WorldWideScience

Sample records for nk large granular

  1. Large granular lymphocytic leukaemia pathogenesis and management.

    Science.gov (United States)

    Dearden, Claire

    2011-02-01

    The WHO classification recognises three distinct disorders of large granular lymphocytes: T-cell large granular lymphocytic leukaemia (T-LGL), chronic lymphoproliferative disorders of NK-cells (CLPD-NK) and agressive NK-cell leukaemia. Despite the different cell of origin, there is considerable overlap between T-LGL and CLPD-NK in terms of clinical presentation and therapy. Many patients are asymptomatic and do not require treatment. Therapy, with immunosuppressant agents such as low dose methotrexate or ciclosporin, is usually indicated to correct cytopenias. In contrast, aggressive NK-cell leukaemia and the rare CD56(+) aggressive T-LGL leukaemia follow a fulminant clinical course, affect younger individuals and require more intensive combination chemotherapy followed by allogeneic stem cell transplant in eligible patients. The relative rarity of these disorders means that there have been few clinical trials to inform management. However, there is now considerable interest in the pathogenesis of the chronic LGL leukaemias and this has stimulated early trials to evaluate novel agents which target the dysregulated apoptotic pathways characteristic of this disease. © 2010 Blackwell Publishing Ltd.

  2. Leucemia de grandes linfócitos granulares Large granular lymphocyte leukemia

    Directory of Open Access Journals (Sweden)

    Bruno Terra

    2010-01-01

    Full Text Available O presente estudo tem como objetivo o estabelecimento de fundamentação teórica atualizada baseada em revisão bibliográfica sobre a leucemia de grandes linfócitos granulares (LGLG, doença onco-hematológica, que, devido à sua relativa raridade, é pouco conhecida e subdiagnosticada. A LGLG é caracterizada pela proliferação clonal de linfócitos T ou NK na medula óssea e/ou no sangue periférico. Dentre as manifestações clínico-laboratoriais, podem ocorrer citopenias (anemia e/ou neutropenia e/ou plaquetopenia, linfocitose (não costuma ser acentuada, linfadenomegalia, hepatoesplenomegalia, alterações imunológicas e sintomas constitucionais (emagrecimento, febre e sudorese. O curso clínico da LGLG é bastante variável, sendo que no subtipo T costuma ser indolente ou oligossintomática, enquanto no subtipo NK a evolução costuma ser desfavorável. O diagnóstico é firmado através de imunofenotipagem por citometria de fluxo e estudo de clonalidade por métodos de biologia molecular. Seu tratamento é bastante diversificado e é definido de acordo com a apresentação clínica da doença.This is a literature review about large granular lymphocyte leukemia (LGLL, a rare and misdiagnosed oncohematological disease, characterized by a clonal expansion of T-cells (T-LGLL or NK-cells (NK-LGLL in the bone marrow and/or peripheral blood. The clinical features of LGLL include cytopenias (anemia, neutropenia and thrombocytopenia, lymphocytosis (usually discrete, lymphadenopathy, hepatomegaly, splenomegaly, immune abnormalities and constitutional symptoms (fever, night sweats and weight loss. The diagnosis is based on the confirmation of the clonality of T-cells or NK-cells (polymerase chain reaction and Southern blot are the two methods most commonly used and typical findings of the immunophenotypic analysis of peripheral blood lymphocytes (flow cytometry analyses for specific surface antigens. In contrast to the chronic and indolent

  3. Large granular lymphocyte leukemia

    OpenAIRE

    Terra, Bruno; Maia, Amanda M.

    2010-01-01

    O presente estudo tem como objetivo o estabelecimento de fundamentação teórica atualizada baseada em revisão bibliográfica sobre a leucemia de grandes linfócitos granulares (LGLG), doença onco-hematológica, que, devido à sua relativa raridade, é pouco conhecida e subdiagnosticada. A LGLG é caracterizada pela proliferação clonal de linfócitos T ou NK na medula óssea e/ou no sangue periférico. Dentre as manifestações clínico-laboratoriais, podem ocorrer citopenias (anemia e/ou neutropenia e/ou ...

  4. Characterization of NK cells in mouse models of systemic lupus erythematosus and of the role of the p85β pi3k subunit in NKG2D signaling in NK cells

    OpenAIRE

    Spada, Roberto

    2013-01-01

    Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular. Fecha de lectura: 22-11-2013 Natural killer (NK) cells are large granular lymphocytes that play an important part as a link between the innate and adaptive immune systems. Various autoimmune diseases are correlated with alterations in the activity of NK cells; nonetheless, their role in the pathogenesis of systemic lupus erythematosus (SLE), a complex multi-factorial...

  5. Models to Study NK Cell Biology and Possible Clinical Application.

    Science.gov (United States)

    Zamora, Anthony E; Grossenbacher, Steven K; Aguilar, Ethan G; Murphy, William J

    2015-08-03

    Natural killer (NK) cells are large granular lymphocytes of the innate immune system, responsible for direct targeting and killing of both virally infected and transformed cells. NK cells rapidly recognize and respond to abnormal cells in the absence of prior sensitization due to their wide array of germline-encoded inhibitory and activating receptors, which differs from the receptor diversity found in B and T lymphocytes that is due to the use of recombination-activation gene (RAG) enzymes. Although NK cells have traditionally been described as natural killers that provide a first line of defense prior to the induction of adaptive immunity, a more complex view of NK cells is beginning to emerge, indicating they may also function in various immunoregulatory roles and have the capacity to shape adaptive immune responses. With the growing appreciation for the diverse functions of NK cells, and recent technological advancements that allow for a more in-depth understanding of NK cell biology, we can now begin to explore new ways to manipulate NK cells to increase their clinical utility. In this overview unit, we introduce the reader to various aspects of NK cell biology by reviewing topics ranging from NK cell diversity and function, mouse models, and the roles of NK cells in health and disease, to potential clinical applications. © 2015 by John Wiley & Sons, Inc. Copyright © 2015 John Wiley & Sons, Inc.

  6. Association of inclusion body myositis with T cell large granular lymphocytic leukaemia

    DEFF Research Database (Denmark)

    Greenberg, Steven A; Pinkus, Jack L; Amato, Anthony A

    2016-01-01

    SEE HOHLFELD AND SCHULZE-KOOPS DOI101093/BRAIN/AWW053 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Inclusion body myositis and T cell large granular lymphocytic leukaemia are rare diseases involving pathogenic cytotoxic CD8+ T cells. After encountering four patients with both disorders, we...... prospectively screened 38 patients with inclusion body myositis for the presence of expanded large granular lymphocyte populations by standard clinical laboratory methods (flow cytometry, examination of blood smears, and T cell receptor gene rearrangements), and performed muscle immunohistochemistry for CD8, CD......57, and TIA1. Most (22/38; 58%) patients with inclusion body myositis had aberrant populations of large granular lymphocytes in their blood meeting standard diagnostic criteria for T cell large granular lymphocytic leukaemia. These T cell populations were clonal in 20/20 patients and stably present...

  7. Large mid-esophageal granular cell tumor: benign versus malignant

    Directory of Open Access Journals (Sweden)

    Prarthana Roselil Christopher

    2015-06-01

    Full Text Available Granular cell tumors are rare soft tissue neoplasms, among which only 2% are malignant, arising from nervous tissue. Here we present a case of a large esophageal granular cell tumor with benign histopathological features which metastasized to the liver, but showing on positron emission tomography-computerized tomography standardized uptake value suggestive of a benign lesion.

  8. Large granular lymphocytosis in a patient infected with HTLV-II.

    Science.gov (United States)

    Martin, M P; Biggar, R J; Hamlin-Green, G; Staal, S; Mann, D

    1993-08-01

    HTLV-II has been associated with a variety of lymphoproliferative disorders, including atypical hairy cell leukemia, chronic T cell leukemia, T prolymphocytic leukemia, and large granular lymphocytic leukemia. However, a direct or indirect role for HTLV-II in these disorders is not yet firmly established. We studied a patient diagnosed as having leukemia of the large granular lymphocyte (LGL) type who was HTLV-II seropositive, to determine if the expanded cell population was infected. Two populations of CD3-CD16+ LGL were identified; one was CD8+, the other CD8-. Populations of cells with these surface markers as well as normal CD3+CD4+ and CD3+CD8+ cells were separated by flow cytometric methods, DNA extracted, and gene regions of HTLV-II pol and tax amplified, using the polymerase chain reaction, and probed after Southern blotting. HTLV-II was detected in the CD3+CD8+ population, and not in the CD3-CD16+ large granular lymphocyte population. This finding indicates that the role of HTLV-II, if any, in LGL proliferation is indirect.

  9. A Modified NK Cell Degranulation Assay Applicable for Routine Evaluation of NK Cell Function

    Directory of Open Access Journals (Sweden)

    Snehal Shabrish

    2016-01-01

    Full Text Available Natural killer (NK cells play important role in innate immunity against tumors and viral infections. Studies show that lysosome-associated membrane protein-1 (LAMP-1, CD107a is a marker for degranulation of NK and cytotoxic T cells and its expression is a sensitive marker for the cytotoxic activity determination. The conventional methods of determination of CD107a on NK cells involve use of peripheral blood mononuclear cells (PBMC or pure NK cells and K562 cells as stimulants. Thus, it requires large volume of blood sample which is usually difficult to obtain in pediatric patients and patients with cytopenia and also requires specialized laboratory for maintaining cell line. We have designed a flow cytometric assay to determine CD107a on NK cells using whole blood, eliminating the need for isolation of PBMC or isolate NK cells. This assay uses phorbol-12-myristate-13-acetate (PMA and calcium ionophore (Ca2+-ionophore instead of K562 cells for stimulation and thus does not require specialized cell culture laboratory. CD107a expression on NK cells using modified NK cell degranulation assay compared to the conventional assay was significantly elevated (p<0.0001. It was also validated by testing patients diagnosed with familial hemophagocytic lymphohistiocytosis (FHL with defect in exocytosis. This assay is rapid, cost effective, and reproducible and requires significantly less volume of blood which is important for clinical evaluation of NK cells.

  10. Leucemia de grandes linfócitos granulares

    OpenAIRE

    Terra,Bruno; Maia,Amanda M.

    2010-01-01

    O presente estudo tem como objetivo o estabelecimento de fundamentação teórica atualizada baseada em revisão bibliográfica sobre a leucemia de grandes linfócitos granulares (LGLG), doença onco-hematológica, que, devido à sua relativa raridade, é pouco conhecida e subdiagnosticada. A LGLG é caracterizada pela proliferação clonal de linfócitos T ou NK na medula óssea e/ou no sangue periférico. Dentre as manifestações clínico-laboratoriais, podem ocorrer citopenias (anemia e/ou neutropenia e/ou ...

  11. Resident Peritoneal NK cells

    Science.gov (United States)

    Gonzaga, Rosemary; Matzinger, Polly; Perez-Diez, Ainhoa

    2011-01-01

    Here we describe a new population of NK cells that reside in the normal, un-inflamed peritoneal cavity. Phenotypically, they share some similarities with the small population of CD49b negative, CD27 positive immature splenic NK cells, and liver NK cells but differ in their expression of CD62L, TRAIL and EOMES. Functionally, the peritoneal NK cells resemble the immature splenic NK cells in their production of IFN-γ, GM-CSF and TNF-α and in the killing of YAC-1 target cells. We also found that the peritoneum induces different behavior in mature and immature splenic NK cells. When transferred intravenously into RAGγcKO mice, both populations undergo homeostatic proliferation in the spleen, but only the immature splenic NK cells, are able to reach the peritoneum. When transferred directly into the peritoneum, the mature NK cells survive but do not divide, while the immature NK cells proliferate profusely. These data suggest that the peritoneum is not only home to a new subset of tissue resident NK cells but that it differentially regulates the migration and homeostatic proliferation of immature versus mature NK cells. PMID:22079985

  12. Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells

    Science.gov (United States)

    Sojka, Dorothy K; Plougastel-Douglas, Beatrice; Yang, Liping; Pak-Wittel, Melissa A; Artyomov, Maxim N; Ivanova, Yulia; Zhong, Chao; Chase, Julie M; Rothman, Paul B; Yu, Jenny; Riley, Joan K; Zhu, Jinfang; Tian, Zhigang; Yokoyama, Wayne M

    2014-01-01

    Natural killer (NK) cells belong to the innate immune system; they can control virus infections and developing tumors by cytotoxicity and producing inflammatory cytokines. Most studies of mouse NK cells, however, have focused on conventional NK (cNK) cells in the spleen. Recently, we described two populations of liver NK cells, tissue-resident NK (trNK) cells and those resembling splenic cNK cells. However, their lineage relationship was unclear; trNK cells could be developing cNK cells, related to thymic NK cells, or a lineage distinct from both cNK and thymic NK cells. Herein we used detailed transcriptomic, flow cytometric, and functional analysis and transcription factor-deficient mice to determine that liver trNK cells form a distinct lineage from cNK and thymic NK cells. Taken together with analysis of trNK cells in other tissues, there are at least four distinct lineages of NK cells: cNK, thymic, liver (and skin) trNK, and uterine trNK cells. DOI: http://dx.doi.org/10.7554/eLife.01659.001 PMID:24714492

  13. A potential therapy for chordoma via antibody-dependent cell-mediated cytotoxicity employing NK or high-affinity NK cells in combination with cetuximab.

    Science.gov (United States)

    Fujii, Rika; Schlom, Jeffrey; Hodge, James W

    2018-05-01

    OBJECTIVE Chordoma is a rare bone tumor derived from the notochord and is resistant to conventional therapies such as chemotherapy, radiotherapy, and targeting therapeutics. Expression of epidermal growth factor receptor (EGFR) in a large proportion of chordoma specimens indicates a potential target for therapeutic intervention. In this study the authors investigated the potential role of the anti-EGFR antibody cetuximab in immunotherapy for chordoma. METHODS Since cetuximab is a monoclonal antibody of the IgG1 isotype, it has the potential to mediate antibody-dependent cell-mediated cytotoxicity (ADCC) employing natural killer (NK) cells as effectors. Polymorphisms in the CD16 allele expressed on NK cells have been shown to influence the degree of ADCC of tumor cells, with the high-affinity valine (V)/V allele being responsible for more lysis than the V/phenylalanine (F) or FF allele. Unfortunately, however, only approximately 10% of the population expresses the VV allele on NK cells. An NK cell line, NK-92, has now been engineered to endogenously express IL-2 and the high-affinity CD16 allele. These irradiated high-affinity (ha)NK cells were analyzed for lysis of chordoma cells with and without cetuximab, and the levels of lysis observed in ADCC were compared with those of NK cells from donors expressing the VV, VF, and FF alleles. RESULTS Here the authors demonstrate for the first time 1) that cetuximab in combination with NK cells can mediate ADCC of chordoma cells; 2) the influence of the NK CD16 polymorphism in cetuximab-mediated ADCC for chordoma cell lysis; 3) that engineered haNK cells-that is, cells transduced to express the CD16 V158 FcγRIIIa receptor-bind cetuximab with similar affinity to normal NK cells expressing the high-affinity VV allele; and 4) that irradiated haNK cells induce ADCC with cetuximab in chordoma cells. CONCLUSIONS These studies provide rationale for the use of cetuximab in combination with irradiated haNK cells for therapy for

  14. IL-15 Overcomes Hepatocellular Carcinoma-Induced NK Cell Dysfunction

    Directory of Open Access Journals (Sweden)

    Nicholas J. W. Easom

    2018-05-01

    Full Text Available NK cells have potent antitumor capacity. They are enriched in the human liver, with a large subset specialized for tissue-residence. The potential for liver-resident versus liver-infiltrating NK cells to populate, and exert antitumor functions in, human liver tumors has not been studied. We examined liver-resident and liver-infiltrating NK cells directly ex vivo from human hepatocellular carcinomas (HCCs and liver colorectal (CRC metastases, compared with matched uninvolved liver tissue. We found that NK cells were highly prevalent in both HCC and liver CRC metastases, although at lower frequencies than unaffected liver. Up to 79% of intratumoral NK cells had the CXCR6+CD69+ liver-resident phenotype. Direct ex vivo staining showed that liver-resident NK cells had increased NKG2D expression compared to their non-resident counterparts, but both subsets had NKG2D downregulation within liver tumors compared to uninvolved liver. Proliferation of intratumoral NK cells (identified by Ki67 was selectively impaired in those with the most marked NKG2D downregulation. Human liver tumor NK cells were functionally impaired, with reduced capacity for cytotoxicity and production of cytokines, even when compared to the hypo-functional tissue-resident NK cells in unaffected liver. Coculture of human liver NK cells with the human hepatoma cell line PLC/PRF/5, or with autologous HCC, recapitulated the defects observed in NK cells extracted from tumors, with downmodulation of NKG2D, cytokine production, and target cell cytotoxicity. Transwells and conditioned media confirmed a requirement for cell contact with PLC/PRF/5 to impose NK cell inhibition. IL-15 was able to recover antitumor functionality in NK cells inhibited by in vitro exposure to HCC cell lines or extracted directly from HCC. In summary, our data suggest that the impaired antitumor function of local NK cells reflects a combination of the tolerogenic features inherent to liver-resident NK cells

  15. KHYG-1 and NK-92 represent different subtypes of LFA-1-mediated NK cell adhesiveness.

    Science.gov (United States)

    Suck, Garnet; Tan, Suet-Mien; Chu, Sixian; Niam, Madelaine; Vararattanavech, Ardcharaporn; Lim, Tsyr Jong; Koh, Mickey B C

    2011-01-01

    Novel cancer cellular therapy approaches involving long-term ex vivo IL-2 stimulated highly cytotoxic natural killer (NK) cells are emerging. However, adhesion properties of such NK cells are not very well understood. Herein, we describe the novel observation of permanently activated alphaLbeta2 integrin leukocyte function-associated antigen (LFA)-1 adhesion receptor in long-term IL-2 activated NK cells and the permanent NK cell lines KHYG-1 and NK-92. We show that such cytokine activated NK effectors constitutively adhered to the LFA-1-ligand ICAM-1, whereas binding to the lower affinity ligand ICAM-3 required additional exogenous activating conditions. The results demonstrate an extended conformation and an intermediate affinity state for the LFA-1 population expressed by the NK cells. Interestingly, adhesion to ICAM-1 or K562 induced pronounced cell spreading in KHYG-1, but not in NK-92, and partially in long-term IL-2 stimulated primary NK cells. It is conceivable that such differential adhesion characteristics may impact motility potential of such NK effectors with relevance to clinical tumor targeting. KHYG-1 could be a useful model in planning future targeted therapeutic approaches involving NK effectors with augmented functions.

  16. NK cell-released exosomes

    Science.gov (United States)

    Fais, Stefano

    2013-01-01

    We have recently reported that human natural killer (NK) cells release exosomes that express both NK-cell markers and cytotoxic molecules. Similar results were obtained with circulating exosomes from human healthy donors. Both NK-cell derived and circulating exosomes exerted a full functional activity and killed both tumor and activated immune cells. These findings indicate that NK-cell derived exosomes might constitute a new promising therapeutic tool. PMID:23482694

  17. Preventing surgery-induced NK cell dysfunction and cancer metastases with influenza vaccination

    Science.gov (United States)

    Tai, Lee-Hwa; Zhang, Jiqing; Auer, Rebecca C

    2013-01-01

    Surgical resection is the mainstay of treatment for solid tumors, but the postoperative period is uniquely inclined to the formation of metastases, largely due to the suppression of natural killer (NK) cells. We found that preoperative influenza vaccination prevents postoperative NK-cell dysfunction, attenuating tumor dissemination in murine models and promoting the activation of NK cells in cancer patients. PMID:24404430

  18. Exogenous activated NK cells enhance trafficking of endogenous NK cells to endometriotic lesions.

    Science.gov (United States)

    Montenegro, Mary Lourdes; Ferriani, Rui Alberto; Basse, Per H

    2015-08-29

    Endometriosis is defined as the presence of endometrial glands and stroma at ectopic locations. Although the prevalence of endometriosis is as high as 35%-50%, its pathogenesis remains controversial. An increasing number of studies suggest that changes in immune reactivity may be primarily involved in the development of endometriosis development. In this sense, it has been strongly suggested that a fundamental part of immunologic system, the natural killer cells (NK cells), are an important part of this process. NK cells, a component of the innate immune system, have been extensively studied for their ability to defend the organism against infections and malignancy. Recent studies have shown that IL-2-activated NK (A-NK) cells are able to attack and destroy tumors in lungs and livers of mice, demonstrating the therapeutic potential of these cells. Similarly to metastatic tumor cells, endometrial cells are able to adhere, infiltrate and proliferate at ectopic locations. Therefore, in this study, we evaluated the ability of adoptively transferred and endogenous NK cells to infiltrate endometriosis lesions. As NK cells donors were used C57BL/6 B6. PL- Thy 1.1 female mice. As uterine horns donors were used C57/BL6+GFP female mice and as endometriosis recipients C57BL/6 Thy1.2 female mice. Endometriosis induction was made by injection of endometrial tissue fragments. After 4 weeks, necessary for endometriosis lesions establishment the animals were divided in 3 experimental groups with 10 animals each. Group 1 received i.v doses of 5x106 A-NK in 200μl RPMI; Group 2 received i.p dose of 5x106 A-NK in 200μl RPMI and Group 3 received i.p dose of IL2 (0.5 mL RPMI containing 5.000U of IL2). Our data show that exogenous A-NK cells injected via ip combined with endogenous A-NK cells seems to be the most efficient way for activated NK cells track and infiltrate endometriosis. For the first time, it was shown that both endogenous as exogenous A-NK cells are able to track

  19. Diagnosis of large granular lymphocytic leukemia in a patient previously treated for acute myeloblastic leukemia

    OpenAIRE

    Sinem Civriz Bozdag; Sinem Namdaroglu; Omur Kayikci; Gülsah Kaygusuz; Itir Demiriz; Murat Cinarsoy; Emre Tekgunduz; Fevzi Altuntas

    2013-01-01

    Large granular lymphocytic (LGL) leukemia is a lymphoproliferative disease characterized by the clonal expansion of cytotoxic T or natural killer cells. We report on a patient diagnosed with T-cell LGL leukemia two years after the achievement of hematologic remission for acute myeloblastic leukemia.

  20. NK cell-like behavior of Valpha14i NK T cells during MCMV infection.

    Directory of Open Access Journals (Sweden)

    Johnna D Wesley

    2008-07-01

    Full Text Available Immunity to the murine cytomegalovirus (MCMV is critically dependent on the innate response for initial containment of viral replication, resolution of active infection, and proper induction of the adaptive phase of the anti-viral response. In contrast to NK cells, the Valpha14 invariant natural killer T cell response to MCMV has not been examined. We found that Valpha14i NK T cells become activated and produce significant levels of IFN-gamma, but do not proliferate or produce IL-4 following MCMV infection. In vivo treatment with an anti-CD1d mAb and adoptive transfer of Valpha14i NK T cells into MCMV-infected CD1d(-/- mice demonstrate that CD1d is dispensable for Valpha14i NK T cell activation. In contrast, both IFN-alpha/beta and IL-12 are required for optimal activation. Valpha14i NK T cell-derived IFN-gamma is partially dependent on IFN-alpha/beta but highly dependent on IL-12. Valpha14i NK T cells contribute to the immune response to MCMV and amplify NK cell-derived IFN-gamma. Importantly, mortality is increased in CD1d(-/- mice in response to high dose MCMV infection when compared to heterozygote littermate controls. Collectively, these findings illustrate the plasticity of Valpha14i NK T cells that act as effector T cells during bacterial infection, but have NK cell-like behavior during the innate immune response to MCMV infection.

  1. The utility of flow cytometry in differentiating NK/T cell lymphoma from indolent and reactive NK cell proliferations.

    Science.gov (United States)

    de Mel, Sanjay; Li, Jenny Bei; Abid, Muhammad Bilal; Tang, Tiffany; Tay, Hui Ming; Ting, Wen Chang; Poon, Li Mei; Chung, Tae Hoon; Mow, Benjamin; Tso, Allison; Ong, Kiat Hoe; Chng, Wee Joo; Liu, Te Chih

    2018-01-01

    The WHO defines three categories of NK cell malignancies; extra nodal NK/T cell lymphoma (NKTCL), aggressive NK cell leukemia, and the provisional entity chronic lymphoproliferative disorder of NK cells (CLPD-NK). Although the flow cytometric (FC) phenotype of CLPD-NK has been described, studies on FC phenotype of NKTCL are limited. To the best of our knowledge ours is the first study to compare the phenotype of NKTCL, CLPD-NK, reactive NK lymphocytosis (RNKL), and normal NK cells using eight color (8C) FC. Specimens analyzed using the Euroflow8C NK Lymphoproliferative Disorder (NKLPD) panel between 2011 and 2014 were identified from our database. All samples were analyzed on the FACSCantoII cytometer. NK cells were identified as CD45+, smCD3-, CD19-, CD56+ and normal T-cells served as internal controls. The majority of NKTCL were CD56 bright, CD16 dim, CD57-, and CD94+. CLPD-NK and RNKL were predominantly CD56+ or dim with positive expression of CD16 and CD57 and weak CD94 expression. Antigen based statistical analyses showed robust division of samples along the NKTCL/normal CD56 bright NK cell and CLPD-NK/RNKL/normal CD56 positive NK cell groups. It was concluded that FC can reliably distinguish NKTCL from CLPD-NK, normal NK cells of CD56+ phenotype, and RNKL. It was proposed that the typical phenotype for NKTCL is: CD56 bright, CD16 dim with positive CD2, CD7, CD94, HLADR, CD25, CD26, and absent CD57. This resembles the phenotype of the CD56 bright immunoregulatory subset of NK cells which we therefore hypothesize is the cell of origin of NKTCL. © 2017 International Clinical Cytometry Society. © 2017 International Clinical Cytometry Society.

  2. Identification of an elaborate NK-specific system regulating HLA-C expression.

    Directory of Open Access Journals (Sweden)

    Hongchuan Li

    2018-01-01

    Full Text Available The HLA-C gene appears to have evolved in higher primates to serve as a dominant source of ligands for the KIR2D family of inhibitory MHC class I receptors. The expression of NK cell-intrinsic MHC class I has been shown to regulate the murine Ly49 family of MHC class I receptors due to the interaction of these receptors with NK cell MHC in cis. However, cis interactions have not been demonstrated for the human KIR and HLA proteins. We report the discovery of an elaborate NK cell-specific system regulating HLA-C expression, indicating an important role for HLA-C in the development and function of NK cells. A large array of alternative transcripts with differences in intron/exon content are generated from an upstream NK-specific HLA-C promoter, and exon content varies between HLA-C alleles due to SNPs in splice donor/acceptor sites. Skipping of the first coding exon of HLA-C generates a subset of untranslatable mRNAs, and the proportion of untranslatable HLA-C mRNA decreases as NK cells mature, correlating with increased protein expression by mature NK cells. Polymorphism in a key Ets-binding site of the NK promoter has generated HLA-C alleles that lack significant promoter activity, resulting in reduced HLA-C expression and increased functional activity. The NK-intrinsic regulation of HLA-C thus represents a novel mechanism controlling the lytic activity of NK cells during development.

  3. Natural killer cell dysfunction in hepatocellular carcinoma and NK cell-based immunotherapy

    Science.gov (United States)

    Sun, Cheng; Sun, Hao-yu; Xiao, Wei-hua; Zhang, Cai; Tian, Zhi-gang

    2015-01-01

    The mechanisms linking hepatitis B virus (HBV) and hepatitis C virus (HCV) infection to hepatocellular carcinoma (HCC) remain largely unknown. Natural killer (NK) cells account for 25%–50% of the total number of liver lymphocytes, suggesting that NK cells play an important role in liver immunity. The number of NK cells in the blood and tumor tissues of HCC patients is positively correlated with their survival and prognosis. Furthermore, a group of NK cell-associated genes in HCC tissues is positively associated with the prolonged survival. These facts suggest that NK cells and HCC progression are strongly associated. In this review, we describe the abnormal NK cells and their functional impairment in patients with chronic HBV and HCV infection, which contribute to the progression of HCC. Then, we summarize the association of NK cells with HCC based on the abnormalities in the numbers and phenotypes of blood and liver NK cells in HCC patients. In particular, the exhaustion of NK cells that represents lower cytotoxicity and impaired cytokine production may serve as a predictor for the occurrence of HCC. Finally, we present the current achievements in NK cell immunotherapy conducted in mouse models of liver cancer and in clinical trials, highlighting how chemoimmunotherapy, NK cell transfer, gene therapy, cytokine therapy and mAb therapy improve NK cell function in HCC treatment. It is conceivable that NK cell-based anti-HCC therapeutic strategies alone or in combination with other therapies will be great promise for HCC treatment. PMID:26073325

  4. Continuum viscoplastic simulation of a granular column collapse on large slopes : μ(I) rheology and lateral wall effects

    Science.gov (United States)

    Martin, Nathan; Mangeney, Anne; Ionescu, Ioan; Bouchut, Francois

    2016-04-01

    The description of the mechanical behaviour of granular flows and in particular of the static/flowing transition is still an open and challenging issue with strong implication for hazard assessment [{Delannay et al.}, 2016]. In particular, {detailed quantitative} comparison between numerical models and observations is necessary to go further in this direction. We simulate here dry granular flows resulting from the collapse of granular columns on an inclined channel (from horizontal to 22^o) and compare precisely the results with laboratory experiments performed by {Mangeney et al.} [2010] and {Farin et al.} [2014]. Incompressibility is assumed despite the dilatancy observed in the experiments (up to 10%). The 2-D model is based on the so-called μ(I) rheology that induces a Drucker-Prager yield stress and a variable viscosity. A nonlinear Coulomb friction term, representing the friction on the lateral walls of the channel is added to the model. We demonstrate that this term is crucial to accurately reproduce granular collapses on slopes higher than 10o whereas it remains of little effect on horizontal slope [{Martin et al.}, 2016]. We show that the use of a variable or a constant viscosity does not change significantly the results provided that these viscosities are of the same order [{Ionescu et al.}, 2015]. However, only a fine tuning of the constant viscosity (η = 1 Pa.s) makes it possible to predict the slow propagation phase observed experimentally on large slopes. This was not possible when using, without tuning, the variable viscosity calculated from the μ(I) rheology with the parameters estimated from experiments. Finally, we discuss the well-posedness of the model with variable and constant viscosity based in particular on the development of shear bands observed in the numerical simulations. References Delannay, R., Valance, A., Mangeney, A., Roche, O., and Richard, P., 2016. Granular and particle-laden flows: from laboratory experiments to field

  5. Characterization of species-related differences in the pharmacology of tachykinin NK receptors 1, 2 and 3

    OpenAIRE

    2009-01-01

    Abstract Tachykinin NK receptors (NKR) differ to a large degree among species with respect to their affinities for small molecule antagonists. The aims of the present study were to clone NKRs from gerbil (NK2R and NK3R) and dog (NK1R, NK2R, NK3R) in which the sequence was previously unknown and to investigate the potency of several NKR antagonists at all known human, dog, gerbil and rat NKRs. The NKR protein coding sequences were cloned and expressed in CHO cells. The in...

  6. NK cell-derived IL-10 is critical for DC-NK cell dialogue at the maternal-fetal interface.

    Science.gov (United States)

    Blois, Sandra M; Freitag, Nancy; Tirado-González, Irene; Cheng, Shi-Bin; Heimesaat, Markus M; Bereswill, Stefan; Rose, Matthias; Conrad, Melanie L; Barrientos, Gabriela; Sharma, Surendra

    2017-05-19

    DC-NK cell interactions are thought to influence the development of maternal tolerance and de novo angiogenesis during early gestation. However, it is unclear which mechanism ensures the cooperative dialogue between DC and NK cells at the feto-maternal interface. In this article, we show that uterine NK cells are the key source of IL-10 that is required to regulate DC phenotype and pregnancy success. Upon in vivo expansion of DC during early gestation, NK cells expressed increased levels of IL-10. Exogenous administration of IL-10 was sufficient to overcome early pregnancy failure in dams treated to achieve simultaneous DC expansion and NK cell depletion. Remarkably, DC expansion in IL-10 -/- dams provoked pregnancy loss, which could be abrogated by the adoptive transfer of IL-10 +/+ NK cells and not by IL-10 -/- NK cells. Furthermore, the IL-10 expressing NK cells markedly enhanced angiogenic responses and placental development in DC expanded IL-10 -/- dams. Thus, the capacity of NK cells to secrete IL-10 plays a unique role facilitating the DC-NK cell dialogue during the establishment of a healthy gestation.

  7. Multi-cellular natural killer (NK) cell clusters enhance NK cell activation through localizing IL-2 within the cluster

    Science.gov (United States)

    Kim, Miju; Kim, Tae-Jin; Kim, Hye Mi; Doh, Junsang; Lee, Kyung-Mi

    2017-01-01

    Multi-cellular cluster formation of natural killer (NK) cells occurs during in vivo priming and potentiates their activation to IL-2. However, the precise mechanism underlying this synergy within NK cell clusters remains unclear. We employed lymphocyte-laden microwell technologies to modulate contact-mediated multi-cellular interactions among activating NK cells and to quantitatively assess the molecular events occurring in multi-cellular clusters of NK cells. NK cells in social microwells, which allow cell-to-cell contact, exhibited significantly higher levels of IL-2 receptor (IL-2R) signaling compared with those in lonesome microwells, which prevent intercellular contact. Further, CD25, an IL-2R α chain, and lytic granules of NK cells in social microwells were polarized toward MTOC. Live cell imaging of lytic granules revealed their dynamic and prolonged polarization toward neighboring NK cells without degranulation. These results suggest that IL-2 bound on CD25 of one NK cells triggered IL-2 signaling of neighboring NK cells. These results were further corroborated by findings that CD25-KO NK cells exhibited lower proliferation than WT NK cells, and when mixed with WT NK cells, underwent significantly higher level of proliferation. These data highlights the existence of IL-2 trans-presentation between NK cells in the local microenvironment where the availability of IL-2 is limited.

  8. Effect of radiotherapy on the natural killer (NK)-cell activity of cancer patients

    International Nuclear Information System (INIS)

    McGinnes, K.; Florence, J.; Penny, R.

    1987-01-01

    The aim of this study was to determine the effect of radiotherapy on peripheral blood natural killer (NK)-cell number and activity in 15 patients with cancer, prior to the commencement and at the completion of radiotherapy. The following observations were made. Prior to radiotherapy NK activity could not be correlated with the stage of malignancy. In all patients with advanced disease and with subnormal baseline NK activity, the outcome of radiotherapy was unfavorable. Following radiotherapy to sites including the mediastinum, patients had decreased NK activity compared with those receiving treatment to other sites. This decrease was not related to the dose of radiotherapy or stage of malignancy. The tumor response was favorable in most patients whose NK activity decreased as a result of radiotherapy. The decrease in NK activity may be associated with a decrease in the percentage of NK (N901) cells in the peripheral blood. The reduction in NK activity in those patients receiving mediastinal irradiation may be due to the large volume of blood which transits the field, so that the NK cells, or their more radiosensitive precursors, may be damaged and/or differentiation inhibited. Thus, these new observations show that radiotherapy does indeed affect the NK activity in cancer patients predominantly when the irradiation site includes the mediastinum

  9. Lymphocytes Negatively Regulate NK Cell Activity via Qa-1b following Viral Infection

    Directory of Open Access Journals (Sweden)

    Haifeng C. Xu

    2017-11-01

    Full Text Available NK cells can reduce anti-viral T cell immunity during chronic viral infections, including infection with the lymphocytic choriomeningitis virus (LCMV. However, regulating factors that maintain the equilibrium between productive T cell and NK cell immunity are poorly understood. Here, we show that a large viral load resulted in inhibition of NK cell activation, which correlated with increased expression of Qa-1b, a ligand for inhibitory NK cell receptors. Qa-1b was predominantly upregulated on B cells following LCMV infection, and this upregulation was dependent on type I interferons. Absence of Qa-1b resulted in increased NK cell-mediated regulation of anti-viral T cells following viral infection. Consequently, anti-viral T cell immunity was reduced in Qa-1b- and NKG2A-deficient mice, resulting in increased viral replication and immunopathology. NK cell depletion restored anti-viral immunity and virus control in the absence of Qa-1b. Taken together, our findings indicate that lymphocytes limit NK cell activity during viral infection in order to promote anti-viral T cell immunity.

  10. Simultaneous detection of decidual Th1/Th2 and NK1/NK2 immunophenotyping in unknown recurrent miscarriage using 8-color flow cytometry with FSC/Vt extended strategy.

    Science.gov (United States)

    Dong, Peng; Wen, Xi; Liu, Jia; Yan, Cui-Yan; Yuan, Jing; Luo, Lan-Rong; Hu, Qiao-Fei; Li, Jian

    2017-06-30

    Th1/Th2 imbalance is considered as a mechanism for recurrent miscarriage. The NK1/NK2 paradigm is hypothesised to play an important role in pregnancy. However, few results showed simultaneous changes of these subsets in vivo in decidual tissues. The present study aimed to detect the decidual mononuclear cells (dMo), and the Th1/Th2, and NK1/NK2 paradigm simultaneously using multiparametric flow cytometry (MFC) in unexplained recurrent miscarriages (URM). Mononuclear cells were isolated from the decidual tissues of URM cases and early pregnant women. The mononuclear cell percent was demonstrated by detecting the expression of CD3, CD4, CD8, CD56, and CD16 extracellular markers, interferon (IFN)-γ, and interleukin (IL)-4 intracellular markers in live cells using 8-color flow cytometry with forward scatter (FSC)/side scatter (SSC) and FSC/viability (Vt) initial gating strategies, and the ratios of Th1/Th2 and decidual NK1 (dNK1)/decidual NK2 (dNK2) cells were compared between the subject groups. Two initial gating strategies of the FSC/SSC or FSC/Vt, with central or extended gating scales, were adapted, and there was no main effect or interaction for the cell proportions, except for the type 1 and type 2 subsets in the FSC/Vt extended gating strategy. There was no significant difference of the proportions of the decidual T, dNK, NKT-like, Th, and Tc cells between the two groups. However, the Th1/Th2 and dNK1/dNK2 ratios in the URM patients were higher compared with the normal group when using the FSC/Vt extended gating strategy. The present study provides means to detect Th1/Th2 and dNK1/dNK2 simultaneously in URM patients for large sample investigations in the future. © 2017 The Author(s).

  11. Universality Classes of Interaction Structures for NK Fitness Landscapes

    Science.gov (United States)

    Hwang, Sungmin; Schmiegelt, Benjamin; Ferretti, Luca; Krug, Joachim

    2018-02-01

    Kauffman's NK-model is a paradigmatic example of a class of stochastic models of genotypic fitness landscapes that aim to capture generic features of epistatic interactions in multilocus systems. Genotypes are represented as sequences of L binary loci. The fitness assigned to a genotype is a sum of contributions, each of which is a random function defined on a subset of k ≤ L loci. These subsets or neighborhoods determine the genetic interactions of the model. Whereas earlier work on the NK model suggested that most of its properties are robust with regard to the choice of neighborhoods, recent work has revealed an important and sometimes counter-intuitive influence of the interaction structure on the properties of NK fitness landscapes. Here we review these developments and present new results concerning the number of local fitness maxima and the statistics of selectively accessible (that is, fitness-monotonic) mutational pathways. In particular, we develop a unified framework for computing the exponential growth rate of the expected number of local fitness maxima as a function of L, and identify two different universality classes of interaction structures that display different asymptotics of this quantity for large k. Moreover, we show that the probability that the fitness landscape can be traversed along an accessible path decreases exponentially in L for a large class of interaction structures that we characterize as locally bounded. Finally, we discuss the impact of the NK interaction structures on the dynamics of evolution using adaptive walk models.

  12. Liver-resident NK cells and their potential functions.

    Science.gov (United States)

    Peng, Hui; Sun, Rui

    2017-09-18

    Natural killer (NK) cells represent a heterogeneous population of innate lymphocytes with phenotypically and functionally distinct subsets. In particular, recent studies have identified a unique subset of NK cells residing within the liver that are maintained as tissue-resident cells, confer antigen-specific memory responses and exhibit different phenotypical and developmental characteristics compared with conventional NK (cNK) cells. These findings have encouraged researchers to uncover tissue-resident NK cells at other sites, and detailed analyses have revealed that these tissue-resident NK cells share many similarities with liver-resident NK cells and tissue-resident memory T cells. Here, we present a brief historical perspective on the discovery of liver-resident NK cells and discuss their relationship to cNK cells and other emerging NK cell subsets and their potential functions.Cellular &Molecular Immunology advance online publication, 18 September 2017; doi:10.1038/cmi.2017.72.

  13. Neurokinin NK1 and NK3 receptors as targets for drugs to treat gastrointestinal motility disorders and pain.

    Science.gov (United States)

    Sanger, Gareth J

    2004-04-01

    NK1 and NK3 receptors do not appear to play significant roles in normal GI functions, but both may be involved in defensive or pathological processes. NK1 receptor antagonists are antiemetic, operating via vagal sensory and motor systems, so there is a need to study their effects on other gastro-vagal functions thought to play roles in functional bowel disorders. Interactions between NK1 receptors and enteric nonadrenergic, noncholinergic motorneurones suggest a need to explore the role of this receptor in disrupted colonic motility. NK1 receptor antagonism does not exert consistent analgesic activity in humans, but similar studies have not been carried out against pain of GI origin, where NK1 receptors may have additional influences on mucosal inflammatory or "irritant" processes. NK3 receptors mediate certain disruptions of intestinal motility. The activity may be driven by tachykinins released from intrinsic primary afferent neurones (IPANs), which induce slow EPSP activity in connecting IPANs and hence, a degree of hypersensitivity within the enteric nervous system. The same process is also proposed to increase C-fibre sensitivity, either indirectly or directly. Thus, NK3 receptor antagonists inhibit intestinal nociception via a "peripheral" mechanism that may be intestine-specific. Studies with talnetant and other selective NK3 receptor antagonists are, therefore, revealing an exciting and novel pathway by which pathological changes in intestinal motility and nociception can be induced, suggesting a role for NK3 receptor antagonism in irritable bowel syndrome.

  14. Multi-granularity Bandwidth Allocation for Large-Scale WDM/TDM PON

    Science.gov (United States)

    Gao, Ziyue; Gan, Chaoqin; Ni, Cuiping; Shi, Qiongling

    2017-12-01

    WDM (wavelength-division multiplexing)/TDM (time-division multiplexing) PON (passive optical network) is being viewed as a promising solution for delivering multiple services and applications, such as high-definition video, video conference and data traffic. Considering the real-time transmission, QoS (quality of services) requirements and differentiated services model, a multi-granularity dynamic bandwidth allocation (DBA) in both domains of wavelengths and time for large-scale hybrid WDM/TDM PON is proposed in this paper. The proposed scheme achieves load balance by using the bandwidth prediction. Based on the bandwidth prediction, the wavelength assignment can be realized fairly and effectively to satisfy the different demands of various classes. Specially, the allocation of residual bandwidth further augments the DBA and makes full use of bandwidth resources in the network. To further improve the network performance, two schemes named extending the cycle of one free wavelength (ECoFW) and large bandwidth shrinkage (LBS) are proposed, which can prevent transmission from interruption when the user employs more than one wavelength. The simulation results show the effectiveness of the proposed scheme.

  15. Granular Gases: Probing the Boundaries of Hydrodynamics

    International Nuclear Information System (INIS)

    Goldhirsch, I.

    1999-01-01

    The dissipative nature of the particle interactions in granular systems renders granular gases mesoscopic and bearing some similarities to regular gases in the ''continuum transition regime'' where shear rates and/or thermal gradients are very large). The following properties of granular gases support the above claim: (i). Mean free times are of the same order as macroscopic time scales (inverse shear rates); (ii). Mean free paths can be macroscopic and comparable to the system's dimensions; (iii). Typical flows are supersonic; (iv). Shear rates are typically ''large''; (v). Stress fields are scale (resolution) dependent; (vi). Burnett and super-Burnett corrections to both the constitutive relations and the boundary conditions are of importance; (vii). Single particle distribution functions can be far from Gaussian. It is concluded that while hydrodynamic descriptions of granular gases are relevant, they are probing the boundaries of applicability of hydrodynamics and perhaps slightly beyond

  16. Human CD56bright NK Cells

    DEFF Research Database (Denmark)

    Michel, Tatiana; Poli, Aurélie; Cuapio, Angelica

    2016-01-01

    Human NK cells can be subdivided into various subsets based on the relative expression of CD16 and CD56. In particular, CD56(bright)CD16(-/dim) NK cells are the focus of interest. They are considered efficient cytokine producers endowed with immunoregulatory properties, but they can also become c...... NK cell subsets is not fully defined, nor is their precise hematopoietic origin. In this article, we summarize recent studies about CD56(bright) NK cells in health and disease and briefly discuss the current controversies surrounding them....

  17. Neurokinin NK1 and NK3 receptors as targets for drugs to treat gastrointestinal motility disorders and pain

    OpenAIRE

    Sanger, Gareth J

    2004-01-01

    NK1 and NK3 receptors do not appear to play significant roles in normal GI functions, but both may be involved in defensive or pathological processes. NK1 receptor antagonists are antiemetic, operating via vagal sensory and motor systems, so there is a need to study their effects on other gastro-vagal functions thought to play roles in functional bowel disorder's. Interactions between NK1 receptors and enteric nonadrenergic, noncholinergic motorneurones suggest a need to explore the role of t...

  18. NK cell autoreactivity and autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Alessandro ePoggi

    2014-02-01

    Full Text Available Increasing evidences have pointed out the relevance of Natural Killer (NK cells in organ specific and systemic autoimmune diseases. NK cells bear a plethora of activating and inhibiting receptors that can play a role in regulating reactivity with autologous cells. The activating receptors recognize natural ligands upregulated on virus-infected or stressed or neoplastic cells. Of note, several autoimmune diseases are thought to be linked to viral infections as one of the first event in inducing autoimmunity. Also, it is conceivable that autoimmunity can be triggered when a dysregulation of innate immunity occurs, activating T and B lymphocytes to react with self-components. This would imply that NK cells can play a regulatory role during adaptive immunity; indeed, innate lymphoid cells (ILC, comprising the classical CD56+ NK cells, have a role in maintaining or alterating tissue homeostasis secreting protective and/or proinflammatory cytokines. In addition, NK cells display activating receptors involved in natural cytotoxicity and the activating isoforms of receptors for HLA class I that can interact with healthy host cells and induce damage without any evidence of viral infection or neoplastic-induced alteration. In this context, the interrelationship among ILC, extracellular matrix components and mesenchymal stromal cells can be considered a key point for the control of homeostasis. Herein, we summarize evidences for a role of NK cells in autoimmune diseases and will give a point of view of the interplay between NK cells and self-cells in triggering autoimmunity.

  19. Slp-76 is a critical determinant of NK cell-mediated recognition of missing-self targets

    Science.gov (United States)

    Lampe, Kristin; Endale, Mehari; Cashman, Siobhan; Fang, Hao; Mattner, Jochen; Hildeman, David; Hoebe, Kasper

    2015-01-01

    Absence of MHC class I expression is an important mechanism by which NK cells recognize a variety of target cells, yet the pathways underlying “missing-self” recognition, including the involvement of activating receptors, remain poorly understood. Using ENU mutagenesis in mice, we identified a germline mutant, designated Ace, with a marked defect in NK cell-mediated recognition and elimination of “missing-self” targets. The causative mutation was linked to chromosome 11 and identified as a missense mutation [Thr428Ile] in the SH2 domain of Slp-76—a critical adapter molecule downstream of ITAM-containing surface receptors. The Slp-76 Ace mutation behaved as a hypomorphic allele—while no major defects were observed in conventional T cell development/function, a marked defect in NK cell-mediated elimination of β2-Microglobulin (β2M)-deficient target cells was observed. Further studies revealed Slp-76 to control NK cell receptor expression and maturation, however, activation of Slp-76ace/ace NK cells through ITAM-containing NK cell receptors or allogeneic/tumor target cells appeared largely unaffected. Imagestream analysis of the NK-β2M−/− target cell synapse, revealed a specific defect in actin recruitment to the conjugate synapse in Slp-76ace/ace NK cells. Overall these studies establish Slp-76 as a critical determinant of NK cell development and NK cell-mediated elimination of missing-self target cells. PMID:25929249

  20. Slp-76 is a critical determinant of NK-cell mediated recognition of missing-self targets.

    Science.gov (United States)

    Lampe, Kristin; Endale, Mehari; Cashman, Siobhan; Fang, Hao; Mattner, Jochen; Hildeman, David; Hoebe, Kasper

    2015-07-01

    Absence of MHC class I expression is an important mechanism by which NK cells recognize a variety of target cells, yet the pathways underlying "missing-self" recognition, including the involvement of activating receptors, remain poorly understood. Using ethyl-N-nitrosourea mutagenesis in mice, we identified a germline mutant, designated Ace, with a marked defect in NK cell mediated recognition and elimination of "missing-self" targets. The causative mutation was linked to chromosome 11 and identified as a missense mutation (Thr428Ile) in the SH2 domain of Slp-76-a critical adapter molecule downstream of ITAM-containing surface receptors. The Slp-76 Ace mutation behaved as a hypomorphic allele-while no major defects were observed in conventional T-cell development/function, a marked defect in NK cell mediated elimination of β2-microglobulin (β2M) deficient target cells was observed. Further studies revealed Slp-76 to control NK-cell receptor expression and maturation; however, activation of Slp-76(ace/ace) NK cells through ITAM-containing NK-cell receptors or allogeneic/tumor target cells appeared largely unaffected. Imagestream analysis of the NK-β2M(-/-) target cell synapse revealed a specific defect in actin recruitment to the conjugate synapse in Slp-76(ace/ace) NK cells. Overall these studies establish Slp-76 as a critical determinant of NK-cell development and NK cell mediated elimination of missing-self target cells in mice. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Rhizopus oryzae hyphae are damaged by human natural killer (NK) cells, but suppress NK cell mediated immunity.

    Science.gov (United States)

    Schmidt, Stanislaw; Tramsen, Lars; Perkhofer, Susanne; Lass-Flörl, Cornelia; Hanisch, Mitra; Röger, Frauke; Klingebiel, Thomas; Koehl, Ulrike; Lehrnbecher, Thomas

    2013-07-01

    Mucormycosis has a high mortality and is increasingly diagnosed in hematopoietic stem cell transplant (HSCT) recipients. In this setting, there is a growing interest to restore host defense to combat infections by adoptively transferring donor-derived immunocompetent cells. Natural killer (NK) cells exhibit antitumor and antiinfective activity, but the interaction with Mucormycetes is unknown. Our data demonstrate that both unstimulated and IL-2 prestimulated human NK cells damage Rhizopus oryzae hyphae, but do not affect resting conidia. The damage of the fungus is mediated, at least in part, by perforin. R. oryzae hyphae decrease the secretion of immunoregulatory molecules by NK cells, such as IFN-γ and RANTES, indicating an immunosuppressive effect of the fungus. Our data indicate that NK cells exhibit activity against Mucormycetes and future research should evaluate NK cells as a potential tool for adoptive immunotherapy in HSCT. Copyright © 2012 Elsevier GmbH. All rights reserved.

  2. ADCC employing an NK cell line (haNK) expressing the high affinity CD16 allele with avelumab, an anti-PD-L1 antibody.

    Science.gov (United States)

    Jochems, Caroline; Hodge, James W; Fantini, Massimo; Tsang, Kwong Y; Vandeveer, Amanda J; Gulley, James L; Schlom, Jeffrey

    2017-08-01

    NK-92 cells, and their derivative, designated aNK, were obtained from a patient with non-Hodgkin lymphoma. Prior clinical studies employing adoptively transferred irradiated aNK cells have provided evidence of clinical benefit and an acceptable safety profile. aNK cells have now been engineered to express IL-2 and the high affinity (ha) CD16 allele (designated haNK). Avelumab is a human IgG1 anti-PD-L1 monoclonal antibody, which has shown evidence of clinical activity in a range of human tumors. Prior in vitro studies have shown that avelumab has the ability to mediate antibody-dependent cell-mediated cytotoxicity (ADCC) of human tumor cells when combined with NK cells. In the studies reported here, the ability of avelumab to enhance the lysis of a range of human carcinoma cells by irradiated haNK cells via the ADCC mechanism is demonstrated; this ADCC is shown to be inhibited by anti-CD16 blocking antibody and by concanamycin A, indicating the use of the granzyme/perforin pathway in tumor cell lysis. Studies also show that while NK cells have the ability to lyse aNK or haNK cells, the addition of NK cells to irradiated haNK cells does not inhibit haNK-mediated lysis of human tumor cells, with or without the addition of avelumab. Avelumab-mediated lysis of tumor cells by irradiated haNK cells is also shown to be similar to that of NK cells bearing the V/V Fc receptor high affinity allele. These studies thus provide the rationale for the clinical evaluation of the combined use of avelumab with that of irradiated adoptively transferred haNK cells. © 2017 UICC.

  3. Granular flow

    DEFF Research Database (Denmark)

    Mitarai, Namiko; Nakanishi, Hiizu

    2012-01-01

    Granular material is a collection of macroscopic particles that are visible with naked eyes. The non-equilibrium nature of the granular materials makes their rheology quite different from that of molecular systems. In this minireview, we present the unique features of granular materials focusing...... on the shear flow of dry granular materials and granule-liquid mixture....

  4. NK-1 receptor antagonists as anti-cancer drugs

    Indian Academy of Sciences (India)

    The substance P (SP)/neurokinin (NK)-1 receptor system plays an important role in cancer. SP promotes the proliferation of tumour cells, angiogenesis and the migration of tumour cells. We review the involvement of SP, the NK-1 receptor and NK-1 receptor antagonists in cancer. Tumour cells overexpress NK-1 receptors, ...

  5. NK cells and T cells: mirror images?

    NARCIS (Netherlands)

    Versteeg, R.

    1992-01-01

    The expression of MHC class I molecules protects cells against lysis by natural killer (NK) cells. It is possible that NK cells are 'educated' to recognize self MHC class I molecules and that the combination of self peptide and MHC class I molecule blocks NK-mediated lysis. Here, Rogier Versteeg

  6. Differential inhibitory and activating NK cell receptor levels and NK/NKT-like cell functionality in chronic and recovered stages of chikungunya.

    Science.gov (United States)

    Thanapati, Subrat; Ganu, Mohini A; Tripathy, Anuradha S

    2017-01-01

    The role of natural killer (NK; CD3-CD56+)/NKT (CD3+CD56+)-like cells in chikungunya virus (CHIKV) disease progression/recovery remains unclear. Here, we investigated the expression profiles and function of NK and NKT-like cells from 35 chronic chikungunya patients, 30 recovered individuals, and 69 controls. Percentage of NKT-like cells was low in chronic chikungunya patients. NKp30+, CD244+, DNAM-1+, and NKG2D+ NK cell percentages were also lower (MFI and/or percentage), while those of CD94+ and NKG2A+ NKT-like cells were higher (MFI and/or percentage) in chronic patients than in recovered subjects. IFN-γ and TNF-α expression on NKT-like cells was high in the chronic patients, while only IFN-γ expression on NK cells was high in the recovered individuals. Furthermore, percentage of perforin+NK cells was low in the chronic patients. Lower cytotoxic activity was observed in the chronic patients than in the controls. CD107a expression on NK and NKT-like cells post anti-CD94/anti-NKG2A blocking was comparable among the patients and controls. Upregulated inhibitory and downregulated activating NK receptor expressions on NK/NKT-like cells, lower perforin+ and CD107a+NK cells are likely responsible for inhibiting the NK and NKT-like cell function in the chronic stage of chikungunya. Therefore, deregulation of NKR expression might underlie CHIKV-induced chronicity.

  7. Large-Area Silicon Detectors for the CMS High Granularity Calorimeter

    CERN Document Server

    Pree, Elias

    2017-01-01

    During the so-called Phase-2 Upgrade, the CMS experiment at CERN will undergo significant improvements to cope with the 10-fold luminosity increase of the High Luminosity LHC (HL-LHC) era. Especially the forward calorimetry will suffer from very high radiation levels and intensified pileup in the detectors. For this reason, the CMS collaboration is designing a High Granularity Calorimeter (HGCAL) to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (CE-E) and hadronic (CE-H) compartments. The CE-E and a large fraction of CE-H will consist of a sandwich structure with silicon as active detector material. This paper presents an overview of the ongoing sensor development for the HGCAL and highlights important design features and measurement techniques. The design and layout of an 8-inch silicon sensor prototype is shown. The hexagonal sensors consist of 235 pads, each with an area of about \\mbox{1~cm$^{2}$}. Furthermore, Synopsys...

  8. HYPERELASTIC MODELS FOR GRANULAR MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Humrickhouse, Paul W; Corradini, Michael L

    2009-01-29

    A continuum framework for modeling of dust mobilization and transport, and the behavior of granular systems in general, has been reviewed, developed and evaluated for reactor design applications. The large quantities of micron-sized particles expected in the international fusion reactor design, ITER, will accumulate into piles and layers on surfaces, which are large relative to the individual particle size; thus, particle-particle, rather than particle-surface, interactions will determine the behavior of the material in bulk, and a continuum approach is necessary and justified in treating the phenomena of interest; e.g., particle resuspension and transport. The various constitutive relations that characterize these solid particle interactions in dense granular flows have been discussed previously, but prior to mobilization their behavior is not even fluid. Even in the absence of adhesive forces between particles, dust or sand piles can exist in static equilibrium under gravity and other forces, e.g., fluid shear. Their behavior is understood to be elastic, though not linear. The recent “granular elasticity” theory proposes a non-linear elastic model based on “Hertz contacts” between particles; the theory identifies the Coulomb yield condition as a requirement for thermodynamic stability, and has successfully reproduced experimental results for stress distributions in sand piles. The granular elasticity theory is developed and implemented in a stand- alone model and then implemented as part of a finite element model, ABAQUS, to determine the stress distributions in dust piles subjected to shear by a fluid flow. We identify yield with the onset of mobilization, and establish, for a given dust pile and flow geometry, the threshold pressure (force) conditions on the surface due to flow required to initiate it. While the granular elasticity theory applies strictly to cohesionless granular materials, attractive forces are clearly important in the interaction of

  9. NK cell-released exosomes: Natural nanobullets against tumors.

    Science.gov (United States)

    Fais, Stefano

    2013-01-01

    We have recently reported that human natural killer (NK) cells release exosomes that express both NK-cell markers and cytotoxic molecules. Similar results were obtained with circulating exosomes from human healthy donors. Both NK-cell derived and circulating exosomes exerted a full functional activity and killed both tumor and activated immune cells. These findings indicate that NK-cell derived exosomes might constitute a new promising therapeutic tool.

  10. A hydrodynamic model for granular material flows including segregation effects

    Science.gov (United States)

    Gilberg, Dominik; Klar, Axel; Steiner, Konrad

    2017-06-01

    The simulation of granular flows including segregation effects in large industrial processes using particle methods is accurate, but very time-consuming. To overcome the long computation times a macroscopic model is a natural choice. Therefore, we couple a mixture theory based segregation model to a hydrodynamic model of Navier-Stokes-type, describing the flow behavior of the granular material. The granular flow model is a hybrid model derived from kinetic theory and a soil mechanical approach to cover the regime of fast dilute flow, as well as slow dense flow, where the density of the granular material is close to the maximum packing density. Originally, the segregation model has been formulated by Thornton and Gray for idealized avalanches. It is modified and adapted to be in the preferred form for the coupling. In the final coupled model the segregation process depends on the local state of the granular system. On the other hand, the granular system changes as differently mixed regions of the granular material differ i.e. in the packing density. For the modeling process the focus lies on dry granular material flows of two particle types differing only in size but can be easily extended to arbitrary granular mixtures of different particle size and density. To solve the coupled system a finite volume approach is used. To test the model the rotational mixing of small and large particles in a tumbler is simulated.

  11. Zika Virus Escapes NK Cell Detection by Upregulating Major Histocompatibility Complex Class I Molecules.

    Science.gov (United States)

    Glasner, Ariella; Oiknine-Djian, Esther; Weisblum, Yiska; Diab, Mohammad; Panet, Amos; Wolf, Dana G; Mandelboim, Ofer

    2017-11-15

    infection is largely unknown. Here we demonstrate that Zika virus infection is almost undetected by NK cells, as evidenced by the fact that the expression of activating ligands for NK cells is not induced following Zika infection. We identified a mechanism whereby Zika virus sensing via the RIGI-IRF3 pathway resulted in IFN-β-mediated upregulation of MHC-I molecules and inhibition of NK cell activity. Countering MHC class I upregulation and boosting NK cell activity may be employed as prophylactic measures to combat Zika virus infection. Copyright © 2017 American Society for Microbiology.

  12. Salivary gland NK cells are phenotypically and functionally unique.

    Directory of Open Access Journals (Sweden)

    Marlowe S Tessmer

    2011-01-01

    Full Text Available Natural killer (NK cells and CD8(+ T cells play vital roles in containing and eliminating systemic cytomegalovirus (CMV. However, CMV has a tropism for the salivary gland acinar epithelial cells and persists in this organ for several weeks after primary infection. Here we characterize a distinct NK cell population that resides in the salivary gland, uncommon to any described to date, expressing both mature and immature NK cell markers. Using RORγt reporter mice and nude mice, we also show that the salivary gland NK cells are not lymphoid tissue inducer NK-like cells and are not thymic derived. During the course of murine cytomegalovirus (MCMV infection, we found that salivary gland NK cells detect the infection and acquire activation markers, but have limited capacity to produce IFN-γ and degranulate. Salivary gland NK cell effector functions are not regulated by iNKT or T(reg cells, which are mostly absent in the salivary gland. Additionally, we demonstrate that peripheral NK cells are not recruited to this organ even after the systemic infection has been controlled. Altogether, these results indicate that viral persistence and latency in the salivary glands may be due in part to the presence of unfit NK cells and the lack of recruitment of peripheral NK cells.

  13. Bystander cells enhance NK cytotoxic efficiency by reducing search time.

    Science.gov (United States)

    Zhou, Xiao; Zhao, Renping; Schwarz, Karsten; Mangeat, Matthieu; Schwarz, Eva C; Hamed, Mohamed; Bogeski, Ivan; Helms, Volkhard; Rieger, Heiko; Qu, Bin

    2017-03-13

    Natural killer (NK) cells play a central role during innate immune responses by eliminating pathogen-infected or tumorigenic cells. In the microenvironment, NK cells encounter not only target cells but also other cell types including non-target bystander cells. The impact of bystander cells on NK killing efficiency is, however, still elusive. In this study we show that the presence of bystander cells, such as P815, monocytes or HUVEC, enhances NK killing efficiency. With bystander cells present, the velocity and persistence of NK cells were increased, whereas the degranulation of lytic granules remained unchanged. Bystander cell-derived H 2 O 2 was found to mediate the acceleration of NK cell migration. Using mathematical diffusion models, we confirm that local acceleration of NK cells in the vicinity of bystander cells reduces their search time to locate target cells. In addition, we found that integrin β chains (β1, β2 and β7) on NK cells are required for bystander-enhanced NK migration persistence. In conclusion, we show that acceleration of NK cell migration in the vicinity of H 2 O 2 -producing bystander cells reduces target cell search time and enhances NK killing efficiency.

  14. Location and cellular stages of NK cell development

    Science.gov (United States)

    Yu, Jianhua; Freud, Aharon G.; Caligiuri, Michael A

    2013-01-01

    The identification of distinct tissue-specific natural killer (NK) cell populations that apparently mature from local precursor populations has brought new insight into the diversity and developmental regulation of this important lymphoid subset. NK cells provide a necessary link between the early (innate) and late (adaptive) immune responses to infection. Gaining a better understanding of the processes that govern NK cell development should allow us to better harness NK cell functions in multiple clinical settings as well as to gain further insight into how these cells undergo malignant transformation. In this review, we summarize recent advances in understanding sites and cellular stages of NK cell development in humans and mice. PMID:24055329

  15. Exercise-Dependent Regulation of NK Cells in Cancer Protection

    DEFF Research Database (Denmark)

    Idorn, Manja; Hojman, Pernille

    2016-01-01

    Natural killer (NK) cells are the most responsive immune cells to exercise, displaying an acute mobilization to the circulation during physical exertion. Recently, exercise-dependent mobilization of NK cells was found to play a central role in exercise-mediated protection against cancer. Here, we...... a mechanistic explanation for the protective effect of exercise on cancer, and we propose that exercise represents a potential strategy as adjuvant therapy in cancer, by improving NK cell recruitment and infiltration in solid tumors....... review the link between exercise and NK cell function, focusing on circulating exercise factors and additional effects, including vascularization, hypoxia, and body temperature in mediating the effects on NK cell functionality. Exercise-dependent mobilization and activation of NK cells provides...

  16. Metatranscriptomics reveals the molecular mechanism of large granule formation in granular anammox reactor

    KAUST Repository

    Bagchi, Samik

    2016-06-20

    Granules enriched with anammox bacteria are essential in enhancing the treatment of ammonia-rich wastewater, but little is known about how anammox bacteria grow and multiply inside granules. Here, we combined metatranscriptomics, quantitative PCR and 16S rRNA gene sequencing to study the changes in community composition, metabolic gene content and gene expression in a granular anammox reactor with the objective of understanding the molecular mechanism of anammox growth and multiplication that led to formation of large granules. Size distribution analysis revealed the spatial distribution of granules in which large granules having higher abundance of anammox bacteria (genus Brocadia) dominated the bottom biomass. Metatranscriptomics analysis detected all the essential transcripts for anammox metabolism. During the later stage of reactor operation, higher expression of ammonia and nitrite transport proteins and key metabolic enzymes mainly in the bottom large granules facilitated anammox bacteria activity. The high activity resulted in higher growth and multiplication of anammox bacteria and expanded the size of the granules. This conceptual model for large granule formation proposed here may assist in the future design of anammox processes for mainstream wastewater treatment.

  17. Endometrial natural killer (NK) cells reveal a tissue-specific receptor repertoire.

    Science.gov (United States)

    Feyaerts, D; Kuret, T; van Cranenbroek, B; van der Zeeuw-Hingrez, S; van der Heijden, O W H; van der Meer, A; Joosten, I; van der Molen, R G

    2018-02-13

    Is the natural killer (NK) cell receptor repertoire of endometrial NK (eNK) cells tissue-specific? The NK cell receptor (NKR) expression profile in pre-pregnancy endometrium appears to have a unique tissue-specific phenotype, different from that found in NK cells in peripheral blood, suggesting that these cells are finely tuned towards the reception of an allogeneic fetus. NK cells are important for successful pregnancy. After implantation, NK cells encounter extravillous trophoblast cells and regulate trophoblast invasion. NK cell activity is amongst others regulated by C-type lectin heterodimer (CD94/NKG2) and killer cell immunoglobulin-like (KIR) receptors. KIR expression on decidual NK cells is affected by the presence of maternal HLA-C and biased towards KIR2D expression. However, little is known about NKR expression on eNK cells prior to pregnancy. In this study, matched peripheral and menstrual blood (a source of endometrial cells) was obtained from 25 healthy females with regular menstrual cycles. Menstrual blood was collected during the first 36 h of menstruation using a menstrual cup, a non-invasive technique to obtain endometrial cells. KIR and NKG2 receptor expression on eNK cells was characterized by 10-color flow cytometry, and compared to matched pbNK cells of the same female. KIR and HLA-C genotypes were determined by PCR-SSOP techniques. Anti-CMV IgG antibodies in plasma were measured by chemiluminescence immunoassay. KIR expression patterns of eNK cells collected from the same female do not differ over consecutive menstrual cycles. The percentage of NK cells expressing KIR2DL2/L3/S2, KIR2DL3, KIR2DL1, LILRB1 and/or NKG2A was significantly higher in eNK cells compared to pbNK cells, while no significant difference was observed for NKG2C, KIR2DL1/S1, and KIR3DL1. The NKR repertoire of eNK cells was clearly different from pbNK cells, with eNK cells co-expressing more than three NKR simultaneously. In addition, outlier analysis revealed 8 and 15 NKR

  18. Tsunamis generated by long and thin granular landslides in a large flume

    Science.gov (United States)

    Miller, Garrett S.; Andy Take, W.; Mulligan, Ryan P.; McDougall, Scott

    2017-01-01

    In this experimental study, granular material is released down slope to investigate landslide-generated waves. Starting with a known volume and initial position of the landslide source, detailed data are obtained on the velocity and thickness of the granular flow, the shape and location of the submarine landslide deposit, the amplitude and shape of the near-field wave, the far-field wave evolution, and the wave runup elevation on a smooth impermeable slope. The experiments are performed on a 6.7 m long 30° slope on which gravity accelerates the landslides into a 2.1 m wide and 33.0 m long wave flume that terminates with a 27° runup ramp. For a fixed landslide volume of 0.34 m3, tests are conducted in a range of still water depths from 0.05 to 0.50 m. Observations from high-speed cameras and measurements from wave probes indicate that the granular landslide moves as a long and thin train of material, and that only a portion of the landslide (termed the "effective mass") is engaged in activating the leading wave. The wave behavior is highly dependent on the water depth relative to the size of the landslide. In deeper water, the near-field wave behaves as a stable solitary-like wave, while in shallower water, the wave behaves as a breaking dissipative bore. Overall, the physical model observations are in good agreement with the results of existing empirical equations when the effective mass is used to predict the maximum near-field wave amplitude, the far-field amplitude, and the runup of tsunamis generated by granular landslides.

  19. Novel somatic mutations in large granular lymphocytic leukemia affecting the STAT-pathway and T-cell activation

    International Nuclear Information System (INIS)

    Andersson, E I; Rajala, H L M; Eldfors, S; Ellonen, P; Olson, T; Jerez, A; Clemente, M J; Kallioniemi, O; Porkka, K; Heckman, C; Loughran, T P Jr; Maciejewski, J P; Mustjoki, S

    2013-01-01

    T-cell large granular lymphocytic (T-LGL) leukemia is a clonal disease characterized by the expansion of mature CD3+CD8+ cytotoxic T cells. It is often associated with autoimmune disorders and immune-mediated cytopenias. Our recent findings suggest that up to 40% of T-LGL patients harbor mutations in the STAT3 gene, whereas STAT5 mutations are present in 2% of patients. In order to identify putative disease-causing genetic alterations in the remaining T-LGL patients, we performed exome sequencing from three STAT mutation-negative patients and validated the findings in 113 large granular lymphocytic (LGL) leukemia patients. On average, 11 CD8+ LGL leukemia cell-specific high-confidence nonsynonymous somatic mutations were discovered in each patient. Interestingly, all patients had at least one mutation that affects either directly the STAT3-pathway (such as PTPRT) or T-cell activation (BCL11B, SLIT2 and NRP1). In all three patients, the STAT3 pathway was activated when studied by RNA expression or pSTAT3 analysis. Screening of the remaining 113 LGL leukemia patients did not reveal additional patients with same mutations. These novel mutations are potentially biologically relevant and represent rare genetic triggers for T-LGL leukemia, and are associated with similar disease phenotype as observed in patients with mutations in the STAT3 gene

  20. NK cell activation: distinct stimulatory pathways counterbalancing inhibitory signals.

    Science.gov (United States)

    Bakker, A B; Wu, J; Phillips, J H; Lanier, L L

    2000-01-01

    A delicate balance between positive and negative signals regulates NK cell effector function. Activation of NK cells may be initiated by the triggering of multiple adhesion or costimulatory molecules, and can be counterbalanced by inhibitory signals induced by receptors for MHC class I. A common pathway of inhibitory signaling is provided by immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in the cytoplasmic domains of these receptors which mediate the recruitment of SH2 domain-bearing tyrosine phosphate-1 (SHP-1). In contrast to the extensive progress that has been made regarding the negative regulation of NK cell function, our knowledge of the signals that activate NK cells is still poor. Recent studies of the activating receptor complexes have shed new light on the induction of NK cell effector function. Several NK receptors using novel adaptors with immunoreceptor tyrosine-based activation motifs (ITAMs) and with PI 3-kinase recruiting motifs have been implicated in NK cell stimulation.

  1. Reduction of the CD16(-CD56bright NK cell subset precedes NK cell dysfunction in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Kyo Chul Koo

    Full Text Available BACKGROUND: Natural cytotoxicity, mediated by natural killer (NK cells plays an important role in the inhibition and elimination of malignant tumor cells. To investigate the immunoregulatory role of NK cells and their potential as diagnostic markers, NK cell activity (NKA was analyzed in prostate cancer (PCa patients with particular focus on NK cell subset distribution. METHODS: Prospective data of NKA and NK cell subset distribution patterns were measured from 51 patients initially diagnosed with PCa and 54 healthy controls. NKA was represented by IFN-γ levels after stimulation of the peripheral blood with Promoca®. To determine the distribution of NK cell subsets, PBMCs were stained with fluorochrome-conjugated monoclonal antibodies. Then, CD16(+CD56(dim and CD16(-CD56(bright cells gated on CD56(+CD3(- cells were analyzed using a flow-cytometer. RESULTS: NKA and the proportion of CD56(bright cells were significantly lower in PCa patients compared to controls (430.9 pg/ml vs. 975.2 pg/ml and 2.3% vs. 3.8%, respectively; p<0.001. Both tended to gradually decrease according to cancer stage progression (p for trend = 0.001. A significantly higher CD56(dim-to-CD56(bright cell ratio was observed in PCa patients (41.8 vs. 30.3; p<0.001 along with a gradual increase according to cancer stage progression (p for trend = 0.001, implying a significant reduction of CD56(bright cells in relation to the alteration of CD56(dim cells. The sensitivity and the specificity of NKA regarding PCa detection were 72% and 74%, respectively (best cut-off value at 530.9 pg/ml, AUC = 0.786. CONCLUSIONS: Reduction of CD56(bright cells may precede NK cell dysfunction, leading to impaired cytotoxicity against PCa cells. These observations may explain one of the mechanisms behind NK cell dysfunction observed in PCa microenvironment and lend support to the development of future cancer immunotherapeutic strategies.

  2. NK cell-based cancer immunotherapy: from basic biology to clinical application.

    Science.gov (United States)

    Li, Yang; Yin, Jie; Li, Ting; Huang, Shan; Yan, Han; Leavenworth, JianMei; Wang, Xi

    2015-12-01

    Natural killer (NK) cells, which recognize and kill target cells independent of antigen specificity and major histocompatibility complex (MHC) matching, play pivotal roles in immune defence against tumors. However, tumor cells often acquire the ability to escape NK cell-mediated immune surveillance. Thus, understanding mechanisms underlying regulation of NK cell phenotype and function within the tumor environment is instrumental for designing new approaches to improve the current cell-based immunotherapy. In this review, we elaborate the main biological features and molecular mechanisms of NK cells that pertain to regulation of NK cell-mediated anti-tumor activity. We further overview current clinical approaches regarding NK cell-based cancer therapy, including cytokine infusion, adoptive transfer of autologous or allogeneic NK cells, applications of chimeric antigen receptor (CAR)-expressing NK cells and adoptive transfer of memory-like NK cells. With these promising clinical outcomes and fuller understanding the basic questions raised in this review, we foresee that NK cell-based approaches may hold great potential for future cancer immunotherapy.

  3. User-centric Query Refinement and Processing Using Granularity Based Strategies

    NARCIS (Netherlands)

    Zeng, Y.; Zhong, N.; Wang, Y.; Qin, Y.; Huang, Z.; Zhou, H; Yao, Y; van Harmelen, F.A.H.

    2011-01-01

    Under the context of large-scale scientific literatures, this paper provides a user-centric approach for refining and processing incomplete or vague query based on cognitive- and granularity-based strategies. From the viewpoints of user interests retention and granular information processing, we

  4. Clinical relevance of sensitive and quantitative STAT3 mutation analysis using next-generation sequencing in T-cell large granular lymphocytic leukemia

    DEFF Research Database (Denmark)

    Kielsgaard Kristensen, Thomas; Larsen, Martin; Rewes, Annika

    2014-01-01

    Diagnosis of T-cell large granular lymphocytic leukemia (T-LGL) is often challenging because clinical and laboratory characteristics are overlapping with nonneoplastic conditions. Recently, mutation in the STAT3 gene has been identified as a recurrent genetic abnormality in T-LGL. STAT3 mutation...

  5. Induced Human Decidual NK-Like Cells Improve Utero-Placental Perfusion in Mice.

    Directory of Open Access Journals (Sweden)

    Ricardo C Cavalli

    Full Text Available Decidual NK (dNK cells, a distinct type of NK cell, are thought to regulate uterine spiral artery remodeling, a process that allows for increased blood delivery to the fetal-placental unit. Impairment of uterine spiral artery remodeling is associated with decreased placental perfusion, increased uterine artery resistance, and obstetric complications such as preeclampsia and intrauterine growth restriction. Ex vivo manipulation of human peripheral blood NK (pNK cells by a combination of hypoxia, TGFß-1 and 5-aza-2'-deoxycytidine yields cells with phenotypic and in vitro functional similarities to dNK cells, called idNK cells. Here, gene expression profiling shows that CD56Bright idNK cells derived ex vivo from human pNK cells, and to a lesser extent CD56Dim idNK cells, are enriched in the gene expression signature that distinguishes dNK cells from pNK cells. When injected into immunocompromised pregnant mice with elevated uterine artery resistance, idNK cells homed to the uterus and reduced the uterine artery resistance index, suggesting improved placental perfusion.

  6. An automata model of granular materials

    International Nuclear Information System (INIS)

    Gutt, G.M.; Haff, P.K.

    1990-01-01

    In this paper a new modeling technique (the Lattice Grain Model) is presented for the simulation of two-dimensional granular systems involving large numbers of grains. These granular systems may include both high shear rate regions as well as static plugs of grains and cannot easily be handled within the framework of existing continuum theories such as soil mechanics. The Lattice Grain Model (LGrM) is similar to the Lattice Gas Model (LBM). This allows large simulations to be programmed onto a hypercube concurrent processor in a straightforward manner. However, it differs from LBM in that it includes the inelastic collisions and volume-filling properties of macroscopic grains. Examples to be presented will include Couette flow, flow through an hourglass, and gravity-driven flows around obstacles

  7. Treatment of Aggressive NK-Cell Leukemia

    DEFF Research Database (Denmark)

    Boysen, Anders Kindberg; Jensen, Paw; Johansen, Preben

    2011-01-01

    Aggressive NK-cell leukemia is a rare malignancy with neoplastic proliferation of natural killer cells. It often presents with constitutional symptoms, a rapid declining clinical course, and a poor prognosis with a median survival of a few months. The disease is usually resistant to cytotoxic...... literature concerning treatment of aggressive NK-cell leukemia....

  8. Dynamic Deformation and Collapse of Granular Columns

    Science.gov (United States)

    Uenishi, K.; Tsuji, K.; Doi, S.

    2009-12-01

    Large dynamic deformation of granular materials may be found in nature not only in the failure of slopes and cliffs — due to earthquakes, rock avalanches, debris flows and landslides — but also in earthquake faulting itself. Granular surface flows often consist of solid grains and intergranular fluid, but the effect of the fluid may be usually negligible because the volumetric concentration of grains is in many cases high enough for interparticle forces to dominate momentum transport. Therefore, the investigation of dry granular flow of a mass might assist in further understanding of the above mentioned geophysical events. Here, utilizing a high-speed digital video camera system, we perform a simple yet fully-controlled series of laboratory experiments related to the collapse of granular columns. We record, at an interval of some microseconds, the dynamic transient granular mass flow initiated by abrupt release of a tube that contains dry granular materials. The acrylic tube is partially filled with glass beads and has a cross-section of either a fully- or semi-cylindrical shape. Upon sudden removal of the tube, the granular solid may fragment under the action of its own weight and the particles spread on a rigid horizontal plane. This study is essentially the extension of the previous ones by Lajeunesse et al. (Phys. Fluids 2004) and Uenishi and Tsuji (JPGU 2008), but the striped layers of particles in a semi-cylindrical tube, newly introduced in this contribution, allow us to observe the precise particle movement inside the granular column: The development of slip lines inside the column and the movement of particles against each other can be clearly identified. The major controlling parameters of the spreading dynamics are the initial aspect ratio of the granular (semi-)cylindrical column, the frictional properties of the horizontal plane (substrate) and the size of beads. We show the influence of each parameter on the average flow velocity and final radius

  9. Expression of cytoplasmic CD3 epsilon proteins in activated human adult natural killer (NK) cells and CD3 gamma, delta, epsilon complexes in fetal NK cells. Implications for the relationship of NK and T lymphocytes

    NARCIS (Netherlands)

    Lanier, L. L.; Chang, C.; Spits, H.; Phillips, J. H.

    1992-01-01

    NK cells have been defined as CD3-, CD16+, and/or CD56+ lymphocytes that mediate MHC-unrestricted cytotoxicity against certain tumors and virus-infected cells. Although CD3 epsilon transcripts have been detected in some NK clones, it has generally been thought that NK cells do not express CD3

  10. Increased Numbers of NK Cells, NKT-Like Cells, and NK Inhibitory Receptors in Peripheral Blood of Patients with Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Ying Tang

    2013-01-01

    Full Text Available T cells and B cells participate in the pathogenesis of COPD. Currently, NK cells and NKT cells have gained increasing attention. In the present study, 19 COPD patients and 12 healthy nonsmokers (HNS were recruited, and their pulmonary function was assessed. The frequencies of CD3+ T, CD4+ T, CD8+ T, B, NK, and NKT-like cells were determined using flow cytometry. The frequencies of spontaneous and inducible IFN-γ+ or CD107a+ NK and NKT-like cells as well as activating or inhibitory receptors were also detected. The potential association of lymphocyte subsets with disease severity was further analyzed. Significantly decreased numbers of CD3+ and CD4+ T cells, and the CD4+/CD8+ ratio, but increased numbers of CD3−CD56+ NK and CD3+CD56+ NKT-like cells were observed in COPD patients compared to HNS. The frequencies of inducible IFN-γ-secreting NK and NKT-like cells were less in COPD patients. The frequencies of CD158a and CD158b on NK cells and CD158b on NKT-like cells were greater. The frequency of CD158b+ NK cells was negatively correlated with FEV1% prediction and FEV1/FVC. Our data indicate that COPD patients have immune dysfunction, and higher frequencies of inhibitory NK cells and NKT-like cells may participate in the pathogenesis of COPD.

  11. NK Cells and Other Innate Lymphoid Cells in Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Vacca, Paola; Montaldo, Elisa; Croxatto, Daniele; Moretta, Francesca; Bertaina, Alice; Vitale, Chiara; Locatelli, Franco; Mingari, Maria Cristina; Moretta, Lorenzo

    2016-01-01

    Natural killer (NK) cells play a major role in the T-cell depleted haploidentical hematopoietic stem cell transplantation (haplo-HSCT) to cure high-risk leukemias. NK cells belong to the expanding family of innate lymphoid cells (ILCs). At variance with NK cells, the other ILC populations (ILC1/2/3) are non-cytolytic, while they secrete different patterns of cytokines. ILCs provide host defenses against viruses, bacteria, and parasites, drive lymphoid organogenesis, and contribute to tissue remodeling. In haplo-HSCT patients, the extensive T-cell depletion is required to prevent graft-versus-host disease (GvHD) but increases risks of developing a wide range of life-threatening infections. However, these patients may rely on innate defenses that are reconstituted more rapidly than the adaptive ones. In this context, ILCs may represent important players in the early phases following transplantation. They may contribute to tissue homeostasis/remodeling and lymphoid tissue reconstitution. While the reconstitution of NK cell repertoire and its role in haplo-HSCT have been largely investigated, little information is available on ILCs. Of note, CD34(+) cells isolated from different sources of HSC may differentiate in vitro toward various ILC subsets. Moreover, cytokines released from leukemia blasts (e.g., IL-1β) may alter the proportions of NK cells and ILC3, suggesting the possibility that leukemia may skew the ILC repertoire. Further studies are required to define the timing of ILC development and their potential protective role after HSCT.

  12. NK cells and other innate lymphoid cells in haematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Paola eVacca

    2016-05-01

    Full Text Available Natural Killer (NK cells play a major role in the T-cell depleted haploidentical haematopoietic stem cell transplantation (haplo-HSCT to cure high-risk leukemias. NK cells belong to the expanding family of innate lymphoid cells (ILC. At variance with NK cells, the other ILC populations (ILC1/2/3 are non-cytolytic, while they secrete different patterns of cytokines. ILC provide host defences against viruses, bacteria and parasites, drive lymphoid organogenesis, and contribute to tissue remodelling. In haplo-HSCT patients, the extensive T-cell depletion is required to prevent graft-versus-host disease (GvHD but increases risks of developing a wide range of life-threatening infections. However, these patients may rely on innate defences that are reconstituted more rapidly than the adaptive ones. In this context, ILC may represent important players in the early phases following transplantation. They may contribute to tissue homeostasis/remodelling and lymphoid tissue reconstitution. While the reconstitution of NK cell repertoire and its role in haplo-HSCT have been largely investigated, little information is available on ILC. Of note, CD34+ cells isolated from different sources of HSC, may differentiate in vitro towards various ILC subsets. Moreover, cytokines released from leukemia blasts (e.g. IL-1β may alter the proportions of NK cells and ILC3, suggesting the possibility that leukemia may skew the ILC repertoire. Further studies are required to define the timing of ILC development and their potential protective role after HSCT.

  13. DNAM-1 Expression Marks an Alternative Program of NK Cell Maturation

    Directory of Open Access Journals (Sweden)

    Ludovic Martinet

    2015-04-01

    Full Text Available Natural killer (NK cells comprise a heterogeneous population of cells important for pathogen defense and cancer surveillance. However, the functional significance of this diversity is not fully understood. Here, we demonstrate through transcriptional profiling and functional studies that the activating receptor DNAM-1 (CD226 identifies two distinct NK cell functional subsets: DNAM-1+ and DNAM-1− NK cells. DNAM-1+ NK cells produce high levels of inflammatory cytokines, have enhanced interleukin 15 signaling, and proliferate vigorously. By contrast, DNAM-1− NK cells that differentiate from DNAM-1+ NK cells have greater expression of NK-cell-receptor-related genes and are higher producers of MIP1 chemokines. Collectively, our data reveal the existence of a functional program of NK cell maturation marked by DNAM-1 expression.

  14. Memory NK cells: why do they reside in the liver?

    Science.gov (United States)

    Jiang, Xiaojun; Chen, Yonglin; Peng, Hui; Tian, Zhigang

    2013-05-01

    Immune memory is the hallmark of adaptive immunity. However, recent studies have shown that natural killer (NK) cells, key components of the innate immune system, also mediate memory responses in mice and humans. Strikingly, memory NK cells were liver-resident in some models, raising the question as to whether the liver is a special organ for the acquisition of NK cell memory. Here, we review the characteristics of NK cell memory by summarizing recent progress and discuss how the liver may generate both the initiation and the recall phase of memory. We propose that the liver may have unique precursors for memory NK cells, which are developmentally distinct from NK cells derived from bone marrow.

  15. Evaluating the granularity balance of hierarchical relationships within large biomedical terminologies towards quality improvement.

    Science.gov (United States)

    Luo, Lingyun; Tong, Ling; Zhou, Xiaoxi; Mejino, Jose L V; Ouyang, Chunping; Liu, Yongbin

    2017-11-01

    Organizing the descendants of a concept under a particular semantic relationship may be rather arbitrarily carried out during the manual creation processes of large biomedical terminologies, resulting in imbalances in relationship granularity. This work aims to propose scalable models towards systematically evaluating the granularity balance of semantic relationships. We first utilize "parallel concepts set (PCS)" and two features (the length and the strength) of the paths between PCSs to design the general evaluation models, based on which we propose eight concrete evaluation models generated by two specific types of PCSs: single concept set and symmetric concepts set. We then apply those concrete models to the IS-A relationship in FMA and SNOMED CT's Body Structure subset, as well as to the Part-Of relationship in FMA. Moreover, without loss of generality, we conduct two additional rounds of applications on the Part-Of relationship after removing length redundancies and strength redundancies sequentially. At last, we perform automatic evaluation on the imbalances detected after the final round for identifying missing concepts, misaligned relations and inconsistencies. For the IS-A relationship, 34 missing concepts, 80 misalignments and 18 redundancies in FMA as well as 28 missing concepts, 114 misalignments and 1 redundancy in SNOMED CT were uncovered. In addition, 6,801 instances of imbalances for the Part-Of relationship in FMA were also identified, including 3,246 redundancies. After removing those redundancies from FMA, the total number of Part-Of imbalances was dramatically reduced to 327, including 51 missing concepts, 294 misaligned relations, and 36 inconsistencies. Manual curation performed by the FMA project leader confirmed the effectiveness of our method in identifying curation errors. In conclusion, the granularity balance of hierarchical semantic relationship is a valuable property to check for ontology quality assurance, and the scalable evaluation

  16. Assessing continuum postulates in simulations of granular flow

    Energy Technology Data Exchange (ETDEWEB)

    Rycroft, Chris; Kamrin, Ken; Bazant, Martin

    2008-08-26

    Continuum mechanics relies on the fundamental notion of a mesoscopic volume"element" in which properties averaged over discrete particles obey deterministic relationships. Recent work on granular materials suggests a continuum law may be inapplicable, revealing inhomogeneities at the particle level, such as force chains and slow cage breaking. Here, we analyze large-scale three-dimensional Discrete-Element Method (DEM) simulations of different granular flows and show that an approximate"granular element" defined at the scale of observed dynamical correlations (roughly three to five particle diameters) has a reasonable continuum interpretation. By viewing all the simulations as an ensemble of granular elements which deform and move with the flow, we can track material evolution at a local level. Our results confirm some of the hypotheses of classical plasticity theory while contradicting others and suggest a subtle physical picture of granular failure, combining liquid-like dependence on deformation rate and solid-like dependence on strain. Our computational methods and results can be used to guide the development of more realistic continuum models, based on observed local relationships betweenaverage variables.

  17. Ex-vivo expanded human NK cells express activating receptors that mediate cytotoxicity of allogeneic and autologous cancer cell lines by direct recognition and antibody directed cellular cytotoxicity

    Directory of Open Access Journals (Sweden)

    Campana Dario

    2010-10-01

    Full Text Available Abstract Background The possibility that autologous NK cells could serve as an effective treatment modality for solid tumors has long been considered. However, implementation is hampered by (i the small number of NK cells in peripheral blood, (ii the difficulties associated with large-scale production of GMP compliant cytolytic NK cells, (iii the need to activate the NK cells in order to induce NK cell mediated killing and (iv the constraints imposed by autologous inhibitory receptor-ligand interactions. To address these issues, we determined (i if large numbers of NK cells could be expanded from PBMC and GMP compliant cell fractions derived by elutriation, (ii their ability to kill allogeneic and autologous tumor targets by direct cytotoxitiy and by antibody-mediated cellular cytotoxicity and (iii defined NK cell specific receptor-ligand interactions that mediate tumor target cell killing. Methods Human NK cells were expanded during 14 days. Expansion efficiency, NK receptor repertoire before and after expansion, expression of NK specific ligands, cytolytic activity against allogeneic and autologous tumor targets, with and without the addition of chimeric EGFR monoclonal antibody, were investigated. Results Cell expansion shifted the NK cell receptor repertoire towards activation and resulted in cytotoxicity against various allogeneic tumor cell lines and autologous gastric cancer cells, while sparing normal PBMC. Blocking studies confirmed that autologous cytotoxicity is established through multiple activating receptor-ligand interactions. Importantly, expanded NK cells also mediated ADCC in an autologous and allogeneic setting by antibodies that are currently being used to treat patients with select solid tumors. Conclusion These data demonstrate that large numbers of cytolytic NK cells can be generated from PBMC and lymphocyte-enriched fractions obtained by GMP compliant counter current elutriation from PBMC, establishing the preclinical

  18. Using a Time Granularity Table for Gradual Granular Data Aggregation

    DEFF Research Database (Denmark)

    Iftikhar, Nadeem; Pedersen, Torben Bach

    2010-01-01

    solution for data reduction based on gradual granular data aggregation. With the gradual granular data aggregation mechanism, older data can be made coarse-grained while keeping the newest data fine-grained. For instance, when data is 3 months old aggregate to 1 minute level from 1 second level, when data...... and improve query performance, especially on resource-constrained systems with limited storage and query processing capabilities. A number of data reduction solutions have been developed, however an effective solution particularly based on gradual data reduction is missing. This paper presents an effective...... is 6 months old aggregate to 2 minutes level from 1 minute level and so on. The proposed solution introduces a time granularity based data structure, namely a relational time granularity table that enables long term storage of old data by maintaining it at different levels of granularity and effective...

  19. Large granular lymphocyte leukemia: natural history and response to treatment.

    LENUS (Irish Health Repository)

    Fortune, Anne F

    2012-02-01

    Large granular lymphocyte leukemia (T-LGL) is an indolent T lymphoproliferative disorder that was difficult to diagnose with certainty until clonality testing of the T cell receptor gene became routinely available. We studied the natural history and response to treatment in 25 consecutive patients with T-LGL diagnosed between 2004 and 2008 in which the diagnosis was confirmed by molecular analysis, to define an effective treatment algorithm. The median age at diagnosis was 61 years (range 27-78), with a male to female ratio of 1:1.8 and presenting features of fatigue (n = 13), recurrent infections (n = 9), and\\/or abnormal blood counts (n = 5). Thirteen patients with symptomatic disease were treated as follows: pentostatin (nine patients), cyclosporine (six patients), methotrexate (three patients), and alemtuzumab in two patients in whom pentostatin was ineffective. Pentostatin was the single most effective therapy, with a response rate of 75% and minimal toxicity. The overall survival (OS) and progression-free survival (PFS) 37 months from diagnosis were 80% and 52%, respectively. Treatment of T-LGL should be reserved for patients with symptomatic disease, but in this series, pentostatin treatment was less toxic and more effective than cyclosporine or methotrexate.

  20. Latest developments on the highly granular Silicon-Tungsten Electromagnetic Calorimeter technological prototype for the International Large Detector

    CERN Document Server

    Irles, Adrián

    2017-01-01

    High precision physics at future colliders requires unprecedented highly granular calorimeters for the application of the Particle Flow (PF) algorithm. The physical proof of concept was given in the previous campaign of beam tests of physic prototypes within the CALICE collaboration. We present here the latest beam and laboratory test results and R&D developments for the Silicon-Tungsten Electromagnetic Calorimeter technological prototype with fully embedded very front-end (VFE) electronics for the International Large Detector at the International Linear Collider project.

  1. NK Cell Subtypes as Regulators of Autoimmune Liver Disease

    Directory of Open Access Journals (Sweden)

    Guohui Jiao

    2016-01-01

    Full Text Available As major components of innate immunity, NK cells not only exert cell-mediated cytotoxicity to destroy tumors or infected cells, but also act to regulate the functions of other cells in the immune system by secreting cytokines and chemokines. Thus, NK cells provide surveillance in the early defense against viruses, intracellular bacteria, and cancer cells. However, the effecter function of NK cells must be exquisitely controlled to prevent inadvertent attack against normal “self” cells. In an organ such as the liver, where the distinction between immunotolerance and immune defense against routinely processed pathogens is critical, the plethora of NK cells has a unique role in the maintenance of homeostasis. Once self-tolerance is broken, autoimmune liver disease resulted. NK cells act as a “two-edged weapon” and even play opposite roles with both regulatory and inducer activities in the hepatic environment. That is, NK cells act not only to produce inflammatory cytokines and chemokines, but also to alter the proliferation and activation of associated lymphocytes. However, the precise regulatory mechanisms at work in autoimmune liver diseases remain to be identified. In this review, we focus on recent research with NK cells and their potential role in the development of autoimmune liver disease.

  2. Genetic deletion of Cxcl14 in mice alters uterine NK cells

    International Nuclear Information System (INIS)

    Cao, Qichen; Chen, Hua; Deng, Zhili; Yue, Jingwen; Chen, Qi; Cao, Yujing; Ning, Lina; Lei, Xiaohua; Duan, Enkui

    2013-01-01

    Highlights: •We first examined the expression of Cxcl14 in MLAp and DB of uterus. •We found the uNK cells in MLAp and decidua express Cxcl14. •In Cxcl14 −/− placenta, we found significantly decreased uNK cells. •We first performed microarray to compare the gene expression in MLAp and DB. -- Abstract: The uterine natural killer cells (uNK cells) are the major immune cells in pregnant uterus and the number of uNK cells is dramatically increased during placentation and embryo development. The uNK cells are necessary for the immune tolerance, cytokine secretion and angiogenesis of placenta. Former studies indicated that the population expansion of uNK cells was accomplished through recruitment of NK cell precursors from the spleen and bone marrow, but not proliferation of NK cells. However, the necessary molecules within this process were little understood. Here in our study, we found the co-localized expression of Cxcl14 protein with uNK cells in E13.5 pregnant uterus. Moreover, we used Cxcl14 knockout mice to examine uNK cells in mesometrial lymphoid aggregate of pregnancy (MLAp) and decidua basalis (DB) of E13.5 pregnant uterus and found significantly decreased uNK cells in Cxcl14 −/− pregnant uteri compared with Cxcl14 +/− pregnant uteri. To further explorer the molecular change in MLAp and DB after Cxcl14 knockout, we isolated the MLAp and DB from Cxcl14 +/+ and Cxcl14 −/− pregnant uteri and performed microarray analysis. We found many genes were up and down regulated after Cxcl14 knockout. In conclusion, our results suggested the important function of Cxcl14 in uNK cells and the proper level of Cxcl14 protein were required to recruit NK cells to pregnant uterus

  3. Genetic deletion of Cxcl14 in mice alters uterine NK cells

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qichen [State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101 (China); Graduate School of the Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan, Beijing 100049 (China); Chen, Hua [State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101 (China); Deng, Zhili [State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101 (China); Graduate School of the Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan, Beijing 100049 (China); Yue, Jingwen; Chen, Qi; Cao, Yujing; Ning, Lina; Lei, Xiaohua [State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101 (China); Duan, Enkui, E-mail: duane@ioz.ac.cn [State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101 (China)

    2013-06-14

    Highlights: •We first examined the expression of Cxcl14 in MLAp and DB of uterus. •We found the uNK cells in MLAp and decidua express Cxcl14. •In Cxcl14{sup −/−} placenta, we found significantly decreased uNK cells. •We first performed microarray to compare the gene expression in MLAp and DB. -- Abstract: The uterine natural killer cells (uNK cells) are the major immune cells in pregnant uterus and the number of uNK cells is dramatically increased during placentation and embryo development. The uNK cells are necessary for the immune tolerance, cytokine secretion and angiogenesis of placenta. Former studies indicated that the population expansion of uNK cells was accomplished through recruitment of NK cell precursors from the spleen and bone marrow, but not proliferation of NK cells. However, the necessary molecules within this process were little understood. Here in our study, we found the co-localized expression of Cxcl14 protein with uNK cells in E13.5 pregnant uterus. Moreover, we used Cxcl14 knockout mice to examine uNK cells in mesometrial lymphoid aggregate of pregnancy (MLAp) and decidua basalis (DB) of E13.5 pregnant uterus and found significantly decreased uNK cells in Cxcl14{sup −/−} pregnant uteri compared with Cxcl14{sup +/−} pregnant uteri. To further explorer the molecular change in MLAp and DB after Cxcl14 knockout, we isolated the MLAp and DB from Cxcl14{sup +/+} and Cxcl14{sup −/−} pregnant uteri and performed microarray analysis. We found many genes were up and down regulated after Cxcl14 knockout. In conclusion, our results suggested the important function of Cxcl14 in uNK cells and the proper level of Cxcl14 protein were required to recruit NK cells to pregnant uterus.

  4. A particle-based method for granular flow simulation

    KAUST Repository

    Chang, Yuanzhang; Bao, Kai; Zhu, Jian; Wu, Enhua

    2012-01-01

    We present a new particle-based method for granular flow simulation. In the method, a new elastic stress term, which is derived from a modified form of the Hooke's law, is included in the momentum governing equation to handle the friction of granular materials. Viscosity force is also added to simulate the dynamic friction for the purpose of smoothing the velocity field and further maintaining the simulation stability. Benefiting from the Lagrangian nature of the SPH method, large flow deformation can be well handled easily and naturally. In addition, a signed distance field is also employed to enforce the solid boundary condition. The experimental results show that the proposed method is effective and efficient for handling the flow of granular materials, and different kinds of granular behaviors can be well simulated by adjusting just one parameter. © 2012 Science China Press and Springer-Verlag Berlin Heidelberg.

  5. A particle-based method for granular flow simulation

    KAUST Repository

    Chang, Yuanzhang

    2012-03-16

    We present a new particle-based method for granular flow simulation. In the method, a new elastic stress term, which is derived from a modified form of the Hooke\\'s law, is included in the momentum governing equation to handle the friction of granular materials. Viscosity force is also added to simulate the dynamic friction for the purpose of smoothing the velocity field and further maintaining the simulation stability. Benefiting from the Lagrangian nature of the SPH method, large flow deformation can be well handled easily and naturally. In addition, a signed distance field is also employed to enforce the solid boundary condition. The experimental results show that the proposed method is effective and efficient for handling the flow of granular materials, and different kinds of granular behaviors can be well simulated by adjusting just one parameter. © 2012 Science China Press and Springer-Verlag Berlin Heidelberg.

  6. The substance P/NK-1 receptor system

    Indian Academy of Sciences (India)

    2015-04-27

    Apr 27, 2015 ... NK-1 receptor may be a promising target in the treatment of cancer; NK-1 ... the contribution of chemotherapy for adult malignancies .... nisms that regulate cellular excitability and function. ..... positive expression of Ki-67 in dysplastic epithelium ..... emotional behaviour (behaviour traits, such as depression),.

  7. Effect of tributyltin (TBT) on ATP levels in human natural killer (NK) cells: relationship to TBT-induced decreases in NK function.

    Science.gov (United States)

    Dudimah, Fred D; Odman-Ghazi, Sabah O; Hatcher, Frank; Whalen, Margaret M

    2007-01-01

    The purpose of this study was to investigate the role that tributyltin (TBT)-induced decreases in ATP levels may play in TBT-induced decreases in the tumor lysing (lytic) function of natural killer (NK) cells. NK cells are a subset of lymphocytes that act as an initial immune defense against tumor cells and virally infected cells. TBT is an environmental contaminant that has been detected in human blood, which has been shown to interfere with ATP synthesis. Previous studies have shown that TBT is able to decrease very significantly the lytic function of NK cells. In this study NK cells were exposed to various concentrations of TBT and to two other compounds that interfere with ATP synthesis (rotenone a complex I inhibitor and oligomycin an ATP synthase inhibitor) for various lengths of time before determining the levels of ATP and lytic function. Exposures of NK cells to 10, 25, 50 and 100 nm TBT did not significantly reduce ATP levels after 24 h. However, these same exposures caused significant decreases in cytotoxic function. Studies of brief 1 h exposures to a range of TBT, rotenone and oligomycin concentrations followed by 24 h, 48 h and 6 day periods in compound-free media prior to assaying for ATP levels or cytotoxic function showed that each of the compounds caused persistent decreases in ATP levels and lytic function of NK cells. Exposures to 0.05-5 microm rotenone or oligomycin for 1 h reduced ATP levels by 20-25% but did not have any measurable effect on the ability of NK cells to lyse tumor cells. ATP levels were also decreased by about 20-25% after 24 h or 48 h exposures to rotenone or oligomycin (0.5 microm ), and the lytic function was decreased by about 50%. The results suggest that TBT-induced decreases in ATP levels were not responsible for the loss of cytotoxic function seen at 1 h and 24 h. However, TBT-induced decreases of NK-ATP levels may be at least in part responsible for losses of NK-cytotoxic function seen after 48 h and 6 day exposures

  8. Conservation of gene linkage in dispersed vertebrate NK homeobox clusters.

    Science.gov (United States)

    Wotton, Karl R; Weierud, Frida K; Juárez-Morales, José L; Alvares, Lúcia E; Dietrich, Susanne; Lewis, Katharine E

    2009-10-01

    Nk homeobox genes are important regulators of many different developmental processes including muscle, heart, central nervous system and sensory organ development. They are thought to have arisen as part of the ANTP megacluster, which also gave rise to Hox and ParaHox genes, and at least some NK genes remain tightly linked in all animals examined so far. The protostome-deuterostome ancestor probably contained a cluster of nine Nk genes: (Msx)-(Nk4/tinman)-(Nk3/bagpipe)-(Lbx/ladybird)-(Tlx/c15)-(Nk7)-(Nk6/hgtx)-(Nk1/slouch)-(Nk5/Hmx). Of these genes, only NKX2.6-NKX3.1, LBX1-TLX1 and LBX2-TLX2 remain tightly linked in humans. However, it is currently unclear whether this is unique to the human genome as we do not know which of these Nk genes are clustered in other vertebrates. This makes it difficult to assess whether the remaining linkages are due to selective pressures or because chance rearrangements have "missed" certain genes. In this paper, we identify all of the paralogs of these ancestrally clustered NK genes in several distinct vertebrates. We demonstrate that tight linkages of Lbx1-Tlx1, Lbx2-Tlx2 and Nkx3.1-Nkx2.6 have been widely maintained in both the ray-finned and lobe-finned fish lineages. Moreover, the recently duplicated Hmx2-Hmx3 genes are also tightly linked. Finally, we show that Lbx1-Tlx1 and Hmx2-Hmx3 are flanked by highly conserved noncoding elements, suggesting that shared regulatory regions may have resulted in evolutionary pressure to maintain these linkages. Consistent with this, these pairs of genes have overlapping expression domains. In contrast, Lbx2-Tlx2 and Nkx3.1-Nkx2.6, which do not seem to be coexpressed, are also not associated with conserved noncoding sequences, suggesting that an alternative mechanism may be responsible for the continued clustering of these genes.

  9. Escape of HIV-1-infected dendritic cells from TRAIL-mediated NK cell cytotoxicity during NK-DC cross-talk--a pivotal role of HMGB1.

    Directory of Open Access Journals (Sweden)

    Marie-Thérèse Melki

    2010-04-01

    Full Text Available Early stages of Human Immunodeficiency Virus-1 (HIV-1 infection are associated with local recruitment and activation of important effectors of innate immunity, i.e. natural killer (NK cells and dendritic cells (DCs. Immature DCs (iDCs capture HIV-1 through specific receptors and can disseminate the infection to lymphoid tissues following their migration, which is associated to a maturation process. This process is dependent on NK cells, whose role is to keep in check the quality and the quantity of DCs undergoing maturation. If DC maturation is inappropriate, NK cells will kill them ("editing process" at sites of tissue inflammation, thus optimizing the adaptive immunity. In the context of a viral infection, NK-dependent killing of infected-DCs is a crucial event required for early elimination of infected target cells. Here, we report that NK-mediated editing of iDCs is impaired if DCs are infected with HIV-1. We first addressed the question of the mechanisms involved in iDC editing, and we show that cognate NK-iDC interaction triggers apoptosis via the TNF-related apoptosis-inducing ligand (TRAIL-Death Receptor 4 (DR4 pathway and not via the perforin pathway. Nevertheless, once infected with HIV-1, DC(HIV become resistant to NK-induced TRAIL-mediated apoptosis. This resistance occurs despite normal amounts of TRAIL released by NK cells and comparable DR4 expression on DC(HIV. The escape of DC(HIV from NK killing is due to the upregulation of two anti-apoptotic molecules, the cellular-Flice like inhibitory protein (c-FLIP and the cellular inhibitor of apoptosis 2 (c-IAP2, induced by NK-DC(HIV cognate interaction. High-mobility group box 1 (HMGB1, an alarmin and a key mediator of NK-DC cross-talk, was found to play a pivotal role in NK-dependent upregulation of c-FLIP and c-IAP2 in DC(HIV. Finally, we demonstrate that restoration of DC(HIV susceptibility to NK-induced TRAIL killing can be obtained either by silencing c-FLIP and c-IAP2 by specific

  10. Long runout landslides: a solution from granular mechanics

    Directory of Open Access Journals (Sweden)

    Stanislav eParez

    2015-10-01

    Full Text Available Large landslides exhibit surprisingly long runout distances compared to a rigid body sliding from the same slope, and the mechanism of this phenomena has been studied for decades. This paper shows that the observed long runouts can be explained quite simply via a granular pile flowing downhill, while collapsing and spreading, without the need for frictional weakening that has traditionally been suggested to cause long runouts. Kinematics of the granular flow is divided into center of mass motion and spreading due to flattening of the flowing mass. We solve the center of mass motion analytically based on a frictional law valid for granular flow, and find that center of mass runout is similar to that of a rigid body. Based on the shape of deposits observed in experiments with collapsing granular columns and numerical simulations of landslides, we derive a spreading length Rf~V^1/3. Spreading of a granular pile, leading to a deposit angle much lower than the angle of repose or the dynamic friction angle, is shown to be an important, often dominating, contribution to the total runout distance, accounting for the long runouts observed for natural landslides.

  11. The application of natural killer (NK cell immunotherapy for the treatment of cancer

    Directory of Open Access Journals (Sweden)

    Rayne H Rouce

    2015-11-01

    Full Text Available Natural killer (NK cells are essential components of the innate immune system and play a critical role in host immunity against cancer. Recent progress in our understanding of NK cell immunobiology has paved the way for novel NK cell-based therapeutic strategies for the treatment of cancer. In this review, we will focus on recent advances in the field of NK cell immunotherapy, including augmentation of antibody-dependent cellular cytotoxicity, manipulation of receptor-mediated activation, and adoptive immunotherapy with ex vivo expanded, chimeric antigen receptor (CAR engineered or engager-modified NK cells. In contrast to T lymphocytes, donor NK cells do not attack non-hematopoietic tissues, suggesting that an NK-mediated anti-tumor effect can be achieved in the absence of graft-versus-host disease. Despite reports of clinical efficacy, a number of factors limit the application of NK cell immunotherapy for the treatment of cancer such as the failure of infused NK cells to expand and persist in vivo. Therefore efforts to enhance the therapeutic benefit of NK cell-based immunotherapy by developing strategies to manipulate the NK cell product, host factors and tumor targets are the subject of intense research. In the preclinical setting, genetic engineering of NK cells to express CARs to redirect their antitumor specificity has shown significant promise. Given the short lifespan and potent cytolytic function of mature NK cells, they are attractive candidate effector cells to express CARs for adoptive immunotherapies. Another innovative approach to redirect NK cytotoxicity towards tumor cells is to create either bispecific or trispecific antibodies, thus augmenting cytotoxicity against tumor-associated antigens. These are exciting times for the study of NK cells; with recent advances in the field of NK cell biology and translational research, it is likely that NK cell immunotherapy will move to the forefront of cancer immunotherapy over the next

  12. Memory NK cells: why do they reside in the liver?

    OpenAIRE

    Jiang, Xiaojun; Chen, Yonglin; Peng, Hui; Tian, Zhigang

    2013-01-01

    Immune memory is the hallmark of adaptive immunity. However, recent studies have shown that natural killer (NK) cells, key components of the innate immune system, also mediate memory responses in mice and humans. Strikingly, memory NK cells were liver-resident in some models, raising the question as to whether the liver is a special organ for the acquisition of NK cell memory. Here, we review the characteristics of NK cell memory by summarizing recent progress and discuss how the liver may ge...

  13. NKG2D is a key receptor for recognition of bladder cancer cells by IL-2-activated NK cells and BCG promotes NK cell activation

    Directory of Open Access Journals (Sweden)

    Eva María García-Cuesta

    2015-06-01

    Full Text Available Intravesical instillation of Bacillus Calmette-Guérin (BCG is used to treat superficial bladder cancer, either papillary tumors (after trans-urethral resection or high-grade flat carcinomas (carcinoma in situ, reducing recurrence in about 70% of patients. Initially, BCG was proposed to work through an inflammatory response, mediated by phagocytic uptake of mycobacterial antigens and cytokine release. More recently, other immune effectors such as monocytes, Natural Killer (NK and NKT cells have been suggested to play a role in this immune response. Here, we provide a comprehensive study of multiple bladder cancer cell lines as putative targets for immune cells and evaluated their recognition by NK cells in the presence and absence of BCG. We describe that different bladder cancer cells can express multiple activating and inhibitory ligands for NK cells. Recognition of bladder cancer cells depended mainly on NKG2D, with a contribution from NKp46. Surprisingly, exposure to BCG did not affect the immune phenotype of bladder cells nor increased NK cell recognition of purified IL-2-activated cell lines. However, NK cells were activated efficiently when BCG was included in mixed lymphocyte cultures, suggesting that NK activation after mycobacteria treatment requires the collaboration of various immune cells. We also analyzed the percentage of NK cells in peripheral blood of a cohort of bladder cancer patients treated with BCG. The total numbers of NK cells did not vary during treatment, indicating that a more detailed study of NK cell activation in the tumor site will be required to evaluate the response in each patient.

  14. Granular patterns

    CERN Document Server

    Aranson, Igor S

    2009-01-01

    This title presents a review of experiments and novel theoretical concepts needed to understand the mechanisms of pattern formation in granular materials. An effort is made to connect concepts and ideas developed in granular physics with new emergent fields, especially in biology, such as cytoskeleton dynamics.

  15. Microchip screening platform for single cell assessment of NK cell cytotoxicity

    Directory of Open Access Journals (Sweden)

    Karolin eGuldevall

    2016-04-01

    Full Text Available Here we report a screening platform for assessment of the cytotoxic potential of individual natural killer (NK cells within larger populations. Human primary NK cells were distributed across a silicon-glass microchip containing 32 400 individual microwells loaded with target cells. Through fluorescence screening and automated image analysis the numbers of NK and live or dead target cells in each well could be assessed at different time points after initial mixing. Cytotoxicity was also studied by time-lapse live-cell imaging in microwells quantifying the killing potential of individual NK cells. Although most resting NK cells (≈75% were non-cytotoxic against the leukemia cell line K562, some NK cells were able to kill several (≥3 target cells within the 12 hours long experiment. In addition, the screening approach was adapted to increase the chance to find and evaluate serial killing NK cells. Even if the cytotoxic potential varied between donors it was evident that a small fraction of highly cytotoxic NK cells were responsible for a substantial portion of the killing. We demonstrate multiple assays where our platform can be used to enumerate and characterize cytotoxic cells, such as NK or T cells. This approach could find use in clinical applications, e.g. in the selection of donors for stem cell transplantation or generation of highly specific and cytotoxic cells for adoptive immunotherapy.

  16. Microchip Screening Platform for Single Cell Assessment of NK Cell Cytotoxicity

    Science.gov (United States)

    Guldevall, Karolin; Brandt, Ludwig; Forslund, Elin; Olofsson, Karl; Frisk, Thomas W.; Olofsson, Per E.; Gustafsson, Karin; Manneberg, Otto; Vanherberghen, Bruno; Brismar, Hjalmar; Kärre, Klas; Uhlin, Michael; Önfelt, Björn

    2016-01-01

    Here, we report a screening platform for assessment of the cytotoxic potential of individual natural killer (NK) cells within larger populations. Human primary NK cells were distributed across a silicon–glass microchip containing 32,400 individual microwells loaded with target cells. Through fluorescence screening and automated image analysis, the numbers of NK and live or dead target cells in each well could be assessed at different time points after initial mixing. Cytotoxicity was also studied by time-lapse live-cell imaging in microwells quantifying the killing potential of individual NK cells. Although most resting NK cells (≈75%) were non-cytotoxic against the leukemia cell line K562, some NK cells were able to kill several (≥3) target cells within the 12-h long experiment. In addition, the screening approach was adapted to increase the chance to find and evaluate serial killing NK cells. Even if the cytotoxic potential varied between donors, it was evident that a small fraction of highly cytotoxic NK cells were responsible for a substantial portion of the killing. We demonstrate multiple assays where our platform can be used to enumerate and characterize cytotoxic cells, such as NK or T cells. This approach could find use in clinical applications, e.g., in the selection of donors for stem cell transplantation or generation of highly specific and cytotoxic cells for adoptive immunotherapy. PMID:27092139

  17. Recruitment of activation receptors at inhibitory NK cell immune synapses.

    Directory of Open Access Journals (Sweden)

    Nicolas Schleinitz

    2008-09-01

    Full Text Available Natural killer (NK cell activation receptors accumulate by an actin-dependent process at cytotoxic immune synapses where they provide synergistic signals that trigger NK cell effector functions. In contrast, NK cell inhibitory receptors, including members of the MHC class I-specific killer cell Ig-like receptor (KIR family, accumulate at inhibitory immune synapses, block actin dynamics, and prevent actin-dependent phosphorylation of activation receptors. Therefore, one would predict inhibition of actin-dependent accumulation of activation receptors when inhibitory receptors are engaged. By confocal imaging of primary human NK cells in contact with target cells expressing physiological ligands of NK cell receptors, we show here that this prediction is incorrect. Target cells included a human cell line and transfected Drosophila insect cells that expressed ligands of NK cell activation receptors in combination with an MHC class I ligand of inhibitory KIR. The two NK cell activation receptors CD2 and 2B4 accumulated and co-localized with KIR at inhibitory immune synapses. In fact, KIR promoted CD2 and 2B4 clustering, as CD2 and 2B4 accumulated more efficiently at inhibitory synapses. In contrast, accumulation of KIR and of activation receptors at inhibitory synapses correlated with reduced density of the integrin LFA-1. These results imply that inhibitory KIR does not prevent CD2 and 2B4 signaling by blocking their accumulation at NK cell immune synapses, but by blocking their ability to signal within inhibitory synapses.

  18. Lentiviral Vector-Mediated GFP/fluc gene introduction into primary mouse NK cells

    International Nuclear Information System (INIS)

    L, Thi Thanh Hoa; Tae, Seong Ho; Min, Jung Joon

    2007-01-01

    NK cell is a type of lymphocyte that has ability in defense against virus infection and some kinds of cancer diseases. Recently, using genetic engineering, studies about the roles and functions of NK cells have been developing. In this study, we used lentivirus-based vector encoding GFP/Fluc gene to transfer into primary mouse NK cells. This model is a tool in studying characteristics of NK cells. The lentivirus used in this study was a commercial one, named LentiM1.3-Fluc, encoding GFP and Flue reporter genes under the control of the murine cytomegalovirus (MCMV) promoter. LentiM1.3-Fluc was infected into freshly isolated mouse NK cells at 2 20 MOl by incubating or using spin infection. In the spin infection, we gently suspended NK cells in viral fluid, then centrifuged at 2000 rpm, 20 minutes at room temperature and incubated for 1 day. After 1 day, virus was discarded and NK cells were cultured in IL-2 with or without IL-12 supplemented media. Infected NK cells were monitored by using fluorescent microscope for GFP and IVIS machine for Fire-fly luciferase expression. The results showed that using spin infection had much effect on introducing lentiviral vector-mediated reporter gene into NK cells than the way without spin. Also, NK cells which were cultured in IL-2 and IL-12 added media expressed higher fluorescent and luminescent signals than those cultured in only IL-2 supplemented media. When these NK cells were injected subcutaneously in Balb/C mice, the imaging signal was observed transiently. Our study demonstrates that by using a simple method, mouse NK cells can be transfected by lentivirus. And this will be useful in studying biology and therapeutic potential of NK cells. However, we require developing alternative lentiviral vectors with different promoter for in vivo application

  19. Intrinsic Contribution of Perforin to NK-Cell Homeostasis during Mouse Cytomegalovirus Infection

    Directory of Open Access Journals (Sweden)

    Maja eArapovic

    2016-04-01

    Full Text Available In addition to their role as effector cells in virus control, natural killer (NK cells have an immunoregulatory function in shaping the antiviral T-cell response. This function is further pronounced in perforin-deficient mice that show the enhanced NK-cell proliferation and cytokine secretion upon mouse cytomegalovirus (MCMV infection. Here we confirmed that stronger activation and maturation of NK cells in perforin-deficient mice correlates with higher MCMV load. To further characterize the immunoregulatory potential of perforin, we compared the response of NK cells that express or do not express perforin using bone-marrow chimeras. Our results demonstrated that the enhanced proliferation and maturation of NK cells in MCMV-infected bone-marrow chimeras is an intrinsic property of perforin-deficient NK cells. Thus, in addition to confirming that NK-cell proliferation is virus load dependent, our data extend this notion demonstrating that perforin plays an intrinsic role as a feedback mechanism in regulation of NK-cell proliferation during viral infections.

  20. Granular Materials and Risks In ISRU

    Science.gov (United States)

    Behringer, Robert P.; Wilkinson, R. Allen

    2004-01-01

    Working with soil, sand, powders, ores, cement and sintered bricks, excavating, grading construction sites, driving off-road, transporting granules in chutes and pipes, sifting gravel, separating solids from gases, and using hoppers are so routine that it seems straightforward to execute these operations on the Moon and Mars as we do on Earth. We discuss how little these processes are understood and point out the nature of trial-and-error practices that are used in today's massive over-design. Nevertheless, such designs have a high failure rate. Implementation and extensive incremental scaling up of industrial processes are routine because of the inadequate predictive tools for design. We present a number of pragmatic scenarios where granular materials play a role, the risks involved, what some of the basic issues are, and what understanding is needed to greatly reduce the risks. This talk will focus on a particular class of granular flow issues, those that pertain to dense materials, their physics, and the failure problems associated with them. In particular, key issues where basic predictability is lacking include stability of soils for the support of vehicles and facilities, ability to control the flow of dense materials (jamming and flooding/unjamming at the wrong time), the ability to predict stress profiles (hence create reliable designs) for containers such as bunkers or silos. In particular, stress fluctuations, which are not accounted for in standard granular design models, can be very large as granular materials flows, and one result is frequent catastrophic failure of granular devices.

  1. Granular computing: perspectives and challenges.

    Science.gov (United States)

    Yao, JingTao; Vasilakos, Athanasios V; Pedrycz, Witold

    2013-12-01

    Granular computing, as a new and rapidly growing paradigm of information processing, has attracted many researchers and practitioners. Granular computing is an umbrella term to cover any theories, methodologies, techniques, and tools that make use of information granules in complex problem solving. The aim of this paper is to review foundations and schools of research and to elaborate on current developments in granular computing research. We first review some basic notions of granular computing. Classification and descriptions of various schools of research in granular computing are given. We also present and identify some research directions in granular computing.

  2. IL-21 augments NK effector functions in chronically HIV-infected individuals

    Science.gov (United States)

    Strbo, Natasa; de Armas, Lesley; Liu, Huanliang; Kolber, Michael A.; Lichtenheld, Mathias; Pahwa, Savita

    2009-01-01

    Objective This study addresses the interleukin (IL)-21 effects on resting peripheral blood NK cells in chronically HIV-infected individuals. Design The effects of IL-21 on perforin expression, proliferation, degranulation, IFN-γ production, cytotoxicity and induction of STAT phosphorylation in NK cells were determined in vitro. Methods Peripheral blood mononuclear cells from HIV-infected and healthy individuals were incubated in vitro for 6h, 24h or 5 days with IL-21 or IL-15. Percentages of perforin, IFN-γ, CD107a, NKG2D and STAT3-5 positive cells were determined within NK cell populations. K562 cells were used as target cells in NK cytotoxicity assay. Results Frequency of CD56dim cells in chronically HIV-infected individuals was diminished. Perforin expression in CD56dim and CD56bright was comparable in healthy and HIV-infected individuals. IL-15 up-regulated perforin expression primarily in CD56bright NK cells while IL-21 up-regulated perforin in both NK subsets. IL-21 and IL- 15 up-regulated CD107a and IFN-γ as well as NK cytotoxicity. IL-15 predominantly activated STAT5, while IL-21 activated STAT5 and STAT3. IL-15, but not IL-21 increased NK cell proliferation in uninfected and HIV-infected individuals. Conclusion IL-21 augments NK effector functions in chronically HIV-infected individuals and due to its perforin enhancing properties it has potential for immunotherapy or as a vaccine adjuvant. PMID:18670213

  3. Tributyltin (TBT) and Dibutyltin (DBT) Alter Secretion of Tumor Necrosis Factor Alpha (TNFα) from Human Natural Killer (NK) Cells and a Mixture of T cells and NK Cells

    Science.gov (United States)

    Hurt, Kelsi; Hurd-Brown, Tasia; Whalen, Margaret

    2012-01-01

    Butyltins (BTs) have been in widespread use. Tributyltin (TBT) has been used as a biocide in a variety of applications and is found in human blood samples. Dibutyltin (DBT) has been used as a stabilizer in polyvinyl chloride plastics and as a de-worming agent in poultry. DBT, like TBT, is found in human blood. Human natural killer (NK) cells are the earliest defense against tumors and viral infections and secrete the cytokine tumor necrosis factor (TNF) alpha (α). TNFα is an important regulator of adaptive and innate immune responses. TNFα promotes inflammation and an association between malignant transformation and inflammation has been established. Previously, we have shown that TBT and DBT were able to interfere with the ability of NK cells to lyse tumor target cells. Here we show that BTs alter cytokine secretion by NK cells as well as a mixture of T and NK lymphocytes (T/NK cells). We examined 24 h, 48 h, and 6 day exposures to TBT (200- 2.5 nM) and DBT (5- 0.05 µM) on TNFα secretion by highly enriched human NK cells and T/NK cells. The results indicate that TBT (200 - 2.5 nM) decreased TNFα secretion from NK cells. In the T/NK cells 200 nM TBT decreased secretion while 100-5 nM TBT increased secretion of TNFα. NK cells or T/NK cells exposed to higher concentrations of DBT showed decreased TNFα secretion while lower concentrations showed increased secretion. The effects of BTs on TNFα secretion are seen at concentrations present in human blood. PMID:23047847

  4. Granular contact dynamics using mathematical programming methods

    DEFF Research Database (Denmark)

    Krabbenhoft, K.; Lyamin, A. V.; Huang, J.

    2012-01-01

    granular contact dynamics formulation uses an implicit time discretization, thus allowing for large time steps. Moreover, in the limit of an infinite time step, the general dynamic formulation reduces to a static formulation that is useful in simulating common quasi-static problems such as triaxial tests...... is developed and it is concluded that the associated sliding rule, in the context of granular contact dynamics, may be viewed as an artifact of the time discretization and that the use of an associated flow rule at the particle scale level generally is physically acceptable. (C) 2012 Elsevier Ltd. All rights...

  5. Large-area hexagonal silicon detectors for the CMS High Granularity Calorimeter

    Science.gov (United States)

    Pree, E.

    2018-02-01

    During the so-called Phase-2 Upgrade, the CMS experiment at CERN will undergo significant improvements to cope with the 10-fold luminosity increase of the High Luminosity LHC (HL-LHC) era. Especially the forward calorimetry will suffer from very high radiation levels and intensified pileup in the detectors. For this reason, the CMS collaboration is designing a High Granularity Calorimeter (HGCAL) to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (CE-E) and hadronic (CE-H) compartments. The CE-E and a large fraction of CE-H will consist of a sandwich structure with silicon as active detector material. This paper presents an overview of the ongoing sensor development for the HGCAL and highlights important design features and measurement techniques. The design and layout of an 8-inch silicon sensor prototype is shown. The hexagonal sensors consist of 235 pads, each with an area of about 1 cm2. Furthermore, Synopsys TCAD simulations regarding the high voltage stability of the sensors for different geometric parameters are performed. Finally, two different IV characterisation methods are compared on the same sensor.

  6. Immune surveillance properties of human NK cell-derived exosomes.

    Science.gov (United States)

    Lugini, Luana; Cecchetti, Serena; Huber, Veronica; Luciani, Francesca; Macchia, Gianfranco; Spadaro, Francesca; Paris, Luisa; Abalsamo, Laura; Colone, Marisa; Molinari, Agnese; Podo, Franca; Rivoltini, Licia; Ramoni, Carlo; Fais, Stefano

    2012-09-15

    Exosomes are nanovesicles released by normal and tumor cells, which are detectable in cell culture supernatant and human biological fluids, such as plasma. Functions of exosomes released by "normal" cells are not well understood. In fact, several studies have been carried out on exosomes derived from hematopoietic cells, but very little is known about NK cell exosomes, despite the importance of these cells in innate and adaptive immunity. In this paper, we report that resting and activated NK cells, freshly isolated from blood of healthy donors, release exosomes expressing typical protein markers of NK cells and containing killer proteins (i.e., Fas ligand and perforin molecules). These nanovesicles display cytotoxic activity against several tumor cell lines and activated, but not resting, immune cells. We also show that NK-derived exosomes undergo uptake by tumor target cells but not by resting PBMC. Exosomes purified from plasma of healthy donors express NK cell markers, including CD56+ and perforin, and exert cytotoxic activity against different human tumor target cells and activated immune cells as well. The results of this study propose an important role of NK cell-derived exosomes in immune surveillance and homeostasis. Moreover, this study supports the use of exosomes as an almost perfect example of biomimetic nanovesicles possibly useful in future therapeutic approaches against various diseases, including tumors.

  7. TLR-Stimulated Eosinophils Mediate Recruitment and Activation of NK Cells In Vivo.

    Science.gov (United States)

    O'Flaherty, S M; Sutummaporn, K; Häggtoft, W L; Worrall, A P; Rizzo, M; Braniste, V; Höglund, P; Kadri, N; Chambers, B J

    2017-06-01

    Eosinophils like many myeloid innate immune cells can provide cytokines and chemokines for the activation of other immune cells upon TLR stimulation. When TLR-stimulated eosinophils were inoculated i.p. into wild-type mice, and NK cells were rapidly recruited and exhibited antitumour cytotoxicity. However, when mice depleted of CD11c + cells were used, a marked decrease in the number of recruited NK cells was observed. We postulated that CpG or LPS from the injected eosinophils could be transferred to host cells, which in turn could recruit NK cells. However, by inoculating mice deficient in TLR4 or TLR9 with LPS or CpG-stimulated eosinophils respectively, NK cell recruitment was still observed alongside cytotoxicity and IFNγ production. CpG stimulation of eosinophils produced the pro-inflammatory cytokine IL-12 and the chemokine CXCL10, which are important for NK cell activation and recruitment in vivo. To demonstrate the importance of CXCL10 in NK cell recruitment, we found that CpG-stimulated eosinophils pretreated with the gut microbial metabolite butyrate had reduced expression and production of CXCL10 and IL-12 and concomitantly were poor at recruitment of NK cells and inducing IFNγ in NK cells. Therefore, eosinophils like other innate immune cells of myeloid origin can conceivably stimulate NK cell activity. In addition, products of the gut microbiota can be potential inhibitors of NK cell. © 2017 The Foundation for the Scandinavian Journal of Immunology.

  8. Cytotoxic potential of decidual NK cells and CD8+ T cells awakened by infections.

    Science.gov (United States)

    Crespo, Ângela C; van der Zwan, Anita; Ramalho-Santos, João; Strominger, Jack L; Tilburgs, Tamara

    2017-02-01

    To establish a healthy pregnancy the maternal immune system must tolerate fetal allo-antigens, yet remain competent to respond to infections. The ability of decidual NK cells (dNK) to promote migration of fetal extravillous trophoblasts (EVT) and placental growth as well as the capacity of EVT to promote immune tolerance are topics of high interest and extensive research. However, the problem of how dNK and decidual CD8+ T cells (CD8+ dT) provide immunity to infections of the placenta and the mechanisms that regulate their cytolytic function has thus far largely been ignored. Fetal EVT are the most invasive cells of the placenta and directly interact with maternal decidual immune cells at this maternal-fetal interface. Besides the expression of non-polymorphic HLA-E and HLA-G molecules that are associated with immune tolerance, EVT also express highly polymorphic HLA-C molecules that can serve as targets for maternal dNK and CD8+ dT responses. HLA-C expression by EVT has a dual role as the main molecule to which immune tolerance needs to be established and as the only molecule that can present pathogen-derived peptides and provide protective immunity when EVT are infected. The focus of this review is to address the regulation of cytotoxicity of dNK and CD8+ dT, which is essential for maternal-fetal immune tolerance as well as recent evidence that both cell types can provide immunity to infections at the maternal-fetal interface. A particular emphasis is given to the role of HLA-C expressed by EVT and its capacity to elicit dNK and CD8+ dT responses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Ontogeny of human natural killer (NK) cells: fetal NK cells mediate cytolytic function and express cytoplasmic CD3 epsilon,delta proteins

    NARCIS (Netherlands)

    Phillips, J. H.; Hori, T.; Nagler, A.; Bhat, N.; Spits, H.; Lanier, L. L.

    1992-01-01

    Natural killer (NK) cells have been defined as CD3 epsilon-, CD16+ and/or CD56+ lymphocytes that mediate major histocompatibility complex (MHC)-unrestricted cytotoxicity against certain tumors and virus-infected cells. Unlike T lymphocytes, NK cells do not rearrange or productively express T cell

  10. EBI3 regulates the NK cell response to mouse cytomegalovirus infection

    DEFF Research Database (Denmark)

    Jensen, Helle; Chen, Shih-Yu; Folkersen, Lasse Westergaard

    2017-01-01

    Natural killer (NK) cells are key mediators in the control of cytomegalovirus infection. Here, we show that Epstein-Barr virus-induced 3 (EBI3) is expressed by human NK cells after NKG2D or IL-12 plus IL-18 stimulation and by mouse NK cells during mouse cytomegalovirus (MCMV) infection. The induc......Natural killer (NK) cells are key mediators in the control of cytomegalovirus infection. Here, we show that Epstein-Barr virus-induced 3 (EBI3) is expressed by human NK cells after NKG2D or IL-12 plus IL-18 stimulation and by mouse NK cells during mouse cytomegalovirus (MCMV) infection....... The induction of EBI3 protein expression in mouse NK cells is a late activation event. Thus, early activation events of NK cells, such as IFNγ production and CD69 expression, were not affected in EBI3-deficient (Ebi3-/-) C57BL/6 (B6) mice during MCMV infection. Furthermore, comparable levels of early viral...... replication in spleen and liver were observed in MCMV-infected Ebi3-/- and wild-type (WT) B6 mice. Interestingly, the viral load in salivary glands and oral lavage was strongly decreased in the MCMV-infected Ebi3-/- B6 mice, suggesting that EBI3 plays a role in the establishment of MCMV latency. We detected...

  11. Distinct requirements for activation of NKT and NK cells during viral infection.

    Science.gov (United States)

    Tyznik, Aaron J; Verma, Shilpi; Wang, Qiao; Kronenberg, Mitchell; Benedict, Chris A

    2014-04-15

    NK cells are key regulators of innate defense against mouse CMV (MCMV). Like NK cells, NKT cells also produce high levels of IFN-γ rapidly after MCMV infection. However, whether similar mechanisms govern activation of these two cell types, as well as the significance of NKT cells for host resistance, remain unknown. In this article, we show that, although both NKT and NK cells are activated via cytokines, their particular cytokine requirements differ significantly in vitro and in vivo. IL-12 is required for NKT cell activation in vitro but is not sufficient, whereas NK cells have the capacity to be activated more promiscuously in response to individual cytokines from innate cells. In line with these results, GM-CSF-derived dendritic cells activated only NK cells upon MCMV infection, consistent with their virtual lack of IL-12 production, whereas Flt3 ligand-derived dendritic cells produced IL-12 and activated both NK and NKT cells. In vivo, NKT cell activation was abolished in IL-12(-/-) mice infected with MCMV, whereas NK cells were still activated. In turn, splenic NK cell activation was more IL-18 dependent. The differential requirements for IL-12 and IL-18 correlated with the levels of cytokine receptor expression by NK and NKT cells. Finally, mice lacking NKT cells showed reduced control of MCMV, and depleting NK cells further enhanced viral replication. Taken together, our results show that NKT and NK cells have differing requirements for cytokine-mediated activation, and both can contribute nonredundantly to MCMV defense, revealing that these two innate lymphocyte subsets function together to fine-tune antiviral responses.

  12. Monosodium Urate Crystals Induce Upregulation of NK1.1-Dependent Killing by Macrophages and Support Tumor-Resident NK1.1+ Monocyte/Macrophage Populations in Antitumor Therapy.

    Science.gov (United States)

    Steiger, Stefanie; Kuhn, Sabine; Ronchese, Franca; Harper, Jacquie L

    2015-12-01

    Macrophages display phenotypic and functional heterogeneity dependent on the changing inflammatory microenvironment. Under some conditions, macrophages can acquire effector functions commonly associated with NK cells. In the current study, we investigated how the endogenous danger signal monosodium urate (MSU) crystals can alter macrophage functions. We report that naive, primary peritoneal macrophages rapidly upregulate the expression of the NK cell-surface marker NK1.1 in response to MSU crystals but not in response to LPS or other urate crystals. NK1.1 upregulation by macrophages was associated with mechanisms including phagocytosis of crystals, NLRP3 inflammasome activation, and autocrine proinflammatory cytokine signaling. Further analysis demonstrated that MSU crystal-activated macrophages exhibited NK cell-like cytotoxic activity against target cells in a perforin/granzyme B-dependent manner. Furthermore, analysis of tumor hemopoietic cell populations showed that effective, MSU-mediated antitumor activity required coadministration with Mycobacterium smegmatis to induce IL-1β production and significant accumulation of monocytes and macrophages (but not granulocytes or dendritic cells) expressing elevated levels of NK1.1. Our findings provide evidence that MSU crystal-activated macrophages have the potential to develop tumoricidal NK cell-like functions that may be exploited to boost antitumor activity in vivo. Copyright © 2015 by The American Association of Immunologists, Inc.

  13. Association of Monoclonal Expansion of Epstein-Barr Virus-Negative CD158a+ NK Cells Secreting Large Amounts of Gamma Interferon with Hemophagocytic Lymphohistiocytosis▿

    Science.gov (United States)

    López-Álvarez, María R.; Martínez-Sánchez, María V.; Salgado-Cecilia, María G.; Campillo, José A.; Heine-Suñer, Damian; Villar-Permuy, Florentina; Fuster, José L.; Bas, Águeda; Gil-Herrera, Juana; Muro, Manuel; García-Alonso, Ana M.; Álvarez-López, María R.; Minguela, Alfredo

    2009-01-01

    We report the first case of hemophagocytic lymphohistiocytosis (HLH) induced by the monoclonal expansion of Epstein-Barr virus (EBV)-negative NK cells. Consanguinity of the patient's parents made it necessary to discard familial HLH in the patient and her sister with identical HLA markers and demonstrate that no cause other than the expansion of NK cells, which secrete high levels of gamma interferon, was inducing HLH in this patient. PMID:19020108

  14. Antimicrobial activity of bovine NK-lysin-derived peptides on Mycoplasma bovis

    Science.gov (United States)

    Antimicrobial peptides (AMPs) are a diverse group of molecules which play an important role in the innate immune response. Bovine NK-lysins, a type of AMP, have been predominantly found in the granules of cytotoxic T-lymphocytes and NK-cells. Bovine NK-lysin-derived peptides demonstrate antimicrobia...

  15. Neurohypophysis granular cell tumours. Upon neurohypophysis rare tumours

    International Nuclear Information System (INIS)

    Barrande, G.; Kujas, M.; Gancel, A.; Turpin, G.; Bruckert, E.; Kuhn, J.M.; Luton, J.P.

    1995-01-01

    Granular cell tumours of neurohypophysis are rare. These tumours are more often encountered as incidental autopsy findings seen in up to 17 % of unselected adult autopsy cases. There are few reports of para-sellar granular cell tumours large enough to cause symptoms. We present three cases of neurohypophysis granular cell tumour and a review of the literature. In one patient, the asymptomatic granular cell tumour was incidentally discovered at surgical removal of a corticotrophic micro-adenoma. The remaining 2 patients had a symptomatic tumour which caused neurological symptoms such as visual disturbance and headaches and endocrine disorders such as hypopituitarism or hyper-prolactinaemia. In these 2 cases, computerized tomography showed a well-circumscribed, contrast-enhanced, intra-sellar and supra-sellar mass. Magnetic resonance imaging demonstrated an isointense gadolinium-enhanced mass in T1-weighted-images. Trans-sphenoidal partial resection was performed and histology was interpreted as a granular cell tumour. The immunohistochemical study was positive for glial fibrillary acidic protein (GEAP) and neuron specific enolase (NSE) in 1 of the 2 tumours and positive for S100 protein and vimentin in both tumours but negative for CD68. The histogenesis of neurohypophysis granular cell tumours is still controversial but ultrastructural and immunohistochemical studies support the theory that may arise from pituicytes, the glial cells of neurohypophysis. Management of these benign, slow growing, tumours is based mainly on neurosurgical resection. Data from the literature do not support a beneficial effect of post operative radiation therapy on postoperative recurrences. (authors). 23 refs., 4 figs., 1 tab

  16. CD70 reverse signaling enhances NK cell function and immunosurveillance in CD27-expressing B-cell malignancies.

    Science.gov (United States)

    Al Sayed, Mohamad F; Ruckstuhl, Carla A; Hilmenyuk, Tamara; Claus, Christina; Bourquin, Jean-Pierre; Bornhauser, Beat C; Radpour, Ramin; Riether, Carsten; Ochsenbein, Adrian F

    2017-07-20

    The interaction of the tumor necrosis factor receptor (TNFR) CD27 with its ligand CD70 is an emerging target to treat cancer. CD27 signaling provides costimulatory signals to cytotoxic T cells but also increases the frequency of regulatory T cells. Similar to other TNFR ligands, CD70 has been shown to initiate intracellular signaling pathways (CD70 reverse signaling). CD27 is expressed on a majority of B-cell non-Hodgkin lymphoma, but its role in the immune control of lymphoma and leukemia is unknown. We therefore generated a cytoplasmic deletion mutant of CD27 (CD27-trunc) to study the role of CD70 reverse signaling in the immunosurveillance of B-cell malignancies in vivo. Expression of CD27-trunc on malignant cells increased the number of tumor-infiltrating interferon γ-producing natural killer (NK) cells. In contrast, the antitumoral T-cell response remained largely unchanged. CD70 reverse signaling in NK cells was mediated via the AKT signaling pathway and increased NK cell survival and effector function. The improved immune control by activated NK cells prolonged survival of CD27-trunc-expressing lymphoma-bearing mice. Finally, CD70 reverse signaling enhanced survival and effector function of human NK cells in a B-cell acute lymphoblastic leukemia xenotransplants model. Therefore, CD70 reverse signaling in NK cells contributes to the immune control of CD27-expressing B-cell lymphoma and leukemia. © 2017 by The American Society of Hematology.

  17. Numerical investigations on flow dynamics of prismatic granular materials using the discrete element method

    Science.gov (United States)

    Hancock, W.; Weatherley, D.; Wruck, B.; Chitombo, G. P.

    2012-04-01

    The flow dynamics of granular materials is of broad interest in both the geosciences (e.g. landslides, fault zone evolution, and brecchia pipe formation) and many engineering disciplines (e.g chemical engineering, food sciences, pharmaceuticals and materials science). At the interface between natural and human-induced granular media flow, current underground mass-mining methods are trending towards the induced failure and subsequent gravitational flow of large volumes of broken rock, a method known as cave mining. Cave mining relies upon the undercutting of a large ore body, inducement of fragmentation of the rock and subsequent extraction of ore from below, via hopper-like outlets. Design of such mines currently relies upon a simplified kinematic theory of granular flow in hoppers, known as the ellipsoid theory of mass movement. This theory assumes that the zone of moving material grows as an ellipsoid above the outlet of the silo. The boundary of the movement zone is a shear band and internal to the movement zone, the granular material is assumed to have a uniformly high bulk porosity compared with surrounding stagnant regions. There is however, increasing anecdotal evidence and field measurements suggesting this theory fails to capture the full complexity of granular material flow within cave mines. Given the practical challenges obstructing direct measurement of movement both in laboratory experiments and in-situ, the Discrete Element Method (DEM [1]) is a popular alternative to investigate granular media flow. Small-scale DEM studies (c.f. [3] and references therein) have confirmed that movement within DEM silo flow models matches that predicted by ellipsoid theory, at least for mono-disperse granular material freely outflowing at a constant rate. A major draw-back of these small-scale DEM studies is that the initial bulk porosity of the simulated granular material is significantly higher than that of broken, prismatic rock. In this investigation, more

  18. NK-cell activity in immunotoxicity drug evaluation

    International Nuclear Information System (INIS)

    Cederbrant, Karin; Marcusson-Staaahl, Maritha; Condevaux, Fabienne; Descotes, Jacques

    2003-01-01

    NK-cell activity as a tool for detection of immunotoxic effects of new human drugs has gained further attention when the recent European note for guidance CPMP/SWP/1042/99 was adopted. The inclusion of NK-cell activity plus distribution of lymphocyte subsets were suggested as an alternative to the primary antibody response to a T-cell dependent antigen. Either of the two test alternatives should be included as a routine parameter in at least one repeated dose-toxicity study, rats or mice being the species of choice. The standard procedure for measuring NK-cell activity is the 51 Cr-release assay. However, a new flow-cytometric assay, adapted for rat peripheral blood, does not require dedicated groups of animals, offers the possibility of repeated testing, and shows at least as sensitive as the conventional 51 Cr-release assay

  19. Bubbling in vibrated granular films.

    Science.gov (United States)

    Zamankhan, Piroz

    2011-02-01

    With the help of experiments, computer simulations, and a theoretical investigation, a general model is developed of the flow dynamics of dense granular media immersed in air in an intermediate regime where both collisional and frictional interactions may affect the flow behavior. The model is tested using the example of a system in which bubbles and solid structures are produced in granular films shaken vertically. Both experiments and large-scale, three-dimensional simulations of this system are performed. The experimental results are compared with the results of the simulation to verify the validity of the model. The data indicate evidence of formation of bubbles when peak acceleration relative to gravity exceeds a critical value Γ(b). The air-grain interfaces of bubblelike structures are found to exhibit fractal structure with dimension D=1.7±0.05.

  20. EBV induces persistent NF-κB activation and contributes to survival of EBV-positive neoplastic T- or NK-cells.

    Directory of Open Access Journals (Sweden)

    Honami Takada

    Full Text Available Epstein-Barr virus (EBV has been detected in several T- and NK-cell neoplasms such as extranodal NK/T-cell lymphoma nasal type, aggressive NK-cell leukemia, EBV-positive peripheral T-cell lymphoma, systemic EBV-positive T-cell lymphoma of childhood, and chronic active EBV infection (CAEBV. However, how this virus contributes to lymphomagenesis in T or NK cells remains largely unknown. Here, we examined NF-κB activation in EBV-positive T or NK cell lines, SNT8, SNT15, SNT16, SNK6, and primary EBV-positive and clonally proliferating T/NK cells obtained from the peripheral blood of patients with CAEBV. Western blotting, electrophoretic mobility shift assays, and immunofluorescent staining revealed persistent NF-κB activation in EBV-infected cell lines and primary cells from patients. Furthermore, we investigated the role of EBV in infected T cells. We performed an in vitro infection assay using MOLT4 cells infected with EBV. The infection directly induced NF-κB activation, promoted survival, and inhibited etoposide-induced apoptosis in MOLT4 cells. The luciferase assay suggested that LMP1 mediated NF-κB activation in MOLT4 cells. IMD-0354, a specific inhibitor of NF-κB that suppresses NF-κB activation in cell lines, inhibited cell survival and induced apoptosis. These results indicate that EBV induces NF-κB-mediated survival signals in T and NK cells, and therefore, may contribute to the lymphomagenesis of these cells.

  1. Slow creep in soft granular packings.

    Science.gov (United States)

    Srivastava, Ishan; Fisher, Timothy S

    2017-05-14

    Transient creep mechanisms in soft granular packings are studied numerically using a constant pressure and constant stress simulation method. Rapid compression followed by slow dilation is predicted on the basis of a logarithmic creep phenomenon. Characteristic scales of creep strain and time exhibit a power-law dependence on jamming pressure, and they diverge at the jamming point. Microscopic analysis indicates the existence of a correlation between rheology and nonaffine fluctuations. Localized regions of large strain appear during creep and grow in magnitude and size at short times. At long times, the spatial structure of highly correlated local deformation becomes time-invariant. Finally, a microscale connection between local rheology and local fluctuations is demonstrated in the form of a linear scaling between granular fluidity and nonaffine velocity.

  2. Genetic Manipulation of NK Cells for Cancer Immunotherapy: Techniques and Clinical Implications.

    Science.gov (United States)

    Carlsten, Mattias; Childs, Richard W

    2015-01-01

    Given their rapid and efficient capacity to recognize and kill tumor cells, natural killer (NK) cells represent a unique immune cell to genetically reprogram in an effort to improve the outcome of cell-based cancer immunotherapy. However, technical and biological challenges associated with gene delivery into NK cells have significantly tempered this approach. Recent advances in viral transduction and electroporation have now allowed detailed characterization of genetically modified NK cells and provided a better understanding for how these cells can be utilized in the clinic to optimize their capacity to induce tumor regression in vivo. Improving NK cell persistence in vivo via autocrine IL-2 and IL-15 stimulation, enhancing tumor targeting by silencing inhibitory NK cell receptors such as NKG2A, and redirecting tumor killing via chimeric antigen receptors, all represent approaches that hold promise in preclinical studies. This review focuses on available methods for genetic reprograming of NK cells and the advantages and challenges associated with each method. It also gives an overview of strategies for genetic reprograming of NK cells that have been evaluated to date and an outlook on how these strategies may be best utilized in clinical protocols. With the recent advances in our understanding of the complex biological networks that regulate the ability of NK cells to target and kill tumors in vivo, we foresee genetic engineering as an obligatory pathway required to exploit the full potential of NK-cell based immunotherapy in the clinic.

  3. NKp46 clusters at the immune synapse and regulates NK cell polarization

    Directory of Open Access Journals (Sweden)

    Uzi eHadad

    2015-09-01

    Full Text Available Natural killer cells play an important role in first-line defense against tumor and virus-infected cells. The activity of NK cells is tightly regulated by a repertoire of cell-surface expressed inhibitory and activating receptors. NKp46 is a major NK cell activating receptor that is involved in the elimination of target cells. NK cells form different types of synapses that result in distinct functional outcomes: cytotoxic, inhibitory, and regulatory. Recent studies revealed that complex integration of NK receptor signaling controls cytoskeletal rearrangement and other immune synapse-related events. However the distinct nature by which NKp46 participates in NK immunological synapse formation and function remains unknown. In this study we determined that NKp46 forms microclusters structures at the immune synapse between NK cells and target cells. Over-expression of human NKp46 is correlated with increased accumulation of F-actin mesh at the immune synapse. Concordantly, knock-down of NKp46 in primary human NK cells decreased recruitment of F-actin to the synapse. Live cell imaging experiments showed a linear correlation between NKp46 expression and lytic granules polarization to the immune synapse. Taken together, our data suggest that NKp46 signaling directly regulates the NK lytic immune synapse from early formation to late function.

  4. Transcription Factor Foxo1 Is a Negative Regulator of NK Cell Maturation and Function

    Science.gov (United States)

    Deng, Youcai; Kerdiles, Yann; Chu, Jianhong; Yuan, Shunzong; Wang, Youwei; Chen, Xilin; Mao, Hsiaoyin; Zhang, Lingling; Zhang, Jianying; Hughes, Tiffany; Deng, Yafei; Zhang, Qi; Wang, Fangjie; Zou, Xianghong; Liu, Chang-Gong; Freud, Aharon G.; Li, Xiaohui; Caligiuri, Michael A; Vivier, Eric; Yu, Jianhua

    2015-01-01

    SUMMARY Little is known about the role of negative regulators in controlling natural killer (NK) cell development and effector functions. Foxo1 is a multifunctional transcription factor of the forkhead family. Using a mouse model of conditional deletion in NK cells, we found that Foxo1 negatively controlled NK cell differentiation and function. Immature NK cells expressed abundant Foxo1 and little Tbx21 relative to mature NK cells, but these two transcription factors reversed their expression as NK cells proceeded through development. Foxo1 promoted NK cell homing to lymph nodes through upregulating CD62L expression, and impaired late-stage maturation and effector functions by repressing Tbx21 expression. Loss of Foxo1 rescued the defect in late-stage NK cell maturation in heterozygous Tbx21+/− mice. Collectively, our data reveal a regulatory pathway by which the negative regulator Foxo1 and the positive regulator Tbx21 play opposing roles in controlling NK cell development and effector functions. PMID:25769609

  5. Advances in clinical NK cell studies: Donor selection, manufacturing and quality control

    OpenAIRE

    Koehl, U.; Kalberer, C.; Spanholtz, J.; Lee, D. A.; Miller, J. S.; Cooley, S.; Lowdell, M.; Uharek, L.; Klingemann, H.; Curti, A.; Leung, W.; Alici, E.

    2015-01-01

    ABSTRACT Natural killer (NK) cells are increasingly used in clinical studies in order to treat patients with various malignancies. The following review summarizes platform lectures and 2013?2015 consortium meetings on manufacturing and clinical use of NK cells in Europe and United States. A broad overview of recent pre-clinical and clinical results in NK cell therapies is provided based on unstimulated, cytokine-activated, as well as genetically engineered NK cells using chimeric antigen rece...

  6. Granular gas dynamics

    CERN Document Server

    Brilliantov, Nikolai

    2003-01-01

    While there is not yet any general theory for granular materials, significant progress has been achieved for dilute systems, also called granular gases. The contributions in this book address both the kinetic approach one using the Boltzmann equation for dissipative gases as well as the less established hydrodynamic description. The last part of the book is devoted to driven granular gases and their analogy with molecular fluids. Care has been taken so as to present the material in a pedagogical and self-contained way and this volume will thus be particularly useful to nonspecialists and newcomers to the field.

  7. Exosomes mediate hepatitis B virus (HBV) transmission and NK-cell dysfunction

    Science.gov (United States)

    Yang, Yinli; Han, Qiuju; Hou, Zhaohua; Zhang, Cai; Tian, Zhigang; Zhang, Jian

    2017-01-01

    Evidence suggests that exosomes can transfer genetic material between cells. However, their roles in hepatitis B virus (HBV) infection remain unclear. Here, we report that exosomes present in the sera of chronic hepatitis B (CHB) patients contained both HBV nucleic acids and HBV proteins, and transferred HBV to hepatocytes in an active manner. Notably, HBV nucleic acids were detected in natural killer (NK) cells from both CHB patients and healthy donors after exposure to HBV-positive exosomes. Through real-time fluorescence microscopy and flow cytometry, 1,1'-dioctadecyl-3,3,3',3',-tetramethylindodicarbocyanine, 4-chlorobenzenesulfnate salt (DiD)-labeled exosomes were observed to interact with NK cells and to be taken up by NK cells, which was enhanced by transforming growth factor-β treatment. Furthermore, HBV-positive exosomes impaired NK-cell functions, including interferon (IFN)-γ production, cytolytic activity, NK-cell proliferation and survival, as well as the responsiveness of the cells to poly (I:C) stimulation. HBV infection suppressed the expression of pattern-recognition receptors, especially retinoic acid inducible gene I (RIG-I), on NK cells, resulting in the dampening of the nuclear factor κB(NF-κB) and p38 mitogen-activated protein kinase pathways. Our results highlight a previously unappreciated role of exosomes in HBV transmission and NK-cell dysfunction during CHB infection. PMID:27238466

  8. Spreading of a granular droplet

    Science.gov (United States)

    Clement, Eric; Sanchez, Ivan; Raynaud, Franck; Lanuza, Jose; Andreotti, Bruno; Aranson, Igor

    2008-03-01

    The influence of controlled vibrations on the granular rheology is investigated in a specifically designed experiment in which a granular film spreads under the action of horizontal vibrations. A nonlinear diffusion equation is derived theoretically that describes the evolution of the deposit shape. A self-similar parabolic shape (the``granular droplet'') and a spreading dynamics are predicted that both agree quantitatively with the experimental results. The theoretical analysis is used to extract effective friction coefficients between the base and the granular layer under sustained and controlled vibrations. A shear thickening regime characteristic of dense granular flows is evidenced at low vibration energy, both for glass beads and natural sand. Conversely, shear thinning is observed at high agitation.

  9. HIV-1 adaptation to NK cell-mediated immune pressure

    DEFF Research Database (Denmark)

    Elemans, Marjet; Boelen, Lies; Rasmussen, Michael

    2017-01-01

    The observation, by Alter et al., of the enrichment of NK cell “escape” variants in individuals carrying certain Killer-cell Immunoglobulin-like Receptor (KIR) genes is compelling evidence that natural killer (NK) cells exert selection pressure on HIV-1. Alter et al hypothesise that variant pepti...

  10. Activation of Natural Killer cells during microbial infections

    Directory of Open Access Journals (Sweden)

    Amir eHorowitz

    2012-01-01

    Full Text Available Natural killer (NK cells are large granular lymphocytes that express a diverse array of germline encoded inhibitory and activating receptors for MHC Class I and Class I-like molecules, classical co-stimulatory ligands and cytokines. The ability of NK cells to be very rapidly activated by inflammatory cytokines, to secrete effector cytokines and to kill infected or stressed host cells, suggests that they may be among the very early responders during infection. Recent studies have also identified a small number of pathogen-derived ligands that can bind to NK cell surface receptors and directly induce their activation. Here we review recent studies that have begun to elucidate the various pathways by which viral, bacterial and parasite pathogens activate NK cells. We also consider two emerging themes of NK cell-pathogen interactions, namely their contribution to adaptive immune responses and their potential to take on regulatory and immunomodulatory functions.

  11. Antimicrobial activity of bovine NK-lysin-derived peptides on bovine respiratory pathogen Histophilus somni

    Science.gov (United States)

    Bovine NK-lysins, which are functionally and structurally similar to human granulysin and porcine NK-lysin, are predominantly found in the granules of cytotoxic T-lymphocytes and NK-cells. Although antimicrobial activity of bovine NK-lysin has been assessed for several bacterial pathogens, not all t...

  12. Type-2 fuzzy granular models

    CERN Document Server

    Sanchez, Mauricio A; Castro, Juan R

    2017-01-01

    In this book, a series of granular algorithms are proposed. A nature inspired granular algorithm based on Newtonian gravitational forces is proposed. A series of methods for the formation of higher-type information granules represented by Interval Type-2 Fuzzy Sets are also shown, via multiple approaches, such as Coefficient of Variation, principle of justifiable granularity, uncertainty-based information concept, and numerical evidence based. And a fuzzy granular application comparison is given as to demonstrate the differences in how uncertainty affects the performance of fuzzy information granules.

  13. Granular-relational data mining how to mine relational data in the paradigm of granular computing ?

    CERN Document Server

    Hońko, Piotr

    2017-01-01

    This book provides two general granular computing approaches to mining relational data, the first of which uses abstract descriptions of relational objects to build their granular representation, while the second extends existing granular data mining solutions to a relational case. Both approaches make it possible to perform and improve popular data mining tasks such as classification, clustering, and association discovery. How can different relational data mining tasks best be unified? How can the construction process of relational patterns be simplified? How can richer knowledge from relational data be discovered? All these questions can be answered in the same way: by mining relational data in the paradigm of granular computing! This book will allow readers with previous experience in the field of relational data mining to discover the many benefits of its granular perspective. In turn, those readers familiar with the paradigm of granular computing will find valuable insights on its application to mining r...

  14. The anti-canine distemper virus activities of ex vivo-expanded canine natural killer cells.

    Science.gov (United States)

    Park, Ji-Yun; Shin, Dong-Jun; Lee, Soo-Hyeon; Lee, Je-Jung; Suh, Guk-Hyun; Cho, Duck; Kim, Sang-Ki

    2015-04-17

    Natural killer (NK) cells play critical roles in induction of antiviral effects against various viruses of humans and animals. However, few data on NK cell activities during canine distemper virus (CDV) infections are available. Recently, we established a culture system allowing activation and expansion of canine non-B, non-T, large granular NK lymphocytes from PBMCs of normal dogs. In the present study, we explored the ability of such expanded NK cells to inhibit CDV infection in vitro. Cultured CD3-CD5-CD21- NK cells produced large amounts of IFN-γ, exhibited highly upregulated expression of mRNAs encoding NK-cell-associated receptors, and demonstrated strong natural killing activity against canine tumor cells. Although the expanded NK cells were dose-dependently cytotoxic to both normal and CDV-infected Vero cells, CDV infection rendered Vero cells more susceptible to NK cells. Pretreatment with anti-CDV serum from hyperimmunized dogs enhanced the antibody-dependent cellular cytotoxicity (ADCC) of NK cells against CDV-infected Vero cells. The culture supernatants of NK cells, added before or after infection, dose-dependently inhibited both CDV replication and development of CDV-induced cytopathic effects (CPEs) in Vero cells. Anti-IFN-γ antibody neutralized the inhibitory effects of NK cell culture supernatants on CDV replication and CPE induction in Vero cells. Such results emphasize the potential significance of NK cells in controlling CDV infection, and indicate that NK cells may play roles both during CDV infection and in combating such infections, under certain conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Estudo-piloto: células NK nas gestantes com LES NK cells in pregnant patients with SLE: a preliminary study

    Directory of Open Access Journals (Sweden)

    Alessandra Cardoso Pereira

    2009-08-01

    Full Text Available O sistema imune inato desempenha papel central na reprodução, tendo as células NK participação marcante. Durante a gravidez, seu comportamento pode esclarecer pontos cruciais na patogênese das complicações que podem ocorrer em gestantes com LES. OBJETIVO: Quantificar as células NK circulantes e sua viabilidade em gestantes com LES. MATERIAL E MÉTODOS: Avaliaram-se amostras de sangue de quatro grupos de dez pacientes cada: 1 GLES: Gestantes com LES; 2 PLES: Pacientes com LES não gestantes; 3 Gcontroles: Gestantes controles; 4 Controles: Mulheres não gestantes saudáveis. Em todas as pacientes, a quantidade e a viabilidade das células NK foram medidas por citometria de fluxo, assim como por apoptose total por coloração para anexina V e iodeto de propidium. RESULTADOS: Devido à variabilidade dos resultados, a mediana de cada grupo foi utilizada para avaliar: porcentagem CD56+ [GLES (0,10, PLES (0,12, Gcontroles (0,15, Controles (0,08]; apoptose total [GLES (0,06, PLES (0,04, Gcontroles (0,11, Controles (0,11]. Os resultados da contagem de células vivas tiveram baixa variabilidade, por isso média e desvio-padrão foram utilizados para comparação: [GLES (0,91 ± 0,06, PLES (0,95 ± 0,03, Gcontroles (0,86 ± 0,11, Controles (0,88 ± 0,08. CONCLUSÃO: Apesar de não terem alcançado valor de significância estatística, o percentual de apoptose total nos grupos com LES foi menor que o dos controles, e a porcentagem de células vivas foi maior. Isso sugere que, em pacientes com LES, grávidas ou não, as células NK têm vida útil prolongada (ou tem turnover menor/diferente, o que indica um maior estímulo imune, fazendo com que as células NK levem mais tempo para ativar o processo de apoptose.The innate immune system plays an important role in reproduction, with marked involvement of NK cells. These cells behavior during pregnancy may clarify crucial points in the pathogenesis of complications that may occur in pregnant women with

  16. Primary NK/T cell lymphoma nasal type of the colon

    Directory of Open Access Journals (Sweden)

    Ana María Chirife

    2013-02-01

    Full Text Available Since nasal NK/T-cell lymphoma and NK/T-cell lymphoma nasal type are rare diseases, colonic involvement has seldom been seen. We report a case of a patient with a primary NK/T-cell lymphoma nasal type of the colon. The patient had no history of malignant diseases and was diagnosed after exhaustive study in the context of fever of unknown origin. The first therapeutic approach followed the DAEPOCH-protocol: etoposide, prednisone, doxor-rubicin, vincristine and cyclophosphamide. The persistence of constitutional symptoms after the first treatment course motivated the switch to a second line following the SMILE-protocol: dexamethasone, metotrexate, ifosfamide, E.coli L-asparaginase, and etoposide. Despite intensive chemotherapy, the patient died 2 months after the diagnose of an extranodal NK/T-cell lymphoma of the colon and 4 months after the first symptomatic appearance of disease.

  17. Role of type I interferon receptor signaling on NK cell development and functions.

    Directory of Open Access Journals (Sweden)

    Jean Guan

    Full Text Available Type I interferons (IFN are unique cytokines transcribed from intronless genes. They have been extensively studied because of their anti-viral functions. The anti-viral effects of type I IFN are mediated in part by natural killer (NK cells. However, the exact contribution of type I IFN on NK cell development, maturation and activation has been somewhat difficult to assess. In this study, we used a variety of approaches to define the consequences of the lack of type I interferon receptor (IFNAR signaling on NK cells. Using IFNAR deficient mice, we found that type I IFN affect NK cell development at the pre-pro NK stage. We also found that systemic absence of IFNAR signaling impacts NK cell maturation with a significant increase in the CD27+CD11b+ double positive (DP compartment in all organs. However, there is tissue specificity, and only in liver and bone marrow is the maturation defect strictly dependent on cell intrinsic IFNAR signaling. Finally, using adoptive transfer and mixed bone marrow approaches, we also show that cell intrinsic IFNAR signaling is not required for NK cell IFN-γ production in the context of MCMV infection. Taken together, our studies provide novel insights on how type I IFN receptor signaling regulates NK cell development and functions.

  18. Complementary striped expression patterns of NK homeobox genes during segment formation in the annelid Platynereis.

    Science.gov (United States)

    Saudemont, Alexandra; Dray, Nicolas; Hudry, Bruno; Le Gouar, Martine; Vervoort, Michel; Balavoine, Guillaume

    2008-05-15

    NK genes are related pan-metazoan homeobox genes. In the fruitfly, NK genes are clustered and involved in patterning various mesodermal derivatives during embryogenesis. It was therefore suggested that the NK cluster emerged in evolution as an ancestral mesodermal patterning cluster. To test this hypothesis, we cloned and analysed the expression patterns of the homologues of NK cluster genes Msx, NK4, NK3, Lbx, Tlx, NK1 and NK5 in the marine annelid Platynereis dumerilii, a representative of trochozoans, the third great branch of bilaterian animals alongside deuterostomes and ecdysozoans. We found that most of these genes are involved, as they are in the fly, in the specification of distinct mesodermal derivatives, notably subsets of muscle precursors. The expression of the homologue of NK4/tinman in the pulsatile dorsal vessel of Platynereis strongly supports the hypothesis that the vertebrate heart derived from a dorsal vessel relocated to a ventral position by D/V axis inversion in a chordate ancestor. Additionally and more surprisingly, NK4, Lbx, Msx, Tlx and NK1 orthologues are expressed in complementary sets of stripes in the ectoderm and/or mesoderm of forming segments, suggesting an involvement in the segment formation process. A potentially ancient role of the NK cluster genes in segment formation, unsuspected from vertebrate and fruitfly studies so far, now deserves to be investigated in other bilaterian species, especially non-insect arthropods and onychophorans.

  19. NYPA/TH!NK Clean Commute Program Report – Inception Through May 2004

    Energy Technology Data Exchange (ETDEWEB)

    Don Karner; James Francfort; Randall Solomon

    2004-11-01

    The Clean Commute Program uses TH!NK city electric vehicles from Ford Motor Company’s electric vehicle group, TH!NK Mobility, to demonstrate the feasibility of using electric vehicles for transportation in urban applications. Suburban New York City railroad commuters use the TH!NK city vehicles to commute from their private residences to railroad stations, where they catch commuter trains into New York City. Electric vehicle charging infrastructure for the TH!NK city vehicles is located at the commuters’ private residences as well as seven train stations. Ford leased 97 TH!NK city electric vehicles to commuters from Westchester, Putnam, Rockland, Queens, Nassau, and Suffolk counties for $199 per month per vehicle. The first Clean Commute Program vehicle deliveries occurred late in 2001, with data collection commencing in February 2002. Through May 2004, 24 of the lessees have returned their vehicles to Ford and no longer participate in the Clean Commute Program. Reasons given for returning the vehicles include relocation out of the Program area, change in employment status, change in commuting status, and, in a few cases, dissatisfaction with the vehicle. Additionally, 13 vehicles have been returned to Ford as their leases have completed. In August 2002, Ford announced that it was ceasing production of the TH!NK city and would not extend any TH!NK city leases. Through May 2004, participants in the Clean Commute Program have driven their vehicles over 370,000 miles, avoiding the use of over 17,000 gallons of gasoline. The TH!NK city vehicles are driven an average of between 180 and 230 miles per month, and over 95% of all trips taken with the TH!NK city vehicles replace trips previously taken in gasoline vehicles. This report covers the period from Program inception through May 2004.

  20. Targeting NK cells for anti-cancer immunotherapy: clinical and pre-clinical approaches

    Directory of Open Access Journals (Sweden)

    Sebastian eCarotta

    2016-04-01

    Full Text Available The recent success of checkpoint blockade has highlighted the potential of immunotherapy approaches for cancer treatment. While the majority of approved immunotherapy drugs target T cell subsets, it is appreciated that other components of the immune system have important roles in tumor immune-surveillance as well and thus represent promising additional targets for immunotherapy. Natural killer cells are the body’s first line of defense against infected or transformed cells as they kill target cells in an antigen-independent manner. Although several studies have clearly demonstrated the active role of NK cells in cancer-immune surveillance, only few clinically approved therapies currently exist that harness their potential. Our increased understanding of NK cell biology over the past few years has renewed the interest in NK cell based anti-cancer therapies, which has lead to a steady increase of NK cell based clinical and pre-clinical trials. Here, the role of NK cells in cancer immunesurveillance is summarized and several novel approaches to enhance NK cell cytotoxicity against cancer are discussed.

  1. Clinical grade purification and expansion of NK cell products for an optimized manufacturing protocol

    Directory of Open Access Journals (Sweden)

    Ulrike eKoehl

    2013-05-01

    Full Text Available Allogeneic Natural Killer (NK cells are used for adoptive immunotherapy after stem cell transplantation. In order to overcome technical limitations in NK cell purification and activation, the following study investigates the impact of different variables on NK cell recovery, cytotoxicity and T cell depletion during GMP-grade NK cell selection. 40 NK cell products were derived from 54 unstimulated donor leukaphereses using immunomagnetic CD3 T-cell depletion, followed by a CD56 cell enrichment step. For T cell depletion, either the depletion 2.1 program in single or double procedure (D2.1 1depl, n=18; D2.1 2depl, n=13 or the faster depletion 3.1 (D3.1, n=9 was used on the CliniMACS instrument. 17 purified NK cell products were activated in vitro by IL-2 for 12 days. The whole process resulted in a median number of 7.59x10e8 CD56+CD3- cells with both purity and viability of 94%, respectively. The T-cell depletion was significantly better using D2.1 1depl/2depl compared to D3.1 (log 4.6/log 4.9 vs. log 3.7; p<0.01 and double procedure in two stages led always to residual T cells below 0.1%. In contrast D3.1 was superior to D2.1 1depl/2depl with regard to recovery of CD56+CD3- NK cells (68% vs 41%/38%. Concomitant monocytes and especially IL-2 activation led to increased NK cell activity against malignant target cells compared to unstimulated NK cells, which correlated with both up-regulation of natural cytotoxicity receptors and intracellular signaling. Overall, wide variations in the NK cell expansion rate and the distribution of NK cell subpopulations were found. In conclusion, our results indicate that GMP-grade purification of NK cells might be improved by a sequential processing of T cell depletion program D2.1 and D3.1. In addition NK cell expansion protocols need to be further optimized.

  2. Serotonin Shapes the Migratory Potential of NK Cells - An in vitro Approach.

    Science.gov (United States)

    Zimmer, Philipp; Bloch, Wilhelm; Kieven, Markus; Lövenich, Lukas; Lehmann, Jonas; Holthaus, Michelle; Theurich, Sebastian; Schenk, Alexander

    2017-10-01

    Increased serotonin (5-HT) levels have been shown to influence natural killer cell (NK cell) function. Acute exercise mobilizes and activates NK cells and further increases serum 5-HT concentrations in a dose-dependent manner. The aim of this study was to investigate the impact of different serum 5-HT concentrations on NK cell migratory potential and cytotoxicity. The human NK cell line KHYG-1 was assigned to 4 conditions, including 3 physiological concentrations of 5-HT (100, 130 or 170 µg/l 5-HT) and one control condition. NK cells were analyzed regarding cytotoxicity, migratory potential and expression of adhesion molecules. No treatment effect on NK cell cytotoxicity and expression of integrin subunits was detected. Migratory potential was increased in a dose dependent manner, indicating the highest protease activity in cells that were incubated with 170 µg/l 5-HT (170 µg/l vs. control, p<0.001, 170 µg/l vs. 100 µg/l, p<0.001; 170 µg/l vs. 130 µg/l, p=0.003; 130 µg/l vs. control, p<0.001, 130 µg/l vs. 100 µg/l, p<0.001). These results suggest that elevated 5-HT serum levels play a mediating role in NK cell function. As exercise has been shown to be involved in NK cell mobilization and redistribution, the influence of 5-HT should be investigated in ex vivo and in vivo experiments. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Impact induced splash and spill in a quasi-confided granular medium

    Science.gov (United States)

    Ogale, S. B.

    2005-03-01

    Dissipation of the energy of impact in a granular medium and its effects has been a subject of considerable scientific for quite some time. In this work we have explored and analyzed the splash and spill effects caused by the impact of a ball dropped from a height into a granular medium in a open container. Three different granular media, namely rice, mustard seeds, and cream of wheat were used. The amount of spilled-over granular matter was measured as a function of the ball-drop height. Digital pictures of the splash process were also recorded. The quantity of spilled granular matter varies linearly with the impact energy. However additional step like structures are also noted. Specifically, a distinct and large jump is seen in the spilled quantity at a specific impact energy in the case of mustard seeds, which also exhibit obvious charging effects and repulsion. Although the parameters such as mass per grain and packing density for the case of mustard seeds are intermediate between those for rice and cream of wheat, the spill quantity for comparable impact energy is considerably higher. These data will be presented and discussed.

  4. Mechanical strength model for plastic bonded granular materials at high strain rates and large strains

    International Nuclear Information System (INIS)

    Browning, R.V.; Scammon, R.J.

    1998-01-01

    Modeling impact events on systems containing plastic bonded explosive materials requires accurate models for stress evolution at high strain rates out to large strains. For example, in the Steven test geometry reactions occur after strains of 0.5 or more are reached for PBX-9501. The morphology of this class of materials and properties of the constituents are briefly described. We then review the viscoelastic behavior observed at small strains for this class of material, and evaluate large strain models used for granular materials such as cap models. Dilatation under shearing deformations of the PBX is experimentally observed and is one of the key features modeled in cap style plasticity theories, together with bulk plastic flow at high pressures. We propose a model that combines viscoelastic behavior at small strains but adds intergranular stresses at larger strains. A procedure using numerical simulations and comparisons with results from flyer plate tests and low rate uniaxial stress tests is used to develop a rough set of constants for PBX-9501. Comparisons with the high rate flyer plate tests demonstrate that the observed characteristic behavior is captured by this viscoelastic based model. copyright 1998 American Institute of Physics

  5. NK cell recruitment and exercise: Potential immunotherapeutic role of shear stress and endothelial health.

    Science.gov (United States)

    Evans, William

    2017-11-01

    Positive cancer patient outcomes, including increased time to recurrent events, have been associated with increased counts and function of natural killer (NK) cells. NK cell counts and function are elevated following acute exercise, and the generally accepted mechanism of increased recruitment suggests that binding of epinephrine releases NK cells from endothelial tissue via decreases in adhesion molecules following. I propose that blood flow-induced shear stress may also play a role in NK cell recruitment from the endothelium. Additionally, shear stress may play a role in improving NK cell function by decreasing oxidative stress. The relationship between shear stress and NK cell count and function can be tested by utilizing exercise and local heating with cuff inflation. If shear stress does play an important role, NK cell count and function will be improved in the non-cuffed exercise group, but not the cuffed limb. This paper will explore the mechanisms potentially explaining exercise-induced improvements in NK cell count and function, and propose a model for investigating these mechanisms. This mechanistic insight could aid in providing a novel, safe, relatively inexpensive, and non-invasive target for immunotherapy in cancer patients. Copyright © 2017. Published by Elsevier Ltd.

  6. Defensive and pathological functions of the gastrointestinal NK3 receptor.

    Science.gov (United States)

    Sanger, Gareth J; Tuladhar, Bishwa R; Bueno, Lionel; Furness, John B

    2006-10-01

    In general, normal gut functions are unaffected by selective NK(3) receptor antagonists such as talnetant (SB-223412), osanetant (SR 142901) or SB-235375. However, NK(3) receptors may mediate certain defensive or pathological intestinal processes. The precise mechanisms, by which this role is achieved, are not fully understood. In summary, intense stimulation of the intrinsic primary afferent neurones (IPANs) of the enteric nervous system is thought to release tachykinins from these neurones, to induce slow excitation (slow EPSPs) of connecting IPANs. This is hypothesised to cause hypersensitivity and disrupt intestinal motility, at least partly explaining why NK(3) receptor antagonism can reduce the level of disruption caused by supramaximal distension pressures in vitro. Tachykinin release from IPANs may also increase C-fibre sensitivity, directly or indirectly. Thus, NK(3) receptor antagonists can inhibit nociception associated with intestinal distension, in normal animals or after pre-sensitisation by restraint stress. Importantly, such inhibition has been found with SB-235375, a peripherally restricted antagonist. SB-235375 can also reduce a visceromotor response to brief colorectal distension without affecting similar responses to skin pinch, providing additional evidence for intestinal-specific activity. NK(3) receptor biology is, therefore, revealing a novel pathway by which disruptions in intestinal motility and nociception can be induced.

  7. Mathematical models of granular matter

    CERN Document Server

    Mariano, Paolo; Giovine, Pasquale

    2008-01-01

    Granular matter displays a variety of peculiarities that distinguish it from other appearances studied in condensed matter physics and renders its overall mathematical modelling somewhat arduous. Prominent directions in the modelling granular flows are analyzed from various points of view. Foundational issues, numerical schemes and experimental results are discussed. The volume furnishes a rather complete overview of the current research trends in the mechanics of granular matter. Various chapters introduce the reader to different points of view and related techniques. New models describing granular bodies as complex bodies are presented. Results on the analysis of the inelastic Boltzmann equations are collected in different chapters. Gallavotti-Cohen symmetry is also discussed.

  8. Activated Allogeneic NK Cells Preferentially Kill Poor Prognosis B-Cell Chronic Lymphocytic Leukemia Cells.

    Science.gov (United States)

    Sánchez-Martínez, Diego; Lanuza, Pilar M; Gómez, Natalia; Muntasell, Aura; Cisneros, Elisa; Moraru, Manuela; Azaceta, Gemma; Anel, Alberto; Martínez-Lostao, Luis; Villalba, Martin; Palomera, Luis; Vilches, Carlos; García Marco, José A; Pardo, Julián

    2016-01-01

    Mutational status of TP53 together with expression of wild-type (wt) IGHV represents the most widely accepted biomarkers, establishing a very poor prognosis in B-cell chronic lymphocytic leukemia (B-CLL) patients. Adoptive cell therapy using allogeneic HLA-mismatched Natural killer (NK) cells has emerged as an effective and safe alternative in the treatment of acute myeloid and lymphoid leukemias that do not respond to traditional therapies. We have described that allogeneic activated NK cells eliminate hematological cancer cell lines with multidrug resistance acquired by mutations in the apoptotic machinery. This effect depends on the activation protocol, being B-lymphoblastoid cell lines (LCLs) the most effective stimulus to activate NK cells. Here, we have further analyzed the molecular determinants involved in allogeneic NK cell recognition and elimination of B-CLL cells, including the expression of ligands of the main NK cell-activating receptors (NKG2D and NCRs) and HLA mismatch. We present preliminary data suggesting that B-CLL susceptibility significantly correlates with HLA mismatch between NK cell donor and B-CLL patient. Moreover, we show that the sensitivity of B-CLL cells to NK cells depends on the prognosis based on TP53 and IGHV mutational status. Cells from patients with worse prognosis (mutated TP53 and wt IGHV ) are the most susceptible to activated NK cells. Hence, B-CLL prognosis may predict the efficacy of allogenic activated NK cells, and, thus, NK cell transfer represents a good alternative to treat poor prognosis B-CLL patients who present a very short life expectancy due to lack of effective treatments.

  9. Low baseline levels of NK cells may predict a positive response to ipilimumab in melanoma therapy.

    Science.gov (United States)

    Tietze, Julia K; Angelova, Daniela; Heppt, Markus V; Ruzicka, Thomas; Berking, Carola

    2017-07-01

    The introduction of immune checkpoint blockade (ICB) has been a breakthrough in the therapy of metastatic melanoma. The influence of ICB on T-cell populations has been studied extensively, but little is known about the effect on NK cells. In this study, we analysed the relative and absolute amounts of NK cells and of the subpopulations of CD56 dim and CD56 bright NK cells among the peripheral blood mononuclear cells (PBMCs) of 32 patients with metastatic melanoma before and under treatment with ipilimumab or pembrolizumab by flow cytometry. In 15 (47%) patients, an abnormal low amount of NK cells was found at baseline. Analysis of the subpopulations showed also low or normal baseline levels for CD56 dim NK cells, whereas the baseline levels of CD56 bright NK cells were either normal or abnormally high. The relative and absolute amounts of NK cells and of CD56 dim and CD56 bright NK cell subpopulations in patients with a normal baseline did not change under treatment. However, patients with a low baseline of NK cells and CD56 dim NK cells showed a significant increase in these immune cell subsets, but the amounts remained to be lower than the normal baseline. The amount of CD56 bright NK cells was unaffected by treatment. The baseline levels of NK cells were correlated with the number of metastatic organs. Their proportion increased, whereas the expression of NKG2D decreased significantly when more than one organ was affected by metastases. Low baseline levels of NK cells and CD56 dim NK cells as well as normal baseline levels of CD56 bright NK cells correlated significantly with a positive response to ipilimumab but not to pembrolizumab. Survival curves of patients with low amounts of CD56 dim NK cells treated with ipilimumab showed a trend to longer survival. Normal baseline levels of CD56 bright NK cells were significantly correlated with longer survival as compared to patients with high baseline levels. In conclusion, analysis of the amounts of total NK cells

  10. Why granular media are thermal after all

    Science.gov (United States)

    Liu, Mario; Jiang, Yimin

    2017-06-01

    Two approaches exist to account for granular behavior. The thermal one considers the total entropy, which includes microscopic degrees of freedom such as phonons; the athermal one (as with the Edward entropy) takes grains as elementary. Granular solid hydrodynamics (GSH) belongs to the first, DEM, granular kinetic theory and athermal statistical mechanics (ASM) to the second. A careful discussion of their conceptual differences is given here. Three noteworthy insights or results are: (1) While DEM and granular kinetic theory are well justified to take grains as elementary, any athermal entropic consideration is bound to run into trouble. (2) Many general principles are taken as invalid in granular media. Yet within the thermal approach, energy conservation and fluctuation-dissipation theorem remain valid, granular temperatures equilibrate, and phase space is well explored in a grain at rest. Hence these are abnormalities of the athermal approximation, not of granular media as such. (3) GSH is a wide-ranged continuum mechanical description of granular dynamics.

  11. NK Cell-Mediated Regulation of Protective Memory Responses against Intracellular Ehrlichial Pathogens.

    Directory of Open Access Journals (Sweden)

    Samar Habib

    Full Text Available Ehrlichiae are gram-negative obligate intracellular bacteria that cause potentially fatal human monocytic ehrlichiosis. We previously showed that natural killer (NK cells play a critical role in host defense against Ehrlichia during primary infection. However, the contribution of NK cells to the memory response against Ehrlichia remains elusive. Primary infection of C57BL/6 mice with Ehrlichia muris provides long-term protection against a second challenge with the highly virulent Ixodes ovatus Ehrlichia (IOE, which ordinarily causes fatal disease in naïve mice. Here, we show that the depletion of NK cells in E. muris-primed mice abrogates the protective memory response against IOE. Approximately, 80% of NK cell-depleted E. muris-primed mice succumbed to lethal IOE infection on days 8-10 after IOE infection, similar to naïve mice infected with the same dose of IOE. The lack of a recall response in NK cell-depleted mice correlated with an increased bacterial burden, extensive liver injury, decreased frequency of Ehrlichia-specific IFN-γ-producing memory CD4+ and CD8+ T-cells, and a low titer of Ehrlichia-specific antibodies. Intraperitoneal infection of mice with E. muris resulted in the production of IL-15, IL-12, and IFN-γ as well as an expansion of activated NKG2D+ NK cells. The adoptive transfer of purified E. muris-primed hepatic and splenic NK cells into Rag2-/-Il2rg-/- recipient mice provided protective immunity against challenge with E. muris. Together, these data suggest that E. muris-induced memory-like NK cells, which contribute to the protective, recall response against Ehrlichia.

  12. Differential pulmonic NK and NKT cell responses in Schistosoma japonicum-infected mice.

    Science.gov (United States)

    Cha, Hefei; Qin, Wenjuan; Yang, Quan; Xie, Hongyan; Qu, Jiale; Wang, Mei; Chen, Daixiong; Wang, Fang; Dong, Nuo; Chen, Longhua; Huang, Jun

    2017-02-01

    Natural killer cells (NK cells) and natural killer T cells (NKT cells) play a role in anti-infection, anti-tumor, transplantation immunity, and autoimmune regulation. However, the role of NK and NKT cells during Schistosoma japonicum (S. japonicum) infection has not been widely reported, especially regarding lung infections. The aim of this study was to research the NK and NKT cell response to S. japonicum infection in the lungs of mice. Using immunofluorescent histological analysis, NK and NKT cells were found near pulmonary granulomas. Moreover, flow cytometry revealed that the percentage and number of pulmonic NK cells in S. japonicum-infected mice were significantly increased (P cell number of NKT cells were decreased compared to those of normal mice (P NKT cells was increased after infection (P NKT cells (P cells (P NKT cells significantly increased (P NKT cells (P NKT cell activation during S. japonicum infection.

  13. The Memories of NK Cells: Innate-Adaptive Immune Intrinsic Crosstalk.

    Science.gov (United States)

    Gabrielli, Sara; Ortolani, Claudio; Del Zotto, Genny; Luchetti, Francesca; Canonico, Barbara; Buccella, Flavia; Artico, Marco; Papa, Stefano; Zamai, Loris

    2016-01-01

    Although NK cells are considered part of the innate immune system, a series of evidences has demonstrated that they possess characteristics typical of the adaptive immune system. These NK adaptive features, in particular their memory-like functions, are discussed from an ontogenetic and evolutionary point of view.

  14. Propulsion via flexible flapping in granular media

    Science.gov (United States)

    Peng, Zhiwei; Ding, Yang; Pietrzyk, Kyle; Elfring, Gwynn; Pak, On Shun

    2017-11-01

    Biological locomotion in nature is often achieved by the interaction between a flexible body and its surrounding medium. The interaction of a flexible body with granular media is less understood compared with viscous fluids partially due to its complex rheological properties. In this work, we explore the effect of flexibility on granular propulsion by considering a simple mechanical model in which a rigid rod is connected to a torsional spring that is under a displacement actuation using a granular resistive force theory. Through a combined numerical and asymptotic investigation, we characterize the propulsive dynamics of such a flexible flapper in relation to the actuation amplitude and spring stiffness, and we compare these dynamics with those observed in a viscous fluid. In addition, we demonstrate that the maximum possible propulsive force can be obtained in the steady propulsion limit with a finite spring stiffness and large actuation amplitude. These results may apply to the development of synthetic locomotive systems that exploit flexibility to move through complex terrestrial media. Funding for Z.P. and Y.D. was partially provided by NSFC 394 Grant No. 11672029 and NSAF-NSFC Grant No. U1530401.

  15. NYPA/TH!NK Clean Commute Program Final Report - Inception through December 2004

    Energy Technology Data Exchange (ETDEWEB)

    James Francfort; Don Karner

    2005-11-01

    The Clean Commute Program uses TH!NK city electric vehicles from Ford Motor Company’s electric vehicle group, TH!NK Mobility, to demonstrate the feasibility of using electric transportation in urban applications. Suburban New York City railroad commuters use the TH!NK city vehicles to commute from their private residences to railroad stations, where they catch commuter trains into New York City. Electric vehicle charging infrastructure for the TH!NK city vehicles is located at the commuters’ private residences as well as seven train stations. Ford leased at total of 97 TH!NK city electric vehicles to commuters from Westchester, Putnam, Rockland, Queens, Nassau, and Suffolk counties for $199 per month. First Clean Commute Program vehicle deliveries occurred late in 2001, with data collection commencing in February 2002. Through May, 2004, 24 of the lessees have returned their vehicles to Ford and no longer participate in the Clean Commute Program. Reasons given for leaving the Program include relocation out of the Program area, change in employment status, change in commuting status, and, in a few cases, dissatisfaction with the vehicle. Additionally, 13 vehicles were returned to Ford when the lease was completed. In August 2002, Ford announced that it was ceasing production of the TH!NK city and would not extend any TH!NK city leases. Mileage accumulation dropped in the last quarter of the program as vehicle leases were returned to Ford. The impact of the program overall was significant as participants in the Clean Commute Program drove their vehicles over 406,074 miles, avoiding the use of over 18,887 gallons of gasoline. During the active portion of the program, the TH!NK city vehicles were driven an average of between 180 and 230 miles per month. Over 95% of all trips taken with the TH!NK city vehicles replaced trips previously taken in gasoline vehicles. This report covers the period from Program inception through December 2004.

  16. Rheological Behavior of Dense Assemblies of Granular Materials

    International Nuclear Information System (INIS)

    Sundaresan, Sankaran; Tardos, Gabriel I.; Subramaniam, Shankar

    2011-01-01

    Assemblies of granular materials behave differently when they are owing rapidly, from when they are slowly deforming. The behavior of rapidly owing granular materials, where the particle-particle interactions occur largely through binary collisions, is commonly related to the properties of the constituent particles through the kinetic theory of granular materials. The same cannot be said for slowly moving or static assemblies of granular materials, where enduring contacts between particles are prevalent. For instance, a continuum description of the yield characteristics of dense assemblies of particles in the quasistatic ow regime cannot be written explicitly on the basis of particle properties, even for cohesionless particles. Continuum models for this regime have been proposed and applied, but these models typically assume that the assembly is at incipient yield and they are expressed in terms of the yield function, which we do not yet know how to express in terms of particle-level properties. The description of the continuum rheology in the intermediate regime is even less understood. Yet, many practically important flows in nature and in a wide range of technological applications occur in the dense flow regime and at the transition between dilute and dense regimes; the lack of validated continuum rheological models for particle assemblies in these regimes limits predictive modeling of such flows. This research project is aimed at developing such rheological models.

  17. Vulnerability of cultured canine lung tumor cells to NK cell-mediated cytolysis

    International Nuclear Information System (INIS)

    Haley, P.J.; Kohr, J.M.; Kelly, G.; Muggenburg, B.A.; Guilmette, B.A.

    1988-01-01

    Five cell lines, designated as canine lung epithelial cell (CLEP), derived from radiation induced canine lung tumors and canine thyroid adeno-carcinoma (CTAC) cells were compared for their susceptibility to NK cell-mediated cytolysis using peripheral blood lymphocytes from normal, healthy Beagle dogs as effector cells. Effector cells and chromium 51 radiolabeled target cells were incubated for 16 h at ratios of 12.5:1, 25:1, 50:1, and 100:1. Increasing cytolysis was observed for all cell lines as the effector-to-target-cell ratios increased from 12.5:1 to 100:1. The percent cytotoxicity was significantly less for all lung tumor cell lines as compared to CTAC at the 100:1 ratio. One lung tumor cell line, CLEP-9, had 85% of the lytic vulnerability of the CTAC cell line and significantly greater susceptibility to NK cell-mediated lysis than all of the other lung tumor cell lines. Susceptibility to NK cell cytolysis did not correlate with in vivo malignant behavior of the original tumor. These data suggest that cultured canine lung tumor cells are susceptible to NK cell cytolytic activity in vitro and that at least one of these cell lines (CLEP-9) is a candidate for substitution of the standard canine NK cell target, CTAC, in NK cell assays. The use of lung tumor cells in NK cell assays may provide greater insight into the control of lung tumors by immune mechanisms. (author)

  18. Secretory products from thrombin-stimulated human platelets exert an inhibitory effect on NK-cytotoxic activity

    DEFF Research Database (Denmark)

    Skov Madsen, P; Hokland, P; Hokland, M

    1987-01-01

    We have investigated the interaction between human platelets and the NK-system, with special emphasis on the action of secretory products from platelets in an NK assay with 51Cr-labelled K562 as target cells. Supernatants from thrombin-stimulated platelets added to the NK assay consistently...... decreased the NK-cytotoxicity by 40% +/- 4.3%, indicating the existence of secreted products from platelets as a source of NK-inhibiting substances. In contrast, no direct cytotoxic effect of these secretory products on the target cells (K562) was seen. Thus, normal human platelets, when stimulated...... with thrombin, are capable of secreting different, yet undefined factors, which significantly inhibit NK activity in vitro. The results also suggest that the role of products from contaminating in vitro activated platelets should be borne in mind when performing conventional NK assays. Udgivelsesdato: 1986-Oct...

  19. An update on blast furnace granular coal injection

    Energy Technology Data Exchange (ETDEWEB)

    Hill, D.G. [Bethlehem Steel Corp., Burns Harbor, IN (United States); Strayer, T.J.; Bouman, R.W. [Bethlehem Steel Corp., PA (United States)

    1997-12-31

    A blast furnace coal injection system has been constructed and is being used on the furnace at the Burns Harbor Division of Bethlehem Steel. The injection system was designed to deliver both granular (coarse) and pulverized (fine) coal. Construction was completed on schedule in early 1995. Coal injection rates on the two Burns Harbor furnaces were increased throughout 1995 and was over 200 lbs/ton on C furnace in September. The injection rate on C furnace reached 270 lbs/ton by mid-1996. A comparison of high volatile and low volatile coals as injectants shows that low volatile coal replaces more coke and results in a better blast furnace operation. The replacement ratio with low volatile coal is 0.96 lbs coke per pound of coal. A major conclusion of the work to date is that granular coal injection performs very well in large blast furnaces. Future testing will include a processed sub-bituminous coal, a high ash coal and a direct comparison of granular versus pulverized coal injection.

  20. Granular-front formation in free-surface flow of concentrated suspensions

    Science.gov (United States)

    Leonardi, Alessandro; Cabrera, Miguel; Wittel, Falk K.; Kaitna, Roland; Mendoza, Miller; Wu, Wei; Herrmann, Hans J.

    2015-11-01

    A granular front emerges whenever the free-surface flow of a concentrated suspension spontaneously alters its internal structure, exhibiting a higher concentration of particles close to its front. This is a common and yet unexplained phenomenon, which is usually believed to be the result of fluid convection in combination with particle size segregation. However, suspensions composed of uniformly sized particles also develop a granular front. Within a large rotating drum, a stationary recirculating avalanche is generated. The flowing material is a mixture of a viscoplastic fluid obtained from a kaolin-water dispersion with spherical ceramic particles denser than the fluid. The goal is to mimic the composition of many common granular-fluid materials, such as fresh concrete or debris flow. In these materials, granular and fluid phases have the natural tendency to separate due to particle settling. However, through the shearing caused by the rotation of the drum, a reorganization of the phases is induced, leading to the formation of a granular front. By tuning the particle concentration and the drum velocity, it is possible to control this phenomenon. The setting is reproduced in a numerical environment, where the fluid is solved by a lattice-Boltzmann method, and the particles are explicitly represented using the discrete element method. The simulations confirm the findings of the experiments, and provide insight into the internal mechanisms. Comparing the time scale of particle settling with the one of particle recirculation, a nondimensional number is defined, and is found to be effective in predicting the formation of a granular front.

  1. Dynamics of crater formations in immersed granular materials

    Science.gov (United States)

    Varas, G.; Vidal, V.; Géminard, J.

    2009-12-01

    Craters are part of the widespread phenomena observed in nature. Among the main applications to natural phenomena, aside from meteorite impact craters, are the formation and growth of volcanic edifices, by successive ejecta emplacement and/or erosion. The time evolution and dynamics play a crucial role here, as the competition between volcanic-jet mass-flux (degassing and ejecta) and crater-size evolution may control directly the eruptive regime. Crater morphology in dry granular material has been extensively studied, both experimentally and theoretically. Most of these studies investigate the final, steady crater shape resulting from the collision of solid bodies with the material surface and scaling laws are derived. In immersed granular material, craters generated by an underwater vortex ring, or underwater impact craters generated by landslide, have been reported. In a previous experimental study, Gostiaux et al. [Gran. Matt., 2002] have investigated the dynamics of air flowing through an immersed granular layer. They reported that, depending on the flow rate, the system exhibits two qualitatively different regimes: At small flow rate, the bubbling regime during which bubbles escape the granular layer independently one from another; At large flow rate, the open-channel regime which corresponds to the formation of a channel crossing the whole thickness of the granular bed through which air escapes almost continuously. At intermediate flow rate, a spontaneous alternation between these two regimes is observed. Here, we report the dynamics of crater formations at the free surface of an immersed granular bed, locally crossed by an ascending gas flow. We reproduce the experimental conditions of Gostiaux et al. (2002) in two dimensions: In a vertical Hele-Shaw cell, the crater consists of two sand piles which develop around the location of the gas emission. We observe that the typical size of the crater increases logarithmically with time, independently of the gas

  2. Activated allogeneic NK cells preferentially kill poor prognosis B-cell chronic lymphocytic leukemia cells

    Directory of Open Access Journals (Sweden)

    Diego Sanchez-Martinez

    2016-10-01

    Full Text Available Mutational status of TP53 together with expression of wild type (wt IGHV represents the most widely accepted biomarkers, establishing a very poor prognosis in B-cell chronic lymphocytic leukemia (B-CLL patients. Adoptive cell therapy using allogeneic HLA mismatched Natural Killer (NK cells has emerged as an effective and safe alternative in the treatment of acute myeloid and lymphoid leukemias that do not respond to traditional therapies. We have described that allogeneic activated NK cells eliminate hematological cancer cell lines with multidrug resistance acquired by mutations in the apoptotic machinery. This effect depends on the activation protocol, being B-lymphoblastoid cell lines (LCLs the most effective stimulus to activate NK cells. Here we have further analyzed the molecular determinants involved in allogeneic NK cell recognition and elimination of B-CLL cells, including the expression of ligands of the main NK cell activating receptors (NKG2D and NCRs and HLA mismatch. We present preliminary data suggesting that B-CLL susceptibility significantly correlates with HLA mismatch between NK cell donor and B-CLL patient. Moreover, we show that the sensitivity of B-CLL cells to NK cells depends on the prognosis based on TP53 and IGHV mutational status. Cells from patients with worse prognosis (mutated TP53 and wt IGHV are the most susceptible to activated NK cells. Hence, B-CLL prognosis may predict the efficacy of allogenic activated NK cells and, thus, NK cell transfer represents a good alternative to treat poor prognosis B-CLL patients who present a very short life expectancy due to lack of effective treatments.□

  3. Sealing of boreholes using natural, compatible materials: Granular salt

    International Nuclear Information System (INIS)

    Finley, R.E.; Zeuch, D.H.; Stormont, J.C.; Daemen, J.J.K.

    1994-01-01

    Granular salt can be used to construct high performance permanent seals in boreholes which penetrate rock salt formations. These seals are described as seal systems comprised of the host rock, the seal material, and the seal rock interface. The performance of these seal systems is defined by the complex interactions between these seal system components through time. The interactions are largely driven by the creep of the host formation applying boundary stress on the seal forcing host rock permeability with time. The immediate permeability of these seals is dependent on the emplaced density. Laboratory test results suggest that careful emplacement techniques could results in immediate seal system permeability on the order of 10 -16 m 2 to 10 -18 m 2 (10 -4 darcy to 10 -6 ). The visco-plastic behavior of the host rock coupled with the granular salts ability to ''heal'' or consolidate make granular salt an ideal sealing material for boreholes whose permanent sealing is required

  4. Clinical Cancer Therapy by NK Cells via Antibody-Dependent Cell-Mediated Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Kory L. Alderson

    2011-01-01

    Full Text Available Natural killer (NK cells are powerful effector cells that can be directed to eliminate tumor cells through tumor-targeted monoclonal antibodies (mAbs. Some tumor-targeted mAbs have been successfully applied in the clinic and are included in the standard of care for certain malignancies. Strategies to augment the antitumor response by NK cells have led to an increased understanding of how to improve their effector responses. Next-generation reagents, such as molecularly modified mAbs and mAb-cytokine fusion proteins (immunocytokines, ICs designed to augment NK-mediated killing, are showing promise in preclinical and some clinical settings. Continued research into the antitumor effects induced by NK cells and tumor-targeted mAbs suggests that additional intrinsic and extrinsic factors may influence the antitumor response. Therefore more research is needed that focuses on evaluating which NK cell and tumor criteria are best predictive of a clinical response and which combination immunotherapy regimens to pursue for distinct clinical settings.

  5. Impact Compaction of a Granular Material

    Science.gov (United States)

    Fenton, Gregg; Asay, Blaine; Todd, Steve; Grady, Dennis

    2017-06-01

    The dynamic behavior of granular materials has importance to a variety of engineering applications. Although, the mechanical behavior of granular materials have been studied extensively for several decades, the dynamic behavior of these materials remains poorly understood. High-quality experimental data are needed to improve our general understanding of granular material compaction physics. This paper describes how an instrumented plunger impact system can be used to measure the compaction process for granular materials at high and controlled strain rates and subsequently used for computational modelling. The experimental technique relies on a gas-gun driven plunger system to generate a compaction wave through a volume of granular material. This volume of material has been redundantly instrumented along the bed length to track the progression of the compaction wave, and the piston displacement is measured with Photon Doppler Velocimetry (PDV). Using the gathered experimental data along with the initial material tap density, a granular material equation of state can be determined.

  6. The Memories of NK Cells: Innate-Adaptive Immune Intrinsic Crosstalk

    Directory of Open Access Journals (Sweden)

    Sara Gabrielli

    2016-01-01

    Full Text Available Although NK cells are considered part of the innate immune system, a series of evidences has demonstrated that they possess characteristics typical of the adaptive immune system. These NK adaptive features, in particular their memory-like functions, are discussed from an ontogenetic and evolutionary point of view.

  7. Discrete element modeling of triggered slip in faults with granular gouge: application to dynamic earthquake triggering

    International Nuclear Information System (INIS)

    Ferdowsi, B.

    2014-01-01

    Recent seismological observations based on new, more sensitive instrumentation show that seismic waves radiated from large earthquakes can trigger other earthquakes globally. This phenomenon is called dynamic earthquake triggering and is well-documented for over 30 of the largest earthquakes worldwide. Granular materials are at the core of mature earthquake faults and play a key role in fault triggering by exhibiting a rich nonlinear response to external perturbations. The stick-slip dynamics in sheared granular layers is analogous to the seismic cycle for earthquake fault systems. In this research effort, we characterize the macroscopic scale statistics and the grain-scale mechanisms of triggered slip in sheared granular layers. We model the granular fault gouge using three dimensional discrete element method simulations. The modeled granular system is put into stick-slip dynamics by applying a conning pressure and a shear load. The dynamic triggering is simulated by perturbing the spontaneous stick-slip dynamics using an external vibration applied to the boundary of the layer. The influences of the triggering consist in a frictional weakening during the vibration interval, a clock advance of the next expected large slip event and long term effects in the form of suppression and recovery of the energy released from the granular layer. Our study suggests that above a critical amplitude, vibration causes a significant clock advance of large slip events. We link this clock advance to a major decline in the slipping contact ratio as well as a decrease in shear modulus and weakening of the granular gouge layer. We also observe that shear vibration is less effective in perturbing the stick-slip dynamics of the granular layer. Our study suggests that in order to have an effective triggering, the input vibration must also explore the granular layer at length scales about or less than the average grain size. The energy suppression and the subsequent recovery and increased

  8. Synergistic Effects of Cabozantinib and EGFR-Specific CAR-NK-92 Cells in Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Qing Zhang

    2017-01-01

    Full Text Available The chimeric antigen receptor-modified immune effector cell (CAR-T and CAR-NK therapies are newly developed adoptive treatments of cancers. However, their therapeutic efficacy against solid tumors is limited. Combining CAR-T or CAR-NK cells with chemotherapeutic drugs to treat solid tumor may be a promising strategy. We developed an epidermal growth factor- (EGFR- specific third-generation CAR. NK-92 cells were modified with the CAR by lentivirus infection. The specific killing ability of the CAR-modified NK-92 cells (CAR-NK-92 against renal cell carcinoma (RCC cell lines was confirmed in vitro. The synergistic effects of cabozantinib and EGFR-specific CAR-NK-92 cells were investigated in vitro and in vivo. Our results showed that the CAR-NK-92 cells lyse RCC cells in an EGFR-specific manner. Treatment with cabozantinib could increase EGFR and decrease PD-L1 membrane surface expression in RCC cells and enhance the killing ability of CAR-NK-92 cells against the RCC cells in vitro. Furthermore, the CAR-NK-92 cells show synergistic therapeutic efficacy with cabozantinib against human RCC xenograft models. Our results provided the basis for combination with chemotherapy as a novel strategy for enhancing the therapeutic efficacy of CAR-modified immune effector cells for solid tumors.

  9. Genetic engineering of human NK cells to express CXCR2 improves migration to renal cell carcinoma.

    Science.gov (United States)

    Kremer, Veronika; Ligtenberg, Maarten A; Zendehdel, Rosa; Seitz, Christina; Duivenvoorden, Annet; Wennerberg, Erik; Colón, Eugenia; Scherman-Plogell, Ann-Helén; Lundqvist, Andreas

    2017-09-19

    Adoptive natural killer (NK) cell transfer is being increasingly used as cancer treatment. However, clinical responses have so far been limited to patients with hematological malignancies. A potential limiting factor in patients with solid tumors is defective homing of the infused NK cells to the tumor site. Chemokines regulate the migration of leukocytes expressing corresponding chemokine receptors. Various solid tumors, including renal cell carcinoma (RCC), readily secrete ligands for the chemokine receptor CXCR2. We hypothesize that infusion of NK cells expressing high levels of the CXCR2 chemokine receptor will result in increased influx of the transferred NK cells into tumors, and improved clinical outcome in patients with cancer. Blood and tumor biopsies from 14 primary RCC patients were assessed by flow cytometry and chemokine analysis. Primary NK cells were transduced with human CXCR2 using a retroviral system. CXCR2 receptor functionality was determined by Calcium flux and NK cell migration was evaluated in transwell assays. We detected higher concentrations of CXCR2 ligands in tumors compared with plasma of RCC patients. In addition, CXCL5 levels correlated with the intratumoral infiltration of CXCR2-positive NK cells. However, tumor-infiltrating NK cells from RCC patients expressed lower CXCR2 compared with peripheral blood NK cells. Moreover, healthy donor NK cells rapidly lost their CXCR2 expression upon in vitro culture and expansion. Genetic modification of human primary NK cells to re-express CXCR2 improved their ability to specifically migrate along a chemokine gradient of recombinant CXCR2 ligands or RCC tumor supernatants compared with controls. The enhanced trafficking resulted in increased killing of target cells. In addition, while their functionality remained unchanged compared with control NK cells, CXCR2-transduced NK cells obtained increased adhesion properties and formed more conjugates with target cells. To increase the success of NK

  10. Amelioration of NK cell function driven by Vα24+ invariant NKT cell activation in multiple myeloma.

    Science.gov (United States)

    Iyoda, Tomonori; Yamasaki, Satoru; Hidaka, Michihiro; Kawano, Fumio; Abe, Yu; Suzuki, Kenshi; Kadowaki, Norimitsu; Shimizu, Kanako; Fujii, Shin-Ichiro

    2018-02-01

    NK cells represent a first line of immune defense, but are progressively dysregulated in multiple myeloma (MM) patients. To restore and facilitate their antitumor effect, NK cells are required in sufficient quantities and must be stimulated. We initially assessed the proportions of NKT and NK cells in 34 MM patients. The frequencies of both in PBMC populations correlated with those in BMMNCs irrespective of low BMMNC numbers. We then assessed the adjunctive effect of stimulating NKT cells with CD1d and α-GalCer complexes on the NK cells. The expression of NKG2D on CD56 dim CD16 + NK cells and DNAM-1 on CD56 bright CD16 - NK cells increased after NKT cell activation. Apparently, NK cell-mediated anti-tumor effects were dependent on NKG2D and DNAM-1 ligands on myeloma cells. Thus, NK cell function in patients could be ameliorated, beyond the effect of immunosuppression, by NKT cell activation. This NKT-driven NK cell therapy could represent a potential new treatment modality. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. NK cell imaging by in vitro and in vivo labelling approaches

    International Nuclear Information System (INIS)

    Galli, F.; Histed, S. N.; Aras, O.

    2014-01-01

    Natural killer (NK) cells are a particular lymphocyte subset with a documented cytotoxic activity against cancer cells. Evidence of NK antitumoral effect led researchers to focus on the development of immunotherapies aimed at augmenting NK recruitment and infiltration into tumor and their anti-cancer functions. Studies in animal models proved that the right combination of drugs, cytokines, chemokines and other factors might be used to enhance or suppress tumor targeting by NK cells. Therefore, it would be necessary to have a tool to non-invasively monitor the efficacy of such novel therapies. Available imaging techniques comprise magnetic resonance, optical and nuclear medicine imaging with a pool of compounds that ranges from radiolabelled nanoparticles and radiopharmaceuticals to fluorescent probes. Each tracer and technique has its own pros and cons, but till now, no one emerged as superior among the others.

  12. Mechanisms by Which Interleukin-12 Corrects Defective NK Cell Anticryptococcal Activity in HIV-Infected Patients

    Directory of Open Access Journals (Sweden)

    Stephen K. Kyei

    2016-08-01

    Full Text Available Cryptococcus neoformans is a pathogenic yeast and a leading cause of life-threatening meningitis in AIDS patients. Natural killer (NK cells are important immune effector cells that directly recognize and kill C. neoformans via a perforin-dependent cytotoxic mechanism. We previously showed that NK cells from HIV-infected patients have aberrant anticryptococcal killing and that interleukin-12 (IL-12 restores the activity at least partially through restoration of NKp30. However, the mechanisms causing this defect or how IL-12 restores the function was unknown. By examining the sequential steps in NK cell killing of Cryptococcus, we found that NK cells from HIV-infected patients had defective binding of NK cells to C. neoformans. Moreover, those NK cells that bound to C. neoformans failed to polarize perforin-containing granules to the microbial synapse compared to healthy controls, suggesting that binding was insufficient to restore a defect in perforin polarization. We also identified lower expression of intracellular perforin and defective perforin release from NK cells of HIV-infected patients in response to C. neoformans. Importantly, treatment of NK cells from HIV-infected patients with IL-12 reversed the multiple defects in binding, granule polarization, perforin content, and perforin release and restored anticryptococcal activity. Thus, there are multiple defects in the cytolytic machinery of NK cells from HIV-infected patients, which cumulatively result in defective NK cell anticryptococcal activity, and each of these defects can be reversed with IL-12.

  13. The peripheral NK cell repertoire after kidney transplantation is modulated by different immunosuppressive drugs

    Directory of Open Access Journals (Sweden)

    Christine eNeudoerfl

    2013-02-01

    Full Text Available In the context of kidney transplantation, little is known about the involvement of NK cells in the immune reaction leading to either rejection or immunological tolerance under immunosuppression. Therefore, the peripheral NK cell repertoire of patients after kidney transplantation was investigated in order to identify NK cell subsets that may be associated with the individual immune status at the time of their protocol biopsies for histopathological evaluation of the graft. Alterations in the peripheral NK cell repertoire could be correlated to the type of immunosuppression, i.e. calcineurin-inhibitors like CyclosporinA vs. Tacrolimus with or without addition of mTOR inhibitors. Here, we could demonstrate that the NK cell repertoire in peripheral blood of kidney transplant patients differs significantly from healthy individuals. The presence of donor-specific antibodies was associated with reduced numbers of CD56dim NK cells. Moreover, in patients, down-modulation of CD16 and CD6 on CD56dim NK cells was observed with significant differences between CyclosporinA- and Tac-treated patients. Tac-treatment was associated with decreased CD69, HLA-DR and increased CD94/NKG2A expression in CD56dim NK cells indicating that the quality of the immunosuppressive treatment impinges on the peripheral NK cell repertoire. In vitro studies with PBMC of healthy donors showed that this modulation of CD16, CD6, CD69, and HLA-DR could also be induced experimentally. The presence of calcineurin or mTOR inhibitors had also functional consequences regarding degranulation and IFN--production against K562 target cells, respectively. In summary, we postulate that the NK cell composition in peripheral blood of kidney transplanted patients represents an important hallmark of the efficacy of immunosuppression and may be even informative for the immune status after transplantation in terms of rejection vs. drug-induced allograft tolerance. Thus,NK cells can serve as sensors

  14. Distinct gut-derived lactic acid bacteria elicit divergent dendritic cell-mediated NK cell responses

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Zeuthen, Louise Hjerrild; Christensen, Hanne

    2007-01-01

    Lactic acid bacteria (LAB) are abundant in the gastrointestinal tract where they continuously regulate the immune system. NK cells are potently activated by dendritic cells (DCs) matured by inflammatory stimuli, and NK cells are present in the gut epithelium and in mesenteric lymph nodes......, but it is not known how NK-DC interactions are affected by the predominantly non-pathogenic LAB. We demonstrate that human DCs exposed to different strains of gut-derived LAB consistently induce proliferation, cytotoxicity and activation markers in autologous NK cells. On the contrary, strains of LAB differ greatly...... in their ability to induce DC-dependent IFN-gamma production by NK cells. This suggests that DCs stimulated by gut LAB may expand the pool of NK cells and increase their cytotoxic potential. Specific LAB, inducing high levels of IL-12 in DCs, may promote amplification of a type-1 response via potent stimulation...

  15. Granular flows: fundamentals and applications

    Science.gov (United States)

    Cleary, Paul W.

    DEM allows the prediction of complex industrial and geophysical particle flows. The importance of particle shape is demonstrated through a series of simple examples. Shape controls resistance to shear, the magnitude of collision stress, dilation and the angle of repose. We use a periodic flow of a bed of particles to demonstrate the different states of granular matter, the generation of dilute granular flow when granular temperature is high and the flow dependent nature of the granular thermodynamic boundary conditions. A series of industrial case studies examines how DEM can be used to understand and improve processes such as separation, mixing, grinding, excavation, hopper discharge, metering and conveyor interchange. Finally, an example of landslide motion over real topography is presented.

  16. Identification of genuine primary pulmonary NK cell lymphoma via clinicopathologic observation and clonality assay.

    Science.gov (United States)

    Gong, Li; Wei, Long-Xiao; Huang, Gao-Sheng; Zhang, Wen-Dong; Wang, Lu; Zhu, Shao-Jun; Han, Xiu-Juan; Yao, Li; Lan, Miao; Li, Yan-Hong; Zhang, Wei

    2013-08-19

    Extranodal natural killer (NK)/T-cell lymphoma, nasal type, is an uncommon lymphoma associated with the Epstein-Barr virus (EBV). It most commonly involves the nasal cavity and upper respiratory tract. Primary pulmonary NK/T cell lymphoma is extremely rare. If a patient with a NK or T-cell tumor has an unusual reaction to treatment or an unusual prognosis, it is wise to differentiate NK from T-cell tumors. The clinicopathologic characteristics, immunophenotype, EBV in situ hybridization, and T cell receptor (TCR) gene rearrangement of primary pulmonary NK cell lymphoma from a 73-year-old Chinese woman were investigated and the clonal status was determined using female X-chromosomal inactivation mosaicism and polymorphisms at the phosphoglycerate kinase (PGK) gene. The lesion showed the typical histopathologic characteristics and immunohistochemical features of NK/T cell lymphoma. However, the sample was negative for TCR gene rearrangement. A clonality assay demonstrated that the lesion was monoclonal. It is concluded that this is the first recorded case of genuine primary pulmonary NK cell lymphoma. The purpose of the present work is to recommend that pathologists carefully investigate the whole lesion to reduce the likelihood that primary pulmonary NK cell lymphoma will be misdiagnosed as an infectious lesion. In addition, TCR gene rearrangement and clonal analysis, which is based on female X-chromosomal inactivation mosaicism and polymorphisms at PGK and androgen receptor (AR) loci, were found to play important roles in differentiating NK cell lymphoma from T cell lymphoma. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5205300349457729.

  17. Aerobic granular SBR systems applied to the treatment of industrial effluents

    International Nuclear Information System (INIS)

    Rio, V. del; Figueroa, M.; Arrojo, B.; Mosquera-Corral, A.; Campos, J. L.; Garcia-Torriello, G.; Mendez, R.

    2009-01-01

    Systems based on aerobic granular biomass are an alternative to the conventional activated sludge plants for wastewater treatment. Large organic and nitrogen loads are treated in these systems where biomass grown as granules, easy to separate by setting, make unnecessary the construction of secondary settler reducing the surface requirements for the treatment system construction. Furthermore, in aerobic granular reactors simultaneously carbon and nitrogen removal is feasible. These systems have been already applied at laboratory scale for the treatment of different types of industrial and urban wastewater. (Author)

  18. Aerobic granular SBR systems applied to the treatment of industrial effluents

    Energy Technology Data Exchange (ETDEWEB)

    Rio, V. del; Figueroa, M.; Arrojo, B.; Mosquera-Corral, A.; Campos, J. L.; Garcia-Torriello, G.; Mendez, R.

    2009-07-01

    Systems based on aerobic granular biomass are an alternative to the conventional activated sludge plants for wastewater treatment. Large organic and nitrogen loads are treated in these systems where biomass grown as granules, easy to separate by setting, make unnecessary the construction of secondary settler reducing the surface requirements for the treatment system construction. Furthermore, in aerobic granular reactors simultaneously carbon and nitrogen removal is feasible. These systems have been already applied at laboratory scale for the treatment of different types of industrial and urban wastewater. (Author)

  19. Two photon microscopy intravital study of DC-mediated anti-tumor response of NK cells

    Science.gov (United States)

    Caccia, Michele; Gorletta, Tatiana; Sironi, Laura; Zanoni, Ivan; Salvetti, Cristina; Collini, Maddalena; Granucci, Francesca; Chirico, Giuseppe

    2010-02-01

    Recent studies have demonstrated that dendritic cells (DCs) play a crucial role in the activation of Natural Killer cells (NKs) that are responsible for anti-tumor innate immune responses. The focus of this report is on the role of pathogen associated molecular pattern (PAMP) activated-DCs in inducing NK cell-mediated anti-tumor responses. Mice transplanted sub-cute (s.c.) with AK7 cells, a mesothelioma cell line sensitive to NK cell responses, are injected with fluorescent NK cells and DC activation is then induced by s.c. injection of Lipopolysaccharide (LPS). Using 4 dimensional tracking we follow the kinetic behavior of NK cells at the Draining Lymph-Node (DLN). As control, noninflammatory conditions are also evaluated. Our data suggest that NK cells are recruited to the DLN where they can interact with activated-DCs with a peculiar kinetic behavior: short lived interactions interleaved by rarer longer ones. We also found that the changes in the NK dynamic behavior in inflammatory conditions clearly affect relevant motility parameters such as the instantaneous and average velocity and the effective diffusion coefficient. This observation suggests that NK cells and activated-DCs might efficiently interact in the DLN, where cells could be activated. Therefore the interaction between activated-DCs and NK cells in DLN is not only a reality but it may be also crucial for the start of the immune response of the NKs.

  20. A trans-phase granular continuum relation and its use in simulation

    Science.gov (United States)

    Kamrin, Ken; Dunatunga, Sachith; Askari, Hesam

    The ability to model a large granular system as a continuum would offer tremendous benefits in computation time compared to discrete particle methods. However, two infamous problems arise in the pursuit of this vision: (i) the constitutive relation for granular materials is still unclear and hotly debated, and (ii) a model and corresponding numerical method must wear ``many hats'' as, in general circumstances, it must be able to capture and accurately represent the material as it crosses through its collisional, dense-flowing, and solid-like states. Here we present a minimal trans-phase model, merging an elastic response beneath a fictional yield criterion, a mu(I) rheology for liquid-like flow above the static yield criterion, and a disconnection rule to model separation of the grains into a low-temperature gas. We simulate our model with a meshless method (in high strain/mixing cases) and the finite-element method. It is able to match experimental data in many geometries, including collapsing columns, impact on granular beds, draining silos, and granular drag problems.

  1. Granular flows in constrained geometries

    Science.gov (United States)

    Murthy, Tejas; Viswanathan, Koushik

    Confined geometries are widespread in granular processing applications. The deformation and flow fields in such a geometry, with non-trivial boundary conditions, determine the resultant mechanical properties of the material (local porosity, density, residual stresses etc.). We present experimental studies of deformation and plastic flow of a prototypical granular medium in different nontrivial geometries- flat-punch compression, Couette-shear flow and a rigid body sliding past a granular half-space. These geometries represent simplified scaled-down versions of common industrial configurations such as compaction and dredging. The corresponding granular flows show a rich variety of flow features, representing the entire gamut of material types, from elastic solids (beam buckling) to fluids (vortex-formation, boundary layers) and even plastically deforming metals (dead material zone, pile-up). The effect of changing particle-level properties (e.g., shape, size, density) on the observed flows is also explicitly demonstrated. Non-smooth contact dynamics particle simulations are shown to reproduce some of the observed flow features quantitatively. These results showcase some central challenges facing continuum-scale constitutive theories for dynamic granular flows.

  2. Chemotherapy changes cytotoxic activity of NK-cells in cancer patients

    Science.gov (United States)

    Stakheyeva, M.; Yunusova, N.; Patysheva, M.; Mitrofanova, I. V.; Faltin, V.; Tuzikov, S.; Slonimskaya, E.

    2017-09-01

    In recent years, it has been shown that under certain conditions cytostatic agents (chemotherapy and radiotherapy) can restore the functioning of the immune system impaired by malignancy burden. The modifications of biological properties by cytostatics acting make cancer cells visible for the immune system recognition and elimination. Eighteen patients diagnosed with primary local breast (8) and gastric (10) cancer between 2014 and 2016 were enrolled in the investigation. The phenotypic features of NK were assessed by flow cytometry using mAb (BD Pharmingen) against CD45 (common leukocyte antigen) and CD56 (NK-marker) for surface staining, CD107a (LAMP-1), Perforin (PF) and Gransime B (GB) for intracellular staining. We examined NK populations in the peripheral blood of cancer patients before treatment and in 5 days after second course of NACT. We found that NK populations produced PF in cancer patents, which were absent before treatment, increased after NACT. Their emergence can be associated with the immunoactivating effects of chemotherapy, realized by the modification of tumor cells or elimination of immunosuppressive cells.

  3. Natural killer cells for immunotherapy – Advantages of cell lines over blood NK cells

    Directory of Open Access Journals (Sweden)

    Hans eKlingemann

    2016-03-01

    Full Text Available Natural killer cells are potent cytotoxic effector cells for cancer therapy and potentially for severe viral infections. However, there are technical challenges to obtain sufficient numbers of functionally active NK cells form a patient’s blood since they represent only 10% of the lymphocytes. Especially, cancer patients are known to have dysfunctional NK cells. The alternative is to obtain cells from a healthy donor, which requires depletion of the allogeneic T-cells. Establishing cell lines from donor blood NK cells have not been successful, in contrast to blood NK cells obtained from patients with a clonal NK cell lymphoma. Those cells can be expanded in culture in the presence of IL-2. However, except for the NK-92 cell line none of the other six known cell lines has consistent and reproducibly high anti-tumor cytotoxicity, nor can they be easily genetically manipulated to recognize specific tumor antigens or to augment monoclonal antibody activity through ADCC. NK-92 is also the only cell line product that has been widely given to patients with advanced cancer with demonstrated efficiency and minimal side effects.

  4. The role of NK cells in HIV-1 protection: autologous, allogeneic or both?

    Science.gov (United States)

    Hens, Jef; Jennes, Wim; Kestens, Luc

    2016-01-01

    Natural killer (NK) cells specialize in killing virally infected- or tumor cells and are part of the innate immune system. The activational state of NK cells is determined by the balance of incoming activating and inhibitory signals mediated by receptor-ligand binding with the target cell. These receptor-ligand bonds mainly consist of the killer immunoglobulin-like receptors (KIR), which are expressed at the cell surface of NK cells, and their ligands: the highly variable human leukocyte antigen -class I molecules (HLA). Absence of an inhibitory receptor-ligand bond lowers the NK cell activation threshold, whereas an activating receptor-ligand bond stimulates the cell, potentially overcoming this threshold and triggering NK cell activation. NK cells influence the course of infection as well as the acquisition of HIV-1. Several lines of evidence relate the activating NK cell receptor KIR3DS1, in the presence or absence of its putative ligand HLA-Bw4, with slower disease progression as well as resistance to HIV-1 infection. Overall, resistance to HIV-1 infection predominantly correlates with activating KIR/HLA profiles, consisting of e.g. activating KIRs, group B haplotypes, or inhibitory KIRs in absence of their ligands. Such a conclusion is less evident for studies of HIV-1 disease progression, with studies reporting beneficial as well as detrimental effects of activating KIR/HLA genotypes. It is likely that KIR/HLA association studies are complicated by the complexity of the KIR and HLA loci and their mutual interactions, as well as by additional factors like route of HIV exposure, immune activation, presence of co-infections, and the effect of anti-HIV-1 antibodies. One newly discovered NK cell activation pathway associated with resistance to HIV-1 infection involves the presence of an iKIR/HLA mismatch between partners. The absence of such an iKIR/HLA bond renders donor-derived allogeneic HIV-1 infected cells vulnerable to NK cell responses during HIV-1

  5. Granular boycott effect: How to mix granulates

    Science.gov (United States)

    Duran, J.; Mazozi, T.

    1999-11-01

    Granular material can display the basic features of the Boycott effect in sedimentation. A simple experiment shows that granular material falls faster in an inclined tube than in a vertical tube, in analogy with the Boycott effect. As long as the inclination of the tube is above the avalanche threshold, descent of granular material in the tube causes internal convection which in turn results in an efficient mixture of the granular components. By contrast, as in analogous experiments in two dimensions, a vertical fall of granular material occurs via successive block fragmentation, resulting in poor mixing.

  6. Biological and Pharmacological Aspects of the NK1-Receptor

    Directory of Open Access Journals (Sweden)

    Susana Garcia-Recio

    2015-01-01

    Full Text Available The neurokinin 1 receptor (NK-1R is the main receptor for the tachykinin family of peptides. Substance P (SP is the major mammalian ligand and the one with the highest affinity. SP is associated with multiple processes: hematopoiesis, wound healing, microvasculature permeability, neurogenic inflammation, leukocyte trafficking, and cell survival. It is also considered a mitogen, and it has been associated with tumorigenesis and metastasis. Tachykinins and their receptors are widely expressed in various human systems such as the nervous, cardiovascular, genitourinary, and immune system. Particularly, NK-1R is found in the nervous system and in peripheral tissues and are involved in cellular responses such as pain transmission, endocrine and paracrine secretion, vasodilation, and modulation of cell proliferation. It also acts as a neuromodulator contributing to brain homeostasis and to sensory neuronal transmission associated with depression, stress, anxiety, and emesis. NK-1R and SP are present in brain regions involved in the vomiting reflex (the nucleus tractus solitarius and the area postrema. This anatomical localization has led to the successful clinical development of antagonists against NK-1R in the treatment of chemotherapy-induced nausea and vomiting (CINV. The first of these antagonists, aprepitant (oral administration and fosaprepitant (intravenous administration, are prescribed for high and moderate emesis.

  7. A Novel System of Polymorphic and Diverse NK Cell Receptors in Primates

    Science.gov (United States)

    Rosner, Cornelia; Neff, Jennifer; Roos, Christian; Eberle, Manfred; Aujard, Fabienne; Münch, Claudia; Schempp, Werner; Carrington, Mary; Shiina, Takashi; Inoko, Hidetoshi; Knaust, Florian; Coggill, Penny; Sehra, Harminder; Beck, Stephan; Abi-Rached, Laurent; Reinhardt, Richard; Walter, Lutz

    2009-01-01

    There are two main classes of natural killer (NK) cell receptors in mammals, the killer cell immunoglobulin-like receptors (KIR) and the structurally unrelated killer cell lectin-like receptors (KLR). While KIR represent the most diverse group of NK receptors in all primates studied to date, including humans, apes, and Old and New World monkeys, KLR represent the functional equivalent in rodents. Here, we report a first digression from this rule in lemurs, where the KLR (CD94/NKG2) rather than KIR constitute the most diverse group of NK cell receptors. We demonstrate that natural selection contributed to such diversification in lemurs and particularly targeted KLR residues interacting with the peptide presented by MHC class I ligands. We further show that lemurs lack a strict ortholog or functional equivalent of MHC-E, the ligands of non-polymorphic KLR in “higher” primates. Our data support the existence of a hitherto unknown system of polymorphic and diverse NK cell receptors in primates and of combinatorial diversity as a novel mechanism to increase NK cell receptor repertoire. PMID:19834558

  8. Interferon-alpha subtype 11 activates NK cells and enables control of retroviral infection.

    Directory of Open Access Journals (Sweden)

    Kathrin Gibbert

    Full Text Available The innate immune response mediated by cells such as natural killer (NK cells is critical for the rapid containment of virus replication and spread during acute infection. Here, we show that subtype 11 of the type I interferon (IFN family greatly potentiates the antiviral activity of NK cells during retroviral infection. Treatment of mice with IFN-α11 during Friend retrovirus infection (FV significantly reduced viral loads and resulted in long-term protection from virus-induced leukemia. The effect of IFN-α11 on NK cells was direct and signaled through the type I IFN receptor. Furthermore, IFN-α11-mediated activation of NK cells enabled cytolytic killing of FV-infected target cells via the exocytosis pathway. Depletion and adoptive transfer experiments illustrated that NK cells played a major role in successful IFN-α11 therapy. Additional experiments with Mouse Cytomegalovirus infections demonstrated that the therapeutic effect of IFN-α11 is not restricted to retroviruses. The type I IFN subtypes 2 and 5, which bind the same receptor as IFN-α11, did not elicit similar antiviral effects. These results demonstrate a unique and subtype-specific activation of NK cells by IFN-α11.

  9. Granularity controlled irradiation response of cuprate superconductors

    International Nuclear Information System (INIS)

    Mishra, N.C.; Behera, D.; Mohanty, T.; Mohanta, D.; Kanjilal, D.; Mehta, G.K.; Pinto, R.

    1999-01-01

    Confining to an energy range where ions can neither create defects through elastic energy loss nor they can create defects through latent track formation, we study the effect of 140 MeV Si-ion irradiation in YBa 2 Cu 3 O 7-x (YBCO). We show that the evolution of superconducting and normal state properties in such situation is largely governed by the initial defects structure, particularly the grain boundary characteristics of the YBCO system. Both intra- and inter-granular defect structure in films of two batches were made widely different by having Ag as composite and substituent in one and by aging the other prior to irradiation. Evolution of the resistivity vs temperature characteristics in these films with ion fluence reveals the importance of Ag in bringing about both inter- and intra-granular modifications and making the films insensitive to ion irradiation

  10. MUC16 provides immune protection by inhibiting synapse formation between NK and ovarian tumor cells

    Directory of Open Access Journals (Sweden)

    Migneault Martine

    2010-01-01

    Full Text Available Abstract Background Cancer cells utilize a variety of mechanisms to evade immune detection and attack. Effective immune detection largely relies on the formation of an immune synapse which requires close contact between immune cells and their targets. Here, we show that MUC16, a heavily glycosylated 3-5 million Da mucin expressed on the surface of ovarian tumor cells, inhibits the formation of immune synapses between NK cells and ovarian tumor targets. Our results indicate that MUC16-mediated inhibition of immune synapse formation is an effective mechanism employed by ovarian tumors to evade immune recognition. Results Expression of low levels of MUC16 strongly correlated with an increased number of conjugates and activating immune synapses between ovarian tumor cells and primary naïve NK cells. MUC16-knockdown ovarian tumor cells were more susceptible to lysis by primary NK cells than MUC16 expressing controls. This increased lysis was not due to differences in the expression levels of the ligands for the activating receptors DNAM-1 and NKG2D. The NK cell leukemia cell line (NKL, which does not express KIRs but are positive for DNAM-1 and NKG2D, also conjugated and lysed MUC16-knockdown cells more efficiently than MUC16 expressing controls. Tumor cells that survived the NKL challenge expressed higher levels of MUC16 indicating selective lysis of MUC16low targets. The higher csMUC16 levels on the NKL resistant tumor cells correlated with more protection from lysis as compared to target cells that were never exposed to the effectors. Conclusion MUC16, a carrier of the tumor marker CA125, has previously been shown to facilitate ovarian tumor metastasis and inhibits NK cell mediated lysis of tumor targets. Our data now demonstrates that MUC16 expressing ovarian cancer cells are protected from recognition by NK cells. The immune protection provided by MUC16 may lead to selective survival of ovarian cancer cells that are more efficient in

  11. Highly (002) textured large grain bcc Cr{sub 80}Mn{sub 20} seed layer on Cr{sub 50}Ti{sub 50} amorphous layer for FePt-C granular film

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong-Jae, E-mail: jsjigst@ecei.tohoku.ac.jp; Saito, Shin [Department of Electronic Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Hinata, Shintaro [Department of Electronic Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Japan Society for the Promotion of Science Research Fellow (PD), 5-3-1, Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Takahashi, Migaku [New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2015-05-07

    Effect of bcc Cr{sub 80}Mn{sub 20} seed layer and Cr{sub 50}Ti{sub 50} amorphous texture inducing layer on the heteroepitaxy system in FePt-C granular film was studied by introducing a new concept of the layered structure. The concept suggested that the large grain seed layer in which the crystallographic texture was initially formed on an amorphous layer in the layered structure can reduce the angular distribution of (002) c-axis crystal orientation in the FePt-C granular film owing to heteroepitaxial growth. Structure analysis by X-ray diffraction revealed that (1) when the substrate heating temperature was elevated from 300 °C to 500 °C, grain size in the seed layer increased from 9.8 nm to 11.6 nm, and then decreased with further increasing the substrate temperature. The reduction of the grain size over 500 °C corresponds to the crystallization of the amorphous texture inducing layer, (2) when the grain size increased from 9.8 nm to 11.6 nm, the angular distribution of the (002) orientation in the seed layer dramatically decreased from 13.7° to 4.1°. It was shown that the large grain seed layer increased the perpendicular hysteresis in FePt-C granular film.

  12. HIV-Specific ADCC Improves After Antiretroviral Therapy and Correlates With Normalization of the NK Cell Phenotype

    DEFF Research Database (Denmark)

    Jensen, Sanne S; Hartling, Hans J; Tingstedt, Jeanette L

    2015-01-01

    analyzed. RESULTS: The ability of NK cells to mediate ADCC was significantly increased after only 6 months of HAART and was not explained by a normalization of NK cell subsets (CD56 CD16 and CD56 CD16 NK cells) but rather by normalization in the frequency of NK cells expressing CCR7 and CD27...

  13. Settling properties of aerobic granular sludge (AGS) and aerobic granular sludge molasses (AGSM)

    Science.gov (United States)

    Mat Saad, Azlina; Aini Dahalan, Farrah; Ibrahim, Naimah; Yasina Yusuf, Sara; Aqlima Ahmad, Siti; Khalil, Khalilah Abdul

    2018-03-01

    Aerobic granulation technology is applied to treat domestic and industrial wastewater. The Aerobic granular sludge (AGS) cultivated has strong properties that appears to be denser and compact in physiological structure compared to the conventional activated sludge. It offers rapid settling for solid:liquid separation in wastewater treatment. Aerobic granules were developed using sequencing batch reactor (SBR) with intermittent aerobic - anaerobic mode with 8 cycles in 24 hr. This study examined the settling velocity performance of cultivated aerobic granular sludge (AGS) and aerobic granular sludge molasses (AGSM). The elemental composition in both AGS and AGSM were determined using X-ray fluorescence (XRF). The results showed that AGSM has higher settling velocity 30.5 m/h compared to AGS.

  14. Quantifying non-ergodic dynamics of force-free granular gases.

    Science.gov (United States)

    Bodrova, Anna; Chechkin, Aleksei V; Cherstvy, Andrey G; Metzler, Ralf

    2015-09-14

    Brownian motion is ergodic in the Boltzmann-Khinchin sense that long time averages of physical observables such as the mean squared displacement provide the same information as the corresponding ensemble average, even at out-of-equilibrium conditions. This property is the fundamental prerequisite for single particle tracking and its analysis in simple liquids. We study analytically and by event-driven molecular dynamics simulations the dynamics of force-free cooling granular gases and reveal a violation of ergodicity in this Boltzmann-Khinchin sense as well as distinct ageing of the system. Such granular gases comprise materials such as dilute gases of stones, sand, various types of powders, or large molecules, and their mixtures are ubiquitous in Nature and technology, in particular in Space. We treat-depending on the physical-chemical properties of the inter-particle interaction upon their pair collisions-both a constant and a velocity-dependent (viscoelastic) restitution coefficient ε. Moreover we compare the granular gas dynamics with an effective single particle stochastic model based on an underdamped Langevin equation with time dependent diffusivity. We find that both models share the same behaviour of the ensemble mean squared displacement (MSD) and the velocity correlations in the limit of weak dissipation. Qualitatively, the reported non-ergodic behaviour is generic for granular gases with any realistic dependence of ε on the impact velocity of particles.

  15. Density-wave fronts on the brink of wet granular condensation

    Science.gov (United States)

    Huang, Kai; Zippelius, Andreas; Sand lab @ University of Bayreuth Team

    2017-11-01

    From sand dunes to Faraday heaping, driven granular matter, i.e., large agglomeration of macroscopic particles, is rich pattern forming system. When a granular material is partially wet (e.g., wet sand on the beach), a different pattern forming scenario arises due to the cohesive particle-particle interactions. Here, we focus on the formation of density-wave fronts in an oscillated wet granular layer undergoing a gas-liquid-like transition. The threshold of the instability is governed by the amplitude of the vertical vibrations. Fronts, which are curved into a spiral shape, propagate coherently along the circular rim of the container with leading edges. They are stable beyond a critical distance from the container center. Based on the measurement of the critical distance and the rotation frequency, we propose a model for the pattern formation by considering the competition between the time scale for the collapse of cohesive particles and that of the energy injection resisting this process. Deutsche Forschungsgemeinschaft (Grant No. HU1939 4-1).

  16. NKL homeobox gene MSX1 acts like a tumor suppressor in NK-cell leukemia.

    Science.gov (United States)

    Nagel, Stefan; Pommerenke, Claudia; Meyer, Corinna; Kaufmann, Maren; MacLeod, Roderick A F; Drexler, Hans G

    2017-09-15

    NKL homeobox gene MSX1 is physiologically expressed in lymphoid progenitors and subsequently downregulated in developing T- and B-cells. In contrast, elevated expression levels of MSX1 persist in mature natural killer (NK)-cells, indicating a functional role in this compartment. While T-cell acute lymphoblastic leukemia (T-ALL) subsets exhibit aberrant overexpression of MSX1, we show here that in malignant NK-cells the level of MSX1 transcripts is aberrantly downregulated. Chromosomal deletions at 4p16 hosting the MSX1 locus have been described in NK-cell leukemia patients. However, NK-cell lines analyzed here showed normal MSX1 gene configurations, indicating that this aberration might be uncommon. To identify alternative MSX1 regulatory mechanisms we compared expression profiling data of primary normal NK-cells and malignant NK-cell lines. This procedure revealed several deregulated genes including overexpressed IRF4, MIR155HG and MIR17HG and downregulated AUTS2, EP300, GATA3 and HHEX. As shown recently, chromatin-modulator AUTS2 is overexpressed in T-ALL subsets where it mediates aberrant transcriptional activation of MSX1. Here, our data demonstrate that in malignant NK-cell lines AUTS2 performed MSX1 activation as well, but in accordance with downregulated MSX1 transcription therein we detected reduced AUTS2 expression, a small genomic deletion at 7q11 removing exons 3 and 4, and truncating mutations in exon 1. Moreover, genomic profiling and chromosomal analyses of NK-cell lines demonstrated amplification of IRF4 at 6p25 and deletion of PRDM1 at 6q21, highlighting their potential oncogenic impact. Functional analyses performed via knockdown or forced expression of these genes revealed regulatory network disturbances effecting downregulation of MSX1 which may underlie malignant development in NK-cells.

  17. Uniform shock waves in disordered granular matter

    NARCIS (Netherlands)

    Gómez, L.R.; Turner, A.M.; Vitelli, V.

    2012-01-01

    The confining pressure P is perhaps the most important parameter controlling the properties of granular matter. Strongly compressed granular media are, in many respects, simple solids in which elastic perturbations travel as ordinary phonons. However, the speed of sound in granular aggregates

  18. Granular packing as model glass formers

    International Nuclear Information System (INIS)

    Wang Yujie

    2017-01-01

    Static granular packings are model hard-sphere glass formers. The nature of glass transition has remained a hotly debated issue. We review recent experimental progresses in using granular materials to study glass transitions. We focus on the growth of glass order with five-fold symmetry in granular packings and relate the findings to both geometric frustration and random first-order phase transition theories. (paper)

  19. Transport and fluctuations in granular fluids from Boltzmann equation to hydrodynamics, diffusion and motor effects

    CERN Document Server

    Puglisi, Andrea

    2015-01-01

    This brief offers a concise presentation of granular fluids from the  point of view of non-equilibrium statistical physics. The emphasis is on fluctuations, which can be large in granular fluids due to the small system size (the number of grains is many orders of magnitude smaller than in molecular fluids). Firstly, readers will be introduced to the most intriguing experiments on fluidized granular fluids. Then granular fluid theory, which goes through increasing levels of coarse-graining and emerging collective phenomena, is described. Problems and questions are initially posed at the level of kinetic theory, which describes particle densities in full or reduced phase-space. Some answers become clear through hydrodynamics, which describes the evolution of slowly evolving fields. Granular fluctuating hydrodynamics, which builds a bridge to the most recent results in non-equilibrium statistical mechanics, is also introduced. Further and more interesting answers come when the dynamics of a massive intruder are...

  20. Statistical and visual probing of evolving granular assemblies

    International Nuclear Information System (INIS)

    Smith, Laurence M.

    2002-01-01

    The majority of processes in the chemical and allied industries involve the storage and conveyancing of granular material, the physics of which is still not particularly well understood. Whilst some non-invasive techniques have been developed, much experimental work unfortunately interferes with the fields being investigated. For this reason and in conjunction with increasing computing power, there has been an increase in simulation based studies. Granular dynamics simulations, being based upon inter-particle interaction laws, give the potential to investigate assemblies at the 'micro-level' and have been successful in modelling process conditions in a number of granular flow situations. To date, most analyses of these simulations are essentially static in nature involving 'time snapshots'. However, in a granular dynamics simulation there is a wealth of data available on a time referenced basis which has the potential to allow a quantitative analysis of the dynamics of assembly evolution. This dissertation describes the development and application of a toolkit for post-simulation analysis. However, the utilities within the toolkit would be equally applicable to large experimental data sets should such data sets exist. The application of the toolset focuses largely on the dynamics of heap evolution in both 2D and 3D with some supportive 3D work on hopper discharge. A major part of the work involves the application of time series techniques (including the wavelet transform) in the context of variable coupling during avalanching. Segregation by self-diffusion receives particular attention and a new mechanism is proposed by which segregation by particle size takes place in the boundary layer of a low impact feed heap displaying a clear velocity gradient during discrete avalanching. Periodic lateral surging is shown to enforce mixing for a high impact feed, a phenomenon which appears to switch off below a certain feed impact. Segregation by self-diffusion is also shown

  1. NKp46 defines ovine cells that have characteristics corresponding to NK cells

    Directory of Open Access Journals (Sweden)

    Connelley Timothy

    2011-02-01

    Full Text Available Abstract Natural killer (NK cells are well recognized as playing a key role in innate immune defence through cytokine production and cytotoxic activity; additionally recent studies have identified several novel NK cell functions. The ability to study NK cells in the sheep has been restricted due to a lack of specific reagents. We report the generation of a monoclonal antibody specific for ovine NKp46, a receptor which in a number of mammals is expressed exclusively in NK cells. Ovine NKp46+ cells represent a population that is distinct from CD4+ and γδ+ T-cells, B-cells and cells of the monocytic lineage. The NKp46+ cells are heterogenous with respect to expression of CD2 and CD8 and most, but not all, express CD16 - characteristics consistent with NK cell populations in other species. We demonstrate that in addition to populations in peripheral blood and secondary lymphoid organs, ovine NKp46+ populations are also situated at the mucosal surfaces of the lung, gastro-intestinal tract and non-gravid uterus. Furthermore, we show that purified ovine NKp46+ populations cultured in IL-2 and IL-15 have cytotoxic activity that could be enhanced by ligation of NKp46 in re-directed lysis assays. Therefore we conclude that ovine NKp46+ cells represent a population that by phenotype, tissue distribution and function correspond to NK cells and that NKp46 is an activating receptor in sheep as in other species.

  2. [Phenotypic and functional features of NK and NKT cells in chronic hepatitis B].

    Science.gov (United States)

    Wu, Shaofei; Li, Man; Sun, Xuehua; Zhou, Zhenhua; Zhu, Xiaojun; Zhang, Xin; Gao, Yueqiu

    2015-06-01

    To detect the ratio of natural killer (NK)/natural killer T (NKT) cells in peripheral blood, the levels of NKG2D/NKG2A, interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α) in patients with chronic hepatitis B (CHB). Peripheral blood mononuclear cells (PBMCs) were harvested from CHB patients. The ratio of NK/NKT cells in PBMCs and the levels of NKG2D and NKG2A were detected by flow cytometry. The expressions of intracellular IFN-γ and TNF-α were analyzed by flow cytometry after the treatment with phorbol 12-myristate 13-acetate (PMA), brefeldin A (BFA) or ionomycin in vitro. The comparison between two groups was performed by independent sample t-test. The relationship of each index to hepatitis B virus load and serum alanine aminotransferase was analyzed by Pearson correlation analysis. Compared with healthy controls, CHB patients presented with significantly decreased peripheral blood NK/NKT cell ratio and significantly elevated proportions of NKG2A+ NK and NKG2A+NKT cells, and after the treatment with PMA/BFA/ionomycin, IFN-γ+ NK and IFN-γ+ NKT cells were significantly reduced in CHB patients. NK and NKT cells showed a reduced ratio, disordered receptor expressions and decreased cytokine secretion capacity in CHB patients.

  3. TLR4 plays a crucial role in MSC-induced inhibition of NK cell function

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ying [No. 307 Hospital of the Chinese People' s Liberation Army, Beijing (China); Liu, Jin; Liu, Yang; Qin, Yaru [Beijing Institute of Radiation Medicine, Beijing (China); Luo, Qun [No. 307 Hospital of the Chinese People' s Liberation Army, Beijing (China); Wang, Quanli, E-mail: 13691110351@163.com [No. 307 Hospital of the Chinese People' s Liberation Army, Beijing (China); Duan, Haifeng, E-mail: duanhf0720@163.com [Beijing Institute of Radiation Medicine, Beijing (China)

    2015-08-21

    Mesenchymal stem cells (MSC) are a kind of stromal cell within the tumor microenvironment. In our research, MSC derived from acute myeloid leukemia patients' bone marrow (AML-MSC) and lung cancer tissues (LC-MSC) as well as normal bone marrow-derived MSC (BM-MSC) cultured in conditioned medium of HeLa cells were found to have higher expressions of Toll-like receptor (TLR4) mRNA compared with BM-MSC. The sorted TLR4-positive MSC (TLR4+ MSC) differed in cytokine (interleukin-6, interleukin-8, and monocyte chemoattractant protein-1) secretion from those of unsorted MSC. MSC was reported to inhibit natural killer (NK) cell proliferation and function. In this research, we confirmed that TLR4+ MSC aggravate this suppression. Furthermore, when TLR4 in the sorted cells were stimulated by LPS or following blocked by antibody, the suppression on NK cell proliferation and cytotoxicity were more intensive or recovered respectively. Compared to unsorted MSC, NKG2D receptor expression on NK cells were also inhibited by TLR4+ MSC. These findings suggest that activation of TLR4 pathway is important for TLR4+ MSC and MSC to obstruct anti-tumor immunity by inhibiting NK cell function, which may provide a potential stroma-targeted tumor therapy. - Highlights: • TLR4+ MSC inhibit NK cell proliferation in vivo and in vitro. • TLR4+ MSC inhibit NKG2D expression on NK cells and NK cell cytotoxicity. • The distinguished cytokine expression of TLR4+ MSC may contribute to the inhibition on NK cell function.

  4. Regulatory NK cells mediated between immunosuppressive monocytes and dysfunctional T cells in chronic HBV infection.

    Science.gov (United States)

    Li, Haijun; Zhai, Naicui; Wang, Zhongfeng; Song, Hongxiao; Yang, Yang; Cui, An; Li, Tianyang; Wang, Guangyi; Niu, Junqi; Crispe, Ian Nicholas; Su, Lishan; Tu, Zhengkun

    2017-09-12

    HBV infection represents a major health problem worldwide, but the immunological mechanisms by which HBV causes chronic persistent infection remain only partly understood. Recently, cell subsets with suppressive features have been recognised among monocytes and natural killer (NK) cells. Here we examine the effects of HBV on monocytes and NK cells. Monocytes and NK cells derived from chronic HBV-infected patients and healthy controls were purified and characterised for phenotype, gene expression and cytokines secretion by flow cytometry, quantitative real-time (qRT)-PCR, ELISA and western blotting. Culture and coculture of monocytes and NK cells were used to determine NK cell activation, using intracellular cytokines staining. In chronic HBV infection, monocytes express higher levels of PD-L1, HLA-E, interleukin (IL)-10 and TGF-β, and NK cells express higher levels of PD-1, CD94 and IL-10, compared with healthy individuals. HBV employs hepatitis B surface antigen (HBsAg) to induce suppressive monocytes with HLA-E, PD-L1, IL-10 and TGF-β expression via the MyD88/NFκB signalling pathway. HBV-treated monocytes induce NK cells to produce IL-10, via PD-L1 and HLA-E signals. Such NK cells inhibit autologous T cell activation. Our findings reveal an immunosuppressive cascade, in which HBV generates suppressive monocytes, which initiate regulatory NK cells differentiation resulting in T cell inhibition. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Genotype, Phenotype and Outcomes of Nine Patients with T-B+NK+ SCID

    OpenAIRE

    Yu, Grace P; Nadeau, Kari C; Berk, David R; de Saint Basile, Geneviève; Lambert, Nathalie; Knapnougel, Perrine; Roberts, Joseph; Kavanau, Kristina; Dunn, Elizabeth; Stiehm, E. Richard; Lewis, David B; Umetsu, Dale T; Puck, Jennifer M; Cowan, Morton J

    2011-01-01

    There are few reports of clinical presentation, genotype, and hematopoietic cell transplant (HCT) outcomes for T-B+NK+ SCID patients. Between 1981 and 2007, 8 of 84 SCID patients who received and/or were followed after HCT at UCSF had the T-B+NK+ phenotype. One additional T-B+NK+ SCID patient was identified as the sibling of a patient treated at UCSF. Chart reviews were performed. Molecular analyses of IL7R, IL2RG, JAK3 and the genes encoding the CD3 T-cell receptor components δ (CD3D), ε (CD...

  6. Changes in NK and NKT cells in mesenteric lymph nodes after a Schistosoma japonicum infection.

    Science.gov (United States)

    Luo, Xueping; Xie, Hongyan; Chen, Dianhui; Yu, Xiuxue; Wu, Fan; Li, Lu; Wu, Changyou; Huang, Jun

    2014-03-01

    The mesenteric lymph node (MLN) is the main draining lymph node in mouse enterocoelia, which contains many types of immune cells. Among these cells, natural killer (NK) and natural killer T (NKT) cells belong to innate lymphoid cells (ILCs), which have potent activities for controlling a variety of pathogenic infections. In this study, C57BL/6 mice were infected with Schistosoma japonicum for 5-7 weeks. Lymphocytes were isolated from the MLN to detect changes in the phenotype and function of NK and NKT cells using a fluorescence activating cell sorter (FACS). These results demonstrated that a S. japonicum infection could significantly increase the percentage of NK cells in the mouse MLN, (P cell number of both NK and NKT cells. In addition, we found that NK and NKT cells from infected mice expressed higher levels of CD69 compared to normal mice (P NKT cell activation. Moreover, we found that the expression of CD4 was increased in infected MLN NK cells (P NKT cells of infected mice after phorbol 12-myristate 13-acetate (PMA) and ionomycin stimulation (P NKT cells might play roles in modulating the classical T cell response. Finally, our results indicated that the expression of CD94 was decreased in NK cells, suggesting that the downregulation of CD94 expression might served as a mechanism in NK cell activation.

  7. Traffic and Granular Flow ’03

    CERN Document Server

    Luding, Stefan; Bovy, Piet; Schreckenberg, Michael; Wolf, Dietrich

    2005-01-01

    These proceedings are the fifth in the series Traffic and Granular Flow, and we hope they will be as useful a reference as their predecessors. Both the realistic modelling of granular media and traffic flow present important challenges at the borderline between physics and engineering, and enormous progress has been made since 1995, when this series started. Still the research on these topics is thriving, so that this book again contains many new results. Some highlights addressed at this conference were the influence of long range electric and magnetic forces and ambient fluids on granular media, new precise traffic measurements, and experiments on the complex decision making of drivers. No doubt the “hot topics” addressed in granular matter research have diverged from those in traffic since the days when the obvious analogies between traffic jams on highways and dissipative clustering in granular flow intrigued both c- munities alike. However, now just this diversity became a stimulating feature of the ...

  8. Trypanosoma brucei Co-opts NK Cells to Kill Splenic B2 B Cells.

    Directory of Open Access Journals (Sweden)

    Deborah Frenkel

    2016-07-01

    Full Text Available After infection with T. brucei AnTat 1.1, C57BL/6 mice lost splenic B2 B cells and lymphoid follicles, developed poor parasite-specific antibody responses, lost weight, became anemic and died with fulminating parasitemia within 35 days. In contrast, infected C57BL/6 mice lacking the cytotoxic granule pore-forming protein perforin (Prf1-/- retained splenic B2 B cells and lymphoid follicles, developed high-titer antibody responses against many trypanosome polypeptides, rapidly suppressed parasitemia and did not develop anemia or lose weight for at least 60 days. Several lines of evidence show that T. brucei infection-induced splenic B cell depletion results from natural killer (NK cell-mediated cytotoxicity: i B2 B cells were depleted from the spleens of infected intact, T cell deficient (TCR-/- and FcγRIIIa deficient (CD16-/- C57BL/6 mice excluding a requirement for T cells, NKT cell, or antibody-dependent cell-mediated cytotoxicity; ii administration of NK1.1 specific IgG2a (mAb PK136 but not irrelevant IgG2a (myeloma M9144 prevented infection-induced B cell depletion consistent with a requirement for NK cells; iii splenic NK cells but not T cells or NKT cells degranulated in infected C57BL/6 mice co-incident with B cell depletion evidenced by increased surface expression of CD107a; iv purified NK cells from naïve C57BL/6 mice killed purified splenic B cells from T. brucei infected but not uninfected mice in vitro indicating acquisition of an NK cell activating phenotype by the post-infection B cells; v adoptively transferred C57BL/6 NK cells prevented infection-induced B cell population growth in infected Prf1-/- mice consistent with in vivo B cell killing; vi degranulated NK cells in infected mice had altered gene and differentiation antigen expression and lost cytotoxic activity consistent with functional exhaustion, but increased in number as infection progressed indicating continued generation. We conclude that NK cells in T. brucei

  9. Mesenchymal stem cell-based NK4 gene therapy in nude mice bearing gastric cancer xenografts

    Directory of Open Access Journals (Sweden)

    Zhu Y

    2014-12-01

    Full Text Available Yin Zhu,1,* Ming Cheng,2,* Zhen Yang,3 Chun-Yan Zeng,3 Jiang Chen,3 Yong Xie,3 Shi-Wen Luo,3 Kun-He Zhang,3 Shu-Feng Zhou,4 Nong-Hua Lu1,31Department of Gastroenterology, 2Department of Orthopedics, 3Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi, People’s Republic of China; 4Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA*These authors contributed equally to this workAbstract: Mesenchymal stem cells (MSCs have been recognized as promising delivery vehicles for gene therapy of tumors. Gastric cancer is the third leading cause of worldwide cancer mortality, and novel treatment modalities are urgently needed. NK4 is an antagonist of hepatocyte growth factor receptors (Met which are often aberrantly activated in gastric cancer and thus represent a useful candidate for targeted therapies. This study investigated MSC-delivered NK4 gene therapy in nude mice bearing gastric cancer xenografts. MSCs were transduced with lentiviral vectors carrying NK4 complementary DNA or enhanced green fluorescent protein (GFP. Such transduction did not change the phenotype of MSCs. Gastric cancer xenografts were established in BALB/C nude mice, and the mice were treated with phosphate-buffered saline (PBS, MSCs-GFP, Lenti-NK4, or MSCs-NK4. The tropism of MSCs toward gastric cancer cells was determined by an in vitro migration assay using MKN45 cells, GES-1 cells and human fibroblasts and their presence in tumor xenografts. Tumor growth, tumor cell apoptosis and intratumoral microvessel density of tumor tissue were measured in nude mice bearing gastric cancer xenografts treated with PBS, MSCs-GFP, Lenti-NK4, or MSCs-NK4 via tail vein injection. The results showed that MSCs migrated preferably to gastric cancer cells in vitro. Systemic MSCs-NK4 injection significantly suppressed the growth of gastric cancer xenografts. MSCs-NK4 migrated and accumulated in tumor

  10. Effect of low dose radiation (LDR) on biological activity of NK cell

    International Nuclear Information System (INIS)

    Yang Liyun; Lin Meixiong; Luo Min; Ran Min; Liang Xuefei

    2006-01-01

    Objective: To study the in vitro and in vivo effect of LDR on the proliferation and killing activity of mouse NK cells with exploitation of the related mechanism of signal transduction. The effect of infused NK cells on inhibiton of oncogenesis and tumor burden regression was also studied. Methods: Mononuclear cells extracted from mouse spleen were treated with immunomagnetic bead for the isolation of CD3 - /CD16 + , CD56 + cells. After verified with flowcytometry, these NK cells were cultured with mice splenic cells (irradiated with 20Gy 60 Co gamma ray) as feeder cells and rhIL-2 as induction factor for 3 rounds (5 days each round). Specimens of cultured NK cells were treated with different doses of radiation (25mGy, 75mGy, 200mGy, 500mGy), the proliferation index (PI) with tumoreidal activity on K562 cells (with 3 H-TdR) incorporation was examined at 4h, 24h, 48h, 72h after irradiation respectively. The role of P38MAPK signal pathway in the LDR effect was examined with adding either inhibitor (SB203580) or activator (P79350) of P38MAPK into the culture and measuring the PI, Killing activity (as expression of the related factors IFN-gamma, FasL, perforin) of NK cells thereafter. The in vivo test involved exposing mice to whole body 25mGy irradiation, harvesting splenic NK cells at 4h, 24h, 48h, 72h later respectively and performing the above-described in vitro procedures. Inhibition of oncogenesis was examined in vivo with infusion of cultured NK cells (LDR treated vs LDR non-treated) 10 days after infusion of K562 cells into mice and examination of hepatic/splenic CD 13+ , S-stage cells and peripheral blood tumor cells in the sacrificed animal another 10 days later. Also, K562 cells were innoculated subcutaneously into mice. After tumor nodule formation (2.0 x 2.0 mm), NK cells (LDR treated vs non-treated) were infused and regression of the tumor nodule with the weight of hepatic tumor mass was noticed in sacrificed animals on d 8 and the survival rate on d 40

  11. How granular vortices can help understanding rheological and mixing properties of dense granular flows

    Directory of Open Access Journals (Sweden)

    Rognon Pierre

    2017-01-01

    Full Text Available Dense granular flows exhibit fascinating kinematic patterns characterised by strong fluctuations in grain velocities. In this paper, we analyse these fluctuations and discuss their possible role on macroscopic properties such as effective viscosity, non-locality and shear-induced diffusion. The analysis is based on 2D experimental granular flows performed with the stadium shear device and DEM simulations. We first show that, when subjected to shear, grains self-organised into clusters rotating like rigid bodies. The average size of these so-called granular vortices is found to increase and diverge for lower inertial numbers, when flows decelerate and stop. We then discuss how such a microstructural entity and its associated internal length scale, possibly much larger than a grain, may be used to explain two important properties of dense granular flows: (i the existence of shear-induced diffusion of grains characterised by a shear-rate independent diffusivity and (ii the development of boundary layers near walls, where the viscosity is seemingly lower than the viscosity far from walls.

  12. Effect of powder sample granularity on fluorescent intensity and on thermal parameters in x-ray diffraction Rietveld analysis

    International Nuclear Information System (INIS)

    Sparks, C.J.; Specht, E.D.; Ice, G.E.; Kumar, R.; Zschack, P.; Shiraishi, T.; Hisatsune, K.

    1991-01-01

    The effect of sample granularity on diffracted x-ray intensity was evaluated by measuring the 2θ dependence of x-ray fluorescence from various samples. Measurements were made in the symmetric geometry on samples ranging from single crystals to highly absorbing coarse powders. A characteristic shape for the absorption correction was observed. A demonstration of the sensitivity of Rietveld refined site occupation parameters is made on CuAu and Cu 50 Au 44 Ni 6 alloys refined with and without granularity corrections. These alloys provide a good example of the effect of granularity due to their large linear x-ray absorption coefficients. Sample granularity and refined thermal parameters obtained from the Rietveld analysis were found to be correlated. Without a granularity correction, the refined thermal parameters are too low and can actually become negative in an attempt to compensate for granularity. A general shape for granularity correction can be included in refinement procedures. If no granularity correction is included, data should be restricted to above 30 degrees 2θ, and thermal parameters should be ignored unless extreme precautions are taken to produce >5 μm particles and high packing densities

  13. NK and NKT-Like Cells in Patients with Recurrent Furunculosis.

    Science.gov (United States)

    Nowicka, Danuta; Grywalska, Ewelina; Fitas, Elżbieta; Mielnik, Michał; Roliński, Jacek

    2017-12-13

    To analyze changes in the number and percentage of NK and NKT-like cells in relation to other immune cells as well as to examine associations between increased susceptibility to infections and NK and NKT-like status in patients with recurrent furunculosis (RF) and healthy controls. Thirty patients with RF and 20 healthy age- and sex-matched volunteers were recruited. Blood samples were examined. Lymphocyte count and cytometric analyses were conducted. For statistical analysis, the Student's t test, F test, and Brown-Forsythe test were used for comparison between groups of variables. Associations were assessed with Pearson coefficient. Patients with RF had lower lymphocyte count than controls. Additionally, they presented with the following changes in the blood picture: a significant increase in the number of NK cells with a CD3 + CD16 + CD56 + phenotype; a proportional increase in the number and percentage of NKT-like cells with a CD3 + CD16 + CD56 + phenotype; a significant decrease in the number and percentage of T CD3 + cells. The number of NK cells was strongly positively correlated with the number of CD3 cells (r = 0.6162). The number of NKT cells was strongly positively correlated with CD3 cells (r = 0.6885) and CD3CD8 cells (r = 0.5465). Periodic exacerbations in RF are associated with the development of furuncles, which are a result of many already discovered as well as just being examined mechanisms. One of them is a significant increase in the number and most likely activation of NK and NKT-like cells during the formation of the inflammatory process and furuncles.

  14. Controlling wave propagation through nonlinear engineered granular systems

    Science.gov (United States)

    Leonard, Andrea

    We study the fundamental dynamic behavior of a special class of ordered granular systems in order to design new, structured materials with unique physical properties. The dynamic properties of granular systems are dictated by the nonlinear, Hertzian, potential in compression and zero tensile strength resulting from the discrete material structure. Engineering the underlying particle arrangement of granular systems allows for unique dynamic properties, not observed in natural, disordered granular media. While extensive studies on 1D granular crystals have suggested their usefulness for a variety of engineering applications, considerably less attention has been given to higher-dimensional systems. The extension of these studies in higher dimensions could enable the discovery of richer physical phenomena not possible in 1D, such as spatial redirection and anisotropic energy trapping. We present experiments, numerical simulation (based on a discrete particle model), and in some cases theoretical predictions for several engineered granular systems, studying the effects of particle arrangement on the highly nonlinear transient wave propagation to develop means for controlling the wave propagation pathways. The first component of this thesis studies the stress wave propagation resulting from a localized impulsive loading for three different 2D particle lattice structures: square, centered square, and hexagonal granular crystals. By varying the lattice structure, we observe a wide range of properties for the propagating stress waves: quasi-1D solitary wave propagation, fully 2D wave propagation with tunable wave front shapes, and 2D pulsed wave propagation. Additionally the effects of weak disorder, inevitably present in real granular systems, are investigated. The second half of this thesis studies the solitary wave propagation through 2D and 3D ordered networks of granular chains, reducing the effective density compared to granular crystals by selectively placing wave

  15. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity.

    Science.gov (United States)

    Liu, E; Tong, Y; Dotti, G; Shaim, H; Savoldo, B; Mukherjee, M; Orange, J; Wan, X; Lu, X; Reynolds, A; Gagea, M; Banerjee, P; Cai, R; Bdaiwi, M H; Basar, R; Muftuoglu, M; Li, L; Marin, D; Wierda, W; Keating, M; Champlin, R; Shpall, E; Rezvani, K

    2018-02-01

    Chimeric antigen receptors (CARs) have been used to redirect the specificity of autologous T cells against leukemia and lymphoma with promising clinical results. Extending this approach to allogeneic T cells is problematic as they carry a significant risk of graft-versus-host disease (GVHD). Natural killer (NK) cells are highly cytotoxic effectors, killing their targets in a non-antigen-specific manner without causing GVHD. Cord blood (CB) offers an attractive, allogeneic, off-the-self source of NK cells for immunotherapy. We transduced CB-derived NK cells with a retroviral vector incorporating the genes for CAR-CD19, IL-15 and inducible caspase-9-based suicide gene (iC9), and demonstrated efficient killing of CD19-expressing cell lines and primary leukemia cells in vitro, with marked prolongation of survival in a xenograft Raji lymphoma murine model. Interleukin-15 (IL-15) production by the transduced CB-NK cells critically improved their function. Moreover, iC9/CAR.19/IL-15 CB-NK cells were readily eliminated upon pharmacologic activation of the iC9 suicide gene. In conclusion, we have developed a novel approach to immunotherapy using engineered CB-derived NK cells, which are easy to produce, exhibit striking efficacy and incorporate safety measures to limit toxicity. This approach should greatly improve the logistics of delivering this therapy to large numbers of patients, a major limitation to current CAR-T-cell therapies.

  16. A high-throughput assay of NK cell activity in whole blood and its clinical application

    International Nuclear Information System (INIS)

    Lee, Saet-byul; Cha, Junhoe; Kim, Im-kyung; Yoon, Joo Chun; Lee, Hyo Joon; Park, Sang Woo; Cho, Sunjung; Youn, Dong-Ye; Lee, Heyja; Lee, Choong Hwan; Lee, Jae Myun; Lee, Kang Young; Kim, Jongsun

    2014-01-01

    Graphical abstract: - Highlights: • We demonstrated a simple assay of NK cell activity from whole blood. • The measurement of secreted IFN-γ from NK cell enables high-throughput screening. • The NKA assay was validated by clinical results of colorectal cancer patients. - Abstract: Natural killer (NK) cells are lymphocytes of the innate immune system and have the ability to kill tumor cells and virus-infected cells without prior sensitization. Malignant tumors and viruses have developed, however, strategies to suppress NK cells to escape from their responses. Thus, the evaluation of NK cell activity (NKA) could be invaluable to estimate the status and the outcome of cancers, viral infections, and immune-mediated diseases. Established methods that measure NKA, such as 51 Cr release assay and CD107a degranulation assay, may be used to determine NK cell function, but they are complicated and time-consuming because they require isolation of peripheral blood mononuclear cells (PBMC) or NK cells. In some cases these assays require hazardous material such as radioactive isotopes. To overcome these difficulties, we developed a simple assay that uses whole blood instead of PBMC or isolated NK cells. This novel assay is suitable for high-throughput screening and the monitoring of diseases, because it employs serum of ex vivo stimulated whole blood to detect interferon (IFN)-γ secreted from NK cells as an indicator of NKA. After the stimulation of NK cells, the determination of IFNγ concentration in serum samples by enzyme-linked immunosorbent assay (ELISA) provided a swift, uncomplicated, and high-throughput assay of NKA ex vivo. The NKA results microsatellite stable (MSS) colorectal cancer patients was showed significantly lower NKA, 263.6 ± 54.5 pg/mL compared with healthy subjects, 867.5 ± 50.2 pg/mL (p value <0.0001). Therefore, the NKA could be utilized as a supportive diagnostic marker for microsatellite stable (MSS) colorectal cancer

  17. A high-throughput assay of NK cell activity in whole blood and its clinical application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Saet-byul [Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul (Korea, Republic of); Cha, Junhoe [ATGen Co. Ltd., Sungnam (Korea, Republic of); Kim, Im-kyung [Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); Yoon, Joo Chun [Department of Microbiology, Ewha Womans University School of Medicine, Seoul (Korea, Republic of); Lee, Hyo Joon [Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul (Korea, Republic of); Park, Sang Woo; Cho, Sunjung; Youn, Dong-Ye; Lee, Heyja; Lee, Choong Hwan [ATGen Co. Ltd., Sungnam (Korea, Republic of); Lee, Jae Myun [Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul (Korea, Republic of); Lee, Kang Young, E-mail: kylee117@yuhs.ac [Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); Kim, Jongsun, E-mail: jkim63@yuhs.ac [Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2014-03-14

    Graphical abstract: - Highlights: • We demonstrated a simple assay of NK cell activity from whole blood. • The measurement of secreted IFN-γ from NK cell enables high-throughput screening. • The NKA assay was validated by clinical results of colorectal cancer patients. - Abstract: Natural killer (NK) cells are lymphocytes of the innate immune system and have the ability to kill tumor cells and virus-infected cells without prior sensitization. Malignant tumors and viruses have developed, however, strategies to suppress NK cells to escape from their responses. Thus, the evaluation of NK cell activity (NKA) could be invaluable to estimate the status and the outcome of cancers, viral infections, and immune-mediated diseases. Established methods that measure NKA, such as {sup 51}Cr release assay and CD107a degranulation assay, may be used to determine NK cell function, but they are complicated and time-consuming because they require isolation of peripheral blood mononuclear cells (PBMC) or NK cells. In some cases these assays require hazardous material such as radioactive isotopes. To overcome these difficulties, we developed a simple assay that uses whole blood instead of PBMC or isolated NK cells. This novel assay is suitable for high-throughput screening and the monitoring of diseases, because it employs serum of ex vivo stimulated whole blood to detect interferon (IFN)-γ secreted from NK cells as an indicator of NKA. After the stimulation of NK cells, the determination of IFNγ concentration in serum samples by enzyme-linked immunosorbent assay (ELISA) provided a swift, uncomplicated, and high-throughput assay of NKA ex vivo. The NKA results microsatellite stable (MSS) colorectal cancer patients was showed significantly lower NKA, 263.6 ± 54.5 pg/mL compared with healthy subjects, 867.5 ± 50.2 pg/mL (p value <0.0001). Therefore, the NKA could be utilized as a supportive diagnostic marker for microsatellite stable (MSS) colorectal cancer.

  18. The influence of the fractal particle size distribution on the mobility of dry granular materials

    Directory of Open Access Journals (Sweden)

    Vallejo Luis E.

    2017-01-01

    Full Text Available This study presents an experimental analysis on the influence of the particle size distribution (psd on the mobility of dry granular materials. The psd obeys a power law of the form: N(L>d=kd-Df, where N is the number of particles with diameter L greater than a given diameter d, k is a proportionality constant, and Df is the fractal dimension of the psd. No laboratory or numerical study has been conducted to date analysing how a fractal psd influences the mobility of granular flows as in the case of rock avalanches. In this study, the flow characteristics of poly-dispersed granular materials that have a fractal psd were investigated in the laboratory. Granular mixtures having different fractal psd values were placed in a hollow cylinder. The cylinder was lifted and the distance of flow of the mixture was measured with respect to the original position of the cylinder. It was determined that the distance of flow of the mixtures was directly related to their fractal psd values. That is, the larger the distance of flow of the mixture, the larger is the fractal psd of the granular mixture tested. Thus, the fractal psd in dry granular mixtures seems to have a large influence on the easiness by which dry granular mixtures move in the field.

  19. NK cell activite in C157BL/Ka mice during the development of radiation induced thymic lymphomas

    International Nuclear Information System (INIS)

    Noel, A.; Schaaf-Lafontaine, N.; Defresne, M.P.; Boniver, J.

    1985-01-01

    Treatment of C57BL/Ka mice with a split dose whole-body irradiation (four weekly irradiations of 1,75 Gy) induces the development of thymic lymphomas. NK activity of spleen cells has been determined at several internals after leukemogenic treatment. Two days after irradiations, NK activity is normal and decreases strongly after one week. This period of decline persists during about one month. Then, NK activity restores and reaches control values. Lymphomas appear in spite of NK activity restauration. The diminution of NK activity during the preleukemic period could favour preleukemic cells apparition [fr

  20. Thermal conductivity of granular materials

    Energy Technology Data Exchange (ETDEWEB)

    Buyevich, Yu A

    1974-01-01

    Stationary heat transfer in a granular material consisting of a continuous medium containing spherical granules of other substances is considered under the assumption that the spatial distribution of granules is random. The effective thermal conductivity characterizing macroscopic heat transfer in such a material is expressed as a certain function of the conductivities and volume fractions of the medium and dispersed substances. For reasons of mathematical analogy, all the results obtained for the thermal conductivity are valid while computing the effective diffusivity of some admixture in granular materials as well as for evaluation of the effective electric conductivity or the mean dielectric and magnetic permeabilities of granular conductors and dielectrics. (23 refs.)

  1. Electromagnetic response of a highly granular hadronic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Adloff, C.; Blaha, J.; Blaising, J.J. [Savoie Univ., CNRS/IN2P3, Annecy-le-Vieux (FR). Lab. d' Annecy-le-Vieux de Physique des Particules] (and others)

    2010-12-15

    The CALICE collaboration is studying the design of high performance electromagnetic and hadronic calorimeters for future International Linear Collider detectors. For the hadronic calorimeter, one option is a highly granular sampling calorimeter with steel as absorber and scintillator layers as active material. High granularity is obtained by segmenting the scintillator into small tiles individually read out via silicon photo-multipliers (SiPM). A prototype has been built, consisting of thirty-eight sensitive layers, segmented into about eight thousand channels. In 2007 the prototype was exposed to positrons and hadrons using the CERN SPS beam, covering a wide range of beam energies and incidence angles. The challenge of cell equalization and calibration of such a large number of channels is best validated using electromagnetic processes. The response of the prototype steel-scintillator calorimeter, including linearity and uniformity, to electrons is investigated and described. (orig.)

  2. Electromagnetic response of a highly granular hadronic calorimeter

    International Nuclear Information System (INIS)

    Adloff, C.; Blaha, J.; Blaising, J.J.

    2010-12-01

    The CALICE collaboration is studying the design of high performance electromagnetic and hadronic calorimeters for future International Linear Collider detectors. For the hadronic calorimeter, one option is a highly granular sampling calorimeter with steel as absorber and scintillator layers as active material. High granularity is obtained by segmenting the scintillator into small tiles individually read out via silicon photo-multipliers (SiPM). A prototype has been built, consisting of thirty-eight sensitive layers, segmented into about eight thousand channels. In 2007 the prototype was exposed to positrons and hadrons using the CERN SPS beam, covering a wide range of beam energies and incidence angles. The challenge of cell equalization and calibration of such a large number of channels is best validated using electromagnetic processes. The response of the prototype steel-scintillator calorimeter, including linearity and uniformity, to electrons is investigated and described. (orig.)

  3. Wrinkles, folds, and plasticity in granular rafts

    Science.gov (United States)

    Jambon-Puillet, Etienne; Josserand, Christophe; Protière, Suzie

    2017-09-01

    We investigate the mechanical response of a compressed monolayer of large and dense particles at a liquid-fluid interface: a granular raft. Upon compression, rafts first wrinkle; then, as the confinement increases, the deformation localizes in a unique fold. This characteristic buckling pattern is usually associated with floating elastic sheets, and as a result, particle laden interfaces are often modeled as such. Here, we push this analogy to its limits by comparing quantitative measurements of the raft morphology to a theoretical continuous elastic model of the interface. We show that, although powerful to describe the wrinkle wavelength, the wrinkle-to-fold transition, and the fold shape, this elastic description does not capture the finer details of the experiment. We describe an unpredicted secondary wavelength, a compression discrepancy with the model, and a hysteretic behavior during compression cycles, all of which are a signature of the intrinsic discrete and frictional nature of granular rafts. It suggests also that these composite materials exhibit both plastic transition and jamming dynamics.

  4. Granular materials flow like complex fluids

    Science.gov (United States)

    Kou, Binquan; Cao, Yixin; Li, Jindong; Xia, Chengjie; Li, Zhifeng; Dong, Haipeng; Zhang, Ang; Zhang, Jie; Kob, Walter; Wang, Yujie

    2017-11-01

    Granular materials such as sand, powders and foams are ubiquitous in daily life and in industrial and geotechnical applications. These disordered systems form stable structures when unperturbed, but in the presence of external influences such as tapping or shear they `relax', becoming fluid in nature. It is often assumed that the relaxation dynamics of granular systems is similar to that of thermal glass-forming systems. However, so far it has not been possible to determine experimentally the dynamic properties of three-dimensional granular systems at the particle level. This lack of experimental data, combined with the fact that the motion of granular particles involves friction (whereas the motion of particles in thermal glass-forming systems does not), means that an accurate description of the relaxation dynamics of granular materials is lacking. Here we use X-ray tomography to determine the microscale relaxation dynamics of hard granular ellipsoids subject to an oscillatory shear. We find that the distribution of the displacements of the ellipsoids is well described by a Gumbel law (which is similar to a Gaussian distribution for small displacements but has a heavier tail for larger displacements), with a shape parameter that is independent of the amplitude of the shear strain and of the time. Despite this universality, the mean squared displacement of an individual ellipsoid follows a power law as a function of time, with an exponent that does depend on the strain amplitude and time. We argue that these results are related to microscale relaxation mechanisms that involve friction and memory effects (whereby the motion of an ellipsoid at a given point in time depends on its previous motion). Our observations demonstrate that, at the particle level, the dynamic behaviour of granular systems is qualitatively different from that of thermal glass-forming systems, and is instead more similar to that of complex fluids. We conclude that granular materials can relax

  5. In vivo IFN-γ secretion by NK cells in response to Salmonella typhimurium requires NLRC4 inflammasomes.

    Directory of Open Access Journals (Sweden)

    Andreas Kupz

    Full Text Available Natural killer (NK cells are a critical part of the innate immune defense against viral infections and for the control of tumors. Much less is known about how NK cells contribute to anti-bacterial immunity. NK cell-produced interferon gamma (IFN-γ contributes to the control of early exponential replication of bacterial pathogens, however the regulation of these events remains poorly resolved. Using a mouse model of invasive Salmonellosis, here we report that the activation of the intracellular danger sensor NLRC4 by Salmonella-derived flagellin within CD11c+ cells regulates early IFN-γ secretion by NK cells through the provision of interleukin 18 (IL-18, independently of Toll-like receptor (TLR-signaling. Although IL18-signalling deficient NK cells improved host protection during S. Typhimurium infection, this increased resistance was inferior to that provided by wild-type NK cells. These findings suggest that although NLRC4 inflammasome-driven secretion of IL18 serves as a potent activator of NK cell mediated IFN-γ secretion, IL18-independent NK cell-mediated mechanisms of IFN-γ secretion contribute to in vivo control of Salmonella replication.

  6. A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties

    Directory of Open Access Journals (Sweden)

    Sergio Solinas

    2010-05-01

    Full Text Available The way the cerebellar granular layer transforms incoming mossy fiber signals into new spike patterns to be related to Purkinje cells is not yet clear. Here, a realistic computational model of the granular layer was developed and used to address four main functional hypotheses: center-surround organization, time-windowing, high-pass filtering in responses to spike bursts and coherent oscillations in response to diffuse random activity. The model network was activated using patterns inspired by those recorded in vivo. Burst stimulation of a small mossy fiber bundle resulted in granule cell bursts delimited in time (time windowing and space (center-surround by network inhibition. This burst-burst transmission showed marked frequency-dependence configuring a high-pass filter with cut-off frequency around 100 Hz. The contrast between center and surround properties was regulated by the excitatory-inhibitory balance. The stronger excitation made the center more responsive to 10-50 Hz input frequencies and enhanced the granule cell output (with spike occurring earlier and with higher frequency and number compared to the surround. Finally, over a certain level of mossy fiber background activity, the circuit generated coherent oscillations in the theta-frequency band. All these processes were fine-tuned by NMDA and GABA-A receptor activation and neurotransmitter vesicle cycling in the cerebellar glomeruli. This model shows that available knowledge on cellular mechanisms is sufficient to unify the main functional hypotheses on the cerebellum granular layer and suggests that this network can behave as an adaptable spatio-temporal filter coordinated by theta-frequency oscillations.

  7. The biology of NK cells and their receptors affects clinical outcomes after hematopoietic cell transplantation (HCT).

    Science.gov (United States)

    Foley, Bree; Felices, Martin; Cichocki, Frank; Cooley, Sarah; Verneris, Michael R; Miller, Jeffrey S

    2014-03-01

    Natural killer (NK) cells were first identified for their capacity to reject bone marrow allografts in lethally irradiated mice without prior sensitization. Subsequently, human NK cells were detected and defined by their non-major histocompatibility complex (MHC)-restricted cytotoxicity toward transformed or virally infected target cells. Karre et al. later proposed 'the missing self hypothesis' to explain the mechanism by which self-tolerant cells could kill targets that had lost self MHC class I. Subsequently, the receptors that recognize MHC class I to mediate tolerance in the host were identified on NK cells. These class I-recognizing receptors contribute to the acquisition of function by a dynamic process known as NK cell education or licensing. In the past, NK cells were assumed to be short lived, but more recently NK cells have been shown to mediate immunologic memory to secondary exposures to cytomegalovirus infection. Because of their ability to lyse tumors with aberrant MHC class I expression and to produce cytokines and chemokines upon activation, NK cells may be primed by many stimuli, including viruses and inflammation, to contribute to a graft-versus-tumor effect. In addition, interactions with other immune cells support the therapeutic potential of NK cells to eradicate tumor and to enhance outcomes after hematopoietic cell transplantation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Ulcerative Granular Cell Tumor: A Clinico pathological and Immunohistochemical Study

    International Nuclear Information System (INIS)

    El-Khalawan, M.; Mosbeh, A.; Abd-Al Salam, F.; Abou-Bakr, A.

    2011-01-01

    Granular cell tumor (GCT) is uncommonly presented with cutaneous ulcer. We examined the clinico pathological and immunohistochemical features of this ulcerative form in fourteen cases that may raise the awareness of this variant. The study included 11 males and 3 females with a mean age 31.5± 7.42 years. All cases were presented with large solitary ulcer with indurated base, elevated border, skin colored margin, and necrotic floor. Twelve lesions were located on the extremities and two lesions on the genital region. Histologically, the lesions showed dermal infiltrate composed of large polygonal cells with granular cytoplasm and characteristic infiltration of the dermal muscles in all cases. Immunostaining showed positive reaction for S100 (14/14), NSE (14/14), CD68 (5/14), and Vimentin (7/14) while HMB45, CK, EMA, and Desmin were negative. We hope that this paper increases the awareness of ulcerative GCT and consider it in the differential diagnosis of ulcerative lesions

  9. Correlation between NK function and response to trastuzumab in metastatic breast cancer patients

    Directory of Open Access Journals (Sweden)

    Spadi Rosella

    2008-05-01

    Full Text Available Abstract Background Trastuzumab is a monoclonal antibody selectively directed against Her2 and approved for the treatment of Her2 overexpressing breast cancer patients. Its proposed mechanisms of action include mediation of antibody-dependent cellular cytotoxicity (ADCC by triggering FcγRIII on natural killer (NK cells. This study addresses the correlation between overall NK function and trastuzumab's clinical activity. Subjects and methods Clinical and immunological responses were assessed in 26 patients receiving trastuzumab monotherapy as maintenance management after chemotherapy (8 mg/kg load and then standard doses of 6 mg/kg every 3 weeks. Cytotoxic activity against the MHC class I-negative standard NK target K562 cell line and HER2-specific ADCC against a trastuzumab-coated Her2-positive SKBR3 cell line were assessed in peripheral blood mononuclear cells (PBMC harvested after the first standard dose. After six months, seventeen patients were scored as responders and nine as non-responders according to the RECIST criteria, while Progression-Free Survival (PFS was calculated during a 12 months follow-up. Results The responders had significantly higher levels of both NK and ADCC activities (p Conclusion One of the mechanisms of action of trastuzumab is NK cell-mediated ADCC lysis of the Her2-positve target cell. We show here that its potency is correlated with the short-term response to treatment, whereas longer protection against tumor expansion seems to be mediated by pure NK activity.

  10. PGC-1α-Dependent Mitochondrial Adaptation Is Necessary to Sustain IL-2-Induced Activities in Human NK Cells.

    Science.gov (United States)

    Miranda, Dante; Jara, Claudia; Ibañez, Jorge; Ahumada, Viviana; Acuña-Castillo, Claudio; Martin, Adrian; Córdova, Alexandra; Montoya, Margarita

    2016-01-01

    Human Natural Killer (NK) cells are a specialized heterogeneous subpopulation of lymphocytes involved in antitumor defense reactions. NK cell effector functions are critically dependent on cytokines and metabolic activity. Among various cytokines modulating NK cell function, interleukin-2 (IL-2) can induce a more potent cytotoxic activity defined as lymphokine activated killer activity (LAK). Our aim was to determine if IL-2 induces changes at the mitochondrial level in NK cells to support the bioenergetic demand for performing this enhanced cytotoxic activity more efficiently. Purified human NK cells were cultured with high IL-2 concentrations to develop LAK activity, which was assessed by the ability of NK cells to lyse NK-resistant Daudi cells. Here we show that, after 72 h of culture of purified human NK cells with enough IL-2 to induce LAK activity, both the mitochondrial mass and the mitochondrial membrane potential increased in a PGC-1α-dependent manner. In addition, oligomycin, an inhibitor of ATP synthase, inhibited IL-2-induced LAK activity at 48 and 72 h of culture. Moreover, the secretion of IFN-γ from NK cells with LAK activity was also partially dependent on PGC-1α expression. These results indicate that PGC-1α plays a crucial role in regulating mitochondrial function involved in the maintenance of LAK activity in human NK cells stimulated with IL-2.

  11. NK1.1+ cells promote sustained tissue injury and inflammation after trauma with hemorrhagic shock.

    Science.gov (United States)

    Chen, Shuhua; Hoffman, Rosemary A; Scott, Melanie; Manson, Joanna; Loughran, Patricia; Ramadan, Mostafa; Demetris, Anthony J; Billiar, Timothy R

    2017-07-01

    Various cell populations expressing NK1.1 contribute to innate host defense and systemic inflammatory responses, but their role in hemorrhagic shock and trauma remains uncertain. NK1.1 + cells were depleted by i.p. administration of anti-NK1.1 (or isotype control) on two consecutive days, followed by hemorrhagic shock with resuscitation and peripheral tissue trauma (HS/T). The plasma levels of IL-6, MCP-1, alanine transaminase (ALT), and aspartate aminotransferase (AST) were measured at 6 and 24 h. Histology in liver and gut were examined at 6 and 24 h. The number of NK cells, NKT cells, neutrophils, and macrophages in liver, as well as intracellular staining for TNF-α, IFN-γ, and MCP-1 in liver cell populations were determined by flow cytometry. Control mice subjected to HS/T exhibited end organ damage manifested by marked increases in circulating ALT, AST, and MCP-1 levels, as well as histologic evidence of hepatic necrosis and gut injury. Although NK1.1 + cell-depleted mice exhibited a similar degree of organ damage as nondepleted animals at 6 h, NK1.1 + cell depletion resulted in marked suppression of both liver and gut injury by 24 h after HS/T. These findings indicate that NK1.1 + cells contribute to the persistence of inflammation leading to end organ damage in the liver and gut. © Society for Leukocyte Biology.

  12. Large granular lymphocytic leukaemia complicated with histiocytic sarcoma in a dog : clinical communication

    Directory of Open Access Journals (Sweden)

    T. Maruo

    2009-05-01

    Full Text Available A 10-year-old castrated male Golden retriever, weighing 36.3 kg was referred for evaluation owing to a decline in general condition. Findings from the complete blood count revealed a marked lymphocytosis (113 000/µℓ. Examination of Wright-Giemsa-stained films of peripheral blood revealed the presence of large granular lymphocytes (LGL. Seventy-two per cent (81 360/µℓ of the lymphocytes were found to be 12-17 µm in diameter, containing nuclei with mature clumped chromatin and abundant lightly basophilic cytoplasm with a variable number of fine azurophilic granules. Based on these findings this case was diagnosed as LGL leukaemia. As a result of multiple-agent chemotherapy, the markedly elevated levels of lymphocytes gradually decreased to 7500/µℓ on day 122 and the patient maintained a good quality of life for the following 3 months. However, on around day 237, a soft, raised, bosselated mass on the labial region was noted. The dog was diagnosed as having histiocytic sarcoma based on cytological and histological examination of the mass. Shortly after diagnosis, the dog developed sudden onset of central nervous system signs and died on day 270. A common outcome of canine LGL is the development of acute blast crisis or lymphoma. However, this case was notable for complication with histiocytic sarcoma from another origin.

  13. A constitutive law for dense granular flows.

    Science.gov (United States)

    Jop, Pierre; Forterre, Yoël; Pouliquen, Olivier

    2006-06-08

    A continuum description of granular flows would be of considerable help in predicting natural geophysical hazards or in designing industrial processes. However, the constitutive equations for dry granular flows, which govern how the material moves under shear, are still a matter of debate. One difficulty is that grains can behave like a solid (in a sand pile), a liquid (when poured from a silo) or a gas (when strongly agitated). For the two extreme regimes, constitutive equations have been proposed based on kinetic theory for collisional rapid flows, and soil mechanics for slow plastic flows. However, the intermediate dense regime, where the granular material flows like a liquid, still lacks a unified view and has motivated many studies over the past decade. The main characteristics of granular liquids are: a yield criterion (a critical shear stress below which flow is not possible) and a complex dependence on shear rate when flowing. In this sense, granular matter shares similarities with classical visco-plastic fluids such as Bingham fluids. Here we propose a new constitutive relation for dense granular flows, inspired by this analogy and recent numerical and experimental work. We then test our three-dimensional (3D) model through experiments on granular flows on a pile between rough sidewalls, in which a complex 3D flow pattern develops. We show that, without any fitting parameter, the model gives quantitative predictions for the flow shape and velocity profiles. Our results support the idea that a simple visco-plastic approach can quantitatively capture granular flow properties, and could serve as a basic tool for modelling more complex flows in geophysical or industrial applications.

  14. IL-15 inhibits pre-B cell proliferation by selectively expanding Mac-1+B220+ NK cells

    International Nuclear Information System (INIS)

    Nakajima, Shinsuke; Hida, Shigeaki; Taki, Shinsuke

    2008-01-01

    Natural killer (NK) cells are the cells critical for inhibition of repopulation of allogenic bone marrow cells. However, it is not well known if NK cells affect autologous lymphopoiesis. Here, we observed that NK cells could inhibit pre-B cell proliferation in vitro driven by interleukin (IL)-7 in a manner dependent on IL-15. Interestingly, the great majority of expanding NK cells were Mac-1 + B220 + , a recently identified potent interferon (IFN)-γ producer. Indeed, IFN-γ was produced in those cultures, and pre-B cells lacking IFN-γ receptors, but not those lacking type I IFN receptors, were resistant to such an inhibition. Furthermore, even NK cells from mice lacking β2-microglobulin, which were known to be functionally dampened, inhibited pre-B cell proliferation as well. Thus, activated NK cells, which were expanded selectively by IL-15, could potentially regulate B lymphopoiesis through IFN-γ beyond the selection imposed upon self-recognition

  15. Altered ganglioside GD3 in HeLa cells might influence the cytotoxic abilities of NK cells

    OpenAIRE

    Lee, Wen-Chi; Lee, Wen-Ling; Shyong, Wen-Yuann; Yang, Lin-Wei; Ko, Min-Chun; Yeh, Chang-Ching; Edmond Hsieh, Shie-Liang; Wang, Peng-Hui

    2012-01-01

    Objective: Previously, we found that altered sialidases in HeLa cells in a natural killer-HeLa (NK-HeLa) coculture system contributed to the decreased cytotoxic ability of NK cells. However, changes that occur in the glycosylation of the HeLa cells in the NK-HeLa coculture system remain unknown. Materials and Methods: An NK-HeLa coculture system was used to examine the changes that occur in the gangliosides of HeLa cells. Results: GD3 expression in HeLa cells was significantly increased...

  16. Effects of acoustic waves on stick-slip in granular media and implications for earthquakes

    Science.gov (United States)

    Johnson, P.A.; Savage, H.; Knuth, M.; Gomberg, J.; Marone, Chris

    2008-01-01

    It remains unknown how the small strains induced by seismic waves can trigger earthquakes at large distances, in some cases thousands of kilometres from the triggering earthquake, with failure often occurring long after the waves have passed. Earthquake nucleation is usually observed to take place at depths of 10-20 km, and so static overburden should be large enough to inhibit triggering by seismic-wave stress perturbations. To understand the physics of dynamic triggering better, as well as the influence of dynamic stressing on earthquake recurrence, we have conducted laboratory studies of stick-slip in granular media with and without applied acoustic vibration. Glass beads were used to simulate granular fault zone material, sheared under constant normal stress, and subject to transient or continuous perturbation by acoustic waves. Here we show that small-magnitude failure events, corresponding to triggered aftershocks, occur when applied sound-wave amplitudes exceed several microstrain. These events are frequently delayed or occur as part of a cascade of small events. Vibrations also cause large slip events to be disrupted in time relative to those without wave perturbation. The effects are observed for many large-event cycles after vibrations cease, indicating a strain memory in the granular material. Dynamic stressing of tectonic faults may play a similar role in determining the complexity of earthquake recurrence. ??2007 Nature Publishing Group.

  17. Characterization of the myeloid-derived suppressor cell subset regulated by NK cells in malignant lymphoma.

    Science.gov (United States)

    Sato, Yusuke; Shimizu, Kanako; Shinga, Jun; Hidaka, Michihiro; Kawano, Fumio; Kakimi, Kazuhiro; Yamasaki, Satoru; Asakura, Miki; Fujii, Shin-Ichiro

    2015-03-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population with the ability to suppress immune responses and are currently classified into three distinct MDSC subsets: monocytic, granulocytic and non-monocytic, and non-granulocytic MDSCs. Although NK cells provide an important first-line defense against newly transformed cancer cells, it is unknown whether NK cells can regulate MDSC populations in the context of cancer. In this study, we initially found that the frequency of MDSCs in non-Hodgkin lymphoma (NHL) patients was increased and inversely correlated with that of NK cells, but not that of T cells. To investigate the regulation of MDSC subsets by NK cells, we used an EL4 murine lymphoma model and found the non-monocytic and non-granulocytic MDSC subset, i.e., Gr1 + CD11b + Ly6G med Ly6C med MDSC, is increased after NK cell depletion. The MDSC population that expresses MHC class II, CD80, CD124, and CCR2 is regulated mainly by CD27 + CD11b + NK cells. In addition, this MDSC subset produces some immunosuppressive cytokines, including IL-10 but not nitric oxide (NO) or arginase. We also examined two subsets of MDSCs (CD14 + HLA-DR - and CD14 - HLA-DR - MDSC) in NHL patients and found that higher IL-10-producing CD14 + HLA-DR - MDSC subset can be seen in lymphoma patients with reduced NK cell frequency in peripheral blood. Our analyses of MDSCs in this study may enable a better understanding of how MDSCs manipulate the tumor microenvironment and are regulated by NK cells in patients with lymphoma.

  18. Differential lung NK cell responses in avian influenza virus infected chickens correlate with pathogenicity

    OpenAIRE

    Jansen, C.A.; de Geus, E.D.; van Haarlem, D.A.; van de Haar, P.M.; Löndt, B.Z; Graham, S.P.; Göbel, T.W.; van Eden, W.; Brookes, S.M.; Vervelde, L.

    2013-01-01

    Infection of chickens with low pathogenicity avian influenza (LPAI) virus results in mild clinical signs while infection with highly pathogenic avian influenza (HPAI) viruses causes death of the birds within 36–48 hours. Since natural killer (NK) cells have been shown to play an important role in influenza-specific immunity, we hypothesise that NK cells are involved in this difference in pathogenicity. To investigate this, the role of chicken NK-cells in LPAI virus infection was studied. Next...

  19. T cells but not NK cells are associated with a favourable outcome for resected colorectal liver metastases

    International Nuclear Information System (INIS)

    Pugh, Siân A; Harrison, Rebecca J; Primrose, John N; Khakoo, Salim I

    2014-01-01

    The adaptive immune response to colorectal cancer is important for survival. Less is understood about the role of innate lymphocytes, such as Natural Killer (NK) cells, which are abundant in human liver. Samples of fresh liver (n = 21) and tumour (n = 11) tissue were obtained from patients undergoing surgical resection of colorectal liver metastases. Flow cytometry was used to analyse the presence and phenotype of NK cells, as compared to T cells, in the tumour and liver tissue. Results were correlated with survival. NK cells were poorly recruited to the tumours (distant liver tissue 38.3%, peritumoural liver 34.2%, tumour 12.9%, p = 0.0068). Intrahepatic and intratumoural NK cells were KIR (killer immunoglobulin-like receptor) lo NKG2A hi whereas circulating NK cells were KIR hi NKG2A lo . By contrast T cells represented 65.7% of the tumour infiltrating lymphocytes. Overall survival was 43% at 5 years, with the 5-year survival for individuals with a T cell rich infiltrate being 60% (95% CI 17-93%) and for those with a low T cell infiltrate being 0% (95% CI 0-48%). Conversely individuals with higher levels of NK cells in the tumour had an inferior outcome, although there were insufficient numbers to reach significance (median survivals: NK Hi 1.63 years vs NK Lo 3.92 years). T cells, but not NK cells, are preferentially recruited to colorectal liver metastases. NK cells within colorectal metastases have an intrahepatic and potentially tolerogenic, rather than a peripheral, phenotype. Similar to primary tumours, the magnitude of the T cell infiltrate in colorectal metastases is positively associated with survival

  20. The Effects of Age and Latent Cytomegalovirus Infection on NK-Cell Phenotype and Exercise Responsiveness in Man

    Directory of Open Access Journals (Sweden)

    Austin B. Bigley

    2015-01-01

    Full Text Available The redeployment of NK-cells in response to an acute bout of exercise is thought to be an integral component of the “fight-or-flight” response, preparing the body for potential injury or infection. We showed previously that CMV seropositivity impairs the redeployment of NK-cells with exercise in the young. In the current study, we examined the effect of aging on the redeployment of NK-cells with exercise in the context of CMV. We show here that CMV blunts the exercise-induced redeployment of NK-cells in both younger (23–39 yrs and older (50–64 yrs subjects with older CMVneg subjects showing the largest postexercise mobilization and 1 h postexercise egress of NK-cells. The blunted exercise response in CMVpos individuals was associated with a decreased relative redeployment of the CD158a+ and CD57+ NK-cell subsets in younger and older individuals. In addition, we show that aging is associated with a CMV-independent increase in the proportion of NK-cells expressing the terminal differentiation marker CD57, while CMV is associated with an age-dependent decrease in the proportion of NK-cells expressing the inhibitory receptors KLRG1 (in the younger group and CD158a (in the older group. Collectively, these data suggest that CMV may decrease NK-cell mediated immunosurveillance after exercise in both younger and older individuals.

  1. Diet-Induced Obesity Is Associated with an Impaired NK Cell Function and an Increased Colon Cancer Incidence

    Directory of Open Access Journals (Sweden)

    Ina Bähr

    2017-01-01

    Full Text Available Obesity is associated with an increased colon cancer incidence, but underlying mechanisms remained unclear. Previous studies showed altered Natural killer (NK cell functions in obese individuals. Therefore, we studied the impact of an impaired NK cell functionality on the increased colon cancer risk in obesity. In vitro investigations demonstrated a decreased IFN-γ secretion and cytotoxicity of human NK cells against colon tumor cells after NK cell preincubation with the adipokine leptin. In addition, leptin incubation decreased the expression of activating NK cell receptors. In animal studies, colon cancer growth was induced by injection of azoxymethane (AOM in normal weight and diet-induced obese rats. Body weight and visceral fat mass were increased in obese animals compared to normal weight rats. AOM-treated obese rats showed an increased quantity, size, and weight of colon tumors compared to the normal weight tumor group. Immunohistochemical analyses demonstrated a decreased number of NK cells in spleen and liver in obesity. Additionally, the expression levels of activating NK cell receptors were lower in spleen and liver of obese rats. The results show for the first time that the decreased number and impaired NK cell function may be one cause for the higher colon cancer risk in obesity.

  2. Activation of NK Cells in Mixed Cultures of Wharton's Jelly Mesenchymal Stromal Cells and Peripheral Blood Lymphocytes.

    Science.gov (United States)

    Svirshchevskaya, E V; Poltavtsev, A M; Os'mak, G Zh; Poltavtseva, R A

    2018-01-01

    Mesenchymal stromal cells possess immunosuppressive properties that might be used for the therapy of inflammatory diseases of various geneses. The effects of mesenchymal stromal cells depend on their lifetime in the recipient tissues. During heterologous transplantation, mesenchymal stromal cells are eliminated by NK cells. We studied NK cell formation in mixed cultures of Wharton's jelly mesenchymal stromal cells and peripheral blood lymphocytes from an autologous donor. Lymphocytes were activated by a mitogen or IL-2. The lifetime of mesenchymal stromal cells was estimated by MTT test. Cytotoxic activity and phenotype of NK cells were evaluated by flow cytometry. It was found that activation of NK cells depended on IL-2 and was registered on day 2 of incubation with IL-2. In cultures with mitogen-activated lymphocytes, cytotoxicity was observed after 5-6 days. Cytotoxicity of NK correlated with significant decrease in CD16+ and increase in CD56+ NK and with reduction of mesenchymal stromal cell viability. Thus, the main mechanism of elimination of mesenchymal stromal cells is cytotoxicity of NK cells that depended on IL-2 production.

  3. Radiodinated L-703,606: a potent selective antagonist to the human NK[sub 1] receptor

    Energy Technology Data Exchange (ETDEWEB)

    Francis, B E; Burns, H D [Merck Research Labs., West Point, PA (United States). Dept. of Radiopharmacology; Swain, C; Sabin, V [Merck Sharp and Dohme Research Labs., Harlow (United Kingdom). The Neuroscience Centre

    1994-01-01

    A new, radioiodinated, NK[sub 1] selective radiotracer ([[sup 125]I]L-703,606) was prepared. L-703,606 is an iodinated analog of the NK[sub 1] antagonist CP-96,345 in which the methoxy group has been replaced by an iodine substituent. [[sup 125]I]L-703,606 was made from the corresponding trimethylsilyl compound by treatment with no carrier added Na[sub 125]I and an Iodobead in TFA. The tracer was prepared at a specific activity of approx. 1100 Ci/mmol and preliminary binding studies demonstrated that [[sup 125]I]L=703,606 binds selectively to NK[sub 1] receptors. These results suggest that this radioligand will be useful for the biochemical and pharmacological characterization of the human NK[sub 1] receptor and, if labeled with I-123, may be useful for non-invasive NK[sub 1] receptor imaging via SPECT. (author).

  4. Uterine NK cells are critical in shaping DC immunogenic functions compatible with pregnancy progression.

    Directory of Open Access Journals (Sweden)

    Irene Tirado-González

    Full Text Available Dendritic cell (DC and natural killer (NK cell interactions are important for the regulation of innate and adaptive immunity, but their relevance during early pregnancy remains elusive. Using two different strategies to manipulate the frequency of NK cells and DC during gestation, we investigated their relative impact on the decidualization process and on angiogenic responses that characterize murine implantation. Manipulation of the frequency of NK cells, DC or both lead to a defective decidual response characterized by decreased proliferation and differentiation of stromal cells. Whereas no detrimental effects were evident upon expansion of DC, NK cell ablation in such expanded DC mice severely compromised decidual development and led to early pregnancy loss. Pregnancy failure in these mice was associated with an unbalanced production of anti-angiogenic signals and most notably, with increased expression of genes related to inflammation and immunogenic activation of DC. Thus, NK cells appear to play an important role counteracting potential anomalies raised by DC expansion and overactivity in the decidua, becoming critical for normal pregnancy progression.

  5. Uterine NK cells are critical in shaping DC immunogenic functions compatible with pregnancy progression.

    Science.gov (United States)

    Tirado-González, Irene; González, Irene Tirado; Barrientos, Gabriela; Freitag, Nancy; Otto, Teresa; Thijssen, Victor L J L; Moschansky, Petra; von Kwiatkowski, Petra; Klapp, Burghard F; Winterhager, Elke; Bauersachs, Stefan; Blois, Sandra M

    2012-01-01

    Dendritic cell (DC) and natural killer (NK) cell interactions are important for the regulation of innate and adaptive immunity, but their relevance during early pregnancy remains elusive. Using two different strategies to manipulate the frequency of NK cells and DC during gestation, we investigated their relative impact on the decidualization process and on angiogenic responses that characterize murine implantation. Manipulation of the frequency of NK cells, DC or both lead to a defective decidual response characterized by decreased proliferation and differentiation of stromal cells. Whereas no detrimental effects were evident upon expansion of DC, NK cell ablation in such expanded DC mice severely compromised decidual development and led to early pregnancy loss. Pregnancy failure in these mice was associated with an unbalanced production of anti-angiogenic signals and most notably, with increased expression of genes related to inflammation and immunogenic activation of DC. Thus, NK cells appear to play an important role counteracting potential anomalies raised by DC expansion and overactivity in the decidua, becoming critical for normal pregnancy progression.

  6. HUMAN NK CELLS: FROM SURFACE RECEPTORS TO THE THERAPY OF LEUKEMIAS AND SOLID TUMORS

    Directory of Open Access Journals (Sweden)

    LORENZO eMORETTA

    2014-03-01

    Full Text Available Natural Killer (NK cells are major effector cells of the innate immunity. The discovery, over two decades ago, of MHC-class I specific NK receptors and subsequently of activating receptors, recognizing ligands expressed by tumor or virus-infected cells, paved the way to our understanding of the mechanisms of selective recognition and killing of tumor cells. Although NK cells can efficiently kill tumor cells of different histotypes in vitro, their activity may be limited in vivo by their inefficient trafficking to tumor lesions and by the inhibition of their function induced by tumor cells themselves and by the tumor microenvironment. On the other hand, the important role of NK cells has been clearly demonstrated in the therapy of high risk leukemias in the haploidentical hematopoietic cell (HSC transplantation setting. NK cells derived from donor HSC kill leukemic cells residual after the conditioning regimen, thus preventing leukemia relapses. In addition, they also kill residual dendritic cells and T lymphocytes, thus preventing both GvHD and graft rejection.

  7. STUDY ON MAXIMUM SPECIFIC SLUDGE ACIVITY OF DIFFERENT ANAEROBIC GRANULAR SLUDGE BY BATCH TESTS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The maximum specific sludge activity of granular sludge from large-scale UASB, IC and Biobed anaerobic reactors were investigated by batch tests. The limitation factors related to maximum specific sludge activity (diffusion, substrate sort, substrate concentration and granular size) were studied. The general principle and procedure for the precise measurement of maximum specific sludge activity were suggested. The potential capacity of loading rate of the IC and Biobed anaerobic reactors were analyzed and compared by use of the batch tests results.

  8. Targeting NK-1 Receptors to Prevent and Treat Pancreatic Cancer: A New Therapeutic Approach

    International Nuclear Information System (INIS)

    Muñoz, Miguel; Coveñas, Rafael

    2015-01-01

    Pancreatic cancer (PC) is the fourth leading cause of cancer related-deaths in both men and women, and the 1- and 5-year relative survival rates are 25% and 6%, respectively. It is known that smoking, alcoholism and psychological stress are risk factors that can promote PC and increase PC progression. To date, the prevention of PC is crucial because there is no curative treatment. After binding to the neurokinin-1 (NK-1) receptor (a receptor coupled to the stimulatory G-protein Gαs that activates adenylate cyclase), the peptide substance P (SP)—at high concentrations—is involved in many pathophysiological functions, such as depression, smoking, alcoholism, chronic inflammation and cancer. It is known that PC cells and samples express NK-1 receptors; that the NK-1 receptor is overexpressed in PC cells in comparison with non-tumor cells, and that nanomolar concentrations of SP induce PC cell proliferation. By contrast, NK-1 receptor antagonists exert antidepressive, anxiolytic and anti-inflammatory effects and anti-alcohol addiction. These antagonists also exert an antitumor action since in vitro they inhibit PC cell proliferation (PC cells death by apoptosis), and in a xenograft PC mouse model they exert both antitumor and anti-angiogenic actions. NK-1 receptor antagonists could be used for the treatment of PC and hence the NK-1 receptor could be a new promising therapeutic target in PC

  9. Targeting NK-1 Receptors to Prevent and Treat Pancreatic Cancer: A New Therapeutic Approach

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, Miguel, E-mail: mmunoz@cica.es [Research Laboratory on Neuropeptides (IBIS), Virgen del Rocío University Hospital, 41013 Sevilla (Spain); Coveñas, Rafael [Laboratory of Neuroanatomy of the Peptidergic System (Lab. 14), Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, 37008 Salamanca (Spain)

    2015-07-06

    Pancreatic cancer (PC) is the fourth leading cause of cancer related-deaths in both men and women, and the 1- and 5-year relative survival rates are 25% and 6%, respectively. It is known that smoking, alcoholism and psychological stress are risk factors that can promote PC and increase PC progression. To date, the prevention of PC is crucial because there is no curative treatment. After binding to the neurokinin-1 (NK-1) receptor (a receptor coupled to the stimulatory G-protein Gαs that activates adenylate cyclase), the peptide substance P (SP)—at high concentrations—is involved in many pathophysiological functions, such as depression, smoking, alcoholism, chronic inflammation and cancer. It is known that PC cells and samples express NK-1 receptors; that the NK-1 receptor is overexpressed in PC cells in comparison with non-tumor cells, and that nanomolar concentrations of SP induce PC cell proliferation. By contrast, NK-1 receptor antagonists exert antidepressive, anxiolytic and anti-inflammatory effects and anti-alcohol addiction. These antagonists also exert an antitumor action since in vitro they inhibit PC cell proliferation (PC cells death by apoptosis), and in a xenograft PC mouse model they exert both antitumor and anti-angiogenic actions. NK-1 receptor antagonists could be used for the treatment of PC and hence the NK-1 receptor could be a new promising therapeutic target in PC.

  10. Centrifuge modelling of granular flows

    Science.gov (United States)

    Cabrera, Miguel Angel; Wu, Wei

    2015-04-01

    A common characteristic of mass flows like debris flows, rock avalanches and mudflows is that gravity is their main driving force. Gravity defines the intensity and duration of the main interactions between particles and their surrounding media (particle-particle, particle-fluid, fluid-fluid). At the same time, gravity delimits the occurrence of phase separation, inverse segregation, and mass consolidation, among other phenomena. Therefore, in the understanding of the flow physics it is important to account for the scaling of gravity in scaled models. In this research, a centrifuge model is developed to model free surface granular flows down an incline at controlled gravity conditions. Gravity is controlled by the action of an induced inertial acceleration field resulting from the rotation of the model in a geotechnical centrifuge. The characteristics of the induced inertial acceleration field during flow are discussed and validated via experimental data. Flow heights, velocity fields, basal pressure and impact forces are measured for a range of channel inclinations and gravity conditions. Preliminary results enlighten the flow characteristics at variable gravity conditions and open a discussion on the simulation of large scale processes at a laboratory scale. Further analysis on the flow physics brings valuable information for the validation of granular flows rheology.

  11. Involvement of Activating NK Cell Receptors and Their Modulation in Pathogen Immunity

    Directory of Open Access Journals (Sweden)

    Francesco Marras

    2011-01-01

    Full Text Available Natural Killer (NK cells are endowed with cell-structure-sensing receptors providing inhibitory protection from self-destruction (inhibitory NK receptors, iNKRs, including killer inhibitory receptors and other molecules and rapid triggering potential leading to functional cell activation by Toll-like receptors (TLRs, cytokine receptors, and activating NK cell receptors including natural cytotoxicity receptors (NCRs, i.e., NKp46, NKp46, and NKp44. NCR and NKG2D recognize ligands on infected cells which may be endogenous or may directly bind to some structures derived from invading pathogens. In this paper, we address the known direct or indirect interactions between activating receptors and pathogens and their expression during chronic HIV and HCV infections.

  12. Calcisponges have a ParaHox gene and dynamic expression of dispersed NK homeobox genes.

    Science.gov (United States)

    Fortunato, Sofia A V; Adamski, Marcin; Ramos, Olivia Mendivil; Leininger, Sven; Liu, Jing; Ferrier, David E K; Adamska, Maja

    2014-10-30

    Sponges are simple animals with few cell types, but their genomes paradoxically contain a wide variety of developmental transcription factors, including homeobox genes belonging to the Antennapedia (ANTP) class, which in bilaterians encompass Hox, ParaHox and NK genes. In the genome of the demosponge Amphimedon queenslandica, no Hox or ParaHox genes are present, but NK genes are linked in a tight cluster similar to the NK clusters of bilaterians. It has been proposed that Hox and ParaHox genes originated from NK cluster genes after divergence of sponges from the lineage leading to cnidarians and bilaterians. On the other hand, synteny analysis lends support to the notion that the absence of Hox and ParaHox genes in Amphimedon is a result of secondary loss (the ghost locus hypothesis). Here we analysed complete suites of ANTP-class homeoboxes in two calcareous sponges, Sycon ciliatum and Leucosolenia complicata. Our phylogenetic analyses demonstrate that these calcisponges possess orthologues of bilaterian NK genes (Hex, Hmx and Msx), a varying number of additional NK genes and one ParaHox gene, Cdx. Despite the generation of scaffolds spanning multiple genes, we find no evidence of clustering of Sycon NK genes. All Sycon ANTP-class genes are developmentally expressed, with patterns suggesting their involvement in cell type specification in embryos and adults, metamorphosis and body plan patterning. These results demonstrate that ParaHox genes predate the origin of sponges, thus confirming the ghost locus hypothesis, and highlight the need to analyse the genomes of multiple sponge lineages to obtain a complete picture of the ancestral composition of the first animal genome.

  13. Dose intensification of TRAIL-inducing ONC201 inhibits metastasis and promotes intratumoral NK cell recruitment.

    Science.gov (United States)

    Wagner, Jessica; Kline, C Leah; Zhou, Lanlan; Campbell, Kerry S; MacFarlane, Alexander W; Olszanski, Anthony J; Cai, Kathy Q; Hensley, Harvey H; Ross, Eric A; Ralff, Marie D; Zloza, Andrew; Chesson, Charles B; Newman, Jenna H; Kaufman, Howard; Bertino, Joseph; Stein, Mark; El-Deiry, Wafik S

    2018-06-01

    ONC201 is a first-in-class, orally active antitumor agent that upregulates cytotoxic TRAIL pathway signaling in cancer cells. ONC201 has demonstrated safety and preliminary efficacy in a first-in-human trial in which patients were dosed every 3 weeks. We hypothesized that dose intensification of ONC201 may impact antitumor efficacy. We discovered that ONC201 exerts dose- and schedule-dependent effects on tumor progression and cell death signaling in vivo. With dose intensification, we note a potent anti-metastasis effect and inhibition of cancer cell migration and invasion. Our preclinical results prompted a change in ONC201 dosing in all open clinical trials. We observed accumulation of activated NK+ and CD3+ cells within ONC201-treated tumors and that NK cell depletion inhibits ONC201 efficacy in vivo, including against TRAIL/ONC201-resistant Bax-/- tumors. Immunocompetent NCR1-GFP mice, in which NK cells express GFP, demonstrated GFP+ NK cell infiltration of syngeneic MC38 colorectal tumors. Activation of primary human NK cells and increased degranulation occurred in response to ONC201. Coculture experiments identified a role for TRAIL in human NK-mediated antitumor cytotoxicity. Preclinical results indicate the potential utility for ONC201 plus anti-PD-1 therapy. We observed an increase in activated TRAIL-secreting NK cells in the peripheral blood of patients after ONC201 treatment. The results offer what we believe to be a unique pathway of immune stimulation for cancer therapy.

  14. Novel microchip-based tools facilitating live cell imaging and assessment of functional heterogeneity within NK cell populations

    Directory of Open Access Journals (Sweden)

    Elin eForslund

    2012-10-01

    Full Text Available Each individual has a heterogeneous pool of NK cells consisting of cells that may be specialized towards specific functional responses such as secretion of cytokines or killing of tumor cells. Many conventional methods are not fit to characterize heterogeneous populations as they measure the average response of all cells. Thus, there is a need for experimental platforms that provide single cell resolution. In addition, there are also transient and stochastic variations in functional responses at the single cell level, calling for methods that allow studies of many events over extended times. This paper presents a versatile microchip platform enabling long-term microscopic studies of individual NK cells interacting with target cells. Each microchip contains an array of microwells, optimized for medium or high-resolution time-lapse imaging of single or multiple NK and target cells, or for screening of thousands of isolated NK-target cell interactions. Individual NK cells confined with target cells in small microwells is a suitable setup for high-content screening and rapid assessment of heterogeneity within populations, while microwells of larger dimensions are appropriate for studies of NK cell migration and sequential interactions with multiple target cells. By combining the chip technology with ultrasonic manipulation, NK and target cells can be forced to interact and positioned with high spatial accuracy within individual microwells. This setup effectively and synchronously creates NK-target conjugates at hundreds of parallel positions in the microchip. Thus, this facilitates assessment of temporal aspects of NK-target cell interactions, e.g. conjugation, immune synapse formation and cytotoxic events. The microchip platform presented here can be used to effectively address questions related to fundamental functions of NK cells that can lead to better understanding of how the behavior of individual cells add up to give a functional response at

  15. Effects of low dose irradiation on NK activity of normal individuals and patients with cancer

    International Nuclear Information System (INIS)

    Tian Hailin; Su Liaoyuan

    1994-10-01

    Effects of low dose irradiation on NK activity of lymphocytes and on K 562 cells were studied. The NK activity was determined by means of 3 H-TdR release assay. While 3 H-TdR incorporation was used to reflect functional changes of K 562 cells after low dose irradiation. 21 patients with cancer and 10 normal individuals were detected. The results indicated that the NK activity of lymphocytes in normal individuals increased significantly after 10 and 50 cGy γ-ray irradiation, while in patients with cancer the NK activity of lymphocytes increased only at the dose of 50 cGy irradiation. The increase of NK activity in normal individuals was higher than that in patients with cancer after same doses of irradiation. When K 562 cells were irradiated by 10 cGy γ-rays, the 3 H-TdR incorporation value increased. After exposed to over 50 cGy the stimulating effect disappeared

  16. SOLITARY T-CELL HEPATIC LYMPHOMA WITH LARGE GRANULAR LYMPHOCYTE MORPHOLOGY IN A CAPTIVE CHEETAH (ACINONYX JUBATUS).

    Science.gov (United States)

    Lindemann, Dana M; Carpenter, James W; Almes, Kelli M; Schumacher, Loni; Ryseff, Julia K; Hallman, Mackenzie

    2015-06-01

    A 13-yr-old male cheetah (Acinonyx jubatus) presented for an acute history of lateral recumbency and anorexia. Upon physical examination under general anesthesia, severe icterus was noted. A serum biochemical profile confirmed markedly elevated total bilirubin and alanine transaminase. Based on ultrasound-guided liver aspirates and cytology, a presumptive diagnosis of large granular lymphocyte hepatic lymphoma was reached. Abdominal and thoracic radiographs did not assist in reaching an antemortem diagnosis. Postmortem examination and histopathology provided a definitive diagnosis of hepatic lymphoma with acute massive hepatocelluar necrosis and hemorrhage, as well as concurrent lesions of gastric ulcers, ulcerative and sclerosing enteritis, myocardial hypertrophy, and splenic myelolipomas. Immunohistochemistry of the liver yielded CD-3 positive and CD-20 negative results, confirming lymphocytes of a T-cell lineage. Due to concern for possible retrovirus-associated disease, enzyme-linked immunosorbent assays for feline leukemia virus and feline immunodeficiency virus were performed retrospectively on a banked serum sample and yielded negative results, thus diminishing concern for the male conspecific housed in the same exhibit.

  17. The diagnosis and management of NK/T-cell lymphomas

    Directory of Open Access Journals (Sweden)

    Eric Tse

    2017-04-01

    Full Text Available Abstract Extranodal natural killer (NK/T-cell lymphoma is an aggressive malignancy of putative NK-cell origin, with a minority deriving from the T-cell lineage. Pathologically, the malignancy occurs in two forms, extranodal NK/T-cell lymphoma, nasal type; and aggressive NK-cell leukaemia. Lymphoma occur most commonly (80% in the nose and upper aerodigestive tract, less commonly (20% in non-nasal areas (skin, gastrointestinal tract, testis, salivary gland, and rarely as disseminated disease with a leukemic phase. Genetic analysis showed mutations of genes involved in the JAK/STAT pathway, RNA assembly, epigenetic regulation, and tumor suppression. In initial clinical evaluation, positron emission tomography computed tomography, and quantification of plasma EBV DNA are mandatory as they are useful for response monitoring and prognostication. In stage I/II diseases, combined chemotherapy and radiotherapy (sequentially or concurrently is the best approach. Conventional anthracycline-containing regimens are ineffective and should be replaced by non-anthracycline-containing regimens, preferably including L-asparaginase. Radiotherapy alone is associated with high systemic relapse rates and should be avoided. In stage III/IV diseases, non-anthracycline-regimens-containing L-asparaginase are the standard. In relapsed/refractory cases, blockade of the programmed death protein 1 has recently shown promising results with high response rates. In the era of effective non-anthracycline-containing regimens, autologous haematopoietic stem cell transplantation (HSCT has not been shown to be beneficial. However, allogeneic HSCT may be considered for high-risk or advanced-stage patients in remission or relapsed/refractory patients responding to salvage therapy. Prognostic models taking into account presentation, interim, and end-of-treatment parameters are useful in triaging patients to different treatment strategies.

  18. HMGB1 Is Involved in IFN-α Production and TRAIL Expression by HIV-1-Exposed Plasmacytoid Dendritic Cells: Impact of the Crosstalk with NK Cells.

    Directory of Open Access Journals (Sweden)

    Héla Saïdi

    2016-02-01

    Full Text Available Plasmacytoid dendritic cells (pDCs are innate sensors of viral infections and important mediators of antiviral innate immunity through their ability to produce large amounts of IFN-α. Moreover, Toll-like receptor 7 (TLR7 and 9 (TLR9 ligands, such as HIV and CpG respectively, turn pDCs into TRAIL-expressing killer pDCs able to lyse HIV-infected CD4+ T cells. NK cells can regulate antiviral immunity by modulating pDC functions, and pDC production of IFN-α as well as cell-cell contact is required to promote NK cell functions. Impaired pDC-NK cell crosstalk was reported in the setting of HIV-1 infection, but the impact of HIV-1 on TRAIL expression and innate antiviral immunity during this crosstalk is unknown. Here, we report that low concentrations of CCR5-tropic HIV-1Ba-L promote the release of pro-inflammatory cytokines such as IFN-α, TNF-α, IFN-γ and IL-12, and CCR5-interacting chemokines (MIP-1α and MIP-1β in NK-pDCs co-cultures. At high HIV-1BaL concentrations, the addition of NK cells did not promote the release of these mediators, suggesting that once efficiently triggered by the virus, pDCs could not integrate new activating signals delivered by NK cells. However, high HIV-1BaL concentrations were required to trigger IFN-α-mediated TRAIL expression at the surface of both pDCs and NK cells during their crosstalk. Interestingly, we identified the alarmin HMGB1, released at pDC-NK cell synapse, as an essential trigger for the secretion of IFN-α and IFN-related soluble mediators during the interplay of HIV-1 exposed pDCs with NK cells. Moreover, HMGB1 was found crucial for mTRAIL translocation to the plasma membrane of both pDCs and NK cells during their crosstalk following pDC exposure to HIV-1. Data from serum analyses of circulating HMGB1, HMGB1-specific antibodies, sTRAIL and IP-10 in a cohort of 67 HIV-1+ patients argue for the in vivo relevance of these observations. Altogether, these findings identify HMGB1 as a trigger for IFN

  19. HMGB1 Is Involved in IFN-α Production and TRAIL Expression by HIV-1-Exposed Plasmacytoid Dendritic Cells: Impact of the Crosstalk with NK Cells.

    Science.gov (United States)

    Saïdi, Héla; Bras, Marlène; Formaglio, Pauline; Melki, Marie-Thérèse; Charbit, Bruno; Herbeuval, Jean-Philippe; Gougeon, Marie-Lise

    2016-02-01

    Plasmacytoid dendritic cells (pDCs) are innate sensors of viral infections and important mediators of antiviral innate immunity through their ability to produce large amounts of IFN-α. Moreover, Toll-like receptor 7 (TLR7) and 9 (TLR9) ligands, such as HIV and CpG respectively, turn pDCs into TRAIL-expressing killer pDCs able to lyse HIV-infected CD4+ T cells. NK cells can regulate antiviral immunity by modulating pDC functions, and pDC production of IFN-α as well as cell-cell contact is required to promote NK cell functions. Impaired pDC-NK cell crosstalk was reported in the setting of HIV-1 infection, but the impact of HIV-1 on TRAIL expression and innate antiviral immunity during this crosstalk is unknown. Here, we report that low concentrations of CCR5-tropic HIV-1Ba-L promote the release of pro-inflammatory cytokines such as IFN-α, TNF-α, IFN-γ and IL-12, and CCR5-interacting chemokines (MIP-1α and MIP-1β) in NK-pDCs co-cultures. At high HIV-1BaL concentrations, the addition of NK cells did not promote the release of these mediators, suggesting that once efficiently triggered by the virus, pDCs could not integrate new activating signals delivered by NK cells. However, high HIV-1BaL concentrations were required to trigger IFN-α-mediated TRAIL expression at the surface of both pDCs and NK cells during their crosstalk. Interestingly, we identified the alarmin HMGB1, released at pDC-NK cell synapse, as an essential trigger for the secretion of IFN-α and IFN-related soluble mediators during the interplay of HIV-1 exposed pDCs with NK cells. Moreover, HMGB1 was found crucial for mTRAIL translocation to the plasma membrane of both pDCs and NK cells during their crosstalk following pDC exposure to HIV-1. Data from serum analyses of circulating HMGB1, HMGB1-specific antibodies, sTRAIL and IP-10 in a cohort of 67 HIV-1+ patients argue for the in vivo relevance of these observations. Altogether, these findings identify HMGB1 as a trigger for IFN

  20. Dynamical Heterogeneity in Granular Fluids and Structural Glasses

    Science.gov (United States)

    Avila, Karina E.

    Our current understanding of the dynamics of supercooled liquids and other similar slowly evolving (glassy) systems is rather limited. One aspect that is particularly poorly understood is the origin and behavior of the strong non trivial fluctuations that appear in the relaxation process toward equilibrium. Glassy systems and granular systems both present regions of particles moving cooperatively and at different rates from other regions. This phenomenon is known as spatially heterogeneous dynamics. A detailed explanation of this phenomenon may lead to a better understanding of the slow relaxation process, and perhaps it could even help to explain the presence of the glass transition. This dissertation concentrates on studying dynamical heterogeneity by analyzing simulation data for models of granular materials and structural glasses. For dissipative granular fluids, the growing behavior of dynamical heterogeneities is studied for different densities and different degrees of inelasticity in the particle collisions. The correlated regions are found to grow rapidly as the system approaches dynamical arrest. Their geometry is conserved even when probing at different cutoff length in the correlation function or when the energy dissipation in the system is increased. For structural glasses, I test a theoretical framework that models dynamical heterogeneity as originated in the presence of Goldstone modes, which emerge from a broken continuous time reparametrization symmetry. This analysis is based on quantifying the size and the spatial correlations of fluctuations in the time variable and of other kinds of fluctuations. The results obtained here agree with the predictions of the hypothesis. In particular, the fluctuations associated to the time reparametrization invariance become stronger for low temperatures, long timescales, and large coarse graining lengths. Overall, this research points to dynamical heterogeneity to be described for granular systems similarly than

  1. Physical modelling of granular flows at multiple-scales and stress levels

    Science.gov (United States)

    Take, Andy; Bowman, Elisabeth; Bryant, Sarah

    2015-04-01

    The rheology of dry granular flows is an area of significant focus within the granular physics, geoscience, and geotechnical engineering research communities. Studies performed to better understand granular flows in manufacturing, materials processing or bulk handling applications have typically focused on the behavior of steady, continuous flows. As a result, much of the research on relating the fundamental interaction of particles to the rheological or constitutive behaviour of granular flows has been performed under (usually) steady-state conditions and low stress levels. However, landslides, which are the primary focus of the geoscience and geotechnical engineering communities, are by nature unsteady flows defined by a finite source volume and at flow depths much larger than typically possible in laboratory experiments. The objective of this paper is to report initial findings of experimental studies currently being conducted using a new large-scale landslide flume (8 m long, 2 m wide slope inclined at 30° with a 35 m long horizontal base section) and at elevated particle self-weight in a 10 m diameter geotechnical centrifuge to investigate the granular flow behavior at multiple-scales and stress levels. The transparent sidewalls of the two flumes used in the experimental investigation permit the combination of observations of particle-scale interaction (using high-speed imaging through transparent vertical sidewalls at over 1000 frames per second) with observations of the distal reach of the landslide debris. These observations are used to investigate the applicability of rheological models developed for steady state flows (e.g. the dimensionless inertial number) in landslide applications and the robustness of depth-averaged approaches to modelling dry granular flow at multiple scales. These observations indicate that the dimensionless inertial number calculated for the flow may be of limited utility except perhaps to define a general state (e.g. liquid

  2. NMR Measurements of Granular Flow and Compaction

    Science.gov (United States)

    Fukushima, Eiichi

    1998-03-01

    Nuclear magnetic resonance (NMR) can be used to measure statistical distributions of granular flow velocity and fluctuations of velocity, as well as spatial distributions of particulate concentration, flow velocity, its fluctuations, and other parameters that may be derived from these. All measurements have been of protons in liquid-containing particles such as mustard seeds or pharmaceutical pills. Our favorite geometry has been the slowly rotating partially filled rotating drum with granular flow taking place along the free surface of the particles. All the above-mentioned parameters have been studied as well as a spatial distribution of particulate diffusion coefficients, energy dissipation due to collisions, as well as segregation of non-uniform mixtures of granular material. Finally, we describe some motions of granular material under periodic vibrations.

  3. Early NK Cell Reconstitution Predicts Overall Survival in T-Cell Replete Allogeneic Hematopoietic Stem Cell Transplantation

    DEFF Research Database (Denmark)

    Minculescu, Lia; Marquart, Hanne Vibeke; Friis, Lone Smidstrups

    2016-01-01

    Early immune reconstitution plays a critical role in clinical outcome after allogeneic hematopoietic stem cell transplantation (HSCT). Natural killer (NK) cells are the first lymphocytes to recover after transplantation and are considered powerful effector cells in HSCT. We aimed to evaluate...... the clinical impact of early NK cell recovery in T-cell replete transplant recipients. Immune reconstitution was studied in 298 adult patients undergoing HSCT for acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL) and myelodysplastic syndrome (MDS) from 2005 to 2013. In multivariate analysis NK...... cell numbers day 30 (NK30) >150cells/µL were independently associated with superior overall survival (hazard ratio 0.79, 95% confidence interval 0.66-0.95, p=0.01). Cumulative incidence analyses showed that patients with NK30 >150cells/µL had significantly less transplant related mortality (TRM), p=0...

  4. Orbital involvement by non-Hodgkin lymphoma NK T cells.

    Science.gov (United States)

    Hervás-Ontiveros, A; España-Gregori, E; Hernández-Martínez, P; Vera-Sempere, F J; Díaz-Llopis, M

    2014-11-01

    The case is presented of 37 year-old male with a history of nasal obstruction with right rhinorrhea, headache, hearing loss and right exophthalmos of 4 months progression. The MRI revealed that the ethmoidal and maxillary sinuses contained inflammatory tissue extending into the orbital region. The biopsy confirmed a non-Hodgkin lymphoma of natural killer (NK) T cells. Non-Hodgkin's T NK lymphoma is a rare tumor in the orbital area that requires an early detection and multi-disciplinary care to ensure appropriate monitoring and treatment. Copyright © 2012 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  5. HMB-45, S-100, NK1/C3, and MART-1 in metastatic melanoma.

    Science.gov (United States)

    Zubovits, Judit; Buzney, Elizabeth; Yu, Lawrence; Duncan, Lyn M

    2004-02-01

    The diagnosis of melanoma metastatic to lymph node remains a difficult problem given its histological diversity. We examined the staining patterns of S-100, NK1/C3, HMB-45, and MART-1 (DC10) in melanoma metastases to lymph nodes. Immunohistochemical stains were performed on tissue sections of 126 formalin-fixed lymph nodes from 126 patients with an established diagnosis of metastatic melanoma. A total of 98% of cases (123 of 126) stained positive for S-100, 93% (117 of 125) stained positive for NK1/C3, 82% (103 of 126) stained positive for MART-1, and 76% (95 of 125) stained positive for HMB-45. The distribution and intensity of staining varied among these markers. A diffuse staining pattern, defined as >50% of tumor cells stained, was observed in 83% of MART-1-positive cases but in only 56% of S-100-positive cases, 48% of NK1/C3-positive cases, and 34% of HMB-45-positive cases. A maximally intense signal was almost always observed for MART-1 (83% of positive cases) but was rarely observed for NK1/C3 (20%). S-100 and HMB-45 showed maximally intense staining in 50% and 54% of cases, respectively. S-100 and NK1/C3 stained both histiocytes and melanocytes, whereas MART-1 and HMB-45 stained only melanocytes. Seventy-eight cases (63%) stained positive for all 4 markers, 17 cases (14%) stained for all markers except HMB-45, 13 cases (10%) stained for all markers except MART-1, 6 cases (5%) stained only with S-100 and NK1/C3, 4 cases (3%) stained only with S-100 and HMB-45, and 2 cases stained for all markers except S-100. One case each stained for the following: only S-100, only S-100 and HMB-45, and all markers except NK1/C3. One case exhibited absence of staining for any of these markers. We demonstrate that lymph node metastases of melanoma are heterogeneous with regard to tumor marker expression. S-100 and NK1/C3 were the most sensitive stains for detecting metastatic melanoma; however, they both also stain other nontumor cells in lymph nodes. MART-1 did not stain

  6. Generation of a novel regulatory NK cell subset from peripheral blood CD34+ progenitors promoted by membrane-bound IL-15.

    Directory of Open Access Journals (Sweden)

    Massimo Giuliani

    Full Text Available BACKGROUND: NK cells have been long time considered as cytotoxic lymphocytes competent in killing virus-infected cells and tumors. However, NK cells may also play essential immuno-regulatory functions. In this context, the real existence of a defined NK subset with negative regulatory properties has been hypothesized but never clearly demonstrated. METHODOLOGY/PRINCIPAL FINDINGS: Herein, we show the in vitro generation from human peripheral blood haematopoietic progenitors (PB-HP, of a novel subset of non-cytolytic NK cells displaying a mature phenotype and remarkable immuno-regulatory functions (NK-ireg. The main functional hallmark of these NK-ireg cells is represented by the surface expression/release of HLA-G, a major immunosuppressive molecule. In addition, NK-ireg cells secrete two powerful immuno-regulatory factors: IL-10 and IL-21. Through these factors, NK-ireg cells act as effectors of the down-regulation of the immune response: reconverting mature myeloid DC (mDC into immature/tolerogenic DC, blocking cytolytic functions on conventional NK cells and inducing HLA-G membrane expression on PB-derived monocytes. The generation of "NK-ireg" cells is obtained, by default, in culture conditions favouring cell-to-cell contacts, and it is strictly dependent on reciprocal trans-presentation of membrane-bound IL-15 forms constitutively and selectively expressed by human CD34(+ PB-HP. Finally, a small subset of NKp46(+ HLA-G(+ IL-10(+ is detected within freshly isolated decidual NK cells, suggesting that these cells could represent an in vivo counterpart of the NK-ireg cells. CONCLUSIONS/SIGNIFICANCE: In conclusion, NK-ireg cells represent a novel truly differentiated non-cytolytic NK subset with a self-sustainable phenotype (CD56(+ CD16(+ NKp30(+ NKp44(+ NKp46(+ CD94(+ CD69(+ CCR7(+ generated from specific pSTAT6(+ GATA3(+ precursors. NK-ireg cells could be employed to develop new immuno-suppressive strategies in autoimmune diseases, transplant

  7. Solitary Wave Interactions in Granular Media

    Institute of Scientific and Technical Information of China (English)

    WEN Zhen-Ying; WANG Shun-Jin; ZHANG Xiu-Ming; LI Lei

    2007-01-01

    We numerically study the interactions of solitary waves in granular media, by considering a chain of beads, which repel upon contact via the Hertz-type potential, V ∝δn, with 5/2 ≤n≤3 and δ≥0,δbeing the bead-bead overlap. There are two collision types of solitary waves, overtaking collision and head-on collision, in the chain of beads. Our quantitative results show that after collision the large solitary wave gains energy and the small one loses energy for overtaking type while the large one loses energy, and the small one gains energy for head-on type. The scattering effects decrease with n for overtaking collision whereas increase with n for head-on collision.

  8. Decidualization and angiogenesis in early pregnancy: unravelling the functions of DC and NK cells.

    Science.gov (United States)

    Blois, Sandra M; Klapp, Burghard F; Barrientos, Gabriela

    2011-03-01

    Differentiation of endometrial stromal cells and formation of new maternal blood vessels at the time of embryo implantation are critical for the establishment and maintenance of gestation. The regulatory functions of decidual leukocytes during early pregnancy, particularly dendritic cells (DC) and NK cells, may be important not only for the generation of maternal immunological tolerance but also in the regulation of stromal cell differentiation and the vascular responses associated with the implantation process. However, the specific contributions of DC and NK cells during implantation are still difficult to dissect mainly due to reciprocal regulatory interactions established between them within the decidualizing microenvironment. The present review article discusses current evidence on the regulatory pathways driving decidualization in mice, suggesting that NK cells promote uterine vascular modifications that assist decidual growth but DC directly control stromal cell proliferation, angiogenesis and the homing and maturation of NK cell precursors in the pregnant uterus. Thus, successful implantation appears to result from an interplay between cellular components of the decidualizing endometrium involving immunoregulatory and pro-angiogenic functions of DC and NK cells. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  9. Persistence of Activated and Adaptive-Like NK Cells in HIV+ Individuals despite 2 Years of Suppressive Combination Antiretroviral Therapy

    Directory of Open Access Journals (Sweden)

    Anna C. Hearps

    2017-06-01

    Full Text Available Innate immune dysfunction persists in HIV+ individuals despite effective combination antiretroviral therapy (cART. We recently demonstrated that an adaptive-like CD56dim NK cell population lacking the signal transducing protein FcRγ is expanded in HIV+ individuals. Here, we analyzed a cohort of HIV+ men who have sex with men (MSM, n = 20 at baseline and following 6, 12, and 24 months of cART and compared them with uninfected MSM (n = 15 to investigate the impact of cART on NK cell dysfunction. Proportions of NK cells expressing markers of early (CD69+ and late (HLA-DR+/CD38+ activation were elevated in cART-naïve HIV+ MSM (p = 0.004 and 0.015, respectively, as were FcRγ− NK cells (p = 0.003. Using latent growth curve modeling, we show that cART did not reduce levels of FcRγ− NK cells (p = 0.115 or activated HLA-DR+/CD38+ NK cells (p = 0.129 but did reduce T cell and monocyte activation (p < 0.001 for all. Proportions of FcRγ− NK cells were not associated with NK cell, T cell, or monocyte activation, suggesting different factors drive CD56dim FcRγ− NK cell expansion and immune activation in HIV+ individuals. While proportions of activated CD69+ NK cells declined significantly on cART (p = 0.003, the rate was significantly slower than the decline of T cell and monocyte activation, indicating a reduced potency of cART against NK cell activation. Our findings indicate that 2 years of suppressive cART have no impact on CD56dim FcRγ− NK cell expansion and that NK cell activation persists after normalization of other immune parameters. This may have implications for the development of malignancies and co-morbidities in HIV+ individuals on cART.

  10. Impact of granular drops

    KAUST Repository

    Marston, J. O.

    2013-07-15

    We investigate the spreading and splashing of granular drops during impact with a solid target. The granular drops are formed from roughly spherical balls of sand mixed with water, which is used as a binder to hold the ball together during free-fall. We measure the instantaneous spread diameter for different impact speeds and find that the normalized spread diameter d/D grows as (tV/D)1/2. The speeds of the grains ejected during the “splash” are measured and they rarely exceed twice that of the impact speed.

  11. Impact of granular drops

    KAUST Repository

    Marston, J. O.; Mansoor, Mohammad M.; Thoroddsen, Sigurdur T

    2013-01-01

    We investigate the spreading and splashing of granular drops during impact with a solid target. The granular drops are formed from roughly spherical balls of sand mixed with water, which is used as a binder to hold the ball together during free-fall. We measure the instantaneous spread diameter for different impact speeds and find that the normalized spread diameter d/D grows as (tV/D)1/2. The speeds of the grains ejected during the “splash” are measured and they rarely exceed twice that of the impact speed.

  12. Viscosity evolution of anaerobic granular sludge

    NARCIS (Netherlands)

    Pevere, A.; Guibaud, G.; Hullebusch, van E.D.; Lens, P.N.L.; Baudu, M.

    2006-01-01

    The evolution of the apparent viscosity at steady shear rate of sieved anaerobic granular sludge (20¿315 ¿m diameter) sampled from different full-scale anaerobic reactors was recorded using rotation tests. The ¿limit viscosity¿ of sieved anaerobic granular sludge was determined from the apparent

  13. SENYAWA BIOAKTIF RIMPANG JAHE (Zingiber officinale Roscue MENINGKATKAN RESPON SITOLITIK SEL NK TERHADAP SEL KANKER DARAH K-562 IN VITRO [Ginger Root Bioactive Compounds Increased Cytolitic Response of Natural Killer (NK Cells Against Leucemic Cell Line K-562 In Vitro

    Directory of Open Access Journals (Sweden)

    Fransiska Rungkat Zakaria 2

    2006-08-01

    Full Text Available Natural killer (NK cell, a kind of lymphocyte cells, plays an important role in attacking infectious, immature, and cancer cell. Its function could be modulated by food bioactive compounds. This experiment was conducted to investigate the effects of ginger root bioactive compounds such as oleoresin, gingerol, and shogaol on cytolitic response of NK cell in vitro. Lymphocyte cells were isolated by centrifugation on ficoll-hypaque density (1,77 ?0,001 g/ml method. Leukemic cells line K-562 as target cells(TC labelled by [3H]-timidin, together with lymphocyte as effector cell (EC were cultured in two ratio levels of EC : TC equal to 1:50 and 1:100, and two culture conditions, for 4 hours, respectively. Paraquate dichloride (1,1-dimethyl-4,4-bipyridilium dichloride 3 mM was used to induce stress oxidative circumstance. Cytolytic capacity of NK cells was determined by percentage of TC lysed by NK cells, in normal and oxidative stress conditions. Statistical analysis showed that the effects of ginger bioactive compounds on cytolytic response of NK cell depended on the culture conditions, as shown by cultures in the presence of oleoresin, and gingerol, but not shogaol. In the lymphocyte culture without stress oxidative, oleoresin, gingerol and shogaol compounds increased significantly cytolytic response of NK cells cultured at a ratio of TC : EC equal to 1:50, with the highest increament of 65 % at oleoresin concentration of 50 ?g/ml. However, in culture at a ratio of TC : EC equals to 1:100, only oleoresin at a concentration of 50 ?g/ml increased significantly cytolytic response of NK cells with the highest increament of 8 %. Shogaol did not affect significantly NK cells cytolytic response. Under stress oxidative conditions, shogaol increased significantly cytolytic response of NK cells cultured at a ratio of TC:EC equal to 1:50, but the highest increament of 56 % , was by oleoresin at concentration of 50 ?g/ml. Meanwhile, oleoresin and gingerol did

  14. A Developed NK-92MI Cell Line with Siglec-7neg Phenotype Exhibits High and Sustainable Cytotoxicity against Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Chin-Han Huang

    2018-04-01

    Full Text Available Altered sialic acid processing that leads to upregulation of cell surface sialylation is recognized as a key change in malignant tissue glycosylation. This cancer-associated hypersialylation directly impacts the signaling interactions between tumor cells and their surrounding microenvironment, especially the interactions mediated by immune cell surface sialic acid-binding immunoglobulin-like lectins (Siglecs to relay inhibitory signals for cytotoxicity. First, we obtained a Siglec-7neg NK-92MI cell line, NK-92MI-S7N, by separating a group of Siglec-7neg cell population from an eight-month-long-term NK-92MI in vitro culture by fluorescence-activated cell sorting (FACS. The effect of Siglec-7 loss on NK-92MI-S7N cells was characterized by the cell morphology, proliferation, and cytotoxic activity via FACS, MTS assay, cytotoxic assay, and natural killer (NK degranulation assay. We found the expression levels of Siglec-7 in NK-92MI were negatively correlated with NK cytotoxicity against leukemia cells. This NK-92MI-S7N cell not only shared very similar phenotypes with its parental cells but also possessed a high and sustainable killing activity. Furthermore, this Siglec-7neg NK line was unexpectedly capable of eliminating a NK-92MI-resistant leukemia cell, THP-1, through enhancing the effector-target interaction. In this study, a NK cell line with high and sustainable cytotoxicity was established and this cell may provide a potential application in NK-based treatment for leukemia patients.

  15. [Detection of NK and NKT cells in peripheral blood of patients with cGVHD and its significance].

    Science.gov (United States)

    Zhou, Mao-Hua; Wang, Chun-Miao; Gong, Cai-Ping; Luo, Yin; Zhang, Min

    2012-10-01

    The aim of this study was to investigate the correlation of NK and NKT cells in peripheral blood of patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT) with chronic graft-versus-host disease (cGVHD). 64 patients undergoing allo-HSCT in Guangdong Provincial People Hospital were studied retrospectively. Among 64 cases, 21 cases were did not develop with cGVHD, 43 cases (mild 15, moderate 18, severe 10) were recorded with cGVHD. The frequency of NK and NKT cells in peripheral blood of patients were measured by flow cytometry. The counts of NK and NKT cells were measured by automatic five sort hematology cyto-analyser (LH-750). The frequency and counts of NK and NKT cells between patients with non-cGVHD and patients with different status of cGVHD were analysed. The results indicated that as compared with the non-cGVHD patients, the frequency and counts of NK cells in patients with cGVHD obviously reduced (P NKT cells were did not changed significantly. The frequency and counts of NK cells gradually decreased within the different status of cGVHD, the frequency and counts of NK cells in severe-cGVHD were significantly lower than that in mild-cGVHD. It is concluded that NK cells may play an important role in the incidence and development of cGVHD. The detection of frequency and counts of NK cells should be helpful to early diagnose cGVHD and provide valuable clues for assessing the severity of illnesses. NKT cells may have little effect on the incidence and development of cGVHD.

  16. Intratumoral delivery of CpG-conjugated anti-MUC1 antibody enhances NK cell anti-tumor activity.

    Science.gov (United States)

    Schettini, Jorge; Kidiyoor, Amritha; Besmer, Dahlia M; Tinder, Teresa L; Roy, Lopamudra Das; Lustgarten, Joseph; Gendler, Sandra J; Mukherjee, Pinku

    2012-11-01

    Monoclonal antibodies (mAbs) against tumor-associated antigens are useful anticancer agents. Antibody-dependent cellular cytotoxicity (ADCC) is one of the major mechanisms responsible for initiating natural killer cell (NK)-mediated killing of tumors. However, the regulation of ADCC via NK cells is poorly understood. We have investigated the cytolytic activity of NK cells against pancreatic cancer cells that were coated with an antibody directed against the human tumor antigen, Mucin-1 designated HMFG-2, either alone or conjugated to CpG oligodeoxynucleotide (CpG ODN). Conjugated antibodies were tested for their ability to elicit ADCC in vitro and in vivo against pancreatic cancer cells. NK cells cultured in the presence of immobilized CpG ODN, HMFG-2 Ab, or CpG ODN-conjugated HMFG-2 Ab were able to up-regulate perforin similarly. Interestingly, a significant higher ADCC was observed when CpG ODN-conjugated HMFG-2-coated tumor cells were co-cultured with NK cells compared to unconjugated HMFG-2 Ab or CpG ODN alone. Moreover, MyD88-deficient NK cells can perform ADCC in vitro. Furthermore, intratumoral injections of CpG ODN-conjugated HMFG-2 induced a significant reduction in tumor burden in vivo in an established model of pancreatic tumor in nude mice compared to CpG ODN or the HMFG-2 alone. Depletion of macrophages or NK cells before treatment confirmed that both cells were required for the anti-tumor response in vivo. Results also suggest that CpG ODN and HMFG-2 Ab could be sensed by NK cells on the mAb-coated tumor cells triggering enhanced ADCC in vitro and in vivo.

  17. Phenotypic and functional analyses of NK and NKT-like populations during the early stages of chikungunya infection.

    Science.gov (United States)

    Thanapati, Subrat; Das, Rumki; Tripathy, Anuradha S

    2015-01-01

    The aim of this study was to characterize NK (CD56(+)CD3(-)) and NKT-like cell (CD56(+)CD3(+)) responses early after chikungunya infection. Expression profiling and functional analysis of T/NK/NKT-like cells were performed on samples from 56 acute and 31 convalescent chikungunya patients and 56 control individuals. The percentages of NK cells were high in both patient groups, whereas NKT-like cell percentages were high only in the convalescent group. The percentages of NKp30(+)CD3(-)CD56(+), NKp30(+)CD3(+)CD56(+), CD244(+)CD3(-)CD56(+), and CD244(+)CD3(+)CD56(+)cells were high, whereas the percentages of NKG2D(+)CD3(-)CD56(+) and NKG2D(+)CD3(+)CD56(+)cells were low in both patient groups. The percentages of NKp44(+)CD3(-)CD56(+) cells were high in both patient groups, whereas the percentages of NKp44(+)CD3(+)CD56(+) cells were higher in the acute group than in convalescent and control groups. The percentages of NKp46(+)CD3(-)CD56(+) cells were high in both patient groups. Higher percentages of perforin(+)CD3(-)CD56(+) and perforin(+)CD3(+)CD56(+) cells were observed in acute and convalescent patients, respectively. Higher cytotoxic activity was observed in acute patients than in controls. IFN-γ expression on NK cells of convalescent patients and on NKT-like cells of both patient groups was indicative of the regulatory role of NK and NKT-like cells. Collectively, these data showed that higher expression of activating receptors on NK/NKT-like cells and perforin(+) NK cells in acute patients could be responsible for increased cytotoxicity. The observed expression of perforin(+) NK cells in the acute phase and IFN-γ(+) NKT-like cells in the subsequent convalescent stage showed that NK/NKT-like cells mount an early and efficient response to chikungunya virus. Further study of the molecular mechanisms that limit viral dissemination/establishment of chronic disease will aid in understanding how NK/NKT-like cells control chikungunya infection.

  18. Critical phenomenon of granular flow on a conveyor belt.

    Science.gov (United States)

    De-Song, Bao; Xun-Sheng, Zhang; Guang-Lei, Xu; Zheng-Quan, Pan; Xiao-Wei, Tang; Kun-Quan, Lu

    2003-06-01

    The relationship between the granular wafer movement on a two-dimensional conveyor belt and the size of the exit together with the velocity of the conveyor belt has been studied in the experiment. The result shows that there is a critical speed v(c) for the granular flow when the exit width d is fixed (where d=R/D, D being the diameter of a granular wafers). When vv(c), the flow rate Q is described as Q=Crho(v)(beta)(d-k)(3/2). These are the effects of the interaction among the granular wafers and the change of the states of the granular flow due to the changing of the speed or the exit width d.

  19. Survivable integrated grooming in multi-granularity optical networks

    Science.gov (United States)

    Wu, Jingjing; Guo, Lei; Wei, Xuetao; Liu, Yejun

    2012-05-01

    Survivability is an important issue to ensure the service continuity in optical network. At the same time, with the granularity of traffic demands ranging from sub-wavelength-level to wavelength-level, traffic demands need to be aggregated and carried over the network in order to utilize resources effectively. Therefore, multi-granularity grooming is proposed to save the cost and reduce the number of switching ports in Optical-Cross Connects (OXCs). However, current works mostly addressed the survivable wavelength or waveband grooming. Therefore, in this paper, we propose three heuristic algorithms called Multi-granularity Dedicated Protection Grooming (MDPG), Multi-granularity Shared Protection Grooming (MSPG) and Multi-granularity Mixed Protection Grooming (MMPG), respectively. All of them are performed based on the Survivable Multi-granularity Integrated Auxiliary Graph (SMIAG) that includes one Wavelength Integrated Auxiliary Graph (WIAG) for wavelength protection and one waveBand Integrated Auxiliary Graph (BIAG) for waveband protection. Numerical results show that MMPG has the lowest average port-cost, the best resource utilization ratio and the lowest blocking probability among these three algorithms. Compared with MDPG, MSPG has lower average port-cost, better resource utilization ratio and lower blocking probability.

  20. Role of NKG2D-Expressing NK Cells and sMICA in Immune Surveillance of Advanced Lung Cancer

    Directory of Open Access Journals (Sweden)

    Jing LIANG

    2009-01-01

    Full Text Available Background and objective NKG2D-expressing NK cells and soluble major histocompatibility complex class Ⅰ-related chain A (sMICA is one of aroused general interests in tumor research area recently. The aimof the study is to investigate the levels of NKG2D-expressing NK cells and sMICA in peripheral blood of advanced lung cancer which are remarkably related to clinical significance and analyse the role of NKG2D-expressing NK cells and sMICA in immune surveillance. Methods Flow cytometry was used to determine the percentage of NKG2D-expressing NK cells, T cell subsets, NK cells, and ELISA was used to mesure the levels of sMICA in peripheral blood of 115 advanced lung cancer patients and 50 healthy controls. Results Compared with control group, the levels of sMICA、CD8+T cells, NK cells increased, while the levels of NKG2D-expressing NK cells, CD3+ T cells, CD4+ T cells, CD4+ T/CD8+ T in experimental group decreased. NKG2D-expressing NK cells had a perfect negative correlation with sMICA (r =-0.319, P <0.05. NKG2D-expressing NK cells had positive correlation with CD4+ T cells, CD4+ T/CD8+ T and negative correlationwith CD8+ T cells (P <0.05, sMICA had negative correlation with CD4+ T cells, CD4+ T/CD8+ T and positive correlation with CD8+ T cells (P <0.05, they had no significant correlation with CD3+ T cells, NK cells respectively (P <0.05. Conclusion Accumulation of sMICA in serum may lead to the down-modulation of NKG2D-expressing NK which has been proposed to be a novel mechanism used by cancer cells to evade the tumor immunosurveillance. They may be potential indicators investigating immune functions and helpful in the evaluation of their happening and proceeding.

  1. Suppression of NK cells and regulatory T lymphocytes in cats naturally infected with feline infectious peritonitis virus.

    Science.gov (United States)

    Vermeulen, Ben L; Devriendt, Bert; Olyslaegers, Dominique A; Dedeurwaerder, Annelike; Desmarets, Lowiese M; Favoreel, Herman W; Dewerchin, Hannah L; Nauwynck, Hans J

    2013-05-31

    A strong cell-mediated immunity (CMI) is thought to be indispensable for protection against infection with feline infectious peritonitis virus (FIPV) in cats. In this study, the role of natural killer (NK) cells and regulatory T cells (Tregs), central players in the innate and adaptive CMI respectively, was examined during natural FIPV infection. When quantified, both NK cells and Tregs were drastically depleted from the peripheral blood, mesenteric lymph node (LN) and spleen in FIP cats. In contrast, mesentery and kidney from FIP cats did not show any difference when compared to healthy non-infected control animals. In addition, other regulatory lymphocytes (CD4+CD25-Foxp3+ and CD3+CD8+Foxp3+) were found to be depleted from blood and LN as well. Phenotypic analysis of blood-derived NK cells in FIP cats revealed an upregulation of activation markers (CD16 and CD25) and migration markers (CD11b and CD62L) while LN-derived NK cells showed upregulation of only CD16 and CD62L. LN-derived NK cells from FIPV-infected cats were also significantly less cytotoxic when compared with healthy cats. This study reveals for the first time that FIPV infection is associated with severe suppression of NK cells and Tregs, which is reflected by cell depletion and lowered cell functionality (only NK cells). This will un-doubtfully lead to a reduced capacity of the innate immune system (NK cells) to battle FIPV infection and a decreased capacity (Tregs) to suppress the immunopathology typical for FIP. However, these results will also open possibilities for new therapies targeting specifically NK cells and Tregs to enhance their numbers and/or functionality during FIPV infection. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Superconductivity in inhomogeneous granular metals

    International Nuclear Information System (INIS)

    McLean, W.L.

    1980-01-01

    A model of elongated metal ellipsoids imbedded in a granular metal is treated by an effective medium approach to explain the observed temperature dependence of the normal-state conductivity of superconducting granular aluminum. Josephson tunneling is thus still required to account for the superconductivity. The model predicts the same kind of contrasting behavior on opposite sides of the metal-insulator transition as is found in the recent scaling treatment of Anderson localization

  3. Friction force regimes and the conditions for endless penetration of an intruder into a granular medium.

    Science.gov (United States)

    López-Rodríguez, L A; Pacheco-Vázquez, F

    2017-09-01

    An intruder penetrating into a granular column experiences a depth-dependent friction force F(z). Different regimes of F(z) have been measured depending on the experimental design: a nearly linear dependence for shallow penetrations, total saturation at large depths, and an exponential increase when the intruder approaches the bottom of the granular bed. We report here an experiment that allows us to measure the different regimes in a single run during the quasistatic descent of a sphere in a light granular medium. From the analysis of the resistance in the saturation zone, it was found that F(z) follows a cube-power-law dependence on the intruder diameter and an exponential increase with the packing fraction of the bed. Moreover, we determine the critical mass m_{c} required to observe infinite penetration and its dependence on the above parameters. Finally, we use our results to estimate the final penetration depth reached by intruders of masses mgranular bed) can sink indefinitely into the granular medium if the bed packing fraction is smaller than a critical value.

  4. Natural killer (NK) cells inhibit systemic metastasis of glioblastoma cells and have therapeutic effects against glioblastomas in the brain.

    Science.gov (United States)

    Lee, Se Jeong; Kang, Won Young; Yoon, Yeup; Jin, Ju Youn; Song, Hye Jin; Her, Jung Hyun; Kang, Sang Mi; Hwang, Yu Kyeong; Kang, Kyeong Jin; Joo, Kyeung Min; Nam, Do-Hyun

    2015-12-24

    Glioblastoma multiforme (GBM) is characterized by extensive local invasion, which is in contrast with extremely rare systemic metastasis of GBM. Molecular mechanisms inhibiting systemic metastasis of GBM would be a novel therapeutic candidate for GBM in the brain. Patient-derived GBM cells were primarily cultured from surgical samples of GBM patients and were inoculated into the brains of immune deficient BALB/c-nude or NOD-SCID IL2Rgamma(null) (NSG) mice. Human NK cells were isolated from peripheral blood mononucleated cells and expanded in vitro. Patient-derived GBM cells in the brains of NSG mice unexpectedly induced spontaneous lung metastasis although no metastasis was detected in BALB/c-nude mice. Based on the difference of the innate immunity between two mouse strains, NK cell activities of orthotopic GBM xenograft models based on BALB/c-nude mice were inhibited. NK cell inactivation induced spontaneous lung metastasis of GBM cells, which indicated that NK cells inhibit the systemic metastasis. In vitro cytotoxic activities of human NK cells against GBM cells indicated that cytotoxic activity of NK cells against GBM cells prevents systemic metastasis of GBM and that NK cells could be effective cell therapeutics against GBM. Accordingly, NK cells transplanted into orthotopic GBM xenograft models intravenously or intratumorally induced apoptosis of GBM cells in the brain and showed significant therapeutic effects. Our results suggest that innate NK immunity is responsible for rare systemic metastasis of GBM and that sufficient supplementation of NK cells could be a promising immunotherapeutic strategy for GBM in the brain.

  5. Nonlinear coherent structures in granular crystals

    Science.gov (United States)

    Chong, C.; Porter, Mason A.; Kevrekidis, P. G.; Daraio, C.

    2017-10-01

    The study of granular crystals, which are nonlinear metamaterials that consist of closely packed arrays of particles that interact elastically, is a vibrant area of research that combines ideas from disciplines such as materials science, nonlinear dynamics, and condensed-matter physics. Granular crystals exploit geometrical nonlinearities in their constitutive microstructure to produce properties (such as tunability and energy localization) that are not conventional to engineering materials and linear devices. In this topical review, we focus on recent experimental, computational, and theoretical results on nonlinear coherent structures in granular crystals. Such structures—which include traveling solitary waves, dispersive shock waves, and discrete breathers—have fascinating dynamics, including a diversity of both transient features and robust, long-lived patterns that emerge from broad classes of initial data. In our review, we primarily discuss phenomena in one-dimensional crystals, as most research to date has focused on such scenarios, but we also present some extensions to two-dimensional settings. Throughout the review, we highlight open problems and discuss a variety of potential engineering applications that arise from the rich dynamic response of granular crystals.

  6. Small-number statistics near the clustering transition in a compartementalized granular gas

    NARCIS (Netherlands)

    Mikkelsen, René; van der Weele, Ko; van der Meer, Devaraj; van Hecke, Martin; Lohse, Detlef

    2005-01-01

    Statistical fluctuations are observed to profoundly influence the clustering behavior of granular material in a vibrated system consisting of two connected compartments. When the number of particles N is sufficiently large sN<300 is sufficientd, the clustering follows the lines of a standard

  7. On inconsistency in frictional granular systems

    Science.gov (United States)

    Alart, Pierre; Renouf, Mathieu

    2018-04-01

    Numerical simulation of granular systems is often based on a discrete element method. The nonsmooth contact dynamics approach can be used to solve a broad range of granular problems, especially involving rigid bodies. However, difficulties could be encountered and hamper successful completion of some simulations. The slow convergence of the nonsmooth solver may sometimes be attributed to an ill-conditioned system, but the convergence may also fail. The prime aim of the present study was to identify situations that hamper the consistency of the mathematical problem to solve. Some simple granular systems were investigated in detail while reviewing and applying the related theoretical results. A practical alternative is briefly analyzed and tested.

  8. Statistical mechanics of dense granular media

    International Nuclear Information System (INIS)

    Coniglio, A; Fierro, A; Nicodemi, M; Ciamarra, M Pica; Tarzia, M

    2005-01-01

    We discuss some recent results on the statistical mechanics approach to dense granular media. In particular, by analytical mean field investigation we derive the phase diagram of monodisperse and bidisperse granular assemblies. We show that 'jamming' corresponds to a phase transition from a 'fluid' to a 'glassy' phase, observed when crystallization is avoided. The nature of such a 'glassy' phase turns out to be the same as found in mean field models for glass formers. This gives quantitative evidence for the idea of a unified description of the 'jamming' transition in granular media and thermal systems, such as glasses. We also discuss mixing/segregation transitions in binary mixtures and their connections to phase separation and 'geometric' effects

  9. Storage and discharge of a granular fluid.

    Science.gov (United States)

    Pacheco-Martinez, Hector; van Gerner, Henk Jan; Ruiz-Suárez, J C

    2008-02-01

    Experiments and computational simulations are carried out to study the behavior of a granular column in a silo whose walls are able to vibrate horizontally. The column is brought to a steady fluidized state and it behaves similar to a hydrostatic system. We study the dynamics of the granular discharge through openings at the bottom of the silo in order to search for a Torricelli-like behavior. We show that the flow rate scales with the wall induced shear rate, and at high rates, the granular bed indeed discharges similar to a viscous fluid.

  10. Granular and layered ferroelectric–ferromagnetic thin-film nanocomposites as promising materials with high magnetotransmission effect

    Energy Technology Data Exchange (ETDEWEB)

    Akbashev, A.R. [Department of Materials Science, Moscow State University, 119992 Moscow (Russian Federation); Telegin, A.V., E-mail: telegin@imp.uran.ru [M.N. Miheev Institute of Metal Physics of Ural Branch of RAS, 620990 Ekaterinburg (Russian Federation); Kaul, A.R. [Department of Chemistry, Moscow State University, 119992 Moscow (Russian Federation); Sukhorukov, Yu.P. [M.N. Miheev Institute of Metal Physics of Ural Branch of RAS, 620990 Ekaterinburg (Russian Federation)

    2015-06-15

    Epitaxial thin films of granular and layered nanocomposites consisting of ferromagnetic perovskite Pr{sub 1–x}Sr{sub x}MnO{sub 3} and ferroelectric hexagonal LuMnO{sub 3} were grown on ZrO{sub 2}(Y{sub 2}O{sub 3}) substrates using metal-organic chemical vapor deposition (MOCVD). A self-organized growth of the granular composite took place in situ as a result of phase separation of the Pr–Sr–Lu–Mn–O system into the perovskite and hexagonal phases. Optical transmission measurements revealed a large negative magnetotransmission effect in the layered nanocomposite over a wide spectral and temperature range. The granular nanocomposite unexpectedly showed an even larger, but positive, magnetotransmission effect at room temperature. - Highlights: • Thin-film ferromagnetic–ferroelectric nanocomposites have been prepared by MOCVD. • Giant change of optical transparency of nanocomposites in magnetic field was detected. • Positive magnetotransmission in the granular nanocomposite was discovered in the IR. • Negative magnetotransmission in the layered nanocomposite was revealed in the IR. • Ferroelectric–ferromangetic nanocomposite is a promising material for optoelectronics.

  11. Granular and layered ferroelectric–ferromagnetic thin-film nanocomposites as promising materials with high magnetotransmission effect

    International Nuclear Information System (INIS)

    Akbashev, A.R.; Telegin, A.V.; Kaul, A.R.; Sukhorukov, Yu.P.

    2015-01-01

    Epitaxial thin films of granular and layered nanocomposites consisting of ferromagnetic perovskite Pr 1–x Sr x MnO 3 and ferroelectric hexagonal LuMnO 3 were grown on ZrO 2 (Y 2 O 3 ) substrates using metal-organic chemical vapor deposition (MOCVD). A self-organized growth of the granular composite took place in situ as a result of phase separation of the Pr–Sr–Lu–Mn–O system into the perovskite and hexagonal phases. Optical transmission measurements revealed a large negative magnetotransmission effect in the layered nanocomposite over a wide spectral and temperature range. The granular nanocomposite unexpectedly showed an even larger, but positive, magnetotransmission effect at room temperature. - Highlights: • Thin-film ferromagnetic–ferroelectric nanocomposites have been prepared by MOCVD. • Giant change of optical transparency of nanocomposites in magnetic field was detected. • Positive magnetotransmission in the granular nanocomposite was discovered in the IR. • Negative magnetotransmission in the layered nanocomposite was revealed in the IR. • Ferroelectric–ferromangetic nanocomposite is a promising material for optoelectronics

  12. Characterization of Unbound Granular Materials for Pavements

    NARCIS (Netherlands)

    Araya, A.A.

    2011-01-01

    This research is focused on the characterization of the mechanical behavior of unbound granular road base materials (UGMs). An extensive laboratory investigation is described, in which various methods for determination of the mechanical properties of granular materials are examined for their

  13. A numerical study of granular dam-break flow

    Science.gov (United States)

    Pophet, N.; Rébillout, L.; Ozeren, Y.; Altinakar, M.

    2017-12-01

    Accurate prediction of granular flow behavior is essential to optimize mitigation measures for hazardous natural granular flows such as landslides, debris flows and tailings-dam break flows. So far, most successful models for these types of flows focus on either pure granular flows or flows of saturated grain-fluid mixtures by employing a constant friction model or more complex rheological models. These saturated models often produce non-physical result when they are applied to simulate flows of partially saturated mixtures. Therefore, more advanced models are needed. A numerical model was developed for granular flow employing a constant friction and μ(I) rheology (Jop et al., J. Fluid Mech. 2005) coupled with a groundwater flow model for seepage flow. The granular flow is simulated by solving a mixture model using Finite Volume Method (FVM). The Volume-of-Fluid (VOF) technique is used to capture the free surface motion. The constant friction and μ(I) rheological models are incorporated in the mixture model. The seepage flow is modeled by solving Richards equation. A framework is developed to couple these two solvers in OpenFOAM. The model was validated and tested by reproducing laboratory experiments of partially and fully channelized dam-break flows of dry and initially saturated granular material. To obtain appropriate parameters for rheological models, a series of simulations with different sets of rheological parameters is performed. The simulation results obtained from constant friction and μ(I) rheological models are compared with laboratory experiments for granular free surface interface, front position and velocity field during the flows. The numerical predictions indicate that the proposed model is promising in predicting dynamics of the flow and deposition process. The proposed model may provide more reliable insight than the previous assumed saturated mixture model, when saturated and partially saturated portions of granular mixture co-exist.

  14. Circadian variations of interferon-induced enhancement of human natural killer (NK) cell activity.

    Science.gov (United States)

    Gatti, G; Cavallo, R; Sartori, M L; Carignola, R; Masera, R; Delponte, D; Salvadori, A; Angeli, A

    1988-01-01

    We searched for circadian changes in the enhancement of the NK activity after exposure to IFN-gamma of peripheral blood mononuclear (PBM) cells obtained serially throughout the 24-h cycle. In August-October 1986, blood was drawn from 7 healthy, diurnally active and nocturnally resting male volunteers (22-34 yr) at 4-h intervals for 24 h starting at 08:00. PBM cells were immediately separated and assayed for NK cell activity, using K 562 cultured cells as a target in a 4-h 51Cr release assay after prior incubation for 20 h with buffer or 300 IU rIFN-gamma. Circadian variations of the spontaneous NK cell cytotoxicity were apparent; the activity was at its maximum at the end of the night or in the early morning and then declined in the afternoon. The 24-h rhythmic pattern was validated with statistical significance by the Cosinor method (p less than 0.02; acrophase 04:22). Maximum enhancement by IFN-gamma was attained in the second part of the night or in the early morning, i.e. in phase with the peak of the spontaneous NK cell activity. A significant circadian rhythm of the percent increase above control levels was validated by the Cosinor method (p less than 0.01; acrophase 04:03). Our findings may be of relevance to a better understanding of the mechanisms of control of human NK activity and warrant consideration as an approach to improve the effectiveness of time-qualified immunotherapy.

  15. Anti-metastatic effects of viral and non-viral mediated Nk4 delivery to tumours.

    Science.gov (United States)

    Buhles, Alexandra; Collins, Sara A; van Pijkeren, Jan P; Rajendran, Simon; Miles, Michelle; O'Sullivan, Gerald C; O'Hanlon, Deirdre M; Tangney, Mark

    2009-03-09

    The most common cause of death of cancer sufferers is through the occurrence of metastases. The metastatic behaviour of tumour cells is regulated by extracellular growth factors such as hepatocyte growth factor (HGF), a ligand for the c-Met receptor tyrosine kinase, and aberrant expression/activation of the c-Met receptor is closely associated with metastatic progression. Nk4 (also known as Interleukin (IL)32b) is a competitive antagonist of the HGF c-Met system and inhibits c-Met signalling and tumour metastasis. Nk4 has an additional anti-angiogenic activity independent of its HGF-antagonist function. Angiogenesis-inhibitory as well as cancer-specific apoptosis inducing effects make the Nk4 sequence an attractive candidate for gene therapy of cancer. This study investigates the inhibition of tumour metastasis by gene therapy mediated production of Nk4 by the primary tumour. Optimal delivery of anti-cancer genes is vital in order to achieve the highest therapeutic responses. Non-viral plasmid delivery methods have the advantage of safety and ease of production, providing immediate transgene expression, albeit short-lived in most tumours. Sustained presence of anti-angiogenic molecules is preferable with anti-angiogenic therapies, and the long-term expression mediated by Adeno-associated Virus (AAV) might represent a more appropriate delivery in this respect. However, the incubation time required by AAV vectors to reach appropriate gene expression levels hampers efficacy in many fast-growing murine tumour models. Here, we describe murine trials assessing the effects of Nk4 on the spontaneously metastatic Lewis Lung Carcinoma (LLC) model when delivered to primary tumour via plasmid lipofection or AAV2 vector. Intratumoural AAV-Nk4 administration produced the highest therapeutic response with significant reduction in both primary tumour growth and incidence of lung metastases. Plasmid-mediated therapy also significantly reduced metastatic growth, but with moderate

  16. Similitude study of a moving bed granular filter

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. Brown; Huawei Shi; Gerald Colver; Saw-Choon Soo [Iowa State University, IA (United States)

    2003-12-10

    The goal of this study was to evaluate the performance of a moving bed granular filter designed for hot gas clean up. This study used similitude theory to devise experiments that were conducted at near-ambient conditions while simulating the performance of filters operated at elevated temperatures and pressures (850{sup o}C and 1000 kPa). These experiments revealed that the proposed moving bed granular filter can operate at high collection efficiencies, typically exceeding 99%, and low pressure drops without the need for periodic regeneration through the use of a continuous flow of fresh granular filter media in the filter. In addition, important design constraints were discovered for the successful operation of the proposed moving bed granular filter.

  17. IL-15 Superagonist–Mediated Immunotoxicity: Role of NK Cells and IFN-γ

    Science.gov (United States)

    Guo, Yin; Luan, Liming; Rabacal, Whitney; Bohannon, Julia K.; Fensterheim, Benjamin A.; Hernandez, Antonio

    2015-01-01

    IL-15 is currently undergoing clinical trials to assess its efficacy for treatment of advanced cancers. The combination of IL-15 with soluble IL-15Rα generates a complex termed IL-15 superagonist (IL-15 SA) that possesses greater biological activity than IL-15 alone. IL-15 SA is considered an attractive antitumor and antiviral agent because of its ability to selectively expand NK and memory CD8+ T (mCD8+ T) lymphocytes. However, the adverse consequences of IL-15 SA treatment have not been defined. In this study, the effect of IL-15 SA on physiologic and immunologic functions of mice was evaluated. IL-15 SA caused dose- and time-dependent hypothermia, weight loss, liver injury, and mortality. NK (especially the proinflammatory NK subset), NKT, and mCD8+ T cells were preferentially expanded in spleen and liver upon IL-15 SA treatment. IL-15 SA caused NK cell activation as indicated by increased CD69 expression and IFN-γ, perforin, and granzyme B production, whereas NKT and mCD8+ T cells showed minimal, if any, activation. Cell depletion and adoptive transfer studies showed that the systemic toxicity of IL-15 SA was mediated by hyperproliferation of activated NK cells. Production of the proinflammatory cytokine IFN-γ, but not TNF-α or perforin, was essential to IL-15 SA–induced immunotoxicity. The toxicity and immunological alterations shown in this study are comparable to those reported in recent clinical trials of IL-15 in patients with refractory cancers and advance current knowledge by providing mechanistic insights into IL-15 SA–mediated immunotoxicity. PMID:26216888

  18. Imatinib and Nilotinib Off-Target Effects on Human NK Cells, Monocytes, and M2 Macrophages.

    Science.gov (United States)

    Bellora, Francesca; Dondero, Alessandra; Corrias, Maria Valeria; Casu, Beatrice; Regis, Stefano; Caliendo, Fabio; Moretta, Alessandro; Cazzola, Mario; Elena, Chiara; Vinti, Luciana; Locatelli, Franco; Bottino, Cristina; Castriconi, Roberta

    2017-08-15

    Tyrosine kinase inhibitors (TKIs) are used in the clinical management of hematological neoplasms. Moreover, in solid tumors such as stage 4 neuroblastomas (NB), imatinib showed benefits that might depend on both on-target and immunological off-target effects. We investigated the effects of imatinib and nilotinib on human NK cells, monocytes, and macrophages. High numbers of monocytes died upon exposure to TKI concentrations similar to those achieved in patients. Conversely, NK cells were highly resistant to the TKI cytotoxic effect, were properly activated by immunostimulatory cytokines, and degranulated in the presence of NB cells. In NB, neither drug reduced the expression of ligands for activating NK receptors or upregulated that of HLA class I, B7-H3, PD-L1, and PD-L2, molecules that might limit NK cell function. Interestingly, TKIs modulated the chemokine receptor repertoire of immune cells. Acting at the transcriptional level, they increased the surface expression of CXCR4, an effect observed also in NK cells and monocytes of patients receiving imatinib for chronic myeloid leukemia. Moreover, TKIs reduced the expression of CXCR3 (in NK cells) and CCR1 (in monocytes). Monocytes also decreased the expression of M-CSFR, and low numbers of cells underwent differentiation toward macrophages. M0 and M2 macrophages were highly resistant to TKIs and maintained their phenotypic and functional characteristics. Importantly, also in the presence of TKIs, the M2 immunosuppressive polarization was reverted by TLR engagement, and M1-oriented macrophages fully activated autologous NK cells. Our results contribute to better interpreting the off-target efficacy of TKIs in tumors and to envisaging strategies aimed at facilitating antitumor immune responses. Copyright © 2017 by The American Association of Immunologists, Inc.

  19. Uniform shock waves in disordered granular matter.

    Science.gov (United States)

    Gómez, Leopoldo R; Turner, Ari M; Vitelli, Vincenzo

    2012-10-01

    The confining pressure P is perhaps the most important parameter controlling the properties of granular matter. Strongly compressed granular media are, in many respects, simple solids in which elastic perturbations travel as ordinary phonons. However, the speed of sound in granular aggregates continuously decreases as the confining pressure decreases, completely vanishing at the jamming-unjamming transition. This anomalous behavior suggests that the transport of energy at low pressures should not be dominated by phonons. In this work we use simulations and theory to show how the response of granular systems becomes increasingly nonlinear as pressure decreases. In the low-pressure regime the elastic energy is found to be mainly transported through nonlinear waves and shocks. We numerically characterize the propagation speed, shape, and stability of these shocks and model the dependence of the shock speed on pressure and impact intensity by a simple analytical approach.

  20. Células NK: generalidades y papel durante la infección por el virus de la inmunodeficiencia humana tipo 1 (VIH-1 NK cells: characteristics and role during the infection by type-1 human immunodeficiency virus (HIV-1

    Directory of Open Access Journals (Sweden)

    María Teresa Rugeles López

    2007-03-01

    Full Text Available Las células NK exhiben actividad espontánea contra células tumorales o células infectadas, particularmente por virus. Ellas se caracterizan por la expresión de las moléculas CD16 y CD56, y se subdividen en dos poblaciones, CD16Low/CD56Hi y CD16Hi/CD56Low, que difieren en las citoquinas que producen y en la capacidad citotóxica. La activación de las células NK está regulada por la expresión de receptores inhibidores y activadores que interactúan con diferentes ligandos de las células blanco. La actividad efectora de estas células incluye la lisis de las células blanco por diferentes mecanismos y la producción de citoquinas; las células NK participan por medio de estos factores solubles en diversos procesos fisiológicos, como la hematopoyesis y la regulación de otras células del sistema inmune. Durante la infección por el VIH-1, las células NK ayudan al control de la replicación viral tanto por mecanismos citotóxicos como por la producción de citoquinas, particularmente -quimoquinas. Sin embargo, el VIH- 1 ha desarrollado mecanismos para evadir la respuesta antiviral mediada por las células NK. Adicionalmente, esta infección induce anormalidades cuantitativas y funcionales en estas células que pueden presentarse muy temprano en la evolución de la enfermedad y que hacen parte de la inmunosupresión severa característica del SIDA. NK cells exhibit spontaneous activity against tumor and infected cells, particularly with virus. They are characterized by the expression of the CD16 and CD56 molecules. Two NK cell subpopulations have been described: CD16Low/CD56Hi and CD16Hi/ CD56Low that differ in the cytokines produced and their cytotoxic ability. NK cell activation is regulated by the expression of inhibition and activation receptors, which interact with different ligands on the target cells. The effector activity of these cells includes lysis of target cells by different mechanisms and the production of cytokines

  1. Enhanced adsorption of perfluorooctane sulfonate and perfluorooctanoate by bamboo-derived granular activated carbon.

    Science.gov (United States)

    Deng, Shubo; Nie, Yao; Du, Ziwen; Huang, Qian; Meng, Pingping; Wang, Bin; Huang, Jun; Yu, Gang

    2015-01-23

    A bamboo-derived granular activated carbon with large pores was successfully prepared by KOH activation, and used to remove perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from aqueous solution. The granular activated carbon prepared at the KOH/C mass ratio of 4 and activation temperature of 900°C had fast and high adsorption for PFOS and PFOA. Their adsorption equilibrium was achieved within 24h, which was attributed to their fast diffusion in the micron-sized pores of activated carbon. This granular activated carbon exhibited the maximum adsorbed amount of 2.32mmol/g for PFOS and 1.15mmol/g for PFOA at pH 5.0, much higher than other granular and powdered activated carbons reported. The activated carbon prepared under the severe activation condition contained many enlarged pores, favorable for the adsorption of PFOS and PFOA. In addition, the spent activated carbon was hardly regenerated in NaOH/NaCl solution, while the regeneration efficiency was significantly enhanced in hot water and methanol/ethanol solution, indicating that hydrophobic interaction was mainly responsible for the adsorption. The regeneration percent was up to 98% using 50% ethanol solution at 45°C. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Self-organized magnetic particles to tune the mechanical behavior of a granular system

    Science.gov (United States)

    Cox, Meredith; Wang, Dong; Barés, Jonathan; Behringer, Robert P.

    2016-09-01

    Above a certain density a granular material jams. This property can be controlled by either tuning a global property, such as the packing fraction or by applying shear strain, or at the micro-scale by tuning grain shape, inter-particle friction or externally controlled organization. Here, we introduce a novel way to change a local granular property by adding a weak anisotropic magnetic interaction between particles. We measure the evolution of the pressure, P, and coordination number, Z, for a packing of 2D photo-elastic disks, subject to uniaxial compression. A fraction R m of the particles have embedded cuboidal magnets. The strength of the magnetic interactions between particles is too weak to have a strong direct effect on P or Z when the system is jammed. However, the magnetic interactions play an important role in the evolution of latent force networks when systems containing a large enough fraction of the particles with magnets are driven through unjammed to jammed states. In this case, a statistically stable network of magnetic chains self-organizes before jamming and overlaps with force chains once jamming occurs, strengthening the granular medium. This property opens a novel way to control mechanical properties of granular materials.

  3. The Prognostic Impact of NK/NKT Cell Density in Periampullary Adenocarcinoma Differs by Morphological Type and Adjuvant Treatment.

    Science.gov (United States)

    Lundgren, Sebastian; Warfvinge, Carl Fredrik; Elebro, Jacob; Heby, Margareta; Nodin, Björn; Krzyzanowska, Agnieszka; Bjartell, Anders; Leandersson, Karin; Eberhard, Jakob; Jirström, Karin

    2016-01-01

    Natural killer (NK) cells and NK T cells (NKT) are vital parts of tumour immunosurveillance. However, their impact on prognosis and chemotherapy response in periampullary adenocarcinoma, including pancreatic cancer, has not yet been described. Immune cell-specific expression of CD56, CD3, CD68 and CD1a was analysed by immunohistochemistry on tissue microarrays with tumours from 175 consecutive cases of periampullary adenocarcinoma, 110 of pancreatobiliary type (PB-type) and 65 of intestinal type (I-type) morphology. Kaplan-Meier and Cox regression analysis were applied to determine the impact of CD56+ NK/NKT cells on 5-year overall survival (OS). High density of CD56+ NK/NKT cells correlated with low N-stage and lack of perineural, lymphatic vessel and peripancreatic fat invasion. High density of CD56+ NK/NKT cells was associated with prolonged OS in Kaplan-Meier analysis (p = 0.003), and in adjusted Cox regression analysis (HR = 0.49; 95% CI 0.29-0.86). The prognostic effect of high CD56+ NK/NKT cell infiltration was only evident in cases not receiving adjuvant chemotherapy in PB-type tumours (p for interaction = 0.014). This study demonstrates that abundant infiltration of CD56+ NK/NKT cells is associated with a prolonged survival in periampullary adenocarcinoma. However, the negative interaction with adjuvant treatment is noteworthy. NK cell enhancing strategies may prove to be successful in the management of these cancers.

  4. Clustering impact regime with shocks in freely evolving granular gas

    Science.gov (United States)

    Isobe, Masaharu

    2017-06-01

    A freely cooling granular gas without any external force evolves from the initial homogeneous state to the inhomogeneous clustering state, at which the energy decay deviates from the Haff's law. The asymptotic behavior of energy in the inelastic hard sphere model have been predicted by several theories, which are based on the mode coupling theory or extension of inelastic hard rods gas. In this study, we revisited the clustering regime of freely evolving granular gas via large-scale molecular dynamics simulation with up to 16.7 million inelastic hard disks. We found novel regime regarding on collisions between "clusters" spontaneously appearing after clustering regime, which can only be identified more than a few million particles system. The volumetric dilatation pattern of semicircular shape originated from density shock propagation are well characterized on the appearing of "cluster impact" during the aggregation process of clusters.

  5. Granular flow considerations in the design of a cascade solid breeder reaction chamber

    International Nuclear Information System (INIS)

    Walton, O.R.

    1983-10-01

    Both horizontally and vertically oriented rotating chambers with granular material held on the inner surface by centrifugal action are examined. Modifications to the condition for controlled quasi-static flow on an incline plane, phi/sub w/ 0 +- 10 0 for ceramic particles and metal surfaces. For vertical orientations the maximum half-angle of the top cone is slightly less than the wall friction angle phi/sub w/ while the lower portion can have a half angle as large as (90 0 - phi/sub w). Percolation of fines through shearing granular solids is briefly discussed and recommended experimental and calculational studies to obtain a better understanding of this behavior are described

  6. Granular Silo collapse: an experimental study

    Science.gov (United States)

    Clement, Eric; Gutierriez, Gustavo; Boltenhagen, Philippe; Lanuza, Jose

    2008-03-01

    We present an experimental work that develop some basic insight into the pre-buckling behavior and the buckling transition toward plastic collapse of a granular silo. We study different patterns of deformation generated on thin paper cylindrical shells during granular discharge. We study the collapse threshold for different bed height, flow rates and grain sizes. We compare the patterns that appear during the discharge of spherical beads, with those obtained in the axially compressed cylindrical shells. When the height of the granular column is close to the collapse threshold, we describe a ladder like pattern that rises around the cylinder surface in a spiral path of diamond shaped localizations, and develops into a plastic collapsing fold that grows around the collapsing silo.

  7. Study on the Immunomodulation Effect of Isodon japonicus Extract via Splenocyte Function and NK Anti-Tumor Activity

    Directory of Open Access Journals (Sweden)

    Kyung-A Hwang

    2012-04-01

    Full Text Available Here we investigated the potential immune-enhancing activity of Isodon japonicus on murine splenocyte and natural-killer (NK cells in vitro. The ethanol extract of I. japonicus significantly enhanced the proliferation of splenocyte and induced the significant enhancement of NK cells’ activity against tumor cells (YAC-1. In addition, I. japonicus increased the production of interferon (IFN-γ and tumor necrosis factor (TNF-α, suggesting that the increase in NK cell cytotoxicity could be due to the enhancement of the NK cell production of both cytokines. Taken together, I. japonicus extract inhibited the growth of human leukemia cells (K562 by 74%. Our observation indicated that the anti-tumor effects of I. japonicus may be attributed to its ability to serve as a stimulant of NK anti-tumor activity. In addition, our results support the development of functional food studies on I. japonicus.

  8. Shock waves in weakly compressed granular media.

    Science.gov (United States)

    van den Wildenberg, Siet; van Loo, Rogier; van Hecke, Martin

    2013-11-22

    We experimentally probe nonlinear wave propagation in weakly compressed granular media and observe a crossover from quasilinear sound waves at low impact to shock waves at high impact. We show that this crossover impact grows with the confining pressure P0, whereas the shock wave speed is independent of P0-two hallmarks of granular shocks predicted recently. The shocks exhibit surprising power law attenuation, which we model with a logarithmic law implying that shock dissipation is weak and qualitatively different from other granular dissipation mechanisms. We show that elastic and potential energy balance in the leading part of the shocks.

  9. Modelling of dc characteristics for granular semiconductors

    International Nuclear Information System (INIS)

    Varpula, Aapo; Sinkkonen, Juha; Novikov, Sergey

    2010-01-01

    The dc characteristics of granular n-type semiconductors are calculated analytically with the drift-diffusion theory. Electronic trapping at the grain boundaries (GBs) is taken into account. The use of quadratic and linear GB potential profiles in the calculation is compared. The analytical model is verified with numerical simulation performed by SILVACO ATLAS. The agreement between the analytical and numerical results is excellent in a large voltage range. The results show that electronic trapping at the GBs has a remarkable effect on the highly nonlinear I-V characteristics of the material.

  10. Modelling of dc characteristics for granular semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Varpula, Aapo; Sinkkonen, Juha; Novikov, Sergey, E-mail: aapo.varpula@tkk.f [Department of Micro and Nanosciences, Aalto University, PO Box 13500, FI-00076 Aalto, Espoo (Finland)

    2010-11-01

    The dc characteristics of granular n-type semiconductors are calculated analytically with the drift-diffusion theory. Electronic trapping at the grain boundaries (GBs) is taken into account. The use of quadratic and linear GB potential profiles in the calculation is compared. The analytical model is verified with numerical simulation performed by SILVACO ATLAS. The agreement between the analytical and numerical results is excellent in a large voltage range. The results show that electronic trapping at the GBs has a remarkable effect on the highly nonlinear I-V characteristics of the material.

  11. An Emotional Agent Model Based on Granular Computing

    Directory of Open Access Journals (Sweden)

    Jun Hu

    2012-01-01

    Full Text Available Affective computing has a very important significance for fulfilling intelligent information processing and harmonious communication between human being and computers. A new model for emotional agent is proposed in this paper to make agent have the ability of handling emotions, based on the granular computing theory and the traditional BDI agent model. Firstly, a new emotion knowledge base based on granular computing for emotion expression is presented in the model. Secondly, a new emotional reasoning algorithm based on granular computing is proposed. Thirdly, a new emotional agent model based on granular computing is presented. Finally, based on the model, an emotional agent for patient assistant in hospital is realized, experiment results show that it is efficient to handle simple emotions.

  12. Towards Development of Clustering Applications for Large-Scale Comparative Genotyping and Kinship Analysis Using Y-Short Tandem Repeats.

    Science.gov (United States)

    Seman, Ali; Sapawi, Azizian Mohd; Salleh, Mohd Zaki

    2015-06-01

    Y-chromosome short tandem repeats (Y-STRs) are genetic markers with practical applications in human identification. However, where mass identification is required (e.g., in the aftermath of disasters with significant fatalities), the efficiency of the process could be improved with new statistical approaches. Clustering applications are relatively new tools for large-scale comparative genotyping, and the k-Approximate Modal Haplotype (k-AMH), an efficient algorithm for clustering large-scale Y-STR data, represents a promising method for developing these tools. In this study we improved the k-AMH and produced three new algorithms: the Nk-AMH I (including a new initial cluster center selection), the Nk-AMH II (including a new dominant weighting value), and the Nk-AMH III (combining I and II). The Nk-AMH III was the superior algorithm, with mean clustering accuracy that increased in four out of six datasets and remained at 100% in the other two. Additionally, the Nk-AMH III achieved a 2% higher overall mean clustering accuracy score than the k-AMH, as well as optimal accuracy for all datasets (0.84-1.00). With inclusion of the two new methods, the Nk-AMH III produced an optimal solution for clustering Y-STR data; thus, the algorithm has potential for further development towards fully automatic clustering of any large-scale genotypic data.

  13. Constructing fine-granularity functional brain network atlases via deep convolutional autoencoder.

    Science.gov (United States)

    Zhao, Yu; Dong, Qinglin; Chen, Hanbo; Iraji, Armin; Li, Yujie; Makkie, Milad; Kou, Zhifeng; Liu, Tianming

    2017-12-01

    State-of-the-art functional brain network reconstruction methods such as independent component analysis (ICA) or sparse coding of whole-brain fMRI data can effectively infer many thousands of volumetric brain network maps from a large number of human brains. However, due to the variability of individual brain networks and the large scale of such networks needed for statistically meaningful group-level analysis, it is still a challenging and open problem to derive group-wise common networks as network atlases. Inspired by the superior spatial pattern description ability of the deep convolutional neural networks (CNNs), a novel deep 3D convolutional autoencoder (CAE) network is designed here to extract spatial brain network features effectively, based on which an Apache Spark enabled computational framework is developed for fast clustering of larger number of network maps into fine-granularity atlases. To evaluate this framework, 10 resting state networks (RSNs) were manually labeled from the sparsely decomposed networks of Human Connectome Project (HCP) fMRI data and 5275 network training samples were obtained, in total. Then the deep CAE models are trained by these functional networks' spatial maps, and the learned features are used to refine the original 10 RSNs into 17 network atlases that possess fine-granularity functional network patterns. Interestingly, it turned out that some manually mislabeled outliers in training networks can be corrected by the deep CAE derived features. More importantly, fine granularities of networks can be identified and they reveal unique network patterns specific to different brain task states. By further applying this method to a dataset of mild traumatic brain injury study, it shows that the technique can effectively identify abnormal small networks in brain injury patients in comparison with controls. In general, our work presents a promising deep learning and big data analysis solution for modeling functional connectomes, with

  14. Long-range interactions in dilute granular systems

    NARCIS (Netherlands)

    Müller, M.K

    2008-01-01

    In this thesis, on purpose, we focussed on the most challenging, longest ranging potentials. We analyzed granular media of low densities obeying 1/r long-range interaction potentials between the granules. Such systems are termed granular gases and differ in their behavior from ordinary gases by

  15. The dependence of granular plasticity on particle shape

    Science.gov (United States)

    Murphy, Kieran; Jaeger, Heinrich

    Granular materials plastically deform through reworking an intricate network of particle-particle contacts. Some particle rearrangements have only a fleeting effect before being forgotten while others set in motion global restructuring. How particle shape affects local interactions and how those, in turn, influence the nature of the aggregate's plasticity is far from clear, especially in three dimensions. Here we investigate the remarkably wide range of behaviors in the yielding regime, from quiescent flow to violent jerks, depending on particle shape. We study this complex dependence via uniaxial compression experiments on aggregates of 3D-printed particles, and complement stress-strain data with simultaneous x-ray videos and volumetric strain measurements. We find power law distributions of the slip magnitudes, and discuss their universality. Our data show that the multitude of small slips serves to gradually dilate the packing whereas the fewer large ones accompany significant compaction events. Our findings provide new insights into general features of granular materials during plastic deformation and highlight how small changes in particle shape can give rise to drastic differences in yielding behavior.

  16. Whole blood assay for NK activity in splenectomized and non-splenectomized hairy cell leukemia patients during IFN-alpha-2b treatment

    DEFF Research Database (Denmark)

    Nielsen, B; Hokland, P; Ellegaard, J

    1989-01-01

    Natural killer cell (NK) activity in peripheral blood (PB) was followed longitudinally for up to 2 yr after initiation of low-dose IFN-alpha-2b therapy in nine hairy cell leukemia (HCL) patients. A whole blood NK (WB-NK) assay was employed in order to measure the NK activity per unit blood. The p...

  17. Consideration of reinforcement mechanism in the short fiber mixing granular materials by granular element simulations

    Science.gov (United States)

    Mori, Kentaro; Kaneko, Kenji; Hashizume, Yutaka

    2017-06-01

    The short fiber mixing method is well known as one of the method to improve the strength of gran- ular soils in geotechnical engineering. Mechanical properties of the short fiber mixing granular materials are influenced by many factors, such as the mixture ratio of the short fiber, the material of short fiber, the length, and the orientation. In particular, the mixture ratio of the short fibers is very important in mixture design. In the past study, we understood that the strength is reduced by too much short fiber mixing by a series of tri-axial compression experiments. Namely, there is "optimum mixture ratio" in the short fiber mixing granular soils. In this study, to consider the mechanism of occurrence of the optimum mixture ratio, we carried out the numerical experiments by granular element method. As the results, we can understand that the strength decrease when too much grain-fiber contact points exist, because a friction coefficient is smaller than the grain-grain contact points.

  18. Storage and discharge of a granular fluid

    NARCIS (Netherlands)

    Pacheco-Martinez, Hector; van Gerner, H.J.; Ruiz-Suarez, J.C.

    2008-01-01

    Experiments and computational simulations are carried out to study the behavior of a granular column in a silo whose walls are able to vibrate horizontally. The column is brought to a steady fluidized state and it behaves similar to a hydrostatic system. We study the dynamics of the granular

  19. The role of fluid viscosity in an immersed granular collapse

    Science.gov (United States)

    Yang, Geng Chao; Kwok, Chung Yee; Sobral, Yuri Dumaresq

    2017-06-01

    Instabilities of immersed slopes and cliffs can lead to catastrophic events that involve a sudden release of huge soil mass. The scaled deposit height and runout distance are found to follow simple power laws when a granular column collapses on a horizontal plane. However, if the granular column is submerged in a fluid, the mobility of the granular collapse due to high inertia effects will be reduced by fluid-particle interactions. In this study, the effects of fluid viscosity on granular collapse is investigated qualitatively by adopting a numerical approach based on the coupled lattice Boltzmann method (LBM) and discrete element method (DEM). It is found that the granular collapse can be dramatically slowed down due to the presence of viscous fluids. For the considered granular configuration, when the fluid viscosity increases. the runout distance decreases and the final deposition shows a larger deposit angle.

  20. The role of fluid viscosity in an immersed granular collapse

    Directory of Open Access Journals (Sweden)

    Yang Geng Chao

    2017-01-01

    Full Text Available Instabilities of immersed slopes and cliffs can lead to catastrophic events that involve a sudden release of huge soil mass. The scaled deposit height and runout distance are found to follow simple power laws when a granular column collapses on a horizontal plane. However, if the granular column is submerged in a fluid, the mobility of the granular collapse due to high inertia effects will be reduced by fluid-particle interactions. In this study, the effects of fluid viscosity on granular collapse is investigated qualitatively by adopting a numerical approach based on the coupled lattice Boltzmann method (LBM and discrete element method (DEM. It is found that the granular collapse can be dramatically slowed down due to the presence of viscous fluids. For the considered granular configuration, when the fluid viscosity increases. the runout distance decreases and the final deposition shows a larger deposit angle.

  1. NK sensitivity of neuroblastoma cells determined by a highly sensitive coupled luminescent method

    International Nuclear Information System (INIS)

    Ogbomo, Henry; Hahn, Anke; Geiler, Janina; Michaelis, Martin; Doerr, Hans Wilhelm; Cinatl, Jindrich

    2006-01-01

    The measurement of natural killer (NK) cells toxicity against tumor or virus-infected cells especially in cases with small blood samples requires highly sensitive methods. Here, a coupled luminescent method (CLM) based on glyceraldehyde-3-phosphate dehydrogenase release from injured target cells was used to evaluate the cytotoxicity of interleukin-2 activated NK cells against neuroblastoma cell lines. In contrast to most other methods, CLM does not require the pretreatment of target cells with labeling substances which could be toxic or radioactive. The effective killing of tumor cells was achieved by low effector/target ratios ranging from 0.5:1 to 4:1. CLM provides highly sensitive, safe, and fast procedure for measurement of NK cell activity with small blood samples such as those obtained from pediatric patients

  2. Chicken C-type lectin-like receptor B-NK, expressed on NK and T cell subsets, binds to a ligand on activated splenocytes

    Czech Academy of Sciences Publication Activity Database

    Viertiboeck, B.C.; Wortmann, A.; Schmitt, R.; Plachý, Jiří; Gobel, T.W.

    2008-01-01

    Roč. 45, č. 5 (2008), s. 1398-1404 ISSN 0161-5890 Institutional research plan: CEZ:AV0Z50520514 Keywords : Chicken NK cell receptor Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.555, year: 2008

  3. The Adhesion G Protein-Coupled Receptor GPR56/ADGRG1 Is an Inhibitory Receptor on Human NK Cells

    Directory of Open Access Journals (Sweden)

    Gin-Wen Chang

    2016-05-01

    Full Text Available Natural killer (NK cells possess potent cytotoxic mechanisms that need to be tightly controlled. Here, we explored the regulation and function of GPR56/ADGRG1, an adhesion G protein-coupled receptor implicated in developmental processes and expressed distinctively in mature NK cells. Expression of GPR56 was triggered by Hobit (a homolog of Blimp-1 in T cells and declined upon cell activation. Through studying NK cells from polymicrogyria patients with disease-causing mutations in ADGRG1, encoding GPR56, and NK-92 cells ectopically expressing the receptor, we found that GPR56 negatively regulates immediate effector functions, including production of inflammatory cytokines and cytolytic proteins, degranulation, and target cell killing. GPR56 pursues this activity by associating with the tetraspanin CD81. We conclude that GPR56 inhibits natural cytotoxicity of human NK cells.

  4. Distribution of intrahepatic T, NK and CD3(+)CD56(+)NKT cells alters after liver transplantation: Shift from innate to adaptive immunity?

    Science.gov (United States)

    Werner, Jens M; Lang, Corinna; Scherer, Marcus N; Farkas, Stefan A; Geissler, Edward K; Schlitt, Hans J; Hornung, Matthias

    2011-07-01

    The liver is an immunological organ containing a large number of T, NK and NKT cells, but little is known about intrahepatic immunity after LTx. Here, we investigated whether the distribution of T, NK and CD3(+)CD56(+)NKT cells is altered in transplanted livers under different circumstances. Core biopsies of transplanted livers were stained with antibodies against CD3 and CD56. Several cell populations including T (CD3(+)CD56(-)), NK (CD3(-)CD56(+)) and NKT cells (CD3(+)CD56(+)) were studied by fluorescence microscopy. Cell numbers were analyzed in relation to the time interval after LTx, immunosuppressive therapy and stage of acute graft rejection (measured with the rejection activity index: RAI) compared to tumor free liver tissue from patients after liver resection due to metastatic disease as control. Recruitment of CD3(+)CD56(+)NKT cells revealed a significant decrease during high RAI scores in comparison to low and middle RAI scores (RAI 7-9: 0.03±0.01/HPF vs. RAI 4-6: 0.1±0.005/HPF). CD3(+)CD56(+)NKT cells were also lower during immunosuppressive therapy with tacrolimus (0.03±0.01/HPF) than with cyclosporine (0.1±0.003/HPF), cyclosporine/MMF (0.1±0.003/HPF) or sirolimus (0.1±0.01/HPF) treatment. Intrahepatic T cell numbers increased significantly 50days after LTx compared to control liver tissue (4.5±0.2/HPF vs. 1.9±0.1/HPF). In contrast, NK cells (0.3±0.004/HPF) were significantly fewer in all biopsies after LTx compared to the control (0.7±0.04/HPF). These data indicate significant alterations in the hepatic recruitment of T, NK and CD3(+)CD56(+)NKT cells after LTx. The increase in T cells and the decrease in NK and CD3(+)CD56(+)NKT cells suggest a shift from innate to adaptive hepatic immunity in the liver graft. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Energy decay in a granular gas collapse

    International Nuclear Information System (INIS)

    Almazán, Lidia; Serero, Dan; Pöschel, Thorsten; Salueña, Clara

    2017-01-01

    An inelastic hard ball bouncing repeatedly off the ground comes to rest in finite time by performing an infinite number of collisions. Similarly, a granular gas under the influence of external gravity, condenses at the bottom of the confinement due to inelastic collisions. By means of hydrodynamical simulations, we find that the condensation process of a granular gas reveals a similar dynamics as the bouncing ball. Our result is in agreement with both experiments and particle simulations, but disagrees with earlier simplified hydrodynamical description. Analyzing the result in detail, we find that the adequate modeling of pressure plays a key role in continuum modeling of granular matter. (paper)

  6. Selective Inhibition of Tumor Growth by Clonal NK Cells Expressing an ErbB2/HER2-Specific Chimeric Antigen Receptor

    Science.gov (United States)

    Schönfeld, Kurt; Sahm, Christiane; Zhang, Congcong; Naundorf, Sonja; Brendel, Christian; Odendahl, Marcus; Nowakowska, Paulina; Bönig, Halvard; Köhl, Ulrike; Kloess, Stephan; Köhler, Sylvia; Holtgreve-Grez, Heidi; Jauch, Anna; Schmidt, Manfred; Schubert, Ralf; Kühlcke, Klaus; Seifried, Erhard; Klingemann, Hans G; Rieger, Michael A; Tonn, Torsten; Grez, Manuel; Wels, Winfried S

    2015-01-01

    Natural killer (NK) cells are an important effector cell type for adoptive cancer immunotherapy. Similar to T cells, NK cells can be modified to express chimeric antigen receptors (CARs) to enhance antitumor activity, but experience with CAR-engineered NK cells and their clinical development is still limited. Here, we redirected continuously expanding and clinically usable established human NK-92 cells to the tumor-associated ErbB2 (HER2) antigen. Following GMP-compliant procedures, we generated a stable clonal cell line expressing a humanized CAR based on ErbB2-specific antibody FRP5 harboring CD28 and CD3ζ signaling domains (CAR 5.28.z). These NK-92/5.28.z cells efficiently lysed ErbB2-expressing tumor cells in vitro and exhibited serial target cell killing. Specific recognition of tumor cells and antitumor activity were retained in vivo, resulting in selective enrichment of NK-92/5.28.z cells in orthotopic breast carcinoma xenografts, and reduction of pulmonary metastasis in a renal cell carcinoma model, respectively. γ-irradiation as a potential safety measure for clinical application prevented NK cell replication, while antitumor activity was preserved. Our data demonstrate that it is feasible to engineer CAR-expressing NK cells as a clonal, molecularly and functionally well-defined and continuously expandable cell therapeutic agent, and suggest NK-92/5.28.z cells as a promising candidate for use in adoptive cancer immunotherapy. PMID:25373520

  7. Resveratrol induces cell cycle arrest and apoptosis in malignant NK cells via JAK2/STAT3 pathway inhibition.

    Science.gov (United States)

    Quoc Trung, Ly; Espinoza, J Luis; Takami, Akiyoshi; Nakao, Shinji

    2013-01-01

    Natural killer (NK) cell malignancies, particularly aggressive NK cell leukaemias and lymphomas, have poor prognoses. Although recent regimens with L-asparaginase substantially improved outcomes, novel therapeutic approaches are still needed to enhance clinical response. Resveratrol, a naturally occurring polyphenol, has been extensively studied for its anti-inflammatory, cardioprotective and anti-cancer activities. In this study, we investigated the potential anti-tumour activities of resveratrol against the NK cell lines KHYG-1, NKL, NK-92 and NK-YS. Resveratrol induced robust G0/G1 cell cycle arrest, significantly suppressed cell proliferation and induced apoptosis in a dose- and time-dependent manner for all four cell lines. In addition, resveratrol suppressed constitutively active STAT3 in all the cell lines and inhibited JAK2 phosphorylation but had no effect on other upstream mediators of STAT3 activation, such as PTEN, TYK2, and JAK1. Resveratrol also induced downregulation of the anti-apoptotic proteins MCL1 and survivin, two downstream effectors of the STAT3 pathway. Finally, resveratrol induced synergistic effect on the apoptotic and antiproliferative activities of L-asparaginase against KHYG-1, NKL and NK-92 cells. These results suggest that resveratrol may have therapeutic potential against NK cell malignancies. Furthermore, our finding that resveratrol is a bonafide JAK2 inhibitor extends its potential benefits to other diseases with dysregulated JAK2 signaling.

  8. Resveratrol induces cell cycle arrest and apoptosis in malignant NK cells via JAK2/STAT3 pathway inhibition.

    Directory of Open Access Journals (Sweden)

    Ly Quoc Trung

    Full Text Available Natural killer (NK cell malignancies, particularly aggressive NK cell leukaemias and lymphomas, have poor prognoses. Although recent regimens with L-asparaginase substantially improved outcomes, novel therapeutic approaches are still needed to enhance clinical response. Resveratrol, a naturally occurring polyphenol, has been extensively studied for its anti-inflammatory, cardioprotective and anti-cancer activities. In this study, we investigated the potential anti-tumour activities of resveratrol against the NK cell lines KHYG-1, NKL, NK-92 and NK-YS. Resveratrol induced robust G0/G1 cell cycle arrest, significantly suppressed cell proliferation and induced apoptosis in a dose- and time-dependent manner for all four cell lines. In addition, resveratrol suppressed constitutively active STAT3 in all the cell lines and inhibited JAK2 phosphorylation but had no effect on other upstream mediators of STAT3 activation, such as PTEN, TYK2, and JAK1. Resveratrol also induced downregulation of the anti-apoptotic proteins MCL1 and survivin, two downstream effectors of the STAT3 pathway. Finally, resveratrol induced synergistic effect on the apoptotic and antiproliferative activities of L-asparaginase against KHYG-1, NKL and NK-92 cells. These results suggest that resveratrol may have therapeutic potential against NK cell malignancies. Furthermore, our finding that resveratrol is a bonafide JAK2 inhibitor extends its potential benefits to other diseases with dysregulated JAK2 signaling.

  9. Periurethral granular cell tumor: a case report

    International Nuclear Information System (INIS)

    Kim, Jeong Kon; Choi, Hyo Gyeong; Cho, Kyoung Sik

    1998-01-01

    Granular cell tumors are uncommon soft tissue tumors which arise as solitary or multiple masses. Lesions commonly arise in the head, neck, and chest wall, but can occur in any part of the body. To our knowledge, periurethral granular cell tumor has not been previously reported. We report one such case

  10. Granular motor in the non-Brownian limit

    NARCIS (Netherlands)

    Oyarte Galvez, Loreto Alejandra; van der Meer, Roger M.

    2016-01-01

    In this work we experimentally study a granular rotor which is similar to the famous Smoluchowski–Feynman device and which consists of a rotor with four vanes immersed in a granular gas. Each side of the vanes can be composed of two different materials, creating a rotational asymmetry and turning

  11. Dielectric and magnetic losses of microwave electromagnetic radiation in granular structures with ferromagnetic nanoparticles

    CERN Document Server

    Lutsev, L V; Tchmutin, I A; Ryvkina, N G; Kalinin, Y E; Sitnikoff, A V

    2003-01-01

    We have studied dielectric and magnetic losses in granular structures constituted by ferromagnetic nanoparticles (Co, Fe, B) in an insulating amorphous a-SiO sub 2 matrix at microwave frequencies, in relation to metal concentration, substrate temperatures and gas content, in the plasma atmosphere in sputtering and annealing. The magnetic losses are due to fast spin relaxation of nanoparticles, which becomes more pronounced with decreasing metal content and occur via simultaneous changes in the granule spin direction and spin polarization of electrons on exchange-split localized states in the matrix (spin-polarized relaxation mechanism). The difference between the experimental values of the imaginary parts of magnetic permeability for granular structures prepared in Ar and Ar + O sub 2 atmospheres is determined by different electron structures of argon and oxygen impurities in the matrix. To account for large dielectric losses in granular structures, we have developed a model of cluster electron states (CESs)....

  12. The role of the transcription factor Tcf-1 for the development and the function of NK cells

    OpenAIRE

    Gehrig, J.

    2014-01-01

    Natural Killer (NK) cells are innate immune cells that can eliminate malignant and foreign cells and that play an important role for the early control of viral and fungal infections. Further, they are important regulators of the adaptive and innate immune responses. During their development in the bone marrow (BM) NK cells undergo several maturation steps that directly establish an effector program. The transcriptional network that controls NK cell development and maturation is still incomple...

  13. NK and NKT Cell Depletion Alters the Outcome of Experimental Pneumococcal Pneumonia: Relationship with Regulation of Interferon-γ Production

    Directory of Open Access Journals (Sweden)

    Eirini Christaki

    2015-01-01

    Full Text Available Background. Natural killer (NK and natural killer T (NKT cells contribute to the innate host defense but their role in bacterial sepsis remains controversial. Methods. C57BL/6 mice were infected intratracheally with 5 × 105 cfu of Streptococcus pneumoniae. Animals were divided into sham group (Sham; pretreated with isotype control antibody (CON group; pretreated with anti-asialo GM1 antibody (NKd group; and pretreated with anti-CD1d monoclonal antibody (NKTd group before bacterial challenge. Serum and tissue samples were analyzed for bacterial load, cytokine levels, splenocyte apoptosis rates, and cell characteristics by flow cytometry. Splenocyte miRNA expression was also analyzed and survival was assessed. Results. NK cell depletion prolonged survival. Upon inhibition of NKT cell activation, spleen NK (CD3−/NK1.1+ cells increased compared to all other groups. Inhibition of NKT cell activation led to higher bacterial loads and increased levels of serum and splenocyte IFN-γ. Splenocyte miRNA analysis showed that miR-200c and miR-29a were downregulated, while miR-125a-5p was upregulated, in anti-CD1d treated animals. These changes were moderate after NK cell depletion. Conclusions. NK cells appear to contribute to mortality in pneumococcal pneumonia. Inhibition of NKT cell activation resulted in an increase in spleen NK (CD3−/NK1.1+ cells and a higher IFN-γ production, while altering splenocyte miRNA expression.

  14. Prenatal nicotinic exposure upregulates pulmonary C-fiber NK1R expression to prolong pulmonary C-fiber-mediated apneic response

    International Nuclear Information System (INIS)

    Zhao, Lei; Zhuang, Jianguo; Zang, Na; Lin, Yong; Lee, Lu-Yuan; Xu, Fadi

    2016-01-01

    Prenatal nicotinic exposure (PNE) prolongs bronchopulmonary C-fiber (PCF)-mediated apneic response to intra-atrial bolus injection of capsaicin in rat pups. The relevant mechanisms remain unclear. Pulmonary substance P and adenosine and their receptors (neurokinin-A receptor, NK1R and ADA 1 receptor, ADA 1 R) and transient receptor potential cation channel subfamily V member 1 (TRPV1) expressed on PCFs are critical for PCF sensitization and/or activation. Here, we compared substance P and adenosine in BALF and NK1R, ADA 1 R, and TRPV1 expression in the nodose/jugular (N/J) ganglia (vagal pulmonary C-neurons retrogradely labeled) between Ctrl and PNE pups. We found that PNE failed to change BALF substance P and adenosine content, but significantly upregulated both mRNA and protein TRPV1 and NK1R in the N/J ganglia and only NK1R mRNA in pulmonary C-neurons. To define the role of NK1R in the PNE-induced PCF sensitization, the apneic response to capsaicin (i.v.) without or with pretreatment of SR140333 (a peripheral and selective NK1R antagonist) was compared and the prolonged apnea by PNE significantly shortened by SR140333. To clarify if the PNE-evoked responses depended on action of nicotinic acetylcholine receptors (nAChRs), particularly α7nAChR, mecamylamine or methyllycaconitine (a general nAChR or a selective α7nAChR antagonist) was administrated via another mini-pump over the PNE period. Mecamylamine or methyllycaconitine eliminated the PNE-evoked mRNA and protein responses. Our data suggest that PNE is able to elevate PCF NK1R expression via activation of nAChRs, especially α7nAChR, which likely contributes to sensitize PCFs and prolong the PCF-mediated apneic response to capsaicin. - Highlights: • PNE upregulated NK1R and TRPV1 gene and protein expression in the N/J ganglia. • PNE only elevated NK1R mRNA in vagal pulmonary C-neurons. • Blockage of peripheral NK1R reduced the PNE-induced PCF sensitization. • PNE induced gene and protein changes in

  15. Magnetism and magnetoresistance from different origins in Co/ZnO:Al granular films

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Zhiyong, E-mail: quanzy@sxnu.edu.cn; Liu, Xia; Song, Zhilin; Xu, Xiaohong, E-mail: xuxh@dns.sxnu.edu.cn

    2016-12-01

    Co/ZnO:Al granular films were made on glass substrates by sequential magnetron sputter deposition of ultrathin Co layer and ZnO:Al layer at room temperature. The as-deposited films consist of superparamagnetic Co particles dispersed in ZnO:Al (~2% Al) semiconductor matrix. Distinguished magnetoresistance effect at room temperature was obtained in the as-deposited films, which obviously reduced after annealing due to the growth of Co particles. The size of important magnetic particles was analyzed by Langevin function for hysteresis loops and magnetoresistance curves at room temperature. It was found that small magnetic particle contribute to magnetoresistance behavior and large particles dominate the room temperature magnetism in Co/ZnO:Al granular films.

  16. NK1 receptor fused to beta-arrestin displays a single-component, high-affinity molecular phenotype.

    Science.gov (United States)

    Martini, Lene; Hastrup, Hanne; Holst, Birgitte; Fraile-Ramos, Alberto; Marsh, Mark; Schwartz, Thue W

    2002-07-01

    Arrestins are cytosolic proteins that, upon stimulation of seven transmembrane (7TM) receptors, terminate signaling by binding to the receptor, displacing the G protein and targeting the receptor to clathrin-coated pits. Fusion of beta-arrestin1 to the C-terminal end of the neurokinin NK1 receptor resulted in a chimeric protein that was expressed to some extent on the cell surface but also accumulated in transferrin-labeled recycling endosomes independently of agonist stimulation. As expected, the fusion protein was almost totally silenced with respect to agonist-induced signaling through the normal Gq/G11 and Gs pathways. The NK1-beta-arrestin1 fusion construct bound nonpeptide antagonists with increased affinity but surprisingly also bound two types of agonists, substance P and neurokinin A, with high, normal affinity. In the wild-type NK1 receptor, neurokinin A (NKA) competes for binding against substance P and especially against antagonists with up to 1000-fold lower apparent affinity than determined in functional assays and in homologous binding assays. When the NK1 receptor was closely fused to G proteins, this phenomenon was eliminated among agonists, but the agonists still competed with low affinity against antagonists. In contrast, in the NK1-beta-arrestin1 fusion protein, all ligands bound with similar affinity independent of the choice of radioligand and with Hill coefficients near unity. We conclude that the NK1 receptor in complex with arrestin is in a high-affinity, stable, agonist-binding form probably best suited to structural analysis and that the receptor can display binding properties that are nearly theoretically ideal when it is forced to complex with only a single intracellular protein partner.

  17. Surface instabilities in shock loaded granular media

    Science.gov (United States)

    Kandan, K.; Khaderi, S. N.; Wadley, H. N. G.; Deshpande, V. S.

    2017-12-01

    The initiation and growth of instabilities in granular materials loaded by air shock waves are investigated via shock-tube experiments and numerical calculations. Three types of granular media, dry sand, water-saturated sand and a granular solid comprising PTFE spheres were experimentally investigated by air shock loading slugs of these materials in a transparent shock tube. Under all shock pressures considered here, the free-standing dry sand slugs remained stable while the shock loaded surface of the water-saturated sand slug became unstable resulting in mixing of the shocked air and the granular material. By contrast, the PTFE slugs were stable at low pressures but displayed instabilities similar to the water-saturated sand slugs at higher shock pressures. The distal surfaces of the slugs remained stable under all conditions considered here. Eulerian fluid/solid interaction calculations, with the granular material modelled as a Drucker-Prager solid, reproduced the onset of the instabilities as seen in the experiments to a high level of accuracy. These calculations showed that the shock pressures to initiate instabilities increased with increasing material friction and decreasing yield strain. Moreover, the high Atwood number for this problem implied that fluid/solid interaction effects were small, and the initiation of the instability is adequately captured by directly applying a pressure on the slug surface. Lagrangian calculations with the directly applied pressures demonstrated that the instability was caused by spatial pressure gradients created by initial surface perturbations. Surface instabilities are also shown to exist in shock loaded rear-supported granular slugs: these experiments and calculations are used to infer the velocity that free-standing slugs need to acquire to initiate instabilities on their front surfaces. The results presented here, while in an idealised one-dimensional setting, provide physical understanding of the conditions required to

  18. Distrofia corneal granular

    Directory of Open Access Journals (Sweden)

    Alexeide de la C Castillo Pérez

    Full Text Available Las distrofias corneales constituyen un conjunto de enfermedades que presentan, en su mayoría, una baja incidencia y se caracterizan por acúmulo de material hialino o amiloide que disminuyen la transparencia corneal. La distrofia granular es una enfermedad autosómica dominante que presenta opacidades grises en el estroma superficial central de la córnea y se hacen visibles en la primera y segunda décadas de la vida, lo que provoca disminución de la visión más significativa cerca de los 40 años de edad. Presentamos dos casos clínicos de distrofia granular en pacientes hermanos de diferentes sexos, quienes acudieron a la consulta y refirieron visión nublada. El estudio de la historia familiar nos ayuda en el correcto diagnóstico y la biomicroscopia constituye el elemento más importante.

  19. Self-diffusion in dense granular shear flows.

    Science.gov (United States)

    Utter, Brian; Behringer, R P

    2004-03-01

    Diffusivity is a key quantity in describing velocity fluctuations in granular materials. These fluctuations are the basis of many thermodynamic and hydrodynamic models which aim to provide a statistical description of granular systems. We present experimental results on diffusivity in dense, granular shear flows in a two-dimensional Couette geometry. We find that self-diffusivities D are proportional to the local shear rate gamma; with diffusivities along the direction of the mean flow approximately twice as large as those in the perpendicular direction. The magnitude of the diffusivity is D approximately gamma;a(2), where a is the particle radius. However, the gradient in shear rate, coupling to the mean flow, and strong drag at the moving boundary lead to particle displacements that can appear subdiffusive or superdiffusive. In particular, diffusion appears to be superdiffusive along the mean flow direction due to Taylor dispersion effects and subdiffusive along the perpendicular direction due to the gradient in shear rate. The anisotropic force network leads to an additional anisotropy in the diffusivity that is a property of dense systems and has no obvious analog in rapid flows. Specifically, the diffusivity is suppressed along the direction of the strong force network. A simple random walk simulation reproduces the key features of the data, such as the apparent superdiffusive and subdiffusive behavior arising from the mean velocity field, confirming the underlying diffusive motion. The additional anisotropy is not observed in the simulation since the strong force network is not included. Examples of correlated motion, such as transient vortices, and Lévy flights are also observed. Although correlated motion creates velocity fields which are qualitatively different from collisional Brownian motion and can introduce nondiffusive effects, on average the system appears simply diffusive.

  20. Small-signal analysis of granular semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Varpula, Aapo; Sinkkonen, Juha; Novikov, Sergey, E-mail: aapo.varpula@tkk.f [Department of Micro and Nanosciences, Aalto University, PO Box 13500, FI-00076 Aalto, Espoo (Finland)

    2010-11-01

    The small-signal ac response of granular n-type semiconductors is calculated analytically using the drift-diffusion theory when electronic trapping at grain boundaries is present. An electrical equivalent circuit (EEC) model of a granular n-type semiconductor is presented. The analytical model is verified with numerical simulation performed by SILVACO ATLAS. The agreement between the analytical and numerical results is very good in a broad frequency range at low dc bias voltages.

  1. Small-signal analysis of granular semiconductors

    International Nuclear Information System (INIS)

    Varpula, Aapo; Sinkkonen, Juha; Novikov, Sergey

    2010-01-01

    The small-signal ac response of granular n-type semiconductors is calculated analytically using the drift-diffusion theory when electronic trapping at grain boundaries is present. An electrical equivalent circuit (EEC) model of a granular n-type semiconductor is presented. The analytical model is verified with numerical simulation performed by SILVACO ATLAS. The agreement between the analytical and numerical results is very good in a broad frequency range at low dc bias voltages.

  2. Applicability and trends of anaerobic granular sludge treatment processes

    International Nuclear Information System (INIS)

    Lim, Seung Joo; Kim, Tak-Hyun

    2014-01-01

    Anaerobic granular sludge treatment processes have been continuously developed, although the anaerobic sludge granulation process was not clearly understood. In this review, an upflow anaerobic sludge blanket (UASB), an expanded granule sludge blanket (EGSB), and a static granular bed reactor (SGBR) were introduced as components of a representative anaerobic granular sludge treatment processes. The characteristics and application trends of each reactor were presented. The UASB reactor was developed in the late 1970s and its use has been rapidly widespread due to the excellent performance. With the active granules, this reactor is able to treat various high-strength wastewaters as well as municipal wastewater. Most soluble industrial wastewaters can be efficiently applied using a UASB. The EGSB reactor was developed owing to give more chance to contact between wastewater and the granules. Dispersed sludge is separated from mature granules using the rapid upward velocity in this reactor. The EGSB reactor shows the excellent performance in treating low-strength and/or high-strength wastewater, especially under low temperatures. The SGBR, developed at Iowa State University, is one of anaerobic granular sludge treatment processes. Although the configuration of the SGBR is very simple, the performance of this system is similar to that of the UASB or EGSB reactor. The anaerobic sludge granulation processes showed excellent performance for various wastewaters at a broad range of organic loading rate in lab-, pilot-scale tests. This leads to erect thousands of full-scale granular processes, which has been widely operated around the world. -- Highlights: • Anaerobic sludge granulation is a key parameter for maintaining granular processes. • Anaerobic granular digestion processes are applicable for various wastewaters. • The UASB is an economic high-rate anaerobic granular process. • The EGSB can treat high-strength wastewater using expanding granules. • The SGBR is

  3. Frustration and disorder in granular media and tectonic blocks: implications for earthquake complexity

    Directory of Open Access Journals (Sweden)

    A. Sornette

    1994-01-01

    Full Text Available We present exploratory analogies and speculations on the mechanisms underlying the organization of faulting and earthquake in the earth crust. The mechanical properties of the brittle lithosphere at scales of the order or larger than a few kilometers are proposed to be analogous to those of non-cohesive granular media, since both systems present stress amplitudes controlled by gravity, and shear band (faulting localization is determined by a type of friction Mohr-Coulomb rupture criterion. here, we explore the implications of this correspondence with respect to the origin of tectonic and earthquake complexity, on the basis of the existing experimental data on granular media available in the mechanical literature. An important observation is that motions and deformations of non-cohesive granular media are characterized by important fluctuations both in time (sudden breaks, avalanches, which are analogous to earthquakes and space (strain localizations, yield surfaces forming sometimes complex patterns. This is in apparent contradiction with the conventional wisdom in mechanics, based on the standard tendency to homogenize, which has led to dismiss fluctuations as experimental noise. On the basis of a second analogy with spinglasses and neural networks, based on the existence of block and grain packing disorder and block rotation "frustration", we suggest that these fluctuations observed both at large scales and at the block scale constitute an intrinsic signature of the mechanics of granular media. The space-time complexity observed in faulting and earthquake phenomenology is thus proposed to result form the special properties of the mechanics of granular media, dominated by the "frustration" of the kinematic deformations of its constitutive blocks.

  4. Oblique shock waves in granular flows over bluff bodies

    Directory of Open Access Journals (Sweden)

    Gopan Nandu

    2017-01-01

    Full Text Available Granular flows around an object have been the focus of numerous analytical, experimental and simulation studies. The structure and nature of the oblique shock wave developed when a quasi-two dimensional flow of spherical granular particles streams past an immersed, fixed cylindrical obstacle forms the focus of this study. The binary granular mixture, consisting of particles of the same diameter but different material properties, is investigated by using a modified LIGGGHTS package as the simulation engine. Variations in the solid fraction and granular temperature within the resulting flow are studied. The Mach number is calculated and is used to distinguish between the subsonic and the supersonic regions of the bow shock.

  5. DX5+NKT cells display phenotypical and functional differences between spleen and liver as well as NK1.1-Balb/c and NK1.1+ C57Bl/6 mice.

    Science.gov (United States)

    Werner, Jens M; Busl, Elisabeth; Farkas, Stefan A; Schlitt, Hans J; Geissler, Edward K; Hornung, Matthias

    2011-04-29

    Natural killer T cells represent a linkage between innate and adaptive immunity. They are a heterogeneous population of specialized T lymphocytes composed of different subsets. DX5+NKT cells are characterized by expression of the NK cell marker DX5 in the context of CD3. However, little is known about the phenotype and functional capacity of this unique cell population. Therefore, we investigated the expression of several T cell and NK cell markers, as well as functional parameters in spleen and liver subsets of DX5+NKT cells in NK1.1- Balb/c mice and compared our findings to NK1.1+ C57Bl/6 mice. In the spleen 34% of DX5+NKT cells expressed CD62L and they up-regulated the functional receptors CD154 as well as CD178 upon activation. In contrast, only a few liver DX5+NKT cells expressed CD62L, and they did not up-regulate CD154 upon activation. A further difference between spleen and liver subsets was observed in cytokine production. Spleen DX5+NKT cells produced more Th1 cytokines including IL-2, IFN-γ and TNF-α, while liver DX5+NKT cells secreted more Th2 cytokines (e.g. IL-4) and even the Th17 cytokine, IL-17a. Furthermore, we found inter-strain differences. In NK1.1+ C57Bl/6 mice DX5+NKT cells represented a distinct T cell population expressing less CD4 and more CD8. Accordingly, these cells showed a CD178 and Th2-type functional capacity upon activation. These results show that DX5+NKT cells are a heterogeneous population, depending on the dedicated organ and mouse strain, that has diverse functional capacity.

  6. 76 FR 8774 - Granular Polytetrafluoroethylene Resin From Japan

    Science.gov (United States)

    2011-02-15

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-386 (Third Review)] Granular Polytetrafluoroethylene Resin From Japan AGENCY: United States International Trade Commission. ACTION: Termination of five... revocation of the antidumping duty order on granular polytetrafluoroethylene resin from Japan would be likely...

  7. Candida albicans induces Metabolic Reprogramming in human NK cells and responds to Perforin with a Zinc Depletion Response

    Directory of Open Access Journals (Sweden)

    Daniela eHellwig

    2016-05-01

    Full Text Available As part of the innate immune system, natural killer (NK cells are directly involved in the response to fungal infections. Perforin has been identified as the major effector molecule acting against many fungal pathogens. While several studies have shown that perforin mediated fungicidal effects can contribute to fungal clearance, neither the activation of NK cells by fungal pathogens nor the effects of perforin on fungal cells are well understood. In a dual approach, we have studied the global gene expression pattern of primary and cytokine activated NK cells after co-incubation with C. albicans and the transcriptomic adaptation of C. albicans to perforin exposure. NK cells responded to the fungal pathogen with an up-regulation of genes involved in immune signaling and release of cytokines. Furthermore, we observed a pronounced increase of genes involved in glycolysis and glycolysis inhibitor 2-deoxy-D-glucose impaired C. albicans induced NK cell activation. This strongly indicates that metabolic adaptation is a major part of the NK cell response to C. albicans infections. In the fungal pathogen, perforin induced a strong up-regulation of several fungal genes involved in the zinc depletion response, such as PRA1 and ZRT1. These data suggest that fungal zinc homeostasis is linked to the reaction to perforin secreted by NK cells. However, deletion mutants in PRA1 and ZRT1 did not show altered susceptibility to perforin.

  8. Septide and neurokinin A are high-affinity ligands on the NK-1 receptor: evidence from homologous versus heterologous binding analysis.

    Science.gov (United States)

    Hastrup, H; Schwartz, T W

    1996-12-16

    The three main tachykinins, substance P, neurokinin A (NKA), and neurokinin B, are believed to be selective ligands for respectively the NK-1, NK-2 and NK-3 receptors. However, NKA also has actions which cannot be mediated through its normal NK-2 receptor and the synthetic peptide [pGlu6,Pro9]-Substance P9-11--called septide--is known to have tachykinin-like actions despite its apparent lack of binding to any known tachykinin receptor. In the cloned NK-1 receptor expressed in COS-7 cells NKA and septide as expected were poor competitors for radiolabeled substance P. However, by using radiolabeled NKA and septide directly, it was found that both peptides in homologous binding assays as well as in competition against each other in fact bound to the NK-1 receptor with high affinity: Kd values of 0.51 +/- 0.15 nM (NKA) and 0.55 +/- 0.03 nM (septide). It is concluded that NKA and septide are high-affinity ligands for the NK-1 receptor but that they are poor competitors for substance P, which in contrast competes very well for binding with both NKA and septide.

  9. Experimental investigation of the Rowe's dilatancy law on an atypical granular medium from a municipal solid waste incineration bottom ash

    Science.gov (United States)

    Becquart, Frédéric; Abriak, Nor Edine

    2013-06-01

    Municipal Solid Waste Incineration (MSWI) bottom ashes are irregular granular media because of their origin and are very heterogeneous with a large quantity of angular particles of different chemical species. MSWI bottom ash is a renewable granular resource alternative to the use of non-renewable standard granular materials. Beneficial use of these alternative granular materials mainly lies in road engineering. However, the studies about mechanical properties of such granular media still remain little developed, those being mainly based on empirical considerations. In this paper, a study of mechanical behaviour of a MSWI bottom ash under axisymmetric triaxial loadings conditions is presented. Samples are initially dense after Proctor compaction, are saturated and tested in drained conditions, under different effective confining pressures ranging from 100 to 600 kPa. The evolutions of volumetric strains show an initial contracting phase followed by a dilatancy phase, more pronounced when the confining pressure is low. The stresses ratios at the characteristic state and at the critical state appear in good agreement and with a null rate of volume variation. The angles of internal friction and dilatancy of the studied MSWI bottom ash are estimated and are similar to conventional granular materials used especially in road engineering. The dilatancy law of Rowe is well experimentally verified on this irregular recycled granular material.

  10. Collapse of tall granular columns in fluid

    Science.gov (United States)

    Kumar, Krishna; Soga, Kenichi; Delenne, Jean-Yves

    2017-06-01

    Avalanches, landslides, and debris flows are geophysical hazards, which involve rapid mass movement of granular solids, water, and air as a multi-phase system. In order to describe the mechanism of immersed granular flows, it is important to consider both the dynamics of the solid phase and the role of the ambient fluid. In the present study, the collapse of a granular column in fluid is studied using 2D LBM - DEM. The flow kinematics are compared with the dry and buoyant granular collapse to understand the influence of hydrodynamic forces and lubrication on the run-out. In the case of tall columns, the amount of material destabilised above the failure plane is larger than that of short columns. Therefore, the surface area of the mobilised mass that interacts with the surrounding fluid in tall columns is significantly higher than the short columns. This increase in the area of soil - fluid interaction results in an increase in the formation of turbulent vortices thereby altering the deposit morphology. It is observed that the vortices result in the formation of heaps that significantly affects the distribution of mass in the flow. In order to understand the behaviour of tall columns, the run-out behaviour of a dense granular column with an initial aspect ratio of 6 is studied. The collapse behaviour is analysed for different slope angles: 0°, 2.5°, 5° and 7.5°.

  11. Traffic and Granular Flow '11

    CERN Document Server

    Buslaev, Alexander; Bugaev, Alexander; Yashina, Marina; Schadschneider, Andreas; Schreckenberg, Michael; TGF11

    2013-01-01

    This book continues the biannual series of conference proceedings, which has become a classical reference resource in traffic and granular research alike. It addresses new developments at the interface between physics, engineering and computational science. Complex systems, where many simple agents, be they vehicles or particles, give rise to surprising and fascinating phenomena.   The contributions collected in these proceedings cover several research fields, all of which deal with transport. Topics include highway, pedestrian and internet traffic, granular matter, biological transport, transport networks, data acquisition, data analysis and technological applications. Different perspectives, i.e. modeling, simulations, experiments and phenomenological observations, are considered.

  12. Dynamic contrast enhanced MRI detects early response to adoptive NK cellular immunotherapy targeting the NG2 proteoglycan in a rat model of glioblastoma.

    Directory of Open Access Journals (Sweden)

    Cecilie Brekke Rygh

    Full Text Available There are currently no established radiological parameters that predict response to immunotherapy. We hypothesised that multiparametric, longitudinal magnetic resonance imaging (MRI of physiological parameters and pharmacokinetic models might detect early biological responses to immunotherapy for glioblastoma targeting NG2/CSPG4 with mAb9.2.27 combined with natural killer (NK cells. Contrast enhanced conventional T1-weighted MRI at 7±1 and 17±2 days post-treatment failed to detect differences in tumour size between the treatment groups, whereas, follow-up scans at 3 months demonstrated diminished signal intensity and tumour volume in the surviving NK+mAb9.2.27 treated animals. Notably, interstitial volume fraction (ve, was significantly increased in the NK+mAb9.2.27 combination therapy group compared mAb9.2.27 and NK cell monotherapy groups (p = 0.002 and p = 0.017 respectively in cohort 1 animals treated with 1 million NK cells. ve was reproducibly increased in the combination NK+mAb9.2.27 compared to NK cell monotherapy in cohort 2 treated with increased dose of 2 million NK cells (p<0.0001, indicating greater cell death induced by NK+mAb9.2.27 treatment. The interstitial volume fraction in the NK monotherapy group was significantly reduced compared to mAb9.2.27 monotherapy (p<0.0001 and untreated controls (p = 0.014 in the cohort 2 animals. NK cells in monotherapy were unable to kill the U87MG cells that highly expressed class I human leucocyte antigens, and diminished stress ligands for activating receptors. A significant association between apparent diffusion coefficient (ADC of water and ve in combination NK+mAb9.2.27 and NK monotherapy treated tumours was evident, where increased ADC corresponded to reduced ve in both cases. Collectively, these data support histological measures at end-stage demonstrating diminished tumour cell proliferation and pronounced apoptosis in the NK+mAb9.2.27 treated tumours compared to the other

  13. Peningkatan Ekspresi Gen NKG2D Sel-sel NK oleh Brokoli untuk Mencegah Kanker

    Directory of Open Access Journals (Sweden)

    Diana Krisanti Jasaputra

    2017-08-01

    Cancer is the non-communicable diseases (NCD and the biggest cause of death in the world. One of the factors that affect cancer development is NKG2D receptors (natural-killer group 2, member D is a receptor complex that activates NK cells and is important in cancer immunosurveilance. Broccoli, Cruciferae vegetable, contains glucosinolate and isothiocyanate. Glucosinolate will be hydrolysed by the mirosinase (thioglucodase β and form the isothiocyanate compound. Isothiocyanate compounds essential to prevent cancer are sulforafan compounds. The objective of the study was to assess the effect of broccoli in enhancing NKG2D receptor expression in order to improve NK cell activity to prevent cancer. This experimental study is a comparative true experimental laboratory, conducted in the Aretha Medika Utama in February to July 2016. Broccoli was freeze dryer and made two concentrations of flour, 50 μg/mL and 25 μg/mL. The study begins with multiplication of NK cells (cell line, then continued with treatment for 24 hours and assessment of NKG2D gene expression using qPCR. NKG2D gene expression research data was calculated by Livak formula and analyzed using one-way ANOVA test and Tukey's advanced test (SPSS 16. The administration of broccoli concentrations of 50 μg/mL and 25 μg/mL increased the level of NKG2D gene expression, indicating an increase in NK cell activity. The conclusion of this study is the provision of broccoli increases the activity of NK cells in preventing and fighting cancer cells.

  14. Granular Cell Tumor

    African Journals Online (AJOL)

    1). Her packed cell volume was 40%, she was system, gastro-intestinal tract, brain, heart, and negative to human immunodeficiency virus. 2 female reproductive . ... histocytes and neurons at various times. They granules. The granules are probably of lysosmal were consequently termed granular cell origin and contain ...

  15. Mechanisms of diminished natural killer cell activity in pregnant women and neonates

    International Nuclear Information System (INIS)

    Baley, J.E.; Schacter, B.Z.

    1985-01-01

    Because alterations in natural killer (NK) activity in the perinatal period may be important in the maintenance of a healthy pregnancy, the mechanisms by which these alterations are mediated in neonates and in pregnant and postpartum women was examined. NK activity, as measured in a 4-hr 51 Cr-release assay and compared with adult controls, is significantly diminished in all three trimesters of pregnancy and in immediately postpartum women. In postpartum women, NK activity appears to be higher than in pregnant women, although this does not reach statistical significance. Pregnant and postpartum women have normal numbers of large granular lymphocytes and normal target cell binding in an agarose single cell assay but decreased lysis of the bound target cells. NK activity of mononuclear cells from postpartum women, in addition, demonstrate a shift in distribution to higher levels of resistance to gamma-irradiation. Further, sera from postpartum women cause a similar shift to increased radioresistance in mononuclear cells from adult controls. Because radioresistance is a property of interleukin 2-stimulated NK, the shift to radioresistance may represent lymphokine-mediated stimulation occurring during parturition. In contrast, cord blood cells have a more profound decrease in NK activity as determined by 51 Cr-release assay and decreases in both binding and lysis of bound target cells in the single cell assay. The resistance of NK activity in cord cells to gamma-irradiation is also increased, as seen in postpartum women. Cord blood serum, however, did not alter radioresistance or inhibit NK activity. The results suggest that the observed diminished NK activity in pregnant women and neonates arise by different mechanisms: an absence of mature NK cells in the neonate and an alteration of the NK cell in pregnancy leading to decreased killing

  16. Electronics and triggering challenges for the CMS High Granularity Calorimeter

    CERN Document Server

    Lobanov, Artur

    2017-01-01

    The High Granularity Calorimeter (HGCAL), presently being designed by the CMS collaboration to replace the CMS endcap calorimeters for the High Luminosity phase of LHC, will feature six million channels distributed over 52 longitudinal layers. The requirements for the front-end electronics are extremely challenging, including high dynamic range (0-10 pC), low noise (~2000e- to be able to calibrate on single minimum ionising particles throughout the detector lifetime) and low power consumption (~10mW/channel), as well as the need to select and transmit trigger information with a high granularity. Exploiting the intrinsic precision-timing capabilities of silicon sensors also requires careful design of the front-end electronics as well as the whole system, particularly clock distribution. The harsh radiation environment and requirement to keep the whole detector as dense as possible will require novel solutions to the on-detector electronics layout. Processing all the data from the HGCAL imposes equally large ch...

  17. Prenatal nicotinic exposure upregulates pulmonary C-fiber NK1R expression to prolong pulmonary C-fiber-mediated apneic response

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lei; Zhuang, Jianguo; Zang, Na; Lin, Yong [Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, NM (United States); Lee, Lu-Yuan [Department of Physiology, University of Kentucky, Lexington, KY (United States); Xu, Fadi, E-mail: fxu@lrri.org [Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, NM (United States); Department of Physiology, University of Kentucky, Lexington, KY (United States)

    2016-01-01

    Prenatal nicotinic exposure (PNE) prolongs bronchopulmonary C-fiber (PCF)-mediated apneic response to intra-atrial bolus injection of capsaicin in rat pups. The relevant mechanisms remain unclear. Pulmonary substance P and adenosine and their receptors (neurokinin-A receptor, NK1R and ADA{sub 1} receptor, ADA{sub 1}R) and transient receptor potential cation channel subfamily V member 1 (TRPV1) expressed on PCFs are critical for PCF sensitization and/or activation. Here, we compared substance P and adenosine in BALF and NK1R, ADA{sub 1}R, and TRPV1 expression in the nodose/jugular (N/J) ganglia (vagal pulmonary C-neurons retrogradely labeled) between Ctrl and PNE pups. We found that PNE failed to change BALF substance P and adenosine content, but significantly upregulated both mRNA and protein TRPV1 and NK1R in the N/J ganglia and only NK1R mRNA in pulmonary C-neurons. To define the role of NK1R in the PNE-induced PCF sensitization, the apneic response to capsaicin (i.v.) without or with pretreatment of SR140333 (a peripheral and selective NK1R antagonist) was compared and the prolonged apnea by PNE significantly shortened by SR140333. To clarify if the PNE-evoked responses depended on action of nicotinic acetylcholine receptors (nAChRs), particularly α7nAChR, mecamylamine or methyllycaconitine (a general nAChR or a selective α7nAChR antagonist) was administrated via another mini-pump over the PNE period. Mecamylamine or methyllycaconitine eliminated the PNE-evoked mRNA and protein responses. Our data suggest that PNE is able to elevate PCF NK1R expression via activation of nAChRs, especially α7nAChR, which likely contributes to sensitize PCFs and prolong the PCF-mediated apneic response to capsaicin. - Highlights: • PNE upregulated NK1R and TRPV1 gene and protein expression in the N/J ganglia. • PNE only elevated NK1R mRNA in vagal pulmonary C-neurons. • Blockage of peripheral NK1R reduced the PNE-induced PCF sensitization. • PNE induced gene and protein

  18. Development of granular powder manufacturing technology by spray pyrolysis

    International Nuclear Information System (INIS)

    Katoh, Yoshiyuki; Kawase, Keiichi; Takahashi, Yoshiharu; Todokoro, Akio

    1996-01-01

    For shortening of mixed-oxide (MOX) fuel manufacturing process and improvement in treatment of MOX-powder, we have been developing the granular powder production technology. Since the granular powders have excellent fluidity owing to the spherical shape, there is the possibility of modifying scattering and adcering of the powder in the process equipment. In this paper, spray pyrolysis process in adopted as the process of manufacturing the granular powders and the basic feasibility study has been carried out. The experimental results show that the manufactured granular powders have excellent fluidity and the diameter of the powders is controllable. Furthermore, high density pellets are formed by sintering the powders. Thus, it is clarified that this process is promising for the actual MOX fuel fabrication. (author)

  19. Enhanced selection of micro-aerobic pentachlorophenol degrading granular sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Yuancai, E-mail: donkey1204@hotmail.com [State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640 (China); Chen, Yuancai, E-mail: chenyc@scut.edu.cn [State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640 (China); Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); Song, Wenzhe, E-mail: songwenzhe007@126.com [Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); Hu, Yongyou, E-mail: ppyyhu@scut.edu.cn [State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640 (China); Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China)

    2014-09-15

    Graphical abstract: In this work, an aerobic column reactor was placed before the USB to maintain micro-oxygen condition in the reactor and the micro-aerobic pentachlorophenol (PCP) degrading granular sludge under oxygen-limited conditions (0.1–0.2 mg L{sup −1}) was successfully obtained. PCP degradation by the micro-aerobic system was studied and the variance of microbial community was also discussed by using PCR-DGGE analysis. - Highlights: • Micro-aerobic granular sludge was cultivated in column-type combined reactors. • PCP biodegradation, VFA accumulation and biogas production were studied. • The function of Methanogenic archaeon in the system was investigated. • Fluctuation and diversity of microbial community were discussed by DGGE analysis. • The dominated microorganisms were identified by 16S rDNA sequences. - Abstract: Column-type combined reactors were designed to cultivate micro-aerobic pentachlorophenol (PCP) degrading granular sludge under oxygen-limited conditions (0.1–0.2 mg L{sup −1}) over 39-day experimental period. Micro-aerobic granular had both anaerobic activity (SMA: 2.34 mMCH{sub 4}/h g VSS) and aerobic activity (SOUR: 2.21 mMO{sub 2}/h g VSS). Metabolite analysis results revealed that PCP was sequentially dechlorinated to TCP, DCP, and eventually to MCP. Methanogens were not directly involved in the dechlorination of PCP, but might played a vital role in stabilizing the overall structure of the granule sludge. For Eubacteria, the Shannon Index (2.09 in inoculated granular sludge) increased both in micro-aerobic granular sludge (2.61) and PCP-degradation granular sludge (2.55). However, for Archaea, it decreased from 2.53 to 1.85 and 1.84, respectively. Although the Shannon Index demonstrated slight difference between micro-aerobic granular sludge and PCP-degradation granular sludge, the Principal Component Analysis (PCA) indicated obvious variance of the microbial composition, revealing significant effect of micro

  20. Enhanced selection of micro-aerobic pentachlorophenol degrading granular sludge

    International Nuclear Information System (INIS)

    Lv, Yuancai; Chen, Yuancai; Song, Wenzhe; Hu, Yongyou

    2014-01-01

    Graphical abstract: In this work, an aerobic column reactor was placed before the USB to maintain micro-oxygen condition in the reactor and the micro-aerobic pentachlorophenol (PCP) degrading granular sludge under oxygen-limited conditions (0.1–0.2 mg L −1 ) was successfully obtained. PCP degradation by the micro-aerobic system was studied and the variance of microbial community was also discussed by using PCR-DGGE analysis. - Highlights: • Micro-aerobic granular sludge was cultivated in column-type combined reactors. • PCP biodegradation, VFA accumulation and biogas production were studied. • The function of Methanogenic archaeon in the system was investigated. • Fluctuation and diversity of microbial community were discussed by DGGE analysis. • The dominated microorganisms were identified by 16S rDNA sequences. - Abstract: Column-type combined reactors were designed to cultivate micro-aerobic pentachlorophenol (PCP) degrading granular sludge under oxygen-limited conditions (0.1–0.2 mg L −1 ) over 39-day experimental period. Micro-aerobic granular had both anaerobic activity (SMA: 2.34 mMCH 4 /h g VSS) and aerobic activity (SOUR: 2.21 mMO 2 /h g VSS). Metabolite analysis results revealed that PCP was sequentially dechlorinated to TCP, DCP, and eventually to MCP. Methanogens were not directly involved in the dechlorination of PCP, but might played a vital role in stabilizing the overall structure of the granule sludge. For Eubacteria, the Shannon Index (2.09 in inoculated granular sludge) increased both in micro-aerobic granular sludge (2.61) and PCP-degradation granular sludge (2.55). However, for Archaea, it decreased from 2.53 to 1.85 and 1.84, respectively. Although the Shannon Index demonstrated slight difference between micro-aerobic granular sludge and PCP-degradation granular sludge, the Principal Component Analysis (PCA) indicated obvious variance of the microbial composition, revealing significant effect of micro-aerobic condition and

  1. Primary NK/T cell lymphoma nasal type of the stomach with skin involvement: a case report

    Directory of Open Access Journals (Sweden)

    Sebastian Kobold

    2009-12-01

    Full Text Available Since nasal NK/T cell lymphoma and NK/T cell lymphoma nasal type are rare diseases, gastric involvement has seldom been seen. We report a unique case of a patient with a primary NK/T cell lymphoma nasal type of the stomach with skin involvement. The patient had no history of malignant diseases and was diagnosed with hematemesis and intense bleeding from his gastric primary site. Shortly after this event, exanthemic skin lesions appeared with concordant histology to the primary site. Despite chemotherapy, the patient died one month after the first symptomatic appearance of disease.

  2. Numerical Simulations of Granular Physics in the Solar System

    Science.gov (United States)

    Ballouz, Ronald

    2017-08-01

    Granular physics is a sub-discipline of physics that attempts to combine principles that have been developed for both solid-state physics and engineering (such as soil mechanics) with fluid dynamics in order to formulate a coherent theory for the description of granular materials, which are found in both terrestrial (e.g., earthquakes, landslides, and pharmaceuticals) and extra-terrestrial settings (e.g., asteroids surfaces, asteroid interiors, and planetary ring systems). In the case of our solar system, the growth of this sub-discipline has been key in helping to interpret the formation, structure, and evolution of both asteroids and planetary rings. It is difficult to develop a deterministic theory for granular materials due to the fact that granular systems are composed of a large number of elements that interact through a non-linear combination of various forces (mechanical, gravitational, and electrostatic, for example) leading to a high degree of stochasticity. Hence, we study these environments using an N-body code, pkdgrav, that is able to simulate the gravitational, collisional, and cohesive interactions of grains. Using pkdgrav, I have studied the size segregation on asteroid surfaces due to seismic shaking (the Brazil-nut effect), the interaction of the OSIRIS-REx asteroid sample-return mission sampling head, TAGSAM, with the surface of the asteroid Bennu, the collisional disruptions of rubble-pile asteroids, and the formation of structure in Saturn's rings. In all of these scenarios, I have found that the evolution of a granular system depends sensitively on the intrinsic properties of the individual grains (size, shape, sand surface roughness). For example, through our simulations, we have been able to determine relationships between regolith properties and the amount of surface penetration a spacecraft achieves upon landing. Furthermore, we have demonstrated that this relationship also depends on the strength of the local gravity. By comparing our

  3. LYMPHOME T/NK PRIMITIF DU LARYNx : LOCALISATION ...

    African Journals Online (AJOL)

    CONCLUSION. En conclusion le lymphome T/Nk du larynx est une entité rare et extrêmement agressive associée à une forte mor- talité. Malgré que le protocole SMiLE ou d'autres régimes contenant la L-asparaginase sont prometteurs dans ce type de lymphome incurable, d'autres essais thérapeu- tiques sont nécessaires ...

  4. On the submerging of a spherical intruder into granular beds

    Directory of Open Access Journals (Sweden)

    Wu Chuan-Yu

    2017-01-01

    Full Text Available Granular materials are complex systems and their mechanical behaviours are determined by the material properties of individual particles, the interaction between particles and the surrounding media, which are still incompletely understood. Using an advanced discrete element method (DEM, we simulate the submerging process of a spherical projectile (an intruder into granular materials of various properties with a zero penetration velocity (i.e. the intruder is touching the top surface of the granular bed and released from stationary and examine its settling behaviour. By systematically changing the density and size of the intruder and the particle density (i.e. the density of the particles in the granular bed, we find that the intruder can sink deep into the granular bed even with a zero penetration velocity. Furthermore, we confirm that under certain conditions the granular bed can behave like a Newtonian liquid and the submerging intruder can reach a constant velocity, i.e. the terminal velocity, identical to the settling of a sphere in a liquid, as observed experimentally. A mathematical model is also developed to predict the maximum penetration depth of the intruder. The model predictions are compared with experimental data reported in the literature,good agreement was obtained, demonstrating the model can accurately predict the submerging behaviour of the intruder in the granular media.

  5. An in vivo mechanism for the reduced peripheral neurotoxicity of NK105: a paclitaxel-incorporating polymeric micellar nanoparticle formulation

    Directory of Open Access Journals (Sweden)

    Nakamura I

    2017-02-01

    Full Text Available Iwao Nakamura, Eiji Ichimura, Rika Goda, Hitomi Hayashi, Hiroko Mashiba, Daichi Nagai, Hirofumi Yokoyama, Takeshi Onda, Akira Masuda Nanomedicine Group, Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd., Tokyo, Japan Abstract: In our previous rodent studies, the paclitaxel (PTX-incorporating polymeric micellar nanoparticle formulation NK105 had showed significantly stronger antitumor effects and reduced peripheral neurotoxicity than PTX dissolved in Cremophor® EL and ethanol (PTX/CRE. Thus, to elucidate the mechanisms underlying reduced peripheral neurotoxicity due to NK105, we performed pharmacokinetic analyses of NK105 and PTX/CRE in rats. Among neural tissues, the highest PTX concentrations were found in the dorsal root ganglion (DRG. Moreover, exposure of DRG to PTX (Cmax_PTX and AUC0-inf._PTX in the NK105 group was almost half that in the PTX/CRE group, whereas exposure of sciatic and sural nerves was greater in the NK105 group than in the PTX/CRE group. In histopathological analyses, damage to DRG and both peripheral nerves was less in the NK105 group than in the PTX/CRE group. The consistency of these pharmacokinetic and histopathological data suggests that high levels of PTX in the DRG play an important role in the induction of peripheral neurotoxicity, and reduced distribution of PTX to the DRG of NK105-treated rats limits the ensuing peripheral neurotoxicity. In further analyses of PTX distribution to the DRG, Evans blue (Eb was injected with BODIPY®-labeled NK105 into rats, and Eb fluorescence was observed only in the DRG. Following injection, most Eb dye bound to albumin particles of ~8 nm and had penetrated the DRG. In contrast, BODIPY®–NK105 particles of ~90 nm were not found in the DRG, suggesting differential penetration based on particle size. Because PTX also circulates as PTX–albumin particles of ~8 nm following injection of PTX/CRE, reduced peripheral neurotoxicity of NK105 may reflect exclusion from the

  6. Jamming by compressing a system of granular crosses

    Science.gov (United States)

    Zheng, Hu; Wang, Dong; Barés, Jonathan; Behringer, Robert

    2017-06-01

    A disordered stress-free granular packing can be jammed, transformed into a mechanically rigid structure, by increasing the density of particles or by applying shear deformation. The jamming behavior of systems made of 2D circular discs has been investigated in detail, but very little is known about jamming for non-spherical particles, and particularly, non-convex particles. Here, we perform an experimental study on jamming by compression of a system of quasi-2D granular crosses made of photo-elastic crosses. We measure the pressure evolution during cyclic compression and decompression. The Jamming packing fraction of these quasi-2D granular crosses is ϕJ ≃ 0.475, which is much smaller than the value ϕJ ≃ 0.84 for-2D granular disks. The packing fraction shifts systematically to higher values under compressive cycling, corresponding to systematic shifts in the stress-strain response curves. Associated with these shifts are rotations of the crosses, with minimal changes in their centers of mass.

  7. Chimeric Antigen Receptor-Engineered NK-92 Cells: An Off-the-Shelf Cellular Therapeutic for Targeted Elimination of Cancer Cells and Induction of Protective Antitumor Immunity

    Directory of Open Access Journals (Sweden)

    Congcong Zhang

    2017-05-01

    Full Text Available Significant progress has been made in recent years toward realizing the potential of natural killer (NK cells for cancer immunotherapy. NK cells can respond rapidly to transformed and stressed cells and have the intrinsic potential to extravasate and reach their targets in almost all body tissues. In addition to donor-derived primary NK cells, also the established NK cell line NK-92 is being developed for adoptive immunotherapy, and general safety of infusion of irradiated NK-92 cells has been established in phase I clinical trials with clinical responses observed in some of the cancer patients treated. To enhance their therapeutic utility, NK-92 cells have been modified to express chimeric antigen receptors (CARs composed of a tumor-specific single chain fragment variable antibody fragment fused via hinge and transmembrane regions to intracellular signaling moieties such as CD3ζ or composite signaling domains containing a costimulatory protein together with CD3ζ. CAR-mediated activation of NK cells then bypasses inhibitory signals and overcomes NK resistance of tumor cells. In contrast to primary NK cells, CAR-engineered NK-92 cell lines suitable for clinical development can be established from molecularly and functionally well-characterized single cell clones following good manufacturing practice-compliant procedures. In preclinical in vitro and in vivo models, potent antitumor activity of NK-92 variants targeted to differentiation antigens expressed by hematologic malignancies, and overexpressed or mutated self-antigens associated with solid tumors has been found, encouraging further development of CAR-engineered NK-92 cells. Importantly, in syngeneic mouse tumor models, induction of endogenous antitumor immunity after treatment with CAR-expressing NK-92 cells has been demonstrated, resulting in cures and long-lasting immunological memory protecting against tumor rechallenge at distant sites. Here, we summarize the current status and future

  8. Vortex jamming in superconductors and granular rheology

    International Nuclear Information System (INIS)

    Yoshino, Hajime; Nogawa, Tomoaki; Kim, Bongsoo

    2009-01-01

    We demonstrate that a highly frustrated anisotropic Josephson junction array (JJA) on a square lattice exhibits a zero-temperature jamming transition, which shares much in common with those in granular systems. Anisotropy of the Josephson couplings along the horizontal and vertical directions plays roles similar to normal load or density in granular systems. We studied numerically static and dynamic response of the system against shear, i.e. injection of external electric current at zero temperature. Current-voltage curves at various strength of the anisotropy exhibit universal scaling features around the jamming point much as do the flow curves in granular rheology, shear-stress versus shear-rate. It turns out that at zero temperature the jamming transition occurs right at the isotropic coupling and anisotropic JJA behaves as exotic fragile vortex matter: it behaves as a superconductor (vortex glass) in one direction, whereas it is a normal conductor (vortex liquid) in the other direction even at zero temperature. Furthermore, we find a variant of the theoretical model for the anisotropic JJA quantitatively reproduces universal master flow-curves of the granular systems. Our results suggest an unexpected common paradigm stretching over seemingly unrelated fields-the rheology of soft materials and superconductivity.

  9. Novel Immunotherapy Options for Extranodal NK/T-Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Boyu Hu

    2018-04-01

    Full Text Available Extranodal NK/T-cell lymphoma (ENKTCL is a highly aggressive mature NK/T-cell neoplasm marked by NK-cell phenotypic expression of CD3ε and CD56. While the disease is reported worldwide, there is a significant geographic variation with its highest incidence in East Asian countries possibly related to the frequent early childhood exposure of Epstein–Barr virus (EBV and specific ethnic–genetical background, which contributes to the tumorigenesis. Historically, anthracycline-based chemotherapy such as CHOP (cyclophosphamide, adriamycin, vincristine, and prednisone was used, but resulted in poor outcomes. This is due in part to intrinsic ENKTCL resistance to anthracycline caused by high expression levels of P-glycoprotein. The recent application of combined modality therapy with concurrent or sequential radiation therapy for early stage disease, along with non-anthracycline-based chemotherapy regimens consisting of drugs independent of P-glycoprotein have significantly improved clinical outcomes. Particularly, this neoplasm shows high sensitivity to l-asparaginase as NK-cells lack asparagine synthase activity. Even still, outcomes of patients with advanced stage disease or those with relapsed/recurrent disease are dismal with overall survival of generally a few months. Thus, novel therapies are needed for this population. Clinical activity of targeted antibodies along with antibody–drug conjugates, such as daratumumab (naked anti-CD38 antibody and brentuximab vedotin (anti-CD30 antibody conjugated with auristatin E, have been reported. Further promising data have been shown with checkpoint inhibitors as high levels of programmed death-ligand 1 expression are observed in ENKTCL due to EBV-driven overexpression of the latent membrane proteins [latent membrane protein 1 (LMP1 and LMP2] with activation of the NF-κB/MAPK pathways. Initial case series with programmed death 1 inhibitors showed an overall response rate of 100% in seven relapsed

  10. Cell-Targeted Optogenetics and Electrical Microstimulation Reveal the Primate Koniocellular Projection to Supra-granular Visual Cortex.

    Science.gov (United States)

    Klein, Carsten; Evrard, Henry C; Shapcott, Katharine A; Haverkamp, Silke; Logothetis, Nikos K; Schmid, Michael C

    2016-04-06

    Electrical microstimulation and more recently optogenetics are widely used to map large-scale brain circuits. However, the neuronal specificity achieved with both methods is not well understood. Here we compare cell-targeted optogenetics and electrical microstimulation in the macaque monkey brain to functionally map the koniocellular lateral geniculate nucleus (LGN) projection to primary visual cortex (V1). Selective activation of the LGN konio neurons with CamK-specific optogenetics caused selective electrical current inflow in the supra-granular layers of V1. Electrical microstimulation targeted at LGN konio layers revealed the same supra-granular V1 activation pattern as the one elicited by optogenetics. Taken together, these findings establish a selective koniocellular LGN influence on V1 supra-granular layers, and they indicate comparable capacities of both stimulation methods to isolate thalamo-cortical circuits in the primate brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Activated human primary NK cells efficiently kill colorectal cancer cells in 3D spheroid cultures irrespectively of the level of PD-L1 expression.

    Science.gov (United States)

    Lanuza, Pilar M; Vigueras, Alan; Olivan, Sara; Prats, Anne C; Costas, Santiago; Llamazares, Guillermo; Sanchez-Martinez, Diego; Ayuso, José María; Fernandez, Luis; Ochoa, Ignacio; Pardo, Julián

    2018-01-01

    Haploidentical Natural Killer (NK) cells have been shown as an effective and safe alternative for the treatment of haematological malignancies with poor prognosis for which traditional therapies are ineffective. In contrast to haematological cancer cells, that mainly grow as single suspension cells, solid carcinomas are characterised by a tridimensional (3D) architecture that provide specific surviving advantages and resistance against chemo- and radiotherapy. However, little is known about the impact of 3D growth on solid cancer immunotherapy especially adoptive NK cell transfer. We have recently developed a protocol to activate ex vivo human primary NK cells using B lymphoblastic cell lines, which generates NK cells able to overcome chemoresistance in haematological cancer cells. Here we have analysed the activity of these allogeneic NK cells against colorectal (CRC) human cell lines growing in 3D spheroid culture and correlated with the expression of some of the main ligands regulating NK cell activity. Our results indicate that activated NK cells efficiently kill colorectal tumour cell spheroids in both 2D and 3D cultures. Notably, although 3D CRC cell cultures favoured the expression of the inhibitory immune checkpoint PD-L1, it did not correlate with increased resistance to NK cells. Finally, we have analysed in detail the infiltration of NK cells in 3D spheroids by microscopy and found that at low NK cell density, cell death is not observed although NK cells are able to infiltrate into the spheroid. In contrast, higher densities promote tumoural cell death before infiltration can be detected. These findings show that highly dense activated human primary NK cells efficiently kill colorectal carcinoma cells growing in 3D cultures independently of PD-L1 expression and suggest that the use of allogeneic activated NK cells could be beneficial for the treatment of colorectal carcinoma.

  12. Investigation of granular impact using positron emission particle tracking

    KAUST Repository

    Marston, Jeremy O.

    2015-04-01

    We present results from an experimental study of granular impact using a combination of high-speed video and positron emission particle tracking (PEPT). The PEPT technique exploits the annihilation of photons from positron decay to determine the position of tracer particles either inside a small granular bed or attached to the object which impacts the bed. We use dense spheres as impactors and the granular beds are comprised of glass beads which are fluidised to achieve a range of different initial packing states. For the first time, we have simultaneously investigated both the trajectory of the sphere, the motion of particles in a 3-D granular bed and particles which jump into the resultant jet, which arises from the collapse of the cavity formed by the impacting sphere.

  13. Impurity in a granular gas under nonlinear Couette flow

    International Nuclear Information System (INIS)

    Vega Reyes, Francisco; Garzó, Vicente; Santos, Andrés

    2008-01-01

    We study in this work the transport properties of an impurity immersed in a granular gas under stationary nonlinear Couette flow. The starting point is a kinetic model for low-density granular mixtures recently proposed by the authors (Vega Reyes et al 2007 Phys. Rev. E 75 061306). Two routes have been considered. First, a hydrodynamic or normal solution is found by exploiting a formal mapping between the kinetic equations for the gas particles and for the impurity. We show that the transport properties of the impurity are characterized by the ratio between the temperatures of the impurity and gas particles and by five generalized transport coefficients: three related to the momentum flux (a nonlinear shear viscosity and two normal stress differences) and two related to the heat flux (a nonlinear thermal conductivity and a cross-coefficient measuring a component of the heat flux orthogonal to the thermal gradient). Second, by means of a Monte Carlo simulation method we numerically solve the kinetic equations and show that our hydrodynamic solution is valid in the bulk of the fluid when realistic boundary conditions are used. Furthermore, the hydrodynamic solution applies to arbitrarily (inside the continuum regime) large values of the shear rate, of the inelasticity, and of the rest of the parameters of the system. Preliminary simulation results of the true Boltzmann description show the reliability of the nonlinear hydrodynamic solution of the kinetic model. This shows again the validity of a hydrodynamic description for granular flows, even under extreme conditions, beyond the Navier–Stokes domain

  14. Paraqueratose granular: relato de seis casos em crianças Granular parakeratosis: a report of six cases in children

    Directory of Open Access Journals (Sweden)

    Susana Giraldi

    2006-02-01

    Full Text Available A paraqueratose granular é alteração da queratinização, primeiramente descrita em adultos, caracterizada por pápulas e placas hiperqueratósicas nas áreas intertriginosas. Os autores descrevem seis casos de paraqueratose granular em crianças. Um paciente apresentava lesões nas regiões glúteas, dois em ambas as axilas e região cervical (apresentações inéditas na literatura. Três pacientes apresentavam lesões em pregas inguinais. Realizam também revisão da literatura e discutem a possível etiologia dessa rara dermatose.Granular parakeratosis is an alteration of keratinization that was first described in adults. It is characterized by hiperkeratotic plaques and papules in intertriginous areas. The authors describe six cases of granular parakeratosis in children. One patient had lesions on the buttocks; two children presented papules in both axillae and cervical region (presentations never described before in the literature. The remaining three patients presented with lesions in the inguinal folds. Review of the literature and discussion on the pathogenesis of this rare dermatosis are presented.

  15. Restricted processing of CD16a/Fc γ receptor IIIa N-glycans from primary human NK cells impacts structure and function.

    Science.gov (United States)

    Patel, Kashyap R; Roberts, Jacob T; Subedi, Ganesh P; Barb, Adam W

    2018-03-09

    CD16a/Fc γ receptor IIIa is the most abundant antibody Fc receptor expressed on human natural killer (NK) cells and activates a protective cytotoxic response following engagement with antibody clustered on the surface of a pathogen or diseased tissue. Therapeutic monoclonal antibodies (mAbs) with greater Fc-mediated affinity for CD16a show superior therapeutic outcome; however, one significant factor that promotes antibody-CD16a interactions, the asparagine-linked carbohydrates ( N -glycans), remains undefined. Here, we purified CD16a from the primary NK cells of three donors and identified a large proportion of hybrid (22%) and oligomannose N -glycans (23%). These proportions indicated restricted N -glycan processing and were unlike those of the recombinant CD16a forms, which have predominantly complex-type N -glycans (82%). Tethering recombinant CD16a to the membrane by including the transmembrane and intracellular domains and via coexpression with the Fc ϵ receptor γ-chain in HEK293F cells was expected to produce N -glycoforms similar to NK cell-derived CD16a but yielded N -glycoforms different from NK cell-derived CD16a and recombinant soluble CD16a. Of note, these differences in CD16a N -glycan composition affected antibody binding: CD16a with oligomannose N -glycans bound IgG1 Fc with 12-fold greater affinity than did CD16a having primarily complex-type and highly branched N -glycans. The changes in binding activity mirrored changes in NMR spectra of the two CD16a glycoforms, indicating that CD16a glycan composition also affects the glycoprotein's structure. These results indicated that CD16a from primary human NK cells is compositionally, and likely also functionally, distinct from commonly used recombinant forms. Furthermore, our study provides critical evidence that cell lineage determines CD16a N -glycan composition and antibody-binding affinity. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Rapamycin Synergizes with Cisplatin in Antiendometrial Cancer Activation by Improving IL-27–Stimulated Cytotoxicity of NK Cells

    Directory of Open Access Journals (Sweden)

    Wen-Jie Zhou

    2018-01-01

    Full Text Available Natural killer (NK cell function is critical for controlling initial tumor growth and determining chemosensitivity of the tumor. A synergistic relationship between rapamycin and cisplatin in uterine endometrial cancer (UEC in vitro has been reported, but the mechanism and the combined therapeutic strategy for endometrial cancer (EC are still unknown. We found a positive correlation between the level of IL-27 and the differentiated stage of UEC. The increase of IL-27 in uterine endometrial cancer cell (UECC lines (Ishikawa, RL95-2 and KLE led to a high cytotoxic activity of NK cells to UECC in the co-culture system. Exposure with rapamycin enhanced the cytotoxicity of NK cells by upregulating the expression of IL-27 in UECC and IL-27 receptors (IL-27Rs: WSX-1 and gp130 on NK cells and further restricted the growth of UEC in Ishikawa-xenografted nude mice. In addition, treatment with rapamycin resulted in an increased autophagy level of UECC, and IL-27 enhanced this ability of rapamycin. Cisplatin-mediated NK cells' cytotoxic activity and anti-UEC activation were independent of IL-27; however, the combination of rapamycin and cisplatin led to a higher cytotoxic activity of NK cells, smaller UEC volume and longer survival rate in vivo. These results suggest that rapamycin and cisplatin synergistically activate the cytotoxicity of NK cells and inhibit the progression of UEC in both an IL-27–dependent and –independent manner. This provides a scientific basis for potential rapamycin-cisplatin combined therapeutic strategies targeted to UEC, especially for the patients with low differentiated stage or abnormally low level of IL-27.

  17. ADCC-Mediated CD56DIM NK Cell Responses Are Associated with Early HBsAg Clearance in Acute HBV Infection.

    Science.gov (United States)

    Yu, Wen-Han; Cosgrove, Cormac; Berger, Christoph T; Cheney, Patrick C; Krykbaeva, Marina; Kim, Arthur Y; Lewis-Ximenez, Lia; Lauer, Georg M; Alter, Galit

    2018-01-01

    Hepatitis B virus (HBV) affects up to 400 million people worldwide and accounts for approximately one million deaths per year from liver pathologies. Current treatment regimens are effective in suppressing viremia but usually have to be taken indefinitely, warranting research into new therapeutic approaches. Acute HBV infection in adults almost universally results in resolution of viremia, with the exception of immunocompromised persons, suggesting that the immune response can functionally cure or even eradicate HBV infection. Because immunophenotypic and functional studies have implicated a role for Natural Killer (NK) cells in HBV clearance during acute infection, we hypothesized that a distinct NK-cell profile exists in acute HBV infection that could provide information for the mechanism of HBV clearance. Using multivariate flow cytometry, we evaluated the expression of key activating and inhibitory receptors on NK cells, and their ability to respond to classic target cell lines. Multivariate analysis revealed selective perturbation of the CD56 dim NK-cell subset during acute infection, displaying low levels of NKp46+, NKp30+, CD160+ and CD161+ cells. Intriguingly, the CD56 dim NK-cell profile predicted time to HBV surface antigen (HBsAg) clearance from the blood, and distinct NK-cell profiles predicted early (NKp30, CD94, CD161) and late clearance (KIR3DL1, CD158a, perforin, NKp46). Finally, functional analysis demonstrated that early and late clearance tracked with elevated degranulation (CD107a) or IFNγ production, respectively, in response to ADCC-mediated activation. The cytolytic CD56 dim NK-cell subset is selectively activated in acute HBV infection and displays distinct phenotypic and functional profiles associated with efficient and early control of HBV, implicating antibody-mediated cytolytic NK-cell responses in the early control and functional cure of HBV infection.

  18. Effect of fractalkine, IP-10 and different signal pathway inhibitors on NK cells in the tumor microenvironment

    Directory of Open Access Journals (Sweden)

    Zhao-zhen WU

    2015-07-01

    Full Text Available Objective To investigate the inducing effects of chemokines [fractalkine (FKN, IP-10] and different signal pathway inhibitors on NK cells in the tumor microenvironment (TME. Methods Immunohistochemistry was performed using antibodies for CD56 and DAP10 respectively on human breast carcinoma. Murine macrophages (RAW 264.7 and breast cancer cells (4T1 were co-cultivated at a 1:4 ratio to imitate the TME with NK cells (KY-1 set as the object. RT-PCR was used to determine the mRNA expressions of CD16, NKG2D and NK1.1, and the content of CD107a in the supernatants was determined by ELISA. 10ng/ml FKN and 10ng/ml IP-10 were added into the TME, NK1.1+CD16+KY-1 cells were counted with flow cytometry, migration and adhesion assays were used to assess the related function of KY-1 cells. 4T1 cells were incubated in 10nmol/L of rapamycin, 30μmol/L of LY294002, 500ng/μl of andrographolide and 2mmol/L of wortmannin, the 4T1 tumor supernatants (TSNs were harvested separately and used to incubate RAW 264.7 for 48h, then the expressions of Rae1α and H60a mRNA in 4T1, RAW 264.7 and their mixture were determined by RT-PCR. Results The related indicators of KY-1 cells such as NK1.1+ number, chemotaxis rate, and adhesion function decreased obviously in TME, and the above indices increased after the addition of FKN and IP-10, and some signal pathway inhibitors indirectly promoted NK cells' function in TME, and among them rapamycin was the most efficient one (P<0.05. Conclusion FKN and IP-10 may up-regulate the number and function of NK cells in TME, and rapamycin can promote NK cells' killing function by inducing high expression of NKG2DLs (Rae1, H60a on tumor cells. DOI: 10.11855/j.issn.0577-7402.2015.07.07

  19. Shock propagation in locally driven granular systems

    Science.gov (United States)

    Joy, Jilmy P.; Pathak, Sudhir N.; Das, Dibyendu; Rajesh, R.

    2017-09-01

    We study shock propagation in a system of initially stationary hard spheres that is driven by a continuous injection of particles at the origin. The disturbance created by the injection of energy spreads radially outward through collisions between particles. Using scaling arguments, we determine the exponent characterizing the power-law growth of this disturbance in all dimensions. The scaling functions describing the various physical quantities are determined using large-scale event-driven simulations in two and three dimensions for both elastic and inelastic systems. The results are shown to describe well the data from two different experiments on granular systems that are similarly driven.

  20. Human NK cells selective targeting of colon cancer-initiating cells: A role for natural cytotoxicity receptors and MHC class i molecules

    KAUST Repository

    Tallerico, Rossana

    2013-01-23

    Tumor cell populations have been recently proposed to be composed of two compartments: tumor-initiating cells characterized by a slow and asymmetrical growth, and the "differentiated" cancer cells with a fast and symmetrical growth. Cancer stem cells or cancer-initiating cells (CICs) play a crucial role in tumor recurrence. The resistance of CICs to drugs and irradiation often allows them to survive traditional therapy. NK cells are potent cytotoxic lymphocytes that can recognize tumor cells. In this study, we have analyzed the NK cell recognition of tumor target cells derived from the two cancer cell compartments of colon adenocarcinoma lesions. Our data demonstrate that freshly purified allogeneic NK cells can recognize and kill colorectal carcinoma- derived CICs whereas the non-CIC counterpart of the tumors (differentiated tumor cells), either autologous or allogeneic, is less susceptible to NK cells. This difference in the NK cell susceptibility correlates with higher expression on CICs of ligands for NKp30 and NKp44 in the natural cytotoxicity receptor (NCR) group of activating NK receptors. In contrast, CICs express lower levels of MHC class I, known to inhibit NK recognition, on their surface than do the "differentiated" tumor cells. These data have been validated by confocal microscopy where NCR ligands and MHC class I molecule membrane distribution have been analyzed. Moreover, NK cell receptor blockade in cytotoxicity assays demonstrates that NCRs play a major role in the recognition of CIC targets. This study strengthens the idea that biology-based therapy harnessing NK cells could be an attractive opportunity in solid tumors. Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved.

  1. Human NK cells selective targeting of colon cancer-initiating cells: A role for natural cytotoxicity receptors and MHC class i molecules

    KAUST Repository

    Tallerico, Rossana; Todaro, Matilde; Di Franco, Simone; MacCalli, Cristina; Garofalo, Cinzia; Sottile, Rosa; Palmieri, Camillo; Tirinato, Luca; Pangigadde, Pradeepa N.; La Rocca, Rosanna; Mandelboim, Ofer; Stassi, Giorgio; Di Fabrizio, Enzo M.; Parmiani, Giorgio; Moretta, Alessandro; Dieli, Francesco; Kã rre, Klas; Carbone, Ennio

    2013-01-01

    Tumor cell populations have been recently proposed to be composed of two compartments: tumor-initiating cells characterized by a slow and asymmetrical growth, and the "differentiated" cancer cells with a fast and symmetrical growth. Cancer stem cells or cancer-initiating cells (CICs) play a crucial role in tumor recurrence. The resistance of CICs to drugs and irradiation often allows them to survive traditional therapy. NK cells are potent cytotoxic lymphocytes that can recognize tumor cells. In this study, we have analyzed the NK cell recognition of tumor target cells derived from the two cancer cell compartments of colon adenocarcinoma lesions. Our data demonstrate that freshly purified allogeneic NK cells can recognize and kill colorectal carcinoma- derived CICs whereas the non-CIC counterpart of the tumors (differentiated tumor cells), either autologous or allogeneic, is less susceptible to NK cells. This difference in the NK cell susceptibility correlates with higher expression on CICs of ligands for NKp30 and NKp44 in the natural cytotoxicity receptor (NCR) group of activating NK receptors. In contrast, CICs express lower levels of MHC class I, known to inhibit NK recognition, on their surface than do the "differentiated" tumor cells. These data have been validated by confocal microscopy where NCR ligands and MHC class I molecule membrane distribution have been analyzed. Moreover, NK cell receptor blockade in cytotoxicity assays demonstrates that NCRs play a major role in the recognition of CIC targets. This study strengthens the idea that biology-based therapy harnessing NK cells could be an attractive opportunity in solid tumors. Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved.

  2. Chronic In Vivo Interaction of Dendritic Cells Expressing the Ligand Rae-1ε with NK Cells Impacts NKG2D Expression and Function.

    Science.gov (United States)

    Morvan, Maelig G; Champsaur, Marine; Reizis, Boris; Lanier, Lewis L

    2017-05-01

    To investigate how dendritic cells (DCs) interact with NK cells in vivo, we developed a novel mouse model in which Rae-1ε, a ligand of the NKG2D receptor, is expressed in cells with high levels of CD11c. In these CD11c-Rae1 mice, expression of Rae-1 was confirmed on all subsets of DCs and a small subset of B and T cells, but not on NK cells. DC numbers and activation status were unchanged, and NK cells in these CD11c-Rae1 mice presented the same Ly49 repertoire and maturation levels as their littermate wildtype controls. Early NK cell activation after mouse CMV infection was slightly lower than in wildtype mice, but NK cell expansion and viral control were comparable. Notably, we demonstrate that chronic interaction of NK cells with NKG2D ligand-expressing DCs leads to a reversible NKG2D down-modulation, as well as impaired NKG2D-dependent NK cell functions, including tumor rejection. In addition to generating a useful mouse model, our studies reveal in vivo the functional importance of the NK cell and DC cross-talk.

  3. Neuroblastoma Cell Lines Are Refractory to Genotoxic Drug-Mediated Induction of Ligands for NK Cell-Activating Receptors

    Directory of Open Access Journals (Sweden)

    Irene Veneziani

    2018-01-01

    Full Text Available Neuroblastoma (NB, the most common extracranial solid tumor of childhood, causes death in almost 15% of children affected by cancer. Treatment of neuroblastoma is based on the combination of chemotherapy with other therapeutic interventions such as surgery, radiotherapy, use of differentiating agents, and immunotherapy. In particular, adoptive NK cell transfer is a new immune-therapeutic approach whose efficacy may be boosted by several anticancer agents able to induce the expression of ligands for NK cell-activating receptors, thus rendering cancer cells more susceptible to NK cell-mediated lysis. Here, we show that chemotherapeutic drugs commonly used for the treatment of NB such as cisplatin, topotecan, irinotecan, and etoposide are unable to induce the expression of activating ligands in a panel of NB cell lines. Consistently, cisplatin-treated NB cell lines were not more susceptible to NK cells than untreated cells. The refractoriness of NB cell lines to these drugs has been partially associated with the abnormal status of genes for ATM, ATR, Chk1, and Chk2, the major transducers of the DNA damage response (DDR, triggered by several anticancer agents and promoting different antitumor mechanisms including the expression of ligands for NK cell-activating receptors. Moreover, both the impaired production of reactive oxygen species (ROS in some NB cell lines and the transient p53 stabilization in response to our genotoxic drugs under our experimental conditions could contribute to inefficient induction of activating ligands. These data suggest that further investigations, exploiting molecular strategies aimed to potentiate the NK cell-mediated immunotherapy of NB, are warranted.

  4. Neuroblastoma Cell Lines Are Refractory to Genotoxic Drug-Mediated Induction of Ligands for NK Cell-Activating Receptors

    Science.gov (United States)

    Veneziani, Irene; Brandetti, Elisa; Ognibene, Marzia; Pezzolo, Annalisa; Pistoia, Vito

    2018-01-01

    Neuroblastoma (NB), the most common extracranial solid tumor of childhood, causes death in almost 15% of children affected by cancer. Treatment of neuroblastoma is based on the combination of chemotherapy with other therapeutic interventions such as surgery, radiotherapy, use of differentiating agents, and immunotherapy. In particular, adoptive NK cell transfer is a new immune-therapeutic approach whose efficacy may be boosted by several anticancer agents able to induce the expression of ligands for NK cell-activating receptors, thus rendering cancer cells more susceptible to NK cell-mediated lysis. Here, we show that chemotherapeutic drugs commonly used for the treatment of NB such as cisplatin, topotecan, irinotecan, and etoposide are unable to induce the expression of activating ligands in a panel of NB cell lines. Consistently, cisplatin-treated NB cell lines were not more susceptible to NK cells than untreated cells. The refractoriness of NB cell lines to these drugs has been partially associated with the abnormal status of genes for ATM, ATR, Chk1, and Chk2, the major transducers of the DNA damage response (DDR), triggered by several anticancer agents and promoting different antitumor mechanisms including the expression of ligands for NK cell-activating receptors. Moreover, both the impaired production of reactive oxygen species (ROS) in some NB cell lines and the transient p53 stabilization in response to our genotoxic drugs under our experimental conditions could contribute to inefficient induction of activating ligands. These data suggest that further investigations, exploiting molecular strategies aimed to potentiate the NK cell-mediated immunotherapy of NB, are warranted. PMID:29805983

  5. Anaerobic granular sludge and biofilm reactors

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, Hariklia N.; Schmidt, Jens Ejbye

    2003-01-01

    by the immobilization of the biomass, which forms static biofilms, particle-supported biofilms, or granules depending on the reactor's operational conditions. The advantages of the high-rate anaerobic digestion over the conventional aerobic wastewater treatment methods has created a clear trend for the change......-rate anaerobic treatment systems based on anaerobic granular sludge and biofilm are described in this chapter. Emphasis is given to a) the Up-flow Anaerobic Sludge Blanket (UASB) systems, b) the main characteristics of the anaerobic granular sludge, and c) the factors that control the granulation process...

  6. Anisotropy in cohesive, frictional granular media

    International Nuclear Information System (INIS)

    Luding, Stefan

    2005-01-01

    The modelling of cohesive, frictional granular materials with a discrete particle molecular dynamics is reviewed. From the structure of the quasi-static granular solid, the fabric, stress, and stiffness tensors are determined, including both normal and tangential forces. The influence of the material properties on the flow behaviour is also reported, including relations between the microscopic attractive force and the macroscopic cohesion as well as the dependence of the macroscopic friction on the microscopic contact friction coefficient. Related to the dynamics, the anisotropy of both structure and stress are exponentially approaching the maximum

  7. Dynamics of electrostatically driven granular media: Effects of humidity

    International Nuclear Information System (INIS)

    Howell, D. W.; Aronson, Igor S.; Crabtree, G. W.

    2001-01-01

    We performed experimental studies of the effect of humidity on the dynamics of electrostatically driven granular materials. Both conducting and dielectric particles undergo a phase transition from an immobile state (granular solid) to a fluidized state (granular gas) with increasing applied field. Spontaneous precipitation of solid clusters from the gas phase occurs as the external driving is decreased. The clustering dynamics in conducting particles is primarily controlled by screening of the electric field but is aided by cohesion due to humidity. It is shown that humidity effects dominate the clustering process with dielectric particles

  8. HMGB1-dependent triggering of HIV-1 replication and persistence in dendritic cells as a consequence of NK-DC cross-talk.

    Directory of Open Access Journals (Sweden)

    Héla Saïdi

    Full Text Available HIV-1 has evolved ways to exploit DCs, thereby facilitating viral dissemination and allowing evasion of antiviral immunity. Recently, the fate of DCs has been found to be extremely dependent on the interaction with autologous NK cells, but the mechanisms by which NK-DC interaction controls viral infections remain unclear. Here, we investigate the impact of NK-DC cross-talk on maturation and functions of HIV-infected immature DCs.Immature DCs were derived from primary monocytes, cultured in the presence of IL-4 and GM-CSF. In some experiments, DCs were infected with R5-HIV-1(BaL or X4-HIV-1(NDK, and viral replication, proviral HIV-DNA and the frequency of infected DCs were measured. Autologous NK cells were sorted and either kept unstimulated in the presence of suboptimal concentration of IL-2, or activated by a combination of PHA and IL-2. The impact of 24 h NK-DC cross-talk on the fate of HIV-1-infected DCs was analyzed. We report that activated NK cells were required for the induction of maturation of DCs, whether uninfected or HIV-1-infected, and this process involved HMGB1. However, the cross-talk between HIV-1-infected DCs and activated NK cells was functionally defective, as demonstrated by the strong impairment of DCs to induce Th1 polarization of naïve CD4 T cells. This was associated with the defective production of IL-12 and IL-18 by infected DCs. Moreover, the crosstalk between activated NK cells and HIV-infected DCs resulted in a dramatic increase in viral replication and proviral DNA expression in DCs. HMGB1, produced both by NK cells and DCs, was found to play a pivotal role in this process, and inhibition of HMGB1 activity by glycyrrhizin, known to bind specifically to HMGB1, or blocking anti-HMGB1 antibodies, abrogated NK-dependent HIV-1 replication in DCs.These observations provide evidence for the crucial role of NK-DC cross-talk in promoting viral dissemination, and challenge the question of the in vivo involvement of HMGB1

  9. Biodegradation of tributyl phosphate, an organosphate triester, by aerobic granular biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Nancharaiah, Y.V., E-mail: venkatany@gmail.com; Kiran Kumar Reddy, G.; Krishna Mohan, T.V.; Venugopalan, V.P.

    2015-02-11

    Graphical abstract: - Highlights: • Aerobic granular biomass was cultivated by feeding TBP along with acetate. • Rapid biodegradation of TBP when used as a co-substrate or as the sole carbon source. • Biodegradation of 2 mM TBP in 5 h with degradation rate of 0.4 μmol mL{sup −1} h{sup −1}. • High phosphatase activity was observed in TBP-degrading granular biomass. • n-Butanol, hydrolyzed product of TBP, was rapidly metabolized by aerobic granules. - Abstract: Tributyl phosphate (TBP) is commercially used in large volumes for reprocessing of spent nuclear fuel. TBP is a very stable compound and persistent in natural environments and it is not removed in conventional wastewater treatment plants. In this study, cultivation of aerobic granular biofilms in a sequencing batch reactor was investigated for efficient biodegradation of TBP. Enrichment of TBP-degrading strains resulted in efficient degradation of TBP as sole carbon or along with acetate. Complete biodegradation of 2 mM of TBP was achieved within 5 h with a degradation rate of 0.4 μmol mL{sup −1} h{sup −1}. TBP biodegradation was accompanied by release of inorganic phosphate in stoichiometric amounts. n-Butanol, hydrolysed product of TBP was rapidly biodegraded. But, dibutyl phosphate, a putative intermediate of TBP degradation was only partially degraded pointing to an alternative degradation pathway. Phosphatase activity was 22- and 7.5-fold higher in TBP-degrading biofilms as compared to bioflocs and acetate-fed aerobic granules. Community analysis by terminal restriction length polymorphism revealed presence of 30 different bacterial strains. Seven bacterial stains, including Sphingobium sp. a known TBP degrader were isolated. The results show that aerobic granular biofilms are promising for treatment of TBP-bearing wastes or ex situ bioremediation of TBP-contaminated sites.

  10. Biodegradation of tributyl phosphate, an organosphate triester, by aerobic granular biofilms

    International Nuclear Information System (INIS)

    Nancharaiah, Y.V.; Kiran Kumar Reddy, G.; Krishna Mohan, T.V.; Venugopalan, V.P.

    2015-01-01

    Graphical abstract: - Highlights: • Aerobic granular biomass was cultivated by feeding TBP along with acetate. • Rapid biodegradation of TBP when used as a co-substrate or as the sole carbon source. • Biodegradation of 2 mM TBP in 5 h with degradation rate of 0.4 μmol mL −1 h −1 . • High phosphatase activity was observed in TBP-degrading granular biomass. • n-Butanol, hydrolyzed product of TBP, was rapidly metabolized by aerobic granules. - Abstract: Tributyl phosphate (TBP) is commercially used in large volumes for reprocessing of spent nuclear fuel. TBP is a very stable compound and persistent in natural environments and it is not removed in conventional wastewater treatment plants. In this study, cultivation of aerobic granular biofilms in a sequencing batch reactor was investigated for efficient biodegradation of TBP. Enrichment of TBP-degrading strains resulted in efficient degradation of TBP as sole carbon or along with acetate. Complete biodegradation of 2 mM of TBP was achieved within 5 h with a degradation rate of 0.4 μmol mL −1 h −1 . TBP biodegradation was accompanied by release of inorganic phosphate in stoichiometric amounts. n-Butanol, hydrolysed product of TBP was rapidly biodegraded. But, dibutyl phosphate, a putative intermediate of TBP degradation was only partially degraded pointing to an alternative degradation pathway. Phosphatase activity was 22- and 7.5-fold higher in TBP-degrading biofilms as compared to bioflocs and acetate-fed aerobic granules. Community analysis by terminal restriction length polymorphism revealed presence of 30 different bacterial strains. Seven bacterial stains, including Sphingobium sp. a known TBP degrader were isolated. The results show that aerobic granular biofilms are promising for treatment of TBP-bearing wastes or ex situ bioremediation of TBP-contaminated sites

  11. USE OF GRANULAR GRAPHITE FOR ELECTROLYTIC DECHLORINATION OF TRICHLOROETHYLENE

    Science.gov (United States)

    Granular graphite is a potential electrode material for the electrochemical remediation of refractory chlorinated organic compounds such as trichloroethylene (TCE). However, the use of granular graphite can complicate the experimental results. On one hand, up to 99% of TCE was re...

  12. 11th Traffic and Granular Flow Conference

    CERN Document Server

    Daamen, Winnie

    2016-01-01

    The Conference on Traffic and Granular Flow brings together international researchers from different fields ranging from physics to computer science and engineering to discuss the latest developments in traffic-related systems. Originally conceived to facilitate new ideas by considering the similarities of traffic and granular flow, TGF'15, organised by Delft University of Technology, now covers a broad range of topics related to driven particle and transport systems. Besides the classical topics of granular flow and highway traffic, its scope includes data transport (Internet traffic), pedestrian and evacuation dynamics, intercellular transport, swarm behaviour and the collective dynamics of other biological systems. Recent advances in modelling, computer simulation and phenomenology are presented, and prospects for applications, for example to traffic control, are discussed. The conference explores the interrelations between the above-mentioned fields and offers the opportunity to stimulate interdisciplinar...

  13. Plasmodium berghei NK65 in Combination with IFN-γ Induces Endothelial Glucocorticoid Resistance via Sustained Activation of p38 and JNK

    Science.gov (United States)

    Zielińska, Karolina A.; de Cauwer, Lode; Knoops, Sofie; Van der Molen, Kristof; Sneyers, Alexander; Thommis, Jonathan; De Souza, J. Brian; Opdenakker, Ghislain; De Bosscher, Karolien; Van den Steen, Philippe E.

    2017-01-01

    Malaria-associated acute respiratory distress syndrome (MA-ARDS) is an often lethal complication of malaria. Currently, no adequate therapy for this syndrome exists. Although glucocorticoids (GCs) have been used to improve clinical outcome of ARDS, their therapeutic benefits remain unclear. We previously developed a mouse model of MA-ARDS, in which dexamethasone treatment revealed GC resistance. In the present study, we investigated GC sensitivity of mouse microvascular lung endothelial cells stimulated with interferon-γ (IFN-γ) and Plasmodium berghei NK65 (PbNK65). Upon challenge with IFN-γ alone, dexamethasone inhibited the expression of CCL5 (RANTES) by 90% and both CCL2 (MCP-1) and CXCL10 (IP-10) by 50%. Accordingly, whole transcriptome analysis revealed that dexamethasone differentially affected several gene clusters and in particular inhibited a large cluster of IFN-γ-induced genes, including chemokines. In contrast, combined stimulation with IFN-γ and PbNK65 extract impaired inhibitory actions of GCs on chemokine release, without affecting the capacity of the GC receptor to accumulate in the nucleus. Subsequently, we investigated the effects of GCs on two signaling pathways activated by IFN-γ. Dexamethasone left phosphorylation and protein levels of signal transducer and activator of transcription 1 (STAT1) unhampered. In contrast, dexamethasone inhibited the IFN-γ-induced activation of two mitogen-activated protein kinases (MAPK), JNK, and p38. However, PbNK65 extract abolished the inhibitory effects of GCs on MAPK signaling, inducing GC resistance. These data provide novel insights into the mechanisms of GC actions in endothelial cells and show how malaria may impair the beneficial effects of GCs. PMID:29033931

  14. Plasmodium berghei NK65 in Combination with IFN-γ Induces Endothelial Glucocorticoid Resistance via Sustained Activation of p38 and JNK

    Directory of Open Access Journals (Sweden)

    Karolina A. Zielińska

    2017-09-01

    Full Text Available Malaria-associated acute respiratory distress syndrome (MA-ARDS is an often lethal complication of malaria. Currently, no adequate therapy for this syndrome exists. Although glucocorticoids (GCs have been used to improve clinical outcome of ARDS, their therapeutic benefits remain unclear. We previously developed a mouse model of MA-ARDS, in which dexamethasone treatment revealed GC resistance. In the present study, we investigated GC sensitivity of mouse microvascular lung endothelial cells stimulated with interferon-γ (IFN-γ and Plasmodium berghei NK65 (PbNK65. Upon challenge with IFN-γ alone, dexamethasone inhibited the expression of CCL5 (RANTES by 90% and both CCL2 (MCP-1 and CXCL10 (IP-10 by 50%. Accordingly, whole transcriptome analysis revealed that dexamethasone differentially affected several gene clusters and in particular inhibited a large cluster of IFN-γ-induced genes, including chemokines. In contrast, combined stimulation with IFN-γ and PbNK65 extract impaired inhibitory actions of GCs on chemokine release, without affecting the capacity of the GC receptor to accumulate in the nucleus. Subsequently, we investigated the effects of GCs on two signaling pathways activated by IFN-γ. Dexamethasone left phosphorylation and protein levels of signal transducer and activator of transcription 1 (STAT1 unhampered. In contrast, dexamethasone inhibited the IFN-γ-induced activation of two mitogen-activated protein kinases (MAPK, JNK, and p38. However, PbNK65 extract abolished the inhibitory effects of GCs on MAPK signaling, inducing GC resistance. These data provide novel insights into the mechanisms of GC actions in endothelial cells and show how malaria may impair the beneficial effects of GCs.

  15. The Granular Blasius Problem: High inertial number granular flows

    Science.gov (United States)

    Tsang, Jonathan; Dalziel, Stuart; Vriend, Nathalie

    2017-11-01

    The classical Blasius problem considers the formation of a boundary layer through the change at x = 0 from a free-slip to a no-slip boundary beneath an otherwise steady uniform flow. Discrete particle model (DPM) simulations of granular gravity currents show that a similar phenomenon exists for a steady flow over a uniformly sloped surface that is smooth upstream (allowing slip) but rough downstream (imposing a no-slip condition). The boundary layer is a region of high shear rate and therefore high inertial number I; its dynamics are governed by the asymptotic behaviour of the granular rheology as I -> ∞ . The μ(I) rheology asserts that dμ / dI = O(1 /I2) as I -> ∞ , but current experimental evidence is insufficient to confirm this. We show that `generalised μ(I) rheologies', with different behaviours as I -> ∞ , all permit the formation of a boundary layer. We give approximate solutions for the velocity profile under each rheology. The change in boundary condition considered here mimics more complex topography in which shear stress increases in the streamwise direction (e.g. a curved slope). Such a system would be of interest in avalanche modelling. EPSRC studentship (Tsang) and Royal Society Dorothy Hodgkin Fellowship (Vriend).

  16. Pattern recognition algorithms for data mining scalability, knowledge discovery and soft granular computing

    CERN Document Server

    Pal, Sankar K

    2004-01-01

    Pattern Recognition Algorithms for Data Mining addresses different pattern recognition (PR) tasks in a unified framework with both theoretical and experimental results. Tasks covered include data condensation, feature selection, case generation, clustering/classification, and rule generation and evaluation. This volume presents various theories, methodologies, and algorithms, using both classical approaches and hybrid paradigms. The authors emphasize large datasets with overlapping, intractable, or nonlinear boundary classes, and datasets that demonstrate granular computing in soft frameworks.Organized into eight chapters, the book begins with an introduction to PR, data mining, and knowledge discovery concepts. The authors analyze the tasks of multi-scale data condensation and dimensionality reduction, then explore the problem of learning with support vector machine (SVM). They conclude by highlighting the significance of granular computing for different mining tasks in a soft paradigm.

  17. DNA damage response and evasion from immunosurveillance in CLL: New options for NK cell-based immunotherpies.

    Directory of Open Access Journals (Sweden)

    Olga M. Shatnyeva

    2015-02-01

    Full Text Available Chronic lymphocytic leukemia (CLL is the most prominent B cell malignancy among adults in the Western world and characterized by a clonal expansion of B cells. The patients suffer from severe immune defects resulting in increased susceptibility to infections and failure to generate an antitumor immune response. Defects in both, DNA damage response (DDR pathway and crosstalk with the tissue microenvironment have been reported to play a crucial role for the survival of CLL cells, therapy resistance and impaired immune response. To this end, major advances over the past years have highlighted several T cell immune evasion mechanisms in CLL. Here, we discuss the consequences of an impaired DDR pathway for detection and elimination of CLL cells by Natural killer (NK cells. NK cells are considered to be a major component of the immunosurveillance in leukemia but NK cell activity is impaired in CLL. Restoration of NK cell activity using immunoligands and immunoconstructs in combination with the conventional chemotherapy may provide a future perspective for CLL treatment.

  18. Granular cell tumor: An uncommon benign neoplasm

    Directory of Open Access Journals (Sweden)

    Tirthankar Gayen

    2015-01-01

    Full Text Available Granular cell tumor is a distinctly rare neoplasm of neural sheath origin. It mainly presents as a solitary asymptomatic swelling in the oral cavity, skin, and rarely internal organs in the middle age. Histopathology is characteristic, showing polyhedral cells containing numerous fine eosinophilic granules with indistinct cell margins. We present a case of granular cell tumor on the back of a 48-year-old woman which was painful, mimicking an adnexal tumor.

  19. Knots and Random Walks in Vibrated Granular Chains

    International Nuclear Information System (INIS)

    Ben-Naim, E.; Daya, Z. A.; Vorobieff, P.; Ecke, R. E.

    2001-01-01

    We study experimentally statistical properties of the opening times of knots in vertically vibrated granular chains. Our measurements are in good qualitative and quantitative agreement with a theoretical model involving three random walks interacting via hard-core exclusion in one spatial dimension. In particular, the knot survival probability follows a universal scaling function which is independent of the chain length, with a corresponding diffusive characteristic time scale. Both the large-exit-time and the small-exit-time tails of the distribution are suppressed exponentially, and the corresponding decay coefficients are in excellent agreement with theoretical values

  20. Characterization of NCR1+ cells residing in lymphoid tissues in the gut of lambs indicates that the majority are NK cells.

    Science.gov (United States)

    Olsen, Line; Boysen, Preben; Åkesson, Caroline Piercey; Gunnes, Gjermund; Connelley, Timothy; Storset, Anne K; Espenes, Arild

    2013-11-13

    Natural killer (NK) cells are important for immune protection of the gut mucosa. Previous studies have shown that under pathologic conditions NK cells, T cells and dendritic cells are found co-localised in secondary lymphoid organs where their interaction coordinates immune responses. However, in the gut-associated lymphoid tissues (GALTs), there are few detailed reports on the distribution of NK cells. Sheep harbour several types of organised lymphoid tissues in the gut that have different functions. The ileal Peyer's patch (IPP) functions as a primary lymphoid tissue for B cell generation, while the jejunal Peyer's patches (JPPs) and colon patches (CPs) are considered secondary lymphoid tissues. In the present study, we analysed tissues from healthy lambs by flow cytometry and in situ multicolour immunofluorescence, using recently described NCR1 antibodies to identify ovine NK cells. Most NCR1+ cells isolated from all tissues were negative for the pan T cell marker CD3, and thus comply with the general definition of NK cells. The majority of NCR1+ cells in blood as well as secondary lymphoid organs expressed CD16, but in the GALT around half of the NCR1+ cells were negative for CD16. A semi-quantitative morphometric study on tissue sections was used to compare the density of NK cells in four compartments of the IPPs, JPP and CPs. NCR1+ cells were found in all gut segments. Statistical analysis revealed significant differences between compartments of the primary lymphoid organ IPP and the secondary lymphoid organs of the JPPs and CP. NK cells co-localised and made close contact with T cells, dendritic cells and other NK cells, but did not show signs of proliferation. We conclude that NK cells are present in all investigated segments of the sheep gut, but that presence of other innate lymphoid cells expressing NCR1 cannot be excluded.

  1. Density-Driven segregation in Binary and Ternary Granular Systems

    NARCIS (Netherlands)

    Windows-Yule, Kit; Parker, David

    2015-01-01

    We present a first experimental study of density-induced segregation within a three-dimensional, vibrofluidised, ternary granular system. Using Positron Emission Particle Tracking (PEPT), we study the steady-state particle distributions achieved by binary and ternary granular beds under a variety of

  2. Hierarchical self-assembly of PDMA-b-PS chains into granular nanoparticles: genesis and fate.

    Science.gov (United States)

    Bianchi, Alberto; Mauri, Michele; Bonetti, Simone; Koynov, Kaloian; Kappl, Michael; Lieberwirth, Ingo; Butt, Hans-Jürgen; Simonutti, Roberto

    2014-12-01

    The hierarchical self-assembly of an amphiphilic block copolymer, poly(N,N-dimethylacrylamide)-block-polystyrene with a very short hydrophilic block (PDMA10 -b-PS62 ), in large granular nanoparticles is reported. While these nanoparticles are stable in water, their disaggregation can be induced either mechanically (i.e., by applying a force via the tip of the cantilever of an atomic force microscope (AFM)) or by partial hydrolysis of the acrylamide groups. AFM force spectroscopy images show the rupture of the particle as a combination of collapse and flow, while scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images of partly hydrolyzed nanoparticles provide a clear picture of the granular structure. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Simultaneous development of antibody-dependent cellular cytotoxicity (ADCC) and natural killer (NK) activity in irradiated mice reconstituted with bone marrow cells

    International Nuclear Information System (INIS)

    Sihvola, M.; Hurme, M.

    1987-01-01

    Spleen cells from irradiated, bone marrow-reconstituted mice were tested for their ability to mediate antibody-dependent cellular cytotoxicity against P815 target (ADCC-P815), ADCC against sheep red blood cells (ADCC-SRBC), and natural killer (NK) activity judged as YAC-1 lysis at different times after bone marrow reconstitution. Donor-derived ADCC-P815 effectors were found to appear in the spleens 10-12 days after bone marrow reconstitution simultaneously with the appearance of donor-derived NK cells. NK cells recently derived from bone marrow are known to express the Thy-1 antigen; the phenotype of the ''early'' ADCC-P815 effectors was found to be the same as that of NK cells, i.e., Thy-1+, asialo-GM1+. These data suggest that ADCC-P815 effector cells belong to the NK cell population. ADCC-SRBC, in contrast to ADCC-P815 and NK activity, was already high on Day 7 after bone marrow reconstitution. However, it was mediated partly by recipient-derived effectors. ADCC-SRBC effectors were characterized to be different from ADCC-P815 effectors

  4. Beyond NK cells: the expanding universe of innate lymphoid cells.

    Science.gov (United States)

    Cella, Marina; Miller, Hannah; Song, Christina

    2014-01-01

    For a long time, natural killer (NK) cells were thought to be the only innate immune lymphoid population capable of responding to invading pathogens under the influence of changing environmental cues. In the last few years, an increasing amount of evidence has shown that a number of different innate lymphoid cell (ILC) populations found at mucosal sites rapidly respond to locally produced cytokines in order to establish or maintain homeostasis. These ILC populations closely mirror the phenotype of adaptive T helper subsets in their repertoire of secreted soluble factors. Early in the immune response, ILCs are responsible for setting the stage to mount an adaptive T cell response that is appropriate for the incoming insult. Here, we review the diversity of ILC subsets and discuss similarities and differences between ILCs and NK cells in function and key transcriptional factors required for their development.

  5. Beyond NK cells: the expanding universe of Innate Lymphoid Cells.

    Directory of Open Access Journals (Sweden)

    Marina eCella

    2014-06-01

    Full Text Available For a long time NK cells were thought to be the only immune innate lymphoid population capable of responding to invading pathogens under the influence of changing environmental cues. In the last few years, an increasing amount of evidence has shown that a number of different Innate Lymphoid Cells found at mucosal sites rapidly respond to locally produced cytokines in order to establish or maintain homeostasis. ILC populations closely mirror the phenotype of adaptive Thelper subsets in their ability to secrete soluble factors. Early in the immune response, ILCs are responsible for setting the stage to mount an adaptive T cell response appropriate to the incoming insult. Here we review the diversity of ILC subsets and discuss similarities and differences between ILCs and NK cells in function and key transcriptional factors required for their development.

  6. Different features of Vδ2 T and NK cells in fatal and non-fatal human Ebola infections.

    Science.gov (United States)

    Cimini, Eleonora; Viola, Domenico; Cabeza-Cabrerizo, Mar; Romanelli, Antonella; Tumino, Nicola; Sacchi, Alessandra; Bordoni, Veronica; Casetti, Rita; Turchi, Federica; Martini, Federico; Bore, Joseph A; Koundouno, Fara Raymond; Duraffour, Sophie; Michel, Janine; Holm, Tobias; Zekeng, Elsa Gayle; Cowley, Lauren; Garcia Dorival, Isabel; Doerrbecker, Juliane; Hetzelt, Nicole; Baum, Jonathan H J; Portmann, Jasmine; Wölfel, Roman; Gabriel, Martin; Miranda, Osvaldo; Díaz, Graciliano; Díaz, José E; Fleites, Yoel A; Piñeiro, Carlos A; Castro, Carlos M; Koivogui, Lamine; Magassouba, N'Faly; Diallo, Boubacar; Ruibal, Paula; Oestereich, Lisa; Wozniak, David M; Lüdtke, Anja; Becker-Ziaja, Beate; Capobianchi, Maria R; Ippolito, Giuseppe; Carroll, Miles W; Günther, Stephan; Di Caro, Antonino; Muñoz-Fontela, César; Agrati, Chiara

    2017-05-01

    Human Ebola infection is characterized by a paralysis of the immune system. A signature of αβ T cells in fatal Ebola infection has been recently proposed, while the involvement of innate immune cells in the protection/pathogenesis of Ebola infection is unknown. Aim of this study was to analyze γδ T and NK cells in patients from the Ebola outbreak of 2014-2015 occurred in West Africa, and to assess their association with the clinical outcome. Nineteen Ebola-infected patients were enrolled at the time of admission to the Ebola Treatment Centre in Guinea. Patients were divided in two groups on the basis of the clinical outcome. The analysis was performed by using multiparametric flow cytometry established by the European Mobile Laboratory in the field. A low frequency of Vδ2 T-cells was observed during Ebola infection, independently from the clinical outcome. Moreover, Vδ2 T-cells from Ebola patients massively expressed CD95 apoptotic marker, suggesting the involvement of apoptotic mechanisms in Vδ2 T-cell loss. Interestingly, Vδ2 T-cells from survivors expressed an effector phenotype and presented a lower expression of the CTLA-4 exhaustion marker than fatalities, suggesting a role of effector Vδ2 T-cells in the protection. Furthermore, patients with fatal Ebola infection were characterized by a lower NK cell frequency than patients with non fatal infection. In particular, both CD56bright and CD56dim NK frequency were very low both in fatal and non fatal infections, while a higher frequency of CD56neg NK cells was associated to non-fatal infections. Finally, NK activation and expression of NKp46 and CD158a were independent from clinical outcome. Altogether, the data suggest that both effector Vδ2 T-cells and NK cells may play a role in the complex network of protective response to EBOV infection. Further studies are required to characterize the protective effector functions of Vδ2 and NK cells.

  7. Different features of Vδ2 T and NK cells in fatal and non-fatal human Ebola infections.

    Directory of Open Access Journals (Sweden)

    Eleonora Cimini

    2017-05-01

    Full Text Available Human Ebola infection is characterized by a paralysis of the immune system. A signature of αβ T cells in fatal Ebola infection has been recently proposed, while the involvement of innate immune cells in the protection/pathogenesis of Ebola infection is unknown. Aim of this study was to analyze γδ T and NK cells in patients from the Ebola outbreak of 2014-2015 occurred in West Africa, and to assess their association with the clinical outcome.Nineteen Ebola-infected patients were enrolled at the time of admission to the Ebola Treatment Centre in Guinea. Patients were divided in two groups on the basis of the clinical outcome. The analysis was performed by using multiparametric flow cytometry established by the European Mobile Laboratory in the field. A low frequency of Vδ2 T-cells was observed during Ebola infection, independently from the clinical outcome. Moreover, Vδ2 T-cells from Ebola patients massively expressed CD95 apoptotic marker, suggesting the involvement of apoptotic mechanisms in Vδ2 T-cell loss. Interestingly, Vδ2 T-cells from survivors expressed an effector phenotype and presented a lower expression of the CTLA-4 exhaustion marker than fatalities, suggesting a role of effector Vδ2 T-cells in the protection. Furthermore, patients with fatal Ebola infection were characterized by a lower NK cell frequency than patients with non fatal infection. In particular, both CD56bright and CD56dim NK frequency were very low both in fatal and non fatal infections, while a higher frequency of CD56neg NK cells was associated to non-fatal infections. Finally, NK activation and expression of NKp46 and CD158a were independent from clinical outcome.Altogether, the data suggest that both effector Vδ2 T-cells and NK cells may play a role in the complex network of protective response to EBOV infection. Further studies are required to characterize the protective effector functions of Vδ2 and NK cells.

  8. Massive granular cell ameloblastoma with dural extension and atypical morphology

    Directory of Open Access Journals (Sweden)

    Vandana Raghunath

    2014-01-01

    Full Text Available Ameloblastomas are rare histologically benign, locally aggressive tumors arising from the oral ectoderm that occasionally reach a gigantic size. Giant ameloblastomas are a rarity these days with the advent of panoramic radiography in routine dental practice. Furthermore, the granular cell variant is an uncommon histological subtype of ameloblastoma where the central stellate reticulum like cells in tumor follicles is replaced by granular cells. Although granular cell ameloblastoma (GCA is considered to be a destructive tumor with a high recurrence rate, the significance of granular cells in predicting its biologic behavior is debatable. However, we present a rare case of giant GCA of remarkable histomorphology showing extensive craniofacial involvement and dural extension that rendered a good prognosis following treatment.

  9. GMP-compliant, large-scale expanded allogeneic natural killer cells have potent cytolytic activity against cancer cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Okjae Lim

    Full Text Available Ex vivo-expanded, allogeneic natural killer (NK cells can be used for the treatment of various types of cancer. In allogeneic NK cell therapy, NK cells from healthy donors must be expanded in order to obtain a sufficient number of highly purified, activated NK cells. In the present study, we established a simplified and efficient method for the large-scale expansion and activation of NK cells from healthy donors under good manufacturing practice (GMP conditions. After a single step of magnetic depletion of CD3(+ T cells, the depleted peripheral blood mononuclear cells (PBMCs were stimulated and expanded with irradiated autologous PBMCs in the presence of OKT3 and IL-2 for 14 days, resulting in a highly pure population of CD3(-CD16(+CD56(+ NK cells which is desired for allogeneic purpose. Compared with freshly isolated NK cells, these expanded NK cells showed robust cytokine production and potent cytolytic activity against various cancer cell lines. Of note, expanded NK cells selectively killed cancer cells without demonstrating cytotoxicity against allogeneic non-tumor cells in coculture assays. The anti-tumor activity of expanded human NK cells was examined in SCID mice injected with human lymphoma cells. In this model, expanded NK cells efficiently controlled lymphoma progression. In conclusion, allogeneic NK cells were efficiently expanded in a GMP-compliant facility and demonstrated potent anti-tumor activity both in vitro and in vivo.

  10. Tunneling magnetoresistance in granular cermet films with particle size distribution

    International Nuclear Information System (INIS)

    Vovk, A.Ya.; Golub, V.O.; Malkinski, L.; Kravets, A.F.; Pogorily, A.M.; Shypil', O.V.

    2004-01-01

    The correlation between tunneling magnetoresistance (TMR) and field sensitivity (dMR/dH) for granular films (Co 50 Fe 50 ) x -(Al 2 O 3 ) 1-x was studied. The position of TMR maximum is shifted towards the lower x in the higher applied magnetic fields. Such a behavior was observed for metal granular nanocomposites but is first reported for granular cermets. However the highest dMR/dH was found for the compositions just below the percolation threshold

  11. Malignant Granular Cell Tumor of the Back: A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Laura Stone McGuire

    2014-01-01

    Full Text Available Malignant granular cell tumors are rare, intensely aggressive entities. This paper presents a case of a large rapidly recurrent malignant granular cell tumor with regional and distal metastases on the back of a 54-year-old Cuban man. The primary tumor recurred within six months of the original wide local excision and with satellite lesions apparent at twelve months, and the mass was diagnosed using the histological criteria established by Fanburg-Smith et al. for malignant granular cell tumors. By fifteen months, right axillary lymphadenopathy, multiple satellite lesions, pulmonary nodules, and distant metastasis in the right thigh were present. At sixteen months, wide local excision of recurrent mass and local satellite masses along with right axillary dissection and placement of Integra with subsequent split-thickness skin graft were performed by surgical oncology and plastic surgery teams. The surgical specimen measured 32.0 × 13.5 × 5.5 cm, containing multiple homogeneous masses with the largest mass 22.0 × 9.0 × 4.6 cm. Following surgery, patient was started on Pazopanib 800 mg/day based on phase III randomized trial data in the treatment of soft tissue sarcomas showing this as a potential novel therapy for malignant granular cell tumors.

  12. Influence of granular strontium chloride as additives on some ...

    Indian Academy of Sciences (India)

    Influence of granular strontium chloride as additives on some electrical and mechanical properties for pure polyvinyl alcohol. A B Elaydy M Hafez ... Keywords. Polyvinyl-alcohol (PVA); granular strontium chloride, SrCl2; a.c. electrical conductivity; dielectric constant; dielectric loss; Young's modulus; creep relaxation curve.

  13. Antibody Fc engineering improves frequency and promotes kinetic boosting of serial killing mediated by NK cells

    Science.gov (United States)

    Romain, Gabrielle; Senyukov, Vladimir; Rey-Villamizar, Nicolas; Merouane, Amine; Kelton, William; Liadi, Ivan; Mahendra, Ankit; Charab, Wissam; Georgiou, George; Roysam, Badrinath; Lee, Dean A.

    2014-01-01

    The efficacy of most therapeutic monoclonal antibodies (mAbs) targeting tumor antigens results primarily from their ability to elicit potent cytotoxicity through effector-mediated functions. We have engineered the fragment crystallizable (Fc) region of the immunoglobulin G (IgG) mAb, HuM195, targeting the leukemic antigen CD33, by introducing the triple mutation Ser293Asp/Ala330Leu/Ile332Glu (DLE), and developed Time-lapse Imaging Microscopy in Nanowell Grids to analyze antibody-dependent cell-mediated cytotoxicity kinetics of thousands of individual natural killer (NK) cells and mAb-coated target cells. We demonstrate that the DLE-HuM195 antibody increases both the quality and the quantity of NK cell-mediated antibody-dependent cytotoxicity by endowing more NK cells to participate in cytotoxicity via accrued CD16-mediated signaling and by increasing serial killing of target cells. NK cells encountering targets coated with DLE-HuM195 induce rapid target cell apoptosis by promoting simultaneous conjugates to multiple target cells and induce apoptosis in twice the number of target cells within the same period as the wild-type mAb. Enhanced target killing was also associated with increased frequency of NK cells undergoing apoptosis, but this effect was donor-dependent. Antibody-based therapies targeting tumor antigens will benefit from a better understanding of cell-mediated tumor elimination, and our work opens further opportunities for the therapeutic targeting of CD33 in the treatment of acute myeloid leukemia. PMID:25232058

  14. Real-time magnetic resonance imaging of highly dynamic granular phenomena

    Science.gov (United States)

    Penn, Alexander; Pruessmann, Klaas P.; Müller, Christoph

    Probing non-intrusively the interior of three-dimensional granular systems is a challenging task for which a number of imaging techniques have been applied including positron emission particle tracking, X-ray tomography and magnetic resonance imaging (MRI). A particular advantage of MRI is its versatility allowing quantitative velocimetry through phase contrast encoding and tagging, arbitrary slice orientations and the flexibility to trade spatial for temporal resolution and vice versa during image reconstruction. However, previous attempts to image granular systems using MRI were often limited to (pseudo-) steady state systems due to the poor temporal resolution of conventional imaging methodology. Here we present an experimental approach that overcomes previous limitations in temporal resolution by implementing a variety of methodological advances, viz. parallel data acquisition through tailored multiple receiver coils, fast gradient readouts for time-efficient data sampling and engineered granular materials that contain signal sources of high proton density. Achieving a spatial and temporal resolution of, respectively, 2 mm x 2 mm and 50 ms, we were able to image highly dynamic phenomena in granular media such as bubble coalescence and granular compaction waves.

  15. Selective, autoantibody-immune complex mediated proportional and functional changes of specific NK-cell subsets in early seropositive but not seronegative rheumatoid arthritis

    NARCIS (Netherlands)

    Chalan, P.; Brouwer, Liesbeth; Bijzet, J.; Kroesen, B.-J.; Boots, Annemieke

    2015-01-01

    Background: Despite substantial data demonstrating NK-cell impairment in rheumatoid arthritis (RA), the exact role of NK-cells in RA immunopathogenesis remains unclear. Objectives: We studied the involvement of CD56dim and CD56bright NK-cells in the early stages of RA development to elucidate their

  16. A Case Report of NK-Cell Lymphoproliferative Disease With a Wide Involvement of Digestive Tract Develop Into Epstein-Barr Virus Associated NK/T Cell Lymphoma in an Immunocompetent Patient.

    Science.gov (United States)

    Chen, Haotian; Zhang, Yu; Jiang, Zhinong; Zhou, Wei; Cao, Qian

    2016-03-01

    Epstein-Barr virus (EBV) plays an important role in various diseases. EBV-associated lymphoproliferative disease (LPD) is a rare disease with a canceration tendency. It is difficult to differentiate LPD with involvement of digestive tract from Crohn disease due to similar clinical and endoscopic manifestations. We present a case report of multiple ulcers with esophagus, small bowel and the entire colon involved, proved to be NK-Cell LPD, developed into EBV-associated NK/T Cell lymphoma, in an immunocompetent man who was initially misdiagnosed as Crohn disease.This report underscores that intestinal ulcers should be cautiously diagnosed, for it sometimes could be a precancerous lesion.

  17. Wet granular matter a truly complex fluid

    CERN Document Server

    Herminghaus, Stephan

    2013-01-01

    This is a monograph written for the young and advanced researcher who is entering the field of wet granular matter and keen to understand the basic physical principles governing this state of soft matter. It treats wet granulates as an instance of a ternary system, consisting of the grains, a primary, and a secondary fluid. After addressing wetting phenomena in general and outlining the basic facts on dry granular systems, a chapter on basic mechanisms and their effects is dedicated to every region of the ternary phase diagram. Effects of grain shape and roughness are considered as well. Rather than addressing engineering aspects such as existing books on this topic do, the book aims to provide a generalized framework suitable for those who want to understand these systems on a more fundamental basis. Readership: For the young and advanced researcher entering the field of wet granular matter.

  18. The behaviour of free-flowing granular intruders

    Directory of Open Access Journals (Sweden)

    Wyburn Edward

    2017-01-01

    Full Text Available Particle shape affects both the quasi-static and dynamic behaviour of granular media. There has been significant research devoted to the flowability of systems of irregularly shaped particles, as well as the flow of grains around fixed intruders, however the behaviour of free flowing intruders within granular flows remains comparatively unexplored. Here, the effect of the shape of these intruder particles is studied, looking at the kinematic behaviour of the intruders and in particular their tendency of orientation. Experiments are carried out within the Stadium Shear Device, which is a novel apparatus able to continuously apply simple shear conditions to two-dimensional grain analogues. It is found that the intruder shows different behaviour to that of the bulk flow, and that this behaviour is strongly shape dependent. These insights could lead to the development of admixtures that alter the flowability of granular materials.

  19. A high frequency of peripheral blood NKG2D+NK and NKT cells in euthyroid patients with new onset hashimoto's thyroiditis--a pilot study.

    Science.gov (United States)

    Guo, Hui; Xu, Bingchuan; Yang, Xige; Wang, Ye; Liu, Xiaobo; Cui, Chengri; Jiang, Yanfang

    2014-01-01

    Hashimoto's thyroiditis (HT) is a T cell-mediated autoimmune disease. However, little is known about the role of different subsets of natural killer (NK) and natural killer T (NKT) cells at the early stage of the HT process. A total of 45 euthyroid patients with new onset HT and 40 age/gender-matched healthy controls (HC) were examined for the frequency of different subsets of NK and NKT cells and their function by flow cytometry. In comparison with that in HC, significantly higher percentages of peripheral blood CD3-CD56+ NK, NKG2D+, NKp30+ NK and NKT cells, but significantly lower percentages of NKG2A+, KIR2DL3+ inhibitory NK and NKT cells were detected in the HT patients. Furthermore, the percentages of NKG2D+ NK cells were correlated positively with the concentrations of serum anti-thyroid peroxidase antibody (TPOAb) in the HT patients. Moreover, the percentages of inducible IFN-γ and CD107a+ NK cells in the HT patients were significantly higher than those in HC. Our data suggest that activated NK cells may participate in the early pathogenic process of HT.

  20. Origin of the resistivity minima in granular superconductors

    International Nuclear Information System (INIS)

    Simanek, E.

    1982-01-01

    The recently observed minima in the temperature dependence of the electrical resistivity of a granular superconductor are explained with use of a percolation model of a disordered granular array, which takes into account the electrostatic charging energy. The thermally activated tunneling of Cooper pairs is shown to play an important role in the interpretation of the experimental data on tin films

  1. Hierarchical modular granular neural networks with fuzzy aggregation

    CERN Document Server

    Sanchez, Daniela

    2016-01-01

    In this book, a new method for hybrid intelligent systems is proposed. The proposed method is based on a granular computing approach applied in two levels. The techniques used and combined in the proposed method are modular neural networks (MNNs) with a Granular Computing (GrC) approach, thus resulting in a new concept of MNNs; modular granular neural networks (MGNNs). In addition fuzzy logic (FL) and hierarchical genetic algorithms (HGAs) are techniques used in this research work to improve results. These techniques are chosen because in other works have demonstrated to be a good option, and in the case of MNNs and HGAs, these techniques allow to improve the results obtained than with their conventional versions; respectively artificial neural networks and genetic algorithms.

  2. Surface effects in the acetylation of granular potato starch

    NARCIS (Netherlands)

    Steeneken, P.A.M.; Woortman, A.J.J.

    2008-01-01

    The occurrence of surface effects in the acetylation of granular potato starch with acetic anhydride to degrees of substitution 0.04-0.2 was studied by two different approaches. The first approach involved the fractionation of granular starch acetates into five different size classes and analysis of

  3. Constitutively polarized granules prime KHYG-1 NK cells.

    Science.gov (United States)

    Suck, Garnet; Branch, Donald R; Aravena, Paola; Mathieson, Mark; Helke, Simone; Keating, Armand

    2006-09-01

    The major mechanism for NK cell lysis of tumor cells is granule-mediated cytotoxicity. Polarization of granules is a prelude to the release of their cytotoxic contents in response to target-cell binding. We describe the novel observation of constitutive granule polarization in the cytotoxic NK cell line, KHYG-1. Continuous degranulation of KHYG-1 cells, however, does not occur and still requires target-cell contact. Disruption of microtubules with colcemid is sufficient to disperse the granules in KHYG-1 and significantly decreases cytotoxicity. A similar effect is not obtained by inhibiting extracellular signal-related kinase 2 (ERK2), the most distal kinase investigated in the cytolytic pathway. Disruption of microtubules significantly down-regulates activation receptors, NKp44 and NKG2D, implicating them as potential microtubule-trafficking receptors. Such changes in upstream receptor expression may have caused deactivation of ERK2, since NKG2D cross-linking also leads to receptor down-regulation and diminished ERK phosphorylation. Thus, a functional role for NKG2D in KHYG-1 cytotoxicity is demonstrated. Moreover, the novel primed state may contribute to the high cytotoxicity exhibited by KHYG-1.

  4. Antibody-dependent NK cell activation is associated with late kidney allograft dysfunction and the complement-independent alloreactive potential of donor-specific antibodies

    Directory of Open Access Journals (Sweden)

    Tristan Legris

    2016-08-01

    Full Text Available Although kidney transplantation remains the best treatment for end-stage renal failure, it is limited by chronic humoral aggression of the graft vasculature by donor-specific antibodies (DSAs. The complement-independent mechanisms that lead to the antibody-mediated rejection (ABMR of kidney allografts remain poorly understood. Increasing lines of evidence have revealed the relevance of natural killer (NK cells as innate immune effectors of antibody-dependent cellular cytotoxicity, but few studies have investigated their alloreactive potential in the context of solid organ transplantation. Our study aimed to investigate the potential contribution of the antibody-dependent alloreactive function of NK cells to kidney graft dysfunction. We first conducted an observational study to investigate whether the cytotoxic function of NK cells is associated with chronic allograft dysfunction. The NK-Cellular Humoral Activation Test (NK-CHAT was designed to evaluate the recipient and antibody-dependent reactivity of NK cells against allogeneic target cells. The release of CD107a/Lamp1+ cytotoxic granules, resulting from the recognition of rituximab-coated B cells by NK cells, was analyzed in 148 kidney transplant recipients (KTRs, mean graft duration: 6.2 years. Enhanced ADCC responsiveness was associated with reduced graft function and identified as an independent risk factor predicting a decline in the estimated glomerular filtration rate (eGFR over a 1-year period (hazard ratio: 2.83. In a second approach, we used the NK-CHAT to reveal the cytotoxic potential of circulating alloantibodies in vitro. The level of CD16 engagement resulting from the in vitro recognition of serum-coated allogeneic B cells or splenic cells was further identified as a specific marker of DSA-induced ADCC. The NK-CHAT scoring of sera obtained from 40 patients at the time of transplant biopsy was associated with ABMR diagnosis. Our findings indicate that despite the administration

  5. Inhibition of enterovirus 71 replication by an α-hydroxy-nitrile derivative NK-1.9k.

    Science.gov (United States)

    Wang, Yaxin; Cao, Lin; Zhai, Yangyang; Ma, Jiaming; Nie, Quandeng; Li, Ting; Yin, Zheng; Sun, Yuna; Shang, Luqing

    2017-05-01

    Enterovirus 71 (EV71) is one of the major etiological agents of human hand-foot-and-mouth disease (HFMD) worldwide. EV71 infection in young children and people with immunodeficiency causes severe symptoms with a high fatality rates. However, there is still no approved drugs to treat such infections. Based on our previous report of a peptide-aldehyde anti-EV71 protease, we present here a highly specific α-hydroxy-nitrile derivative NK-1.9k, which inhibited the proliferation of multiple EV71 strains and coxsackievirus A16 (CVA16) in various cells with EC 50 of 37.0 nM with low cytotoxicity (CC 50  > 200 μM). The hydroxy-nitrile covalent warhead conferred NK-1.9k high potency and selectivity to interact with the cysteine residue of the active site of the viral protease. We also documented the resistance to NK-1.9k with a N69S mutation in EV71 3C pro . The combination of NK-1.9k and EV71 polymerase or entry inhibitors produced strong synergistic antiviral effects. Collectively, our findings suggest our compounds can potentially be developed as drugs for the treatment of HFMD. Copyright © 2017. Published by Elsevier B.V.

  6. Mouse NK cell-mediated rejection of bone marrow allografts exhibits patterns consistent with Ly49 subset licensing.

    Science.gov (United States)

    Sun, Kai; Alvarez, Maite; Ames, Erik; Barao, Isabel; Chen, Mingyi; Longo, Dan L; Redelman, Doug; Murphy, William J

    2012-02-09

    Natural killer (NK) cells can mediate the rejection of bone marrow allografts and exist as subsets based on expression of inhibitory/activating receptors that can bind MHC. In vitro data have shown that NK subsets bearing Ly49 receptors for self-MHC class I have intrinsically higher effector function, supporting the hypothesis that NK cells undergo a host MHC-dependent functional education. These subsets also play a role in bone marrow cell (BMC) allograft rejection. Thus far, little in vivo evidence for this preferential licensing across mouse strains with different MHC haplotypes has been shown. We assessed the intrinsic response potential of the different Ly49(+) subsets in BMC rejection by using β2-microglobulin deficient (β2m(-/-)) mice as donors. Using congenic and allogeneic mice as recipients and depleting the different Ly49 subsets, we found that NK subsets bearing Ly49s, which bind "self-MHC" were found to be the dominant subset responsible for β2m(-/-) BMC rejection. This provides in vivo evidence for host MHC class I-dependent functional education. Interestingly, all H2(d) strain mice regardless of background were able to resist significantly greater amounts of β2m(-/-), but not wild-type BMC than H2(b) mice, providing evidence that the rheostat hypothesis regarding Ly49 affinities for MHC and NK-cell function impacts BMC rejection capability.

  7. Regulation of NKG2D-Dependent NK Cell Functions: The Yin and the Yang of Receptor Endocytosis

    Directory of Open Access Journals (Sweden)

    Rosa Molfetta

    2017-08-01

    Full Text Available Natural-killer receptor group 2, member D (NKG2D is a well characterized natural killer (NK cell activating receptor that recognizes several ligands poorly expressed on healthy cells but up-regulated upon stressing stimuli in the context of cancer or viral infection. Although NKG2D ligands represent danger signals that render target cells more susceptible to NK cell lysis, accumulating evidence demonstrates that persistent exposure to ligand-expressing cells causes the decrease of NKG2D surface expression leading to a functional impairment of NKG2D-dependent NK cell functions. Upon ligand binding, NKG2D is internalized from the plasma membrane and sorted to lysosomes for degradation. However, receptor endocytosis is not only a mechanism of receptor clearance from the cell surface, but is also required for the proper activation of signalling events leading to the functional program of NK cells. This review is aimed at providing a summary of current literature relevant to the molecular mechanisms leading to NKG2D down-modulation with particular emphasis given to the role of NKG2D endocytosis in both receptor degradation and signal propagation. Examples of chronic ligand-induced down-regulation of NK cell activating receptors other than NKG2D, including natural cytotoxicity receptors (NCRs, DNAX accessory molecule-1 (DNAM1 and CD16, will be also discussed.

  8. Tuning strain of granular matter by basal assisted Couette shear

    Directory of Open Access Journals (Sweden)

    Zhao Yiqiu

    2017-01-01

    Full Text Available We present a novel Couette shear apparatus capable of generating programmable azimuthal strain inside 2D granular matter under Couette shear. The apparatus consists of 21 independently movable concentric rings and two boundary wheels with frictional racks. This makes it possible to quasistatically shear the granular matter not only from the boundaries but also from the bottom. We show that, by specifying the collective motion of wheels and rings, the apparatus successfully generates the desired strain profile inside the sample granular system, which is composed of about 2000 photoelastic disks. The motion and stress of each particle is captured by an imaging system utilizing reflective photoelasticimetry. This apparatus provides a novel method to investigate shear jamming properties of granular matter with different interior strain profiles and unlimited strain amplitudes.

  9. Iron overload may promote alteration of NK cells and hematopoietic stem/progenitor cells by JNK and P38 pathway in myelodysplastic syndromes.

    Science.gov (United States)

    Hua, Yanni; Wang, Chaomeng; Jiang, Huijuan; Wang, Yihao; Liu, Chunyan; Li, Lijuan; Liu, Hui; Shao, Zonghong; Fu, Rong

    2017-08-01

    The objective of the study was to examine levels of intracellular iron, reactive oxygen species (ROS) and the expression of JNK and p38MAPK in NK cells and hematopoietic stem/progenitor cells (HSPCs) in MDS patients, and explore potential mechanisms by which iron overload (IOL) promotes MDS progression. Thirty-four cases of MDS and six cases of AML transformed from MDS (MDS/AML) were included. HSPCs and NK cells were isolated by magnetic absorption cell sorting. We used flow cytometry to detect the levels of ROS and intracellular JNK and P38 in NK cells and HSPCs. Total RNA and protein were extracted from NK cells and CD34 + cells to examine the expression of JNK and p38MAPK using RT-PCR and Western blotting. Intracellular iron concentration was detected. Data were analyzed by SPSS 21 statistical software. Intracellular iron concentration and ROS were increased in both NK cells and HSPCs in MDS patients with iron overload (P overload had higher JNK expression and lower p38 expression in NK cells, and higher p38 expression in HSPCs compared with non-iron overload group. IOL may cause alterations in NK cells and HSPCs through the JNK and p38 pathways, and play a role in the transformation to AML from MDS.

  10. Improvement of thermal stability of nano-granular TMR films by using a Mg-Al-O insulator matrix

    Science.gov (United States)

    Kanie, S.; Koyama, S.

    2018-05-01

    A new metal-insulator nano-granular tunneling magnetoresistance (TMR) film made of (Fe-Co)-(Mg-Al-O) has been investigated. It is confirmed that the film has granular structure in which crystal Fe-Co granules are surrounded by an amorphous Mg-Al-O matrix. A large MR ratio of 11.8 % at room temperature is observed for a 42 vol.%(Fe0.6Co0.4)-(Mg-Al-O) film annealed at 395 °C. The electrical resistivity increases rapidly by annealing at above the changing point (500 °C). The changing point is about 300 °C higher than that of conventional (Fe-Co)-(Mg-F) nano-granular TMR films. The 42 vol.%(Fe0.6Co0.4)-(Mg-Al-O) film also exhibits less degradation in the MR ratio at high annealing temperatures such as 600 °C. These results suggest the (Fe-Co)-(Mg-Al-O) film is superior to the (Fe-Co)-(Mg-F) film in thermal stability.

  11. Emotional Granularity Effects on Event-Related Brain Potentials during Affective Picture Processing.

    Science.gov (United States)

    Lee, Ja Y; Lindquist, Kristen A; Nam, Chang S

    2017-01-01

    There is debate about whether emotional granularity , the tendency to label emotions in a nuanced and specific manner, is merely a product of labeling abilities, or a systematic difference in the experience of emotion during emotionally evocative events. According to the Conceptual Act Theory of Emotion (CAT) (Barrett, 2006), emotional granularity is due to the latter and is a product of on-going temporal differences in how individuals categorize and thus make meaning of their affective states. To address this question, the present study investigated the effects of individual differences in emotional granularity on electroencephalography-based brain activity during the experience of emotion in response to affective images. Event-related potentials (ERP) and event-related desynchronization and synchronization (ERD/ERS) analysis techniques were used. We found that ERP responses during the very early (60-90 ms), middle (270-300 ms), and later (540-570 ms) moments of stimulus presentation were associated with individuals' level of granularity. We also observed that highly granular individuals, compared to lowly granular individuals, exhibited relatively stable desynchronization of alpha power (8-12 Hz) and synchronization of gamma power (30-50 Hz) during the 3 s of stimulus presentation. Overall, our results suggest that emotional granularity is related to differences in neural processing throughout emotional experiences and that high granularity could be associated with access to executive control resources and a more habitual processing of affective stimuli, or a kind of "emotional complexity." Implications for models of emotion are also discussed.

  12. Effect of seed sludge on characteristics and microbial community of aerobic granular sludge.

    Science.gov (United States)

    Song, Zhiwei; Pan, Yuejun; Zhang, Kun; Ren, Nanqi; Wang, Aijie

    2010-01-01

    Aerobic granular sludge was cultivated by using different kinds of seed sludge in sequencing batch airlift reactor. The influence of seed sludge on physical and chemical properties of granular sludge was studied; the microbial community structure was probed by using scanning electron microscope and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The results showed that seed sludge played an important role on the formation of aerobic granules. Seed sludge taken from beer wastewater treatment plant (inoculum A) was more suitable for cultivating aerobic granules than that of sludge from municipal wastewater treatment plant (inoculum B). Cultivated with inoculum A, large amount of mature granules formed after 35 days operation, its SVI reached 32.75 mL/g, and SOUR of granular sludge was beyond 1.10 mg/(g x min). By contrast, it needed 56 days obtaining mature granules using inoculum B. DGGE profiles indicated that the dominant microbial species in mature granules were 18 and 11 OTU when inoculum A and B were respectively employed as seed sludge. The sequencing results suggested that dominant species in mature granules cultivated by inoculum A were Paracoccus sp., Devosia hwasunensi, Pseudoxanthomonas sp., while the dominant species were Lactococcus raffinolactis and Pseudomonas sp. in granules developed from inoculum B.

  13. Mathematical modeling of high-rate Anammox UASB reactor based on granular packing patterns

    International Nuclear Information System (INIS)

    Tang, Chong-Jian; He, Rui; Zheng, Ping; Chai, Li-Yuan; Min, Xiao-Bo

    2013-01-01

    Highlights: ► A novel model was conducted to estimate volumetric nitrogen conversion rates. ► The packing patterns of the granules in Anammox reactor are investigated. ► The simple cubic packing pattern was simulated in high-rate Anammox UASB reactor. ► Operational strategies concerning sludge concentration were proposed by the modeling. -- Abstract: A novel mathematical model was developed to estimate the volumetric nitrogen conversion rates of a high-rate Anammox UASB reactor based on the packing patterns of granular sludge. A series of relationships among granular packing density, sludge concentration, hydraulic retention time and volumetric conversion rate were constructed to correlate Anammox reactor performance with granular packing patterns. It was suggested that the Anammox granules packed as the equivalent simple cubic pattern in high-rate UASB reactor with packing density of 50–55%, which not only accommodated a high concentration of sludge inside the reactor, but also provided large pore volume, thus prolonging the actual substrate conversion time. Results also indicated that it was necessary to improve Anammox reactor performance by enhancing substrate loading when sludge concentration was higher than 37.8 gVSS/L. The established model was carefully calibrated and verified, and it well simulated the performance of granule-based high-rate Anammox UASB reactor

  14. Mathematical modeling of high-rate Anammox UASB reactor based on granular packing patterns

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chong-Jian, E-mail: chjtangzju@yahoo.com.cn [Department of Environmental Engineering, School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083 (China); He, Rui; Zheng, Ping [Department of Environmental Engineering, Zhejiang University, Zijingang Campus, Hangzhou 310058 (China); Chai, Li-Yuan; Min, Xiao-Bo [Department of Environmental Engineering, School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083 (China)

    2013-04-15

    Highlights: ► A novel model was conducted to estimate volumetric nitrogen conversion rates. ► The packing patterns of the granules in Anammox reactor are investigated. ► The simple cubic packing pattern was simulated in high-rate Anammox UASB reactor. ► Operational strategies concerning sludge concentration were proposed by the modeling. -- Abstract: A novel mathematical model was developed to estimate the volumetric nitrogen conversion rates of a high-rate Anammox UASB reactor based on the packing patterns of granular sludge. A series of relationships among granular packing density, sludge concentration, hydraulic retention time and volumetric conversion rate were constructed to correlate Anammox reactor performance with granular packing patterns. It was suggested that the Anammox granules packed as the equivalent simple cubic pattern in high-rate UASB reactor with packing density of 50–55%, which not only accommodated a high concentration of sludge inside the reactor, but also provided large pore volume, thus prolonging the actual substrate conversion time. Results also indicated that it was necessary to improve Anammox reactor performance by enhancing substrate loading when sludge concentration was higher than 37.8 gVSS/L. The established model was carefully calibrated and verified, and it well simulated the performance of granule-based high-rate Anammox UASB reactor.

  15. Small solar system bodies as granular systems

    Science.gov (United States)

    Hestroffer, Daniel; Campo Bagatín, Adriano; Losert, Wolfgang; Opsomer, Eric; Sánchez, Paul; Scheeres, Daniel J.; Staron, Lydie; Taberlet, Nicolas; Yano, Hajime; Eggl, Siegfried; Lecomte, Charles-Edouard; Murdoch, Naomi; Radjai, Fahrang; Richardson, Derek C.; Salazar, Marcos; Schwartz, Stephen R.; Tanga, Paolo

    2017-06-01

    Asteroids and other Small Solar System Bodies (SSSBs) are currently of great scientific and even industrial interest. Asteroids exist as the permanent record of the formation of the Solar System and therefore hold many clues to its understanding as a whole, as well as insights into the formation of planetary bodies. Additionally, SSSBs are being investigated in the context of impact risks for the Earth, space situational awareness and their possible industrial exploitation (asteroid mining). In all these aspects, the knowledge of the geophysical characteristics of SSSB surface and internal structure are of great importance. Given their size, constitution, and the evidence that many SSSBs are not simple monoliths, these bodies should be studied and modelled as self-gravitating granular systems in general, or as granular systems in micro-gravity environments in particular contexts. As such, the study of the geophysical characteristics of SSSBs is a multi-disciplinary effort that lies at the crossroads between Granular Mechanics, Celestial Mechanics, Soil Mechanics, Aerospace Engineering and Computer Sciences.

  16. Thermal diffusion segregation of an impurity in a driven granular fluid

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Francisco Vega; Garzó, Vicente [Departamento de Física, Universidad de Extremadura, E-06071 Badajoz, Spain and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06071 Badajoz (Spain)

    2014-12-09

    We study segregation of an impurity in a driven granular fluid under two types of steady states. In the first state, the granular gas is driven by a stochastic volume force field with a Fourier-type profile while in the second state, the granular gas is sheared in such a way that inelastic cooling is balanced by viscous heating. We compare theoretical results derived from a solution of the (inelastic) Boltzmann equation at Navier-Stokes (NS) order with those obtained from the Direct Monte Carlo simulation (DSMC) method and molecular dynamics (MD) simulations. Good agreement is found between theory and simulation, which provides strong evidence of the reliability of NS granular hydrodynamics for these steady states (including the dynamics of the impurity), even at high inelasticity. In addition, preliminary results for thermal diffusion in granular fluids at moderate densities are also presented. As for dilute gases, excellent agreement is also found in this more general case.

  17. Quantifying Demyelination in NK venom treated nerve using its electric circuit model.

    Science.gov (United States)

    Das, H K; Das, D; Doley, R; Sahu, P P

    2016-03-02

    Reduction of myelin in peripheral nerve causes critical demyelinating diseases such as chronic inflammatory demyelinating polyneuropathy, Guillain-Barre syndrome, etc. Clinical monitoring of these diseases requires rapid and non-invasive quantification of demyelination. Here we have developed formulation of nerve conduction velocity (NCV) in terms of demyelination considering electric circuit model of a nerve having bundle of axons for its quantification from NCV measurements. This approach has been validated and demonstrated with toad nerve model treated with crude Naja kaouthia (NK) venom and also shows the effect of Phospholipase A2 and three finger neurotoxin from NK-venom on peripheral nerve. This opens future scope for non-invasive clinical measurement of demyelination.

  18. Quantifying Demyelination in NK venom treated nerve using its electric circuit model

    Science.gov (United States)

    Das, H. K.; Das, D.; Doley, R.; Sahu, P. P.

    2016-03-01

    Reduction of myelin in peripheral nerve causes critical demyelinating diseases such as chronic inflammatory demyelinating polyneuropathy, Guillain-Barre syndrome, etc. Clinical monitoring of these diseases requires rapid and non-invasive quantification of demyelination. Here we have developed formulation of nerve conduction velocity (NCV) in terms of demyelination considering electric circuit model of a nerve having bundle of axons for its quantification from NCV measurements. This approach has been validated and demonstrated with toad nerve model treated with crude Naja kaouthia (NK) venom and also shows the effect of Phospholipase A2 and three finger neurotoxin from NK-venom on peripheral nerve. This opens future scope for non-invasive clinical measurement of demyelination.

  19. Electrical transport properties in Fe-Cr nanocluster-assembled granular films

    Science.gov (United States)

    Wang, Xiong-Zhi; Wang, Lai-Sen; Zhang, Qin-Fu; Liu, Xiang; Xie, Jia; Su, A.-Mei; Zheng, Hong-Fei; Peng, Dong-Liang

    2017-09-01

    The Fe100-xCrx nanocluster-assembled granular films with Cr atomic fraction (x) ranging from 0 to 100 were fabricated by using a plasma-gas-condensation cluster deposition system. The TEM characterization revealed that the uniform Fe clusters were coated with a Cr layer to form a Fe-Cr core-shell structure. Then, the as-prepared Fe100-xCrx nanoclusters were randomly assembled into a granular film in vacuum environments with increasing the deposition time. Because of the competition between interfacial resistance and shunting effect of Cr layer, the room temperature resistivity of the Fe100-xCrx nanocluster-assembled granular films first increased and then decreased with increasing the Cr atomic fraction (x), and revealed a maximum of 2 × 104 μΩ cm at x = 26 at.%. The temperature-dependent longitudinal resistivity (ρxx), magnetoresistance (MR) effect and anomalous Hall effect (AHE) of these Fe100-xCrx nanocluster-assembled granular films were also studied systematically. As the x increased from 0 to 100, the ρxx of all samples firstly decreased and then increased with increasing the measuring temperature. The dependence of ρxx on temperature could be well addressed by a mechanism incorporated for the fluctuation-induced-tunneling (FIT) conduction process and temperature-dependent scattering effect. It was found that the anomalous Hall effect (AHE) had no legible scaling relation in Fe100-xCrx nanocluster-assembled granular films. However, after deducting the contribution of tunneling effect, the scaling relation was unambiguous. Additionally, the Fe100-xCrx nanocluster-assembled granular films revealed a small negative magnetoresistance (MR), which decreased with the increase of x. The detailed physical mechanism of the electrical transport properties in these Fe100-xCrx nanocluster-assembled granular films was also studied.

  20. CCR6 and NK1.1 distinguish between IL-17A and IFN-gamma-producing gammadelta effector T cells.

    Science.gov (United States)

    Haas, Jan D; González, Frano H Malinarich; Schmitz, Susanne; Chennupati, Vijaykumar; Föhse, Lisa; Kremmer, Elisabeth; Förster, Reinhold; Prinz, Immo

    2009-12-01

    Gammadelta T cells are a potent source of innate IL-17A and IFN-gamma, and they acquire the capacity to produce these cytokines within the thymus. However, the precise stages and required signals that guide this differentiation are unclear. Here we show that the CD24(low) CD44(high) effector gammadelta T cells of the adult thymus are segregated into two lineages by the mutually exclusive expression of CCR6 and NK1.1. Only CCR6+ gammadelta T cells produced IL-17A, while NK1.1+ gammadelta T cells were efficient producers of IFN-gamma but not of IL-17A. Their effector phenotype correlated with loss of CCR9 expression, particularly among the NK1.1+ gammadelta T cells. Accordingly, both gammadelta T-cell subsets were rare in gut-associated lymphoid tissues, but abundant in peripheral lymphoid tissues. There, they provided IL-17A and IFN-gamma in response to TCR-specific and TCR-independent stimuli. IL-12 and IL-18 induced IFN-gamma and IL-23 induced IL-17A production by NK1.1+ or CCR6+ gammadelta T cells, respectively. Importantly, we show that CCR6+ gammadelta T cells are more responsive to TCR stimulation than their NK1.1+ counterparts. In conclusion, our findings support the hypothesis that CCR6+ IL-17A-producing gammadelta T cells derive from less TCR-dependent selection events than IFN-gamma-producing NK1.1+ gammadelta T cells.

  1. Diode-like behavior of I–V curves of CoFe–(Al–O)/Si(100) granular thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tuan Anh, Nguyen [ITIMS, Hanoi University of Science and Technology (HUST), Hanoi 10000 (Viet Nam); Hanoi Community College (HCC), Trung Kinh, Cau giay, Hanoi 10000 (Viet Nam); Van Cuong, Giap [ITIMS, Hanoi University of Science and Technology (HUST), Hanoi 10000 (Viet Nam); HungYen University of Technology and Education (UTEHY), Khoai chau, Hung Yen 39000 (Viet Nam); Anh Tuan, Nguyen, E-mail: tuanna@itims.edu.vn [ITIMS, Hanoi University of Science and Technology (HUST), Hanoi 10000 (Viet Nam)

    2015-01-15

    In this study, the electrical performance of (Co{sub 70}Fe{sub 30}){sub x}(Al–O){sub 1−x} (where x=0.1 and 0.3) granular thin films sputtered on Si(1 0 0) substrates, which were subsequently annealing at 350 °C for 1 h in vacuum, was investigated. The millimeter-sized samples were installed in an in-plane lateral Ag electrode configuration on the surface. The current–voltage (I–V) characteristics were measured in bias voltages of approximately ±7 V. The I–V curves demonstrated the so-called large Coulomb gaps and diode-like asymmetric behavior similar to a Zener diode-type rectification. This remarkable behavior was evaluated using the most suitable transport models. Results suggest that an effective magnetic diode could be fabricated from millimeter-sized magnetic granular thin films. - Highlights: • The granular MTJ systems can induce a strong collective Coulomb blockage effect. • Isolated magnetic nanoparticles can form asymmetric nano-double barrier MTJ chains. • Discrete system can induce diode-like rectification as a molecular electronic rectifier. • Irreversible cotunneling through nano-double barrier MTJ chains yields rectification. • Magnetic tunnel diodes can be created simply from the granular MTJ-type thin films.

  2. Neurohypophysis granular cell tumours. Upon neurohypophysis rare tumours; Les tumeurs a cellules granuleuses. Des tumeurs rares de la neurohypophyse

    Energy Technology Data Exchange (ETDEWEB)

    Barrande, G.; Kujas, M.; Gancel, A.; Turpin, G.; Bruckert, E.; Kuhn, J.M.; Luton, J.P. [Hopital Cochin, 75 - Paris (France)

    1995-10-01

    Granular cell tumours of neurohypophysis are rare. These tumours are more often encountered as incidental autopsy findings seen in up to 17 % of unselected adult autopsy cases. There are few reports of para-sellar granular cell tumours large enough to cause symptoms. We present three cases of neurohypophysis granular cell tumour and a review of the literature. In one patient, the asymptomatic granular cell tumour was incidentally discovered at surgical removal of a corticotrophic micro-adenoma. The remaining 2 patients had a symptomatic tumour which caused neurological symptoms such as visual disturbance and headaches and endocrine disorders such as hypopituitarism or hyper-prolactinaemia. In these 2 cases, computerized tomography showed a well-circumscribed, contrast-enhanced, intra-sellar and supra-sellar mass. Magnetic resonance imaging demonstrated an isointense gadolinium-enhanced mass in T1-weighted-images. Trans-sphenoidal partial resection was performed and histology was interpreted as a granular cell tumour. The immunohistochemical study was positive for glial fibrillary acidic protein (GEAP) and neuron specific enolase (NSE) in 1 of the 2 tumours and positive for S100 protein and vimentin in both tumours but negative for CD68. The histogenesis of neurohypophysis granular cell tumours is still controversial but ultrastructural and immunohistochemical studies support the theory that may arise from pituicytes, the glial cells of neurohypophysis. Management of these benign, slow growing, tumours is based mainly on neurosurgical resection. Data from the literature do not support a beneficial effect of post operative radiation therapy on postoperative recurrences. (authors). 23 refs., 4 figs., 1 tab.

  3. Targeting CD147 for T to NK Lineage Reprogramming and Tumor Therapy.

    Science.gov (United States)

    Geng, Jie-Jie; Tang, Juan; Yang, Xiang-Min; Chen, Ruo; Zhang, Yang; Zhang, Kui; Miao, Jin-Lin; Chen, Zhi-Nan; Zhu, Ping

    2017-06-01

    CD147 is highly expressed on the surface of numerous tumor cells to promote invasion and metastasis. Targeting these cells with CD147-specific antibodies has been validated as an effective approach for lung and liver cancer therapy. In the immune system, CD147 is recognized as a co-stimulatory receptor and impacts the outcome of thymic selection. Using T cell-specific deletion, we showed here that in thymus CD147 is indispensable for the stable αβ T cell lineage commitment: loss of CD147 biases both multipotent DN (double negative) and fully committed DP (double positive) cells into innate NK-like lineages. Mechanistically, CD147 deficiency results in impaired Wnt signaling and expression of BCL11b, a master transcription factor in determining T cell identity. In addition, functional blocking of CD147 by antibody phenocopies genetic deletion to enrich NK-like cells in the periphery. Furthermore, using a melanoma model and orthotopic liver cancer transplants, we showed that the augmentation of NK-like cells strongly associates with resistance against tumor growth upon CD147 suppression. Therefore, besides its original function in tumorigenesis, CD147 is also an effective surface target for immune modulation in tumor therapy. Copyright © 2017. Published by Elsevier B.V.

  4. Targeting CD147 for T to NK Lineage Reprogramming and Tumor Therapy

    Directory of Open Access Journals (Sweden)

    Jie-Jie Geng

    2017-06-01

    Full Text Available CD147 is highly expressed on the surface of numerous tumor cells to promote invasion and metastasis. Targeting these cells with CD147-specific antibodies has been validated as an effective approach for lung and liver cancer therapy. In the immune system, CD147 is recognized as a co-stimulatory receptor and impacts the outcome of thymic selection. Using T cell-specific deletion, we showed here that in thymus CD147 is indispensable for the stable αβ T cell lineage commitment: loss of CD147 biases both multipotent DN (double negative and fully committed DP (double positive cells into innate NK-like lineages. Mechanistically, CD147 deficiency results in impaired Wnt signaling and expression of BCL11b, a master transcription factor in determining T cell identity. In addition, functional blocking of CD147 by antibody phenocopies genetic deletion to enrich NK-like cells in the periphery. Furthermore, using a melanoma model and orthotopic liver cancer transplants, we showed that the augmentation of NK-like cells strongly associates with resistance against tumor growth upon CD147 suppression. Therefore, besides its original function in tumorigenesis, CD147 is also an effective surface target for immune modulation in tumor therapy.

  5. Reorganization of a dense granular assembly: The unjamming response function

    Science.gov (United States)

    Kolb, Évelyne; Cviklinski, Jean; Lanuza, José; Claudin, Philippe; Clément, Éric

    2004-03-01

    We investigate the mechanical properties of a static dense granular assembly in response to a local forcing. To this end, a small cyclic displacement is applied on a grain in the bulk of a two-dimensional disordered packing under gravity and the displacement fields are monitored. We evidence a dominant long range radial response in the upper half part above the solicitation and after a large number of cycles the response is “quasireversible” with a remanent dissipation field exhibiting long range streams and vortexlike symmetry.

  6. Tracing Thermal Creep Through Granular Media

    Science.gov (United States)

    Steinpilz, Tobias; Teiser, Jens; Koester, Marc; Schywek, Mathias; Wurm, Gerhard

    2017-08-01

    A temperature gradient within a granular medium at low ambient pressure drives a gas flow through the medium by thermal creep. We measured the resulting air flow for a sample of glass beads with particle diameters between 290 μ m and 420 μ m for random close packing. Ambient pressure was varied between 1 Pa and 1000 Pa. The gas flow was quantified by means of tracer particles during parabolic flights. The flow varies systematically with pressure between 0.2 cm/s and 6 cm/s. The measured flow velocities are in quantitative agreement to model calculations that treat the granular medium as a collection of linear capillaries.

  7. Slp-76 is a critical determinant of NK cell-mediated recognition of missing-self targets

    OpenAIRE

    Lampe, Kristin; Endale, Mehari; Cashman, Siobhan; Fang, Hao; Mattner, Jochen; Hildeman, David; Hoebe, Kasper

    2015-01-01

    Absence of MHC class I expression is an important mechanism by which NK cells recognize a variety of target cells, yet the pathways underlying “missing-self” recognition, including the involvement of activating receptors, remain poorly understood. Using ENU mutagenesis in mice, we identified a germline mutant, designated Ace, with a marked defect in NK cell-mediated recognition and elimination of “missing-self” targets. The causative mutation was linked to chromosome 11 and identified as a mi...

  8. PGE2 suppresses NK activity in vivo directly and through adrenal hormones: Effects that cannot be reflected by ex-vivo assessment of NK cytotoxicity

    Science.gov (United States)

    Meron, G.; Tishler, Y.; Shaashua, L.; Rosenne, E.; Levi, B.; Melamed, R.; Gotlieb, N.; Matzner, P.; Sorski, L.; Ben-Eliyahu, S.

    2013-01-01

    Surgery can suppress in vivo levels of NK cell cytotoxicity (NKCC) through various mechanisms, including catecholamine-, glucocorticoid (CORT)-, and prostaglandin (PG)-mediated responses. However, PGs are synthesized locally following tissue damage, driving proinflammatory and CORT responses, while their systemic levels are often unaffected. Thus, we herein studied the role of adrenal factors in mediating in vivo effects of PGs on NKCC, using adrenalectomized and sham-operated F344 rats subjected to surgery or PGE2 administration. In vivo and ex-vivo approaches were employed, based on intravenous administration of the NK-sensitive MADB106 tumor line, and based on ex-vivo assessment of YAC-1 and MADB106 target-line lysis. Additionally, in vitro studies assessed the kinetics of the impact of epinephrine, CORT, and PGE2 on NKCC. The results indicated that suppression of NKCC by epinephrine and PGE2 are short lasting, and cannot be evident when these compounds are removed from the in vitro assay milieu, or in the context of ex-vivo assessment of NKCC. In contrast, the effects of CORT are long-lasting and are reflected in both conditions even after its removal. Marginating-pulmonary NKCC was less susceptible to suppression than circulating NKCC, when tested against the xenogeneic YAC-1 target line, but not against the syngeneic MADB106 line, which seems to involve different cytotoxicity mechanisms. Overall, these findings indicate that elevated systemic PG levels can directly suppress NKCC in vivo, but following laparotomy adrenal hormones mediate most of the effects of endogenously-released PGs. Additionally, the ex-vivo approach seems limited in reflecting the short-lasting NK-suppressive effects of catecholamines and PGs. PMID:23153554

  9. PGE2 suppresses NK activity in vivo directly and through adrenal hormones: effects that cannot be reflected by ex vivo assessment of NK cytotoxicity.

    Science.gov (United States)

    Meron, G; Tishler, Y; Shaashua, L; Rosenne, E; Levi, B; Melamed, R; Gotlieb, N; Matzner, P; Sorski, L; Ben-Eliyahu, S

    2013-02-01

    Surgery can suppress in vivo levels of NK cell cytotoxicity (NKCC) through various mechanisms, including catecholamine-, glucocorticoid (CORT)-, and prostaglandin (PG)-mediated responses. However, PGs are synthesized locally following tissue damage, driving proinflammatory and CORT responses, while their systemic levels are often unaffected. Thus, we herein studied the role of adrenal factors in mediating in vivo effects of PGs on NKCC, using adrenalectomized and sham-operated F344 rats subjected to surgery or PGE(2) administration. In vivo and ex vivo approaches were employed, based on intravenous administration of the NK-sensitive MADB106 tumor line, and based on ex vivo assessment of YAC-1 and MADB106 target-line lysis. Additionally, in vitro studies assessed the kinetics of the impact of epinephrine, CORT, and PGE(2) on NKCC. The results indicated that suppression of NKCC by epinephrine and PGE(2) are short lasting, and cannot be evident when these compounds are removed from the in vitro assay milieu, or in the context of ex vivo assessment of NKCC. In contrast, the effects of CORT are long-lasting and are reflected in both conditions even after its removal. Marginating-pulmonary NKCC was less susceptible to suppression than circulating NKCC, when tested against the xenogeneic YAC-1 target line, but not against the syngeneic MADB106 line, which seems to involve different cytotoxicity mechanisms. Overall, these findings indicate that elevated systemic PG levels can directly suppress NKCC in vivo, but following laparotomy adrenal hormones mediate most of the effects of endogenously-released PGs. Additionally, the ex vivo approach seems limited in reflecting the short-lasting NK-suppressive effects of catecholamines and PGs. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Targeting cytokine signaling checkpoint CIS activates NK cells to protect from tumor initiation and metastasis

    Science.gov (United States)

    Putz, Eva M.; Guillerey, Camille; Kos, Kevin; Stannard, Kimberley; Miles, Kim; Delconte, Rebecca B.; Nicholson, Sandra E.; Huntington, Nicholas D.; Smyth, Mark J.

    2017-01-01

    ABSTRACT The cytokine-induced SH2-containing protein CIS belongs to the suppressor of cytokine signaling (SOCS) protein family. Here, we show the critical role of CIS in suppressing natural killer (NK) cell control of tumor initiation and metastasis. Cish-deficient mice were highly resistant to methylcholanthrene-induced sarcoma formation and protected from lung metastasis of B16F10 melanoma and RM-1 prostate carcinoma cells. In contrast, the growth of primary subcutaneous tumors, including those expressing the foreign antigen OVA, was unchanged in Cish-deficient mice. The combination of Cish deficiency and relevant targeted and immuno-therapies such as combined BRAF and MEK inhibitors, immune checkpoint blockade antibodies, IL-2 and type I interferon revealed further improved control of metastasis. The data clearly indicate that targeting CIS promotes NK cell antitumor functions and CIS holds great promise as a novel target in NK cell immunotherapy. PMID:28344878

  11. Connecting grain-scale physics to macroscopic granular flow behavior using discrete contact-dynamics simulations, centrifuge experiments, and continuum modeling

    Science.gov (United States)

    Reitz, Meredith; Stark, Colin; Hung, Chi-Yao; Smith, Breannan; Grinspin, Eitan; Capart, Herve; Li, Liming; Crone, Timothy; Hsu, Leslie; Ling, Hoe

    2014-05-01

    A complete theoretical understanding of geophysical granular flow is essential to the reliable assessment of landslide and debris flow hazard and for the design of mitigation strategies, but several key challenges remain. Perhaps the most basic is a general treatment of the processes of internal energy dissipation, which dictate the runout velocity and the shape and scale of the affected area. Currently, dissipation is best described by macroscopic, empirical friction coefficients only indirectly related to the grain-scale physics. Another challenge is describing the forces exerted at the boundaries of the flow, which dictate the entrainment of further debris and the erosion of cohesive surfaces. While the granular effects on these boundary forces have been shown to be large compared to predictions from continuum approximations, the link between granular effects and erosion or entrainment rates has not been settled. Here we present preliminary results of a multi-disciplinary study aimed at improving our understanding of granular flow energy dissipation and boundary forces, through an effort to connect grain-scale physics to macroscopic behaviors. Insights into grain-scale force distributions and energy dissipation mechanisms are derived from discrete contact-dynamics simulations. Macroscopic erosion and flow behaviors are documented from a series of granular flow experiments, in which a rotating drum half-filled with grains is placed within a centrifuge payload, in order to drive effective gravity levels up to ~100g and approach the forces present in natural systems. A continuum equation is used to characterize the flowing layer depth and velocity resulting from the force balance between the down-slope pull of gravity and the friction at the walls. In this presentation we will focus on the effect of granular-specific physics such as force chain networks and grain-grain collisions, derived from the contact dynamics simulations. We will describe our efforts to

  12. Effect of dynamic and static friction on an asymmetric granular piston.

    Science.gov (United States)

    Talbot, Julian; Viot, Pascal

    2012-02-01

    We investigate the influence of dry friction on an asymmetric, granular piston of mass M, composed of two materials, undergoing inelastic collisions with bath particles of mass m. Numerical simulations of the Boltzmann-Lorentz equation reveal the existence of two scaling regimes depending on the friction strength. In the large friction limit, we introduce an exact model giving the asymptotic behavior of the Boltzmann-Lorentz equation. For small friction and for large mass ratio M/m, we derive a Fokker-Planck equation for which the exact solution is also obtained. Static friction attenuates the motor effect and results in a discontinuous velocity distribution. © 2012 American Physical Society

  13. Offline Reconstruction Algorithms for the CMS High Granularity Calorimeter for HL-LHC

    CERN Document Server

    Chen, Z; Meschi, Emilio; Scott, Edward John Titman; Seez, Christopher

    2017-01-01

    The upgraded High Luminosity LHC, after the third Long Shutdown (LS3), will provide an instantaneous luminosity of $7.5 \\times 10^{34}$ cm$^{-2}$ s$^{-1}$ (levelled), at theCollaboration price of extreme pileup of up to 200 interactions per crossing. Such extreme pileup poses significant challenges, in particular for forward calorimetry. As part of its HL-LHC upgrade program, the CMS collaboration is designing a High Granularity Calorimeter to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic and hadronic compartments. The electromagnetic and a large fraction of the hadronic portions will be based on hexagonal silicon sensors of 0.5 - 1 cm$^2$ cell size, with the remainder of the hadronic portion based on highly-segmented scintillators with SiPM readout. Offline clustering algorithms that make use of this extreme granularity require novel approaches to preserve the fine structure of showers and to be stable against pileup, wh...

  14. Comparative Emulsifying Properties of Octenyl Succinic Anhydride (OSA-Modified Starch: Granular Form vs Dissolved State.

    Directory of Open Access Journals (Sweden)

    María Matos

    Full Text Available The emulsifying ability of OSA-modified and native starch in the granular form, in the dissolved state and a combination of both was compared. This study aims to understand mixed systems of particles and dissolved starch with respect to what species dominates at droplet interfaces and how stability is affected by addition of one of the species to already formed emulsions. It was possible to create emulsions with OSA-modified starch isolated from Quinoa as sole emulsifier. Similar droplet sizes were obtained with emulsions prepared at 7% (w/w oil content using OSA-modified starch in the granular form or molecularly dissolved but large differences were observed regarding stability. Pickering emulsions kept their droplet size constant after one month while emulsions formulated with OSA-modified starch dissolved exhibited coalescence. All emulsions stabilized combining OSA-modified starch in granular form and in solution showed larger mean droplet sizes with no significant differences with respect to the order of addition. These emulsions were unstable due to coalescence regarding presence of free oil. Similar results were obtained when emulsions were prepared by combining OSA-modified granules with native starch in solution. The degree of surface coverage of starch granules was much lower in presence of starch in solution which indicates that OSA-starch is more surface active in the dissolved state than in granular form, although it led to unstable systems compared to starch granule stabilized Pickering emulsions, which demonstrated to be extremely stable.

  15. NK-cell-dependent killing of colon carcinoma cells is mediated by natural cytotoxicity receptors (NCRs) and stimulated by parvovirus infection of target cells

    International Nuclear Information System (INIS)

    Bhat, Rauf; Rommelaere, Jean

    2013-01-01

    Investigating how the immune system functions during malignancies is crucial to developing novel therapeutic strategies. Natural killer (NK) cells, an important component of the innate immune system, play a vital role in immune defense against tumors and virus-infected cells. The poor survival rate in colon cancer makes it particularly important to develop novel therapeutic strategies. Oncolytic viruses, in addition to lysing tumor cells, may have the potential to augment antitumor immune responses. In the present study, we investigate the role of NK cells and how parvovirus H-1PV can modulate NK-cell mediated immune responses against colon carcinoma. Human NK cells were isolated from the blood of healthy donors. The cytotoxicity and antibody-mediated inhibition of NK cells were measured in chromium release assays. Phenotypic assessment of colon cancer and dendritic cells was done by FACS. The statistical significance of the results was calculated with Student’s t test (*p <0.05; **, p < 0.01; ***, p < 0.001). We show that IL-2-activated human NK cells can effectively kill colon carcinoma cells. Killing of colon carcinoma cells by NK cells was further enhanced upon infection of the former cells with parvovirus H-1PV. H-1PV has potent oncolytic activity against various tumors, yet its direct killing effect on colon carcinoma cells is limited. The cytotoxicity of NK cells towards colon carcinoma cells, both mock- and H-1PV-infected, was found to be mostly mediated by a combination of natural cytotoxicity receptors (NCRs), namely NKp30, 44, and 46. Colon carcinoma cells displayed low to moderate expression of NK cell ligands, and this expression was modulated upon H-1PV infection. Lysates of H-1PV-infected colon carcinoma cells were found to increase MHC class II expression on dendritic cells. Altogether, these data suggest that IL-2-activated NK cells actively kill colon carcinoma cells and that this killing is mediated by several natural cytotoxicity receptors

  16. Complement-Opsonized HIV-1 Alters Cross Talk Between Dendritic Cells and Natural Killer (NK Cells to Inhibit NK Killing and to Upregulate PD-1, CXCR3, and CCR4 on T Cells

    Directory of Open Access Journals (Sweden)

    Rada Ellegård

    2018-04-01

    Full Text Available Dendritic cells (DCs, natural killer (NK cells, and T cells play critical roles during primary HIV-1 exposure at the mucosa, where the viral particles become coated with complement fragments and mucosa-associated antibodies. The microenvironment together with subsequent interactions between these cells and HIV at the mucosal site of infection will determine the quality of immune response that ensues adaptive activation. Here, we investigated how complement and immunoglobulin opsonization influences the responses triggered in DCs and NK cells, how this affects their cross talk, and what T cell phenotypes are induced to expand following the interaction. Our results showed that DCs exposed to complement-opsonized HIV (C-HIV were less mature and had a poor ability to trigger IFN-driven NK cell activation. In addition, when the DCs were exposed to C-HIV, the cytotolytic potentials of both NK cells and CD8 T cells were markedly suppressed. The expression of PD-1 as well as co-expression of negative immune checkpoints TIM-3 and LAG-3 on PD-1 positive cells were increased on both CD4 as well as CD8 T cells upon interaction with and priming by NK–DC cross talk cultures exposed to C-HIV. In addition, stimulation by NK–DC cross talk cultures exposed to C-HIV led to the upregulation of CD38, CXCR3, and CCR4 on T cells. Together, the immune modulation induced during the presence of complement on viral surfaces is likely to favor HIV establishment, dissemination, and viral pathogenesis.

  17. Dermatofibroma-like granular cell tumour: a potential diagnostic pitfall

    Directory of Open Access Journals (Sweden)

    Jiri Soukup

    2016-11-01

    Full Text Available Dermatofibroma-like granular cell tumour (GCT is a rare entity, with only two cases having been described so far. We report another case in a 62-year-old woman, discuss histopathological features, and review other tumours in which granular changes have been observed. Our tumour was composed predominantly of oval-to-spindle granular cells with prominent nucleoli, arranged in short fascicles and storiform pattern, infiltrating around collagen bundles. Immunohistochemical analysis with antibodies against CD31, CD56, CD68, CD117, S-100 protein, inhibin, calretinin, EMA, p53 and MIB-1 was performed, showing expression of CD56, CD68, S-100 protein, inhibin and calretinin. The diagnosis of atypical dermatofibroma-like GCT was made.

  18. In vitro effects of PCDDs/Fs on NK-like cell activity of Eisenia andrei earthworms

    Directory of Open Access Journals (Sweden)

    Hayet Belmeskine

    2012-02-01

    Full Text Available In this study, we assessed in vitro the effects of PCDD/Fs on the NK-like cell activity in Eisenia andrei earthworms using flow cytometry for analysis. NK-like coelomocytes isolated from E. andrei and used as effectors were exposed to various concentrations of PCDDs/Fs mixture, C1 (6.25x10-3 ng 2378- TCDD/mL, C2 (12.5x10-3 ng 2378-TCDD/mL and C3 (25x10-3 ng 2378-TCDD/mL, before adding them to human tumoral cells (K562 used as targets. We evaluated the percentage of targets lysed by Nk-like cells. The results showed a significant stimulation of the NKlike activity at C3 when PCDD/Fs were not removed from effectors before contact with targets, while no effects were noted when the effectors were washed (PCDD/Fs removed or fixed. Assessment of the viability of the targets (K562, exposed alone and separately from effectors, to the three concentrations of PCDD/Fs, C1, C2 and C3, showed that all these concentrations were cytotoxic for K562. Results suggest that PCDD/Fs concentrations tested in this assay may be considered too low to induce suppressive effects on the immune function such as the NK-like activity in E. andrei earthworms.

  19. Micromechanics and statistics of slipping events in a granular seismic fault model

    Energy Technology Data Exchange (ETDEWEB)

    Arcangelis, L de [Department of Information Engineering and CNISM, Second University of Naples, Aversa (Italy); Ciamarra, M Pica [CNR-SPIN, Dipartimento di Scienze Fisiche, Universita di Napoli Federico II (Italy); Lippiello, E; Godano, C, E-mail: dearcangelis@na.infn.it [Department of Environmental Sciences and CNISM, Second University of Naples, Caserta (Italy)

    2011-09-15

    The stick-slip is investigated in a seismic fault model made of a confined granular system under shear stress via three dimensional Molecular Dynamics simulations. We study the statistics of slipping events and, in particular, the dependence of the distribution on model parameters. The distribution consistently exhibits two regimes: an initial power law and a bump at large slips. The initial power law decay is in agreement with the the Gutenberg-Richter law characterizing real seismic occurrence. The exponent of the initial regime is quite independent of model parameters and its value is in agreement with experimental results. Conversely, the position of the bump is solely controlled by the ratio of the drive elastic constant and the system size. Large slips also become less probable in absence of fault gouge and tend to disappear for stiff drives. A two-time force-force correlation function, and a susceptibility related to the system response to pressure changes, characterize the micromechanics of slipping events. The correlation function unveils the micromechanical changes occurring both during microslips and slips. The mechanical susceptibility encodes the magnitude of the incoming microslip. Numerical results for the cellular-automaton version of the spring block model confirm the parameter dependence observed for size distribution in the granular model.

  20. Characteristics and performance of aerobic algae-bacteria granular consortia in a photo-sequencing batch reactor.

    Science.gov (United States)

    Liu, Lin; Zeng, Zhichao; Bee, Mingyang; Gibson, Valerie; Wei, Lili; Huang, Xu; Liu, Chaoxiang

    2018-05-05

    The characteristics and performance of algae-bacteria granular consortia which cultivated with aerobic granules and targeted algae (Chlorella and Scenedesmus), and the essential difference between granular consortia and aerobic granules were investigated in this experiment. The result indicated that algae-bacteria granular consortia could be successfully developed, and the algae present in the granular consortia were mainly Chlorella and Scenedesmus. Although the change of chlorophyll composition revealed the occurrence of light limitation for algal growth, the granular consortia could maintain stable granular structure, and even showed better settling property than aerobic granules. Total nitrogen and phosphate in the algal-bacterial granular system showed better removal efficiencies (50.2% and 35.7%) than those in the aerobic granular system (32.8% and 25.6%) within one cycle (6 h). The biodiesel yield of aerobic granules could be significantly improved by algal coupled process, yet methyl linolenate and methyl palmitoleate were the dominant composition of biodiesel obtained from granular consortia and aerobic granules, respectively. Meanwhile, the difference of dominant bacterial communities in the both granules was found at the order level and family level, and alpha diversity indexes revealed the granular consortia had a higher microbial diversity. Copyright © 2018. Published by Elsevier B.V.

  1. Tonsillar CD56brightNKG2A+ NK cells restrict primary Epstein-Barr virus infection in B cells via IFN-γ.

    Science.gov (United States)

    Jud, Aurelia; Kotur, Monika; Berger, Christoph; Gysin, Claudine; Nadal, David; Lünemann, Anna

    2017-01-24

    Natural killer (NK) cells constitute the first line of defense against viruses and cancers cells. Epstein-Barr virus (EBV) was the first human virus to be directly implicated in carcinogenesis, and EBV infection is associated with a broad spectrum of B cell lymphomas. How NK cells restrict EBV-associated oncogenesis is not understood. Here, we investigated the efficacies and mechanisms of distinct NK cell subsets from tonsils, the portal of entry of EBV, in limiting EBV infection in naïve, germinal center-associated and memory B cells. We found that CD56bright and NKG2A expression sufficiently characterizes the potent anti-EBV capacity of tonsillar NK cells. We observed restriction of EBV infection in B cells as early as 18 hours after infection. The restriction was most efficient in naïve B cells and germinal center-associated B cells, the B cell subsets that exhibited highest susceptibility to EBV infection in vitro. IFN-γ release by and partially NKp44 engagement of CD56bright and NKG2A positive NK cells mediated the restriction that eventually inhibited B-cell transformation. Thus, harnessing CD56brightNKG2A+ NK cell function might be promising to improve treatment strategies that target EBV-associated B cell lymphomas.

  2. Adsorption Study of Cobalt on Treated Granular Activated Carbon

    OpenAIRE

    Y. V. Hete; S. B. Gholase; R. U. Khope

    2012-01-01

    This study is carried out for the removal of cobalt from aqueous solution using granular activated carbon in combination with p-nitro benzoic acid at temperature 25±1 °C. The adsorption isotherm of cobalt on granular activated carbon has been determined and the data fitted reasonably well to the Langmuir and Freundlich isotherm for activated carbon.

  3. Granular Superconductors and Gravity

    Science.gov (United States)

    Noever, David; Koczor, Ron

    1999-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.

  4. Swelling pressure and water absorption property of compacted granular bentonite during water absorption

    International Nuclear Information System (INIS)

    Oyamada, T.; Komine, H.; Murakami, S.; Sekiguchi, T.; Sekine, I.

    2012-01-01

    Document available in extended abstract form only. Bentonite is currently planned to be used as buffer materials in engineered barrier of radioactive waste disposal. Granular bentonites are expected as the materials used in constructions as buffer materials by in-situ compaction methods. After applying these buffer materials, it is expected that the condition of the buffer area changes in long-term by the seepage of groundwater into buffer area. Therefore, it is important to understand water movement and swelling behavior of the buffer materials for evaluating the performance of engineered barrier. In this study, we investigated water absorption property and swelling pressure of compacted granular bentonite. Specifically, the process of swelling pressure and amount of water absorption of granular bentonite-GX (Kunigel-GX, produced at the Tsukinuno mine in Japan) were observed by laboratory tests. To discuss the influence of maximum grain size of bentonite particle on swelling pressure and water absorption property, two types of samples were used. One is granular sample which is Bentonite-GX controlled under 2 mm the maximum grain size, the other is milled sample which is Bentonite-GX with the maximum grain size under 0.18 mm by milling with the agate mortar. In addition, the mechanism on the swelling pressure of compacted granular bentonite was considered and discussed. In the cases of granular sample, swelling pressure increases rapidly, then gradually continues to increase up to maximum value. In the cases of milled sample, swelling pressure also increases rapidly at first. However, then its value decreases before progressing of gradual increase continues. Especially, this trend was clearly observed at a relatively low dry density. At the peaks of these curves, the swelling pressure of granular samples is lower than that of milled samples. In addition, the increasing of swelling pressure by the time the peak observed during the process of swelling pressure from

  5. Regulatory role of NKG2D+ NK cells in intestinal lamina propria by secreting double-edged Th1 cytokines in ulcerative colitis.

    Science.gov (United States)

    Wang, Fan; Peng, Pai-Lan; Lin, Xue; Chang, Ying; Liu, Jing; Zhou, Rui; Nie, Jia-Yan; Dong, Wei-Guo; Zhao, Qiu; Li, Jin

    2017-11-17

    The role of intestinal lamina propria (LP) NKG2D+ NK cells is unclear in regulating Th1/Th2 balance in ulcerative colitis (UC). In this study, we investigated the frequency of LP NKG2D+ NK cells in DSS-induced colitis model and intestinal mucosal samples of UC patients, as well as the secretion of Th1/Th2/Th17 cytokines in NK cell lines after MICA stimulation. The role of Th1 cytokines in UC was validated by bioinformatics analysis. We found that DSS-induced colitis in mice was characterized by a Th2-mediated process. In acute phrase, the frequency of LP NKG2D+ lymphocytes increased significantly and decreased in remission, while the frequency of LP NKG2D+ NK cells decreased significantly in acute phase and increased in remission. No obvious change was found in the frequency of total LP NK cells. Similarly, severe UC patients had a higher expression of mucosal NKG2D and a lower number of NKG2D+ NK cells than mild to moderate UC. In NK cell lines, the MICA stimulation could induce a predominant secretion of Th1 cytokines (TNF, IFN-γ). Furthermore, in bioinformatics analysis, mucosal Th1 cytokine of TNF, showed a double-edged role in UC when compared to the Th1-mediated disease of Crohn's colitis. In conclusion, LP NKG2D+ NK cells partially played a regulatory role in UC through secreting Th1 cytokines to regulate the Th2-predominant Th1/Th2 imbalance, despite of the concomitant pro-inflammatory effects of Th1 cytokines.

  6. Editorial: Modelling and computational challenges in granular materials

    OpenAIRE

    Weinhart, Thomas; Thornton, Anthony Richard; Einav, Itai

    2015-01-01

    This is the editorial for the special issue on “Modelling and computational challenges in granular materials” in the journal on Computational Particle Mechanics (CPM). The issue aims to provide an opportunity for physicists, engineers, applied mathematicians and computational scientists to discuss the current progress and latest advancements in the field of advanced numerical methods and modelling of granular materials. The focus will be on computational methods, improved algorithms and the m...

  7. Can one ``Hear'' the aggregation state of a granular system?

    Science.gov (United States)

    Kruelle, Christof A.; Sánchez, Almudena García

    2013-06-01

    If an ensemble of macroscopic particles is mechanically agitated the constant energy input is dissipated into the system by multiple inelastic collisions. As a result, the granular material can exhibit, depending on the magnitude of agitation, several physical states - like a gaseous phase for high energy input or a condensed state for low agitation. Here we introduce a new method for quantifying the acoustical response of the granular system. Our experimental system consists of a monodisperse packing of glass beads with a free upper surface, which is confined inside a cylindrical container. An electro-mechanical shaker exerts a sinusoidal vertical vibration at normalized accelerations well above the fluidization threshold for a monolayer of particles. By increasing the number of beads the granular gas suddenly collapses if a critical threshold is exceeded. The transition can be detected easily with a microphone connected to the soundcard of a PC. From the recorded audio track a FFT is calculated in real-time. Depending on either the number of particles at a fixed acceleration or the amount of energy input for a given number of particles, the resulting rattling noise exhibits a power spectrum with either the dominating (shaker) frequency plus higher harmonics for a granular crystal or a high-frequency broad-band noise for a granular gas, respectively. Our new method demonstrates that it is possible to quantify analytically the subjective audio impressions of a careful listener and thus to distinguish easily between different aggregation states of an excited granular system.

  8. Locating the origin of stick slip instabilities in sheared granular layers

    Science.gov (United States)

    Korkolis, Evangelos; Niemeijer, André

    2017-04-01

    Acoustic emission (AE) monitoring is a non-invasive technique widely used to evaluate the state of materials and structures. We have developed a system that can locate the source of AE events associated with unstable sliding (stick-slip) of sheared granular layers during laboratory friction experiments. Our aim is to map the spatial distribution of energy release due to permanent microstructural changes, using AE source locations as proxies. This will allow us to determine the distribution of applied work in a granular medium, which will be useful in developing constitutive laws that describe the frictional behavior of such materials. The AE monitoring system is installed on a rotary shear apparatus. This type of apparatus is used to investigate the micromechanical processes responsible for the macroscopic frictional behavior of granular materials at large shear displacements. Two arrays of 8 piezoelectric sensors each are installed into the ring-shaped steel pistons that confine our samples. The sensors are connected to a high-speed, multichannel oscilloscope that can record full waveforms. The apparatus is also equipped with a system that continuously records normal and lateral (shear) loads and displacements, as well as pore fluid pressure. Thus, we can calculate the frictional and volumetric response of our granular aggregates, as well as the location of AE sources. Here, we report on the results of room temperature experiments on granular aggregates consisting of glass beads or segregated mixtures of glass beads and calcite, at up to 5 MPa normal stress and sliding velocities between 1 and 100 μm/s. Under these conditions, glass beads exhibit unstable sliding behavior accompanied by significant AE activity, whereas calcite exhibits stable sliding and produces no AEs. We recorded a range of unstable sliding behaviors, from fast, regular stick slip at high normal stress (> 4 MPa) and sliding velocities below 20 μm/s, to irregular stick slip at low normal

  9. The Genetic Deletion of 6q21 and PRDM1 and Clinical Implications in Extranodal NK/T Cell Lymphoma, Nasal Type

    Directory of Open Access Journals (Sweden)

    Li Liang

    2015-01-01

    Full Text Available 6q21 genetic deletion has been frequently detected in extranodal NK/T cell lymphoma, nasal type (EN-NK/T-NT, and PRDM1 is considered as candidate gene. However, direct detection of PRDM1 deletion has not been well documented. We investigated genetic alterations of 6q21 and PRDM1 in 43 cases of EN-NK/T-NT and cell lines by FISH. PRDM1 expression was evaluated by immunohistochemistry and Western blot. The correlation between genetic alteration and PRDM1 expression and the significance in clinic-pathologic were analyzed. Heterozygous deletion of 6q21 and/or PRDM1 was observed in 24 of 43 cases (55.81% of EN-NK/T-NT including 16 cases (37.21% for 6q21 deletion and 19 cases (44.19% for PRDM1 deletion. Similarly, heterozygous codeletion of 6q21 and PRDM1 was identified in NK92 and NKL cells. The heterozygous deletion of 6q21 and/or PRDM1 was correlated with PRDM1 expression. However, genetic deletion of 6q21 and/or PRDM1 was not correlated with clinicopathological features of EN-NK/T-NT, while PRDM1 expression showed positive effect on the outcome of patients as those as disease site, B symptom, and clinical stage. Thus, heterozygous deletion of 6q21 and/or PRDM1 was frequently detected in EN-NK/T-NT and correlated with downregulation of PRDM1. But the prognostic role of genetic deletion needs to be further evaluated in larger cohort.

  10. NK Cell Receptor/H2-Dk–Dependent Host Resistance to Viral Infection Is Quantitatively Modulated by H2 q Inhibitory Signals

    Science.gov (United States)

    Fodil-Cornu, Nassima; Loredo-Osti, J. Concepción; Vidal, Silvia M.

    2011-01-01

    The cytomegalovirus resistance locus Cmv3 has been linked to an epistatic interaction between two loci: a Natural Killer (NK) cell receptor gene and the major histocompatibility complex class I (MHC-I) locus. To demonstrate the interaction between Cmv3 and H2k, we generated double congenic mice between MA/My and BALB.K mice and an F2 cross between FVB/N (H-2q) and BALB.K (H2k) mice, two strains susceptible to mouse cytomegalovirus (MCMV). Only mice expressing H2k in conjunction with Cmv3MA/My or Cmv3FVB were resistant to MCMV infection. Subsequently, an F3 cross was carried out between transgenic FVB/H2-Dk and MHC-I deficient mice in which only the progeny expressing Cmv3FVB and a single H2-Dk class-I molecule completely controlled MCMV viral loads. This phenotype was shown to be NK cell–dependent and associated with subsequent NK cell proliferation. Finally, we demonstrated that a number of H2q alleles influence the expression level of H2q molecules, but not intrinsic functional properties of NK cells; viral loads, however, were quantitatively proportional to the number of H2q alleles. Our results support a model in which H-2q molecules convey Ly49-dependent inhibitory signals that interfere with the action of H2-Dk on NK cell activation against MCMV infection. Thus, the integration of activating and inhibitory signals emanating from various MHC-I/NK cell receptor interactions regulates NK cell–mediated control of viral load. PMID:21533075

  11. The growth of intra-granular bubbles in post-irradiation annealed UO2 fuel

    International Nuclear Information System (INIS)

    White, R.J.

    2001-01-01

    Post-irradiation examinations of low temperature irradiated UO 2 reveal large numbers of very small intra-granular bubbles, typically of around 1 nm diameter. During high temperature reactor transients these bubbles act as sinks for fission gas atoms and vacancies and can give rise to large volumetric swellings, sometimes of the order of 10%. Under irradiation conditions, the nucleation and growth of these bubbles is determined by a balance between irradiation-induced nucleation, diffusional growth and an irradiation induced re-solution mechanism. This conceptual picture is, however, incomplete because in the absence of irradiation the model predicts that the bubble population present from the pre-irradiation would act as the dominant sink for fission gas atoms resulting in large intra-granular swellings and little or no fission gas release. In practice, large fission gas releases are observed from post-irradiation annealed fuel. A recent series of experiments addressed the issue of fission gas release and swelling in post-irradiation annealed UO 2 originating from Advanced Gas Cooled Reactor (AGR) fuel which had been ramp tested in the Halden Test reactor. Specimens of fuel were subjected to transient heating at ramp rates of 0.5 deg. C/s and 20 deg. C/s to target temperatures between 1600 deg. C and 1900 deg. C. The release of fission gas was monitored during the tests. Subsequently, the fuel was subjected to post-irradiation examination involving detailed Scanning Electron Microscopy (SEM) analysis. Bubble-size distributions were obtained from seventeen specimens, which entailed the measurement of nearly 26,000 intra-granular bubbles. The analysis reveals that the bubble densities remain approximately invariant during the anneals and the bubble-size distributions exhibit long exponential tails in which the largest bubbles are present in concentrations of 10 4 or 10 5 lower than the concentrations of the average sized bubbles. Detailed modelling of the bubble

  12. Nonlinear instability and convection in a vertically vibrated granular bed

    NARCIS (Netherlands)

    Shukla, P.; Ansari, I.H.; van der Meer, Roger M.; Lohse, Detlef; Alam, M.

    2014-01-01

    The nonlinear instability of the density-inverted granular Leidenfrost state and the resulting convective motion in strongly shaken granular matter are analysed via a weakly nonlinear analysis of the hydrodynamic equations. The base state is assumed to be quasi-steady and the effect of harmonic

  13. Defining and testing a granular continuum element

    Energy Technology Data Exchange (ETDEWEB)

    Rycroft, Chris H.; Kamrin, Ken; Bazant, Martin Z.

    2007-12-03

    Continuum mechanics relies on the fundamental notion of amesoscopic volume "element" in which properties averaged over discreteparticles obey deterministic relationships. Recent work on granularmaterials suggests a continuum law may be inapplicable, revealinginhomogeneities at the particle level, such as force chains and slow cagebreaking. Here, we analyze large-scale Discrete-Element Method (DEM)simulations of different granular flows and show that a "granularelement" can indeed be defined at the scale of dynamical correlations,roughly three to five particle diameters. Its rheology is rather subtle,combining liquid-like dependence on deformation rate and solid-likedependence on strain. Our results confirm some aspects of classicalplasticity theory (e.g., coaxiality of stress and deformation rate),while contradicting others (i.e., incipient yield), and can guide thedevelopment of more realistic continuum models.

  14. Interleukin-16-producing NK cells and T-cells in the blood of tobacco smokers with and without COPD

    Directory of Open Access Journals (Sweden)

    Andersson A

    2016-09-01

    Full Text Available Anders Andersson,1,* Carina Malmhäll,2,* Birgitta Houltz,1 Sara Tengvall,1 Margareta Sjöstrand,2 Ingemar Qvarfordt,1 Anders Lindén,3 Apostolos Bossios2 1Respiratory Medicine and Allergology, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; 2Krefting Research Center, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; 3Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden *These authors contributed equally to this work Background: Long-term exposure to tobacco smoke causes local inflammation in the airways that involves not only innate immune cells, including NK cells, but also adaptive immune cells such as cytotoxic (CD8+ and helper (CD4+ T-cells. We have previously demonstrated that long-term tobacco smoking increases extracellular concentration of the CD4+-recruiting cytokine interleukin (IL-16 locally in the airways. Here, we hypothesized that tobacco smoking alters IL-16 biology at the systemic level and that this effect involves oxygen free radicals (OFR.Methods: We quantified extracellular IL-16 protein (ELISA and intracellular IL-16 in NK cells, T-cells, B-cells, and monocytes (flow cytometry in blood samples from long-term tobacco smokers with and without chronic obstructive pulmonary disease (COPD and in never-smokers. NK cells from healthy blood donors were stimulated with water-soluble tobacco smoke components (cigarette smoke extract with or without an OFR scavenger (glutathione in vitro and followed by quantification of IL-16 protein.Results: The extracellular concentrations of IL-16 protein in blood did not display any substantial differences between groups. Notably, intracellular IL-16 protein was detected in all types of blood leukocytes. All long-term smokers displayed

  15. COMPORTAMIENTO RESILIENTE DE MATERIALES GRANULARES EN PAVIMENTOS FLEXIBLES: ESTADO DEL CONOCIMIENTO RESILIENT BEHAVIOR OF GRANULAR MATERIALS IN FLEXIBLE PAVEMENTS: STATE OF THE ART

    Directory of Open Access Journals (Sweden)

    Hugo Alexander Rondón Quintana

    2007-07-01

    Full Text Available Los vehículos que circulan sobre una estructura de pavimento inducen ciclos de carga y descarga que generan dentro de las capas granulares deformaciones recuperables (resilientes y permanentes (plásticas. La ingeniería de pavimentos ha venido desarrollando estudios desde la década de los 60 con el fin de intentar comprender el comportamiento elastoplástico que experimentan materiales granulares cuando conforman capas de base y subbase en estructuras flexibles. La mayor parte de las investigaciones que se han realizado en esta área se han concentrado en estudiar su comportamiento resiliente. El estado del conocimiento de estudios desarrollados para medir la respuesta resiliente y la deformación permanente en materiales granulares es presentado en dos artículos por separado. En este primer artículo se presenta la forma como ha sido estudiado el comportamiento resiliente de materiales granulares y se discuten los factores que influyen en dicho comportamiento. Al final del artículo se presenta la evolución de las ecuaciones matemáticas desarrolladas a partir de resultados de estudios teóricos y experimentales. Un estado del conocimiento sobre el fenómeno de deformación permanente es presentado en un segundo artículo.When vehicles move on a pavement structure, they induce load cycles that generate resilient and permanent strains inside granular layers. Since the 60's, pavement engineering has developed studies in order to understand the elasto-plastic behavior that granular materials experiment on base and sub-base layers of flexible pavements. Most of the researches that have been made in this area have concentrated in studying their resilient behavior. A state of the art about the behavior of granular materials in flexible pavements is presented in two separate papers. This first paper tries on resilient stress-strain characteristics of such materials. The mathematical equations found in the literature to predict the resilient

  16. A microscale synthesis of a promising radiolabelled antitumor drug: cis-1,1-cyclobutanedicarboxylato (2R)-2-methyl-1,4-butanediamine platinum(II), NK121

    International Nuclear Information System (INIS)

    Suwa, Masato; Kogawa, Osamu; Hashimoto, Yutaka

    1992-01-01

    A promising antitumor drug, cis-1,1-cyclobutane-dicarboxylato (2R)-2-methyl-1,4-butanediamine platinum (II), NK121, was synthesized from radionuclides of platinum such as 193m Pt, 195m Pt and 191 Pt which were produced by neutron irradiation of enriched 192 Pt. The overall yield was 38.6% in a synthesis time of 10 hours. The radioactivities present in 8.39 mg of NK121 were 115.3 μCi as 193m Pt, 29.9 μCi as 197 Pt, 22.0 μCi as 195m Pt, and 4.8 μCi as 191 Pt at the end of synthesis. The specific activity of the NK121 was 13.7 μCi ( 193m Pt)/mg NK121 at the end of synthesis. The radiochemical purity of NK121 was typically 99%. HPLC analyses confirmed that NK121 was in an adequate chemical purity and suitable for animal experimentation. (author)

  17. A microscale synthesis of a promising radiolabelled antitumor drug: cis-1,1-cyclobutanedicarboxylato (2R)-2-methyl-1,4-butanediamine platinum(II), NK121

    Energy Technology Data Exchange (ETDEWEB)

    Suwa, Masato; Kogawa, Osamu; Hashimoto, Yutaka (Nippon Kayaku Co. Ltd., Tokyo (Japan). Research Labs. of Pharmaceuticals Group); Nowatari, Hiroyoshi (Nippon Kayaku Co. Ltd., Takasaki, Gumma (Japan). Takasaki Research Labs.); Murase, Yuko; Homma, Yoshio (Kyoritsu Coll. of Pharmacy, Tokyo (Japan))

    1992-05-01

    A promising antitumor drug, cis-1,1-cyclobutane-dicarboxylato (2R)-2-methyl-1,4-butanediamine platinum (II), NK121, was synthesized from radionuclides of platinum such as {sup 193m}Pt, {sup 195m}Pt and {sup 191}Pt which were produced by neutron irradiation of enriched {sup 192}Pt. The overall yield was 38.6% in a synthesis time of 10 hours. The radioactivities present in 8.39 mg of NK121 were 115.3 {mu}Ci as {sup 193m}Pt, 29.9 {mu}Ci as {sup 197}Pt, 22.0 {mu}Ci as {sup 195m}Pt, and 4.8 {mu}Ci as {sup 191}Pt at the end of synthesis. The specific activity of the NK121 was 13.7 {mu}Ci ({sup 193m}Pt)/mg NK121 at the end of synthesis. The radiochemical purity of NK121 was typically 99%. HPLC analyses confirmed that NK121 was in an adequate chemical purity and suitable for animal experimentation. (author).

  18. Submammary Granular Parakeratosis Treated With Mastopexy.

    Science.gov (United States)

    Nelson, Garrett; Lien, Mary H; Messina, Jane L; Ranjit, Sonali; Fenske, Neil Alan

    2017-08-01

    Granular parakeratosis, originally named axillary granular parakeratosis, is an uncommon disease with an unclear etiology. It is thought to result from defective processing of profillagrin to fillagrin, causing retention of keratohyaline granules in the epidermis. A myriad of causative factors has been proposed, including friction, moisture, heat, and contact irritants such as deodorants. We present a case in the inframammary area that resolved with mastopexy, further supporting the role of friction, moisture, and heat. Furthermore, we present electron microscopic evidence demonstrating non-degraded keratohyaline granules upon epidermal maturation. This entity, we believe, is reactive and represents a protective response of the body to moisture and heat. J Drugs Dermatol. 2017;16(8):810-812..

  19. Tumor of granular cells of esophagus

    International Nuclear Information System (INIS)

    Gonzalez Fabian, Licet; Diaz Anaya, Amnia; Perez de la Torre, Georgina

    2010-01-01

    Granular cells tumors are rare and asymptomatic lesions and by general, it is an incidental finding en high or low endoscopy. They were described for the first time by Abrikossoff in 1926. The more frequent locations are the buccal mucosa, dermis and subcutaneous cellular tissue, most of these tumors has a benign origin. This is the case of a woman aged 44 with a pyrosis history from a year ago; by high endoscopy it is noted a 8 mm lesion distal to esophagus and confirmed by histological study of granular cells tumor. Elective treatment of this lesion is the endoscopic polypectomy. Despite that the malign potential is low; we suggested a close clinical and endoscopic follow-up.

  20. Traffic and Granular Flow ’07

    CERN Document Server

    Chevoir, François; Gondret, Philippe; Lassarre, Sylvain; Lebacque, Jean-Patrick; Schreckenberg, Michael

    2009-01-01

    This book covers several research fields, all of which deal with transport. Three main topics are treated: road traffic, granular matter, and biological transport. Different points of view, i.e. modelling, simulations, experiments, and phenomenological observations, are considered. Sub-topics include: highway or urban vehicular traffic (dynamics of traffic, macro/micro modelling, measurements, data analysis, security issues, psychological issues), pedestrian traffic, animal traffic (e.g. social insects), collective motion in biological systems (molecular motors...),