation. The results show that the radiation exposed groups can be well separated from the control group. At the same radiation dosage, the group exposed to proton radiation is well separated from the group exposed to gamma radiation, indicating different radiation sources induce different alterations based on metabolic profiling. Common to both gamma and proton radiation at the high radiation doses studied in this work, compared with the control groups the concentrations of choline, O-phosphocholine and trimethylamine N-oxide are decreased statistically, while those of glutamine, glutathione, malate, creatinine, phosphate, betaine and 4-hydroxyphenylacetate are statistically and significantly elevated after exposure to radiation. Since these altered metabolites are associated with multiple biological pathways, the changes suggest that the exposure to radiation induce abnormality in multiple biological pathways. In particular, metabolites such as 4-hydroxyphenylacetate, betaine, glutamine, choline and trimethylamine N-oxide may be good candidates of pre-diagnose biomarkers for ionizing radiation in liver.

  1. Application of (1)H NMR-based serum metabolomic studies for monitoring female patients with rheumatoid arthritis.

    Science.gov (United States)

    Zabek, Adam; Swierkot, Jerzy; Malak, Anna; Zawadzka, Iga; Deja, Stanisław; Bogunia-Kubik, Katarzyna; Mlynarz, Piotr

    2016-01-05

    Rheumatoid arthritis is a chronic autoimmune-based inflammatory disease that leads to progressive joint degeneration, disability, and an increased risk of cardiovascular complications, which is the main cause of mortality in this population of patients. Although several biomarkers are routinely used in the management of rheumatoid arthritis, there is a high demand for novel biomarkers to further improve the early diagnosis of rheumatoid arthritis, stratification of patients, and the prediction of a better response to a specific therapy. In this study, the metabolomics approach was used to provide relevant biomarkers to improve diagnostic accuracy, define prognosis and predict and monitor treatment efficacy. The results indicated that twelve metabolites were important for the discrimination of healthy control and rheumatoid arthritis. Notably, valine, isoleucine, lactate, alanine, creatinine, GPC  APC and histidine relative levels were lower in rheumatoid arthritis, whereas 3-hydroxyisobutyrate, acetate, NAC, acetoacetate and acetone relative levels were higher. Simultaneously, the analysis of the concentration of metabolites in rheumatoid arthritis and 3 months after induction treatment revealed that L1, 3-hydroxyisobutyrate, lysine, L5, acetoacetate, creatine, GPC+APC, histidine and phenylalanine were elevated in RA, whereas leucine, acetate, betaine and formate were lower. Additionally, metabolomics tools were employed to discriminate between patients with different IL-17A genotypes. Metabolomics may provide relevant biomarkers to improve diagnostic accuracy, define prognosis and predict and monitor treatment efficacy in rheumatoid arthritis. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. NMR-Based Metabolomic Analysis of Spatial Variation in Soft Corals

    Directory of Open Access Journals (Sweden)

    Qing He

    2014-03-01

    Full Text Available Soft corals are common marine organisms that inhabit tropical and subtropical oceans. They are shown to be rich source of secondary metabolites with biological activities. In this work, soft corals from two geographical locations were investigated using 1H-NMR spectroscopy coupled with multivariate statistical analysis at the metabolic level. A partial least-squares discriminant analysis showed clear separation among extracts of soft corals grown in Sanya Bay and Weizhou Island. The specific markers that contributed to discrimination between soft corals in two origins belonged to terpenes, sterols and N-containing compounds. The satisfied precision of classification obtained indicates this approach using combined 1H-NMR and chemometrics is effective to discriminate soft corals collected in different geographical locations. The results revealed that metabolites of soft corals evidently depended on living environmental condition, which would provide valuable information for further relevant coastal marine environment evaluation.

  3. NMR-based metabolomic investigation of bioactivity of chemical constituents in black raspberry (Rubus occidentalis L.) fruit extracts.

    Science.gov (United States)

    Paudel, Liladhar; Wyzgoski, Faith J; Giusti, M Monica; Johnson, Jodee L; Rinaldi, Peter L; Scheerens, Joseph C; Chanon, Ann M; Bomser, Joshua A; Miller, A Raymond; Hardy, James K; Reese, R Neil

    2014-02-26

    Black raspberry (Rubus occidentalis L.) (BR) fruit extracts with differing compound profiles have shown variable antiproliferative activities against HT-29 colon cancer cell lines. This study used partial least-squares (PLS) regression analysis to develop a high-resolution (1)H NMR-based multivariate statistical model for discerning the biological activity of BR constituents. This model identified specific bioactive compounds and ascertained their relative contribution against cancer cell proliferation. Cyanidin 3-rutinoside and cyanidin 3-xylosylrutinoside were the predominant contributors to the extract bioactivity, but salicylic acid derivatives (e.g., salicylic acid glucosyl ester), quercetin 3-glucoside, quercetin 3-rutinoside, p-coumaric acid, epicatechin, methyl ellagic acid derivatives (e.g., methyl ellagic acetyl pentose), and citric acid derivatives also contributed significantly to the antiproliferative activity of the berry extracts. This approach enabled the identification of new bioactive components in BR fruits and demonstrates the utility of the method for assessing chemopreventive compounds in foods and food products.

  4. NMR-based metabolomics to determine acute inhalation effects of nano- and fine-sized ZnO particles in the rat lung.

    Science.gov (United States)

    Lee, Sheng-Han; Wang, Ting-Yi; Hong, Jia-Huei; Cheng, Tsun-Jen; Lin, Ching-Yu

    2016-09-01

    Zinc oxide (ZnO) particles induce acute occupational inhalation illness in humans and rats. However, the possible molecular mechanisms of ZnO particles on the respiratory system remain unclear. In this study, metabolic responses of the respiratory system of rats inhaled ZnO particles were investigated by a nuclear magnetic resonance (NMR)-based metabolomic approach. Male Sprague-Dawley rats were treated with a series of doses of nano-sized (35 nm) or fine-sized (250 nm) ZnO particles. The corresponding control groups inhaled filtered air. After 24 h, bronchoalveolar lavage fluid (BALF) and lung tissues were collected, extracted and prepared for (1)H and J-resolved NMR analysis, followed by principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA). PCA and PLSDA models from analysis of BALF and hydrophilic lung NMR spectra demonstrated that dose response trends were restricted to the 250 nm ZnO particle exposure group and were not observed in the 35 nm ZnO particle exposure group. Increased isoleucine and valine, as well as decreased acetate, trimethylamine n-oxide, taurine, glycine, formate, ascorbate and glycerophosphocholine, were recorded in the BALF of rats treated with moderate and high dose 250 nm ZnO exposures. Decreases in taurine and glucose, as well as an increase of phosphorylcholine-containing lipids and fatty acyl chains, were detected in the lung tissues from 250 nm ZnO-treated rats. These metabolic changes may be associated with cell anti-oxidation, energy metabolism, DNA damage and membrane stability. We also concluded that a metabolic approach provides more complete measurements and suggests potential molecular mechanisms of adverse effects.

  5. Feasibility Study of NMR Based Serum Metabolomic Profiling to Animal Health Monitoring: A Case Study on Iron Storage Disease in Captive Sumatran Rhinoceros (Dicerorhinus sumatrensis.

    Directory of Open Access Journals (Sweden)

    Miki Watanabe

    Full Text Available A variety of wildlife species maintained in captivity are susceptible to iron storage disease (ISD, or hemochromatosis, a disease resulting from the deposition of excess iron into insoluble iron clusters in soft tissue. Sumatran rhinoceros (Dicerorhinus sumatrensis is one of the rhinoceros species that has evolutionarily adapted to a low-iron diet and is susceptible to iron overload. Hemosiderosis is reported at necropsy in many African black and Sumatran rhinoceroses but only a small number of animals reportedly die from hemochromatosis. The underlying cause and reasons for differences in susceptibility to hemochromatosis within the taxon remains unclear. Although serum ferritin concentrations have been useful in monitoring the progression of ISD in many species, there is some question regarding their value in diagnosing hemochromatosis in the Sumatran rhino. To investigate the metabolic changes during the development of hemochromatosis and possibly increase our understanding of its progression and individual susceptibility differences, the serum metabolome from a Sumatran rhinoceros was investigated by nuclear magnetic resonance (NMR-based metabolomics. The study involved samples from female rhinoceros at the Cincinnati Zoo (n = 3, including two animals that died from liver failure caused by ISD, and the Sungai Dusun Rhinoceros Conservation Centre in Peninsular Malaysia (n = 4. Principal component analysis was performed to visually and statistically compare the metabolic profiles of the healthy animals. The results indicated that significant differences were present between the animals at the zoo and the animals in the conservation center. A comparison of the 43 serum metabolomes of three zoo rhinoceros showed two distinct groupings, healthy (n = 30 and unhealthy (n = 13. A total of eighteen altered metabolites were identified in healthy versus unhealthy samples. Results strongly suggest that NMR-based metabolomics is a valuable tool for

  6. Feasibility Study of NMR Based Serum Metabolomic Profiling to Animal Health Monitoring: A Case Study on Iron Storage Disease in Captive Sumatran Rhinoceros (Dicerorhinus sumatrensis)

    Science.gov (United States)

    Watanabe, Miki; Roth, Terri L.; Bauer, Stuart J.; Lane, Adam; Romick-Rosendale, Lindsey E.

    2016-01-01

    A variety of wildlife species maintained in captivity are susceptible to iron storage disease (ISD), or hemochromatosis, a disease resulting from the deposition of excess iron into insoluble iron clusters in soft tissue. Sumatran rhinoceros (Dicerorhinus sumatrensis) is one of the rhinoceros species that has evolutionarily adapted to a low-iron diet and is susceptible to iron overload. Hemosiderosis is reported at necropsy in many African black and Sumatran rhinoceroses but only a small number of animals reportedly die from hemochromatosis. The underlying cause and reasons for differences in susceptibility to hemochromatosis within the taxon remains unclear. Although serum ferritin concentrations have been useful in monitoring the progression of ISD in many species, there is some question regarding their value in diagnosing hemochromatosis in the Sumatran rhino. To investigate the metabolic changes during the development of hemochromatosis and possibly increase our understanding of its progression and individual susceptibility differences, the serum metabolome from a Sumatran rhinoceros was investigated by nuclear magnetic resonance (NMR)-based metabolomics. The study involved samples from female rhinoceros at the Cincinnati Zoo (n = 3), including two animals that died from liver failure caused by ISD, and the Sungai Dusun Rhinoceros Conservation Centre in Peninsular Malaysia (n = 4). Principal component analysis was performed to visually and statistically compare the metabolic profiles of the healthy animals. The results indicated that significant differences were present between the animals at the zoo and the animals in the conservation center. A comparison of the 43 serum metabolomes of three zoo rhinoceros showed two distinct groupings, healthy (n = 30) and unhealthy (n = 13). A total of eighteen altered metabolites were identified in healthy versus unhealthy samples. Results strongly suggest that NMR-based metabolomics is a valuable tool for animal health

  7. Discriminative Analysis of Different Grades of Gaharu (Aquilaria malaccensis Lamk. via 1H-NMR-Based Metabolomics Using PLS-DA and Random Forests Classification Models

    Directory of Open Access Journals (Sweden)

    Siti Nazirah Ismail

    2017-09-01

    Full Text Available Gaharu (agarwood, Aquilaria malaccensis Lamk. is a valuable tropical rainforest product traded internationally for its distinctive fragrance. It is not only popular as incense and in perfumery, but also favored in traditional medicine due to its sedative, carminative, cardioprotective and analgesic effects. The current study addresses the chemical differences and similarities between gaharu samples of different grades, obtained commercially, using 1H-NMR-based metabolomics. Two classification models: partial least squares-discriminant analysis (PLS-DA and Random Forests were developed to classify the gaharu samples on the basis of their chemical constituents. The gaharu samples could be reclassified into a ‘high grade’ group (samples A, B and D, characterized by high contents of kusunol, jinkohol, and 10-epi-γ-eudesmol; an ‘intermediate grade’ group (samples C, F and G, dominated by fatty acid and vanillic acid; and a ‘low grade’ group (sample E and H, which had higher contents of aquilarone derivatives and phenylethyl chromones. The results showed that 1H- NMR-based metabolomics can be a potential method to grade the quality of gaharu samples on the basis of their chemical constituents.

  8. {sup 1}H-NMR-based metabolomics studies of the toxicity of mesoporous carbon nanoparticles in Zebrafish (Daniorerio)

    Energy Technology Data Exchange (ETDEWEB)

    Raja, Ganesan; Kim, Si Won; Yoon, Da Hye; Yoon, Chang Shin; Kim, Suhkmann [Dept. of Chemistry, Center for Proteome Biophysics and Chemistry Institute for Functional Materials, Pusan National University, Busan (Korea, Republic of)

    2017-02-15

    Mesoporous carbon nanoparticles (MCNs) have been applied in a variety of drug/gene carriers. In addition to their potential benefits, many studies of their potential toxicity have been reported, showing the limitations of metabolic contextualization. In this study, we conducted {sup 1}H-nuclear magnetic resonance (NMR) profiling combined with statistical methods such as orthogonal partial least squares discriminant analysis and Pearson correlation analysis to assess metabolic alterations in the whole body of zebrafish (Danio rerio) in the presence of various concentrations of MCNs. The MCN exposure influenced numerous metabolites in energy metabolism (e.g., metabolites involved in glycolysis and tricarboxylic acid cycle) and disturbed the balance of neurotransmitters and osmoregulators. Our findings demonstrate the potential applicability of using a metabolomics approach to determine underlying metabolic disturbances caused by MCNs.

  9. “Omics” Prospective Monitoring of Bariatric Surgery: Roux-En-Y Gastric Bypass Outcomes Using Mixed-Meal Tolerance Test and Time-Resolved 1H NMR-Based Metabolomics

    Science.gov (United States)

    Lopes, Thiago I.B.; Geloneze, Bruno; Pareja, José C.; Calixto, Antônio R.; Ferreira, Márcia M.C.

    2016-01-01

    Abstract Roux-en-Y gastric bypass (RYGB) surgery goes beyond weight loss to induce early beneficial hormonal changes that favor glycemic control. In this prospective study, ten obese subjects diagnosed with type 2 diabetes underwent bariatric surgery. Mixed-meal tolerance test was performed before and 12 months after RYGB, and the outcomes were investigated by a time-resolved hydrogen nuclear magnetic resonance (1H NMR)-based metabolomics. To the best of our knowledge, no previous omics-driven study has used time-resolved 1H NMR-based metabolomics to investigate bariatric surgery outcomes. Our results presented here show a significant decrease in glucose levels after bariatric surgery (from 159.80 ± 61.43 to 100.00 ± 22.94 mg/dL), demonstrating type 2 diabetes remission (p < 0.05). The metabolic profile indicated lower levels of lactate, alanine, and branched chain amino acids for the operated subject at fasting state after the surgery. However, soon after food ingestion, the levels of these metabolites increased faster in operated than in nonoperated subjects. The lipoprotein profile achieved before and after RYGB at fasting was also significantly different, but converging 180 min after food ingestion. For example, the very low-density lipoprotein, low-density lipoprotein, N-acetyl-glycoproteins, and unsaturated lipid levels decreased after RYGB, while phosphatidylcholine and high-density lipoprotein increased. This study provides important insights on RYGB surgery and attendant type 2 diabetes outcomes using an “omics” systems science approach. Further research on metabolomic correlates of RYGB surgery in larger study samples is called for. PMID:27428253

  10. NMR-based plasma metabolomic discrimination for male fertility assessment of rats treated with Eurycoma longifolia extracts.

    Science.gov (United States)

    Ebrahimi, Forough; Ibrahim, Baharudin; Teh, Chin-Hoe; Murugaiyah, Vikneswaran; Chan, Kit-Lam

    2017-06-01

    Male infertility is one of the leading causes of infertility which affects many couples worldwide. Semen analysis is a routine examination of male fertility status which is usually performed on semen samples obtained through masturbation that may be inconvenient to patients. Eurycoma longifolia (Tongkat Ali, TA), native to Malaysia, has been traditionally used as a remedy to boost male fertility. In our recent studies in rats, upon the administration of high-quassinoid content extracts of TA including TA water (TAW), quassinoid-rich TA (TAQR) extracts, and a low-quassinoid content extract including quassinoid-poor TA (TAQP) extract, sperm count (SC) increased in TAW- and TAQR-treated rats when compared to the TAQP-treated and control groups. Consequently, the rats were divided into normal- (control and TAQP-treated) and high- (TAW- and TAQR-treated) SC groups [Ebrahimi et al. 2016]. Post-treatment rat plasma was collected. An optimized plasma sample preparation method was developed with respect to the internal standards sodium 3- (trimethylsilyl) propionate- 2,2,3,3- d4 (TSP) and deuterated 4-dimethyl-4-silapentane-1-ammonium trifluoroacetate (DSA). Carr-Purcell-Meibum-Gill (CPMG) experiments combined with orthogonal partial least squares discriminant analysis (OPLS-DA) was employed to evaluate plasma metabolomic changes in normal- and high-SC rats. The potential biomarkers associated with SC increase were investigated to assess fertility by capturing the metabolomic profile of plasma. DSA was selected as the optimized internal standard for plasma analysis due to its significantly smaller half-height line width (W h/2 ) compared to that of TSP. The validated OPLS-DA model clearly discriminated the CPMG profiles in regard to the SC level. Plasma profiles of the high-SC group contained higher levels of alanine, lactate, and histidine, while ethanol concentration was significantly higher in the normal-SC group. This approach might be a new alternative applicable to

  11. NMR-based metabolomics for simultaneously evaluating multiple determinants of primary beef quality in Japanese Black cattle

    OpenAIRE

    Kodani, Yoshinori; Miyakawa, Takuya; Komatsu, Tomohiko; Tanokura, Masaru

    2017-01-01

    Analytical methodologies to comprehensively evaluate beef quality are increasingly needed to accelerate improvement in both breeding and post-mortem processing. Consumer palatability towards beef is generally attributed to tenderness, flavor, and/or juiciness. These primary qualities are modified by post-mortem aging and the crude content and fatty acid composition of intramuscular fat. In this study, we report a nuclear magnetic resonance (NMR)-based metabolic profiles of Japanese Black catt...

  12. Metallomics and NMR-based metabolomics of Chlorella sp. reveal the synergistic role of copper and cadmium in multi-metal toxicity and oxidative stress.

    Science.gov (United States)

    Zhang, Wenlin; Tan, Nicole G J; Fu, Baohui; Li, Sam F Y

    2015-03-01

    Industrial wastewaters often contain high levels of metal mixtures, in which metal mixtures may have synergistic or antagonistic effects on aquatic organisms. A combination of metallomics and nuclear magnetic resonance spectroscopy (NMR)-based metabolomics was employed to understand the consequences of multi-metal systems (Cu, Cd, Pb) on freshwater microalgae. Morphological characterization, cell viability and chlorophyll a determination of metal-spiked Chlorella sp. suggested synergistic effects of Cu and Cd on growth inhibition and toxicity. While Pb has no apparent effect on Chlorella sp. metabolome, a substantial decrease of sucrose, amino acid content and glycerophospholipid precursors in Cu-spiked microalgae revealed Cu-induced oxidative stress. Addition of Cd to Cu-spiked cultures induced more drastic metabolic perturbations, hence we confirmed that Cu and Cd synergistically influenced photosynthesis inhibition, oxidative stress and membrane degradation. Total elemental analysis revealed a significant decrease in K, and an increase in Na, Mg, Zn and Mn concentrations in Cu-spiked cultures. This indicated that Cu is more toxic to Chlorella sp. as compared to Cd or Pb, and the combination of Cu and Cd has a strong synergistic effect on Chlorella sp. oxidative stress induction. Oxidative stress is confirmed by liquid chromatography tandem mass spectrometry analysis, which demonstrated a drastic decrease in the GSH/GSSG ratio solely in Cu-spiked cultures. Interestingly, we observed Cu-facilitated Cd and Pb bioconcentration in Chlorella sp. The absence of phytochelatins and an increment of extracellular polymeric substances (EPS) yields in Cu-spiked cultures suggested that the mode of bioconcentration of Cd and Pb is through adsorption of free metals onto the algal EPS rather than intracellular chelation to phytochelatins.

  13. NMR-Based Metabolomic Investigations on the Differential Responses in Adductor Muscles from Two Pedigrees of Manila Clam Ruditapes philippinarum to Cadmium and Zinc

    Directory of Open Access Journals (Sweden)

    Junbao Yu

    2011-09-01

    Full Text Available Manila clam Ruditapes philippinarum is one of the most important economic species in shellfishery in China due to its wide geographic distribution and high tolerance to environmental changes (e.g., salinity, temperature. In addition, Manila clam is a good biomonitor/bioindicator in “Mussel Watch Programs” and marine environmental toxicology. However, there are several pedigrees of R. philippinarum distributed in the marine environment in China. No attention has been paid to the biological differences between various pedigrees of Manila clams, which may introduce undesirable biological variation in toxicology studies. In this study, we applied NMR-based metabolomics to detect the biological differences in two main pedigrees (White and Zebra of R. philippinarum and their differential responses to heavy metal exposures (Cadmium and Zinc using adductor muscle as a target tissue to define one sensitive pedigree of R. philippinarum as biomonitor for heavy metals. Our results indicated that there were significant metabolic differences in adductor muscle tissues between White and Zebra clams, including higher levels of alanine, glutamine, hypotaurine, phosphocholine and homarine in White clam muscles and higher levels of branched chain amino acids (valine, leucine and isoleucine, succinate and 4-aminobutyrate in Zebra clam muscles, respectively. Differential metabolic responses to heavy metals between White and Zebra clams were also found. Overall, we concluded that White pedigree of clam could be a preferable bioindicator/biomonitor in marine toxicology studies and for marine heavy metals based on the relatively high sensitivity to heavy metals.

  14. Metabolomics

    DEFF Research Database (Denmark)

    Kamstrup-Nielsen, Maja Hermann

    how to properly handle complex metabolomics data, in order to achieve reliable and valid multivariate models. This has been illustrated by three case studies with examples of forecasting breast cancer and early detection of colorectal cancer based on data from nuclear magnetic resonance (NMR...... based on NMR data with RRV and known risk markers. The sensitivity and specificity values are 0.80 and 0.79, respectively, for a test set validated model. The second case study is based on plasma samples with verified colorectal cancer and three types of control samples analysed by fluorescence...... spectroscopy a potential tool in early detection of colorectal cancer. Finally, plasma samples have been analysed using GC-MS. The method requires extensive sample preparation and therefore the study can only be considered a feasibility study with room for optimization. However, 14 plasma samples were analysed...

  15. {sup 1}H NMR-based metabolomics reveals sub-lethal toxicity of a mixture of diabetic and lipid-regulating pharmaceuticals on amphibian larvae

    Energy Technology Data Exchange (ETDEWEB)

    Melvin, Steven D., E-mail: s.melvin@griffith.edu.au [Australian Rivers Institute, Griffith University, Southport, QLD 4222 (Australia); Habener, Leesa J. [Griffith School of Environment, Griffith University, Southport, QLD 4222 (Australia); Leusch, Frederic D.L. [Australian Rivers Institute, Griffith University, Southport, QLD 4222 (Australia); Griffith School of Environment, Griffith University, Southport, QLD 4222 (Australia); Carroll, Anthony R. [Griffith School of Environment, Griffith University, Southport, QLD 4222 (Australia)

    2017-03-15

    Highlights: • Pharmaceutical pollutants are a concern for eliciting adverse effects in wildlife. • Diabetes and lipid regulating drugs are widely used and poorly removed from sewage. • We explored the toxicity of a mixture of metformin, atorvastatin and bezafibrate on tadpoles. • Exposure caused increased growth and development but no effects on lipids or cholesterol. • {sup 1}H NMR-based metabolomics reveal increased lactic acid and BCAAs in exposed animals. - Abstract: Pharmaceuticals are widely used for the treatment of various physical and psychological ailments. Due to incomplete removal during sewage treatment many pharmaceuticals are frequently detected in aquatic waterways at trace concentrations. The diversity of pharmaceutical contaminants and potential for complex mixtures to occur makes it very difficult to predict the toxicity of these compounds on wildlife, and robust methods are therefore needed to explore sub-lethal effects. Metabolic syndrome is one of the most widespread health concerns currently facing the human population, and various drugs, including anti-diabetic medications and lipid- and cholesterol-lowering fibrates and statins, are widely prescribed as treatment. In this study, we exposed striped marsh frog (Limnodynastes peronii) tadpoles to a mixture of the drugs metformin, atorvastatin and bezafibrate at 0.5, 5, 50 and 500 μg/L to explore possible effects on growth and development, energy reserves (triglycerides and cholesterol), and profiles of small polar metabolites extracted from hepatic tissues. It was hypothesised that exposure would result in a general reduction in energy reserves, and that this would subsequently correspond with reduced growth and development. Responses differed from expected outcomes based on the known mechanisms of these compounds in humans, with no changes to hepatic triglycerides or cholesterol and a general increase in mass and condition with increasing exposure concentration. Deviation from the

  16. 1H NMR-based metabolomics reveals sub-lethal toxicity of a mixture of diabetic and lipid-regulating pharmaceuticals on amphibian larvae

    International Nuclear Information System (INIS)

    Melvin, Steven D.; Habener, Leesa J.; Leusch, Frederic D.L.; Carroll, Anthony R.

    2017-01-01

    Highlights: • Pharmaceutical pollutants are a concern for eliciting adverse effects in wildlife. • Diabetes and lipid regulating drugs are widely used and poorly removed from sewage. • We explored the toxicity of a mixture of metformin, atorvastatin and bezafibrate on tadpoles. • Exposure caused increased growth and development but no effects on lipids or cholesterol. • 1 H NMR-based metabolomics reveal increased lactic acid and BCAAs in exposed animals. - Abstract: Pharmaceuticals are widely used for the treatment of various physical and psychological ailments. Due to incomplete removal during sewage treatment many pharmaceuticals are frequently detected in aquatic waterways at trace concentrations. The diversity of pharmaceutical contaminants and potential for complex mixtures to occur makes it very difficult to predict the toxicity of these compounds on wildlife, and robust methods are therefore needed to explore sub-lethal effects. Metabolic syndrome is one of the most widespread health concerns currently facing the human population, and various drugs, including anti-diabetic medications and lipid- and cholesterol-lowering fibrates and statins, are widely prescribed as treatment. In this study, we exposed striped marsh frog (Limnodynastes peronii) tadpoles to a mixture of the drugs metformin, atorvastatin and bezafibrate at 0.5, 5, 50 and 500 μg/L to explore possible effects on growth and development, energy reserves (triglycerides and cholesterol), and profiles of small polar metabolites extracted from hepatic tissues. It was hypothesised that exposure would result in a general reduction in energy reserves, and that this would subsequently correspond with reduced growth and development. Responses differed from expected outcomes based on the known mechanisms of these compounds in humans, with no changes to hepatic triglycerides or cholesterol and a general increase in mass and condition with increasing exposure concentration. Deviation from the

  17. Comparison of earthworm responses to petroleum hydrocarbon exposure in aged field contaminated soil using traditional ecotoxicity endpoints and 1H NMR-based metabolomics

    International Nuclear Information System (INIS)

    Whitfield Åslund, Melissa; Stephenson, Gladys L.; Simpson, André J.; Simpson, Myrna J.

    2013-01-01

    1 H NMR metabolomics and conventional ecotoxicity endpoints were used to examine the response of earthworms exposed to petroleum hydrocarbons (PHCs) in soil samples collected from a site that was contaminated with crude oil from a pipeline failure in the mid-1990s. The conventional ecotoxicity tests showed that the soils were not acutely toxic to earthworms (average survival ≥90%), but some soil samples impaired reproduction endpoints by >50% compared to the field control soil. Additionally, metabolomics revealed significant relationships between earthworm metabolic profiles (collected after 2 or 14 days of exposure) and soil properties including soil PHC concentration. Further comparisons by partial least squares regression revealed a significant relationship between the earthworm metabolomic data (collected after only 2 or 14 days) and the reproduction endpoints (measured after 63 days). Therefore, metabolomic responses measured after short exposure periods may be predictive of chronic, ecologically relevant toxicity endpoints for earthworms exposed to soil contaminants. -- Highlights: •Earthworm response to petroleum hydrocarbon exposure in soil is examined. •Metabolomics shows significant changes to metabolic profile after 2 days. •Significant relationships observed between metabolomic and reproduction endpoints. •Metabolomics may have value as a rapid screening tool for chronic toxicity. -- Earthworm metabolomic responses measured after 2 and 14 days are compared to traditional earthworm ecotoxicity endpoints (survival and reproduction) in petroleum hydrocarbon contaminated soil

  18. Metabolomics Approach To Evaluate a Baltic Sea Sourced Diet for Cultured Arctic Char (Salvelinus alpinus L.).

    Science.gov (United States)

    Cheng, Ken; Müllner, Elisabeth; Moazzami, Ali A; Carlberg, Hanna; Brännäs, Eva; Pickova, Jana

    2017-06-21

    Aqua feeds traditionally rely on fishmeal as a protein source, which is costly and unsustainable. A new feed was formulated in the study with Baltic Sea sourced decontaminated fishmeal, Mytilus edulis and Saccharomyces cerevisiae, and given to Arctic char (Salvelinus alpinus) for ten months. The diet-induced changes on metabolic profile in fish plasma, liver, and muscle were studied relative to a fishmeal-based standard diet by using a 1 H NMR-based metabolomics approach. Fish fed the test diet had higher content of betaine and lower levels of trimethylamine-N-oxide and aromatic amino acids in plasma or tissues, which were mainly caused by the diet. The metabolomics results are useful to understand the mechanism of lower body mass, smaller Fulton's condition factor, and a tendency of less lipid content observed in fish fed the test diet. Thus, modifications on the dietary levels of these compounds in the feed are needed to achieve better growth performance.

  19. New Computational Approaches for NMR-based Drug Design: A Protocol for Ligand Docking to Flexible Target Sites

    International Nuclear Information System (INIS)

    Gracia, Luis; Speidel, Joshua A.; Weinstein, Harel

    2006-01-01

    NMR-based drug design has met with some success in the last decade, as illustrated in numerous instances by Fesik's ''ligand screening by NMR'' approach. Ongoing efforts to generalize this success have led us to the development of a new paradigm in which quantitative computational approaches are being integrated with NMR derived data and biological assays. The key component of this work is the inclusion of the intrinsic dynamic quality of NMR structures in theoretical models and its use in docking. A new computational protocol is introduced here, designed to dock small molecule ligands to flexible proteins derived from NMR structures. The algorithm makes use of a combination of simulated annealing monte carlo simulations (SA/MC) and a mean field potential informed by the NMR data. The new protocol is illustrated in the context of an ongoing project aimed at developing new selective inhibitors for the PCAF bromodomains that interact with HIV Tat

  20. NMR-based metabonomic approach on the toxicological effects of a Cimicifuga triterpenoid.

    Science.gov (United States)

    He, Cui-Cui; Dai, Yun-Qing; Hui, Rong-Rong; Hua, Jia; Chen, Hong-Juan; Luo, Qiao-Yun; Li, Jian-Xin

    2012-02-01

    Cimicifugae Rhizoma, a well-known botanical dietary supplement, has been the subject of intense interest due to its potential application for alleviating menopausal symptom. Although there are clinic data that the Cimicifuga extract should have hepatotoxicity, no evidence on the main chemical components has been reported. Cimicidol-3-O-β -d-xyloside (CX) is one of the main triterpenoids of the rhizome. This work studies the toxicological effects of CX after oral administration (50 mg kg(-1) per day) over a 7-day period in female SD rats using metabonomic analyses of (1) H NMR spectra of urine, serum and liver tissue extracts. Histopathological studies of liver and analyses of blood biochemical parameter, such as alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, blood urea nitrogen and creatinine revealed that CX had no negative impacts on liver and kidney. However, the metabolic signature of (1) H NMR-based urinalysis of daily samples displayed an increment in the levels of taurine, trimethylamine-N-oxide (TMAO), betaine and acetate. Elevated serum levels of creatinine, glucose, alanine, TMAO and betaine and lower levels of lactate were observed. Metabolic profiling on aqueous soluble extracts of liver showed simultaneously increases in succinate, glycogen, choline, glycerophosphorylcholine, TMAO and betaine levels and reduction in valine, glucose and lactate levels. Nevertheless, no changes in any metabonomic level were found in lipid-soluble extracts of liver. These findings indicate that CX has a slight toxicity in liver and kidney via disturbance of the metabolisms of energy and amino acids. The present study provides a reasonable explanation for the clinical hepatotoxicity of Cimicifuga extract. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Metabolic Effects of a 24-Week Energy-Restricted Intervention Combined with Low or High Dairy Intake in Overweight Women: An NMR-Based Metabolomics Investigation

    Directory of Open Access Journals (Sweden)

    Hong Zheng

    2016-02-01

    Full Text Available We investigated the effect of a 24-week energy-restricted intervention with low or high dairy intake (LD or HD on the metabolic profiles of urine, blood and feces in overweight/obese women by NMR spectroscopy combined with ANOVA-simultaneous component analysis (ASCA. A significant effect of dairy intake was found on the urine metabolome. HD intake increased urinary citrate, creatinine and urea excretion, and decreased urinary excretion of trimethylamine-N-oxide (TMAO and hippurate relative to the LD intake, suggesting that HD intake was associated with alterations in protein catabolism, energy metabolism and gut microbial activity. In addition, a significant time effect on the blood metabolome was attributed to a decrease in blood lipid and lipoprotein levels due to the energy restriction. For the fecal metabolome, a trend for a diet effect was found and a series of metabolites, such as acetate, butyrate, propionate, malonate, cholesterol and glycerol tended to be affected. Overall, even though these effects were not accompanied by a higher weight loss, the present metabolomics data reveal that a high dairy intake is associated with endogenous metabolic effects and effects on gut microbial activity that potentially impact body weight regulation and health. Moreover, ASCA has a great potential for exploring the effect of intervention factors and identifying altered metabolites in a multi-factorial metabolomic study.

  2. NMR-based metabolomic profiling of overweight adolescents – an elucidation of the effects of inter-/intra-individual differences, gender, pubertal development and physical activity

    DEFF Research Database (Denmark)

    Zheng, Hong; Yde, Christian Clement; Arnberg, Karina

    2014-01-01

    The plasma and urine metabolome of 192 overweight 12-15-year-old adolescents (BMI of 25.4 ± 2.3 kg/m(2)) were examined in order to elucidate gender, pubertal development measured as Tanner stage, physical activity measured as number of steps taken daily, and intra-/interindividual differences...... in the metabolome are being commenced already in childhood. The relationship between Tanner stage and the metabolome showed that pubertal development stage was positively related to urinary creatinine excretion and negatively related to urinary citrate content. No relations between physical activity...... and life-style related diseases. While this study is preliminary, these results may have the potential to translate into clinical applicability upon further investigations; if biomarkers for Tanner stage can be established, these might be used for identification of individuals susceptible to an early...

  3. Early Effect of Amyloid β-Peptide on Hippocampal and Serum Metabolism in Rats Studied by an Integrated Method of NMR-Based Metabolomics and ANOVA-Simultaneous Component Analysis

    Directory of Open Access Journals (Sweden)

    Yao Du

    2017-01-01

    Full Text Available Amyloid β (Aβ deposition has been implicated in the pathogenesis of Alzheimer’s disease. However, the early effect of Aβ deposition on metabolism remains unclear. In the present study, thus, we explored the metabolic changes in the hippocampus and serum during first 2 weeks of Aβ25–35 injection in rats by using an integrated method of NMR-based metabolomics and ANOVA-simultaneous component analysis (ASCA. Our results show that Aβ25–35 injection, time, and their interaction had statistically significant effects on the hippocampus and serum metabolome. Furthermore, we identified key metabolites that mainly contributed to these effects. After Aβ25–35 injection from 1 to 2 weeks, the levels of lactate, N-acetylaspartate, creatine, and taurine were decreased in rat hippocampus, while an increase in lactate and decreases in LDL/VLDL and glucose were observed in rat serum. Therefore, we suggest that the reduction in energy and lipid metabolism as well as an increase in anaerobic glycolysis may occur at the early stage of Aβ25–35 deposition.

  4. 1H NMR-Based Metabolomics Study of the Toxicological Effects in Rats Induced by “Renqing Mangjue” Pill, a Traditional Tibetan Medicine

    Directory of Open Access Journals (Sweden)

    Can Xu

    2017-09-01

    Full Text Available “RenqingMangjue” pill (RMP, as an effective prescription of Traditional Tibetan Medicine (TTM, has been widely used in treating digestive diseases and ulcerative colitis for over a thousand years. In certain classical Tibetan Medicine, heavy metal may add as an active ingredient, but it may cause contamination unintentionally in some cases. Therefore, the toxicity and adverse effects of TTM became to draw public attention. In this study, 48 male Wistar rats were orally administrated with different dosages of RMP once a day for 15 consecutive days, then half of the rats were euthanized on the 15th day and the remaining were euthanized on the 30th day. Plasma, kidney and liver samples were acquired to 1H NMR metabolomics analysis. Histopathology and ICP-MS were applied to support the metabolomics findings. The metabolic signature of plasma from RMP-administrated rats exhibited increasing levels of glucose, betaine, and creatine, together with decreasing levels of lipids, 3-hydroxybutate, pyruvate, citrate, valine, leucine, isoleucine, glutamate, and glutamine. The metabolomics analysis results of liver showed that after RMP administration, the concentrations of valine, leucine, proline, tyrosine, and tryptophan elevated, while glucose, sarcosine and 3-hydroxybutyrate decreased. The levels of metabolites in kidney, such as, leucine, valine, isoleucine and tyrosine, were increased, while taurine, glutamate, and glutamine decreased. The study provides several potential biomarkers for the toxicity mechanism research of RMP and shows that RMP may cause injury in kidney and liver and disturbance of several pathways, such as energy metabolism, oxidative stress, glucose and amino acids metabolism.

  5. New approaches for metabolomics by mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Vertes, Akos [George Washington Univ., Washington, DC (United States)

    2017-07-10

    Small molecules constitute a large part of the world around us, including fossil and some renewable energy sources. Solar energy harvested by plants and bacteria is converted into energy rich small molecules on a massive scale. Some of the worst contaminants of the environment and compounds of interest for national security also fall in the category of small molecules. The development of large scale metabolomic analysis methods lags behind the state of the art established for genomics and proteomics. This is commonly attributed to the diversity of molecular classes included in a metabolome. Unlike nucleic acids and proteins, metabolites do not have standard building blocks, and, as a result, their molecular properties exhibit a wide spectrum. This impedes the development of dedicated separation and spectroscopic methods. Mass spectrometry (MS) is a strong contender in the quest for a quantitative analytical tool with extensive metabolite coverage. Although various MS-based techniques are emerging for metabolomics, many of these approaches include extensive sample preparation that make large scale studies resource intensive and slow. New ionization methods are redefining the range of analytical problems that can be solved using MS. This project developed new approaches for the direct analysis of small molecules in unprocessed samples, as well as pushed the limits of ultratrace analysis in volume limited complex samples. The projects resulted in techniques that enabled metabolomics investigations with enhanced molecular coverage, as well as the study of cellular response to stimuli on a single cell level. Effectively individual cells became reaction vessels, where we followed the response of a complex biological system to external perturbation. We established two new analytical platforms for the direct study of metabolic changes in cells and tissues following external perturbation. For this purpose we developed a novel technique, laser ablation electrospray

  6. Using NMR-Based Metabolomics to Evaluate Postprandial Urinary Responses Following Consumption of Minimally Processed Wheat Bran or Wheat Aleurone by Men and Women.

    Science.gov (United States)

    Garg, Ramandeep; Brennan, Lorraine; Price, Ruth K; Wallace, Julie M W; Strain, J J; Gibney, Mike J; Shewry, Peter R; Ward, Jane L; Garg, Lalit; Welch, Robert W

    2016-02-17

    Wheat bran, and especially wheat aleurone fraction, are concentrated sources of a wide range of components which may contribute to the health benefits associated with higher consumption of whole-grain foods. This study used NMR metabolomics to evaluate urine samples from baseline at one and two hours postprandially, following the consumption of minimally processed bran, aleurone or control by 14 participants (7 Females; 7 Males) in a randomized crossover trial. The methodology discriminated between the urinary responses of control, and bran and aleurone, but not between the two fractions. Compared to control, consumption of aleurone or bran led to significantly and substantially higher urinary concentrations of lactate, alanine, N-acetylaspartate acid and N-acetylaspartylglutamate and significantly and substantially lower urinary betaine concentrations at one and two hours postprandially. There were sex related differences in urinary metabolite profiles with generally higher hippurate and citrate and lower betaine in females compared to males. Overall, this postprandial study suggests that acute consumption of bran or aleurone is associated with a number of physiological effects that may impact on energy metabolism and which are consistent with longer term human and animal metabolomic studies that used whole-grain wheat diets or wheat fractions.

  7. Discovery, screening and evaluation of a plasma biomarker panel for subjects with psychological suboptimal health state using (1)H-NMR-based metabolomics profiles.

    Science.gov (United States)

    Tian, Jun-Sheng; Xia, Xiao-Tao; Wu, Yan-Fei; Zhao, Lei; Xiang, Huan; Du, Guan-Hua; Zhang, Xiang; Qin, Xue-Mei

    2016-09-21

    Individuals in the state of psychological suboptimal health keep increasing, only scales and questionnaires were used to diagnose in clinic under current conditions, and symptoms of high reliability and accuracy are destitute. Therefore, the noninvasive and precise laboratory diagnostic methods are needed. This study aimed to develop an objective method through screen potential biomarkers or a biomarker panel to facilitate the diagnosis in clinic using plasma metabolomics. Profiles were based on H-nuclear magnetic resonance ((1)H-NMR) metabolomics techniques combing with multivariate statistical analysis. Furthermore, methods of correlation analysis with Metaboanalyst 3.0 for selecting a biomarker panel, traditional Chinese medicine (TCM) drug intervention for validating the close relations between the biomarker panel and the state and the receiver operating characteristic curves (ROC curves) analysis for evaluation of clinical diagnosis ability were carried out. 9 endogenous metabolites containing trimethylamine oxide (TMAO), glutamine, N-acetyl-glycoproteins, citrate, tyrosine, phenylalanine, isoleucine, valine and glucose were identified and considered as potential biomarkers. Then a biomarker panel consisting of phenylalanine, glutamine, tyrosine, citrate, N-acetyl-glycoproteins and TMAO was selected, which exhibited the highest area under the curve (AUC = 0.971). This study provided critical insight into the pathological mechanism of psychological suboptimal health and would supply a novel and valuable diagnostic method.

  8. NMR-based approach to measure the free energy of transmembrane helix-helix interactions.

    Science.gov (United States)

    Mineev, Konstantin S; Lesovoy, Dmitry M; Usmanova, Dinara R; Goncharuk, Sergey A; Shulepko, Mikhail A; Lyukmanova, Ekaterina N; Kirpichnikov, Mikhail P; Bocharov, Eduard V; Arseniev, Alexander S

    2014-01-01

    Knowledge of the energetic parameters of transmembrane helix-helix interactions is necessary for the establishment of a structure-energy relationship for α-helical membrane domains. A number of techniques have been developed to measure the free energies of dimerization and oligomerization of transmembrane α-helices, and all of these have their advantages and drawbacks. In this study we propose a methodology to determine the magnitudes of the free energy of interactions between transmembrane helices in detergent micelles. The suggested approach employs solution nuclear magnetic resonance (NMR) spectroscopy to determine the population of the oligomeric states of the transmembrane domains and introduces a new formalism to describe the oligomerization equilibrium, which is based on the assumption that both the dimerization of the transmembrane domains and the dissociation of the dimer can occur only upon the collision of detergent micelles. The technique has three major advantages compared with other existing approaches: it may be used to analyze both weak and relatively strong dimerization/oligomerization processes, it works well for the analysis of complex equilibria, e.g. when monomer, dimer and high-order oligomer populations are simultaneously present in the solution, and it can simultaneously yield both structural and energetic characteristics of the helix-helix interaction under study. The proposed methodology was applied to investigate the oligomerization process of transmembrane domains of fibroblast growth factor receptor 3 (FGFR3) and vascular endothelium growth factor receptor 2 (VEGFR2), and allowed the measurement of the free energy of dimerization of both of these objects. In addition the proposed method was able to describe the multi-state oligomerization process of the VEGFR2 transmembrane domain. © 2013 Elsevier B.V. All rights reserved.

  9. Metabolomics, a promising approach to translational research in cardiology

    Directory of Open Access Journals (Sweden)

    Martino Deidda

    2015-12-01

    In this article, we will provide a description of metabolomics in comparison with other, better known “omics” disciplines such as genomics and proteomics. In addition, we will review the current rationale for the implementation of metabolomics in cardiology, its basic methodology and the available data from human studies in this discipline. The topics covered will delineate the importance of being able to use the metabolomic information to understand the mechanisms of diseases from the perspective of systems biology, and as a non-invasive approach to the diagnosis, grading and treatment of cardiovascular diseases.

  10. Metabolomics

    DEFF Research Database (Denmark)

    Pedersen, Hans

    is a presentation of a core consistency diagnostic aiding in determining the number of components in a PARAFAC2 model. It is of great importance to validate especially PLS-DA models and if not done properly, the developed models might reveal spurious groupings. Furthermore, data from metabolomics studies contain...... and the results indicate that GC-MS-based metabolomics in combination with PARAFAC2 modelling is applicable for extracting relevant biological information from the plasma samples. Overall, the work in this thesis shows that suitable and properly validated chemometrics models used in metabolomics are very useful...

  11. What Have Metabolomics Approaches Taught Us About Type 2 Diabetes?

    DEFF Research Database (Denmark)

    Gonzalez-Franquesa, Alba; Burkart, Alison M; Isganaitis, Elvira

    2016-01-01

    and mathematical modeling approaches, have provided the scientific community with new tools to describe the T2D metabolome. The metabolomics signatures associated with T2D and obesity include increased levels of lactate, glycolytic intermediates, branched-chain and aromatic amino acids, and long-chain fatty acids......Type 2 diabetes (T2D) is increasing worldwide, making identification of biomarkers for detection, staging, and effective prevention strategies an especially critical scientific and medical goal. Fortunately, advances in metabolomics techniques, together with improvements in bioinformatics....... Conversely, tricarboxylic acid cycle intermediates, betaine, and other metabolites decrease. Future studies will be required to fully integrate these and other findings into our understanding of diabetes pathophysiology and to identify biomarkers of disease risk, stage, and responsiveness to specific...

  12. Positional enrichment by proton analysis (PEPA). A one-dimensional {sup 1}H-NMR approach for {sup 13}C stable isotope tracer studies in metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Vinaixa, Maria; Yanes, Oscar [Department of Electronic Engineering-Universitat Rovira i Virgili, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus (Spain); Rodriguez, Miguel A.; Capellades, Jordi [Universitat Rovira i Virgili, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus (Spain); Aivio, Suvi; Stracker, Travis H. [Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (Spain); Gomez, Josep; Canyellas, Nicolau [Department of Electronic Engineering-, Universitat Rovira i Virgili, Tarragona (Spain)

    2017-03-20

    A novel metabolomics approach for NMR-based stable isotope tracer studies called PEPA is presented, and its performance validated using human cancer cells. PEPA detects the position of carbon label in isotopically enriched metabolites and quantifies fractional enrichment by indirect determination of {sup 13}C-satellite peaks using 1D-{sup 1}H-NMR spectra. In comparison with {sup 13}C-NMR, TOCSY and HSQC, PEPA improves sensitivity, accelerates the elucidation of {sup 13}C positions in labeled metabolites and the quantification of the percentage of stable isotope enrichment. Altogether, PEPA provides a novel framework for extending the high-throughput of {sup 1}H-NMR metabolic profiling to stable isotope tracing in metabolomics, facilitating and complementing the information derived from 2D-NMR experiments and expanding the range of isotopically enriched metabolites detected in cellular extracts. (copyright 2017 The Authors. Published by Wiley-VCH Verlag GmbH and Co. KGaA.)

  13. Biomarker discovery in neurological diseases: a metabolomic approach

    Directory of Open Access Journals (Sweden)

    Afaf El-Ansary

    2009-12-01

    Full Text Available Afaf El-Ansary, Nouf Al-Afaleg, Yousra Al-YafaeeBiochemistry Department, Science College, King Saud University, Riyadh, Saudi ArabiaAbstract: Biomarkers are pharmacological and physiological measurements or specific biochemicals in the body that have a particular molecular feature that makes them useful for measuring the progress of disease or the effects of treatment. Due to the complexity of neurological disorders, it is very difficult to have perfect markers. Brain diseases require plenty of markers to reflect the metabolic impairment of different brain cells. The recent introduction of the metabolomic approach helps the study of neurological diseases based on profiling a multitude of biochemical components related to brain metabolism. This review is a trial to elucidate the possibility to use this approach to identify plasma metabolic markers related to neurological disorders. Previous trials using different metabolomic analyses including nuclear magnetic resonance spectroscopy, gas chromatography combined with mass spectrometry, liquid chromatography combined with mass spectrometry, and capillary electrophoresis will be traced.Keywords: metabolic biomarkers, neurological disorders. metabolome, nuclear magnetic resonance, mass spectrometry, chromatography

  14. Understanding Plant Nitrogen Metabolism through Metabolomics and Computational Approaches

    Directory of Open Access Journals (Sweden)

    Perrin H. Beatty

    2016-10-01

    Full Text Available A comprehensive understanding of plant metabolism could provide a direct mechanism for improving nitrogen use efficiency (NUE in crops. One of the major barriers to achieving this outcome is our poor understanding of the complex metabolic networks, physiological factors, and signaling mechanisms that affect NUE in agricultural settings. However, an exciting collection of computational and experimental approaches has begun to elucidate whole-plant nitrogen usage and provides an avenue for connecting nitrogen-related phenotypes to genes. Herein, we describe how metabolomics, computational models of metabolism, and flux balance analysis have been harnessed to advance our understanding of plant nitrogen metabolism. We introduce a model describing the complex flow of nitrogen through crops in a real-world agricultural setting and describe how experimental metabolomics data, such as isotope labeling rates and analyses of nutrient uptake, can be used to refine these models. In summary, the metabolomics/computational approach offers an exciting mechanism for understanding NUE that may ultimately lead to more effective crop management and engineered plants with higher yields.

  15. Metabolomics investigation to shed light on cheese as a possible piece in the French paradox puzzle

    DEFF Research Database (Denmark)

    Zheng, Hong; Yde, Christian C; Clausen, Morten R

    2015-01-01

    An NMR-based metabolomics approach was used to investigate the differentiation between subjects consuming cheese or milk and to elucidate the potential link to an effect on the blood cholesterol level. Fifteen healthy young men participated in a full cross-over study where they consumed three iso-caloric...

  16. Metabolomics Approach to Investigate Estrogen Receptor-Dependent and Independent Effects of o,p'-DDT in the Uterus and Brain of Immature Mice.

    Science.gov (United States)

    Wang, Dezhen; Zhu, Wentao; Wang, Yao; Yan, Jin; Teng, Miaomiao; Miao, Jiyan; Zhou, Zhiqiang

    2017-05-10

    Previous studies have demonstrated the endocrine disruption of o,p'-DDT. In this study, we used a 1 H NMR based metabolomics approach to investigate the estrogenic effects of o,p'-DDT (300 mg/kg) on the uterus and brain after 3 days of oral gavage administration, and ethynylestradiol (EE, 100 μg/kg) was used as a positive control. A supervised statistical analysis (PLS-DA) indicated that o,p'-DDT exerted both estrogenic receptor-(ER)-dependent and independent effects on the uterus but mainly ER-independent effects on the brain at metabolome levels, which was verified by coexposing with the antiestrogenic ICI 182,780. Four changed metabolites-glycine, choline, fumarate, and phenylalanine-were identified as ER-independent alterations in the uterus, while more metabolites, including γ-aminobutyrate, N-acetyl aspartate, and some amino acids, were disturbed based on the ER-independent mechanism in the brain. Together with biological end points, metabolomics is a promising approach to study potential estrogenic chemicals.

  17. Characterization and Discrimination of Ancient Grains: A Metabolomics Approach

    Directory of Open Access Journals (Sweden)

    Laura Righetti

    2016-07-01

    Full Text Available Hulled, or ancient, wheats were the earliest domesticated wheats by mankind and the ancestors of current wheats. Their cultivation drastically decreased during the 1960s; however, the increasing demand for a healthy and equilibrated diet led to rediscovering these grains. Our aim was to use a non-targeted metabolomic approach to discriminate and characterize similarities and differences between ancient Triticum varieties. For this purpose, 77 hulled wheat samples from three different varieties were collected: Garfagnana T. turgidum var. dicoccum L. (emmer, ID331 T. monococcum L. (einkorn and Rouquin T. spelta L. (spelt. The ultra high performance liquid chromatography coupled to high resolution tandem mass spectrometry (UHPLC-QTOF metabolomics approach highlighted a pronounced sample clustering according to the wheat variety, with an excellent predictability (Q2, for all the models built. Fifteen metabolites were tentatively identified based on accurate masses, isotopic pattern, and product ion spectra. Among these, alkylresorcinols (ARs were found to be significantly higher in spelt and emmer, showing different homologue composition. Furthermore, phosphatidylcholines (PC and lysophosphatidylcholines (lysoPC levels were higher in einkorn variety. The results obtained in this study confirmed the importance of ARs as markers to distinguish between Triticum species and revealed their values as cultivar markers, being not affected by the environmental influences.

  18. A Chemometrics Approach for Nuclear Magnetic Resonance Data to Characterize the Partial Metabolome Banana Peels from Southern Brazil.

    Science.gov (United States)

    Cardoso, Sara; Maraschin, Marcelo; Peruch, Luiz Augusto Martins; Rocha, Miguel; Pereira, Aline

    2017-12-13

    Banana peels are well recognized as a source of important bioactive compounds, such as phenolics, carotenoids, biogenic amines, among others. As such, they have recently started to be used for industrial purposes. However, its composition seems to be strongly affected by biotic or abiotic ecological factors. Thus, this study aimed to investigate banana peels chemical composition, not only to get insights on eventual metabolic changes caused by the seasons, in southern Brazil, but also to identify the most relevant metabolites for these processes. To achieve this, a Nuclear magnetic resonance (NMR)-based metabolic profiling strategy was adopted, followed by chemometrics analysis, using the specmine package for the R environment, and metabolite identification. The results showed that the metabolomic approach adopted allowed identifying a series of primary and secondary metabolites in the aqueous extracts investigated. Besides, over the seasons the metabolic profiles of the banana peels showed to contain biologically active compounds relevant to the skin wound healing process, indicating the biotechnological potential of that raw material.

  19. Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency

    Science.gov (United States)

    Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei

    2015-07-01

    Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer’s disease and Parkinson’s disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states.

  20. Gut Microbiota Profiling: Metabolomics Based Approach to Unravel Compounds Affecting Human Health.

    Science.gov (United States)

    Vernocchi, Pamela; Del Chierico, Federica; Putignani, Lorenza

    2016-01-01

    The gut microbiota is composed of a huge number of different bacteria, that produce a large amount of compounds playing a key role in microbe selection and in the construction of a metabolic signaling network. The microbial activities are affected by environmental stimuli leading to the generation of a wide number of compounds, that influence the host metabolome and human health. Indeed, metabolite profiles related to the gut microbiota can offer deep insights on the impact of lifestyle and dietary factors on chronic and acute diseases. Metagenomics, metaproteomics and metabolomics are some of the meta-omics approaches to study the modulation of the gut microbiota. Metabolomic research applied to biofluids allows to: define the metabolic profile; identify and quantify classes and compounds of interest; characterize small molecules produced by intestinal microbes; and define the biochemical pathways of metabolites. Mass spectrometry and nuclear magnetic resonance spectroscopy are the principal technologies applied to metabolomics in terms of coverage, sensitivity and quantification. Moreover, the use of biostatistics and mathematical approaches coupled with metabolomics play a key role in the extraction of biologically meaningful information from wide datasets. Metabolomic studies in gut microbiota-related research have increased, focusing on the generation of novel biomarkers, which could lead to the development of mechanistic hypotheses potentially applicable to the development of nutritional and personalized therapies.

  1. Understanding Aquatic Rhizosphere Processes Through Metabolomics and Metagenomics Approach

    Science.gov (United States)

    Lee, Yong Jian; Mynampati, Kalyan; Drautz, Daniela; Arumugam, Krithika; Williams, Rohan; Schuster, Stephan; Kjelleberg, Staffan; Swarup, Sanjay

    2013-04-01

    The aquatic rhizosphere is a region around the roots of aquatic plants. Many studies focusing on terrestrial rhizosphere have led to a good understanding of the interactions between the roots, its exudates and its associated rhizobacteria. The rhizosphere of free-floating roots, however, is a different habitat that poses several additional challenges, including rapid diffusion rates of signals and nutrient molecules, which are further influenced by the hydrodynamic forces. These can lead to rapid diffusion and complicates the studying of diffusible factors from both plant and/or rhizobacterial origins. These plant systems are being increasingly used for self purification of water bodies to provide sustainable solution. A better understanding of these processes will help in improving their performance for ecological engineering of freshwater systems. The same principles can also be used to improve the yield of hydroponic cultures. Novel toolsets and approaches are needed to investigate the processes occurring in the aquatic rhizosphere. We are interested in understanding the interaction between root exudates and the complex microbial communities that are associated with the roots, using a systems biology approach involving metabolomics and metagenomics. With this aim, we have developed a RhizoFlowCell (RFC) system that provides a controlled study of aquatic plants, observed the root biofilms, collect root exudates and subject the rhizosphere system to changes in various chemical or physical perturbations. As proof of concept, we have used RFC to test the response of root exudation patterns of Pandanus amaryllifolius after exposure to the pollutant naphthalene. Complexity of root exudates in the aquatic rhizosphere was captured using this device and analysed using LC-qTOF-MS. The highly complex metabolomic profile allowed us to study the dynamics of the response of roots to varying levels of naphthalene. The metabolic profile changed within 5mins after spiking with

  2. Profiling the metabolome changes caused by cranberry procyanidins in plasma of female rats using (1) H NMR and UHPLC-Q-Orbitrap-HRMS global metabolomics approaches.

    Science.gov (United States)

    Liu, Haiyan; Garrett, Timothy J; Tayyari, Fariba; Gu, Liwei

    2015-11-01

    The objective was to investigate the metabolome changes in female rats gavaged with partially purified cranberry procyanidins (PPCP) using (1) H NMR and UHPLC-Q-Orbitrap-HRMS metabolomics approaches, and to identify the contributing metabolites. Twenty-four female Sprague-Dawley rats were randomly separated into two groups and administered PPCP or partially purified apple procyanidins (PPAP) for three times using a 250 mg extracts/kg body weight dose. Plasma was collected 6 h after the last gavage and analyzed using (1) H NMR and UHPLC-Q-Orbitrap-HRMS. No metabolome difference was observed using (1) H NMR metabolomics approach. However, LC-HRMS metabolomics data show that metabolome in the plasma of female rats administered PPCP differed from those gavaged with PPAP. Eleven metabolites were tentatively identified from a total of 36 discriminant metabolic features based on accurate masses and/or product ion spectra. PPCP caused a greater increase of exogenous metabolites including p-hydroxybenzoic acid, phenol, phenol-sulphate, catechol sulphate, 3, 4-dihydroxyphenylvaleric acid, and 4'-O-methyl-(-)-epicatechin-3'-O-beta-glucuronide in rat plasma. Furthermore, the plasma level of O-methyl-(-)-epicatechin-O-glucuronide, 4-hydroxy-5-(hydroxyphenyl)-valeric acid-O-sulphate, 5-(hydroxyphenyl)-ϒ-valerolactone-O-sulphate, 4-hydroxydiphenylamine, and peonidin-3-O-hexose were higher in female rats administered with PPAP. The metabolome changes caused by cranberry procyanidins were revealed using an UHPLC-Q-Orbitrap-HRMS global metabolomics approach. Exogenous and microbial metabolites were the major identified discriminate biomarkers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Profiling the Metabolome Changes Caused by Cranberry Procyanidins in Plasma of Female Rats using 1H NMR and UHPLC-Q-Orbitrap-HRMS Global Metabolomics Approaches

    Science.gov (United States)

    Liu, Haiyan; Garrett, Timothy J.; Tayyari, Fariba; Gu, Liwei

    2015-01-01

    Scope The objective was to investigate the metabolome changes in female rats gavaged with partially purified cranberry procyanidins (PPCP) using 1H NMR and UHPLC-Q-Orbitrap-HRMS metabolomics approaches, and to identify the contributing metabolites. Methods and results Twenty four female Sprague-Dawley rats were randomly separated into two groups and administered PPCP or partially purified apple procyanidins (PPAP) for 3 times using a 250 mg extracts/kg body weight dose. Plasma were collected six hours after the last gavage and analyzed using 1H NMR and UHPLC-Q-Orbitrap-HRMS. No metabolome difference was observed using 1H NMR metabolomics approach. However, LC-HRMS metabolomics data show that metabolome in plasma of female rats administered PPCP differed from those gavaged with PPAP. Eleven metabolites were tentatively identified from a total of 36 discriminant metabolic features based on accurate masses and/or product ion spectra. PPCP caused a greater increase of exogenous metabolites including p-hydroxybenzoic acid, phenol, phenol-sulfate, catechol sulphate, 3, 4-dihydroxyphenylvaleric acid, and 4′-O-methyl-(−)-epicatechin-3′-O-beta-glucuronide in rat plasma. Furthermore, the plasma level of O-methyl-(−)-epicatechin-O-glucuronide, 4-hydroxy-5-(hydroxyphenyl)-valeric acid-O-sulphate, 5-(hydroxyphenyl)-γ-valerolactone-O-sulphate, 4-hydroxydiphenylamine, and peonidin-3-O-hexose were higher in female rats administered with PPAP. Conclusion The metabolome changes caused by cranberry procyanidins were revealed using an UHPLC-Q-Orbitrap-HRMS global metabolomics approach. Exogenous and microbial metabolites were the major identified discriminate biomarkers. PMID:26264887

  4. Short overview on metabolomic approach and redox changes in psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Gordana Nedic Erjavec

    2018-04-01

    Full Text Available Schizophrenia, depression and posttraumatic stress disorder (PTSD are severe mental disorders and complicated diagnostic entities, due to their phenotypic, biological and genetic heterogeneity, unknown etiology, and poorly understood alterations in biological pathways and biological mechanisms. Disturbed homeostasis between overproduction of oxidant species, overcoming redox regulation and a lack of cellular antioxidant defenses, resulting in free radical-mediated pathology and subsequent neurotoxicity contributes to development of depression, schizophrenia and PTSD, their heterogeneous clinical presentation and resistance to treatment. Metabolomics is a discipline that combines different strategies with the aim to extract, detect, identify and quantify all metabolites that are present in a biological sample and might provide mechanistic insights into the etiology of various psychiatric disorders. Therefore, oxidative stress research combined with metabolomics might offer a novel approach in dissecting psychiatric disorders, since these data-driven but not necessarily hypothesis-driven methods might identify new targets, molecules and pathways responsible for development of schizophrenia, depression or PTSD. Findings from the oxidative research in psychiatry together with metabolomics data might facilitate development of specific and validated prognostic, therapeutic and clinical biomarkers. These methods might reveal bio-signatures of individual patients, leading to individualized treatment approach. In reviewing findings related to oxidative stress and metabolomics in selected psychiatric disorders, we have highlighted how these novel approaches might make a unique contribution to deeper understanding of psychopathological alterations underlying schizophrenia, depression and PTSD. Keywords: Schizophrenia, Depression, Posttraumatic stress disorder, Oxidative stress, Lipid peroxidation, Metabolomics, Biomarkers

  5. NMR-based metabolomics reveals that conjugated double bond content and lipid storage efficiency in HepG2 cells are affected by fatty acid cis/trans configuration and chain length

    DEFF Research Database (Denmark)

    Najbjerg, Heidi; Young, Jette F; Bertram, Hanne Christine S.

    2011-01-01

    In the present study the metabolic response to various fatty acids was investigated in HepG2 cells by using a 1HNMRbased approach. To elucidate the effect of cis/trans configuration, the cells were exposed to either oleic acid (C18:1 cis-9), elaidic acid (C18:1 trans-9), vaccenic acid (C18:1 tran...

  6. A metabolomics approach to thrips resistance in tomato

    OpenAIRE

    Romero González, Roman Rodolfo

    2011-01-01

    Western flower thrips is one of the most serious crop pests worldwide. Its control relies mainly on pesticides whose excessive use leads to resistance development and environmental contamination. As an alternative, in this thesis host-plant resistance in wild and domesticated tomatoes was studied using metabolomics. Different resistance mechanisms in which mechanical and chemical defenses work coordinately to fend thrips off were observed and contrasted. In all cases resistance was associated...

  7. Chitosan and grape secondary metabolites: A proteomics and metabolomics approach

    Directory of Open Access Journals (Sweden)

    Bavaresco Luigi

    2017-01-01

    Full Text Available Chitosan is a polysaccharide obtained by deacetylation of chitin, and it is involved in defence mechanisms of plants toward diseases. In the present work, V. vinifera L. cv. Ortrugo, grafted on 420A rootstock was grown in pot and treated, at veraison, by 0.03% chitosan solution at cluster level. Just before the treatment (T0 and 24 hours (T1, 48 hours (T2, 72 hours (T3 and 10 days (T4 later, the concentration of stilbenic compounds was detected, and at T1 proteomics and metabolomics analyses were done. Proteomics relies on the analysis of the complete set of proteins existing in a given substrate, while metabolomics relies on the analyses of the complete set of metabolites in a given substrate. The treatment improved the stilbene concentration over the control at T1. Proteomic analysis showed that superoxide dismutase (SOD and phenylalanine ammonia-lyase (PAL were overexpressed in the treated grapes. SOD is known to be an enzyme active against reactive oxygen species (ROS while PAL is a key enzyme in the phenylpropanoids pathway. Metabolomics analysis highlighted the positive role of the treatment in improving the triperpenoid concentration (betulin, erythrodiol, uvaol, oleanolate; these compounds are known to be effective against microbes, insects and fungi.

  8. Prospective evaluation of potential toxicity of repeated doses of Thymus vulgaris L. extracts in rats by means of clinical chemistry, histopathology and NMR-based metabonomic approach.

    Science.gov (United States)

    Benourad, Fouzia; Kahvecioglu, Zehra; Youcef-Benkada, Mokhtar; Colet, Jean-Marie

    2014-10-01

    In the field of natural extracts, research generally focuses on the study of their biological activities for food, cosmetic, or pharmacological purposes. The evaluation of their adverse effects is often overlooked. In this study, the extracts of Thymus vulgaris L. were obtained by two different extraction methods. Intraperitoneal injections of both extracts were given daily for four days to male Wistar Han rats, at two different doses for each extract. The evaluation of the potential toxic effects included histopathological examination of liver, kidney, and lung tissues, as well as serum biochemistry of liver and kidney parameters, and (1)H-NMR-based metabonomic profiles of urine. The results showed that no histopathological changes were observed in the liver and kidney in rats treated with both extracts of thyme. Serum biochemical investigations revealed significant increases in blood urea nitrogen, creatinine, and uric acid in animals treated with polyphenolic extract at both doses. In these latter groups, metabonomic analysis revealed alterations in a number of urine metabolites involved in the energy metabolism in liver mitochondria. Indeed, the results showed alterations of glycolysis, Krebs cycle, and β-oxidative pathways as evidenced by increases in lactate and ketone bodies, and decreases in citrate, α-ketoglutarate, creatinine, hippurate, dimethylglycine, and dimethyalanine. In conclusion, this work showed that i.p. injection of repeated doses of thyme extracts causes some disturbances of intermediary metabolism in rats. The metabonomic study revealed interesting data which could be further used to determine the cellular pathways affected by such treatments. Copyright © 2014 John Wiley & Sons, Ltd.

  9. A functional genomics approach using metabolomics and in silico pathway analysis

    DEFF Research Database (Denmark)

    Förster, Jochen; Gombert, Andreas Karoly; Nielsen, Jens

    2002-01-01

    analysis techniques and changes in the genotype will in many cases lead to different metabolite profiles. Here, a theoretical framework that may be applied to identify the function of orphan genes is presented. The approach is based on a combination of metabolome analysis combined with in silico pathway...

  10. Metabolomics investigation to shed light on cheese as a possible piece in the French paradox puzzle.

    Science.gov (United States)

    Zheng, Hong; Yde, Christian C; Clausen, Morten R; Kristensen, Mette; Lorenzen, Janne; Astrup, Arne; Bertram, Hanne C

    2015-03-18

    An NMR-based metabolomics approach was used to investigate the differentiation between subjects consuming cheese or milk and to elucidate the potential link to an effect on blood cholesterol level. Fifteen healthy young men participated in a full crossover study during which they consumed three isocaloric diets with similar fat contents that were either (i) high in milk, (ii) high in cheese with equal amounts of dairy calcium, or (iii) a control diet for 14 days. Urine and feces samples were collected and analyzed by NMR-based metabolomics. Cheese and milk consumption decreased urinary choline and TMAO levels and increased fecal excretion of acetate, propionate, and lipid. Compared with milk intake, cheese consumption significantly reduced urinary citrate, creatine, and creatinine levels and significantly increased the microbiota-related metabolites butyrate, hippurate, and malonate. Correlation analyses indicated that microbial and lipid metabolism could be involved in the dairy-induced effects on blood cholesterol level.

  11. A 'Foodomic' Approach for the Evaluation of Food Quality and its Impact on the Human Metabolome

    DEFF Research Database (Denmark)

    Trimigno, Alessia

    In recent years, omic sciences have been increasingly employed in a multitude of research fields thanks to their high-throughput capabilities and holistic approach. Among the omic sciences, metabolomics and foodomics have recently emerged in the investigation of food and nutrition and their relat......In recent years, omic sciences have been increasingly employed in a multitude of research fields thanks to their high-throughput capabilities and holistic approach. Among the omic sciences, metabolomics and foodomics have recently emerged in the investigation of food and nutrition...... carried out both in Italy and in Denmark, outlines the analytical pipeline of the foodomic approach and highlights the current challenges in the field (Chapter 2.3). The thesis traces the path of modern foodomics and metabolomics from the definition and description of food quality (Chapters 3 to 6......), to the profiling of the metabolome (Chapters 7 to 8.5), and finally the investigation of the impact of food on the human health, the prevention of diseases, and the identification of biomarkers of health status (Chapters 8.6 and 8.7). The impact of factors such as genetic modification or farming method...

  12. Urinary metabolomic fingerprinting after consumption of a probiotic strain in women with mastitis.

    Science.gov (United States)

    Vázquez-Fresno, Rosa; Llorach, Rafael; Marinic, Jelena; Tulipani, Sara; Garcia-Aloy, Mar; Espinosa-Martos, Irene; Jiménez, Esther; Rodríguez, Juan Miguel; Andres-Lacueva, Cristina

    2014-09-01

    Infectious mastitis is a common condition among lactating women, with staphylococci and streptococci being the main aetiological agents. In this context, some lactobacilli strains isolated from breast milk appear to be particularly effective for treating mastitis and, therefore, constitute an attractive alternative to antibiotherapy. A (1)H NMR-based metabolomic approach was applied to detect metabolomic differences after consuming a probiotic strain (Lactobacillus salivarius PS2) in women with mastitis. 24h urine of women with lactational mastitis was collected at baseline and after 21 days of probiotic (PB) administration. Multivariate analysis (OSC-PLS-DA and hierarchical clustering) showed metabolome differences after PB treatment. The discriminant metabolites detected at baseline were lactose, and ibuprofen and acetaminophen (two pharmacological drugs commonly used for mastitis pain), while, after PB intake, creatine and the gut microbial co-metabolites hippurate and TMAO were detected. In addition, a voluntary desertion of the pharmacological drugs ibuprofen and acetaminophen was observed after probiotic administration. The application of NMR-based metabolomics enabled the identification of the overall effects of probiotic consumption among women suffering from mastitis and highlighted the potential of this approach in evaluating the outcomes of probiotics consumption. To our knowledge, this is the first time that this approach has been applied in women with mastitis during lactation. Copyright © 2014. Published by Elsevier Ltd.

  13. Unraveling Biochemical Pathways Affected by Mitochondrial Dysfunctions Using Metabolomic Approaches

    Directory of Open Access Journals (Sweden)

    Stéphane Demine

    2014-09-01

    Full Text Available Mitochondrial dysfunction(s (MDs can be defined as alterations in the mitochondria, including mitochondrial uncoupling, mitochondrial depolarization, inhibition of the mitochondrial respiratory chain, mitochondrial network fragmentation, mitochondrial or nuclear DNA mutations and the mitochondrial accumulation of protein aggregates. All these MDs are known to alter the capacity of ATP production and are observed in several pathological states/diseases, including cancer, obesity, muscle and neurological disorders. The induction of MDs can also alter the secretion of several metabolites, reactive oxygen species production and modify several cell-signalling pathways to resolve the mitochondrial dysfunction or ultimately trigger cell death. Many metabolites, such as fatty acids and derived compounds, could be secreted into the blood stream by cells suffering from mitochondrial alterations. In this review, we summarize how a mitochondrial uncoupling can modify metabolites, the signalling pathways and transcription factors involved in this process. We describe how to identify the causes or consequences of mitochondrial dysfunction using metabolomics (liquid and gas chromatography associated with mass spectrometry analysis, NMR spectroscopy in the obesity and insulin resistance thematic.

  14. Unraveling Biochemical Pathways Affected by Mitochondrial Dysfunctions Using Metabolomic Approaches

    Science.gov (United States)

    Demine, Stéphane; Reddy, Nagabushana; Renard, Patricia; Raes, Martine; Arnould, Thierry

    2014-01-01

    Mitochondrial dysfunction(s) (MDs) can be defined as alterations in the mitochondria, including mitochondrial uncoupling, mitochondrial depolarization, inhibition of the mitochondrial respiratory chain, mitochondrial network fragmentation, mitochondrial or nuclear DNA mutations and the mitochondrial accumulation of protein aggregates. All these MDs are known to alter the capacity of ATP production and are observed in several pathological states/diseases, including cancer, obesity, muscle and neurological disorders. The induction of MDs can also alter the secretion of several metabolites, reactive oxygen species production and modify several cell-signalling pathways to resolve the mitochondrial dysfunction or ultimately trigger cell death. Many metabolites, such as fatty acids and derived compounds, could be secreted into the blood stream by cells suffering from mitochondrial alterations. In this review, we summarize how a mitochondrial uncoupling can modify metabolites, the signalling pathways and transcription factors involved in this process. We describe how to identify the causes or consequences of mitochondrial dysfunction using metabolomics (liquid and gas chromatography associated with mass spectrometry analysis, NMR spectroscopy) in the obesity and insulin resistance thematic. PMID:25257998

  15. An Investigation into the Antiobesity Effects of Morinda citrifolia L. Leaf Extract in High Fat Diet Induced Obese Rats Using a 1H NMR Metabolomics Approach

    Directory of Open Access Journals (Sweden)

    Najla Gooda Sahib Jambocus

    2016-01-01

    Full Text Available The prevalence of obesity is increasing worldwide, with high fat diet (HFD as one of the main contributing factors. Obesity increases the predisposition to other diseases such as diabetes through various metabolic pathways. Limited availability of antiobesity drugs and the popularity of complementary medicine have encouraged research in finding phytochemical strategies to this multifaceted disease. HFD induced obese Sprague-Dawley rats were treated with an extract of Morinda citrifolia L. leaves (MLE 60. After 9 weeks of treatment, positive effects were observed on adiposity, fecal fat content, plasma lipids, and insulin and leptin levels. The inducement of obesity and treatment with MLE 60 on metabolic alterations were then further elucidated using a 1H NMR based metabolomics approach. Discriminating metabolites involved were products of various metabolic pathways, including glucose metabolism and TCA cycle (lactate, 2-oxoglutarate, citrate, succinate, pyruvate, and acetate, amino acid metabolism (alanine, 2-hydroxybutyrate, choline metabolism (betaine, creatinine metabolism (creatinine, and gut microbiome metabolism (hippurate, phenylacetylglycine, dimethylamine, and trigonelline. Treatment with MLE 60 resulted in significant improvement in the metabolic perturbations caused obesity as demonstrated by the proximity of the treated group to the normal group in the OPLS-DA score plot and the change in trajectory movement of the diseased group towards the healthy group upon treatment.

  16. MeMo: a hybrid SQL/XML approach to metabolomic data management for functional genomics

    Directory of Open Access Journals (Sweden)

    Hardy Nigel

    2006-06-01

    Full Text Available Abstract Background The genome sequencing projects have shown our limited knowledge regarding gene function, e.g. S. cerevisiae has 5–6,000 genes of which nearly 1,000 have an uncertain function. Their gross influence on the behaviour of the cell can be observed using large-scale metabolomic studies. The metabolomic data produced need to be structured and annotated in a machine-usable form to facilitate the exploration of the hidden links between the genes and their functions. Description MeMo is a formal model for representing metabolomic data and the associated metadata. Two predominant platforms (SQL and XML are used to encode the model. MeMo has been implemented as a relational database using a hybrid approach combining the advantages of the two technologies. It represents a practical solution for handling the sheer volume and complexity of the metabolomic data effectively and efficiently. The MeMo model and the associated software are available at http://dbkgroup.org/memo/. Conclusion The maturity of relational database technology is used to support efficient data processing. The scalability and self-descriptiveness of XML are used to simplify the relational schema and facilitate the extensibility of the model necessitated by the creation of new experimental techniques. Special consideration is given to data integration issues as part of the systems biology agenda. MeMo has been physically integrated and cross-linked to related metabolomic and genomic databases. Semantic integration with other relevant databases has been supported through ontological annotation. Compatibility with other data formats is supported by automatic conversion.

  17. Metabolomic approach to human brain spectroscopy identifies associations between clinical features and the frontal lobe metabolome in multiple sclerosis

    Science.gov (United States)

    Vingara, Lisa K.; Yu, Hui Jing; Wagshul, Mark E.; Serafin, Dana; Christodoulou, Christopher; Pelczer, István; Krupp, Lauren B.; Maletić-Savatić, Mirjana

    2013-01-01

    Proton magnetic resonance spectroscopy (1H-MRS) is capable of noninvasively detecting metabolic changes that occur in the brain tissue in vivo. Its clinical utility has been limited so far, however, by analytic methods that focus on independently evaluated metabolites and require prior knowledge about which metabolites to examine. Here, we applied advanced computational methodologies from the field of metabolomics, specifically partial least squares discriminant analysis and orthogonal partial least squares, to in vivo 1H-MRS from frontal lobe white matter of 27 patients with relapsing–remitting multiple sclerosis (RRMS) and 14 healthy controls. We chose RRMS, a chronic demyelinating disorder of the central nervous system, because its complex pathology and variable disease course make the need for reliable biomarkers of disease progression more pressing. We show that in vivo MRS data, when analyzed by multivariate statistical methods, can provide reliable, distinct profiles of MRS-detectable metabolites in different patient populations. Specifically, we find that brain tissue in RRMS patients deviates significantly in its metabolic profile from that of healthy controls, even though it appears normal by standard MRI techniques. We also identify, using statistical means, the metabolic signatures of certain clinical features common in RRMS, such as disability score, cognitive impairments, and response to stress. This approach to human in vivo MRS data should promote understanding of the specific metabolic changes accompanying disease pathogenesis, and could provide biomarkers of disease progression that would be useful in clinical trials. PMID:23751863

  18. NMR-based approach to the analysis of radiopharmaceuticals: radiochemical purity, specific activity, and radioactive concentration values by proton and tritium NMR spectroscopy.

    Science.gov (United States)

    Schenk, David J; Dormer, Peter G; Hesk, David; Pollack, Scott R; Lavey, Carolee Flader

    2015-06-15

    Compounds containing tritium are widely used across the drug discovery and development landscape. These materials are widely utilized because they can be efficiently synthesized and produced at high specific activity. Results from internally calibrated (3)H and (1)H nuclear magnetic resonance (NMR) spectroscopy suggests that at least in some cases, this calibrated approach could supplement or potentially replace radio-high-performance liquid chromatography for radiochemical purity, dilution and scintillation counting for the measurement of radioactivity per volume, and liquid chromatography/mass spectrometry analysis for the determination of specific activity. In summary, the NMR-derived values agreed with those from the standard approaches to within 1% to 9% for solution count and specific activity. Additionally, the NMR-derived values for radiochemical purity deviated by less than 5%. A benefit of this method is that these values may be calculated at the same time that (3)H NMR analysis provides the location and distribution of tritium atoms within the molecule. Presented and discussed here is the application of this method, advantages and disadvantages of the approach, and a rationale for utilizing internally calibrated (1)H and (3)H NMR spectroscopy for specific activity, radioactive concentration, and radiochemical purity whenever acquiring (3)H NMR for tritium location. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Untargeted metabolomics: an emerging approach to determine the composition of herbal products

    Directory of Open Access Journals (Sweden)

    Flavia Guzzo

    2013-01-01

    Full Text Available Natural remedies, such as those based on traditional Chinese medicines, have become more popular also in western countries over the last 10 years. The composition of these herbal products is largely unknown and difficult to determine. Moreover, since plants respond to their environment changing the metabolome, the composition of plant material can vary depending on the plant growth conditions.However, there is a growing need of a deeper knowledge on such natural remedies also in view of the growing number of reports of toxicity following the consumption of herbal supplements. Untargeted metabolomics is a useful approach for the simultaneous analysis of many compounds in herbal products. In particular, liquid chromatography/mass spectrometry (LC-MS can determine presence, amount and sometime structures of plant metabolites in complex herbal mixtures, with significant advantages over techniques such as nuclear magnetic resonance (NMR spectroscopy and gas chromatography/mass spectrometry (GC-MS.

  20. An Ultrahigh-Performance Liquid Chromatography-Time-of-Flight Mass Spectrometry Metabolomic Approach to Studying the Impact of Moderate Red-Wine Consumption on Urinary Metabolome.

    Science.gov (United States)

    Esteban-Fernández, Adelaida; Ibañez, Clara; Simó, Carolina; Bartolomé, Begoña; Moreno-Arribas, M Victoria

    2018-04-06

    Moderate red-wine consumption has been widely described to exert several benefits in human health. This is mainly due to its unique content of bioactive polyphenols, which suffer several modifications along their pass through the digestive system, including microbial transformation in the colon and phase-II metabolism, until they are finally excreted in urine and feces. To determine the impact of moderate wine consumption in the overall urinary metabolome of healthy volunteers ( n = 41), samples from a red-wine interventional study (250 mL/day, 28 days) were investigated. Urine (24 h) was collected before and after intervention and analyzed by an untargeted ultrahigh-performance liquid chromatography-time-of-flight mass spectrometry metabolomics approach. 94 compounds linked to wine consumption, including specific wine components (tartaric acid), microbial-derived phenolic metabolites (5-(dihydroxyphenyl)-γ-valerolactones and 4-hydroxyl-5-(phenyl)-valeric acids), and endogenous compounds were identified. Also, some relationships between parallel fecal and urinary metabolomes are discussed.

  1. Metabolomics diagnostic approach to mustard airway diseases: a preliminary study

    Directory of Open Access Journals (Sweden)

    BiBi Fatemeh Nobakht Mothlagh Ghoochani

    2018-01-01

    Full Text Available Objective(s: This study aims to evaluate combined proton nuclear magnetic resonance (1H NMR spectroscopy and gas chromatography-mass spectrometry (GC-MS metabolic profiling approaches, for discriminating between mustard airway diseases (MADs and healthy controls and for providing biochemical information on this disease. Materials and Methods: In the present study, analysis of serum samples collected from 17 MAD subjects and 12 healthy controls was performed using NMR. Of these subjects, 14 (8 patients and 6 controls were analyzed by GC-MS. Then, their spectral profiles were subjected to principal component analysis (PCA and orthogonal partial least squares regression discriminant analysis (OPLS-DA. Results: A panel of twenty eight metabolite biomarkers was generated for MADs, sixteen  NMR-derived metabolites (3-methyl-2-oxovaleric acid, 3-hydroxyisobutyrate, lactic acid, lysine, glutamic acid, proline, hydroxyproline, dimethylamine, creatine, citrulline, choline, acetic acid, acetoacetate, cholesterol, alanine, and lipid (mainly VLDL and twelve GC-MS-derived metabolites (threonine, phenylalanine, citric acid, myristic acid, pentadecanoic acid, tyrosine, arachidonic acid, lactic acid, propionic acid, 3-hydroxybutyric acid, linoleic acid, and oleic acid. This composite biomarker panel could effectively discriminate MAD subjects from healthy controls, achieving an area under receiver operating characteristic curve (AUC values of 1 and 0.79 for NMR and GC-MS, respectively. Conclusion: In the present study, a robust panel of twenty-eight biomarkers for detecting MADs was established. This panel is involved in three metabolic pathways including aminoacyl-tRNA biosynthesis, arginine, and proline metabolism, and synthesis and degradation of ketone bodies, and could differentiate MAD subjects from healthy controls with a higher accuracy.

  2. Metabolomics as a novel approach for early diagnosis of pediatric septic shock and its mortality.

    Science.gov (United States)

    Mickiewicz, Beata; Vogel, Hans J; Wong, Hector R; Winston, Brent W

    2013-05-01

    Septic shock is a significant cause of morbidity and mortality in the pediatric population. Early recognition of septic shock and appropriate treatment increase survival rate; thus, developing new diagnostic tools may improve patients' outcomes. To determine whether a metabolomics approach could be useful in the diagnosis and prognosis of septic shock in pediatric intensive care unit (PICUs). Serum samples were collected from 60 patients with septic shock, 40 PICU patients with systemic inflammatory response syndrome (not suspected of having an infection), and 40 healthy children. Proton nuclear magnetic resonance spectroscopy spectra were analyzed and quantified using targeted profiling methodology. Multivariate statistical analysis was applied to detect specific patterns in metabolic profiles and to highlight differences between patient samples. Supervised analysis afforded good predictive models and managed to separate patient populations. Some of the metabolite concentrations identified in serum samples changed markedly, indicating their influence on the separation between patient groups. These metabolites represent a composite biopattern of the pediatric metabolic response to septic shock and might be considered as the basis for a biomarker panel for the diagnosis of septic shock and its mortality in PICU. Our results indicate that nuclear magnetic resonance metabolite profiling might serve as a promising approach for the diagnosis and prediction of mortality in septic shock in a pediatric population and that quantitative metabolomics methods can be applied in the clinical evaluations of pediatric septic shock.

  3. Application of NMR-based techniques in aquatic toxicology: brief examples.

    Science.gov (United States)

    Tjeerdema, Ronald S

    2008-01-01

    Nuclear magnetic resonance spectroscopy (NMR) has been employed over many years for the elucidation of chemical structures. However, in more recent years it has been used to characterize sublethal actions of pollutants in aquatic organisms. For instance, in vivo NMR involves live, intact organisms or cell cultures and the application of chemical stressors to reveal toxic mechanisms in real time. Alternatively, NMR-based metabolomics involves rapid cessation of metabolic activity following chemical exposure (via liquid N(2)) to provide an assessment of metabolic actions via more traditional NMR analysis. Two examples are briefly presented to exemplify the power of NMR for assessing toxic actions in marine and freshwater organisms.

  4. Metabolomic Studies in Drosophila.

    Science.gov (United States)

    Cox, James E; Thummel, Carl S; Tennessen, Jason M

    2017-07-01

    Metabolomic analysis provides a powerful new tool for studies of Drosophila physiology. This approach allows investigators to detect thousands of chemical compounds in a single sample, representing the combined contributions of gene expression, enzyme activity, and environmental context. Metabolomics has been used for a wide range of studies in Drosophila , often providing new insights into gene function and metabolic state that could not be obtained using any other approach. In this review, we survey the uses of metabolomic analysis since its entry into the field. We also cover the major methods used for metabolomic studies in Drosophila and highlight new directions for future research. Copyright © 2017 by the Genetics Society of America.

  5. {sup 1}H NMR-based spectroscopy detects metabolic alterations in serum of patients with early-stage ulcerative colitis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying; Lin, Lianjie [Second Department of Gastroenterology, Shengjing Hospital, China Medical University, Shenyang 110004 (China); Xu, Yanbin [Wanlei Life Sciences (Shenyang) Co., Ltd., Shenyang 110179 (China); Lin, Yan; Jin, Yu [Second Department of Gastroenterology, Shengjing Hospital, China Medical University, Shenyang 110004 (China); Zheng, Changqing, E-mail: changqing_zheng@126.com [Second Department of Gastroenterology, Shengjing Hospital, China Medical University, Shenyang 110004 (China)

    2013-04-19

    Highlights: •Twenty ulcerative colitis patients and nineteen healthy controls were enrolled. •Increased 3-hydroxybutyrate, glucose, phenylalanine, and decreased lipid were found. •We report early stage diagnosis of ulcerative colitis using NMR-based metabolomics. -- Abstract: Ulcerative colitis (UC) has seriously impaired the health of citizens. Accurate diagnosis of UC at an early stage is crucial to improve the efficiency of treatment and prognosis. In this study, proton nuclear magnetic resonance ({sup 1}H NMR)-based metabolomic analysis was performed on serum samples collected from active UC patients (n = 20) and healthy controls (n = 19), respectively. The obtained spectral profiles were subjected to multivariate data analysis. Our results showed that consistent metabolic alterations were present between the two groups. Compared to healthy controls, UC patients displayed increased 3-hydroxybutyrate, β-glucose, α-glucose, and phenylalanine, but decreased lipid in serum. These findings highlight the possibilities of NMR-based metabolomics as a non-invasive diagnostic tool for UC.

  6. A Metabolomics Approach to Stratify Patients Diagnosed with Diabetes Mellitus into Excess or Deficiency Syndromes

    Directory of Open Access Journals (Sweden)

    Tao Wu

    2015-01-01

    Full Text Available The prevalence of type 2 diabetes continuously increases globally. The traditional Chinese medicine (TCM can stratify the diabetic patients based on their different TCM syndromes and, thus, allow a personalized treatment. Metabolomics is able to provide metabolite biomarkers for disease subtypes. In this study, we applied a metabolomics approach using an ultraperformance liquid chromatography (UPLC coupled with quadruple-time-of-flight (QTOF mass spectrometry system to characterize the metabolic alterations of different TCM syndromes including excess and deficiency in patients diagnosed with diabetes mellitus (DM. We obtained a snapshot of the distinct metabolic changes of DM patients with different TCM syndromes. DM patients with excess syndrome have higher serum 2-indolecarboxylic acid, hypotaurine, pipecolic acid, and progesterone in comparison to those patients with deficiency syndrome. The excess patients have more oxidative stress as demonstrated by unique metabolite signatures than the deficiency subjects. The results provide an improved understanding of the systemic alteration of metabolites in different syndromes of DM. The identified serum metabolites may be of clinical relevance for subtyping of diabetic patients, leading to a personalized DM treatment.

  7. A Metabolomic Approach to Target Compounds from the Asteraceae Family for Dual COX and LOX Inhibition

    Directory of Open Access Journals (Sweden)

    Daniela A. Chagas-Paula

    2015-07-01

    Full Text Available The application of metabolomics in phytochemical analysis is an innovative strategy for targeting active compounds from a complex plant extract. Species of the Asteraceae family are well-known to exhibit potent anti-inflammatory (AI activity. Dual inhibition of the enzymes COX-1 and 5-LOX is essential for the treatment of several inflammatory diseases, but there is not much investigation reported in the literature for natural products. In this study, 57 leaf extracts (EtOH-H2O 7:3, v/v from different genera and species of the Asteraceae family were tested against COX-1 and 5-LOX while HPLC-ESI-HRMS analysis of the extracts indicated high diversity in their chemical compositions. Using O2PLS-DA (R2 > 0.92; VIP > 1 and positive Y-correlation values, dual inhibition potential of low-abundance metabolites was determined. The O2PLS-DA results exhibited good validation values (cross-validation = Q2 > 0.7 and external validation = P2 > 0.6 with 0% of false positive predictions. The metabolomic approach determined biomarkers for the required biological activity and detected active compounds in the extracts displaying unique mechanisms of action. In addition, the PCA data also gave insights on the chemotaxonomy of the family Asteraceae across its diverse range of genera and tribes.

  8. 1H NMR-based urinary metabolic profiling reveals changes in nicotinamide pathway intermediates due to postnatal stress model in rat.

    Science.gov (United States)

    Tomassini, Alberta; Vitalone, Annabella; Marini, Federico; Praticò, Giulia; Sciubba, Fabio; Bevilacqua, Marta; Delfini, Maurizio; Di Sotto, Antonella; Di Giacomo, Silvia; Mariani, Paola; Mammola, Caterina L; Gaudio, Eugenio; Miccheli, Alfredo; Mazzanti, Gabriela

    2014-12-05

    The maternal separation protocol in rodents is a widely recognized model of early life stress allowing acute and chronic physiological consequences to be studied. An (1)H NMR-based metabolomic approach was applied to urines to evaluate the systemic metabolic consequences of maternal separation stress in female rats after the beginning of weaning and 4 weeks later when the rats were reaching adulthood. Furthermore, because maternal separation is considered as a model mimicking the inflammatory bowel syndrome, the lactulose/mannitol test was used to evaluate the influence of postnatal maternal separation on gut permeability and mucosal barrier function by (1)H NMR spectroscopy analysis of urine. The results showed no statistical differences in gut permeability due to maternal separation. The application of ANOVA simultaneous component analysis allowed the contributions of physiological adaptations to the animal's development to be separated from the metabolic consequences due to postnatal stress. Systemic metabolic differences in the maternally separated pups were mainly due to the tryptophan/NAD pathway intermediate levels and to the methyladenosine level. Urinary NMR-based metabolic profiling allowed us to disentangle the metabolic adaptive response of the rats to postnatal stress during the animal's growth, highlighting the metabolic changes induced by weaning, gut closure, and maturity.

  9. Metabolomics based predictive biomarker model of ARDS: A systemic measure of clinical hypoxemia.

    Directory of Open Access Journals (Sweden)

    Neeraj Sinha

    Full Text Available Despite advancements in ventilator technologies, lung supportive and rescue therapies, the outcome and prognostication in acute respiratory distress syndrome (ARDS remains incremental and ambiguous. Metabolomics is a potential insightful measure to the diagnostic approaches practiced in critical disease settings. In our study patients diagnosed with mild and moderate/severe ARDS clinically governed by hypoxemic P/F ratio between 100-300 but with indistinct molecular phenotype were discriminated employing nuclear magnetic resonance (NMR based metabolomics of mini bronchoalveolar lavage fluid (mBALF. Resulting biomarker prototype comprising six metabolites was substantiated highlighting ARDS susceptibility/recovery. Both the groups (mild and moderate/severe ARDS showed distinct biochemical profile based on 83.3% classification by discriminant function analysis and cross validated accuracy of 91% using partial least squares discriminant analysis as major classifier. The predictive performance of narrowed down six metabolites were found analogous with chemometrics. The proposed biomarker model consisting of six metabolites proline, lysine/arginine, taurine, threonine and glutamate were found characteristic of ARDS sub-stages with aberrant metabolism observed mainly in arginine, proline metabolism, lysine synthesis and so forth correlating to diseased metabotype. Thus NMR based metabolomics has provided new insight into ARDS sub-stages and conclusively a precise biomarker model proposed, reflecting underlying metabolic dysfunction aiding prior clinical decision making.

  10. Strategy for nuclear-magnetic-resonance-based metabolomics of human feces

    DEFF Research Database (Denmark)

    Lamichhane, Santosh; Yde, Christian Clement; Schmedes, Mette Søndergaard

    2015-01-01

    of fresh feces by NMR-based metabolomics. The evaluation of extraction solvents showed that buffer extraction is a suitable approach to extract metabolic information in feces. So, the effects of weight-to-buffer (Wf:Vb) combinations and the effect of sonication and freeze-thaw cycles on the reproducibility......, chemical shift variability, and signal to noise ratio (SNR) of the 1H NMR spectra were evaluated. Based on our results, we suggest that fresh fecal extraction with a Wf:Vb ratio of 1:2 may be the optimum choice to determine the overall metabolite composition of feces. In fact, more than 60 metabolites have...

  11. Expanded metabolomics approach to profiling endogenous carbohydrates in the serum of ovarian cancer patients.

    Science.gov (United States)

    Cheng, Yu; Li, Li; Zhu, Bangjie; Liu, Feng; Wang, Yan; Gu, Xue; Yan, Chao

    2016-01-01

    We applied hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry to the quantitative analysis of serum from 58 women, including ovarian cancer patients, ovarian benign tumor patients, and healthy controls. All of these ovarian cancer and ovarian benign tumor patients have elevated cancer antigen 125, which makes them clinically difficult to differentiate the malignant from the benign. All of the 16 endogenous carbohydrates were quantitatively detected in the human sera, of which, eight endogenous carbohydrates were significantly different (P-value carbohydrates in the expanded metabolomics approach after the global metabolic profiling are characterized and are potential biomarkers for the early diagnosis of ovarian cancer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. (1)H NMR metabolomics to study the effects of diazepam on anisatin induced convulsive seizures.

    Science.gov (United States)

    Li, Pei; Wei, Dan-Dan; Wang, Jun-Song; Yang, Ming-Hua; Kong, Ling-Yi

    2016-01-05

    The anticonvulsive properties of diazepam have been extensively studied, mainly focusing on the γ-amino butyrate (GABA) system. The aim of this investigation was to integrally analyze the metabolic events related to neuroprotection of diazepam on anisatin-induced convulsive seizures by a NMR-based metabolomic approach combined with histopathological examination and behavior examination. Multivariate analysis on metabolic profiles of the piriform cortex and cerebellum of mice revealed that diazepam could relieve mice suffering from the convulsive seizures by recovering destructed neurotransmitter and neuromodulator metabolism, ameliorating oxidative stress, alleviating the disturbance in energy, amino acid and nucleic acid metabolism in anisatin intoxicated mice. This integrated metabolomics study provided a powerful and highly effective approach to elucidate therapeutic effects and assessed the safety of diazepam. This study should be helpful for our understanding of convulsive seizures, and provide a holistic view of the treatment effects of benzodiazepine on convulsive seizures. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Nutritional Metabolomics

    DEFF Research Database (Denmark)

    Gürdeniz, Gözde

    Metabolomics provides a holistic approach to investigate the perturbations in human metabolism with respect to a specific exposure. In nutritional metabolomics, the research question is generally related to the effect of a specific food intake on metabolic profiles commonly of plasma or urine...... strategy influences the patterns identified as important for the nutritional question under study. Therefore, in depth understanding of the study design and the specific effects of the analytical technology on the produced data is extremely important to achieve high quality data handling. Besides data...... handling, this thesis also deals with biological interpretation of postprandial metabolism and trans fatty acid (TFA) intake. Two nutritional issues were objects of investigation: 1) metabolic states as a function of time since the last meal and 2) markers related to intakes of cis- and trans-fat. Plasma...

  14. Serum Metabolomics of Burkitt Lymphoma Mouse Models.

    Directory of Open Access Journals (Sweden)

    Fengmin Yang

    Full Text Available Burkitt lymphoma (BL is a rare and highly aggressive type of non-Hodgkin lymphoma. The mortality rate of BL patients is very high due to the rapid growth rate and frequent systemic spread of the disease. A better understanding of the pathogenesis, more sensitive diagnostic tools and effective treatment methods for BL are essential. Metabolomics, an important aspect of systems biology, allows the comprehensive analysis of global, dynamic and endogenous biological metabolites based on their nuclear magnetic resonance (NMR and mass spectrometry (MS. It has already been used to investigate the pathogenesis and discover new biomarkers for disease diagnosis and prognosis. In this study, we analyzed differences of serum metabolites in BL mice and normal mice by NMR-based metabolomics. We found that metabolites associated with energy metabolism, amino acid metabolism, fatty acid metabolism and choline phospholipid metabolism were altered in BL mice. The diagnostic potential of the metabolite differences was investigated in this study. Glutamate, glycerol and choline had a high diagnostic accuracy; in contrast, isoleucine, leucine, pyruvate, lysine, α-ketoglutarate, betaine, glycine, creatine, serine, lactate, tyrosine, phenylalanine, histidine and formate enabled the accurate differentiation of BL mice from normal mice. The discovery of abnormal metabolism and relevant differential metabolites may provide useful clues for developing novel, noninvasive approaches for the diagnosis and prognosis of BL based on these potential biomarkers.

  15. Investigation of Liver Injury of Polygonum multiflorum Thunb. in Rats by Metabolomics and Traditional Approaches

    Science.gov (United States)

    Li, Yun-Xia; Gong, Xiao-Hong; Liu, Mei-Chen; Peng, Cheng; Li, Peng; Wang, Yi-Tao

    2017-01-01

    Liver injury induced by Polygonum multiflorum Thunb. (PM) have been reported since 2006, which aroused widespread concern. However, the toxicity mechanism of PM liver injury remained unclear. In this study, the mechanism of liver injury induced by different doses of PM after long-term administration was investigated in rats by metabolomics and traditional approaches. Rats were randomly divided into control group and PM groups. PM groups were oral administered PM of low (10 g/kg), medium (20 g/kg), high (40 g/kg) dose, while control group was administered distilled water. After 28 days of continuous administration, the serum biochemical indexes in the control and three PM groups were measured and the liver histopathology were analyzed. Also, UPLC-Q-TOF-MS with untargeted metabolomics was performed to identify the possible metabolites and pathway of liver injury caused by PM. Compared with the control group, the serum levels of ALT, AST, ALP, TG, and TBA in middle and high dose PM groups were significantly increased. And the serum contents of T-Bil, D-Bil, TC, TP were significantly decreased. However, there was no significant difference between the low dose group of PM and the control group except serum AST, TG, T-Bil, and D-Bil. Nine biomarkers were identified based on biomarkers analysis. And the pathway analysis indicated that fat metabolism, amino acid metabolism and bile acid metabolism were involved in PM liver injury. Based on the biomarker pathway analysis, PM changed the lipid metabolism, amino acid metabolism and bile acid metabolism and excretion in a dose-dependent manner which was related to the mechanism of liver injury. PMID:29163173

  16. Investigation of Liver Injury of Polygonum multiflorum Thunb. in Rats by Metabolomics and Traditional Approaches

    Directory of Open Access Journals (Sweden)

    Yun-Xia Li

    2017-11-01

    Full Text Available Liver injury induced by Polygonum multiflorum Thunb. (PM have been reported since 2006, which aroused widespread concern. However, the toxicity mechanism of PM liver injury remained unclear. In this study, the mechanism of liver injury induced by different doses of PM after long-term administration was investigated in rats by metabolomics and traditional approaches. Rats were randomly divided into control group and PM groups. PM groups were oral administered PM of low (10 g/kg, medium (20 g/kg, high (40 g/kg dose, while control group was administered distilled water. After 28 days of continuous administration, the serum biochemical indexes in the control and three PM groups were measured and the liver histopathology were analyzed. Also, UPLC-Q-TOF-MS with untargeted metabolomics was performed to identify the possible metabolites and pathway of liver injury caused by PM. Compared with the control group, the serum levels of ALT, AST, ALP, TG, and TBA in middle and high dose PM groups were significantly increased. And the serum contents of T-Bil, D-Bil, TC, TP were significantly decreased. However, there was no significant difference between the low dose group of PM and the control group except serum AST, TG, T-Bil, and D-Bil. Nine biomarkers were identified based on biomarkers analysis. And the pathway analysis indicated that fat metabolism, amino acid metabolism and bile acid metabolism were involved in PM liver injury. Based on the biomarker pathway analysis, PM changed the lipid metabolism, amino acid metabolism and bile acid metabolism and excretion in a dose-dependent manner which was related to the mechanism of liver injury.

  17. 1H NMR-Based Metabolic Profiling Reveals the Effects of Fluoxetine on Lipid and Amino Acid Metabolism in Astrocytes

    Directory of Open Access Journals (Sweden)

    Shunjie Bai

    2015-04-01

    Full Text Available Fluoxetine, a selective serotonin reuptake inhibitor (SSRI, is a prescribed and effective antidepressant and generally used for the treatment of depression. Previous studies have revealed that the antidepressant mechanism of fluoxetine was related to astrocytes. However, the therapeutic mechanism underlying its mode of action in astrocytes remains largely unclear. In this study, primary astrocytes were exposed to 10 µM fluoxetine; 24 h post-treatment, a high-resolution proton nuclear magnetic resonance (1H NMR-based metabolomic approach coupled with multivariate statistical analysis was used to characterize the metabolic variations of intracellular metabolites. The orthogonal partial least-squares discriminant analysis (OPLS-DA score plots of the spectra demonstrated that the fluoxetine-treated astrocytes were significantly distinguished from the untreated controls. In total, 17 differential metabolites were identified to discriminate the two groups. These key metabolites were mainly involved in lipids, lipid metabolism-related molecules and amino acids. This is the first study to indicate that fluoxetine may exert antidepressant action by regulating the astrocyte’s lipid and amino acid metabolism. These findings should aid our understanding of the biological mechanisms underlying fluoxetine therapy.

  18. A Novel Approach for Nontargeted Data Analysis for Metabolomics. Large-Scale Profiling of Tomato Fruit Volatiles1[w

    Science.gov (United States)

    Tikunov, Yury; Lommen, Arjen; de Vos, C.H. Ric; Verhoeven, Harrie A.; Bino, Raoul J.; Hall, Robert D.; Bovy, Arnaud G.

    2005-01-01

    To take full advantage of the power of functional genomics technologies and in particular those for metabolomics, both the analytical approach and the strategy chosen for data analysis need to be as unbiased and comprehensive as possible. Existing approaches to analyze metabolomic data still do not allow a fast and unbiased comparative analysis of the metabolic composition of the hundreds of genotypes that are often the target of modern investigations. We have now developed a novel strategy to analyze such metabolomic data. This approach consists of (1) full mass spectral alignment of gas chromatography (GC)-mass spectrometry (MS) metabolic profiles using the MetAlign software package, (2) followed by multivariate comparative analysis of metabolic phenotypes at the level of individual molecular fragments, and (3) multivariate mass spectral reconstruction, a method allowing metabolite discrimination, recognition, and identification. This approach has allowed a fast and unbiased comparative multivariate analysis of the volatile metabolite composition of ripe fruits of 94 tomato (Lycopersicon esculentum Mill.) genotypes, based on intensity patterns of >20,000 individual molecular fragments throughout 198 GC-MS datasets. Variation in metabolite composition, both between- and within-fruit types, was found and the discriminative metabolites were revealed. In the entire genotype set, a total of 322 different compounds could be distinguished using multivariate mass spectral reconstruction. A hierarchical cluster analysis of these metabolites resulted in clustering of structurally related metabolites derived from the same biochemical precursors. The approach chosen will further enhance the comprehensiveness of GC-MS-based metabolomics approaches and will therefore prove a useful addition to nontargeted functional genomics research. PMID:16286451

  19. Mapping the variation of the carrot metabolome using 1H NMR spectroscopy and consensus PCA.

    Science.gov (United States)

    Clausen, Morten Rahr; Edelenbos, Merete; Bertram, Hanne Christine

    2014-05-14

    Genetic variation is the most influential factor for carrot (Daucus carota L.) composition. However, difference in metabolite content between carrot varieties has not been described by NMR, although primary metabolites are important for human health and sensory properties. The aim of the present study was to investigate the effect of genotype on carrot metabolite composition using a (1)H NMR-based metabolomics approach. After extraction using aqueous and organic solvents, 25 hydrophilic metabolites, β-carotene, sterols, triacylglycerols, and phospholipids were detected. Multiblock PCA showed that three principal components could be identified for classification of the five carrot varieties using different spectroscopic regions and the results of the two solvent extraction methods as blocks. The varieties were characterized by differences in carbohydrate, amino acid, nucleotide, fatty acid, sterol, and β-carotene contents. (1)H NMR spectroscopy coupled with multiblock data analysis was an efficient and useful tool to map the carrot metabolome and identify genetic differences between varieties.

  20. Metabolomics in critical care medicine: a new approach to biomarker discovery.

    Science.gov (United States)

    Banoei, Mohammad M; Donnelly, Sarah J; Mickiewicz, Beata; Weljie, Aalim; Vogel, Hans J; Winston, Brent W

    2014-12-01

    To present an overview and comparison of the main metabolomics techniques (1H NMR, GC-MS, and LC-MS) and their current and potential use in critical care medicine. This is a focused review, not a systematic review, using the PubMed database as the predominant source of references to compare metabolomics techniques. 1H NMR, GC-MS, and LC-MS are complementary techniques that can be used on a variety of biofluids for metabolomics analysis of patients in the Intensive Care Unit (ICU). These techniques have been successfully used for diagnosis and prognosis in the ICU and other clinical settings; for example, in patients with septic shock and community-acquired pneumonia. Metabolomics is a powerful tool that has strong potential to impact diagnosis and prognosis and to examine responses to treatment in critical care medicine through diagnostic and prognostic biomarker and biopattern identification.

  1. Metabolomic unveiling of a diverse range of green tea (Camellia sinensis) metabolites dependent on geography.

    Science.gov (United States)

    Lee, Jang-Eun; Lee, Bum-Jin; Chung, Jin-Oh; Kim, Hak-Nam; Kim, Eun-Hee; Jung, Sungheuk; Lee, Hyosang; Lee, Sang-Jun; Hong, Young-Shick

    2015-05-01

    Numerous factors such as geographical origin, cultivar, climate, cultural practices, and manufacturing processes influence the chemical compositions of tea, in the same way as growing conditions and grape variety affect wine quality. However, the relationships between these factors and tea chemical compositions are not well understood. In this study, a new approach for non-targeted or global analysis, i.e., metabolomics, which is highly reproducible and statistically effective in analysing a diverse range of compounds, was used to better understand the metabolome of Camellia sinensis and determine the influence of environmental factors, including geography, climate, and cultural practices, on tea-making. We found a strong correlation between environmental factors and the metabolome of green, white, and oolong teas from China, Japan, and South Korea. In particular, multivariate statistical analysis revealed strong inter-country and inter-city relationships in the levels of theanine and catechin derivatives found in green and white teas. This information might be useful for assessing tea quality or producing distinct tea products across different locations, and highlights simultaneous identification of diverse tea metabolites through an NMR-based metabolomics approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. A GC/MS-based metabolomic approach for reliable diagnosis of phenylketonuria.

    Science.gov (United States)

    Xiong, Xiyue; Sheng, Xiaoqi; Liu, Dan; Zeng, Ting; Peng, Ying; Wang, Yichao

    2015-11-01

    Although the phenylalanine/tyrosine ratio in blood has been the gold standard for diagnosis of phenylketonuria (PKU), the disadvantages of invasive sample collection and false positive error limited the application of this discriminator in the diagnosis of PKU to some extent. The aim of this study was to develop a new standard with high sensitivity and specificity in a less invasive manner for diagnosing PKU. In this study, an improved oximation-silylation method together with GC/MS was utilized to obtain the urinary metabolomic information in 47 PKU patients compared with 47 non-PKU controls. Compared with conventional oximation-silylation methods, the present approach possesses the advantages of shorter reaction time and higher reaction efficiency at a considerably lower temperature, which is beneficial to the derivatization of some thermally unstable compounds, such as phenylpyruvic acid. Ninety-seven peaks in the chromatograms were identified as endogenous metabolites by the National Institute of Standards and Technology (NIST) mass spectra library, including amino acids, organic acids, carbohydrates, amides, and fatty acids. After normalization of data using creatinine as internal standard, 19 differentially expressed compounds with p values of <0.05 were selected by independent-sample t test for the separation of the PKU group and the control group. A principal component analysis (PCA) model constructed by these differentially expressed compounds showed that the PKU group can be discriminated from the control group. Receiver-operating characteristic (ROC) analysis with area under the curve (AUC), specificity, and sensitivity of each PKU marker obtained from these differentially expressed compounds was used to evaluate the possibility of using these markers for diagnosing PKU. The largest value of AUC (0.987) with high specificity (0.936) and sensitivity (1.000) was obtained by the ROC curve of phenylacetic acid at its cutoff value (17.244 mmol/mol creatinine

  3. Evaluation of 2,4-dichlorophenol exposure of Japanese medaka, Oryzias latipes, using a metabolomics approach.

    Science.gov (United States)

    Kokushi, Emiko; Shintoyo, Aoi; Koyama, Jiro; Uno, Seiichi

    2017-12-01

    In this study, the metabolic effects of waterborne exposure of medaka (Oryzias latipes) to nominal concentrations of 20 (L group) and 2000 μg/L (H group) 2,4-dichlorophenol (DCP) were examined using a gas chromatography/mass spectroscopy (GC/MS) metabolomics approach. A principal component analysis (PCA) separated the L, H, and control groups along PC1 to explain the toxic effects of DCP at 24 h of exposure. Furthermore, the L and H groups were separated along PC1 at 96 h on the PCA score plots. These results suggest that the effects of DCP depended on exposure concentration and time. Changes in tricarboxylic cycle metabolites suggested that fish exposed to 2,4-DCP require more energy to metabolize and eliminate DCP, particularly at 96 h of exposure. A time-dependent response in the fish exposed to DCP was observed in the GC/MS data, suggesting that the higher DCP concentration had greater effects at 24 h than those observed in response to the lower concentration. In addition, several essential amino acids (arginine, histidine, lysine, isoleucine, leucine, methionine, phenylalanine, threonine, tryptophan, and valine) decreased after DCP exposure in the H group, and starvation condition and high concentration exposure of DCP could consume excess energy from amino acids.

  4. Metabolomics approach for analyzing the effects of exercise in subjects with type 1 diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Laura Brugnara

    Full Text Available The beneficial effects of exercise in patients with type 1 diabetes (T1D are not fully proven, given that it may occasionally induce acute metabolic disturbances. Indeed, the metabolic disturbances associated with sustained exercise may lead to worsening control unless great care is taken to adjust carbohydrate intake and insulin dosage. In this work, pre- and post-exercise metabolites were analyzed using a (1H-NMR and GC-MS untargeted metabolomics approach assayed in serum. We studied ten men with T1D and eleven controls matched for age, body mass index, body fat composition, and cardiorespiratory capacity, participated in the study. The participants performed 30 minutes of exercise on a cycle-ergometer at 80% VO(2max. In response to exercise, both groups had increased concentrations of gluconeogenic precursors (alanine and lactate and tricarboxylic acid cycle intermediates (citrate, malate, fumarate and succinate. The T1D group, however, showed attenuation in the response of these metabolites to exercise. Conversely to T1D, the control group also presented increases in α-ketoglutarate, alpha-ketoisocaproic acid, and lipolysis products (glycerol and oleic and linoleic acids, as well as a reduction in branched chain amino acids (valine and leucine determinations. The T1D patients presented a blunted metabolic response to acute exercise as compared to controls. This attenuated response may interfere in the healthy performance or fitness of T1D patients, something that further studies should elucidate.

  5. A metabolomics approach to identify factors influencing glucosinolate thermal degradation rates in Brassica vegetables.

    Science.gov (United States)

    Hennig, K; de Vos, R C H; Maliepaard, C; Dekker, M; Verkerk, R; Bonnema, G

    2014-07-15

    Thermal processing of Brassica vegetables can lead to substantial loss of potential health-promoting glucosinolates (GLs). The extent of thermal degradation of a specific GL varies in different vegetables, possibly due to differences in the composition of other metabolites within the plant matrices. An untargeted metabolomics approach followed by random forest regression was applied to identify metabolites associated to thermal GL degradation in a segregating Brassica oleracea population. Out of 413 metabolites, 15 were associated with the degradation of glucobrassicin, six with that of glucoraphanin and two with both GLs. Among these 23 metabolites three were identified as flavonols (one kaempferol- and two quercetin-derivatives) and two as other GLs (4-methoxyglucobrassicin, gluconasturtiin). Twenty quantitative trait loci (QTLs) for these metabolites, which were associated with glucoraphanin and glucobrassicin degradation, were identified on linkage groups C01, C07 and C09. Two flavonols mapped on linkage groups C07 and C09 and co-localise with the QTL for GL degradation determined previously. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Targeted Metabolomics Approach To Detect the Misuse of Steroidal Aromatase Inhibitors in Equine Sports by Biomarker Profiling.

    Science.gov (United States)

    Chan, George Ho Man; Ho, Emmie Ngai Man; Leung, David Kwan Kon; Wong, Kin Sing; Wan, Terence See Ming

    2016-01-05

    The use of anabolic androgenic steroids (AAS) is prohibited in both human and equine sports. The conventional approach in doping control testing for AAS (as well as other prohibited substances) is accomplished by the direct detection of target AAS or their characteristic metabolites in biological samples using hyphenated techniques such as gas chromatography or liquid chromatography coupled with mass spectrometry. Such an approach, however, falls short when dealing with unknown designer steroids where reference materials and their pharmacokinetics are not available. In addition, AASs with fast elimination times render the direct detection approach ineffective as the detection window is short. A targeted metabolomics approach is a plausible alternative to the conventional direct detection approach for controlling the misuse of AAS in sports. Because the administration of AAS of the same class may trigger similar physiological responses or effects in the body, it may be possible to detect such administrations by monitoring changes in the endogenous steroidal expression profile. This study attempts to evaluate the viability of using the targeted metabolomics approach to detect the administration of steroidal aromatase inhibitors, namely androst-4-ene-3,6,17-trione (6-OXO) and androsta-1,4,6-triene-3,17-dione (ATD), in horses. Total (free and conjugated) urinary concentrations of 31 endogenous steroids were determined by gas chromatography-tandem mass spectrometry for a group of 2 resting and 2 in-training thoroughbred geldings treated with either 6-OXO or ATD. Similar data were also obtained from a control (untreated) group of in-training thoroughbred geldings (n = 28). Statistical processing and chemometric procedures using principle component analysis and orthogonal projection to latent structures-discriminant analysis (OPLS-DA) have highlighted 7 potential biomarkers that could be used to differentiate urine samples obtained from the control and the treated groups

  7. Metabolomics in chemical ecology.

    Science.gov (United States)

    Kuhlisch, Constanze; Pohnert, Georg

    2015-07-01

    Chemical ecology elucidates the nature and role of natural products as mediators of organismal interactions. The emerging techniques that can be summarized under the concept of metabolomics provide new opportunities to study such environmentally relevant signaling molecules. Especially comparative tools in metabolomics enable the identification of compounds that are regulated during interaction situations and that might play a role as e.g. pheromones, allelochemicals or in induced and activated defenses. This approach helps overcoming limitations of traditional bioassay-guided structure elucidation approaches. But the power of metabolomics is not limited to the comparison of metabolic profiles of interacting partners. Especially the link to other -omics techniques helps to unravel not only the compounds in question but the entire biosynthetic and genetic re-wiring, required for an ecological response. This review comprehensively highlights successful applications of metabolomics in chemical ecology and discusses existing limitations of these novel techniques. It focuses on recent developments in comparative metabolomics and discusses the use of metabolomics in the systems biology of organismal interactions. It also outlines the potential of large metabolomics initiatives for model organisms in the field of chemical ecology.

  8. Untargeted Metabolomics Approach in Halophiles: Understanding the Biodeterioration Process of Building Materials

    Directory of Open Access Journals (Sweden)

    Justyna Adamiak

    2017-12-01

    Full Text Available The aim of the study was to explore the halophile metabolome in building materials using untargeted metabolomics which allows for broad metabolome coverage. For this reason, we used high-performance liquid chromatography interfaced to high-resolution mass spectrometry (HPLC/HRMS. As an alternative to standard microscopy techniques, we introduced pioneering Coherent Anti-stokes Raman Scattering Microscopy (CARS to non-invasively visualize microbial cells. Brick samples saturated with salt solution (KCl, NaCl (two salinity levels, MgSO4, Mg(NO32, were inoculated with the mixture of preselected halophilic microorganisms, i.e., bacteria: Halobacillus styriensis, Halobacillus naozhouensis, Halobacillus hunanensis, Staphylococcus succinus, Marinococcus halophilus, Virgibacillus halodenitryficans, and yeast: Sterigmatomyces halophilus and stored at 28°C and 80% relative humidity for a year. Metabolites were extracted directly from the brick samples and measured via HPLC/HRMS in both positive and negative ion modes. Overall, untargeted metabolomics allowed for discovering the interactions of halophilic microorganisms with buildings materials which together with CARS microscopy enabled us to elucidate the biodeterioration process caused by halophiles. We observed that halophile metabolome was differently affected by different salt solutions. Furthermore, we found indications for haloadaptive strategies and degradation of brick samples due to microbial pigment production as a salt stress response. Finally, we detected changes in lipid content related to changes in the structure of phospholipid bilayers and membrane fluidity.

  9. Optimal preprocessing of serum and urine metabolomic data fusion for staging prostate cancer through design of experiment.

    Science.gov (United States)

    Zheng, Hong; Cai, Aimin; Zhou, Qi; Xu, Pengtao; Zhao, Liangcai; Li, Chen; Dong, Baijun; Gao, Hongchang

    2017-10-23

    Accurate classification of cancer stages will achieve precision treatment for cancer. Metabolomics presents biological phenotypes at the metabolite level and holds a great potential for cancer classification. Since metabolomic data can be obtained from different samples or analytical techniques, data fusion has been applied to improve classification accuracy. Data preprocessing is an essential step during metabolomic data analysis. Therefore, we developed an innovative optimization method to select a proper data preprocessing strategy for metabolomic data fusion using a design of experiment approach for improving the classification of prostate cancer (PCa) stages. In this study, urine and serum samples were collected from participants at five phases of PCa and analyzed using a 1 H NMR-based metabolomic approach. Partial least squares-discriminant analysis (PLS-DA) was used as a classification model and its performance was assessed by goodness of fit (R 2 ) and predictive ability (Q 2 ). Results show that data preprocessing significantly affect classification performance and depends on data properties. Using the fused metabolomic data from urine and serum, PLS-DA model with the optimal data preprocessing (R 2  = 0.729, Q 2  = 0.504, P < 0.0001) can effectively improve model performance and achieve a better classification result for PCa stages as compared with that without data preprocessing (R 2  = 0.139, Q 2  = 0.006, P = 0.450). Therefore, we propose that metabolomic data fusion integrated with an optimal data preprocessing strategy can significantly improve the classification of cancer stages for precision treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Metabolomics approach reveals metabolic disorders and potential biomarkers associated with the developmental toxicity of tetrabromobisphenol A and tetrachlorobisphenol A

    Science.gov (United States)

    Ye, Guozhu; Chen, Yajie; Wang, Hong-Ou; Ye, Ting; Lin, Yi; Huang, Qiansheng; Chi, Yulang; Dong, Sijun

    2016-10-01

    Tetrabromobisphenol A and tetrachlorobisphenol A are halogenated bisphenol A (H-BPA), and has raised concerns about their adverse effects on the development of fetuses and infants, however, the molecular mechanisms are unclear, and related metabolomics studies are limited. Accordingly, a metabolomics study based on gas chromatography-mass spectrometry was employed to elucidate the molecular developmental toxicology of H-BPA using the marine medaka (Oryzias melastigmas) embryo model. Here, we revealed decreased synthesis of nucleosides, amino acids and lipids, and disruptions in the TCA (tricarboxylic acid) cycle, glycolysis and lipid metabolism, thus inhibiting the developmental processes of embryos exposed to H-BPA. Unexpectedly, we observed enhanced neural activity accompanied by lactate accumulation and accelerated heart rates due to an increase in dopamine pathway and a decrease in inhibitory neurotransmitters following H-BPA exposure. Notably, disorders of the neural system, and disruptions in glycolysis, the TCA cycle, nucleoside metabolism, lipid metabolism, glutamate and aspartate metabolism induced by H-BPA exposure were heritable. Furthermore, lactate and dopa were identified as potential biomarkers of the developmental toxicity of H-BPA and related genetic effects. This study has demonstrated that the metabolomics approach is a useful tool for obtaining comprehensive and novel insights into the molecular developmental toxicity of environmental pollutants.

  11. Comparison of Metabolomics Approaches for Evaluating the Variability of Complex Botanical Preparations: Green Tea (Camellia sinensis) as a Case Study.

    Science.gov (United States)

    Kellogg, Joshua J; Graf, Tyler N; Paine, Mary F; McCune, Jeannine S; Kvalheim, Olav M; Oberlies, Nicholas H; Cech, Nadja B

    2017-05-26

    A challenge that must be addressed when conducting studies with complex natural products is how to evaluate their complexity and variability. Traditional methods of quantifying a single or a small range of metabolites may not capture the full chemical complexity of multiple samples. Different metabolomics approaches were evaluated to discern how they facilitated comparison of the chemical composition of commercial green tea [Camellia sinensis (L.) Kuntze] products, with the goal of capturing the variability of commercially used products and selecting representative products for in vitro or clinical evaluation. Three metabolomic-related methods-untargeted ultraperformance liquid chromatography-mass spectrometry (UPLC-MS), targeted UPLC-MS, and untargeted, quantitative 1 HNMR-were employed to characterize 34 commercially available green tea samples. Of these methods, untargeted UPLC-MS was most effective at discriminating between green tea, green tea supplement, and non-green-tea products. A method using reproduced correlation coefficients calculated from principal component analysis models was developed to quantitatively compare differences among samples. The obtained results demonstrated the utility of metabolomics employing UPLC-MS data for evaluating similarities and differences between complex botanical products.

  12. Quantifying the Metabolome of Pseudomonas taiwanensis VLB120: Evaluation of Hot and Cold Combined Quenching/Extraction Approaches

    DEFF Research Database (Denmark)

    Wordofa, Gossa Garedew; Kristensen, Mette; Schrübbers, Lars

    2017-01-01

    (such as cold methanol/acetonitrile/water, hot water, and boiling ethanol/water, as well as cold ethanol/water) were tested and evaluated for P. taiwanensis VLB120 metabolome analysis. In total 94 out of 107 detected intracellular metabolites were quantified using an isotope-ratio-based approach....... The quantified metabolites include amino acids, nucleotides, central carbon metabolism intermediates, redox cofactors, and others. The acquired data demonstrate that the pressure driven fast filtration approach followed by boiling ethanol quenching/extraction is the most adequate technique for P. taiwanensis VLB...

  13. Combining a nontargeted and targeted metabolomics approach to identify metabolic pathways significantly altered in polycystic ovary syndrome.

    Science.gov (United States)

    Chang, Alice Y; Lalia, Antigoni Z; Jenkins, Gregory D; Dutta, Tumpa; Carter, Rickey E; Singh, Ravinder J; Nair, K Sreekumaran

    2017-06-01

    Polycystic ovary syndrome (PCOS) is a condition of androgen excess and chronic anovulation frequently associated with insulin resistance. We combined a nontargeted and targeted metabolomics approach to identify pathways and metabolites that distinguished PCOS from metabolic syndrome (MetS). Twenty obese women with PCOS were compared with 18 obese women without PCOS. Both groups met criteria for MetS but could not have diabetes mellitus or take medications that treat PCOS or affect lipids or insulin sensitivity. Insulin sensitivity was derived from the frequently sampled intravenous glucose tolerance test. A nontargeted metabolomics approach was performed on fasting plasma samples to identify differentially expressed metabolites, which were further evaluated by principal component and pathway enrichment analysis. Quantitative targeted metabolomics was then applied on candidate metabolites. Measured metabolites were tested for associations with PCOS and clinical variables by logistic and linear regression analyses. This multiethnic, obese sample was matched by age (PCOS, 37±6; MetS, 40±6years) and body mass index (BMI) (PCOS, 34.6±5.1; MetS, 33.7±5.2kg/m 2 ). Principal component analysis of the nontargeted metabolomics data showed distinct group separation of PCOS from MetS controls. From the subset of 385 differentially expressed metabolites, 22% were identified by accurate mass, resulting in 19 canonical pathways significantly altered in PCOS, including amino acid, lipid, steroid, carbohydrate, and vitamin D metabolism. Targeted metabolomics identified many essential amino acids, including branched-chain amino acids (BCAA) that were elevated in PCOS compared with MetS. PCOS was most associated with BCAA (P=.02), essential amino acids (P=.03), the essential amino acid lysine (P=.02), and the lysine metabolite α-aminoadipic acid (P=.02) in models adjusted for surrogate variables representing technical variation in metabolites. No significant differences between

  14. Non-target effects of GM potato : an eco-metabolomics approach

    NARCIS (Netherlands)

    Plischke, Andreas

    2013-01-01

    In this thesis, patterns of variation in plant metabolomes and insect communities were described in GM and non-GM potato plants in both laboratory and field experiments. Differences between plant genotypes in insect abundances were small when compared to year-to-year differences, location effects

  15. NMR-based metabonomic study of the sub-acute toxicity of titanium dioxide nanoparticles in rats after oral administration

    Science.gov (United States)

    Bu, Qian; Yan, Guangyan; Deng, Pengchi; Peng, Feng; Lin, Hongjun; Xu, Youzhi; Cao, Zhixing; Zhou, Tian; Xue, Aiqin; Wang, Yanli; Cen, Xiaobo; Zhao, Ying-Lan

    2010-03-01

    As titanium dioxide nanoparticles (TiO2 NPs) are widely used commercially, their potential toxicity on human health has attracted particular attention. In the present study, the oral toxicological effects of TiO2 NPs (dosed at 0.16, 0.4 and 1 g kg - 1, respectively) were investigated using conventional approaches and metabonomic analysis in Wistar rats. Serum chemistry, hematology and histopathology examinations were performed. The urine and serum were investigated by 1H nuclear magnetic resonance (NMR) using principal components and partial least squares discriminant analysis. The metabolic signature of urinalysis in TiO2 NP-treated rats showed increases in the levels of taurine, citrate, hippurate, histidine, trimethylamine-N-oxide (TMAO), citrulline, α-ketoglutarate, phenylacetylglycine (PAG) and acetate; moreover, decreases in the levels of lactate, betaine, methionine, threonine, pyruvate, 3-D-hydroxybutyrate (3-D-HB), choline and leucine were observed. The metabonomics analysis of serum showed increases in TMAO, choline, creatine, phosphocholine and 3-D-HB as well as decreases in glutamine, pyruvate, glutamate, acetoacetate, glutathione and methionine after TiO2 NP treatment. Aspartate aminotransferase (AST), creatine kinase (CK) and lactate dehydrogenase (LDH) were elevated and mitochondrial swelling in heart tissue was observed in TiO2 NP-treated rats. These findings indicate that disturbances in energy and amino acid metabolism and the gut microflora environment may be attributable to the slight injury to the liver and heart caused by TiO2 NPs. Moreover, the NMR-based metabolomic approach is a reliable and sensitive method to study the biochemical effects of nanomaterials.

  16. NMR-based metabonomic study of the sub-acute toxicity of titanium dioxide nanoparticles in rats after oral administration

    International Nuclear Information System (INIS)

    Bu Qian; Lin Hongjun; Xu Youzhi; Cao Zhixing; Zhou Tian; Zhao Yinglan; Yan Guangyan; Cen Xiaobo; Deng Pengchi; Peng Feng; Xue Aiqin; Wang Yanli

    2010-01-01

    As titanium dioxide nanoparticles (TiO 2 NPs) are widely used commercially, their potential toxicity on human health has attracted particular attention. In the present study, the oral toxicological effects of TiO 2 NPs (dosed at 0.16, 0.4 and 1 g kg -1 , respectively) were investigated using conventional approaches and metabonomic analysis in Wistar rats. Serum chemistry, hematology and histopathology examinations were performed. The urine and serum were investigated by 1 H nuclear magnetic resonance (NMR) using principal components and partial least squares discriminant analysis. The metabolic signature of urinalysis in TiO 2 NP-treated rats showed increases in the levels of taurine, citrate, hippurate, histidine, trimethylamine-N-oxide (TMAO), citrulline, α-ketoglutarate, phenylacetylglycine (PAG) and acetate; moreover, decreases in the levels of lactate, betaine, methionine, threonine, pyruvate, 3-D-hydroxybutyrate (3-D-HB), choline and leucine were observed. The metabonomics analysis of serum showed increases in TMAO, choline, creatine, phosphocholine and 3-D-HB as well as decreases in glutamine, pyruvate, glutamate, acetoacetate, glutathione and methionine after TiO 2 NP treatment. Aspartate aminotransferase (AST), creatine kinase (CK) and lactate dehydrogenase (LDH) were elevated and mitochondrial swelling in heart tissue was observed in TiO 2 NP-treated rats. These findings indicate that disturbances in energy and amino acid metabolism and the gut microflora environment may be attributable to the slight injury to the liver and heart caused by TiO 2 NPs. Moreover, the NMR-based metabolomic approach is a reliable and sensitive method to study the biochemical effects of nanomaterials.

  17. NMR-based metabonomic study of the sub-acute toxicity of titanium dioxide nanoparticles in rats after oral administration

    Energy Technology Data Exchange (ETDEWEB)

    Bu Qian; Lin Hongjun; Xu Youzhi; Cao Zhixing; Zhou Tian; Zhao Yinglan [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Yan Guangyan; Cen Xiaobo [National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Deng Pengchi [Analytical and Testing Center, Sichuan University, Chengdu 610041 (China); Peng Feng [Department of Thoracic Oncology of Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Xue Aiqin [Institute of Bioengineering, Zhejiang Sci-Tech University Road 2, Xiasha, Hangzhou 310018 (China); Wang Yanli, E-mail: alancenxb@sina.com [Tianjin Children' s Hospital, Tianjin 300074 (China)

    2010-03-26

    As titanium dioxide nanoparticles (TiO{sub 2} NPs) are widely used commercially, their potential toxicity on human health has attracted particular attention. In the present study, the oral toxicological effects of TiO{sub 2} NPs (dosed at 0.16, 0.4 and 1 g kg{sup -1}, respectively) were investigated using conventional approaches and metabonomic analysis in Wistar rats. Serum chemistry, hematology and histopathology examinations were performed. The urine and serum were investigated by {sup 1}H nuclear magnetic resonance (NMR) using principal components and partial least squares discriminant analysis. The metabolic signature of urinalysis in TiO{sub 2} NP-treated rats showed increases in the levels of taurine, citrate, hippurate, histidine, trimethylamine-N-oxide (TMAO), citrulline, {alpha}-ketoglutarate, phenylacetylglycine (PAG) and acetate; moreover, decreases in the levels of lactate, betaine, methionine, threonine, pyruvate, 3-D-hydroxybutyrate (3-D-HB), choline and leucine were observed. The metabonomics analysis of serum showed increases in TMAO, choline, creatine, phosphocholine and 3-D-HB as well as decreases in glutamine, pyruvate, glutamate, acetoacetate, glutathione and methionine after TiO{sub 2} NP treatment. Aspartate aminotransferase (AST), creatine kinase (CK) and lactate dehydrogenase (LDH) were elevated and mitochondrial swelling in heart tissue was observed in TiO{sub 2} NP-treated rats. These findings indicate that disturbances in energy and amino acid metabolism and the gut microflora environment may be attributable to the slight injury to the liver and heart caused by TiO{sub 2} NPs. Moreover, the NMR-based metabolomic approach is a reliable and sensitive method to study the biochemical effects of nanomaterials.

  18. New frontiers in pharmaceutical analysis: A metabolomic approach to check batch compliance of complex products based on natural substances.

    Science.gov (United States)

    Mattoli, L; Burico, M; Fodaroni, G; Tamimi, S; Bedont, S; Traldi, P; Stocchero, M

    2016-07-15

    Natural substances, particularly medicinal plants and their extracts, are still today intended as source for new Active Pharmaceutical Ingredients (APIs). Alternatively they can be validly employed to prepare medicines, food supplements or medical devices. The most adopted analytical approach used to verify quality of natural substances like medicinal plants is based still today on the traditional quantitative determination of marker compounds and/or active ingredients, besides the acquisition of a fingerprint by TLC, NIR, HPLC, GC. Here a new analytical approach based on untargeted metabolomic fingerprinting by means of Mass Spectrometry (MS) to verify the quality of grinTuss adulti syrup, a complex products based on medicinal plants, is proposed. Recently, untargeted metabolomic has been successfully applied to assess quality of natural substances, plant extracts, as well as corresponding formulated products, being the complexity a resource but not necessarily a limit. The untargeted metabolomic fingerprinting includes the monitoring of the main constituents, giving weighted relevance to the most abundant ones, but also considering minor components, that might be notable in view of an integrated - often synergistic - effect on the biological system. Two different years of production were investigated. The collected samples were analyzed by Flow Injection ElectroSpray Ionization Mass Spectrometry Analysis (FIA-ESI-MS) and a suitable data processing procedure was developed to transform the MS spectra into robust fingerprints. Multivariate Statistical Process Control (MSPC) was applied in order to obtain multivariate control charts that were validated to prove the effectiveness of the proposed method. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Time-saving design of experiment protocol for optimization of LC-MS data processing in metabolomic approaches.

    Science.gov (United States)

    Zheng, Hong; Clausen, Morten Rahr; Dalsgaard, Trine Kastrup; Mortensen, Grith; Bertram, Hanne Christine

    2013-08-06

    We describe a time-saving protocol for the processing of LC-MS-based metabolomics data by optimizing parameter settings in XCMS and threshold settings for removing noisy and low-intensity peaks using design of experiment (DoE) approaches including Plackett-Burman design (PBD) for screening and central composite design (CCD) for optimization. A reliability index, which is based on evaluation of the linear response to a dilution series, was used as a parameter for the assessment of data quality. After identifying the significant parameters in the XCMS software by PBD, CCD was applied to determine their values by maximizing the reliability and group indexes. Optimal settings by DoE resulted in improvements of 19.4% and 54.7% in the reliability index for a standard mixture and human urine, respectively, as compared with the default setting, and a total of 38 h was required to complete the optimization. Moreover, threshold settings were optimized by using CCD for further improvement. The approach combining optimal parameter setting and the threshold method improved the reliability index about 9.5 times for a standards mixture and 14.5 times for human urine data, which required a total of 41 h. Validation results also showed improvements in the reliability index of about 5-7 times even for urine samples from different subjects. It is concluded that the proposed methodology can be used as a time-saving approach for improving the processing of LC-MS-based metabolomics data.

  20. Non-target effects of GM potato: an eco-metabolomics approach

    OpenAIRE

    Plischke, Andreas

    2013-01-01

    In this thesis, patterns of variation in plant metabolomes and insect communities were described in GM and non-GM potato plants in both laboratory and field experiments. Differences between plant genotypes in insect abundances were small when compared to year-to-year differences, location effects and differences between developmental stages of plants. Standardized effect sizes are discussed as an alternative scale for measuring effects. Leaf age, aphid infestation and virus infection were fou...

  1. Metabolic Profiling and Classification of Propolis Samples from Southern Brazil: An NMR-Based Platform Coupled with Machine Learning.

    Science.gov (United States)

    Maraschin, Marcelo; Somensi-Zeggio, Amélia; Oliveira, Simone K; Kuhnen, Shirley; Tomazzoli, Maíra M; Raguzzoni, Josiane C; Zeri, Ana C M; Carreira, Rafael; Correia, Sara; Costa, Christopher; Rocha, Miguel

    2016-01-22

    The chemical composition of propolis is affected by environmental factors and harvest season, making it difficult to standardize its extracts for medicinal usage. By detecting a typical chemical profile associated with propolis from a specific production region or season, certain types of propolis may be used to obtain a specific pharmacological activity. In this study, propolis from three agroecological regions (plain, plateau, and highlands) from southern Brazil, collected over the four seasons of 2010, were investigated through a novel NMR-based metabolomics data analysis workflow. Chemometrics and machine learning algorithms (PLS-DA and RF), including methods to estimate variable importance in classification, were used in this study. The machine learning and feature selection methods permitted construction of models for propolis sample classification with high accuracy (>75%, reaching ∼90% in the best case), better discriminating samples regarding their collection seasons comparatively to the harvest regions. PLS-DA and RF allowed the identification of biomarkers for sample discrimination, expanding the set of discriminating features and adding relevant information for the identification of the class-determining metabolites. The NMR-based metabolomics analytical platform, coupled to bioinformatic tools, allowed characterization and classification of Brazilian propolis samples regarding the metabolite signature of important compounds, i.e., chemical fingerprint, harvest seasons, and production regions.

  2. First-Trimester Serum Acylcarnitine Levels to Predict Preeclampsia: A Metabolomics Approach

    Directory of Open Access Journals (Sweden)

    Maria P. H. Koster

    2015-01-01

    Full Text Available Objective. To expand the search for preeclampsia (PE metabolomics biomarkers through the analysis of acylcarnitines in first-trimester maternal serum. Methods. This was a nested case-control study using serum from pregnant women, drawn between 8 and 14 weeks of gestational age. Metabolites were measured using an UPLC-MS/MS based method. Concentrations were compared between controls (n=500 and early-onset- (EO- PE (n=68 or late-onset- (LO- PE (n=99 women. Metabolites with a false discovery rate <10% for both EO-PE and LO-PE were selected and added to prediction models based on maternal characteristics (MC, mean arterial pressure (MAP, and previously established biomarkers (PAPPA, PLGF, and taurine. Results. Twelve metabolites were significantly different between EO-PE women and controls, with effect levels between −18% and 29%. For LO-PE, 11 metabolites were significantly different with effect sizes between −8% and 24%. Nine metabolites were significantly different for both comparisons. The best prediction model for EO-PE consisted of MC, MAP, PAPPA, PLGF, taurine, and stearoylcarnitine (AUC = 0.784. The best prediction model for LO-PE consisted of MC, MAP, PAPPA, PLGF, and stearoylcarnitine (AUC = 0.700. Conclusion. This study identified stearoylcarnitine as a novel metabolomics biomarker for EO-PE and LO-PE. Nevertheless, metabolomics-based assays for predicting PE are not yet suitable for clinical implementation.

  3. A metabolomic approach to identify anti-hepatocarcinogenic compounds from plants used traditionally in the treatment of liver diseases.

    Science.gov (United States)

    Chassagne, François; Haddad, Mohamed; Amiel, Aurélien; Phakeovilay, Chiobouaphong; Manithip, Chanthanom; Bourdy, Geneviève; Deharo, Eric; Marti, Guillaume

    2018-02-23

    Liver cancer is a major health burden in Southeast Asia, and most patients turn towards the use of medicinal plants to alleviate their symptoms. The aim of this work was to apply to Southeast Asian plants traditionally used to treat liver disorders, a successive ranking strategy based on a comprehensive review of the literature and metabolomic data in order to relate ethnopharmacological relevance to chemical entities of interest. We analyzed 45 publications resulting in a list of 378 plant species, and our point system based on the frequency of citation in the literature allowed the selection of 10 top ranked species for further collection and extraction. Extracts of these plants were tested for their in vitro anti-proliferative activities on HepG2 cells. Ethanolic extracts of Andrographis paniculata, Oroxylum indicum, Orthosiphon aristatus and Willughbeia edulis showed the highest anti-proliferative effects (IC 50  = 195.9, 64.1, 71.3 and 66.7 μg/ml, respectively). A metabolomic ranking model was performed to annotate compounds responsible for the anti-proliferative properties of A. paniculata (andrographolactone and dehydroandrographolide), O. indicum (baicalein, chrysin, oroxylin A and scutellarein), O. aristatus (5-desmethylsinensetin) and W. edulis (parabaroside C and procyanidin). Overall, our dereplicative approach combined with a bibliographic scoring system allowed us to rapidly decipher the molecular basis of traditionally used medicinal plants. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Vitroprocines, new antibiotics against Acinetobacter baumannii, discovered from marine Vibrio sp. QWI-06 using mass-spectrometry-based metabolomics approach

    Science.gov (United States)

    Liaw, Chih-Chuang; Chen, Pei-Chin; Shih, Chao-Jen; Tseng, Sung-Pin; Lai, Ying-Mi; Hsu, Chi-Hsin; Dorrestein, Pieter C.; Yang, Yu-Liang

    2015-08-01

    A robust and convenient research strategy integrating state-of-the-art analytical techniques is needed to efficiently discover novel compounds from marine microbial resources. In this study, we identified a series of amino-polyketide derivatives, vitroprocines A-J, from the marine bacterium Vibrio sp. QWI-06 by an integrated approach using imaging mass spectroscopy and molecular networking, as well as conventional bioactivity-guided fractionation and isolation. The structure-activity relationship of vitroprocines against Acinetobacter baumannii is proposed. In addition, feeding experiments with 13C-labeled precursors indicated that a pyridoxal 5‧-phosphate-dependent mechanism is involved in the biosynthesis of vitroprocines. Elucidation of amino-polyketide derivatives from a species of marine bacteria for the first time demonstrates the potential of this integrated metabolomics approach to uncover marine bacterial biodiversity.

  5. Impact of dietary polydextrose fiber on the human gut metabolome.

    Science.gov (United States)

    Lamichhane, Santosh; Yde, Christian C; Forssten, Sofia; Ouwehand, Arthur C; Saarinen, Markku; Jensen, Henrik Max; Gibson, Glenn R; Rastall, Robert; Fava, Francesca; Bertram, Hanne Christine

    2014-10-08

    The aim of the present study was to elucidate the impact of polydextrose PDX an soluble fiber, on the human fecal metabolome by high-resolution nuclear magnetic resonance (NMR) spectroscopy-based metabolomics in a dietary intervention study (n = 12). Principal component analysis (PCA) revealed a strong effect of PDX consumption on the fecal metabolome, which could be mainly ascribed to the presence of undigested fiber and oligosaccharides formed from partial degradation of PDX. Our results demonstrate that NMR-based metabolomics is a useful technique for metabolite profiling of feces and for testing compliance to dietary fiber intake in such trials. In addition, novel associations between PDX and the levels of the fecal metabolites acetate and propionate could be identified. The establishment of a correlation between the fecal metabolome and levels of Bifidobacterium (R(2) = 0.66) and Bacteroides (R(2) = 0.46) demonstrates the potential of NMR-based metabolomics to elucidate metabolic activity of bacteria in the gut.

  6. Cordyceps sinensis protects against liver and heart injuries in a rat model of chronic kidney disease: a metabolomic analysis.

    Science.gov (United States)

    Liu, Xia; Zhong, Fang; Tang, Xu-long; Lian, Fu-lin; Zhou, Qiao; Guo, Shan-mai; Liu, Jia-fu; Sun, Peng; Hao, Xu; Lu, Ying; Wang, Wei-ming; Chen, Nan; Zhang, Nai-xia

    2014-05-01

    To test the hypothesis that the traditional Chinese medicine Cordyceps sinensis could improve the metabolic function of extrarenal organs to achieve its anti-chronic kidney disease (CKD) effects. Male SD rats were divided into CKD rats (with 5/6-nephrectomy), CKD rats treated with Cordyceps sinensis (4 mg•kg-1•d-1, po), and sham-operated rats. After an 8-week treatment, metabolites were extracted from the hearts and livers of the rats, and then subjected to (1)H-NMR-based metabolomic analysis. Oxidative stress, energy metabolism, amino acid and protein metabolism and choline metabolism were considered as links between CKD and extrarenal organ dysfunction. Within the experimental period of 8 weeks, the metabolic disorders in the liver were more pronounced than in the heart, suggesting that CKD-related extrarenal organ dysfunctions occurred sequentially rather than simultaneously. Oral administration of Cordyceps sinensis exerted statistically significant rescue effects on the liver and heart by reversely regulating levels of those metabolites that are typically perturbed in CKD. Oral administration of Cordyceps sinensis significantly attenuates the liver and heart injuries in CKD rats. The (1)H NMR-based metabolomic approach has provided a systematic view for understanding of CKD and the drug treatment, which can also be used to elucidate the mechanisms of action of other traditional Chinese medicines.

  7. Investigation of Dioscorea bulbifera Rhizome-Induced Hepatotoxicity in Rats by a Multisample Integrated Metabolomics Approach.

    Science.gov (United States)

    Zhao, Dong-Sheng; Jiang, Li-Long; Fan, Ya-Xi; Wang, Ling-Li; Li, Zhuo-Qing; Shi, Wei; Li, Ping; Li, Hui-Jun

    2017-10-16

    The use of herbal medicines continues to expand globally, meanwhile, herb-associated hepatotoxicity is becoming a safety issue. As a conventional Chinese medicinal herb, Dioscorea bulbifera rhizome (DBR) has been documented to cause hepatic toxicity. However, the exact underlying mechanism remains largely unexplored. In the present study, we aimed to profile entire endogenous metabolites in a biological system using a multisample integrated metabolomics strategy. Our findings offered additional insights into the molecular mechanism of the DBR-induced hepatotoxicity. We identified different metabolites from rat plasma, urine, and feces by employing gas chromatography-mass spectrometry in combination with multivariate analysis. In total, 55 metabolites distributed in 33 metabolic pathways were identified as being significantly altered in DBR-treated rats. Correlation network analysis revealed that the hub metabolites of hepatotoxicity were mainly associated with amino acid, bile acid, purine, pyrimidine, lipid, and energy metabolism. As such, DBR affected the physiological and biological functions of liver via the regulation of multiple metabolic pathways to an abnormal state. Notably, our findings also demonstrated that the multisample integrated metabolomics strategy has a great potential to identify more biomarkers and pathways in order to elucidate the mechanistic complexity of toxicity of traditional Chinese medicine.

  8. Nuclear Magnetic Resonance-Based Metabolomics Approach to Evaluate the Prevention Effect of Camellia nitidissima Chi on Colitis-Associated Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Ming-Hui Li

    2017-07-01

    Full Text Available Colorectal cancer (CRC is one of the most common malignant tumors worldwide, occurring in the colon or rectum portion of large intestine. With marked antioxidant, anti-inflammation and anti-tumor activities, Camellia nitidissima Chi has been used as an effective treatment of cancer. The azoxymethane/dextran sodium sulfate (AOM/DSS induced CRC mice model was established and the prevention effect of C. nitidissima Chi extracts on the evolving of CRC was evaluated by examination of neoplastic lesions, histopathological inspection, serum biochemistry analysis, combined with nuclear magnetic resonance (NMR-based metabolomics and correlation network analysis. C. nitidissima Chi extracts could significantly inhibit AOM/DSS induced CRC, relieve the colonic pathology of inflammation and ameliorate the serum biochemistry, and could significantly reverse the disturbed metabolic profiling toward the normal state. Moreover, the butanol fraction showed a better efficacy than the water-soluble fraction of C. nitidissima Chi. Further development of C. nitidissima Chi extracts as a potent CRC inhibitor was warranted.

  9. NMR-based screening of membrane protein ligands

    NARCIS (Netherlands)

    Yanamala, Naveena; Dutta, Arpana; Beck, Barbara; Van Fleet, Bart; Hay, Kelly; Yazbak, Ahmad; Ishima, Rieko; Doemling, Alexander; Klein-Seetharaman, Judith

    2010-01-01

    Membrane proteins pose problems for the application of NMR-based ligand-screening methods because of the need to maintain the proteins in a membrane mimetic environment such as detergent micelles: they add to the molecular weight of the protein, increase the viscosity of the solution, interact with

  10. Are ant feces nutrients for plants? A metabolomics approach to elucidate the nutritional effects on plants hosting weaver ants

    DEFF Research Database (Denmark)

    Vidkjær, Nanna Hjort; Wollenweber, Bernd; Gislum, René

    2015-01-01

    Weaver ants (genus Oecophylla) are tropical carnivorous ant species living in high numbers in the canopies of trees. The ants excrete copious amounts of fecal matter on leaf surfaces, and these feces may provide nutrients to host trees. This hypothesis is supported by studies of ant-plant...... interactions involving other ant species that have demonstrated the transfer of nutrients from ants to plants. In this 7-months study, a GC–MS-based metabolomics approach along with an analysis of total nitrogen and carbon levels was used to study metabolic changes in ant-hosting Coffea arabica plants compared...... with control plants. The results showed elevated levels of total nitrogen, amino acids, fatty acids, caffeine, and secondary metabolites of the phenylpropanoid pathway in leaves from ant-hosting plants. Minor effects were observed for sugars, whereas little or no effect was observed for organic acids, despite...

  11. Clinical Metabolomics and Glaucoma.

    Science.gov (United States)

    Barbosa-Breda, João; Himmelreich, Uwe; Ghesquière, Bart; Rocha-Sousa, Amândio; Stalmans, Ingeborg

    2018-01-01

    Glaucoma is one of the leading causes of irreversible blindness worldwide. However, there are no biomarkers that accurately help clinicians perform an early diagnosis or detect patients with a high risk of progression. Metabolomics is the study of all metabolites in an organism, and it has the potential to provide a biomarker. This review summarizes the findings of metabolomics in glaucoma patients and explains why this field is promising for new research. We identified published studies that focused on metabolomics and ophthalmology. After providing an overview of metabolomics in ophthalmology, we focused on human glaucoma studies. Five studies have been conducted in glaucoma patients and all compared patients to healthy controls. Using mass spectrometry, significant differences were found in blood plasma in the metabolic pathways that involve palmitoylcarnitine, sphingolipids, vitamin D-related compounds, and steroid precursors. For nuclear magnetic resonance spectroscopy, a high glutamine-glutamate/creatine ratio was found in the vitreous and lateral geniculate body; no differences were detected in the optic radiations, and a lower N-acetylaspartate/choline ratio was observed in the geniculocalcarine and striate areas. Metabolomics can move glaucoma care towards a personalized approach and provide new knowledge concerning the pathophysiology of glaucoma, which can lead to new therapeutic options. © 2017 S. Karger AG, Basel.

  12. A novel serum metabolomics-based diagnostic approach for colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Shin Nishiumi

    Full Text Available To improve the quality of life of colorectal cancer patients, it is important to establish new screening methods for early diagnosis of colorectal cancer.We performed serum metabolome analysis using gas-chromatography/mass-spectrometry (GC/MS. First, the accuracy of our GC/MS-based serum metabolomic analytical method was evaluated by calculating the RSD% values of serum levels of various metabolites. Second, the intra-day (morning, daytime, and night and inter-day (among 3 days variances of serum metabolite levels were examined. Then, serum metabolite levels were compared between colorectal cancer patients (N = 60; N = 12 for each stage from 0 to 4 and age- and sex-matched healthy volunteers (N = 60 as a training set. The metabolites whose levels displayed significant changes were subjected to multiple logistic regression analysis using the stepwise variable selection method, and a colorectal cancer prediction model was established. The prediction model was composed of 2-hydroxybutyrate, aspartic acid, kynurenine, and cystamine, and its AUC, sensitivity, specificity, and accuracy were 0.9097, 85.0%, 85.0%, and 85.0%, respectively, according to the training set data. In contrast, the sensitivity, specificity, and accuracy of CEA were 35.0%, 96.7%, and 65.8%, respectively, and those of CA19-9 were 16.7%, 100%, and 58.3%, respectively. The validity of the prediction model was confirmed using colorectal cancer patients (N = 59 and healthy volunteers (N = 63 as a validation set. At the validation set, the sensitivity, specificity, and accuracy of the prediction model were 83.1%, 81.0%, and 82.0%, respectively, and these values were almost the same as those obtained with the training set. In addition, the model displayed high sensitivity for detecting stage 0-2 colorectal cancer (82.8%.Our prediction model established via GC/MS-based serum metabolomic analysis is valuable for early detection of colorectal cancer and has the

  13. Metabolomics of Genetically Modified Crops

    Directory of Open Access Journals (Sweden)

    Carolina Simó

    2014-10-01

    Full Text Available Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade.

  14. Metabolomics of genetically modified crops.

    Science.gov (United States)

    Simó, Carolina; Ibáñez, Clara; Valdés, Alberto; Cifuentes, Alejandro; García-Cañas, Virginia

    2014-10-20

    Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade.

  15. Metabolomics of Genetically Modified Crops

    Science.gov (United States)

    Simó, Carolina; Ibáñez, Clara; Valdés, Alberto; Cifuentes, Alejandro; García-Cañas, Virginia

    2014-01-01

    Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade. PMID:25334064

  16. Metabolomics approach to chemical diversity of the Mediterranean marine sponge Agelas oroides.

    Science.gov (United States)

    Sauleau, Pierre; Moriou, Céline; Al Mourabit, Ali

    2017-07-01

    The Mediterranean marine sponge Agelas oroides is known to contain a large quantity of oroidin, a deterrent, antifouling and antibiofilm pyrrole-2-aminoimidazole. In contrast with other tropical specimens, the chemical composition of Mediterranean Agelas oroides is surprisingly relatively poor in other related metabolites. In the course of finding novel marine natural products, LC-MS based metabolomics study of the Mediterranean Agelas oroides, however, revealed that next to the major compound oroidin, the sponge contains in fact a great diversity of known pyrrole-imidazole alkaloids in minute amounts. Here, we describe identification of 13 known oroidin class alkaloids along with one new monobromoagelaspongin (24). Five betaines and one amine were also identified from the aqueous fraction. One of those compounds (-)-equinobetaine B (30) was found to be an enantiomer of the known natural product (+)-equinobetaine B.

  17. Molecular cartography in acute Chlamydia pneumoniae infections--a non-targeted metabolomics approach.

    Science.gov (United States)

    Müller, Constanze; Dietz, Inga; Tziotis, Dimitrios; Moritz, Franco; Rupp, Jan; Schmitt-Kopplin, Philippe

    2013-06-01

    Infections with Chlamydia pneumoniae cause several respiratory diseases, such as community-acquired pneumonia, bronchitis or sinusitis. Here, we present an integrated non-targeted metabolomics analysis applying ultra-high-resolution mass spectrometry and ultra-performance liquid chromatography mass spectrometry to determine metabolite alterations in C. pneumoniae-infected HEp-2 cells. Most important permutations are elaborated using uni- and multivariate statistical analysis, logD retention time regression and mass defect-based network analysis. Classes of metabolites showing high variations upon infection are lipids, carbohydrates and amino acids. Moreover, we observed several non-annotated compounds as predominantly abundant after infection, which are promising biomarker candidates for drug-target and diagnostic research.

  18. Reliability of serum metabolite concentrations over a 4-month period using a targeted metabolomic approach.

    Directory of Open Access Journals (Sweden)

    Anna Floegel

    Full Text Available Metabolomics is a promising tool for discovery of novel biomarkers of chronic disease risk in prospective epidemiologic studies. We investigated the between- and within-person variation of the concentrations of 163 serum metabolites over a period of 4 months to evaluate the metabolite reliability expressed by the intraclass-correlation coefficient (ICC: the ratio of between-person variance and total variance. The analyses were performed with the BIOCRATES AbsoluteIDQ™ targeted metabolomics technology, including acylcarnitines, amino acids, glycerophospholipids, sphingolipids and hexose in 100 healthy individuals from the European Prospective Investigation into Cancer and Nutrition (EPIC-Potsdam study who had provided two fasting blood samples 4 months apart. Overall, serum reliability of metabolites over a 4-month period was good. The median ICC of the 163 metabolites was 0.57. The highest ICC was observed for hydroxysphingomyelin C14:1 (ICC = 0.85 and the lowest was found for acylcarnitine C3:1 (ICC = 0. Reliability was high for hexose (ICC = 0.76, sphingolipids (median ICC = 0.66; range: 0.24-0.85, amino acids (median ICC = 0.58; range: 0.41-0.72 and glycerophospholipids (median ICC = 0.58; range: 0.03-0.81. Among acylcarnitines, reliability of short and medium chain saturated compounds was good to excellent (ICC range: 0.50-0.81. Serum reliability was lower for most hydroxyacylcarnitines and monounsaturated acylcarnitines (ICC range: 0.11-0.45 and 0.00-0.63, respectively. For most of the metabolites a single measurement may be sufficient for risk assessment in epidemiologic studies with healthy subjects.

  19. A non-targeted metabolomic approach to identify food markers to support discrimination between organic and conventional tomato crops.

    Science.gov (United States)

    Martínez Bueno, María Jesús; Díaz-Galiano, Francisco José; Rajski, Łukasz; Cutillas, Víctor; Fernández-Alba, Amadeo R

    2018-04-20

    In the last decade, the consumption trend of organic food has increased dramatically worldwide. However, the lack of reliable chemical markers to discriminate between organic and conventional products makes this market susceptible to food fraud in products labeled as "organic". Metabolomic fingerprinting approach has been demonstrated as the best option for a full characterization of metabolome occurring in plants, since their pattern may reflect the impact of both endogenous and exogenous factors. In the present study, advanced technologies based on high performance liquid chromatography-high-resolution accurate mass spectrometry (HPLC-HRAMS) has been used for marker search in organic and conventional tomatoes grown in greenhouse under controlled agronomic conditions. The screening of unknown compounds comprised the retrospective analysis of all tomato samples throughout the studied period and data processing using databases (mzCloud, ChemSpider and PubChem). In addition, stable nitrogen isotope analysis (δ 15 N) was assessed as a possible indicator to support discrimination between both production systems using crop/fertilizer correlations. Pesticide residue analyses were also applied as a well-established way to evaluate the organic production. Finally, the evaluation by combined chemometric analysis of high-resolution accurate mass spectrometry (HRAMS) and δ 15 N data provided a robust classification model in accordance with the agricultural practices. Principal component analysis (PCA) showed a sample clustering according to farming systems and significant differences in the sample profile was observed for six bioactive components (L-tyrosyl-L-isoleucyl-L-threonyl-L-threonine, trilobatin, phloridzin, tomatine, phloretin and echinenone). Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Diet-induced hyperinsulinemia differentially affects glucose and protein metabolism: a high-throughput metabolomic approach in rats.

    Science.gov (United States)

    Etxeberria, U; de la Garza, A L; Martínez, J A; Milagro, F I

    2013-09-01

    Metabolomics is a high-throughput tool that quantifies and identifies the complete set of biofluid metabolites. This "omics" science is playing an increasing role in understanding the mechanisms involved in disease progression. The aim of this study was to determine whether a nontargeted metabolomic approach could be applied to investigate metabolic differences between obese rats fed a high-fat sucrose (HFS) diet for 9 weeks and control diet-fed rats. Animals fed with the HFS diet became obese, hyperleptinemic, hyperglycemic, hyperinsulinemic, and resistant to insulin. Serum samples of overnight-fasted animals were analyzed by (1)H NMR technique, and 49 metabolites were identified and quantified. The biochemical changes observed suggest that major metabolic processes like carbohydrate metabolism, β-oxidation, tricarboxylic acid cycle, Kennedy pathway, and folate-mediated one-carbon metabolism were altered in obese rats. The circulating levels of most amino acids were lower in obese animals. Serum levels of docosahexaenoic acid, linoleic acid, unsaturated n-6 fatty acids, and total polyunsaturated fatty acids also decreased in HFS-fed rats. The circulating levels of urea, six water-soluble metabolites (creatine, creatinine, choline, acetyl carnitine, formate, and allantoin), and two lipid compounds (phosphatidylcholines and sphingomyelin) were also significantly reduced by the HFS diet intake. This study offers further insight of the possible mechanisms implicated in the development of diet-induced obesity. It suggests that the HFS diet-induced hyperinsulinemia is responsible for the decrease in the circulating levels of urea, creatinine, and many amino acids, despite an increase in serum glucose levels.

  1. Unambiguous metabolite identification in high-throughput metabolomics by hybrid 1D 1 H NMR/ESI MS 1 approach: Hybrid 1D 1 H NMR/ESI MS 1 metabolomics method

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Lawrence R. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Hoyt, David W. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Walker, S. Michael [Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence KS 66045 USA; Ward, Joy K. [Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence KS 66045 USA; Nicora, Carrie D. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Bingol, Kerem [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA

    2016-09-16

    We present a novel approach to improve accuracy of metabolite identification by combining direct infusion ESI MS1 with 1D 1H NMR spectroscopy. The new approach first applies standard 1D 1H NMR metabolite identification protocol by matching the chemical shift, J-coupling and intensity information of experimental NMR signals against the NMR signals of standard metabolites in metabolomics library. This generates a list of candidate metabolites. The list contains false positive and ambiguous identifications. Next, we constrained the list with the chemical formulas derived from high-resolution direct infusion ESI MS1 spectrum of the same sample. Detection of the signals of a metabolite both in NMR and MS significantly improves the confidence of identification and eliminates false positive identification. 1D 1H NMR and direct infusion ESI MS1 spectra of a sample can be acquired in parallel in several minutes. This is highly beneficial for rapid and accurate screening of hundreds of samples in high-throughput metabolomics studies. In order to make this approach practical, we developed a software tool, which is integrated to Chenomx NMR Suite. The approach is demonstrated on a model mixture, tomato and Arabidopsis thaliana metabolite extracts, and human urine.

  2. NMR-based metabolomics and hyphenated NMR techniques – a perfect match in natural products research

    DEFF Research Database (Denmark)

    Vinther, Joachim Møllesøe; Wubshet, Sileshi Gizachew; Stærk, Dan

    2015-01-01

    Ethnopharmacology is one of the world’s fastest-growing scientific disciplines encompassing a diverse range of subjects. It links natural sciences research on medicinal, aromatic and toxic plants with socio-cultural studies and has often been associated with the development of new drugs...

  3. 13C-NMR-Based Metabolomic Profiling of Typical Asian Soy Sauces

    Directory of Open Access Journals (Sweden)

    Ghulam Mustafa Kamal

    2016-09-01

    Full Text Available It has been a strong consumer interest to choose high quality food products with clear information about their origin and composition. In the present study, a total of 22 Asian soy sauce samples have been analyzed in terms of 13C-NMR spectroscopy. Spectral data were analyzed by multivariate statistical methods in order to find out the important metabolites causing the discrimination among typical soy sauces from different Asian regions. It was found that significantly higher concentrations of glutamate in Chinese red cooking (CR soy sauce may be the result of the manual addition of monosodium glutamate (MSG in the final soy sauce product. Whereas lower concentrations of amino acids, like leucine, isoleucine and valine, observed in CR indicate the different fermentation period used in production of CR soy sauce, on the other hand, the concentration of some fermentation cycle metabolites, such as acetate and sucrose, can be divided into two groups. The concentrations of these fermentation cycle metabolites were lower in CR and Singapore Kikkoman (SK, whereas much higher in Japanese shoyu (JS and Taiwan (China light (TL, which depict the influence of climatic conditions. Therefore, the results of our study directly indicate the influences of traditional ways of fermentation, climatic conditions and the selection of raw materials and can be helpful for consumers to choose their desired soy sauce products, as well as for researchers in further authentication studies about soy sauce.

  4. NMR-based metabolomics of water-buffalo milk after conventional or biological feeding

    Directory of Open Access Journals (Sweden)

    Pierluigi Mazzei

    2018-02-01

    Full Text Available Abstract Background Biological farming in dairy production is often advocated as one of the most virtuous solutions to the environmental problems of conventional farming while improving the sustainability of production and cattle welfare. However, it is still under debate whether the conversion from conventional to biological farming has an influence on milk composition. In addition, the possible frauds related to biological dairy products call for analytical tools enabling the authentication of products quality and consumers protection. The aim of this work was to determine the composition of milk produced by water-buffaloes and to identify the specific metabolic profiles discriminating a biological from a conventional feeding diet. Methods Liquid-state 1H, 13C, and 31P nuclear magnetic resonance (NMR spectroscopies were used to study milk samples which were supplied during a 2-year-long experimentation by a single dairy farm and sampled from conventionally and biologically fed buffaloes (CFM and BFM, respectively. For each milk sample, we obtained NMR spectra of both raw milk and milk cream fractions comprising neutral lipids and phospholipids. Results The elaboration of multinuclear spectroscopic NMR results by the principal component analysis (PCA enabled the identification of diagnostic differences in the milk composition between CFM and BFM samples. In particular, BFM were characterized by larger content of unsaturated lipids and phosphatidylcholine. Our findings confirmed that the conversion from a conventional to biological feeding regime influenced the buffalo milk composition, with possible implications for sensorial and nutritional properties of dairy products. Finally, the analytical methodology of NMR spectroscopy shown here may be considered as a useful tool to assess the quality and the authenticity of biological milk.

  5. Harvest year effects on Apulian EVOOs evaluated by1H NMR based metabolomics.

    Science.gov (United States)

    Girelli, Chiara R; Del Coco, Laura; Papadia, Paride; De Pascali, Sandra A; Fanizzi, Francesco P

    2016-01-01

    Nine hundred extra virgin olive oils (EVOO) were extracted from individual olive trees of four olive cultivars (Coratina, Cima di Mola, Ogliarola, Peranzana), originating from the provinces of Bari and Foggia (Apulia region, Southern Italy) and collected during two consecutive harvesting seasons (2013/14 and 2014/15). Following genetic identification of individual olive trees, a detailed Apulian EVOO NMR database was built using 900 oils samples obtained from 900 cultivar certified single trees. A study on the olive oil lipid profile was carried out by statistical multivariate analysis (Principal Component Analysis, PCA, Partial Least-Squares Discriminant Analysis, PLS-DA, Orthogonal Partial Least-Squares Discriminant Analysis, OPLS-DA). Influence of cultivar and weather conditions, such as the summer rainfall, on the oil metabolic profile have been evaluated. Mahalanobis distances and J 2 criterion have been measured to assess the quality of resulting scores clusters for each cultivar in the two harvesting campaigns. The four studied cultivars showed non homogeneous behavior. Notwithstanding the geographical spread and the wide number of samples, Coratina showed a consistent behavior of its metabolic profile in the two considered harvests. Among the other three Peranzana showed the second more consistent behavior, while Cima di Mola and Ogliarola having the biggest change over the two years.

  6. Metabolomics study of cereal grains reveals the discriminative metabolic markers associated with anatomical compartments

    Directory of Open Access Journals (Sweden)

    A.A. Moazzami

    2015-06-01

    Full Text Available This study used NMR-based metabolomics to compare the metabolic profile of different anatomical compartments of cereal grains i.e. bran and endosperm in order to gain further insightsinto their possible role in the beneficial health effects of whole grain products (WG. Polar watersoluble metabolites in 64 bran and endosperm, samples from rye and wheat were observed using600 MHz NMR. Bran samples had higher contents of 12 metabolites than endosperm samples. A comparative approach revealed higher contents of azelaic acid and sebacic acid in bran than in endosperm. In a pilot study, the consumption of WG rye bread (485 g caused NMR signals in 24h urine corresponding to azelaic acid. The relatively high abundance, anatomical specificity, patternof metabolism, urinary excretion in human, antibacterial, and anticancer activities suggest further studying of azelaic acid when exposure to WG or beneficial effects of WG are investigated.

  7. Metabolomics reveals the metabolic shifts following an intervention with rye bread in postmenopausal women- a randomized control trial

    Directory of Open Access Journals (Sweden)

    Moazzami Ali A

    2012-10-01

    Full Text Available Abstract Background Epidemiological studies have consistently shown that whole grain (WG cereals can protect against the development of chronic diseases, but the underlying mechanism is not fully understood. Among WG products, WG rye is considered even more potent because of its unique discrepancy in postprandial insulin and glucose responses known as the rye factor. In this study, an NMR-based metabolomics approach was applied to study the metabolic effects of WG rye as a tool to determine the beneficial effects of WG rye on human health. Methods Thirty-three postmenopausal Finnish women with elevated serum total cholesterol (5.0-8.5 mmol/L and BMI of 20–33 kg/m2 consumed a minimum of 20% of their daily energy intake as high fiber WG rye bread (RB or refined wheat bread (WB in a randomized, controlled, crossover design with two 8-wk intervention periods separated by an 8-wk washout period. At the end of each intervention period, fasting serum was collected for NMR-based metabolomics and the analysis of cholesterol fractions. Multilevel partial least squares discriminant analysis was used for paired comparisons of multivariate data. Results The metabolomics analysis of serum showed lower leucine and isoleucine and higher betaine and N,N-dimethylglycine levels after RB than WB intake. To further investigate the metabolic effects of RB, the serum cholesterol fractions were measured. Total- and LDL-cholesterol levels were higher after RB intake than after WB (p Conclusions This study revealed favorable shifts in branched amino acid and single carbon metabolism and an unfavorable shift in serum cholesterol levels after RB intake in postmenopausal women, which should be considered for evaluating health beneficial effects of rye products.

  8. NMR-Based Identification of Metabolites in Polar and Non-Polar Extracts of Avian Liver.

    Science.gov (United States)

    Fathi, Fariba; Brun, Antonio; Rott, Katherine H; Falco Cobra, Paulo; Tonelli, Marco; Eghbalnia, Hamid R; Caviedes-Vidal, Enrique; Karasov, William H; Markley, John L

    2017-11-16

    Metabolites present in liver provide important clues regarding the physiological state of an organism. The aim of this work was to evaluate a protocol for high-throughput NMR-based analysis of polar and non-polar metabolites from a small quantity of liver tissue. We extracted the tissue with a methanol/chloroform/water mixture and isolated the polar metabolites from the methanol/water layer and the non-polar metabolites from the chloroform layer. Following drying, we re-solubilized the fractions for analysis with a 600 MHz NMR spectrometer equipped with a 1.7 mm cryogenic probe. In order to evaluate the feasibility of this protocol for metabolomics studies, we analyzed the metabolic profile of livers from house sparrow ( Passer domesticus ) nestlings raised on two different diets: livers from 10 nestlings raised on a high protein diet (HP) for 4 d and livers from 12 nestlings raised on the HP diet for 3 d and then switched to a high carbohydrate diet (HC) for 1 d. The protocol enabled the detection of 52 polar and nine non-polar metabolites in ¹H NMR spectra of the extracts. We analyzed the lipophilic metabolites by one-way ANOVA to assess statistically significant concentration differences between the two groups. The results of our studies demonstrate that the protocol described here can be exploited for high-throughput screening of small quantities of liver tissue (approx. 100 mg wet mass) obtainable from small animals.

  9. A GC-MS based metabolomics approach to determine the effect of salinity on Kimchi.

    Science.gov (United States)

    Seo, Seung-Ho; Park, Seong-Eun; Kim, Eun-Ju; Lee, Kyoung-In; Na, Chang-Su; Son, Hong-Seok

    2018-03-01

    GC-MS datasets coupled with multivariate statistical analysis were used to investigate metabolic changes in Kimchi during fermentation and metabolic differences in Kimchi added with various amounts (0, 1.25, 2.5, and 5%) of salts. PCA score plot obtained after 1day of fermentation were clearly distinguishable by different salinity groups, implying that early fermentation speed varied according to Kimchi salinity. PLS-DA score plot from data obtained on the 50th day of fermentation also showed a clear separation, indicating metabolites of Kimchi were different according to salinity. Concentrations of lactic acid, acetic acid, and xylitol were the highest in Kimchi with 5% salinity while concentration of fumaric acid was the highest in Kimchi with 0% salinity. Rarefaction curves showed that numbers of operational taxonomic units (OTUs) in Kimchi with 5% salinity were higher than those in Kimchi with 0% salinity, implying that Kimchi with 5% salinity had more bacterial diversities. This study highlights the applicability of GC-MS based metabolomics for evaluating fermentative characteristics of Kimchi with different salinities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Metabolomic and physico-chemical approach unravel dynamic regulation of calcium in sweet cherry fruit physiology.

    Science.gov (United States)

    Michailidis, Michail; Karagiannis, Evangelos; Tanou, Georgia; Karamanoli, Katerina; Lazaridou, Athina; Matsi, Theodora; Molassiotis, Athanassios

    2017-07-01

    Calcium (Ca 2 ) nutrition has a significant role in fruit physiology; however, the underlying mechanism is still unclear. In this study, fruit quality in response to CaCl 2 , applied via foliar sprays (Ca 2 ) or/and hydro-cooling water (Ca HC ), was characterized in 'Lapins' cherries at harvest, just after cold storage (20 days at 0 °C) as well as after cold storage followed by 2 days at 20 °C, herein defined as shelf-life period. Data indicated that pre- and post-harvest Ca 2+ applications increased total Ca 2+ and cell wall bound Ca 2+ , respectively. Treatment with Ca reduced cracking whereas Ca + Ca HC condition depressed stem browning. Both skin penetration and stem removal were affected by Ca 2+ feeding. Also, several color- and antioxidant-related parameters were induced by Ca 2+ treatments. Metabolomic analysis revealed significant alterations in primary metabolites among the Ca 2+ treatments, including sugars (eg., glucose, fructose), soluble alcohols (eg., arabitol, sorbitol), organic acids (eg.,malate, quinate) and amino acids (eg., glycine, beta-alanine). This work helps to improve our knowledge on the fruit's response to Ca 2+ nutrition. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Prematurity at birth and increased cardiovascular risk: is a metabolomic approach the right solution?

    Directory of Open Access Journals (Sweden)

    Pier Paolo Bassareo

    2013-04-01

    Full Text Available In recent decades, steady progress in the field of physiopathology and the use of increasingly sophisticated technological procedures have resulted in an increase in the survival rates of babies born preterm. However, some of these individuals, although surviving, may at times be faced with severe consequences. Some conditions may be manifested at an early age (particularly dysmorphisms as well as neurological and ophthalmological conditions, whilst others (namely renal and cardiovascular events, evolve gradually and are manifested only years later. In a number of reports in literature it has been demonstrated how prematurity and consequent low weight at birth are risk factors for developing hypercholesterolemia, arterial hypertension, obesity, type 2 diabetes, QTc interval prolongation at basal electrocardiogram, early endothelial dysfunction, structural and functional cardiac modifications, and increased death rates from coronary heart disease. Even some drugs used in the neonatal management of preterm babies may have a detrimental effect on their future cardiac function. The aim of this narrative review was to overview the up to know few reports about metabolomics (a new and promising technique which allows the systematic study of the complete set of metabolites in a biological sample applied to the identification of a possible future cardiovascular system involvement in subjects born preterm. An outlook of the requirements for future researches has been also discussed.

  12. Cisplatin-induced metabolome changes in serum: an experimental approach to identify markers for ototoxicity.

    Science.gov (United States)

    Videhult Pierre, Pernilla; Haglöf, Jakob; Linder, Birgitta; Engskog, Mikael K R; Arvidsson, Torbjörn; Pettersson, Curt; Fransson, Anette; Laurell, Göran

    2017-10-01

    Ototoxicity from treatment with the anticancer drug cisplatin remains a clinical problem. A wide range of intracellular targets of cisplatin has been found in vivo. To investigate cisplatin-induced change of the serum metabolite profile and its association with ototoxicity. Guinea pigs (n = 14) were treated with cisplatin (8 mg/kg b.w., i.v.) 30 min after administration of the otoprotector candidate sodium thiosulfate (group STS; n = 7) or sodium chloride (group NaCl; n = 7). Ototoxicity was evaluated by ABR (3-30 kHz) before and 4 d after drug treatment, and by assessment of hair cell loss. A blood sample was drawn before and 4 d after drug treatment and the polar metabolome in serum was analyzed using LC-MS. Cisplatin-treatment caused significant threshold elevations and outer hair cell (OHC) loss in both groups. The ototoxicity was generally lower in group STS, but a significant difference was reached only at 30 kHz (p = .007). Cisplatin treatment altered the metabolite profile significantly and similarly in both groups. A significant inverse correlation was found between L-acetylcarnitine, N-acetylneuraminic acid, ceramide, and cysteinylserine and high frequency hearing loss in group NaCl. The implication of these correlations should be explored in targeted studies.

  13. Metabolomic approach reveals the biochemical mechanisms underlying drought stress tolerance in thyme.

    Science.gov (United States)

    Moradi, Parviz; Ford-Lloyd, Brian; Pritchard, Jeremy

    2017-06-15

    Thyme as a perennial herb has been recognized globally for its antimicrobial, antiseptic and spasmolytic effects. In this investigation, we have used non-targeted metabolite and volatile profiling combined with the morpho-physiological parameters in order to understand the responses at the metabolite and physiological level in drought sensitive and tolerant thyme plant populations. The results at the metabolic level identified the significantly affected metabolites. Significant metabolites belonging to different chemical classes consisting amino acids, carbohydrates, organic acids and lipids have been compared in tolerant and sensitive plants. These compounds may take a role through mechanisms including osmotic adjustment, ROS scavenging, cellular components protection and membrane lipid changes, hormone inductions in which the key metabolites were proline, betain, mannitol, sorbitol, ascorbate, jasmonate, unsaturated fatty acids and tocopherol. Regarding with volatile profiling, sensitive plants showed an increased-then-decreased trend at major terpenes apart from alpha-cubebene and germacrene-D. In contrast, tolerant populations had unchanged terpenes during the water stress period with an elevation at last day. These results suggesting that the two populations are employing different strategies. The combination of metabolite profiling and physiological parameters assisted to understand precisely the mechanisms of plant response at volatile metabolome level. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Different Statistical Approaches to Investigate Porcine Muscle Metabolome Profiles to Highlight New Biomarkers for Pork Quality Assessment.

    Directory of Open Access Journals (Sweden)

    Julia Welzenbach

    Full Text Available The aim of this study was to elucidate the underlying biochemical processes to identify potential key molecules of meat quality traits drip loss, pH of meat 1 h post-mortem (pH1, pH in meat 24 h post-mortem (pH24 and meat color. An untargeted metabolomics approach detected the profiles of 393 annotated and 1,600 unknown metabolites in 97 Duroc × Pietrain pigs. Despite obvious differences regarding the statistical approaches, the four applied methods, namely correlation analysis, principal component analysis, weighted network analysis (WNA and random forest regression (RFR, revealed mainly concordant results. Our findings lead to the conclusion that meat quality traits pH1, pH24 and color are strongly influenced by processes of post-mortem energy metabolism like glycolysis and pentose phosphate pathway, whereas drip loss is significantly associated with metabolites of lipid metabolism. In case of drip loss, RFR was the most suitable method to identify reliable biomarkers and to predict the phenotype based on metabolites. On the other hand, WNA provides the best parameters to investigate the metabolite interactions and to clarify the complex molecular background of meat quality traits. In summary, it was possible to attain findings on the interaction of meat quality traits and their underlying biochemical processes. The detected key metabolites might be better indicators of meat quality especially of drip loss than the measured phenotype itself and potentially might be used as bio indicators.

  15. Analysis of urinary metabolomic profiling for unstable angina pectoris disease based on nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Li, Zhongfeng; Liu, Xinfeng; Wang, Juan; Gao, Jian; Guo, Shuzhen; Gao, Kuo; Man, Hongxue; Wang, Yingfeng; Chen, Jianxin; Wang, Wei

    2015-12-01

    (1)H NMR-based urinary metabolic profiling is used for investigating the unstable angina pectoris (UAP) metabolic signatures, in order to find out candidate biomarkers to facilitate medical diagnosis. In this work, 27 urine samples from UAP patients and 20 healthy controls were used. The metabolic profiles of the samples were analyzed by multivariate statistics analysis, including PCA, PLS-DA and OPLS-DA. The PCA analysis exhibited slight separation with R(2)X of 0.681 and Q2 of 0.251, while the PLS-DA (R(2)X = 0.121, R(2)Y = 0.931, and Q(2) = 0.661) and the OPLS-DA (R(2)X = 0.121, R(2)Y = 0.931, Q(2) = 0.653) demonstrated that the model showed good performance. By OPLS-DA, 20 metabolites were identified. A diagnostic model was further constructed using the receiver-operator characteristic (ROC) curves (AUC = 0.953), which exhibited a satisfying sensitivity of 92.6%, specificity of 90% and accuracy of 89.1%. The results demonstrated that the NMR-based metabolomics approach showed good performance in identifying diagnostic urinary biomarkers, providing new insights into the metabolic process related to UAP.

  16. Nuclear magnetic resonance-based metabolomics for prediction of gastric damage induced by indomethacin in rats

    Energy Technology Data Exchange (ETDEWEB)

    Um, So Young [Department of Pharmacology, National Institute of Toxicological Research, Korea Food and Drug Administration, 643 Yeonje-ri, Gangoe-myeon, Cheongwon-gun, Chungbuk (Korea, Republic of); Division of Life and Pharmaceutical Science and College of Pharmacy, Ewha Womans University, 52 Ewahyeodae-gil, Seodaemun-gu, Seoul (Korea, Republic of); Park, Jung Hyun [Division of Life and Pharmaceutical Science and College of Pharmacy, Ewha Womans University, 52 Ewahyeodae-gil, Seodaemun-gu, Seoul (Korea, Republic of); Chung, Myeon Woo [Department of Pharmacology, National Institute of Toxicological Research, Korea Food and Drug Administration, 643 Yeonje-ri, Gangoe-myeon, Cheongwon-gun, Chungbuk (Korea, Republic of); Kim, Kyu-Bong [College of Pharmacy, Dankook University, Dandae-ro, Cheonan, Chungnam (Korea, Republic of); Kim, Seon Hwa [Department of Pharmacology, National Institute of Toxicological Research, Korea Food and Drug Administration, 643 Yeonje-ri, Gangoe-myeon, Cheongwon-gun, Chungbuk (Korea, Republic of); Division of Life and Pharmaceutical Science and College of Pharmacy, Ewha Womans University, 52 Ewahyeodae-gil, Seodaemun-gu, Seoul (Korea, Republic of); College of Pharmacy, Dankook University, Dandae-ro, Cheonan, Chungnam (Korea, Republic of); Choi, Ki Hwan, E-mail: hyokwa11@korea.kr [Department of Pharmacology, National Institute of Toxicological Research, Korea Food and Drug Administration, 643 Yeonje-ri, Gangoe-myeon, Cheongwon-gun, Chungbuk (Korea, Republic of); Lee, Hwa Jeong, E-mail: hwalee@ewha.ac.kr [Division of Life and Pharmaceutical Science and College of Pharmacy, Ewha Womans University, 52 Ewahyeodae-gil, Seodaemun-gu, Seoul (Korea, Republic of)

    2012-04-13

    NSAIDs can be screened in the preclinical stage of drug development using a NMR based metabolomics approach.

  17. Nuclear magnetic resonance-based metabolomics for prediction of gastric damage induced by indomethacin in rats

    International Nuclear Information System (INIS)

    Um, So Young; Park, Jung Hyun; Chung, Myeon Woo; Kim, Kyu-Bong; Kim, Seon Hwa; Choi, Ki Hwan; Lee, Hwa Jeong

    2012-01-01

    Highlights: ► NMR based metabolomics – gastric damage by indomethacin. ► Pattern recognition analysis was performed to biomarkers of gastric damage. ► 2-Oxoglutarate, acetate, taurine and hippurate were selected as putative biomarkers. ► The gastric damage induced by NSAIDs can be screened in the preclinical step of drug. - Abstract: Non-steroidal anti-inflammatory drugs (NSAIDs) have side effects including gastric erosions, ulceration and bleeding. In this study, pattern recognition analysis of the 1 H-nuclear magnetic resonance (NMR) spectra of urine was performed to develop surrogate biomarkers related to the gastrointestinal (GI) damage induced by indomethacin in rats. Urine was collected for 5 h after oral administration of indomethacin (25 mg kg −1 ) or co-administration with cimetidine (100 mg kg −1 ), which protects against GI damage. The 1 H-NMR urine spectra were divided into spectral bins (0.04 ppm) for global profiling, and 36 endogenous metabolites were assigned for targeted profiling. The level of gastric damage in each animal was also determined. Indomethacin caused severe gastric damage; however, indomethacin administered with cimetidine did not. Simultaneously, the patterns of changes in their endogenous metabolites were different. Multivariate data analyses were carried out to recognize the spectral pattern of endogenous metabolites related to indomethacin using partial least square-discrimination analysis. In targeted profiling, a few endogenous metabolites, 2-oxoglutarate, acetate, taurine and hippurate, were selected as putative biomarkers for the gastric damage induced by indomethacin. These metabolites changed depending on the degree of GI damage, although the same dose of indomethacin (10 mg kg −1 ) was administered to rats. The results of global and targeted profiling suggest that the gastric damage induced by NSAIDs can be screened in the preclinical stage of drug development using a NMR based metabolomics approach.

  18. Cadmium chloride inhibits lactate gluconeogenesis in mouse renal proximal tubules: An in vitro metabolomic approach with (13)C NMR.

    Science.gov (United States)

    Faiz, Hassan; Boghossian, Michelle; Martin, Guy; Baverel, Gabriel; Ferrier, Bernard; Conjard-Duplany, Agnès

    2015-11-04

    Using isolated mouse renal proximal tubules incubated with lactate as substrate, we have found that the addition of 1-50 μM cadmium chloride (CdCl2) caused a concentration-dependent decrease in lactate utilization, in glucose production and in the cellular level of ATP, coenzyme A, acetyl-coenzyme A and glutathione (reduced and oxidized forms). Combining enzymatic and (13)C NMR measurements in a cellular metabolomic approach, we have shown that, in the presence of 10 μM CdCl2, fluxes through the key-enzymes of gluconeogenesis, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase were greatly depressed by cadmium. This was accompanied by a reduction in fluxes through the enzymes of the tricarboxylic acid cycle. Comparing the mouse and human renal metabolic responses to cadmium, it is interesting to observe that the mouse renal proximal tubule was much more sensitive than the human renal proximal tubule to the adverse effects of CdCl2. As far as renal gluconeogenesis is concerned, the mouse seems to be an appropriate and convenient animal model to study the mechanism of cadmium nephrotoxicity. However, the data obtained in the mouse should be extrapolated to humans with caution because the inhibition of fluxes through the enzymes of the tricarboxylic acid cycle in mouse tubules were not observed in human tubules. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Changes in extra-virgin olive oil added with Lycium barbarum L. carotenoids during frying: Chemical analyses and metabolomic approach.

    Science.gov (United States)

    Blasi, F; Rocchetti, G; Montesano, D; Lucini, L; Chiodelli, G; Ghisoni, S; Baccolo, G; Simonetti, M S; Cossignani, L

    2018-03-01

    In this work, an Italian extra-virgin olive oil (EVOO) sample and the same sample added with a carotenoid-rich nutraceutical extract from Lycium barbarum L. (EVOOCar) were subjected to a frying process to comparatively assess chemical and physical changes and heat stability. Oxidation progress was monitored by measuring oil quality changes such as peroxide value, free acidity, K232, K268, and fatty acid composition as well as minor compound content, phenols, α-tocopherol, and carotenoids. An UHPLC/QTOF-MS metabolomics approach discriminated the two oil samples based on their chemical changes during frying, identifying also the phenolic classes most exposed to statistically significant variations. Partial least square discriminant analysis and volcano analysis were applied together to identify the most significant markers allowing group separation. The decrease in total phenolic content was lower in EVOOCar than in EVOO during frying. Monounsaturated and polyunsaturated fatty acids showed a significant percentage loss, 3.7% and 17.2%, respectively, in EVOO after 180min frying at 180°C, while they remained constant or slightly changed in EVOOCar. Zeaxanthin added to the oil rapidly decreased during the frying process. These findings showed that the addition of a carotenoid extract from L. barbarum can help to improve the oxidative stability of extra-virgin olive oil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Comparative investigation of seed coats of brown- versus yellow-colored soybean seeds using an integrated proteomics and metabolomics approach.

    Science.gov (United States)

    Gupta, Ravi; Min, Chul Woo; Kim, So Wun; Wang, Yiming; Agrawal, Ganesh Kumar; Rakwal, Randeep; Kim, Sang Gon; Lee, Byong Won; Ko, Jong Min; Baek, In Yeol; Bae, Dong Won; Kim, Sun Tae

    2015-05-01

    Seed coat color is an important attribute determining consumption of soybean seeds. Soybean cultivar Mallikong (M) has yellow seed coat while its naturally mutated cultivar Mallikong mutant (MM), has brown colored seed coat. We used integrated proteomics and metabolomics approach to investigate the differences between seed coats of M and MM during different stages of seed development (4, 5, and 6 weeks after flowering). 2DE profiling of total seed coat proteins from three stages showed 178 differentially expressed spots between M and MM of which 172 were identified by MALDI-TOF/TOF. Of these, 62 were upregulated and 105 were downregulated in MM compared with M, while five spots were detected only in MM. Proteins involved in primary metabolism showed downregulation in MM suggesting energy in MM might be utilized for proanthocyanidin biosynthesis via secondary metabolic pathways that leads to the development of brown seed coat color. Besides, downregulation of two isoforms of isoflavone reductase indicated reduced isoflavones in seed coat of MM that was confirmed by quantitative estimation of total and individual isoflavones using HPLC. We propose that low isoflavones level in MM may offer a high substrate for proanthocyanidin production that results in the development of brown seed coat in MM. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Metabolic network segmentation: A probabilistic graphical modeling approach to identify the sites and sequential order of metabolic regulation from non-targeted metabolomics data.

    Directory of Open Access Journals (Sweden)

    Andreas Kuehne

    2017-06-01

    Full Text Available In recent years, the number of large-scale metabolomics studies on various cellular processes in different organisms has increased drastically. However, it remains a major challenge to perform a systematic identification of mechanistic regulatory events that mediate the observed changes in metabolite levels, due to complex interdependencies within metabolic networks. We present the metabolic network segmentation (MNS algorithm, a probabilistic graphical modeling approach that enables genome-scale, automated prediction of regulated metabolic reactions from differential or serial metabolomics data. The algorithm sections the metabolic network into modules of metabolites with consistent changes. Metabolic reactions that connect different modules are the most likely sites of metabolic regulation. In contrast to most state-of-the-art methods, the MNS algorithm is independent of arbitrary pathway definitions, and its probabilistic nature facilitates assessments of noisy and incomplete measurements. With serial (i.e., time-resolved data, the MNS algorithm also indicates the sequential order of metabolic regulation. We demonstrated the power and flexibility of the MNS algorithm with three, realistic case studies with bacterial and human cells. Thus, this approach enables the identification of mechanistic regulatory events from large-scale metabolomics data, and contributes to the understanding of metabolic processes and their interplay with cellular signaling and regulation processes.

  2. NMR-based urine analysis in rats: prediction of proximal tubule kidney toxicity and phospholipidosis.

    Science.gov (United States)

    Lienemann, Kai; Plötz, Thomas; Pestel, Sabine

    2008-01-01

    The aim of safety pharmacology is early detection of compound-induced side-effects. NMR-based urine analysis followed by multivariate data analysis (metabonomics) identifies efficiently differences between toxic and non-toxic compounds; but in most cases multiple administrations of the test compound are necessary. We tested the feasibility of detecting proximal tubule kidney toxicity and phospholipidosis with metabonomics techniques after single compound administration as an early safety pharmacology approach. Rats were treated orally, intravenously, inhalatively or intraperitoneally with different test compounds. Urine was collected at 0-8 h and 8-24 h after compound administration, and (1)H NMR-patterns were recorded from the samples. Variation of post-processing and feature extraction methods led to different views on the data. Support Vector Machines were trained on these different data sets and then aggregated as experts in an Ensemble. Finally, validity was monitored with a cross-validation study using a training, validation, and test data set. Proximal tubule kidney toxicity could be predicted with reasonable total classification accuracy (85%), specificity (88%) and sensitivity (78%). In comparison to alternative histological studies, results were obtained quicker, compound need was reduced, and very importantly fewer animals were needed. In contrast, the induction of phospholipidosis by the test compounds could not be predicted using NMR-based urine analysis or the previously published biomarker PAG. NMR-based urine analysis was shown to effectively predict proximal tubule kidney toxicity after single compound administration in rats. Thus, this experimental design allows early detection of toxicity risks with relatively low amounts of compound in a reasonably short period of time.

  3. Computer-aided design of fragment mixtures for NMR-based screening.

    Science.gov (United States)

    Arroyo, Xavier; Goldflam, Michael; Feliz, Miguel; Belda, Ignasi; Giralt, Ernest

    2013-01-01

    Fragment-based drug discovery is widely applied both in industrial and in academic screening programs. Several screening techniques rely on NMR to detect binding of a fragment to a target. NMR-based methods are among the most sensitive techniques and have the further advantage of yielding a low rate of false positives and negatives. However, NMR is intrinsically slower than other screening techniques; thus, to increase throughput in NMR-based screening, researchers often assay mixtures of fragments, rather than single fragments. Herein we present a fast and straightforward computer-aided method to design mixtures of fragments taken from a library that have minimized NMR signal overlap. This approach enables direct identification of one or several active fragments without the need for deconvolution. Our approach entails encoding of NMR spectra into a computer-readable format that we call a fingerprint, and minimizing the global signal overlap through a Monte Carlo algorithm. The scoring function used favors a homogenous distribution of the global signal overlap. The method does not require additional experimental work: the only data required are NMR spectra, which are generally recorded for each compound as a quality control measure before its insertion into the library.

  4. Nontargeted metabolomics approach for the differentiation of cultivation ages of mountain cultivated ginseng leaves using UHPLC/QTOF-MS.

    Science.gov (United States)

    Chang, Xiangwei; Zhang, Juanjuan; Li, Dekun; Zhou, Dazheng; Zhang, Yuling; Wang, Jincheng; Hu, Bing; Ju, Aichun; Ye, Zhengliang

    2017-07-15

    The adulteration or falsification of the cultivation age of mountain cultivated ginseng (MCG) has been a serious problem in the commercial MCG market. To develop an efficient discrimination tool for the cultivation age and to explore potential age-dependent markers, an optimized ultra high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/QTOF-MS)-based metabolomics approach was applied in the global metabolite profiling of 156 MCG leaf (MGL) samples aged from 6 to 18 years. Multivariate statistical methods such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used to compare the derived patterns between MGL samples of different cultivation ages. The present study demonstrated that 6-18-year-old MGL samples can be successfully discriminated using two simple successive steps, together with four PLS-DA discrimination models. Furthermore, 39 robust age-dependent markers enabling differentiation among the 6-18-year-old MGL samples were discovered. The results were validated by a permutation test and an external test set to verify the predictability and reliability of the established discrimination models. More importantly, without destroying the MCG roots, the proposed approach could also be applied to discriminate MCG root ages indirectly, using a minimum amount of homophyletic MGL samples combined with the established four PLS-DA models and identified markers. Additionally, to the best of our knowledge, this is the first study in which 6-18-year-old MCG root ages have been nondestructively differentiated by analyzing homophyletic MGL samples using UHPLC/QTOF-MS analysis and two simple successive steps together with four PLS-DA models. The method developed in this study can be used as a standard protocol for discriminating and predicting MGL ages directly and homophyletic MCG root ages indirectly. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A multi-platform metabolomics approach identifies highly specific biomarkers of bacterial diversity in the vagina of pregnant and non-pregnant women.

    Science.gov (United States)

    McMillan, Amy; Rulisa, Stephen; Sumarah, Mark; Macklaim, Jean M; Renaud, Justin; Bisanz, Jordan E; Gloor, Gregory B; Reid, Gregor

    2015-09-21

    Bacterial vaginosis (BV) increases transmission of HIV, enhances the risk of preterm labour, and is associated with malodour. Clinical diagnosis often relies on microscopy, which may not reflect the microbiota composition accurately. We use an untargeted metabolomics approach, whereby we normalize the weight of samples prior to analysis, to obtained precise measurements of metabolites in vaginal fluid. We identify biomarkers for BV with high sensitivity and specificity (AUC = 0.99) in a cohort of 131 pregnant and non-pregnant Rwandan women, and demonstrate that the vaginal metabolome is strongly associated with bacterial diversity. Metabolites associated with high diversity and clinical BV include 2-hydroxyisovalerate and γ-hydroxybutyrate (GHB), but not succinate, which is produced by both Lactobacillus crispatus and BV-associated anaerobes in vitro. Biomarkers associated with high diversity and clinical BV are independent of pregnancy status, and were validated in a blinded replication cohort from Tanzania (n = 45), where we predicted clinical BV with 91% accuracy. Correlations between the metabolome and microbiota identified Gardnerella vaginalis as a putative producer of GHB, and we demonstrate production by this species in vitro. This work illustrates how changes in community structure alter the chemical composition of the vagina, and identifies highly specific biomarkers for a common condition.

  6. Gas chromatography-mass spectrometry based metabolomic approach for optimization and toxicity evaluation of earthworm sub-lethal responses to carbofuran.

    Directory of Open Access Journals (Sweden)

    Mohana Krishna Reddy Mudiam

    Full Text Available Despite recent advances in understanding mechanism of toxicity, the development of biomarkers (biochemicals that vary significantly with exposure to chemicals for pesticides and environmental contaminants exposure is still a challenging task. Carbofuran is one of the most commonly used pesticides in agriculture and said to be most toxic carbamate pesticide. It is necessary to identify the biochemicals that can vary significantly after carbofuran exposure on earthworms which will help to assess the soil ecotoxicity. Initially, we have optimized the extraction conditions which are suitable for high-throughput gas chromatography mass spectrometry (GC-MS based metabolomics for the tissue of earthworm, Metaphire posthuma. Upon evaluation of five different extraction solvent systems, 80% methanol was found to have good extraction efficiency based on the yields of metabolites, multivariate analysis, total number of peaks and reproducibility of metabolites. Later the toxicity evaluation was performed to characterize the tissue specific metabolomic perturbation of earthworm, Metaphire posthuma after exposure to carbofuran at three different concentration levels (0.15, 0.3 and 0.6 mg/kg of soil. Seventeen metabolites, contributing to the best classification performance of highest dose dependent carbofuran exposed earthworms from healthy controls were identified. This study suggests that GC-MS based metabolomic approach was precise and sensitive to measure the earthworm responses to carbofuran exposure in soil, and can be used as a promising tool for environmental eco-toxicological studies.

  7. New findings on the in vivo antioxidant activity of Curcuma longa extract by an integrated (1)H NMR and HPLC-MS metabolomic approach.

    Science.gov (United States)

    Dall'Acqua, Stefano; Stocchero, Matteo; Boschiero, Irene; Schiavon, Mariano; Golob, Samuel; Uddin, Jalal; Voinovich, Dario; Mammi, Stefano; Schievano, Elisabetta

    2016-03-01

    Curcuminoids possess powerful antioxidant activity as demonstrated in many chemical in vitro tests and in several in vivo trials. Nevertheless, the mechanism of this activity is not completely elucidated and studies on the in vivo antioxidant effects are still needed. Metabolomics may be used as an attractive approach for such studies and in this paper, we describe the effects of oral administration of a Curcuma longa L. extract (150 mg/kg of total curcuminoids) to 12 healthy rats with particular attention to urinary markers of oxidative stress. The experiment was carried out over 33 days and changes in the 24-h urine samples metabolome were evaluated by (1)H NMR and HPLC-MS. Both techniques produced similar representations for the collected samples confirming our previous study. Modifications of the urinary metabolome lead to the observation of different variables proving the complementarity of (1)H NMR and HPLC-MS for metabolomic purposes. The urinary levels of allantoin, m-tyrosine, 8-hydroxy-2'-deoxyguanosine, and nitrotyrosine were decreased in the treated group thus supporting an in vivo antioxidant effect of the oral administration of Curcuma extract to healthy rats. On the other hand, urinary TMAO levels were higher in the treated compared to the control group suggesting a role of curcumin supplementation on microbiota or on TMAO urinary excretion. Furthermore, the urinary levels of the sulphur containing compounds taurine and cystine were also changed suggesting a role for such constituents in the biochemical pathways involved in Curcuma extract bioactivity and indicating the need for further investigation on the complex role of antioxidant curcumin effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Fatty acid and metabolomic profiling approaches differentiate heterotrophic and mixotrophic culture conditions in a microalgal food supplement 'Euglena'.

    Science.gov (United States)

    Zeng, Min; Hao, Wenlong; Zou, Yongdong; Shi, Mengliang; Jiang, Yongguang; Xiao, Peng; Lei, Anping; Hu, Zhangli; Zhang, Weiwen; Zhao, Liqing; Wang, Jiangxin

    2016-06-02

    Microalgae have been recognized as a good food source of natural biologically active ingredients. Among them, the green microalga Euglena is a very promising food and nutritional supplements, providing high value-added poly-unsaturated fatty acids, paramylon and proteins. Different culture conditions could affect the chemical composition and food quality of microalgal cells. However, little information is available for distinguishing the different cellular changes especially the active ingredients including poly-saturated fatty acids and other metabolites under different culture conditions, such as light and dark. In this study, together with fatty acid profiling, we applied a gas chromatography-mass spectrometry (GC-MS)-based metabolomics to differentiate hetrotrophic and mixotrophic culture conditions. This study suggests metabolomics can shed light on understanding metabolomic changes under different culture conditions and provides a theoretical basis for industrial applications of microalgae, as food with better high-quality active ingredients.

  9. Metabolomics in Toxicology and Preclinical Research

    Science.gov (United States)

    Ramirez, Tzutzuy; Daneshian, Mardas; Kamp, Hennicke; Bois, Frederic Y.; Clench, Malcolm R.; Coen, Muireann; Donley, Beth; Fischer, Steven M.; Ekman, Drew R.; Fabian, Eric; Guillou, Claude; Heuer, Joachim; Hogberg, Helena T.; Jungnickel, Harald; Keun, Hector C.; Krennrich, Gerhard; Krupp, Eckart; Luch, Andreas; Noor, Fozia; Peter, Erik; Riefke, Bjoern; Seymour, Mark; Skinner, Nigel; Smirnova, Lena; Verheij, Elwin; Wagner, Silvia; Hartung, Thomas; van Ravenzwaay, Bennard; Leist, Marcel

    2013-01-01

    Summary Metabolomics, the comprehensive analysis of metabolites in a biological system, provides detailed information about the biochemical/physiological status of a biological system, and about the changes caused by chemicals. Metabolomics analysis is used in many fields, ranging from the analysis of the physiological status of genetically modified organisms in safety science to the evaluation of human health conditions. In toxicology, metabolomics is the -omics discipline that is most closely related to classical knowledge of disturbed biochemical pathways. It allows rapid identification of the potential targets of a hazardous compound. It can give information on target organs and often can help to improve our understanding regarding the mode-of-action of a given compound. Such insights aid the discovery of biomarkers that either indicate pathophysiological conditions or help the monitoring of the efficacy of drug therapies. The first toxicological applications of metabolomics were for mechanistic research, but different ways to use the technology in a regulatory context are being explored. Ideally, further progress in that direction will position the metabolomics approach to address the challenges of toxicology of the 21st century. To address these issues, scientists from academia, industry, and regulatory bodies came together in a workshop to discuss the current status of applied metabolomics and its potential in the safety assessment of compounds. We report here on the conclusions of three working groups addressing questions regarding 1) metabolomics for in vitro studies 2) the appropriate use of metabolomics in systems toxicology, and 3) use of metabolomics in a regulatory context. PMID:23665807

  10. Systemic Homeostasis in Metabolome, Ionome, and Microbiome of Wild Yellowfin Goby in Estuarine Ecosystem.

    Science.gov (United States)

    Wei, Feifei; Sakata, Kenji; Asakura, Taiga; Date, Yasuhiro; Kikuchi, Jun

    2018-02-22

    Data-driven approaches were applied to investigate the temporal and spatial changes of 1,022 individuals of wild yellowfin goby and its potential interaction with the estuarine environment in Japan. Nuclear magnetic resonance (NMR)-based metabolomics revealed that growth stage is a primary factor affecting muscle metabolism. Then, the metabolic, elemental and microbial profiles of the pooled samples generated according to either the same habitat or sampling season as well as the river water and sediment samples from their habitats were measured using NMR spectra, inductively coupled plasma optical emission spectrometry and next-generation 16 S rRNA gene sequencing. Hidden interactions in the integrated datasets such as the potential role of intestinal bacteria in the control of spawning migration, essential amino acids and fatty acids synthesis in wild yellowfin goby were further extracted using correlation clustering and market basket analysis-generated networks. Importantly, our systematic analysis of both the seasonal and latitudinal variations in metabolome, ionome and microbiome of wild yellowfin goby pointed out that the environmental factors such as the temperature play important roles in regulating the body homeostasis of wild fish.

  11. Metabolomic profiling of urinary changes in mice with monosodium glutamate-induced obesity.

    Science.gov (United States)

    Pelantová, Helena; Bártová, Simona; Anýž, Jiří; Holubová, Martina; Železná, Blanka; Maletínská, Lenka; Novák, Daniel; Lacinová, Zdena; Šulc, Miroslav; Haluzík, Martin; Kuzma, Marek

    2016-01-01

    Obesity with related complications represents a widespread health problem. The etiopathogenesis of obesity is often studied using numerous rodent models. The mouse model of monosodium glutamate (MSG)-induced obesity was exploited as a model of obesity combined with insulin resistance. The aim of this work was to characterize the metabolic status of MSG mice by NMR-based metabolomics in combination with relevant biochemical and hormonal parameters. NMR analysis of urine at 2, 6, and 9 months revealed altered metabolism of nicotinamide and polyamines, attenuated excretion of major urinary proteins, increased levels of phenylacetylglycine and allantoin, and decreased concentrations of methylamine in urine of MSG-treated mice. Altered levels of creatine, citrate, succinate, and acetate were observed at 2 months of age and approached the values of control mice with aging. The development of obesity and insulin resistance in 6-month-old MSG mice was also accompanied by decreased mRNA expressions of adiponectin, lipogenetic and lipolytic enzymes and peroxisome proliferator-activated receptor-gamma in fat while mRNA expressions of lipogenetic enzymes in the liver were enhanced. At the age of 9 months, biochemical parameters of MSG mice were normalized to the values of the controls. This fact pointed to a limited predictive value of biochemical data up to age of 6 months as NMR metabolomics confirmed altered urine metabolic composition even at 9 months.

  12. A multi-platform metabolomics approach demonstrates changes in energy metabolism and the transsulfuration pathway in Chironomus tepperi following exposure to zinc

    Energy Technology Data Exchange (ETDEWEB)

    Long, Sara M., E-mail: hoskins@unimelb.edu.au [Centre for Aquatic Pollution, Identification and Management (CAPIM), School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, 3052 (Australia); Tull, Dedreia L., E-mail: dedreia@unimelb.edu.au [Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, Parkville, 3052 (Australia); Jeppe, Katherine J., E-mail: k.jeppe@unimelb.edu.au [Centre for Aquatic Pollution, Identification and Management (CAPIM), School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, 3052 (Australia); Centre for Aquatic Pollution, Identification and Management (CAPIM), School of BioSciences, The University of Melbourne, 3010 (Australia); De Souza, David P., E-mail: desouzad@unimelb.edu.au [Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, Parkville, 3052 (Australia); Dayalan, Saravanan, E-mail: sdayalan@unimelb.edu.au [Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, Parkville, 3052 (Australia); Pettigrove, Vincent J., E-mail: vpet@unimelb.edu.au [Centre for Aquatic Pollution, Identification and Management (CAPIM), School of BioSciences, The University of Melbourne, 3010 (Australia); McConville, Malcolm J., E-mail: malcolmm@unimelb.edu.au [Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, Parkville, 3052 (Australia); Hoffmann, Ary A., E-mail: ary@unimelb.edu.au [Centre for Aquatic Pollution, Identification and Management (CAPIM), School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, 3052 (Australia); School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, 3052 (Australia)

    2015-05-15

    Highlights: • An integrated metabolomics approach was applied to examine zinc exposure in midges. • Changes in carbohydrate and energy metabolism were observed using GC–MS. • Transsulfuration pathway is affected by zinc exposure. • Heavy metals other than zinc affect the transsulfuration pathways differently. - Abstract: Measuring biological responses in resident biota is a commonly used approach to monitoring polluted habitats. The challenge is to choose sensitive and, ideally, stressor-specific endpoints that reflect the responses of the ecosystem. Metabolomics is a potentially useful approach for identifying sensitive and consistent responses since it provides a holistic view to understanding the effects of exposure to chemicals upon the physiological functioning of organisms. In this study, we exposed the aquatic non-biting midge, Chironomus tepperi, to two concentrations of zinc chloride and measured global changes in polar metabolite levels using an untargeted gas chromatography–mass spectrometry (GC–MS) analysis and a targeted liquid chromatography–mass spectrometry (LC–MS) analysis of amine-containing metabolites. These data were correlated with changes in the expression of a number of target genes. Zinc exposure resulted in a reduction in levels of intermediates in carbohydrate metabolism (i.e., glucose 6-phosphate, fructose 6-phosphate and disaccharides) and an increase in a number of TCA cycle intermediates. Zinc exposure also resulted in decreases in concentrations of the amine containing metabolites, lanthionine, methionine and cystathionine, and an increase in metallothionein gene expression. Methionine and cystathionine are intermediates in the transsulfuration pathway which is involved in the conversion of methionine to cysteine. These responses provide an understanding of the pathways affected by zinc toxicity, and how these effects are different to other heavy metals such as cadmium and copper. The use of complementary

  13. A metabolomic study on the responses of daphnia magna exposed to silver nitrate and coated silver nanoparticles

    NARCIS (Netherlands)

    Li, Lianzhen; Wu, Huifeng; Ji, Chenglong; van Gestel, C.A.M.; Allen, H.E.; Peijnenburg, W.J.G.M.

    2015-01-01

    We examined the short-term toxicity of AgNPs and AgNO3 to Daphnia magna at sublethal levels using 1H NMR-based metabolomics. Two sizes of polyvinylpyrrolidone-coated AgNPs (10 and 40nm) were synthesized and characterized and their Ag+ release was studied using centrifugal ultrafiltration

  14. An integrated RNAseq-1H NMR metabolomics approach to understand soybean primary metabolism regulation in response to Rhizoctonia foliar blight disease.

    Science.gov (United States)

    Copley, Tanya R; Aliferis, Konstantinos A; Kliebenstein, Daniel J; Jabaji, Suha H

    2017-04-27

    Rhizoctonia solani AG1-IA is a devastating phytopathogen causing Rhizoctonia foliar blight (RFB) of soybean worldwide with yield losses reaching 60%. Plant defense mechanisms are complex and information from different metabolic pathways is required to thoroughly understand plant defense regulation and function. Combining information from different "omics" levels such as transcriptomics, metabolomics, and proteomics is required to gain insights into plant metabolism and its regulation. As such, we studied fluctuations in soybean metabolism in response to R. solani infection at early and late disease stages using an integrated transcriptomics-metabolomics approach, focusing on the regulation of soybean primary metabolism and oxidative stress tolerance. Transcriptomics (RNAseq) and metabolomics ( 1 H NMR) data were analyzed individually and by integration using bidirectional orthogonal projections to latent structures (O2PLS) to reveal possible links between the metabolome and transcriptome during early and late infection stages. O2PLS analysis detected 516 significant transcripts, double that reported in the univariate analysis, and more significant metabolites than detected in partial least squares discriminant analysis. Strong separation of treatments based on integration of the metabolomes and transcriptomes of the analyzed soybean leaves was revealed, similar trends as those seen in analyses done on individual datasets, validating the integration method being applied. Strong fluctuations of soybean primary metabolism occurred in glycolysis, the TCA cycle, photosynthesis and photosynthates in response to R. solani infection. Data were validated using quantitative real-time PCR on a set of specific markers as well as randomly selected genes. Significant increases in transcript and metabolite levels involved in redox reactions and ROS signaling, such as peroxidases, thiamine, tocopherol, proline, L-alanine and GABA were also recorded. Levels of ethanol increased 24

  15. New approaches in systems diagnosis : combining metabolomics and ultra-weak photon emission

    NARCIS (Netherlands)

    Rossetto-Burgos, R.C.

    2017-01-01

    In recent decades, the use of a systems-based view of life has provided key insight into fundamental processes with respect to biology. In life sciences, important paradigm shifts are the way in which we approach health and disease. Although modern medicine has traditionally emphasized pathology and

  16. Effect of cheese and butter intake on metabolites in urine using an untargeted metabolomics approach

    DEFF Research Database (Denmark)

    Hjerpsted, Julie Bousgaard; Ritz, Christian; Schou, Simon Stubbe

    2014-01-01

    affects cholesterol concentrations. Twenty-three subjects collected 2 × 24 h urine samples after 6 weeks of cheese and 6 weeks of butter intake with equal amounts of fat in a cross-over intervention study. The samples were analyzed by UPLC-QTOF/MS. A two-step univariate data analysis approach using linear...

  17. Metabolomic approach for identifying and visualizing molecular tissue markers in tadpoles of Xenopus tropicalis by mass spectrometry imaging

    Directory of Open Access Journals (Sweden)

    Naoko Goto-Inoue

    2016-09-01

    Full Text Available In developmental and cell biology it is crucial to evaluate the dynamic profiles of metabolites. An emerging frog model system using Xenopus tropicalis, whose genome sequence and inbred strains are available, is now ready for metabolomics investigation in amphibians. In this study we applied matrix-assisted laser desorption/ionization (MALDI-mass spectrometry imaging (MSI analysis to identify and visualize metabolomic molecular markers in tadpoles of Xenopus tropicalis. We detected tissue-specific peaks and visualized their distribution in tissues, and distinguished 19 tissues and their specific peaks. We identified, for the first time, some of their molecular localizations via tandem mass spectrometric analysis: hydrocortisone in artery, L-DOPA in rhombencephalon, taurine in eye, corticosterone in gill, heme in heart, inosine monophosphate and carnosine in muscle, dopamine in nerves, and phosphatidylethanolamine (16:0/20:4 in pharynx. This is the first MALDI-MSI study of X. tropicalis tadpoles, as in small tadpoles it is hard to distinguish and dissect the various organs. Furthermore, until now there has been no data about the metabolomic profile of each organ. Our results suggest that MALDI-MSI is potentially a powerful tool for examining the dynamics of metabolomics in metamorphosis as well as conformational changes due to metabolic changes.

  18. An untargeted multi-technique metabolomics approach to studying intracellular metabolites of HepG2 cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin

    Directory of Open Access Journals (Sweden)

    van Delft Joost

    2011-05-01

    Full Text Available Abstract Background In vitro cell systems together with omics methods represent promising alternatives to conventional animal models for toxicity testing. Transcriptomic and proteomic approaches have been widely applied in vitro but relatively few studies have used metabolomics. Therefore, the goal of the present study was to develop an untargeted methodology for performing reproducible metabolomics on in vitro systems. The human liver cell line HepG2, and the well-known hepatotoxic and non-genotoxic carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, were used as the in vitro model system and model toxicant, respectively. Results The study focused on the analysis of intracellular metabolites using NMR, LC-MS and GC-MS, with emphasis on the reproducibility and repeatability of the data. State of the art pre-processing and alignment tools and multivariate statistics were used to detect significantly altered levels of metabolites after exposing HepG2 cells to TCDD. Several metabolites identified using databases, literature and LC-nanomate-Orbitrap analysis were affected by the treatment. The observed changes in metabolite levels are discussed in relation to the reported effects of TCDD. Conclusions Untargeted profiling of the polar and apolar metabolites of in vitro cultured HepG2 cells is a valid approach to studying the effects of TCDD on the cell metabolome. The approach described in this research demonstrates that highly reproducible experiments and correct normalization of the datasets are essential for obtaining reliable results. The effects of TCDD on HepG2 cells reported herein are in agreement with previous studies and serve to validate the procedures used in the present work.

  19. Urinary1H Nuclear Magnetic Resonance Metabolomic Fingerprinting Reveals Biomarkers of Pulse Consumption Related to Energy-Metabolism Modulation in a Subcohort from the PREDIMED study.

    Science.gov (United States)

    Madrid-Gambin, Francisco; Llorach, Rafael; Vázquez-Fresno, Rosa; Urpi-Sarda, Mireia; Almanza-Aguilera, Enrique; Garcia-Aloy, Mar; Estruch, Ramon; Corella, Dolores; Andres-Lacueva, Cristina

    2017-04-07

    Little is known about the metabolome fingerprint of pulse consumption. The study of robust and accurate biomarkers for pulse dietary assessment has great value for nutritional epidemiology regarding health benefits and their mechanisms. To characterize the fingerprinting of dietary pulses (chickpeas, lentils, and beans), spot urine samples from a subcohort from the PREDIMED study were stratified using a validated food frequency questionnaire. Urine samples of nonpulse consumers (≤4 g/day of pulse intake) and habitual pulse consumers (≥25 g/day of pulse intake) were analyzed using a 1 H nuclear magnetic resonance (NMR) metabolomics approach combined with multi- and univariate data analysis. Pulse consumption showed differences through 16 metabolites coming from (i) choline metabolism, (ii) protein-related compounds, and (iii) energy metabolism (including lower urinary glucose). Stepwise logistic regression analysis was applied to design a combined model of pulse exposure, which resulted in glutamine, dimethylamine, and 3-methylhistidine. This model was evaluated by a receiver operating characteristic curve (AUC > 90% in both training and validation sets). The application of NMR-based metabolomics to reported pulse exposure highlighted new candidates for biomarkers of pulse consumption and the impact on energy metabolism, generating new hypotheses on energy modulation. Further intervention studies will confirm these findings.

  20. Linking gene regulation and the exo-metabolome: A comparative transcriptomics approach to identify genes that impact on the production of volatile aroma compounds in yeast

    Directory of Open Access Journals (Sweden)

    Bauer Florian F

    2008-11-01

    Full Text Available Abstract Background 'Omics' tools provide novel opportunities for system-wide analysis of complex cellular functions. Secondary metabolism is an example of a complex network of biochemical pathways, which, although well mapped from a biochemical point of view, is not well understood with regards to its physiological roles and genetic and biochemical regulation. Many of the metabolites produced by this network such as higher alcohols and esters are significant aroma impact compounds in fermentation products, and different yeast strains are known to produce highly divergent aroma profiles. Here, we investigated whether we can predict the impact of specific genes of known or unknown function on this metabolic network by combining whole transcriptome and partial exo-metabolome analysis. Results For this purpose, the gene expression levels of five different industrial wine yeast strains that produce divergent aroma profiles were established at three different time points of alcoholic fermentation in synthetic wine must. A matrix of gene expression data was generated and integrated with the concentrations of volatile aroma compounds measured at the same time points. This relatively unbiased approach to the study of volatile aroma compounds enabled us to identify candidate genes for aroma profile modification. Five of these genes, namely YMR210W, BAT1, AAD10, AAD14 and ACS1 were selected for overexpression in commercial wine yeast, VIN13. Analysis of the data show a statistically significant correlation between the changes in the exo-metabome of the overexpressing strains and the changes that were predicted based on the unbiased alignment of transcriptomic and exo-metabolomic data. Conclusion The data suggest that a comparative transcriptomics and metabolomics approach can be used to identify the metabolic impacts of the expression of individual genes in complex systems, and the amenability of transcriptomic data to direct applications of

  1. 1H-NMR-based metabolic analysis of human serum reveals novel markers of myocardial energy expenditure in heart failure patients.

    Science.gov (United States)

    Du, Zhiyong; Shen, Anna; Huang, Yuli; Su, Liang; Lai, Wenyan; Wang, Peng; Xie, Zhibing; Xie, Zhiquan; Zeng, Qingchun; Ren, Hao; Xu, Dingli

    2014-01-01

    Elevated myocardial energy expenditure (MEE) is related with reduced left ventricular ejection fraction, and has also been documented as an independent predictor of cardiovascular mortality. However, the serum small-molecule metabolite profiles and pathophysiological mechanisms of elevated MEE in heart failure (HF) are still lacking. Herein, we used 1H-NMR-based metabolomics analysis to screen for potential biomarkers of MEE in HF. A total of 61 subjects were enrolled, including 46 patients with heart failure and 15 age-matched controls. Venous serum samples were collected from subjects after an 8-hour fast. An INOVA 600 MHz nuclear magnetic resonance spectrometer with Carr-Purcell-Melboom-Gill (CPMG) pulse sequence was employed for the metabolomics analysis and MEE was calculated using colored Doppler echocardiography. Metabolomics data were processed using orthogonal signal correction and regression analysis was performed using the partial least squares method. The mean MEE levels of HF patients and controls were 139.61±58.18 cal/min and 61.09±23.54 cal/min, respectively. Serum metabolomics varied with MEE changed, and 3-hydroxybutyrate, acetone and succinate were significantly elevated with the increasing MEE. Importantly, these three metabolites were independent of administration of angiotensin converting enzyme inhibitor, β-receptor blockers, diuretics and statins (P>0.05). These results suggested that in patients with heart failure, MEE elevation was associated with significant changes in serum metabolomics profiles, especially the concentration of 3-hydroxybutyrate, acetone and succinate. These compounds could be used as potential serum biomarkers to study myocardial energy mechanism in HF patients.

  2. 1H-NMR-based metabolic analysis of human serum reveals novel markers of myocardial energy expenditure in heart failure patients.

    Directory of Open Access Journals (Sweden)

    Zhiyong Du

    Full Text Available OBJECTIVE: Elevated myocardial energy expenditure (MEE is related with reduced left ventricular ejection fraction, and has also been documented as an independent predictor of cardiovascular mortality. However, the serum small-molecule metabolite profiles and pathophysiological mechanisms of elevated MEE in heart failure (HF are still lacking. Herein, we used 1H-NMR-based metabolomics analysis to screen for potential biomarkers of MEE in HF. METHODS: A total of 61 subjects were enrolled, including 46 patients with heart failure and 15 age-matched controls. Venous serum samples were collected from subjects after an 8-hour fast. An INOVA 600 MHz nuclear magnetic resonance spectrometer with Carr-Purcell-Melboom-Gill (CPMG pulse sequence was employed for the metabolomics analysis and MEE was calculated using colored Doppler echocardiography. Metabolomics data were processed using orthogonal signal correction and regression analysis was performed using the partial least squares method. RESULTS: The mean MEE levels of HF patients and controls were 139.61±58.18 cal/min and 61.09±23.54 cal/min, respectively. Serum metabolomics varied with MEE changed, and 3-hydroxybutyrate, acetone and succinate were significantly elevated with the increasing MEE. Importantly, these three metabolites were independent of administration of angiotensin converting enzyme inhibitor, β-receptor blockers, diuretics and statins (P>0.05. CONCLUSIONS: These results suggested that in patients with heart failure, MEE elevation was associated with significant changes in serum metabolomics profiles, especially the concentration of 3-hydroxybutyrate, acetone and succinate. These compounds could be used as potential serum biomarkers to study myocardial energy mechanism in HF patients.

  3. Multifaceted metabolomics approaches for characterization of lignocellulosic biomass degradation products formed during ammonia fiber expansion pretreatment

    Science.gov (United States)

    Vismeh, Ramin

    to 45-50 % of ammonia that is lost during the pretreatment. Methodology for identification, detection and quantification of various diferulate cross-linkers in forms of Di-Acids (Di-Ac), Acid-Amide (Ac-Am), and Di-Amides (Di-Am) in AFEX and NaOH treated corn stover using ultrahigh performance liquid chromatography/tandem mass spectrometry (LC/MS/MS) is presented. Characterization of isomeric diferulates was based on the distinguishing fragments formed upon collision induced dissociation (CID) of [M+H]+ ions of each diferulate isomer. LC separations combined with quasi-simultaneous acquisition of mass spectra at multiple collision energies provide fast spectrum acquisition using a time-of-flight (TOF) mass analyzer. This approach, called mux-CID, generates molecular and fragment ion mass information at different collision energies for molecular and adduct ions of oligosaccharides in a single analysis. Non-selective CID facilitated characterization of glucans and arabinoxylans in the AFEXTCS extracts. A LC/MS gradient based on multiplexed-CID detection was developed and applied to profile oligosaccharides in AFEXTCS extract. This method detected glucans with degree of polymerization (DP) from 2 to 22 after solid phase extraction (SPE) enrichment using porous graphitized carbon (PGC), which proved essential for recoveries of specific oligosaccharides. Arabinoxylans were also detected and partially characterized using this strategy after hydrolysis using xylanase. A relative quantification based on peak areas showed removal of almost 85% of the acetate esters of arabinoxylans after AFEX.

  4. Treatment Effects of Ischemic Stroke by Berberine, Baicalin, and Jasminoidin from Huang-Lian-Jie-Du-Decoction (HLJDD Explored by an Integrated Metabolomics Approach

    Directory of Open Access Journals (Sweden)

    Qian Zhang

    2017-01-01

    Full Text Available Berberine, baicalin, and jasminoidin were major active ingredients of Huang-Lian-Jie-Du-Decoction (HLJDD, a famous prescription of traditional Chinese medicine (TCM, which has been used for the treatment of ischemic stroke. The aim of the present study was to classify their roles in the treatment effects of ischemic stroke. A rat model of middle cerebral artery occlusion (MCAO was constructed to mimic ischemic stroke and treatment effects of berberine, baicalin, and jasminoidin, and HLJDD was assessed by neurologic deficit scoring, infarct volume, histopathology, immunohistochemistry, biochemistry, quantitative real-time polymerase chain reaction (qRT-PCR, and Western blotting. In addition, the 1H NMR metabolomics approach was used to assess the metabolic profiles, which combined with correlation network analysis successfully revealed metabolic disorders in ischemic stroke concerning the treatment of the three principal compounds from HLJDD for the first time. The combined results suggested that berberine, baicalin, and jasminoidin are responsible for the effectiveness of HLJDD on the treatment of ischemic stroke by amelioration of abnormal metabolism and regulation of oxidative stress, neuron autophagy, and inflammatory response. This integrated metabolomics approach showed its potential in understanding the function of complex formulae and clarifying the role of its components in the overall treatment effects.

  5. Application of a novel metabolomic approach based on atmospheric pressure photoionization mass spectrometry using flow injection analysis for the study of Alzheimer's disease.

    Science.gov (United States)

    González-Domínguez, Raúl; García-Barrera, Tamara; Gómez-Ariza, José Luis

    2015-01-01

    The use of atmospheric pressure photoionization is not widespread in metabolomics, despite its considerable potential for the simultaneous analysis of compounds with diverse polarities. This work considers the development of a novel analytical approach based on flow injection analysis and atmospheric pressure photoionization mass spectrometry for rapid metabolic screening of serum samples. Several experimental parameters were optimized, such as type of dopant, flow injection solvent, and their flows, given that a careful selection of these variables is mandatory for a comprehensive analysis of metabolites. Toluene and methanol were the most suitable dopant and flow injection solvent, respectively. Moreover, analysis in negative mode required higher solvent and dopant flows (100 µl min(-1) and 40 µl min(-1), respectively) compared to positive mode (50 µl min(-1) and 20 µl min(-1)). Then, the optimized approach was used to elucidate metabolic alterations associated with Alzheimer's disease. Thereby, results confirm the increase of diacylglycerols, ceramides, ceramide-1-phosphate and free fatty acids, indicating membrane destabilization processes, and reduction of fatty acid amides and several neurotransmitters related to impairments in neuronal transmission, among others. Therefore, it could be concluded that this metabolomic tool presents a great potential for analysis of biological samples, considering its high-throughput screening capability, fast analysis and comprehensive metabolite coverage. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Metabolomic approach for discrimination of processed ginseng genus (Panax ginseng and Panax quinquefolius) using UPLC-QTOF MS

    Science.gov (United States)

    Park, Hee-Won; In, Gyo; Kim, Jeong-Han; Cho, Byung-Goo; Han, Gyeong-Ho; Chang, Il-Moo

    2013-01-01

    Discriminating between two herbal medicines (Panax ginseng and Panax quinquefolius), with similar chemical and physical properties but different therapeutic effects, is a very serious and difficult problem. Differentiation between two processed ginseng genera is even more difficult because the characteristics of their appearance are very similar. An ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF MS)-based metabolomic technique was applied for the metabolite profiling of 40 processed P. ginseng and processed P. quinquefolius. Currently known biomarkers such as ginsenoside Rf and F11 have been used for the analysis using the UPLC-photodiode array detector. However, this method was not able to fully discriminate between the two processed ginseng genera. Thus, an optimized UPLC-QTOF-based metabolic profiling method was adapted for the analysis and evaluation of two processed ginseng genera. As a result, all known biomarkers were identified by the proposed metabolomics, and additional potential biomarkers were extracted from the huge amounts of global analysis data. Therefore, it is expected that such metabolomics techniques would be widely applied to the ginseng research field. PMID:24558312

  7. Metabolomic approach for discrimination of processed ginseng genus (Panax ginseng and Panax quinquefolius using UPLC-QTOF MS

    Directory of Open Access Journals (Sweden)

    Hee-Won Park

    2014-01-01

    Full Text Available Discriminating between two herbal medicines (Panax ginseng and Panax quinquefolius, with similar chemical and physical properties but different therapeutic effects, is a very serious and difficult problem. Differentiation between two processed ginseng genera is even more difficult because the characteristics of their appearance are very similar. An ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF MS-based metabolomic technique was applied for the metabolite profiling of 40 processed P. ginseng and processed P. quinquefolius. Currently known biomarkers such as ginsenoside Rf and F11 have been used for the analysis using the UPLC-photodiode array detector. However, this method was not able to fully discriminate between the two processed ginseng genera. Thus, an optimized UPLC-QTOF-based metabolic profiling method was adapted for the analysis and evaluation of two processed ginseng genera. As a result, all known biomarkers were identified by the proposed metabolomics, and additional potential biomarkers were extracted from the huge amounts of global analysis data. Therefore, it is expected that such metabolomics techniques would be widely applied to the ginseng research field.

  8. Metabolomic approach for discrimination of processed ginseng genus (Panax ginseng and Panax quinquefolius) using UPLC-QTOF MS.

    Science.gov (United States)

    Park, Hee-Won; In, Gyo; Kim, Jeong-Han; Cho, Byung-Goo; Han, Gyeong-Ho; Chang, Il-Moo

    2014-01-01

    Discriminating between two herbal medicines (Panax ginseng and Panax quinquefolius), with similar chemical and physical properties but different therapeutic effects, is a very serious and difficult problem. Differentiation between two processed ginseng genera is even more difficult because the characteristics of their appearance are very similar. An ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF MS)-based metabolomic technique was applied for the metabolite profiling of 40 processed P. ginseng and processed P. quinquefolius. Currently known biomarkers such as ginsenoside Rf and F11 have been used for the analysis using the UPLC-photodiode array detector. However, this method was not able to fully discriminate between the two processed ginseng genera. Thus, an optimized UPLC-QTOF-based metabolic profiling method was adapted for the analysis and evaluation of two processed ginseng genera. As a result, all known biomarkers were identified by the proposed metabolomics, and additional potential biomarkers were extracted from the huge amounts of global analysis data. Therefore, it is expected that such metabolomics techniques would be widely applied to the ginseng research field.

  9. An improved pseudotargeted metabolomics approach using multiple ion monitoring with time-staggered ion lists based on ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Wang, Yang; Liu, Fang; Li, Peng; He, Chengwei; Wang, Ruibing; Su, Huanxing; Wan, Jian-Bo

    2016-01-01

    Pseudotargeted metabolomics is a novel strategy integrating the advantages of both untargeted and targeted methods. The conventional pseudotargeted metabolomics required two MS instruments, i.e., ultra-high performance liquid chromatography/quadrupole-time- of-flight mass spectrometry (UHPLC/Q-TOF MS) and UHPLC/triple quadrupole mass spectrometry (UHPLC/QQQ-MS), which makes method transformation inevitable. Furthermore, the picking of ion pairs from thousands of candidates and the swapping of the data between two instruments are the most labor-intensive steps, which greatly limit its application in metabolomic analysis. In the present study, we proposed an improved pseudotargeted metabolomics method that could be achieved on an UHPLC/Q-TOF/MS instrument operated in the multiple ion monitoring (MIM) mode with time-staggered ion lists (tsMIM). Full scan-based untargeted analysis was applied to extract the target ions. After peak alignment and ion fusion, a stepwise ion picking procedure was used to generate the ion lists for subsequent single MIM and tsMIM. The UHPLC/Q-TOF tsMIM MS-based pseudotargeted approach exhibited better repeatability and a wider linear range than the UHPLC/Q-TOF MS-based untargeted metabolomics method. Compared to the single MIM mode, the tsMIM significantly increased the coverage of the metabolites detected. The newly developed method was successfully applied to discover plasma biomarkers for alcohol-induced liver injury in mice, which indicated its practicability and great potential in future metabolomics studies. - Highlights: • An UHPLC/Q-TOF tsMIM MS-based pseudotargeted metabolomics was proposed. • Compared to full scan, the improved method exhibits better repeatability and a wider linear range. • The proposed method could achieve pseudotargeted analysis on one UHPLC/Q-TOF/MS instrument. • The developed method was successfully used to discover biomarkers for alcohol-induced liver injury.

  10. An improved pseudotargeted metabolomics approach using multiple ion monitoring with time-staggered ion lists based on ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang; Liu, Fang; Li, Peng; He, Chengwei; Wang, Ruibing; Su, Huanxing; Wan, Jian-Bo, E-mail: jbwan@umac.mo

    2016-07-13

    Pseudotargeted metabolomics is a novel strategy integrating the advantages of both untargeted and targeted methods. The conventional pseudotargeted metabolomics required two MS instruments, i.e., ultra-high performance liquid chromatography/quadrupole-time- of-flight mass spectrometry (UHPLC/Q-TOF MS) and UHPLC/triple quadrupole mass spectrometry (UHPLC/QQQ-MS), which makes method transformation inevitable. Furthermore, the picking of ion pairs from thousands of candidates and the swapping of the data between two instruments are the most labor-intensive steps, which greatly limit its application in metabolomic analysis. In the present study, we proposed an improved pseudotargeted metabolomics method that could be achieved on an UHPLC/Q-TOF/MS instrument operated in the multiple ion monitoring (MIM) mode with time-staggered ion lists (tsMIM). Full scan-based untargeted analysis was applied to extract the target ions. After peak alignment and ion fusion, a stepwise ion picking procedure was used to generate the ion lists for subsequent single MIM and tsMIM. The UHPLC/Q-TOF tsMIM MS-based pseudotargeted approach exhibited better repeatability and a wider linear range than the UHPLC/Q-TOF MS-based untargeted metabolomics method. Compared to the single MIM mode, the tsMIM significantly increased the coverage of the metabolites detected. The newly developed method was successfully applied to discover plasma biomarkers for alcohol-induced liver injury in mice, which indicated its practicability and great potential in future metabolomics studies. - Highlights: • An UHPLC/Q-TOF tsMIM MS-based pseudotargeted metabolomics was proposed. • Compared to full scan, the improved method exhibits better repeatability and a wider linear range. • The proposed method could achieve pseudotargeted analysis on one UHPLC/Q-TOF/MS instrument. • The developed method was successfully used to discover biomarkers for alcohol-induced liver injury.

  11. NMR-based metabonomic studies reveal changes in the biochemical profile of plasma and urine from pigs fed high-fibre rye bread

    DEFF Research Database (Denmark)

    Bertram, Hanne C; Bach Knudsen, Knud E; Serena, Anja

    2006-01-01

    This study presents an NMR-based metabonomic approach to elucidate the overall endogenous biochemical effects of a wholegrain diet. Two diets with similar levels of dietary fibre and macronutrients, but with contrasting levels of wholegrain ingredients, were prepared from wholegrain rye (wholegra...

  12. NMR-based metabonomic studies reveal changes in the biochemical profile of plasma and urine from pigs fed high-fibre rye bread

    DEFF Research Database (Denmark)

    Bertram, Hanne C; Bach Knudsen, Knud E; Serena, Anja

    2006-01-01

    This study presents an NMR-based metabonomic approach to elucidate the overall endogenous biochemical effects of a wholegrain diet. Two diets with similar levels of dietary fibre and macronutrients, but with contrasting levels of wholegrain ingredients, were prepared from wholegrain rye (wholegrain...... disclosed biochemical effects of a wholegrain diet on plasma betaine content and excretion of betaine and creatinine....

  13. Can NMR solve some significant challenges in metabolomics?

    Science.gov (United States)

    Nagana Gowda, G. A.; Raftery, Daniel

    2015-11-01

    The field of metabolomics continues to witness rapid growth driven by fundamental studies, methods development, and applications in a number of disciplines that include biomedical science, plant and nutrition sciences, drug development, energy and environmental sciences, toxicology, etc. NMR spectroscopy is one of the two most widely used analytical platforms in the metabolomics field, along with mass spectrometry (MS). NMR's excellent reproducibility and quantitative accuracy, its ability to identify structures of unknown metabolites, its capacity to generate metabolite profiles using intact bio-specimens with no need for separation, and its capabilities for tracing metabolic pathways using isotope labeled substrates offer unique strengths for metabolomics applications. However, NMR's limited sensitivity and resolution continue to pose a major challenge and have restricted both the number and the quantitative accuracy of metabolites analyzed by NMR. Further, the analysis of highly complex biological samples has increased the demand for new methods with improved detection, better unknown identification, and more accurate quantitation of larger numbers of metabolites. Recent efforts have contributed significant improvements in these areas, and have thereby enhanced the pool of routinely quantifiable metabolites. Additionally, efforts focused on combining NMR and MS promise opportunities to exploit the combined strength of the two analytical platforms for direct comparison of the metabolite data, unknown identification and reliable biomarker discovery that continue to challenge the metabolomics field. This article presents our perspectives on the emerging trends in NMR-based metabolomics and NMR's continuing role in the field with an emphasis on recent and ongoing research from our laboratory.

  14. Effects of Perfluorooctanoic Acid on Metabolic Profiles in Brain and Liver of Mouse Revealed by a High-throughput Targeted Metabolomics Approach

    Science.gov (United States)

    Yu, Nanyang; Wei, Si; Li, Meiying; Yang, Jingping; Li, Kan; Jin, Ling; Xie, Yuwei; Giesy, John P.; Zhang, Xiaowei; Yu, Hongxia

    2016-04-01

    Perfluorooctanoic acid (PFOA), a perfluoroalkyl acid, can result in hepatotoxicity and neurobehavioral effects in animals. The metabolome, which serves as a connection among transcriptome, proteome and toxic effects, provides pathway-based insights into effects of PFOA. Since understanding of changes in the metabolic profile during hepatotoxicity and neurotoxicity were still incomplete, a high-throughput targeted metabolomics approach (278 metabolites) was used to investigate effects of exposure to PFOA for 28 d on brain and liver of male Balb/c mice. Results of multivariate statistical analysis indicated that PFOA caused alterations in metabolic pathways in exposed individuals. Pathway analysis suggested that PFOA affected metabolism of amino acids, lipids, carbohydrates and energetics. Ten and 18 metabolites were identified as potential unique biomarkers of exposure to PFOA in brain and liver, respectively. In brain, PFOA affected concentrations of neurotransmitters, including serotonin, dopamine, norepinephrine, and glutamate in brain, which provides novel insights into mechanisms of PFOA-induced neurobehavioral effects. In liver, profiles of lipids revealed involvement of β-oxidation and biosynthesis of saturated and unsaturated fatty acids in PFOA-induced hepatotoxicity, while alterations in metabolism of arachidonic acid suggesting potential of PFOA to cause inflammation response in liver. These results provide insight into the mechanism and biomarkers for PFOA-induced effects.

  15. Metabolomic and high-throughput sequencing analysis—modern approach for the assessment of biodeterioration of materials from historic buildings

    Science.gov (United States)

    Gutarowska, Beata; Celikkol-Aydin, Sukriye; Bonifay, Vincent; Otlewska, Anna; Aydin, Egemen; Oldham, Athenia L.; Brauer, Jonathan I.; Duncan, Kathleen E.; Adamiak, Justyna; Sunner, Jan A.; Beech, Iwona B.

    2015-01-01

    Preservation of cultural heritage is of paramount importance worldwide. Microbial colonization of construction materials, such as wood, brick, mortar, and stone in historic buildings can lead to severe deterioration. The aim of the present study was to give modern insight into the phylogenetic diversity and activated metabolic pathways of microbial communities colonized historic objects located in the former Auschwitz II–Birkenau concentration and extermination camp in Oświecim, Poland. For this purpose we combined molecular, microscopic and chemical methods. Selected specimens were examined using Field Emission Scanning Electron Microscopy (FESEM), metabolomic analysis and high-throughput Illumina sequencing. FESEM imaging revealed the presence of complex microbial communities comprising diatoms, fungi and bacteria, mainly cyanobacteria and actinobacteria, on sample surfaces. Microbial diversity of brick specimens appeared higher than that of the wood and was dominated by algae and cyanobacteria, while wood was mainly colonized by fungi. DNA sequences documented the presence of 15 bacterial phyla representing 99 genera including Halomonas, Halorhodospira, Salinisphaera, Salinibacterium, Rubrobacter, Streptomyces, Arthrobacter and nine fungal classes represented by 113 genera including Cladosporium, Acremonium, Alternaria, Engyodontium, Penicillium, Rhizopus, and Aureobasidium. Most of the identified sequences were characteristic of organisms implicated in deterioration of wood and brick. Metabolomic data indicated the activation of numerous metabolic pathways, including those regulating the production of primary and secondary metabolites, for example, metabolites associated with the production of antibiotics, organic acids and deterioration of organic compounds. The study demonstrated that a combination of electron microscopy imaging with metabolomic and genomic techniques allows to link the phylogenetic information and metabolic profiles of microbial

  16. Metabolomic and high-throughput sequencing analysis – modern approach for the assessment of biodeterioration of materials from historic buildings

    Directory of Open Access Journals (Sweden)

    Beata eGutarowska

    2015-09-01

    Full Text Available Preservation of cultural heritage is of paramount importance worldwide. Microbial colonization of construction materials, such as wood, brick, mortar and stone in historic buildings can lead to severe deterioration. The aim of the present study was to give modern insight into the phylogenetic diversity and activated metabolic pathways of microbial communities colonized historic objects located in the former Auschwitz II-Birkenau concentration and extermination camp in Oświęcim, Poland. For this purpose we combined molecular, microscopic and chemical methods. Selected specimens were examined using Field Emission Scanning Electron Microscopy (FESEM, metabolomic analysis and high-throughput Illumina sequencing. FESEM imaging revealed the presence of complex microbial communities comprising diatoms, fungi and bacteria, mainly cyanobacteria and actinobacteria, on sample surfaces. Microbial diversity of brick specimens appeared higher than that of the wood and was dominated by algae and cyanobacteria, while wood was mainly colonized by fungi. DNA sequences documented the presence of 15 bacterial phyla representing 99 genera including Halomonas, Halorhodospira, Salinisphaera, Salinibacterium, Rubrobacter, Streptomyces, Arthrobacter and 9 fungal classes represented by 113 genera including Cladosporium, Acremonium, Alternaria, Engyodontium, Penicillium, Rhizopus and Aureobasidium. Most of the identified sequences were characteristic of organisms implicated in deterioration of wood and brick. Metabolomic data indicated the activation of numerous metabolic pathways, including those regulating the production of primary and secondary metabolites, for example, metabolites associated with the production of antibiotics, organic acids and deterioration of organic compounds. The study demonstrated that a combination of electron microscopy imaging with metabolomic and genomic techniques allows to link the phylogenetic information and metabolic profiles of

  17. Metabolomics and proteomics approaches to characterize and assess proteins of bear bile powder for hepatitis C virus.

    Science.gov (United States)

    Wang, Xi-Jun; Yan, Guang-Li; Zhang, Ai-Hua; Sun, Hui; Piao, Cheng-Yu; Li, Wei-Yun; Sun, Chang; Wu, Xiu-Hong; Li, Xing-Hua; Chen, Yun

    2013-11-01

    Metabolomics represents an emerging and powerful discipline that provides an accurate and dynamic picture of the phenotype of bio-systems through the study of potential metabolites that could be used as therapeutic targets and for the discovery of new drugs. Hepatitis C virus (HCV) is a leading cause of liver disease worldwide, and is a major burden on public health. It is hypothesized that an animal model of HCV infection would produce unique patterns of endogenous metabolites. Herein, a method for the construction of efficient networks is presented with regard to the proteins of bear bile powder (PBBP) that protect against HCV as a case study. Ultra-performance liquid chromatography, coupled with electrospray ionization/quadrupole-time-of-flight high definition mass spectrometry (UPLC-HDMS), coupled with pattern recognition methods and computational systems analysis were integrated to obtain comprehensive metabolomic profiling and pathways of the large biological data sets. Among the regulated pathways, 38 biomarkers were identified and two unique metabolic pathways were indicated to be differentially affected in HCV animals. The results provided a systematic view of the development and progression of HCV, and also could be used to analyze the therapeutic effects of PBBP, a widely used anti-HCV medicine. The results also showed that PBBP could provide satisfactory effects on HCV infection through partially regulating the perturbed pathway. The most promising use in the near future would be to clarify the pathways for the drugs and obtain biomarkers for these pathways to help guide testable predictions, provide insights into drug action mechanisms, and enable an increase in research productivity toward metabolomic drug discovery. Copyright © 2013 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  18. Chemical interactions between plants in Mediterranean vegetation: the influence of selected plant extracts on Aegilops geniculata metabolome.

    Science.gov (United States)

    Scognamiglio, Monica; Fiumano, Vittorio; D'Abrosca, Brigida; Esposito, Assunta; Choi, Young Hae; Verpoorte, Robert; Fiorentino, Antonio

    2014-10-01

    Allelopathy is the chemical mediated communication among plants. While on one hand there is growing interest in the field, on the other hand it is still debated as doubts exist at different levels. A number of compounds have been reported for their ability to influence plant growth, but the existence of this phenomenon in the field has rarely been demonstrated. Furthermore, only few studies have reported the uptake and the effects at molecular level of the allelochemicals. Allelopathy has been reported on some plants of Mediterranean vegetation and could contribute to structuring this ecosystem. Sixteen plants of Mediterranean vegetation have been selected and studied by an NMR-based metabolomics approach. The extracts of these donor plants have been characterized in terms of chemical composition and the effects on a selected receiving plant, Aegilops geniculata, have been studied both at the morphological and at the metabolic level. Most of the plant extracts employed in this study were found to have an activity, which could be correlated with the presence of flavonoids and hydroxycinnamate derivatives. These plant extracts affected the receiving plant in different ways, with different rates of growth inhibition at morphological level. The results of metabolomic analysis of treated plants suggested the induction of oxidative stress in all the receiving plants treated with active donor plant extracts, although differences were observed among the responses. Finally, the uptake and transport into receiving plant leaves of different metabolites present in the extracts added to the culture medium were observed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. 1H NMR-based metabolite profiling of plasma in a rat model of chronic kidney disease.

    Directory of Open Access Journals (Sweden)

    Ju-Ae Kim

    Full Text Available Chronic kidney disease (CKD is characterized by the gradual loss of the kidney function to excrete wastes and fluids from the blood. (1H NMR-based metabolomics was exploited to investigate the altered metabolic pattern in rats with CKD induced by surgical reduction of the renal mass (i.e., 5/6 nephrectomy (5/6 Nx, particularly for identifying specific metabolic biomarkers associated with early of CKD. Plasma metabolite profiling was performed in CKD rats (at 4- or 8-weeks after 5/6 Nx compared to sham-operated rats. Principle components analysis (PCA, partial least squares-discriminant analysis (PLS-DA and orthogonal partial least squares-discriminant analysis (OPLS-DA score plots showed a significant separation between the groups. The resulting metabolic profiles demonstrated significantly increased plasma levels of organic anions, including citrate, β-hydroxybutyrate, lactate, acetate, acetoacetate, and formate in CKD. Moreover, levels of alanine, glutamine, and glutamate were significantly higher. These changes were likely to be associated with complicated metabolic acidosis in CKD for counteracting systemic metabolic acidosis or increased protein catabolism from muscle. In contrast, levels of VLDL/LDL (CH2n and N-acetylglycoproteins were decreased. Taken together, the observed changes of plasma metabolite profiles in CKD rats provide insights into the disturbed metabolism in early phase of CKD, in particular for the altered metabolism of acid-base and/or amino acids.

  20. Ameliorating effects of Mango (Mangifera indica L.) fruit on plasma ethanol level in a mouse model assessed with 1H-NMR based metabolic profiling

    Science.gov (United States)

    Kim, So-Hyun; K. Cho, Somi; Min, Tae-Sun; Kim, Yujin; Yang, Seung-Ok; Kim, Hee-Su; Hyun, Sun-Hee; Kim, Hana; Kim, Young-Suk; Choi, Hyung-Kyoon

    2011-01-01

    The ameliorating effects of Mango (Mangifera indica L.) flesh and peel samples on plasma ethanol level were investigated using a mouse model. Mango fruit samples remarkably decreased mouse plasma ethanol levels and increased the activities of alcohol dehydrogenase and acetaldehyde dehydrogenase. The 1H-NMR-based metabolomic technique was employed to investigate the differences in metabolic profiles of mango fruits, and mouse plasma samples fed with mango fruit samples. The partial least squares-discriminate analysis of 1H-NMR spectral data of mouse plasma demonstrated that there were clear separations among plasma samples from mice fed with buffer, mango flesh and peel. A loading plot demonstrated that metabolites from mango fruit, such as fructose and aspartate, might stimulate alcohol degradation enzymes. This study suggests that mango flesh and peel could be used as resources for functional foods intended to decrease plasma ethanol level after ethanol uptake. PMID:21562641

  1. Probabilistic Principal Component Analysis for Metabolomic Data.

    LENUS (Irish Health Repository)

    Nyamundanda, Gift

    2010-11-23

    Abstract Background Data from metabolomic studies are typically complex and high-dimensional. Principal component analysis (PCA) is currently the most widely used statistical technique for analyzing metabolomic data. However, PCA is limited by the fact that it is not based on a statistical model. Results Here, probabilistic principal component analysis (PPCA) which addresses some of the limitations of PCA, is reviewed and extended. A novel extension of PPCA, called probabilistic principal component and covariates analysis (PPCCA), is introduced which provides a flexible approach to jointly model metabolomic data and additional covariate information. The use of a mixture of PPCA models for discovering the number of inherent groups in metabolomic data is demonstrated. The jackknife technique is employed to construct confidence intervals for estimated model parameters throughout. The optimal number of principal components is determined through the use of the Bayesian Information Criterion model selection tool, which is modified to address the high dimensionality of the data. Conclusions The methods presented are illustrated through an application to metabolomic data sets. Jointly modeling metabolomic data and covariates was successfully achieved and has the potential to provide deeper insight to the underlying data structure. Examination of confidence intervals for the model parameters, such as loadings, allows for principled and clear interpretation of the underlying data structure. A software package called MetabolAnalyze, freely available through the R statistical software, has been developed to facilitate implementation of the presented methods in the metabolomics field.

  2. An improved pseudotargeted metabolomics approach using multiple ion monitoring with time-staggered ion lists based on ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Wang, Yang; Liu, Fang; Li, Peng; He, Chengwei; Wang, Ruibing; Su, Huanxing; Wan, Jian-Bo

    2016-07-13

    Pseudotargeted metabolomics is a novel strategy integrating the advantages of both untargeted and targeted methods. The conventional pseudotargeted metabolomics required two MS instruments, i.e., ultra-high performance liquid chromatography/quadrupole-time- of-flight mass spectrometry (UHPLC/Q-TOF MS) and UHPLC/triple quadrupole mass spectrometry (UHPLC/QQQ-MS), which makes method transformation inevitable. Furthermore, the picking of ion pairs from thousands of candidates and the swapping of the data between two instruments are the most labor-intensive steps, which greatly limit its application in metabolomic analysis. In the present study, we proposed an improved pseudotargeted metabolomics method that could be achieved on an UHPLC/Q-TOF/MS instrument operated in the multiple ion monitoring (MIM) mode with time-staggered ion lists (tsMIM). Full scan-based untargeted analysis was applied to extract the target ions. After peak alignment and ion fusion, a stepwise ion picking procedure was used to generate the ion lists for subsequent single MIM and tsMIM. The UHPLC/Q-TOF tsMIM MS-based pseudotargeted approach exhibited better repeatability and a wider linear range than the UHPLC/Q-TOF MS-based untargeted metabolomics method. Compared to the single MIM mode, the tsMIM significantly increased the coverage of the metabolites detected. The newly developed method was successfully applied to discover plasma biomarkers for alcohol-induced liver injury in mice, which indicated its practicability and great potential in future metabolomics studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. HTS followed by NMR based counterscreening. Discovery and optimization of pyrimidones as reversible and competitive inhibitors of xanthine oxidase.

    Science.gov (United States)

    Evenäs, Johan; Edfeldt, Fredrik; Lepistö, Matti; Svitacheva, Naila; Synnergren, Anna; Lundquist, Britta; Gränse, Mia; Rönnholm, Anna; Varga, Mikael; Wright, John; Wei, Min; Yue, Sherrie; Wang, Junfeng; Li, Chong; Li, Xuan; Chen, Gang; Liao, Yong; Lv, Gang; Tjörnebo, Ann; Narjes, Frank

    2014-03-01

    The identification of novel, non-purine based inhibitors of xanthine oxidase is described. After a high-throughput screening campaign, an NMR based counterscreen was used to distinguish actives, which interact with XO in a reversible manner, from assay artefacts. This approach identified pyrimidone 1 as a reversible and competitive inhibitor with good lead-like properties. A hit to lead campaign gave compound 41, a nanomolar inhibitor of hXO with efficacy in the hyperuricemic rat model after oral dosing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Rice suspension cultured cells are evaluated as a model system to study salt responsive networks in plants using a combined proteomic and metabolomic profiling approach.

    Science.gov (United States)

    Liu, Dawei; Ford, Kristina L; Roessner, Ute; Natera, Siria; Cassin, Andrew M; Patterson, John H; Bacic, Antony

    2013-06-01

    Salinity is one of the major abiotic stresses affecting plant productivity but surprisingly, a thorough understanding of the salt-responsive networks responsible for sustaining growth and maintaining crop yield remains a significant challenge. Rice suspension culture cells (SCCs), a single cell type, were evaluated as a model system as they provide a ready source of a homogenous cell type and avoid the complications of multicellular tissue types in planta. A combination of growth performance, and transcriptional analyses using known salt-induced genes was performed on control and 100 mM NaCl cultured cells to validate the biological system. Protein profiling was conducted using both DIGE- and iTRAQ-based proteomics approaches. In total, 106 proteins were identified in DIGE experiments and 521 proteins in iTRAQ experiments with 58 proteins common to both approaches. Metabolomic analysis provided insights into both developmental changes and salt-induced changes of rice SCCs at the metabolite level; 134 known metabolites were identified, including 30 amines and amides, 40 organic acids, 40 sugars, sugar acids and sugar alcohols, 21 fatty acids and sterols, and 3 miscellaneous compounds. Our results from proteomic and metabolomic studies indicate that the salt-responsive networks of rice SCCs are extremely complex and share some similarities with thee cellular responses observed in planta. For instance, carbohydrate and energy metabolism pathways, redox signaling pathways, auxin/indole-3-acetic acid pathways and biosynthesis pathways for osmoprotectants are all salt responsive in SCCs enabling cells to maintain cellular function under stress condition. These data are discussed in the context of our understanding of in planta salt-responses. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Vitamins, metabolomics, and prostate cancer.

    Science.gov (United States)

    Mondul, Alison M; Weinstein, Stephanie J; Albanes, Demetrius

    2017-06-01

    How micronutrients might influence risk of developing adenocarcinoma of the prostate has been the focus of a large body of research (especially regarding vitamins E, A, and D). Metabolomic profiling has the potential to discover molecular species relevant to prostate cancer etiology, early detection, and prevention, and may help elucidate the biologic mechanisms through which vitamins influence prostate cancer risk. Prostate cancer risk data related to vitamins E, A, and D and metabolomic profiling from clinical, cohort, and nested case-control studies, along with randomized controlled trials, are examined and summarized, along with recent metabolomic data of the vitamin phenotypes. Higher vitamin E serologic status is associated with lower prostate cancer risk, and vitamin E genetic variant data support this. By contrast, controlled vitamin E supplementation trials have had mixed results based on differing designs and dosages. Beta-carotene supplementation (in smokers) and higher circulating retinol and 25-hydroxy-vitamin D concentrations appear related to elevated prostate cancer risk. Our prospective metabolomic profiling of fasting serum collected 1-20 years prior to clinical diagnoses found reduced lipid and energy/TCA cycle metabolites, including inositol-1-phosphate, lysolipids, alpha-ketoglutarate, and citrate, significantly associated with lower risk of aggressive disease. Several active leads exist regarding the role of micronutrients and metabolites in prostate cancer carcinogenesis and risk. How vitamins D and A may adversely impact risk, and whether low-dose vitamin E supplementation remains a viable preventive approach, require further study.

  6. Application of a Smartphone Metabolomics Platform to the Authentication of Schisandra sinensis.

    Science.gov (United States)

    Kwon, Hyuk Nam; Phan, Hong-Duc; Xu, Wen Jun; Ko, Yoon-Joo; Park, Sunghyouk

    2016-05-01

    Herbal medicines have been used for a long time all around the world. Since the quality of herbal preparations depends on the source of herbal materials, there has been a strong need to develop methods to correctly identify the origin of materials. To develop a smartphone metabolomics platform as a simpler and low-cost alternative for the identification of herbal material source. Schisandra sinensis extracts from Korea and China were prepared. The visible spectra of all samples were measured by a smartphone spectrometer platform. This platform included all the necessary measures built-in for the metabolomics research: data acquisition, processing, chemometric analysis and visualisation of the results. The result of the smartphone metabolomics platform was compared to that of NMR-based metabolomics, suggesting the feasibility of smartphone platform in metabolomics research. The smartphone metabolomics platform gave similar results to the NMR method, showing good separation between Korean and Chinese materials and correct predictability for all test samples. With its accuracy and advantages of affordability, user-friendliness, and portability, the smartphone metabolomics platform could be applied to the authentication of other medicinal plants. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Insights into the mechanisms underlying mercury-induced oxidative stress in gills of wild fish (Liza aurata) combining {sup 1}H NMR metabolomics and conventional biochemical assays

    Energy Technology Data Exchange (ETDEWEB)

    Cappello, Tiziana, E-mail: tcappello@unime.it [Department of Biological and Environmental Sciences, University of Messina, 98166 Messina (Italy); Brandão, Fátima, E-mail: fatimabrandao@ua.pt [Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro (Portugal); Guilherme, Sofia; Santos, Maria Ana [Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro (Portugal); Maisano, Maria; Mauceri, Angela [Department of Biological and Environmental Sciences, University of Messina, 98166 Messina (Italy); Canário, João [Centro de Química Estrutural, Instítuto Superíor Técnico, Universidade de Lisboa, 1049-001 Lisbon (Portugal); Pacheco, Mário; Pereira, Patrícia [Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro (Portugal)

    2016-04-01

    be sensitive and effective towards a mechanistically based assessment of Hg toxicity in gills of wild fish, providing new insights into the toxicological pathways underlying the oxidative stress. - Highlights: • Mercury-induced oxidative stress was investigated in gills of wild fish Liza aurata. • {sup 1}H NMR-based metabolomics and oxidative stress biomarkers were applied. • Hg interfered with the antioxidant protection but lipid peroxidation was prevented. • Activation of membrane repair processes suggested cell membrane ability to recover. • The combined approach is a sensitive and effective tool in ecotoxicological studies.

  8. Metabolomics and Epidemiology Working Group

    Science.gov (United States)

    The Metabolomics and Epidemiology (MetEpi) Working Group promotes metabolomics analyses in population-based studies, as well as advancement in the field of metabolomics for broader biomedical and public health research.

  9. A metabolomics approach to evaluate the effects of shiitake mushroom (Lentinula edodes) treatment in undernourished young rats

    Energy Technology Data Exchange (ETDEWEB)

    Molz, Patrícia [Nutrition Course, Department of Physical Education and Health, University of Santa Cruz do Sul, Santa Cruz do Sul, RS (Brazil); Graduate Program in Health Promotion, University of Santa Cruz do Sul, Santa Cruz do Sul, RS (Brazil); Ellwanger, Joel Henrique [Biological Sciences Course, Department of Biology and Pharmacy, University of Santa Cruz do Sul, Santa Cruz do Sul, RS (Brazil); Eliete Iochims dos Santos, Carla; Dias, Johnny Ferraz [Ion Implantation Laboratory, Physics Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS (Brazil); Campos, Deivis de [Biological Sciences Course, Department of Biology and Pharmacy, University of Santa Cruz do Sul, Santa Cruz do Sul, RS (Brazil); Corbellini, Valeriano Antonio [Graduate Program in Health Promotion, University of Santa Cruz do Sul, Santa Cruz do Sul, RS (Brazil); Prá, Daniel [Graduate Program in Health Promotion, University of Santa Cruz do Sul, Santa Cruz do Sul, RS (Brazil); Biological Sciences Course, Department of Biology and Pharmacy, University of Santa Cruz do Sul, Santa Cruz do Sul, RS (Brazil); Putzke, Marisa Terezinha Lopes [Biological Sciences Course, Department of Biology and Pharmacy, University of Santa Cruz do Sul, Santa Cruz do Sul, RS (Brazil); Franke, Silvia Isabel Rech, E-mail: silviafr@unisc.br [Nutrition Course, Department of Physical Education and Health, University of Santa Cruz do Sul, Santa Cruz do Sul, RS (Brazil); Graduate Program in Health Promotion, University of Santa Cruz do Sul, Santa Cruz do Sul, RS (Brazil)

    2014-01-01

    Undernourishment is characterized by a decrease of the metabolic rate as a result of lack of nutrients important to life. Shiitake mushroom (Lentinula edodes) can be an alternative to reverse undernourishment. The aim of this study was to explore the metabolic changes and consequent elemental concentrations found in undernourished rats and undernourished rats treated with shiitake mushroom (n = 12 rats each group). To determine the elemental concentration, blood samples were analyzed by Particle Induced X-ray Emission (PIXE). For metabolomics, blood samples were tested under Fourier Transform Infrared Spectroscopy (FT-IR). The results indicated that the supplementation with shiitake mushroom in undernourished rats altered the composition of blood proteins, elements and volume. Several strong correlations were observed between the elemental concentrations and metabolic parameters.

  10. Comparative metabolomics approach coupled with cell- and gene-based assays for species classification and anti-inflammatory bioactivity validation of Echinacea plants.

    Science.gov (United States)

    Hou, Chia-Chung; Chen, Chun-Houh; Yang, Ning-Sun; Chen, Yi-Ping; Lo, Chiu-Ping; Wang, Sheng-Yang; Tien, Yin-Jing; Tsai, Pi-Wen; Shyur, Lie-Fen

    2010-11-01

    Echinacea preparations were the top-selling herbal supplements or medicines in the past decade; however, there is still frequent misidentification or substitution of the Echinacea plant species in the commercial Echinacea products with not well chemically defined compositions in a specific preparation. In this report, a comparative metabolomics study, integrating supercritical fluid extraction, gas chromatography/mass spectrometry and data mining, demonstrates that the three most used medicinal Echinacea species, Echinacea purpurea, E. pallida, and E. angustifolia, can be easily classified by the distribution and relative content of metabolites. A mitogen-induced murine skin inflammation study suggested that alkamides were the active anti-inflammatory components present in Echinacea plants. Mixed alkamides and the major component, dodeca-2E,4E,8Z,10Z(E)-tetraenoic acid isobutylamides, were then isolated from E. purpurea root extracts for further bioactivity elucidation. In macrophages, the alkamides significantly inhibited cyclooxygenase 2 (COX-2) activity and the lipopolysaccharide-induced expression of COX-2, inducible nitric oxide synthase and specific cytokines or chemokines [i.e., TNF-α, interleukin (IL)-1α, IL-6, MCP-1, MIP-1β] but elevated heme oxygenase-1 protein expression. Cichoric acid, however, exhibited little or no effect. The results of high-performance liquid chromatography/electron spray ionization/mass spectrometry metabolite profiling of alkamides and phenolic compounds in E. purpurea roots showed that specific phytocompound (i.e., alkamides, cichoric acid and rutin) contents were subject to change under certain post-harvest or abiotic treatment. This study provides new insight in using the emerging metabolomics approach coupled with bioactivity assays for medicinal/nutritional plant species classification, quality control and the identification of novel botanical agents for inflammatory disorders. Copyright © 2010 Elsevier Inc. All rights

  11. Dual labeling of metabolites for metabolome analysis (DLEMMA): A new approach for the identification and relative quantification of metabolites by means of dual isotope labeling and liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Feldberg, Liron; Venger, Ilya; Malitsky, Sergey; Rogachev, Ilana; Aharoni, Asaph

    2009-11-15

    Advanced metabolomics technologies are anticipated to permit the identification and quantification of metabolites at the whole-metabolome scale. Yet, most of the metabolites either remain unknown or cannot be identified unambiguously. Moreover, the present approaches suffer from inaccuracies in relative quantification because of sample preparation and matrix effects. Here we present Dual Labeling of Metabolites for Metabolome Analysis (DLEMMA) as a valuable tool, which with analogy to DNA array assays enables the identification and relative quantification of differential metabolites in a single sample. DLEMMA was demonstrated as an efficient method for reducing the number of possible chemical structures assigned that exhibit the same elemental composition. Its strength was exemplified by the discovery of 10 novel Tryptophan derivatives. Furthermore, employing DLEMMA by feeding two Phenylalanine-labeled precursors, we could detect differential metabolites between transgenic and control plants. The accuracy of relative quantification is also enhanced since DLEMMA provides identical matrixes for both samples, thus avoiding the effects of different complex biological matrixes on electrospray ionization. Hence, DLEMMA will complement and contribute to the advancement of metabolomics technologies and boost metabolic pathway discovery in diverse organisms.

  12. The acute impact of polyphenols from Hibiscus sabdariffa in metabolic homeostasis: an approach combining metabolomics and gene-expression analyses.

    Science.gov (United States)

    Beltrán-Debón, Raúl; Rodríguez-Gallego, Esther; Fernández-Arroyo, Salvador; Senan-Campos, Oriol; Massucci, Francesco A; Hernández-Aguilera, Anna; Sales-Pardo, Marta; Guimerà, Roger; Camps, Jordi; Menendez, Javier A; Joven, Jorge

    2015-09-01

    We explored the acute multifunctional effects of polyphenols from Hibiscus sabdariffa in humans to assess possible consequences on the host's health. The expected dynamic response was studied using a combination of transcriptomics and metabolomics to integrate specific functional pathways through network-based methods and to generate hypotheses established by acute metabolic effects and/or modifications in the expression of relevant genes. Data were obtained from healthy male volunteers after 3 hours of ingestion of an aqueous Hibiscus sabdariffa extract. The data were compared with data obtained prior to the ingestion, and the overall findings suggest that these particular polyphenols had a simultaneous role in mitochondrial function, energy homeostasis and protection of the cardiovascular system. These findings suggest beneficial actions in inflammation, endothelial dysfunction, and oxidation, which are interrelated mechanisms. Among other effects, the activation of the heme oxygenase-biliverdin reductase axis, the systemic inhibition of the renin-angiotensin system, the inhibition of the angiotensin-converting enzyme, and several actions mirroring those of the peroxisome proliferator-activated receptor agonists further support this notion. We also found concordant findings in the serum of the participants, which include a decrease in cortisol levels and a significant increase in the active vasodilator metabolite of bradykinin (des-Arg(9)-bradykinin). Therefore, our data support the view that polyphenols from Hibiscus sabdariffa play a regulatory role in metabolic health and in the maintenance of blood pressure, thus implying a multi-faceted impact in metabolic and cardiovascular diseases.

  13. Celiac Disease Genomic, Environmental, Microbiome, and Metabolomic (CDGEMM Study Design: Approach to the Future of Personalized Prevention of Celiac Disease

    Directory of Open Access Journals (Sweden)

    Maureen M. Leonard

    2015-11-01

    Full Text Available In the past it was believed that genetic predisposition and exposure to gluten were necessary and sufficient to develop celiac disease (CD. Recent studies however suggest that loss of gluten tolerance can occur at any time in life as a consequence of other environmental stimuli. Many environmental factors known to influence the composition of the intestinal microbiota are also suggested to play a role in the development of CD. These include birthing delivery mode, infant feeding, and antibiotic use. To date no large-scale longitudinal studies have defined if and how gut microbiota composition and metabolomic profiles may influence the loss of gluten tolerance and subsequent onset of CD in genetically-susceptible individuals. Here we describe a prospective, multicenter, longitudinal study of infants at risk for CD which will employ a blend of basic and applied studies to yield fundamental insights into the role of the gut microbiome as an additional factor that may play a key role in early steps involved in the onset of autoimmune disease.

  14. Celiac Disease Genomic, Environmental, Microbiome, and Metabolomic (CDGEMM) Study Design: Approach to the Future of Personalized Prevention of Celiac Disease.

    Science.gov (United States)

    Leonard, Maureen M; Camhi, Stephanie; Huedo-Medina, Tania B; Fasano, Alessio

    2015-11-11

    In the past it was believed that genetic predisposition and exposure to gluten were necessary and sufficient to develop celiac disease (CD). Recent studies however suggest that loss of gluten tolerance can occur at any time in life as a consequence of other environmental stimuli. Many environmental factors known to influence the composition of the intestinal microbiota are also suggested to play a role in the development of CD. These include birthing delivery mode, infant feeding, and antibiotic use. To date no large-scale longitudinal studies have defined if and how gut microbiota composition and metabolomic profiles may influence the loss of gluten tolerance and subsequent onset of CD in genetically-susceptible individuals. Here we describe a prospective, multicenter, longitudinal study of infants at risk for CD which will employ a blend of basic and applied studies to yield fundamental insights into the role of the gut microbiome as an additional factor that may play a key role in early steps involved in the onset of autoimmune disease.

  15. Metabolic regulation of trisporic acid on Blakeslea trispora revealed by a GC-MS-based metabolomic approach.

    Directory of Open Access Journals (Sweden)

    Jie Sun

    Full Text Available The zygomycete Blakeslea trispora is used commercially as natural source of â-carotene. Trisporic acid (TA is secreted from the mycelium of B. trispora during mating between heterothallic strains and is considered as a mediator of the regulation of mating processes and an enhancer of carotene biosynthesis. Gas chromatography-mass spectrometry and multivariate analysis were employed to investigate TA-associated intracellular biochemical changes in B. trispora. By principal component analysis, the differential metabolites discriminating the control groups from the TA-treated groups were found, which were also confirmed by the subsequent hierarchical cluster analysis. The results indicate that TA is a global regulator and its main effects at the metabolic level are reflected on the content changes in several fatty acids, carbohydrates, and amino acids. The carbon metabolism and fatty acids synthesis are sensitive to TA addition. Glycerol, glutamine, and ã-aminobutyrate might play important roles in the regulation of TA. Complemented by two-dimensional electrophoresis, the results indicate that the actions of TA at the metabolic level involve multiple metabolic processes, such as glycolysis and the bypass of the classical tricarboxylic acid cycle. These results reveal that the metabolomics strategy is a powerful tool to gain insight into the mechanism of a microorganism's cellular response to signal inducers at the metabolic level.

  16. Investigation of the chemomarkers correlated with flower colour in different organs of Catharanthus roseus using NMR-based metabolomics.

    Science.gov (United States)

    Pan, Qifang; Dai, Yuntao; Nuringtyas, Tri Rini; Mustafa, Natali Rianika; Schulte, Anna Elisabeth; Verpoorte, Robert; Choi, Young Hae

    2014-01-01

    Flower colour is a complex phenomenon that involves a wide range of secondary metabolites of flowers, for example phenolics and carotenoids as well as co-pigments. Biosynthesis of these metabolites, though, occurs through complicated pathways in many other plant organs. The analysis of the metabolic profile of leaves, stems and roots, for example, therefore may allow the identification of chemomarkers related to the final expression of flower colour. To investigate the metabolic profile of leaves, stems, roots and flowers of Catharanthus roseus and the possible correlation with four flower colours (orange, pink, purple and red). (1) H-NMR and multivariate data analysis were used to characterise the metabolites in the organs. The results showed that flower colour is characterised by a special pattern of metabolites such as anthocyanins, flavonoids, organic acids and sugars. The leaves, stems and roots also exhibit differences in their metabolic profiles according to the flower colour. Plants with orange flowers featured a relatively high level of kaempferol analogues in all organs except roots. Red-flowered plants showed a high level of malic acid, fumaric acid and asparagine in both flowers and leaves, and purple and pink flowering plants exhibited high levels of sucrose, glucose and 2,3-dihydroxy benzoic acid. High concentrations of quercetin analogues were detected in flowers and leaves of purple-flowered plants. There is a correlation between the metabolites specifically associated to the expression of different flower colours and the metabolite profile of other plant organs and it is therefore possible to predict the flower colours by detecting specific metabolites in leaves, stems or roots. This may have interesting application in the plant breeding industry. Copyright © 2013 John Wiley & Sons, Ltd.

  17. NMR-based metabolomics and breath studies show lipid and protein catabolism during low dose chronic T(1)AM treatment.

    Science.gov (United States)

    Haviland, J A; Reiland, H; Butz, D E; Tonelli, M; Porter, W P; Zucchi, R; Scanlan, T S; Chiellini, G; Assadi-Porter, F M

    2013-12-01

    3-Iodothyronamine (T1 AM), an analog of thyroid hormone, is a recently discovered fast-acting endogenous metabolite. Single high-dose treatments of T1 AM have produced rapid short-term effects, including a reduction of body temperature, bradycardia, and hyperglycemia in mice. The effect of daily low doses of T1 AM (10 mg/kg) for 8 days on weight loss and metabolism in spontaneously overweight mice was monitored. The experiments were repeated twice (n = 4). Nuclear magnetic resonance (NMR) spectroscopy of plasma and real-time analysis of exhaled (13) CO2 in breath by cavity ring down spectroscopy (CRDS) were used to detect T1 AM-induced lipolysis. CRDS detected increased lipolysis in breath shortly after T1 AM administration that was associated with a significant weight loss but independent of food consumption. NMR spectroscopy revealed alterations in key metabolites in serum: valine, glycine, and 3-hydroxybutyrate, suggesting that the subchronic effects of T1 AM include both lipolysis and protein breakdown. After discontinuation of T1 AM treatment, mice regained only 1.8% of the lost weight in the following 2 weeks, indicating lasting effects of T1 AM on weight maintenance. CRDS in combination with NMR and (13) C-metabolic tracing constitute a powerful method of investigation in obesity studies for identifying in vivo biochemical pathway shifts and unanticipated debilitating side effects. Copyright © 2013 The Obesity Society.

  18. New dereplication method applied to NMR-Based metabolomics on different fusarium species isolated from Rhizosphere of Senna spectabilis

    Energy Technology Data Exchange (ETDEWEB)

    Selegato, Denise M.; Castro-Gamboa, Ian, E-mail: ian.castro@gmail.com [Universidade Estadual Paulista Júlio de Mesquita Filho (NuBBE/UNESP), Araraquara, SP (Brazil). Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais; Freire, Rafael T.; Tannús, Alberto [Universidade de São Paulo (CIERMag/USP), São Carlos, SP (Brazil). Centro de Imagens e Espectroscopia in Vivo por Ressonância Magnética

    2016-07-01

    The search for new sources of natural products steadily increased the use of bioinformatics tools that enabled efficient analysis of complex matrices. In this context, dereplication methods emerged as a fast way of identifying known compounds, accelerating the identification of bioactive chemotypes. Although {sup 1}H NMR is widely used as an analytical technique, few studies have been reported using it as a dereplication tool, primarily because of the spectral complexity. This work aims to create a new computational method that analyses {sup 1}H NMR data from Fusarium solani and F. oxysporum isolated from Senna spectabilis' srhizosphere through principal component analysis (PCA). The algorithm uses loading values to select important peaks that distinguish both species in PCA, allowing compound dereplication, even in highly similar profiles. As a result, the method, associated with other NMR experiments and information from an in-house Fusarium's metabolite library was able to distinguish different mycotoxins produced by both fungi, identifying fusaric acid and beauvericin for F. oxysporum and the depsipeptide HA23 from F. solani. (author)

  19. NMR and pattern recognition methods in metabolomics: From data acquisition to biomarker discovery: A review

    International Nuclear Information System (INIS)

    Smolinska, Agnieszka; Blanchet, Lionel; Buydens, Lutgarde M.C.; Wijmenga, Sybren S.

    2012-01-01

    Highlights: ► Procedures for acquisition of different biofluids by NMR. ► Recent developments in metabolic profiling of different biofluids by NMR are presented. ► The crucial steps involved in data preprocessing and multivariate chemometric analysis are reviewed. ► Emphasis is given on recent findings on Multiple Sclerosis via NMR and pattern recognition methods. - Abstract: Metabolomics is the discipline where endogenous and exogenous metabolites are assessed, identified and quantified in different biological samples. Metabolites are crucial components of biological system and highly informative about its functional state, due to their closeness to functional endpoints and to the organism's phenotypes. Nuclear Magnetic Resonance (NMR) spectroscopy, next to Mass Spectrometry (MS), is one of the main metabolomics analytical platforms. The technological developments in the field of NMR spectroscopy have enabled the identification and quantitative measurement of the many metabolites in a single sample of biofluids in a non-targeted and non-destructive manner. Combination of NMR spectra of biofluids and pattern recognition methods has driven forward the application of metabolomics in the field of biomarker discovery. The importance of metabolomics in diagnostics, e.g. in identifying biomarkers or defining pathological status, has been growing exponentially as evidenced by the number of published papers. In this review, we describe the developments in data acquisition and multivariate analysis of NMR-based metabolomics data, with particular emphasis on the metabolomics of Cerebrospinal Fluid (CSF) and biomarker discovery in Multiple Sclerosis (MScl).

  20. Discovery of safety biomarkers for atorvastatin in rat urine using mass spectrometry based metabolomics combined with global and targeted approach

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Bhowmik Salil [Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of); University of Science and Technology, (305-333) 113 Gwahangno, Yuseong-gu, Daejeon (Korea, Republic of); Lee, Young-Joo; Yi, Hong Jae [College of Pharmacy, Kyung Hee University, Hoegi-dong, Dongdaemun-gu, Seoul 130-791 (Korea, Republic of); Chung, Bong Chul [Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of); Jung, Byung Hwa, E-mail: jbhluck@kist.re.kr [Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of); University of Science and Technology, (305-333) 113 Gwahangno, Yuseong-gu, Daejeon (Korea, Republic of)

    2010-02-19

    In order to develop a safety biomarker for atorvastatin, this drug was orally administrated to hyperlipidemic rats, and a metabolomic study was performed. Atorvastatin was given in doses of either 70 mg kg{sup -1} day{sup -1} or 250 mg kg{sup -1} day{sup -1} for a period of 7 days (n = 4 for each group). To evaluate any abnormal effects of the drug, physiological and plasma biochemical parameters were measured and histopathological tests were carried out. Safety biomarkers were derived by comparing these parameters and using both global and targeted metabolic profiling. Global metabolic profiling was performed using liquid chromatography/time of flight/mass spectrometry (LC/TOF/MS) with multivariate data analysis. Several safety biomarker candidates that included various steroids and amino acids were discovered as a result of global metabolic profiling, and they were also confirmed by targeted metabolic profiling using gas chromatography/mass spectrometry (GC/MS) and capillary electrophoresis/mass spectrometry (CE/MS). Serum biochemical and histopathological tests were used to detect abnormal drug reactions in the liver after repeating oral administration of atorvastatin. The metabolic differences between control and the drug-treated groups were compared using PLS-DA score plots. These results were compared with the physiological and plasma biochemical parameters and the results of a histopathological test. Estrone, cortisone, proline, cystine, 3-ureidopropionic acid and histidine were proposed as potential safety biomarkers related with the liver toxicity of atorvastatin. These results indicate that the combined application of global and targeted metabolic profiling could be a useful tool for the discovery of drug safety biomarkers.

  1. Discovery of safety biomarkers for atorvastatin in rat urine using mass spectrometry based metabolomics combined with global and targeted approach

    International Nuclear Information System (INIS)

    Kumar, Bhowmik Salil; Lee, Young-Joo; Yi, Hong Jae; Chung, Bong Chul; Jung, Byung Hwa

    2010-01-01

    In order to develop a safety biomarker for atorvastatin, this drug was orally administrated to hyperlipidemic rats, and a metabolomic study was performed. Atorvastatin was given in doses of either 70 mg kg -1 day -1 or 250 mg kg -1 day -1 for a period of 7 days (n = 4 for each group). To evaluate any abnormal effects of the drug, physiological and plasma biochemical parameters were measured and histopathological tests were carried out. Safety biomarkers were derived by comparing these parameters and using both global and targeted metabolic profiling. Global metabolic profiling was performed using liquid chromatography/time of flight/mass spectrometry (LC/TOF/MS) with multivariate data analysis. Several safety biomarker candidates that included various steroids and amino acids were discovered as a result of global metabolic profiling, and they were also confirmed by targeted metabolic profiling using gas chromatography/mass spectrometry (GC/MS) and capillary electrophoresis/mass spectrometry (CE/MS). Serum biochemical and histopathological tests were used to detect abnormal drug reactions in the liver after repeating oral administration of atorvastatin. The metabolic differences between control and the drug-treated groups were compared using PLS-DA score plots. These results were compared with the physiological and plasma biochemical parameters and the results of a histopathological test. Estrone, cortisone, proline, cystine, 3-ureidopropionic acid and histidine were proposed as potential safety biomarkers related with the liver toxicity of atorvastatin. These results indicate that the combined application of global and targeted metabolic profiling could be a useful tool for the discovery of drug safety biomarkers.

  2. [Mechanism of treatment effect of Huanglian-Huangqin herb pairs on cerebral ischemia rats based on metabolomic approach].

    Science.gov (United States)

    Cao, Hui-Ting; Zhu, Hua-Xu; Zhang, Qi-Chun; Guo, Li-Wei

    2017-06-01

    The metabolic effect of Huanglian-Huangqin herb pairs on cerebral ischemia rats was studied by using metabolomic method. The rat model of ischemia reperfusion injury induced by introduction of transient middle cerebral artery occlusion (MCAO) followed by reperfusion. Ultra high performance liquid chromatography-series four pole time of flight mass spectrometry method(UPLC-Q-TOF/MS), Markerlynx software, and principal component analysis and partial least-squares discriminant analysis were used to analyze the different endogenous metabolites among the urine samples of sham rats, cerebral ischemia model rats, Huanglian groups (HL), Huangqin groups (HQ) and Huanglian-Huangqin herb pairs groups (LQ) was achieved, combined with accurate information about the endogenous metabolites level and secondary fragment ions, retrieval and identification of possible biological markers, metabolic pathway which build in MetPA database. The 20 potential biomarkers were found in the urine of rats with cerebral ischemia, which mainly involved in the neurotransmitter regulation, amino acid metabolism, energy metabolism, lipid metabolism and so on. Those metabolic pathways were disturbed in cerebral ischemia model rats, the principal component analysis showed that the normal and cerebral ischemia model is clearly distinguished, and the compound can be given to the normal state of change after HL, HQ, LQ administration. This study index the interpretation of cerebral ischemia rat metabolism group and mechanism, the embodiment of metabonomics can reflect the physiological and metabolic state, which can better reflect the traditional Chinese medicine as a whole view, system view and the features of multi ingredient synergistic or antagonistic effects. Copyright© by the Chinese Pharmaceutical Association.

  3. Tools for the functional interpretation of metabolomic experiments.

    Science.gov (United States)

    Chagoyen, Monica; Pazos, Florencio

    2013-11-01

    The so-called 'omics' approaches used in modern biology aim at massively characterizing the molecular repertories of living systems at different levels. Metabolomics is one of the last additions to the 'omics' family and it deals with the characterization of the set of metabolites in a given biological system. As metabolomic techniques become more massive and allow characterizing larger sets of metabolites, automatic methods for analyzing these sets in order to obtain meaningful biological information are required. Only recently the first tools specifically designed for this task in metabolomics appeared. They are based on approaches previously used in transcriptomics and other 'omics', such as annotation enrichment analysis. These, together with generic tools for metabolic analysis and visualization not specifically designed for metabolomics will for sure be in the toolbox of the researches doing metabolomic experiments in the near future.

  4. ¹H NMR-based metabolic profiling of human rectal cancer tissue

    Science.gov (United States)

    2013-01-01

    Background Rectal cancer is one of the most prevalent tumor types. Understanding the metabolic profile of rectal cancer is important for developing therapeutic approaches and molecular diagnosis. Methods Here, we report a metabonomics profiling of tissue samples on a large cohort of human rectal cancer subjects (n = 127) and normal controls (n = 43) using 1H nuclear magnetic resonance (1H NMR) based metabonomics assay, which is a highly sensitive and non-destructive method for the biomarker identification in biological systems. Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and orthogonal projection to latent structure with discriminant analysis (OPLS-DA) were applied to analyze the 1H-NMR profiling data to identify the distinguishing metabolites of rectal cancer. Results Excellent separation was obtained and distinguishing metabolites were observed among the different stages of rectal cancer tissues (stage I = 35; stage II = 37; stage III = 37 and stage IV = 18) and normal controls. A total of 38 differential metabolites were identified, 16 of which were closely correlated with the stage of rectal cancer. The up-regulation of 10 metabolites, including lactate, threonine, acetate, glutathione, uracil, succinate, serine, formate, lysine and tyrosine, were detected in the cancer tissues. On the other hand, 6 metabolites, including myo-inositol, taurine, phosphocreatine, creatine, betaine and dimethylglycine were decreased in cancer tissues. These modified metabolites revealed disturbance of energy, amino acids, ketone body and choline metabolism, which may be correlated with the progression of human rectal cancer. Conclusion Our findings firstly identify the distinguishing metabolites in different stages of rectal cancer tissues, indicating possibility of the attribution of metabolites disturbance to the progression of rectal cancer. The altered metabolites may be as potential biomarkers, which would

  5. Learning to classify organic and conventional wheat - a machine-learning driven approach using the MeltDB 2.0 metabolomics analysis platform

    Directory of Open Access Journals (Sweden)

    Nikolas eKessler

    2015-03-01

    Full Text Available We present results of our machine learning approach to the problem of classifying GC-MS data originating from wheat grains of different farming systems. The aim is to investigate the potential of learning algorithms to classify GC-MS data to be either from conventionally grown or from organically grown samples and considering different cultivars. The motivation of our work is rather obvious on the background of nowadays increased demand for organic food in post-industrialized societies and the necessity to prove organic food authenticity. The background of our data set is given by up to eleven wheat cultivars that have been cultivated in both farming systems, organic and conventional, throughout three years. More than 300 GC-MS measurements were recorded and subsequently processed and analyzed in the MeltDB 2.0 metabolomics analysis platform, being briefly outlined in this paper. We further describe how unsupervised (t-SNE, PCA and supervised (RF, SVM methods can be applied for sample visualization and classification. Our results clearly show that years have most and wheat cultivars have second-most influence on the metabolic composition of a sample. We can also show, that for a given year and cultivar, organic and conventional cultivation can be distinguished by machine-learning algorithms.

  6. Basics of mass spectrometry based metabolomics.

    Science.gov (United States)

    Courant, Frédérique; Antignac, Jean-Philippe; Dervilly-Pinel, Gaud; Le Bizec, Bruno

    2014-11-01

    The emerging field of metabolomics, aiming to characterize small molecule metabolites present in biological systems, promises immense potential for different areas such as medicine, environmental sciences, agronomy, etc. The purpose of this article is to guide the reader through the history of the field, then through the main steps of the metabolomics workflow, from study design to structure elucidation, and help the reader to understand the key phases of a metabolomics investigation and the rationale underlying the protocols and techniques used. This article is not intended to give standard operating procedures as several papers related to this topic were already provided, but is designed as a tutorial aiming to help beginners understand the concept and challenges of MS-based metabolomics. A real case example is taken from the literature to illustrate the application of the metabolomics approach in the field of doping analysis. Challenges and limitations of the approach are then discussed along with future directions in research to cope with these limitations. This tutorial is part of the International Proteomics Tutorial Programme (IPTP18). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Metabolic effects of dinoseb, diazinon and esfenvalerate in eyed eggs and alevins of Chinook salmon (Oncorhynchus tshawytscha) determined by 1H NMR metabolomics

    International Nuclear Information System (INIS)

    Viant, Mark R.; Pincetich, Christopher A.; Tjeerdema, Ronald S.

    2006-01-01

    Pesticide pulses in the Sacramento River, California, originate from storm-water discharges and non-point source aquatic pollution that can last from a few days to weeks. The Sacramento River and its tributaries have historically supported the majority of California's Chinook salmon (Oncorhynchus tshawytscha) spawning grounds. Three pesticides currently used in the Sacramento Valley - dinoseb, diazinon, and esfenvalerate - were chosen to model the exposure of salmon embryos to storm-water discharges. Static-renewal (96 h) exposures to eyed eggs and alevins resulted in both toxicity and significant changes in metabolism assessed in whole-embryo extracts by 1 H nuclear magnetic resonance (NMR) spectroscopy based metabolomics and HPLC with UV detection (HPLC-UV). The 96-h LC 5 values of eyed eggs and alevins exposed to dinoseb were 335 and 70.6 ppb, respectively, and the corresponding values for diazinon were 545 and 29.5 ppm for eyed eggs and alevins, respectively. The 96-h LC 5 of eyed eggs exposed to esfenvalerate could not be determined due to lack of mortality at the highest exposure concentration, but in alevins was 16.7 ppb. All esfenvalerate exposed alevins developed some degree of lordosis or myoskeletal abnormality and did not respond to stimulus or exhibit normal swimming behavior. ATP concentrations measured by HPLC-UV decreased significantly in eyed eggs due to 250 ppb dinoseb and 10 and 100 ppb esfenvalerate (p 1 H NMR metabolite fingerprints of eyed egg and alevin extracts revealed both dose-dependent and mechanism of action-specific metabolic effects induced by the pesticides. Furthermore, NMR based metabolomics proved to be more sensitive than HPLC-UV in identifying significant changes in sublethal metabolism of pesticide exposed alevins. In conclusion, we have demonstrated several benefits of a metabolomics approach for chemical risk assessment, when used in conjunction with a fish embryo assay, and have identified significant metabolic perturbations

  8. Automatic NMR-based identification of chemical reaction types in mixtures of co-occurring reactions.

    Directory of Open Access Journals (Sweden)

    Diogo A R S Latino

    Full Text Available The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF, the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure

  9. The application of NMR-based milk metabolite analysis in milk authenticity identification.

    Science.gov (United States)

    Li, Qiangqiang; Yu, Zunbo; Zhu, Dan; Meng, Xianghe; Pang, Xiumei; Liu, Yue; Frew, Russell; Chen, He; Chen, Gang

    2017-07-01

    Milk is an important food component in the human diet and is a target for fraud, including many unsafe practices. For example, the unscrupulous adulteration of soymilk into bovine and goat milk or of bovine milk into goat milk in order to gain profit without declaration is a health risk, as the adulterant source and sanitary history are unknown. A robust and fit-for-purpose technique is required to enforce market surveillance and hence protect consumer health. Nuclear magnetic resonance (NMR) is a powerful technique for characterization of food products based on measuring the profile of metabolites. In this study, 1D NMR in conjunction with multivariate chemometrics as well as 2D NMR was applied to differentiate milk types and to identify milk adulteration. Ten metabolites were found which differed among milk types, hence providing characteristic markers for identifying the milk. These metabolites were used to establish mathematical models for milk type differentiation. The limit of quantification (LOQ) of adulteration was 2% (v/v) for soymilk in bovine milk, 2% (v/v) for soymilk in goat milk and 5% (v/v) for bovine milk in goat milk, with relative standard deviation (RSD) less than 10%, which can meet the needs of daily inspection. The NMR method described here is effective for milk authenticity identification, and the study demonstrates that the NMR-based milk metabolite analysis approach provides a means of detecting adulteration at expected levels and can be used for dairy quality monitoring. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Automatic NMR-based identification of chemical reaction types in mixtures of co-occurring reactions.

    Science.gov (United States)

    Latino, Diogo A R S; Aires-de-Sousa, João

    2014-01-01

    The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1)H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1)H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of

  11. Ischemic stroke progress evaluation by {sup 31}P NMR-based metabonomic of human serum

    Energy Technology Data Exchange (ETDEWEB)

    Grandizoli, Caroline W.P.S.; Barison, Andersson, E-mail: andernmr@ufpr.br [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Departamento de Quimica. Centro de RMN; Lange, Marcos C.; Novak, Felipe T. M. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Hospital de Clínicas. Divisao de Neurologia; Campos, Francinete R. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Departmento de Farmacia

    2014-07-01

    In this work, chemometric analyses over {sup 31}P{"1"H} NMR (nuclear magnetic resonance) spectra of human blood serum permitted to discriminated ischemic stroke patients from health individuals due to changes in the chemical composition of phosphorus-containing compounds. These results indicate that {sup 31}P NMR-based metabonomic allowed insights over the mechanism triggered by ischemic stroke. (author)

  12. Metabolomics of forage plants: a review.

    Science.gov (United States)

    Rasmussen, Susanne; Parsons, Anthony J; Jones, Christopher S

    2012-11-01

    Forage plant breeding is under increasing pressure to deliver new cultivars with improved yield, quality and persistence to the pastoral industry. New innovations in DNA sequencing technologies mean that quantitative trait loci analysis and marker-assisted selection approaches are becoming faster and cheaper, and are increasingly used in the breeding process with the aim to speed it up and improve its precision. High-throughput phenotyping is currently a major bottle neck and emerging technologies such as metabolomics are being developed to bridge the gap between genotype and phenotype; metabolomics studies on forages are reviewed in this article. Major challenges for pasture production arise from the reduced availability of resources, mainly water, nitrogen and phosphorus, and metabolomics studies on metabolic responses to these abiotic stresses in Lolium perenne and Lotus species will be discussed here. Many forage plants can be associated with symbiotic microorganisms such as legumes with nitrogen fixing rhizobia, grasses and legumes with phosphorus-solubilizing arbuscular mycorrhizal fungi, and cool temperate grasses with fungal anti-herbivorous alkaloid-producing Neotyphodium endophytes and metabolomics studies have shown that these associations can significantly affect the metabolic composition of forage plants. The combination of genetics and metabolomics, also known as genetical metabolomics can be a powerful tool to identify genetic regions related to specific metabolites or metabolic profiles, but this approach has not been widely adopted for forages yet, and we argue here that more studies are needed to improve our chances of success in forage breeding. Metabolomics combined with other '-omics' technologies and genome sequencing can be invaluable tools for large-scale geno- and phenotyping of breeding populations, although the implementation of these approaches in forage breeding programmes still lags behind. The majority of studies using metabolomics

  13. Metabolomic studies in pulmonology

    Directory of Open Access Journals (Sweden)

    R. R. Furina

    2015-01-01

    Full Text Available The review shows the results of metabolomic studies in pulmonology. The key idea of metabolomics is to detect specific biomarkers in a biological sample for the diagnosis of diseases of the bronchi and lung. Main methods for the separation and identification of volatile organic substances as biomarkers (gas chromatography, mass spectrometry, and nuclear magnetic resonance spectrometry used in metabolomics are given. A solid-phase microextraction method used to pre-prepare a sample is also covered. The results of laboratory tests for biomarkers for lung cancer, acute respiratory distress syndrome, chronic obstructive pulmonary disease, cystic fibrosis, chronic infections, and pulmonary tuberculosis are presented. In addition, emphasis is placed on the possibilities of metabolomics used in experimental medicine, including to the study of asthma. The information is of interest to both theorists and practitioners.

  14. The food metabolome

    DEFF Research Database (Denmark)

    Scalbert, Augustin; Brennan, Lorraine; Manach, Claudine

    2014-01-01

    The food metabolome is defined as the part of the human metabolome directly derived from the digestion and biotransformation of foods and their constituents. With >25,000 compounds known in various foods, the food metabolome is extremely complex, with a composition varying widely according...... to the diet. By its very nature it represents a considerable and still largely unexploited source of novel dietary biomarkers that could be used to measure dietary exposures with a high level of detail and precision. Most dietary biomarkers currently have been identified on the basis of our knowledge of food...... by the recent identification of novel biomarkers of intakes for fruit, vegetables, beverages, meats, or complex diets. Moreover, examples also show how the scrutiny of the food metabolome can lead to the discovery of bioactive molecules and dietary factors associated with diseases. However, researchers still...

  15. Linking metabolomics data to underlying metabolic regulation

    Directory of Open Access Journals (Sweden)

    Thomas eNägele

    2014-11-01

    Full Text Available The comprehensive experimental analysis of a metabolic constitution plays a central role in approaches of organismal systems biology.Quantifying the impact of a changing environment on the homeostasis of cellular metabolism has been the focus of numerous studies applying various metabolomics techniques. It has been proven that approaches which integrate different analytical techniques, e.g. LC-MS, GC-MS, CE-MS and H-NMR, can provide a comprehensive picture of a certain metabolic homeostasis. Identification of metabolic compounds and quantification of metabolite levels represent the groundwork for the analysis of regulatory strategies in cellular metabolism. This significantly promotes our current understanding of the molecular organization and regulation of cells, tissues and whole organisms.Nevertheless, it is demanding to elicit the pertinent information which is contained in metabolomics data sets.Based on the central dogma of molecular biology, metabolite levels and their fluctuations are the result of a directed flux of information from gene activation over transcription to translation and posttranslational modification.Hence, metabolomics data represent the summed output of a metabolic system comprising various levels of molecular organization.As a consequence, the inverse assignment of metabolomics data to underlying regulatory processes should yield information which-if deciphered correctly-provides comprehensive insight into a metabolic system.Yet, the deduction of regulatory principles is complex not only due to the high number of metabolic compounds, but also because of a high level of cellular compartmentalization and differentiation.Motivated by the question how metabolomics approaches can provide a representative view on regulatory biochemical processes, this article intends to present and discuss current metabolomics applications, strategies of data analysis and their limitations with respect to the interpretability in context of

  16. NMR-based metabonomics reveals that plasma betaine increases upon intake of high-fiber rye buns in hypercholesterolemic pigs

    DEFF Research Database (Denmark)

    Bertram, Hanne Christine S.; Malmendal, Anders; Nielsen, Niels Chr

    2009-01-01

    fiber for 9-10 wk. Fasting plasma samples were collected 2 days before and after 8 and 12 days on the experimental diets, while postprandial samples taken after 58-67 days, and( 1)H NMR spectra were acquired on these. Principal component analysis on the obtained NMR spectra demonstrated clear effects...... in this region. The 3.29 ppm signal is ascribed to N(CH(3))(3) protons in betaine, which may be an important contributor to the health promoting effects of rye.......This study presents an NMR-based metabonomic approach to explore the overall endogenous biochemical effects of a rye versus wheat-based fiber-rich diet in hypercholesterolemic pigs. The pigs were fed high-fat, high-cholesterol rye- (n = 9) or wheat- (n = 8) based buns with similar levels of dietary...

  17. Metabolomics: towards understanding traditional Chinese medicine.

    Science.gov (United States)

    Zhang, Aihua; Sun, Hui; Wang, Zhigang; Sun, Wenjun; Wang, Ping; Wang, Xijun

    2010-12-01

    Metabolomics represent a global understanding of metabolite complement of integrated living systems and dynamic responses to the changes of both endogenous and exogenous factors and has many potential applications and advantages for the research of complex systems. As a systemic approach, metabolomics adopts a "top-down" strategy to reflect the function of organisms from the end products of the metabolic network and to understand metabolic changes of a complete system caused by interventions in a holistic context. This property agrees with the holistic thinking of Traditional Chinese Medicine (TCM), a complex medical science, suggesting that metabolomics has the potential to impact our understanding of the theory behind the evidence-based Chinese medicine. Consequently, the development of robust metabolomic platforms will greatly facilitate, for example, the understanding of the action mechanisms of TCM formulae and the analysis of Chinese herbal (CHM) and mineral medicine, acupuncture, and Chinese medicine syndromes. This review summarizes some of the applications of metabolomics in special TCM issues with an emphasis on metabolic biomarker discovery. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Environmental metabolomics: a SWOT analysis (strengths, weaknesses, opportunities, and threats).

    Science.gov (United States)

    Miller, Marion G

    2007-02-01

    Metabolomic approaches have the potential to make an exceptional contribution to understanding how chemicals and other environmental stressors can affect both human and environmental health. However, the application of metabolomics to environmental exposures, although getting underway, has not yet been extensively explored. This review will use a SWOT analysis model to discuss some of the strengths, weaknesses, opportunities, and threats that are apparent to an investigator venturing into this relatively new field. SWOT has been used extensively in business settings to uncover new outlooks and identify problems that would impede progress. The field of environmental metabolomics provides great opportunities for discovery, and this is recognized by a high level of interest in potential applications. However, understanding the biological consequence of environmental exposures can be confounded by inter- and intra-individual differences. Metabolomic profiles can yield a plethora of data, the interpretation of which is complex and still being evaluated and researched. The development of the field will depend on the availability of technologies for data handling and that permit ready access metabolomic databases. Understanding the relevance of metabolomic endpoints to organism health vs adaptation vs variation is an important step in understanding what constitutes a substantive environmental threat. Metabolomic applications in reproductive research are discussed. Overall, the development of a comprehensive mechanistic-based interpretation of metabolomic changes offers the possibility of providing information that will significantly contribute to the protection of human health and the environment.

  19. Quality assurance of metabolomics.

    Science.gov (United States)

    Bouhifd, Mounir; Beger, Richard; Flynn, Thomas; Guo, Lining; Harris, Georgina; Hogberg, Helena; Kaddurah-Daouk, Rima; Kamp, Hennicke; Kleensang, Andre; Maertens, Alexandra; Odwin-DaCosta, Shelly; Pamies, David; Robertson, Donald; Smirnova, Lena; Sun, Jinchun; Zhao, Liang; Hartung, Thomas

    2015-01-01

    Metabolomics promises a holistic phenotypic characterization of biological responses to toxicants. This technology is based on advanced chemical analytical tools with reasonable throughput, including mass-spectroscopy and NMR. Quality assurance, however - from experimental design, sample preparation, metabolite identification, to bioinformatics data-mining - is urgently needed to assure both quality of metabolomics data and reproducibility of biological models. In contrast to microarray-based transcriptomics, where consensus on quality assurance and reporting standards has been fostered over the last two decades, quality assurance of metabolomics is only now emerging. Regulatory use in safety sciences, and even proper scientific use of these technologies, demand quality assurance. In an effort to promote this discussion, an expert workshop discussed the quality assurance needs of metabolomics. The goals for this workshop were 1) to consider the challenges associated with metabolomics as an emerging science, with an emphasis on its application in toxicology and 2) to identify the key issues to be addressed in order to establish and implement quality assurance procedures in metabolomics-based toxicology. Consensus has still to be achieved regarding best practices to make sure sound, useful, and relevant information is derived from these new tools.

  20. Advances in metabolome information retrieval: turning chemistry into biology. Part I: analytical chemistry of the metabolome.

    Science.gov (United States)

    Tebani, Abdellah; Afonso, Carlos; Bekri, Soumeya

    2017-08-24

    Metabolites are small molecules produced by enzymatic reactions in a given organism. Metabolomics or metabolic phenotyping is a well-established omics aimed at comprehensively assessing metabolites in biological systems. These comprehensive analyses use analytical platforms, mainly nuclear magnetic resonance spectroscopy and mass spectrometry, along with associated separation methods to gather qualitative and quantitative data. Metabolomics holistically evaluates biological systems in an unbiased, data-driven approach that may ultimately support generation of hypotheses. The approach inherently allows the molecular characterization of a biological sample with regard to both internal (genetics) and environmental (exosome, microbiome) influences. Metabolomics workflows are based on whether the investigator knows a priori what kind of metabolites to assess. Thus, a targeted metabolomics approach is defined as a quantitative analysis (absolute concentrations are determined) or a semiquantitative analysis (relative intensities are determined) of a set of metabolites that are possibly linked to common chemical classes or a selected metabolic pathway. An untargeted metabolomics approach is a semiquantitative analysis of the largest possible number of metabolites contained in a biological sample. This is part I of a review intending to give an overview of the state of the art of major metabolic phenotyping technologies. Furthermore, their inherent analytical advantages and limits regarding experimental design, sample handling, standardization and workflow challenges are discussed.

  1. Fluorine NMR-based screening on cell membrane extracts.

    Science.gov (United States)

    Veronesi, Marina; Romeo, Elisa; Lambruschini, Chiara; Piomelli, Daniele; Bandiera, Tiziano; Scarpelli, Rita; Garau, Gianpiero; Dalvit, Claudio

    2014-02-01

    The possibility of measuring the action of inhibitors of specific enzymatic reactions in intact cells, cell lysates or membrane preparations represents a major advance in the lead discovery process. Despite the relevance of assaying in physiological conditions, only a small number of biophysical techniques, often requiring complex set-up, are applicable to these sample types. Here, we demonstrate the first application of n-fluorine atoms for biochemical screening (n-FABS), a homogeneous and versatile assay based on (19) F NMR spectroscopy, to the detection of high- and low-affinity inhibitors of a membrane enzyme in cell extracts and determination of their IC50 values. Our approach can allow the discovery of novel binding fragments against targets known to be difficult to purify or where membrane-association is required for activity. These results pave the way for future applications of the methodology to these relevant and complex biological systems. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Metabolic changes associated with papillary thyroid carcinoma: A nuclear magnetic resonance-based metabolomics study.

    Science.gov (United States)

    Li, Yanyun; Chen, Minjian; Liu, Cuiping; Xia, Yankai; Xu, Bo; Hu, Yanhui; Chen, Ting; Shen, Meiping; Tang, Wei

    2018-05-01

    Papillary thyroid carcinoma (PTC) is the most common thyroid cancer. Nuclear magnetic resonance (NMR)‑based metabolomic technique is the gold standard in metabolite structural elucidation, and can provide different coverage of information compared with other metabolomic techniques. Here, we firstly conducted NMR based metabolomics study regarding detailed metabolic changes especially metabolic pathway changes related to PTC pathogenesis. 1H NMR-based metabolomic technique was adopted in conju-nction with multivariate analysis to analyze matched tumor and normal thyroid tissues obtained from 16 patients. The results were further annotated with Kyoto Encyclopedia of Genes and Genomes (KEGG), and Human Metabolome Database, and then were analyzed using modules of pathway analysis and enrichment analysis of MetaboAnalyst 3.0. Based on the analytical techniques, we established the models of principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA), and orthogonal partial least-squares discriminant analysis (OPLS‑DA) which could discriminate PTC from normal thyroid tissue, and found 15 robust differentiated metabolites from two OPLS-DA models. We identified 8 KEGG pathways and 3 pathways of small molecular pathway database which were significantly related to PTC by using pathway analysis and enrichment analysis, respectively, through which we identified metabolisms related to PTC including branched chain amino acid metabolism (leucine and valine), other amino acid metabolism (glycine and taurine), glycolysis (lactate), tricarboxylic acid cycle (citrate), choline metabolism (choline, ethanolamine and glycerolphosphocholine) and lipid metabolism (very-low‑density lipoprotein and low-density lipoprotein). In conclusion, the PTC was characterized with increased glycolysis and inhibited tricarboxylic acid cycle, increased oncogenic amino acids as well as abnormal choline and lipid metabolism. The findings in this study provide new

  3. Metabolomics coupled with similarity analysis advances the elucidation of the cold/hot properties of traditional Chinese medicines.

    Science.gov (United States)

    Jia, Yan; Zhang, Zheng-Zheng; Wei, Yu-Hai; Xue-Mei, Qin; Li, Zhen-Yu

    2017-08-01

    It recently becomes an important and urgent mission for modern scientific research to identify and explain the theory of traditional Chinese medicine (TCM), which has been utilized in China for more than four millennia. Since few works have been contributed to understanding the TCM theory, the mechanism of actions of drugs with cold/hot properties remains unclear. In the present study, six kinds of typical herbs with cold or hot properties were orally administered into mice, and serum and liver samples were analyzed using an untargeted nuclear magnetic resonance (NMR) based metabolomics approach coupled with similarity analysis. This approach was performed to identify and quantify changes in metabolic pathways to elucidate drug actions on the treated mice. Our results showed that those drugs with same property exerted similar effects on the metabolic alterations in mouse serum and liver samples, while drugs with different property showed different effects. The effects of herbal medicines with cold/hot properties were exerted by regulating the pathways linked to glycometabolism, lipid metabolism, amino acids metabolism and other metabolic pathways. The results elucidated the differences and similarities of drugs with cold/hot properties, providing useful information on the explanation of medicinal properties of these TCMs. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  4. Functional Analysis of Metabolomics Data.

    Science.gov (United States)

    Chagoyen, Mónica; López-Ibáñez, Javier; Pazos, Florencio

    2016-01-01

    Metabolomics aims at characterizing the repertory of small chemical compounds in a biological sample. As it becomes more massive and larger sets of compounds are detected, a functional analysis is required to convert these raw lists of compounds into biological knowledge. The most common way of performing such analysis is "annotation enrichment analysis," also used in transcriptomics and proteomics. This approach extracts the annotations overrepresented in the set of chemical compounds arisen in a given experiment. Here, we describe the protocols for performing such analysis as well as for visualizing a set of compounds in different representations of the metabolic networks, in both cases using free accessible web tools.

  5. COnsortium of METabolomics Studies (COMETS)

    Science.gov (United States)

    The COnsortium of METabolomics Studies (COMETS) is an extramural-intramural partnership that promotes collaboration among prospective cohort studies that follow participants for a range of outcomes and perform metabolomic profiling of individuals.

  6. CRAFT (complete reduction to amplitude frequency table)--robust and time-efficient Bayesian approach for quantitative mixture analysis by NMR.

    Science.gov (United States)

    Krishnamurthy, Krish

    2013-12-01

    The intrinsic quantitative nature of NMR is increasingly exploited in areas ranging from complex mixture analysis (as in metabolomics and reaction monitoring) to quality assurance/control. Complex NMR spectra are more common than not, and therefore, extraction of quantitative information generally involves significant prior knowledge and/or operator interaction to characterize resonances of interest. Moreover, in most NMR-based metabolomic experiments, the signals from metabolites are normally present as a mixture of overlapping resonances, making quantification difficult. Time-domain Bayesian approaches have been reported to be better than conventional frequency-domain analysis at identifying subtle changes in signal amplitude. We discuss an approach that exploits Bayesian analysis to achieve a complete reduction to amplitude frequency table (CRAFT) in an automated and time-efficient fashion - thus converting the time-domain FID to a frequency-amplitude table. CRAFT uses a two-step approach to FID analysis. First, the FID is digitally filtered and downsampled to several sub FIDs, and secondly, these sub FIDs are then modeled as sums of decaying sinusoids using the Bayesian approach. CRAFT tables can be used for further data mining of quantitative information using fingerprint chemical shifts of compounds of interest and/or statistical analysis of modulation of chemical quantity in a biological study (metabolomics) or process study (reaction monitoring) or quality assurance/control. The basic principles behind this approach as well as results to evaluate the effectiveness of this approach in mixture analysis are presented. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Metabolomic NMR fingerprinting: an exploratory and predictive tool

    OpenAIRE

    Lauri, Ilaria

    2014-01-01

    Metabolomics is the comprehensive assessment of low molecular weight organic metabolites within biological system. The identification and characterization of several chemical species, or metabolic fingerprinting, is an emergent approach in metabolomics field that provides a valuable “snapshot” of metabolic profiles. This approach is finding an increasing number of applications in many areas including cancer research, drug discovery and food science. The combined use of NMR spectroscopy, data ...

  8. A metabolomics approach used to profile plasma from portal-arterial pigs revealed differences between breads incurred by dietary fibra and protein contents

    DEFF Research Database (Denmark)

    Nielsen, Kirstine Lykke; Hedemann, Mette Skou; Lærke, Helle Nygaard

    2014-01-01

    A liquid chromatography–MS (LC-MS) metabolomics analysis of plasma from portal–arterial catheterised pigs fed breads prepared with whole-grain rye or wheat flour with added concentrated arabinoxylan (AX) or β-glucan (BG) was conducted. Comparison of the effects of concentrated fibres with whole...

  9. Nanoparticle-Assisted Metabolomics

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2018-03-01

    Full Text Available Understanding and harnessing the interactions between nanoparticles and biological molecules is at the forefront of applications of nanotechnology to modern biology. Metabolomics has emerged as a prominent player in systems biology as a complement to genomics, transcriptomics and proteomics. Its focus is the systematic study of metabolite identities and concentration changes in living systems. Despite significant progress over the recent past, important challenges in metabolomics remain, such as the deconvolution of the spectra of complex mixtures with strong overlaps, the sensitive detection of metabolites at low abundance, unambiguous identification of known metabolites, structure determination of unknown metabolites and standardized sample preparation for quantitative comparisons. Recent research has demonstrated that some of these challenges can be substantially alleviated with the help of nanoscience. Nanoparticles in particular have found applications in various areas of bioanalytical chemistry and metabolomics. Their chemical surface properties and increased surface-to-volume ratio endows them with a broad range of binding affinities to biomacromolecules and metabolites. The specific interactions of nanoparticles with metabolites or biomacromolecules help, for example, simplify metabolomics spectra, improve the ionization efficiency for mass spectrometry or reveal relationships between spectral signals that belong to the same molecule. Lessons learned from nanoparticle-assisted metabolomics may also benefit other emerging areas, such as nanotoxicity and nanopharmaceutics.

  10. Automics: an integrated platform for NMR-based metabonomics spectral processing and data analysis.

    Science.gov (United States)

    Wang, Tao; Shao, Kang; Chu, Qinying; Ren, Yanfei; Mu, Yiming; Qu, Lijia; He, Jie; Jin, Changwen; Xia, Bin

    2009-03-16

    Spectral processing and post-experimental data analysis are the major tasks in NMR-based metabonomics studies. While there are commercial and free licensed software tools available to assist these tasks, researchers usually have to use multiple software packages for their studies because software packages generally focus on specific tasks. It would be beneficial to have a highly integrated platform, in which these tasks can be completed within one package. Moreover, with open source architecture, newly proposed algorithms or methods for spectral processing and data analysis can be implemented much more easily and accessed freely by the public. In this paper, we report an open source software tool, Automics, which is specifically designed for NMR-based metabonomics studies. Automics is a highly integrated platform that provides functions covering almost all the stages of NMR-based metabonomics studies. Automics provides high throughput automatic modules with most recently proposed algorithms and powerful manual modules for 1D NMR spectral processing. In addition to spectral processing functions, powerful features for data organization, data pre-processing, and data analysis have been implemented. Nine statistical methods can be applied to analyses including: feature selection (Fisher's criterion), data reduction (PCA, LDA, ULDA), unsupervised clustering (K-Mean) and supervised regression and classification (PLS/PLS-DA, KNN, SIMCA, SVM). Moreover, Automics has a user-friendly graphical interface for visualizing NMR spectra and data analysis results. The functional ability of Automics is demonstrated with an analysis of a type 2 diabetes metabolic profile. Automics facilitates high throughput 1D NMR spectral processing and high dimensional data analysis for NMR-based metabonomics applications. Using Automics, users can complete spectral processing and data analysis within one software package in most cases. Moreover, with its open source architecture, interested

  11. Automics: an integrated platform for NMR-based metabonomics spectral processing and data analysis

    Directory of Open Access Journals (Sweden)

    Qu Lijia

    2009-03-01

    Full Text Available Abstract Background Spectral processing and post-experimental data analysis are the major tasks in NMR-based metabonomics studies. While there are commercial and free licensed software tools available to assist these tasks, researchers usually have to use multiple software packages for their studies because software packages generally focus on specific tasks. It would be beneficial to have a highly integrated platform, in which these tasks can be completed within one package. Moreover, with open source architecture, newly proposed algorithms or methods for spectral processing and data analysis can be implemented much more easily and accessed freely by the public. Results In this paper, we report an open source software tool, Automics, which is specifically designed for NMR-based metabonomics studies. Automics is a highly integrated platform that provides functions covering almost all the stages of NMR-based metabonomics studies. Automics provides high throughput automatic modules with most recently proposed algorithms and powerful manual modules for 1D NMR spectral processing. In addition to spectral processing functions, powerful features for data organization, data pre-processing, and data analysis have been implemented. Nine statistical methods can be applied to analyses including: feature selection (Fisher's criterion, data reduction (PCA, LDA, ULDA, unsupervised clustering (K-Mean and supervised regression and classification (PLS/PLS-DA, KNN, SIMCA, SVM. Moreover, Automics has a user-friendly graphical interface for visualizing NMR spectra and data analysis results. The functional ability of Automics is demonstrated with an analysis of a type 2 diabetes metabolic profile. Conclusion Automics facilitates high throughput 1D NMR spectral processing and high dimensional data analysis for NMR-based metabonomics applications. Using Automics, users can complete spectral processing and data analysis within one software package in most cases

  12. Metabolomics in Immunology Research.

    Science.gov (United States)

    Everts, Bart

    2018-01-01

    There is a growing appreciation that metabolic processes and individual metabolites can shape the function of immune cells and thereby play important roles in the outcome of immune responses. In this respect, the use of MS- and NMR spectroscopy-based platforms to characterize and quantify metabolites in biological samples has recently yielded important novel insights into how our immune system functions and has contributed to the identification of biomarkers for immune-mediated diseases. Here, these recent immunological studies in which metabolomics has been used and made significant contributions to these fields will be discussed. In particular the role of metabolomics to the rapidly advancing field of cellular immunometabolism will be highlighted as well as the future prospects of such metabolomic tools in immunology.

  13. An untargeted metabolomics-driven approach based on LC-TOF/MS and LC-MS/MS for the screening of xenobiotics and metabolites of Zhi-Zi-Da-Huang decoction in rat plasma.

    Science.gov (United States)

    Wu, Huan; Li, Xixi; Yan, Xuemei; An, Li; Luo, Kaiwen; Shao, Mingjing; Jiang, Yue; Xie, Rui; Feng, Fang

    2015-11-10

    Zhi-Zi-Da-Huang decoction (ZZDHD), a typical traditional Chinese medicine prescription, is widely used in clinical practice for the treatment of alcoholic liver disease. However, due to lack of holistic metabolic research, the active ingredients of ZZDHD have not been fully elucidated. It entails a huge obstacle for the quality evaluation, pharmacokinetic studies and clinical-safe medication administration of ZZDHD. In this work, an untargeted metabolomics-driven approach was proposed to rapidly screen and characterize xenobiotics and related metabolites in vivo conducted by LC-TOF/MS and LC-QqQ/MS. The tR-m/z pairs which were present in the ZZDHD-dosed group and absent in the control group could be clearly displayed by XCMS Online platform combined with supervised orthogonal partial least squares discriminant analysis. Among them, a total of 61 ZZDHD-related xenobiotics and metabolites including 34 prototype components and 27 metabolites were rapidly identified or tentatively characterized in rat plasma. The results indicated that iridoid glycosides and monoterpenoids from Gardenia jasminoides Ellis, flavonoid glycosides from Citrus aurantium L., as well as anthraquinones from Rheum palmatum L. were the main absorbed chemical components of ZZDHD. Hydrolysis, glucuronidation and sulfation were the main metabolic pathways of ZZDHD in vivo. The present study provided a solid basis for further revealing the relationship between the xenobiotic metabolome and pharmacological activity of ZZDHD. In addition, the application of untargeted metabolomics-driven approach offers a fresh insight for rapid screening and identifying xenobiotics and metabolites of ZZDHD and other multiherb prescription. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. NMR metabolomics of ripened and developing oilseed rape (Brassica napus) and turnip rape (Brassica rapa).

    Science.gov (United States)

    Kortesniemi, Maaria; Vuorinen, Anssi L; Sinkkonen, Jari; Yang, Baoru; Rajala, Ari; Kallio, Heikki

    2015-04-01

    The oilseeds of the commercially important oilseed rape (Brassica napus) and turnip rape (Brassica rapa) were investigated with (1)H NMR metabolomics. The compositions of ripened (cultivated in field trials) and developing seeds (cultivated in controlled conditions) were compared in multivariate models using principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal partial least squares discriminant analysis (OPLS-DA). Differences in the major lipids and the minor metabolites between the two species were found. A higher content of polyunsaturated fatty acids and sucrose were observed in turnip rape, while the overall oil content and sinapine levels were higher in oilseed rape. The genotype traits were negligible compared to the effect of the growing site and concomitant conditions on the oilseed metabolome. This study demonstrates the applicability of NMR-based analysis in determining the species, geographical origin, developmental stage, and quality of oilseed Brassicas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Arginine: New Insights into Growth Performance and Urinary Metabolomic Profiles of Rats

    Directory of Open Access Journals (Sweden)

    Guangmang Liu

    2016-08-01

    Full Text Available Arginine regulates growth performance, nutrient metabolism and health effects, but the underlying mechanism remains unknown. This study aims to investigate the effect of dietary arginine supplementation on rat growth performance and urinary metabolome through 1H-NMR spectroscopy. Twenty rats were randomly assigned to two groups supplemented with 0% or 1.0% l-arginine for 4 weeks. Urine samples were analyzed through NMR-based metabolomics. Arginine supplementation significantly increased the urine levels of 4-aminohippurate, acetate, creatine, creatinine, ethanolamine, formate, hippurate, homogentisate, indoxyl sulfate, and phenylacetyglycine. Conversely, arginine decreased the urine levels of acetamide, β-glucose, cirtulline, ethanol, glycine, isobutyrate, lactate, malonate, methymalonate, N-acetylglutamate, N-methylnicotinamide, and propionate. Results suggested that arginine can alter common systemic metabolic processes, including energy metabolism, amino acid metabolism, and gut microbiota metabolism. Moreover, the results also imply a possible physiological role of the metabolism in mediating the arginine supplementation-supported growth of rats.

  16. NMR-based metabonomic studies reveal changes in the biochemical profile of plasma and urine from pigs fed high fibre rye bread

    DEFF Research Database (Denmark)

    Bertram, Hanne C.; Bach Knudsen, Knud E.; Serena, Anja

    2006-01-01

    This study presents an NMR-based metabonomic approach to elucidate the overall endogenous biochemical effects of a wholegrain diet. Two diets with similar levels of dietary fibre and macronutrients, but with contrasting levels of wholegrain ingredients, were prepared from wholegrain rye (wholegrain...... diet (WGD)) and non-wholegrain wheat (non-wholegrain diet (NWD)) and fed to four pigs in a crossover design. Plasma samples were collected after 7 d on each diet, and 1H NMR spectra were acquired on these. Partial least squares regression discriminant analysis (PLS-DA) on spectra obtained for plasma...

  17. A Biochemical Approach to Understand the Pathogenesis of Advanced Pulmonary Arterial Hypertension: Metabolomic Profiles of Arginine, Sphingosine-1-Phosphate, and Heme of Human Lung.

    Directory of Open Access Journals (Sweden)

    Yidan D Zhao

    Full Text Available Pulmonary arterial hypertension (PAH is a vascular disease characterized by persistent precapillary pulmonary hypertension (PH, leading to progressive right heart failure and premature death. The pathological mechanisms underlying this condition remain elusive. Analysis of global metabolomics from lung tissue of patients with PAH (n = 8 and control lung tissue (n = 8 leads to a better understanding of disease progression. Using a combination of high-throughput liquid-and-gas-chromatography-based mass spectrometry, we showed unbiased metabolomic profiles of disrupted arginine pathways with increased Nitric oxide (NO and decreased arginine. Our results also showed specific metabolic pathways and genetic profiles with increased Sphingosine-1-phosphate (S1P metabolites as well as increased Heme metabolites with altered oxidative pathways in the advanced stage of the human PAH lung. The results suggest that PAH has specific metabolic pathways contributing to the vascular remodeling in severe pulmonary hypertension. Profiling metabolomic alterations of the PAH lung has provided a new understanding of the pathogenic mechanisms of PAH, which benefits therapeutic targeting to specific metabolic pathways involved in the progression of PAH.

  18. The MetabolomeExpress Project: enabling web-based processing, analysis and transparent dissemination of GC/MS metabolomics datasets

    Directory of Open Access Journals (Sweden)

    Carroll Adam J

    2010-07-01

    Full Text Available Abstract Background Standardization of analytical approaches and reporting methods via community-wide collaboration can work synergistically with web-tool development to result in rapid community-driven expansion of online data repositories suitable for data mining and meta-analysis. In metabolomics, the inter-laboratory reproducibility of gas-chromatography/mass-spectrometry (GC/MS makes it an obvious target for such development. While a number of web-tools offer access to datasets and/or tools for raw data processing and statistical analysis, none of these systems are currently set up to act as a public repository by easily accepting, processing and presenting publicly submitted GC/MS metabolomics datasets for public re-analysis. Description Here, we present MetabolomeExpress, a new File Transfer Protocol (FTP server and web-tool for the online storage, processing, visualisation and statistical re-analysis of publicly submitted GC/MS metabolomics datasets. Users may search a quality-controlled database of metabolite response statistics from publicly submitted datasets by a number of parameters (eg. metabolite, species, organ/biofluid etc.. Users may also perform meta-analysis comparisons of multiple independent experiments or re-analyse public primary datasets via user-friendly tools for t-test, principal components analysis, hierarchical cluster analysis and correlation analysis. They may interact with chromatograms, mass spectra and peak detection results via an integrated raw data viewer. Researchers who register for a free account may upload (via FTP their own data to the server for online processing via a novel raw data processing pipeline. Conclusions MetabolomeExpress https://www.metabolome-express.org provides a new opportunity for the general metabolomics community to transparently present online the raw and processed GC/MS data underlying their metabolomics publications. Transparent sharing of these data will allow researchers to

  19. A new strategy of exploring metabolomics data using Monte Carlo tree.

    Science.gov (United States)

    Cao, Dong-Sheng; Wang, Bing; Zeng, Mao-Mao; Liang, Yi-Zeng; Xu, Qing-Song; Zhang, Liang-Xiao; Li, Hong-Dong; Hu, Qian-Nan

    2011-03-07

    Large amounts of data from high-throughput metabolomics experiments have become commonly more and more complex, which brings a number of challenges to existing statistical modeling. Thus there is a need to develop a statistically efficient approach for mining the underlying metabolite information contained by metabolomics data under investigation. In this work, we provide a new strategy based on Monte Carlo cross validation coupled with the classification tree algorithm, which is termed as the MCTree approach. The MCTree approach inherently provides a feasible way to uncover the predictive structure of metabolomics data by the establishment of many cross-predictive models. With the help of the sample proximity matrix such obtained, it seems to be able to give some interesting insights into metabolomics data. Simultaneously, informative metabolites or potential biomarkers can be successfully discovered by means of variable importance ranking in the MCTree approach. Two real metabolomics datasets are finally used to demonstrate the performance of the proposed approach.

  20. Mass spectrometry-based metabolomics for tuberculosis meningitis.

    Science.gov (United States)

    Zhang, Peixu; Zhang, Weiguanliu; Lang, Yue; Qu, Yan; Chu, Fengna; Chen, Jiafeng; Cui, Li

    2018-04-18

    Tuberculosis meningitis (TBM) is a prevalent form of extra-pulmonary tuberculosis that causes substantial morbidity and mortality. Diagnosis of TBM is difficult because of the limited sensitivity of existing laboratory techniques. A metabolomics approach can be used to investigate the sets of metabolites of both bacteria and host, and has been used to clarify the mechanisms underlying disease development, and identify metabolic changes, leadings to improved methods for diagnosis, treatment, and prognostication. Mass spectrometry (MS) is a major analysis platform used in metabolomics, and MS-based metabolomics provides wide metabolite coverage, because of its high sensitivity, and is useful for the investigation of Mycobacterium tuberculosis (Mtb) and related diseases. It has been used to investigate TBM diagnosis; however, the processes involved in the MS-based metabolomics approach are complex and flexible, and often consist of several steps, and small changes in the methods used can have a huge impact on the final results. Here, the process of MS-based metabolomics is summarized and its applications in Mtb and Mtb-related diseases discussed. Moreover, the current status of TBM metabolomics is described. Copyright © 2018. Published by Elsevier B.V.

  1. NMR and pattern recognition methods in metabolomics: From data acquisition to biomarker discovery: A review

    Energy Technology Data Exchange (ETDEWEB)

    Smolinska, Agnieszka, E-mail: A.Smolinska@science.ru.nl [Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen (Netherlands); Blanchet, Lionel [Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen (Netherlands); Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Buydens, Lutgarde M.C.; Wijmenga, Sybren S. [Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen (Netherlands)

    2012-10-31

    Highlights: Black-Right-Pointing-Pointer Procedures for acquisition of different biofluids by NMR. Black-Right-Pointing-Pointer Recent developments in metabolic profiling of different biofluids by NMR are presented. Black-Right-Pointing-Pointer The crucial steps involved in data preprocessing and multivariate chemometric analysis are reviewed. Black-Right-Pointing-Pointer Emphasis is given on recent findings on Multiple Sclerosis via NMR and pattern recognition methods. - Abstract: Metabolomics is the discipline where endogenous and exogenous metabolites are assessed, identified and quantified in different biological samples. Metabolites are crucial components of biological system and highly informative about its functional state, due to their closeness to functional endpoints and to the organism's phenotypes. Nuclear Magnetic Resonance (NMR) spectroscopy, next to Mass Spectrometry (MS), is one of the main metabolomics analytical platforms. The technological developments in the field of NMR spectroscopy have enabled the identification and quantitative measurement of the many metabolites in a single sample of biofluids in a non-targeted and non-destructive manner. Combination of NMR spectra of biofluids and pattern recognition methods has driven forward the application of metabolomics in the field of biomarker discovery. The importance of metabolomics in diagnostics, e.g. in identifying biomarkers or defining pathological status, has been growing exponentially as evidenced by the number of published papers. In this review, we describe the developments in data acquisition and multivariate analysis of NMR-based metabolomics data, with particular emphasis on the metabolomics of Cerebrospinal Fluid (CSF) and biomarker discovery in Multiple Sclerosis (MScl).

  2. Metabolomics and its integration with systems biology: PSI 2014 conference panel discussion report.

    Science.gov (United States)

    More, Tushar; RoyChoudhury, Sourav; Gollapalli, Kishore; Patel, Sandip K; Gowda, Harsha; Chaudhury, Koel; Rapole, Srikanth

    2015-09-08

    Metabolomics, being a relatively new field, is facing multiple challenges related to data acquisition and interpretation, reproducibility across analytical platforms, integration with other omics approaches and translation into theragnostic biomarkers. There is an immediate need to overcome these challenges in order to make metabolomics more useful and reliable in terms of improving our current understanding of disease biology and help in developing predictive biomarkers. Researchers interested in metabolomics gathered for a panel discussion on 'Metabolomics and its integration with systems biology' during the 6th Annual Meeting of Proteomics Society-India and International Conference on "Proteomics from Discovery to Function" held at the Indian Institute of Technology, Bombay from December 7-9, 2014. The panel discussed various challenges related to metabolomics and also proposed several effective solutions for optimum implementation of metabolomics in clinical practice. The key areas of panel discussion were improvement in metabolite databases with comprehensive spectral libraries, need for extensive bioinformatics tools for integrative approaches and serious considerations for clinical validation of the biomarkers for the successful implementation of metabolomics in clinics. Information drafted in this report is significant for researchers working in metabolomics field to overcome the challenges and successful implementation of metabolomics in clinical practice. This article is part of a special issue titled: Proteomics in India. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. [Metabolomics in research of phytotherapeutics].

    Science.gov (United States)

    Kráfová, Katarina; Jampílek, Josef; Ostrovský, Ivan

    2012-02-01

    Pharmaceutical and food industries are increasingly focused on the great potential of plant secondary metabolites or natural substances which can be used as therapeutics or model compounds for development of new drugs. The paper is devoted to the use of metabolomics, metabolic profiling and metabolic "fingerprint" for the identification of individual active phyto-substances in plant extracts, in profiling of unique groups of plant secondary metabolites that can be used to improve the classification of several species of medicinal plants as well as for a better characterization and quality control of medicinal extracts, tinctures and phytotherapeutic products prepared from these plants. Combined analytical methods and multivariate statistical analysis are used for metabolite identification. Using this approach, medicinal plants are evaluated not only on the basis of a limited number of pharmacologically important metabolites but also based on the fingerprints of minor metabolites and bioactive molecules.

  4. Microbial metabolomics : Toward a platform with full metabolome coverage

    NARCIS (Netherlands)

    Werf, M.J.v.d.; Overkamp, K.M.; Muilwijk, B.; Coulier, L.; Hankemeier, T.

    2007-01-01

    Achieving metabolome data with satisfactory coverage is a formidable challenge in metabolomics because metabolites are a chemically highly diverse group of compounds. Here we present a strategy for the development of an advanced analytical platform that allows the comprehensive analysis of microbial

  5. Stable isotope-resolved metabolomics and applications for drug development

    Science.gov (United States)

    Fan, Teresa W-M.; Lorkiewicz, Pawel; Sellers, Katherine; Moseley, Hunter N.B.; Higashi, Richard M.; Lane, Andrew N.

    2012-01-01

    Advances in analytical methodologies, principally nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS), during the last decade have made large-scale analysis of the human metabolome a reality. This is leading to the reawakening of the importance of metabolism in human diseases, particularly cancer. The metabolome is the functional readout of the genome, functional genome, and proteome; it is also an integral partner in molecular regulations for homeostasis. The interrogation of the metabolome, or metabolomics, is now being applied to numerous diseases, largely by metabolite profiling for biomarker discovery, but also in pharmacology and therapeutics. Recent advances in stable isotope tracer-based metabolomic approaches enable unambiguous tracking of individual atoms through compartmentalized metabolic networks directly in human subjects, which promises to decipher the complexity of the human metabolome at an unprecedented pace. This knowledge will revolutionize our understanding of complex human diseases, clinical diagnostics, as well as individualized therapeutics and drug response. In this review, we focus on the use of stable isotope tracers with metabolomics technologies for understanding metabolic network dynamics in both model systems and in clinical applications. Atom-resolved isotope tracing via the two major analytical platforms, NMR and MS, has the power to determine novel metabolic reprogramming in diseases, discover new drug targets, and facilitates ADME studies. We also illustrate new metabolic tracer-based imaging technologies, which enable direct visualization of metabolic processes in vivo. We further outline current practices and future requirements for biochemoinformatics development, which is an integral part of translating stable isotope-resolved metabolomics into clinical reality. PMID:22212615

  6. Metabolomics reveals energetic impairments in Daphnia magna exposed to diazinon, malathion and bisphenol-A

    Energy Technology Data Exchange (ETDEWEB)

    Nagato, Edward G.; Simpson, André J.; Simpson, Myrna J., E-mail: myrna.simpson@utoronto.ca

    2016-01-15

    Highlights: • Metabolomics detected shifts with sub-lethal exposure to contaminants. • Diazinon and malathion induced comparable, non-linear responses. • Bisphenol-A resulted in energy impairment. • Overall, insight into sub-lethal toxicity was garnered using NMR-based metabolomics. - Abstract: {sup 1}H nuclear magnetic resonance (NMR)-based metabolomics was used to study the response of Daphnia magna to increasing sub-lethal concentrations of either an organophosphate (diazinon or malathion) or bisphenol-A (BPA). Principal component analysis (PCA) of {sup 1}H NMR spectra were used to screen metabolome changes after 48 h of contaminant exposure. The PCA scores plots showed that diazinon exposures resulted in aberrant metabolomic profiles at all exposure concentrations tested (0.009–0.135 μg/L), while for malathion the second lowest (0.08 μg/L) and two highest exposure concentrations (0.32 μg/L and 0.47 μg/L) caused significant shifts from the control. Individual metabolite changes for both organophosphates indicated that the response to increasing exposure was non-linear and described perturbations in the metabolome that were characteristic of the severity of exposure. For example, intermediate concentrations of diazinon (0.045 μg/L and 0.09 μg/L) and malathion (0.08 μg/L) elicited a decrease in amino acids such as leucine, valine, arginine, glycine, lysine, glutamate, glutamine, phenylalanine and tyrosine, with concurrent increases in glucose and lactate, suggesting a mobilization of energy resources to combat stress. At the highest exposure concentrations for both organophosphates there was evidence of a cessation in metabolic activity, where the same amino acids increased and glucose and lactate decreased, suggesting a slowdown in protein synthesis and depletion of energy stocks. This demonstrated a similar response in the metabolome between two organophosphates but also that intermediate and severe stress levels could be differentiated by

  7. Metabolomics reveals energetic impairments in Daphnia magna exposed to diazinon, malathion and bisphenol-A

    International Nuclear Information System (INIS)

    Nagato, Edward G.; Simpson, André J.; Simpson, Myrna J.

    2016-01-01

    Highlights: • Metabolomics detected shifts with sub-lethal exposure to contaminants. • Diazinon and malathion induced comparable, non-linear responses. • Bisphenol-A resulted in energy impairment. • Overall, insight into sub-lethal toxicity was garnered using NMR-based metabolomics. - Abstract: 1 H nuclear magnetic resonance (NMR)-based metabolomics was used to study the response of Daphnia magna to increasing sub-lethal concentrations of either an organophosphate (diazinon or malathion) or bisphenol-A (BPA). Principal component analysis (PCA) of 1 H NMR spectra were used to screen metabolome changes after 48 h of contaminant exposure. The PCA scores plots showed that diazinon exposures resulted in aberrant metabolomic profiles at all exposure concentrations tested (0.009–0.135 μg/L), while for malathion the second lowest (0.08 μg/L) and two highest exposure concentrations (0.32 μg/L and 0.47 μg/L) caused significant shifts from the control. Individual metabolite changes for both organophosphates indicated that the response to increasing exposure was non-linear and described perturbations in the metabolome that were characteristic of the severity of exposure. For example, intermediate concentrations of diazinon (0.045 μg/L and 0.09 μg/L) and malathion (0.08 μg/L) elicited a decrease in amino acids such as leucine, valine, arginine, glycine, lysine, glutamate, glutamine, phenylalanine and tyrosine, with concurrent increases in glucose and lactate, suggesting a mobilization of energy resources to combat stress. At the highest exposure concentrations for both organophosphates there was evidence of a cessation in metabolic activity, where the same amino acids increased and glucose and lactate decreased, suggesting a slowdown in protein synthesis and depletion of energy stocks. This demonstrated a similar response in the metabolome between two organophosphates but also that intermediate and severe stress levels could be differentiated by changes in the

  8. Integrative metabolomics as emerging tool to study autophagy regulation

    Directory of Open Access Journals (Sweden)

    Sarah Stryeck

    2017-07-01

    Full Text Available Recent technological developments in metabolomics research have enabled in-depth characterization of complex metabolite mixtures in a wide range of biological, biomedical, environmental, agricultural, and nutritional research fields. Nuclear magnetic resonance spectroscopy and mass spectrometry are the two main platforms for performing metabolomics studies. Given their broad applicability and the systemic insight into metabolism that can be ob-tained it is not surprising that metabolomics becomes increasingly popular in basic biological research. In this review, we provide an overview on key me-tabolites, recent studies, and future opportunities for metabolomics in stud-ying autophagy regulation. Metabolites play a pivotal role in autophagy regulation and are therefore key targets for autophagy research. Given the recent success of metabolomics, it can be expected that metabolomics ap-proaches will contribute significantly to deciphering the complex regulatory mechanisms involved in autophagy in the near future and promote under-standing of autophagy and autophagy-related diseases in living cells and or-ganisms.

  9. Quality assurance procedures for mass spectrometry untargeted metabolomics. a review.

    Science.gov (United States)

    Dudzik, Danuta; Barbas-Bernardos, Cecilia; García, Antonia; Barbas, Coral

    2018-01-05

    Untargeted metabolomics, as a global approach, has already proven its great potential and capabilities for the investigation of health and disease, as well as the wide applicability for other research areas. Although great progress has been made on the feasibility of metabolomics experiments, there are still some challenges that should be faced and that includes all sources of fluctuations and bias affecting every step involved in multiplatform untargeted metabolomics studies. The identification and reduction of the main sources of unwanted variation regarding the pre-analytical, analytical and post-analytical phase of metabolomics experiments is essential to ensure high data quality. Nowadays, there is still a lack of information regarding harmonized guidelines for quality assurance as those available for targeted analysis. In this review, sources of variations to be considered and minimized along with methodologies and strategies for monitoring and improvement the quality of the results are discussed. The given information is based on evidences from different groups among our own experiences and recommendations for each stage of the metabolomics workflow. The comprehensive overview with tools presented here might serve other researchers interested in monitoring, controlling and improving the reliability of their findings by implementation of good experimental quality practices in the untargeted metabolomics study. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A discovery-driven approach to elucidate urinary metabolome changes after a regular and moderate consumption of beer and nonalcoholic beer in subjects at high cardiovascular risk.

    Science.gov (United States)

    Quifer-Rada, Paola; Chiva-Blanch, Gemma; Jáuregui, Olga; Estruch, Ramon; Lamuela-Raventós, Rosa M

    2017-10-01

    The aim of this work was to study the urinary metabolomics changes of participants that consumed beer, nonalcoholic beer (na-beer), and gin. Thirty-three males at high cardiovascular risk between 55 and 75 years old participated in an open, randomized, crossover, controlled trial with three nutritional interventions consisting of beer, na-beer, and gin for 4 wk. Diet and physical activity was monitored throughout the study and compliance was assessed by measurement of urinary isoxanthohumol. Metabolomic analysis was performed in urine samples by LC coupled to an LTQ-Orbitrap mass spectrometer combined with univariate and multivariate statistical analysis. Ten metabolites were identified. Eight were exogenous metabolites related to beer, na-beer, or gin consumption, but two of them were related to endogenic changes: hydroxyadipic acid linked to fatty acid oxidation, and 4-guanidinobutanoic acid, which correlated with a decrease in urinary creatinine. Plasmatic acylcarnitines were quantified by targeted MS. A regular and moderate consumption of beer and na-beer decreased stearoylcarnitine concentrations. Humulinone and 2,3-dihydroxy-3-methylvaleric acid showed to be potential biomarkers of beer and na-beer consumption. Moreover, the results of this trial provide new evidence that the nonalcoholic fraction of beer may increase fatty oxidation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Specificity and sensitivity of NMR based urinary metabolic biomarker for radiation injury

    International Nuclear Information System (INIS)

    Tyagi, Ritu; Watve, Apurva; Khushu, Subash; Rana, Poonam

    2016-01-01

    Increasing burden of natural background radiation and terrestrial radionuclides is a big threat of radiation exposure to the population at large. It is necessary to develop biomarker of ionizing radiation exposure that can be used for mass screening in the event of a radiological mass casualty incident. Metabolomics has already been proven as an excellent developing prospect for capturing diseases specific metabolic signatures as possible biomarkers. The aim of the present study is to evaluate the sensitivity and specificity of the urinary metabolites after whole body radiation exposure which can further be used as early predictive marker. The PLS-DA based ROC curve depicted taurine as a biomarker of early radiation injury. This study along with other 'omics' technique will be useful to help design strategies for non-invasive radiation biodosimetry through metabolomics in human populations

  12. Metabolomics of meat exudate: Its potential to evaluate beef meat conservation and aging

    Energy Technology Data Exchange (ETDEWEB)

    Castejón, David [Centro de Asistencia a la Investigación de Resonancia Magnética Nuclear y de Espín Electrónico, Universidad Complutense de Madrid, 28040 Madrid (Spain); García-Segura, Juan Manuel [Centro de Asistencia a la Investigación de Resonancia Magnética Nuclear y de Espín Electrónico, Universidad Complutense de Madrid, 28040 Madrid (Spain); Departamento de Bioquímica y Biología Molecular I, Facultad de Químicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Escudero, Rosa [Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria. Universidad Complutense de Madrid, 28040 Madrid (Spain); Herrera, Antonio [Departamento de Química Orgánica, Facultad de Químicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Cambero, María Isabel, E-mail: icambero@vet.ucm.es [Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria. Universidad Complutense de Madrid, 28040 Madrid (Spain)

    2015-12-11

    In this study we analyzed the exudate of beef to evaluate its potential as non invasive sampling for nuclear magnetic resonance (NMR) based metabolomic analysis of meat samples. Exudate, as the natural juice from raw meat, is an easy to obtain matrix that it is usually collected in small amounts in commercial meat packages. Although meat exudate could provide complete and homogeneous metabolic information about the whole meat piece, this sample has been poorly studied. Exudates from 48 beef samples of different breeds, cattle and storage times have been studied by {sup 1}H NMR spectroscopy. The liquid exudate spectra were compared with those obtained by High Resolution Magic Angle Spinning (HRMAS) of the original meat pieces. The close correlation found between both spectra (>95% of coincident peaks in both registers; Spearman correlation coefficient = 0.945) lead us to propose the exudate as an excellent alternative analytical matrix with a view to apply meat metabolomics. 60 metabolites could be identified through the analysis of mono and bidimensional exudate spectra, 23 of them for the first time in NMR meat studies. The application of chemometric tools to analyze exudate dataset has revealed significant metabolite variations associated with meat aging. Hence, NMR based metabolomics have made it possible both to classify meat samples according to their storage time through Principal Component Analysis (PCA), and to predict that storage time through Partial Least Squares (PLS) regression. - Highlights: • NMR spectra from beef samples and their exudates are very strongly correlated. • 23 metabolites not reported in previous NMR meat studies have been identified. • Meat exudate NMR spectra allow monitoring of biochemical changes related to aging. • PCA of exudate NMR spectra classified meat samples by their storage time. • The aging of a meat sample can be predicted by PLS analysis of its exudate.

  13. Use of Metabolomics as a Complementary Omic Approach to Implement Risk Criteria for First-Degree Relatives of Gastric Cancer Patients

    Directory of Open Access Journals (Sweden)

    Giuseppe Corona

    2018-03-01

    Full Text Available A positive family history is a strong and consistently reported risk factor for gastric cancer (GC. So far, it has been demonstrated that serum pepsinogens (PGs, and gastrin 17 (G17 are useful for screening individuals at elevated risk to develop atrophic gastritis but they are suboptimal biomarkers to screen individuals for GC. The main purpose of this study was to investigate serum metabolomic profiles to find additional biomarkers that could be integrated with serum PGs and G17 to improve the diagnosis of GC and the selection of first-degree relatives (FDR at higher risk of GC development. Serum metabolomic profiles included 188 serum metabolites, covering amino acids, biogenic amines, acylcarnitines, phosphatidylcholines, sphingomyelins and hexoses. Serum metabolomic profiles were performed with tandem mass spectrometry using the Biocrates AbsoluteIDQ p180 kit. The initial cohort (training set consisted of n = 49 GC patients and n = 37 FDR. Differential metabolomic signatures among the two groups were investigated by univariate and multivariate partial least square differential analysis. The most significant metabolites were further selected and validated in an independent group of n = 22 GC patients and n = 17 FDR (validation set. Receiver operating characteristic (ROC curves were used to evaluate the diagnostic power and the optimal cut-off for each of the discriminant markers. Multivariate analysis was applied to associate the selected serum metabolites, PGs, G17 and risk factors such as age, gender and Helicobacter pylori (H. pylori infection with the GC and FDR has been performed and an integrative risk prediction algorithm was developed. In the training set, 40 metabolites mainly belonging to phospholipids and acylcarnitines classes were differentially expressed between GC and FDR. Out of these 40 metabolites, 9 were further confirmed in the validation set. Compared with FDR, GC patients were characterized by lower levels of

  14. Deconstructing the pig sex metabolome: Targeted metabolomics in heavy pigs revealed sexual dimorphisms in plasma biomarkers and metabolic pathways.

    Science.gov (United States)

    Bovo, S; Mazzoni, G; Calò, D G; Galimberti, G; Fanelli, F; Mezzullo, M; Schiavo, G; Scotti, E; Manisi, A; Samoré, A B; Bertolini, F; Trevisi, P; Bosi, P; Dall'Olio, S; Pagotto, U; Fontanesi, L

    2015-12-01

    Metabolomics has opened new possibilities to investigate metabolic differences among animals. In this study, we applied a targeted metabolomic approach to deconstruct the pig sex metabolome as defined by castrated males and entire gilts. Plasma from 545 performance-tested Italian Large White pigs (172 castrated males and 373 females) sampled at about 160 kg live weight were analyzed for 186 metabolites using the Biocrates AbsoluteIDQ p180 Kit. After filtering, 132 metabolites (20 AA, 11 biogenic amines, 1 hexose, 13 acylcarnitines, 11 sphingomyelins, 67 phosphatidylcholines, and 9 lysophosphatidylcholines) were retained for further analyses. The multivariate approach of the sparse partial least squares discriminant analysis was applied, together with a specifically designed statistical pipeline, that included a permutation test and a 10 cross-fold validation procedure that produced stability and effect size statistics for each metabolite. Using this approach, we identified 85 biomarkers (with metabolites from all analyzed chemical families) that contributed to the differences between the 2 groups of pigs ( metabolic shift in castrated males toward energy storage and lipid production. Similar general patterns were observed for most sphingomyelins, phosphatidylcholines, and lysophosphatidylcholines. Metabolomic pathway analysis and pathway enrichment identified several differences between the 2 sexes. This metabolomic overview opened new clues on the biochemical mechanisms underlying sexual dimorphism that, on one hand, might explain differences in terms of economic traits between castrated male pigs and entire gilts and, on the other hand, could strengthen the pig as a model to define metabolic mechanisms related to fat deposition.

  15. A powerful methodological approach combining headspace solid phase microextraction, mass spectrometry and multivariate analysis for profiling the volatile metabolomic pattern of beer starting raw materials.

    Science.gov (United States)

    Gonçalves, João L; Figueira, José A; Rodrigues, Fátima P; Ornelas, Laura P; Branco, Ricardo N; Silva, Catarina L; Câmara, José S

    2014-10-01

    The volatile metabolomic patterns from different raw materials commonly used in beer production, namely barley, corn and hop-derived products - such as hop pellets, hop essential oil from Saaz variety and tetra-hydro isomerized hop extract (tetra hop), were established using a suitable analytical procedure based on dynamic headspace solid-phase microextraction (HS-SPME) followed by thermal desorption gas chromatography-quadrupole mass spectrometry detection (GC-qMS). Some SPME extraction parameters were optimized. The best results, in terms of maximum signal recorded and number of isolated metabolites, were obtained with a 50/30 μm DVB/CAR/PDMS coating fiber at 40 °C for 30 min. A set of 152 volatile metabolites comprising ketones (27), sesquiterpenes (26), monoterpenes (19), aliphatic esters (19), higher alcohols (15), aldehydes (11), furan compounds (11), aliphatic fatty acids (9), aliphatic hydrocarbons (8), sulphur compounds (5) and nitrogen compounds (2) were positively identified. Each raw material showed a specific volatile metabolomic profile. Monoterpenes in hop essential oil and corn, sesquiterpenes in hop pellets, ketones in tetra hop and aldehydes and sulphur compounds in barley were the predominant chemical families in the targeted beer raw materials. β-Myrcene was the most dominant volatile metabolite in hop essential oil, hop pellets and corn samples while, in barley, the predominant volatile metabolites were dimethyl sulphide and 3-methylbutanal and, in tetra hop, 6-methyl-2-pentanone and 4-methyl-2-pentanone. Principal component analysis (PCA) showed natural sample grouping among beer raw materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Metabolomic analysis of Echinacea spp. by 1H nuclear magnetic resonance spectrometry and multivariate data analysis technique.

    Science.gov (United States)

    Frédérich, Michel; Jansen, Céline; de Tullio, Pascal; Tits, Monique; Demoulin, Vincent; Angenot, Luc

    2010-01-01

    The genus Echinacea (Asteraceae) comprises about 10 species originally distributed in North America. Three species are very well known as they are used worldwide as medicinal plants: Echinacea purpurea, E. pallida, E. angustifolia. To discriminate between these three Echinacea species and E. simulata by (1)H NMR-based metabolomics. (1)H NMR and multivariate analysis techniques were applied to diverse Echinacea plants including roots and aerial parts, authentic plants, commercial plants and commercial dry extracts. Using the (1)H NMR metabolomics, it was possible, without previous evaporation or separation steps, to obtain a metabolic fingerprint to distinguish between species. A clear distinction between the three pharmaceutical species was possible and some useful metabolites were identified. (c) 2009 John Wiley & Sons, Ltd.

  17. Told through the wine: A liquid chromatography-mass spectrometry interplatform comparison reveals the influence of the global approach on the final annotated metabolites in non-targeted metabolomics.

    Science.gov (United States)

    Díaz, Ramon; Gallart-Ayala, Hector; Sancho, Juan V; Nuñez, Oscar; Zamora, Tatiana; Martins, Claudia P B; Hernández, Félix; Hernández-Cassou, Santiago; Saurina, Javier; Checa, Antonio

    2016-02-12

    This work focuses on the influence of the selected LC-HRMS platform on the final annotated compounds in non-targeted metabolomics. Two platforms that differed in columns, mobile phases, gradients, chromatographs, mass spectrometers (Orbitrap [Platform#1] and Q-TOF [Platform#2]), data processing and marker selection protocols were compared. A total of 42 wines samples from three different protected denomination of origin (PDO) were analyzed. At the feature level, good (O)PLS-DA models were obtained for both platforms (Q(2)[Platform#1]=0.89, 0.83 and 0.72; Q(2)[Platform#2]=0.86, 0.86 and 0.77 for Penedes, Ribera del Duero and Rioja wines respectively) with 100% correctly classified samples in all cases. At the annotated metabolite level, platforms proposed 9 and 8 annotated metabolites respectively which were identified by matching standards or the MS/MS spectra of the compounds. At this stage, there was no coincidence among platforms regarding the suggested metabolites. When screened on the raw data, 6 and 5 of these compounds were detected on the other platform with a similar trend. Some of the detected metabolites showed complimentary information when integrated on biological pathways. Through the use of some examples at the annotated metabolite level, possible explanations of this initial divergence on the results are presented. This work shows the complications that may arise on the comparison of non-targeted metabolomics platforms even when metabolite focused approaches are used in the identification. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A novel NMR-based assay to measure circulating concentrations of branched-chain amino acids: Elevation in subjects with type 2 diabetes mellitus and association with carotid intima media thickness.

    Science.gov (United States)

    Wolak-Dinsmore, Justyna; Gruppen, Eke G; Shalaurova, Irina; Matyus, Steven P; Grant, Russell P; Gegen, Ray; Bakker, Stephan J L; Otvos, James D; Connelly, Margery A; Dullaart, Robin P F

    2018-04-01

    Plasma branched-chain amino acid (BCAA) levels, measured on nuclear magnetic resonance (NMR) metabolomics research platforms or by mass spectrometry, have been shown to be associated with type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). We developed a new test for quantification of BCAA on a clinical NMR analyzer and used this test to determine the clinical correlates of BCAA in 2 independent cohorts. The performance of the NMR-based BCAA assay was evaluated. A method comparison study was performed with mass spectrometry (LC-MS/MS). Plasma BCAA were measured in the Insulin Resistance Atherosclerosis Study (IRAS, n = 1209; 376 T2DM subjects) and in a Groningen cohort (n = 123; 67 T2DM subjects). In addition, carotid intima media thickness (cIMT) was measured successfully in 119 subjects from the Groningen cohort. NMR-based BCAA assay results were linear over a range of concentrations. Coefficients of variation for inter- and intra-assay precision ranged from 1.8-6.0, 1.7-5.4, 4.4-9.1, and 8.8-21.3%, for total BCAA, valine, leucine, and isoleucine, respectively. BCAA quantified from the same samples using NMR and LC-MS/MS were highly correlated (R 2  = 0.97, 0.95 and 0.90 for valine, leucine and isoleucine). In both cohorts total and individual BCAA were elevated in T2DM (P = 0.01 to ≤0.001). Moreover, cIMT was associated with BCAA independent of age, sex, T2DM and metabolic syndrome (MetS) categorization or alternatively of individual MetS components. BCAA levels, measured by NMR in the clinical laboratory, are elevated in T2DM and may be associated with cIMT, a proxy of subclinical atherosclerosis. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Metabolomics Workbench (MetWB)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Metabolomics Program's Data Repository and Coordinating Center (DRCC), housed at the San Diego Supercomputer Center (SDSC), University of California, San Diego,...

  20. Untargeted Metabolomics To Ascertain Antibiotic Modes of Action

    Science.gov (United States)

    Vincent, Isabel M.; Ehmann, David E.; Mills, Scott D.; Perros, Manos

    2016-01-01

    Deciphering the mode of action (MOA) of new antibiotics discovered through phenotypic screening is of increasing importance. Metabolomics offers a potentially rapid and cost-effective means of identifying modes of action of drugs whose effects are mediated through changes in metabolism. Metabolomics techniques also collect data on off-target effects and drug modifications. Here, we present data from an untargeted liquid chromatography-mass spectrometry approach to identify the modes of action of eight compounds: 1-[3-fluoro-4-(5-methyl-2,4-dioxo-pyrimidin-1-yl)phenyl]-3-[2-(trifluoromethyl)phenyl]urea (AZ1), 2-(cyclobutylmethoxy)-5′-deoxyadenosine, triclosan, fosmidomycin, CHIR-090, carbonyl cyanide m-chlorophenylhydrazone (CCCP), 5-chloro-2-(methylsulfonyl)-N-(1,3-thiazol-2-yl)-4-pyrimidinecarboxamide (AZ7), and ceftazidime. Data analysts were blind to the compound identities but managed to identify the target as thymidylate kinase for AZ1, isoprenoid biosynthesis for fosmidomycin, acyl-transferase for CHIR-090, and DNA metabolism for 2-(cyclobutylmethoxy)-5′-deoxyadenosine. Changes to cell wall metabolites were seen in ceftazidime treatments, although other changes, presumably relating to off-target effects, dominated spectral outputs in the untargeted approach. Drugs which do not work through metabolic pathways, such as the proton carrier CCCP, have no discernible impact on the metabolome. The untargeted metabolomics approach also revealed modifications to two compounds, namely, fosmidomycin and AZ7. An untreated control was also analyzed, and changes to the metabolome were seen over 4 h, highlighting the necessity for careful controls in these types of studies. Metabolomics is a useful tool in the analysis of drug modes of action and can complement other technologies already in use. PMID:26833150

  1. LC-MS-BASED METABOLOMICS OF XENOBIOTIC-INDUCED TOXICITIES

    Directory of Open Access Journals (Sweden)

    Chi Chen

    2013-01-01

    Full Text Available Xenobiotic exposure, especially high-dose or repeated exposure of xenobiotics, can elicit detrimental effects on biological systems through diverse mechanisms. Changes in metabolic systems, including formation of reactive metabolites and disruption of endogenous metabolism, are not only the common consequences of toxic xenobiotic exposure, but in many cases are the major causes behind development of xenobiotic-induced toxicities (XIT. Therefore, examining the metabolic events associated with XIT generates mechanistic insights into the initiation and progression of XIT, and provides guidance for prevention and treatment. Traditional bioanalytical platforms that target only a few suspected metabolites are capable of validating the expected outcomes of xenobiotic exposure. However, these approaches lack the capacity to define global changes and to identify unexpected events in the metabolic system. Recent developments in high-throughput metabolomics have dramatically expanded the scope and potential of metabolite analysis. Among all analytical techniques adopted for metabolomics, liquid chromatography-mass spectrometry (LC-MS has been most widely used for metabolomic investigations of XIT due to its versatility and sensitivity in metabolite analysis. In this review, technical platform of LC-MS-based metabolomics, including experimental model, sample preparation, instrumentation, and data analysis, are discussed. Applications of LC-MS-based metabolomics in exploratory and hypothesis-driven investigations of XIT are illustrated by case studies of xenobiotic metabolism and endogenous metabolism associated with xenobiotic exposure.

  2. Metabolomic Profiling in Perinatal Asphyxia: A Promising New Field

    Science.gov (United States)

    Denihan, Niamh M.; Boylan, Geraldine B.; Murray, Deirdre M.

    2015-01-01

    Metabolomics, the latest “omic” technology, is defined as the comprehensive study of all low molecular weight biochemicals, “metabolites” present in an organism. As a systems biology approach, metabolomics has huge potential to progress our understanding of perinatal asphyxia and neonatal hypoxic-ischaemic encephalopathy, by uniquely detecting rapid biochemical pathway alterations in response to the hypoxic environment. The study of metabolomic biomarkers in the immediate neonatal period is not a trivial task and requires a number of specific considerations, unique to this disease and population. Recruiting a clearly defined cohort requires standardised multicentre recruitment with broad inclusion criteria and the participation of a range of multidisciplinary staff. Minimally invasive biospecimen collection is a priority for biomarker discovery. Umbilical cord blood presents an ideal medium as large volumes can be easily extracted and stored and the sample is not confounded by postnatal disease progression. Pristine biobanking and phenotyping are essential to ensure the validity of metabolomic findings. This paper provides an overview of the current state of the art in the field of metabolomics in perinatal asphyxia and neonatal hypoxic-ischaemic encephalopathy. We detail the considerations required to ensure high quality sampling and analysis, to support scientific progression in this important field. PMID:25802843

  3. A (1H NMR-Based Metabonomic Investigation of Time-Related Metabolic Trajectories of the Plasma, Urine and Liver Extracts of Hyperlipidemic Hamsters.

    Directory of Open Access Journals (Sweden)

    Chun-Ying Jiang

    Full Text Available The hamster has been previously found to be a suitable model to study the changes associated with diet-induced hyperlipidemia in humans. Traditionally, studies of hyperlipidemia utilize serum- or plasma-based biochemical assays and histopathological evaluation. However, unbiased metabonomic technologies have the potential to identify novel biomarkers of disease. Thus, to obtain a better understanding of the progression of hyperlipidemia and discover potential biomarkers, we have used a proton nuclear magnetic resonance spectroscopy ((1H-NMR-based metabonomics approach to study the metabolic changes occurring in the plasma, urine and liver extracts of hamsters fed a high-fat/high-cholesterol diet. Samples were collected at different time points during the progression of hyperlipidemia, and individual proton NMR spectra were visually and statistically assessed using two multivariate analyses (MVA: principal component analysis (PCA and orthogonal partial least squares-discriminant analysis (OPLS-DA. Using the commercial software package Chenomx NMR suite, 40 endogenous metabolites in the plasma, 80 in the urine and 60 in the water-soluble fraction of liver extracts were quantified. NMR analysis of all samples showed a time-dependent transition from a physiological to a pathophysiological state during the progression of hyperlipidemia. Analysis of the identified biomarkers of hyperlipidemia suggests that significant perturbations of lipid and amino acid metabolism, as well as inflammation, oxidative stress and changes in gut microbiota metabolites, occurred following cholesterol overloading. The results of this study substantially broaden the metabonomic coverage of hyperlipidemia, enhance our understanding of the mechanism of hyperlipidemia and demonstrate the effectiveness of the NMR-based metabonomics approach to study a complex disease.

  4. Differentiation of Rums Produced from Sugar Cane Juice (Rhum Agricole) from Rums Manufactured from Sugar Cane Molasses by a Metabolomics Approach.

    Science.gov (United States)

    Franitza, Laura; Nicolotti, Luca; Granvogl, Michael; Schieberle, Peter

    2018-03-06

    A large set of volatiles (a metabolome) was isolated by SAFE distillation from 25 high priced rums prepared from sugar cane juice (SCJ) and 26 high priced rums manufactured from sugar cane molasses (SCM). The volatile fractions were first analyzed by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOF-MS), and the "comprehensive template matching fingerprinting" was used to extract the entire features present in the respective set of volatile compounds. After raw data pretreatment, chemometrics was used to locate marker compounds. Following, a sparse-partial-least-squares discriminant analysis ( sPLS-DA) and a partial-least-squares discriminant analysis (PLS-DA) were applied to a training data set for creating a model. The model was validated using leave-one-out cross validation and tested over an independent data set to evaluate its predictive power. The characteristic fingerprint resulted in a 100% correct classification of sugar cane juice rums, thus achieving the first aim of locating markers for these higher quality rums. Then, past-processing identification within the discriminant features was done to characterize 12 significant marker compounds as 1-decanol, γ-dodecalactone, ethyl 3-methylbutanoate, ethyl nonanoate, 3-furancarboxaldehyde, 1-hexanol, β-ionone, 2- and 3-methylbutanol, methyl decanoate, 3-octanol, and 2-undecanone. Quantitation of eight selected markers by stable isotope dilution assays confirmed higher concentrations in SCJ compared to SCM and served as the final proof to differentiate both types of spirits.

  5. Protection of Pepper Plants from Drought by Microbacterium sp. 3J1 by Modulation of the Plant's Glutamine and α-ketoglutarate Content: A Comparative Metabolomics Approach

    Directory of Open Access Journals (Sweden)

    Juan I. Vílchez

    2018-02-01

    Full Text Available Drought tolerance of plants such as tomato or pepper can be improved by their inoculation with rhizobacteria such as Microbacterium sp. 3J1. This interaction depends on the production of trehalose by the microorganisms that in turn modulate the phyto-hormone profile of the plant. In this work we describe the characterization of metabolic changes during the interaction of pepper plants with Microbacterium sp. 3J1 and of the microorganism alone over a period of drought. Our main findings include the observation that the plant responds to the presence of the microorganism by changing the C and N metabolism based on its glutamine and α-ketoglutarate content, these changes contribute to major changes in the concentration of molecules involved in the balance of the osmotic pressure. These include sugars and amino-acids; the concentration of antioxidant molecules, of metabolites involved in the production of phytohormones like ethylene, and of substrates used for lignin production such as ferulic and sinapic acids. Most of the altered metabolites of the plant when inoculated with Microbacterium sp. 3J1 in response to drought coincided with the profile of altered metabolites in the microorganism alone when subjected to drought, pointing to a response by which the plant relies on the microbe for the production of such metabolites. To our knowledge this is the first comparative study of the microbe colonized-plant and microbe alone metabolomes under drought stress.

  6. Metabox: A Toolbox for Metabolomic Data Analysis, Interpretation and Integrative Exploration.

    Science.gov (United States)

    Wanichthanarak, Kwanjeera; Fan, Sili; Grapov, Dmitry; Barupal, Dinesh Kumar; Fiehn, Oliver

    2017-01-01

    Similar to genomic and proteomic platforms, metabolomic data acquisition and analysis is becoming a routine approach for investigating biological systems. However, computational approaches for metabolomic data analysis and integration are still maturing. Metabox is a bioinformatics toolbox for deep phenotyping analytics that combines data processing, statistical analysis, functional analysis and integrative exploration of metabolomic data within proteomic and transcriptomic contexts. With the number of options provided in each analysis module, it also supports data analysis of other 'omic' families. The toolbox is an R-based web application, and it is freely available at http://kwanjeeraw.github.io/metabox/ under the GPL-3 license.

  7. Mitochondrial responses to extreme environments: insights from metabolomics.

    Science.gov (United States)

    O'Brien, Katie A; Griffin, Julian L; Murray, Andrew J; Edwards, Lindsay M

    2015-01-01

    Humans are capable of survival in a remarkable range of environments, including the extremes of temperature and altitude as well as zero gravity. Investigation into physiological function in response to such environmental stresses may help further our understanding of human (patho-) physiology both at a systems level and in certain disease states, making it a highly relevant field of study. This review focuses on the application of metabolomics in assessing acclimatisation to these states, particularly the insights this approach can provide into mitochondrial function. It includes an overview of metabolomics and the associated analytical tools and also suggests future avenues of research.

  8. Metabolome analysis - mass spectrometry and microbial primary metabolites

    DEFF Research Database (Denmark)

    Højer-Pedersen, Jesper Juul

    2008-01-01

    increased amounts of data generated in high resolution. One major limitation though is the digestion of data coverting the information into a format that can be interpreted in a biological context and take metabolomics beyond the principle of guilt-byassociation. To analyze the data there is a general need....... Statistical analysis of the footprinting data revealed discriminating ions, which could be assigned using the in silico metabolome. By this approach metabolic footprinting can advance from a classification method that is used to derive biological information based on guilt-by-association, to a tool...

  9. Metabolomics in epidemiology: from metabolite concentrations to integrative reaction networks.

    Science.gov (United States)

    Fearnley, Liam G; Inouye, Michael

    2016-10-01

    Metabolomics is becoming feasible for population-scale studies of human disease. In this review, we survey epidemiological studies that leverage metabolomics and multi-omics to gain insight into disease mechanisms. We outline key practical, technological and analytical limitations while also highlighting recent successes in integrating these data. The use of multi-omics to infer reaction rates is discussed as a potential future direction for metabolomics research, as a means of identifying biomarkers as well as inferring causality. Furthermore, we highlight established analysis approaches as well as simulation-based methods currently used in single- and multi-cell levels in systems biology. © The Author 2016. Published by Oxford University Press on behalf of the International Epidemiological Association.

  10. Metabolomic-based identification of clusters that reflect dietary patterns.

    Science.gov (United States)

    Gibbons, Helena; Carr, Eibhlin; McNulty, Breige A; Nugent, Anne P; Walton, Janette; Flynn, Albert; Gibney, Michael J; Brennan, Lorraine

    2017-10-01

    Classification of subjects into dietary patterns generally relies on self-reporting dietary data which are prone to error. The aim of the present study was to develop a model for objective classification of people into dietary patterns based on metabolomic data. Dietary and urinary metabolomic data from the National Adult Nutrition Survey (NANS) was used in the analysis (n = 567). Two-step cluster analysis was applied to the urinary data to identify clusters. The subsequent model was used in an independent cohort to classify people into dietary patterns. Two distinct dietary patterns were identified. Cluster 1 was characterized by significantly higher intakes of breakfast cereals, low fat and skimmed milks, potatoes, fruit, fish and fish dishes (p patterns based on metabolomics data. Future applications of this approach could be developed for rapid and objective assignment of subjects into dietary patterns. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. NMR-based screening method for transglutaminases: rapid analysis of their substrate specificities and reaction rates.

    Science.gov (United States)

    Shimba, Nobuhisa; Yokoyama, Kei-ichi; Suzuki, Ei-ichiro

    2002-03-13

    Incorporation of inter- or intramolecular covalent cross-links into food proteins with microbial transglutaminase (MTG) improves the physical and textural properties of many food proteins such as tofu, boiled fish paste, and sausage. Other transglutaminases (TGases) are expected to be used in the same way, and also to extend the scope of industrial applications to materials, drugs, and so on. The TGases have great diversity, not only in amino acid sequence and size, but also in their substrate specificities and catalytic activities, and therefore, it is quite difficult to estimate their reactivity. We have developed an NMR-based method using the enzymatic labeling technique (ELT) for simultaneous analysis of the substrate specificities and reaction rates of TGases. It is quite useful for comparing the existing TGases and for screening new TGases or TGases variants. This method has shown that MTG is superior for industrial use because of its lower substrate specificity compared with those of guinea pig liver transglutaminase (GTG) and red sea bream liver transglutaminase (FTG). We have also found that an MTG variant lacking an N-terminal aspartic acid residue has higher activity than that of the native enzyme.

  12. Quantification of organic acids in beer by nuclear magnetic resonance (NMR)-based methods

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, J.E.A. [CICECO-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Erny, G.L. [CESAM - Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Barros, A.S. [QOPNAA-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Esteves, V.I. [CESAM - Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Brandao, T.; Ferreira, A.A. [UNICER, Bebidas de Portugal, Leca do Balio, 4466-955 S. Mamede de Infesta (Portugal); Cabrita, E. [Department of Chemistry, New University of Lisbon, 2825-114 Caparica (Portugal); Gil, A.M., E-mail: agil@ua.pt [CICECO-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal)

    2010-08-03

    The organic acids present in beer provide important information on the product's quality and history, determining organoleptic properties and being useful indicators of fermentation performance. NMR spectroscopy may be used for rapid quantification of organic acids in beer and different NMR-based methodologies are hereby compared for the six main acids found in beer (acetic, citric, lactic, malic, pyruvic and succinic). The use of partial least squares (PLS) regression enables faster quantification, compared to traditional integration methods, and the performance of PLS models built using different reference methods (capillary electrophoresis (CE), both with direct and indirect UV detection, and enzymatic essays) was investigated. The best multivariate models were obtained using CE/indirect detection and enzymatic essays as reference and their response was compared with NMR integration, either using an internal reference or an electrical reference signal (Electronic REference To access In vivo Concentrations, ERETIC). NMR integration results generally agree with those obtained by PLS, with some overestimation for malic and pyruvic acids, probably due to peak overlap and subsequent integral errors, and an apparent relative underestimation for citric acid. Overall, these results make the PLS-NMR method an interesting choice for organic acid quantification in beer.

  13. A metabolomic study on the responses of daphnia magna exposed to silver nitrate and coated silver nanoparticles.

    Science.gov (United States)

    Li, LianZhen; Wu, Huifeng; Ji, Chenglong; van Gestel, Cornelis A M; Allen, Herbert E; Peijnenburg, Willie J G M

    2015-09-01

    We examined the short-term toxicity of AgNPs and AgNO3 to Daphnia magna at sublethal levels using (1)H NMR-based metabolomics. Two sizes of polyvinylpyrrolidone-coated AgNPs (10 and 40nm) were synthesized and characterized and their Ag(+) release was studied using centrifugal ultrafiltration and inductively coupled plasma mass spectrometry. Multivariate statistical analysis of the (1)H NMR spectra showed significant changes in the D. magna metabolic profiles following 48h exposure to both AgNP particle sizes and Ag(+) exposure. Most of the metabolic biomarkers for AgNP exposure, including 3-hydroxybutyrate, arginine, lysine and phosphocholine, were identical to those of the Ag(+)-exposed groups, suggesting that the dominant effects of both AgNPs were due to released Ag(+). The observed metabolic changes implied that the released Ag(+) induced disturbance in energy metabolism and oxidative stress, a proposed mechanism of AgNP toxicity. Elevated levels of lactate in all AgNP-treated but not in Ag(+)-treated groups provided evidence for Ag-NP enhanced anaerobic metabolism. These findings show that (1)H NMR-based metabolomics provides a sensitive measure of D. magna response to AgNPs and that further targeted assays are needed to elucidate mechanisms of action of nanoparticle-induced toxicity. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Metabolomics as an emerging strategy for the investigation of yogurt components

    NARCIS (Netherlands)

    Settachaimongkon, S.; Valenberg, van H.J.F.; Smid, E.J.

    2017-01-01

    The advanced development in metabolomics allows discovery of a wide range of metabolites in complex biological systems including food matrices. This analytical approach provides opportunities to attain a global metabolite profile and discover potential biomarkers and various chemical contaminants

  15. Effect of sleep deprivation on the human metabolome

    NARCIS (Netherlands)

    S.K. Davies (Sarah); J.E. Ang (Joo Ern); V.L. Revell (Victoria); B. Holmes (Ben); A. Mann (Anuska); F.P. Robertson (Francesca); N. Cui (Nanyi); B. Middleton (Benita); K. Ackermann (Katrin); M.H. Kayser (Manfred); A.E. Thumser (Alfred); P. Raynaud (Philippe); D.J. Skene (Debra)

    2014-01-01

    textabstractSleep restriction and circadian clock disruption are associated with metabolic disorders such as obesity, insulin resistance, and diabetes. The metabolic pathways involved in human sleep, however, have yet to be investigatedwith the use of a metabolomics approach. Here we have used

  16. Metabolomics Society’s International Affiliations

    NARCIS (Netherlands)

    Roessner, U.; Rolin, D.; Rijswijk, van M.E.C.; Hall, R.D.; Hankemeier, T.

    2015-01-01

    In 2012 the Metabolomics Society established a more formal system for national and regional metabolomics initiatives, interest groups, societies and networks to become an International Affiliate of the Society. A number of groups (http://metabolomicssociety.org/international-affilia

  17. Plasma, urine and ligament tissue metabolite profiling reveals potential biomarkers of ankylosing spondylitis using NMR-based metabolic profiles.

    Science.gov (United States)

    Wang, Wei; Yang, Gen-Jin; Zhang, Ju; Chen, Chen; Jia, Zhen-Yu; Li, Jia; Xu, Wei-Dong

    2016-10-22

    they were also probably associated with immune regulation. Our work demonstrates that the potential biomarkers that were identified appeared to have diagnostic value for AS and deserve to be further investigated. In addition, this work also suggests that the metabolomic profiling approach is a promising screening tool for the diagnosis of patients with AS.

  18. ECMDB: The E. coli Metabolome Database

    OpenAIRE

    Guo, An Chi; Jewison, Timothy; Wilson, Michael; Liu, Yifeng; Knox, Craig; Djoumbou, Yannick; Lo, Patrick; Mandal, Rupasri; Krishnamurthy, Ram; Wishart, David S.

    2012-01-01

    The Escherichia coli Metabolome Database (ECMDB, http://www.ecmdb.ca) is a comprehensively annotated metabolomic database containing detailed information about the metabolome of E. coli (K-12). Modelled closely on the Human and Yeast Metabolome Databases, the ECMDB contains >2600 metabolites with links to ?1500 different genes and proteins, including enzymes and transporters. The information in the ECMDB has been collected from dozens of textbooks, journal articles and electronic databases. E...

  19. 1H NMR-Based Metabolomics Study of the Toxicological Effects in Rats Induced by ?Renqing Mangjue? Pill, a Traditional Tibetan Medicine

    OpenAIRE

    Xu, Can; Rezeng, Caidan; Li, Jian; Zhang, Lan; Yan, Yujing; Gao, Jian; Wang, Yingfeng; Li, Zhongfeng; Chen, Jianxin

    2017-01-01

    “RenqingMangjue” pill (RMP), as an effective prescription of Traditional Tibetan Medicine (TTM), has been widely used in treating digestive diseases and ulcerative colitis for over a thousand years. In certain classical Tibetan Medicine, heavy metal may add as an active ingredient, but it may cause contamination unintentionally in some cases. Therefore, the toxicity and adverse effects of TTM became to draw public attention. In this study, 48 male Wistar rats were orally administrated with di...

  20. Urinary NMR-based metabolomic analysis of rats possessing variable sperm count following orally administered Eurycoma longifolia extracts of different quassinoid levels.

    Science.gov (United States)

    Ebrahimi, Forough; Ibrahim, Baharudin; Teh, Chin-Hoe; Murugaiyah, Vikneswaran; Chan, Kit-Lam

    2016-04-22

    Eurycoma longifolia (Tongkat Ali, TA) roots have been ethnically used as a remedy to boost male sexual desire, libido, energy and fertility. The study evaluated the effect of TA extracts with different quassinoid levels on rats sperm count and examined corresponding post-treatment urinary metabolic changes. Twenty-four male Sprague-Dawley rats, categorized into 4 groups of 6 rats each, were orally administered for 48 days with water for the control (group 1), 125mg/kg of TA water extract (TAW, group 2), 125mg/kg of TA quassinoid-poor extract (TAQP, group 3) and 21mg/kg of TA quassinoid-rich extract (TAQR, group 4). Upon completion of the 48-day treatment, the urine samples were analyzed by NMR and the animals were subsequently sacrificed for sperm count analysis. The urine profiles were categorized according to sperm count level. The results showed that the sperm count in TAW- and TAQR-treated groups was significantly higher compared to the TAQP-administered and control groups. The orthogonal partial least squares discriminant analysis (OPLS-DA) model indicated a clear separation among the urine profiles with respect to sperm count level. Urine (1)H-NMR profiles of the high-sperm count group contained higher concentrations of trigonelline, alanine, benzoic acid and higher intensity of a signal at 3.42ppm, while ethanol was at higher concentration in the normal-sperm count group. The results proved the efficacy of quassinoids on sperm count increase in rats and provided quantitative markers in urine suitable for analysis of sperm profile and male fertility status. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Application of {sup 1}H-NMR-based metabolomics for detecting injury induced by long-term microwave exposure in Wistar rats' urine

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li-Feng; Peng, Rui-Yun; Wang, Shui-Ming; Gao, Ya-Bing; Dong, Ji; Zhao, Li; Li, Xiang; Zuo, Hong-Yan; Wang, Chang-Zhen [Beijing Institute of Radiation Medicine, Laboratory of Pathology, Beijing (China); Hu, Xiang-Jun [Beijing Institute of Radiation Medicine, Beijing (China); Gao, Rong-Lian [Beijing Institute of Radiation Medicine, Laser Medicine, Beijing (China); Su, Zhen-Tao [Beijing Institute of Radiation Medicine, Radiation Protection, Beijing (China); Feng, Xin-Xing [Chinese Academy of Medical Sciences, Endocrine and Cardiovascular Center, Fuwai Hospital and Cardiovascular Institute, Beijing (China)

    2012-07-15

    There has been growing public concern regarding exposure to microwave fields as a potential human health hazard. This study aimed to identify sensitive biochemical indexes for the detection of injury induced by microwave exposure. Male Wistar rats were exposed to microwaves for 6 min per day, 5 days per week over a period of 1 month at an average power density of 5 mW/cm{sup 2} (specific absorption rate of 2.1 W/kg). Urine specimens were collected over 24 h in metabolic cages at 7 days, 21 days, 2 months, and 6 months after exposure. {sup 1}H NMR spectroscopy data were analyzed using multivariate statistical techniques. Urine metabolic profiles of rats after long-term microwave exposure were significantly differentiated from those of sham-treated controls using principal component analysis or partial least squares discriminant analysis. Significant differences in low molecular weight metabolites (acetate, succinate, citrate, ketoglutarate, glucose, taurine, phenylalanine, tyrosine, and hippurate) were identified in the 5 mW/cm{sup 2} microwave exposure group compared with the sham-treated controls at 7 days, 21 days, and 2 months. Metabolites returned to normal levels by 6 months after exposure. These data indicated that these metabolites were related to the perturbations of energy metabolism particularly in the tricarboxylic acid cycle, and the metabolism of amino acids, monoamines, and choline in urine represent potential indexes for the detection of injury induced by long-term microwave exposure. (orig.)

  2. Metabolomics: the chemistry between ecology and genetics

    NARCIS (Netherlands)

    Macel, M.; Dam, van N.M.; Keurentjes, J.J.B.

    2010-01-01

    Metabolomics is a fast developing field of comprehensive untargeted chemical analyses. It has many applications and can in principle be used on any organism without prior knowledge of the metabolome or genome. The amount of functional information that is acquired with metabolomics largely depends on

  3. Metabolomics and Type 2 Diabetes: Translating Basic Research into Clinical Application

    Directory of Open Access Journals (Sweden)

    Matthias S. Klein

    2016-01-01

    Full Text Available Type 2 diabetes (T2D and its comorbidities have reached epidemic proportions, with more than half a billion cases expected by 2030. Metabolomics is a fairly new approach for studying metabolic changes connected to disease development and progression and for finding predictive biomarkers to enable early interventions, which are most effective against T2D and its comorbidities. In metabolomics, the abundance of a comprehensive set of small biomolecules (metabolites is measured, thus giving insight into disease-related metabolic alterations. This review shall give an overview of basic metabolomics methods and will highlight current metabolomics research successes in the prediction and diagnosis of T2D. We summarized key metabolites changing in response to T2D. Despite large variations in predictive biomarkers, many studies have replicated elevated plasma levels of branched-chain amino acids and their derivatives, aromatic amino acids and α-hydroxybutyrate ahead of T2D manifestation. In contrast, glycine levels and lysophosphatidylcholine C18:2 are depressed in both predictive studies and with overt disease. The use of metabolomics for predicting T2D comorbidities is gaining momentum, as are our approaches for translating basic metabolomics research into clinical applications. As a result, metabolomics has the potential to enable informed decision-making in the realm of personalized medicine.

  4. Metabolomic profiling of doxycycline treatment in chronic obstructive pulmonary disease.

    Science.gov (United States)

    Singh, Brajesh; Jana, Saikat K; Ghosh, Nilanjana; Das, Soumen K; Joshi, Mamata; Bhattacharyya, Parthasarathi; Chaudhury, Koel

    2017-01-05

    Serum metabolic profiling can identify the metabolites responsible for discrimination between doxycycline treated and untreated chronic obstructive pulmonary disease (COPD) and explain the possible effect of doxycycline in improving the disease conditions. 1 H nuclear magnetic resonance (NMR)-based metabolomics was used to obtain serum metabolic profiles of 60 add-on doxycycline treated COPD patients and 40 patients receiving standard therapy. The acquired data were analyzed using multivariate principal component analysis (PCA), partial least-squares-discriminant analysis (PLS-DA), and orthogonal projection to latent structure with discriminant analysis (OPLS-DA). A clear metabolic differentiation was apparent between the pre and post doxycycline treated group. The distinguishing metabolites lactate and fatty acids were significantly down-regulated and formate, citrate, imidazole and l-arginine upregulated. Lactate and folate are further validated biochemically. Metabolic changes, such as decreased lactate level, inhibited arginase activity and lowered fatty acid level observed in COPD patients in response to add-on doxycycline treatment, reflect the anti-inflammatory action of the drug. Doxycycline as a possible therapeutic option for COPD seems promising. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. "Omics" of High Altitude Biology: A Urinary Metabolomics Biomarker Study of Rats Under Hypobaric Hypoxia.

    Science.gov (United States)

    Koundal, Sunil; Gandhi, Sonia; Kaur, Tanzeer; Mazumder, Avik; Khushu, Subash

    2015-12-01

    High altitude medicine is an emerging subspecialty that has crosscutting relevance for 21(st) century science and society: from sports medicine and aerospace industry to urban and rural communities living in high altitude. Recreational travel to high altitude has also become increasingly popular. Rarely has the biology of high altitude biology been studied using systems sciences and omics high-throughput technologies. In the present study, 1H-NMR-based metabolomics, along with multivariate analyses, were employed in a preclinical rat model to characterize the urinary metabolome under hypobaric hypoxia stress. Rats were exposed to simulated altitude of 6700 m above the sea level. The urine samples were collected from pre- and post-exposure (1, 3, 7, and 14 days) of hypobaric hypoxia. Metabolomics urinalysis showed alterations in TCA cycle metabolites (citrate, α-ketoglutarate), cell membrane metabolism (choline), gut micro-flora metabolism (hippurate, phenylacetylglycine), and others (N-acetyl glutamate, creatine, taurine) in response to hypobaric hypoxia. Taurine, a potential biomarker of hepatic function, was elevated after 3 days of hypobaric hypoxia, which indicates altered liver functioning. Liver histopathology confirmed the damage to tissue architecture due to hypobaric hypoxia. The metabolic pathway analysis identified taurine metabolism and TCA as important pathways that might have contributed to hypobaric hypoxia-induced pathophysiology. This study demonstrates the use of metabolomics as a promising tool for discovery and understanding of novel biochemical responses to hypobaric hypoxia exposure, providing new insight in the field of high altitude medicine and the attendant health problems that occur in response to high altitude. The findings reported here also have potential relevance for sports medicine and aviation sciences.

  6. Ehrlich and sarcoma 180 tumour characterisation and early detection by {sup 1}H NMR-based metabonomics of mice serum

    Energy Technology Data Exchange (ETDEWEB)

    Grandizoli, Caroline W.P. da S.; Simonelli, Fabio; Nagata, Noemi; Barison, Andersson, E-mail: andernmr@ufpr.br [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Quimica; Carrenho, Luise Z.B.; Francisco, Thais M.G. de; Campos, Francinete R. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Farmacia; Santana Filho, Arquimedes P. de; Sassaki, Guilherme L. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Bioquimica; Kreuger, Maria R.O. [Universidade do Vale do Itajai (UNIVALI), (Brazil). Centro de Ciencias da Saude

    2014-05-15

    The success of cancer treatment is directly related to early detection before symptoms emerge, although nowadays few cancers can be detected early. In this sense, {sup 1}H nuclear magnetic resonance ({sup 1}H NMR)-based metabonomics was used to identify metabolic changes in biofluid as a consequence of tumours growing in mice. Through partial least squares discriminant analysis (PLS-DA) analysis of {sup 1}H NMR spectra from serum samples it was possible to diagnose Ehrlich ascites and Sarcoma 180 tumours five and ten days after cell inoculation, respectively. Lipids, lipoproteins and lactate were the main biomarkers at onset as well as in the progress of carcinogenic process. Thus, NMR-based metabonomics can be a valuable tool to study the effects of tumour establishment on the chemical composition of biofluids. (author)

  7. Characterizing the effect of heavy metal contamination on marine mussels using metabolomics.

    Science.gov (United States)

    Kwon, Yong-Kook; Jung, Young-Sang; Park, Jong-Chul; Seo, Jungju; Choi, Man-Sik; Hwang, Geum-Sook

    2012-09-01

    Marine mussels (Mytilus) are widely used as bioindicators to measure pollution in marine environments. In this study, (1)H NMR spectroscopy and multivariate statistical analyses were used to differentiate mussel groups from a heavy metal-polluted area (Onsan Bay) and a clean area (Dokdo area). Principal component analysis and orthogonal projection to latent structure-discriminant analysis revealed significant separation between extracts of mussels from Onsan Bay and from the Dokdo area. Organic osmolytes (betaine and taurine) and free amino acids (alanine, arginine, glutamine, phenylalanine, and threonine) were more highly accumulated in Onsan Bay mussels compared with Dokdo mussels. These results demonstrate that NMR-based metabolomics can be used as an efficient method for characterizing heavy metal contamination derived from polluted area compared to clean area and to identify metabolites related to environments that are contaminated with heavy metals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Metabolomic Profiling for Identification of Novel Potential Biomarkers in Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Maria G. Barderas

    2011-01-01

    Full Text Available Metabolomics involves the identification and quantification of metabolites present in a biological system. Three different approaches can be used: metabolomic fingerprinting, metabolic profiling, and metabolic footprinting, in order to evaluate the clinical course of a disease, patient recovery, changes in response to surgical intervention or pharmacological treatment, as well as other associated features. Characteristic patterns of metabolites can be revealed that broaden our understanding of a particular disorder. In the present paper, common strategies and analytical techniques used in metabolomic studies are reviewed, particularly with reference to the cardiovascular field.

  9. Influence of a polyphenol-enriched protein powder on exercise-induced inflammation and oxidative stress in athletes: a randomized trial using a metabolomics approach.

    Directory of Open Access Journals (Sweden)

    David C Nieman

    Full Text Available Polyphenol supplementation was tested as a countermeasure to inflammation and oxidative stress induced by 3-d intensified training.Water soluble polyphenols from blueberry and green tea extracts were captured onto a polyphenol soy protein complex (PSPC. Subjects were recruited, and included 38 long-distance runners ages 19-45 years who regularly competed in road races. Runners successfully completing orientation and baseline testing (N = 35 were randomized to 40 g/d PSPC (N = 17 (2,136 mg/d gallic acid equivalents or placebo (N = 18 for 17 d using double-blinded methods and a parallel group design, with a 3-d running period inserted at day 14 (2.5 h/d, 70% VO2max. Blood samples were collected pre- and post-14 d supplementation, and immediately and 14 h after the third day of running in subjects completing all aspects of the study (N = 16 PSPC, N = 15 placebo, and analyzed using a metabolomics platform with GC-MS and LC-MS.Metabolites characteristic of gut bacteria metabolism of polyphenols were increased with PSPC and 3 d running (e.g., hippurate, 4-hydroxyhippurate, 4-methylcatechol sulfate, 1.8-, 1.9-, 2.5-fold, respectively, P<0.05, an effect which persisted for 14-h post-exercise. Fatty acid oxidation and ketogenesis were induced by exercise in both groups, with more ketones at 14-h post-exercise in PSPC (3-hydroxybutyrate, 1.8-fold, P<0.05. Established biomarkers for inflammation (CRP, cytokines and oxidative stress (protein carbonyls did not differ between groups.PSPC supplementation over a 17-d period did not alter established biomarkers for inflammation and oxidative stress but was linked to an enhanced gut-derived phenolic signature and ketogenesis in runners during recovery from 3-d heavy exertion.ClinicalTrials.gov, U.S. National Institutes of Health, identifier: NCT01775384.

  10. Experimental design and reporting standards for metabolomics studies of mammalian cell lines.

    Science.gov (United States)

    Hayton, Sarah; Maker, Garth L; Mullaney, Ian; Trengove, Robert D

    2017-12-01

    Metabolomics is an analytical technique that investigates the small biochemical molecules present within a biological sample isolated from a plant, animal, or cultured cells. It can be an extremely powerful tool in elucidating the specific metabolic changes within a biological system in response to an environmental challenge such as disease, infection, drugs, or toxins. A historically difficult step in the metabolomics pipeline is in data interpretation to a meaningful biological context, for such high-variability biological samples and in untargeted metabolomics studies that are hypothesis-generating by design. One way to achieve stronger biological context of metabolomic data is via the use of cultured cell models, particularly for mammalian biological systems. The benefits of in vitro metabolomics include a much greater control of external variables and no ethical concerns. The current concerns are with inconsistencies in experimental procedures and level of reporting standards between different studies. This review discusses some of these discrepancies between recent studies, such as metabolite extraction and data normalisation. The aim of this review is to highlight the importance of a standardised experimental approach to any cultured cell metabolomics study and suggests an example procedure fully inclusive of information that should be disclosed in regard to the cell type/s used and their culture conditions. Metabolomics of cultured cells has the potential to uncover previously unknown information about cell biology, functions and response mechanisms, and so the accurate biological interpretation of the data produced and its ability to be compared to other studies should be considered vitally important.

  11. A Decade of Genetic and Metabolomic Contributions to Type 2 Diabetes Risk Prediction

    Science.gov (United States)

    Merino, Jordi; Leong, Aaron; Meigs, James B.

    2018-01-01

    Purpose of Review The purpose of this review was to summarize and reflect on advances over the past decade in human genetic and metabolomic discovery with particular focus on their contributions to type 2 diabetes (T2D) risk prediction. Recent Findings In the past 10 years, a combination of advances in genotyping efficiency, metabolomic profiling, bio-informatics approaches, and international collaboration have moved T2D genetics and metabolomics from a state of frustration to an abundance of new knowledge. Summary Efforts to control and prevent T2D have failed to stop this global epidemic. New approaches are needed, and although neither genetic nor metabolomic profiling yet have a clear clinical role, the rapid pace of accumulating knowledge offers the possibility for “multi-omic” prediction to improve health. PMID:29103096

  12. Metabolomics-driven nutraceutical evaluation of diverse green tea cultivars.

    Directory of Open Access Journals (Sweden)

    Yoshinori Fujimura

    Full Text Available BACKGROUND: Green tea has various health promotion effects. Although there are numerous tea cultivars, little is known about the differences in their nutraceutical properties. Metabolic profiling techniques can provide information on the relationship between the metabolome and factors such as phenotype or quality. Here, we performed metabolomic analyses to explore the relationship between the metabolome and health-promoting attributes (bioactivity of diverse Japanese green tea cultivars. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the ability of leaf extracts from 43 Japanese green tea cultivars to inhibit thrombin-induced phosphorylation of myosin regulatory light chain (MRLC in human umbilical vein endothelial cells (HUVECs. This thrombin-induced phosphorylation is a potential hallmark of vascular endothelial dysfunction. Among the tested cultivars, Cha Chuukanbohon Nou-6 (Nou-6 and Sunrouge (SR strongly inhibited MRLC phosphorylation. To evaluate the bioactivity of green tea cultivars using a metabolomics approach, the metabolite profiles of all tea extracts were determined by high-performance liquid chromatography-mass spectrometry (LC-MS. Multivariate statistical analyses, principal component analysis (PCA and orthogonal partial least-squares-discriminant analysis (OPLS-DA, revealed differences among green tea cultivars with respect to their ability to inhibit MRLC phosphorylation. In the SR cultivar, polyphenols were associated with its unique metabolic profile and its bioactivity. In addition, using partial least-squares (PLS regression analysis, we succeeded in constructing a reliable bioactivity-prediction model to predict the inhibitory effect of tea cultivars based on their metabolome. This model was based on certain identified metabolites that were associated with bioactivity. When added to an extract from the non-bioactive cultivar Yabukita, several metabolites enriched in SR were able to transform the extract into a bioactive

  13. Metabolomics-Driven Nutraceutical Evaluation of Diverse Green Tea Cultivars

    Science.gov (United States)

    Ida, Megumi; Kosaka, Reia; Miura, Daisuke; Wariishi, Hiroyuki; Maeda-Yamamoto, Mari; Nesumi, Atsushi; Saito, Takeshi; Kanda, Tomomasa; Yamada, Koji; Tachibana, Hirofumi

    2011-01-01

    Background Green tea has various health promotion effects. Although there are numerous tea cultivars, little is known about the differences in their nutraceutical properties. Metabolic profiling techniques can provide information on the relationship between the metabolome and factors such as phenotype or quality. Here, we performed metabolomic analyses to explore the relationship between the metabolome and health-promoting attributes (bioactivity) of diverse Japanese green tea cultivars. Methodology/Principal Findings We investigated the ability of leaf extracts from 43 Japanese green tea cultivars to inhibit thrombin-induced phosphorylation of myosin regulatory light chain (MRLC) in human umbilical vein endothelial cells (HUVECs). This thrombin-induced phosphorylation is a potential hallmark of vascular endothelial dysfunction. Among the tested cultivars, Cha Chuukanbohon Nou-6 (Nou-6) and Sunrouge (SR) strongly inhibited MRLC phosphorylation. To evaluate the bioactivity of green tea cultivars using a metabolomics approach, the metabolite profiles of all tea extracts were determined by high-performance liquid chromatography-mass spectrometry (LC-MS). Multivariate statistical analyses, principal component analysis (PCA) and orthogonal partial least-squares-discriminant analysis (OPLS-DA), revealed differences among green tea cultivars with respect to their ability to inhibit MRLC phosphorylation. In the SR cultivar, polyphenols were associated with its unique metabolic profile and its bioactivity. In addition, using partial least-squares (PLS) regression analysis, we succeeded in constructing a reliable bioactivity-prediction model to predict the inhibitory effect of tea cultivars based on their metabolome. This model was based on certain identified metabolites that were associated with bioactivity. When added to an extract from the non-bioactive cultivar Yabukita, several metabolites enriched in SR were able to transform the extract into a bioactive extract

  14. Metabolomic Modularity Analysis (MMA) to Quantify Human Liver Perfusion Dynamics.

    Science.gov (United States)

    Sridharan, Gautham Vivek; Bruinsma, Bote; Bale, Shyam Sundhar; Swaminathan, Anandh; Saeidi, Nima; Yarmush, Martin L; Uygun, Korkut

    2017-11-13

    Large-scale -omics data are now ubiquitously utilized to capture and interpret global responses to perturbations in biological systems, such as the impact of disease states on cells, tissues, and whole organs. Metabolomics data, in particular, are difficult to interpret for providing physiological insight because predefined biochemical pathways used for analysis are inherently biased and fail to capture more complex network interactions that span multiple canonical pathways. In this study, we introduce a nov-el approach coined Metabolomic Modularity Analysis (MMA) as a graph-based algorithm to systematically identify metabolic modules of reactions enriched with metabolites flagged to be statistically significant. A defining feature of the algorithm is its ability to determine modularity that highlights interactions between reactions mediated by the production and consumption of cofactors and other hub metabolites. As a case study, we evaluated the metabolic dynamics of discarded human livers using time-course metabolomics data and MMA to identify modules that explain the observed physiological changes leading to liver recovery during subnormothermic machine perfusion (SNMP). MMA was performed on a large scale liver-specific human metabolic network that was weighted based on metabolomics data and identified cofactor-mediated modules that would not have been discovered by traditional metabolic pathway analyses.

  15. YMDB: the Yeast Metabolome Database

    Science.gov (United States)

    Jewison, Timothy; Knox, Craig; Neveu, Vanessa; Djoumbou, Yannick; Guo, An Chi; Lee, Jacqueline; Liu, Philip; Mandal, Rupasri; Krishnamurthy, Ram; Sinelnikov, Igor; Wilson, Michael; Wishart, David S.

    2012-01-01

    The Yeast Metabolome Database (YMDB, http://www.ymdb.ca) is a richly annotated ‘metabolomic’ database containing detailed information about the metabolome of Saccharomyces cerevisiae. Modeled closely after the Human Metabolome Database, the YMDB contains >2000 metabolites with links to 995 different genes/proteins, including enzymes and transporters. The information in YMDB has been gathered from hundreds of books, journal articles and electronic databases. In addition to its comprehensive literature-derived data, the YMDB also contains an extensive collection of experimental intracellular and extracellular metabolite concentration data compiled from detailed Mass Spectrometry (MS) and Nuclear Magnetic Resonance (NMR) metabolomic analyses performed in our lab. This is further supplemented with thousands of NMR and MS spectra collected on pure, reference yeast metabolites. Each metabolite entry in the YMDB contains an average of 80 separate data fields including comprehensive compound description, names and synonyms, structural information, physico-chemical data, reference NMR and MS spectra, intracellular/extracellular concentrations, growth conditions and substrates, pathway information, enzyme data, gene/protein sequence data, as well as numerous hyperlinks to images, references and other public databases. Extensive searching, relational querying and data browsing tools are also provided that support text, chemical structure, spectral, molecular weight and gene/protein sequence queries. Because of S. cervesiae's importance as a model organism for biologists and as a biofactory for industry, we believe this kind of database could have considerable appeal not only to metabolomics researchers, but also to yeast biologists, systems biologists, the industrial fermentation industry, as well as the beer, wine and spirit industry. PMID:22064855

  16. Revealing the metabolome of animal tissues using 1H nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Viant, Mark R

    2007-01-01

    The measurement of tissue-specific metabolic fingerprints can be of particular interest when investigating disease processes, mechanisms of toxicity, or when knowledge of the metabolic interactions between different organs is required. This chapter presents several optimized protocols for the extraction of metabolites from animal tissues, their analysis by 1H nuclear magnetic resonance (NMR) spectroscopy, and the subsequent spectral preprocessing required for an NMR-based metabolomics experiment. First, the three critical steps in the preparation of tissue extracts for NMR analysis are described, including both a perchloric acid protocol for the extraction of polar metabolites, and a methanol:chloroform protocol for extraction of polar and lipophilic metabolites. Then a series of NMR experiments are described including a standard one-dimensional (1D) 1H NMR study, a 1D 1H Carr-Purcell-Meiboom-Gill spin-echo experiment, and a two-dimensional 1H-1H J-resolved NMR experiment. The advantages and limitations of each experiment for metabolomics research are discussed. Analysis of the resulting NMR datasets is typically conducted in two phases comprising "low level" spectral preprocessing and "high level" multivariate analysis. NMR spectral preprocessing is a critical step that converts raw NMR spectra into an appropriate data format for multivariate analysis. A detailed protocol for preprocessing NMR data, using ProMetab software, is presented. Because a plethora of algorithms exist for multivariate analyses, which can be used to construct classification models or for biomarker discovery, this is beyond the scope of the current chapter.

  17. Development and Validation of a High-Throughput Mass Spectrometry Based Urine Metabolomic Test for the Detection of Colonic Adenomatous Polyps.

    Science.gov (United States)

    Deng, Lu; Chang, David; Foshaug, Rae R; Eisner, Roman; Tso, Victor K; Wishart, David S; Fedorak, Richard N

    2017-06-22

    Background: Colorectal cancer is one of the leading causes of cancer deaths worldwide. The detection and removal of the precursors to colorectal cancer, adenomatous polyps, is the key for screening. The aim of this study was to develop a clinically scalable (high throughput, low cost, and high sensitivity) mass spectrometry (MS)-based urine metabolomic test for the detection of adenomatous polyps. Methods : Prospective urine and stool samples were collected from 685 participants enrolled in a colorectal cancer screening program to undergo colonoscopy examination. Statistical analysis was performed on 69 urine metabolites measured by one-dimensional nuclear magnetic resonance spectroscopy to identify key metabolites. A targeted MS assay was then developed to quantify the key metabolites in urine. A MS-based urine metabolomic diagnostic test for adenomatous polyps was established using 67% samples (un-blinded training set) and validated using the remaining 33% samples (blinded testing set). Results : The MS-based urine metabolomic test identifies patients with colonic adenomatous polyps with an AUC of 0.692, outperforming the NMR based predictor with an AUC of 0.670. Conclusion : Here we describe a clinically scalable MS-based urine metabolomic test that identifies patients with adenomatous polyps at a higher level of sensitivity (86%) over current fecal-based tests (<18%).

  18. Development and Validation of a High-Throughput Mass Spectrometry Based Urine Metabolomic Test for the Detection of Colonic Adenomatous Polyps

    Directory of Open Access Journals (Sweden)

    Lu Deng

    2017-06-01

    Full Text Available Background: Colorectal cancer is one of the leading causes of cancer deaths worldwide. The detection and removal of the precursors to colorectal cancer, adenomatous polyps, is the key for screening. The aim of this study was to develop a clinically scalable (high throughput, low cost, and high sensitivity mass spectrometry (MS-based urine metabolomic test for the detection of adenomatous polyps. Methods: Prospective urine and stool samples were collected from 685 participants enrolled in a colorectal cancer screening program to undergo colonoscopy examination. Statistical analysis was performed on 69 urine metabolites measured by one-dimensional nuclear magnetic resonance spectroscopy to identify key metabolites. A targeted MS assay was then developed to quantify the key metabolites in urine. A MS-based urine metabolomic diagnostic test for adenomatous polyps was established using 67% samples (un-blinded training set and validated using the remaining 33% samples (blinded testing set. Results: The MS-based urine metabolomic test identifies patients with colonic adenomatous polyps with an AUC of 0.692, outperforming the NMR based predictor with an AUC of 0.670. Conclusion: Here we describe a clinically scalable MS-based urine metabolomic test that identifies patients with adenomatous polyps at a higher level of sensitivity (86% over current fecal-based tests (<18%.

  19. Proteomics and Metabolomics: two emerging areas for legume improvement

    Directory of Open Access Journals (Sweden)

    Abirami eRamalingam

    2015-12-01

    Full Text Available The crop legumes such as chickpea, common bean, cowpea, peanut, pigeonpea, soybean, etc. are important source of nutrition and contribute to a significant amount of biological nitrogen fixation (>20 million tons of fixed nitrogen in agriculture. However, the production of legumes is constrained due to abiotic and biotic stresses. It is therefore imperative to understand the molecular mechanisms of plant response to different stresses and identify key candidate genes regulating tolerance which can be deployed in breeding programs. The information obtained from transcriptomics has facilitated the identification of candidate genes for the given trait of interest and utilizing them in crop breeding programs to improve stress tolerance. However, the mechanisms of stress tolerance are complex due to the influence of multi-genes and post-transcriptional regulations. Furthermore, stress conditions greatly affect gene expression which in turn causes modifications in the composition of plant proteomes and metabolomes. Therefore, functional genomics involving various proteomics and metabolomics approaches have been obligatory for understanding plant stress tolerance. These approaches have also been found useful to unravel different pathways related to plant and seed development as well as symbiosis. Proteome and metabolome profiling using high-throughput based systems have been extensively applied in the model legume species Medicago truncatula and Lotus japonicus, as well as in the model crop legume, soybean, to examine stress signalling pathways, cellular and developmental processes and nodule symbiosis. Moreover, the availability of protein reference maps as well as proteomics and metabolomics databases greatly support research and understanding of various biological processes in legumes. Protein-protein interaction techniques, particularly the yeast two-hybrid system have been advantageous for studying symbiosis and stress signalling in legumes. In

  20. Metabolomics Application in Maternal-Fetal Medicine

    OpenAIRE

    Fanos, Vassilios; Atzori, Luigi; Makarenko, Karina; Melis, Gian Benedetto; Ferrazzi, Enrico

    2013-01-01

    Metabolomics in maternal-fetal medicine is still an “embryonic” science. However, there is already an increasing interest in metabolome of normal and complicated pregnancies, and neonatal outcomes. Tissues used for metabolomics interrogations of pregnant women, fetuses and newborns are amniotic fluid, blood, plasma, cord blood, placenta, urine, and vaginal secretions. All published papers highlight the strong correlation between biomarkers found in these tissues and fetal malformations, prete...

  1. The effect of acyclic retinoid on the metabolomic profiles of hepatocytes and hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Xian-Yang Qin

    Full Text Available BACKGROUND/PURPOSE: Acyclic retinoid (ACR is a promising chemopreventive agent for hepatocellular carcinoma (HCC that selectively inhibits the growth of HCC cells (JHH7 but not normal hepatic cells (Hc. To better understand the molecular basis of the selective anti-cancer effect of ACR, we performed nuclear magnetic resonance (NMR-based and capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS-based metabolome analyses in JHH7 and Hc cells after treatment with ACR. METHODOLOGY/PRINCIPAL FINDINGS: NMR-based metabolomics revealed a distinct metabolomic profile of JHH7 cells at 18 h after ACR treatment but not at 4 h after ACR treatment. CE-TOFMS analysis identified 88 principal metabolites in JHH7 and Hc cells after 24 h of treatment with ethanol (EtOH or ACR. The abundance of 71 of these metabolites was significantly different between EtOH-treated control JHH7 and Hc cells, and 49 of these metabolites were significantly down-regulated in the ACR-treated JHH7 cells compared to the EtOH-treated JHH7 cells. Of particular interest, the increase in adenosine-5'-triphosphate (ATP, the main cellular energy source, that was observed in the EtOH-treated control JHH7 cells was almost completely suppressed in the ACR-treated JHH7 cells; treatment with ACR restored ATP to the basal levels observed in both EtOH-control and ACR-treated Hc cells (0.72-fold compared to the EtOH control-treated JHH7 cells. Moreover, real-time PCR analyses revealed that ACR significantly increased the expression of pyruvate dehydrogenase kinases 4 (PDK4, a key regulator of ATP production, in JHH7 cells but not in Hc cells (3.06-fold and 1.20-fold compared to the EtOH control, respectively. CONCLUSIONS/SIGNIFICANCE: The results of the present study suggest that ACR may suppress the enhanced energy metabolism of JHH7 cells but not Hc cells; this occurs at least in part via the cancer-selective enhancement of PDK4 expression. The cancer-selective metabolic pathways

  2. Functional metabolomics reveals novel active products in the DHA metabolome

    Directory of Open Access Journals (Sweden)

    Masakazu eShinohara

    2012-04-01

    Full Text Available Endogenous mechanisms for successful resolution of an acute inflammatory response and the local return to homeostasis are of interest because excessive inflammation underlies many human diseases. In this review, we provide an update and overview of functional metabolomics that identified a new bioactive metabolome of docosahexaenoic acid (DHA. Systematic studies revealed that DHA was converted to DHEA-derived novel bioactive products as well as aspirin-triggered (AT forms of protectins. The new oxygenated DHEA derived products blocked PMN chemotaxis, reduced P-selectin expression and platelet-leukocyte adhesion, and showed organ protection in ischemia/reperfusion injury. These products activated cannabinoid receptor (CB2 receptor and not CB1 receptors. The AT-PD1 reduced neutrophil (PMN recruitment in murine peritonitis. With human cells, AT-PD1 decreased transendothelial PMN migration as well as enhanced efferocytosis of apoptotic human PMN by macrophages. The recent findings reviewed here indicate that DHEA oxidative metabolism and aspirin-triggered conversion of DHA produce potent novel molecules with anti-inflammatory and organ-protective properties, opening the DHA metabolome functional roles.

  3. An untargeted metabolomic assessment of cocoa beans during fermentation

    OpenAIRE

    Mayorga Gross, Ana Lucía; Quirós Guerrero, Luis Manuel; Fourny, G.; Vaillant Barka, Fabrice

    2016-01-01

    Fermentation is a critical step in the processing of high quality cocoa; however, the biochemistry behind is still not well understood at a molecular level. In this research, using a non-targeted approach, the main metabolomic changes that occur throughout the fermentation process were explored. Genetically undefined cocoa varieties from Trinidad and Tobago (n = 3), Costa Rica (n = 1) and one clone IMC-67 (n = 3) were subjected to spontaneous fermentation using farm-based and pilot plant cont...

  4. Metabolomics study of Populus type propolis.

    Science.gov (United States)

    Anđelković, Boban; Vujisić, Ljubodrag; Vučković, Ivan; Tešević, Vele; Vajs, Vlatka; Gođevac, Dejan

    2017-02-20

    Herein, we propose rapid and simple spectroscopic methods to determine the chemical composition of propolis derived from various Populus species using a metabolomics approach. In order to correlate variability in Populus type propolis composition with the altitude of its collection, NMR, IR, and UV spectroscopy followed by OPLS was conducted. The botanical origin of propolis was established by comparing propolis spectral data to those of buds of various Populus species. An O2PLS method was utilized to integrate two blocks of data. According to OPLS and O2PLS, the major compounds in propolis samples, collected from temperate continental climate above 500m, were phenolic glycerides originating from P. tremula buds. Flavonoids were predominant in propolis samples collected below 400m, originating from P. nigra and P. x euramericana buds. Samples collected at 400-500m were of mixed origin, with variable amounts of all detected metabolites. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Metabolomics techniques for nanotoxicity investigations.

    Science.gov (United States)

    Lv, Mengying; Huang, Wanqiu; Chen, Zhipeng; Jiang, Hulin; Chen, Jiaqing; Tian, Yuan; Zhang, Zunjian; Xu, Fengguo

    2015-01-01

    Nanomaterials are commonly defined as engineered structures with at least one dimension of 100 nm or less. Investigations of their potential toxicological impact on biological systems and the environment have yet to catch up with the rapid development of nanotechnology and extensive production of nanoparticles. High-throughput methods are necessary to assess the potential toxicity of nanoparticles. The omics techniques are well suited to evaluate toxicity in both in vitro and in vivo systems. Besides genomic, transcriptomic and proteomic profiling, metabolomics holds great promises for globally evaluating and understanding the molecular mechanism of nanoparticle-organism interaction. This manuscript presents a general overview of metabolomics techniques, summarizes its early application in nanotoxicology and finally discusses opportunities and challenges faced in nanotoxicology.

  6. Metabolomics and ischaemic heart disease.

    Science.gov (United States)

    Rasmiena, Aliki A; Ng, Theodore W; Meikle, Peter J

    2013-03-01

    Ischaemic heart disease accounts for nearly half of the global cardiovascular disease burden. Aetiologies relating to heart disease are complex, but dyslipidaemia, oxidative stress and inflammation are cardinal features. Despite preventative measures and advancements in treatment regimens with lipid-lowering agents, the high prevalence of heart disease and the residual risk of recurrent events continue to be a significant burden to the health sector and to the affected individuals and their families. The development of improved risk models for the early detection and prevention of cardiovascular events in addition to new therapeutic strategies to address this residual risk are required if we are to continue to make inroads into this most prevalent of diseases. Metabolomics and lipidomics are modern disciplines that characterize the metabolite and lipid complement respectively, of a given system. Their application to ischaemic heart disease has demonstrated utilities in population profiling, identification of multivariate biomarkers and in monitoring of therapeutic response, as well as in basic mechanistic studies. Although advances in magnetic resonance and mass spectrometry technologies have given rise to the fields of metabolomics and lipidomics, the plethora of data generated presents challenges requiring specific statistical and bioinformatics applications, together with appropriate study designs. Nonetheless, the predictive and re-classification capacity of individuals with various degrees of risk by the plasma lipidome has recently been demonstrated. In the present review, we summarize evidence derived exclusively by metabolomic and lipidomic studies in the context of ischaemic heart disease. We consider the potential role of plasma lipid profiling in assessing heart disease risk and therapeutic responses, and explore the potential mechanisms. Finally, we highlight where metabolomic studies together with complementary -omic disciplines may make further

  7. In vivo cardiac glucose metabolism in the high-fat fed mouse: Comparison of euglycemic–hyperinsulinemic clamp derived measures of glucose uptake with a dynamic metabolomic flux profiling approach

    International Nuclear Information System (INIS)

    Kowalski, Greg M.; De Souza, David P.; Risis, Steve; Burch, Micah L.; Hamley, Steven; Kloehn, Joachim; Selathurai, Ahrathy; Lee-Young, Robert S.; Tull, Dedreia; O'Callaghan, Sean; McConville, Malcolm J.; Bruce, Clinton R.

    2015-01-01

    resistance. • Clamp measures were compared to a dynamic metabolomics approach. • The clamp revealed the presence of cardiac insulin resistance after 3 weeks of HFD. • Cardiac glucose metabolism was not affected by HFD during an oral glucose challenge

  8. In vivo cardiac glucose metabolism in the high-fat fed mouse: Comparison of euglycemic–hyperinsulinemic clamp derived measures of glucose uptake with a dynamic metabolomic flux profiling approach

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, Greg M., E-mail: greg.kowalski@deakin.edu.au [Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125 (Australia); De Souza, David P. [Metabolomics Australia, Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010 (Australia); Risis, Steve [Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004 (Australia); Burch, Micah L. [Brigham and Women' s Hospital, Department of Medicine, Boston, MA (United States); Hamley, Steven [Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125 (Australia); Kloehn, Joachim [Metabolomics Australia, Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010 (Australia); Selathurai, Ahrathy [Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125 (Australia); Lee-Young, Robert S. [Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004 (Australia); Tull, Dedreia; O' Callaghan, Sean; McConville, Malcolm J. [Metabolomics Australia, Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010 (Australia); Bruce, Clinton R. [Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125 (Australia)

    2015-08-07

    insulin resistance. • Clamp measures were compared to a dynamic metabolomics approach. • The clamp revealed the presence of cardiac insulin resistance after 3 weeks of HFD. • Cardiac glucose metabolism was not affected by HFD during an oral glucose challenge.

  9. NMR-based metabolite profiling of human milk: A pilot study of methods for investigating compositional changes during lactation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Junfang [Department of Chemistry, Umeå University (Sweden); Domellöf, Magnus [Department of Clinical Sciences, Pediatrics, Umeå University (Sweden); Zivkovic, Angela M. [Foods for Health Institute, University of California, Davis, CA (United States); Department of Nutrition, University of California, Davis, CA (United States); Larsson, Göran [Department of Medical Biochemistry and Biophysics, Unit of Research, Education and Development-Östersund, Umeå University (Sweden); Öhman, Anders, E-mail: anders.ohman01@umu.se [Department of Pharmacology and Clinical Neuroscience, Umeå University (Sweden); Nording, Malin L., E-mail: malin.nording@umu.se [Department of Chemistry, Umeå University (Sweden)

    2016-01-15

    Low-molecular-weight metabolites in human milk are gaining increasing interest in studies of infant nutrition. In the present study, the milk metabolome from a single mother was explored at different stages of lactation. Metabolites were extracted from sample aliquots using either methanol/water (MeOH/H{sub 2}O) extraction or ultrafiltration. Nuclear magnetic resonance (NMR) spectroscopy was used for metabolite identification and quantification, and multi- and univariate statistical data analyses were used to detect changes over time of lactation. Compared to MeOH/H{sub 2}O extraction, ultrafiltration more efficiently reduced the interference from lipid and protein resonances, thereby enabling the identification and quantification of 36 metabolites. The human milk metabolomes at the early (9–24 days after delivery) and late (31–87 days after delivery) stages of lactation were distinctly different according to multi- and univariate statistics. The late lactation stage was characterized by significantly elevated concentrations of lactose, choline, alanine, glutamate, and glutamine, as well as by reduced levels of citrate, phosphocholine, glycerophosphocholine, and N-acetylglucosamine. Our results indicate that there are significant compositional changes of the human milk metabolome also in different phases of the matured lactation stage. These findings complement temporal studies on the colostrum and transitional metabolome in providing a better understanding of the nutritional variations received by an infant. - Highlights: • 36 metabolites were simultaneously quantified in human milk by NMR. • Ultrafiltration more efficiently reduces interferences than MeOH/H{sub 2}O extraction. • Compositional changes of the human milk exist during the matured lactation stage.

  10. NMR-based metabolite profiling of human milk: A pilot study of methods for investigating compositional changes during lactation

    International Nuclear Information System (INIS)

    Wu, Junfang; Domellöf, Magnus; Zivkovic, Angela M.; Larsson, Göran; Öhman, Anders; Nording, Malin L.

    2016-01-01

    Low-molecular-weight metabolites in human milk are gaining increasing interest in studies of infant nutrition. In the present study, the milk metabolome from a single mother was explored at different stages of lactation. Metabolites were extracted from sample aliquots using either methanol/water (MeOH/H 2 O) extraction or ultrafiltration. Nuclear magnetic resonance (NMR) spectroscopy was used for metabolite identification and quantification, and multi- and univariate statistical data analyses were used to detect changes over time of lactation. Compared to MeOH/H 2 O extraction, ultrafiltration more efficiently reduced the interference from lipid and protein resonances, thereby enabling the identification and quantification of 36 metabolites. The human milk metabolomes at the early (9–24 days after delivery) and late (31–87 days after delivery) stages of lactation were distinctly different according to multi- and univariate statistics. The late lactation stage was characterized by significantly elevated concentrations of lactose, choline, alanine, glutamate, and glutamine, as well as by reduced levels of citrate, phosphocholine, glycerophosphocholine, and N-acetylglucosamine. Our results indicate that there are significant compositional changes of the human milk metabolome also in different phases of the matured lactation stage. These findings complement temporal studies on the colostrum and transitional metabolome in providing a better understanding of the nutritional variations received by an infant. - Highlights: • 36 metabolites were simultaneously quantified in human milk by NMR. • Ultrafiltration more efficiently reduces interferences than MeOH/H 2 O extraction. • Compositional changes of the human milk exist during the matured lactation stage.

  11. Characterizing Dissolved Organic Matter and Metabolites in an Actively Serpentinizing Ophiolite Using Global Metabolomics Techniques

    Science.gov (United States)

    Seyler, L. M.; Rempfert, K. R.; Kraus, E. A.; Spear, J. R.; Templeton, A. S.; Schrenk, M. O.

    2017-12-01

    Environmental metabolomics is an emerging approach used to study ecosystem properties. Through bioinformatic comparisons to metagenomic data sets, metabolomics can be used to study microbial adaptations and responses to varying environmental conditions. Since the techniques are highly parallel to organic geochemistry approaches, metabolomics can also provide insight into biogeochemical processes. These analyses are a reflection of metabolic potential and intersection with other organisms and environmental components. Here, we used an untargeted metabolomics approach to characterize dissolved organic carbon and aqueous metabolites from groundwater obtained from an actively serpentinizing habitat. Serpentinites are known to support microbial communities that feed off of the products of serpentinization (such as methane and H2 gas), while adapted to harsh environmental conditions such as high pH and low DIC availability. However, the biochemistry of microbial populations that inhabit these environments are understudied and are complicated by overlapping biotic and abiotic processes. The aim of this study was to identify potential sources of carbon in an environment that is depleted of soluble inorganic carbon, and to characterize the flow of metabolites and describe overlapping biogenic and abiogenic processes impacting carbon cycling in serpentinizing rocks. We applied untargeted metabolomics techniques to groundwater taken from a series of wells drilled into the Semail Ophiolite in Oman.. Samples were analyzed via quadrupole time-of-flight liquid chromatography tandem mass spectrometry (QToF-LC/MS/MS). Metabolomes and metagenomic data were imported into Progenesis QI software for statistical analysis and correlation, and metabolic networks constructed using the Genome-Linked Application for Metabolic Maps (GLAMM), a web interface tool. Further multivariate statistical analyses and quality control was performed using EZinfo. Pools of dissolved organic carbon could

  12. The future of metabolomics in ELIXIR.

    Science.gov (United States)

    van Rijswijk, Merlijn; Beirnaert, Charlie; Caron, Christophe; Cascante, Marta; Dominguez, Victoria; Dunn, Warwick B; Ebbels, Timothy M D; Giacomoni, Franck; Gonzalez-Beltran, Alejandra; Hankemeier, Thomas; Haug, Kenneth; Izquierdo-Garcia, Jose L; Jimenez, Rafael C; Jourdan, Fabien; Kale, Namrata; Klapa, Maria I; Kohlbacher, Oliver; Koort, Kairi; Kultima, Kim; Le Corguillé, Gildas; Moreno, Pablo; Moschonas, Nicholas K; Neumann, Steffen; O'Donovan, Claire; Reczko, Martin; Rocca-Serra, Philippe; Rosato, Antonio; Salek, Reza M; Sansone, Susanna-Assunta; Satagopam, Venkata; Schober, Daniel; Shimmo, Ruth; Spicer, Rachel A; Spjuth, Ola; Thévenot, Etienne A; Viant, Mark R; Weber, Ralf J M; Willighagen, Egon L; Zanetti, Gianluigi; Steinbeck, Christoph

    2017-01-01

    Metabolomics, the youngest of the major omics technologies, is supported by an active community of researchers and infrastructure developers across Europe. To coordinate and focus efforts around infrastructure building for metabolomics within Europe, a workshop on the "Future of metabolomics in ELIXIR" was organised at Frankfurt Airport in Germany. This one-day strategic workshop involved representatives of ELIXIR Nodes, members of the PhenoMeNal consortium developing an e-infrastructure that supports workflow-based metabolomics analysis pipelines, and experts from the international metabolomics community. The workshop established metabolite identification as the critical area, where a maximal impact of computational metabolomics and data management on other fields could be achieved. In particular, the existing four ELIXIR Use Cases, where the metabolomics community - both industry and academia - would benefit most, and which could be exhaustively mapped onto the current five ELIXIR Platforms were discussed. This opinion article is a call for support for a new ELIXIR metabolomics Use Case, which aligns with and complements the existing and planned ELIXIR Platforms and Use Cases.

  13. Metabolomics study on the toxicity of Annona squamosa by ultraperformance liquid-chromatography high-definition mass spectrometry coupled with pattern recognition approach and metabolic pathways analysis.

    Science.gov (United States)

    Miao, Yun-Jie; Shi, Ye-Ye; Li, Fu-Qiang; Shan, Chen-Xiao; Chen, Yong; Chen, Jian-Wei; Li, Xiang

    2016-05-26

    Annona squamosa Linn (Annonaceae) is a commonly used and effective traditional Chinese medicine (TCM) especially in the South China. The seeds of Annona squamosa Linn (SAS) have been used as a folk remedy to treat "malignant sores" (cancer) in South of China, but they also have high toxicity on human body. To discover the potential biomarkers in the mice caused by SAS. We made metabonomics studies on the toxicity of SAS by ultraperformance liquid-chromatography high-definition mass spectrometry coupled with pattern recognition approach and metabolic pathways analysis. The significant difference in metabolic profiles and changes of metabolite biomarkers between the Control group and SAS group were well observed. 11 positive ions and 9 negative ions (P<0.05) were indicated based on UFLC-QTOF-HDMS. The metabolic pathways of SAS group are discussed according to the identified endogenous metabolites, and eight metabolic pathways are identified using Kyoto Encyclopedia of Genes and Genomes (KEGG). The present study demonstrates that metabonomics analysis could greatly facilitate and provide useful information for the further comprehensive understanding of the pharmacological activity and potential toxicity of SAS in the progress of them being designed to a new anti-tumor medicine. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. A genetic algorithm-Bayesian network approach for the analysis of metabolomics and spectroscopic data: application to the rapid identification of Bacillus spores and classification of Bacillus species.

    Science.gov (United States)

    Correa, Elon; Goodacre, Royston

    2011-01-26

    The rapid identification of Bacillus spores and bacterial identification are paramount because of their implications in food poisoning, pathogenesis and their use as potential biowarfare agents. Many automated analytical techniques such as Curie-point pyrolysis mass spectrometry (Py-MS) have been used to identify bacterial spores giving use to large amounts of analytical data. This high number of features makes interpretation of the data extremely difficult We analysed Py-MS data from 36 different strains of aerobic endospore-forming bacteria encompassing seven different species. These bacteria were grown axenically on nutrient agar and vegetative biomass and spores were analyzed by Curie-point Py-MS. We develop a novel genetic algorithm-Bayesian network algorithm that accurately identifies sand selects a small subset of key relevant mass spectra (biomarkers) to be further analysed. Once identified, this subset of relevant biomarkers was then used to identify Bacillus spores successfully and to identify Bacillus species via a Bayesian network model specifically built for this reduced set of features. This final compact Bayesian network classification model is parsimonious, computationally fast to run and its graphical visualization allows easy interpretation of the probabilistic relationships among selected biomarkers. In addition, we compare the features selected by the genetic algorithm-Bayesian network approach with the features selected by partial least squares-discriminant analysis (PLS-DA). The classification accuracy results show that the set of features selected by the GA-BN is far superior to PLS-DA.

  15. Urinary Metabolomics Identifies a Molecular Correlate of Interstitial Cystitis/Bladder Pain Syndrome in a Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP Research Network Cohort

    Directory of Open Access Journals (Sweden)

    Kaveri S. Parker

    2016-05-01

    Full Text Available Interstitial cystitis/bladder pain syndrome (IC/BPS is a poorly understood syndrome affecting up to 6.5% of adult women in the U.S. The lack of broadly accepted objective laboratory markers for this condition hampers efforts to diagnose and treat this condition. To identify biochemical markers for IC/BPS, we applied mass spectrometry-based global metabolite profiling to urine specimens from a cohort of female IC/BPS subjects from the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP Research Network. These analyses identified multiple metabolites capable of discriminating IC/BPS and control subjects. Of these candidate markers, etiocholan-3α-ol-17-one sulfate (Etio-S, a sulfoconjugated 5-β reduced isomer of testosterone, distinguished female IC/BPS and control subjects with a sensitivity and specificity >90%. Among IC/BPS subjects, urinary Etio-S levels are correlated with elevated symptom scores (symptoms, pelvic pain, and number of painful body sites and could resolve high- from low-symptom IC/BPS subgroups. Etio-S-associated biochemical changes persisted through 3–6 months of longitudinal follow up. These results raise the possibility that an underlying biochemical abnormality contributes to symptoms in patients with severe IC/BPS.

  16. Distribution patterns of flavonoids from three Momordica species by ultra-high performance liquid chromatography quadrupole time of flight mass spectrometry: a metabolomic profiling approach

    Directory of Open Access Journals (Sweden)

    Ntakadzeni Edwin Madala

    Full Text Available ABSTRACT Plants from the Momordica genus, Curcubitaceae, are used for several purposes, especially for their nutritional and medicinal properties. Commonly known as bitter gourds, melon and cucumber, these plants are characterized by a bitter taste owing to the large content of cucurbitacin compounds. However, several reports have shown an undisputed correlation between the therapeutic activities and polyphenolic flavonoid content. Using ultra-high performance liquid chromatography quadrupole time of flight mass spectrometry in combination with multivariate data models such as principal component analysis and hierarchical cluster analysis, three Momordica species (M. foetida Schumach., M. charantia L. and M. balsamina L. were chemo-taxonomically grouped based on their flavonoid content. Using a conventional mass spectrometric-based approach, thirteen flavonoids were tentatively identified and the three species were found to contain different isomers of the quercetin-, kaempferol- and isorhamnetin-O-glycosides. Our results indicate that Momordica species are overall very rich sources of flavonoids but do contain different forms thereof. Furthermore, to the best of our knowledge, this is a first report on the flavonoid content of M. balsamina L.

  17. Polyphenol metabolomics of twenty Italian red grape varieties

    Directory of Open Access Journals (Sweden)

    Bavaresco Luigi

    2016-01-01

    Full Text Available “Suspect screening analysis”method to study grape metabolomics, was performed. This method is a middle-way “targeted” and “untargeted”approach aiming at identifying the largest number of metabolites in grape samples. A new database of putative grape and wine metabolites (GrapeMetabolomics, which currently contains around 1,100 compounds, was constructed by CREA at Conegliano. By performing high-resolution mass spectrometry analysis of the grape extract in both positive and negative ionization mode, averaging 320-450 putative compounds are identified. Most of them are grape polyphenols, such as anthocyanins, flavonols and stilbene derivatives. By performing PCA and Cluster Analysis the composition in anthocyanins and flavonols of 20 Italian red grape varieties, was studied.

  18. Symbiosis of chemometrics and metabolomics: past, present, and future

    NARCIS (Netherlands)

    van der Greef, J.; Smilde, A. K.

    2005-01-01

    Metabolomics is a growing area in the field of systems biology. Metabolomics has already a long history and also the connection of metabolomics with chemometrics goes back some time. This review discusses the symbiosis of metabolomics and chemometrics with emphasis on the medical domain, puts the

  19. A Combined Metabolomic and Proteomic Analysis of Gestational Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Joanna Hajduk

    2015-12-01

    Full Text Available The aim of this pilot study was to apply a novel combined metabolomic and proteomic approach in analysis of gestational diabetes mellitus. The investigation was performed with plasma samples derived from pregnant women with diagnosed gestational diabetes mellitus (n = 18 and a matched control group (n = 13. The mass spectrometry-based analyses allowed to determine 42 free amino acids and low molecular-weight peptide profiles. Different expressions of several peptides and altered amino acid profiles were observed in the analyzed groups. The combination of proteomic and metabolomic data allowed obtaining the model with a high discriminatory power, where amino acids ethanolamine, l-citrulline, l-asparagine, and peptide ions with m/z 1488.59; 4111.89 and 2913.15 had the highest contribution to the model. The sensitivity (94.44% and specificity (84.62%, as well as the total group membership classification value (90.32% calculated from the post hoc classification matrix of a joint model were the highest when compared with a single analysis of either amino acid levels or peptide ion intensities. The obtained results indicated a high potential of integration of proteomic and metabolomics analysis regardless the sample size. This promising approach together with clinical evaluation of the subjects can also be used in the study of other diseases.

  20. A metabolomics guided exploration of marine natural product chemical space.

    Science.gov (United States)

    Floros, Dimitrios J; Jensen, Paul R; Dorrestein, Pieter C; Koyama, Nobuhiro

    2016-09-01

    Natural products from culture collections have enormous impact in advancing discovery programs for metabolites of biotechnological importance. These discovery efforts rely on the metabolomic characterization of strain collections. Many emerging approaches compare metabolomic profiles of such collections, but few enable the analysis and prioritization of thousands of samples from diverse organisms while delivering chemistry specific read outs. In this work we utilize untargeted LC-MS/MS based metabolomics together with molecular networking to. This approach annotated 76 molecular families (a spectral match rate of 28 %), including clinically and biotechnologically important molecules such as valinomycin, actinomycin D, and desferrioxamine E. Targeting a molecular family produced primarily by one microorganism led to the isolation and structure elucidation of two new molecules designated maridric acids A and B. Molecular networking guided exploration of large culture collections allows for rapid dereplication of know molecules and can highlight producers of uniques metabolites. These methods, together with large culture collections and growing databases, allow for data driven strain prioritization with a focus on novel chemistries.

  1. Analyses of tropistic responses using metabolomics.

    Science.gov (United States)

    Millar, Katherine D L; Kiss, John Z

    2013-01-01

    Characterization of phototropism and gravitropism has been through gene expression studies, assessment of curvature response, and protein expression experiments. To our knowledge, the current study is the first to determine how the metabolome, the complete set of small-molecule metabolites within a plant, is impacted during these tropisms. We have determined the metabolic profile of plants during gravitropism and phototropism. Seedlings of Arabidopsis thaliana wild type (WT) and phyB mutant were exposed to unidirectional light (red or blue) or reoriented to induce a tropistic response, and small-molecule metabolites were assayed and quantified. A subset of the WT was analyzed using microarray experiments to obtain gene profiling data. Analyses of the metabolomic data using principal component analysis showed a common profile in the WT during the different tropistic curvatures, but phyB mutants produced a distinctive profile for each tropism. Interestingly, the gravity treatment elicited the greatest changes in gene expression of the WT, followed by blue light, then by red light treatments. For all tropisms, we identified genes that were downregulated by a large magnitude in carbohydrate metabolism and secondary metabolism. These included ATCSLA15, CELLULOSE SYNTHASE-LIKE, and ATCHS/SHS/TT4, CHALCONE SYNTHASE. In addition, genes involved in amino acid biosynthesis were strongly upregulated, and these included THA1 (THREONINE ALDOLASE 1) and ASN1 (DARK INDUCIBLE asparagine synthase). We have established the first metabolic profile of tropisms in conjunction with transcriptomic analyses. This approach has been useful in characterizing the similarities and differences in the molecular mechanisms involved with phototropism and gravitropism.

  2. A Metabolomic Perspective on Coeliac Disease

    Science.gov (United States)

    Calabrò, Antonio

    2014-01-01

    Metabolomics is an “omic” science that is now emerging with the purpose of elaborating a comprehensive analysis of the metabolome, which is the complete set of metabolites (i.e., small molecules intermediates) in an organism, tissue, cell, or biofluid. In the past decade, metabolomics has already proved to be useful for the characterization of several pathological conditions and offers promises as a clinical tool. A metabolomics investigation of coeliac disease (CD) revealed that a metabolic fingerprint for CD can be defined, which accounts for three different but complementary components: malabsorption, energy metabolism, and alterations in gut microflora and/or intestinal permeability. In this review, we will discuss the major advancements in metabolomics of CD, in particular with respect to the role of gut microbiome and energy metabolism. PMID:24665364

  3. Metabolomics and bioactive substances in plants

    DEFF Research Database (Denmark)

    Khakimov, Bekzod

    Metabolomic analysis of plants broadens understanding of how plants may benefit humans, animals and the environment, provide sustainable food and energy, and improve current agricultural, pharmacological and medicinal practices in order to bring about healthier and longer life. The quality...... and amount of the extractible biological information is largely determined by data acquisition, data processing and analysis methodologies of the plant metabolomics studies. This PhD study focused mainly on the development and implementation of new metabolomics methodologies for improved data acquisition...... and data processing. The study mainly concerned the three most commonly applied analytical techniques in plant metabolomics, GC-MS, LC-MS and NMR. In addition, advanced chemometrics methods e.g. PARAFAC2 and ASCA have been extensively used for development of complex metabolomics data processing...

  4. Exploring cancer metabolism using stable isotope-resolved metabolomics (SIRM).

    Science.gov (United States)

    Bruntz, Ronald C; Lane, Andrew N; Higashi, Richard M; Fan, Teresa W-M

    2017-07-14

    Metabolic reprogramming is a hallmark of cancer. The changes in metabolism are adaptive to permit proliferation, survival, and eventually metastasis in a harsh environment. Stable isotope-resolved metabolomics (SIRM) is an approach that uses advanced approaches of NMR and mass spectrometry to analyze the fate of individual atoms from stable isotope-enriched precursors to products to deduce metabolic pathways and networks. The approach can be applied to a wide range of biological systems, including human subjects. This review focuses on the applications of SIRM to cancer metabolism and its use in understanding drug actions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Serum metabolites in non-alcoholic fatty-liver disease development or reversion; a targeted metabolomic approach within the PREDIMED trial.

    Science.gov (United States)

    Papandreou, Christopher; Bullò, Mònica; Tinahones, Francisco José; Martínez-González, Miguel Ángel; Corella, Dolores; Fragkiadakis, Georgios A; López-Miranda, José; Estruch, Ramon; Fitó, Montserrat; Salas-Salvadó, Jordi

    2017-01-01

    Limited prospective studies have examined changes in non-alcoholic fatty-liver disease (NAFLD) related serum-metabolites and none the effects of NAFLD-reversion. We aimed to evaluate whether perturbations in metabolites indicate predisposition to NAFLD development and to assess the effects of NAFLD reversion on metabolite profiles. A targeted liquid-chromatography tandem mass-spectrometry metabolic profiling ( n  = 453 metabolites) approach was applied, using serum from 45 subjects of the PREDIMED study, at baseline and after a median 3.8-year follow-up. NAFLD was determined using the hepatic steatosis index; with three groups classified and studied: Group 1, not characterized as NAFLD cases during the follow-up ( n  = 15); Group 2, characterized as NAFLD during the follow-up ( n  = 15); Group 3, characterized as NAFLD-reversion during the follow-up ( n  = 15). At baseline, significantly lower storage and transport lipids (triacylglycerols and cholesteryl esters), several monoetherglycerophosphocholines, acylglycerophosphocholines, ceramides and ceramide to sphingomyelin ratio ( P  < 0.05), were found; whereas a higher L-cystine to L-glutamate ratio ( P  < 0.05) was observed, in group 2 as compared to group 1.P-ether acylglycerophosphocholines, ceramides and sphingolipids were significantly different betweengroup 3 and group 1 ( P  < 0.05). Higher 16:1n-7 to 16:0, and 18:0 to16:0 ratio ( P  < 0.05), while lower 18:1n-9 to 18:0, 16:0 to 18:2n-6, and 18:3n-6 to 18:2n-6 ratio ( P  < 0.05) were observed in the final, compared to baseline values, in groups 2 and 3. The rearrangement of lipid biosynthesis and serum transport may indicate predisposition to NAFLD development. Despite an expected reduction of hepatic lipotoxicity and improved hepatic function in the participants of the study characterized as NAFLD-reversing, the side effects of NAFLD in serum metabolic profiles remained present. The trial is registered at ISRCTN35739639. Registration date

  6. Using next generation transcriptome sequencing to predict an ectomycorrhizal metabolome

    Directory of Open Access Journals (Sweden)

    Cseke Leland J

    2011-05-01

    Full Text Available Abstract Background Mycorrhizae, symbiotic interactions between soil fungi and tree roots, are ubiquitous in terrestrial ecosystems. The fungi contribute phosphorous, nitrogen and mobilized nutrients from organic matter in the soil and in return the fungus receives photosynthetically-derived carbohydrates. This union of plant and fungal metabolisms is the mycorrhizal metabolome. Understanding this symbiotic relationship at a molecular level provides important contributions to the understanding of forest ecosystems and global carbon cycling. Results We generated next generation short-read transcriptomic sequencing data from fully-formed ectomycorrhizae between Laccaria bicolor and aspen (Populus tremuloides roots. The transcriptomic data was used to identify statistically significantly expressed gene models using a bootstrap-style approach, and these expressed genes were mapped to specific metabolic pathways. Integration of expressed genes that code for metabolic enzymes and the set of expressed membrane transporters generates a predictive model of the ectomycorrhizal metabolome. The generated model of mycorrhizal metabolome predicts that the specific compounds glycine, glutamate, and allantoin are synthesized by L. bicolor and that these compounds or their metabolites may be used for the benefit of aspen in exchange for the photosynthetically-derived sugars fructose and glucose. Conclusions The analysis illustrates an approach to generate testable biological hypotheses to investigate the complex molecular interactions that drive ectomycorrhizal symbiosis. These models are consistent with experimental environmental data and provide insight into the molecular exchange processes for organisms in this complex ecosystem. The method used here for predicting metabolomic models of mycorrhizal systems from deep RNA sequencing data can be generalized and is broadly applicable to transcriptomic data derived from complex systems.

  7. Recent Advances in Targeted and Untargeted Metabolomics by NMR and MS/NMR Methods

    Energy Technology Data Exchange (ETDEWEB)

    Bingol, Ahmet K.

    2018-04-18

    Metabolomics has made significant progress in multiple fronts in the last 18 months. This minireview aimed to give an overview of these advancements in the light of their contribution to targeted and untargeted metabolomics. New computational approaches have emerged to overcome manual absolute quantitation step of metabolites in 1D 1H NMR spectra. This provides more consistency between inter-laboratory comparisons. Integration of 2D NMR metabolomics databases under a unified web server allowed very accurate identification of the metabolites that have been catalogued in these databases. For the remaining uncatalogued and unknown metabolites, new cheminformatics approaches have been developed by combining NMR and mass spectrometry. These hybrid NMR/MS approaches accelerated the identification of unknowns in untargeted studies, and now they are allowing to profile ever larger number of metabolites in application studies.

  8. Metabolomics Reveals Relationship between Plasma Inositols and Birth Weight: Possible Markers for Fetal Programming of Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Pia Marlene Nissen

    2011-01-01

    Full Text Available Epidemiological studies in man and with experimental animal models have shown that intrauterine growth restriction (IUGR resulting in low birth weight is associated with higher risk of programming welfare diseases in later life. In the pig, severe IUGR occurs naturally and contribute substantially to a large intralitter variation in birth weight and may therefore be a good model for man. In the present paper the natural form of IUGR in pigs was studied close to term by nuclear magnetic resonance (NMR-based metabolomics. The NMR-based investigations revealed different metabolic profiles of plasma samples from low-birth weight (LW and high-birth weight (HW piglets, respectively, and differences were assigned to levels of glucose and myo-inositol. Further studies by GC-MS revealed that LW piglets had a significant higher concentration of myoinositol and D-chiro-inositol in plasma compared to larger littermates. Myo-inositol and D-chiro-inositol have been coupled with glucose intolerance and insulin resistance in adults, and the present paper therefore suggests that IUGR is related to impaired glucose metabolism during fetal development, which may cause type 2 diabetes in adulthood.

  9. NMR-Based Metabonomic Investigation of Heat Stress in Myotubes Reveals a Time-Dependent Change in the Metabolites

    DEFF Research Database (Denmark)

    Straadt, Ida K; Young, Jette F; Bross, Peter

    2010-01-01

    NMR-based metabonomics was applied to elucidate the time-dependent stress responses in mouse myotubes after heat exposure of either 42 or 45 degrees C for 1 h. Principal component analysis (PCA) revealed that the gradual time-dependent changes in metabolites contributing to the clustering...... and separation of the control samples from the different time points after heat stress primarily are in the metabolites glucose, leucine, lysine, phenylalanine, creatine, glutamine, and acetate. In addition, PC scores revealed a maximum change in metabolite composition 4 h after the stress exposure; thereafter......, samples returned toward control samples, however, without reaching the control samples even 10 h after stress. The results also indicate that the myotubes efficiently regulate the pH level by release of lactate to the culture medium at a heat stress level of 42 degrees C, which is a temperature level...

  10. NMR-based urinalysis for rapid diagnosis of β-ureidopropionase deficiency in a patient with Dravet syndrome.

    Science.gov (United States)

    Lam, Ching-Wan; Law, Chun-Yiu; Leung, Ka-Fei; Lai, Chi-Kong; Pak-lam Chen, Sammy; Chan, Bosco; Chan, Kwok-Yin; Yuen, Yuet-ping; Mak, Chloe Miu; Yan-wo Chan, Albert

    2015-02-02

    Beta-ureidopropionase deficiency is a rare inborn error of metabolism (IEM) affecting pyrimidine metabolism. To-date, about 30 genetically confirmed cases had been reported. The clinical phenotypes of this condition are variable; some patients were asymptomatic while some may present with developmental delay or autistic features. In severe cases, patients may present with profound neurological deficit including hypotonia, seizures and mental retardation. Using NMR-based urinalysis, this condition can be rapidly diagnosed within 15 min. An 11-month-old Chinese boy had dual molecular diagnoses, β-ureidopropionase deficiency and Dravet syndrome. He presented with intractable and recurrent convulsions, global developmental delay and microcephaly. Urine organic acid analysis using GC-MS and NMR-based urinalysis showed excessive amount of β-ureidopropionic acid and β-ureidoisobutyric acid, the two disease-specific markers for β-ureidopropionase deficiency. Genetic analysis confirmed homozygous known disease-causing mutation UPB1 NM_016327.2: c.977G>A; NP_057411.1:p.R326Q. In addition, genetic analysis for Dravet syndrome showed the presence of heterozygous disease-causing mutation SCN1A NM_001165963.1:c.4494delC; NP_001159435.1:p.F1499Lfs*2. The differentiation between Dravet syndrome and β-ureidopropionase deficiency is clinically challenging since both conditions share overlapping clinical features. The detection of urine β-ureidoisobutyric and β-ureidopropionic acids using NMR or GC-MS is helpful in laboratory diagnosis of β-ureidopropionase deficiency. The disease-causing mutation, c.977G>A of β-ureidopropionase deficiency, is highly prevalent in Chinese population (allele frequency=1.7%); β-ureidopropionase deficiency screening test should be performed for any patients with unexplained neurological deficit, developmental delay or autism. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Metabolomics study of human urinary metabolome modifications after intake of almond (Prunus dulcis (Mill.) D.A. Webb) skin polyphenols.

    Science.gov (United States)

    Llorach, Rafael; Garrido, Ignacio; Monagas, Maria; Urpi-Sarda, Mireia; Tulipani, Sara; Bartolome, Begona; Andres-Lacueva, Cristina

    2010-11-05

    Almond, as a part of the nut family, is an important source of biological compounds, and specifically, almond skins have been considered an important source of polyphenols, including flavan-3-ols and flavonols. Polyphenol metabolism may produce several classes of metabolites that could often be more biologically active than their dietary precursor and could also become a robust new biomarker of almond polyphenol intake. In order to study urinary metabolome modifications during the 24 h after a single dose of almond skin extract, 24 volunteers (n = 24), who followed a polyphenol-free diet for 48 h before and during the study, ingested a dietary supplement of almond skin phenolic compounds (n = 12) or a placebo (n = 12). Urine samples were collected before ((-2)-0 h) and after (0-2 h, 2-6 h, 6-10 h, and 10-24 h) the intake and were analyzed by liquid chromatography-mass spectrometry (LC-q-TOF) and multivariate statistical analysis (principal component analysis (PCA) and orthogonal projection to latent structures (OPLS)). Putative identification of relevant biomarkers revealed a total of 34 metabolites associated with the single dose of almond extract, including host and, in particular, microbiota metabolites. As far as we know, this is the first time that conjugates of hydroxyphenylvaleric, hydroxyphenylpropionic, and hydroxyphenylacetic acids have been identified in human samples after the consumption of flavan-3-ols through a metabolomic approach. The results showed that this non-targeted approach could provide new intake biomarkers, contributing to the development of the food metabolome as an important part of the human urinary metabolome.

  12. Evaluation of Machine Learning Methods to Predict Coronary Artery Disease Using Metabolomic Data.

    Science.gov (United States)

    Forssen, Henrietta; Patel, Riyaz; Fitzpatrick, Natalie; Hingorani, Aroon; Timmis, Adam; Hemingway, Harry; Denaxas, Spiros

    2017-01-01

    Metabolomic data can potentially enable accurate, non-invasive and low-cost prediction of coronary artery disease. Regression-based analytical approaches however might fail to fully account for interactions between metabolites, rely on a priori selected input features and thus might suffer from poorer accuracy. Supervised machine learning methods can potentially be used in order to fully exploit the dimensionality and richness of the data. In this paper, we systematically implement and evaluate a set of supervised learning methods (L1 regression, random forest classifier) and compare them to traditional regression-based approaches for disease prediction using metabolomic data.

  13. Create, run, share, publish, and reference your LC-MS, FIA-MS, GC-MS, and NMR data analysis workflows with the Workflow4Metabolomics 3.0 Galaxy online infrastructure for metabolomics.

    Science.gov (United States)

    Guitton, Yann; Tremblay-Franco, Marie; Le Corguillé, Gildas; Martin, Jean-François; Pétéra, Mélanie; Roger-Mele, Pierrick; Delabrière, Alexis; Goulitquer, Sophie; Monsoor, Misharl; Duperier, Christophe; Canlet, Cécile; Servien, Rémi; Tardivel, Patrick; Caron, Christophe; Giacomoni, Franck; Thévenot, Etienne A

    2017-12-01

    Metabolomics is a key approach in modern functional genomics and systems biology. Due to the complexity of metabolomics data, the variety of experimental designs, and the multiplicity of bioinformatics tools, providing experimenters with a simple and efficient resource to conduct comprehensive and rigorous analysis of their data is of utmost importance. In 2014, we launched the Workflow4Metabolomics (W4M; http://workflow4metabolomics.org) online infrastructure for metabolomics built on the Galaxy environment, which offers user-friendly features to build and run data analysis workflows including preprocessing, statistical analysis, and annotation steps. Here we present the new W4M 3.0 release, which contains twice as many tools as the first version, and provides two features which are, to our knowledge, unique among online resources. First, data from the four major metabolomics technologies (i.e., LC-MS, FIA-MS, GC-MS, and NMR) can be analyzed on a single platform. By using three studies in human physiology, alga evolution, and animal toxicology, we demonstrate how the 40 available tools can be easily combined to address biological issues. Second, the full analysis (including the workflow, the parameter values, the input data and output results) can be referenced with a permanent digital object identifier (DOI). Publication of data analyses is of major importance for robust and reproducible science. Furthermore, the publicly shared workflows are of high-value for e-learning and training. The Workflow4Metabolomics 3.0 e-infrastructure thus not only offers a unique online environment for analysis of data from the main metabolomics technologies, but it is also the first reference repository for metabolomics workflows. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. NMR metabolomics of thrips (Frankliniella occidentalis) resistance in Senecio hybrids.

    Science.gov (United States)

    Leiss, Kirsten A; Choi, Young H; Abdel-Farid, Ibrahim B; Verpoorte, Robert; Klinkhamer, Peter G L

    2009-02-01

    Western flower thrips (Frankliniella occidentalis) has become a key insect pest of agricultural and horticultural crops worldwide. Little is known about host plant resistance to thrips. In this study, we investigated thrips resistance in F (2) hybrids of Senecio jacobaea and Senecio aquaticus. We identified thrips-resistant hybrids applying three different bioassays. Subsequently, we compared the metabolomic profiles of these hybrids applying nuclear magnetic resonance spectroscopy (NMR). The new developments of NMR facilitate a wide range coverage of the metabolome. This makes NMR especially suitable if there is no a priori knowledge of the compounds related to herbivore resistance and allows a holistic approach analyzing different chemical compounds simultaneously. We show that the metabolomes of thrips-resistant and -susceptible hybrids differed considerably. Thrips-resistant hybrids contained higher amounts of the pyrrolizidine alkaloids (PA), jacobine, and jaconine, especially in younger leaves. Also, a flavanoid, kaempferol glucoside, accumulated in the resistant plants. Both PAs and kaempferol are known for their inhibitory effect on herbivores. In resistant and susceptible F (2) hybrids, young leaves showed less thrips damage than old leaves. Consistent with the optimal plant defense theory, young leaves contained increased levels of primary metabolites such as sucrose, raffinose, and stachyose, but also accumulated jacaranone as a secondary plant defense compound. Our results prove NMR as a promising tool to identify different metabolites involved in herbivore resistance. It constitutes a significant advance in the study of plant-insect relationships, providing key information on the implementation of herbivore resistance breeding strategies in plants.

  15. Elucidation of cellular metabolism via metabolomics and stable-isotope assisted metabolomics.

    Science.gov (United States)

    Hiller, Karsten; Metallo, Christian; Stephanopoulos, Gregory

    2011-07-01

    Metabolomics and metabolic flux analysis (MFA) are powerful tools in the arsenal of methodologies of systems biology. Currently, metabolomics techniques are applied routinely for biomarker determination. However, standard metabolomics techniques only provide static information about absolute or relative metabolite amounts. The application of stable-isotope tracers has opened up a new dimension to metabolomics by providing dynamic information of intracellular fluxes and, by extension, enzyme activities. In the first part of the manuscript we review experimental and computational technologies applicable for metabolomics analyses. In the second part we present current technologies based on the use of stable isotopes and their applications to the analysis of cellular metabolism. Beginning with the determination of mass isotopomer distributions (MIDs), we review technologies for metabolic flux analysis (MFA) and conclude with the presentation of a new methodology for the non-targeted analysis of stable-isotope labeled metabolomics data.

  16. Metabolomics to unveil and understand phenotypic diversity between pathogen populations.

    Directory of Open Access Journals (Sweden)

    Ruben t'Kindt

    Full Text Available Leishmaniasis is a debilitating disease caused by the parasite Leishmania. There is extensive clinical polymorphism, including variable responsiveness to treatment. We study Leishmania donovani parasites isolated from visceral leishmaniasis patients in Nepal that responded differently to antimonial treatment due to differing intrinsic drug sensitivity of the parasites. Here, we present a proof-of-principle study in which we applied a metabolomics pipeline specifically developed for L. donovani to characterize the global metabolic differences between antimonial-sensitive and antimonial-resistant L. donovani isolates. Clones of drug-sensitive and drug-resistant parasite isolates from clinical samples were cultured in vitro and harvested for metabolomics analysis. The relative abundance of 340 metabolites was determined by ZIC-HILIC chromatography coupled to LTQ-Orbitrap mass spectrometry. Our measurements cover approximately 20% of the predicted core metabolome of Leishmania and additionally detected a large number of lipids. Drug-sensitive and drug-resistant parasites showed distinct metabolic profiles, and unsupervised clustering and principal component analysis clearly distinguished the two phenotypes. For 100 metabolites, the detected intensity differed more than three-fold between the 2 phenotypes. Many of these were in specific areas of lipid metabolism, suggesting that the membrane composition of the drug-resistant parasites is extensively modified. Untargeted metabolomics has been applied on clinical Leishmania isolates to uncover major metabolic differences between drug-sensitive and drug-resistant isolates. The identified major differences provide novel insights into the mechanisms involved in resistance to antimonial drugs, and facilitate investigations using targeted approaches to unravel the key changes mediating drug resistance.

  17. NMR-based metabonomics approaches for the assessment of the metabolic impact of dietary polyphenols on humans

    NARCIS (Netherlands)

    van Duynhoven, J.; van Velzen, E.; Gross, G.; van Dorsten, F.; Jacobs, D.; Bingham, M.; Draijer, R.; Mulder, T.; Koning, T.; Vaughan, E.; van der Wiele, T.; Westerhuis, J.; Smilde, A.

    2009-01-01

    Dietary polyphenols, as present in for example tea, fruit and vegetables, are associated with several beneficial health effects. Most evidence is still based on epidemiological studies. So far, most nutritional intervention studies on dietary polyphenols are directly focused on pre-identified

  18. Metabolomics unveils urinary changes in subjects with metabolic syndrome following 12-week nut consumption.

    Science.gov (United States)

    Tulipani, Sara; Llorach, Rafael; Jáuregui, Olga; López-Uriarte, Patricia; Garcia-Aloy, Mar; Bullo, Mònica; Salas-Salvadó, Jordi; Andrés-Lacueva, Cristina

    2011-11-04

    Through an HPLC-Q-TOF-MS-driven nontargeted metabolomics approach, we aimed to discriminate changes in the urinary metabolome of subjects with metabolic syndrome (MetS), following 12 weeks of mixed nuts consumption (30 g/day), compared to sex- and age-matched individuals given a control diet. The urinary metabolome corresponding to the nut-enriched diet clearly clustered in a distinct group, and the multivariate data analysis discriminated relevant mass features in this separation. Metabolites corresponding to the discriminating ions (MS features) were then subjected to multiple tandem mass spectrometry experiments using LC-ITD-FT-MS, to confirm their putative identification. The metabolomics approach revealed 20 potential markers of nut intake, including fatty acid conjugated metabolites, phase II and microbial-derived phenolic metabolites, and serotonin metabolites. An increased excretion of serotonin metabolites was associated for the first time with nut consumption. Additionally, the detection of urinary markers of gut microbial and phase II metabolism of nut polyphenols confirmed the understanding of their bioavailability and bioactivity as a priority area of research in the determination of the health effects derived from nut consumption. The results confirmed how a nontargeted metabolomics strategy may help to access unexplored metabolic pathways impacted by diet, thereby raising prospects for new intervention targets.

  19. An Integrated Outlook on the Metagenome and Metabolome of Intestinal Diseases

    Directory of Open Access Journals (Sweden)

    Wanping Aw

    2015-11-01

    Full Text Available Recently, metagenomics and metabolomics are the two most rapidly advancing “omics” technologies. Metagenomics seeks to characterize the composition of microbial communities, their operations, and their dynamically co-evolving relationships with the habitats they occupy, whereas metabolomics studies unique chemical endpoints (metabolites that specific cellular processes leave behind. Remarkable progress in DNA sequencing and mass spectrometry technologies has enabled the comprehensive collection of information on the gut microbiome and its metabolome in order to assess the influence of the gut microbiota on host physiology on a whole-systems level. Our gut microbiota, which consists of prokaryotic cells together with its metabolites, creates a unique gut ecosystem together with the host eukaryotic cells. In this review, we will highlight the detailed relationships between gut microbiota and its metabolites on host health and the pathogenesis of various intestinal diseases such as inflammatory bowel disease and colorectal cancer. Therapeutic interventions such as probiotic and prebiotic administrations and fecal microbiota transplantations will also be discussed. We would like to promote this unique biology-wide approach of incorporating metagenome and metabolome information as we believe that this can help us understand the intricate interplay between gut microbiota and host metabolism to a greater extent. This novel integration of microbiome, metatranscriptome, and metabolome information will help us have an improved holistic understanding of the complex mammalian superorganism, thereby allowing us to gain new and unprecedented insights to providing exciting novel therapeutic approaches for optimal intestinal health.

  20. The Guard Cell Metabolome: Functions in Stomatal Movement and Global Food Security

    Directory of Open Access Journals (Sweden)

    Biswapriya eMisra

    2015-05-01

    Full Text Available Guard cells represent a unique single cell-type system for the study of cellular responses to abiotic and biotic perturbations that affect stomatal movement. Decades of effort through both classical physiological and functional genomics approaches have generated an enormous amount of information on the roles of individual metabolites in stomatal guard cell function and physiology. Recent application of metabolomics methods has produced a substantial amount of new information on metabolome control of stomatal movement. In conjunction with other ‘omics’ approaches, the knowledge-base is growing to reach a systems-level description of this single cell-type. Here we summarize current knowledge of the guard cell metabolome and highlight critical metabolites that bear significant impact on future engineering and breeding efforts to generate plants/crops that are resistant to environmental challenges and produce high yield and quality products for food and energy security.

  1. Could exercise metabolomics pave the way for gymnomimetics?

    Science.gov (United States)

    Burke, Megan F; Dunbar, Richard L; Rader, Daniel J

    2010-07-21

    Regular physical activity and especially aerobic exercise are associated with reduced risk of disease and enhanced longevity, but the molecular mechanisms of these health benefits remain obscure. A comprehensive metabolomic approach was used to characterize the changes in blood levels of >200 metabolites upon vigorous exercise and identified two dozen that changed substantially. One, niacinamide, is intimately related to the metabolism of nicotinamide adenine dinucleotide (NAD(+)) and its reduced form NADH, which is in turn linked with exercise capacity as well as health status. Intensive investigation of metabolic changes with exercise could lead to pharmacological attempts to mimic the beneficial effects of exercise, an approach we term "gymnomimetics."

  2. UHPLC-Q-Orbitrap-HRMS-based global metabolomics reveal metabolome modifications in plasma of young women after cranberry juice consumption.

    Science.gov (United States)

    Liu, Haiyan; Garrett, Timothy J; Su, Zhihua; Khoo, Christina; Gu, Liwei

    2017-07-01

    Plasma metabolome in young women following cranberry juice consumption were investigated using a global UHPLC-Q-Orbitrap-HRMS approach. Seventeen female college students, between 21 and 29 years old, were given either cranberry juice or apple juice for three days using a cross-over design. Plasma samples were collected before and after juice consumption. Plasma metabolomes were analyzed using UHPLC-Q-Orbitrap-HRMS followed by orthogonal partial least squares-discriminant analyses (OPLS-DA). S-plot was used to identify discriminant metabolites. Validated OPLS-DA analyses showed that the plasma metabolome in young women, including both exogenous and endogenous metabolites, were altered following cranberry juice consumption. Cranberry juice caused increases of exogenous metabolites including quinic acid, vanilloloside, catechol sulfate, 3,4-dihydroxyphenyl ethanol sulfate, coumaric acid sulfate, ferulic acid sulfate, 5-(trihydroxphenyl)-gamma-valerolactone, 3-(hydroxyphenyl)proponic acid, hydroxyphenylacetic acid and trihydroxybenzoic acid. In addition, the plasma levels of endogenous metabolites including citramalic acid, aconitic acid, hydroxyoctadecanoic acid, hippuric acid, 2-hydroxyhippuric acid, vanilloylglycine, 4-acetamido-2-aminobutanoic acid, dihydroxyquinoline, and glycerol 3-phosphate were increased in women following cranberry juice consumption. The metabolic differences and discriminant metabolites observed in this study may serve as biomarkers of cranberry juice consumption and explain its health promoting properties in human. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. NMR-based detection of hydrogen/deuterium exchange in liposome-embedded membrane proteins.

    Directory of Open Access Journals (Sweden)

    Xuejun Yao

    Full Text Available Membrane proteins play key roles in biology. Determination of their structure in a membrane environment, however, is highly challenging. To address this challenge, we developed an approach that couples hydrogen/deuterium exchange of membrane proteins to rapid unfolding and detection by solution-state NMR spectroscopy. We show that the method allows analysis of the solvent protection of single residues in liposome-embedded proteins such as the 349-residue Tom40, the major protein translocation pore in the outer mitochondrial membrane, which has resisted structural analysis for many years.

  4. Effect of magnetic field strength on NMR-based metabonomic human urine data. Comparative study of 250, 400, 500, and 800 MHz

    DEFF Research Database (Denmark)

    Bertram, Hanne Christine; Malmendal, Anders; Petersen, Bent O.

    2007-01-01

    Metabonomic analysis of urine utilizing high-resolution NMR spectroscopy and chemometric techniques has proven valuable in characterizing the biochemical response to an intervention. To assess the effect of magnetic field strength on information contained in NMR-based metabonomic data sets, 1H NMR...

  5. Metabolomics Application in Maternal-Fetal Medicine

    Directory of Open Access Journals (Sweden)

    Vassilios Fanos

    2013-01-01

    Full Text Available Metabolomics in maternal-fetal medicine is still an “embryonic” science. However, there is already an increasing interest in metabolome of normal and complicated pregnancies, and neonatal outcomes. Tissues used for metabolomics interrogations of pregnant women, fetuses and newborns are amniotic fluid, blood, plasma, cord blood, placenta, urine, and vaginal secretions. All published papers highlight the strong correlation between biomarkers found in these tissues and fetal malformations, preterm delivery, premature rupture of membranes, gestational diabetes mellitus, preeclampsia, neonatal asphyxia, and hypoxic-ischemic encephalopathy. The aim of this review is to summarize and comment on original data available in relevant published works in order to emphasize the clinical potential of metabolomics in obstetrics in the immediate future.

  6. Strategies for Extending Metabolomics Studies with Stable Isotope Labelling and Fluxomics

    Directory of Open Access Journals (Sweden)

    Anubhav Srivastava

    2016-10-01

    Full Text Available This is a perspective from the peer session on stable isotope labelling and fluxomics at the Australian & New Zealand Metabolomics Conference (ANZMET held from 30 March to 1 April 2016 at La Trobe University, Melbourne, Australia. This report summarizes the key points raised in the peer session which focused on the advantages of using stable isotopes in modern metabolomics and the challenges in conducting flux analyses. The session highlighted the utility of stable isotope labelling in generating reference standards for metabolite identification, absolute quantification, and in the measurement of the dynamic activity of metabolic pathways. The advantages and disadvantages of different approaches of fluxomics analyses including flux balance analysis, metabolic flux analysis and kinetic flux profiling were also discussed along with the use of stable isotope labelling in in vivo dynamic metabolomics. A number of crucial technical considerations for designing experiments and analyzing data with stable isotope labelling were discussed which included replication, instrumentation, methods of labelling, tracer dilution and data analysis. This report reflects the current viewpoint on the use of stable isotope labelling in metabolomics experiments, identifying it as a great tool with the potential to improve biological interpretation of metabolomics data in a number of ways.

  7. Variable selection in the explorative analysis of several data blocks in metabolomics

    DEFF Research Database (Denmark)

    Karaman, İbrahim; Nørskov, Natalja; Yde, Christian Clement

    for biological validation. The data set used in this study is metabolomics data from an animal intervention study. The aim of the metabolomics study was to investigate the metabolic profile in pigs fed various cereal fractions with special attention to the metabolism of lignans using NMR and LC-MS based...... associated with these effects are far from fully understood. This is due to the diversity of active constituents in whole grain and the complexity in the response to each of them. Metabolomic approaches being capable of describing the effects of diet on metabolism are ideally suited to address this issue....... For the present study three experimental diets were formulated containing whole grain, wheat aleurone, and an aleurone enriched rye fraction, respectively. The diets were fed to six pigs in a repeated 3 x 3 latin square design and a standard wheat flour diet was used as wash-out diet between the experimental...

  8. NMR-based homology model for the solution structure of the C-terminal globular domain of EMILIN1

    Energy Technology Data Exchange (ETDEWEB)

    Verdone, Giuliana [Istituto Biochimico Italiano ' G. Lorenzini' (Italy); Corazza, Alessandra [Universita di Udine, Dipartimento di Scienze e Tecnologie Biomediche - MATI Centre of Excellence (Italy); Colebrooke, Simon A. [University of Oxford, Department of Biochemistry (United Kingdom); Cicero, Daniel; Eliseo, Tommaso [Universita di Tor Vergata, Dipartimento di Chimica (Italy); Boyd, Jonathan [University of Oxford, Department of Biochemistry (United Kingdom); Doliana, Roberto [Centro di Riferimento Oncologico di Aviano, Divisione di Oncologia Sperimentale 2 (Italy); Fogolari, Federico; Viglino, Paolo; Colombatti, Alfonso [Universita di Udine, Dipartimento di Scienze e Tecnologie Biomediche - MATI Centre of Excellence (Italy); Campbell, Iain D. [University of Oxford, Department of Biochemistry (United Kingdom); Esposito, Gennaro [Universita di Udine, Dipartimento di Scienze e Tecnologie Biomediche - MATI Centre of Excellence (Italy)], E-mail: gesposito@mail.dstb.uniud.it

    2009-02-15

    EMILIN1 is a glycoprotein of elastic tissues that has been recently linked to the pathogenesis of hypertension. The protein is formed by different independently folded structural domains whose role has been partially elucidated. In this paper the solution structure, inferred from NMR-based homology modelling of the C-terminal trimeric globular C1q domain (gC1q) of EMILIN1, is reported. The high molecular weight and the homotrimeric structure of the protein required the combined use of highly deuterated {sup 15}N, {sup 13}C-labelled samples and TROSY experiments. Starting from a homology model, the protein structure was refined using heteronuclear residual dipolar couplings, chemical shift patterns, NOEs and H-exchange data. Analysis of the gC1q domain structure of EMILIN1 shows that each protomer of the trimer adopts a nine-stranded {beta} sandwich folding topology which is related to the conformation observed for other proteins of the family. Distinguishing features, however, include a missing edge-strand and an unstructured 19-residue loop. Although the current data do not allow this loop to be precisely defined, the available evidence is consistent with a flexible segment that protrudes from each subunit of the globular trimeric assembly and plays a key role in inter-molecular interactions between the EMILIN1 gC1q homotrimer and its integrin receptor {alpha}4{beta}1.

  9. 1H NMR based metabolic profiling of eleven Algerian aromatic plants and evaluation of their antioxidant and cytotoxic properties.

    Science.gov (United States)

    Brahmi, Nabila; Scognamiglio, Monica; Pacifico, Severina; Mekhoukhe, Aida; Madani, Khodir; Fiorentino, Antonio; Monaco, Pietro

    2015-10-01

    Eleven Algerian medicinal and aromatic plants (Aloysia triphylla, Apium graveolens, Coriandrum sativum, Laurus nobilis, Lavandula officinalis, Marrubium vulgare, Mentha spicata, Inula viscosa, Petroselinum crispum, Salvia officinalis, and Thymus vulgaris) were selected and their hydroalcoholic extracts were screened for their antiradical and antioxidant properties in cell-free systems. In order to identify the main metabolites constituting the extracts, 1 H NMR-based metabolic profiling was applied. Data obtained emphasized the antiradical properties of T. vulgaris, M. spicata and L. nobilis extracts (RACI 1.37, 0.97 and 0.93, respectively), whereas parsley was the less active as antioxidant (RACI -1.26). When the cytotoxic effects of low and antioxidant doses of each extract were evaluated towards SK-N-BE(2)C neuronal and HepG2 hepatic cell lines, it was observed that all the extracts weakly affected the metabolic redox activity of the tested cell lines. Overall, data strongly plead in favor of the use of these plants as potential food additives in replacement of synthetic compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Integration of metabolomics and transcriptomics in nanotoxicity studies.

    Science.gov (United States)

    Shin, Tae Hwan; Lee, Da Yeon; Lee, Hyeon-Seong; Park, Hyung Jin; Jin, Moon Suk; Paik, Man-Jeong; Manavalan, Balachandran; Mo, Jung-Soon; Lee, Gwang

    2018-01-01

    Biomedical research involving nanoparticles has produced useful products with medical applications. However, the potential toxicity of nanoparticles in biofluids, cells, tissues, and organisms is a major challenge. The '-omics' analyses provide molecular profiles of multifactorial biological systems instead of focusing on a single molecule. The 'omics' approaches are necessary to evaluate nanotoxicity because classical methods for the detection of nanotoxicity have limited ability in detecting miniscule variations within a cell and do not accurately reflect the actual levels of nanotoxicity. In addition, the 'omics' approaches allow analyses of in-depth changes and compensate for the differences associated with high-throughput technologies between actual nanotoxicity and results from traditional cytotoxic evaluations. However, compared with a single omics approach, integrated omics provides precise and sensitive information by integrating complex biological conditions. Thus, these technologies contribute to extended safety evaluations of nanotoxicity and allow the accurate diagnoses of diseases far earlier than was once possible in the nanotechnology era. Here, we review a novel approach for evaluating nanotoxicity by integrating metabolomics with metabolomic profiling and transcriptomics, which is termed "metabotranscriptomics". [BMB Reports 2018; 51(1): 14-20].

  11. Comprehensive metabolomics to evaluate the impact of industrial processing on the phytochemical composition of vegetable purees

    NARCIS (Netherlands)

    Lopez-Sanchez, P.; Vos, de R.C.H.; Jonker, H.H.; Mumm, R.; Hall, R.D.; Bialek, L.; Leenman, R.; Strassburg, K.; Vreeken, R.; Hankemeier, T.; Schumm, S.; Duynhoven, van J.P.M.

    2015-01-01

    The effects of conventional industrial processing steps on global phytochemical composition of broccoli, tomato and carrot purees were investigated by using a range of complementary targeted and untargeted metabolomics approaches including LC–PDA for vitamins, 1H NMR for polar metabolites, accurate

  12. Regulation of floral scent production in petunia revealed by targeted metabolomics

    NARCIS (Netherlands)

    Verdonk, J.C.; Vos, de C.H.; Verhoeven, H.A.; Haring, M.A.; Tunen, van A.J.; Schuurink, R.C.

    2003-01-01

    Petunia hybrida line W115 (Mitchell) has large white flowers that produce a pleasant fragrance. By applying solid phase micro extraction (SPME) techniques coupled to GC-MS analysis, volatile emission was monitored in vivo using a targeted metabolomics approach. Mature flowers released predominantly

  13. MetabR: an R script for linear model analysis of quantitative metabolomic data

    Directory of Open Access Journals (Sweden)

    Ernest Ben

    2012-10-01

    Full Text Available Abstract Background Metabolomics is an emerging high-throughput approach to systems biology, but data analysis tools are lacking compared to other systems level disciplines such as transcriptomics and proteomics. Metabolomic data analysis requires a normalization step to remove systematic effects of confounding variables on metabolite measurements. Current tools may not correctly normalize every metabolite when the relationships between each metabolite quantity and fixed-effect confounding variables are different, or for the effects of random-effect confounding variables. Linear mixed models, an established methodology in the microarray literature, offer a standardized and flexible approach for removing the effects of fixed- and random-effect confounding variables from metabolomic data. Findings Here we present a simple menu-driven program, “MetabR”, designed to aid researchers with no programming background in statistical analysis of metabolomic data. Written in the open-source statistical programming language R, MetabR implements linear mixed models to normalize metabolomic data and analysis of variance (ANOVA to test treatment differences. MetabR exports normalized data, checks statistical model assumptions, identifies differentially abundant metabolites, and produces output files to help with data interpretation. Example data are provided to illustrate normalization for common confounding variables and to demonstrate the utility of the MetabR program. Conclusions We developed MetabR as a simple and user-friendly tool for implementing linear mixed model-based normalization and statistical analysis of targeted metabolomic data, which helps to fill a lack of available data analysis tools in this field. The program, user guide, example data, and any future news or updates related to the program may be found at http://metabr.r-forge.r-project.org/.

  14. Metabolomics: a bird’s eye view of infertile men: review article

    Directory of Open Access Journals (Sweden)

    Niloofar Agharezaee

    2018-03-01

    Full Text Available Infertility influences an estimated 20% of couples worldwide. The factors that can affect the fertility potential are equally distributed between men and women. Despite extensive research in male infertility, the etiology in majority of infertile men is unknown. In 2010, there was an opinion published in Nature asking a selection of leading researchers and policy-makers about what their future focuses will be in 2020. Metabolomics was mentioned as the leading omics technology by them. The word metabolomics has been defined almost 20 years ago. However, the clinical metabolomics history goes back to more than 1,000 years ago. The great Persian physician and philosopher Avicenna observed an individual urine changes during illness. Today, the color or smell changes are known to be caused by metabolites deregulation indicating metabolic diseases. Metabolomics approach is a systematic analysis of the unique pattern followed by a specific biochemical pathway that uses a biological material, e.g. spermatozoa or human seminal plasma. For the diagnosis of infertile men, the typical parameters of semen analysis are: sperm motility, sperm morphology, concentration and count. Human seminal plasma is a valuable biological source which was not used in the diagnosis of infertile men, unfortunately. To the best of our knowledge, there is no parameter for analysis of the human seminal plasma. Thus, the need for a novel parameter to diagnose infertile men is urgently needed. We recommend the use of seminal plasma in order to diagnose infertile men according to our previous research. Only a handful studies have used metabolomics approaches in the male infertility. In this study, we summarize the current research and our contribution to the field of male infertility and metabolomics. One of our main contributions has been to use metabolic profiling of seminal plasma from non-obstructive azoospermia to find 36 potentials biomarkers for detection of spermatogenesis

  15. Comprehensive metabolomic profiling and incident cardiovascular disease: a systematic review

    Science.gov (United States)

    Background: Metabolomics is a promising tool of cardiovascular biomarker discovery. We systematically reviewed the literature on comprehensive metabolomic profiling in association with incident cardiovascular disease (CVD). Methods and Results: We searched MEDLINE and EMBASE from inception to Janua...

  16. Plant Metabolomics : the missiong link in functional genomics strategies

    NARCIS (Netherlands)

    Hall, R.D.; Beale, M.; Fiehn, O.; Hardy, N.; Summer, L.; Bino, R.

    2002-01-01

    After the establishment of technologies for high-throughput DNA sequencing (genomics), gene expression analysis (transcriptomics), and protein analysis (proteomics), the remaining functional genomics challenge is that of metabolomics. Metabolomics is the term coined for essentially comprehensive,

  17. Metabolomics data normalization with EigenMS.

    Directory of Open Access Journals (Sweden)

    Yuliya V Karpievitch

    Full Text Available Liquid chromatography mass spectrometry has become one of the analytical platforms of choice for metabolomics studies. However, LC-MS metabolomics data can suffer from the effects of various systematic biases. These include batch effects, day-to-day variations in instrument performance, signal intensity loss due to time-dependent effects of the LC column performance, accumulation of contaminants in the MS ion source and MS sensitivity among others. In this study we aimed to test a singular value decomposition-based method, called EigenMS, for normalization of metabolomics data. We analyzed a clinical human dataset where LC-MS serum metabolomics data and physiological measurements were collected from thirty nine healthy subjects and forty with type 2 diabetes and applied EigenMS to detect and correct for any systematic bias. EigenMS works in several stages. First, EigenMS preserves the treatment group differences in the metabolomics data by estimating treatment effects with an ANOVA model (multiple fixed effects can be estimated. Singular value decomposition of the residuals matrix is then used to determine bias trends in the data. The number of bias trends is then estimated via a permutation test and the effects of the bias trends are eliminated. EigenMS removed bias of unknown complexity from the LC-MS metabolomics data, allowing for increased sensitivity in differential analysis. Moreover, normalized samples better correlated with both other normalized samples and corresponding physiological data, such as blood glucose level, glycated haemoglobin, exercise central augmentation pressure normalized to heart rate of 75, and total cholesterol. We were able to report 2578 discriminatory metabolite peaks in the normalized data (p<0.05 as compared to only 1840 metabolite signals in the raw data. Our results support the use of singular value decomposition-based normalization for metabolomics data.

  18. Towards the Fecal Metabolome Derived from Moderate Red Wine Intake

    Directory of Open Access Journals (Sweden)

    Ana Jiménez-Girón

    2014-12-01

    Full Text Available Dietary polyphenols, including red wine phenolic compounds, are extensively metabolized during their passage through the gastrointestinal tract; and their biological effects at the gut level (i.e., anti-inflammatory activity, microbiota modulation, interaction with cells, among others seem to be due more to their microbial-derived metabolites rather than to the original forms found in food. In an effort to improve our understanding of the biological effects that phenolic compounds exert at the gut level, this paper summarizes the changes observed in the human fecal metabolome after an intervention study consisting of a daily consumption of 250 mL of wine during four weeks by healthy volunteers (n = 33. It assembles data from two analytical approaches: (1 UPLC-ESI-MS/MS analysis of phenolic metabolites in fecal solutions (targeted analysis; and (2 UHPLC-TOF MS analysis of the fecal solutions (non-targeted analysis. Both approaches revealed statistically-significant changes in the concentration of several metabolites as a consequence of the wine intake. Similarity and complementarity between targeted and non-targeted approaches in the analysis of the fecal metabolome are discussed. Both strategies allowed the definition of a complex metabolic profile derived from wine intake. Likewise, the identification of endogenous markers could lead to new hypotheses to unravel the relationship between moderate wine consumption and the metabolic functionality of gut microbiota.

  19. Structured plant metabolomics for the simultaneous exploration of multiple factors

    Science.gov (United States)

    Vasilev, Nikolay; Boccard, Julien; Lang, Gerhard; Grömping, Ulrike; Fischer, Rainer; Goepfert, Simon; Rudaz, Serge; Schillberg, Stefan

    2016-01-01

    Multiple factors act simultaneously on plants to establish complex interaction networks involving nutrients, elicitors and metabolites. Metabolomics offers a better understanding of complex biological systems, but evaluating the simultaneous impact of different parameters on metabolic pathways that have many components is a challenging task. We therefore developed a novel approach that combines experimental design, untargeted metabolic profiling based on multiple chromatography systems and ionization modes, and multiblock data analysis, facilitating the systematic analysis of metabolic changes in plants caused by different factors acting at the same time. Using this method, target geraniol compounds produced in transgenic tobacco cell cultures were grouped into clusters based on their response to different factors. We hypothesized that our novel approach may provide more robust data for process optimization in plant cell cultures producing any target secondary metabolite, based on the simultaneous exploration of multiple factors rather than varying one factor each time. The suitability of our approach was verified by confirming several previously reported examples of elicitor–metabolite crosstalk. However, unravelling all factor–metabolite networks remains challenging because it requires the identification of all biochemically significant metabolites in the metabolomics dataset. PMID:27853298

  20. Lactose Binding Induces Opposing Dynamics Changes in Human Galectins Revealed by NMR-Based Hydrogen-Deuterium Exchange.

    Science.gov (United States)

    Chien, Chih-Ta Henry; Ho, Meng-Ru; Lin, Chung-Hung; Hsu, Shang-Te Danny

    2017-08-16

    Galectins are β-galactoside-binding proteins implicated in a myriad of biological functions. Despite their highly conserved carbohydrate binding motifs with essentially identical structures, their affinities for lactose, a common galectin inhibitor, vary significantly. Here, we aimed to examine the molecular basis of differential lactose affinities amongst galectins using solution-based techniques. Consistent dissociation constants of lactose binding were derived from nuclear magnetic resonance (NMR) spectroscopy, intrinsic tryptophan fluorescence, isothermal titration calorimetry and bio-layer interferometry for human galectin-1 (hGal1), galectin-7 (hGal7), and the N-terminal and C-terminal domains of galectin-8 (hGal8 NTD and hGal8 CTD , respectively). Furthermore, the dissociation rates of lactose binding were extracted from NMR lineshape analyses. Structural mapping of chemical shift perturbations revealed long-range perturbations upon lactose binding for hGal1 and hGal8 NTD . We further demonstrated using the NMR-based hydrogen-deuterium exchange (HDX) that lactose binding increases the exchange rates of residues located on the opposite side of the ligand-binding pocket for hGal1 and hGal8 NTD , indicative of allostery. Additionally, lactose binding induces significant stabilisation of hGal8 CTD across the entire domain. Our results suggested that lactose binding reduced the internal dynamics of hGal8 CTD on a very slow timescale (minutes and slower) at the expense of reduced binding affinity due to the unfavourable loss of conformational entropy.

  1. Preanalytical aspects and sample quality assessment in metabolomics studies of human blood.

    Science.gov (United States)

    Yin, Peiyuan; Peter, Andreas; Franken, Holger; Zhao, Xinjie; Neukamm, Sabine S; Rosenbaum, Lars; Lucio, Marianna; Zell, Andreas; Häring, Hans-Ulrich; Xu, Guowang; Lehmann, Rainer

    2013-05-01

    Metabolomics is a powerful tool that is increasingly used in clinical research. Although excellent sample quality is essential, it can easily be compromised by undetected preanalytical errors. We set out to identify critical preanalytical steps and biomarkers that reflect preanalytical inaccuracies. We systematically investigated the effects of preanalytical variables (blood collection tubes, hemolysis, temperature and time before further processing, and number of freeze-thaw cycles) on metabolomics studies of clinical blood and plasma samples using a nontargeted LC-MS approach. Serum and heparinate blood collection tubes led to chemical noise in the mass spectra. Distinct, significant changes of 64 features in the EDTA-plasma metabolome were detected when blood was exposed to room temperature for 2, 4, 8, and 24 h. The resulting pattern was characterized by increases in hypoxanthine and sphingosine 1-phosphate (800% and 380%, respectively, at 2 h). In contrast, the plasma metabolome was stable for up to 4 h when EDTA blood samples were immediately placed in iced water. Hemolysis also caused numerous changes in the metabolic profile. Unexpectedly, up to 4 freeze-thaw cycles only slightly changed the EDTA-plasma metabolome, but increased the individual variability. Nontargeted metabolomics investigations led to the following recommendations for the preanalytical phase: test the blood collection tubes, avoid hemolysis, place whole blood immediately in ice water, use EDTA plasma, and preferably use nonrefrozen biobank samples. To exclude outliers due to preanalytical errors, inspect the biomarker signal intensities reflecting systematic as well as accidental and preanalytical inaccuracies before processing the bioinformatics data. © 2013 American Association for Clinical Chemistry.

  2. Influence of the collection tube on metabolomic changes in serum and plasma.

    Science.gov (United States)

    López-Bascón, M A; Priego-Capote, F; Peralbo-Molina, A; Calderón-Santiago, M; Luque de Castro, M D

    2016-04-01

    Major threats in metabolomics clinical research are biases in sampling and preparation of biological samples. Bias in sample collection is a frequently forgotten aspect responsible for uncontrolled errors in metabolomics analysis. There is a great diversity of blood collection tubes for sampling serum or plasma, which are widely used in metabolomics analysis. Most of the existing studies dealing with the influence of blood collection on metabolomics analysis have been restricted to comparison between plasma and serum. However, polymeric gel tubes, which are frequently proposed to accelerate the separation of serum and plasma, have not been studied. In the present research, samples of serum or plasma collected in polymeric gel tubes were compared with those taken in conventional tubes from a metabolomics perspective using an untargeted GC-TOF/MS approach. The main differences between serum and plasma collected in conventional tubes affected to critical pathways such as the citric acid cycle, metabolism of amino acids, fructose and mannose metabolism and that of glycerolipids, and pentose and glucuronate interconversion. On the other hand, the polymeric gel only promoted differences at the metabolite level in serum since no critical differences were observed between plasma collected with EDTA tubes and polymeric gel tubes. Thus, the main changes were attributable to serum collected in gel and affected to the metabolism of amino acids such as alanine, proline and threonine, the glycerolipids metabolism, and two primary metabolites such as aconitic acid and lactic acid. Therefore, these metabolite changes should be taken into account in planning an experimental protocol for metabolomics analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Metabolomic derangements are associated with mortality in critically ill adult patients.

    Science.gov (United States)

    Rogers, Angela J; McGeachie, Michael; Baron, Rebecca M; Gazourian, Lee; Haspel, Jeffrey A; Nakahira, Kiichi; Fredenburgh, Laura E; Hunninghake, Gary M; Raby, Benjamin A; Matthay, Michael A; Otero, Ronny M; Fowler, Vance G; Rivers, Emanuel P; Woods, Christopher W; Kingsmore, Stephen; Langley, Ray J; Choi, Augustine M K

    2014-01-01

    To identify metabolomic biomarkers predictive of Intensive Care Unit (ICU) mortality in adults. Comprehensive metabolomic profiling of plasma at ICU admission to identify biomarkers associated with mortality has recently become feasible. We performed metabolomic profiling of plasma from 90 ICU subjects enrolled in the BWH Registry of Critical Illness (RoCI). We tested individual metabolites and a Bayesian Network of metabolites for association with 28-day mortality, using logistic regression in R, and the CGBayesNets Package in MATLAB. Both individual metabolites and the network were tested for replication in an independent cohort of 149 adults enrolled in the Community Acquired Pneumonia and Sepsis Outcome Diagnostics (CAPSOD) study. We tested variable metabolites for association with 28-day mortality. In RoCI, nearly one third of metabolites differed among ICU survivors versus those who died by day 28 (N = 57 metabolites, p<.05). Associations with 28-day mortality replicated for 31 of these metabolites (with p<.05) in the CAPSOD population. Replicating metabolites included lipids (N = 14), amino acids or amino acid breakdown products (N = 12), carbohydrates (N = 1), nucleotides (N = 3), and 1 peptide. Among 31 replicated metabolites, 25 were higher in subjects who progressed to die; all 6 metabolites that are lower in those who die are lipids. We used Bayesian modeling to form a metabolomic network of 7 metabolites associated with death (gamma-glutamylphenylalanine, gamma-glutamyltyrosine, 1-arachidonoylGPC(20:4), taurochenodeoxycholate, 3-(4-hydroxyphenyl) lactate, sucrose, kynurenine). This network achieved a 91% AUC predicting 28-day mortality in RoCI, and 74% of the AUC in CAPSOD (p<.001 in both populations). Both individual metabolites and a metabolomic network were associated with 28-day mortality in two independent cohorts. Metabolomic profiling represents a valuable new approach for identifying novel biomarkers in critically ill

  4. Metabolomic derangements are associated with mortality in critically ill adult patients.

    Directory of Open Access Journals (Sweden)

    Angela J Rogers

    Full Text Available To identify metabolomic biomarkers predictive of Intensive Care Unit (ICU mortality in adults.Comprehensive metabolomic profiling of plasma at ICU admission to identify biomarkers associated with mortality has recently become feasible.We performed metabolomic profiling of plasma from 90 ICU subjects enrolled in the BWH Registry of Critical Illness (RoCI. We tested individual metabolites and a Bayesian Network of metabolites for association with 28-day mortality, using logistic regression in R, and the CGBayesNets Package in MATLAB. Both individual metabolites and the network were tested for replication in an independent cohort of 149 adults enrolled in the Community Acquired Pneumonia and Sepsis Outcome Diagnostics (CAPSOD study.We tested variable metabolites for association with 28-day mortality. In RoCI, nearly one third of metabolites differed among ICU survivors versus those who died by day 28 (N = 57 metabolites, p<.05. Associations with 28-day mortality replicated for 31 of these metabolites (with p<.05 in the CAPSOD population. Replicating metabolites included lipids (N = 14, amino acids or amino acid breakdown products (N = 12, carbohydrates (N = 1, nucleotides (N = 3, and 1 peptide. Among 31 replicated metabolites, 25 were higher in subjects who progressed to die; all 6 metabolites that are lower in those who die are lipids. We used Bayesian modeling to form a metabolomic network of 7 metabolites associated with death (gamma-glutamylphenylalanine, gamma-glutamyltyrosine, 1-arachidonoylGPC(20:4, taurochenodeoxycholate, 3-(4-hydroxyphenyl lactate, sucrose, kynurenine. This network achieved a 91% AUC predicting 28-day mortality in RoCI, and 74% of the AUC in CAPSOD (p<.001 in both populations.Both individual metabolites and a metabolomic network were associated with 28-day mortality in two independent cohorts. Metabolomic profiling represents a valuable new approach for identifying novel biomarkers in critically ill

  5. Novel personalized pathway-based metabolomics models reveal key metabolic pathways for breast cancer diagnosis.

    Science.gov (United States)

    Huang, Sijia; Chong, Nicole; Lewis, Nathan E; Jia, Wei; Xie, Guoxiang; Garmire, Lana X

    2016-03-31

    More accurate diagnostic methods are pressingly needed to diagnose breast cancer, the most common malignant cancer in women worldwide. Blood-based metabolomics is a promising diagnostic method for breast cancer. However, many metabolic biomarkers are difficult to replicate among studies. We propose that higher-order functional representation of metabolomics data, such as pathway-based metabolomic features, can be used as robust biomarkers for breast cancer. Towards this, we have developed a new computational method that uses personalized pathway dysregulation scores for disease diagnosis. We applied this method to predict breast cancer occurrence, in combination with correlation feature selection (CFS) and classification methods. The resulting all-stage and early-stage diagnosis models are highly accurate in two sets of testing blood samples, with average AUCs (Area Under the Curve, a receiver operating characteristic curve) of 0.968 and 0.934, sensitivities of 0.946 and 0.954, and specificities of 0.934 and 0.918. These two metabolomics-based pathway models are further validated by RNA-Seq-based TCGA (The Cancer Genome Atlas) breast cancer data, with AUCs of 0.995 and 0.993. Moreover, important metabolic pathways, such as taurine and hypotaurine metabolism and the alanine, aspartate, and glutamate pathway, are revealed as critical biological pathways for early diagnosis of breast cancer. We have successfully developed a new type of pathway-based model to study metabolomics data for disease diagnosis. Applying this method to blood-based breast cancer metabolomics data, we have discovered crucial metabolic pathway signatures for breast cancer diagnosis, especially early diagnosis. Further, this modeling approach may be generalized to other omics data types for disease diagnosis.

  6. Data standards can boost metabolomics research, and if there is a will, there is a way.

    Science.gov (United States)

    Rocca-Serra, Philippe; Salek, Reza M; Arita, Masanori; Correa, Elon; Dayalan, Saravanan; Gonzalez-Beltran, Alejandra; Ebbels, Tim; Goodacre, Royston; Hastings, Janna; Haug, Kenneth; Koulman, Albert; Nikolski, Macha; Oresic, Matej; Sansone, Susanna-Assunta; Schober, Daniel; Smith, James; Steinbeck, Christoph; Viant, Mark R; Neumann, Steffen

    2016-01-01

    Thousands of articles using metabolomics approaches are published every year. With the increasing amounts of data being produced, mere description of investigations as text in manuscripts is not sufficient to enable re-use anymore: the underlying data needs to be published together with the findings in the literature to maximise the benefit from public and private expenditure and to take advantage of an enormous opportunity to improve scientific reproducibility in metabolomics and cognate disciplines. Reporting recommendations in metabolomics started to emerge about a decade ago and were mostly concerned with inventories of the information that had to be reported in the literature for consistency. In recent years, metabolomics data standards have developed extensively, to include the primary research data, derived results and the experimental description and importantly the metadata in a machine-readable way. This includes vendor independent data standards such as mzML for mass spectrometry and nmrML for NMR raw data that have both enabled the development of advanced data processing algorithms by the scientific community. Standards such as ISA-Tab cover essential metadata, including the experimental design, the applied protocols, association between samples, data files and the experimental factors for further statistical analysis. Altogether, they pave the way for both reproducible research and data reuse, including meta-analyses. Further incentives to prepare standards compliant data sets include new opportunities to publish data sets, but also require a little "arm twisting" in the author guidelines of scientific journals to submit the data sets to public repositories such as the NIH Metabolomics Workbench or MetaboLights at EMBL-EBI. In the present article, we look at standards for data sharing, investigate their impact in metabolomics and give suggestions to improve their adoption.

  7. Metabolomics of pulmonary exacerbations reveals the personalized nature of cystic fibrosis disease

    Directory of Open Access Journals (Sweden)

    Robert A. Quinn

    2016-08-01

    Full Text Available Background. Cystic fibrosis (CF is a genetic disease that results in chronic infections of the lungs. CF patients experience intermittent pulmonary exacerbations (CFPE that are associated with poor clinical outcomes. CFPE involves an increase in disease symptoms requiring more aggressive therapy. Methods. Longitudinal sputum samples were collected from 11 patients (n = 44 samples to assess the effect of exacerbations on the sputum metabolome using liquid chromatography-tandem mass spectrometry (LC-MS/MS. The data was analyzed with MS/MS molecular networking and multivariate statistics. Results. The individual patient source had a larger influence on the metabolome of sputum than the clinical state (exacerbation, treatment, post-treatment, or stable. Of the 4,369 metabolites detected, 12% were unique to CFPE samples; however, the only known metabolites significantly elevated at exacerbation across the dataset were platelet activating factor (PAF and a related monacylglycerophosphocholine lipid. Due to the personalized nature of the sputum metabolome, a single patient was followed for 4.2 years (capturing four separate exacerbation events as a case study for the detection of personalized biomarkers with metabolomics. PAF and related lipids were significantly elevated during CFPEs of this patient and ceramide was elevated during CFPE treatment. Correlating the abundance of bacterial 16S rRNA gene amplicons to metabolomics data from the same samples during a CFPE demonstrated that antibiotics were positively correlated to Stenotrophomonas and Pseudomonas, while ceramides and other lipids were correlated with Streptococcus, Rothia, and anaerobes. Conclusions. This study identified PAF and other inflammatory lipids as potential biomarkers of CFPE, but overall, the metabolome of CF sputum was patient specific, supporting a personalized approach to molecular detection of CFPE onset.

  8. Integrated work-flow for quantitative metabolome profiling of plants, Peucedani Radix as a case.

    Science.gov (United States)

    Song, Yuelin; Song, Qingqing; Liu, Yao; Li, Jun; Wan, Jian-Bo; Wang, Yitao; Jiang, Yong; Tu, Pengfei

    2017-02-08

    Universal acquisition of reliable information regarding the qualitative and quantitative properties of complicated matrices is the premise for the success of metabolomics study. Liquid chromatography-mass spectrometry (LC-MS) is now serving as a workhorse for metabolomics; however, LC-MS-based non-targeted metabolomics is suffering from some shortcomings, even some cutting-edge techniques have been introduced. Aiming to tackle, to some extent, the drawbacks of the conventional approaches, such as redundant information, detector saturation, low sensitivity, and inconstant signal number among different runs, herein, a novel and flexible work-flow consisting of three progressive steps was proposed to profile in depth the quantitative metabolome of plants. The roots of Peucedanum praeruptorum Dunn (Peucedani Radix, PR) that are rich in various coumarin isomers, were employed as a case study to verify the applicability. First, offline two dimensional LC-MS was utilized for in-depth detection of metabolites in a pooled PR extract namely universal metabolome standard (UMS). Second, mass fragmentation rules, notably concerning angular-type pyranocoumarins that are the primary chemical homologues in PR, and available databases were integrated for signal assignment and structural annotation. Third, optimum collision energy (OCE) as well as ion transition for multiple monitoring reaction measurement was online optimized with a reference compound-free strategy for each annotated component and large-scale relative quantification of all annotated components was accomplished by plotting calibration curves via serially diluting UMS. It is worthwhile to highlight that the potential of OCE for isomer discrimination was described and the linearity ranges of those primary ingredients were extended by suppressing their responses. The integrated workflow is expected to be qualified as a promising pipeline to clarify the quantitative metabolome of plants because it could not only

  9. Serum and urine metabolomic fingerprinting in diagnostics of inflammatory bowel diseases.

    Science.gov (United States)

    Dawiskiba, Tomasz; Deja, Stanisław; Mulak, Agata; Ząbek, Adam; Jawień, Ewa; Pawełka, Dorota; Banasik, Mirosław; Mastalerz-Migas, Agnieszka; Balcerzak, Waldemar; Kaliszewski, Krzysztof; Skóra, Jan; Barć, Piotr; Korta, Krzysztof; Pormańczuk, Kornel; Szyber, Przemyslaw; Litarski, Adam; Młynarz, Piotr

    2014-01-07

    CD, and two metabolites (alanine and N-acetylated compounds) were significantly higher in serum of patients with CD when comparing jointly patients in the remission and active phase of the diseases. Contrary to the results obtained from the serum samples, the analysis of urine samples allowed to distinguish patients with IBD in remission from healthy control subjects. The metabolites of importance included in this case up-regulated acetoacetate and down-regulated citrate, hippurate, taurine, succinate, glycine, alanine and formate. NMR-based metabolomic fingerprinting of serum and urine has the potential to be a useful tool in distinguishing patients with active IBD from those in remission.

  10. Fish mucus metabolome reveals fish life-history traits

    Science.gov (United States)

    Reverter, M.; Sasal, P.; Banaigs, B.; Lecchini, D.; Lecellier, G.; Tapissier-Bontemps, N.

    2017-06-01

    Fish mucus has important biological and ecological roles such as defense against fish pathogens and chemical mediation among several species. A non-targeted liquid chromatography-mass spectrometry metabolomic approach was developed to study gill mucus of eight butterflyfish species in Moorea (French Polynesia), and the influence of several fish traits (geographic site and reef habitat, species taxonomy, phylogeny, diet and parasitism levels) on the metabolic variability was investigated. A biphasic extraction yielding two fractions (polar and apolar) was used. Fish diet (obligate corallivorous, facultative corallivorous or omnivorous) arose as the main driver of the metabolic differences in the gill mucus in both fractions, accounting for 23% of the observed metabolic variability in the apolar fraction and 13% in the polar fraction. A partial least squares discriminant analysis allowed us to identify the metabolites (variable important in projection, VIP) driving the differences between fish with different diets (obligate corallivores, facultative corallivores and omnivorous). Using accurate mass data and fragmentation data, we identified some of these VIP as glycerophosphocholines, ceramides and fatty acids. Level of monogenean gill parasites was the second most important factor shaping the gill mucus metabolome, and it explained 10% of the metabolic variability in the polar fraction and 5% in the apolar fraction. A multiple regression tree revealed that the metabolic variability due to parasitism in the polar fraction was mainly due to differences between non-parasitized and parasitized fish. Phylogeny and butterflyfish species were factors contributing significantly to the metabolic variability of the apolar fraction (10 and 3%, respectively) but had a less pronounced effect in the polar fraction. Finally, geographic site and reef habitat of butterflyfish species did not influence the gill mucus metabolome of butterflyfishes.

  11. Metabolomics to Explore Impact of Dairy Intake

    Directory of Open Access Journals (Sweden)

    Hong Zheng

    2015-06-01

    Full Text Available Dairy products are an important component in the Western diet and represent a valuable source of nutrients for humans. However, a reliable dairy intake assessment in nutrition research is crucial to correctly elucidate the link between dairy intake and human health. Metabolomics is considered a potential tool for assessment of dietary intake instead of traditional methods, such as food frequency questionnaires, food records, and 24-h recalls. Metabolomics has been successfully applied to discriminate between consumption of different dairy products under different experimental conditions. Moreover, potential metabolites related to dairy intake were identified, although these metabolites need to be further validated in other intervention studies before they can be used as valid biomarkers of dairy consumption. Therefore, this review provides an overview of metabolomics for assessment of dairy intake in order to better clarify the role of dairy products in human nutrition and health.

  12. Metabolomic heterogeneity of pulmonary arterial hypertension.

    Directory of Open Access Journals (Sweden)

    Yidan Zhao

    Full Text Available Although multiple gene and protein expression have been extensively profiled in human pulmonary arterial hypertension (PAH, the mechanism for the development and progression of pulmonary hypertension remains elusive. Analysis of the global metabolomic heterogeneity within the pulmonary vascular system leads to a better understanding of disease progression. Using a combination of high-throughput liquid-and-gas-chromatography-based mass spectrometry, we showed unbiased metabolomic profiles of disrupted glycolysis, increased TCA cycle, and fatty acid metabolites with altered oxidation pathways in the human PAH lung. The results suggest that PAH has specific metabolic pathways contributing to increased ATP synthesis for the vascular remodeling process in severe pulmonary hypertension. These identified metabolites may serve as potential biomarkers for the diagnosis of PAH. By profiling metabolomic alterations of the PAH lung, we reveal new pathogenic mechanisms of PAH, opening an avenue of exploration for therapeutics that target metabolic pathway alterations in the progression of PAH.

  13. Microbiome, Metabolome and Inflammatory Bowel Disease

    Directory of Open Access Journals (Sweden)

    Ishfaq Ahmed

    2016-06-01

    Full Text Available Inflammatory Bowel Disease (IBD is a multifactorial disorder that conceptually occurs as a result of altered immune responses to commensal and/or pathogenic gut microbes in individuals most susceptible to the disease. During Crohn’s Disease (CD or Ulcerative Colitis (UC, two components of the human IBD, distinct stages define the disease onset, severity, progression and remission. Epigenetic, environmental (microbiome, metabolome and nutritional factors are important in IBD pathogenesis. While the dysbiotic microbiota has been proposed to play a role in disease pathogenesis, the data on IBD and diet are still less convincing. Nonetheless, studies are ongoing to examine the effect of pre/probiotics and/or FODMAP reduced diets on both the gut microbiome and its metabolome in an effort to define the healthy diet in patients with IBD. Knowledge of a unique metabolomic fingerprint in IBD could be useful for diagnosis, treatment and detection of disease pathogenesis.

  14. Metabolomics in pediatric nephrology: Emerging concepts

    Science.gov (United States)

    Hanna, Mina H; Brophy, Patrick D

    2014-01-01

    Metabolomics, the latest of the “omics” sciences, refers to the systematic study of metabolites and their changes in biological samples due to physiological stimuli and/or genetic modification. Because metabolites represent the downstream expression of genome, transcriptome and proteome, they can closely reflect the phenotype of an organism at a specific time. As an emerging field in analytical biochemistry; metabolomics has the potential to play a major role for monitoring real-time kidney function and detecting adverse renal events. Additionally, small molecule metabolites can provide mechanistic insights for novel biomarkers of kidney diseases, given the limitations of the current traditional markers. The clinical utility of metabolomics in the field of pediatric nephrology includes biomarker discovery, defining as yet unrecognized biologic therapeutic targets, linking of metabolites to relevant standard indices and clinical outcomes, and providing a window of opportunity to investigate the intricacies of environment/genetic interplay in specific disease states. PMID:25027575

  15. Disruption of TCA Cycle and Glutamate Metabolism Identified by Metabolomics in an In Vitro Model of Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Veyrat-Durebex, Charlotte; Corcia, Philippe; Piver, Eric; Devos, David; Dangoumau, Audrey; Gouel, Flore; Vourc'h, Patrick; Emond, Patrick; Laumonnier, Frédéric; Nadal-Desbarats, Lydie; Gordon, Paul H; Andres, Christian R; Blasco, Hélène

    2016-12-01

    This study aims to develop a cellular metabolomics model that reproduces the pathophysiological conditions found in amyotrophic lateral sclerosis in order to improve knowledge of disease physiology. We used a co-culture model combining the motor neuron-like cell line NSC-34 and the astrocyte clone C8-D1A, with each over-expressing wild-type or G93C mutant human SOD1, to examine amyotrophic lateral sclerosis (ALS) physiology. We focused on the effects of mutant human SOD1 as well as oxidative stress induced by menadione on intracellular metabolism using a metabolomics approach through gas chromatography coupled with mass spectrometry (GC-MS) analysis. Preliminary non-supervised analysis by Principal Component Analysis (PCA) revealed that cell type, genetic environment, and time of culture influenced the metabolomics profiles. Supervised analysis using orthogonal partial least squares discriminant analysis (OPLS-DA) on data from intracellular metabolomics profiles of SOD1 G93C co-cultures produced metabolites involved in glutamate metabolism and the tricarboxylic acid cycle (TCA) cycle. This study revealed the feasibility of using a metabolomics approach in a cellular model of ALS. We identified potential disruption of the TCA cycle and glutamate metabolism under oxidative stress, which is consistent with prior research in the disease. Analysis of metabolic alterations in an in vitro model is a novel approach to investigation of disease physiology.

  16. Noninvasive analysis of metabolic changes following nutrient input into diverse fish species, as investigated by metabolic and microbial profiling approaches

    Directory of Open Access Journals (Sweden)

    Taiga Asakura

    2014-10-01

    Full Text Available An NMR-based metabolomic approach in aquatic ecosystems is valuable for studying the environmental effects of pharmaceuticals and other chemicals on fish. This technique has also contributed to new information in numerous research areas, such as basic physiology and development, disease, and water pollution. We evaluated the microbial diversity in various fish species collected from Japan’s coastal waters using next-generation sequencing, followed by evaluation of the effects of feed type on co-metabolic modulations in fish-microbial symbiotic ecosystems in laboratory-scale experiments. Intestinal bacteria of fish in their natural environment were characterized (using 16S rRNA genes for trophic level using pyrosequencing and noninvasive sampling procedures developed to study the metabolism of intestinal symbiotic ecosystems in fish reared in their environment. Metabolites in feces were compared, and intestinal contents and feed were annotated based on HSQC and TOCSY using SpinAssign and network analysis. Feces were characterized by species and varied greatly depending on the feeding types. In addition, feces samples demonstrated a response to changes in the time series of feeding. The potential of this approach as a non-invasive inspection technique in aquaculture is suggested.

  17. Postprandial metabolomics: A pilot mass spectrometry and NMR study of the human plasma metabolome in response to a challenge meal

    Energy Technology Data Exchange (ETDEWEB)

    Karimpour, Masoumeh; Surowiec, Izabella; Wu, Junfang [Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, 90187 Umeå (Sweden); Gouveia-Figueira, Sandra [Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, 90187 Umeå (Sweden); Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå (Sweden); Pinto, Rui [Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, 90187 Umeå (Sweden); Bioinformatics Infrastructure for Life Sciences (Sweden); Trygg, Johan [Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, 90187 Umeå (Sweden); Zivkovic, Angela M. [Department of Nutrition, University of California, Davis, One Shields Ave, CA 95616 (United States); Nording, Malin L., E-mail: malin.nording@umu.se [Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, 90187 Umeå (Sweden)

    2016-02-18

    The study of postprandial metabolism is relevant for understanding metabolic diseases and characterizing personal responses to diet. We combined three analytical platforms – gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) – to validate a multi-platform approach for characterizing individual variation in the postprandial state. We analyzed the postprandial plasma metabolome by introducing, at three occasions, meal challenges on a usual diet, and 1.5 years later, on a modified background diet. The postprandial response was stable over time and largely independent of the background diet as revealed by all three analytical platforms. Coverage of the metabolome between NMR and GC-MS included more polar metabolites detectable only by NMR and more hydrophobic compounds detected by GC-MS. The variability across three separate testing occasions among the identified metabolites was in the range of 1.1–86% for GC-MS and 0.9–42% for NMR in the fasting state at baseline. For the LC-MS analysis, the coefficients of variation of the detected compounds in the fasting state at baseline were in the range of 2–97% for the positive and 4–69% for the negative mode. Multivariate analysis (MVA) of metabolites detected with GC-MS revealed that for both background diets, levels of postprandial amino acids and sugars increased whereas those of fatty acids decreased at 0.5 h after the meal was consumed, reflecting the expected response to the challenge meal. MVA of NMR data revealed increasing postprandial levels of amino acids and other organic acids together with decreasing levels of acetoacetate and 3-hydroxybutanoic acid, also independent of the background diet. Together these data show that the postprandial response to the same challenge meal was stable even though it was tested 1.5 years apart, and that it was largely independent of background diet. This work demonstrates the efficacy of a

  18. Postprandial metabolomics: A pilot mass spectrometry and NMR study of the human plasma metabolome in response to a challenge meal

    International Nuclear Information System (INIS)

    Karimpour, Masoumeh; Surowiec, Izabella; Wu, Junfang; Gouveia-Figueira, Sandra; Pinto, Rui; Trygg, Johan; Zivkovic, Angela M.; Nording, Malin L.

    2016-01-01

    The study of postprandial metabolism is relevant for understanding metabolic diseases and characterizing personal responses to diet. We combined three analytical platforms – gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) – to validate a multi-platform approach for characterizing individual variation in the postprandial state. We analyzed the postprandial plasma metabolome by introducing, at three occasions, meal challenges on a usual diet, and 1.5 years later, on a modified background diet. The postprandial response was stable over time and largely independent of the background diet as revealed by all three analytical platforms. Coverage of the metabolome between NMR and GC-MS included more polar metabolites detectable only by NMR and more hydrophobic compounds detected by GC-MS. The variability across three separate testing occasions among the identified metabolites was in the range of 1.1–86% for GC-MS and 0.9–42% for NMR in the fasting state at baseline. For the LC-MS analysis, the coefficients of variation of the detected compounds in the fasting state at baseline were in the range of 2–97% for the positive and 4–69% for the negative mode. Multivariate analysis (MVA) of metabolites detected with GC-MS revealed that for both background diets, levels of postprandial amino acids and sugars increased whereas those of fatty acids decreased at 0.5 h after the meal was consumed, reflecting the expected response to the challenge meal. MVA of NMR data revealed increasing postprandial levels of amino acids and other organic acids together with decreasing levels of acetoacetate and 3-hydroxybutanoic acid, also independent of the background diet. Together these data show that the postprandial response to the same challenge meal was stable even though it was tested 1.5 years apart, and that it was largely independent of background diet. This work demonstrates the efficacy of a

  19. MBRole: enrichment analysis of metabolomic data.

    Science.gov (United States)

    Chagoyen, Monica; Pazos, Florencio

    2011-03-01

    While many tools exist for performing enrichment analysis of transcriptomic and proteomic data in order to interpret them in biological terms, almost no equivalent tools exist for metabolomic data. We present Metabolite Biological Role (MBRole), a web server for carrying out over-representation analysis of biological and chemical annotations in arbitrary sets of metabolites (small chemical compounds) coming from metabolomic data of any organism or sample. The web server is freely available at http://csbg.cnb.csic.es/mbrole. It was tested in the main web browsers.

  20. Alcohol induced alterations to the human fecal VOC metabolome.

    Directory of Open Access Journals (Sweden)

    Robin D Couch

    Full Text Available Studies have shown that excessive alcohol consumption impacts the intestinal microbiota composition, causing disruption of homeostasis (dysbiosis. However, this observed change is not indicative of the dysbiotic intestinal microbiota function that could result in the production of injurious and toxic products. Thus, knowledge of the effects of alcohol on the intestinal microbiota function and their metabolites is warranted, in order to better understand the role of the intestinal microbiota in alcohol associated organ failure. Here, we report the results of a differential metabolomic analysis comparing volatile organic compounds (VOC detected in the stool of alcoholics and non-alcoholic healthy controls. We performed the analysis with fecal samples collected after passage as well as with samples collected directly from the sigmoid lumen. Regardless of the approach to fecal collection, we found a stool VOC metabolomic signature in alcoholics that is different from healthy controls. The most notable metabolite alterations in the alcoholic samples include: (1 an elevation in the oxidative stress biomarker tetradecane; (2 a decrease in five fatty alcohols with anti-oxidant property; (3 a decrease in the short chain fatty acids propionate and isobutyrate, important in maintaining intestinal epithelial cell health and barrier integrity; (4 a decrease in alcohol consumption natural suppressant caryophyllene; (5 a decrease in natural product and hepatic steatosis attenuator camphene; and (6 decreased dimethyl disulfide and dimethyl trisulfide, microbial products of decomposition. Our results showed that intestinal microbiota function is altered in alcoholics which might promote alcohol associated pathologies.

  1. Perinatal asphyxia: a review from a metabolomics perspective.

    Science.gov (United States)

    Fattuoni, Claudia; Palmas, Francesco; Noto, Antonio; Fanos, Vassilios; Barberini, Luigi

    2015-04-17

    Perinatal asphyxia is defined as an oxygen deprivation that occurs around the time of birth, and may be caused by several perinatal events. This medical condition affects some four million neonates worldwide per year, causing the death of one million subjects. In most cases, infants successfully recover from hypoxia episodes; however, some patients may develop HIE, leading to permanent neurological conditions or impairment of different organs and systems. Given its multifactor dependency, the timing, severity and outcome of this disease, mainly assessed through Sarnat staging, are of difficult evaluation. Moreover, although the latest newborn resuscitation guideline suggests the use of a 21% oxygen concentration or room air, such an approach is still under debate. Therefore, the pathological mechanism is still not clear and a golden standard treatment has yet to be defined. In this context, metabolomics, a new discipline that has described important perinatal issues over the last years, proved to be a useful tool for the monitoring, the assessment, and the identification of potential biomarkers associated with asphyxia events. This review covers metabolomics research on perinatal asphyxia condition, examining in detail the studies reported both on animal and human models.

  2. Circadian variation of the human metabolome captured by real-time breath analysis.

    Directory of Open Access Journals (Sweden)

    Pablo Martinez-Lozano Sinues

    Full Text Available Circadian clocks play a significant role in the correct timing of physiological metabolism, and clock disruption might lead to pathological changes of metabolism. One interesting method to assess the current state of metabolism is metabolomics. Metabolomics tries to capture the entirety of small molecules, i.e. the building blocks of metabolism, in a given matrix, such as blood, saliva or urine. Using mass spectrometric approaches we and others have shown that a significant portion of the human metabolome in saliva and blood exhibits circadian modulation; independent of food intake or sleep/wake rhythms. Recent advances in mass spectrometry techniques have introduced completely non-invasive breathprinting; a method to instantaneously assess small metabolites in human breath. In this proof-of-principle study, we extend these findings about the impact of circadian clocks on metabolomics to exhaled breath. As previously established, our method allows for real-time analysis of a rich matrix during frequent non-invasive sampling. We sampled the breath of three healthy, non-smoking human volunteers in hourly intervals for 24 hours during total sleep deprivation, and found 111 features in the breath of all individuals, 36-49% of which showed significant circadian variation in at least one individual. Our data suggest that real-time mass spectrometric "breathprinting" has high potential to become a useful tool to understand circadian metabolism, and develop new biomarkers to easily and in real-time assess circadian clock phase and function in experimental and clinical settings.

  3. High Aerobic Capacity Mitigates Changes in the Plasma Metabolomic Profile Associated with Aging.

    Science.gov (United States)

    Falegan, Oluyemi S; Vogel, Hans J; Hittel, Dustin S; Koch, Lauren G; Britton, Steven L; Hepple, Russ T; Shearer, Jane

    2017-02-03

    Advancing age is associated with declines in maximal oxygen consumption. Declines in aerobic capacity not only contribute to the aging process but also are an independent risk factor for morbidity, cardiovascular disease, and all-cause mortality. Although statistically convincing, the relationships between aerobic capacity, aging, and disease risk remain largely unresolved. To this end, we employed sensitive, system-based metabolomics approach to determine whether enhanced aerobic capacity could mitigate some of the changes seen in the plasma metabolomic profile associated with aging. Metabolomic profiles of plasma samples obtained from young (13 month) and old (26 month) rats bred for low (LCR) or high (HCR) running capacity using proton nuclear magnetic resonance spectroscopy ( 1 H NMR) were examined. Results demonstrated strong profile separation in old and low aerobic capacity rats, whereas young and high aerobic capacity rat models were less predictive. Significantly differential metabolites between the groups include taurine, acetone, valine, and trimethylamine-N-oxide among other metabolites, specifically citrate, succinate, isovalerate, and proline, were differentially increased in older HCR animals compared with their younger counterparts. When interactions between age and aerobic capacity were examined, results demonstrated that enhanced aerobic capacity could mitigate some but not all age-associated alterations in the metabolomic profile.

  4. Microbial metabolomics in open microscale platforms

    Science.gov (United States)

    Barkal, Layla J.; Theberge, Ashleigh B.; Guo, Chun-Jun; Spraker, Joe; Rappert, Lucas; Berthier, Jean; Brakke, Kenneth A.; Wang, Clay C. C.; Beebe, David J.; Keller, Nancy P.; Berthier, Erwin

    2016-01-01

    The microbial secondary metabolome encompasses great synthetic diversity, empowering microbes to tune their chemical responses to changing microenvironments. Traditional metabolomics methods are ill-equipped to probe a wide variety of environments or environmental dynamics. Here we introduce a class of microscale culture platforms to analyse chemical diversity of fungal and bacterial secondary metabolomes. By leveraging stable biphasic interfaces to integrate microculture with small molecule isolation via liquid–liquid extraction, we enable metabolomics-scale analysis using mass spectrometry. This platform facilitates exploration of culture microenvironments (including rare media typically inaccessible using established methods), unusual organic solvents for metabolite isolation and microbial mutants. Utilizing Aspergillus, a fungal genus known for its rich secondary metabolism, we characterize the effects of culture geometry and growth matrix on secondary metabolism, highlighting the potential use of microscale systems to unlock unknown or cryptic secondary metabolites for natural products discovery. Finally, we demonstrate the potential for this class of microfluidic systems to study interkingdom communication between fungi and bacteria. PMID:26842393

  5. Chemometrics Methods and Strategies in Metabolomics.

    Science.gov (United States)

    Pinto, Rui Climaco

    2017-01-01

    Chemometrics has been a fundamental discipline for the development of metabolomics, while symbiotically growing with it. From design of experiments, through data processing, to data analysis, chemometrics tools are used to design, process, visualize, explore and analyse metabolomics data.In this chapter, the most commonly used chemometrics methods for data analysis and interpretation of metabolomics experiments will be presented, with focus on multivariate analysis. These are projection-based linear methods, like principal component analysis (PCA) and orthogonal projection to latent structures (OPLS), which facilitate interpretation of the causes behind the observed sample trends, correlation with outcomes or group discrimination analysis. Validation procedures for multivariate methods will be presented and discussed.Univariate analysis is briefly discussed in the context of correlation-based linear regression methods to find associations to outcomes or in analysis of variance-based and logistic regression methods for class discrimination. These methods rely on frequentist statistics, with the determination of p-values and corresponding multiple correction procedures.Several strategies of design-analysis of metabolomics experiments will be discussed, in order to guide the reader through different setups, adopted to better address some experimental issues and to better test the scientific hypotheses.

  6. Analyzing metabolomics-based challenge test

    NARCIS (Netherlands)

    Vis, D.J.; Westerhuis, J.A.; Jacobs, D.M.; van Duynhoven, J.P.M.; Wopereis, S.; van Ommen, B.; Hendriks, M.M.W.B.; Smilde, A.K.

    2015-01-01

    Challenge tests are used to assess the resilience of human beings to perturbations by analyzing responses to detect functional abnormalities. Well known examples are allergy tests and glucose tolerance tests. Increasingly, metabolomics analysis of blood or serum samples is used to analyze the

  7. Data-processing strategies for metabolomics studies

    NARCIS (Netherlands)

    Hendriks, M.M.W.B.; Eeuwijk, van F.A.; Jellema, R.H.; Westerhuis, J.A.; Reijmers, T.H.; Hoefsloot, H.C.J.; Smilde, A.K.

    2011-01-01

    Metabolomics studies aim at a better understanding of biochemical processes by studying relations between metabolites and between metabolites and other types of information (e.g., sensory and phenotypic features). The objectives of these studies are diverse, but the types of data generated and the

  8. SWATHtoMRM: Development of High-Coverage Targeted Metabolomics Method Using SWATH Technology for Biomarker Discovery.

    Science.gov (United States)

    Zha, Haihong; Cai, Yuping; Yin, Yandong; Wang, Zhuozhong; Li, Kang; Zhu, Zheng-Jiang

    2018-03-02

    The complexity of metabolome presents a great analytical challenge for quantitative metabolite profiling, and restricts the application of metabolomics in biomarker discovery. Targeted metabolomics using multiple-reaction monitoring (MRM) technique has excellent capability for quantitative analysis, but suffers from the limited metabolite coverage. To address this challenge, we developed a new strategy, namely, SWATHtoMRM, which utilizes the broad coverage of SWATH-MS technology to develop high-coverage targeted metabolomics method. Specifically, SWATH-MS technique was first utilized to untargeted profile one pooled biological sample and to acquire the MS 2 spectra for all metabolites. Then, SWATHtoMRM was used to extract the large-scale MRM transitions for targeted analysis with coverage as high as 1000-2000 metabolites. Then, we demonstrated the advantages of SWATHtoMRM method in quantitative analysis such as coverage, reproducibility, sensitivity, and dynamic range. Finally, we applied our SWATHtoMRM approach to discover potential metabolite biomarkers for colorectal cancer (CRC) diagnosis. A high-coverage targeted metabolomics method with 1303 metabolites in one injection was developed to profile colorectal cancer tissues from CRC patients. A total of 20 potential metabolite biomarkers were discovered and validated for CRC diagnosis. In plasma samples from CRC patients, 17 out of 20 potential biomarkers were further validated to be associated with tumor resection, which may have a great potential in assessing the prognosis of CRC patients after tumor resection. Together, the SWATHtoMRM strategy provides a new way to develop high-coverage targeted metabolomics method, and facilitates the application of targeted metabolomics in disease biomarker discovery. The SWATHtoMRM program is freely available on the Internet ( http://www.zhulab.cn/software.php ).

  9. Metabolomic Identification of Subtypes of Nonalcoholic Steatohepatitis.

    Science.gov (United States)

    Alonso, Cristina; Fernández-Ramos, David; Varela-Rey, Marta; Martínez-Arranz, Ibon; Navasa, Nicolás; Van Liempd, Sebastiaan M; Lavín Trueba, José L; Mayo, Rebeca; Ilisso, Concetta P; de Juan, Virginia G; Iruarrizaga-Lejarreta, Marta; delaCruz-Villar, Laura; Mincholé, Itziar; Robinson, Aaron; Crespo, Javier; Martín-Duce, Antonio; Romero-Gómez, Manuel; Sann, Holger; Platon, Julian; Van Eyk, Jennifer; Aspichueta, Patricia; Noureddin, Mazen; Falcón-Pérez, Juan M; Anguita, Juan; Aransay, Ana M; Martínez-Chantar, María Luz; Lu, Shelly C; Mato, José M

    2017-05-01

    Nonalcoholic fatty liver disease (NAFLD) is a consequence of defects in diverse metabolic pathways that involve hepatic accumulation of triglycerides. Features of these aberrations might determine whether NAFLD progresses to nonalcoholic steatohepatitis (NASH). We investigated whether the diverse defects observed in patients with NAFLD are caused by different NAFLD subtypes with specific serum metabolomic profiles, and whether these can distinguish patients with NASH from patients with simple steatosis. We collected liver and serum from methionine adenosyltransferase 1a knockout (MAT1A-KO) mice, which have chronically low levels of hepatic S-adenosylmethionine (SAMe) and spontaneously develop steatohepatitis, as well as C57Bl/6 mice (controls); the metabolomes of all samples were determined. We also analyzed serum metabolomes of 535 patients with biopsy-proven NAFLD (353 with simple steatosis and 182 with NASH) and compared them with serum metabolomes of mice. MAT1A-KO mice were also given SAMe (30 mg/kg/day for 8 weeks); liver samples were collected and analyzed histologically for steatohepatitis. Livers of MAT1A-KO mice were characterized by high levels of triglycerides, diglycerides, fatty acids, ceramides, and oxidized fatty acids, as well as low levels of SAMe and downstream metabolites. There was a correlation between liver and serum metabolomes. We identified a serum metabolomic signature associated with MAT1A-KO mice that also was present in 49% of the patients; based on this signature, we identified 2 NAFLD subtypes. We identified specific panels of markers that could distinguish patients with NASH from patients with simple steatosis for each subtype of NAFLD. Administration of SAMe reduced features of steatohepatitis in MAT1A-KO mice. In an analysis of serum metabolomes of patients with NAFLD and MAT1A-KO mice with steatohepatitis, we identified 2 major subtypes of NAFLD and markers that differentiate steatosis from NASH in each subtype. These might be

  10. Independent component analysis in non-hypothesis driven metabolomics

    DEFF Research Database (Denmark)

    Li, Xiang; Hansen, Jakob; Zhao, Xinjie

    2012-01-01

    components were involved in fuel metabolism, representing one of the most affected metabolic changes occurring in exercising humans. Conclusive time dependent physiological changes of the metabolic pattern under exercise conditions were detected. We conclude that after optimization ICA can successfully......In a non-hypothesis driven metabolomics approach plasma samples collected at six different time points (before, during and after an exercise bout) were analyzed by gas chromatography-time of flight mass spectrometry (GC-TOF MS). Since independent component analysis (ICA) does not need a priori...... information on the investigated process and moreover can separate statistically independent source signals with non-Gaussian distribution, we aimed to elucidate the analytical power of ICA for the metabolic pattern analysis and the identification of key metabolites in this exercise study. A novel approach...

  11. Quantitative metabolomics based on gas chromatography mass spectrometry: Status and perspectives

    NARCIS (Netherlands)

    Koek, M.M.; Jellema, R.H.; Greef, J. van der; Tas, A.C.; Hankemeier, T.

    2011-01-01

    Metabolomics involves the unbiased quantitative and qualitative analysis of the complete set of metabolites present in cells, body fluids and tissues (the metabolome). By analyzing differences between metabolomes using biostatistics (multivariate data analysis; pattern recognition), metabolites

  12. Metabolomics of Clostridial Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Rabinowitz, Joshua D [Princeton Univ., NJ (United States); Aristilde, Ludmilla [Cornell Univ., Ithaca, NY (United States); Amador-Noguez, Daniel [Univ. of Wisconsin, Madison, WI (United States)

    2015-09-08

    Members of the genus Clostridium collectively have the ideal set of the metabolic capabilities for fermentative biofuel production: cellulose degradation, hydrogen production, and solvent excretion. No single organism, however, can effectively convert cellulose into biofuels. Here we developed, using metabolomics and isotope tracers, basic science knowledge of Clostridial metabolism of utility for future efforts to engineer such an organism. In glucose fermentation carried out by the biofuel producer Clostridium acetobutylicum, we observed a remarkably ordered series of metabolite concentration changes as the fermentation progressed from acidogenesis to solventogenesis. In general, high-energy compounds decreased while low-energy species increased during solventogenesis. These changes in metabolite concentrations were accompanied by large changes in intracellular metabolic fluxes, with pyruvate directed towards acetyl-CoA and solvents instead of oxaloacetate and amino acids. Thus, the solventogenic transition involves global remodeling of metabolism to redirect resources from biomass production into solvent production. In contrast to C. acetobutylicum, which is an avid fermenter, C. cellulolyticum metabolizes glucose only slowly. We find that glycolytic intermediate concentrations are radically different from fast fermenting organisms. Associated thermodynamic and isotope tracer analysis revealed that the full glycolytic pathway in C. cellulolyticum is reversible. This arises from changes in cofactor utilization for phosphofructokinase and an alternative pathway from phosphoenolpyruvate to pyruvate. The net effect is to increase the high-energy phosphate bond yield of glycolysis by 150% (from 2 to 5) at the expense of lower net flux. Thus, C. cellulolyticum prioritizes glycolytic energy efficiency over speed. Degradation of cellulose results in other sugars in addition to glucose. Simultaneous feeding of stable isotope-labeled glucose and unlabeled pentose sugars

  13. Urinary metabolomic profiling in mice with diet-induced obesity and type 2 diabetes mellitus after treatment with metformin, vildagliptin and their combination.

    Science.gov (United States)

    Pelantová, Helena; Bugáňová, Martina; Holubová, Martina; Šedivá, Blanka; Zemenová, Jana; Sýkora, David; Kaválková, Petra; Haluzík, Martin; Železná, Blanka; Maletínská, Lenka; Kuneš, Jaroslav; Kuzma, Marek

    2016-08-15

    Metformin, vildagliptin and their combination are widely used for the treatment of diabetes, but little is known about the metabolic responses to these treatments. In the present study, NMR-based metabolomics was applied to detect changes in the urinary metabolomic profile of a mouse model of diet-induced obesity in response to these treatments. Additionally, standard biochemical parameters and the expression of enzymes involved in glucose and fat metabolism were monitored. Significant correlations were observed between several metabolites (e.g., N-carbamoyl-β-alanine, N1-methyl-4-pyridone-3-carboxamide, N1-methyl-2-pyridone-5-carboxamide, glucose, 3-indoxyl sulfate, dimethylglycine and several acylglycines) and the area under the curve of glucose concentrations during the oral glucose tolerance test. The present study is the first to present N-carbamoyl-β-alanine as a potential marker of type 2 diabetes mellitus and consequently to demonstrate the efficacies of the applied antidiabetic interventions. Moreover, the elevated acetate level observed after vildagliptin administration might reflect increased fatty acid oxidation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Analysis of metabolomic data: tools, current strategies and future challenges for omics data integration.

    Science.gov (United States)

    Cambiaghi, Alice; Ferrario, Manuela; Masseroli, Marco

    2017-05-01

    Metabolomics is a rapidly growing field consisting of the analysis of a large number of metabolites at a system scale. The two major goals of metabolomics are the identification of the metabolites characterizing each organism state and the measurement of their dynamics under different situations (e.g. pathological conditions, environmental factors). Knowledge about metabolites is crucial for the understanding of most cellular phenomena, but this information alone is not sufficient to gain a comprehensive view of all the biological processes involved. Integrated approaches combining metabolomics with transcriptomics and proteomics are thus required to obtain much deeper insights than any of these techniques alone. Although this information is available, multilevel integration of different 'omics' data is still a challenge. The handling, processing, analysis and integration of these data require specialized mathematical, statistical and bioinformatics tools, and several technical problems hampering a rapid progress in the field exist. Here, we review four main tools for number of users or provided features (MetaCoreTM, MetaboAnalyst, InCroMAP and 3Omics) out of the several available for metabolomic data analysis and integration with other 'omics' data, highlighting their strong and weak aspects; a number of related issues affecting data analysis and integration are also identified and discussed. Overall, we provide an objective description of how some of the main currently available software packages work, which may help the experimental practitioner in the choice of a robust pipeline for metabolomic data analysis and integration. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Stoichiometric Correlation Analysis: Principles of Metabolic Functionality from Metabolomics Data

    Directory of Open Access Journals (Sweden)

    Kevin Schwahn

    2017-12-01

    Full Text Available Recent advances in metabolomics technologies have resulted in high-quality (time-resolved metabolic profiles with an increasing coverage of metabolic pathways. These data profiles represent read-outs from often non-linear dynamics of metabolic networks. Yet, metabolic profiles have largely been explored with regression-based approaches that only capture linear relationships, rendering it difficult to determine the extent to which the data reflect the underlying reaction rates and their couplings. Here we propose an approach termed Stoichiometric Correlation Analysis (SCA based on correlation between positive linear combinations of log-transformed metabolic profiles. The log-transformation is due to the evidence that metabolic networks can be modeled by mass action law and kinetics derived from it. Unlike the existing approaches which establish a relation between pairs of metabolites, SCA facilitates the discovery of higher-order dependence between more than two metabolites. By using a paradigmatic model of the tricarboxylic acid cycle we show that the higher-order dependence reflects the coupling of concentration of reactant complexes, capturing the subtle difference between the employed enzyme kinetics. Using time-resolved metabolic profiles from Arabidopsis thaliana and Escherichia coli, we show that SCA can be used to quantify the difference in coupling of reactant complexes, and hence, reaction rates, underlying the stringent response in these model organisms. By using SCA with data from natural variation of wild and domesticated wheat and tomato accession, we demonstrate that the domestication is accompanied by loss of such couplings, in these species. Therefore, application of SCA to metabolomics data from natural variation in wild and domesticated populations provides a mechanistic way to understanding domestication and its relation to metabolic networks.

  16. Covering Chemical Diversity of Genetically-Modified Tomatoes Using Metabolomics for Objective Substantial Equivalence Assessment

    Science.gov (United States)

    Hirai, Tadayoshi; Oikawa, Akira; Matsuda, Fumio; Fukushima, Atsushi; Arita, Masanori; Watanabe, Shin; Yano, Megumu; Hiwasa-Tanase, Kyoko; Ezura, Hiroshi; Saito, Kazuki

    2011-01-01

    As metabolomics can provide a biochemical snapshot of an organism's phenotype it is a promising approach for charting the unintended effects of genetic modification. A critical obstacle for this application is the inherently limited metabolomic coverage of any single analytical platform. We propose using multiple analytical platforms for the direct acquisition of an interpretable data set of estimable chemical diversity. As an example, we report an application of our multi-platform approach that assesses the substantial equivalence of tomatoes over-expressing the taste-modifying protein miraculin. In combination, the chosen platforms detected compounds that represent 86% of the estimated chemical diversity of the metabolites listed in the LycoCyc database. Following a proof-of-safety approach, we show that % had an acceptable range of variation while simultaneously indicating a reproducible transformation-related metabolic signature. We conclude that multi-platform metabolomics is an approach that is both sensitive and robust and that it constitutes a good starting point for characterizing genetically modified organisms. PMID:21359231

  17. Integration of datasets from different analytical techniques to assess the impact of nutrition on human metabolome

    Directory of Open Access Journals (Sweden)

    Pamela eVernocchi

    2012-12-01

    Full Text Available Bacteria colonizing the human intestinal tract exhibit a high phylogenetic diversity that reflects their immense metabolic potentials. The catalytic activity of gut microbes has an important impact on gastrointestinal (GI functions and host health. The microbial conversion of carbohydrates and other food components leads to the formation of a large number of compounds that affect the host metabolome and have beneficial or adverse effects on human health. Meabolomics is a metabolic-biology system approach focused on the metabolic responses understanding of living systems to physio-pathological stimuli by using multivariate statistical data on human body fluids obtained by different instrumental techniques. A metabolomic approach based on an analytical platform could be able to separate, detect, characterize and quantify a wide range of metabolites and its metabolic pathways. This approach has been recently applied to study the metabolic changes triggered in the gut microbiota by specific diet components and diet variations, specific diseases, probiotic and synbiotic food intake.This review describes the metabolomic data obtained by analyzing human fluids by using different techniques and particularly Gas Chromatography Mass Spectrometry Solid-phase Micro Extraction (GC-MS/SPME, Proton Nuclear Magnetic Resonance (1H-NMR Spectroscopy and Fourier Transform Infrared (FTIR Spectroscopy. This instrumental approach have a good potential in the identification and detection of specific food intake and diseases biomarkers.

  18. Binary similarity measures for fingerprint analysis of qualitative metabolomic profiles.

    Science.gov (United States)

    Rácz, Anita; Andrić, Filip; Bajusz, Dávid; Héberger, Károly

    2018-01-01

    Contemporary metabolomic fingerprinting is based on multiple spectrometric and chromatographic signals, used either alone or combined with structural and chemical information of metabolic markers at the qualitative and semiquantitative level. However, signal shifting, convolution, and matrix effects may compromise metabolomic patterns. Recent increase in the use of qualitative metabolomic data, described by the presence (1) or absence (0) of particular metabolites, demonstrates great potential in the field of metabolomic profiling and fingerprint analysis. The aim of this study is a comprehensive evaluation of binary similarity measures for the elucidation of patterns among samples of different botanical origin and various metabolomic profiles. Nine qualitative metabolomic data sets covering a wide range of natural products and metabolomic profiles were applied to assess 44 binary similarity measures for the fingerprinting of plant extracts and natural products. The measures were analyzed by the novel sum of ranking differences method (SRD), searching for the most promising candidates. Baroni-Urbani-Buser (BUB) and Hawkins-Dotson (HD) similarity coefficients were selected as the best measures by SRD and analysis of variance (ANOVA), while Dice (Di1), Yule, Russel-Rao, and Consonni-Todeschini 3 ranked the worst. ANOVA revealed that concordantly and intermediately symmetric similarity coefficients are better candidates for metabolomic fingerprinting than the asymmetric and correlation based ones. The fingerprint analysis based on the BUB and HD coefficients and qualitative metabolomic data performed equally well as the quantitative metabolomic profile analysis. Fingerprint analysis based on the qualitative metabolomic profiles and binary similarity measures proved to be a reliable way in finding the same/similar patterns in metabolomic data as that extracted from quantitative data.

  19. Metabolomics-Driven Nutraceutical Evaluation of Diverse Green Tea Cultivars

    OpenAIRE

    Fujimura, Yoshinori; Kurihara, Kana; Ida, Megumi; Kosaka, Reia; Miura, Daisuke; Wariishi, Hiroyuki; Maeda-Yamamoto, Mari; Nesumi, Atsushi; Saito, Takeshi; Kanda, Tomomasa; Yamada, Koji; Tachibana, Hirofumi

    2011-01-01

    BACKGROUND: Green tea has various health promotion effects. Although there are numerous tea cultivars, little is known about the differences in their nutraceutical properties. Metabolic profiling techniques can provide information on the relationship between the metabolome and factors such as phenotype or quality. Here, we performed metabolomic analyses to explore the relationship between the metabolome and health-promoting attributes (bioactivity) of diverse Japanese green tea cultivars. MET...

  20. Proteomics and metabolomics for mechanistic insights and biomarker discovery in cardiovascular disease.

    Science.gov (United States)

    Barallobre-Barreiro, Javier; Chung, Yuen-Li; Mayr, Manuel

    2013-08-01

    In the last decade, proteomics and metabolomics have contributed substantially to our understanding of cardiovascular diseases. The unbiased assessment of pathophysiological processes without a priori assumptions complements other molecular biology techniques that are currently used in a reductionist approach. In this review, we highlight some of the "omics" methods used to assess protein and metabolite changes in cardiovascular disease. A discrete biological function is very rarely attributed to a single molecule; more often it is the combined input of many proteins. In contrast to the reductionist approach, in which molecules are studied individually, "omics" platforms allow the study of more complex interactions in biological systems. Combining proteomics and metabolomics to quantify changes in metabolites and their corresponding enzymes will advance our understanding of pathophysiological mechanisms and aid the identification of novel biomarkers for cardiovascular disease. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  1. Human gut microbes impact host serum metabolome and insulin sensitivity

    DEFF Research Database (Denmark)

    Pedersen, Helle Krogh; Gudmundsdottir, Valborg; Nielsen, Henrik Bjørn

    2016-01-01

    Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin-resistant individ......Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin...

  2. Metabolomics reveals distinct neurochemical profiles associated with stress resilience

    Directory of Open Access Journals (Sweden)

    Brooke N. Dulka

    2017-12-01

    Full Text Available Acute social defeat represents a naturalistic form of conditioned fear and is an excellent model in which to investigate the biological basis of stress resilience. While there is growing interest in identifying biomarkers of stress resilience, until recently, it has not been feasible to associate levels of large numbers of neurochemicals and metabolites to stress-related phenotypes. The objective of the present study was to use an untargeted metabolomics approach to identify known and unknown neurochemicals in select brain regions that distinguish susceptible and resistant individuals in two rodent models of acute social defeat. In the first experiment, male mice were first phenotyped as resistant or susceptible. Then, mice were subjected to acute social defeat, and tissues were immediately collected from the ventromedial prefrontal cortex (vmPFC, basolateral/central amygdala (BLA/CeA, nucleus accumbens (NAc, and dorsal hippocampus (dHPC. Ultra-high performance liquid chromatography coupled with high resolution mass spectrometry (UPLC-HRMS was used for the detection of water-soluble neurochemicals. In the second experiment, male Syrian hamsters were paired in daily agonistic encounters for 2 weeks, during which they formed stable dominant-subordinate relationships. Then, 24 h after the last dominance encounter, animals were exposed to acute social defeat stress. Immediately after social defeat, tissue was collected from the vmPFC, BLA/CeA, NAc, and dHPC for analysis using UPLC-HRMS. Although no single biomarker characterized stress-related phenotypes in both species, commonalities were found. For instance, in both model systems, animals resistant to social defeat stress also show increased concentration of molecules to protect against oxidative stress in the NAc and vmPFC. Additionally, in both mice and hamsters, unidentified spectral features were preliminarily annotated as potential targets for future experiments. Overall, these findings

  3. Metabolomics (liver and blood profiling) in a mouse model in response to fasting: A study of hepatic steatosis

    NARCIS (Netherlands)

    Ginneken, V. van; Verhey, E.; Poelmann, R.; Ramakers, R.; Dijk, K.W. van; Ham, L.; Voshol, P.; Havekes, L.; Eck, M. van; Greef, J. van der

    2007-01-01

    A metabolomic approach was applied to a mouse model of starvation-induced hepatic steatosis. After 24 h of fasting it appears that starvation reduced the phospholipids (PL), free cholesterol (FC), and cholesterol esters (CE) content of low-density lipoproteins (LDL). In liver lipid profiles major

  4. Eicosapentaenoic acid prevents high fat diet-induced metabolic disorders: Genomic and metabolomic analyses of underlying mechanism

    Science.gov (United States)

    Previously our lab demonstrated eicosapenaenoic acid (EPA)'s ability to prevent high-fat (HF) diet-induced obesity by decreasing insulin resistance, glucose intolerance and inflammation. In the current study, we used genomic and metabolomic approaches to further investigate the molecular basis for t...

  5. Metabolomic Profiling of Soybeans (Glycine Max L.) Reveals Importance of Sugar and Nitogen Metabolisms under Drought and Heat Stress

    Science.gov (United States)

    Soybean, an important legume crop, is continually threatened by abiotic stresses, especially drought and heat stress. At molecular levels, reduced yields due to drought and heat stress can be seen in the alterations of metabolic homeostasis of vegetative tissues. A global metabolomics approach can b...

  6. Monolithic silica-based capillary reversed-phase liquid chromatography/electrospray mass spectrometry for plant metabolomics

    NARCIS (Netherlands)

    Tolstikov, V.V.; Lommen, A.; Nakanishi, K.; Tanaka, N.; Fiehn, O.

    2003-01-01

    Application of C18 monolithic silica capillary columns in HPLC coupled to ion trap mass spectrometry detection was studied for probing the metabolome of the model plant Arabidopsis thaliana. It could be shown that the use of a long capillary column is an easy and effective approach to reduce

  7. Integration of metabolome data with metabolic networks reveals reporter reactions

    DEFF Research Database (Denmark)

    Çakir, Tunahan; Patil, Kiran Raosaheb; Önsan, Zeynep Ilsen

    2006-01-01

    network topology. The algorithm thus enables identification of reporter reactions, which are reactions where there are significant coordinated changes in the level of surrounding metabolites following environmental/genetic perturbations. Applicability of the algorithm is demonstrated by using data from......Interpreting quantitative metabolome data is a difficult task owing to the high connectivity in metabolic networks and inherent interdependency between enzymatic regulation, metabolite levels and fluxes. Here we present a hypothesis-driven algorithm for the integration of such data with metabolic...... is measured. By combining the results with transcriptome data, we further show that it is possible to infer whether the reactions are hierarchically or metabolically regulated. Hereby, the reported approach represents an attempt to map different layers of regulation within metabolic networks through...

  8. The dental calculus metabolome in modern and historic samples

    DEFF Research Database (Denmark)

    Velsko, Irina M.; Overmyer, Katherine A.; Speller, Camilla

    2017-01-01

    Introduction: Dental calculus is a mineralized microbial dental plaque biofilm that forms throughout life by precipitation of salivary calcium salts. Successive cycles of dental plaque growth and calcification make it an unusually well-preserved, long-term record of host-microbial interaction...... in the archaeological record. Recent studies have confirmed the survival of authentic ancient DNA and proteins within historic and prehistoric dental calculus, making it a promising substrate for investigating oral microbiome evolution via direct measurement and comparison of modern and ancient specimens. Objective: We...... present the first comprehensive characterization of the human dental calculus metabolome using a multi-platform approach. Methods: Ultra performance liquid chromatography-tandem mass spectrometry (UPLC–MS/MS) quantified 285 metabolites in modern and historic (200 years old) dental calculus, including...

  9. Metabolomic analysis of three Mollicute species.

    Directory of Open Access Journals (Sweden)

    Anna A Vanyushkina

    Full Text Available We present a systematic study of three bacterial species that belong to the class Mollicutes, the smallest and simplest bacteria, Spiroplasma melliferum, Mycoplasma gallisepticum, and Acholeplasma laidlawii. To understand the difference in the basic principles of metabolism regulation and adaptation to environmental conditions in the three species, we analyzed the metabolome of these bacteria. Metabolic pathways were reconstructed using the proteogenomic annotation data provided by our lab. The results of metabolome, proteome and genome profiling suggest a fundamental difference in the adaptation of the three closely related Mollicute species to stress conditions. As the transaldolase is not annotated in Mollicutes, we propose variants of the pentose phosphate pathway catalyzed by annotated enzymes for three species. For metabolite detection we employed high performance liquid chromatography coupled with mass spectrometry. We used liquid chromatography method - hydrophilic interaction chromatography with silica column - as it effectively separates highly polar cellular metabolites prior to their detection by mass spectrometer.

  10. Data fusion in metabolomic cancer diagnostics

    DEFF Research Database (Denmark)

    Bro, Rasmus; Nielsen, Hans Jørgen; Savorani, Francesco

    2013-01-01

    We have recently shown that fluorescence spectroscopy of plasma samples has promising abilities regarding early detection of colorectal cancer. In the present paper, these results were further developed by combining fluorescence with the biomarkers, CEA and TIMP-1 and traditional metabolomic...... measurements in the form of (1)H NMR spectroscopy. The results indicate that using an extensive profile established by combining such measurements together with the biomarkers is better than using single markers....

  11. New and vintage solutions to enhance the plasma metabolome coverage by LC-ESI-MS untargeted metabolomics: the not-so-simple process of method performance evaluation.

    Science.gov (United States)

    Tulipani, Sara; Mora-Cubillos, Ximena; Jáuregui, Olga; Llorach, Rafael; García-Fuentes, Eduardo; Tinahones, Francisco J; Andres-Lacueva, Cristina

    2015-03-03

    Although LC-MS untargeted metabolomics continues to expand into exiting research domains, methodological issues have not been solved yet by the definition of unbiased, standardized and globally accepted analytical protocols. In the present study, the response of the plasma metabolome coverage to specific methodological choices of the sample preparation (two SPE technologies, three sample-to-solvent dilution ratios) and the LC-ESI-MS data acquisition steps of the metabolomics workflow (four RP columns, four elution solvent combinations, two solvent quality grades, postcolumn modification of the mobile phase) was investigated in a pragmatic and decision tree-like performance evaluation strategy. Quality control samples, reference plasma and human plasma from a real nutrimetabolomic study were used for intermethod comparisons. Uni- and multivariate data analysis approaches were independently applied. The highest method performance was obtained by combining the plasma hybrid extraction with the highest solvent proportion during sample preparation, the use of a RP column compatible with 100% aqueous polar phase (Atlantis T3), and the ESI enhancement by using UHPLC-MS purity grade methanol as both organic phase and postcolumn modifier. Results led to the following considerations: submit plasma samples to hybrid extraction for removal of interfering components to minimize the major sample-dependent matrix effects; avoid solvent evaporation following sample extraction if loss in detection and peak shape distortion of early eluting metabolites are not noticed; opt for a RP column for superior retention of highly polar species when analysis fractionation is not feasible; use ultrahigh quality grade solvents and "vintage" analytical tricks such as postcolumn organic enrichment of the mobile phase to enhance ESI efficiency. The final proposed protocol offers an example of how novel and old-fashioned analytical solutions may fruitfully cohabit in untargeted metabolomics

  12. Metabolomics, peptidomics and proteomics applications of capillary electrophoresis-mass spectrometry in Foodomics: A review

    International Nuclear Information System (INIS)

    Ibáñez, Clara; Simó, Carolina; García-Cañas, Virginia; Cifuentes, Alejandro; Castro-Puyana, María

    2013-01-01

    Graphical abstract: -- Highlights: •Foodomics allows studying food and nutrition through the application of advanced omics approaches. •CE-MS plays a crucial role as analytical platform to carry out omics studies. •CE-MS applications for food metabolomics, proteomics and peptidomics are presented. -- Abstract: In the current post-genomic era, Foodomics has been defined as a discipline that studies food and nutrition through the application of advanced omics approaches. Foodomics involves the use of genomics, transcriptomics, epigenetics, proteomics, peptidomics, and/or metabolomics to investigate food quality, safety, traceability and bioactivity. In this context, capillary electrophoresis-mass spectrometry (CE-MS) has been applied mainly in food proteomics, peptidomics and metabolomics. The aim of this review work is to present an overview of the most recent developments and applications of CE-MS as analytical platform for Foodomics, covering the relevant works published from 2008 to 2012. The review provides also information about the integration of several omics approaches in the new Foodomics field

  13. Metabolomics, peptidomics and proteomics applications of capillary electrophoresis-mass spectrometry in Foodomics: A review

    Energy Technology Data Exchange (ETDEWEB)

    Ibáñez, Clara; Simó, Carolina; García-Cañas, Virginia; Cifuentes, Alejandro, E-mail: a.cifuentes@csic.es; Castro-Puyana, María

    2013-11-13

    Graphical abstract: -- Highlights: •Foodomics allows studying food and nutrition through the application of advanced omics approaches. •CE-MS plays a crucial role as analytical platform to carry out omics studies. •CE-MS applications for food metabolomics, proteomics and peptidomics are presented. -- Abstract: In the current post-genomic era, Foodomics has been defined as a discipline that studies food and nutrition through the application of advanced omics approaches. Foodomics involves the use of genomics, transcriptomics, epigenetics, proteomics, peptidomics, and/or metabolomics to investigate food quality, safety, traceability and bioactivity. In this context, capillary electrophoresis-mass spectrometry (CE-MS) has been applied mainly in food proteomics, peptidomics and metabolomics. The aim of this review work is to present an overview of the most recent developments and applications of CE-MS as analytical platform for Foodomics, covering the relevant works published from 2008 to 2012. The review provides also information about the integration of several omics approaches in the new Foodomics field.

  14. Environmental metabolomics with data science for investigating ecosystem homeostasis.

    Science.gov (United States)

    Kikuchi, Jun; Ito, Kengo; Date, Yasuhiro

    2018-02-01

    A natural ecosystem can be viewed as the interconnections between complex metabolic reactions and environments. Humans, a part of these ecosystems, and their activities strongly affect the environments. To account for human effects within ecosystems, understanding what benefits humans receive by facilitating the maintenance of environmental homeostasis is important. This review describes recent applications of several NMR approaches to the evaluation of environmental homeostasis by metabolic profiling and data science. The basic NMR strategy used to evaluate homeostasis using big data collection is similar to that used in human health studies. Sophisticated metabolomic approaches (metabolic profiling) are widely reported in the literature. Further challenges include the analysis of complex macromolecular structures, and of the compositions and interactions of plant biomass, soil humic substances, and aqueous particulate organic matter. To support the study of these topics, we also discuss sample preparation techniques and solid-state NMR approaches. Because NMR approaches can produce a number of data with high reproducibility and inter-institution compatibility, further analysis of such data using machine learning approaches is often worthwhile. We also describe methods for data pretreatment in solid-state NMR and for environmental feature extraction from heterogeneously-measured spectroscopic data by machine learning approaches. Copyright © 2017. Published by Elsevier B.V.

  15. Metabolomics for assessment of nutritional status.

    Science.gov (United States)

    Zivkovic, Angela M; German, J Bruce

    2009-09-01

    The current rise in diet-related diseases continues to be one of the most significant health problems facing both the developed and the developing world. The use of metabolomics - the accurate and comprehensive measurement of a significant fraction of important metabolites in accessible biological fluids - for the assessment of nutritional status is a promising way forward. The basic toolset, targets and knowledge are all being developed in the emerging field of metabolomics, yet important knowledge and technology gaps will need to be addressed in order to bring such assessment to practice. Dysregulation within the principal metabolic organs (e.g. intestine, adipose, skeletal muscle and liver) are at the center of a diet-disease paradigm that includes metabolic syndrome, type 2 diabetes and obesity. The assessment of both essential nutrient status and the more comprehensive systemic metabolic response to dietary, lifestyle and environmental influences (e.g. metabolic phenotype) are necessary for the evaluation of status in individuals that can identify the multiple targets of intervention needed to address metabolic disease. The first proofs of principle building the knowledge to bring actionable metabolic diagnostics to practice through metabolomics are now appearing.

  16. Global open data management in metabolomics.

    Science.gov (United States)

    Haug, Kenneth; Salek, Reza M; Steinbeck, Christoph

    2017-02-01

    Chemical Biology employs chemical synthesis, analytical chemistry and other tools to study biological systems. Recent advances in both molecular biology such as next generation sequencing (NGS) have led to unprecedented insights towards the evolution of organisms' biochemical repertoires. Because of the specific data sharing culture in Genomics, genomes from all kingdoms of life become readily available for further analysis by other researchers. While the genome expresses the potential of an organism to adapt to e