Fully NLO Parton Shower in QCD
International Nuclear Information System (INIS)
Skrzypek, M.; Jadach, S.; Slawinska, M.; Gituliar, O.; Kusina, A.; Placzek, W.
2011-01-01
The project of constructing a complete NLO-level Parton Shower Monte Carlo for the QCD processes developed in IFJ PAN in Krakow is reviewed. Four issues are discussed: (1) the extension of the standard inclusive collinear factorization into a new, fully exclusive scheme; (2) reconstruction of the LO Parton Shower in the new scheme; (3) inclusion of the exclusive NLO corrections into the hard process and (4) inclusion of the exclusive NLO corrections into the evolution (ladder) part. (authors)
Implementing NLO DGLAP evolution in parton showers
Energy Technology Data Exchange (ETDEWEB)
Höche, Stefan; Krauss, Frank; Prestel, Stefan
2017-10-01
We present a parton shower which implements the DGLAP evolution of parton densities and fragmentation functions at next-to-leading order precision up to effects stemming from local four-momentum conservation. The Monte-Carlo simulation is based on including next-to-leading order collinear splitting functions in an existing parton shower and combining their soft enhanced contributions with the corresponding terms at leading order. Soft double counting is avoided by matching to the soft eikonal. Example results from two independent realizations of the algorithm, implemented in the two event generation frameworks Pythia and Sherpa, illustrate the improved precision of the new formalism.
Parton shower and NLO-matching uncertainties in Higgs boson pair production
Jones, Stephen; Kuttimalai, Silvan
2018-02-01
We perform a detailed study of NLO parton shower matching uncertainties in Higgs boson pair production through gluon fusion at the LHC based on a generic and process independent implementation of NLO subtraction and parton shower matching schemes for loop-induced processes in the Sherpa event generator. We take into account the full top-quark mass dependence in the two-loop virtual corrections and compare the results to an effective theory approximation. In the full calculation, our findings suggest large parton shower matching uncertainties that are absent in the effective theory approximation. We observe large uncertainties even in regions of phase space where fixed-order calculations are theoretically well motivated and parton shower effects expected to be small. We compare our results to NLO matched parton shower simulations and analytic resummation results that are available in the literature.
Initial-state parton shower kinematics for NLO event generators
International Nuclear Information System (INIS)
Odaka, Shigeru; Kurihara, Yoshimasa
2007-01-01
We are developing a consistent method to combine tree-level event generators for hadron collision interactions with those including one additional QCD radiation from the initial-state partons, based on the limited leading-log (LLL) subtraction method, aiming at an application to NLO event generators. In this method, a boundary between non-radiative and radiative processes necessarily appears at the factorization scale (μ F ). The radiation effects are simulated using a parton shower (PS) in non-radiative processes. It is therefore crucial in our method to apply a PS which well reproduces the radiation activities evaluated from the matrix-element (ME) calculations for radiative processes. The PS activity depends on the applied kinematics model. In this paper we introduce two models for our simple initial-state leading-log PS: a model similar to the 'old' PYTHIA-PS and a p T -prefixed model motivated by ME calculations. PS simulations employing these models are tested using W-boson production at LHC as an example. Both simulations show a smooth matching to the LLL subtracted W+1 jet simulation in the p T distribution of W bosons, and the summed p T spectra are stable against a variation of μ F , despite that the p T -prefixed PS results in an apparently harder p T spectrum. (orig.)
QCD parton showers and NLO EW corrections to Drell-Yan
Richardson, P; Sapronov, A A; Seymour, M H; Skands, P Z
2012-01-01
We report on the implementation of an interface between the SANC generator framework for Drell-Yan hard processes, which includes next-to-leading order electroweak (NLO EW) corrections, and the Herwig++ and Pythia8 QCD parton shower Monte Carlos. A special aspect of this implementation is that the initial-state shower evolution in both shower generators has been augmented to handle the case of an incoming photon-in-a-proton, diagrams for which appear at the NLO EW level. The difference between shower algorithms leads to residual differences in the relative corrections of 2-3% in the p_T(mu) distributions at p_T(mu)>~50 GeV (where the NLO EW correction itself is of order 10%).
Combining higher-order resummation with multiple NLO calculations and parton showers in GENEVA
Energy Technology Data Exchange (ETDEWEB)
Alioli, Simone; Bauer, Christian W.; Berggren, Calvin; Vermilion, Christopher K.; Walsh, Jonathan R.; Zuberi, Saba [California Univ., Berkeley, CA (United States). Ernest Orlando Lawrence Berkeley National Laboratory; Hornig, Andrew [Washington Univ., Seattle, WA (United States). Dept. of Physics; Tackmann, Frank J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie
2012-11-15
We extend the lowest-order matching of tree-level matrix elements with parton showers to give a complete description at the next higher perturbative accuracy in {alpha}{sub s} at both small and large jet resolutions, which has not been achieved so far. This requires the combination of the higher-order resummation of large Sudakov logarithms at small values of the jet resolution variable with the full next-to-leading order (NLO) matrix-element corrections at large values. As a by-product, this combination naturally leads to a smooth connection of the NLO calculations for different jet multiplicities. In this paper, we focus on the general construction of our method and discuss its application to e{sup +}e{sup -} and pp collisions. We present first results of the implementation in the GENEVA Monte Carlo framework. We employ N-jettiness as the jet resolution variable, combining its next-to-next-to-leading logarithmic resummation with fully exclusive NLO matrix elements, and PYTHIA 8 as the backend for further parton showering and hadronization. For hadronic collisions, we take Drell-Yan production as an example to apply our construction. For e{sup +}e{sup -} {yields} jets, taking {alpha}{sub s}(m{sub Z}) = 0.1135 from fits to LEP thrust data, together with the PYTHIA 8 hadronization model, we obtain good agreement with LEP data for a variety of 2-jet observables.
Top-pair production and decay at NLO matched with parton showers
International Nuclear Information System (INIS)
Campbell, John M.; Ellis, R. Keith; Nason, Paolo; Re, Emanuele
2015-01-01
We present a next-to-leading order (NLO) calculation of tt¯ production in hadronic collisions interfaced to shower generators according to the POWHEG method. We start from an NLO result from previous work, obtained in the zero width limit, where radiative corrections to both production and decays are included. The POWHEG interface required an extension of the POWHEG BOX framework, in order to deal with radiation from the decay of resonances. This extension is fully general (i.e. it can be applied in principle to any process considered in the zero width limit), and is here applied for the first time. In order to perform a realistic simulation, we introduce finite width effects using different approximations, that we validated by comparing with published exact NLO results. We have interfaced our POWHEG code to the PYTHIA8 shower Monte Carlo generator. At this stage, we dealt with novel issues related to the treatment of resonances, especially with regard to the initial scale for the shower that needs to be set appropriately. This procedure affects, for example, the fragmentation function of the b quark, that we have studied with particular attention. We believe that the tool presented here improves over previous generators for all aspects that have to do with top decays, and especially for the study of issues related to top mass measurements that involve B hadrons or b jets. As a result, the work presented here also constitutes a first step towards a fully consistent matching of NLO calculations involving intermediate resonances decaying into coloured particles, with parton showers
Heinrich, G.; Kerner, M.; Luisoni, G.; Vryonidou, E.
2017-08-21
We present the first combination of NLO QCD matrix elements for di-Higgs production, retaining the full top quark mass dependence, with a parton shower. Results are provided within both the POWHEG-BOX and MadGraph5_aMC@NLO Monte Carlo frameworks. We assess in detail the theoretical uncertainties and provide differential results. We find that, as expected, the shower effects are relatively large for observables like the transverse momentum of the Higgs boson pair, which are sensitive to extra radiation. However, these shower effects are still much smaller than the differences between the Born-improved HEFT approximation and the full NLO calculation in the tails of the distributions.
International Nuclear Information System (INIS)
Alioli, Simone; Bauer, Christian W.; Berggren, Calvin; Vermilion, Christopher K.; Walsh, Jonathan R.; Zuberi, Saba; Hornig, Andrew; Tackmann, Frank J.
2013-05-01
We discuss the GENEVA Monte Carlo framework, which combines higher-order resummation (NNLL) of large Sudakov logarithms with multiple next-to-leading-order (NLO) matrix-element corrections and parton showering (using PYTHIA 8) to give a complete description at the next higher perturbative accuracy in α s at both small and large jet resolution scales. Results for e + e - →jets compared to LEP data and pp→(Z/γ * →l + l - )+jets are presented.
International Nuclear Information System (INIS)
Majhi, S.K.; Mukhopadhyay, A.; Ward, B.F.L.; Yost, S.A.
2013-01-01
We present the current status of the application of our approach of exact amplitude-based resummation in quantum field theory to precision QCD calculations, by realistic MC event generator methods, as needed for precision LHC physics. In this ongoing program of research, we discuss recent results as they relate to the interplay of the attendant IR-improved DGLAP-CS theory of one of us and the precision of exact NLO matrix element matched parton shower MC's in the Herwig6.5 environment in relation to recent LHC experimental observations. There continues to be reason for optimism in the attendant comparison of theory and experiment
Energy Technology Data Exchange (ETDEWEB)
Majhi, S.K., E-mail: tpskm@iacs.res.in [Indian Association for the Cultivation of Science, Kolkata (India); Mukhopadhyay, A., E-mail: aditi_mukhopadhyay@baylor.edu [Baylor University, Waco, TX (United States); Ward, B.F.L., E-mail: bfl_ward@baylor.edu [Baylor University, Waco, TX (United States); Yost, S.A., E-mail: scott.yost@citadel.edu [The Citadel, Charleston, SC (United States)
2013-02-26
We present the current status of the application of our approach of exact amplitude-based resummation in quantum field theory to precision QCD calculations, by realistic MC event generator methods, as needed for precision LHC physics. In this ongoing program of research, we discuss recent results as they relate to the interplay of the attendant IR-improved DGLAP-CS theory of one of us and the precision of exact NLO matrix element matched parton shower MC's in the Herwig6.5 environment in relation to recent LHC experimental observations. There continues to be reason for optimism in the attendant comparison of theory and experiment.
Kardos, Adam; Trócsányi, Zoltán
2015-05-01
We simulate the hadroproduction of a -pair in association with a hard photon at LHC using the PowHel package. These events are almost fully inclusive with respect to the photon, allowing for any physically relevant isolation of the photon. We use the generated events, stored according to the Les-Houches event format, to make predictions for differential distributions formally at the next-to-leading order (NLO) accuracy and we compare these to existing predictions accurate at NLO using the smooth isolation prescription of Frixione. Our fixed-order predictions include the direct-photon contribution only. We also make predictions for distributions after full parton shower and hadronization using the standard experimental cone-isolation of the photon.
Bellm, Johannes; Richardson, Peter; Siódmok, Andrzej; Webster, Stephen
2016-01-01
We report on the possibility of reweighting parton-shower Monte Carlo predictions for scale variations in the parton-shower algorithm. The method is based on a generalization of the Sudakov veto algorithm. We demonstrate the feasibility of this approach using example physical distributions. Implementations are available for both the parton-shower modules in the Herwig 7 event generator.
Triple collinear emissions in parton showers
Energy Technology Data Exchange (ETDEWEB)
Höche, Stefan; Prestel, Stefan
2017-10-01
A framework to include triple collinear splitting functions into parton showers is presented, and the implementation of flavor-changing NLO splitting kernels is discussed as a first application. The correspondence between the Monte-Carlo integration and the analytic computation of NLO DGLAP evolution kernels is made explicit for both timelike and spacelike parton evolution. Numerical simulation results are obtained with two independent implementations of the new algorithm, using the two independent event generation frameworks Pythia and Sherpa.
International Nuclear Information System (INIS)
Majhi, S.K.; Mukhopadhyay, A.; Ward, B.F.L.; Yost, S.A.
2014-01-01
We present a phenomenological study of the current status of the application of our approach of exact amplitude-based resummation in quantum field theory to precision QCD calculations, by realistic MC event generator methods, as needed for precision LHC physics. We discuss recent results as they relate to the interplay of the attendant IR-improved DGLAP-CS theory of one of us and the precision of exact NLO matrix-element matched parton shower MC’s in the Herwig6.5 environment as determined by comparison to recent LHC experimental observations on single heavy gauge boson production and decay. The level of agreement between the new theory and the data continues to be a reason for optimism. In the spirit of completeness, we discuss as well other approaches to the same theoretical predictions that we make here from the standpoint of physical precision with an eye toward the (sub-)1% QCD⊗EW total theoretical precision regime for LHC physics. - Highlights: • Using LHC data, we show that IR-improved DGLAP-CS kernels with exact NLO Shower/ME matching improves MC precision. • We discuss other possible approaches in comparison with ours. • We propose experimental tests to discriminate between competing approaches
Energy Technology Data Exchange (ETDEWEB)
Majhi, S.K., E-mail: tpskm@iacs.res.in [Indian Association for the Cultivation of Science, Kolkata (India); Mukhopadhyay, A., E-mail: aditi_mukhopadhyay@baylor.edu [Baylor University, Waco, TX (United States); Ward, B.F.L., E-mail: bfl_ward@baylor.edu [Baylor University, Waco, TX (United States); Yost, S.A., E-mail: scott.yost@citadel.edu [The Citadel, Charleston, SC (United States)
2014-11-15
We present a phenomenological study of the current status of the application of our approach of exact amplitude-based resummation in quantum field theory to precision QCD calculations, by realistic MC event generator methods, as needed for precision LHC physics. We discuss recent results as they relate to the interplay of the attendant IR-improved DGLAP-CS theory of one of us and the precision of exact NLO matrix-element matched parton shower MC’s in the Herwig6.5 environment as determined by comparison to recent LHC experimental observations on single heavy gauge boson production and decay. The level of agreement between the new theory and the data continues to be a reason for optimism. In the spirit of completeness, we discuss as well other approaches to the same theoretical predictions that we make here from the standpoint of physical precision with an eye toward the (sub-)1% QCD⊗EW total theoretical precision regime for LHC physics. - Highlights: • Using LHC data, we show that IR-improved DGLAP-CS kernels with exact NLO Shower/ME matching improves MC precision. • We discuss other possible approaches in comparison with ours. • We propose experimental tests to discriminate between competing approaches.
International Nuclear Information System (INIS)
Nagy, Zoltan; Soper, Davison E.
2017-05-01
We consider idealized parton shower event generators that treat parton spin and color exactly, leaving aside the choice of practical approximations for spin and color. We investigate how the structure of such a parton shower generator is related to the structure of QCD. We argue that a parton shower with splitting functions proportional to αs can be viewed not just as a model, but as the lowest order approximation to a shower that is defined at any perturbative order. To support this argument, we present a formulation for a parton shower at order α k s for any k. Since some of the input functions needed are specified by their properties but not calculated, this formulation does not provide a useful recipe for an order α k s parton shower algorithm. However, in this formulation we see how the operators that generate the shower are related to operators that specify the infrared singularities of QCD.
Controlling inclusive cross sections in parton shower + matrix element merging
International Nuclear Information System (INIS)
Plaetzer, Simon
2012-11-01
We propose an extension of matrix element plus parton shower merging at tree level to preserve inclusive cross sections obtained from the merged and showered sample. Implementing this constraint generates approximate next-to-leading order (NLO) contributions similar to the LoopSim approach. We then show how full NLO, or in principle even higher order, corrections can be added consistently, including constraints on inclusive cross sections to account for yet missing parton shower accuracy at higher logarithmic order. We also show how NLO accuracy below the merging scale can be obtained.
Controlling inclusive cross sections in parton shower + matrix element merging
Energy Technology Data Exchange (ETDEWEB)
Plaetzer, Simon
2012-11-15
We propose an extension of matrix element plus parton shower merging at tree level to preserve inclusive cross sections obtained from the merged and showered sample. Implementing this constraint generates approximate next-to-leading order (NLO) contributions similar to the LoopSim approach. We then show how full NLO, or in principle even higher order, corrections can be added consistently, including constraints on inclusive cross sections to account for yet missing parton shower accuracy at higher logarithmic order. We also show how NLO accuracy below the merging scale can be obtained.
Ordering variable for parton showers
Energy Technology Data Exchange (ETDEWEB)
Nagy, Zoltan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Soper, Davison E. [Oregon Univ., Eugene, OR (United States). Inst. of Theoretical Science
2014-01-15
The parton splittings in a parton shower are ordered according to an ordering variable, for example the transverse momentum of the daughter partons relative to the direction of the mother, the virtuality of the splitting, or the angle between the daughter partons. We analyze the choice of the ordering variable and conclude that one particular choice has the advantage of factoring softer splittings from harder splittings graph by graph in a physical gauge.
Ordering variable for parton showers
Energy Technology Data Exchange (ETDEWEB)
Nagy, Zoltán [DESY,Notkestrasse 85, 22607 Hamburg (Germany); Soper, Davison E. [Institute of Theoretical Science, University of Oregon,Eugene, OR 97403-5203 (United States)
2014-06-30
The parton splittings in a parton shower are ordered according to an ordering variable, for example the transverse momentum of the daughter partons relative to the direction of the mother, the virtuality of the splitting, or the angle between the daughter partons. We analyze the choice of the ordering variable and conclude that one particular choice has the advantage of factoring softer splittings from harder splittings graph by graph in a physical gauge.
Ordering variable for parton showers
International Nuclear Information System (INIS)
Nagy, Zoltan; Soper, Davison E.
2014-01-01
The parton splittings in a parton shower are ordered according to an ordering variable, for example the transverse momentum of the daughter partons relative to the direction of the mother, the virtuality of the splitting, or the angle between the daughter partons. We analyze the choice of the ordering variable and conclude that one particular choice has the advantage of factoring softer splittings from harder splittings graph by graph in a physical gauge.
Energy Technology Data Exchange (ETDEWEB)
Nagy, Zoltan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Soper, Davison E. [Oregon Univ., Eugene, OR (United States). Inst. of Theoretical Science
2017-05-15
We consider idealized parton shower event generators that treat parton spin and color exactly, leaving aside the choice of practical approximations for spin and color. We investigate how the structure of such a parton shower generator is related to the structure of QCD. We argue that a parton shower with splitting functions proportional to αs can be viewed not just as a model, but as the lowest order approximation to a shower that is defined at any perturbative order. To support this argument, we present a formulation for a parton shower at order α{sup k}{sub s} for any k. Since some of the input functions needed are specified by their properties but not calculated, this formulation does not provide a useful recipe for an order α{sup k}{sub s} parton shower algorithm. However, in this formulation we see how the operators that generate the shower are related to operators that specify the infrared singularities of QCD.
Clan properties in parton showers
International Nuclear Information System (INIS)
Ugoccioni, R.; Giovannini, A.; Lupia, S.
1994-01-01
By considering clans as genuine elementary sub-processes, i.e., intermediate parton sources in the Simplified Parton Shower model, a generalized version of this model is defined. It predicts analytically clan properties at parton level in agreement with the general trends observed experimentally at hadronic level and in Monte Carlo simulations both at partonic and hadronic level. In particular the model shows a linear rising in rapidity of the average number of clans at fixed energy of the initial parton and its subsequent bending for rapidity intervals at the border of phase space, and approximate energy independence of the average number of clans in fixed rapidity intervals. The energy independence becomes stricter by properly normalizing the average number of clans (orig.)
Clan properties in parton showers
Energy Technology Data Exchange (ETDEWEB)
Ugoccioni, R. (Dipt. di Fisica Teorica, Univ. di Torino (Italy) INFN (Italy)); Giovannini, A. (Dipt. di Fisica Teorica, Univ. di Torino (Italy) INFN (Italy)); Lupia, S. (Dipt. di Fisica Teorica, Univ. di Torino (Italy) INFN (Italy))
1994-11-01
By considering clans as genuine elementary sub-processes, i.e., intermediate parton sources in the Simplified Parton Shower model, a generalized version of this model is defined. It predicts analytically clan properties at parton level in agreement with the general trends observed experimentally at hadronic level and in Monte Carlo simulations both at partonic and hadronic level. In particular the model shows a linear rising in rapidity of the average number of clans at fixed energy of the initial parton and its subsequent bending for rapidity intervals at the border of phase space, and approximate energy independence of the average number of clans in fixed rapidity intervals. The energy independence becomes stricter by properly normalizing the average number of clans (orig.)
Parton distribution functions in the context of parton showers
International Nuclear Information System (INIS)
Nagy, Zoltán; Soper, Davison E.
2014-01-01
When the initial state evolution of a parton shower is organized according to the standard “backward evolution” prescription, ratios of parton distribution functions appear in the splitting probabilities. The shower thus organized evolves from a hard scale to a soft cutoff scale. At the end of the shower, one expects that only the parton distributions at the soft scale should affect the results. The other effects of the parton distributions should have cancelled. This means that the kernels for parton evolution should be related to the shower splitting functions. If the initial state partons can have non-zero masses, this requires that the evolution kernels cannot be the usual (MS)-bar kernels. We work out what the parton evolution kernels should be to match the shower evolution contained in the parton shower event generator DEDUCTOR, in which the b and c quarks have non-zero masses.
Parton showers with quantum interference
Nagy, Zoltan
2007-01-01
We specify recursive equations that could be used to generate a lowest order parton shower for hard scattering in hadron-hadron collisions. The formalism is based on the factorization soft and collinear interactions from relatively harder interactions in QCD amplitudes. It incorporates quantum interference between different amplitudes in those cases in which the interference diagrams have leading soft or collinear singularities. It incorporates the color and spin information carried by partons emerging from a hard interaction. One motivation for this work is to have a method that can naturally cooperate with next-to-leading order calculations.
Parton showers with quantum interference
International Nuclear Information System (INIS)
Nagy, Zoltan; Soper, Davison E.
2007-01-01
We specify recursive equations that could be used to generate a lowest order parton shower for hard scattering in hadron-hadron collisions. The formalism is based on the factorization soft and collinear interactions from relatively harder interactions in QCD amplitudes. It incorporates quantum interference between different amplitudes in those cases in which the interference diagrams have leading soft or collinear singularities. It incorporates the color and spin information carried by partons emerging from a hard interaction. One motivation for this work is to have a method that can naturally cooperate with next-to-leading order calculations
An analytic initial-state parton shower
Energy Technology Data Exchange (ETDEWEB)
Kilian, W. [Siegen Univ. (Germany). Dept. Physik; Reuter, J.; Schmidt, S.; Wiesler, D. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2011-12-15
We present a new algorithm for an analytic parton shower. While the algorithm for the final-state shower has been known in the literature, the construction of an initial-state shower along these lines is new. The aim is to have a parton shower algorithm for which the full analytic form of the probability distribution for all branchings is known. For these parton shower algorithms it is therefore possible to calculate the probability for a given event to be generated, providing the potential to reweight the event after the simulation. We develop the algorithm for this shower including scale choices and angular ordering. Merging to matrix elements is used to describe high-energy tails of distributions correctly. Finally, we compare our results with those of other parton showers and with experimental data from LEP, Tevatron and LHC. (orig.)
An analytic initial-state parton shower
International Nuclear Information System (INIS)
Kilian, W.
2011-12-01
We present a new algorithm for an analytic parton shower. While the algorithm for the final-state shower has been known in the literature, the construction of an initial-state shower along these lines is new. The aim is to have a parton shower algorithm for which the full analytic form of the probability distribution for all branchings is known. For these parton shower algorithms it is therefore possible to calculate the probability for a given event to be generated, providing the potential to reweight the event after the simulation. We develop the algorithm for this shower including scale choices and angular ordering. Merging to matrix elements is used to describe high-energy tails of distributions correctly. Finally, we compare our results with those of other parton showers and with experimental data from LEP, Tevatron and LHC. (orig.)
Summing threshold logs in a parton shower
International Nuclear Information System (INIS)
Nagy, Zoltan; Soper, Davison E.
2016-05-01
When parton distributions are falling steeply as the momentum fractions of the partons increases, there are effects that occur at each order in α s that combine to affect hard scattering cross sections and need to be summed. We show how to accomplish this in a leading approximation in the context of a parton shower Monte Carlo event generator.
Summing threshold logs in a parton shower
Energy Technology Data Exchange (ETDEWEB)
Nagy, Zoltán [DESY,Notkestrasse 85, 22607 Hamburg (Germany); Soper, Davison E. [Institute of Theoretical Science, University of Oregon,Eugene, OR 97403-5203 (United States)
2016-10-05
When parton distributions are falling steeply as the momentum fractions of the partons increases, there are effects that occur at each order in α{sub s} that combine to affect hard scattering cross sections and need to be summed. We show how to accomplish this in a leading approximation in the context of a parton shower Monte Carlo event generator.
Merging H/W/Z + 0 and 1 jet at NLO with no merging scale: a path to parton shower + NNLO matching
Hamilton, Keith; Oleari, Carlo; Zanderighi, Giulia
2013-01-01
We consider the POWHEG generator for a H/W/Z boson plus one jet, augmented with the recently proposed MiNLO method for the choice of scales and the inclusion of Sudakov form factors. Within this framework, the generator covers all the transverse-momentum region of the H/W/Z boson, i.e. no generation cuts are needed to obtain a finite result. By construction, the generator achieves NLO accuracy for distributions involving a finite (and relatively large) transverse momentum of the boson. We examine the conditions under which also the totally inclusive distributions (e.g. the boson rapidity distribution) achieve NLO accuracy. We find that a minimal modification of the MiNLO prescription is sufficient to achieve such accuracy. We thus construct a NLO generator for H/W/Z boson plus one jet production such that it smoothly merges into a NLO single boson production in the small transverse-momentum region. We notice that, by simply reweighting the boson rapidity distribution to NNLO predictions, we achieve a NNLO acc...
A Parton Shower for High Energy Jets
DEFF Research Database (Denmark)
Andersen, Jeppe Rosenkrantz; Lonnblad, Leif; M. Smillie, Jennifer
2011-01-01
it is important that the corresponding divergences in the parton shower are subtracted, keeping only the collinear parts. We present a novel, shower-independent method for achieving this, enabling us to generate fully exclusive and hadronized events with multiple hard jets, in hadronic collisions. We discuss...
A Parton Shower for High Energy Jets
Andersen, Jeppe R; Smillie, Jennifer M
2011-01-01
We present a method to match the multi-parton states generated by the High Energy Jets Monte Carlo with parton showers generated by the Ariadne program using the colour dipole model. The High Energy Jets program already includes a full resummation of soft divergences. Hence, in the matching it is important that the corresponding divergences in the parton shower are subtracted, keeping only the collinear parts. We present a novel, shower-independent method for achieving this, enabling us to generate fully exclusive and hadronized events with multiple hard jets, in hadronic collisions. We discuss in detail the arising description of the soft, collinear and hard regions by examples in pure QCD jet-production.
Measurement of parton shower observables with OPAL
Directory of Open Access Journals (Sweden)
Fischer N.
2016-01-01
Full Text Available A study of QCD coherence is presented based on a sample of about 397,000 e+e- hadronic annihilation events collected at √s = 91 GeV with the OPAL detector at LEP. The study is based on four recently proposed observables that are sensitive to coherence effects in the perturbative regime. The measurement of these observables is presented, along with a comparison with the predictions of different parton shower models. The models include both conventional parton shower models and dipole antenna models. Different ordering variables are used to investigate their influence on the predictions.
Systematic improvement of QCD parton showers
Winter, Jan; Hoeth, Hendrik; Krauss, Frank; Schonherr, Marek; Schumann, Steffen; Siegert, Frank; Zapp, Korinna
2012-01-01
In this contribution, we will give a brief overview of the progress that has been achieved in the field of combining matrix elements and parton showers. We exemplify this by focusing on the case of electron--positron collisions and by reporting on recent developments as accomplished within the Sherpa event generation framework.
QCD event generators with next-to-leading order matrix-elements and parton showers
International Nuclear Information System (INIS)
Kurihara, Y.; Fujimoto, J.; Ishikawa, T.; Kato, K.; Kawabata, S.; Munehisa, T.; Tanaka, H.
2003-01-01
A new method to construct event-generators based on next-to-leading order QCD matrix-elements and leading-logarithmic parton showers is proposed. Matrix elements of loop diagram as well as those of a tree level can be generated using an automatic system. A soft/collinear singularity is treated using a leading-log subtraction method. Higher order resummation of the soft/collinear correction by the parton shower method is combined with the NLO matrix-element without any double-counting in this method. An example of the event generator for Drell-Yan process is given for demonstrating a validity of this method
Parton shower evolution with subleading color
International Nuclear Information System (INIS)
Nagy, Zoltan; Soper, Davison E.
2012-02-01
Parton shower Monte Carlo event generators in which the shower evolves from hard splittings to soft splittings generally use the leading color approximation, which is the leading term in an expansion in powers of 1/N c 2 , where N c =3 is the number of colors. We introduce a more general approximation, the LC+ approximation, that includes some of the color suppressed contributions. There is a cost: each generated event comes with a weight. There is a benefit: at each splitting the leading soft x collinear singularity and the leading collinear singularity are treated exactly with respect to color. In addition, an LC+ shower can start from a state of the color density matrix in which the bra state color and the ket state color do not match. (orig.)
Parton shower evolution with subleading color
Energy Technology Data Exchange (ETDEWEB)
Nagy, Zoltan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Soper, Davison E. [Oregon Univ., Eugene, OR (United States). Inst. of Theoretical Science
2012-02-15
Parton shower Monte Carlo event generators in which the shower evolves from hard splittings to soft splittings generally use the leading color approximation, which is the leading term in an expansion in powers of 1/N{sub c}{sup 2}, where N{sub c}=3 is the number of colors. We introduce a more general approximation, the LC+ approximation, that includes some of the color suppressed contributions. There is a cost: each generated event comes with a weight. There is a benefit: at each splitting the leading soft x collinear singularity and the leading collinear singularity are treated exactly with respect to color. In addition, an LC+ shower can start from a state of the color density matrix in which the bra state color and the ket state color do not match. (orig.)
Parton Shower Uncertainties with Herwig 7: Benchmarks at Leading Order
Bellm, Johannes; Plätzer, Simon; Schichtel, Peter; Siódmok, Andrzej
2016-01-01
We perform a detailed study of the sources of perturbative uncertainty in parton shower predictions within the Herwig 7 event generator. We benchmark two rather different parton shower algorithms, based on angular-ordered and dipole-type evolution, against each other. We deliberately choose leading order plus parton shower as the benchmark setting to identify a controllable set of uncertainties. This will enable us to reliably assess improvements by higher-order contributions in a follow-up work.
Parton showers in a phenomenological context
International Nuclear Information System (INIS)
Bengtsson, M.
1987-08-01
Models for generating multiple parton final states, based on the Altarelli-Parisi equations, are presented. Algorithms are described for applications in e + e - physics, leptoproduction and hadron physics. The two latter cases are somewhat special since composite objects are present in the initial state. Constraints from structure function evolution are properly taken into account. The scheme in leptoproduction is made selfconsistent in the sense that parton shower evolution does not affect the measurable structure functions. The scheme developed in e + e - allows for a number of different features which are not given directly in this approach, i.e. matching onto matrix elements, coherence effects, argument in α s , implementation of kinematics etc. These options are systematically studied, using Lund string fragmentation for hadronization, and compared with experimental data. A note on α s determinations in hadron-hadron collisions is also included. (author)
Dipole showers and automated NLO matching in Herwig++
International Nuclear Information System (INIS)
Plaetzer, Simon; Gieseke, Stefan
2011-09-01
We report on the implementation of a coherent dipole shower algorithm along with an automated implementation for dipole subtraction and for performing POWHEG- and MC rate at NLO-type matching to next-to-leading order (NLO) calculations. Both programs are implemented as add-on modules to the event generator HERWIG++. A preliminary tune of parameters to data acquired at LEP, HERA and Drell-Yan pair production at the Tevatron has been performed, and we find an overall very good description which is slightly improved by the NLO matching. (orig.)
Dipole showers and automated NLO matching in Herwig++
Energy Technology Data Exchange (ETDEWEB)
Plaetzer, Simon [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gieseke, Stefan [Karlsruher Institut fuer Technologie, Karlsruhe (Germany). Inst. fuer Theoretische Teilchenphysik
2011-09-15
We report on the implementation of a coherent dipole shower algorithm along with an automated implementation for dipole subtraction and for performing POWHEG- and MC rate at NLO-type matching to next-to-leading order (NLO) calculations. Both programs are implemented as add-on modules to the event generator HERWIG++. A preliminary tune of parameters to data acquired at LEP, HERA and Drell-Yan pair production at the Tevatron has been performed, and we find an overall very good description which is slightly improved by the NLO matching. (orig.)
Calculations with off-shell matrix elements, TMD parton densities and TMD parton showers
Energy Technology Data Exchange (ETDEWEB)
Bury, Marcin; Hameren, Andreas van; Kutak, Krzysztof; Sapeta, Sebastian [Polish Academy of Sciences, Institute of Nuclear Physics, Cracow (Poland); Jung, Hannes [Polish Academy of Sciences, Institute of Nuclear Physics, Cracow (Poland); DESY, Hamburg (Germany); Serino, Mirko [Polish Academy of Sciences, Institute of Nuclear Physics, Cracow (Poland); Ben Gurion University of the Negev, Department of Physics, Beersheba (Israel)
2018-02-15
A new calculation using off-shell matrix elements with TMD parton densities supplemented with a newly developed initial state TMD parton shower is described. The calculation is based on the KaTie package for an automated calculation of the partonic process in high-energy factorization, making use of TMD parton densities implemented in TMDlib. The partonic events are stored in an LHE file, similar to the conventional LHE files, but now containing the transverse momenta of the initial partons. The LHE files are read in by the Cascade package for the full TMD parton shower, final state shower and hadronization from Pythia where events in HEPMC format are produced. We have determined a full set of TMD parton densities and developed an initial state TMD parton shower, including all flavors following the TMD distribution. As an example of application we have calculated the azimuthal de-correlation of high p{sub t} dijets as measured at the LHC and found very good agreement with the measurement when including initial state TMD parton showers together with conventional final state parton showers and hadronization. (orig.)
An analytic parton shower. Algorithms, implementation and validation
Energy Technology Data Exchange (ETDEWEB)
Schmidt, Sebastian
2012-06-15
The realistic simulation of particle collisions is an indispensable tool to interpret the data measured at high-energy colliders, for example the now running Large Hadron Collider at CERN. These collisions at these colliders are usually simulated in the form of exclusive events. This thesis focuses on the perturbative QCD part involved in the simulation of these events, particularly parton showers and the consistent combination of parton showers and matrix elements. We present an existing parton shower algorithm for emissions off final state partons along with some major improvements. Moreover, we present a new parton shower algorithm for emissions off incoming partons. The aim of these particular algorithms, called analytic parton shower algorithms, is to be able to calculate the probabilities for branchings and for whole events after the event has been generated. This allows a reweighting procedure to be applied after the events have been simulated. We show a detailed description of the algorithms, their implementation and the interfaces to the event generator WHIZARD. Moreover we discuss the implementation of a MLM-type matching procedure and an interface to the shower and hadronization routines from PYTHIA. Finally, we compare several predictions by our implementation to experimental measurements at LEP, Tevatron and LHC, as well as to predictions obtained using PYTHIA. (orig.)
An analytic parton shower. Algorithms, implementation and validation
International Nuclear Information System (INIS)
Schmidt, Sebastian
2012-06-01
The realistic simulation of particle collisions is an indispensable tool to interpret the data measured at high-energy colliders, for example the now running Large Hadron Collider at CERN. These collisions at these colliders are usually simulated in the form of exclusive events. This thesis focuses on the perturbative QCD part involved in the simulation of these events, particularly parton showers and the consistent combination of parton showers and matrix elements. We present an existing parton shower algorithm for emissions off final state partons along with some major improvements. Moreover, we present a new parton shower algorithm for emissions off incoming partons. The aim of these particular algorithms, called analytic parton shower algorithms, is to be able to calculate the probabilities for branchings and for whole events after the event has been generated. This allows a reweighting procedure to be applied after the events have been simulated. We show a detailed description of the algorithms, their implementation and the interfaces to the event generator WHIZARD. Moreover we discuss the implementation of a MLM-type matching procedure and an interface to the shower and hadronization routines from PYTHIA. Finally, we compare several predictions by our implementation to experimental measurements at LEP, Tevatron and LHC, as well as to predictions obtained using PYTHIA. (orig.)
Reweighting QCD matrix-element and parton-shower calculations
Energy Technology Data Exchange (ETDEWEB)
Bothmann, Enrico; Schumann, Steffen [Universitaet Goettingen, II. Physikalisches Institut, Goettingen (Germany); Schoenherr, Marek [Universitaet Zuerich, Physik-Institut, Zuerich (Switzerland)
2016-11-15
We present the implementation and validation of the techniques used to efficiently evaluate parametric and perturbative theoretical uncertainties in matrix-element plus parton-shower simulations within the Sherpa event-generator framework. By tracing the full α{sub s} and PDF dependences, including the parton-shower component, as well as the fixed-order scale uncertainties, we compute variational event weights on-the-fly, thereby greatly reducing the computational costs to obtain theoretical-uncertainty estimates. (orig.)
Systematic improvement of parton showers with effective theory
International Nuclear Information System (INIS)
Baumgart, Matthew; Marcantonini, Claudio; Stewart, Iain W.
2011-01-01
We carry out a systematic classification and computation of next-to-leading order kinematic power corrections to the fully differential cross section in the parton shower. To do this we devise a map between ingredients in a parton shower and operators in a traditional effective field theory framework using a chain of soft-collinear effective theories. Our approach overcomes several difficulties including avoiding double counting and distinguishing approximations that are coordinate choices from true power corrections. Branching corrections can be classified as hard-scattering, that occur near the top of the shower, and jet-structure, that can occur at any point inside it. Hard-scattering corrections include matrix elements with additional hard partons, as well as power suppressed contributions to the branching for the leading jet. Jet-structure corrections require simultaneous consideration of potential 1→2 and 1→3 branchings. The interference structure induced by collinear terms with subleading powers remains localized in the shower.
Matching next-to-leading order predictions to parton showers in supersymmetric QCD
Degrande, Celine; Hirschi, Valentin; Proudom, Josselin; Shao, Hua-Sheng
2016-04-10
We present a fully automated framework based on the FeynRules and MadGraph5 aMC@NLO programs that allows for accurate simulations of supersymmetric QCD processes at the LHC. Starting directly from a model Lagrangian that features squark and gluino interactions, event generation is achieved at the next-to-leading order in QCD, matching short-distance events to parton showers and including the subsequent decay of the produced supersymmetric particles. As an application, we study the impact of higher-order corrections in gluino pair-production in a simplified benchmark scenario inspired by current gluino LHC searches.
New approach to parton shower Monte Carlo event generators for precision QCD theory: HERWIRI1.0(31)
International Nuclear Information System (INIS)
Joseph, S.; Ward, B. F. L.; Majhi, S.; Yost, S. A.
2010-01-01
By implementing the new IR-improved Dokshitzer-Gribov-Lipatov-Altarelli-Parisi-Callan-Symanzik (DGLAP-CS) kernels recently developed by one of us in the HERWIG6.5 environment we generate a new Monte Carlo (MC), HERWIRI1.0(31), for hadron-hadron scattering at high energies. We use MC data to illustrate the comparison between the parton shower generated by the standard DGLAP-CS kernels and that generated by the new IR-improved DGLAP-CS kernels. The interface to MC-NLO, MC-NLO/HERWIRI, is illustrated. Comparisons with FNAL data and some discussion of possible implications for LHC phenomenology are also presented.
Effects of subleading color in a parton shower
International Nuclear Information System (INIS)
Nagy, Zoltan; Soper, Davison E.
2014-12-01
Parton shower Monte Carlo event generators in which the shower evolves from hard splittings to soft splittings generally use the leading color (LC) approximation, which is the leading term in an expansion in powers of 1/N c 2 , where N c =3 is the number of colors. In the parton shower event generator DEDUCTOR, we have introduced a more general approximation, the LC+ approximation, that includes some of the color suppressed contributions. In this paper, we explore the differences in results between the LC approximation and the LC+ approximation. Numerical comparisons suggest that, for simple observables, the LC approximation is quite accurate. We also find evidence that for gap-between-jets cross sections neither the LC approximation nor the LC+ approximation is adequate.
Matching fully differential NNLO calculations and parton showers
Energy Technology Data Exchange (ETDEWEB)
Alioli, Simone; Bauer, Christian W.; Berggren, Calvin; Walsh, Jonathan R.; Zuberi, Saba [California Univ., Berkeley, CA (United States). Ernest Orlando Lawrence Berkeley National Laboratory; Tackmann, Frank J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-11-15
We present a general method to match fully differential next-to-next-to-leading (NNLO) calculations to parton shower programs. We discuss in detail the perturbative accuracy criteria a complete NNLO+PS matching has to satisfy. Our method is based on consistently improving a given NNLO calculation with the leading-logarithmic (LL) resummation in a chosen jet resolution variable. The resulting NNLO+LL calculation is cast in the form of an event generator for physical events that can be directly interfaced with a parton shower routine, and we give an explicit construction of the input ''Monte Carlo cross sections'' satisfying all required criteria. We also show how other proposed approaches naturally arise as special cases in our method.
Combining states without scale hierarchies with ordered parton showers
Energy Technology Data Exchange (ETDEWEB)
Fischer, Nadine [Monash University, School of Physics and Astronomy, Clayton, VIC (Australia); Prestel, Stefan [Fermi National Accelerator Laboratory, Batavia, IL (United States)
2017-09-15
We present a parameter-free scheme to combine fixed-order multi-jet results with parton-shower evolution. The scheme produces jet cross sections with leading-order accuracy in the complete phase space of multiple emissions, resumming large logarithms when appropriate, while not arbitrarily enforcing ordering on momentum configurations beyond the reach of the parton-shower evolution equation. This requires the development of a matrix-element correction scheme for complex phase-spaces including ordering conditions as well as a systematic scale-setting procedure for unordered phase-space points. The resulting algorithm does not require a merging-scale parameter. We implement the new method in the Vincia framework and compare to LHC data. (orig.)
Matching fully differential NNLO calculations and parton showers
International Nuclear Information System (INIS)
Alioli, Simone; Bauer, Christian W.; Berggren, Calvin; Walsh, Jonathan R.; Zuberi, Saba
2013-11-01
We present a general method to match fully differential next-to-next-to-leading (NNLO) calculations to parton shower programs. We discuss in detail the perturbative accuracy criteria a complete NNLO+PS matching has to satisfy. Our method is based on consistently improving a given NNLO calculation with the leading-logarithmic (LL) resummation in a chosen jet resolution variable. The resulting NNLO+LL calculation is cast in the form of an event generator for physical events that can be directly interfaced with a parton shower routine, and we give an explicit construction of the input ''Monte Carlo cross sections'' satisfying all required criteria. We also show how other proposed approaches naturally arise as special cases in our method.
The average number of partons per clan in rapidity intervals in parton showers
Energy Technology Data Exchange (ETDEWEB)
Giovannini, A. [Turin Univ. (Italy). Ist. di Fisica Teorica; Lupia, S. [Max-Planck-Institut fuer Physik, Muenchen (Germany). Werner-Heisenberg-Institut; Ugoccioni, R. [Lund Univ. (Sweden). Dept. of Theoretical Physics
1996-04-01
The dependence of the average number of partons per clan on virtuality and rapidity variables is analytically predicted in the framework of the Generalized Simplified Parton Shower model, based on the idea that clans are genuine elementary subprocesses. The obtained results are found to be qualitatively consistent with experimental trends. This study extends previous results on the behavior of the average number of clans in virtuality and rapidity and shows how important physical quantities can be calculated analytically in a model based on essentials of QCD allowing local violations of the energy-momentum conservation law, still requiring its global validity. (orig.)
The average number of partons per clan in rapidity intervals in parton showers
International Nuclear Information System (INIS)
Giovannini, A.; Lupia, S.; Ugoccioni, R.
1996-01-01
The dependence of the average number of partons per clan on virtuality and rapidity variables is analytically predicted in the framework of the Generalized Simplified Parton Shower model, based on the idea that clans are genuine elementary subprocesses. The obtained results are found to be qualitatively consistent with experimental trends. This study extends previous results on the behavior of the average number of clans in virtuality and rapidity and shows how important physical quantities can be calculated analytically in a model based on essentials of QCD allowing local violations of the energy-momentum conservation law, still requiring its global validity. (orig.)
Parton-shower uncertainties with Herwig 7: benchmarks at leading order
Energy Technology Data Exchange (ETDEWEB)
Bellm, Johannes; Schichtel, Peter [Durham University, Department of Physics, IPPP, Durham (United Kingdom); Nail, Graeme [University of Manchester, Particle Physics Group, School of Physics and Astronomy, Manchester (United Kingdom); Karlsruhe Institute of Technology, Institute for Theoretical Physics, Karlsruhe (Germany); Plaetzer, Simon [Durham University, Department of Physics, IPPP, Durham (United Kingdom); University of Manchester, Particle Physics Group, School of Physics and Astronomy, Manchester (United Kingdom); Siodmok, Andrzej [CERN, TH Department, Geneva (Switzerland); Polish Academy of Sciences, The Henryk Niewodniczanski Institute of Nuclear Physics in Cracow, Krakow (Poland)
2016-12-15
We perform a detailed study of the sources of perturbative uncertainty in parton-shower predictions within the Herwig 7 event generator. We benchmark two rather different parton-shower algorithms, based on angular-ordered and dipole-type evolution, against each other. We deliberately choose leading order plus parton shower as the benchmark setting to identify a controllable set of uncertainties. This will enable us to reliably assess improvements by higher-order contributions in a follow-up work. (orig.)
Higgs boson production A comparison of parton showers and resummation
Balázs, C; Puljak, I
2001-01-01
The search for the Higgs boson(s) is one of the major priorities at the upgraded Fermilab Tevatron and at the CERN Large Hadron Collider (LHC). Monte Carlo (MC) event generators are heavily utilized to extract and interpret the Higgs signal, which depends on the details of the soft-gluon emission from the initial state partons in hadronic collisions. Thus, it is crucial to establish the reliability of the MC event generators used by the experimentalists. In this paper, the MC based parton shower formalism is compared to that of an analytic resummation calculation. Theoretical input, predictions and, where they exist, data for the transverse momentum distribution of Higgs bosons, Z/sup 0/ bosons, and photon pairs are compared for the Tevatron and the LHC. This comparison is useful in understanding the strengths and the weaknesses of the different theoretical approaches, and in testing their reliability. (36 refs).
Parton-shower matching systematics in vector-boson-fusion WW production
Energy Technology Data Exchange (ETDEWEB)
Rauch, Michael [Karlsruhe Institute of Technology, Institute for Theoretical Physics, Karlsruhe (Germany); Plaetzer, Simon [Durham University, Institute for Particle Physics Phenomenology, Durham (United Kingdom); University of Manchester, School of Physics and Astronomy, Manchester (United Kingdom)
2017-05-15
We perform a detailed analysis of next-to-leading order plus parton-shower matching in vector-boson-fusion WW production including leptonic decays. The study is performed in the Herwig 7 framework interfaced to VBFNLO 3, using the angular-ordered and dipole-based parton-shower algorithms combined with the subtractive and multiplicative-matching algorithms. (orig.)
Matching the Nagy-Soper parton shower at next-to-leading order
Energy Technology Data Exchange (ETDEWEB)
Kraus, Manfred [Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University (Germany)
2015-07-01
We give a short review of the shower concept, first introduced by Nagy and Soper, that includes full quantum correlations in the shower evolution. We also state the current status of implementation of the publicly available shower program Deductor. However, the main focus of the talk is the matching of the shower at next-to-leading order within the MC rate at NLO formalism. Matching is necessary in order to increase the accuracy of theoretical predictions and to employ a hadronization model. We show first results using Deductor in conjunction with the Helac-NLO framework for top quark pair production in association with one hard jet.
Matching Matrix Elements and Parton Showers with HERWIG and PYTHIA
Mrenna, S; Mrenna, Stephen; Richardson, Peter
2004-01-01
We report on our exploration of matching matrix element calculations with the parton-shower models contained in the event generators HERWIG and Pythia. We describe results for e+e- collisions and for the hadroproduction of W bosons and Drell--Yan pairs. We compare methods based on (1) a strict implementation of ideas proposed by Catani, et al., (2) a generalization based on using the internal Sudakov form factors of HERWIG and Pythia, and (3) a simpler proposal of M. Mangano. Where appropriate, we show the dependence on various choices of scales and clustering that do not affect the soft and collinear limits of the predictions, but have phenomenological implications. Finally, we comment on how to use these results to state systematic errors on the theoretical predictions.
A general framework for implementing NLO calculations in shower Monte Carlo programs. The POWHEG BOX
Energy Technology Data Exchange (ETDEWEB)
Alioli, Simone [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Nason, Paolo [INFN, Milano-Bicocca (Italy); Oleari, Carlo [INFN, Milano-Bicocca (Italy); Milano-Bicocca Univ. (Italy); Re, Emanuele [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology
2010-02-15
In this work we illustrate the POWHEG BOX, a general computer code framework for implementing NLO calculations in shower Monte Carlo programs according to the POWHEG method. Aim of this work is to provide an illustration of the needed theoretical ingredients, a view of how the code is organized and a description of what a user should provide in order to use it. (orig.)
A general framework for implementing NLO calculations in shower Monte Carlo programs. The POWHEG BOX
International Nuclear Information System (INIS)
Alioli, Simone; Nason, Paolo; Oleari, Carlo; Re, Emanuele
2010-02-01
In this work we illustrate the POWHEG BOX, a general computer code framework for implementing NLO calculations in shower Monte Carlo programs according to the POWHEG method. Aim of this work is to provide an illustration of the needed theoretical ingredients, a view of how the code is organized and a description of what a user should provide in order to use it. (orig.)
On the transverse momentum in Z-boson production in a virtually ordered parton shower
Energy Technology Data Exchange (ETDEWEB)
Nagy, Zoltan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Soper, Davison E. [Oregon Univ., Eugene, OR (United States). Inst. of Theoretical Science
2009-12-15
Cross sections for physical processes that involve very different momentum scales in the same process will involve large logarithms of the ratio of the momentum scales when calculated in perturbation theory. One goal of calculations using parton showers is to sum these large logarithms. We ask whether this goal is achieved for the transverse momentum distribution of a Z-boson produced in hadron-hadron collisions when the shower is organized with higher virtuality parton splittings coming first, followed successively by lower virtuality parton splittings. We find that the virtuality ordered shower works well in reproducing the known QCD result. (orig.)
On the transverse momentum in Z-boson production in a virtually ordered parton shower
International Nuclear Information System (INIS)
Nagy, Zoltan; Soper, Davison E.
2009-12-01
Cross sections for physical processes that involve very different momentum scales in the same process will involve large logarithms of the ratio of the momentum scales when calculated in perturbation theory. One goal of calculations using parton showers is to sum these large logarithms. We ask whether this goal is achieved for the transverse momentum distribution of a Z-boson produced in hadron-hadron collisions when the shower is organized with higher virtuality parton splittings coming first, followed successively by lower virtuality parton splittings. We find that the virtuality ordered shower works well in reproducing the known QCD result. (orig.)
Jet Hadronization via Recombination of Parton Showers in Vacuum and in Medium
Energy Technology Data Exchange (ETDEWEB)
Fries, Rainer J.; Han, Kyongchol; Ko, Che Ming
2016-12-15
We introduce a hadronization algorithm for jet parton showers based on a hybrid approach involving recombination of quarks and fragmentation of strings. The algorithm can be applied to parton showers from a shower Monte Carlo generator at the end of their perturbative evolution. The algorithm forces gluon decays and then evaluates the recombination probabilities for quark-antiquark pairs into mesons and (anti)quark triplets into (anti)baryons. We employ a Wigner phase space formulation based on the assumption of harmonic oscillator wave functions for stable hadrons and resonances. Partons too isolated in phase space to find recombination partners are connected by QCD strings to other quarks. Fragmentation of those remnant strings and the decay of all hadron resonances complete the hadronization process. We find that our model applied to parton showers from the PYTHIA Monte Carlo event generator leads to results very similar to pure Lund string fragmentation. We suggest that our algorithm can be readily generalized to jets embedded in quark-gluon plasma by adding sampled thermal partons from the phase transition hypersurface. The recombination of thermal partons and shower partons leads to an enhancement of pions and protons at intermediate momentum at both RHIC and LHC.
MC rate at NLO for heavy flavour photoproduction at HERA
Energy Technology Data Exchange (ETDEWEB)
Toll, Tobias
2010-02-15
A Monte Carlo at next-to-leading order (MC rate at NLO) has been constructed for the production of heavy quark flavours in photoproduction. As such, it is the rst Monte Carlo event generator with next-to-leading order (NLO) accuracy for a process in lepton hadron scattering. In order to construct such an MC rate at NLO, the matrix element for the process has to be calculated at NLO and then be matched with a parton shower. When doing this, it is important that none of the parton configurations produced are doubly counted. In this thesis, the concept of a Monte Carlo event generator will be explained, with emphasis on the HERWIG parton shower. Also, different techniques of calculating matrix elements at NLO accuracy will be explained. It will then be shown how the NLO calculation can be matched with the HERWIG parton shower in an MC rate at NLO without double counting, producing unweighted events at NLO-accuracy. Many comparisons are made between the MC rate at NLO here constructed, the HERWIG Monte Carlo and the FMNR NLO calculation. Also many comparisons are made to HERA data from the H1 and ZEUS experiments. It is shown that all HERA data with heavy quarks produced in photoproduction can be described by the MC rate at NLO program constructed in this thesis. (orig.)
MC rate at NLO for heavy flavour photoproduction at HERA
International Nuclear Information System (INIS)
Toll, Tobias
2010-02-01
A Monte Carlo at next-to-leading order (MC rate at NLO) has been constructed for the production of heavy quark flavours in photoproduction. As such, it is the rst Monte Carlo event generator with next-to-leading order (NLO) accuracy for a process in lepton hadron scattering. In order to construct such an MC rate at NLO, the matrix element for the process has to be calculated at NLO and then be matched with a parton shower. When doing this, it is important that none of the parton configurations produced are doubly counted. In this thesis, the concept of a Monte Carlo event generator will be explained, with emphasis on the HERWIG parton shower. Also, different techniques of calculating matrix elements at NLO accuracy will be explained. It will then be shown how the NLO calculation can be matched with the HERWIG parton shower in an MC rate at NLO without double counting, producing unweighted events at NLO-accuracy. Many comparisons are made between the MC rate at NLO here constructed, the HERWIG Monte Carlo and the FMNR NLO calculation. Also many comparisons are made to HERA data from the H1 and ZEUS experiments. It is shown that all HERA data with heavy quarks produced in photoproduction can be described by the MC rate at NLO program constructed in this thesis. (orig.)
QED radiative correction for the single-W production using a parton shower method
International Nuclear Information System (INIS)
Kurihara, Y.; Fujimoto, J.; Ishikawa, T.; Shimizu, Y.; Kato, K.; Tobimatsu, K.; Munehisa, T.
2001-01-01
A parton shower method for the photonic radiative correction is applied to single W-boson production processes. The energy scale for the evolution of the parton shower is determined so that the correct soft-photon emission is reproduced. Photon spectra radiated from the partons are compared with those from the exact matrix elements, and show a good agreement. Possible errors due to an inappropriate energy-scale selection or due to the ambiguity of the energy-scale determination are also discussed, particularly for the measurements on triple gauge couplings. (orig.)
A parton shower based on factorization of the quantum density matrix
International Nuclear Information System (INIS)
Nagy, Zoltan; Soper, Davison E.
2014-01-01
We present rst results from a new parton shower event generator, DEDUCTOR. Anticipating a need for an improved treatment of parton color and spin, the structure of the generator is based on the quantum density matrix in color and spin space. So far, DEDUCTOR implements only a standard spin-averaged treatment of spin in parton splittings. Although DEDUCTOR implements an improved treatment of color, in this paper we present results in the standard leading color approximation so that we can compare to the generator PYTHIA. The algorithms used incorporate a virtuality based shower ordering parameter and massive initial state bottom and charm quarks.
Probing the perturbative NLO parton evolution in the small-x region
International Nuclear Information System (INIS)
Glueck, M.; Pisano, C.; Reya, E.
2005-01-01
A dedicated test of the perturbative QCD NLO parton evolution in the very small-x region is performed. We find a good agreement with recent precision HERA data for F 2 p (x,Q 2 ), as well as with the present determination of the curvature of F 2 p . Characteristically, perturbative QCD evolutions result in a positive curvature which increases as xdecreases. Future precision measurements in the very small x-region, x -4 , could provide a sensitive test of the range of validity of perturbative QCD. (orig.)
Hadronic top-quark pair-production with one jet and parton showering
Energy Technology Data Exchange (ETDEWEB)
Alioli, Simone; Moch, Sven-Olaf [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Uwer, Peter [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik
2011-10-15
We present a calculation of heavy-flavor production in hadronic collisions in association with one jet matched to parton shower Monte Carlo programs at next-to-leading order in perturbative QCD. Top-quark decays are included and spin correlations in the decay products are taken into account. The calculation builds on existing results for the radiative corrections to heavy-quark plus one jet production and uses the POWHEG BOX for the interface to the parton shower programs PYTHIA or HERWIG. A broad phenomenological study for the Large Hadron Collider and the Tevatron is presented. In particular we study - as one important sample application - the impact of the parton shower on the top-quark charge asymmetry. (orig.)
Three photon production to NLO+PS accuracy at the LHC
Energy Technology Data Exchange (ETDEWEB)
Mandal, M.K. [Harish-Chandra Research Institute, Regional Centre for Accelerator-based Particle Physics, Allahabad (India); Mathews, Prakash; Seth, Satyajit [Saha Institute of Nuclear Physics, Kolkata (India); Ravindran, V. [The Institute of Mathematical Sciences, Chennai, Tamil Nadu (India)
2014-09-15
In this paper, we present the next-to-leading order predictions for three photon production in the standard model, matched to the parton shower using the MC rate at NLO formalism. We have studied the role of the parton shower on various observables and we show a selection of results for the 14 TeV Large Hadron Collider. (orig.)
A parton shower based on factorization of the quantum density matrix
Nagy, Zoltan; Soper, Davison E.
2014-01-01
We present first results from a new parton shower event generator, D eductor . Anticipating a need for an improved treatment of parton color and spin, the structure of the generator is based on the quantum density matrix in color and spin space. So far, D eductor implements only a standard spin-averaged treatment of spin in parton splittings. Although D eductor implements an improved treatment of color, in this paper we present results in the standard leading color approximation so that we ca...
Three-particle correlations in QCD parton showers
International Nuclear Information System (INIS)
Perez-Ramos, Redamy; Mathieu, Vincent; Sanchis-Lozano, Miguel-Angel
2011-01-01
Three-particle correlations in quark and gluon jets are computed for the first time in perturbative QCD. We give results in the double logarithmic approximation and the modified leading logarithmic approximation. In both resummation schemes, we use the formalism of the generating functional and solve the evolution equations analytically from the steepest descent evaluation of the one-particle distribution. We thus provide a further test of the local parton hadron duality and make predictions for the LHC.
A study of optimal parameter setting for aMC@NLO + Pythia8 matched setup
The ATLAS collaboration
2015-01-01
This note presents a study to arrive at the optimum tune of Pythia8 generator's parton shower and multiple parton interaction parameters for aMC@NLO + Pythia8 matched setup. Published distributions from ATLAS Run 1 data at 7 TeV for three different processes, inclusive jet, Z~boson and $t\\bar{t}$ production were studied. Additionally, the effect of using two different parton recoil modes in shower, global and local recoil are also investigated.
Charged Higgs boson production in association with a top quark in MC@NLO
Weydert, C.; Frixione, S.; Herquet, M.; Klasen, M.; Laenen, E.; Plehn, T.; Stavenga, G.; White, C.D.
2010-01-01
We discuss the calculation of charged Higgs boson production in association with a top quark in the MC@NLO framework for combining NLO matrix elements with a parton shower. The process is defined in a model-independent manner for wide applicability, and can be used if the charged Higgs boson mass is
International Nuclear Information System (INIS)
Hosseinkhani, H.; Modarres, M.
2011-01-01
To overcome the complexity of generalized two hard scale (k t ,μ) evolution equation, well known as the Ciafaloni, Catani, Fiorani and Marchesini (CCFM) evolution equations, and calculate the unintegrated parton distribution functions (UPDF), Kimber, Martin and Ryskin (KMR) proposed a procedure based on (i) the inclusion of single-scale (μ) only at the last step of evolution and (ii) the angular ordering constraint (AOC) on the DGLAP terms (the DGLAP collinear approximation), to bring the second scale, k t into the UPDF evolution equations. In this work we intend to use the MSTW2008 (Martin et al.) parton distribution functions (PDF) and try to calculate UPDF for various values of x (the longitudinal fraction of parton momentum), μ (the probe scale) and k t (the parton transverse momentum) to see the general behavior of three-dimensional UPDF at the NLO level up to the LHC working energy scales (μ 2 ). It is shown that there exits some pronounced peaks for the three-dimensional UPDF(f a (x,k t )) with respect to the two variables x and k t at various energies (μ). These peaks get larger and move to larger values of k t , as the energy (μ) is increased. We hope these peaks could be detected in the LHC experiments at CERN and other laboratories in the less exclusive processes.
HERWIRI1.0: MC realization of IR-improved DGLAP-CS parton showers
International Nuclear Information System (INIS)
Joseph, S.; Majhi, S.; Ward, B.F.L.; Yost, S.A.
2010-01-01
We present Monte Carlo data showing the comparison between the parton shower generated by the standard Dokshitzer-Gribov-Lipatov-Altarelli-Parisi-Callan-Symanzik (DGLAP-CS) kernels and that generated with the new IR-improved DGLAP-CS kernels recently developed by one of us. We do this in the context of HERWIG6.5 by implementing the new kernels therein to generate a new MC, HERWIRI1.0, for hadron-hadron interactions at high energies. We discuss possible phenomenological implications for precision LHC theory. We also present comparisons with FNAL data.
Matching NLO QCD corrections in WHIZARD with the POWHEG scheme
International Nuclear Information System (INIS)
Nejad, Bijan Chokoufe; Reuter, Juergen; Kilian, Wolfgang; Weiss, Christian; Siegen Univ.
2015-01-01
Building on the new automatic subtraction of NLO amplitudes in WHIZARD, we present our implementation of the POWHEG scheme to match radiative corrections consistently with the parton shower. We apply this general framework to two linear collider processes, e + e - →t anti t and e + e - →t anti tH.
Slepton pair production at the LHC in NLO+NLL with resummation-improved parton densities
Fiaschi, Juri; Klasen, Michael
2018-03-01
Novel PDFs taking into account resummation-improved matrix elements, albeit only in the fit of a reduced data set, allow for consistent NLO+NLL calculations of slepton pair production at the LHC. We apply a factorisation method to this process that minimises the effect of the data set reduction, avoids the problem of outlier replicas in the NNPDF method for PDF uncertainties and preserves the reduction of the scale uncertainty. For Run II of the LHC, left-handed selectron/smuon, right-handed and maximally mixed stau production, we confirm that the consistent use of threshold-improved PDFs partially compensates the resummation contributions in the matrix elements. Together with the reduction of the scale uncertainty at NLO+NLL, the described method further increases the reliability of slepton pair production cross sections at the LHC.
Matching NLO parton shower matrix element with exact phase space case of $W\\to l\
Nanava, G; Was, Z
2010-01-01
In practical applications PHOTOS Monte Carlo is often used for simulation of QED effects in decay of intermediate particles and resonances. Generated in such a way that samples of events cover the whole bremsstrahlung phase space. With the help of selection cuts, experimental acceptance can be then taken into account. The program is based on exact multiphoton phase space. To evaluate the program precision it is necessary to control its matrix element. Generally it is obtained using iteration of the universal multidimensional kernel. In some cases it is however obtained from the exact first order matrix element. Then, as a consequence, all terms necessary for non-leading logarithms are taken into account. In the present paper we will focus on the decays W -> l nu and gamma^* -> pi^+ pi^-. The Born level cross sections for both processes approach zero in some points of the phase space. Process dependent, compensating weight is constructed to implement exact matrix element, but it will be recommended for use onl...
A case study of quark-gluon discrimination at NNLL{sup '} in comparison to parton showers
Energy Technology Data Exchange (ETDEWEB)
Mo, Jonathan; Waalewijn, Wouter J. [University of Amsterdam, Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics, Amsterdam (Netherlands); Nikhef, Theory Group, Amsterdam (Netherlands); Tackmann, Frank J. [Theory Group, Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2017-11-15
Predictions for our ability to distinguish quark and gluon jets vary by more than a factor of two between different parton showers. We study this problem using analytic resummed predictions for the thrust event shape up to NNLL{sup '} using e{sup +}e{sup -} → Z → q anti q and e{sup +}e{sup -} → H → gg as proxies for quark and gluon jets. We account for hadronization effects through a nonperturbative shape function, and include an estimate of both perturbative and hadronization uncertainties. In contrast to previous studies, we find reasonable agreement between our results and predictions from both Pythia and Herwig parton showers. We find that this is due to a noticeable improvement in the description of gluon jets in the newest Herwig 7.1 compared to previous versions. (orig.)
A case study of quark-gluon discrimination at NNLL{sup '} in comparison to parton showers
Energy Technology Data Exchange (ETDEWEB)
Mo, Jonathan; Waalewijn, Wouter [Institute for Theoretical Physics, Amsterdam (Netherlands); Amsterdam Univ. (Netherlands). Delta Inst. for Theoretical Physics; Nikhef, Amsterdam (Netherlands). Theory Group; Tackmann, Frank J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group
2017-08-15
Predictions for our ability to distinguish quark and gluon jets vary by more than a factor of two between different parton showers. We study this problem using analytic resummed predictions for the thrust event shape up to NNLL{sup '} using e{sup +}e{sup -}→Z→q anti q and e{sup +}e{sup -}→H→gg as proxies for quark and gluon jets. We account for hadronization effects through a nonperturbative shape function, and include an estimate of both perturbative and hadronization uncertainties. In contrast to previous studies, we find reasonable agreement between our results and predictions from both PYTHIA and HERWIG parton showers. We find that this is due to a noticeable improvement in the description of gluon jets in the newest Herwig 7.1 compared to previous versions.
MINLO: Multi-scale improved NLO
Hamilton, Keith; Zanderighi, Giulia
2012-01-01
In the present work we consider the assignment of the factorization and renormalization scales in hadron collider processes with associated jet production, at next-to-leading order (NLO) in perturbation theory. We propose a simple, definite prescription to this end, including Sudakov form factors to consistently account for the distinct kinematic scales occuring in such collisions. The scheme yields results that are accurate at NLO and, for a large class of observables, it resums to all orders the large logarithms that arise from kinematic configurations involving disparate scales. In practical terms the method is most simply understood as an NLO extension of the matrix element reweighting procedure employed in tree level matrix element-parton shower merging algorithms. By way of a proof-of-concept, we apply the method to Higgs and Z boson production in association with up to two jets.
Monte Carlo simulations of Higgs-boson production at the LHC with the KrkNLO method
Energy Technology Data Exchange (ETDEWEB)
Jadach, S.; Skrzypek, M. [Polish Academy of Sciences, Institute of Nuclear Physics, Krakow (Poland); Nail, G. [University of Manchester, Particle Physics Group, School of Physics and Astronomy, Manchester (United Kingdom); Karlsruhe Institute of Technology, Institute for Theoretical Physics, Karlsruhe (Germany); Placzek, W. [Jagiellonian University, Marian Smoluchowski Institute of Physics, Krakow (Poland); Sapeta, S.; Siodmok, A. [Polish Academy of Sciences, Institute of Nuclear Physics, Krakow (Poland); Theoretical Physics Department, CERN, Geneva (Switzerland)
2017-03-15
We present numerical tests and predictions of the KrkNLO method for matching of NLO QCD corrections to hard processes with LO parton-shower Monte Carlo generators (NLO+PS). This method was described in detail in our previous publications, where it was also compared with other NLO+PS matching approaches (MC rate at NLO and POWHEG) as well as fixed-order NLO and NNLO calculations. Here we concentrate on presenting some numerical results (cross sections and distributions) for Z/γ* (Drell-Yan) and Higgs-boson production processes at the LHC. The Drell-Yan process is used mainly to validate the KrkNLO implementation in the Herwig 7 program with respect to the previous implementation in Sherpa. We also show predictions for this process with the new, complete, MC-scheme parton distribution functions and compare them with our previously published results. Then we present the first results of the KrkNLO method for Higgs production in gluon-gluon fusion at the LHC and compare them with MC rate at NLO and POWHEG predictions from Herwig 7, fixed-order results from HNNLO and a resummed calculation from HqT, as well as with experimental data from the ATLAS collaboration. (orig.)
Hadronic Higgs production through NLO + PS in the SM, the 2HDM and the MSSM
International Nuclear Information System (INIS)
Mantler, Hendrik; Wiesemann, Marius
2015-01-01
The next-to-leading order (NLO) cross section of the gluon fusion process is matched to parton showers in the MC@NLO approach. We work in the framework of MadGraph5 a MC@NLO and document the inclusion of the full quark-mass dependence in the Standard Model (SM) as well as the state-of-the-art squark and gluino effects within the Minimal Supersymmetric SM embodied in the program SusHi. The combination of the two programs is realized by a script which is publicly available and whose usage is detailed. We discuss the input cards and the relevant parameter switches. One of our focuses is on the shower scale which is specifically important for gluon-induced Higgs production, particularly in models with enhanced Higgs-bottom Yukawa coupling
Hadronic Higgs production through NLO+PS in the SM, the 2HDM and the MSSM
Mantler, Hendrik
2015-01-01
The NLO cross section of the gluon fusion process is matched to parton showers in the MC@NLO approach. We work in the framework of MadGraph5_aMC@NLO and document the inclusion of the full quark-mass dependence in the SM as well as the state-of-the-art squark and gluino effects within the MSSM embodied in the program SusHi. The combination of the two programs is realized by a script which is publicly available and whose usage is detailed. We discuss the input cards and the relevant parameter switches. One of our focuses is on the shower scale which is specifically important for gluon-induced Higgs production, particularly in models with enhanced Higgs-bottom Yukawa coupling.
The SM and NLO Multileg and SM MC Working Groups: Summary Report
Alcaraz Maestre, J.; Huston, J.; Krauss, F.; Maitre, D.; Nurse, E.; Pittau, R.; Alioli, S.; Andersen, J.R.; Ball, R.D.; Buckley, A.; Cacciari, M.; Campanario, F.; Chanon, N.; Chachamis, G.; Ciulli, V.; Cossutti, F.; Cullen, G.; Denner, A.; Dittmaier, S.; Fleischer, J.; Frederix, R.; Frixione, S.; Gao, J.; Garren, L.; Gascon-Shotkin, S.; Greiner, N.; Guillet, J.P.; Hapola, T.; Hartland, N.P.; Hesketh, G.; Hirschi, V.; Hoeth, H.; Jezo, T.; Kallweit, S.; Kovarik, K.; Kusina, A.; Liang, Z.; Lenzi, P.; Lonnblad, L.; Lopez-Villarejo, J.J.; Luisoni, G.; Maltoni, F.; Mastrolia, P.; Nadolsky, P.M.; Oleari, C.; Olness, F.I.; Ossola, G.; Pilon, E.; Platzer, S.; Pozzorini, S.; Prestel, S.; Re, E.; Reiter, T.; Riemann, T.; Rojo, J.; Salam, G.P.; Sapeta, S.; Schienbein, I.; Schonherr, M.; Schulz, H.; Schulze, M.; Schwoerer, M.; Skands, P.; Smillie, J.M.; Somogyi, G.; Soyez, G.; Stavreva, T.; Stewart, I.W.; Stockton, M.; or, Z.Sz\\H.; Tackmann, F.J.; Torrielli, P.; Tramontano, F.; Tripiana, M.; Trocsanyi, Z.; Ubiali, M.; Yundin, V.; Weinzierl, S.; Winter, J.; Yu, J.Y.; Zapp, K.
2012-01-01
The 2011 Les Houches workshop was the first to confront LHC data. In the two years since the previous workshop there have been significant advances in both soft and hard QCD, particularly in the areas of multi-leg NLO calculations, the inclusion of those NLO calculations into parton shower Monte Carlos, and the tuning of the non-perturbative parameters of those Monte Carlos. These proceedings describe the theoretical advances that have taken place, the impact of the early LHC data, and the areas for future development.
Triple vector boson production through Higgs-Strahlung with NLO multijet merging
Energy Technology Data Exchange (ETDEWEB)
Hoeche, S.; /SLAC; Krauss, F.; /Durham U., IPPP; Pozzorini, S.; /Zurich U.; Schonherr, M.; Thompson, J.M.; /Durham U., IPPP; Zapp, K.C.; /CERN
2014-07-25
Triple gauge boson hadroproduction, in particular the production of three W-bosons at the LHC, is considered at next-to leading order accuracy in QCD. The NLO matrix elements are combined with parton showers. Multijet merging is invoked such that NLO matrix elements with one additional jet are also included. The studies here incorporate both the signal and all relevant backgrounds for V H production with the subsequent decay of the Higgs boson into W– or τ–- pairs. They have been performed using SHERPA+OPENLOOPS in combination with COLLIER.
The SM and NLO Multileg and SM MC Working Groups: Summary Report
Energy Technology Data Exchange (ETDEWEB)
Alcaraz Maestre, J.; et al.
2012-03-01
The 2011 Les Houches workshop was the first to confront LHC data. In the two years since the previous workshop there have been significant advances in both soft and hard QCD, particularly in the areas of multi-leg NLO calculations, the inclusion of those NLO calculations into parton shower Monte Carlos, and the tuning of the non-perturbative parameters of those Monte Carlos. These proceedings describe the theoretical advances that have taken place, the impact of the early LHC data, and the areas for future development.
Automation of NLO processes and decays and POWHEG matching in WHIZARD
International Nuclear Information System (INIS)
Reuter, Juergen; Chokoufe, Bijan; Stahlhofen, Maximilian
2016-03-01
We give a status report on the automation of next-to-leading order processes within the Monte Carlo event generator WHIZARD, using GoSam and OpenLoops as provider for one-loop matrix elements. To deal with divergences, WHIZARD uses automated FKS subtraction, and the phase space for singular regions is generated automatically. NLO examples for both scattering and decay processes with a focus on e + e - processes are shown. Also, first NLO-studies of observables for collisions of polarized leptons beams, e.g. at the ILC, will be presented. Furthermore, the automatic matching of the fixed-order NLO amplitudes with emissions from the parton shower within the POWHEG formalism inside WHIZARD will be discussed. We also present results for top pairs at threshold in lepton collisions, including matching between a resummed threshold calculation and fixed-order NLO. This allows the investigation of more exclusive differential observables.
Studies of tt+cc production with MadGraph5_aMC@NLO and Herwig++ for the ATLAS experiment
The ATLAS collaboration
2016-01-01
Studies of the simulation of ttcc at the LHC, at a centre-of-mass energy of 13 TeV, based on next-to-leading order calculations with MadGraph5_aMC@NLO matched to Herwig++ are presented. Samples with ttcc in the three flavour scheme, in a next-to-leading order matrix element are compared to an inclusive tt sample with the charm contribution coming from the parton shower. The effects of generator-level cuts, the functional form of the renormalization and factorization scales, and the starting scale of the parton shower are investigated.
Electroweak Higgs production with HiggsPO at NLO QCD
International Nuclear Information System (INIS)
Greljo, Admir; Isidori, Gino; Zhang, Hantian; Lindert, Jonas M.; Marzocca, David
2017-01-01
We present the HiggsPO UFO model for Monte Carlo event generation of electroweak VH and VBF Higgs production processes at NLO in QCD in the formalism of Higgs pseudo-observables (PO). We illustrate the use of this tool by studying the QCD corrections, matched to a parton shower, for several benchmark points in the Higgs PO parameter space. We find that, while being sizable and thus important to be considered in realistic experimental analyses, the QCD higher-order corrections largely factorize. As an additional finding, based on the NLO results, we advocate to consider 2D distributions of the two-jet azimuthal-angle difference and the leading jet p T for new physics searches in VBF Higgs production. The HiggsPO UFO model is publicly available. (orig.)
Electroweak Higgs production with HiggsPO at NLO QCD
Greljo, Admir; Isidori, Gino; Lindert, Jonas M.; Marzocca, David; Zhang, Hantian
2017-12-01
We present the HiggsPO UFO model for Monte Carlo event generation of electroweak VH and VBF Higgs production processes at NLO in QCD in the formalism of Higgs pseudo-observables (PO). We illustrate the use of this tool by studying the QCD corrections, matched to a parton shower, for several benchmark points in the Higgs PO parameter space. We find that, while being sizable and thus important to be considered in realistic experimental analyses, the QCD higher-order corrections largely factorize. As an additional finding, based on the NLO results, we advocate to consider 2D distributions of the two-jet azimuthal-angle difference and the leading jet p_T for new physics searches in VBF Higgs production. The HiggsPO UFO model is publicly available.
Electroweak Higgs production with HiggsPO at NLO QCD
Energy Technology Data Exchange (ETDEWEB)
Greljo, Admir [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Johannes Gutenberg-Universitaet Mainz, PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Mainz (Germany); University of Sarajevo, Faculty of Science, Sarajevo (Bosnia and Herzegovina); Isidori, Gino; Zhang, Hantian [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Lindert, Jonas M. [Durham University, Department of Physics, Institute for Particle Physics Phenomenology, Durham (United Kingdom); Marzocca, David [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); INFN, Sezione di Trieste(Italy); SISSA, Trieste (Italy)
2017-12-15
We present the HiggsPO UFO model for Monte Carlo event generation of electroweak VH and VBF Higgs production processes at NLO in QCD in the formalism of Higgs pseudo-observables (PO). We illustrate the use of this tool by studying the QCD corrections, matched to a parton shower, for several benchmark points in the Higgs PO parameter space. We find that, while being sizable and thus important to be considered in realistic experimental analyses, the QCD higher-order corrections largely factorize. As an additional finding, based on the NLO results, we advocate to consider 2D distributions of the two-jet azimuthal-angle difference and the leading jet p{sub T} for new physics searches in VBF Higgs production. The HiggsPO UFO model is publicly available. (orig.)
Monte Carlo simulations of Higgs-boson production at the LHC with the KrkNLO method
Jadach, S.
2017-01-01
We present numerical tests and predictions of the KrkNLO method for matching of NLO QCD corrections to hard processes with LO parton shower Monte Carlo generators. This method was described in detail in our previous publications, where its advantages over other approaches, such as MCatNLO and POWHEG, were pointed out. Here we concentrate on presenting some numerical results (cross sections and distributions) for $Z/\\gamma^*$ (Drell-Yan) and Higgs-boson production processes at the LHC. The Drell--Yan process is used mainly to validate the KrkNLO implementation in the Herwig 7 program with respect to the previous implementation in Sherpa. We also show predictions for this process with the new, complete, MC-scheme parton distribution functions and compare them with our previously published results. Then, we present the first results of the KrkNLO method for the Higgs production in gluon--gluon fusion at the LHC and compare them with the predictions of other programs, such as MCFM, MCatNLO, POWHEG and HNNLO, as w...
Automation of NLO QCD and EW corrections with Sherpa and Recola
Energy Technology Data Exchange (ETDEWEB)
Biedermann, Benedikt; Denner, Ansgar; Pellen, Mathieu [Universitaet Wuerzburg, Institut fuer Theoretische Physik und Astrophysik, Wuerzburg (Germany); Braeuer, Stephan; Schumann, Steffen [Georg-August Universitaet Goettingen, II. Physikalisches Institut, Goettingen (Germany); Thompson, Jennifer M. [Universitaet Heidelberg, Institut fuer Theoretische Physik, Heidelberg (Germany)
2017-07-15
This publication presents the combination of the one-loop matrix-element generator Recola with the multipurpose Monte Carlo program Sherpa. Since both programs are highly automated, the resulting Sherpa +Recola framework allows for the computation of - in principle - any Standard Model process at both NLO QCD and EW accuracy. To illustrate this, three representative LHC processes have been computed at NLO QCD and EW: vector-boson production in association with jets, off-shell Z-boson pair production, and the production of a top-quark pair in association with a Higgs boson. In addition to fixed-order computations, when considering QCD corrections, all functionalities of Sherpa, i.e. particle decays, QCD parton showers, hadronisation, underlying events, etc. can be used in combination with Recola. This is demonstrated by the merging and matching of one-loop QCD matrix elements for Drell-Yan production in association with jets to the parton shower. The implementation is fully automatised, thus making it a perfect tool for both experimentalists and theorists who want to use state-of-the-art predictions at NLO accuracy. (orig.)
W gamma production in hadronic collisions using the POWHEG+MiNLO method
Barze, Luca; Montagna, Guido; Nason, Paolo; Nicrosini, Oreste; Piccinini, Fulvio; Prosperi, Valeria
2014-01-01
We detail a calculation of W gamma production in hadronic collision, at Next-to-Leading Order (NLO) QCD interfaced to a shower generator according to the POWHEG prescription supplemented with the MiNLO procedure. The fixed order result is matched to an interleaved QCD+QED parton shower, in such a way that the contribution arising from hadron fragmentation into photons is fully modeled. In general, our calculation illustrates a new approach to the fully exclusive simulation of prompt photon production processes accurate at the NLO level in QCD. We compare our predictions to those of the NLO program MCFM, which treats the fragmentation contribution in terms of photon fragmentation functions. We also perform comparisons to available LHC data at 7 TeV, for which we observe good agreement, and provide phenomenological results for physics studies of the W gamma production process at the Run II of the LHC. The new tool, which includes W leptonic decays and the contribution of anomalous gauge couplings, allows a full...
Ntuples for NLO Events at Hadron Colliders
Bern, Z.; Febres Cordero, F.; Höche, S.; Ita, H.; Kosower, D.A.; Maitre, D.
2014-01-01
We present an event-file format for the dissemination of next-to-leading-order (NLO) predictions for QCD processes at hadron colliders. The files contain all information required to compute generic jet-based infrared-safe observables at fixed order (without showering or hadronization), and to recompute observables with different factorization and renormalization scales. The files also make it possible to evaluate cross sections and distributions with different parton distribution functions. This in turn makes it possible to estimate uncertainties in NLO predictions of a wide variety of observables without recomputing the short-distance matrix elements. The event files allow a user to choose among a wide range of commonly-used jet algorithms and jet-size parameters. We provide event files for a $W$ or $Z$ boson accompanied by up to four jets, and for pure-jet events with up to four jets. The files are for the Large Hadron Collider with a center of mass energy of 7 or 8 TeV. A C++ library along with a Python in...
NLO QCD predictions for Z + γ + jets production with Sherpa
Energy Technology Data Exchange (ETDEWEB)
Krause, Johannes; Siegert, Frank [Institut fuer Kern- und Teilchenphysik, Dresden (Germany)
2018-02-15
We present precise predictions for prompt photon production in association with a Z boson and jets. They are obtained within the Sherpa framework as a consistently merged inclusive sample. Leptonic decays of the Z boson are fully included in the calculation with all off-shell effects. Virtual matrix elements are provided by OpenLoops and parton-shower effects are simulated with a dipole parton shower. Thanks to the NLO QCD corrections included not only for inclusive Zγ production but also for the Zγ + 1-jet process we find significantly reduced systematic uncertainties and very good agreement with experimental measurements at √(s) = 8 TeV. Predictions at √(s) = 13 TeV are displayed including a study of theoretical uncertainties. In view of an application of these simulations within LHC experiments, we discuss in detail the necessary combination with a simulation of the Z + jets final state. In addition to a corresponding prescription we introduce recommended cross checks to avoid common pitfalls during the overlap removal between the two samples. (orig.)
NNLOPS accurate associated HZ production with NLO decay ${\\rm{H}} \\to b\\bar{b}$ arXiv
Astill, William; Re, Emanuele; Zanderighi, Giulia
We present a next-to-next-to-leading order (NNLO) accurate description of associated HZ production, followed by the Higgs boson decay into a pair of $b$-quarks treated at next-to-leading order (NLO), consistently matched to a parton shower (PS). The matching is achieved by performing reweighting of the $\\texttt{HZJ-MiNLO}$ events, using multi-dimensional distributions that are fully-differential in the HZ Born kinematics, to the NNLO results obtained by using the $\\texttt{MCFM-8.0}$ fixed-order calculation. Additionally we include the $gg\\to\\rm{HZ}$ contribution to the discussed process that appears at the $\\mathcal{O}(\\alpha_s^2)$. We present phenomenological results obtained for 13 TeV hadronic collisions.
Coherence effects in parton showers
International Nuclear Information System (INIS)
Pettersson, U.
1988-10-01
A model for gluon emission based on the colour dipole approximation is presented. Gluons are radiated from dipoles that are stretched from one colour charge to the corresponding anti-charge, with probability distribution given by generalizations of the Altarelli-Parisi equations. The model agrees very well with experimental data on e + e - annihilation. For the reaction e + e - -> W + W - -> qq ' QQ ' it is pointed out how to extract information about the QCD vacuum and the confinement mechanism by varying the CM energy. Finally the model is applied to deep inelastic lepton scattering. When a quark is kicked out in the lepton-proton interaction, separation of the colour charges leads to gluon emission. Since the proton remnant is not a pointlike object, coherence conditions lead to an asymmetry between gluons emitted in the forward and in the backward region. The asymmetry is controlled by the energy distribution in the force field. Experimental data are reproduced with a linear energy distribution, which is consistent with the proton behaving as a vortex line in a type II superconductor. (author)
Parton distributions with LHC data
Ball, Richard D.; Bertone, Valerio; Carrazza, Stefano; Deans, Christopher S.; Debbio, Luigi Del; Forte, Stefano; Guffanti, Alberto; Hartland, Nathan P.; Latorre, Jose I.; Rojo, Juan; Ubiali, Maria
2013-01-01
We present the first determination of parton distributions of the nucleon at NLO and NNLO based on a global data set which includes LHC data: NNPDF2.3. Our data set includes, besides the deep inelastic, Drell-Yan, gauge boson production and jet data already used in previous global PDF
Calculation of the TeV prompt muon component in very high energy cosmic ray showers
International Nuclear Information System (INIS)
Battistoni, G.; Bloise, C.; Forti, C.; Tanzini, A.
1995-07-01
HEMAS-DPM is a Monte Carlo for the simulation of very high energy cosmic ray showers, which includes the DPMJET-II code based on the two component Dual Parton Model. DPMJET-II provides also charm production in agreement with data and, for p exceeding 5 GeV/c, with perturbative QCD results in hadron-nucleus and nucleus-nucleus interactions. In this respect, a new scheme has been considered for the inclusive production of D mesons at large p in hadronic collisions in the frame work of perturbative fragmentation functions, allowing an analysis at the NLO (next to leading order) level which goes beyond the fixed O(α s 3 ) perturbative theory of open charm production. HEMAS-DPM has been applied to the calculation of the prompt muon component for E μ ≥1 TeV in air showers considering the two extreme cases of primary protons and Fe nuclei
The new PV prescription for IR singularities of NLO splitting functions
International Nuclear Information System (INIS)
Skrzypek, M.; Jadach, S.; Kusina, A.
2014-07-01
In this note we outline the Monte Carlo project KrkMC. The goal of this project is to construct a QCD Parton Shower accurate to NLO level in both coefficient function and splitting function (shower) parts. We discuss in detail one of its aspects - the evolution kernels. The kernels had to be recalculated in a new regularisation scheme, called NPV. In this scheme all the singularities in the plus component of the integration momenta are regularised by means of principal value prescription. This is in contrast to the standard approach, in which only the spurious axial singularities are regularised by principal value. As a result, the triple poles in the dimensional regularisation parameter ε are replaced by a combination of ε-poles and logarithms of geometrical cut-off δ. The resulting exclusive parton densities are more suitable for stochastic applications in four dimensions. Simultaneously, at the inclusive level, the standard and new prescriptions give the same results provided appropriate real and virtual contributions are added.
NLO QCD predictions for Z+γ + jets production with Sherpa
Krause, Johannes; Siegert, Frank
2018-02-01
We present precise predictions for prompt photon production in association with a Z boson and jets. They are obtained within the Sherpa framework as a consistently merged inclusive sample. Leptonic decays of the Z boson are fully included in the calculation with all off-shell effects. Virtual matrix elements are provided by OpenLoops and parton-shower effects are simulated with a dipole parton shower. Thanks to the NLO QCD corrections included not only for inclusive Zγ production but also for the Zγ + 1-jet process we find significantly reduced systematic uncertainties and very good agreement with experimental measurements at √{s}=8 TeV. Predictions at √{s}=13 TeV are displayed including a study of theoretical uncertainties. In view of an application of these simulations within LHC experiments, we discuss in detail the necessary combination with a simulation of the Z + jets final state. In addition to a corresponding prescription we introduce recommended cross checks to avoid common pitfalls during the overlap removal between the two samples.
Cabouat, Baptiste; Sjöstrand, Torbjörn
2018-03-01
Parton showers have become a standard component in the description of high-energy collisions. Nowadays most final-state ones are of the dipole character, wherein a pair of partons branches into three, with energy and momentum preserved inside this subsystem. For initial-state showers a dipole picture is also possible and commonly used, but the older global-recoil strategy remains a valid alternative, wherein larger groups of partons share the energy-momentum preservation task. In this article we introduce and implement a dipole picture also for initial-state radiation in Pythia, and compare with the existing global-recoil one, and with data. For the case of Deeply Inelastic Scattering we can directly compare with matrix element expressions and show that the dipole picture gives a very good description over the whole phase space, at least for the first branching.
On positivity of parton distributions
International Nuclear Information System (INIS)
Altarelli, G.; Forte, S.; Ridolfi, G.
1998-01-01
We discuss the bounds on polarized parton distributions which follow from their definition in terms of cross section asymmetries. We spell out how the bounds obtained in the naive parton model can be derived within perturbative QCD at leading order when all quark and gluon distributions are defined in terms of suitable physical processes. We specify a convenient physical definition for the polarized and unpolarized gluon distributions in terms of Higgs production from gluon fusion. We show that these bounds are modified by subleading corrections, and we determine them up to NLO. We examine the ensuing phenomenological implications, in particular in view of the determination of the polarized gluon distribution. (orig.)
On positivity of parton distributions
Altarelli, Guido; Ridolfi, G; Altarelli, Guido; Forte, Stefano; Ridolfi, Giovanni
1998-01-01
We discuss the bounds on polarized parton distributions which follow from their definition in terms of cross section asymmetries. We spell out how the bounds obtained in the naive parton model can be derived within perturbative QCD at leading order when all quark and gluon distributions are defined in terms of suitable physical processes. We specify a convenient physical definition for the polarized and unpolarized gluon distributions in terms of Higgs production from gluon fusion. We show that these bounds are modified by subleading corrections, and we determine them up to NLO. We examine the ensuing phenomenological implications, in particular in view of the determination of the polarized gluon distribution.
Parton distributions with LHC data
DEFF Research Database (Denmark)
Ball, R.D.; Deans, C.S.; Del Debbio, L.
2013-01-01
We present the first determination of parton distributions of the nucleon at NLO and NNLO based on a global data set which includes LHC data: NNPDF2.3. Our data set includes, besides the deep inelastic, Drell-Yan, gauge boson production and jet data already used in previous global PDF determinati......We present the first determination of parton distributions of the nucleon at NLO and NNLO based on a global data set which includes LHC data: NNPDF2.3. Our data set includes, besides the deep inelastic, Drell-Yan, gauge boson production and jet data already used in previous global PDF...... fraction of the proton. We also present collider PDF sets, constructed using only data from HERA, the Tevatron and the LHC, but find that this data set is neither precise nor complete enough for a competitive PDF determination....
Electroweak top-quark pair production at the LHC with Z{sup ′} bosons to NLO QCD in POWHEG
Energy Technology Data Exchange (ETDEWEB)
Bonciani, Roberto [Dipartimento di Fisica, Università di Roma “La Sapienza” and INFN, Sezione di Roma,Piazzale Aldo Moro 5, I-00185 Roma (Italy); Ježo, Tomáš [Università di Milano-Bicocca and INFN, Sezione di Milano-Bicocca,Piazza della Scienza 3, I-20126 Milano (Italy); Klasen, Michael [Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster,Wilhelm-Klemm-Straße 9, D-48149 Münster (Germany); Lyonnet, Florian [Department of Physics, Southern Methodist University,3215 Daniel Ave., Dallas, TX 75275 (United States); Schienbein, Ingo [Laboratoire de Physique Subatomique et de Cosmologie,Université Joseph Fourier/CNRS-IN2P3/ INPG,53 Avenue des Martyrs, F-38026 Grenoble (France)
2016-02-22
We present the calculation of the NLO QCD corrections to the electroweak production of top-antitop pairs at the CERN LHC in the presence of a new neutral gauge boson. The corrections are implemented in the parton shower Monte Carlo program POWHEG. Standard Model (SM) and new physics interference effects are properly taken into account. QED singularities, first appearing at this order, are consistently subtracted. Numerical results are presented for SM and Z{sup ′} total cross sections and distributions in invariant mass, transverse momentum, azimuthal angle and rapidity of the top-quark pair. The remaining theoretical uncertainty from scale and PDF variations is estimated, and the potential of the charge asymmetry to distinguish between new physics models is investigated for the Sequential SM and a leptophobic topcolor model.
Parton distributions with small-x resummation : evidence for BFKL dynamics in HERA data
Ball, Richard D.; Bertone, Valerio; Bonvini, Marco; Marzani, Simone; Rojo, Juan; Rottoli, Luca
2017-01-01
We present a determination of the parton distribution functions of the proton in which NLO and NNLO fixed-order calculations are supplemented by NLLx small-x resummation. Deep inelastic structure functions are computed consistently at NLO+NLLx or NNLO+NLLx, while for hadronic processes small-x
Parton distributions with threshold resummation
Bonvini, Marco; Rojo, Juan; Rottoli, Luca; Ubiali, Maria; Ball, Richard D.; Bertone, Valerio; Carrazza, Stefano; Hartland, Nathan P.
2015-01-01
We construct a set of parton distribution functions (PDFs) in which fixed-order NLO and NNLO calculations are supplemented with soft-gluon (threshold) resummation up to NLL and NNLL accuracy respectively, suitable for use in conjunction with any QCD calculation in which threshold resummation is included at the level of partonic cross sections. These resummed PDF sets, based on the NNPDF3.0 analysis, are extracted from deep-inelastic scattering, Drell-Yan, and top quark pair production data, for which resummed calculations can be consistently used. We find that, close to threshold, the inclusion of resummed PDFs can partially compensate the enhancement in resummed matrix elements, leading to resummed hadronic cross-sections closer to the fixed-order calculation. On the other hand, far from threshold, resummed PDFs reduce to their fixed-order counterparts. Our results demonstrate the need for a consistent use of resummed PDFs in resummed calculations.
Aspects of perturbative QCD in Monte Carlo shower models
International Nuclear Information System (INIS)
Gottschalk, T.D.
1986-01-01
The perturbative QCD content of Monte Carlo models for high energy hadron-hadron scattering is examined. Particular attention is given to the recently developed backwards evolution formalism for initial state parton showers, and the merging of parton shower evolution with hard scattering cross sections. Shower estimates of K-factors are discussed, and a simple scheme is presented for incorporating 2 → QCD cross sections into shower model calculations without double counting. Additional issues in the development of hard scattering Monte Carlo models are summarized. 69 references, 20 figures
Unbiased global determination of parton distributions and their uncertainties at NNLO and at LO
Collaboration, The NNPDF; Ball, Richard D.; Bertone, Valerio; Cerutti, Francesco; Debbio, Luigi Del; Forte, Stefano; Guffanti, Alberto; Latorre, Jose I.; Rojo, Juan; Ubiali, Maria
2012-01-01
We present a determination of the parton distributions of the nucleon from a global set of hard scattering data using the NNPDF methodology at LO and NNLO in perturbative QCD, thereby generalizing to these orders the NNPDF2.1 NLO parton set. Heavy quark masses are included using the so-called FONLL
Final state dipole showers and the DGLAP equation
International Nuclear Information System (INIS)
Nagy, Zoltan; Soper, Davison E.
2009-01-01
We study a parton shower description, based on a dipole picture, of the final state in electron-positron annihilation. In such a shower, the distribution function describing the inclusive probability to find a quark with a given energy depends on the shower evolution time. Starting from the exclusive evolution equation for the shower, we derive an equation for the evolution of the inclusive quark energy distribution in the limit of strong ordering in shower evolution time of the successive parton splittings. We find that, as expected, this is the DGLAP equation. This paper is a response to a recent paper of Dokshitzer and Marchesini that raised troubling issues about whether a dipole based shower could give the DGLAP equation for the quark energy distribution.
Energy Technology Data Exchange (ETDEWEB)
Ebata, T [Tohoku Univ., Sendai (Japan). Coll. of General Education
1976-06-01
The geometrical distribution inferred from the inelastic cross section is assumed to be proportional to the partial waves. The precocious scaling and the Q/sup 2/-dependence of various quantities are treated from the geometrical point of view. It is shown that the approximate conservation of the orbital angular momentum may be a very practical rule to understand the helicity structure of various hadronic and electromagnetic reactions. The rule can be applied to inclusive reactions as well. The model is also applied to large angle processes. Through the discussion, it is suggested that many peculiar properties of the quark-parton can be ascribed to the geometrical effects.
Signatures of Parton Exogamy in e+ e- -> W+ W- -> hadrons
Ellis, John; Geiger, Klaus
1997-01-01
We propose possible signatures of `exogamous' combinations between partons in the different W+ and W- hadron showers in e+e- -> W+W- events with purely hadronic final states. Within the space-time model for hadronic shower development that we have proposed previously, we find a possible difference of about 10 % between the mean hadronic multiplicity in such purely hadronic final states and twice the hadronic multiplicity in events in which one W decays hadronically and the other leptonically,...
On the maximal use of Monte Carlo samples: re-weighting events at NLO accuracy
Energy Technology Data Exchange (ETDEWEB)
Mattelaer, Olivier [Durham University, Institute for Particle Physics Phenomenology (IPPP), Durham (United Kingdom)
2016-12-15
Accurate Monte Carlo simulations for high-energy events at CERN's Large Hadron Collider, are very expensive, both from the computing and storage points of view. We describe a method that allows to consistently re-use parton-level samples accurate up to NLO in QCD under different theoretical hypotheses. We implement it in MadGraph5{sub a}MC rate at NLO and show its validation by applying it to several cases of practical interest for the search of new physics at the LHC. (orig.)
Polarized 3 parton production in inclusive DIS at small x
Energy Technology Data Exchange (ETDEWEB)
Ayala, Alejandro [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, Ciudad de México 04510 (Mexico); Centre for Theoretical and Mathematical Physics, and Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa); Hentschinski, Martin, E-mail: hentschinski@correo.nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, Ciudad de México 04510 (Mexico); Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla 1152 (Mexico); Jalilian-Marian, Jamal [Department of Natural Sciences, Baruch College, CUNY, 17 Lexington Avenue, New York, NY 10010 (United States); CUNY Graduate Center, 365 Fifth Avenue, New York, NY 10016 (United States); Tejeda-Yeomans, Maria Elena [Departamento de Física, Universidad de Sonora, Boulevard Luis Encinas J. y Rosales, Colonia Centro, Hermosillo, Sonora 83000 (Mexico)
2016-10-10
Azimuthal angular correlations between produced hadrons/jets in high energy collisions are a sensitive probe of the dynamics of QCD at small x. Here we derive the triple differential cross section for inclusive production of 3 polarized partons in DIS at small x. The target proton or nucleus is described using the Color Glass Condensate (CGC) formalism. The resulting expressions are used to study azimuthal angular correlations between produced partons in order to probe the gluon structure of the target hadron or nucleus. Our analytic expressions can also be used to calculate the real part of the Next to Leading Order (NLO) corrections to di-hadron production in DIS by integrating out one of the three final state partons.
Polarized 3 parton production in inclusive DIS at small x
International Nuclear Information System (INIS)
Ayala, Alejandro; Hentschinski, Martin; Jalilian-Marian, Jamal; Tejeda-Yeomans, Maria Elena
2016-01-01
Azimuthal angular correlations between produced hadrons/jets in high energy collisions are a sensitive probe of the dynamics of QCD at small x. Here we derive the triple differential cross section for inclusive production of 3 polarized partons in DIS at small x. The target proton or nucleus is described using the Color Glass Condensate (CGC) formalism. The resulting expressions are used to study azimuthal angular correlations between produced partons in order to probe the gluon structure of the target hadron or nucleus. Our analytic expressions can also be used to calculate the real part of the Next to Leading Order (NLO) corrections to di-hadron production in DIS by integrating out one of the three final state partons.
Polarized 3 parton production in inclusive DIS at small x
Directory of Open Access Journals (Sweden)
Alejandro Ayala
2016-10-01
Full Text Available Azimuthal angular correlations between produced hadrons/jets in high energy collisions are a sensitive probe of the dynamics of QCD at small x. Here we derive the triple differential cross section for inclusive production of 3 polarized partons in DIS at small x. The target proton or nucleus is described using the Color Glass Condensate (CGC formalism. The resulting expressions are used to study azimuthal angular correlations between produced partons in order to probe the gluon structure of the target hadron or nucleus. Our analytic expressions can also be used to calculate the real part of the Next to Leading Order (NLO corrections to di-hadron production in DIS by integrating out one of the three final state partons.
Reconstruction of Monte Carlo replicas from Hessian parton distributions
Energy Technology Data Exchange (ETDEWEB)
Hou, Tie-Jiun [Department of Physics, Southern Methodist University,Dallas, TX 75275-0181 (United States); Gao, Jun [INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology,Department of Physics and Astronomy, Shanghai Jiao-Tong University, Shanghai 200240 (China); High Energy Physics Division, Argonne National Laboratory,Argonne, Illinois, 60439 (United States); Huston, Joey [Department of Physics and Astronomy, Michigan State University,East Lansing, MI 48824 (United States); Nadolsky, Pavel [Department of Physics, Southern Methodist University,Dallas, TX 75275-0181 (United States); Schmidt, Carl; Stump, Daniel [Department of Physics and Astronomy, Michigan State University,East Lansing, MI 48824 (United States); Wang, Bo-Ting; Xie, Ke Ping [Department of Physics, Southern Methodist University,Dallas, TX 75275-0181 (United States); Dulat, Sayipjamal [Department of Physics and Astronomy, Michigan State University,East Lansing, MI 48824 (United States); School of Physics Science and Technology, Xinjiang University,Urumqi, Xinjiang 830046 (China); Center for Theoretical Physics, Xinjiang University,Urumqi, Xinjiang 830046 (China); Pumplin, Jon; Yuan, C.P. [Department of Physics and Astronomy, Michigan State University,East Lansing, MI 48824 (United States)
2017-03-20
We explore connections between two common methods for quantifying the uncertainty in parton distribution functions (PDFs), based on the Hessian error matrix and Monte-Carlo sampling. CT14 parton distributions in the Hessian representation are converted into Monte-Carlo replicas by a numerical method that reproduces important properties of CT14 Hessian PDFs: the asymmetry of CT14 uncertainties and positivity of individual parton distributions. The ensembles of CT14 Monte-Carlo replicas constructed this way at NNLO and NLO are suitable for various collider applications, such as cross section reweighting. Master formulas for computation of asymmetric standard deviations in the Monte-Carlo representation are derived. A correction is proposed to address a bias in asymmetric uncertainties introduced by the Taylor series approximation. A numerical program is made available for conversion of Hessian PDFs into Monte-Carlo replicas according to normal, log-normal, and Watt-Thorne sampling procedures.
Multiple parton interactions in photoproduction at HERA/H1
Energy Technology Data Exchange (ETDEWEB)
Magro, Lluis Marti
2009-02-15
Photoproduction data of HERA-I are analysed by requiring dijets with transverse momenta of at least 5 GeV. The two jets define in azimuth a towards region (leading jet), an away region (usually the 2nd jet) and transverse regions between them. The charged particle and jet with low transverse momentum multiplicity, so called minijets, are measured in these regions as a function of the variables x{sup obs}{sub {gamma}} and P{sup Jet{sub 1T}} (leading jet). The measurement is compared to predictions including parton showers and matrix elements at leading order in {alpha}{sub s}. Some predictions include contributions from multiple parton interactions and use different parton evolution equations. It was found that existing MC programs do not fully describe the measurements but the description can be improved by including multiple parton interactions. (orig.)
Structure functions and parton distributions
International Nuclear Information System (INIS)
Olness, F.; Tung, Wu-Ki
1991-04-01
Activities of the structure functions and parton distributions group is summarized. The impact of scheme-dependence of parton distributions (especially sea-quarks and gluons) on the quantitative formulation of the QCD parton model is highlighted. Recent progress on the global analysis of parton distributions is summarized. Issues on the proper use of the next-to-leading parton distributions are stressed
Parton distributions with LHC data
Ball, Richard D.; Carrazza, Stefano; Deans, Christopher S.; Del Debbio, Luigi; Forte, Stefano; Guffanti, Alberto; Hartland, Nathan P.; Latorre, Jose I.; Rojo, Juan; Ubiali, Maria
2013-01-01
We present the first determination of parton distributions of the nucleon at NLO and NNLO based on a global data set which includes LHC data: NNPDF2.3. Our data set includes, besides the deep inelastic, Drell-Yan, gauge boson production and jet data already used in previous global PDF determinations, all the relevant LHC data for which experimental systematic uncertainties are currently available: ATLAS and LHCb W and Z lepton rapidity distributions from the 2010 run, CMS W electron asymmetry data from the 2011 run, and ATLAS inclusive jet cross-sections from the 2010 run. We introduce an improved implementation of the FastKernel method which allows us to fit to this extended data set, and also to adopt a more effective minimization methodology. We present the NNPDF2.3 PDF sets, and compare them to the NNPDF2.1 sets to assess the impact of the LHC data. We find that all the LHC data are broadly consistent with each other and with all the older data sets included in the fit. We present predictions for various ...
Energy Technology Data Exchange (ETDEWEB)
Hautmann, F. [Rutherford Appleton Laboratory, Chilton (United Kingdom); Oxford Univ. (United Kingdom). Dept. of Theoretical Physics; Antwerpen Univ. (Belgium). Elementaire Deeltjes Fysica; Jung, H.; Lelek, A.; Zlebcik, R. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Radescu, V. [European Organization for Nuclear Research (CERN), Geneva (Switzerland)
2017-08-15
We study parton-branching solutions of QCD evolution equations and present a method to construct both collinear and transverse momentum dependent (TMD) parton densities from this approach. We work with next-to-leading-order (NLO) accuracy in the strong coupling. Using the unitarity picture in terms of resolvable and non-resolvable branchings, we analyze the role of the soft-gluon resolution scale in the evolution equations. For longitudinal momentum distributions, we find agreement of our numerical calculations with existing evolution programs at the level of better than 1 percent over a range of five orders of magnitude both in evolution scale and in longitudinal momentum fraction. We make predictions for the evolution of transverse momentum distributions. We perform fits to the high-precision deep inelastic scattering (DIS) structure function measurements, and we present a set of NLO TMD distributions based on the parton branching approach.
Top-quark and top-squark production at hadron colliders at electroweak NLO
Energy Technology Data Exchange (ETDEWEB)
Kollar, M.
2007-05-31
In this work, the impact of electroweak (EW) contributions on the cross sections for the top-quark pair production within the Standard Model (SM) and for the top-squark pair production within the Minimal Supersymmetric Standard Model (MSSM) is investigated. For these processes, the EW-QCD interference leads to additional contributions which are not present at Born-level. In addition, parton densities at next-to-leading-order (NLO) in QED give rise to non-zero photon density in the proton. It is shown that the size of photon-induced production rates is comparable to other EW NLO contributions. The cross sections differential in invariant mass and transverse momentum of final state particles are studied and discussed in kinematic ranges accessible at the LHC and at the Tevatron. The NLO EW contributions become significant at high transverse momentum and high invariant mass and should be included in the numerical analysis. (orig.)
Electroproduction cross section of large-E bot hadrons at NLO and virtual photon structure function
International Nuclear Information System (INIS)
Fontannaz, M.
2004-01-01
We calculate higher order corrections to the resolved component of the electroproduction cross section of large- E bot hadrons. The parton distributions in the virtual photon are studied in detail and a NLO parametrization of the latter is proposed. The contribution of the resolved component to the forward production of large- E bot hadrons is calculated and its connection with the BFKL cross section is discussed. (orig.)
Electroweak splitting functions and high energy showering
Chen, Junmou; Han, Tao; Tweedie, Brock
2017-11-01
We derive the electroweak (EW) collinear splitting functions for the Standard Model, including the massive fermions, gauge bosons and the Higgs boson. We first present the splitting functions in the limit of unbroken SU(2) L × U(1) Y and discuss their general features in the collinear and soft-collinear regimes. These are the leading contributions at a splitting scale ( k T ) far above the EW scale ( v). We then systematically incorporate EW symmetry breaking (EWSB), which leads to the emergence of additional "ultra-collinear" splitting phenomena and naive violations of the Goldstone-boson Equivalence Theorem. We suggest a particularly convenient choice of non-covariant gauge (dubbed "Goldstone Equivalence Gauge") that disentangles the effects of Goldstone bosons and gauge fields in the presence of EWSB, and allows trivial book-keeping of leading power corrections in v/ k T . We implement a comprehensive, practical EW showering scheme based on these splitting functions using a Sudakov evolution formalism. Novel features in the implementation include a complete accounting of ultra-collinear effects, matching between shower and decay, kinematic back-reaction corrections in multi-stage showers, and mixed-state evolution of neutral bosons ( γ/ Z/ h) using density-matrices. We employ the EW showering formalism to study a number of important physical processes at O (1-10 TeV) energies. They include (a) electroweak partons in the initial state as the basis for vector-boson-fusion; (b) the emergence of "weak jets" such as those initiated by transverse gauge bosons, with individual splitting probabilities as large as O (35%); (c) EW showers initiated by top quarks, including Higgs bosons in the final state; (d) the occurrence of O (1) interference effects within EW showers involving the neutral bosons; and (e) EW corrections to new physics processes, as illustrated by production of a heavy vector boson ( W ') and the subsequent showering of its decay products.
Heavy quark radiation in NLO+PS POWHEG generators
Energy Technology Data Exchange (ETDEWEB)
Buonocore, Luca; Tramontano, Francesco [Universita di Napoli ' ' Federico II' ' , Napoli (Italy); INFN, Sezione di Napoli, Napoli (Italy); Nason, Paolo [CERN, Theoretical Physics Department, Geneve (Switzerland); INFN, Sezione di Milano-Bicocca, Milano (Italy)
2018-02-15
In this paper we deal with radiation from heavy quarks in the context of next-to-leading order calculations matched to parton shower generators. A new algorithm for radiation from massive quarks is presented that has considerable advantages over the one previously employed. We implement the algorithm in the framework of the POWHEG-BOX, and compare it with the previous one in the case of the hvq generator for bottom production in hadronic collisions, and in the case of the bb4l generator for top production and decay. (orig.)
Double Parton Scattering in 4-jet production at the LHC with and without open b-bar
Serino, Mirko; Kutak, Krzysztof; van Hameren, Andreas; Bury, Marcin
2018-01-01
We report the preliminary results of the ongoing update of our study of 4-jet production at the LHC in High Energy Factorization, which is being supplemented by parton showers. We focus on a specific angular variable introduced in two papers by the CMS collaboration on 4-jet production with and without two b-tagged jets. The variable is, by construction, sensitive to contributions from Multi Parton Interactions (MPIs), specifically hard Double Parton Scattering (DPS). We preliminarily find that, adding parton showers to the single parton scattering channel, the evidence for the need for MPIs is compatible with the one reported by the CMS collaboration after a comparison of the data with simulations based on collinear Monte Carlo event generators.
Double Parton Scattering in 4-jet production at the LHC with and without open b-bar
Serino, Mirko; Kutak, Krzysztof; van Hameren, Andreas; Bury, Marcin
2017-01-01
We report the preliminary results of the ongoing update of our study of 4-jet production at the LHC in High Energy Factorization, which is being supplemented by parton showers. We focus on a specific angular variable introduced in two papers by the CMS collaboration on 4-jet production with and without two b-tagged jets. The variable is, by construction, sensitive to contributions from Multi Parton Interactions (MPIs), specifically hard Double Parton Scattering (DPS). We preliminarily find that, adding parton showers to the single parton scattering channel, the evidence for the need for MPIs is compatible with the one reported by the CMS collaboration after a comparison of the data with simulations based on collinear Monte Carlo event generators.
Are Parton Distributions Positive?
Forte, Stefano; Ridolfi, Giovanni; Altarelli, Guido; Forte, Stefano; Ridolfi, Giovanni
1999-01-01
We show that the naive positivity conditions on polarized parton distributions which follow from their probabilistic interpretation in the naive parton model are reproduced in perturbative QCD at the leading log level if the quark and gluon distribution are defined in terms of physical processes. We show how these conditions are modified at the next-to-leading level, and discuss their phenomenological implications, in particular in view of the determination of the polarized gluon distribution
Are parton distributions positive?
International Nuclear Information System (INIS)
Forte, Stefano; Altarelli, Guido; Ridolfi, Giovanni
1999-01-01
We show that the naive positivity conditions on polarized parton distributions which follow from their probabilistic interpretation in the naive parton model are reproduced in perturbative QCD at the leading log level if the quark and gluon distribution are defined in terms of physical processes. We show how these conditions are modified at the next-to-leading level, and discuss their phenomenological implications, in particular in view of the determination of the polarized gluon distribution
Parton Distributions Working Group
International Nuclear Information System (INIS)
Barbaro, L. de; Keller, S. A.; Kuhlmann, S.; Schellman, H.; Tung, W.-K.
2000-01-01
This report summarizes the activities of the Parton Distributions Working Group of the QCD and Weak Boson Physics workshop held in preparation for Run II at the Fermilab Tevatron. The main focus of this working group was to investigate the different issues associated with the development of quantitative tools to estimate parton distribution functions uncertainties. In the conclusion, the authors introduce a Manifesto that describes an optimal method for reporting data
Current issues and challenges in global analysis of parton distributions
International Nuclear Information System (INIS)
Tung, Wu-Ki
2007-01-01
A new implementation of precise perturbative QCD calculation of deep inelastic scattering structure functions and cross sections, incorporating heavy quark mass effects, is applied to the global analysis of the full HERA I data sets on NC and CC cross sections, in conjunction with other experiments. Improved agreement between the NLO QCD theory and the global data sets are obtained. Comparison of the new results to that of previous analysis based on conventional zero-mass parton formalism is made. Exploratory work on implications of new fixed-target neutrino scattering and Drell-Yan data on global analysis is also discussed. (author)
An automated subtraction of NLO EW infrared divergences
Energy Technology Data Exchange (ETDEWEB)
Schoenherr, Marek [CERN, Theoretical Physics Department, Geneva (Switzerland)
2018-02-15
In this paper a generalisation of the Catani-Seymour dipole subtraction method to next-to-leading order electroweak calculations is presented. All singularities due to photon and gluon radiation off both massless and massive partons in the presence of both massless and massive spectators are accounted for. Particular attention is paid to the simultaneous subtraction of singularities of both QCD and electroweak origin which are present in the next-to-leading order corrections to processes with more than one perturbative order contributing at Born level. Similarly, embedding non-dipole-like photon splittings in the dipole subtraction scheme discussed. The implementation of the formulated subtraction scheme in the framework of the Sherpa Monte-Carlo event generator, including the restriction of the dipole phase space through the α-parameters and expanding its existing subtraction for NLO QCD calculations, is detailed and numerous internal consistency checks validating the obtained results are presented. (orig.)
Analytic solutions of QCD evolution equations for parton cascades inside nuclear matter at small x
International Nuclear Information System (INIS)
Geiger, K.
1994-01-01
An analytical method is presented to solve generalized QCD evolution equations for the time development of parton cascades in a nuclear environment. In addition to the usual parton branching processes in vacuum, these evolution equations provide a consistent description of interactions with the nuclear medium by accounting for stimulated branching processes, fusion, and scattering processes that are specific to QCD in a medium. Closed solutions for the spectra of produced partons with respect to the variables time, longitudinal momentum, and virtuality are obtained under some idealizing assumptions about the composition of the nuclear medium. Several characteristic features of the resulting parton distributions are discussed. One of the main conclusions is that the evolution of a parton shower in a medium is dilated as compared to free space and is accompanied by an enhancement of particle production. These effects become stronger with increasing nuclear density
International Nuclear Information System (INIS)
Close, F.E.
1976-01-01
The studies of inelastic electron scattering at SLAC and of neutrino scattering at CERN have been widely interpreted as giving support to the idea that the nucleon is built from elementary constituents, called partons, and that these partons have the same quantum numbers as the quarks that are familiar in spectroscopy. In particular, a very simple regularity in the data, known as scale invariance or just 'scaling' was seen at least at moderate energies (2 2 > approximately 1 GeV) which is natural in the parton model. The data on e + e - annihilation also appear to be consistent with scaling when Esub(cm) approximately 5 GeV. These lectures are concerned with the scaling phenomena. One may expect the new hadronic degree of freedom to generate scaling violations in inelastic electron and neutrino scattering. These are mentioned briefly in these lectures. (Auth.)
Multi parton interactions and multi parton distributions in QCD
International Nuclear Information System (INIS)
Diehl, M.
2012-01-01
After a brief recapitulation of the general interest of parton densities, we discuss multiple hard interactions and multi parton distributions. We report on recent theoretical progress in their QCD description, on outstanding conceptual problems and on possibilities to use multi parton distributions as a laboratory to test and improve our understanding of hadron structure. (author)
Multiplicities and parton dynamics
International Nuclear Information System (INIS)
Knuteson, R.O.
1987-01-01
The production of strongly interacting particles from the annihilation of electrons and positrons at high energies is studied, with emphasis on the multiplicity, or number, of particles produced. A probabilistic branching model based on the leading log approximation in QCD is formulated to predict the evolution of particle number with the energy of collision. Direct integration of a master equation for the probabilities allows a comparison to the experimentally observed particle distribution. The production of strongly interacting particles from proton-antiproton collisions is also considered. A model for the production of particles from parton-parton collisions is presented and the growth in multiplicity with energy demonstrated
LHC data challenges the contemporary parton-to-hadron fragmentation functions
d'Enterria, David; Helenius, Ilkka; Paukkunen, Hannu
2014-01-01
We discuss the inclusive high-pT charged-particle production in proton-proton collisions at the LHC. The experimental data are compared to the NLO perturbative QCD calculations employing various sets of parton-to-hadron fragmentation functions. Most of the theoretical predictions are found to disastrously overpredict the measured cross sections, even if the scale variations and PDF errors are accounted for. The problem appears to arise from the presently too hard gluon-to-hadron fragmentation functions.
Are partons confined tachyons?
International Nuclear Information System (INIS)
Noyes, H.P.
1996-03-01
The author notes that if hadrons are gravitationally stabilized ''black holes'', as discrete physics suggests, it is possible that partons, and in particular quarks, could be modeled as tachyons, i.e. particles having v 2 > c 2 , without conflict with the observational fact that neither quarks nor tachyons have appeared as ''free particles''. Some consequences of this model are explored
International Nuclear Information System (INIS)
Hwa, R.C.
1978-08-01
Low P/sub T/ meson production in hadronic collisions is described in the framework of the parton model. The recombination of quark and antiquark is suggested as the dominant mechanism in the large x region. Phenomenological evidences for the mechanism are given. The application to meson initiated reactions yields the quark distribution in mesons. 21 references
The SM and NLO Multileg Working Group: Summary Report
International Nuclear Information System (INIS)
Andersen, J.R.; Archibald, J.; Badger, S.; Ball, R.D.; Bevilacqua, G.; Bierenbaum, I.; Binoth, T.; Boudjema, F.; Boughezal, R.; Bredenstein, A.; Britto, R.; Campanelli, M.; Campbell, J.; Carminati, L.; Chachamis, G.; Ciulli, V.; Cullen, G.; Czakon, M.; Del Debbio, L.; Denner, A.; Dissertori, G.
2012-01-01
After years of waiting, and after six Les Houches workshops, the era of LHC running is finally upon us, albeit at a lower initial center-of-mass energy than originally planned. Thus, there has been a great sense of anticipation from both the experimental and theoretical communities. The last two years, in particular, have seen great productivity in the area of multi-parton calculations at leading order (LO), next-to-leading order (NLO) and next-to-next-to-leading order (NNLO), and this productivity is reflected in the proceedings of the NLM group. Both religions, Feynmanians and Unitarians, as well as agnostic experimenters, were well-represented in both the discussions at Les Houches, and in the contributions to the write-up. Next-to-leading order (NLO) is the first order at which the normalization, and in some cases the shape, of perturbative cross sections can be considered reliable. This can be especially true when probing extreme kinematic regions, as for example with boosted Higgs searches considered in several of the contributions to this writeup. A full understanding for both standard model and beyond the standard model physics at the LHC requires the development of fast, reliable programs for the calculation of multi-parton final states at NLO. There have been many advances in the development of NLO techniques, standardization and automation for such processes and this is reflected in the contributions to the first section of this writeup. Many calculations have previously been performed with the aid of semi-numerical techniques. Such techniques, although retaining the desired accuracy, lead to codes which are slow to run. Advances in the calculation of compact analytic expressions for Higgs + 2 jets have resulted in the development of much faster codes, which extend the phenomenology that can be conducted, as well as making the code available to the public for the first time. A prioritized list of NLO cross sections was assembled at Les Houches in 2005
The SM and NLO Multileg Working Group: Summary Report
Energy Technology Data Exchange (ETDEWEB)
Andersen, J.R.; Archibald, J.; Badger, S.; Ball, R.D.; Bevilacqua, G.; Bierenbaum, I.; Binoth, T.; Boudjema, F.; Boughezal, R.; Bredenstein, A.; Britto, R.; Campanelli, M.; Campbell, J.; Carminati, L.; Chachamis, G.; Ciulli, V.; Cullen, G.; Czakon, M.; Del Debbio, L.; Denner, A.; Dissertori, G.; /Edinburgh U. /Zurich, ETH /Michigan State U. /CAFPE, Granada /CERN /Durham U., IPPP /DESY, Zeuthen /Democritos Nucl. Res. Ctr. /Valencia U., IFIC /Annecy, LAPTH /Zurich U. /KEK, Tsukuba /Saclay, SPhT /University Coll. London /Fermilab /INFN, Milan /Milan U. /PSI, Villigen /Florence U. /INFN, Florence /RWTH Aachen U.
2012-04-10
After years of waiting, and after six Les Houches workshops, the era of LHC running is finally upon us, albeit at a lower initial center-of-mass energy than originally planned. Thus, there has been a great sense of anticipation from both the experimental and theoretical communities. The last two years, in particular, have seen great productivity in the area of multi-parton calculations at leading order (LO), next-to-leading order (NLO) and next-to-next-to-leading order (NNLO), and this productivity is reflected in the proceedings of the NLM group. Both religions, Feynmanians and Unitarians, as well as agnostic experimenters, were well-represented in both the discussions at Les Houches, and in the contributions to the write-up. Next-to-leading order (NLO) is the first order at which the normalization, and in some cases the shape, of perturbative cross sections can be considered reliable. This can be especially true when probing extreme kinematic regions, as for example with boosted Higgs searches considered in several of the contributions to this writeup. A full understanding for both standard model and beyond the standard model physics at the LHC requires the development of fast, reliable programs for the calculation of multi-parton final states at NLO. There have been many advances in the development of NLO techniques, standardization and automation for such processes and this is reflected in the contributions to the first section of this writeup. Many calculations have previously been performed with the aid of semi-numerical techniques. Such techniques, although retaining the desired accuracy, lead to codes which are slow to run. Advances in the calculation of compact analytic expressions for Higgs + 2 jets have resulted in the development of much faster codes, which extend the phenomenology that can be conducted, as well as making the code available to the public for the first time. A prioritized list of NLO cross sections was assembled at Les Houches in 2005
QCD-aware partonic jet clustering for truth-jet flavour labelling
Energy Technology Data Exchange (ETDEWEB)
Buckley, Andy; Pollard, Chris [University of Glasgow, School of Physics and Astronomy, Glasgow (United Kingdom)
2016-02-15
We present an algorithm for deriving partonic flavour labels to be applied to truth particle jets in Monte Carlo event simulations. The inputs to this approach are final pre-hadronisation partons, to remove dependence on unphysical details such as the order of matrix element calculation and shower generator frame recoil treatment. These are clustered using standard jet algorithms, modified to restrict the allowed pseudo-jet combinations to those in which tracked flavour labels are consistent with QCD and QED Feynman rules. The resulting algorithm is shown to be portable between the major families of shower generators, and largely insensitive to many possible systematic variations: it hence offers significant advantages over existing ad hoc labelling schemes. However, it is shown that contamination from multi-parton scattering simulations can disrupt the labelling results. Suggestions are made for further extension to incorporate more detailed QCD splitting function kinematics, robustness improvements, and potential uses for truth-level physics object definitions and tagging. (orig.)
QCD-aware partonic jet clustering for truth-jet flavour labelling
International Nuclear Information System (INIS)
Buckley, Andy; Pollard, Chris
2016-01-01
We present an algorithm for deriving partonic flavour labels to be applied to truth particle jets in Monte Carlo event simulations. The inputs to this approach are final pre-hadronisation partons, to remove dependence on unphysical details such as the order of matrix element calculation and shower generator frame recoil treatment. These are clustered using standard jet algorithms, modified to restrict the allowed pseudo-jet combinations to those in which tracked flavour labels are consistent with QCD and QED Feynman rules. The resulting algorithm is shown to be portable between the major families of shower generators, and largely insensitive to many possible systematic variations: it hence offers significant advantages over existing ad hoc labelling schemes. However, it is shown that contamination from multi-parton scattering simulations can disrupt the labelling results. Suggestions are made for further extension to incorporate more detailed QCD splitting function kinematics, robustness improvements, and potential uses for truth-level physics object definitions and tagging. (orig.)
Thermalization through parton transport
International Nuclear Information System (INIS)
Zhang Bin
2010-01-01
A radiative transport model is used to study kinetic equilibration during the early stage of a relativistic heavy ion collision. The parton system is found to be able to overcome expansion and move toward thermalization via parton collisions. Scaling behaviors show up in both the pressure anisotropy and the energy density evolutions. In particular, the pressure anisotropy evolution shows an approximate α s scaling when radiative processes are included. It approaches an asymptotic time evolution on a time scale of 1 to 2 fm/c. The energy density evolution shows an asymptotic time evolution that decreases slower than the ideal hydro evolution. These observations indicate that partial thermalization can be achieved and viscosity is important for the evolution during the early longitudinal expansion stage of a relativistic heavy ion collision.
Are partons confined tachyons?
Energy Technology Data Exchange (ETDEWEB)
Noyes, H.P.
1996-03-01
The author notes that if hadrons are gravitationally stabilized ``black holes``, as discrete physics suggests, it is possible that partons, and in particular quarks, could be modeled as tachyons, i.e. particles having v{sup 2} > c{sup 2}, without conflict with the observational fact that neither quarks nor tachyons have appeared as ``free particles``. Some consequences of this model are explored.
International Nuclear Information System (INIS)
Paschos, E.A.
1976-08-01
The quark parton model describes the inclusive electro- and neutrino production data if a clear distinction is made between reactions which take place at high and at low energies. For the low energy region the classical view of six structure functions of the proton is still adequate. For the high energy region models can be constructed which are consistent with the experimental data. (BJ) [de
Parton distributions for the LHC Run II
Ball, Richard D.; Carrazza, Stefano; Deans, Christopher S.; Del Debbio, Luigi; Forte, Stefano; Guffanti, Alberto; Hartland, Nathan P.; Latorre, José I.; Rojo, Juan; Ubiali, Maria
2015-01-01
We present NNPDF3.0, the first set of parton distribution functions (PDFs) determined with a methodology validated by a closure test. NNPDF3.0 uses a global dataset including HERA-II deep-inelastic inclusive cross-sections, the combined HERA charm data, jet production from ATLAS and CMS, vector boson rapidity and transverse momentum distributions from ATLAS, CMS and LHCb, W+c data from CMS and top quark pair production total cross sections from ATLAS and CMS. Results are based on LO, NLO and NNLO QCD theory and also include electroweak corrections. To validate our methodology, we show that PDFs determined from pseudo-data generated from a known underlying law correctly reproduce the statistical distributions expected on the basis of the assumed experimental uncertainties. This closure test ensures that our methodological uncertainties are negligible in comparison to the generic theoretical and experimental uncertainties of PDF determination. This enables us to determine with confidence PDFs at different pertu...
Double parton scattering. A tale of two partons
Energy Technology Data Exchange (ETDEWEB)
Kasemets, Tomas
2013-08-15
Double parton scattering in proton-proton collisions can give sizable contributions to final states in parts of phase space. We investigate the correlations between the partons participating in the two hard interactions of double parton scattering. With a detailed calculation of the differential cross section for the double Drell-Yan process we demonstrate how initial state correlations between the partons affect the rate and distribution of final state particles. We present our results with focus on correlations between the polarizations of the partons. In particular transversely polarized quarks lead to a dependence of the cross section on angles between final state particles of the two hard interactions, and thereby on the invariant mass of particle pairs. The size of the spin correlations, and therewith the degree to which the final state particles are correlated, depends on unknown double parton distributions. We derive positivity bounds on the double parton distributions that follow from their interpretation as probability densities, taking into account all possible spin correlations between two partons in an unpolarized proton. We show that the bounds are stable under homogeneous leading-order DGLAP evolution to higher scales. We make direct use of the positivity bounds in numerical investigations on the double DGLAP evolution for two linearly polarized gluons and for two transversely polarized quarks. We find that the linearly polarized gluons are likely to be negligible at high scales but that transversely polarized quarks can still play a significant role. We examine the dependence of the double parton distributions on the transverse distance between the two partons, and therewith between the two hard interactions. We further study the interplay between transverse and longitudinal variables of the distributions, as well as the impact of the differences in integration limits between the evolution equations for single and double parton distributions. (orig.)
Factorization of in-medium parton branching beyond the eikonal approximation
Apolinário, Liliana; Armesto, Néstor; Milhano, José Guilherme; Salgado, Carlos A.
2017-08-01
The description of the in-medium modifications of partonic showers is at the forefront of current theoretical and experimental efforts in heavy-ion physics. The theory of jet quenching, a commonly used alias for the modifications of the parton branching resulting from the interactions with the QGP, has been significantly developed over the last years. Within a weak coupling approach, several elementary processes that build up the parton shower evolution, such as single gluon emissions, interference effects between successive emissions and corrections to radiative energy loss off massive quarks, have been addressed both at eikonal accuracy and beyond by taking into account the Brownian motion that high-energy particles experience when traversing a hot and dense medium. In this work, by using the setup of single gluon emission from a color correlated quark-antiquark pair in a singlet state (q- q ‾ antenna), we calculate the in-medium gluon radiation spectrum beyond the eikonal approximation. This allows to fully explore the physical interplay between broadening and coherence/decoherence effects. The results show that we are able to factorize broadening effects from the modifications of the radiation process itself. This provides a very strong indication that a probabilistic picture of parton shower evolution holds even in the presence of a QGP, a feature that is of the utmost importance for a successful future generation of Jet quenching Monte Carlos.
Directory of Open Access Journals (Sweden)
Kulagin S. A.
2017-01-01
Full Text Available We review a microscopic model of the nuclear parton distribution functions, which accounts for a number of nuclear effects including Fermi motion and nuclear binding, nuclear meson-exchange currents, off-shell corrections to bound nucleon distributions and nuclear shadowing. We also discuss applications of this model to a number of processes including lepton-nucleus deep inelastic scattering, proton-nucleus Drell-Yan lepton pair production at Fermilab, as well as W± and Z0 boson production in proton-lead collisions at the LHC.
NLO production of W' bosons at hadron colliders using the MCatNLO and POWHEG methods
International Nuclear Information System (INIS)
Papaefstathiou, A.; Latunde-Dada, O.
2009-01-01
We present a next-to-leading order (NLO) treatment of the production of a new charged heavy vector boson, generically called W', at hadron colliders via the Drell-Yan process. We fully consider the interference effects with the Standard Model W boson and allow for arbitrary chiral couplings to quarks and leptons. We present results at both leading order (LO) and NLO in QCD using the MCatNLO/Herwig++ and POWHEG methods. We derive theoretical observation curves on the mass-width plane for both the LO and NLO cases at different collider luminosities. The event generator used, Wpnlo, is fully customisable and publicly available.
Parton distributions with QED corrections
Collaboration, The NNPDF; Ball, Richard D.; Bertone, Valerio; Carrazza, Stefano; Debbio, Luigi Del; Forte, Stefano; Guffanti, Alberto; Hartland, Nathan P.; Rojo, Juan
2013-01-01
We present a set of parton distribution functions (PDFs), based on the NNPDF2.3 set, which includes a photon PDF, and QED contributions to parton evolution. We describe the implementation of the combined QCD+QED evolution in the NNPDF framework. We then provide a first determination of the full set
International Nuclear Information System (INIS)
Mundim Filho, Luiz Martins; Carvalho, Wagner de Paula
2012-01-01
Full text: CASTOR (Centaur And Strange Object Research) is an electromagnetic (EM) and hadronic (HAD) calorimeter, based on tungsten and quartz plates, operating in the CMS Detector (Compact Muon Solenoid) at LHC. The calorimeter detects Cerenkov radiation and is positioned around the beam pipe in the very forward region of CMS (at 14.38 m from the interaction point), covering the pseudo-rapidity range between -6.6 ≤ η≤-5.1 . It is longitudinally segmented into 14 sections, 2 for the EM and 12 for the HAD parts and is 16-fold azimuthally symmetric around the beam pipe. A Shower Library is needed for CASTOR Monte Carlo simulation, as the full simulation of showers takes a long time and the high multiplicity of particles in the forward region makes this simulation very time consuming. The Shower Library is used as a look-up table in the form of a ROOT file, so that when a simulated particle enters the detector with a certain energy and direction, characterized by the azimuthal angle φ and the pseudo-rapidity η, instead of making the full simulation of the shower in CASTOR, it is substituted by one already stored in the Shower Library. Showers corresponding to two types of particles are included in the Shower Library: electrons (or photons) and charged pions. The software implemented to make the Shower Library is described, as well as the validation of this library and timing studies. This package has been developed in the context of the official software of the CMS Collaboration, CMSSW. (author)
Parton distribution in relativistic hadrons
International Nuclear Information System (INIS)
Kopeliovich, B.Z.; Lapidus, L.I.; Zamolodchikov, Al.B.
1979-01-01
The distribution in the slow-parton number in the relativistic hadron is considered as a function of its rapidity (y). Neglecting corrections due to the tarton chain recombination the equation is derived and its explicit solution is found. It describes this distribution depending on the initial distribution at y approximately 1. Comparison with the reggeon diagrams results in relations between the parton model and the regaeon field theory parameters. The interpretation of the cutting rules in the framework of the parton model is presented. The numerical estimation of the parton model parameters is performed. It is shown that the slow-parton density corresponding to accessible energies seems to be close to the saturated density. Therefore, the enhanced graphs contributions turn out to be of considerable importance
Automated NLO QCD corrections with WHIZARD
International Nuclear Information System (INIS)
Weiss, Christian; Siegen Univ.; Chokoufe Nejad, Bijan; Reuter, Juergen; Kilian, Wolfgang
2015-10-01
We briefly discuss the current status of NLO QCD automation in the Monte Carlo event generator WHIZARD. The functionality is presented for the explicit study of off-shell top quark production with associated backgrounds at a lepton collider.
Parton distributions with small- x resummation: evidence for BFKL dynamics in HERA data
Ball, Richard D.; Bertone, Valerio; Bonvini, Marco; Marzani, Simone; Rojo, Juan; Rottoli, Luca
2018-04-01
We present a determination of the parton distribution functions of the proton in which NLO and NNLO fixed-order calculations are supplemented by NLL x small- x resummation. Deep-inelastic structure functions are computed consistently at NLO+NLLx or NNLO+NLLx, while for hadronic processes small- x resummation is included only in the PDF evolution, with kinematic cuts introduced to ensure the fitted data lie in a region where the fixed-order calculation of the hard cross-sections is reliable. In all other respects, the fits use the same methodology and are based on the same global dataset as the recent NNPDF3.1 analysis. We demonstrate that the inclusion of small- x resummation leads to a quantitative improvement in the perturbative description of the HERA inclusive and charm-production reduced cross-sections in the small x region. The impact of the resummation in our fits is greater at NNLO than at NLO, because fixed-order calculations have a perturbative instability at small x due to large logarithms that can be cured by resummation. We explore the phenomenological implications of PDF sets with small- x resummation for the longitudinal structure function F_L at HERA, for parton luminosities and LHC benchmark cross-sections, for ultra-high-energy neutrino-nucleus cross-sections, and for future high-energy lepton-proton colliders such as the LHeC.
NLO QCD result for the gluon polarization from open charm $D^{0}$ meson production at COMPASS
Kurek, Krzysztof
2011-01-01
One of the main goals of the COMPASS experiment is the measurement of the gluon contribution to the nucleon spin. Among the processes studied by COMPASS, open- charm $D^{0}$ meson production seems to be the cleanest channel for probing gluons in the energy range covered by the experiment. The gluon polarisation is related to the measured asymmetry for charmed mesons production via the analyzing power (asymmetry at the partonic level) calculated in the perturbative QCD frame. The analyzing power for the "photon-gluon fusion" process corresponds to a LO QCD approximation. The signicant improvement of the statistical precision and the new, nal LO result are presented . The NLO QCD corrections to the partonic cross sections (unpolarised and polarized ones) are now also included into the analysis scheme since these higher order contributions are not negligible. The preliminary NLO QCD result on the gluon polarisation based on a set of measured $D^{0}$ meson asymmetries in kinematical bins of the $D^{0}$ energy amd...
On the coordinate representation of NLO BFKL
International Nuclear Information System (INIS)
Fadin, V.S.; Fiore, R.; Papa, A.
2007-01-01
The 'non-Abelian' part of the quark contribution to the BFKL kernel in the next-to-leading order (NLO) is found in the coordinate representation by direct transfer of the contribution from the momentum representation where it was calculated before. The results obtained are used for the examination of conformal properties of the NLO BFKL kernel and of the relation between the BFKL and color dipole approaches
Signatures of Parton Exogamy in $e^+ e^- \\to W^+ W^- \\to$ hadrons
Ellis, Jonathan Richard; Ellis, John; Geiger, Klaus
1997-01-01
We propose possible signatures of `exogamous' combinations between partons in the different W+ and W- hadron showers in e+e- -> W+W- events with purely hadronic final states. Within the space-time model for hadronic shower development that we have proposed previously, we find a possible difference of about 10 % between the mean hadronic multiplicity in such purely hadronic final states and twice the hadronic multiplicity in events in which one W decays hadronically and the other leptonically, i.e., \
The partonic nature of instantons
International Nuclear Information System (INIS)
Collie, Benjamin; Tong, David
2009-01-01
In both Yang-Mills theories and sigma models, instantons are endowed with degrees of freedom associated to their scale size and orientation. It has long been conjectured that these degrees of freedom have a dual interpretation as the positions of partonic constituents of the instanton. These conjectures are usually framed in d = 3+1 and d = 1+1 dimensions respectively where the partons are supposed to be responsible for confinement and other strong coupling phenomena. We revisit this partonic interpretation of instantons in the context of d = 4+1 and d = 2+1 dimensions. Here the instantons are particle-like solitons and the theories are non-renormalizable. We present an explicit and calculable model in d = 2+1 dimensions where the single soliton in the CP N sigma-model can be shown to be a multi-particle state whose partons are identified with the ultra-violet degrees of freedom which render the theory well-defined at high energies. We introduce a number of methods which reveal the partons inside the soliton, including deforming the sigma model and a dual version of the Bogomolnyi equations. We conjecture that partons inside Yang-Mills instantons hold the key to understanding the ultra-violet completion of five-dimensional gauge theories.
Transport at ''NLO'' in hot QCD
CERN. Geneva
2016-01-01
The study of QCD kinetics is driven by a vast array of the experimental measurements of transport at the LHC, ranging from heavy quark energy loss, jet suppression, and hydrodynamics. I first review the fundamental elements of QCD kinetic theory, i.e. plasma screening, 2to2 scattering, and medium modified collinear bremsstrahlung. Then I will summarize recent progress in calculating these elements and their interplay at "NLO" -- "NLO" refers to an order $\\sqrt{\\alpha_s}$ correction to the plasma processes arising from the statistical fluctuations of soft gluons. These "NLO" calculations suggest a computational strategy where the influence of the Debye sector on the real time dynamics of the hard lightlike modes can be incorporated into a few medium coefficients (such as the drag coefficient and $\\hat{q}$), which can be simulated with a Euclidean 3D dimensionally reduced theory.
QCD Analysis of Polarized Scattering Data and New Polarized Parton Distributions
International Nuclear Information System (INIS)
Bluemlein, J.; Boettcher, H.
2002-01-01
In this talk results from a new QCD analysis in Leading (LO) and Next-to-Leading (NLO) Order are presented. New parametrizations of the polarized quark and gluon densities are derived together with parametrizations of their fully correlated 1σ error bands. Furthermore the value of α s (M 2 Z ) is determined. Finally a number of low moments of the polarized parton densities are compared with results from lattice simulations. All details of the analysis are given in J. Bluemlein, H. Boettcher, Nucl. Phys. B636, 225 (2002). (author)
NLO corrections to the Kernel of the BKP-equations
Energy Technology Data Exchange (ETDEWEB)
Bartels, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Fadin, V.S. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); Novosibirskij Gosudarstvennyj Univ., Novosibirsk (Russian Federation); Lipatov, L.N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg (Russian Federation); Vacca, G.P. [INFN, Sezione di Bologna (Italy)
2012-10-02
We present results for the NLO kernel of the BKP equations for composite states of three reggeized gluons in the Odderon channel, both in QCD and in N=4 SYM. The NLO kernel consists of the NLO BFKL kernel in the color octet representation and the connected 3{yields}3 kernel, computed in the tree approximation.
Dynamical parton distributions of the nucleon and very small-x physics
International Nuclear Information System (INIS)
Glueck, M.; Jimenez-Delgado, P.; Reya, E.
2008-01-01
Utilizing recent DIS measurements (F 2,L ) and data on dilepton and high-E T jet production we determine the dynamical parton distributions of the nucleon generated radiatively from valence-like positive input distributions at optimally chosen low resolution scales. These are compared with 'standard' distributions generated from positive input distributions at some fixed and higher resolution scale. It is shown that up to the next-to-leading order NLO(MS, DIS) of perturbative QCD considered in this paper, the uncertainties of the dynamical distributions are, as expected, smaller than those of their standard counterparts. This holds true in particular in the presently unexplored extremely small-x region relevant for evaluating ultrahigh energy cross sections in astrophysical applications. It is noted that our new dynamical distributions are compatible, within the presently determined uncertainties, with previously determined dynamical parton distributions. (orig.)
Charge symmetry at the partonic level
Energy Technology Data Exchange (ETDEWEB)
Londergan, J. T.; Peng, J. C.; Thomas, A. W.
2010-07-01
This review article discusses the experimental and theoretical status of partonic charge symmetry. It is shown how the partonic content of various structure functions gets redefined when the assumption of charge symmetry is relaxed. We review various theoretical and phenomenological models for charge symmetry violation in parton distribution functions. We summarize the current experimental upper limits on charge symmetry violation in parton distributions. A series of experiments are presented, which might reveal partonic charge symmetry violation, or alternatively might lower the current upper limits on parton charge symmetry violation.
Deep-Inelastic Final States in a Space-Time Description of Shower Development and Hadronization
Ellis, John; Geiger, Klaus; Kowalski, Henryk
1996-01-01
We extend a quantum kinetic approach to the description of hadronic showers in space, time and momentum space to deep-inelastic $ep$ collisions, with particular reference to experiments at HERA. We follow the history of hard scattering events back to the initial hadronic state and forward to the formation of colour-singlet pre-hadronic clusters and their decays into hadrons. The time evolution of the space-like initial-state shower and the time-like secondary partons are treated similarly, an...
Hadron seagulls and parton jets
International Nuclear Information System (INIS)
Satz, H.; Zarmi, Y.
1976-01-01
For the lepton production of hadrons in the current fragmentation region it was recently shown that the two-level partonic picture leads to a broadening of the average transverse momentum of the observed secondaries. This ''seagull'' effect is well known for hadron-hadron interactions. In the note it is considered the possibility that parton arguments can explain it here as well and it is discussed what information on the constituent structure of hadrons can be obtained through an investigation of the seagull effect from such a point of view. It is shown that a non trivial seagull effect is a consequence of a simple two step production mechanism and the parton model predicts significant differences between baryon, meson and virtual-photon fragmentation seagull
New information on parton distributions
International Nuclear Information System (INIS)
Martin, A.D.; Stirling, W.J.; Roberts, R.G.
1992-04-01
New data on structure functions from deep-inelastic scattering provide new information on parton distributions, particularly in the 0.01 2 data from the New Muon Collaboration (NMC) and its implications for other processes, and the evidence for SU(2) symmetry breaking in the light quark sea. We show that although good fits can be obtained with or without this symmetry breaking, more physically reasonable parton distributions are obtained if we allow d-bar > u-bar at small x. With the inclusion of the latest deep-inelastic data we find α s (M Z ) = 0.111 -0.005 +0.004 . We also show how W, Z and Drell-Yan production at p-barp colliders can give information on parton distributions. (Author)
Imaging partons in exclusive scattering processes
Energy Technology Data Exchange (ETDEWEB)
Diehl, Markus
2012-06-15
The spatial distribution of partons in the proton can be probed in suitable exclusive scattering processes. I report on recent performance estimates for parton imaging at a proposed Electron-Ion Collider.
NLO corrections to differential cross sections for pseudo-scalar Higgs boson production
International Nuclear Information System (INIS)
Field, B.; Smith, J.; Tejeda-Yeomans, M.E.; Neerven, W.L. van
2003-01-01
We have computed the full next-to-leading (NLO) QCD corrections to the differential distributions d 2 σ/(dp T dy) for pseudo-scalar Higgs (A) production at large hadron colliders. This calculation has been carried out using the effective Lagrangian approach which is valid as long as the mass of the pseudo-scalar Higgs boson m A and its transverse momentum p T do not exceed the top-quark mass m t . The shape of the distributions hardly differ from those obtained for scalar Higgs (H) production because, apart from the overall coupling constant and mass, there are only small differences between the partonic differential distributions for scalar and pseudo-scalar production. Therefore, there are only differences in the magnitudes of the hadronic differential distributions which can be mainly attributed to the unknown mixing angle β describing the pseudo-scalar Higgs coupling to the top quarks
Hadron Correlations and Parton Recombination
Energy Technology Data Exchange (ETDEWEB)
Fries, R.J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)]. E-mail: rjfries@comp.tamu.edu
2007-02-15
Parton recombination has been found to be an extremely useful model to understand hadron production at the Relativistic Heavy Ion Collider. It is particularly important to explore its connections with hard processes. This article reviews some of the aspects of the quark recombination model and places particular emphasis on hadron correlations.
Hadronization of dense partonic matter
Energy Technology Data Exchange (ETDEWEB)
Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)
2006-12-15
The parton recombination model has turned out to be a valuable tool to describe hadronization in high-energy heavy-ion collisions. I review the model and revisit recent progress in our understanding of hadron correlations. I also discuss higher Fock states in the hadrons, possible violations of the elliptic flow scaling and recombination effects in more dilute systems.
Dual model for parton densities
International Nuclear Information System (INIS)
El Hassouni, A.; Napoly, O.
1981-01-01
We derive power-counting rules for quark densities near x=1 and x=0 from parton interpretations of one-particle inclusive dual amplitudes. Using these rules, we give explicit expressions for quark distributions (including charm) inside hadrons. We can then show the compatibility between fragmentation and recombination descriptions of low-p/sub perpendicular/ processes
Indication for double parton scatterings in W+ prompt J/ψ production at the LHC
Lansberg, Jean-Philippe; Shao, Hua-Sheng; Yamanaka, Nodoka
2018-06-01
We re-analyse the associated production of a prompt J / ψ and a W boson in pp collisions at the LHC following the results of the ATLAS Collaboration. We perform the first study of the Single-Parton-Scattering (SPS) contributions at the Next-to-Leading Order (NLO) in αs in the Colour-Evaporation Model (CEM), an approach based on the quark-hadron-duality. Our study provides clear indications for Double-Parton-Scattering (DPS) contributions, in particular at low transverse momenta, since our SPS CEM evaluation, which can be viewed as a conservative upper limit of the SPS yields, falls short compared to the ATLAS experimental data by 3.1 standard deviations. We also determine a finite allowed region for σeff, inversely proportional to the size of the DPS yields, corresponding to the otherwise opposed hypotheses, namely our NLO CEM evaluation and the LO direct Colour-Singlet (CS) Model contribution. In both cases, the resulting DPS yields are significantly larger than that initially assumed by ATLAS based on jet-related analyses but is consistent with their observed raw-yield azimuthal distribution and with their prompt J / ψ + J / ψ and Z+ prompt J / ψ data.
A new phenomenological investigation of KMR and MRW unintegrated parton distribution functions
Energy Technology Data Exchange (ETDEWEB)
Modarres, M., E-mail: mmodares@ut.ac.ir [Physics Department, University of Tehran, 1439955961, Tehran (Iran, Islamic Republic of); Hosseinkhani, H. [Plasma and Fusion Research School, Nuclear Science and Technology Research Institute, 14395-836, Tehran (Iran, Islamic Republic of); Olanj, N. [Physics Department, Faculty of Science, Bu-Ali Sina University, 65178, Hamedan (Iran, Islamic Republic of); Masouminia, M. R. [Physics Department, University of Tehran, 1439955961, Tehran (Iran, Islamic Republic of)
2015-11-26
We address the longitudinal proton structure function, F{sub L}(x,Q{sup 2}), from the k{sub t}-factorization formalism by using the unintegrated parton distribution functions (UPDF) which are generated through the KMR and MRW procedures. The LO UPDF of the KMR prescription is extracted, by taking into account the PDF of Martin et al, i.e., MSTW2008-LO and MRST99-NLO, and next the NLO UPDF of the MRW scheme is generated through the set of MSTW2008-NLO PDF as the input. The different aspects of F{sub L}(x,Q{sup 2}) in the two approaches, as well as its perturbative and non-perturbative parts, are calculated. Then the comparison of F{sub L}(x,Q{sup 2}) is made with the data given by the ZEUS and H1 collaborations. It is demonstrated that the extracted F{sub L}(x,Q{sup 2}), based on the UPDF of two schemes, are consistent with the experimental data, and to a good approximation they are independent of the input PDF. But the one developed from the KMR prescription has better agreement with the data with respect to that of MRW. As has been suggested, by lowering the factorization scale or the Bjorken variable in the related experiments it may be possible to analyze the present theoretical approaches more accurately.
A new phenomenological investigation of KMR and MRW unintegrated parton distribution functions
Energy Technology Data Exchange (ETDEWEB)
Modarres, M.; Masouminia, M.R. [University of Tehran, Physics Department, Tehran (Iran, Islamic Republic of); Hosseinkhani, H. [Nuclear Science and Technology Research Institute, Plasma and Fusion Research School, Tehran (Iran, Islamic Republic of); Olanj, N. [Bu-Ali Sina University, Physics Department, Faculty of Science, Hamedan (Iran, Islamic Republic of)
2015-11-15
We address the longitudinal proton structure function, F{sub L} (x, Q{sup 2}), from the k{sub t}-factorization formalism by using the unintegrated parton distribution functions (UPDF) which are generated through the KMR and MRW procedures. The LO UPDF of the KMR prescription is extracted, by taking into account the PDF of Martin et al, i.e., MSTW2008-LO and MRST99-NLO, and next the NLO UPDF of the MRW scheme is generated through the set of MSTW2008-NLO PDF as the input. The different aspects of F{sub L} (x, Q{sup 2}) in the two approaches, as well as its perturbative and nonperturbative parts, are calculated. Then the comparison of F{sub L} (x, Q{sup 2}) is made with the data given by the ZEUS and H1 collaborations. It is demonstrated that the extracted F{sub L} (x, Q{sup 2}), based on the UPDF of two schemes, are consistent with the experimental data, and to a good approximation they are independent of the input PDF. But the one developed from the KMR prescription has better agreement with the data with respect to that of MRW. As has been suggested, by lowering the factorization scale or the Bjorken variable in the related experiments it may be possible to analyze the present theoretical approaches more accurately. (orig.)
What Exactly is a Parton Density ?
International Nuclear Information System (INIS)
Collins, J.C.
2003-01-01
I give an account of the definitions of parton densities, both the conventional ones, integrated over parton transverse momentum, and unintegrated transverse-momentum-dependent densities. The aim is to get a precise and correct definition of a parton density as the target expectation value of a suitable quantum mechanical operator, so that a clear connection to non-perturbative QCD is provided. Starting from the intuitive ideas in the parton model that predate QCD, we will see how the simplest operator definitions suffer from divergences. Corrections to the definition are needed to eliminate the divergences. An improved definition of unintegrated parton densities is proposed. (author)
Aminzadeh Nik, R.; Modarres, M.; Masouminia, M. R.
2018-05-01
The present work is intended to study the double-differential cross section of the inclusive single-jet production as the functions of the transverse momentum and the rapidity of the jet in the high-energy hadron-hadron collisions. The angular-ordering-constraint kt-factorization framework is used to calculate the above cross section that is available experimentally. The conditions are taken in accordance with the LHC experiments. The results are compared and analyzed using the existing CMS LHC data. The scheme-dependent unintegrated parton distribution functions (UPDF) of Kimber-Martin-Ryskin (KMR) and Martin-Ryskin-Watt (MRW) in the leading-order and the next-to-leading order (NLO) are used to predict the input partonic UPDF. The utilized phenomenological frameworks prove to be relatively successful in generating satisfactory results compared to the different experiment data, such as CMS (8 and 13 TeV). Extensive discussions and comparisons are made regarding the behavior of the contributing partonic subprocesses. Finally, it is shown that the application of the KMR UPDF to the single-jet differential cross sections have better agreement with the CMS data; on the other hand, they are very similar to those of NLO-MRW.
Polarized constituent quarks in NLO approximation
International Nuclear Information System (INIS)
Khorramian, Ali N.; Tehrani, S. Atashbar; Mirjalili, A.
2006-01-01
The valon representation provides a basis between hadrons and quarks, in terms of which the bound-state and scattering properties of hadrons can be united and described. We studied polarized valon distributions which have an important role in describing the spin dependence of parton distribution in leading and next-to-leading order approximation. Convolution integral in frame work of valon model as a useful tool, was used in polarized case. To obtain polarized parton distributions in a proton we need to polarized valon distribution in a proton and polarized parton distributions inside the valon. We employed Bernstein polynomial averages to get unknown parameters of polarized valon distributions by fitting to available experimental data
NLO Production and Decay of Quarkonium
Petrelli, A; Greco, Mario; Maltoni, F; Mangano, Michelangelo L
1998-01-01
We present a calculation of next-to-leading-order (NLO) QCD corrections to total hadronic production cross sections and to light-hadron-decay rates of heavy quarkonium states. Both colour-singlet and colour-octet contributions are included. We discuss in detail the use of covariant projectors in dimensional regularization, the structure of soft-gluon emission and the overall finiteness of radiative corrections. We compare our approach with the NLO version of the threshold-expansion technique recently introduced by Braaten and Chen. Most of the results presented here are new. Others represent the first independent reevaluation of calculations already known in the literature. In this case a comparison with previous findings is reported.
Rao, M V S
1997-01-01
Ultrahigh energy cosmic rays carry information about their sources and the intervening medium apart from providing a beam of particles for studying certain features of high energy interactions currently inaccessible at man-made accelerators. They can at present be studied only via the extensive air showers (EAS's) they generate while passing through the Earth's atmosphere, since their fluxes are too low for the experiments of limited capability flown in balloons and satellites. The EAS is generated by a series of interactions of the primary cosmic ray and its progeny with the atmospheric nucle
Electromagnetic shower counter
CERN PhotoLab
1974-01-01
The octogonal block of lead glass is observed by eight photomultiplier tubes. Four or five such counters, arranged in succession, are used on each arm of the bispectrometer in order to detect heavy particles of the same family as those recently observed at Brookhaven and SLAC. They provide a means of identifying electrons. The arrangement of eight lateral photomultiplier tubes offers an efficient means of collecting the photons produced in the showers and determining, with a high resolution, the energy of the incident electrons. The total width at half-height is less than 6.9% for electrons having an energy of 1 GeV.
NLO Quarkonium Production in Hadronic Collisions
Mangano, Michelangelo L.
1996-01-01
We present some preliminary results on the next-to-leading order calculation in QCD of quarkonium production cross sections in hadronic collisions. We will show that the NLO total cross sections for $P$-wave states produced at high energy are not reliable, due to the appearance of very large and negative contributions. We also discuss some issues related to the structure of final states in colour-octet production and to high-p_T fragmentation.
Top production measurements with ATLAS: probes at the frontier of the Standard Model
CERN. Geneva
2018-01-01
The results are compared to predictions of Monte Carlo generators implementing NLO matrix elements matched with parton showers and NNLO QCD theory calculations and allow for an alternative measurement of the top quark mass.
Generalized bootstrap equations and possible implications for the NLO Odderon
Energy Technology Data Exchange (ETDEWEB)
Bartels, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Vacca, G.P. [INFN, Sezione di Bologna (Italy)
2013-07-15
We formulate and discuss generalized bootstrap equations in nonabelian gauge theories. They are shown to hold in the leading logarithmic approximation. Since their validity is related to the self-consistency of the Steinmann relations for inelastic production amplitudes they can be expected to be valid also in NLO. Specializing to the N=4 SYM, we show that the validity in NLO of these generalized bootstrap equations allows to find the NLO Odderon solution with intercept exactly at one.
Review of Parton Recombination Models
International Nuclear Information System (INIS)
Bass, Steffen A
2006-01-01
Parton recombination models have been very successful in explaining data taken at RHIC on hadron spectra and emission patterns in Au+Au collisions at transverse momenta above 2 GeV/c, which have exhibited features which could not be understood in the framework of basic perturbative QCD. In this article I will review the current status on recombination models and outline which future challenges need to be addressed by this class of models
Structure functions and parton distributions
International Nuclear Information System (INIS)
Martin, A.D.; Stirling, W.J.; Roberts, R.G.
1995-01-01
The MRS parton distribution analysis is described. The latest sets are shown to give an excellent description of a wide range of deep-inelastic and other hard scattering data. Two important theoretical issues-the behavior of the distributions at small x and the flavor structure of the quark sea-are discussed in detail. A comparison with the new structure function data from HERA is made, and the outlook for the future is discussed
Meteor showers an annotated catalog
Kronk, Gary W
2014-01-01
Meteor showers are among the most spectacular celestial events that may be observed by the naked eye, and have been the object of fascination throughout human history. In “Meteor Showers: An Annotated Catalog,” the interested observer can access detailed research on over 100 annual and periodic meteor streams in order to capitalize on these majestic spectacles. Each meteor shower entry includes details of their discovery, important observations and orbits, and gives a full picture of duration, location in the sky, and expected hourly rates. Armed with a fuller understanding, the amateur observer can better view and appreciate the shower of their choice. The original book, published in 1988, has been updated with over 25 years of research in this new and improved edition. Almost every meteor shower study is expanded, with some original minor showers being dropped while new ones are added. The book also includes breakthroughs in the study of meteor showers, such as accurate predictions of outbursts as well ...
International Nuclear Information System (INIS)
2008-01-01
Full text: Sunshine and light showers are forecast for the Oscar winning actor Cate Blanchett as she increasingly greens her lifestyle. She is installing solar panels to power her Sydney home and has cut her showers back to a maximum of four minutes to help save water in drought-stricken Australia. And that is only a beginning, for she is also greening her main place of work, is campaigning on solar power and climate change, and has committed to other changes in her life to save energy and water. Blanchett - who sprang to fame in the title role of the film Elisabeth ten years ago - learned conservation when growing up in Melbourne in the 1970s from her grandmother who had lived through the Great Depression and, as a result, insisted in recycling and on letting nothing go to waste. She grew up to win an Oscar for her role in Martin Scorsese's The Aviator, amid a host of other top awards, and was spurred into environmental activism by reading about her country's growing water crisis. She says: 'As I see it, there is no greater challenge we face as a species than dealing with climate change and its effects. I care about it because of my children. I want to safeguard their future. It is an inescapable problem, but also provides us with an opportunity to change for the better. To change the way we consume, the way we think, and the way we behave. By assuming responsibility, we protect and respect the generations behind us.' Together with her husband, playwright Andrew Upton, she has started by setting out to 'greenovate' their home: powering it with solar energy, using natural air flows rather than air conditioning to cool it, and recycling grey water. The couple also plan to extend the improvements to the Sydney Theatre Company, where they are joint artistic directors, with the aim of running off-grid for a whole season. 'I really love a refreshing shower,' she says, but has installed a timer to stop them after four minutes. Indeed she tries to make them even shorter
New meteor showers – yes or not?
Koukal, Jakub
2018-01-01
The development of meteor astronomy associated with the development of CCD technology is reflected in a huge increase in databases of meteor orbits. It has never been possible before in the history of meteor astronomy to examine properties of meteors or meteor showers. Existing methods for detecting new meteor showers seem to be inadequate in these circumstances. The spontaneous discovery of new meteor showers leads to ambiguous specifications of new meteor showers. There is a duplication of already discovered meteor showers and a division of existing meteor showers based on their own criteria. The analysis in this article considers some new meteor showers in the IAU MDC database.
NLO error propagation exercise data collection system
International Nuclear Information System (INIS)
Keisch, B.; Bieber, A.M. Jr.
1983-01-01
A combined automated and manual system for data collection is described. The system is suitable for collecting, storing, and retrieving data related to nuclear material control at a bulk processing facility. The system, which was applied to the NLO operated Feed Materials Production Center, was successfully demonstrated for a selected portion of the facility. The instrumentation consisted of off-the-shelf commercial equipment and provided timeliness, convenience, and efficiency in providing information for generating a material balance and performing error propagation on a sound statistical basis
Electroweak Higgs plus three jet production at NLO QCD
International Nuclear Information System (INIS)
Campanario, Francisco; Figy, Terrance M.; Plaetzer, Simon; Sjoedahl, Malin
2013-11-01
We calculate next-to-leading order (NLO) QCD corrections to electroweak Higgs plus three jet production. Both vector boson fusion (VBF) and Higgs-strahlung type contributions are included along with all interferences. The calculation is implemented within the Matchbox NLO framework of the Herwig++ event generator.
Multi-parton interactions at the LHC
Energy Technology Data Exchange (ETDEWEB)
Kulesza, A. [RWTH Aachen (Germany). Inst. fuer Theoretische Teilchenphysik und Kosmologie; Nagy, Z. (eds.) [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2011-11-15
We review the recent progress in the theoretical description and experimental observation of multiple parton interactions. Subjects covered include experimental measurements of minimum bias interactions and of the underlying event, models of soft physics implemented in Monte Carlo generators, developments in the theoretical description of multiple parton interactions and phenomenological studies of double parton scattering. This article stems from contributions presented at the Helmholtz Alliance workshop on ''Multi-Parton Interactions at the LHC'', DESY Hamburg, 13-15 September 2010. (orig.)
Framework for evolution in double parton scattering
Energy Technology Data Exchange (ETDEWEB)
Buffing, Maarten G.A.
2017-07-15
Double parton scattering (DPS) describes two colliding hadrons having interactions in the form of two hard processes, each initiated by a separate pair of partons. Just as for single parton scattering, the resummation of soft gluon exchange gives rise to a soft function, which is a necessary ingredient for obtaining rapidity evolution equations. For various regions of phase space, we derive the rapidity evolution and the scale evolution of double transverse momentum dependent parton distribution functions (DTMDs) as well as of the p{sub T}-resummed cross section for double Drell-Yan like processes. This contributes to a framework that can be used for phenomenological DPS studies including resummation.
Penetrating particles in horizontal air showers
International Nuclear Information System (INIS)
Wohlenberg, J.; Boehm, E.
1975-01-01
Particle density and arrival time of muons has been measured in Horizontal Air Showers. 5,600 showers have been recorded in 7,800 hours. Using stringent selection criteria 155 showers have been found horizontal (zenith angle larger 70 0 ) in the size range 4.1 > lg N > 5.5. The muons observed in these showers can be explained by purely electromagnetic origin of horizontal showers. (orig.) [de
Multiple Parton Interactions in ALICE
CERN. Geneva
2013-01-01
We will present in detail the measurement of the charged particle multiplicity dependence of per-trigger pair yields in azimuthal direction induced by low-energetic di-jets produced in proton-proton collisions. Using two-particle angular correlations with low transverse momentum thresholds, jet properties are measured on a statistical basis down to the lowest possible jet energies. The analysis can give information about the contribution from multiple parton interactions to particle production. Moreover, the results allow to optimize the parametrization of the jet fragmentation in phenomenological mode...
Parton Distribution Benchmarking with LHC Data
Ball, Richard D.; Carrazza, Stefano; Debbio, Luigi Del; Forte, Stefano; Gao, Jun; Hartland, Nathan; Huston, Joey; Nadolsky, Pavel; Rojo, Juan; Stump, Daniel; Thorne, Robert S.; Yuan, C. -P.
2012-01-01
We present a detailed comparison of the most recent sets of NNLO PDFs from the ABM, CT, HERAPDF, MSTW and NNPDF collaborations. We compare parton distributions at low and high scales and parton luminosities relevant for LHC phenomenology. We study the PDF dependence of LHC benchmark inclusive cross
The neural network approach to parton fitting
International Nuclear Information System (INIS)
Rojo, Joan; Latorre, Jose I.; Del Debbio, Luigi; Forte, Stefano; Piccione, Andrea
2005-01-01
We introduce the neural network approach to global fits of parton distribution functions. First we review previous work on unbiased parametrizations of deep-inelastic structure functions with faithful estimation of their uncertainties, and then we summarize the current status of neural network parton distribution fits
Parton-parton scattering at two-loops
International Nuclear Information System (INIS)
Tejeda Yeomans, M.E.
2001-01-01
Abstract We present an algorithm for the calculation of scalar and tensor one- and two-loop integrals that contribute to the virtual corrections of 2 → 2 partonic scattering. First, the tensor integrals are related to scalar integrals that contain an irreducible propagator-like structure in the numerator. Then, we use Integration by Parts and Lorentz Invariance recurrence relations to build a general system of equations that enables the reduction of any scalar integral (with and without structure in the numerator) to a basis set of master integrals. Their expansions in ε = 2 - D/2 have already been calculated and we present a summary of the techniques that have been used to this end, as well as a compilation of the expansions we need in the different physical regions. We then apply this algorithm to the direct evaluation of the Feynman diagrams contributing to the O(α s 4 ) one- and two-loop matrix-elements for massless like and unlike quark-quark, quark-gluon and gluon-gluon scattering. The analytic expressions we provide are regularised in Convensional Dimensional Regularisation and renormalised in the MS-bar scheme. Finally, we show that the structure of the infrared divergences agrees with that predicted by the application of Catani's formalism to the analysis of each partonic scattering process. The results presented in this thesis provide the complete calculation of the one- and two-loop matrix-elements for 2 → 2 processes needed for the next-to-next-to-leading order contribution to inclusive jet production at hadron colliders. (author)
International Nuclear Information System (INIS)
Wanjala, F.; Githuku, S.
2017-01-01
The NLO is the principal interface between the Agency and a national authority on technical cooperation (TC) and related matters. Serves as the principal focal point for the provision of advice to the government on all aspects of the TC programme. Ensures that the benefits of potential nuclear applications are known and understood by relevant sectoral units of government, the national planning entity, universities and scientific institutions, and end users. The project counterpart is responsible for the overall management and direction of a TC project in a country, and for ensuring that all stakeholders are involved. Regional Designated Centre can be defined as an established African institution able to provide multi-national services on the basis of the AFRA Agreement and for which the IAEA and donor support may be sought within the context of approved programmes
NLO error propagation exercise: statistical results
International Nuclear Information System (INIS)
Pack, D.J.; Downing, D.J.
1985-09-01
Error propagation is the extrapolation and cumulation of uncertainty (variance) above total amounts of special nuclear material, for example, uranium or 235 U, that are present in a defined location at a given time. The uncertainty results from the inevitable inexactness of individual measurements of weight, uranium concentration, 235 U enrichment, etc. The extrapolated and cumulated uncertainty leads directly to quantified limits of error on inventory differences (LEIDs) for such material. The NLO error propagation exercise was planned as a field demonstration of the utilization of statistical error propagation methodology at the Feed Materials Production Center in Fernald, Ohio from April 1 to July 1, 1983 in a single material balance area formed specially for the exercise. Major elements of the error propagation methodology were: variance approximation by Taylor Series expansion; variance cumulation by uncorrelated primary error sources as suggested by Jaech; random effects ANOVA model estimation of variance effects (systematic error); provision for inclusion of process variance in addition to measurement variance; and exclusion of static material. The methodology was applied to material balance area transactions from the indicated time period through a FORTRAN computer code developed specifically for this purpose on the NLO HP-3000 computer. This paper contains a complete description of the error propagation methodology and a full summary of the numerical results of applying the methodlogy in the field demonstration. The error propagation LEIDs did encompass the actual uranium and 235 U inventory differences. Further, one can see that error propagation actually provides guidance for reducing inventory differences and LEIDs in future time periods
Signatures of parton exogamy in e+e- → W+W- → hadrons
Ellis, John; Geiger, Klaus
1997-02-01
We propose possible signatures of ‘exogamous’ combinations between partons in the different W+ and W- hadron showers in e+e- → W+W- events with purely hadronic final states. Within the space-time model for hadronic shower development that we have proposed previously, we find a possible difference of about 10% between the mean hadronic multiplicity in such purely hadronic final states and twice the hadronic multiplicity in events in which one W± decays hadronically and the other leptonically, i.e., « Nhad(2 W ≠ 2« Nhad( W), associated with the formation of hadronic clusters by ‘exogamous’ pairs of partons. We discuss the dependence of this possible difference in multiplicity on the center-of-mass energy, on the hadron momenta, and on the angular separation between the W± dijets. If it were observed, any such multiplicity difference would indicate that the W± do not hadronize independently, and hence raise questions about the accuracy with which the W± mass could be determined from purely hadronic final states.
Studies on muon showers underground
Energy Technology Data Exchange (ETDEWEB)
Bergamasco, L; Castagnoli, C; Dardo, M; D' Ettorre Piazzoli, B; Mannocchi, G [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Picchi, P; Visentin, R [Comitato Nazionale per l' Energia Nucleare, Frascati (Italy). Laboratori Nazionali di Frascati; Sitte, K [Freiburg Univ. (Germany, F.R.). Fakultaet fuer Physik
1976-08-21
The 4 m/sup 2/ spark chamber telescope array of the Mt. Cappuccini Laboratory, Torino, At 40 m w.e. underground was operated for about 830 h recording muon showers. The data were analysed with respect to the multiplicity distribution of the shower particles, and to local interactions initiated in the chamber absorbers. Regarding the multiplicity analysis a semi-empirical expression for the likely shower size dependence of a structure function of the analytical form proposed by Vernov et al., was derived and applied with systematically varied parameters. The comparison of the observed rates of multiples with those calculated with a variety of parameters showed that a satisfactory agreement can be attained only if one admits a variation with the shower size of the parameters, and an enhanced muon/electron ratio at the lower primary energies, possibly indicative of an increased abundance of primary heavy nuclei. This would conform with the idea of a two-component primary composition in which a pulsar-produced fraction, enriched in heavy nuclei, dominated only at medium energies. The records on multiplicative interactions, and on large-angle scattering, were analysed by comparing their rates observed for shower particles with those found in single-muon check runs. The results are consistent with the assumption that all shower particle interactions are electromagnetic in nature, and that nonconventional components like mandelas are absent. Only making extreme allowances for statistical fluctuations the data can be made compatible with a mandela flux as large as that suggested by Baruch et al., provided that the mandela attenuation length is less than 1 500g/cm/sup 2/ of rock.
Studies on muon showers underground
International Nuclear Information System (INIS)
Bergamasco, L.; Castagnoli, C.; Dardo, M.; D'Ettorre Piazzoli, B.; Mannocchi, G.; Picchi, P.; Visentin, R.; Sitte, K.
1976-01-01
The 4 m 2 spark chamber telescope array of the Mt. Cappuccini Laboratory, Torino, At 40 m w.e. underground was operated for about 830 h recording muon showers. The data were analysed with respect to the multiplicity distribution of the shower particles, adn to local interactions initiated in the chamber absorbers. Regarding the multiplicity analysis a semi-empirical expression for the likely shower size dependence of a structure function of the analytical form proposed by Vernov et al., was derived and applied with systematically varied parameters. The comparison of the observed rates of multiples with those calculated with a variety of parameters showed that a satisfactory agreement can be attained only if one admits a variation with the shower size of the parameters, and an enhanced muon/electron ratio at the lower primary energies, possibly indicative of an increased abundance of primary heavy nuclei. This would conform with the idea of a two-component primary composition in which a pulsar-produced fraction, enriched in heavy nuclei, dominated only at medium energies. The records on multiplicative interactions, and on large-angle scattering, were analysed by comparing their rates observed for shower particles with those found in single-muon check runs. The results are consistent with the assumption that all shower particle interactions are electromagnetic in nature, and that nonconventional components like mandelas are absent. Only making extreme allowances for statistical fluctuations the data can be made compatible with a mandela flux as large as that suggested by Baruch et al., provided that the mandela attenuation length is less than 1 500g/cm 2 of rock
Electron shower transverse profile measurement
International Nuclear Information System (INIS)
Lednev, A.A.
1993-01-01
A method to measure the shower transverse profile is described. Calibration data of the lead-glass spectrometer GAMS collected in a wide electron beam without any additional coordinate detector are used. The method may be used for the measurements in both cellular- and projective-type spectrometers. The results of measuring the 10 GeV electron shower profile in the GAMS spectrometer, without optical grease between the lead-glass radiators and photomultipliers, are approximated with an analytical function. The estimate of the coordinate accuracy is obtained. 5 refs., 8 figs
Endpoint singularities in unintegrated parton distributions
Hautmann, F
2007-01-01
We examine the singular behavior from the endpoint region x -> 1 in parton distributions unintegrated in both longitudinal and transverse momenta. We identify and regularize the singularities by using the subtraction method, and compare this with the cut-off regularization method. The counterterms for the distributions with subtractive regularization are given in coordinate space by compact all-order expressions in terms of eikonal-line operators. We carry out an explicit calculation at one loop for the unintegrated quark distribution. We discuss the relation of the unintegrated parton distributions in subtractive regularization with the ordinary parton distributions.
Photons in a partonic transport approach
Energy Technology Data Exchange (ETDEWEB)
Greif, Moritz; Senzel, Florian; Greiner, Carsten [Goethe Universitaet Frankfurt, Max-von-Laue-Str. 1 60438 Frankfurt am Main (Germany)
2015-07-01
Partonic transport approaches have proved to be valuable tools in describing the quark-gluon plasma, created in heavy-ion collisions. In this work, first steps towards a dynamical understanding of photonproduction in expanding heavy-ion collisions are presented. Several photon production processes are included in the partonic cascade BAMPS (Boltzmann Approach to Multi-Parton Scatterings). BAMPS provides a microscopic tool to study expanding fireballs, employing a stochastic method to solve the relativistic 3+1d Boltzmann equation. Subsequently, photon spectra can be investigated, and in particular, the influence of the quark-gluon plasma phase for the elliptic flow of photons is studied.
Eikonal propagators and high-energy parton-parton scattering in gauge theories
International Nuclear Information System (INIS)
Meggiolaro, Enrico
2001-01-01
In this paper we consider 'soft' high-energy parton-parton scattering processes in gauge theories, i.e., elastic scattering processes involving partons at very high squared energies s in the center of mass and small squared transferred momentum t (s→∞, t 2 ). By a direct resummation of perturbation theory in the limit we are considering, we derive expressions for the truncated-connected quark (antiquark) propagator in an external gluon field, as well as for the residue at the pole of the full unrenormalized propagator, both for scalar and fermion gauge theories. These are the basic ingredients to derive high-energy parton-parton scattering amplitudes, using the LSZ reduction formulae and a functional integral approach. The above procedure is also extended to include the case in which at least one of the partons is a gluon. The meaning and the validity of the results are discussed
NLO corrections to the pair production of supersymmetric particles
International Nuclear Information System (INIS)
Obikhod, T.V.; Verbytskyy, A.A.
2014-01-01
The analysis of recent experimental data received from LHC (CMS) restricts the range of MSSM parameters. Using computer programs SOFTSUSY, SDECAY the mass spectrum and partial width of superpartners are calculated. With the help of computer program PROSPINO the calculations of the next-to-leading order (NLO) corrections to the production cross sections of superpartners are made. With the help of computer program PYTHIA the NLO corrections on differential distributions of p T and η for squarks and gluino are represented.
Energy Technology Data Exchange (ETDEWEB)
Khanpour, Hamzeh [University of Science and Technology of Mazandaran, Department of Physics, Behshahr (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of); Goharipour, Muhammad [Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of); Guzey, Vadim [Petersburg Nuclear Physics Institute (PNPI), National Research Center ' ' Kurchatov Institute' ' , Gatchina (Russian Federation)
2018-01-15
We studied the effects of NLO Q{sup 2} evolution of generalized parton distributions (GPDs) using the aligned-jet model for the singlet quark and gluon GPDs at an initial evolution scale. We found that the skewness ratio for quarks is a slow logarithmic function of Q{sup 2}, reaching r{sup S} = 1.5-2 at Q{sup 2} = 100 GeV{sup 2} and r{sup g} ∼ 1 for gluons in a wide range of Q{sup 2}. Using the resulting GPDs, we calculated the DVCS cross section on the proton in NLO pQCD and found that this model in conjunction with modern parameterizations of proton PDFs (CJ15 and CT14) provides a good description of the available H1 and ZEUS data in a wide kinematic range. (orig.)
Parton distributions beyond the leading order
International Nuclear Information System (INIS)
Chyla, J.
1993-01-01
The importance of properly taking into account the factorization scheme dependence of parton distribution functions is emphasized. A serious error in the usual handling of this topic is pointed out and the correct procedure for transforming parton distribution functions from one factorization scheme to another recalled. It is shown that the conventional M bar S and DIS definitions thereof are ill defined due to the lack of distinction between the factorization scheme dependence of parton distribution functions and renormalization scheme dependence of the strong coupling constant α s . A novel definition of parton distribution functions is suggested and its role in the construction of consistent next-to-leading-order event generators briefly outlined
Pre-equilibrium parton dynamics: Proceedings
Energy Technology Data Exchange (ETDEWEB)
Wang, Xin-Nian [ed.
1993-12-31
This report contains papers on the following topics: parton production and evolution; QCD transport theory; interference in the medium; QCD and phase transition; and future heavy ion experiments. This papers have been indexed separately elsewhere on the data base.
Pre-equilibrium parton dynamics: Proceedings
International Nuclear Information System (INIS)
Wang, Xin-Nian
1993-01-01
This report contains papers on the following topics: parton production and evolution; QCD transport theory; interference in the medium; QCD and phase transition; and future heavy ion experiments. This papers have been indexed separately elsewhere on the data base
Unraveling hadron structure with generalized parton distributions
Energy Technology Data Exchange (ETDEWEB)
Andrei Belitsky; Anatoly Radyushkin
2004-10-01
The recently introduced generalized parton distributions have emerged as a universal tool to describe hadrons in terms of quark and gluonic degrees of freedom. They combine the features of form factors, parton densities and distribution amplitudes - the functions used for a long time in studies of hadronic structure. Generalized parton distributions are analogous to the phase-space Wigner quasi-probability function of non-relativistic quantum mechanics which encodes full information on a quantum-mechanical system. We give an extensive review of main achievements in the development of this formalism. We discuss physical interpretation and basic properties of generalized parton distributions, their modeling and QCD evolution in the leading and next-to-leading orders. We describe how these functions enter a wide class of exclusive reactions, such as electro- and photo-production of photons, lepton pairs, or mesons.
Partons and their applications at high energies
International Nuclear Information System (INIS)
Drell, Sidney D.; Yan, Tung-Mow
2000-01-01
We discuss Feynman's parton model for deep inelastic weak or electromagnetic processes as an application of the impulse approximation to elementary particle interactions. The special features and conditions permitting this application are elaborated upon in some detail including the dependence of the parton model and the impulse treatment on an appropriate choice of coordinate frames and the role of the very soft or wee partons. Application of the parton model is made to the calculation of the cross section for massive lepton pair production in very high energy hadron-hadron collisions and compared with experiment. The conjectured role of light cone singularities in describing this and the other deep inelastic amplitudes is also discussed. (c) 2000 Academic Press, Inc
Air shower measurements with LOFAR
Horneffer, A.; Bähren, L.; Buitink, S.; Falcke, H.; Hörandel, J.R.; Kuijpers, J.; Lafebre, S.; Nigl, A.; Scholten, O.; Singh, K.
2009-01-01
Air showers from cosmic rays emit short, intense radio pulses. The Low Frequency Array (LOFAR) is a new radio telescope, that is being built in the Netherlands and Europe. Designed primarily as a radio interferometer, the core of LOFAR will have a high density of radio antennas, which will be
Color correlations in parton jet decay
International Nuclear Information System (INIS)
Levin, E.M.; Ryskin, M.G.
1983-01-01
The pre-confinement effect is discussed. Colour correlations are calculated for the decays of parton jets with account for the coherence of the gluon interaction. It is shown that, in contrast to the results of previous works, the colour correlations between two gluons with a high pair mass can be appreciable. In any kinematical interval, however, the energy carried away be the particles correlated in the colour is always much less than the total energy carried away by the partons
Results on reuse of reclaimed shower water
Verostko, Charles E.; Garcia, Rafael; Pierson, Duane L.; Reysa, Richard P.; Irbe, Robert
1986-01-01
The Waste Water Recovery System that has been used in conjunction with a microgravity whole body shower to test a closed loop shower water reclamation system applicable to the NASA Space Station employs a Thermoelectric Integrated Hollow Fiber Membrane Evaporation Subsystem. Attention is given to the suitability of a Space Shuttle soap for such crew showers, the effects of shower water on the entire system, and the purification qualities of the recovered water. The chemical pretreatment of the shower water for microorganism control involved activated carbon, mixed ion exchange resin beds, and iodine bactericide dispensing units. The water was recycled five times, demonstrating the feasibility of reuse.
Parton fragmentation and string dynamics
International Nuclear Information System (INIS)
Andersson, B.; Gustafson, G.; Ingelman, G.; Sjoestrand, T.
1983-01-01
While much has been learned recently about quark and gluon interactions in the framework of perturbative Quantum Chromodynamics, the relation between calculated parton properties and observed hadron densities involves models where dynamics and jet empirical rules have to be combined. The purpose of this article is to describe a presently successful approach which is based on a cascade jet model using String dynamics. It can readily lead to Monte Carlo jet programmes of great use when analyzing data. Production processes in an iterative cascade approach, with tunneling in a constant force field, are reviewed. Expected differences between quark and gluon jets are discussed. Low transverse momentum phenomena are also reviewed with emphasis on hyperon polarization. In so far as this approach uses a fragmentation scheme based on String dynamics, it was deemed appropriate to also include under the same cover a special report on the Classical theory of relativistic Strings, seen as the classical limit of the Dual Resonance model. The Equations of motion and interaction among strings are presented. (orig.)
Transverse nucleon structure and diagnostics of hard parton-parton processes at LHC
Energy Technology Data Exchange (ETDEWEB)
L. Frankfurt, M. Strikman, C. Weiss
2011-03-01
We propose a new method to determine at what transverse momenta particle production in high-energy pp collisions is governed by hard parton-parton processes. Using information on the transverse spatial distribution of partons obtained from hard exclusive processes in ep/\\gamma p scattering, we evaluate the impact parameter distribution of pp collisions with a hard parton-parton process as a function of p_T of the produced parton (jet). We find that the average pp impact parameters in such events depend very weakly on p_T in the range 2 < p_T < few 100 GeV, while they are much smaller than those in minimum-bias inelastic collisions. The impact parameters in turn govern the observable transverse multiplicity in such events (in the direction perpendicular to the trigger particle or jet). Measuring the transverse multiplicity as a function of p_T thus provides an effective tool for determining the minimum p_T for which a given trigger particle originates from a hard parton-parton process.
The next-to-leading order (NLO) gluon distribution from DGLAP ...
Indian Academy of Sciences (India)
leading order (NLO) is obtained by applying the method of characteristics. Its compatibility with double leading logarithmic approximation (DLLA) asymptotics is discussed and comparison with the exact ones like GRV98NLO is made. The solution ...
Time structure of cascade showers
International Nuclear Information System (INIS)
Nakatsuka, Takao
1984-01-01
Interesting results have been reported on the time structure of the electromagnetic components of air showers which have been obtained by using recent fast electronic circuit technology. However, these analyses and explanations seem not very persuasive. One of the reasons is that there is not satisfactory theoretical calculation yet to explain the delay of electromagnetic components in cascade processes which are the object of direct observation. Therefore, Monte Carlo calculation was attempted for examining the relationship between the altitude at which high energy γ-ray is generated up in the air and the time structure of cascade showers at the level of observation. The investigation of a dominant factor over the delay of electromagnetic components indicated that the delay due to the multiple scattering of electrons was essential. The author used the analytical solution found by himself of C. N. Yang's equation for the study on the delay due to multiple scattering. The results were as follows: The average delay time and the spread of distribution of electromagnetic cascades were approximately in linear relationship with the mass of a material having passed in a thin uniform medium; the rise time of arrival time distribution for electromagnetic cascade showers was very steep under the condition that they were generated up in the air and observed on the ground; the subpeaks delayed by tens of ns in arrival time may sometimes appear due to the perturbation in electromagnetic cascade processes. (Wakatsuki, Y.)
NLO Vertex for a Forward Jet plus a Rapidity Gap at High Energies
Hentschinski, Martin; Murdaca, Beatrice; Vera, Agustín Sabio
2015-01-01
We present the calculation of the forward jet vertex associated to a rapidity gap (coupling of a hard pomeron to the jet) in the BFKL formalism at next-to-leading order (NLO). Real emission contributions are computed via Lipatov's effective action. The NLO jet vertex turns out to be finite within collinear factorization and allows, together with the NLO non-forward gluon Green's function, to perform NLO studies of jet production in diffractive events (e.g. Mueller-Tang dijets).
Evolution of parton densities beyond leading order
International Nuclear Information System (INIS)
Curci, G.; Petronzio, R.; Furmanski, W.
1980-01-01
We develop a technique, based explicitly on the factorization properties of mass singularities, which allows one to calculate the evolution of parton densities beyond leading order. We present the results for the evolution of hadronic structure functions as well as for parton fragmentation functions into hadrons. Within our scheme the predictions for a particular process are obtained by convoluting a universal parton density with a short-distance cross section specific to the process. As an application, we calculate the QCD predictions for the Q 2 dependence of deep inelastic lepton-hadron scattering and of one-particle inclusive e + e - annihilation cross sections. Our results for electroproduction agree with those obtained with the operator product expansion technique. Physical quantitites in scattering are related to the corresponding ones in annihilation by analytic continuation, whereas the Gribov-Lipatov relation is strongly violated. (orig.)
Nucleon parton distributions in chiral perturbation theory
International Nuclear Information System (INIS)
Moiseeva, Alena
2013-01-01
Properties of the chiral expansion of nucleon light-cone operators have been studied. In the framework of the chiral perturbation theory we have demonstrated that convergency of the chiral expansion of nucleon parton distributions strongly depends on the value of the variable x. Three regions in x with essentially different analytical properties of the resulting chiral expansion for parton distributions were found. For each of the regions we have elaborated special power counting rules corresponding to the partial resummation of the chiral series. The nonlocal effective operators for the vector and the axial nucleon parton distributions have been constructed at the zeroth and the first chiral order. Using the derived nonlocal operators and the derived power counting rules we have obtained the second order expressions for the nucleon GPDs H(x,ξ,Δ 2 ), H(x,ξ,Δ 2 ),E(x,ξ,Δ 2 ) valid in the region x>or similar a 2 χ .
Radar reflection off extensive air showers
Stasielak, J; Bertaina, M; Blümer, J; Chiavassa, A; Engel, R; Haungs, A; Huege, T; Kampert, K -H; Klages, H; Kleifges, M; Krömer, O; Ludwig, M; Mathys, S; Neunteufel, P; Pekala, J; Rautenberg, J; Riegel, M; Roth, M; Salamida, F; Schieler, H; Šmída, R; Unger, M; Weber, M; Werner, F; Wilczyński, H; Wochele, J
2012-01-01
We investigate the possibility of detecting extensive air showers by the radar technique. Considering a bistatic radar system and different shower geometries, we simulate reflection of radio waves off the static plasma produced by the shower in the air. Using the Thomson cross-section for radio wave reflection, we obtain the time evolution of the signal received by the antennas. The frequency upshift of the radar echo and the power received are studied to verify the feasibility of the radar detection technique.
Monte-Carlo simulation of electromagnetic showers
International Nuclear Information System (INIS)
Amatuni, Ts.A.
1984-01-01
The universal ELSS-1 program for Monte Carlo simulation of high energy electromagnetic showers in homogeneous absorbers of arbitrary geometry is written. The major processes and effects of electron and photon interaction with matter, particularly the Landau-Pomeranchuk-Migdal effect, are taken into account in the simulation procedures. The simulation results are compared with experimental data. Some characteristics of shower detectors and electromagnetic showers for energies up 1 TeV are calculated
Parton Propagation and Fragmentation in QCD Matter
Energy Technology Data Exchange (ETDEWEB)
Alberto Accardi, Francois Arleo, William Brooks, David D' Enterria, Valeria Muccifora
2009-12-01
We review recent progress in the study of parton propagation, interaction and fragmentation in both cold and hot strongly interacting matter. Experimental highlights on high-energy hadron production in deep inelastic lepton-nucleus scattering, proton-nucleus and heavy-ion collisions, as well as Drell-Yan processes in hadron-nucleus collisions are presented. The existing theoretical frameworks for describing the in-medium interaction of energetic partons and the space-time evolution of their fragmentation into hadrons are discussed and confronted to experimental data. We conclude with a list of theoretical and experimental open issues, and a brief description of future relevant experiments and facilities.
Improved modelling of independent parton hadronization
International Nuclear Information System (INIS)
Biddulph, P.; Thompson, G.
1989-01-01
A modification is proposed to current versions of the Field-Feynman ansatz for the hadronization of a quark in Monte Carlo models of QCD interactions. This faster-running algorithm has no more parameters and imposes a better degree of energy conservation. It results in naturally introducing a limitation of the transverse momentum distribution, similar to the experimentally observed ''seagull'' effect. There is now a much improved conservation of quantum numbers between the original parton and resultant hadrons, and the momentum of the emitted parton is better preserved in the summed momentum vectors of the final state particles. (orig.)
Positivity bounds on double parton distributions
International Nuclear Information System (INIS)
Diehl, Markus; Kasemets, Tomas
2013-03-01
Double hard scattering in proton-proton collisions is described in terms of double parton distributions. We derive bounds on these distributions that follow from their interpretation as probability densities, taking into account all possible spin correlations between two partons in an unpolarized proton. These bounds constrain the size of the polarized distributions and can for instance be used to set upper limits on the effects of spin correlations in double hard scattering. We show that the bounds are stable under leading-order DGLAP evolution to higher scales.
Partons and the EMC spin effect
International Nuclear Information System (INIS)
Bass, S.D.
1992-03-01
We focus on the patron model and the role of the axial anomaly in polarised deep inelastic scattering. We show that the axial anomaly is relevant to each of the higher moments of the spin dependent structure function g 1 (x) and not just the first moment. This result implies that the factorisation of mass singularities is not sufficient to define the parton model in spin dependent quantum chromodynamics (QCD). (It is certainly a necessary condition.) We also need to consider the locality of the photon parton interaction. The anomaly is observed over all x in the (EMC)g 1 (x) data. (author)
Complex conjugate poles and parton distributions
International Nuclear Information System (INIS)
Tiburzi, B.C.; Detmold, W.; Miller, G.A.
2003-01-01
We calculate parton and generalized parton distributions in Minkowski space using a scalar propagator with a pair of complex conjugate poles. Correct spectral and support properties are obtained only after careful analytic continuation from Euclidean space. Alternately the quark distribution function can be calculated from modified cutting rules, which put the intermediate state on its complex mass shells. Distribution functions agree with those resulting from the model's Euclidean space double distribution which we calculate via nondiagonal matrix elements of twist-two operators. Thus one can use a wide class of analytic parametrizations of the quark propagator to connect Euclidean space Green functions to light-cone dominated amplitudes
Shower maximum detector for SDC calorimetry
International Nuclear Information System (INIS)
Ernwein, J.
1994-01-01
A prototype for the SDC end-cap (EM) calorimeter complete with a pre-shower and a shower maximum detector was tested in beams of electrons and Π's at CERN by an SDC subsystem group. The prototype was manufactured from scintillator tiles and strips read out with 1 mm diameter wave-length shifting fibers. The design and construction of the shower maximum detector is described, and results of laboratory tests on light yield and performance of the scintillator-fiber system are given. Preliminary results on energy and position measurements with the shower max detector in the test beam are shown. (authors). 4 refs., 5 figs
Fast shower simulation in the ATLAS calorimeter
International Nuclear Information System (INIS)
Barberio, E; Boudreau, J; Mueller, J; Tsulaia, V; Butler, B; Young, C C; Cheung, S L; Savard, P; Dell'Acqua, A; Simone, A D; Gallas, M V; Ehrenfeld, W; Glazov, A; Placakyte, R; Marshall, Z; Rimoldi, A; Waugh, A
2008-01-01
The time to simulate pp collisions in the ATLAS detector is largely dominated by the showering of electromagnetic particles in the heavy parts of the detector, especially the electromagnetic barrel and endcap calorimeters. Two procedures have been developed to accelerate the processing time of electromagnetic particles in these regions: (1) a fast shower parameterisation and (2) a frozen shower library. Both work by generating the response of the calorimeter to electrons and positrons with Geant 4, and then reintroduce the response into the simulation at runtime. In the fast shower parameterisation technique, a parameterisation is tuned to single electrons and used later by simulation. In the frozen shower technique, actual showers from low-energy particles are used in the simulation. Full Geant 4 simulation is used to develop showers down to ∼ 1GeV, at which point the shower is terminated by substituting a frozen shower. Judicious use of both techniques over the entire electromagnetic portion of the ATLAS calorimeter produces an important improvement of CPU time. We discuss the algorithms and their performance in this paper
Partons and quarks. Daresbury lecture note series No. 12
Energy Technology Data Exchange (ETDEWEB)
Close, F. E.
1973-04-15
The report is based on a series of lectures given at Daresbury Laboratory on 2 to 12 Apri1 1973. It is stated that the purpose was to show the reasons why parton models describe the data, show what other phenomena can be understood and what predictions can be made within the parton hypothesis. The report is in sections: elastic electron scattering; inelastic electron scattering; deep inelastic scattering and partons; structure functions and surn rules in the quark parton model; inelastic neutrinto scattering; forward Compton scattering; Compton scattering in simple models; a J = 0 fixed pole in Compton scattering; the non-perturbative parton model without tears; the parton model and vector-meson dominance-rivals or partners; do resonances scale; resonances, SU(6) and the quark parton model; towards a dynamical parton model. (UK)
Constraints on parton density functions from D0
Energy Technology Data Exchange (ETDEWEB)
Hays, Jonathan M.; /Imperial Coll., London
2008-04-01
Five recent results from D0 which either impact or have the potential to impact on uncertainties in parton density functions are presented. Many analyses at D0 are sensitive to the modeling of the partonic structure of the proton. When theoretical and experimental uncertainties are well controlled there exists the possibility for additional constraints on parton density functions (PDF). Five measurements are presented which either have already been included in global parton fits or have the potential to contribute in the future.
The ultimate air shower observatory
International Nuclear Information System (INIS)
Jones, L.W.
1981-01-01
The possibility of constructing an international air shower observatory in the Himalayas is explored. A site at about 6500 m elevation (450 g/cm 2 ) would provide more definitive measurements of composition and early interaction properties of primaries above 10 16 eV than can be achieved with existing arrays. By supplementing a surface array with a Fly's Eye and muon detectors, information on the highest energy cosmic rays may be gained which is not possible in any other way. Potential sites, technical aspects, and logistical problems are explored
Collinear and transverse momentum dependent parton densities obtained with a parton branching method
Energy Technology Data Exchange (ETDEWEB)
Lelek, Aleksandra
2017-10-15
We present a solution of the DGLAP evolution equations, written in terms of Sudakov form factors to describe the branching and no-branching probabilities, using a parton branching Monte Carlo method. We demonstrate numerically that this method reproduces the semi-analytical solutions. We show how this method can be used to determine Transverse Momentum Dependent (TMD) parton distribution functions, in addition to the usual integrated parton distributions functions. We discuss numerical effects of the boundary of soft gluon resolution scale parameter on the resulting parton distribution functions. We show that a very good fit of the integrated TMDs to high precision HERA data can be obtained over a large range in x and Q{sup 2}.
Collinear and transverse momentum dependent parton densities obtained with a parton branching method
International Nuclear Information System (INIS)
Lelek, Aleksandra
2017-10-01
We present a solution of the DGLAP evolution equations, written in terms of Sudakov form factors to describe the branching and no-branching probabilities, using a parton branching Monte Carlo method. We demonstrate numerically that this method reproduces the semi-analytical solutions. We show how this method can be used to determine Transverse Momentum Dependent (TMD) parton distribution functions, in addition to the usual integrated parton distributions functions. We discuss numerical effects of the boundary of soft gluon resolution scale parameter on the resulting parton distribution functions. We show that a very good fit of the integrated TMDs to high precision HERA data can be obtained over a large range in x and Q 2 .
What is the transverse momentum of partons
International Nuclear Information System (INIS)
Close, F.E.; Halzen, F.; Scott, D.M.
1977-01-01
Theoretical arguments for a picture where the average transverse momentum of partons inside hadrons increases when x increases towards x=0.4 approximately 0.5, peaks and subsequently decreases when x approaches 1. This result is contrary to that suggested by asymptotic freedom arguments. Phenomenological support for this is discussed. (Auth.)
Parton dynamics in hadronic processes. Final report
International Nuclear Information System (INIS)
Sukhatme, U.P.
1984-07-01
We have elucidated several aspects of the dual parton fragmentation model for low transverse momentum multiparticle production in hadronic collisions previously developed by the author and collaborators at Orsay, France. In particular, we have verified that the dual parton model correctly reproduces recently obtained two particle inclusive distributions and particle ratios in the central region of pp and anti pp collisions. This work sheds light on the dynamics of partons in a hadronic collision since it strongly indicates that a valence quark from each initial hadron is held back with a small momentum fraction. Also, we have extended the dual parton approach to include diffraction dissocation and studied the consequences on inclusive pion production in pp interactions. We have investigated the virtues and limitations of logarithmic perturbation theory, which is often a much simpler alternative to standard Rayleigh-Schroedinger perturbation theory. Finally, we have developed and studied the shifted 1/N expansion for the enrgy eigenstates in non-relativistic quantum mechanics. Our results provide an accurate, rapidly convergent, powerful new way of handling any spherically symmetric potential. 18 references
QCD parton model at collider energies
International Nuclear Information System (INIS)
Ellis, R.K.
1984-09-01
Using the example of vector boson production, the application of the QCD improved parton model at collider energies is reviewed. The reliability of the extrapolation to SSC energies is assessed. Predictions at √S = 0.54 TeV are compared with data. 21 references
Correlations in the Parton Recombination Model
Energy Technology Data Exchange (ETDEWEB)
Bass, S.A. [Department of Physics, Duke University, Durham, NC 27708-0305 (United States); RIKEN BNL Research Center, Brookhaven Nat. Lab., Upton, NY 11973 (United States); Fries, R.J. [School of Physics and Astronomy, Univ. of Minnesota, Minneapolis, MN 55455 (United States); Mueller, B. [Department of Physics, Duke University, Durham, NC 27708-0305 (United States)
2006-08-07
We describe how parton recombination can address the recent measurement of dynamical jet-like two particle correlations. In addition we discuss the possible effect realistic light-cone wave-functions including higher Fock-states may have on the well-known elliptic flow valence-quark number scaling law.
Parton distribution and Tevatron jet data
International Nuclear Information System (INIS)
Alekhin, S.; Bluemlein, J.; Moch, S.
2011-05-01
We study the impact of Tevatron jet data on a global fit of parton distribution functions and on the determination of the value of the strong coupling constant α s (M Z ). The consequences are illustrated for cross sections of Higgs boson production at Tevatron and the LHC. (orig.)
From form factors to generalized parton distributions
Energy Technology Data Exchange (ETDEWEB)
Diehl, Markus
2013-06-15
I present an extraction of generalized parton distributions from selected data on the electromagnetic nucleon form factors. The extracted distributions can in particular be used to quantify the contribution to the proton spin from the total angular momentum carried by valence quarks, as well as their transverse spatial distribution inside the proton.
Indian Academy of Sciences (India)
Partons and jets at the LHC. DAVISON E SOPER. Institute of Theoretical Science, University of Oregon, Eugene, OR 97403-5203, USA. Abstract. I review some issues related to short distance QCD and its relation to the experimental program of the large hadron collider (LHC) now under construction in Geneva. Keywords.
Frozen-shower simulation of electromagnetic showers in the ATLAS forward calorimeter
Gasnikova, Ksenia; The ATLAS collaboration
2016-01-01
Accurate simulation of calorimeter response for high energy electromagnetic particles is essential for the LHC experiments. Detailed simulation of the electromagnetic showers using Geant4 is however very CPU intensive and various fast simulation methods were proposed instead. The frozen shower simulation substitutes the full propagation of the showers for energies below 1~GeV by showers taken from a pre-simulated library. The method is used for production of the main ATLAS Monte Carlo samples, greatly improving the production time. The frozen showers describe shower shapes, sampling fraction, sampling and noise-related fluctuations very well, while description of the constant term, related to calorimeter non-uniformity, requires a careful choice of the shower library binning. A new method is proposed to tune the binning variables, using multivariate techniques. The method is tested and optimized for the description of the ATLAS forward calorimeter.
Shower library technique for fast simulation of showers in calorimeters of the H1 experiment
International Nuclear Information System (INIS)
Raičević, N.; Glazov, A.; Zhokin, A.
2013-01-01
Fast simulation of showers in calorimeters is very important for particle physics analysis since shower simulation typically takes significant amount of the simulation time. At the same time, a simulation must reproduce experimental data in the best possible way. In this paper, a fast simulation of showers in two calorimeters of the H1 experiment is presented. High speed and good quality of shower simulation is achieved by using a shower library technique in which the detector response is simulated using a collection of stored showers for different particle types and topologies. The library is created using the GEANT programme. The fast simulation based on shower library is compared to the data collected by the H1 experiment
Pion showers in highly granular calorimeters
Indian Academy of Sciences (India)
New results on properties of hadron showers created by pion beam at 8–80 GeV in high granular electromagnetic and hadron calorimeters are presented. Data were used for the ﬁrst time to investigate the separation of the neutral and charged hadron showers. The result is important to verify the prediction of the PFA ...
Microwave detection of air showers with MIDAS
Czech Academy of Sciences Publication Activity Database
Facal San Luis, P.; Alekotte, I.; Alvarez, J.; Berlin, A.; Bertou, X.; Bogdan, M.; Boháčová, Martina; Bonifazi, C.; Carvalho, W.R.; de Mello Neto, J.R.T.; Genat, J.F.; Mills, E.; Monasor, M.; Privitera, P.; Reyes, I.C.; d´Orfeuil, B.R.; Santos, E.M.; Wayne, S.; Williams, C.; Zas, E.
2012-01-01
Roč. 662, Sup. 1 (2012), "S118"-"S123" ISSN 0168-9002 R&D Projects: GA MŠk(CZ) LA08016 Institutional research plan: CEZ:AV0Z10100502 Keywords : MIDAS (Microwave Detector of Air Showers) * extensive air showers Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.142, year: 2012
Cosmic Rays and Extensive Air Showers
Stanev, Todor
2010-01-01
We begin with a brief introduction of the cosmic ray energy spectrum and its main features. At energies higher than 105 GeV cosmic rays are detected by the showers they initiate in the atmosphere. We continues with a brief description of the energy spectrum and composition derived from air shower data.
Scaling analysis of meteorite shower mass distributions
DEFF Research Database (Denmark)
Oddershede, Lene; Meibom, A.; Bohr, Jakob
1998-01-01
Meteorite showers are the remains of extraterrestrial objects which are captivated by the gravitational field of the Earth. We have analyzed the mass distribution of fragments from 16 meteorite showers for scaling. The distributions exhibit distinct scaling behavior over several orders of magnetude......; the observed scaling exponents vary from shower to shower. Half of the analyzed showers show a single scaling region while the orther half show multiple scaling regimes. Such an analysis can provide knowledge about the fragmentation process and about the original meteoroid. We also suggest to compare...... the observed scaling exponents to exponents observed in laboratory experiments and discuss the possibility that one can derive insight into the original shapes of the meteoroids....
Probe initial parton density and formation time via jet quenching
International Nuclear Information System (INIS)
Wang, Xin-Nian
2002-01-01
Medium modification of jet fragmentation function due to multiple scattering and induced gluon radiation leads directly to jet quenching or suppression of leading particle distribution from jet fragmentation. One can extract an effective total parton energy loss which can be related to the total transverse momentum broadening. For an expanding medium, both are shown to be sensitive to the initial parton density and formation time. Therefore, one can extract the initial parton density and formation time from simultaneous measurements of parton energy loss and transverse momentum broadening. Implication of the recent experimental data on effects of detailed balance in parton energy loss is also discussed
Correlations in double parton distributions. Effects of evolution
International Nuclear Information System (INIS)
Diehl, Markus; Keane, Shane; Kasemets, Tomas; Vrije Univ., Amsterdam
2014-01-01
We numerically investigate the impact of scale evolution on double parton distributions, which are needed to compute multiple hard scattering processes. Assuming correlations between longitudinal and transverse variables or between the parton spins to be present at a low scale, we study how they are affected by evolution to higher scales, i.e. by repeated parton emission. We find that generically evolution tends to wash out correlations, but with a speed that may be slow or fast depending on kinematics and on the type of correlation. Nontrivial parton correlations may hence persist in double parton distributions at the high scales relevant for hard scattering processes.
CT14 intrinsic charm parton distribution functions from CTEQ-TEA global analysis
Hou, Tie-Jiun; Dulat, Sayipjamal; Gao, Jun; Guzzi, Marco; Huston, Joey; Nadolsky, Pavel; Schmidt, Carl; Winter, Jan; Xie, Keping; Yuan, C.-P.
2018-02-01
We investigate the possibility of a (sizable) nonperturbative contribution to the charm parton distribution function (PDF) in a nucleon, theoretical issues arising in its interpretation, and its potential impact on LHC scattering processes. The "fitted charm" PDF obtained in various QCD analyses contains a process-dependent component that is partly traced to power-suppressed radiative contributions in DIS and is generally different at the LHC. We discuss separation of the universal component of the nonperturbative charm from the rest of the radiative contributions and estimate its magnitude in the CT14 global QCD analysis at the next-to-next-to leading order in the QCD coupling strength, including the latest experimental data from HERA and the Large Hadron Collider. Models for the nonperturbative charm PDF are examined as a function of the charm quark mass and other parameters. The prospects for testing these models in the associated production of a Z boson and a charm jet at the LHC are studied under realistic assumptions, including effects of the final-state parton showering.
Multiple parton interactions at the LHC
Gaunt, Jonathan Richard
2018-01-01
Many high-energy collider experiments (including the current Large Hadron Collider at CERN) involve the collision of hadrons. Hadrons are composite particles consisting of partons (quarks and gluons), and this means that in any hadron–hadron collision there will typically be multiple collisions of the constituents — i.e. multiple parton interactions (MPI). Understanding the nature of the MPI is important in terms of searching for new physics in the products of the scatters, and also in its own right to gain a greater understanding of hadron structure. This book aims at providing a pedagogical introduction and a comprehensive review of different research lines linked by an involvement of MPI phenomena. It is written by pioneers as well as young leading scientists, and reviews both experimental findings and theoretical developments, discussing also the remaining open issues.
Momentum transfer dependence of generalized parton distributions
Energy Technology Data Exchange (ETDEWEB)
Sharma, Neetika [Indian Institute of Science Education and Research Mohali, S.A.S. Nagar, Punjab (India)
2016-11-15
We revisit the model for parametrization of the momentum dependence of nucleon generalized parton distributions in the light of recent MRST measurements of parton distribution functions (A.D. Martin et al., Eur. Phys. J. C 63, 189 (2009)). Our parametrization method with a minimum set of free parameters give a sufficiently good description of data for Dirac and Pauli electromagnetic form factors of proton and neutron at small and intermediate values of momentum transfer. We also calculate the GPDs for up- and down-quarks by decomposing the electromagnetic form factors for the nucleon using the charge and isospin symmetry and also study the evolution of GPDs to a higher scale. We further investigate the transverse charge densities for both the unpolarized and transversely polarized nucleon and compare our results with Kelly's distribution. (orig.)
New results in the Dual Parton Model
International Nuclear Information System (INIS)
Van, J.T.T.; Capella, A.
1984-01-01
In this paper, the similarity between the x distribution for particle production and the fragmentation functions are observed in e+e- collisions and in deep inelastic scattering are presented. Based on the observation, the authors develop a complete approach to multiparticle production which incorporates the most important features and concepts learned about high energy collisions. 1. Topological expansion : the dominant diagram at high energy corresponds to the simplest topology. 2. Unitarity : diagrams of various topology contribute to the cross sections in a way that unitary is preserved. 3. Regge behaviour and Duality. 4. Partonic structure of hadrons. These general theoretical ideas, result from many joint experimental and theoretical efforts on the study of soft hadron physics. The dual parton model is able to explain all the experimental features from FNAL to SPS collider energies. It has all the properties of an S-matrix theory and provides a unified description of hadron-hadron, hadron-nucleus and nucleus-nucleus collisions
Structure functions are not parton probabilities
International Nuclear Information System (INIS)
Brodsky, Stanley J.; Hoyer, Paul; Sannino, Francesco; Marchal, Nils; Peigne, Stephane
2002-01-01
The common view that structure functions measured in deep inelastic lepton scattering are determined by the probability of finding quarks and gluons in the target is not correct in gauge theory. We show that gluon exchange between the fast, outgoing partons and target spectators, which is usually assumed to be an irrelevant gauge artifact, affects the leading twist structure functions in a profound way. This observation removes the apparent contradiction between the projectile (eikonal) and target (parton model) views of diffractive and small x B phenomena. The diffractive scattering of the fast outgoing quarks on spectators in the target causes shadowing in the DIS cross section. Thus the depletion of the nuclear structure functions is not intrinsic to the wave function of the nucleus, but is a coherent effect arising from the destructive interference of diffractive channels induced by final state interactions. This is consistent with the Glauber-Gribov interpretation of shadowing as a rescattering effect
Parton Distributions in the Higgs Boson Era
Rojo, Juan
2013-01-01
Parton distributions are an essential ingredient of the LHC program. PDFs are relevant for precision Standard Model measurements, for Higgs boson characterization as well as for New Physics searches. In this contribution I review recent progress in the determination of the parton distributions of the proton during the last year. Important developments include the impact of new LHC measurements to pin down poorly known PDFs, studies of theoretical uncertainties, higher order calculations for processes relevant for PDF determinations, PDF benchmarking exercises with LHC data, as well as methodological and statistical improvements in the global analysis framework. I conclude with some speculative considerations about future directions in PDF determinations from the theory point of view.
Occurrence of Legionella in UK household showers.
Collins, Samuel; Stevenson, David; Bennett, Allan; Walker, Jimmy
2017-04-01
Household water systems have been proposed as a source of sporadic, community acquired Legionnaires' disease. Showers represent a frequently used aerosol generating device in the domestic setting yet little is known about the occurrence of Legionella spp. in these systems. This study has investigated the prevalence of Legionella spp. by culture and qPCR in UK household showers. Ninety nine showers from 82 separate properties in the South of England were sampled. Clinically relevant Legionella spp. were isolated by culture in 8% of shower water samples representing 6% of households. Legionella pneumophila sg1 ST59 was isolated from two showers in one property and air sampling demonstrated its presence in the aerosol state. A further 31% of showers were positive by Legionella spp. qPCR. By multi-variable binomial regression modelling Legionella spp. qPCR positivity was associated with the age of the property (p=0.02), the age of the shower (p=0.01) and the frequency of use (p=0.09). The concentration of Legionella spp. detected by qPCR was shown to decrease with increased frequency of use (p=0.04) and more frequent showerhead cleaning (p=0.05). There was no association between Legionella spp. qPCR positivity and the cold water supply or the showerhead material (p=0.65 and p=0.71, respectively). Household showers may be important reservoirs of clinically significant Legionella and should be considered in source investigations. Simple public health advice may help to mitigate the risk of Legionella exposure in the domestic shower environment. Crown Copyright © 2016. Published by Elsevier GmbH. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Motyka, Leszek; Sadzikowski, Mariusz; Slominski, Wojciech [Jagiellonian University, Institute of Physics, Krakow (Poland); Wichmann, Katarzyna [DESY, Hamburg (Germany)
2018-01-15
The combined HERA data for the inclusive deep inelastic scattering (DIS) cross sections for the momentum transfer Q{sup 2} > 1 GeV{sup 2} are fitted within the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) framework at next-to-leading order (NLO) and next-to-next-to-leading order (NNLO) accuracy, complemented by a QCD-inspired parameterisation of twist 4 corrections. A modified form of the input parton density functions is also included, motivated by parton saturation mechanism at small Bjorken x and at a low scale. These modifications lead to a significant improvement of the data description in the region of low Q{sup 2}. For the whole data sample, the new benchmark NNLO DGLAP fit yields χ{sup 2}/d.o.f. ≅ 1.19 to be compared to 1.46 resulting from the standard NNLO DGLAP fit. We discuss the results in the context of the parton saturation picture and describe the impact of the higher-twist corrections on the derived parton density functions. The resulting description of the longitudinal proton structure function F{sub L} is consistent with the HERA data. Our estimates of higher-twist contributions to the proton structure functions are comparable to the leading-twist contributions at low Q{sup 2} ≅ 2 GeV{sup 2} and x ≅ 10{sup -5}. The x-dependence of the twist 4 corrections obtained from the best fit is consistent with the leading twist 4 quasi-partonic operators, corresponding to an exchange of four interacting gluons in the t-channel. (orig.)
Deep inelastic processes and the parton model
International Nuclear Information System (INIS)
Altarelli, G.
The lecture was intended as an elementary introduction to the physics of deep inelastic phenomena from the point of view of theory. General formulae and facts concerning inclusive deep inelastic processes in the form: l+N→l'+hadrons (electroproduction, neutrino scattering) are first recalled. The deep inelastic annihilation e + e - →hadrons is then envisaged. The light cone approach, the parton model and their relation are mainly emphasized
Generalized Parton Distributions and their Singularities
Energy Technology Data Exchange (ETDEWEB)
Anatoly Radyushkin
2011-04-01
A new approach to building models of generalized parton distributions (GPDs) is discussed that is based on the factorized DD (double distribution) Ansatz within the single-DD formalism. The latter was not used before, because reconstructing GPDs from the forward limit one should start in this case with a very singular function $f(\\beta)/\\beta$ rather than with the usual parton density $f(\\beta)$. This results in a non-integrable singularity at $\\beta=0$ exaggerated by the fact that $f(\\beta)$'s, on their own, have a singular $\\beta^{-a}$ Regge behavior for small $\\beta$. It is shown that the singularity is regulated within the GPD model of Szczepaniak et al., in which the Regge behavior is implanted through a subtracted dispersion relation for the hadron-parton scattering amplitude. It is demonstrated that using proper softening of the quark-hadron vertices in the regions of large parton virtualities results in model GPDs $H(x,\\xi)$ that are finite and continuous at the "border point'' $x=\\xi$. Using a simple input forward distribution, we illustrate the implementation of the new approach for explicit construction of model GPDs. As a further development, a more general method of regulating the $\\beta=0$ singularities is proposed that is based on the separation of the initial single DD $f(\\beta, \\alpha)$ into the "plus'' part $[f(\\beta,\\alpha)]_{+}$ and the $D$-term. It is demonstrated that the "DD+D'' separation method allows to (re)derive GPD sum rules that relate the difference between the forward distribution $f(x)=H(x,0)$ and the border function $H(x,x)$ with the $D$-term function $D(\\alpha)$.
Experimental studies of generalized parton distributions
International Nuclear Information System (INIS)
Kabuss, E.M.
2014-01-01
Generalized parton distributions (GPD) provide a new way to study the nucleon structure. Experimentally they can be accessed using hard exclusive processes such as deeply virtual Compton scattering and meson production. First insights to GPDs were already obtained from measurements at DESY, JLAB and CERN, while new ambitious studies are planned at the upgraded JLAB at 12 GeV and at CERN. Here, some emphasis will be put onto the planned COMPASS II programme. (author)
An introduction to the Generalized Parton Distributions
International Nuclear Information System (INIS)
Michel Garcon
2002-01-01
The concepts of Generalized Parton Distributions (GPD) are reviewed in an introductory and phenomenological fashion. These distributions provide a rich and unifying picture of the nucleon structure. Their physical meaning is discussed. The GPD are in principle measurable through exclusive deeply virtual production of photons (DVCS) or of mesons (DVMP). Experiments are starting to test the validity of these concepts. First results are discussed and new experimental projects presented, with an emphasis on this program at Jefferson Lab
Fast shower simulation in the ATLAS calorimeter
Barberio, E; Butler, B; Cheung, S L; Dell'Acqua, A; Di Simone, A; Ehrenfeld, W; Gallas, M V; Glazov, A; Marshall, Z; Müller, J; Placakyte, R; Rimoldi, A; Savard, P; Tsulaia, V; Waugh, A; Young, C C
2008-01-01
The time to simulate pp collisions in the ATLAS detector is largely dominated by the showering of electromagnetic particles in the heavy parts of the detector, especially the electromagnetic barrel and endcap calorimeters. Two procedures have been developed to accelerate the processing time of electromagnetic particles in these regions: (1) a fast shower parameterisation and (2) a frozen shower library. Both work by generating the response of the calorimeter to electrons and positrons with Geant 4, and then reintroduce the response into the simulation at runtime.
Radar reflection off extensive air showers
Directory of Open Access Journals (Sweden)
Werner F.
2013-06-01
Full Text Available We investigate the possibility of detecting extensive air showers by the radar technique. Considering a bistatic radar system and different shower geometries, we simulate reflection of radio waves off the static plasma produced by the shower in the air. Using the Thomson cross-section for radio wave reflection, we obtain the time evolution of the signal received by the antennas. The frequency upshift of the radar echo and the power received are studied to verify the feasibility of the radar detection technique.
Comet showers and Nemesis, the death star
International Nuclear Information System (INIS)
Hills, J.G.
1984-01-01
The recently proposed hypothesis that the periodic extinctions of terrestrial species are the result of comet showers catalyzed by a hypothetical distant solar companion, Nemesis, a tale of global death by comet bombardment of the earth, is discussed
Microwave detection of air showers with MIDAS
Energy Technology Data Exchange (ETDEWEB)
Facal San Luis, P., E-mail: facal@kicp.uchicago.edu [University of Chicago, Enrico Fermi Institue and Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Alekotte, I. [Centro Atomico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), 8400 San Carlos de Bariloche, Rio Negro (Argentina); Alvarez, J. [Universidad de Santiago de Compostela, Departamento de Fisica de Particulas, Campus Sur, E-15782 Santiago de Compostela (Spain); Berlin, A. [University of Chicago, Enrico Fermi Institue and Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Bertou, X. [Centro Atomico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), 8400 San Carlos de Bariloche, Rio Negro (Argentina); Bogdan, M.; Bohacova, M. [University of Chicago, Enrico Fermi Institue and Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Bonifazi, C. [Univ. Federal do Rio de Janeiro (UFRJ), Instituto de Fisica, Cidade Universitaria, Caixa Postal 68528, 21945-970 Rio de Janeiro, RJ (Brazil); Carvalho, W.R. [Universidad de Santiago de Compostela, Departamento de Fisica de Particulas, Campus Sur, E-15782 Santiago de Compostela (Spain); Mello Neto, J.R.T. de [Univ. Federal do Rio de Janeiro (UFRJ), Instituto de Fisica, Cidade Universitaria, Caixa Postal 68528, 21945-970 Rio de Janeiro, RJ (Brazil); Genat, J.F.; Mills, E.; Monasor, M.; Privitera, P.; Reyes, I.C.; Rouille d& #x27; Orfeuil, B. [University of Chicago, Enrico Fermi Institue and Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); and others
2012-01-11
MIDAS (MIcrowave Detector of Air Showers) is a prototype of a microwave telescope to detect extensive air showers: it images a 20{sup Degree-Sign } Multiplication-Sign 10{sup Degree-Sign} region of the sky with a 4.5 m parabolic reflector and 53 feeds in the focal plane. It has been commissioned in March 2010 and is currently taking data. We present the design, performance and first results of MIDAS.
Microwave detection of air showers with MIDAS
International Nuclear Information System (INIS)
Facal San Luis, P.; Alekotte, I.; Alvarez, J.; Berlin, A.; Bertou, X.; Bogdan, M.; Bohacova, M.; Bonifazi, C.; Carvalho, W.R.; Mello Neto, J.R.T. de; Genat, J.F.; Mills, E.; Monasor, M.; Privitera, P.; Reyes, I.C.; Rouille d’Orfeuil, B.
2012-01-01
MIDAS (MIcrowave Detector of Air Showers) is a prototype of a microwave telescope to detect extensive air showers: it images a 20 ° ×10 ° region of the sky with a 4.5 m parabolic reflector and 53 feeds in the focal plane. It has been commissioned in March 2010 and is currently taking data. We present the design, performance and first results of MIDAS.
Parton-hadron cascade approach at SPS and RHIC
Energy Technology Data Exchange (ETDEWEB)
Nara, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1998-07-01
A parton-hadron cascade model which is the extension of hadronic cascade model incorporating hard partonic scattering based on HIJING is presented to describe the space-time evolution of parton/hadron system produced by ultra-relativistic nuclear collisions. Hadron yield, baryon stopping and transverse momentum distribution are calculated and compared with HIJING and VNI. Baryon density, energy density and temperature for RHIC are calculated within this model. (author)
Parton distributions and EMC ratios of the 6Li nucleus in the constituent quark exchange model
Modarres, M.; Hadian, A.
2017-10-01
While the constituent quark model (CQM), in which the quarks are assumed to be the complex objects, is used to calculate the parton distribution functions of the iso-scalar lithium-6 (6Li) nucleus, the u-d constituent quark distribution functions of the 6Li nucleus are evaluated from the valence quark exchange formalism (VQEF) for the A = 6 iso-scalar system. After computing the valence quark, sea quark, and gluon distribution functions in the constituent quark exchange model (CQEM, i.e., CQM +VQEF), the nucleus structure function is calculated for the 6Li nucleus at the leading order (LO) and the next-to-leading-order (NLO) levels to extract the European muon collaboration (EMC) ratio, at different hard scales, using the standard Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGALP) evolution equations. The outcomes are compared with those of our previous works and the available NMC experimental data, and various physical points are discussed. It is observed that the present EMC ratios are considerably improved compared with those of our previous works, in which only the valence quark distributions were considered to calculate the EMC ratio, and are closer to the NMC data. Finally, it is concluded that at a given appropriate hard scale, the LO approximation may be enough for calculating the nucleus EMC ratio.
QCD evolution equations for high energy partons in nuclear matter
Kinder-Geiger, Klaus; Geiger, Klaus; Mueller, Berndt
1994-01-01
We derive a generalized form of Altarelli-Parisi equations to decribe the time evolution of parton distributions in a nuclear medium. In the framework of the leading logarithmic approximation, we obtain a set of coupled integro- differential equations for the parton distribution functions and equations for the virtuality (``age'') distribution of partons. In addition to parton branching processes, we take into account fusion and scattering processes that are specific to QCD in medium. Detailed balance between gain and loss terms in the resulting evolution equations correctly accounts for both real and virtual contributions which yields a natural cancellation of infrared divergences.
Scholten, O.; Trinh, T. N. G.; de Vries, K. D.; Hare, B. M.
2018-01-01
The radio intensity and polarization footprint of a cosmic-ray induced extensive air shower is determined by the time-dependent structure of the current distribution residing in the plasma cloud at the shower front. In turn, the time dependence of the integrated charge-current distribution in the
Macroscopic treatment of radio emission from cosmic ray air showers based on shower simulations
Werner, Klaus; Scholten, Olaf
We present a macroscopic calculation of coherent electro-magnetic radiation from air showers initiated by ultra-high energy cosmic rays, based on currents obtained from Monte Carlo simulations of air showers in a realistic geo-magnetic field. We can clearly relate the time signal to the time
Scholten, O.; Trinh, T. N. G.; de Vries, K. D.; Hare, B. M.
2018-01-01
The radio intensity and polarization footprint of a cosmic-ray induced extensive air shower is determined by the time-dependent structure of the current distribution residing in the plasma cloud at the shower front. In turn, the time dependence of the integrated charge-current distribution in the plasma cloud, the longitudinal shower structure, is determined by interesting physics which one would like to extract, such as the location and multiplicity of the primary cosmic-ray collision or the values of electric fields in the atmosphere during thunderstorms. To extract the structure of a shower from its footprint requires solving a complicated inverse problem. For this purpose we have developed a code that semianalytically calculates the radio footprint of an extensive air shower given an arbitrary longitudinal structure. This code can be used in an optimization procedure to extract the optimal longitudinal shower structure given a radio footprint. On the basis of air-shower universality we propose a simple parametrization of the structure of the plasma cloud. This parametrization is based on the results of Monte Carlo shower simulations. Deriving the parametrization also teaches which aspects of the plasma cloud are important for understanding the features seen in the radio-emission footprint. The calculated radio footprints are compared with microscopic CoREAS simulations.
ABM11 parton distributions and benchmarks
International Nuclear Information System (INIS)
Alekhin, Sergey; Bluemlein, Johannes; Moch, Sven-Olaf
2012-08-01
We present a determination of the nucleon parton distribution functions (PDFs) and of the strong coupling constant α s at next-to-next-to-leading order (NNLO) in QCD based on the world data for deep-inelastic scattering and the fixed-target data for the Drell-Yan process. The analysis is performed in the fixed-flavor number scheme for n f =3,4,5 and uses the MS scheme for α s and the heavy quark masses. The fit results are compared with other PDFs and used to compute the benchmark cross sections at hadron colliders to the NNLO accuracy.
ABM11 parton distributions and benchmarks
Energy Technology Data Exchange (ETDEWEB)
Alekhin, Sergey [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Institut Fiziki Vysokikh Ehnergij, Protvino (Russian Federation); Bluemlein, Johannes; Moch, Sven-Olaf [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2012-08-15
We present a determination of the nucleon parton distribution functions (PDFs) and of the strong coupling constant {alpha}{sub s} at next-to-next-to-leading order (NNLO) in QCD based on the world data for deep-inelastic scattering and the fixed-target data for the Drell-Yan process. The analysis is performed in the fixed-flavor number scheme for n{sub f}=3,4,5 and uses the MS scheme for {alpha}{sub s} and the heavy quark masses. The fit results are compared with other PDFs and used to compute the benchmark cross sections at hadron colliders to the NNLO accuracy.
Quasi parton distributions and the gradient flow
International Nuclear Information System (INIS)
Monahan, Christopher; Orginos, Kostas
2017-01-01
We propose a new approach to determining quasi parton distribution functions (PDFs) from lattice quantum chromodynamics. By incorporating the gradient flow, this method guarantees that the lattice quasi PDFs are finite in the continuum limit and evades the thorny, and as yet unresolved, issue of the renormalization of quasi PDFs on the lattice. In the limit that the flow time is much smaller than the length scale set by the nucleon momentum, the moments of the smeared quasi PDF are proportional to those of the lightfront PDF. Finally, we use this relation to derive evolution equations for the matching kernel that relates the smeared quasi PDF and the light-front PDF.
A Lattice Calculation of Parton Distributions
International Nuclear Information System (INIS)
Alexandrou, Constantia; Cichy, Krzysztof; Poznan Univ.; Drach, Vincent; Univ. of Southern Denmark, Odense; Garcia-Ramos, Elena; Humboldt-Universitaet, Berlin; Hadjiyiannakou, Kyriakos; Jansen, Karl; Steffens, Fernanda; Wiese, Christian
2015-04-01
We report on our exploratory study for the direct evaluation of the parton distribution functions from lattice QCD, based on a recently proposed new approach. We present encouraging results using N f =2+1+1 twisted mass fermions with a pion mass of about 370 MeV. The focus of this work is a detailed description of the computation, including the lattice calculation, the matching to an infinite momentum and the nucleon mass correction. In addition, we test the effect of gauge link smearing in the operator to estimate the influence of the Wilson line renormalization, which is yet to be done.
Generalized parton distribution for non zero skewness
International Nuclear Information System (INIS)
Kumar, Narinder; Dahiya, Harleen; Teryaev, Oleg
2012-01-01
In the theory of strong interactions the main open question is how the nucleon and other hadrons are built from quarks and gluons, the fundamental degrees of freedom in QCD. An essential tool to investigate hadron structure is the study of deep inelastic scattering processes, where individual quarks and gluons can be resolved. The parton densities extracted from such processes encode the distribution of longitudinal momentum and polarization carried by quarks, antiquarks and gluons within a fast moving hadron. They have provided much to shape the physical picture of hadron structure. In the recent years, it has become clear that appropriate exclusive scattering processes may provide such information encoded in the general parton distributions (GPDs). Here, we investigate the GPD for deep virtual compton scattering (DVCS) for the non zero skewness. The study has investigated the GPDs by expressing them in terms of overlaps of light front wave functions (LFWFs). The work represented a spin 1/2 system as a composite of spin 1/2 fermion and spin 1 boson with arbitrary masses
International Nuclear Information System (INIS)
Olness, F.I.; Tung, Wu-Ki
1989-10-01
Applications of the QCD-based parton model to new physics processes involving heavy partons are illustrated using charged Higgs production. The naive parton model predictions are found to over-estimate the actual cross section by a factor of 2 to 5. The role of the top quark as a ''parton'' is examined, and the energy range over which heavy quarks (or other particles) should or should not be naturally treated as ''partons'' is delineated. 12 refs., 5 figs
Large psub(T) pion production and clustered parton model
Energy Technology Data Exchange (ETDEWEB)
Kanki, T [Osaka Univ., Toyonaka (Japan). Coll. of General Education
1977-05-01
Recent experimental results on the large p sub(T) inclusive ..pi../sup 0/ productions by pp and ..pi..p collisions are interpreted by the parton model in which the constituent quarks are defined to be the clusters of the quark-partons and gluons.
Comparison of parton distributions and structure functions for the proton
International Nuclear Information System (INIS)
Abramowicz, H.; Charchula, K.; Krawczyk, M.; Levy, A.
1990-09-01
A comparative study of the most popular parton parametrizations is presented. The individual parton distributions as well as the F 2 structure function are discussed with a particular emphasis on the low x region, 10 -4 -2 . The predictions of these parametrizations for the F 2 structure function have a wide spread which persists also in the HERA kinematical region. (orig.)
Nucleon generalized parton distributions from full lattice QCD
International Nuclear Information System (INIS)
Haegler, P.; Schroers, W.; Bratt, J.; Negele, J.W.; Pochinsky, A.V.
2007-07-01
We present a comprehensive study of the lowest moments of nucleon generalized parton distributions in N f =2+1 lattice QCD using domain wall valence quarks and improved staggered sea quarks. Our investigation includes helicity dependent and independent generalized parton distributions for pion masses as low as 350 MeV and volumes as large as (3.5 fm) 3 . (orig.)
Pion and kaon valence-quark parton quasidistributions
Xu, Shu-Sheng; Chang, Lei; Roberts, Craig D.; Zong, Hong-Shi
2018-05-01
Algebraic Ansätze for the Poincaré-covariant Bethe-Salpeter wave functions of the pion and kaon are used to calculate their light-front wave functions, parton distribution amplitudes, parton quasidistribution amplitudes, valence parton distribution functions, and parton quasidistribution functions (PqDFs). The light-front wave functions are broad, concave functions, and the scale of flavor-symmetry violation in the kaon is roughly 15%, being set by the ratio of emergent masses in the s - and u -quark sectors. Parton quasidistribution amplitudes computed with longitudinal momentum Pz=1.75 GeV provide a semiquantitatively accurate representation of the objective parton distribution amplitude, but even with Pz=3 GeV , they cannot provide information about this amplitude's end point behavior. On the valence-quark domain, similar outcomes characterize PqDFs. In this connection, however, the ratio of kaon-to-pion u -quark PqDFs is found to provide a good approximation to the true parton distribution function ratio on 0.4 ≲x ≲0.8 , suggesting that with existing resources computations of ratios of parton quasidistributions can yield results that support empirical comparison.
Anomalous couplings in WZ production beyond NLO QCD
Energy Technology Data Exchange (ETDEWEB)
Campanario, Francisco; Roth, Robin; Zeppenfeld, Dieter [Institute for Theoretical Physics, KIT, Karlsruhe (Germany); Sapeta, Sebastian [CERN PH-TH, Geneva (Switzerland)
2016-07-01
We study WZ production with anomalous couplings (AC) at anti nNLO QCD using the LoopSim method in combination with the Monte Carlo program VBFNLO. Higher order corrections to WZ production are dominated by additional hard jet radiation. Those contributions are insensitive to AC and should thus be suppressed in analyses. We do this using a dynamical jet veto based on the transverse energy of the QCD and EW final state particles. This removes jet dominated events without introducing problematic logs like a fixed p{sub T} jet veto.
NLO corrections to production of heavy particles at hadron colliders
International Nuclear Information System (INIS)
Pagani, Davide
2013-01-01
In this thesis we study specific aspects of the production of heavy particles at hadron colliders, with emphasis on precision predictions including next-to-leading order (NLO) corrections from the strong and electroweak interactions. In the first part of the thesis we consider the top quark charge asymmetry. In particular, we discuss in detail the calculation of the electroweak contributions from the asymmetric part of the top quark pair production cross section at O(α 2 s α) and O(α 2 ) and their numerical impact on predictions for the asymmetry measurements at the Tevatron. These electroweak contributions provide a non-negligible addition to the QCD-induced asymmetry with the same overall sign and, in general, enlarge the Standard Model predictions by a factor around 1.2, diminishing the deviations from experimental measurements. In the second part of the thesis we consider the production of squarks, the supersymmetric partners of quarks, at the Large Hadron Collider (LHC). We discuss the calculation of the contribution of factorizable NLO QCD corrections to the production of squark-squark pairs combined at fully differential level with squark decays. Combining the production process with two different configurations for the squark decays, our calculation is used to provide precise phenomenological predictions for two different experimental signatures that are important for the search of supersymmetry at the LHC. We focus, for one signature, on the impact of our results on important physical differential distributions and on cut-and-count searches performed by the ATLAS and CMS collaborations. Considering the other signature, we analyze the effects from NLO QCD corrections and from the combination of production and decays on distributions relevant for parameter determination. In general, factorizable NLO QCD corrections have to be taken into account to obtain precise phenomenological predictions for the analyzed distributions and inclusive quantities. Moreover
NLO QCD corrections to electroweak Higgs boson plus three jet production at the LHC
Energy Technology Data Exchange (ETDEWEB)
Campanario, Francisco [Valencia-CSIC Univ. (Spain). IFIC; Figy, Terrance M. [Manchester Univ. (United Kingdom). School of Physics and Astronomy; Plaetzer, Simon [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Sjoedahl, Malin [Lund Univ. (Sweden). Dept. of Astronomy and Theoretical Physics
2013-11-15
The implementation of the full next-to-leading order (NLO) QCD corrections to electroweak Higgs boson plus three jet production at hadron colliders such as the LHC within the Matchbox NLO framework of the Herwig++ event generator is discussed. We present numerical results for integrated cross sections and kinematic distributions.
Growth and characterization of pure and doped NLO L-arginine ...
Indian Academy of Sciences (India)
Administrator
NLO; SHG; solution growth; LAA. 1. Introduction. L-arginine phosphate monohydrate (LAP) was first repor- ted by Xu et al (1983) as a promising nonlinear optical. (NLO) material. LAP is nearly three times more nonlinear than KDP. Monaco et al (1987) reported the formation of. LAP and its chemical analogs from the strongly ...
Transverse momentum in double parton scattering. Factorisation, evolution and matching
International Nuclear Information System (INIS)
Buffing, Maarten G.A.; Diehl, Markus; Kasemets, Tomas
2017-08-01
We give a description of double parton scattering with measured transverse momenta in the final state, extending the formalism for factorisation and resummation developed by Collins, Soper and Sterman for the production of colourless particles. After a detailed analysis of their colour structure, we derive and solve evolution equations in rapidity and renormalisation scale for the relevant soft factors and double parton distributions. We show how in the perturbative regime, transverse momentum dependent double parton distributions can be expressed in terms of simpler nonperturbative quantities and compute several of the corresponding perturbative kernels at one-loop accuracy. We then show how the coherent sum of single and double parton scattering can be simplified for perturbatively large transverse momenta, and we discuss to which order resummation can be performed with presently available results. As an auxiliary result, we derive a simple form for the square root factor in the Collins construction of transverse momentum dependent parton distributions.
Transverse momentum in double parton scattering. Factorisation, evolution and matching
Energy Technology Data Exchange (ETDEWEB)
Buffing, Maarten G.A.; Diehl, Markus [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kasemets, Tomas [Nikhef, Amsterdam (Netherlands). Theory Group; VU Univ. Amsterdam (Netherlands)
2017-08-15
We give a description of double parton scattering with measured transverse momenta in the final state, extending the formalism for factorisation and resummation developed by Collins, Soper and Sterman for the production of colourless particles. After a detailed analysis of their colour structure, we derive and solve evolution equations in rapidity and renormalisation scale for the relevant soft factors and double parton distributions. We show how in the perturbative regime, transverse momentum dependent double parton distributions can be expressed in terms of simpler nonperturbative quantities and compute several of the corresponding perturbative kernels at one-loop accuracy. We then show how the coherent sum of single and double parton scattering can be simplified for perturbatively large transverse momenta, and we discuss to which order resummation can be performed with presently available results. As an auxiliary result, we derive a simple form for the square root factor in the Collins construction of transverse momentum dependent parton distributions.
Dynamical equilibration in strongly-interacting parton-hadron matter
Directory of Open Access Journals (Sweden)
Gorenstein M.
2011-04-01
Full Text Available We study the kinetic and chemical equilibration in 'infinite' parton-hadron matter within the Parton-Hadron-String Dynamics transport approach, which is based on a dynamical quasiparticle model for partons matched to reproduce lattice-QCD results – including the partonic equation of state – in thermodynamic equilibrium. The 'infinite' matter is simulated within a cubic box with periodic boundary conditions initialized at different baryon density (or chemical potential and energy density. The transition from initially pure partonic matter to hadronic degrees of freedom (or vice versa occurs dynamically by interactions. Different thermody-namical distributions of the strongly-interacting quark-gluon plasma (sQGP are addressed and discussed.
Deep-inelastic final states in a space-time description of shower development and hadronization
International Nuclear Information System (INIS)
Ellis, J.
1996-06-01
We extend a quantum kinetic approach to the description of hadronic showers in space, time and momentum space to deep-inelastic ep collisions, with particular reference to experiments at HERA. We follow the history of hard scattering events back to the initial hadronic state and forward to the formation of colour-singlet pre-hadronic clusters and their decays into hadrons. The time evolution of the space-like initial-state shower and the time-like secondary partons are treated similarly, and cluster formation is treated using a spatial criterion motivated by confinement and a non-perturbative model for hadronization. We calculate the time evolution of particle distributions in rapidity, transverse and longitudinal space. We also compare the transverse hadronic energy flow and the distribution of observed hadronic masses with experimental data from HERA, finding encouraging results, and discuss the background to large-rapidity-gap events. The techniques developed in this paper may be applied in the future to more complicated processes such as eA, pp, pA and AA collisions. (orig.)
Deep-inelastic final states in a space-time description of shower development and hadronization
International Nuclear Information System (INIS)
Ellis, J.; Geiger, K.; Kowalski, H.
1996-01-01
We extend a quantum kinetic approach to the description of hadronic showers in space, time, and momentum space to deep-inelastic ep collisions, with particular reference to experiments at DESY HERA. We follow the history of hard scattering events back to the initial hadronic state and forward to the formation of color-singlet prehadronic clusters and their decays into hadrons. The time evolution of the spacelike initial-state shower and the timelike secondary partons are treated similarly, and cluster formation is treated using a spatial criterion motivated by confinement and a nonperturbative model for hadronization. We calculate the time evolution of particle distributions in rapidity, transverse, and longitudinal space. We also compare the transverse hadronic energy flow and the distribution of observed hadronic masses with experimental data from HERA, finding encouraging results, and discuss the background to large-rapidity-gap events. The techniques developed in this paper may be applied in the future to more complicated processes such as eA, pp, pA, and AA collisions. copyright 1996 The American Physical Society
Modeling of the Atmospheric Response to the Leonid Meteor Showers
National Research Council Canada - National Science Library
McNeil, William
1998-01-01
... showers of recent years. The model allows for ablation, deposition, diffusion and chemical dynamics, thereby permitting the computation of the modifications in the layers due to the showers in a self-consistent manner, based...
Hadron showers in a highly granular calorimeter
Energy Technology Data Exchange (ETDEWEB)
Lutz, Benjamin
2010-11-15
A future electron-positron collider like the planned International Linear Collider (ILC) needs excellent detectors to exploit the full physics potential. Different detector concepts have been evaluated for the ILC and two concepts on the particle-flow approach were validated. To make particle-flow work, a new type of imaging calorimeters is necessary in combination with a high performance tracking system, to be able to track the single particles through the full detector system. These calorimeters require an unprecedented level of both longitudinal and lateral granularity. Several calorimeter technologies promise to reach the required readout segmentation and are currently studied. This thesis addresses one of these: The analogue hadron calorimeter technology. It combines work on the technological aspects of a highly granular calorimeter with the study of hadron shower physics. The analogue hadron calorimeter technology joins a classical scintillator-steel sandwich design with a modern photo-sensor technology, the silicon photomultiplier (SiPM). The SiPM is a millimetre sized, magnetic field insensitive, and low cost photo-sensor, that opens new possibilities in calorimeter design. This thesis outlines the working principle and characteristics of these devices. The requirements for an application specific integrated circuit (ASIC) to read the SiPM are discussed; the performance of a prototype chip for SiPM readout, the SPIROC, is quantified. Also the SiPM specific reconstruction of a multi-thousand channel prototype calorimeter, the CALICE AHCAL, is explained; the systematic uncertainty of the calibration method is derived. The AHCAL does not only offer a test of the calorimeter technology, it also allows to record hadron showers with an unprecedented level of details. Test-beam measurements have been performed with the AHCAL and provide a unique sample for the development of novel analysis techniques and the validation of hadron shower simulations. A method to
Hadron showers in a highly granular calorimeter
International Nuclear Information System (INIS)
Lutz, Benjamin
2010-11-01
A future electron-positron collider like the planned International Linear Collider (ILC) needs excellent detectors to exploit the full physics potential. Different detector concepts have been evaluated for the ILC and two concepts on the particle-flow approach were validated. To make particle-flow work, a new type of imaging calorimeters is necessary in combination with a high performance tracking system, to be able to track the single particles through the full detector system. These calorimeters require an unprecedented level of both longitudinal and lateral granularity. Several calorimeter technologies promise to reach the required readout segmentation and are currently studied. This thesis addresses one of these: The analogue hadron calorimeter technology. It combines work on the technological aspects of a highly granular calorimeter with the study of hadron shower physics. The analogue hadron calorimeter technology joins a classical scintillator-steel sandwich design with a modern photo-sensor technology, the silicon photomultiplier (SiPM). The SiPM is a millimetre sized, magnetic field insensitive, and low cost photo-sensor, that opens new possibilities in calorimeter design. This thesis outlines the working principle and characteristics of these devices. The requirements for an application specific integrated circuit (ASIC) to read the SiPM are discussed; the performance of a prototype chip for SiPM readout, the SPIROC, is quantified. Also the SiPM specific reconstruction of a multi-thousand channel prototype calorimeter, the CALICE AHCAL, is explained; the systematic uncertainty of the calibration method is derived. The AHCAL does not only offer a test of the calorimeter technology, it also allows to record hadron showers with an unprecedented level of details. Test-beam measurements have been performed with the AHCAL and provide a unique sample for the development of novel analysis techniques and the validation of hadron shower simulations. A method to
Shower reconstruction in the CLUE experiment
Energy Technology Data Exchange (ETDEWEB)
Bartoli, B.; Bastieri, D.; Bigongiari, C. E-mail: bigongiari@pd.infn.it; Ciocci, M.A.; Cosulich, D.; Cresti, M.; Dokoutchaeva, V.; Kartashov, D.; Liello, F.; Malakhov, N.; Mariotti, M.; Marsella, G.; Menzione, A.; Paoletti, R.; Parlavecchio, G.; Peruzzo, L.; Piccioli, A.; Pegna, R.; Rosso, F.; Sacco, R.; Saggion, A.; Sartori, G.; Sartori, P.; Sbarra, C.; Scribano, A.; Smogailov, E.; Stamerra, A.; Turini, N
2001-04-01
The CLUE experiment studies primary cosmic rays (E{>=}2 TeV) by detecting UV (190-230 nm) Cherenkov light produced by atmospheric showers. Since atmospheric absorption in the UV range is higher than in the visible range, CLUE cannot apply algorithms normally used in IACT experiments to determine primary cosmic-ray direction. In this paper, we present a new method developed by CLUE. The algorithm performances were evaluated using simulated showers. Preliminary results of the source analysis using this new method are shown.
Shower reconstruction in the CLUE experiment
International Nuclear Information System (INIS)
Bartoli, B.; Bastieri, D.; Bigongiari, C.; Ciocci, M.A.; Cosulich, D.; Cresti, M.; Dokoutchaeva, V.; Kartashov, D.; Liello, F.; Malakhov, N.; Mariotti, M.; Marsella, G.; Menzione, A.; Paoletti, R.; Parlavecchio, G.; Peruzzo, L.; Piccioli, A.; Pegna, R.; Rosso, F.; Sacco, R.; Saggion, A.; Sartori, G.; Sartori, P.; Sbarra, C.; Scribano, A.; Smogailov, E.; Stamerra, A.; Turini, N.
2001-01-01
The CLUE experiment studies primary cosmic rays (E≥2 TeV) by detecting UV (190-230 nm) Cherenkov light produced by atmospheric showers. Since atmospheric absorption in the UV range is higher than in the visible range, CLUE cannot apply algorithms normally used in IACT experiments to determine primary cosmic-ray direction. In this paper, we present a new method developed by CLUE. The algorithm performances were evaluated using simulated showers. Preliminary results of the source analysis using this new method are shown
On chiral-odd Generalized Parton Distributions
Energy Technology Data Exchange (ETDEWEB)
Wallon, Samuel [Laboratoire de Physique Theorique d' Orsay - LPT, Bat. 210, Univ. Paris-Sud 11, 91405 Orsay Cedex (France); UPMC Univ. Paris 6, Paris (France); Pire, Bernard [Centre de Physique Theorique - CPHT, UMR 7644, Ecole Polytechnique, Bat. 6, RDC, F91128 Palaiseau Cedex (France); Szymanowski, Lech [Soltan Institute for Nuclear Studies, Hoza 69, 00691, Warsaw (Poland)
2010-07-01
The chiral-odd transversity generalized parton distributions of the nucleon can be accessed experimentally through the exclusive photoproduction process {gamma} + N {yields} {pi} + {rho} + N', in the kinematics where the meson pair has a large invariant mass and the final nucleon has a small transverse momentum, provided the vector meson is produced in a transversally polarized state. Estimated counting rates show that the experiment is feasible with real or quasi real photon beams expected at JLab at 12 GeV and in the COMPASS experiment. (Phys Letters B688,154,2010) In addition, a consistent classification of the chiral-odd pion GPDs beyond the leading twist 2 is presented. Based on QCD equations of motion and on the invariance under rotation on the light-cone of any scattering amplitude involving such GPDs, we reduce the basis of these chiral-odd GPDs to a minimal set. (author)
Insights into nucleon structure from parton distributions
Energy Technology Data Exchange (ETDEWEB)
Melnitchouk, Wally [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2017-05-01
We review recent progress in understanding the substructure of the nucleon from global QCD analysis of parton distribution functions (PDFs). New high-precision data onW-boson production in p ¯ p collisions have significantly reduced the uncertainty on the d=u PDF ratio at large values of x, indirectly constraining models of the medium modification of bound nucleons. Drell-Yan data from pp and pd scattering reveal new information on the d¯-u¯ asymmetry, clarifying the role of chiral symmetry breaking in the nucleon. In the strange sector, a new chiral SU(3) analysis finds a valence-like component of the strange-quark PDF, giving rise to a nontrivial s- ¯ s asymmetry at moderate x values. We also review recent analyses of charm in the nucleon, which have found conflicting indications of the size of the nonperturbative charm component.
Updated lattice results for parton distributions
International Nuclear Information System (INIS)
Alexandrou, Constantia; Cichy, Krzysztof; Hadjiyiannakou, Kyriakos; Jansen, Karl; Steffens, Fernanda; Wiese, Christian
2017-07-01
We provide an analysis of the x-dependence of the bare unpolarized, helicity and transversity iso-vector parton distribution functions (PDFs) from lattice calculations employing (maximally) twisted mass fermions. The x-dependence of the calculated PDFs resembles the one of the phenomenological parameterizations, a feature that makes this approach very promising. Furthermore, we apply momentum smearing for the relevant matrix elements to compute the lattice PDFs and find a large improvement factor when compared to conventional Gaussian smearing. This allows us to extend the lattice computation of the distributions to higher values of the nucleon momentum, which is essential for the prospects of a reliable extraction of the PDFs in the future.
Updated lattice results for parton distributions
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, Constantia [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus); Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Poznan Univ. (Poland). Faculty of Physics; Constantinou, Martha [Temple Univ., Philadelphia, PA (United States); Hadjiyiannakou, Kyriakos [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Jansen, Karl; Steffens, Fernanda; Wiese, Christian [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2017-07-15
We provide an analysis of the x-dependence of the bare unpolarized, helicity and transversity iso-vector parton distribution functions (PDFs) from lattice calculations employing (maximally) twisted mass fermions. The x-dependence of the calculated PDFs resembles the one of the phenomenological parameterizations, a feature that makes this approach very promising. Furthermore, we apply momentum smearing for the relevant matrix elements to compute the lattice PDFs and find a large improvement factor when compared to conventional Gaussian smearing. This allows us to extend the lattice computation of the distributions to higher values of the nucleon momentum, which is essential for the prospects of a reliable extraction of the PDFs in the future.
An air shower array for LOFAR: LORA
Thoudam, S.; Aar, G. V.; Akker, M. V. D.; Bähren, L.; Corstanje, A.; Falcke, H.; Hörandel, J. R.; Horneffer, A.; James, C.; Mevius, M.; Scholten, O.; Singh, K.; Ter Veen, S.
2011-01-01
LOFAR is a new form of radio telescope which can detect radio emission from air showers induced by very high-energy cosmic rays. It can also look for radio emission from particle cascades on the Moon induced by ultra high-energy cosmic rays or neutrinos. To complement the radio detection, we are
Modelling of an RF plasma shower
Atanasova, M.; Carbone, E.A.D.; Mihailova, D.B.; Benova, E.; Degrez, G.; Mullen, van der J.J.A.M.
2012-01-01
A capacitive radiofrequency (RF) discharge at atmospheric pressure is studied by means of a time-dependent, two-dimensional fluid model. The plasma is created in a stationary argon gas flow guided through two perforated electrodes, hence resembling a shower. The inner electrode, the electrode facing
The parametrized simulation of electromagnetic showers
International Nuclear Information System (INIS)
Peters, S.
1992-09-01
The simulation of electromagnetic showers in calorimeters by detailed tracking of all secondary particles is extremely computer time consuming. Without loosing considerably in precision, the use of parametrizations for global shower properties may reduce the computing time by factors of 10 1 to 10 4 , depending on the energy, the degree of parametrization, and the complexity in the material description and the cut off energies in the detailed simulation. To arrive at a high degree of universality, parametrizations of individual electromagnetic showers in homogeneous media are developed, taking the dependence of the shower development on the material into account. In sampling calorimeters, the inhomogeneous material distribution leads to additional effects which can be taken into account by geometry dependent terms in the parametrization of the longitudinal and radial energy density distributions. Comparisons with detailed simulations of homogeneous and sampling calorimeters show very good agreement in the fluctuations, correlations, and signal averages of spatial energy distributions. Verifications of the algorithms for the simulation of the H1 detector are performed using calorimeter test data for different moduls of the H1 liquid argon calorimeter. Special attention has been paid to electron pion separation, which is of great importance for physics analysis. (orig.) [de
The CYGNUS extensive air-shower experiment
Energy Technology Data Exchange (ETDEWEB)
Alexandreas, D.E.; Allen, R.C.; Biller, S.D.; Delay, R.S.; Dion, G.M.; Lu, X.Q.; Vishwanath, P.R.; Yodh, G.B. (Univ. of California, Irvine (United States)); Berley, D.; Chang, C.Y.; Dingus, B.L.; Goodman, J.A.; Haines, T.J.; Gupta, S.; Krakauer, D.A.; Stark, M.J.; Talaga, R.L. (Univ. of Maryland, College Park (United States)); Burman, R.L.; Butterfield, K.; Cady, R.; Hoffman, C.M.; Lloyd-Evans, J.; Nagle, D.E.; Potter, M.E.; Sandberg, V.D.; Sinnis, C.; Stanislaus, S.; Thompson, T.N.; Wilkinson, C.A.; Zhang, W. (Los Alamos National Lab., NM (United States)); Ellsworth, R.W. (George Mason Univ., Fairfax, VA (United States))
1992-01-01
The CYGNUS extensive air-shower experiment is described. The design criteria, construction and operation details, and performance characteristics are presented. A discussion of the data analysis techniques is given. Finally, several enhancements and improvements in the apparatus are described. (orig.).
E143 experiment. Shower counter calibration
International Nuclear Information System (INIS)
Fonvieille, H.; Grenier, P.
1994-01-01
The calibration procedure for the shower counters used in the E143 experiment is described. It has been developed during january 1994 in view of being used for the quick analysis. The method is explained and the results obtained on a given run are presented. (author)
Parton Distributions and the LHC W and Z Production
Martin, A D; Stirling, William James; Thorne, R S
2000-01-01
W and Z bosons will be produced copiously at the LHC proton-proton collider. We study the parton distribution dependence of the total production cross sections and rapidity distributions, paying particular attention to the uncertainties arising from uncertainties in the parton distributions themselves. Variations in the gluon, the strong coupling, the sea quarks and the overall normalisation are shown to lead to small but non-negligible variations in the cross section predictions. Ultimately, therefore, the measurement of these cross sections will provide a powerful cross check on our knowledge of parton distributions and their evolution.
A parton description of the nucleus fragmentation region in heavy-ion collisions
International Nuclear Information System (INIS)
Hwa, R.C.; Oregon Univ., Eugene
1984-01-01
In nucleus-nucleus collisions, the rapidity distribution of partons in the nucleus fragmentation region is highly asymmetrical. Thermalization that randomizes the momenta of partons far apart in rapidity cannot be expected. A local thermalization model is introduced which relates temperature to the range of parton interaction in rapidity. The parton number density and energy density are then calculated. (orig.)
Probing early parton kinetics by photons, dileptons and charm
International Nuclear Information System (INIS)
Kaempfer, B.; Technische Univ. Dresden; Pavlenko, O.P.
1993-07-01
Equilibration processes in pre-equilibrium parton matter are considered. We investigate chemical quark equilibration, partial thermalization and overall thermalization, and their influence on electromagnetic (photons, dileptons) and charmed probes. (orig.)
Generalized parton distributions and transversity from full lattice QCD
Göckeler, M.; Hägler, Ph.; Horsley, R.; Pleiter, D.; Rakow, P. E. L.; Schäfer, A.; Schierholz, G.; Zanotti, J. M.; Qcdsf Collaboration
2005-06-01
We present here the latest results from the QCDSF collaboration for moments of gener- alized parton distributions and transversity in two-flavour QCD, including a preliminary analysis of the pion mass dependence.
Parton distributions andαs for the LHC
International Nuclear Information System (INIS)
Alekhin, S.; Bluemlein, J.; Moch, S.O.; Univ. Hamburg
2013-03-01
We report on recent determinations of NNLO parton distributions and of α s (M Z ) based on the world deep-inelastic data, supplemented by collider data. Some applications are discussed for semi-inclusive processes at the LHC.
Transverse momentum dependent (TMD) parton distribution functions : status and prospects
Angeles-Martinez, R.; Bacchetta, A.; Balitsky, I.I.; Boer, D.; Boglione, M.; Boussarie, R.; Ceccopieri, F.A.; Cherednikov, I.O.; Connor, P.; Echevarria, M. G.; Ferrera, G.; Luyando, J. Grados; Hautmann, F.; Jung, H.; Kasemets, T.; Kutak, K.; Lansberg, J.P.; Lelek, A.; Lykasov, G.; Martinez, J. D. Madrigal; Mulders, P. J.; Nocera, Emanuele R.; Petreska, E.; Pisano, C.; Placakyte, R.; Radescu, V.; Radici, M.; Schnell, G.; Scimemi, I.; Signori, A.; Szymanowski, L.; Monfared, S. Taheri; van der Veken, F.F.; van Haevermaet, H.J.; van Mechelen, P.; Vladimirov, A.; Wallon, S.
2015-01-01
We review transverse momentum dependent (TMD) parton distribution functions, their application to topical issues in high-energy physics phenomenology, and their theoretical connections with QCD resummation, evolution and factorization theorems. We illustrate the use of TMDs via examples of
Nucleon parton distributions in a light-front quark model
International Nuclear Information System (INIS)
Gutsche, Thomas; Lyubovitskij, Valery E.; Schmidt, Ivan
2017-01-01
Continuing our analysis of parton distributions in the nucleon, we extend our light-front quark model in order to obtain both the helicity-independent and the helicity-dependent parton distributions, analytically matching the results of global fits at the initial scale μ∝ 1 GeV; they also contain the correct Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution. We also calculate the transverse parton, Wigner and Husimi distributions from a unified point of view, using our light-front wave functions and expressing them in terms of the parton distributions q_v(x) and δq_v(x). Our results are very relevant for the current and future program of the COMPASS experiment at SPS (CERN). (orig.)
Parton model (Moessbauer) sum rules for b → c decays
International Nuclear Information System (INIS)
Lipkin, H.J.
1993-01-01
The parton model is a starting point or zero-order approximation in many treatments. The author follows an approach previously used for the Moessbauer effect and shows how parton model sum rules derived for certain moments of the lepton energy spectrum in b → c semileptonic decays remain valid even when binding effects are included. The parton model appears as a open-quote semiclassical close-quote model whose results for certain averages also hold (correspondence principle) in quantum mechanics. Algebraic techniques developed for the Moessbauer effect exploit simple features of the commutator between the weak current operator and the bound state Hamiltonian to find the appropriate sum rules and show the validity of the parton model in the classical limit, ℎ → 0, where all commutators vanish
Improved quasi parton distribution through Wilson line renormalization
Energy Technology Data Exchange (ETDEWEB)
Chen, Jiunn-Wei [Department of Physics, Center for Theoretical Sciences, and Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei, 106, Taiwan (China); Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ji, Xiangdong [INPAC, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 (China); Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742 (United States); Zhang, Jian-Hui, E-mail: jianhui.zhang@physik.uni-regensburg.de [Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg (Germany)
2017-02-15
Recent developments showed that hadron light-cone parton distributions could be directly extracted from spacelike correlators, known as quasi parton distributions, in the large hadron momentum limit. Unlike the normal light-cone parton distribution, a quasi parton distribution contains ultraviolet (UV) power divergence associated with the Wilson line self energy. We show that to all orders in the coupling expansion, the power divergence can be removed by a “mass” counterterm in the auxiliary z-field formalism, in the same way as the renormalization of power divergence for an open Wilson line. After adding this counterterm, the quasi quark distribution is improved such that it contains at most logarithmic divergences. Based on a simple version of discretized gauge action, we present the one-loop matching kernel between the improved non-singlet quasi quark distribution with a lattice regulator and the corresponding quark distribution in dimensional regularization.
Improved quasi parton distribution through Wilson line renormalization
Directory of Open Access Journals (Sweden)
Jiunn-Wei Chen
2017-02-01
Full Text Available Recent developments showed that hadron light-cone parton distributions could be directly extracted from spacelike correlators, known as quasi parton distributions, in the large hadron momentum limit. Unlike the normal light-cone parton distribution, a quasi parton distribution contains ultraviolet (UV power divergence associated with the Wilson line self energy. We show that to all orders in the coupling expansion, the power divergence can be removed by a “mass” counterterm in the auxiliary z-field formalism, in the same way as the renormalization of power divergence for an open Wilson line. After adding this counterterm, the quasi quark distribution is improved such that it contains at most logarithmic divergences. Based on a simple version of discretized gauge action, we present the one-loop matching kernel between the improved non-singlet quasi quark distribution with a lattice regulator and the corresponding quark distribution in dimensional regularization.
Parton jet fragmentation at small momentum fraction (x)
International Nuclear Information System (INIS)
Kirschner, R.
1984-05-01
The parton fragmentation function is calculated at small x and the angular ordering condition is rederived by extending the method of separation of the softest particle, which is based on unitarity and gauge invariance. (author)
Nucleon parton distributions in a light-front quark model
Energy Technology Data Exchange (ETDEWEB)
Gutsche, Thomas [Universitaet Tuebingen, Institut fuer Theoretische Physik, Kepler Center for Astro and Particle Physics, Tuebingen (Germany); Lyubovitskij, Valery E. [Universitaet Tuebingen, Institut fuer Theoretische Physik, Kepler Center for Astro and Particle Physics, Tuebingen (Germany); Tomsk State University, Department of Physics, Tomsk (Russian Federation); Tomsk Polytechnic University, Laboratory of Particle Physics, Mathematical Physics Department, Tomsk (Russian Federation); Universidad Tecnica Federico Santa Maria, Departamento de Fisica y Centro Cientifico Tecnologico de Valparaiso (CCTVal), Valparaiso (Chile); Schmidt, Ivan [Universidad Tecnica Federico Santa Maria, Departamento de Fisica y Centro Cientifico Tecnologico de Valparaiso (CCTVal), Valparaiso (Chile)
2017-02-15
Continuing our analysis of parton distributions in the nucleon, we extend our light-front quark model in order to obtain both the helicity-independent and the helicity-dependent parton distributions, analytically matching the results of global fits at the initial scale μ∝ 1 GeV; they also contain the correct Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution. We also calculate the transverse parton, Wigner and Husimi distributions from a unified point of view, using our light-front wave functions and expressing them in terms of the parton distributions q{sub v}(x) and δq{sub v}(x). Our results are very relevant for the current and future program of the COMPASS experiment at SPS (CERN). (orig.)
Insight into nucleon structure from generalized parton distributions
International Nuclear Information System (INIS)
J.W. Negele; R.C. Brower; P. Dreher; R. Edwards; G. Fleming; Ph. Hagler; Th. Lippert; A.V.Pochinsky; D.B. Renner; D. Richards; K. Schilling; W. Schroers
2004-01-01
The lowest three moments of generalized parton distributions are calculated in full QCD and provide new insight into the behavior of nucleon electromagnetic form factors, the origin of the nucleon spin, and the transverse structure of the nucleon
Study of the partonic structure of the helium nucleus
International Nuclear Information System (INIS)
Perrin, Y.
2012-01-01
The structure of the nucleons and of the nuclei was actively studied during the twentieth century through electron elastic scattering (measuring the electromagnetic form factors) and deep inelastic electron scattering (measuring the parton distributions). The formalism of generalized parton distributions (GPD) achieved the unification of the form factors and the parton distributions. This link gives a source of information about parton dynamics, such as the distribution of nuclear forces and orbital momentum inside hadrons. The easiest experimental access to the GPD is the deeply virtual Compton scattering (DVCS), which corresponds to the hard electroproduction of a real photon. While several experiments focussed on DVCS off the nucleon, only a few experiments studied DVCS off a nuclear target. This thesis deals with the study of the coherent channel of DVCS off helium 4, with the aim of extracting the real and imaginary parts of the Compton form factor thanks to the beam spin asymmetry. (author)
QCD collinear factorization, its extensions and the partonic distributions
Szymanowski, Lech
2012-01-01
I review the basics of the collinear factorization theorem applied primarily to deep inelastic scattering (DIS) involving forward parton distributions (PDFs) and the extensions of this theorem for exclusive processes probing non-forward parton distributions (GPDs), the generalized distribution amplitudes (GDAs) and the transition distribution amplitudes (TDAs). These QCD factorization theorem is an important tool in the description of hard processes in QCD. Whenever valid, it permits to repre...
Experimental tests of charge symmetry violation in parton distributions
International Nuclear Information System (INIS)
Londergan, J.T.; Murdock, D.P.; Thomas, A.W.
2005-01-01
Recently, a global phenomenological fit to high energy data has included charge symmetry breaking terms, leading to limits on the allowed magnitude of such effects. We discuss two possible experiments that could search for isospin violation in valence parton distributions. We show that, given the magnitude of charge symmetry violation consistent with existing global data, such experiments might expect to see effects at a level of several percent. Alternatively, such experiments could significantly decrease the upper limits on isospin violation in parton distributions
Calculation of parton fragmentation functions from jet calculus: gluon applications
International Nuclear Information System (INIS)
Lassila, K.E.; Ng, A.
1985-01-01
A method is presented for calculation of general parton fragmentation functions based on jet calculus plus meson and baryon wave functions. Results for gluon fragmentation into mesons and baryons are discussed and related to recent information on upsilon decay into gluons. The expressions derived can be used directly in e + e - cross section predictions and will need to be folded in with baryon parton distribution functions when used in p-barp collisions. (author)
QCD next-to-leading-order predictions matched to parton showers for vector-like quark models.
Fuks, Benjamin; Shao, Hua-Sheng
2017-01-01
Vector-like quarks are featured by a wealth of beyond the Standard Model theories and are consequently an important goal of many LHC searches for new physics. Those searches, as well as most related phenomenological studies, however, rely on predictions evaluated at the leading-order accuracy in QCD and consider well-defined simplified benchmark scenarios. Adopting an effective bottom-up approach, we compute next-to-leading-order predictions for vector-like-quark pair production and single production in association with jets, with a weak or with a Higgs boson in a general new physics setup. We additionally compute vector-like-quark contributions to the production of a pair of Standard Model bosons at the same level of accuracy. For all processes under consideration, we focus both on total cross sections and on differential distributions, most these calculations being performed for the first time in our field. As a result, our work paves the way to precise extraction of experimental limits on vector-like quarks thanks to an accurate control of the shapes of the relevant observables and emphasise the extra handles that could be provided by novel vector-like-quark probes never envisaged so far.
QCD next-to-leading order predictions matched to parton showers for vector-like quark models
Fuks, Benjamin
2017-02-27
Vector-like quarks are featured by a wealth of beyond the Standard Model theories and are consequently an important goal of many LHC searches for new physics. Those searches, as well as most related phenomenological studies, however rely on predictions evaluated at the leading-order accuracy in QCD and consider well-defined simplified benchmark scenarios. Adopting an effective bottom-up approach, we compute next-to-leading-order predictions for vector-like-quark pair-production and single production in association with jets, with a weak or with a Higgs boson in a general new physics setup. We additionally compute vector-like-quark contributions to the production of a pair of Standard Model bosons at the same level of accuracy. For all processes under consideration, we focus both on total cross sections and on differential distributions, most these calculations being performed for the first time in our field. As a result, our work paves the way to precise extraction of experimental limits on vector-like quarks...
Parton distributions from SMC and SLAC data
International Nuclear Information System (INIS)
Ramsey, G.P.
1996-01-01
We have extracted spin-weighted parton distributions in a proton from recent data at CERN and SLAC. The valence, sea quark and Antiquark spin-weighted distributions are determined separately. The data are all consistent with a small to moderate polarized gluon distribution, so that the anomaly term is not significant in the determination of the constituent contributions to the spin of the proton. We have analyzed the consistency of the results obtained from various sets of data and the Biorken sum rule. Although all data are consistent with the sum rule, the polarized distributions from different experiments vary, even with higher order QCD corrections taken into account. Results split into two models, one set implying a large polarized strange sea which violates the positivity bound, and the other set yielding a smaller polarized strange sea. Only further experiments which extract information about the polarized sea will reconcile these differences. We suggest specific experiments which can be performed to determine the size of the polarized sea and gluons
Helicity antenna showers for hadron colliders
Energy Technology Data Exchange (ETDEWEB)
Fischer, Nadine; Skands, Peter [Monash University, School of Physics and Astronomy, Clayton, VIC (Australia); Lifson, Andrew [Monash University, School of Physics and Astronomy, Clayton, VIC (Australia); ETH Zuerich, Zurich (Switzerland)
2017-10-15
We present a complete set of helicity-dependent 2 → 3 antenna functions for QCD initial- and final-state radiation. The functions are implemented in the Vincia shower Monte Carlo framework and are used to generate showers for hadron-collider processes in which helicities are explicitly sampled (and conserved) at each step of the evolution. Although not capturing the full effects of spin correlations, the explicit helicity sampling does permit a significantly faster evaluation of fixed-order matrix-element corrections. A further speed increase is achieved via the implementation of a new fast library of analytical MHV amplitudes, while matrix elements from Madgraph are used for non-MHV configurations. A few examples of applications to QCD 2 → 2 processes are given, comparing the newly released Vincia 2.200 to Pythia 8.226. (orig.)
Tests of gas sampling electromagnetic shower calorimeter
International Nuclear Information System (INIS)
Barbaro-Galtieri, A.; Carithers, W.; Day, C.; Johnson, K.J.; Wenzel, W.A.; Videau, H.
1983-01-01
An electromagnetic shower gas-sampling calorimeter has been tested in both Geiger and proportional discharge modes for incident electron energies in the range 0.125-16 GeV. The 0.2 radiation length-thick layers were lead-fiberglass laminates with cathode strips normal to the sense wires. The 5x10 mm 2 Geiger cells were formed with uniformly spaced nylon fibers perpendicular to the wires. Proportional mode measurements were carried out in the pressure range 1-10 atm. A Monte Carlo simulation is in good agreement with measured shower characteristics and has been used to predict the behavior for oblique of incidence and for various Geiger cell dimensions. (orig.)
Helicity antenna showers for hadron colliders
Fischer, Nadine; Lifson, Andrew; Skands, Peter
2017-10-01
We present a complete set of helicity-dependent 2→ 3 antenna functions for QCD initial- and final-state radiation. The functions are implemented in the Vincia shower Monte Carlo framework and are used to generate showers for hadron-collider processes in which helicities are explicitly sampled (and conserved) at each step of the evolution. Although not capturing the full effects of spin correlations, the explicit helicity sampling does permit a significantly faster evaluation of fixed-order matrix-element corrections. A further speed increase is achieved via the implementation of a new fast library of analytical MHV amplitudes, while matrix elements from Madgraph are used for non-MHV configurations. A few examples of applications to QCD 2→ 2 processes are given, comparing the newly released Vincia 2.200 to Pythia 8.226.
NLO QCD Corrections to Drell-Yan in TeV-scale Gravity Models
International Nuclear Information System (INIS)
Mathews, Prakash; Ravindran, V.
2006-01-01
In TeV scale gravity models, we present the NLO-QCD corrections for the double differential cross sections in the scattering angle for dilepton production at hadron colliders. The quantitative impact of QCD corrections for extra dimension searches at LHC and Tevatron are investigated for both ADD and RS models through K-factors. We also show how the inclusion of QCD corrections to NLO stabilises the cross section with respect to renormalisation and factorisation scale variations
Reanalysis of the EMC charm production data with extrinsic and intrinsic charm at NLO
International Nuclear Information System (INIS)
Harris, B.W.; Vogt, R.
1996-01-01
A calculation of the next-to-leading order exclusive extrinsic charm quark differential distributions in deeply inelastic electroproduction has recently been completed. Using these results we compare the NLO extrinsic contributions to the charm structure function F 2 (x,Q 2 ,m c 2 ) with the corresponding NLO intrinsic contributions. The results of this analysis are compared with the EMC DIS charm quark data and evidence for an intrinsic charm component in the proton is found. (orig.)
A new observable to measure the top quark mass at hadron colliders
Indian Academy of Sciences (India)
2012-10-05
mp top, μ, ρs) was studied using NLO calculations. [1] for different top quark pole masses from m p top = 160 to 180 ... To further investigate the impact of higher orders and the effect of parton shower, we have compared the ...
Inclusive cross sections in ME+PS merging
International Nuclear Information System (INIS)
Plaetzer, Simon
2013-07-01
We discuss an extension of matrix element plus parton shower merging at leading and next-to-leading order. The algorithm does preserve inclusive cross sections at the respective input order. This constraint avoids potentially large logarithmic contributions, which would require approximate (N)NLO contributions to cancel against.
Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Waltenberger, W.; Wulz, C.-E.; Dvornikov, O.; Makarenko, V.; Mossolov, V.; Suarez Gonzalez, J.; Zykunov, V.; Shumeiko, N.; Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Salva, S.; Schöfbeck, R.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Chagas, E. Belchior Batista Das; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; De Souza, S. Fonseca; Guativa, L. M. Huertas; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Ruan, M.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Miné, P.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Bihan, A.-C. Le; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Khvedelidze, A.; Lomidze, D.; Autermann, C.; Beranek, S.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Verlage, T.; Albert, A.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wissing, C.; Zenaiev, O.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Baus, C.; Berger, J.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Freund, B.; Friese, R.; Giffels, M.; Gilbert, A.; Goldenzweig, P.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Katkov, I.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Kousouris, K.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Filipovic, N.; Pasztor, G.; Bencze, G.; Hajdu, C.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sur, N.; Sutar, B.; Banerjee, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Antunes De Oliveira, A. Carvalho; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, U.; Gonella, F.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Torassa, E.; Ventura, S.; Zanetti, M.; Zotto, P.; Braghieri, A.; Fallavollita, F.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Mariani, V.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Del Re, D.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Brochero Cifuentes, J. A.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Lee, H.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. H.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Lopez-Fernandez, R.; Magaña Villalba, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Calpas, B.; Di Francesco, A.; Faccioli, P.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Danilov, M.; Popova, E.; Rusinov, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Klyukhin, V.; Korneeva, N.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Perfilov, M.; Savrin, V.; Volkov, P.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suárez Andrés, I.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chen, Y.; Cimmino, A.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Verweij, M.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; De Cosa, A.; Donato, S.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Seitz, C.; Yang, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. F.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.; Breedon, R.; Burns, D.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Squires, M.; Stolp, D.; Tos, K.; Tripathi, M.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Weber, M.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bendavid, J.; Bornheim, A.; Bunn, J.; Duarte, J.; Lawhorn, J. M.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Winn, D.; Abdullin, S.; Albrow, M.; Apollinari, G.; Apresyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Wu, Y.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Bein, S.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Perry, T.; Prosper, H.; Santra, A.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Forthomme, L.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Apyan, A.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Malta Rodrigues, A.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Rupprecht, N.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Lange, D.; Luo, J.; Marlow, D.; Medvedeva, T.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Svyatkovskiy, A.; Tully, C.; Malik, S.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Schulte, J. F.; Shi, X.; Sun, J.; Wang, F.; Xie, W.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. T.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Sturdy, J.; Zaleski, S.; Belknap, D. A.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.
2017-07-01
Normalized double-differential cross sections for top quark pair (t\\overline{t}) production are measured in pp collisions at a centre-of-mass energy of 8 {TeV} with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 19.7 {fb}^{-1}. The measurement is performed in the dilepton e^{± }μ ^{∓ } final state. The t\\overline{t} cross section is determined as a function of various pairs of observables characterizing the kinematics of the top quark and t\\overline{t} system. The data are compared to calculations using perturbative quantum chromodynamics at next-to-leading and approximate next-to-next-to-leading orders. They are also compared to predictions of Monte Carlo event generators that complement fixed-order computations with parton showers, hadronization, and multiple-parton interactions. Overall agreement is observed with the predictions, which is improved when the latest global sets of proton parton distribution functions are used. The inclusion of the measured t\\overline{t} cross sections in a fit of parametrized parton distribution functions is shown to have significant impact on the gluon distribution.
Energy Technology Data Exchange (ETDEWEB)
Sirunyan, A.M.; Tumasyan, A. [Yerevan Physics Institute, Yerevan (Armenia); Adam, W. [Institut fuer Hochenergiephysik, Vienna (Austria); Collaboration: CMS Collaboration; and others
2017-07-15
Normalized double-differential cross sections for top quark pair (t anti t) production are measured in pp collisions at a centre-of-mass energy of 8 TeV with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 19.7 fb{sup -1}. The measurement is performed in the dilepton e{sup ±}μ{sup -+} final state. The t anti t cross section is determined as a function of various pairs of observables characterizing the kinematics of the top quark and t anti t system. The data are compared to calculations using perturbative quantum chromodynamics at next-to-leading and approximate next-to-next-to-leading orders. They are also compared to predictions of Monte Carlo event generators that complement fixed-order computations with parton showers, hadronization, and multiple-parton interactions. Overall agreement is observed with the predictions, which is improved when the latest global sets of proton parton distribution functions are used. The inclusion of the measured t anti t cross sections in a fit of parametrized parton distribution functions is shown to have significant impact on the gluon distribution. (orig.)
Sirunyan, A M; Tumasyan, A; Adam, W; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Flechl, M; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; König, A; Krätschmer, I; Liko, D; Matsushita, T; Mikulec, I; Rabady, D; Rad, N; Rahbaran, B; Rohringer, H; Schieck, J; Strauss, J; Waltenberger, W; Wulz, C-E; Dvornikov, O; Makarenko, V; Mossolov, V; Suarez Gonzalez, J; Zykunov, V; Shumeiko, N; Alderweireldt, S; De Wolf, E A; Janssen, X; Lauwers, J; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Abu Zeid, S; Blekman, F; D'Hondt, J; Daci, N; De Bruyn, I; Deroover, K; Lowette, S; Moortgat, S; Moreels, L; Olbrechts, A; Python, Q; Skovpen, K; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Parijs, I; Brun, H; Clerbaux, B; De Lentdecker, G; Delannoy, H; Fasanella, G; Favart, L; Goldouzian, R; Grebenyuk, A; Karapostoli, G; Lenzi, T; Léonard, A; Luetic, J; Maerschalk, T; Marinov, A; Randle-Conde, A; Seva, T; Vander Velde, C; Vanlaer, P; Vannerom, D; Yonamine, R; Zenoni, F; Zhang, F; Cornelis, T; Dobur, D; Fagot, A; Gul, M; Khvastunov, I; Poyraz, D; Salva, S; Schöfbeck, R; Tytgat, M; Van Driessche, W; Yazgan, E; Zaganidis, N; Bakhshiansohi, H; Bondu, O; Brochet, S; Bruno, G; Caudron, A; De Visscher, S; Delaere, C; Delcourt, M; Francois, B; Giammanco, A; Jafari, A; Komm, M; Krintiras, G; Lemaitre, V; Magitteri, A; Mertens, A; Musich, M; Piotrzkowski, K; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Wertz, S; Beliy, N; Aldá Júnior, W L; Alves, F L; Alves, G A; Brito, L; Hensel, C; Moraes, A; Pol, M E; Rebello Teles, P; Chagas, E Belchior Batista Das; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; Da Silveira, G G; De Jesus Damiao, D; De Oliveira Martins, C; De Souza, S Fonseca; Guativa, L M Huertas; Malbouisson, H; Matos Figueiredo, D; Mora Herrera, C; Mundim, L; Nogima, H; Prado Da Silva, W L; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Torres Da Silva De Araujo, F; Vilela Pereira, A; Ahuja, S; Bernardes, C A; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Moon, C S; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Fang, W; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Chen, Y; Cheng, T; Jiang, C H; Leggat, D; Liu, Z; Romeo, F; Ruan, M; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Zhang, H; Zhao, J; Ban, Y; Chen, G; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; Gomez, J P; González Hernández, C F; Ruiz Alvarez, J D; Sanabria, J C; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Sculac, T; Antunovic, Z; Kovac, M; Brigljevic, V; Ferencek, D; Kadija, K; Mesic, B; Susa, T; Ather, M W; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Finger, M; Finger, M; Carrera Jarrin, E; Ellithi Kamel, A; Mahmoud, M A; Radi, A; Kadastik, M; Perrini, L; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Pekkanen, J; Voutilainen, M; Härkönen, J; Järvinen, T; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Ghosh, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Kucher, I; Locci, E; Machet, M; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Abdulsalam, A; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Chapon, E; Charlot, C; Davignon, O; Granier de Cassagnac, R; Jo, M; Lisniak, S; Miné, P; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Regnard, S; Salerno, R; Sirois, Y; Stahl Leiton, A G; Strebler, T; Yilmaz, Y; Zabi, A; Zghiche, A; Agram, J-L; Andrea, J; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Bihan, A-C Le; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Carrillo Montoya, C A; Chierici, R; Contardo, D; Courbon, B; Depasse, P; El Mamouni, H; Fay, J; Finco, L; Gascon, S; Gouzevitch, M; Grenier, G; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Popov, A; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Khvedelidze, A; Lomidze, D; Autermann, C; Beranek, S; Feld, L; Kiesel, M K; Klein, K; Lipinski, M; Preuten, M; Schomakers, C; Schulz, J; Verlage, T; Albert, A; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Endres, M; Erdmann, M; Erdweg, S; Esch, T; Fischer, R; Güth, A; Hamer, M; Hebbeker, T; Heidemann, C; Hoepfner, K; Knutzen, S; Merschmeyer, M; Meyer, A; Millet, P; Mukherjee, S; Olschewski, M; Padeken, K; Pook, T; Radziej, M; Reithler, H; Rieger, M; Scheuch, F; Sonnenschein, L; Teyssier, D; Thüer, S; Cherepanov, V; Flügge, G; Kargoll, B; Kress, T; Künsken, A; Lingemann, J; Müller, T; Nehrkorn, A; Nowack, A; Pistone, C; Pooth, O; Stahl, A; Aldaya Martin, M; Arndt, T; Asawatangtrakuldee, C; Beernaert, K; Behnke, O; Behrens, U; Bin Anuar, A A; Borras, K; Campbell, A; Connor, P; Contreras-Campana, C; Costanza, F; Diez Pardos, C; Dolinska, G; Eckerlin, G; Eckstein, D; Eichhorn, T; Eren, E; Gallo, E; Garay Garcia, J; Geiser, A; Gizhko, A; Grados Luyando, J M; Grohsjean, A; Gunnellini, P; Harb, A; Hauk, J; Hempel, M; Jung, H; Kalogeropoulos, A; Karacheban, O; Kasemann, M; Keaveney, J; Kleinwort, C; Korol, I; Krücker, D; Lange, W; Lelek, A; Lenz, T; Leonard, J; Lipka, K; Lobanov, A; Lohmann, W; Mankel, R; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Pitzl, D; Placakyte, R; Raspereza, A; Roland, B; Sahin, M Ö; Saxena, P; Schoerner-Sadenius, T; Spannagel, S; Stefaniuk, N; Van Onsem, G P; Walsh, R; Wissing, C; Zenaiev, O; Blobel, V; Centis Vignali, M; Draeger, A R; Dreyer, T; Garutti, E; Gonzalez, D; Haller, J; Hoffmann, M; Junkes, A; Klanner, R; Kogler, R; Kovalchuk, N; Kurz, S; Lapsien, T; Marchesini, I; Marconi, D; Meyer, M; Niedziela, M; Nowatschin, D; Pantaleo, F; Peiffer, T; Perieanu, A; Scharf, C; Schleper, P; Schmidt, A; Schumann, S; Schwandt, J; Sonneveld, J; Stadie, H; Steinbrück, G; Stober, F M; Stöver, M; Tholen, H; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Vormwald, B; Akbiyik, M; Barth, C; Baur, S; Baus, C; Berger, J; Butz, E; Caspart, R; Chwalek, T; Colombo, F; De Boer, W; Dierlamm, A; Fink, S; Freund, B; Friese, R; Giffels, M; Gilbert, A; Goldenzweig, P; Haitz, D; Hartmann, F; Heindl, S M; Husemann, U; Kassel, F; Katkov, I; Kudella, S; Mildner, H; Mozer, M U; Müller, Th; Plagge, M; Quast, G; Rabbertz, K; Röcker, S; Roscher, F; Schröder, M; Shvetsov, I; Sieber, G; Simonis, H J; Ulrich, R; Wayand, S; Weber, M; Weiler, T; Williamson, S; Wöhrmann, C; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Topsis-Giotis, I; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Tziaferi, E; Kousouris, K; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Loukas, N; Manthos, N; Papadopoulos, I; Paradas, E; Filipovic, N; Pasztor, G; Bencze, G; Hajdu, C; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Makovec, A; Molnar, J; Szillasi, Z; Bartók, M; Raics, P; Trocsanyi, Z L; Ujvari, B; Komaragiri, J R; Bahinipati, S; Bhowmik, S; Choudhury, S; Mal, P; Mandal, K; Nayak, A; Sahoo, D K; Sahoo, N; Swain, S K; Bansal, S; Beri, S B; Bhatnagar, V; Chawla, R; Bhawandeep, U; Kalsi, A K; Kaur, A; Kaur, M; Kumar, R; Kumari, P; Mehta, A; Mittal, M; Singh, J B; Walia, G; Kumar, Ashok; Bhardwaj, A; Choudhary, B C; Garg, R B; Keshri, S; Kumar, A; Malhotra, S; Naimuddin, M; Ranjan, K; Sharma, R; Sharma, V; Bhattacharya, R; Bhattacharya, S; Chatterjee, K; Dey, S; Dutt, S; Dutta, S; Ghosh, S; Majumdar, N; Modak, A; Mondal, K; Mukhopadhyay, S; Nandan, S; Purohit, A; Roy, A; Roy, D; Roy Chowdhury, S; Sarkar, S; Sharan, M; Thakur, S; Behera, P K; Chudasama, R; Dutta, D; Jha, V; Kumar, V; Mohanty, A K; Netrakanti, P K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Dugad, S; Kole, G; Mahakud, B; Mitra, S; Mohanty, G B; Parida, B; Sur, N; Sutar, B; Banerjee, S; Dewanjee, R K; Ganguly, S; Guchait, M; Jain, Sa; Kumar, S; Maity, M; Majumder, G; Mazumdar, K; Sarkar, T; Wickramage, N; Chauhan, S; Dube, S; Hegde, V; Kapoor, A; Kothekar, K; Pandey, S; Rane, A; Sharma, S; Chenarani, S; Eskandari Tadavani, E; Etesami, S M; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Caputo, C; Colaleo, A; Creanza, D; Cristella, L; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; Miniello, G; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Ranieri, A; Selvaggi, G; Sharma, A; Silvestris, L; Venditti, R; Verwilligen, P; Abbiendi, G; Battilana, C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Chhibra, S S; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Albergo, S; Costa, S; Di Mattia, A; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Lenzi, P; Meschini, M; Paoletti, S; Russo, L; Sguazzoni, G; Strom, D; Viliani, L; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Primavera, F; Calvelli, V; Ferro, F; Monge, M R; Robutti, E; Tosi, S; Brianza, L; Brivio, F; Ciriolo, V; Dinardo, M E; Fiorendi, S; Gennai, S; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Manzoni, R A; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Pigazzini, S; Ragazzi, S; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; De Nardo, G; Di Guida, S; Esposito, M; Fabozzi, F; Fienga, F; Iorio, A O M; Lanza, G; Lista, L; Meola, S; Paolucci, P; Sciacca, C; Thyssen, F; Azzi, P; Bacchetta, N; Benato, L; Bisello, D; Boletti, A; Carlin, R; Antunes De Oliveira, A Carvalho; Checchia, P; Dall'Osso, M; De Castro Manzano, P; Dorigo, T; Dosselli, U; Gasparini, U; Gonella, F; Lacaprara, S; Margoni, M; Meneguzzo, A T; Pazzini, J; Pozzobon, N; Ronchese, P; Rossin, R; Simonetto, F; Torassa, E; Ventura, S; Zanetti, M; Zotto, P; Braghieri, A; Fallavollita, F; Magnani, A; Montagna, P; Ratti, S P; Re, V; Ressegotti, M; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Alunni Solestizi, L; Bilei, G M; Ciangottini, D; Fanò, L; Lariccia, P; Leonardi, R; Mantovani, G; Mariani, V; Menichelli, M; Saha, A; Santocchia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Castaldi, R; Ciocci, M A; Dell'Orso, R; Fedi, G; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Rizzi, A; Savoy-Navarro, A; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Cipriani, M; Del Re, D; Diemoz, M; Gelli, S; Longo, E; Margaroli, F; Marzocchi, B; Meridiani, P; Organtini, G; Paramatti, R; Preiato, F; Rahatlou, S; Rovelli, C; Santanastasio, F; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bartosik, N; Bellan, R; Biino, C; Cartiglia, N; Cenna, F; Costa, M; Covarelli, R; Degano, A; Demaria, N; Kiani, B; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Monteil, E; Monteno, M; Obertino, M M; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Ravera, F; Romero, A; Ruspa, M; Sacchi, R; Shchelina, K; Sola, V; Solano, A; Staiano, A; Traczyk, P; Belforte, S; Casarsa, M; Cossutti, F; Della Ricca, G; Zanetti, A; Kim, D H; Kim, G N; Kim, M S; Lee, J; Lee, S; Lee, S W; Oh, Y D; Sekmen, S; Son, D C; Yang, Y C; Lee, A; Kim, H; Brochero Cifuentes, J A; Kim, T J; Cho, S; Choi, S; Go, Y; Gyun, D; Ha, S; Hong, B; Jo, Y; Kim, Y; Lee, K; Lee, K S; Lee, S; Lim, J; Park, S K; Roh, Y; Almond, J; Kim, J; Lee, H; Oh, S B; Radburn-Smith, B C; Seo, S H; Yang, U K; Yoo, H D; Yu, G B; Choi, M; Kim, H; Kim, J H; Lee, J S H; Park, I C; Ryu, G; Ryu, M S; Choi, Y; Goh, J; Hwang, C; Lee, J; Yu, I; Dudenas, V; Juodagalvis, A; Vaitkus, J; Ahmed, I; Ibrahim, Z A; Md Ali, M A B; Mohamad Idris, F; Wan Abdullah, W A T; Yusli, M N; Zolkapli, Z; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-De La Cruz, I; Lopez-Fernandez, R; Magaña Villalba, R; Mejia Guisao, J; Sanchez-Hernandez, A; Carrillo Moreno, S; Oropeza Barrera, C; Vazquez Valencia, F; Carpinteyro, S; Pedraza, I; Salazar Ibarguen, H A; Uribe Estrada, C; Morelos Pineda, A; Krofcheck, D; Butler, P H; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Khan, W A; Saddique, A; Shah, M A; Shoaib, M; Waqas, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Zalewski, P; Bunkowski, K; Byszuk, A; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Pyskir, A; Walczak, M; Bargassa, P; Beirão Da Cruz E Silva, C; Calpas, B; Di Francesco, A; Faccioli, P; Gallinaro, M; Hollar, J; Leonardo, N; Lloret Iglesias, L; Nemallapudi, M V; Seixas, J; Toldaiev, O; Vadruccio, D; Varela, J; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Lanev, A; Malakhov, A; Matveev, V; Palichik, V; Perelygin, V; Shmatov, S; Shulha, S; Skatchkov, N; Smirnov, V; Voytishin, N; Zarubin, A; Chtchipounov, L; Golovtsov, V; Ivanov, Y; Kim, V; Kuznetsova, E; Murzin, V; Oreshkin, V; Sulimov, V; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Karneyeu, A; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, I; Safronov, G; Spiridonov, A; Toms, M; Vlasov, E; Zhokin, A; Aushev, T; Bylinkin, A; Danilov, M; Popova, E; Rusinov, V; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Terkulov, A; Baskakov, A; Belyaev, A; Boos, E; Bunichev, V; Dubinin, M; Dudko, L; Ershov, A; Klyukhin, V; Korneeva, N; Lokhtin, I; Miagkov, I; Obraztsov, S; Perfilov, M; Savrin, V; Volkov, P; Blinov, V; Skovpen, Y; Shtol, D; Azhgirey, I; Bayshev, I; Bitioukov, S; Elumakhov, D; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Cirkovic, P; Devetak, D; Dordevic, M; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Barrio Luna, M; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Escalante Del Valle, A; Fernandez Bedoya, C; Fernández Ramos, J P; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Navarro De Martino, E; Pérez-Calero Yzquierdo, A; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; de Trocóniz, J F; Missiroli, M; Moran, D; Cuevas, J; Erice, C; Fernandez Menendez, J; Gonzalez Caballero, I; González Fernández, J R; Palencia Cortezon, E; Sanchez Cruz, S; Suárez Andrés, I; Vischia, P; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Curras, E; Fernandez, M; Garcia-Ferrero, J; Gomez, G; Lopez Virto, A; Marco, J; Martinez Rivero, C; Matorras, F; Piedra Gomez, J; Rodrigo, T; Ruiz-Jimeno, A; Scodellaro, L; Trevisani, N; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Baillon, P; Ball, A H; Barney, D; Bloch, P; Bocci, A; Botta, C; Camporesi, T; Castello, R; Cepeda, M; Cerminara, G; Chen, Y; Cimmino, A; d'Enterria, D; Dabrowski, A; Daponte, V; David, A; De Gruttola, M; De Roeck, A; Di Marco, E; Dobson, M; Dorney, B; du Pree, T; Duggan, D; Dünser, M; Dupont, N; Elliott-Peisert, A; Everaerts, P; Fartoukh, S; Franzoni, G; Fulcher, J; Funk, W; Gigi, D; Gill, K; Girone, M; Glege, F; Gulhan, D; Gundacker, S; Guthoff, M; Harris, P; Hegeman, J; Innocente, V; Janot, P; Kieseler, J; Kirschenmann, H; Knünz, V; Kornmayer, A; Kortelainen, M J; Krammer, M; Lange, C; Lecoq, P; Lourenço, C; Lucchini, M T; Malgeri, L; Mannelli, M; Martelli, A; Meijers, F; Merlin, J A; Mersi, S; Meschi, E; Milenovic, P; Moortgat, F; Morovic, S; Mulders, M; Neugebauer, H; Orfanelli, S; Orsini, L; Pape, L; Perez, E; Peruzzi, M; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Racz, A; Reis, T; Rolandi, G; Rovere, M; Sakulin, H; Sauvan, J B; Schäfer, C; Schwick, C; Seidel, M; Sharma, A; Silva, P; Sphicas, P; Steggemann, J; Stoye, M; Takahashi, Y; Tosi, M; Treille, D; Triossi, A; Tsirou, A; Veckalns, V; Veres, G I; Verweij, M; Wardle, N; Wöhri, H K; Zagozdzinska, A; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Rohe, T; Wiederkehr, S A; Bachmair, F; Bäni, L; Bianchini, L; Casal, B; Dissertori, G; Dittmar, M; Donegà, M; Grab, C; Heidegger, C; Hits, D; Hoss, J; Kasieczka, G; Lustermann, W; Mangano, B; Marionneau, M; Martinez Ruiz Del Arbol, P; Masciovecchio, M; Meinhard, M T; Meister, D; Micheli, F; Musella, P; Nessi-Tedaldi, F; Pandolfi, F; Pata, J; Pauss, F; Perrin, G; Perrozzi, L; Quittnat, M; Rossini, M; Schönenberger, M; Starodumov, A; Tavolaro, V R; Theofilatos, K; Wallny, R; Aarrestad, T K; Amsler, C; Caminada, L; Canelli, M F; De Cosa, A; Donato, S; Galloni, C; Hinzmann, A; Hreus, T; Kilminster, B; Ngadiuba, J; Pinna, D; Rauco, G; Robmann, P; Salerno, D; Seitz, C; Yang, Y; Zucchetta, A; Candelise, V; Doan, T H; Jain, Sh; Khurana, R; Konyushikhin, M; Kuo, C M; Lin, W; Pozdnyakov, A; Yu, S S; Kumar, Arun; Chang, P; Chang, Y H; Chao, Y; Chen, K F; Chen, P H; Fiori, F; Hou, W-S; Hsiung, Y; Liu, Y F; Lu, R-S; Miñano Moya, M; Paganis, E; Psallidas, A; Tsai, J F; Asavapibhop, B; Singh, G; Srimanobhas, N; Suwonjandee, N; Adiguzel, A; Boran, F; Cerci, S; Damarseckin, S; Demiroglu, Z S; Dozen, C; Dumanoglu, I; Girgis, S; Gokbulut, G; Guler, Y; Hos, I; Kangal, E E; Kara, O; Kiminsu, U; Oglakci, M; Onengut, G; Ozdemir, K; Sunar Cerci, D; Tali, B; Topakli, H; Turkcapar, S; Zorbakir, I S; Zorbilmez, C; Bilin, B; Bilmis, S; Isildak, B; Karapinar, G; Yalvac, M; Zeyrek, M; Gülmez, E; Kaya, M; Kaya, O; Yetkin, E A; Yetkin, T; Cakir, A; Cankocak, K; Sen, S; Grynyov, B; Levchuk, L; Sorokin, P; Aggleton, R; Ball, F; Beck, L; Brooke, J J; Burns, D; Clement, E; Cussans, D; Flacher, H; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Newbold, D M; Paramesvaran, S; Poll, A; Sakuma, T; Seif El Nasr-Storey, S; Smith, D; Smith, V J; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Calligaris, L; Cieri, D; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Williams, T; Baber, M; Bainbridge, R; Buchmuller, O; Bundock, A; Casasso, S; Citron, M; Colling, D; Corpe, L; Dauncey, P; Davies, G; De Wit, A; Della Negra, M; Di Maria, R; Dunne, P; Elwood, A; Futyan, D; Haddad, Y; Hall, G; Iles, G; James, T; Lane, R; Laner, C; Lyons, L; Magnan, A-M; Malik, S; Mastrolorenzo, L; Nash, J; Nikitenko, A; Pela, J; Penning, B; Pesaresi, M; Raymond, D M; Richards, A; Rose, A; Scott, E; Seez, C; Summers, S; Tapper, A; Uchida, K; Vazquez Acosta, M; Virdee, T; Wright, J; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Borzou, A; Call, K; Dittmann, J; Hatakeyama, K; Liu, H; Pastika, N; Bartek, R; Dominguez, A; Buccilli, A; Cooper, S I; Henderson, C; Rumerio, P; West, C; Arcaro, D; Avetisyan, A; Bose, T; Gastler, D; Rankin, D; Richardson, C; Rohlf, J; Sulak, L; Zou, D; Benelli, G; Cutts, D; Garabedian, A; Hakala, J; Heintz, U; Hogan, J M; Jesus, O; Kwok, K H M; Laird, E; Landsberg, G; Mao, Z; Narain, M; Piperov, S; Sagir, S; Spencer, E; Syarif, R; Breedon, R; Burns, D; Calderon De La Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Flores, C; Funk, G; Gardner, M; Ko, W; Lander, R; Mclean, C; Mulhearn, M; Pellett, D; Pilot, J; Shalhout, S; Shi, M; Smith, J; Squires, M; Stolp, D; Tos, K; Tripathi, M; Bachtis, M; Bravo, C; Cousins, R; Dasgupta, A; Florent, A; Hauser, J; Ignatenko, M; Mccoll, N; Saltzberg, D; Schnaible, C; Valuev, V; Weber, M; Bouvier, E; Burt, K; Clare, R; Ellison, J; Gary, J W; Ghiasi Shirazi, S M A; Hanson, G; Heilman, J; Jandir, P; Kennedy, E; Lacroix, F; Long, O R; Olmedo Negrete, M; Paneva, M I; Shrinivas, A; Si, W; Wei, H; Wimpenny, S; Yates, B R; Branson, J G; Cerati, G B; Cittolin, S; Derdzinski, M; Gerosa, R; Holzner, A; Klein, D; Krutelyov, V; Letts, J; Macneill, I; Olivito, D; Padhi, S; Pieri, M; Sani, M; Sharma, V; Simon, S; Tadel, M; Vartak, A; Wasserbaech, S; Welke, C; Wood, J; Würthwein, F; Yagil, A; Zevi Della Porta, G; Amin, N; Bhandari, R; Bradmiller-Feld, J; Campagnari, C; Dishaw, A; Dutta, V; Franco Sevilla, M; George, C; Golf, F; Gouskos, L; Gran, J; Heller, R; Incandela, J; Mullin, S D; Ovcharova, A; Qu, H; Richman, J; Stuart, D; Suarez, I; Yoo, J; Anderson, D; Bendavid, J; Bornheim, A; Bunn, J; Duarte, J; Lawhorn, J M; Mott, A; Newman, H B; Pena, C; Spiropulu, M; Vlimant, J R; Xie, S; Zhu, R Y; Andrews, M B; Ferguson, T; Paulini, M; Russ, J; Sun, M; Vogel, H; Vorobiev, I; Weinberg, M; Cumalat, J P; Ford, W T; Jensen, F; Johnson, A; Krohn, M; Leontsinis, S; Mulholland, T; Stenson, K; Wagner, S R; Alexander, J; Chaves, J; Chu, J; Dittmer, S; Mcdermott, K; Mirman, N; Patterson, J R; Rinkevicius, A; Ryd, A; Skinnari, L; Soffi, L; Tan, S M; Tao, Z; Thom, J; Tucker, J; Wittich, P; Zientek, M; Winn, D; Abdullin, S; Albrow, M; Apollinari, G; Apresyan, A; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Cheung, H W K; Chlebana, F; Cihangir, S; Cremonesi, M; Elvira, V D; Fisk, I; Freeman, J; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hare, D; Harris, R M; Hasegawa, S; Hirschauer, J; Hu, Z; Jayatilaka, B; Jindariani, S; Johnson, M; Joshi, U; Klima, B; Kreis, B; Lammel, S; Linacre, J; Lincoln, D; Lipton, R; Liu, M; Liu, T; Lopes De Sá, R; Lykken, J; Maeshima, K; Magini, N; Marraffino, J M; Maruyama, S; Mason, D; McBride, P; Merkel, P; Mrenna, S; Nahn, S; O'Dell, V; Pedro, K; Prokofyev, O; Rakness, G; Ristori, L; Sexton-Kennedy, E; Soha, A; Spalding, W J; Spiegel, L; Stoynev, S; Strait, J; Strobbe, N; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vernieri, C; Verzocchi, M; Vidal, R; Wang, M; Weber, H A; Whitbeck, A; Wu, Y; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Brinkerhoff, A; Carnes, A; Carver, M; Curry, D; Das, S; Field, R D; Furic, I K; Konigsberg, J; Korytov, A; Low, J F; Ma, P; Matchev, K; Mei, H; Mitselmakher, G; Rank, D; Shchutska, L; Sperka, D; Thomas, L; Wang, J; Wang, S; Yelton, J; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Ackert, A; Adams, T; Askew, A; Bein, S; Hagopian, S; Hagopian, V; Johnson, K F; Kolberg, T; Perry, T; Prosper, H; Santra, A; Yohay, R; Baarmand, M M; Bhopatkar, V; Colafranceschi, S; Hohlmann, M; Noonan, D; Roy, T; Yumiceva, F; Adams, M R; Apanasevich, L; Berry, D; Betts, R R; Cavanaugh, R; Chen, X; Evdokimov, O; Gerber, C E; Hangal, D A; Hofman, D J; Jung, K; Kamin, J; Sandoval Gonzalez, I D; Trauger, H; Varelas, N; Wang, H; Wu, Z; Zhang, J; Bilki, B; Clarida, W; Dilsiz, K; Durgut, S; Gandrajula, R P; Haytmyradov, M; Khristenko, V; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Snyder, C; Tiras, E; Wetzel, J; Yi, K; Blumenfeld, B; Cocoros, A; Eminizer, N; Fehling, D; Feng, L; Gritsan, A V; Maksimovic, P; Roskes, J; Sarica, U; Swartz, M; Xiao, M; You, C; Al-Bataineh, A; Baringer, P; Bean, A; Boren, S; Bowen, J; Castle, J; Forthomme, L; Khalil, S; Kropivnitskaya, A; Majumder, D; Mcbrayer, W; Murray, M; Sanders, S; Stringer, R; Tapia Takaki, J D; Wang, Q; Ivanov, A; Kaadze, K; Maravin, Y; Mohammadi, A; Saini, L K; Skhirtladze, N; Toda, S; Rebassoo, F; Wright, D; Anelli, C; Baden, A; Baron, O; Belloni, A; Calvert, B; Eno, S C; Ferraioli, C; Gomez, J A; Hadley, N J; Jabeen, S; Jeng, G Y; Kellogg, R G; Kunkle, J; Mignerey, A C; Ricci-Tam, F; Shin, Y H; Skuja, A; Tonjes, M B; Tonwar, S C; Abercrombie, D; Allen, B; Apyan, A; Azzolini, V; Barbieri, R; Baty, A; Bi, R; Bierwagen, K; Brandt, S; Busza, W; Cali, I A; D'Alfonso, M; Demiragli, Z; Gomez Ceballos, G; Goncharov, M; Hsu, D; Iiyama, Y; Innocenti, G M; Klute, M; Kovalskyi, D; Krajczar, K; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Maier, B; Marini, A C; Mcginn, C; Mironov, C; Narayanan, S; Niu, X; Paus, C; Roland, C; Roland, G; Salfeld-Nebgen, J; Stephans, G S F; Tatar, K; Velicanu, D; Wang, J; Wang, T W; Wyslouch, B; Benvenuti, A C; Chatterjee, R M; Evans, A; Hansen, P; Kalafut, S; Kao, S C; Kubota, Y; Lesko, Z; Mans, J; Nourbakhsh, S; Ruckstuhl, N; Rusack, R; Tambe, N; Turkewitz, J; Acosta, J G; Oliveros, S; Avdeeva, E; Bloom, K; Claes, D R; Fangmeier, C; Gonzalez Suarez, R; Kamalieddin, R; Kravchenko, I; Malta Rodrigues, A; Monroy, J; Siado, J E; Snow, G R; Stieger, B; Alyari, M; Dolen, J; Godshalk, A; Harrington, C; Iashvili, I; Kaisen, J; Nguyen, D; Parker, A; Rappoccio, S; Roozbahani, B; Alverson, G; Barberis, E; Hortiangtham, A; Massironi, A; Morse, D M; Nash, D; Orimoto, T; Teixeira De Lima, R; Trocino, D; Wang, R-J; Wood, D; Bhattacharya, S; Charaf, O; Hahn, K A; Mucia, N; Odell, N; Pollack, B; Schmitt, M H; Sung, K; Trovato, M; Velasco, M; Dev, N; Hildreth, M; Hurtado Anampa, K; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Marinelli, N; Meng, F; Mueller, C; Musienko, Y; Planer, M; Reinsvold, A; Ruchti, R; Rupprecht, N; Smith, G; Taroni, S; Wayne, M; Wolf, M; Woodard, A; Alimena, J; Antonelli, L; Bylsma, B; Durkin, L S; Flowers, S; Francis, B; Hart, A; Hill, C; Ji, W; Liu, B; Luo, W; Puigh, D; Winer, B L; Wulsin, H W; Cooperstein, S; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Lange, D; Luo, J; Marlow, D; Medvedeva, T; Mei, K; Ojalvo, I; Olsen, J; Palmer, C; Piroué, P; Stickland, D; Svyatkovskiy, A; Tully, C; Malik, S; Barker, A; Barnes, V E; Folgueras, S; Gutay, L; Jha, M K; Jones, M; Jung, A W; Khatiwada, A; Miller, D H; Neumeister, N; Schulte, J F; Shi, X; Sun, J; Wang, F; Xie, W; Parashar, N; Stupak, J; Adair, A; Akgun, B; Chen, Z; Ecklund, K M; Geurts, F J M; Guilbaud, M; Li, W; Michlin, B; Northup, M; Padley, B P; Roberts, J; Rorie, J; Tu, Z; Zabel, J; Betchart, B; Bodek, A; de Barbaro, P; Demina, R; Duh, Y T; Ferbel, T; Galanti, M; Garcia-Bellido, A; Han, J; Hindrichs, O; Khukhunaishvili, A; Lo, K H; Tan, P; Verzetti, M; Agapitos, A; Chou, J P; Gershtein, Y; Gómez Espinosa, T A; Halkiadakis, E; Heindl, M; Hughes, E; Kaplan, S; Kunnawalkam Elayavalli, R; Kyriacou, S; Lath, A; Montalvo, R; Nash, K; Osherson, M; Saka, H; Salur, S; Schnetzer, S; Sheffield, D; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Delannoy, A G; Foerster, M; Heideman, J; Riley, G; Rose, K; Spanier, S; Thapa, K; Bouhali, O; Celik, A; Dalchenko, M; De Mattia, M; Delgado, A; Dildick, S; Eusebi, R; Gilmore, J; Huang, T; Juska, E; Kamon, T; Mueller, R; Pakhotin, Y; Patel, R; Perloff, A; Perniè, L; Rathjens, D; Safonov, A; Tatarinov, A; Ulmer, K A; Akchurin, N; Damgov, J; De Guio, F; Dragoiu, C; Dudero, P R; Faulkner, J; Gurpinar, E; Kunori, S; Lamichhane, K; Lee, S W; Libeiro, T; Peltola, T; Undleeb, S; Volobouev, I; Wang, Z; Greene, S; Gurrola, A; Janjam, R; Johns, W; Maguire, C; Melo, A; Ni, H; Sheldon, P; Tuo, S; Velkovska, J; Xu, Q; Arenton, M W; Barria, P; Cox, B; Hirosky, R; Ledovskoy, A; Li, H; Neu, C; Sinthuprasith, T; Sun, X; Wang, Y; Wolfe, E; Xia, F; Clarke, C; Harr, R; Karchin, P E; Sturdy, J; Zaleski, S; Belknap, D A; Buchanan, J; Caillol, C; Dasu, S; Dodd, L; Duric, S; Gomber, B; Grothe, M; Herndon, M; Hervé, A; Hussain, U; Klabbers, P; Lanaro, A; Levine, A; Long, K; Loveless, R; Pierro, G A; Polese, G; Ruggles, T; Savin, A; Smith, N; Smith, W H; Taylor, D; Woods, N
2017-01-01
Normalized double-differential cross sections for top quark pair ([Formula: see text]) production are measured in pp collisions at a centre-of-mass energy of 8[Formula: see text] with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 19.7[Formula: see text]. The measurement is performed in the dilepton [Formula: see text] final state. The [Formula: see text] cross section is determined as a function of various pairs of observables characterizing the kinematics of the top quark and [Formula: see text] system. The data are compared to calculations using perturbative quantum chromodynamics at next-to-leading and approximate next-to-next-to-leading orders. They are also compared to predictions of Monte Carlo event generators that complement fixed-order computations with parton showers, hadronization, and multiple-parton interactions. Overall agreement is observed with the predictions, which is improved when the latest global sets of proton parton distribution functions are used. The inclusion of the measured [Formula: see text] cross sections in a fit of parametrized parton distribution functions is shown to have significant impact on the gluon distribution.
Modarres, M.; Masouminia, M. R.; Aminzadeh Nik, R.; Hosseinkhani, H.; Olanj, N.
2017-09-01
The present work is devoted to study the high-energy QCD events, such as the di-jet productions from proton-proton inelastic collisions at the LHC in the forward-center and the forward-forward configurations. This provides us with much valuable case study, since such phenomena can provide a direct glimpse into the partonic behavior of a hadron in a dominant gluonic region. We use the unintegrated parton distribution functions (UPDF) in the kt-factorization framework. The UPDF of Kimber et al. (KMR) and Martin et al. (MRW) are generated in the leading order (LO) and next-to-leading order (NLO), using the Harland-Lang et al. (MMHT2014) PDF libraries. While working in the forward-center and the forward-forward rapidity sectors, one can probe the parton densities at very low longitudinal momentum fractions (x). Such a model computation can provide simpler analytic description of data with respect to existing formalisms such as perturbative QCD. The differential cross-section calculations are performed at the center of mass energy of 7 TeV corresponding to CMS collaboration measurement. It is shown that the gluonic jet productions are dominant and a good description of data as well as other theoretical attempts (i.e. KS-linear, KS-nonlinear and rcBK) is obtained. The uncertainty of the calculations is derived by manipulating the hard scale of the processes by a factor of two. This conclusion is achieved, due to the particular visualization of the angular ordering constraint (AOC), that is incorporated in the definition of these UPDF.
Two-loop planar master integrals for Higgs →3 partons with full heavy-quark mass dependence
International Nuclear Information System (INIS)
Bonciani, Roberto; Duca, Vittorio Del; Frellesvig, Hjalte; Henn, Johannes M.; Moriello, Francesco; Smirnov, Vladimir A.
2016-01-01
We present the analytic computation of all the planar master integrals which contribute to the two-loop scattering amplitudes for Higgs→3 partons, with full heavy-quark mass dependence. These are relevant for the NNLO corrections to fully inclusive Higgs production and to the NLO corrections to Higgs production in association with a jet, in the full theory. The computation is performed using the differential equations method. Whenever possible, a basis of master integrals that are pure functions of uniform weight is used. The result is expressed in terms of one-fold integrals of polylogarithms and elementary functions up to transcendental weight four. Two integral sectors are expressed in terms of elliptic integrals. We show that by introducing a one-dimensional parametrization of the integrals the relevant second order differential equation can be readily solved, and the solution can be expressed to all orders of the dimensional regularization parameter in terms of iterated integrals over elliptic kernels. We express the result for the elliptic sectors in terms of two and three-fold iterated integrals, which we find suitable for numerical evaluations. This is the first time that four-point multiscale Feynman integrals have been computed in a fully analytic way in terms of elliptic integrals.
Two-loop planar master integrals for Higgs →3 partons with full heavy-quark mass dependence
Energy Technology Data Exchange (ETDEWEB)
Bonciani, Roberto [Dipartimento di Fisica, Sapienza - Università di Roma,Piazzale Aldo Moro 5, 00185, Rome (Italy); INFN Sezione di Roma, Piazzale Aldo Moro 2, 00185, Rome (Italy); Duca, Vittorio Del [ETH Zurich, Institut fur theoretische Physik, Wolfgang-Paulistr. 27, 8093, Zurich (Switzerland); INFN Laboratori Nazionali di Frascati, 00044 Frascati, Roma (Italy); Frellesvig, Hjalte [Institute of Nuclear and Particle Physics, NCSR Demokritos, Agia Paraskevi, 15310 (Greece); Henn, Johannes M. [PRISMA Cluster of Excellence, Johannes Gutenberg University, 55099 Mainz (Germany); Moriello, Francesco [Dipartimento di Fisica, Sapienza - Università di Roma,Piazzale Aldo Moro 5, 00185, Rome (Italy); INFN Sezione di Roma, Piazzale Aldo Moro 2, 00185, Rome (Italy); ETH Zurich, Institut fur theoretische Physik, Wolfgang-Paulistr. 27, 8093, Zurich (Switzerland); Smirnov, Vladimir A. [Skobeltsyn Institute of Nuclear Physics of Moscow State University, 119991 Moscow (Russian Federation)
2016-12-19
We present the analytic computation of all the planar master integrals which contribute to the two-loop scattering amplitudes for Higgs→3 partons, with full heavy-quark mass dependence. These are relevant for the NNLO corrections to fully inclusive Higgs production and to the NLO corrections to Higgs production in association with a jet, in the full theory. The computation is performed using the differential equations method. Whenever possible, a basis of master integrals that are pure functions of uniform weight is used. The result is expressed in terms of one-fold integrals of polylogarithms and elementary functions up to transcendental weight four. Two integral sectors are expressed in terms of elliptic integrals. We show that by introducing a one-dimensional parametrization of the integrals the relevant second order differential equation can be readily solved, and the solution can be expressed to all orders of the dimensional regularization parameter in terms of iterated integrals over elliptic kernels. We express the result for the elliptic sectors in terms of two and three-fold iterated integrals, which we find suitable for numerical evaluations. This is the first time that four-point multiscale Feynman integrals have been computed in a fully analytic way in terms of elliptic integrals.
Depth Distribution Of The Maxima Of Extensive Air Shower
Adams, J. H.; Howell, L. W.
2003-01-01
Observations of the extensive air showers from space can be free from interference by low altitude clouds and aerosols if the showers develop at a sufficiently high altitude. In this paper we explore the altitude distribution of shower maxima to determine the fraction of all showers that will reach their maxima at sufficient altitudes to avoid interference from these lower atmosphere phenomena. Typically the aerosols are confined within a planetary boundary layer that extends from only 2-3 km above the Earth's surface. Cloud top altitudes extend above 15 km but most are below 4 km. The results reported here show that more than 75% of the showers that will be observed by EUSO have maxima above the planetary boundary layer. The results also show that more than 50% of the showers that occur on cloudy days have their maxima above the cloud tops.
Spatial structure of extensive air showers near the axis
Energy Technology Data Exchange (ETDEWEB)
Alekseev, E N; Gal' perin, M D; Glemba, P Ya [AN SSSR, Moscow. Inst. Yadernykh Issledovanij; Moskovskij Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Yadernoj Fiziki; Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica)
1978-07-01
The spatial structure of the extensive air showers has been investigated. The tests have been staged on the 400 scintillation counter installation. It has been shown, that spatial distribution of the extensive air showers in the vicinity of the axis does not vary in case of the Nsub(e) electron number showers in the 10/sup 5/-10/sup 6/ range. The share of the showers having a clear-cut multicore structure is approximately 3% with Nsub(e) >= 2x10/sup 5/.
Results of the NLO error-propagation exercise
International Nuclear Information System (INIS)
Gessiness, B.; Lower, C.W.; Porter, G.K.
1984-01-01
The successful conclusion of the Error Propagation Exercise, started 2 years ago at NLO, Inc.'s Feed Materials Production Center, Fernald, Ohio, was reached when a statistically based LEID was determined in a controlled balance area, processing low enriched uranium materials. The three-month test demonstrated that it is possible even in a high-throughput bulk processing facility to collect and process all data necessary for computation of a rigorously determined LEID without interference with production and without significant cost increases. The exercise further demonstrated that much of the data necessary are already collected for other routine uses (e.g., production control, measurement quality control, etc.) so that only a modest increase in data collection is necessary. The automated data collection system developed showed that the additional data can be collected quickly, accurately, and relatively cheaply using readily-available commercial hardware. The benefits of error propagation in terms of increased confidence in nuclear materials safeguards are clear; plans have been developed to extend error propagation to all the enriched uranium processing areas of the Feed Materials Production Center. 6 references, 3 figures
The results of the NLO error propagation exercise
International Nuclear Information System (INIS)
Gessiness, B.; Lower, C.W.; Porter, G.K.
1984-01-01
The successful conclusion of the Error Propagation Exercise, started 2 years ago at NLO, Inc.'s Feed Materials Production Center, Fernald, Ohio, was reached when a statistically based LEID was determined in a controlled balance area, processing low enriched uranium materials. The three-month test demonstrated that it is possible even in a high-throughput bulk processing facility to collect and process all data necessary for computation of a rigorously determined LEID without interference with production and without significant cost increases. The exercise further demonstrated that much of the data necessary are already collected for other routine uses (e.g., production control, measurement quality control, etc.) so that only a modest increase in data collection is necessary. The automated data collection system developed showed that the additional data can be collected quickly, accurately, and relatively cheaply using readily-available commercial hardware. The benefits of error propagation in terms of increased confidence in nuclear materials safeguards are clear; plans have been developed to extend error propagation to all the enriched uranium processing areas of the Feed Materials Production Center
Deep inelastic scattering and forward π0 production at NLO
International Nuclear Information System (INIS)
Aurenche, P.; Basu, Rahul; Fontannaz, M.; Godbole, R.M.
2005-01-01
We present a detailed phenomenological study of forward hadron (π 0 ) production in deep inelastic scattering, with both the direct and the resolved contributions calculated to NLO accuracy. A comparison of the theoretical predictions for the various distributions with the H1 data and a study of the stability of the QCD predictions under changes of scales is the focus of this study. We obtain a very good overall description of the recent H1 data with the choice of scale Q 2 +E 2 bot , in contrast to the (Q 2 +E 2 bot )/2 required earlier when the resolved contribution was included only at LO accuracy. We find a more modest variation of the predictions, as the scale is changed from (Q 2 +E 2 bot )/2 to 2(Q 2 +E 2 bot ), as compared to the case where the resolved contribution was included only at LO accuracy. This variation is of the order of the rather large experimental errors. Unfortunately, this fact prevents us from concluding that perturbation theory gives an unambiguous prediction for forward particle production in deep inelastic scattering. However, the overall success of perturbative QCD in explaining the small x Bj data means that perhaps a full resummation of the BFKL ladder is not called for. We notice the need for rather large resolved contributions to explain the data at low x Bj even at somewhat larger Q 2 values. (orig.)
New advances in the statistical parton distributions approach*
Directory of Open Access Journals (Sweden)
Soffer Jacques
2016-01-01
Full Text Available The quantum statistical parton distributions approach proposed more than one decade ago is revisited by considering a larger set of recent and accurate Deep Inelastic Scattering experimental results. It enables us to improve the description of the data by means of a new determination of the parton distributions. This global next-to-leading order QCD analysis leads to a good description of several structure functions, involving unpolarized parton distributions and helicity distributions, in terms of a rather small number of free parameters. There are many serious challenging issues. The predictions of this theoretical approach will be tested for single-jet production and charge asymmetry in W± production in p̄p and pp collisions up to LHC energies, using recent data and also for forthcoming experimental results.
Neural network determination of parton distributions: the nonsinglet case
International Nuclear Information System (INIS)
Del Debbio, Luigi; Forte, Stefano; Latorre, Jose I.; Piccione, Andrea; Rojo, Joan
2007-01-01
We provide a determination of the isotriplet quark distribution from available deep-inelastic data using neural networks. We give a general introduction to the neural network approach to parton distributions, which provides a solution to the problem of constructing a faithful and unbiased probability distribution of parton densities based on available experimental information. We discuss in detail the techniques which are necessary in order to construct a Monte Carlo representation of the data, to construct and evolve neural parton distributions, and to train them in such a way that the correct statistical features of the data are reproduced. We present the results of the application of this method to the determination of the nonsinglet quark distribution up to next-to-next-to-leading order, and compare them with those obtained using other approaches
The breaking of Bjorken scaling in the covariant parton model
International Nuclear Information System (INIS)
Polkinghorne, J.C.
1976-01-01
Scale breaking is investigated in terms of a covariant parton model formulation of deep inelastic processes. It is shown that a consistent theory requires that the convergence properties of parton-hadron amplitudes should be modified as well as the parton being given form factors. Purely logarithmic violation is possible and the resulting model has many features in common with asymtotically free gauge theories. Behaviour at large and small ω and fixed q 2 is investigated. γW 2 should increase with q 2 at large ω and decrease with q 2 at small ω. Heuristic arguments are also given which suggest that the model would only lead to logarithmic modifications of dimensional counting results in purely hadronic deep scattering. (Auth.)
Instanton partons in 5-dimensional SU(N) gauge theory
International Nuclear Information System (INIS)
Bolognesi, Stefano; Lee, Kimyeong
2011-01-01
The circle compactification of the 6-dimensional (2,0) superconformal theory of A N-1 type leads to the 5-dimensional SU(N) maximally supersymmetric gauge theory. Instanton solitons embody Kaluza-Klein modes and are conjectured to be composed of partonic constituents. We realize such a parton of 1/N instanton topological charge at the intersection of magnetic flux sheets. After a further compactification with nontrivial Wilson-line expectation value, instantons or calorons have been shown to be split into fundamental monopoles of fractional instanton charge. In the symmetric phase with trivial Wilson-line expectation value, Bogomol'nyi-Prasad-Sommerfield instanton partons emerge more concretely as non-Abelian Bogomol'nyi-Prasad-Sommerfield monopoles of minimum charge allowed in Dirac quantization.
Unbiased determination of polarized parton distributions and their uncertainties
Ball, Richard D.; Guffanti, Alberto; Nocera, Emanuele R.; Ridolfi, Giovanni; Rojo, Juan
2013-01-01
We present a determination of a set of polarized parton distributions (PDFs) of the nucleon, at next-to-leading order, from a global set of longitudinally polarized deep-inelastic scattering data: NNPDFpol1.0. The determination is based on the NNPDF methodology: a Monte Carlo approach, with neural networks used as unbiased interpolants, previously applied to the determination of unpolarized parton distributions, and designed to provide a faithful and statistically sound representation of PDF uncertainties. We present our dataset, its statistical features, and its Monte Carlo representation. We summarize the technique used to solve the polarized evolution equations and its benchmarking, and the method used to compute physical observables. We review the NNPDF methodology for parametrization and fitting of neural networks, the algorithm used to determine the optimal fit, and its adaptation to the polarized case. We finally present our set of polarized parton distributions. We discuss its statistical properties, ...
QCD's Partner Needed for Mass Spectra and Parton Structure Functions
International Nuclear Information System (INIS)
Kim, Y.S.
2009-01-01
as in the case of the hydrogen atom, bound-state wave functions are needed to generate hadronic spectra. For this purpose, in 1971, Feynman and his students wrote down a Lorentz-invariant harmonic oscillator equation. This differential equation has one set of solutions satisfying the Lorentz-covariant boundary condition. This covariant set generates Lorentz-invariant mass spectra with their degeneracies. Furthermore, the Lorentz-covariant wave functions allow us to calculate the valence parton distribution by Lorentz-boosting the quark-model wave function from the hadronic rest frame. However, this boosted wave function does not give an accurate parton distribution. The wave function needs QCD corrections to make a contact with the real world. Likewise, QCD needs the wave function as a starting point for calculating the parton structure function. (author)
Soft factors for double parton scattering at NNLO
Energy Technology Data Exchange (ETDEWEB)
Vladimirov, Alexey [Institut für Theoretische Physik, Universität Regensburg,D-93040 Regensburg (Germany)
2016-12-13
We show at NNLO that the soft factors for double parton scattering (DPS) for both integrated and unintegrated kinematics, can be presented entirely in the terms of the soft factor for single Drell-Yan process, i.e. the transverse momentum dependent (TMD) soft factor. Using the linearity of the logarithm of TMD soft factor in rapidity divergences, we decompose the DPS soft factor matrices into a product of matrices with rapidity divergences in given sectors, and thus, define individual double parton distributions at NNLO. The rapidity anomalous dimension matrices for double parton distributions are presented in the terms of TMD rapidity anomalous dimension. The analysis is done using the generating function approach to web diagrams. Significant part of the result is obtained from the symmetry properties of web diagrams without referring to explicit expressions or a particular rapidity regularization scheme. Additionally, we present NNLO expression for the web diagram generating function for Wilson lines with two light-like directions.
J/Ψ production in an equilibrating partonic system
International Nuclear Information System (INIS)
Xu, Xiao-Ming
1999-01-01
Any color singlet or octet cc-bar pair is created at short distances and then expands to a full size of J/Ψ. Such a dynamical evolution process is included here in calculations for the J/Ψ number distribution as a function of transverse momentum and rapidity in central Au-Au collisions at both RHIC and LHC energies. The cc-bar pairs are produced in the initial collision and in the partonic system during the prethermal and thermal stages through the partonic channels ab → cc-bar[ 2S+1 L J ] and ab → cc-bar[ 2S+1 L J ]x, and then they dissociate in the latter two stages. Dissociation of cc-bar in the medium occurs via two reactions: (a) color singlet cc-bar plus a gluon turns to color octet cc-bar, (b) color octet cc-bar plus a gluon persists as color octet. There are modest yields of cc-bar in the prethermal stage at RHIC energy and through the reactions ab → cc-bar[ 2S+1 L J ] at LHC energy for partons with large average momentum in the prethermal stage at both collider energies and in the thermal stage at LHC energy. Production from the partonic system competes with the suppression of the initial yield in the deconfined medium. Consequently, a bulge within -1.5 < y < 1.5 has been found for the J/Ψ number distribution and the ratio of J/Ψ number distributions for Au-Au collisions to nucleon-nucleon collisions. This bulge is caused by the partonic system and is thus an indicator of a deconfined partonic medium. Based on this result we suggest the rapidity region worth measuring in future experiments at RHIC and LHC to be -3 < y < 3
Unbiased Polarised Parton Distribution Functions and their Uncertainties
Nocera, Emanuele R.; Ridolfi, Giovanni; Rojo, Juan
2012-01-01
We present preliminary results on the determination of spin-dependent, or polarised, Parton Distribution Functions (PDFs) from all relevant inclusive polarised DIS data. The analysis is performed within the NNPDF approach, which provides a faithful and statistically sound representation of PDFs and their uncertainties. We describe how the NNPDF methodology has been extended to the polarised case, and compare our results with other recent polarised parton sets. We show that polarised PDF uncertainties can be sizeably underestimated in standard determinations, most notably for the gluon.
Renormalization in Large Momentum Effective Theory of Parton Physics.
Ji, Xiangdong; Zhang, Jian-Hui; Zhao, Yong
2018-03-16
In the large-momentum effective field theory approach to parton physics, the matrix elements of nonlocal operators of quark and gluon fields, linked by straight Wilson lines in a spatial direction, are calculated in lattice quantum chromodynamics as a function of hadron momentum. Using the heavy-quark effective theory formalism, we show a multiplicative renormalization of these operators at all orders in perturbation theory, both in dimensional and lattice regularizations. The result provides a theoretical basis for extracting parton properties through properly renormalized observables in Monte Carlo simulations.
The role of the input scale in parton distribution analyses
International Nuclear Information System (INIS)
Jimenez-Delgado, Pedro
2012-01-01
A first systematic study of the effects of the choice of the input scale in global determinations of parton distributions and QCD parameters is presented. It is shown that, although in principle the results should not depend on these choices, in practice a relevant dependence develops as a consequence of what is called procedural bias. This uncertainty should be considered in addition to other theoretical and experimental errors, and a practical procedure for its estimation is proposed. Possible sources of mistakes in the determination of QCD parameter from parton distribution analysis are pointed out.
Chemical and kinetic equilibrations via radiative parton transport
International Nuclear Information System (INIS)
Zhang Bin; Wortman, Warner A
2011-01-01
A hot and dense partonic system can be produced in the early stage of a relativistic heavy ion collision. How it equilibrates is important for the extraction of Quark-Gluon Plasma properties. We study the chemical and kinetic equilibrations of the Quark-Gluon Plasma using a radiative transport model. Thermal and Color-Glass-Condensate motivated initial conditions are used. We observe that screened parton interactions always lead to partial pressure isotropization. Different initial pressure anisotropies result in the same asymptotic evolution. Comparison of evolutions with and without radiative processes shows that chemical equilibration interacts with kinetic equilibration and radiative processes can contribute significantly to pressure isotropization.
Probing lumps of wee partons in deep inelastic scattering
International Nuclear Information System (INIS)
Buchmueller, W.
1994-06-01
Recently, the ZEUS collaboration has reported on several remarkable properties of events with a large rapidity gap in deep inelastic scattering. We suggest that the mechanism underlying these events is the scattering of electrons off lumps of wee partons inside the proton. Based on an effective lagrangian approach the Q 2 -, x- and W-distributions are evaluated. For sufficiently small invariant mass of the detected hadronic system, the mechanism implies leading twist behaviour. The x- and W-distributions are determined by the Lipatov exponent which governs the behaviour of parton densities at small x. (orig.)
Transverse momentum dependent (TMD) parton distribution functions. Status and prospects
International Nuclear Information System (INIS)
Angeles-Martinez, R.; Bacchetta, A.; Pavia Univ.; Balitsky, I.I.
2015-07-01
We provide a concise overview on transverse momentum dependent (TMD) parton distribution functions, their application to topical issues in high-energy physics phenomenology, and their theoretical connections with QCD resummation, evolution and factorization theorems. We illustrate the use of TMDs via examples of multi-scale problems in hadronic collisions. These include transverse momentum q T spectra of Higgs and vector bosons for low q T , and azimuthal correlations in the production of multiple jets associated with heavy bosons at large jet masses. We discuss computational tools for TMDs, and present an application of a new tool, TMDlib, to parton density fits and parameterizations.
Possible signatures of the hadronisation scale in parton jets
International Nuclear Information System (INIS)
Ochs, W.
1987-01-01
Models for hardon production in hard collisions differ widely in the energy scale characteristic of the transition from the primary partonic to the secondary hadronic phase of jet evolution. We investigate possible experimental signatures for the existence of both phases. In particular, we consider multiplicity and energy moments, long range charge correlations and angular correlations as a function of total energy or near the exclusive two body limit in e + e - annihilation and deep inelastic scattering processes. The possibility of a dual correspondence between hadronic and partonic states is discussed. (orig.)
On the use of the KMR unintegrated parton distribution functions
Golec-Biernat, Krzysztof; Staśto, Anna M.
2018-06-01
We discuss the unintegrated parton distribution functions (UPDFs) introduced by Kimber, Martin and Ryskin (KMR), which are frequently used in phenomenological analyses of hard processes with transverse momenta of partons taken into account. We demonstrate numerically that the commonly used differential definition of the UPDFs leads to erroneous results for large transverse momenta. We identify the reason for that, being the use of the ordinary PDFs instead of the cutoff dependent distribution functions. We show that in phenomenological applications, the integral definition of the UPDFs with the ordinary PDFs can be used.
Fractal Dimension of Particle Showers Measured in a Highly Granular Calorimeter
Ruan, Manqi; Bourdy, Vincent; Brients, Jean-Claude; Videau, Henri
2014-01-01
fractal dimension of showers measured in a high granularity calorimeter designed for a future lepton collider. The shower fractal dimension reveals detailed information of the spatial configuration of the shower. It is found to be characteristic of the type of interaction and highly sensitive to the nature of the incident particle. Using the shower fractal dimension, we demonstrate a particle identification algorithm that can efficiently separate electromagnetic showers, hadronic showers and non-showering tracks. We also find a logarithmic dependence of the shower fractal dimension on the particle energy.
Cosmic ray air showers in the knee energy region
Indian Academy of Sciences (India)
The cosmic ray extensive air showers in the knee energy region have been studied by the North Bengal University array. The differential size spectra at different atmospheric depths show a systematic shift of the knee towards smaller shower size with the increase in atmospheric depth. The measured values of spectral ...
New shower maximum trigger for electrons and photons at CDF
International Nuclear Information System (INIS)
Amidei, D.; Burkett, K.; Gerdes, D.; Miao, C.; Wolinski, D.
1994-01-01
For the 1994 Tevatron collider run, CDF has upgraded the electron and photo trigger hardware to make use of shower position and size information from the central shower maximum detector. For electrons, the upgrade has resulted in a 50% reduction in backgrounds while retaining approximately 90% of the signal. The new trigger also eliminates the background to photon triggers from single-phototube spikes
New shower maximum trigger for electrons and photons at CDF
International Nuclear Information System (INIS)
Gerdes, D.
1994-08-01
For the 1994 Tevatron collider run, CDF has upgraded the electron and photon trigger hardware to make use of shower position and size information from the central shower maximum detector. For electrons, the upgrade has resulted in a 50% reduction in backgrounds while retaining approximately 90% of the signal. The new trigger also eliminates the background to photon triggers from single-phototube discharge
The Geant4-Based ATLAS Fast Electromagnetic Shower Simulation
Barberio, E; Butler, B; Cheung, S L; Dell'Acqua, A; Di Simone, A; Ehrenfeld, W; Gallas, M V; Glasow, A; Hughes, E; Marshall, Z; Müller, J; Placakyte, R; Rimoldi, A; Savard, P; Tsulaia, V; Waugh, A; Young, C C; 10th ICATPP Conference on Astroparticle, Particle, Space Physics, Detectors and Medical Physics Applications
2008-01-01
We present a three-pronged approach to fast electromagnetic shower simulation in ATLAS. Parameterisation is used for high-energy, shower libraries for medium-energy, and an averaged energy deposition for very low-energy particles. We present a comparison between the fast simulation and full simulation in an ATLAS Monte Carlo production.
Air shower detection and the energy flow in electromagnetic cascades
Energy Technology Data Exchange (ETDEWEB)
Stanev, Todor (Nuclear Power Oversight Committee (United States)); Vankov, H.P. (Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. za Yadrena Izsledvaniya i Yadrena Energetika)
1992-02-01
We study the longitudinal behaviour of the energy carried by the shower particles E{sub c} and its lateral distribution, give simple parametrizations of the results of Monte Carlo simulations, and discuss the advantages of shower detectors that measure directly E{sub c}. (author).
JASA: A prototype water-Cerenkov air-shower detector
International Nuclear Information System (INIS)
Berley, D.; Dion, C.; Goodman, J.A.; Haines, T.J.; Kwok, P.W.; Stark, M.J.; Svoboda, R.C.; Ferguson, H.; Hoffman, C.M.; Horch, E.; Ellsworth, R.W.; Delay, R.S.; Lu, X.; Yodh, G.B.
1991-01-01
A small pilot experiment to examine the use of the water-Cerenkov technique for air shower detection was installed near the center of the CYGNUS air shower array. Preliminary results showing general agreement with simulations are presented. Thus, the technique promises to offer significant advances for VHE-UHE γ-ray astronomy
Testing the Effectiveness of Therapeutic Showering in Labor.
Stark, Mary Ann
: Therapeutic showering is a holistic nursing intervention that is often available and supports physiologic labor. The purpose of this study was to compare the effectiveness of therapeutic showering with usual care during active labor. Research questions were as follows: Are there significant differences between women who showered 30 minutes during active labor and those who received usual labor care in anxiety, tension, relaxation, pain, discomfort, and coping? Is there a difference in use of obstetric interventions between groups? A convenience sample of healthy low-risk women in active labor was recruited (N = 32). A pretest posttest control group repeated-measures design was used. Participants were randomized to treatment group (n = 17), who showered for 30 minutes, or to control group (n = 14) who received usual labor care. Women evaluated pain, discomfort, anxiety, tension, coping, and relaxation at enrollment, again 15 minutes after entering the shower or receiving usual care, then again 30 minutes after entering the shower or receiving usual care. Chart reviews after delivery recorded obstetric interventions. The showering group had statistically significant decreases in pain, discomfort, anxiety and tension, and significant increase in relaxation. There were no differences in use of obstetric interventions. Therapeutic showering was effective in reducing pain, discomfort, anxiety, and tension while improving relaxation and supporting labor in this sample.
Hadron shower profile and direction measurements in a segmented calorimeter
International Nuclear Information System (INIS)
Auchincloss, P.; Blair, R.; Haber, C.
1982-01-01
Recently a test measurement was made to see how well the direction of the shower induced by neutrino interactions could be determined in the lab-E detector at Fermilab. While the calorimeter in lab-E has very coarse sampling compared to the detectors described at this workshop, the method used to sample the shower could be employed in other more finely segmented detectors. The shower angle resolution obtained (36 mr.FWHM) is largely constrained by the sampling. In this test pulse heights in 2mm. steps across the hadron shower at five points along the shower were recorded. This was done with 20 wires and 20 fast ADC's. A standard MWPC system intended to accomplish the same task would have required about 250 wires and 250 ADC channels. This considerable saving in system complexity should be possible for any system where finely segmented pulse height measurements are required
Tuning the NLO properties of polymethineimine chains by chemical substitution
International Nuclear Information System (INIS)
Medved’, Miroslav; Jacquemin, Denis
2013-01-01
Highlights: ► Properties of the most stable isomers of polymethineimine (PMI) are investigated. ► 2nd order NLO properties of experimentally known PMI derivatives are determined. ► Structure-property relationships are unraveled for several series of oligomers. ► Performance of long-range corrected DFT methods is assessed. - Abstract: Structure and molecular electronic properties including dipole moment, polarizability and first hyperpolarizability of polymethineimine (PMI) oligomers (up to hexadecamers) and its experimentally known amino-, methyl-, and cyano-derivatives are investigated using several ab initio methods (HF, MP2 and DFT). It is shown that side-chain substitutions have significant effects both on the structure and molecular properties of PMI chains. Depending on the substitution, two types of structures have been identified. The first is characterized by a bent skeleton and encompasses PMI, polyacetonitrile (PAcN), and polycyanonitrile (PCN). The second, represented by polyaminonitrile (PAN), remains quasi-linear with the plane of the unit cell (UC) only slightly rotating around the longitudinal molecular axis. These structural differences are also reflected in molecular properties; while in case of PMI, PAcN, and PCN the longitudinal component of properties (reduced per UC) reaches its maximum value for medium-size oligomers and then decreases for longer chains, the linear and nonlinear properties of PAN steadily increase towards the polymeric limit. In addition, we have assessed the performances of long-range corrected DFT functionals (LR-DFT), namely LC-BLYP, CAM-B3LYP, and ωB97X within the present framework: they provide results in qualitative agreement with MP2, a success not reached with B3LYP
Wee partons in large nuclei: from virtual dream to hard reality
International Nuclear Information System (INIS)
Venugopalan, R.
1995-01-01
We construct a weak coupling, many body theory to compute parton distributions in large nuclei for x -1/3 . The wee partons are highly coherent, non-Abelian Weizsaecker-Williams fields. Radiative corrections to the classical results are discussed. The parton distributions for a single nucleus provide the initial conditions for the dynamical evolution of matter formed in ultrarelativistic nuclear collisions. (orig.)
Global study of nuclear modifications on parton distribution functions
Directory of Open Access Journals (Sweden)
Rong Wang
2017-07-01
Full Text Available A global analysis of nuclear medium modifications of parton distributions is presented using deeply inelastic scattering data of various nuclear targets. Two obtained data sets are provided for quark and gluon nuclear modification factors, referred as nIMParton16. One is from the global fit only to the experimental data of isospin-scalar nuclei (Set A, and the other is from the fit to all the measured nuclear data (Set B. The scale-dependence is described by DGLAP equations with nonlinear corrections in this work. The Fermi motion and off-shell effect, nucleon swelling, and parton–parton recombination are taken into account together for modeling the complicated x-dependence of nuclear modification. The nuclear gluon shadowing in this paper is dynamically generated by the QCD evolution of parton splitting and recombination processes with zero gluon density at the input scale. Sophisticated nuclear dependence of nuclear medium effects is studied with only two free parameters. With the obtained free parameters from the global analysis, the nuclear modifications of parton distribution functions of unmeasured nuclei can be predicted in our model. Nuclear modification of deuteron is also predicted and shown with recent measurement at JLab.
Parton degrees of freedom from the path-integral formalism
International Nuclear Information System (INIS)
Liu, Keh-Fei
2000-01-01
We formulate the hadronic tensor W μν of deep inelastic scattering in the path-integral formalism. It is shown that there are 3 gauge invariant and topologically distinct contributions. In addition to the valence contribution, there are two sources for the sea--one in the connected insertion and the other in the disconnected insertion. The operator product expansion is carried out in this formalism. The operator rescaling and mixing reveal that the connected sea partons evolve the same way as the valence; i.e., their evolution is decoupled from the disconnected sea and the gluon distribution functions. We explore the phenomenological consequences of this classification in terms of the small x behavior, Gottfried sum rule violation, and flavor dependence. In particular, we point out that in the nucleon u(bar sign) and d(bar sign) partons have both connected and disconnected sea contributions, whereas the s(bar sign) parton has only the disconnected sea contribution. This difference between u(bar sign)+d(bar sign) and s(bar sign), as far as we know, has not been taken into account in the fitting of parton distribution functions to experiments. (c) 2000 The American Physical Society
Unbiased determination of polarized parton distributions and their uncertainties
Energy Technology Data Exchange (ETDEWEB)
Ball, Richard D. [Tait Institute, University of Edinburgh, JCMB, KB, Mayfield Rd, Edinburgh EH9 3JZ, Scotland (United Kingdom); Forte, Stefano, E-mail: forte@mi.infn.it [Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Guffanti, Alberto [The Niels Bohr International Academy and Discovery Center, The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Nocera, Emanuele R. [Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Ridolfi, Giovanni [Dipartimento di Fisica, Università di Genova and INFN, Sezione di Genova, Genova (Italy); Rojo, Juan [PH Department, TH Unit, CERN, CH-1211 Geneva 23 (Switzerland)
2013-09-01
We present a determination of a set of polarized parton distributions (PDFs) of the nucleon, at next-to-leading order, from a global set of longitudinally polarized deep-inelastic scattering data: NNPDFpol1.0. The determination is based on the NNPDF methodology: a Monte Carlo approach, with neural networks used as unbiased interpolants, previously applied to the determination of unpolarized parton distributions, and designed to provide a faithful and statistically sound representation of PDF uncertainties. We present our dataset, its statistical features, and its Monte Carlo representation. We summarize the technique used to solve the polarized evolution equations and its benchmarking, and the method used to compute physical observables. We review the NNPDF methodology for parametrization and fitting of neural networks, the algorithm used to determine the optimal fit, and its adaptation to the polarized case. We finally present our set of polarized parton distributions. We discuss its statistical properties, test for its stability upon various modifications of the fitting procedure, and compare it to other recent polarized parton sets, and in particular obtain predictions for polarized first moments of PDFs based on it. We find that the uncertainties on the gluon, and to a lesser extent the strange PDF, were substantially underestimated in previous determinations.
Unbiased determination of polarized parton distributions and their uncertainties
International Nuclear Information System (INIS)
Ball, Richard D.; Forte, Stefano; Guffanti, Alberto; Nocera, Emanuele R.; Ridolfi, Giovanni; Rojo, Juan
2013-01-01
We present a determination of a set of polarized parton distributions (PDFs) of the nucleon, at next-to-leading order, from a global set of longitudinally polarized deep-inelastic scattering data: NNPDFpol1.0. The determination is based on the NNPDF methodology: a Monte Carlo approach, with neural networks used as unbiased interpolants, previously applied to the determination of unpolarized parton distributions, and designed to provide a faithful and statistically sound representation of PDF uncertainties. We present our dataset, its statistical features, and its Monte Carlo representation. We summarize the technique used to solve the polarized evolution equations and its benchmarking, and the method used to compute physical observables. We review the NNPDF methodology for parametrization and fitting of neural networks, the algorithm used to determine the optimal fit, and its adaptation to the polarized case. We finally present our set of polarized parton distributions. We discuss its statistical properties, test for its stability upon various modifications of the fitting procedure, and compare it to other recent polarized parton sets, and in particular obtain predictions for polarized first moments of PDFs based on it. We find that the uncertainties on the gluon, and to a lesser extent the strange PDF, were substantially underestimated in previous determinations
On neutrino and antineutrino scattering by electrons, and by partons
Bell, J S
1975-01-01
Assuming a non-derivative point interaction, and Born approximation, there are some simple relations between neutrino and antineutrino scattering on electrons or partons. They have been observed already, for some special cases, in the results of explicit calculations. Here they are obtained from simple and general considerations. (8 refs).
Parton Distributions at a 100 TeV Hadron Collider
Rojo, Juan
2016-01-01
The determination of the parton distribution functions (PDFs) of the proton will be an essential input for the physics program of a future 100 TeV hadron collider. The unprecedented center-of-mass energy will require knowledge of PDFs in currently unexplored kinematical regions such as the ultra
Spin-dependent parton distributions and structure functions
International Nuclear Information System (INIS)
Bentz, W.; Ito, T.; Cloet, I.C.; Thomas, A.W.; Yazaki, K.
2008-01-01
Nuclear parton distributions and structure functions are determined in an effective chiral quark theory. We also discuss an extension of our model to fragmentation functions. Presented at the 20th Few-Body Conference, Pisa, Italy, 10-14 September 2007. (author)
Probing the partonic structure of exotic particles in hard electroproduction
International Nuclear Information System (INIS)
Anikin, I.V.; Pire, B.; Szymanowski, L.; Teryaev, O.V.; Wallon, S.
2005-01-01
We argue that the electroproduction of exotic particles is a useful tool for study of their partonic structure. In the case of hybrid mesons, the magnitude of their cross sections shows that they are accessible for measurements in existing electroproduction experiments
Diffraction scattering and the parton model in QCD
International Nuclear Information System (INIS)
White, A.
1985-01-01
Arguments are presented that the validity of the parton model for hadron scattering in QCD is directly related to the occurrence of the Critical Pomeron description of diffraction scattering. An attractive route suggested for Electroweak and Grand Unification is also briefly described
The QCD coupling and parton distributions at high precision
International Nuclear Information System (INIS)
Bluemlein, Johannes
2010-07-01
A survey is given on the present status of the nucleon parton distributions and related precision calculations and precision measurements of the strong coupling constant α s (M 2 Z ). We also discuss the impact of these quantities on precision observables at hadron colliders. (orig.)
The QCD coupling and parton distributions at high precision
Energy Technology Data Exchange (ETDEWEB)
Bluemlein, Johannes
2010-07-15
A survey is given on the present status of the nucleon parton distributions and related precision calculations and precision measurements of the strong coupling constant {alpha}{sub s}(M{sup 2}{sub Z}). We also discuss the impact of these quantities on precision observables at hadron colliders. (orig.)
Extent of sensitivity of single photon production to parton distribution ...
Indian Academy of Sciences (India)
used the BFG-I parton to photon fragmentation function by Bourhis et al [17], which includes correction in the fragmentation function beyond leading logarithmic approxima- tion. The three scales μf,μR,μF are set equal to a common scale μ to reduce theoretical uncertainties in the calculation. The scale μ is further defined as ...
Spin structure at the partonic level. Pt. 2
International Nuclear Information System (INIS)
Leader, E.
1983-01-01
Knowledge of the spin and momentum distribution of partons inside a polarised nucleon, as deduced from lepton scattering, is combined with lowest order QCD to calculate spin dependent parameters in large psub(T) hadronic reactions. Clear predictions emerge in some cases and are in conflict with present experimental results. There is a real challenge to improve both theory and experiment. (orig.)
Parton distributions and{alpha}{sub s} for the LHC
Energy Technology Data Exchange (ETDEWEB)
Alekhin, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Institut Fiziki Vysokikh Ehnergij, Protvino (Russian Federation); Bluemlein, J. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Moch, S.O. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Univ. Hamburg (Germany). 2. Inst fuer Theoretische Physik
2013-03-15
We report on recent determinations of NNLO parton distributions and of {alpha}{sub s}(M{sub Z}) based on the world deep-inelastic data, supplemented by collider data. Some applications are discussed for semi-inclusive processes at the LHC.
PARTON SATURATION, PRODUCTION, AND EQUILIBRATION IN HIGH ENERGY NUCLEAR COLLISIONS
International Nuclear Information System (INIS)
VENUGOPALAN, R.
1999-01-01
Deeply inelastic scattering of electrons off nuclei can determine whether parton distributions saturate at HERA energies. If so, this phenomenon will also tell us a great deal about how particles are produced, and whether they equilibrate, in high energy nuclear collisions
Comparative study of the uncertainties in parton distribution functions
International Nuclear Information System (INIS)
Alekhin, S.I.
2003-01-01
Comparison of the methods used to extract the uncertainties in parton distributions is given, including their statistical properties and practical issues of implementation. Advantages and disadvantages of different methods are illustrated using the examples based on the analysis of real data. Available PDFs sets with associated uncertainties are reviewed and critically compared
Nuclear physics aspects in the parton model of Feynman
International Nuclear Information System (INIS)
Pauchy Hwang, W.Y.
1995-01-01
The basic fact that pions couple strongly to nucleons has dominated various nuclear physics thinkings since the birth of the field more than sixty years ago. The parton model of Feynman, in which the structure of a nucleon (or a hadron) is characterized by a set of parton distributions, was proposed originally in late 1960's to treat high energy deep inelastic scattering, and later many other high energy physics experiments involving hadrons. Introduction of the concept of parton distributions signifies the departure of particle physics from nuclear physics. Following the suggestion that the sea quark distributions in a nucleon, at low and moderate Q 2 (at least up to a few GeV 2 ), can be attributed primarily to the probability of finding such quarks or antiquarks in the mesons (or recoiling baryons) associated with the nucleon, the author examines how nuclear physics aspects offer quantitative understanding of several recent experimental results, including the observed violation of the Gotfried sum rule and the so-called open-quotes proton spin crisisclose quotes. These results suggest that determination of parton distributions of a hadron at Q 2 of a few GeV 2 (and at small x) must in general take into account nuclear physics aspects. Implication of these results for other high-energy reactions, such as semi-inclusive hadron production in deep inelastic scattering, are also discussed
On neutrino and antineutrino scattering by electrons, and by partons
International Nuclear Information System (INIS)
Bell, J.S.; Dass, G.V.
1975-09-01
Assuming a non-derivative point interaction, and Born approximation, there are some simple relations between neutrino and antineutrino scattering on electrons or partons. They have been observed already, for some special cases, in the results of explicit calculations. Here they are obtained from simple general considerations. (author)
A determination of parton distributions with faithful uncertainty estimation
International Nuclear Information System (INIS)
Ball, Richard D.; Del Debbio, Luigi; Forte, Stefano; Guffanti, Alberto; Latorre, Jose I.; Piccione, Andrea; Rojo, Juan; Ubiali, Maria
2009-01-01
We present the determination of a set of parton distributions of the nucleon, at next-to-leading order, from a global set of deep-inelastic scattering data: NNPDF1.0. The determination is based on a Monte Carlo approach, with neural networks used as unbiased interpolants. This method, previously discussed by us and applied to a determination of the nonsinglet quark distribution, is designed to provide a faithful and statistically sound representation of the uncertainty on parton distributions. We discuss our dataset, its statistical features, and its Monte Carlo representation. We summarize the technique used to solve the evolution equations and its benchmarking, and the method used to compute physical observables. We discuss the parametrization and fitting of neural networks, and the algorithm used to determine the optimal fit. We finally present our set of parton distributions. We discuss its statistical properties, test for its stability upon various modifications of the fitting procedure, and compare it to other recent parton sets. We use it to compute the benchmark W and Z cross sections at the LHC. We discuss issues of delivery and interfacing to commonly used packages such as LHAPDF
International Nuclear Information System (INIS)
Song, Mi Young; Kim, Mi Sung; Lee, Ju Yeon
2012-01-01
The promise of NLO polymers lies in their higher nonlinear optical activity, faster response time, and easy fabrication into electro-optic devices. In the developments of NLO polymers for electrooptic device applications, stabilization of electrically induced dipole alignment is one of important considerations; in this context, two approaches to minimize the randomization have been proposed, namely the use of cross-linked systems and the utilization of polymers with high glass transition temperature (T g ) such as polyimides. A polyurethane matrix forms extensive hydrogen bonding between urethane linkages, with increased rigidity preventing the relaxation of induced dipoles. Polyurethanes functionalized with hemicyanine and thiophene ring in side chain show an enhanced thermal stability of aligned dipoles. Polyurethanes with NLO chromophores, whose dipole moments are aligned transverse to the main chains, show large second-order nonlinearity with good thermal stability
Decoupling the NLO coupled DGLAP evolution equations: an analytic solution to pQCD
International Nuclear Information System (INIS)
Block, Martin M.; Durand, Loyal; Ha, Phuoc; McKay, Douglas W.
2010-01-01
Using repeated Laplace transforms, we turn coupled, integral-differential singlet DGLAP equations into NLO (next-to-leading) coupled algebraic equations, which we then decouple. After two Laplace inversions we find new tools for pQCD: decoupled NLO analytic solutions F s (x,Q 2 )=F s (F s0 (x),G 0 (x)), G(x,Q 2 )=G(F s0 (x), G 0 (x)). F s , G are known NLO functions and F s0 (x)≡F s (x,Q 0 2 ), G 0 (x)≡G(x,Q 0 2 ) are starting functions for evolution beginning at Q 2 =Q 0 2 . We successfully compare our u and d non-singlet valence quark distributions with MSTW results (Martin et al., Eur. Phys. J. C 63:189, 2009). (orig.)
QCD NLO with POWHEG matching and top threshold matching in WHIZARD
Energy Technology Data Exchange (ETDEWEB)
Reuter, Juergen; Nejad, Bijan Chokoufe [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Bach, Fabian [European Commission, Luxembourg (Luxembourg); Kilian, Wolfgang [Siegen Univ. (Germany); Stahlhofen, Maximilian [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Mainz Univ. (Germany). PRISMA Cluster of Excellence; Weiss, Christian [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Siegen Univ. (Germany)
2016-01-15
We present the status of the automation of NLO processes within the event generator WHIZARD. The program provides an automated FKS subtraction and phase space integration over the FKS regions, while the (QCD) NLO matrix element is accessed via the Binoth Les Houches Interface from an externally linked one-loop program. Massless and massive test cases and validation are shown for several e{sup +}e{sup -} processes. Furthermore, we discuss work in progress and future plans. The second part covers the matching of the NRQCD prediction with NLL threshold resummation to the NLO continuum top pair production at lepton colliders. Both the S-wave and P-wave production of the top pair are taken into account in the resummation. The inclusion in WHIZARD allows to study more exclusive observables than just the total cross section and automatically accounts for important electroweak and relativistic corrections in the threshold region.
A golden A5 model of leptons with a minimal NLO correction
International Nuclear Information System (INIS)
Cooper, Iain K.; King, Stephen F.; Stuart, Alexander J.
2013-01-01
We propose a new A 5 model of leptons which corrects the LO predictions of Golden Ratio mixing via a minimal NLO Majorana mass correction which completely breaks the original Klein symmetry of the neutrino mass matrix. The minimal nature of the NLO correction leads to a restricted and correlated range of the mixing angles allowing agreement within the one sigma range of recent global fits following the reactor angle measurement by Daya Bay and RENO. The minimal NLO correction also preserves the LO inverse neutrino mass sum rule leading to a neutrino mass spectrum that extends into the quasi-degenerate region allowing the model to be accessible to the current and future neutrinoless double beta decay experiments
QCD NLO with POWHEG matching and top threshold matching in WHIZARD
International Nuclear Information System (INIS)
Reuter, Juergen; Nejad, Bijan Chokoufe; Kilian, Wolfgang; Stahlhofen, Maximilian
2016-01-01
We present the status of the automation of NLO processes within the event generator WHIZARD. The program provides an automated FKS subtraction and phase space integration over the FKS regions, while the (QCD) NLO matrix element is accessed via the Binoth Les Houches Interface from an externally linked one-loop program. Massless and massive test cases and validation are shown for several e + e - processes. Furthermore, we discuss work in progress and future plans. The second part covers the matching of the NRQCD prediction with NLL threshold resummation to the NLO continuum top pair production at lepton colliders. Both the S-wave and P-wave production of the top pair are taken into account in the resummation. The inclusion in WHIZARD allows to study more exclusive observables than just the total cross section and automatically accounts for important electroweak and relativistic corrections in the threshold region.
Challenges in scaling NLO generators to leadership computers
Benjamin, D.; Childers, JT; Hoeche, S.; LeCompte, T.; Uram, T.
2017-10-01
Exascale computing resources are roughly a decade away and will be capable of 100 times more computing than current supercomputers. In the last year, Energy Frontier experiments crossed a milestone of 100 million core-hours used at the Argonne Leadership Computing Facility, Oak Ridge Leadership Computing Facility, and NERSC. The Fortran-based leading-order parton generator called Alpgen was successfully scaled to millions of threads to achieve this level of usage on Mira. Sherpa and MadGraph are next-to-leading order generators used heavily by LHC experiments for simulation. Integration times for high-multiplicity or rare processes can take a week or more on standard Grid machines, even using all 16-cores. We will describe our ongoing work to scale the Sherpa generator to thousands of threads on leadership-class machines and reduce run-times to less than a day. This work allows the experiments to leverage large-scale parallel supercomputers for event generation today, freeing tens of millions of grid hours for other work, and paving the way for future applications (simulation, reconstruction) on these and future supercomputers.
Polarized triple-collinear splitting functions at NLO for processes with photons
International Nuclear Information System (INIS)
Sborlini, Germán F.R.; Florian, Daniel de; Rodrigo, Germán
2015-01-01
We compute the polarized splitting functions in the triple collinear limit at next-to-leading order accuracy (NLO) in the strong coupling α_S, for the splitting processes γ→qq-barγ, γ→qq-barg and g→qq-barγ. The divergent structure of each splitting function was compared to the predicted behaviour according to Catani’s formula. The results obtained in this paper are compatible with the unpolarized splitting functions computed in a previous article. Explicit results for NLO corrections are presented in the context of conventional dimensional regularization (CDR).
Polarized triple-collinear splitting functions at NLO for processes with photons
Energy Technology Data Exchange (ETDEWEB)
Sborlini, Germán F.R. [Departamento de Física and IFIBA, FCEyN, Universidad de Buenos Aires (1428) Pabellón 1 Ciudad Universitaria, Capital Federal (Argentina); Instituto de Física Corpuscular, Universitat de València,Consejo Superior de Investigaciones Científicas,Parc Científic, E-46980 Paterna, Valencia (Spain); Florian, Daniel de [Departamento de Física and IFIBA, FCEyN, Universidad de Buenos Aires (1428) Pabellón 1 Ciudad Universitaria, Capital Federal (Argentina); Rodrigo, Germán [Instituto de Física Corpuscular, Universitat de València,Consejo Superior de Investigaciones Científicas,Parc Científic, E-46980 Paterna, Valencia (Spain)
2015-03-04
We compute the polarized splitting functions in the triple collinear limit at next-to-leading order accuracy (NLO) in the strong coupling α{sub S}, for the splitting processes γ→qq-barγ, γ→qq-barg and g→qq-barγ. The divergent structure of each splitting function was compared to the predicted behaviour according to Catani’s formula. The results obtained in this paper are compatible with the unpolarized splitting functions computed in a previous article. Explicit results for NLO corrections are presented in the context of conventional dimensional regularization (CDR).
NLO QCD corrections to Higgs boson production plus three jets in gluon fusion
Energy Technology Data Exchange (ETDEWEB)
Cullen, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Deurzen, H. van; Greiner, N.; Luisoni, G.; Mirabella, E.; Peraro, T. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Mastrolia, P. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Padova Univ. (Italy). Dipt. di Fisica e Astronomia; INFN, Sezione di Padova (Italy); Ossola, G. [New York Univ., NY (United States). New York City College of Technology; New York Univ., NY (United States). The Graduate School and University Center; Tramontano, F. [Napoli Univ. (Italy). Dipt. di Fisica; INFN, Sezione di Napoli (Italy)
2013-07-15
We report on the calculation of the cross section for Higgs boson production in association with three jets via gluon fusion, at next-to-leading-order (NLO) accuracy in QCD, in the infinite top-mass approximation. After including the complete NLO QCD corrections, we observe a strong reduction in the scale dependence of the result, and an increased steepness in the transverse momentum distributions of both the Higgs and the leading jets. The results are obtained with the combined use of GoSam, Sherpa, and the MadDipole/MadEvent framework.
Huston, J
2001-01-01
This talk is intended to serve as a pedagogical guide on the determination of, the proper use of, and the uncertainties of parton distribution functions and their impact on physics cross sections at the Tevatron and LHC. A longer writeup of this talk is available at http://www.pa.msu.edu./~huston/lhc/lhc_pdfnote.ps. (12 refs).
CAMS newly detected meteor showers and the sporadic background
Jenniskens, P.; Nénon, Q.; Gural, P. S.; Albers, J.; Haberman, B.; Johnson, B.; Morales, R.; Grigsby, B. J.; Samuels, D.; Johannink, C.
2016-03-01
The Cameras for Allsky Meteor Surveillance (CAMS) video-based meteoroid orbit survey adds 60 newly identified showers to the IAU Working List of Meteor Showers (numbers 427, 445-446, 506-507, and part of 643-750). 28 of these are also detected in the independent SonotaCo survey. In total, 230 meteor showers and shower components are identified in CAMS data, 177 of which are detected in at least two independent surveys. From the power-law size frequency distribution of detected showers, we extrapolate that 36% of all CAMS-observed meteors originated from ∼700 showers above the N = 1 per 110,000 shower limit. 71% of mass falling to Earth from streams arrives on Jupiter-family type orbits. The transient Geminids account for another 15%. All meteoroids not assigned to streams form a sporadic background with highest detected numbers from the apex source, but with 98% of mass falling in from the antihelion source. Even at large ∼7-mm sizes, a Poynting-Robertson drag evolved population is detected, which implies that the Grün et al. collisional lifetimes at these sizes are underestimated by about a factor of 10. While these large grains survive collisions, many fade on a 104-y timescale, possibly because they disintegrate into smaller particles by processes other than collisions, leaving a more resilient population to evolve.
COMET SHOWERS ARE NOT INDUCED BY INTERSTELLAR CLOUDS
Energy Technology Data Exchange (ETDEWEB)
Morris, D.E.
1985-11-01
Encounters with interstellar clouds (IC) have been proposed by Rampino and Stothers as a cause of quasi-periodic intense comet showers leading to earth impacts, in order to explain the periodicity in marine mass extinctions found by Raup and Sepkoski. The model was described further, criticized and defended. The debate has centered on the question of whether the scale height of the clouds is small enough (in comparison to the amplitude of the oscillation of the solar system about the plane of the Galaxy) to produce a modulation in the rate of encounters. We wish to point out another serious, we believe fatal, defect in this model - the tidal fields of ICs are not strong enough to produce intense comet showers leading to earth impacts by bringing comets of the postulated inner Oort cloud into earth crossing orbits, except possibly during very rare encounters with very dense clouds. We will show that encounters with abundant clouds of low density cannot produce comet showers; cloud density N > 10{sup 3} atoms cm{sup -3} is needed to produce an intense comet shower leading to earth impacts. Furthermore, the tidal field of a dense cloud during a distant encounter is too weak to produce such showers. As a consequence, comet showers induced by ICs will be far less frequent than showers caused by passing stars. This conclusion is independent of assumptions about the radial distribution of comets in the inner Oort cloud.
Shower reconstruction in TUNKA-HiSCORE
Energy Technology Data Exchange (ETDEWEB)
Porelli, Andrea; Wischnewski, Ralf [DESY-Zeuthen, Platanenallee 6, 15738 Zeuthen (Germany)
2015-07-01
The Tunka-HiSCORE detector is a non-imaging wide-angle EAS cherenkov array designed as an alternative technology for gamma-ray physics above 10 TeV and to study spectrum and composition of cosmic rays above 100 TeV. An engineering array with nine stations (HiS-9) has been deployed in October 2013 on the site of the Tunka experiment in Russia. In November 2014, 20 more HiSCORE stations have been installed, covering a total array area of 0.24 square-km. We describe the detector setup, the role of precision time measurement, and give results from the innovative WhiteRabbit time synchronization technology. Results of air shower reconstruction are presented and compared with MC simulations, for both the HiS-9 and the HiS-29 detector arrays.
pp interactions in extended air showers
Directory of Open Access Journals (Sweden)
Kendi Kohara A.
2015-01-01
Full Text Available Applying the recently constructed analytic representation for the pp scattering amplitudes, we present a study of p-air cross sections, with comparison to the data from Extensive Air Shower (EAS measurements. The amplitudes describe with precision all available accelerator data at ISR, SPS and LHC energies, and its theoretical basis, together with the very smooth energy dependence of parameters controlled by unitarity and dispersion relations, permit reliable extrapolation to higher energies and to asymptotic ranges. The comparison with cosmic ray data is very satisfactory in the whole pp energy interval from 1 to 100 TeV. High energy asymptotic behaviour of cross sections is investigated in view of the geometric scaling property of the amplitudes. The amplitudes predict that the proton does not behave as a black disk even at asymptotically high enegies, and we discuss possible non-trivial consequences of this fact for pA collision cross sections at higher energies.
Baryon stopping and strangeness baryon production in a parton cascade model
International Nuclear Information System (INIS)
Nara, Yasushi
1999-01-01
A parton cascade model which is based on pQCD incorporating hard partonic scattering and dynamical hadronization scheme describes the space-time evolution of parton/hadron system produced by ultra-relativistic nuclear collisions. Hadron yield, baryon stopping and transverse momentum distribution are calculated and compared with experimental data at SPS energies. Using new version of parton cascade code VNI in which baryonic cluster formation is implemented, we calculate the net baryon number distributions and Λ yield. It is found that baryon stopping behavior at SPS energies is well accounted for within the parton cascade picture. As a consequence of the production of the baryon (u and d quark) rich parton matter, parton coalescence naturally explains the enhanced yield of Λ particle which has been observed in experiment. (author)
Modelling of radio emission from cosmic ray air showers
Ludwig, Marianne
2011-06-01
Cosmic rays entering the Earth's atmosphere induce extensive air showers consisting of up to billions of secondary particles. Among them, a multitude of electrons and positrons are generated. These get deflected in the Earth's magnetic field, creating time-varying transverse currents. Thereby, the air shower emits coherent radiation in the MHz frequency range measured by radio antenna arrays on the ground such as LOPES at the KIT. This detection method provides a possibility to study cosmic rays with energies above 1017 eV. At this time, the radio technique undergoes the change from prototype experiments to large scale application. Thus, a detailed understanding of the radio emission process is needed more than ever. Before starting this work, different models made conflicting predictions on the pulse shape and the amplitude of the radio signal. It turned out that a radiation component caused by the variation of the number of charged particles within the air shower was missed in several models. The Monte Carlo code REAS2 superposing the radiation of the individual air shower electrons and positrons was one of those. At this time, it was not known how to take the missing component into account. For REAS3, we developed and implemented the endpoint formalism, a universal approach, to calculate the radiation from each single particle. For the first time, we achieve a good agreement between REAS3 and MGMR, an independent and completely different simulation approach. In contrast to REAS3, MGMR is based on a macroscopic approach and on parametrisations of the air shower. We studied the differences in the underlying air shower models to explain the remaining deviations. For comparisons with LOPES data, we developed a new method which allows "top-down" simulations of air showers. From this, we developed an air shower selection criterion based on the number of muons measured with KASCADE to take shower-to-shower fluctuations for a single event analysis into account. With
NLO electroweak automation and precise predictions for W+ multijet production at the LHC
International Nuclear Information System (INIS)
Kallweit, S.; Lindert, J.M.; Maierhöfer, P.; Pozzorini, S.; Schönherr, M.
2015-01-01
We present a fully automated implementation of next-to-leading order electroweak (NLO EW) corrections in the OPENLOOPS matrix-element generator combined with the SHERPA and MUNICH Monte Carlo frameworks. The process-independent character of the implemented algorithms opens the door to NLO QCD+EW simulations for a vast range of Standard Model processes, up to high particle multiplicity, at current and future colliders. As a first application, we present NLO QCD+EW predictions for the production of positively charged on-shell W bosons in association with up to three jets at the Large Hadron Collider. At the TeV energy scale, due to the presence of large Sudakov logarithms, EW corrections reach the 20–40% level and play an important role for searches of physics beyond the Standard Model. The dependence of NLO EW effects on the jet multiplicity is investigated in detail, and we find that W+ multijet final states feature genuinely different EW effects as compared to the case of W+1 jet.
Spin polarization in top pair production in association with two photons at NLO+PS
Luisoni, Gionata
2018-01-01
This talk focuses on the impact of top-quark spin polarization effects in Higgs boson production in association with a top-quark pair, where the Higgs boson decays to two photons. Predictions for the signal are compared with direct top-quark pair production in association with two photons at NLO+PS.
Single slepton production associated with a top quark at LHC in NLO QCD
International Nuclear Information System (INIS)
Li, Xiao-Peng; Guo, Lei; Ma, Wen-Gan; Han, Liang; Zhang, Ren-You; Wang, Shao-Ming
2012-01-01
Single slepton production in association with a top quark at the CERN Large Hadron Collider (LHC) is one of the important processes in probing the R-parity violation couplings. We calculate the QCD next-to-leading order (NLO) corrections to the pp→tl - (anti tl + ) + X process at the LHC and discuss the impacts of the QCD corrections on kinematic distributions. We investigate the dependence of the leading order (LO) and the NLO QCD corrected integrated cross section on the factorization/renormalization energy scale, slepton, stop-quark and gluino masses. We find that the uncertainty of the LO cross section due to the energy scale is obviously improved by the NLO QCD corrections, and the exclusive jet event selection scheme keeps the convergence of the perturbative series better than the inclusive scheme. The results show that the polarization asymmetry of the top-quark will be reduced by the NLO QCD corrections, and the QCD corrections generally increase with the increment of the t 1 or g mass value. (orig.)
Spin polarization in top pair production in association with two photons at NLO+PS
Luisoni, Gionata
2017-01-01
This talk focuses on the impact of top-quark spin polarization effects in Higgs boson production in association with a top-quark pair, where the Higgs boson decays to two photons. Predictions for the signal are compared with direct top-quark pair production in association with two photons at NLO+PS.
Subtraction with hadronic initial states at NLO: an NNLO-compatible scheme
Somogyi, Gábor
2009-05-01
We present an NNLO-compatible subtraction scheme for computing QCD jet cross sections of hadron-initiated processes at NLO accuracy. The scheme is constructed specifically with those complications in mind, that emerge when extending the subtraction algorithm to next-to-next-to-leading order. It is therefore possible to embed the present scheme in a full NNLO computation without any modifications.
Subtraction with hadronic initial states at NLO: an NNLO-compatible scheme
International Nuclear Information System (INIS)
Somogyi, Gabor
2009-01-01
We present an NNLO-compatible subtraction scheme for computing QCD jet cross sections of hadron-initiated processes at NLO accuracy. The scheme is constructed specifically with those complications in mind, that emerge when extending the subtraction algorithm to next-to-next-to-leading order. It is therefore possible to embed the present scheme in a full NNLO computation without any modifications.
International Nuclear Information System (INIS)
Geer, S.; Gsponer, A.
1983-01-01
Absorbed radiation doses produced by 500, 1,000 and 10,000 MeV electron initiated electromagnetic showers in air have been calculated using a Monte Carlo program. The radial distributions of the absorbed dose near to the shower axis are found to be significantly narrower than predicted by simple analytical shower theory. For a 500 MeV, 10 kA, 100 ns electron beam pulse, the region in which the total dose is in excess of 1 krad and the dose rate in excess of 10 10 rad/s is a cigar-shaped envelope of radius 1 m and length 200 m. (orig.) [de
What the radio signal tells about the cosmic-ray air shower
Directory of Open Access Journals (Sweden)
Werner Klaus
2013-06-01
Full Text Available The physics of radio emission from cosmic-ray induced air showers is shortly summarized. It will be shown that the radio signal at different distances from the shower axis provides complementary information on the longitudinal shower evolution, in particular the early part, and on the distribution of the electrons in the shower core. This complements the information obtained from surface, fluorescence, and muon detectors and is very useful in getting a comprehensive picture of an air shower.
A Gas Calorimeter for High-Energy Experiment and Study of High-Energy Cascade Shower
Energy Technology Data Exchange (ETDEWEB)
Miyata, Hitoshi [Univ. of Tsukuba (Japan)
1984-09-01
High energy behavior of the electromagnetic cascade shower has been studied. high energy showers were created by electron and hadron beams with energies between 25 GeV and 150 GeV at Fermi National Accelerator Laboratory. The showers were observed by a shower detector consisting of multi-layer of lead plates and proportional chambers. The experimental results were analyzed with special emphasis on the fluctuation problem of the electromagnetic cascade shower.
Sirunyan, Albert M; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; König, Axel; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rad, Navid; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Strauss, Josef; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Dvornikov, Oleg; Makarenko, Vladimir; Mossolov, Vladimir; Suarez Gonzalez, Juan; Zykunov, Vladimir; Shumeiko, Nikolai; Alderweireldt, Sara; De Wolf, Eddi A; Janssen, Xavier; Lauwers, Jasper; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Lowette, Steven; Moortgat, Seth; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Skovpen, Kirill; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Brun, Hugues; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Luetic, Jelena; Maerschalk, Thierry; Marinov, Andrey; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Vannerom, David; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Gul, Muhammad; Khvastunov, Illia; Poyraz, Deniz; Salva Diblen, Sinem; Schöfbeck, Robert; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Bakhshiansohi, Hamed; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; De Visscher, Simon; Delaere, Christophe; Delcourt, Martin; Francois, Brieuc; Giammanco, Andrea; Jafari, Abideh; Komm, Matthias; Krintiras, Georgios; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Piotrzkowski, Krzysztof; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Wertz, Sébastien; Beliy, Nikita; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Torres Da Silva De Araujo, Felipe; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Chen, Ye; Cheng, Tongguang; Jiang, Chun-Hua; Leggat, Duncan; Liu, Zhenan; Romeo, Francesco; Ruan, Manqi; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Zhao, Jingzhou; Ban, Yong; Chen, Geng; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; González Hernández, Carlos Felipe; Ruiz Alvarez, José David; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Sculac, Toni; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Mesic, Benjamin; Susa, Tatjana; Ather, Mohsan Waseem; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Finger, Miroslav; Finger Jr, Michael; Carrera Jarrin, Edgar; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Perrini, Lucia; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Jarvinen, Terhi; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Ghosh, Saranya; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Kucher, Inna; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Abdulsalam, Abdulla; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Chapon, Emilien; Charlot, Claude; Davignon, Olivier; Granier de Cassagnac, Raphael; Jo, Mihee; Lisniak, Stanislav; Miné, Philippe; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Regnard, Simon; Salerno, Roberto; Sirois, Yves; Stahl Leiton, Andre Govinda; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Zghiche, Amina; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Carrillo Montoya, Camilo Andres; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Finco, Linda; Gascon, Susan; Gouzevitch, Maxime; Grenier, Gérald; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Khvedelidze, Arsen; Lomidze, David; Autermann, Christian; Beranek, Sarah; Feld, Lutz; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Preuten, Marius; Schomakers, Christian; Schulz, Johannes; Verlage, Tobias; Albert, Andreas; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hamer, Matthias; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Olschewski, Mark; Padeken, Klaas; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Flügge, Günter; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Lingemann, Joschka; Müller, Thomas; Nehrkorn, Alexander; Nowack, Andreas; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Arndt, Till; Asawatangtrakuldee, Chayanit; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Bin Anuar, Afiq Aizuddin; Borras, Kerstin; Campbell, Alan; Connor, Patrick; Contreras-Campana, Christian; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Eren, Engin; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Grados Luyando, Juan Manuel; Grohsjean, Alexander; Gunnellini, Paolo; Harb, Ali; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Keaveney, James; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Lelek, Aleksandra; Lenz, Teresa; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Roland, Benoit; Sahin, Mehmet Özgür; Saxena, Pooja; Schoerner-Sadenius, Thomas; Spannagel, Simon; Stefaniuk, Nazar; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wissing, Christoph; Zenaiev, Oleksandr; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Dreyer, Torben; Garutti, Erika; Gonzalez, Daniel; Haller, Johannes; Hoffmann, Malte; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Kurz, Simon; Lapsien, Tobias; Marchesini, Ivan; Marconi, Daniele; Meyer, Mareike; Niedziela, Marek; Nowatschin, Dominik; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Scharf, Christian; Schleper, Peter; Schmidt, Alexander; Schumann, Svenja; Schwandt, Joern; Sonneveld, Jory; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Stöver, Marc; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Vormwald, Benedikt; Akbiyik, Melike; Barth, Christian; Baur, Sebastian; Baus, Colin; Berger, Joram; Butz, Erik; Caspart, René; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Dierlamm, Alexander; Fink, Simon; Freund, Benedikt; Friese, Raphael; Giffels, Manuel; Gilbert, Andrew; Goldenzweig, Pablo; Haitz, Dominik; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Kassel, Florian; Katkov, Igor; Kudella, Simon; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Roscher, Frank; Schröder, Matthias; Shvetsov, Ivan; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Topsis-Giotis, Iasonas; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Kousouris, Konstantinos; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Loukas, Nikitas; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Filipovic, Nicolas; Pasztor, Gabriella; Bencze, Gyorgy; Hajdu, Csaba; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Makovec, Alajos; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Komaragiri, Jyothsna Rani; Bahinipati, Seema; Bhowmik, Sandeep; Choudhury, Somnath; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Kumari, Priyanka; Mehta, Ankita; Mittal, Monika; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Keshri, Sumit; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dey, Sourav; Dutt, Suneel; Dutta, Suchandra; Ghosh, Shamik; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukhopadhyay, Supratik; Nandan, Saswati; Purohit, Arnab; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Thakur, Shalini; Behera, Prafulla Kumar; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Netrakanti, Pawan Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Dugad, Shashikant; Kole, Gouranga; Mahakud, Bibhuprasad; Mitra, Soureek; Mohanty, Gagan Bihari; Parida, Bibhuti; Sur, Nairit; Sutar, Bajrang; Banerjee, Sudeshna; Dewanjee, Ram Krishna; Ganguly, Sanmay; Guchait, Monoranjan; Jain, Sandhya; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Sarkar, Tanmay; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Hegde, Vinay; Kapoor, Anshul; Kothekar, Kunal; Pandey, Shubham; Rane, Aditee; Sharma, Seema; Chenarani, Shirin; Eskandari Tadavani, Esmaeel; Etesami, Seyed Mohsen; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Albergo, Sebastiano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Russo, Lorenzo; Sguazzoni, Giacomo; Strom, Derek; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Monge, Maria Roberta; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Brivio, Francesco; Ciriolo, Vincenzo; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Malberti, Martina; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Pigazzini, Simone; Ragazzi, Stefano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; De Nardo, Guglielmo; Di Guida, Salvatore; Esposito, Marco; Fabozzi, Francesco; Fienga, Francesco; Iorio, Alberto Orso Maria; Lanza, Giuseppe; Lista, Luca; Meola, Sabino; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Carlin, Roberto; Carvalho Antunes De Oliveira, Alexandra; Checchia, Paolo; Dall'Osso, Martino; De Castro Manzano, Pablo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Ugo; Gonella, Franco; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Rossin, Roberto; Simonetto, Franco; Torassa, Ezio; Ventura, Sandro; Zanetti, Marco; Zotto, Pierluigi; Braghieri, Alessandro; Fallavollita, Francesco; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Ressegotti, Martina; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Leonardi, Roberto; Mantovani, Giancarlo; Mariani, Valentina; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Fedi, Giacomo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Cipriani, Marco; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Longo, Egidio; Margaroli, Fabrizio; Marzocchi, Badder; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Cenna, Francesca; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Monteno, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Shchelina, Ksenia; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Traczyk, Piotr; Belforte, Stefano; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Zanetti, Anna; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Lee, Jeongeun; Lee, Sangeun; Lee, Seh Wook; Oh, Young Do; Sekmen, Sezen; Son, Dong-Chul; Yang, Yu Chul; Lee, Ari; Kim, Hyunchul; Brochero Cifuentes, Javier Andres; Kim, Tae Jeong; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Ha, Seungkyu; Hong, Byung-Sik; Jo, Youngkwon; Kim, Yongsun; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Almond, John; Kim, Junho; Lee, Haneol; Oh, Sung Bin; Radburn-Smith, Benjamin Charles; Seo, Seon-hee; Yang, Unki; Yoo, Hwi Dong; Yu, Geum Bong; Choi, Minkyoo; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Goh, Junghwan; Hwang, Chanwook; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Mejia Guisao, Jhovanny; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Oropeza Barrera, Cristina; Vazquez Valencia, Fabiola; Carpinteyro, Severiano; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Saddique, Asif; Shah, Mehar Ali; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Pyskir, Andrzej; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Calpas, Betty; Di Francesco, Agostino; Faccioli, Pietro; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nemallapudi, Mythra Varun; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Voytishin, Nikolay; Zarubin, Anatoli; Chtchipounov, Leonid; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Murzin, Victor; Oreshkin, Vadim; Sulimov, Valentin; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Aushev, Tagir; Bylinkin, Alexander; Danilov, Mikhail; Popova, Elena; Rusinov, Vladimir; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Terkulov, Adel; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Klyukhin, Vyacheslav; Korneeva, Natalia; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Perfilov, Maxim; Savrin, Viktor; Volkov, Petr; Blinov, Vladimir; Skovpen, Yuri; Shtol, Dmitry; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Elumakhov, Dmitry; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Dordevic, Milos; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Barrio Luna, Mar; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Cuevas, Javier; Erice, Carlos; Fernandez Menendez, Javier; Gonzalez Caballero, Isidro; González Fernández, Juan Rodrigo; Palencia Cortezon, Enrique; Sanchez Cruz, Sergio; Suárez Andrés, Ignacio; Vischia, Pietro; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Curras, Esteban; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Martinez Rivero, Celso; Matorras, Francisco; Piedra Gomez, Jonatan; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Bloch, Philippe; Bocci, Andrea; Botta, Cristina; Camporesi, Tiziano; Castello, Roberto; Cepeda, Maria; Cerminara, Gianluca; Chen, Yi; Cimmino, Anna; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Roeck, Albert; Di Marco, Emanuele; Dobson, Marc; Dorney, Brian; Du Pree, Tristan; Duggan, Daniel; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Everaerts, Pieter; Fartoukh, Stephane; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Girone, Maria; Glege, Frank; Gulhan, Doga; Gundacker, Stefan; Guthoff, Moritz; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kieseler, Jan; Kirschenmann, Henning; Knünz, Valentin; Kornmayer, Andreas; Kortelainen, Matti J; Krammer, Manfred; Lange, Clemens; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Meijers, Frans; Merlin, Jeremie Alexandre; Mersi, Stefano; Meschi, Emilio; Milenovic, Predrag; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuel; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Sauvan, Jean-Baptiste; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Sharma, Archana; Silva, Pedro; Sphicas, Paraskevas; Steggemann, Jan; Stoye, Markus; Takahashi, Yuta; Tosi, Mia; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veckalns, Viesturs; Veres, Gabor Istvan; Verweij, Marta; Wardle, Nicholas; Wöhri, Hermine Katharina; Zagoździńska, Agnieszka; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Wiederkehr, Stephan Albert; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meinhard, Maren Tabea; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Quittnat, Milena; Rossini, Marco; Schönenberger, Myriam; Starodumov, Andrei; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Wallny, Rainer; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; De Cosa, Annapaola; Donato, Silvio; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Ngadiuba, Jennifer; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Seitz, Claudia; Yang, Yong; Zucchetta, Alberto; Candelise, Vieri; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Pozdnyakov, Andrey; Yu, Shin-Shan; Kumar, Arun; Chang, Paoti; Chang, You-Hao; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Fiori, Francesco; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Paganis, Efstathios; Psallidas, Andreas; Tsai, Jui-fa; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Boran, Fatma; Cerci, Salim; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dozen, Candan; Dumanoglu, Isa; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Hos, Ilknur; Kangal, Evrim Ersin; Kara, Ozgun; Kiminsu, Ugur; Oglakci, Mehmet; Onengut, Gulsen; Ozdemir, Kadri; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Turkcapar, Semra; Zorbakir, Ibrahim Soner; Zorbilmez, Caglar; Bilin, Bugra; Bilmis, Selcuk; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Elif Asli; Yetkin, Taylan; Cakir, Altan; Cankocak, Kerem; Sen, Sercan; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Bundock, Aaron; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Di Maria, Riccardo; Dunne, Patrick; Elwood, Adam; Futyan, David; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; James, Thomas; Lane, Rebecca; Laner, Christian; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mastrolorenzo, Luca; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Penning, Bjoern; Pesaresi, Mark; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Scott, Edward; Seez, Christopher; Summers, Sioni; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Wright, Jack; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Bartek, Rachel; Dominguez, Aaron; Buccilli, Andrew; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; West, Christopher; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Benelli, Gabriele; Cutts, David; Garabedian, Alex; Hakala, John; Heintz, Ulrich; Hogan, Julie Managan; Jesus, Orduna; Kwok, Ka Hei Martin; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Piperov, Stefan; Sagir, Sinan; Spencer, Eric; Syarif, Rizki; Breedon, Richard; Burns, Dustin; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Funk, Garrett; Gardner, Michael; Ko, Winston; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Shalhout, Shalhout; Shi, Mengyao; Smith, John; Squires, Michael; Stolp, Dustin; Tos, Kyle; Tripathi, Mani; Bachtis, Michail; Bravo, Cameron; Cousins, Robert; Dasgupta, Abhigyan; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Mccoll, Nickolas; Saltzberg, David; Schnaible, Christian; Valuev, Vyacheslav; Weber, Matthias; Bouvier, Elvire; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Ghiasi Shirazi, Seyyed Mohammad Amin; Hanson, Gail; Heilman, Jesse; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Olmedo Negrete, Manuel; Paneva, Mirena Ivova; Shrinivas, Amithabh; Si, Weinan; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Derdzinski, Mark; Gerosa, Raffaele; Holzner, André; Klein, Daniel; Krutelyov, Vyacheslav; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Welke, Charles; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Amin, Nick; Bhandari, Rohan; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Franco Sevilla, Manuel; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Heller, Ryan; Incandela, Joe; Mullin, Sam Daniel; Ovcharova, Ana; Qu, Huilin; Richman, Jeffrey; Stuart, David; Suarez, Indara; Yoo, Jaehyeok; Anderson, Dustin; Bendavid, Joshua; Bornheim, Adolf; Bunn, Julian; Duarte, Javier; Lawhorn, Jay Mathew; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Ferguson, Thomas; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Weinberg, Marc; Cumalat, John Perry; Ford, William T; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Leontsinis, Stefanos; Mulholland, Troy; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Mcdermott, Kevin; Mirman, Nathan; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Tan, Shao Min; Tao, Zhengcheng; Thom, Julia; Tucker, Jordan; Wittich, Peter; Zientek, Margaret; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Apollinari, Giorgio; Apresyan, Artur; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Cremonesi, Matteo; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hare, Daryl; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Miaoyuan; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Magini, Nicolo; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Ristori, Luciano; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strait, James; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Wu, Yujun; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Brinkerhoff, Andrew; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Field, Richard D; Furic, Ivan-Kresimir; Konigsberg, Jacobo; Korytov, Andrey; Low, Jia Fu; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Mitselmakher, Guenakh; Rank, Douglas; Shchutska, Lesya; Sperka, David; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Todd; Askew, Andrew; Bein, Samuel; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Kolberg, Ted; Perry, Thomas; Prosper, Harrison; Santra, Arka; Yohay, Rachel; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Cavanaugh, Richard; Chen, Xuan; Evdokimov, Olga; Gerber, Cecilia Elena; Hangal, Dhanush Anil; Hofman, David Jonathan; Jung, Kurt; Kamin, Jason; Sandoval Gonzalez, Irving Daniel; Trauger, Hallie; Varelas, Nikos; Wang, Hui; Wu, Zhenbin; Zhang, Jingyu; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; You, Can; Al-bataineh, Ayman; Baringer, Philip; Bean, Alice; Boren, Samuel; Bowen, James; Castle, James; Forthomme, Laurent; Khalil, Sadia; Kropivnitskaya, Anna; Majumder, Devdatta; Mcbrayer, William; Murray, Michael; Sanders, Stephen; Stringer, Robert; Tapia Takaki, Daniel; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Jeng, Geng-Yuan; Kellogg, Richard G; Kunkle, Joshua; Mignerey, Alice; Ricci-Tam, Francesca; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Abercrombie, Daniel; Allen, Brandon; Apyan, Aram; Azzolini, Virginia; Barbieri, Richard; Baty, Austin; Bi, Ran; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; D'Alfonso, Mariarosaria; Demiragli, Zeynep; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hsu, Dylan; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Krajczar, Krisztian; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Maier, Benedikt; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Tatar, Kaya; Velicanu, Dragos; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Benvenuti, Alberto; Chatterjee, Rajdeep Mohan; Evans, Andrew; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Claes, Daniel R; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Kravchenko, Ilya; Malta Rodrigues, Alan; Monroy, Jose; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Alyari, Maral; Dolen, James; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Kaisen, Josh; Nguyen, Duong; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Bhattacharya, Saptaparna; Charaf, Otman; Hahn, Kristan Allan; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Dev, Nabarun; Hildreth, Michael; Hurtado Anampa, Kenyi; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Rupprecht, Nathaniel; Smith, Geoffrey; Taroni, Silvia; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Alimena, Juliette; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Francis, Brian; Hart, Andrew; Hill, Christopher; Ji, Weifeng; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Winer, Brian L; Wulsin, Howard Wells; Cooperstein, Stephane; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Lange, David; Luo, Jingyu; Marlow, Daniel; Medvedeva, Tatiana; Mei, Kelvin; Ojalvo, Isabel; Olsen, James; Palmer, Christopher; Piroué, Pierre; Stickland, David; Svyatkovskiy, Alexey; Tully, Christopher; Malik, Sudhir; Barker, Anthony; Barnes, Virgil E; Folgueras, Santiago; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Andreas Werner; Khatiwada, Ajeeta; Miller, David Harry; Neumeister, Norbert; Schulte, Jan-Frederik; Shi, Xin; Sun, Jian; Wang, Fuqiang; Xie, Wei; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Verzetti, Mauro; Agapitos, Antonis; Chou, John Paul; Gershtein, Yuri; Gómez Espinosa, Tirso Alejandro; Halkiadakis, Eva; Heindl, Maximilian; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Kyriacou, Savvas; Lath, Amitabh; Montalvo, Roy; Nash, Kevin; Osherson, Marc; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Delannoy, Andrés G; Foerster, Mark; Heideman, Joseph; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Juska, Evaldas; Kamon, Teruki; Mueller, Ryan; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Damgov, Jordan; De Guio, Federico; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Gurpinar, Emine; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Peltola, Timo; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Melo, Andrew; Ni, Hong; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Sun, Xin; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Sturdy, Jared; Zaleski, Shawn; Belknap, Donald; Buchanan, James; Caillol, Cécile; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Hussain, Usama; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Pierro, Giuseppe Antonio; Polese, Giovanni; Ruggles, Tyler; Savin, Alexander; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Woods, Nathaniel
2017-07-11
Normalized double-differential cross sections for top quark pair ($ \\mathrm{ t \\bar{t} } $) production are measured in pp collisions at a centre-of-mass energy of 8 TeV with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 19.7 fb$^{-1}$. The measurement is performed in the dilepton $\\mathrm{ e }^{\\pm}\\mu^{\\mp}$ final state. The $ \\mathrm{ t \\bar{t} } $ cross section is determined as a function of various pairs of observables characterizing the kinematics of the top quark and $ \\mathrm{ t \\bar{t} } $ system. The data are compared to calculations using perturbative quantum chromodynamics at next-to-leading and approximate next-to-next-to-leading orders. They are also compared to predictions of Monte Carlo event generators that complement fixed-order computations with parton showers, hadronization, and multiple-parton interactions. Overall agreement is observed with the predictions, which is improved when the latest global sets of proton parton distribution functions ar...
Charge symmetry breaking in parton distribution functions from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Horsley, R.; Zanotti, J.M. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Tsukuba Univ., Ibaraki (Japan). Center for Computational Sciences; Pleiter, D. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Konrad-Zuse-Zentrum fuer Informationstechnik Berlin (Germany); Thomas, A.W.; Young, R.D. [Adelaide Univ. SA (Australia). School of Physics and Chemistry; Winter, F. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Regensburg Univ. (Germany). Inst. fuer Theoretische Physik
2010-12-15
By determining the quark momentum fractions of the octet baryons from N{sub f}=2+1 lattice simulations, we are able to predict the degree of charge symmetry violation in the parton distribution functions of the nucleon. This is of importance, not only as a probe of our understanding of the non-perturbative structure of the proton but also because such a violation constrains the accuracy of global ts to parton distribution functions and hence the accuracy with which, for example, cross sections at the LHC can be predicted. A violation of charge symmetry may also be critical in cases where symmetries are used to guide the search for physics beyond the Standard Model. (orig.)
Charge symmetry breaking in parton distribution functions from lattice QCD
International Nuclear Information System (INIS)
Horsley, R.; Zanotti, J.M.; Rakow, P.E.L.; Stueben, H.; Thomas, A.W.; Young, R.D.; Winter, F.; Regensburg Univ.
2010-12-01
By determining the quark momentum fractions of the octet baryons from N f =2+1 lattice simulations, we are able to predict the degree of charge symmetry violation in the parton distribution functions of the nucleon. This is of importance, not only as a probe of our understanding of the non-perturbative structure of the proton but also because such a violation constrains the accuracy of global ts to parton distribution functions and hence the accuracy with which, for example, cross sections at the LHC can be predicted. A violation of charge symmetry may also be critical in cases where symmetries are used to guide the search for physics beyond the Standard Model. (orig.)
Deep inelastic processes. Phenomenology. Quark-parton model
International Nuclear Information System (INIS)
Ioffe, B.L.; Lipatov, L.N.; Khoze, V.A.
1983-01-01
Main theoretical approaches and experimental results related to deep inelastic processes are systematically outlined: electroproduction, neutrino scattering on nucleon, electron-positron pairs annihilation into hadron γγ collisions, production of lepton pairs in hadron collisions with a large effective mass or hadrons with large transverse momenta. Kinematics and phenomenology, space-time description of deep inelastic processes, sum rules, parton and quark-parton models are considered. The experiment is briefly discussed in the book. It is performed from the stand point of comparing it with the theory, experimental data are given as of June, 1982. Since the time of accomplishing the study on the manuscript a number of new experimental results not changing however the statements made in the book appeared. Principal consists in experiments with colliding proton-antiproton beams in CERN, which resulted in discovery of intermediate W-bozon
Multi parton interactions with CMS detector at LHC
International Nuclear Information System (INIS)
Ciangottini, D.
2014-01-01
Multi parton interactions (MPI) are experiencing a growing popularity and are widely invoked to account for observations that cannot be explained otherwise: the activity of the Underlying Event, the rates for multiple heavy flavour production, the survival probability of large rapidity gaps in hard diffraction, etc. The definition, implementation and tuning of MPI models in Monte Carlo generators plays an important role for the LHC physics: a better definition of the collision dynamics and a better definition of background processes. CMS was involved into the MPI characterization from the beginning of the LHC data-taken, starting from the Underlying Event measurements in Minimum Bias events. With the large integrated luminosity available, the Double Parton Scattering (DPS) measurements (2 hard events in the same proton-proton collision) can be performed in different final states and at different energy scales. The proposed contribution is intended to review past and ongoing studies on MPI with the CMS detector, providing a common interpretation.
Unintegrated parton distributions and electroweak boson production at hadron colliders
Watt, G; Ryskin, M G
2004-01-01
We describe the use of doubly-unintegrated parton distributions in hadron-hadron collisions, using the (z,k_t)-factorisation prescription where the transverse momentum of the incoming parton is generated in the last evolution step. We apply this formalism to calculate the transverse momentum (P_T) distributions of produced W and Z bosons and compare the predictions to Tevatron Run 1 data. We find that the observed P_T distributions can be generated almost entirely by the leading order q_1 q_2 -> W,Z subprocesses, using known and universal doubly-unintegrated quark distributions. We also calculate the P_T distribution of the Standard Model Higgs boson at the LHC, where the dominant production mechanism is by gluon-gluon fusion.
Influence of diffractive interactions on cosmic ray air showers
International Nuclear Information System (INIS)
Luna, R.; Zepeda, A.; Garcia Canal, C.A.; Sciutto, S.J.
2004-01-01
A comparative study of commonly used hadronic collision simulation packages is presented. The characteristics of the products of hadron-nucleus collisions are analyzed from a general perspective, but focusing on their correlation with diffractive processes. One of the purposes of our work is to give quantitative estimations of the impact that different characteristics of the hadronic models have on air shower observables. Several sets of shower simulations using different settings for the parameters controlling the diffractive processes are used to analyze the correlations between diffractivity and shower observables. We find that the relative probability of diffractive processes during the shower development have a non-negligible influence over the longitudinal profile as well as the distribution of muons at ground level. The implications on experimental data analysis are discussed
Expected Increase of Activity of Eta Aquariids Meteor Shower
Kulikova, N. V.; Chepurova, V. M.
2018-04-01
Analysis of the results of modeling disintegration of Comet 1P/Halley after its flare in 1991 has allowed us to predict an increase of the activity of the associated Eta Aquariids meteor shower in April-May 2018.
Lethal carbon monoxide toxicity in a concrete shower unit.
Heath, Karen; Byard, Roger W
2018-05-23
A 47-year-old previously-well woman was found dead on the floor of a shower cubicle on a property in rural South Australia. The impression of the attending doctor and police was of collapse due to natural disease. Although there was significant stenosing coronary artery atherosclerosis found at autopsy, cherry pink discoloration of tissues prompted measurement of the blood carboxyhemoglobin level which was found to be 55%. The source of the gas was a poorly-maintained hot water heater that was mounted on the inside wall of the shower. Construction of the shower using an impermeable concrete rain water tank had caused gas accumulation when the water heater malfunctioned. Had lethal carbon monoxide exposure not been identified others using the same shower unit would also have been at risk.
Nitrogen fluorescence in air for observing extensive air showers
Keilhauer, B; Fraga, M; Matthews, J; Sakaki, N; Tameda, Y; Tsunesada, Y; Ulrich, A
2012-01-01
Extensive air showers initiate the fluorescence emissions from nitrogen molecules in air. The UV-light is emitted isotropically and can be used for observing the longitudinal development of extensive air showers in the atmosphere over tenth of kilometers. This measurement technique is well-established since it is exploited for many decades by several cosmic ray experiments. However, a fundamental aspect of the air shower analyses is the description of the fluorescence emission in dependence on varying atmospheric conditions. Different fluorescence yields affect directly the energy scaling of air shower reconstruction. In order to explore the various details of the nitrogen fluorescence emission in air, a few experimental groups have been performing dedicated measurements over the last decade. Most of the measurements are now finished. These experimental groups have been discussing their techniques and results in a series of \\emph{Air Fluorescence Workshops} commenced in 2002. At the 8$^{\\rm{th}}$ Air Fluoresc...
Evolution equations for connected and disconnected sea parton distributions
Liu, Keh-Fei
2017-08-01
It has been revealed from the path-integral formulation of the hadronic tensor that there are connected sea and disconnected sea partons. The former is responsible for the Gottfried sum rule violation primarily and evolves the same way as the valence. Therefore, the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations can be extended to accommodate them separately. We discuss its consequences and implications vis-á-vis lattice calculations.
Chiral perturbation theory for nucleon generalized parton distributions
Energy Technology Data Exchange (ETDEWEB)
Diehl, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Manashov, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik]|[Sankt-Petersburg State Univ. (Russian Federation). Dept. of Theoretical Physics; Schaefer, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik
2006-08-15
We analyze the moments of the isosinglet generalized parton distributions H, E, H, E of the nucleon in one-loop order of heavy-baryon chiral perturbation theory. We discuss in detail the construction of the operators in the effective theory that are required to obtain all corrections to a given order in the chiral power counting. The results will serve to improve the extrapolation of lattice results to the chiral limit. (orig.)
Revisiting parton evolution and the large-x limit
International Nuclear Information System (INIS)
Dokshitzer, Yu.L.; Marchesini, G.; Salam, G.P.
2006-01-01
This remark is part of an ongoing project to simplify the structure of the multi-loop anomalous dimensions for parton distributions and fragmentation functions. It answers the call for a 'structural explanation' of a 'very suggestive' relation found by Moch, Vermaseren and Vogt in the context of the x->1 behaviour of three-loop DIS anomalous dimensions. It also highlights further structure that remains to be fully explained
Italian Physical Society Justifying the QCD parton model
Veneziano, G
2018-01-01
I will focus my attention on the two papers I wrote with Roberto and Daniele Amati on justifying the QCD-improved parton model, a very basic tool used every day to estimate a variety of processes involving strong (as well as possibly other) interactions. While doing so, I will also touch on other occasions I had to work —or just interact— with Roberto during more than 30 years of our respective careers.
The new investigation of Kimber-Martin-Ryskin unintegrated partons
International Nuclear Information System (INIS)
Modarres, M.; Hosseinkhani, H.
2010-01-01
The three sets of conventional integrated parton distribution functions (PDFs) such as MSTW 2008 (Martin et al), GJR08 (Glueck et al) and Coquet.6 (Nadol sky et al) are used as the inputs to generate the unintegrated parton distribution functions (U PDFs) via the Kimber-Martin-Ryskin (Kmr) procedure and the results are compared with each other. The U PDFs are obtained for several values of the squared transverse momentum component of parton (k t 2 ) and the longitudinal momentum fraction (x). The various aspects of the PDFs and the U PDFs ratios of GJR08 and CTEQ6.6 to MSTW 2008 are analyzed and discussed. In addition to our previous justification (Modarres and Hosseinkani in Nucl Phys A 815:40, 2009) about the stability and the reliability of KMR UPDFs, it is observed here that they are more convergent in the larger values of the scale k t 2 (i.e. the suppression of discrepancies of different PDFs schemes) such that the UPDFs produced via the KMR approach are stable with respect to the variation of the input sets of PDFs and they also tend to a unique value by increasing the scale k t 2 . As the final justifications and conclusions, it seems that the UPDFs produced via the KMR prescription are sufficiently reliable to use in the related phenomenological computations. Our investigation is based on the comparison of the generated UPDFs via the KMR approach by using the MSTW2008, the G J R and the CT Eq.6 sets of the conventional integrated partons as inputs. It is carried out by comparing the ratios G J R/MSTW2008 and CT Eq.6/MSTW2008 and analyzing the results. Although all the UPDFs are well behaved and applicable, but at the higher transverse momentum k 2 t the results are considerable. The most convergent and the unique UPDFs are for the gluon distributions which are noticeably good. (author)
Fermi-Dirac statistics plus liquid description of quark partons
International Nuclear Information System (INIS)
Buccella, F.; Migliore, G.; Tibullo, V.
1995-01-01
A previous approach with Fermi-Dirac distributions for fermion partons is here improved to comply with the expected low x behaviour of structure functions. We are so able to get a fair description of the unpolarized and polarized structure functions of the nucleons as well as of neutrino data. We cannot reach definite conclusions, but confirm our suspicion of a relationship between the defects in Gottfried and spin sum rules. (orig.)
Towards the compression of parton densities through machine learning algorithms
Carrazza, Stefano
2016-01-01
One of the most fascinating challenges in the context of parton density function (PDF) is the determination of the best combined PDF uncertainty from individual PDF sets. Since 2014 multiple methodologies have been developed to achieve this goal. In this proceedings we first summarize the strategy adopted by the PDF4LHC15 recommendation and then, we discuss about a new approach to Monte Carlo PDF compression based on clustering through machine learning algorithms.
Implications of new deep inelastic scattering data for parton distributions
International Nuclear Information System (INIS)
Martin, A.D.; Stirling, W.J.; Roberts, R.G.
1988-01-01
We perform a next-to-leading order structure function F 2 analysis of μN and νN deep inelastic data in an attempt to resolve the disagreement between recent EMC (European muon collaboration effect) and BCDMS measurements of F 2 for μp scattering. Equally acceptable QCD fits are obtained including either set of μN data, but a comparison with Drell-Yan data appears to favour the parton distributions derived from the BCDMS data. (author)
Chiral dynamics and partonic structure at large transverse distances
Energy Technology Data Exchange (ETDEWEB)
Strikman, M. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Physics; Weiss, C. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States). Theory Center
2009-12-30
In this paper, we study large-distance contributions to the nucleon’s parton densities in the transverse coordinate (impact parameter) representation based on generalized parton distributions (GPDs). Chiral dynamics generates a distinct component of the partonic structure, located at momentum fractions x≲M_{π}/M_{N} and transverse distances b~1/M_{π}. We calculate this component using phenomenological pion exchange with a physical lower limit in b (the transverse “core” radius estimated from the nucleon’s axial form factor, R_{core}=0.55 fm) and demonstrate its universal character. This formulation preserves the basic picture of the “pion cloud” model of the nucleon’s sea quark distributions, while restricting its application to the region actually governed by chiral dynamics. It is found that (a) the large-distance component accounts for only ~1/3 of the measured antiquark flavor asymmetry d¯-u¯ at x~0.1; (b) the strange sea quarks s and s¯ are significantly more localized than the light antiquark sea; (c) the nucleon’s singlet quark size for x<0.1 is larger than its gluonic size, (b^{2})_{q+q¯}>(b^{2})_{g}, as suggested by the t-slopes of deeply-virtual Compton scattering and exclusive J/ψ production measured at HERA and FNAL. We show that our approach reproduces the general N_{c}-scaling of parton densities in QCD, thanks to the degeneracy of N and Δ intermediate states in the large-N_{c} limit. Finally, we also comment on the role of pionic configurations at large longitudinal distances and the limits of their applicability at small x.
Moments of nucleon spin-dependent generalized parton distributions
International Nuclear Information System (INIS)
Schroers, W.; Brower, R.C.; Dreher, P.; Edwards, R.; Fleming, G.; Haegler, Ph.; Heller, U.M.; Lippert, Th.; Negele, J.W.; Pochinsky, A.V.; Renner, D.B.; Richards, D.; Schilling, K.
2004-01-01
We present a lattice measurement of the first two moments of the spin-dependent GPD H∼(x, ξ, t). From these we obtain the axial coupling constant and the second moment of the spin-dependent forward parton distribution. The measurements are done in full QCD using Wilson fermions. In addition, we also present results from a first exploratory study of full QCD using Asqtad sea and domain-wall valence fermions
Timelike Compton scattering off the neutron and generalized parton distributions
Energy Technology Data Exchange (ETDEWEB)
Boer, M.; Guidal, M. [CNRS-IN2P3, Universite Paris-Sud, Institut de Physique Nucleaire d' Orsay, Orsay (France); Vanderhaeghen, M. [Johannes Gutenberg Universitaet, Institut fuer Kernphysik and PRISMA Cluster of Excellence, Mainz (Germany)
2016-02-15
We study the exclusive photoproduction of an electron-positron pair on a neutron target in the Jefferson Lab energy domain. The reaction consists of two processes: the Bethe-Heitler and the Timelike Compton Scattering. The latter process provides potentially access to the Generalized Parton Distributions (GPDs) of the nucleon. We calculate all the unpolarized, single- and double-spin observables of the reaction and study their sensitivities to GPDs. (orig.)
Three-Dimensional parton structure of light nuclei
Scopetta, Sergio; Del Dotto, Alessio; Kaptari, Leonid; Pace, Emanuele; Rinaldi, Matteo; Salmè, Giovanni
2018-03-01
Two promising directions beyond inclusive deep inelastic scattering experiments, aimed at unveiling the three dimensional structure of the bound nucleon, are reviewed, considering in particular the 3He nuclear target. The 3D structure in coordinate space can be accessed through deep exclusive processes, whose non-perturbative part is encoded in generalized parton distributions. In this way, the distribution of partons in the transverse plane can be obtained. As an example of a deep exclusive process, coherent deeply virtual Compton scattering off 3He nuclei, important to access the neutron generalized parton distributions (GPDs), will be discussed. In Impulse Approximation (IA), the sum of the two leading twist, quark helicity conserving GPDs of 3He, H and E, at low momentum transfer, turns out to be dominated by the neutron contribution. Besides, a technique, able to take into account the nuclear effects included in the Impulse Approximation analysis, has been developed. The spin dependent GPD \\tilde H of 3He is also found to be largely dominated, at low momentum transfer, by the neutron contribution. The knowledge of the GPDs H,E and \\tilde H of 3He is relevant for the planning of coherent DVCS off 3He measurements. Semi-inclusive deep inelastic scattering processes access the momentum space 3D structure parameterized through transverse momentum dependent parton distributions. A distorted spin-dependent spectral function has been recently introduced for 3He, in a non-relativistic framework, to take care of the final state interaction between the observed pion and the remnant in semi-inclusive deep inelastic electron scattering off transversely polarized 3He. The calculation of the Sivers and Collins single spin asymmetries for 3He, and a straightforward procedure to effectively take into account nuclear dynamics and final state interactions, will be reviewed. The Light-front dynamics generalization of the analysis is also addressed.
A Bayesian statistical method for particle identification in shower counters
International Nuclear Information System (INIS)
Takashimizu, N.; Kimura, A.; Shibata, A.; Sasaki, T.
2004-01-01
We report an attempt on identifying particles using a Bayesian statistical method. We have developed the mathematical model and software for this purpose. We tried to identify electrons and charged pions in shower counters using this method. We designed an ideal shower counter and studied the efficiency of identification using Monte Carlo simulation based on Geant4. Without having any other information, e.g. charges of particles which are given by tracking detectors, we have achieved 95% identifications of both particles
Microwave detection of air showers with the MIDAS experiment
International Nuclear Information System (INIS)
Privitera, Paolo; Alekotte, I.; Alvarez-Muniz, J.; Berlin, A.; Bertou, X.; Bogdan, M.; Bohacova, M.; Bonifazi, C.; Carvalho, W.R.; Mello Neto, J.R.T. de; Facal San Luis, P.; Genat, J.F.; Hollon, N.; Mills, E.; Monasor, M.; Reyes, L.C.; Rouille d'Orfeuil, B.; Santos, E.M.; Wayne, S.; Williams, C.
2011-01-01
Microwave emission from Extensive Air Showers could provide a novel technique for ultra-high energy cosmic rays detection over large area and with 100% duty cycle. We describe the design, performance and first results of the MIDAS (MIcrowave Detection of Air Showers) detector, a 4.5 m parabolic dish with 53 feeds in its focal plane, currently installed at the University of Chicago.
Electromagnetic-shower development in concrete and the punchthrough effect
International Nuclear Information System (INIS)
Mikocki, S.; Poirier, J.
1987-01-01
We present Monte Carlo calculations of the cascade curves in a concrete absorber for showers initiated by photons with energies from 10 MeV to 100 GeV. As an application of these curves, we estimate the punchthrough effect of photons and electrons in extensive-air-shower arrays which use a concrete absorber to identify muons. The results indicate that this effect is negligible
Nuclear parton distributions with the LHeC
International Nuclear Information System (INIS)
Klein, M.
2016-01-01
Nuclear parton distributions are far from being known today because of an infant experimental base. Based on design studies of the LHeC and using new simulations, of the inclusive neutral and charged current cross section measurements and of the strange, charm and beauty densities in nuclei, it is demonstrated how that energy frontier electron-ion collider would unfold the complete set of nuclear parton distributions (nPDFs) in a hugely extended kinematic range of deep inelastic scattering, extending in Bjorken x down to values near to 10 -6 in the perturbative domain. Together with a very precise and complete set of proton PDFs, the LHeC nPDFs will thoroughly change the theoretical understanding of parton dynamics and structure inside hadrons. This contribution is organised as follows: Section 2 summarises the status of the current nPDF determinations and presents a summary of the LHeC data simulation. Section 3 briefly summarises initial results of a study of the determination of PDFs in electron-deuteron scattering. Section 4 presents the nPDF simulation using LHeC data performed within an adapted EPS09 pQCD framework. Section 5 discusses the gluon distribution and the possible search for saturation of the rise of the gluon density towards low x. Section 6 includes the determination of the strange, charm and beauty distributions in nuclei from a future eA operation of the LHeC. A brief summary is presented in Section 7
Energy Technology Data Exchange (ETDEWEB)
Kivel, N.; Mankiewicz, L. E-mail: lech@cft.edu.pl
2003-11-10
We computed the NLO corrections to twist-3, L{yields}T, flavor nonsinglet amplitude in DVCS on a nucleon in the Wandzura-Wilczek approximation. Explicit calculation shows that factorization holds for NLO contribution to this amplitude, although the structure of the factorized amplitude at the NLO is more complicated than in the leading-order formula. Next-to-leading order coefficient functions for matrix elements of twist-3 vector and axial-vector quark string operators and their LO evolution equations are presented.
International Nuclear Information System (INIS)
Kivel, N.; Mankiewicz, L.
2003-01-01
We computed the NLO corrections to twist-3, L→T, flavor nonsinglet amplitude in DVCS on a nucleon in the Wandzura-Wilczek approximation. Explicit calculation shows that factorization holds for NLO contribution to this amplitude, although the structure of the factorized amplitude at the NLO is more complicated than in the leading-order formula. Next-to-leading order coefficient functions for matrix elements of twist-3 vector and axial-vector quark string operators and their LO evolution equations are presented
Nelles, A.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Scholten, O.; ter Veen, S.; Thoudam, S.; Trinh, Gia
2015-01-01
The pattern of the radio emission of air showers is finely sampled with the Low-Frequency ARray (LOFAR). A set of 382 measured air showers is used to test a fast, analytic parameterization of the distribution of pulse powers. Using this parameterization we are able to reconstruct the shower axis and
Performance characteristics of a shower cooling tower
International Nuclear Information System (INIS)
Qi Xiaoni; Liu Zhenyan; Li Dandan
2007-01-01
This study was prompted by the need to design towers for applications in which, due to salt deposition on the packing and subsequent blockage, the use of tower packing is not practical. In contrast to conventional cooling towers, the cooling tower analyzed in this study is void of fill. By means of efficient atomization nozzles, a shower cooling tower (SCT) is possible to be applied in industry, which, in terms of water cooling, energy saving and equipment investing, is better than conventional packed cooling towers. However, no systematic thermodynamic numerical method could be found in the literature up to now. Based on the kinetic model and mass and heat transfer model, this paper has developed a one dimensional model for studying the motional process and evaporative cooling process occurring at the water droplet level in the SCT. The finite difference approach is used for three motional processes to obtain relative parameters in each different stage, and the possibility of the droplets being entrained outside the tower is fully analyzed. The accuracy of this model is checked by practical operational results from a full scale prototype in real conditions, and some exclusive factors that affect the cooling characteristics for the SCT are analyzed in detail. This study provides the theoretical foundation for practical application of the SCT in industry
Biofilms on Hospital Shower Hoses: Characterization and ...
Although the source of drinking water used in hospitals is commonly, biofilms on water pipelines are refuge to bacteria that survive different disinfection strategies. Drinking water (DW) biofilms are well known to harbor opportunistic pathogens, however, these biofilm communities remain poorly characterized by culture-independent approaches that circumvent the limitations of conventional monitoring efforts. Hence, the frequency of pathogens in DW biofilms and how biofilm members withstand high doses of disinfectants and/or chlorine residuals in the water supply remain speculative, but directly impact public health. The aim of this study was to characterize the composition of microbial communities growing on five hospital shower hoses using both culture-dependent and culture-independent techniques. Two different sequence-based methods were used to characterize the bacterial fractions: 16S rRNA gene sequencing of bacterial cultures and next generation sequencing of metagenomes. Based on the metagenomic data, we found that Mycobacterium-like species was the abundant bacterial taxa that overlapped among the five samples. We also recovered the draft genome of a novel Mycobacterium species, closely related to opportunistic pathogenic nontuberculous mycobacteria, M. rhodesiae and M. tusciae, in addition to other, less abundant species. In contrast, the cultured fraction was mostly affiliated to Proteobacteria, such as members of the Sphingomonas, Blastomonas and Porph
Extensive Air Showers with unusual structure
Directory of Open Access Journals (Sweden)
Beznosko Dmitriy
2017-01-01
Full Text Available A total of 23500 Extensive Air Showers (EAS with energies above ∼ 1016 eV have been detected during the ∼3500 hours of the Horizon-T (HT detectors system operations before Aug. 2016. Among these EAS, more than a thousand had an unusual spatial and temporary structure that showed pulses with several maxima (modals or modes from several detection points of the HT at the same time. These modes are separated in time from each other starting from tens to thousands of ns. These EAS have been called multi-modal. Analysis shows that the multi-modal EAS that have been detected by Horizon-T have the following properties: 1. Multi-modal EAS have energy above ∼1017 eV. 2. Pulses with several modes are located at large distances from the EAS axis. An overview of the collected data will be provided. General comments about the unusual structure of the multi-modal EAS will be presented.
Triple parton scatterings in high-energy proton-proton collisions arXiv
d'Enterria, David
2017-01-01
A generic expression to compute triple parton scattering cross sections in high-energy proton-proton (pp) collisions is presented as a function of the corresponding single parton cross sections and the transverse parton profile of the proton encoded in an effective parameter σeff,TPS. The value of σeff,TPS is closely related to the similar effective cross section that characterizes double parton scatterings, and amounts to σeff,TPS=12.5±4.5 mb. Estimates for triple charm (cc¯) and bottom (bb¯) production in pp collisions at LHC and FCC energies are presented based on next-to-next-to-leading-order perturbative calculations for single cc¯, bb¯ cross sections. At s≈100 TeV, about 15% of the pp collisions produce three cc¯ pairs from three different parton-parton scatterings.
Wee partons in large nuclei: From virtual dream to hard reality
International Nuclear Information System (INIS)
Venugopalan, R.
1995-01-01
We construct a weak coupling, many body theory to compute parton distributions in large nuclei for x much-lt A - 1/3 . The wee partons are highly coherent, non-Abelian Weizsaecker-Williams fields. Radiative corrections to the classical results axe discussed. The parton distributions for a single nucleus provide the initial conditions for the dynamical evolution of matter formed in ultrarelativistic nuclear collisions
Scale breaking effects in the quark-parton model for large P perpendicular phenomena
International Nuclear Information System (INIS)
Baier, R.; Petersson, B.
1977-01-01
We discuss how the scaling violations suggested by an asymptotically free parton model, i.e., the Q 2 -dependence of the transverse momentum of partons within hadrons may affect the parton model description of large p perpendicular phenomena. We show that such a mechanism can provide an explanation for the magnitude of the opposite side correlations and their dependence on the trigger momentum. (author)
Baryon form factors at high momentum transfer and generalized parton distributions
International Nuclear Information System (INIS)
Stoler, Paul
2002-01-01
Nucleon form factors at high momentum transfer t are treated in the framework of generalized parton distributions (GPD's). The possibility of obtaining information about parton high transverse momentum components by application of GPD's to form factors is discussed. This is illustrated by applying an ad hoc 2-body parton wave function to elastic nucleon form factors F 1 and F 2 , the N→Δ transition magnetic form factor G M * , and the wide angle Compton scattering form factor R 1
INSPIRE-00232391; Levy, Aharon
The dijet double-differential cross section is measured as a function of the dijet invariant mass, using data taken during 2010 and during 2011 with the ATLAS experiment at the LHC, with a center-of-mass energy, $\\sqrt{s}=7$ TeV. The measurements are sensitive to invariant masses between 70 GeV and 4.27 TeV with center-of-mass jet rapidities up to 3.5. A novel technique to correct jets for pile-up (additional proton-proton collisions) in the 2011 data is developed and subsequently used in the measurement. The data are found to be consistent over 12 orders of magnitude with fixed-order NLO pQCD predictions provided by NLOJET++. The results constitute a stringent test of pQCD, in an energy regime previously unexplored. The dijet analysis is a confidence building step for the extraction of the signal of hard double parton scattering in four-jet events, and subsequent extraction of the effective overlap area between the interacting protons, expressed in terms of the variable, $\\sigma_{\\mathrm{eff}}$. The measur...
Double parton scattering in the ultraviolet. Addressing the double counting problem
Energy Technology Data Exchange (ETDEWEB)
Diehl, Markus [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gaunt, Jonathan R. [Nikhef Theory Group, Amsterdam (Netherlands); Amsterdam VU Univ. (Netherlands)
2016-11-15
An important question in the theory of double parton scattering is how to incorporate the possibility of the parton pairs being generated perturbatively via 1→ 2splitting into the theory, whilst avoiding double counting with single parton scattering loop corrections. Here, we describe a consistent approach for solving this problem, which retains the notion of double parton distributions (DPDs) for individual hadrons. Further, we discuss the construction of appropriate model DPDs in our framework, and the use of these to compute the DPS part, presenting DPS 'luminosities' from our model DPDs for a few sample cases.
Charge symmetry breaking in spin dependent parton distributions and the Bjorken sum rule
International Nuclear Information System (INIS)
Cloet, I.C.; Horsley, R.; Londergan, J.T.
2012-04-01
We present the rst determination of charge symmetry violation (CSV) in the spin-dependent parton distribution functions of the nucleon. This is done by determining the rst two Mellin moments of the spin-dependent parton distribution functions of the octet baryons from N f =2+1 lattice simulations. The results are compared with predictions from quark models of nucleon structure. We discuss the contribution of partonic spin CSV to the Bjorken sum rule, which is important because the CSV contributions represent the only partonic corrections to the Bjorken sum rule.
Charge symmetry breaking in spin dependent parton distributions and the Bjorken sum rule
Energy Technology Data Exchange (ETDEWEB)
Cloet, I.C. [Adelaide Univ, SA (Australia). CSSM, School of Chemistry and Physics; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Londergan, J.T. [Indiana Univ., Bloomington, IN (US). Dept. of Physics and Center for Exploration of Energy and Matter] (and others)
2012-04-15
We present the rst determination of charge symmetry violation (CSV) in the spin-dependent parton distribution functions of the nucleon. This is done by determining the rst two Mellin moments of the spin-dependent parton distribution functions of the octet baryons from N{sub f}=2+1 lattice simulations. The results are compared with predictions from quark models of nucleon structure. We discuss the contribution of partonic spin CSV to the Bjorken sum rule, which is important because the CSV contributions represent the only partonic corrections to the Bjorken sum rule.
NLO QCD+EW predictions for V + jets including off-shell vector-boson decays and multijet merging
Energy Technology Data Exchange (ETDEWEB)
Kallweit, S. [Institut für Physik & PRISMA Cluster of Excellence,Johannes Gutenberg Universität, 55099 Mainz (Germany); Lindert, J.M. [Physik-Institut, Universität Zürich,Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Maierhöfer, P. [Institute for Particle Physics Phenomenology, Durham University,Durham DH1 3LE (United Kingdom); Physikalisches Institut, Albert-Ludwigs-Universität Freiburg,79104 Freiburg (Germany); Pozzorini, S.; Schönherr, M. [Physik-Institut, Universität Zürich,Winterthurerstrasse 190, CH-8057 Zürich (Switzerland)
2016-04-05
We present next-to-leading order (NLO) predictions including QCD and electroweak (EW) corrections for the production and decay of off-shell electroweak vector bosons in association with up to two jets at the 13 TeV LHC. All possible dilepton final states with zero, one or two charged leptons that can arise from off-shell W and Z bosons or photons are considered. All predictions are obtained using the automated implementation of NLO QCD+EW corrections in the OPENLOOPS matrix-element generator combined with the MUNICH and SHERPA Monte Carlo frameworks. Electroweak corrections play an especially important role in the context of BSM searches, due to the presence of large EW Sudakov logarithms at the TeV scale. In this kinematic regime, important observables such as the jet transverse momentum or the total transverse energy are strongly sensitive to multijet emissions. As a result, fixed-order NLO QCD+EW predictions are plagued by huge QCD corrections and poor theoretical precision. To remedy this problem we present an approximate method that allows for a simple and reliable implementation of NLO EW corrections in the MEPS@NLO multijet merging framework. Using this general approach we present an inclusive simulation of vector-boson production in association with jets that guarantees NLO QCD+EW accuracy in all phase-space regions involving up to two resolved jets.
Catalogue of Meteor Showers and Storms in Korean History
Directory of Open Access Journals (Sweden)
Sang-Hyeon Ahn
2004-03-01
Full Text Available We present a more complete and accurate catalogue of astronomical records for meteor showers and meteor storms appeared in primary official Korean history books, such as Samguk-sagi, Koryo-sa, Seungjeongwon-ilgi, and Choson-Wangjo-Sillok. So far the catalogue made by Imoto and Hasegawa in 1958 has been widely used in the international astronomical society. The catalogue is based on a report by Sekiguchi in 1917 that is mainly based on secondary history books. We observed that the catalogue has a number of errors in either dates or sources of the records. We have thoroughly checked the primary official history books, instead of the secondary ones, in order to make a corrected and extended catalogue. The catalogue contains 25 records of meteor storms, four records of intense meteor-showers, and five records of usual showers in Korean history. We also find that some of those records seem to correspond to some presently active meteor showers such as the Leonids, the Perseids, and the ¥ç-Aquarids-Orionids pair. However, a large number of those records do not correspond to such present showers. This catalogue we obtained can be useful for various astrophysical studies in the future.
Squark production in R-symmetric SUSY with Dirac gluinos. NLO corrections
Energy Technology Data Exchange (ETDEWEB)
Diessner, Philip [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kotlarski, Wojciech [Technische Univ. Dresden (Germany). Inst. fuer Kern- und Teilchenphysik; Warsaw Univ. (Poland). Faculty of Physics; Liebschner, Sebastian; Stoeckinger, Dominik [Technische Univ. Dresden (Germany). Inst. fuer Kern- und Teilchenphysik
2017-11-15
R-symmetry leads to a distinct realisation of SUSY with a significantly modified coloured sector featuring a Dirac gluino and a scalar colour octet (sgluon). We present the impact of R-symmetry on squark production at the 13 TeV LHC. We study the total cross sections and their NLO corrections from all strongly interacting states, their dependence on the Dirac gluino mass and sgluon mass as well as their systematics for selected benchmark points. We find that tree-level cross sections in the R-symmetric model are reduced compared to the MSSM but the NLO K-factors are generally larger in the order of ten to twenty per cent. In the course of this work we derive the required DREG → DRED transition counterterms and necessary on-shell renormalisation constants. The real corrections are treated using FKS subtraction, with results cross checked against an independent calculation employing the two cut phase space slicing method.
NNLO massive corrections to Bhabha scattering and theoretical precision of BabaYaga rate at NLO
International Nuclear Information System (INIS)
Carloni Calame, C.M.; Nicrosini, O.; Piccinini, F.; Riemann, T.; Worek, M.
2011-12-01
We provide an exact calculation of next-to-next-to-leading order (NNLO) massive corrections to Bhabha scattering in QED, relevant for precision luminosity monitoring at meson factories. Using realistic reference event selections, exact numerical results for leptonic and hadronic corrections are given and compared with the corresponding approximate predictions of the event generator BabaYaga rate at NLO. It is shown that the NNLO massive corrections are necessary for luminosity measurements with per mille precision. At the same time they are found to be well accounted for in the generator at an accuracy level below the one per mille. An update of the total theoretical precision of BabaYaga rate at NLO is presented and possible directions for a further error reduction are sketched. (orig.)
Squark production in R-symmetric SUSY with Dirac gluinos. NLO corrections
International Nuclear Information System (INIS)
Diessner, Philip; Kotlarski, Wojciech; Warsaw Univ.; Liebschner, Sebastian; Stoeckinger, Dominik
2017-11-01
R-symmetry leads to a distinct realisation of SUSY with a significantly modified coloured sector featuring a Dirac gluino and a scalar colour octet (sgluon). We present the impact of R-symmetry on squark production at the 13 TeV LHC. We study the total cross sections and their NLO corrections from all strongly interacting states, their dependence on the Dirac gluino mass and sgluon mass as well as their systematics for selected benchmark points. We find that tree-level cross sections in the R-symmetric model are reduced compared to the MSSM but the NLO K-factors are generally larger in the order of ten to twenty per cent. In the course of this work we derive the required DREG → DRED transition counterterms and necessary on-shell renormalisation constants. The real corrections are treated using FKS subtraction, with results cross checked against an independent calculation employing the two cut phase space slicing method.
Helicity-dependent generalized parton distributions for nonzero skewness
Energy Technology Data Exchange (ETDEWEB)
Mondal, Chandan [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China)
2017-09-15
We investigate the helicity-dependent generalized parton distributions (GPDs) in momentum as well as transverse position (impact) spaces for the u and d quarks in a proton when the momentum transfer in both the transverse and the longitudinal directions are nonzero. The GPDs are evaluated using the light-front wave functions of a quark-diquark model for nucleon where the wave functions are constructed by the soft-wall AdS/QCD correspondence. We also express the GPDs in the boost-invariant longitudinal position space. (orig.)
Multiparticle production in a two-component dual parton model
International Nuclear Information System (INIS)
Aurenche, P.; Bopp, F.W.; Capella, A.; Kwiecinski, J.; Maire, M.; Ranft, J.; Tran Thanh Van, J.
1992-01-01
The dual parton model (DPM) describes soft and semihard multiparticle production. The version of the DPM presented in this paper includes soft and hard mechanisms as well as diffractive processes. The model is formulated as a Monte Carlo event generator. We calculate in this model, in the energy range of the hadron colliders, rapidity distributions and the rise of the rapidity plateau with the collision energy, transverse-momentum distributions and the rise of average transverse momenta with the collision energy, multiplicity distributions in different pseudorapidity regions, and transverse-energy distributions. For most of these quantities we find a reasonable agreement with experimental data
Quark-parton model from dual topological unitarization
International Nuclear Information System (INIS)
Cohen-Tannoudji, G.; El Hassouni, A.; Kalinowski, J.; Peschanski, R.
1979-01-01
Topology, which occurs in the topological expansion of quantum chromodynamics (QCD) and in the dual topological unitarization (DTU) schemes, allows us to establish a quantitative correspondence between QCD and the dual S-matrix approaches. This topological correspondence, proposed by Veneziano and made more explicit in a recent paper for current-induced reactions, provides a clarifying and unifying quark-parton interpretation of soft inclusive processes. Precise predictions for inclusive cross sections in hadron-hadron collisions, structure functions of hadrons, and quark fragmentation functions including absolute normalizations are shown to agree with data. On a more theoretical ground the proposed scheme suggests a new approach to the confinement problem
Parton recombination model including resonance production. RL-78-040
International Nuclear Information System (INIS)
Roberts, R.G.; Hwa, R.C.; Matsuda, S.
1978-05-01
Possible effects of resonance production on the meson inclusive distribution in the fragmentation region are investigated in the framework of the parton recombination model. From a detailed study of the data on vector-meson production, a reliable ratio of the vector-to-pseudoscalar rates is determined. Then the influence of the decay of the vector mesons on the pseudoscalar spectrum is examined, and the effect found to be no more than 25% for x > 0.5. The normalization of the non-strange antiquark distributions are still higher than those in a quiescent proton. The agreement between the calculated results and data remain very good. 36 references
Nonscaling parametrization of hadronic spectra and dual parton model
International Nuclear Information System (INIS)
Gaponenko, O.N.
2001-01-01
Using the popular Wdowczyk-Wolfendale parametrization (WW-parametrization) as an example one studies restrictions imposed by a dual parton model for different nonscaling parametrizations of the pulsed hadron spectra in soft hadron-hadron and hadron-nuclear interactions. One derived a new parametrization free from basic drawback of the WW-formulae. In the central range the determined parametrization show agreement with the Wdowczyk-Wolfendale formula, but in contrast to the last-named one it does not result in contradiction with the experiment due to fast reduction of inelastic factor reduction with energy increase [ru
Transverse momentum dependent parton distributions at small-x
Directory of Open Access Journals (Sweden)
Bo-Wen Xiao
2017-08-01
Full Text Available We study the transverse momentum dependent (TMD parton distributions at small-x in a consistent framework that takes into account the TMD evolution and small-x evolution simultaneously. The small-x evolution effects are included by computing the TMDs at appropriate scales in terms of the dipole scattering amplitudes, which obey the relevant Balitsky–Kovchegov equation. Meanwhile, the TMD evolution is obtained by resumming the Collins–Soper type large logarithms emerged from the calculations in small-x formalism into Sudakov factors.
Parton recombination model including resonance production. RL-78-040
Energy Technology Data Exchange (ETDEWEB)
Roberts, R. G.; Hwa, R. C.; Matsuda, S.
1978-05-01
Possible effects of resonance production on the meson inclusive distribution in the fragmentation region are investigated in the framework of the parton recombination model. From a detailed study of the data on vector-meson production, a reliable ratio of the vector-to-pseudoscalar rates is determined. Then the influence of the decay of the vector mesons on the pseudoscalar spectrum is examined, and the effect found to be no more than 25% for x > 0.5. The normalization of the non-strange antiquark distributions are still higher than those in a quiescent proton. The agreement between the calculated results and data remain very good. 36 references.
APFELgrid: a high performance tool for parton density determinations
Bertone, Valerio; Hartland, Nathan P.
We present a new software package designed to reduce the computational burden of hadron collider measurements in Parton Distribution Function (PDF) fits. The APFELgrid package converts interpolated weight tables provided by APPLgrid files into a more efficient format for PDF fitting by the combination with PDF and $\\alpha_s$ evolution factors provided by APFEL. This combination significantly reduces the number of operations required to perform the calculation of hadronic observables in PDF fits and simplifies the structure of the calculation into a readily optimised scalar product. We demonstrate that our technique can lead to a substantial speed improvement when compared to existing methods without any reduction in numerical accuracy.
NLO QCD corrections to Higgs pair production including dimension-6 operators
Energy Technology Data Exchange (ETDEWEB)
Groeber, Ramona [INFN, Sezione di Roma Tre, Roma (Italy); Muehlleitner, Margarete; Streicher, Juraj [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Institut fuer Theoretische Physik; Spira, Michael [Paul Scherrer Institut, Villigen (Switzerland)
2016-07-01
The role of the Higgs boson has developed from the long-sought particle into a tool for exploring beyond Standard Model (BSM) physics. While the Higgs boson signal strengths are close to the values predicted in the Standard Model (SM), the trilinear Higgs-selfcoupling can still deviate significantly from the SM expectations in some BSM scenarios. The Effective Field Theory (EFT) framework provides a way to describe these deviations in a rather model independent way, by including higher-dimensional operators which modify the Higgs boson couplings and induce novel couplings not present in the SM. The trilinear Higgs-selfcoupling is accessible in Higgs pair production, for which the gluon fusion is the dominant production channel. The next-to-leading (NLO) QCD corrections to this process are important for a proper prediction of the cross section and are known in the limit of heavy top quark masses. In our work, we provide the NLO QCD corrections in the large top quark mass limit to Higgs pair production including dimension-6 operators. The various higher-dimensional contributions are affected differently by the QCD corrections, leading to deviations in the relative NLO QCD corrections of several per-cent, while modifying the cross section by up to an order of magnitude.
Decoupling the NLO coupled DGLAP evolution equations: an analytic solution to pQCD
Energy Technology Data Exchange (ETDEWEB)
Block, Martin M. [Northwestern University, Department of Physics and Astronomy, Evanston, IL (United States); Durand, Loyal [University of Wisconsin, Department of Physics, Madison, WI (United States); Ha, Phuoc [Towson University, Department of Physics, Astronomy and Geosciences, Towson, MD (United States); McKay, Douglas W. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (United States)
2010-10-15
Using repeated Laplace transforms, we turn coupled, integral-differential singlet DGLAP equations into NLO (next-to-leading) coupled algebraic equations, which we then decouple. After two Laplace inversions we find new tools for pQCD: decoupled NLO analytic solutions F{sub s}(x,Q{sup 2})=F{sub s}(F{sub s0}(x),G{sub 0}(x)), G(x,Q{sup 2})=G(F{sub s0}(x), G{sub 0}(x)). F{sub s}, G are known NLO functions and F{sub s0}(x){identical_to}F{sub s}(x,Q{sub 0}{sup 2}), G{sub 0}(x){identical_to}G(x,Q{sub 0}{sup 2}) are starting functions for evolution beginning at Q{sup 2}=Q{sub 0}{sup 2}. We successfully compare our u and d non-singlet valence quark distributions with MSTW results (Martin et al., Eur. Phys. J. C 63:189, 2009). (orig.)
Jet-medium interactions at NLO in a weakly-coupled quark-gluon plasma
International Nuclear Information System (INIS)
Ghiglieri, Jacopo; Moore, Guy D.; Teaney, Derek
2016-01-01
We present an extension to next-to-leading order in the strong coupling constant g of the AMY effective kinetic approach to the energy loss of high momentum particles in the quark-gluon plasma. At leading order, the transport of jet-like particles is determined by elastic scattering with the thermal constituents, and by inelastic collinear splittings induced by the medium. We reorganize this description into collinear splittings, high-momentum-transfer scatterings, drag and diffusion, and particle conversions (momentum-preserving identity-changing processes). We show that this reorganized description remains valid to NLO in g, and compute the appropriate modifications of the drag, diffusion, particle conversion, and inelastic splitting coefficients. In addition, a new kinematic regime opens at NLO for wider-angle collinear bremsstrahlung. These semi-collinear emissions smoothly interpolate between the leading order high-momentum-transfer scatterings and collinear splittings. To organize the calculation, we introduce a set of Wilson line operators on the light-cone which determine the diffusion and identity changing coefficients, and we show how to evaluate these operators at NLO.
Large high altitude air shower observatory (LHAASO) project
International Nuclear Information System (INIS)
He Huihai
2010-01-01
The Large High Altitude Air Shower Observatory (LHAASO) project focuses mainly on the study of 40 GeV-1 PeV gamma ray astronomy and 10 TeV-1 EeV cosmic ray physics. It consists of a 1 km 2 extensive air shower array with 40 000 m 2 muon detectors, 90,000m 2 water Cerenkov detector array, 5 000 m 2 shower core detector array and an air Cerenkov/fluorescence telescope array. Prototype detectors are designed with some of them already in operation. A prototype array of 1% size of LHAASO will be built at the Yangbajing Cosmic Ray Observatory and used to coincidently measure cosmic rays with the ARGO-YBJ experiment. (authors)
Personnel protective equipment total-encapsulating suit decontamination study using shower systems
International Nuclear Information System (INIS)
Menkhaus, D.E.
1991-01-01
This report documents an experimental evaluation, conducted at the Idaho National Engineering Laboratory, of a shower-based decontamination station for personnel wearing a Level A, total- encapsulating, chemical-protective suit. The decontamination station is used by personnel when egressing a dry, dusty environment contaminated with transuranic radionuclides. This system has the potential to minimize the risk of spreading the contaminants to clean areas. Two types of shower systems were evaluated, a drench shower and a multi-nozzle shower. A total-encapsulating suit, worn by personnel. was contaminated with soil containing 239 Pu. Pre- shower and post-shower contamination samples were collected and visual observations were made to evaluate the ability of the shower system to remove the contaminated dust and to obtain baseline data useful in designing a shower-based personnel decontamination system. 12 figs., 7 tabs
Delayed hadrons in air showers observed in Chacaltaya
International Nuclear Information System (INIS)
Kakimoto, Fumio
1984-01-01
Bolivian Air Shower Joint Experiment group has studied high energy interaction by measuring the aspect of vertical growth of air showers of 10 16 eV or more at Mt. Chacaltaya Space Physics Observatory at 5200 m above sea level and atmospheric depth of 550 g/cm 2 . The aspect of vertical growth of electrons from about 100 g/cm 2 to about 400 g/cm 2 of atmospheric depth obtained by the measured results of the time of arrival distribution of air Cherenkov radiation at Mt. Chacaltaya agreed with the one predicted from the enhanced 1/2 power of E model. Since the vertical growth of electrons and muons in about 10 17 eV air showers from the atmospheric apex was difficult to give the unified explanation with known interaction models, the University of Tokyo group has proposed a two-component model for air shower growth. If this second component is formed from heavy particles or heavy quantum state as parents, it should be observed as the component which arrives later in air shower. Thus, the measurement and experiment on the delayed hadrons in air showers have been started. In this paper, the experiment, analysis and results are reported. It is clear that the parent particles which caused such a phenomenon were not pions which were multiply generated by the interaction generally known. Therefore, an exact simulating calculation must be performed and compared with the experimental results to obtain the final conclusion from the measured results of this time. (Wakatsuki, Y.)
Double parton correlations in Light-Front constituent quark models
Directory of Open Access Journals (Sweden)
Rinaldi Matteo
2015-01-01
Full Text Available Double parton distribution functions (dPDF represent a tool to explore the 3D proton structure. They can be measured in high energy proton-proton and proton nucleus collisions and encode information on how partons inside a proton are correlated among each other. dPFDs are studied here in the valence quark region, by means of a constituent quark model, where two particle correlations are present without any additional prescription. This framework allows to understand the dynamical origin of the correlations and to clarify which, among the features of the results, are model independent. Use will be made of a relativistic light-front scheme, able to overcome some drawbacks of the previous calculation. Transverse momentum correlations, due to the exact treatment of the boosts, are predicted and analyzed. The role of spin correlations is also shown. Due to the covariance of the approach, some symmetries of the dPDFs are seen unambigously. For the valence sector, also the study of the QCD evolution of the model results, which can be performed safely thanks to the property of good support, has been also completed.
Uncertainties of predictions from parton distributions 1, experimental errors
Martin, A D; Stirling, William James; Thorne, R S; CERN. Geneva
2003-01-01
We determine the uncertainties on observables arising from the errors on the experimental data that are fitted in the global MRST2001 parton analysis. By diagonalizing the error matrix we produce sets of partons suitable for use within the framework of linear propagation of errors, which is the most convenient method for calculating the uncertainties. Despite the potential limitations of this approach we find that it can be made to work well in practice. This is confirmed by our alternative approach of using the more rigorous Lagrange multiplier method to determine the errors on physical quantities directly. As particular examples we determine the uncertainties on the predictions of the charged-current deep-inelastic structure functions, on the cross-sections for W production and for Higgs boson production via gluon--gluon fusion at the Tevatron and the LHC, on the ratio of W-minus to W-plus production at the LHC and on the moments of the non-singlet quark distributions. We discuss the corresponding uncertain...
LHAPDF6: parton density access in the LHC precision era
Energy Technology Data Exchange (ETDEWEB)
Buckley, Andy; Ferrando, James; Nordstroem, Karl [University of Glasgow, School of Physics and Astronomy, Glasgow (United Kingdom); Lloyd, Stephen [University of Edinburgh, School of Physics and Astronomy, Edinburgh (United Kingdom); Page, Ben [Universidad de Granada, Departamento de Fisica Teorica y del Cosmos y CAFPE, Granada (Spain); Ruefenacht, Martin [University of Edinburgh, School of Informatics, Edinburgh (United Kingdom); Schoenherr, Marek [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Watt, Graeme [Durham University, Institute for Particle Physics Phenomenology, Durham (United Kingdom)
2015-03-01
The Fortran LHAPDF library has been a long-term workhorse in particle physics, providing standardised access to parton density functions for experimental and phenomenological purposes alike, following on from the venerable PDFLIB package. During Run 1 of the LHC, however, several fundamental limitations in LHAPDF's design have became deeply problematic, restricting the usability of the library for important physics-study procedures and providing dangerous avenues by which to silently obtain incorrect results. In this paper we present the LHAPDF 6 library, a ground-up re-engineering of the PDFLIB/LHAPDF paradigm for PDF access which removes all limits on use of concurrent PDF sets, massively reduces static memory requirements, offers improved CPU performance, and fixes fundamental bugs in multi-set access to PDF metadata. The new design, restricted for now to interpolated PDFs, uses centralised numerical routines and a powerful cascading metadata system to decouple software releases from provision of new PDF data and allow completely general parton content. More than 200 PDF sets have been migrated from LHAPDF 5 to the new universal data format, via a stringent quality control procedure. LHAPDF 6 is supported by many Monte Carlo generators and other physics programs, in some cases via a full set of compatibility routines, and is recommended for the demanding PDF access needs of LHC Run 2 and beyond. (orig.)
LHAPDF6: parton density access in the LHC precision era
International Nuclear Information System (INIS)
Buckley, Andy; Ferrando, James; Nordstroem, Karl; Lloyd, Stephen; Page, Ben; Ruefenacht, Martin; Schoenherr, Marek; Watt, Graeme
2015-01-01
The Fortran LHAPDF library has been a long-term workhorse in particle physics, providing standardised access to parton density functions for experimental and phenomenological purposes alike, following on from the venerable PDFLIB package. During Run 1 of the LHC, however, several fundamental limitations in LHAPDF's design have became deeply problematic, restricting the usability of the library for important physics-study procedures and providing dangerous avenues by which to silently obtain incorrect results. In this paper we present the LHAPDF 6 library, a ground-up re-engineering of the PDFLIB/LHAPDF paradigm for PDF access which removes all limits on use of concurrent PDF sets, massively reduces static memory requirements, offers improved CPU performance, and fixes fundamental bugs in multi-set access to PDF metadata. The new design, restricted for now to interpolated PDFs, uses centralised numerical routines and a powerful cascading metadata system to decouple software releases from provision of new PDF data and allow completely general parton content. More than 200 PDF sets have been migrated from LHAPDF 5 to the new universal data format, via a stringent quality control procedure. LHAPDF 6 is supported by many Monte Carlo generators and other physics programs, in some cases via a full set of compatibility routines, and is recommended for the demanding PDF access needs of LHC Run 2 and beyond. (orig.)
Parton fragmentation in the vacuum and in the medium
Albino, S.; Arleo, F.; Besson, Dave Z.; Brooks, William K.; Buschbeck, B.; Cacciari, M.; Christova, E.; Corcella, G.; D'Enterria, David G.; Dolejsi, Jiri; Domdey, S.; Estienne, M.; Hamacher, Klaus; Heinz, M.; Hicks, K.; Kettler, D.; Kumano, S.; Moch, S.O.; Muccifora, V.; Pacetti, S.; Perez-Ramos, R.; Pirner, H.J.; Pronko, Alexandre Pavlovich; Radici, M.; Rak, J.; Roland, C.; Rudolph, Gerald; Rurikova, Z.; Salgado, C.A.; Sapeta, S.; Saxon, David H.; Seidl, Ralf-Christian; Seuster, R.; Stratmann, M.; Tannenbaum, Michael J.; Tasevsky, M.; Trainor, T.; Traynor, D.; Werlen, M.; Zhou, C.
2008-01-01
We present the mini-proceedings of the workshop on ``Parton fragmentation in the vacuum and in the medium'' held at the European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*, Trento) in February 2008. The workshop gathered both theorists and experimentalists to discuss the current status of investigations of quark and gluon fragmentation into hadrons at different accelerator facilities (LEP, B-factories, JLab, HERA, RHIC, and Tevatron) as well as preparations for extension of these studies at the LHC. The main physics topics covered were: (i) light-quark and gluon fragmentation in the vacuum including theoretical (global fits analyses and MLLA) and experimental (data from e+e-, p-p, e-p collisions) aspects, (ii) strange and heavy-quark fragmentation, (iii) parton fragmentation in cold QCD matter (nuclear DIS), and (iv) medium-modified fragmentation in hot and dense QCD matter (high-energy nucleus-nucleus collisions). These mini-proceedings consist of an introduction and short summ...
Parton self-energies for general momentum-space anisotropy
Kasmaei, Babak S.; Strickland, Michael
2018-03-01
We introduce an efficient general method for calculating the self-energies, collective modes, and dispersion relations of quarks and gluons in a momentum-anisotropic high-temperature quark-gluon plasma. The method introduced is applicable to the most general classes of deformed anisotropic momentum distributions and the resulting self-energies are expressed in terms of a series of hypergeometric basis functions which are valid in the entire complex phase-velocity plane. Comparing to direct numerical integration of the self-energies, the proposed method is orders of magnitude faster and provides results with similar or better accuracy. To extend previous studies and demonstrate the application of the proposed method, we present numerical results for the parton self-energies and dispersion relations of partonic collective excitations for the case of an ellipsoidal momentum-space anisotropy. Finally, we also present, for the first time, the gluon unstable mode growth rate for the case of an ellipsoidal momentum-space anisotropy.
Heat recovery from shower water; Warmteterugwinning uit douchewater
Energy Technology Data Exchange (ETDEWEB)
Heidemans, J. [Hei-Tech, Emmen (Netherlands)
2011-09-15
With a payback period of several years, heat recovery from shower water in swimming pools but also in, for example, apartment buildings are an attractive form of energy saving. Possible are savings from 30 to 50% on energy, which is tested and proved by measurements in the heat exchanger of showers in a swimming pool in Denmark. [Dutch] Met een terugverdientijd van enkele jaren is warmteterugwinning uit douchewater in zwembaden maar ook in bijvoorbeeld sporthallen en appartementengebouwen een aantrekkelijke vorm van energiebesparing. Er kan een besparing worden gerealiseerd van 30 tot 50% op het energiegebruik van het douchewater. Metingen aan een douchewarmtewisselaar in een zwembad in Denemarken tonen dit aan.
Cosmic ray radio emission as air shower detection
International Nuclear Information System (INIS)
Curutiu, Alexandru; Rusu, Mircea; Isar, Gina; Zgura, Sorin
2004-01-01
The possibility of radio-detection of ultra-high energy cosmic rays (within the 10 to 100 MHz range) are discussed. Currently, air showers are detected by various methods, mainly based on particle detectors (KASCADE, Auger) or optical detection (Cerenkov radiation). Recently,to detect radio emission from cosmic ray air showers a method using electromagnetic radiation in low frequency domain (LOFAR) was proposed. We are investigating this possibility, using simulation codes created to investigate electromagnetic radiation of intricate antennae structure, for example fractal antennas. Some of the preliminary results will be communicated in this session. (authors)
Test results on reuse of reclaimed shower water - A summary
Verostko, Charles E.; Garcia, Rafael; Sauer, Richard; Reysa, Richard P.; Linton, Arthur T.
1989-01-01
Results are presented from tests to evaluate a microgravity whole body shower and waste water recovery system design for possible use on the Space Station. Several water recovery methods were tested, including phase change distillation, a thermoelectric hollow fiber membrane evaporation subsystem, and a reverse osmosis dynamic membrane system. Consideration is given to the test hardware, the types of soaps evaluated, the human response to showering with reclaimed water, chemical treatment for microbial control, the procedures for providing hygienic water, and the quality of water produced by the systems. All three of the waste water recovery systems tested successfully produced reclaimed water for reuse.
Shower fractal dimension analysis in a highly-granular calorimeter
Ruan, M
2014-01-01
We report on an investigation of the self-similar structure of particle showers recorded at a highly-granular calorimeter. On both simulated and experimental data, a strong correlation between the number of hits and the spatial scale of the readout channels is observed, from which we define the shower fractal dimension. The measured fractal dimension turns out to be strongly dependent on particle type, which enables new approaches for particle identification. A logarithmic dependence of the particle energy on the fractal dimension is also observed.
A new way of air shower detection: measuring the properties of cosmic rays with LOFAR
Nelles, A.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Rachen, J. P.; Schellart, P.; Scholten, O.; ter Veen, S.; Thoudam, S.; Trinh, T.N.G.
2015-01-01
High-energy cosmic rays impinging onto the atmosphere of the Earth initiate cascades of secondary particles: extensive air showers. Many of the particles in a shower are electrons and positrons. During the development of the air shower and by interacting with the geomagnetic field, the
What the radio signal tells about the cosmic-ray air shower
Scholten, Olaf; de Vries, Krijn D.; Werner, Klaus
2013-01-01
The physics of radio emission from cosmic-ray induced air showers is shortly summarized. It will be shown that the radio signal at different distances from the shower axis provides complementary information on the longitudinal shower evolution, in particular the early part, and on the distribution
The search for extended air showers at the Jicamarca Radio Observatory
International Nuclear Information System (INIS)
Wahl, D.; Chau, J.; Galindo, F.; Huaman, A.; Solano, C. J.
2009-01-01
This paper presents the status of the project to detect extended air showers at the Jicamarca Radio Observatory. We report on detected anomalous signals and present a toy model to estimate at what altitudes we might expect to see air shower signals. According to this model, a significant number of high altitude horizontal air showers could be observed by radar techniques.
Comparison of methods for determining the centers of extensive air showers
International Nuclear Information System (INIS)
Poirier, J.; Funk, E.; Mikocki, S.; Rohrer, N.
1987-01-01
Monte Carlo techniques are used to generate extensive air shower data. Two methods of determining the core location of the shower have been investigated: the method of least squares and the method of maximizing the likelihood function. The likelihood function method gives a precision of shower center location two times better than the χ 2 method for small numbers of detected particles. (orig.)