WorldWideScience

Sample records for nitrous vapors experimental

  1. Explosion characteristics of flammable organic vapors in nitrous oxide atmosphere.

    Science.gov (United States)

    Koshiba, Yusuke; Takigawa, Tomihisa; Matsuoka, Yusaku; Ohtani, Hideo

    2010-11-15

    Despite unexpected explosion accidents caused by nitrous oxide have occurred, few systematic studies have been reported on explosion characteristics of flammable gases in nitrous oxide atmosphere compared to those in air or oxygen. The objective of this paper is to characterize explosion properties of mixtures of n-pentane, diethyl ether, diethylamine, or n-butyraldehyde with nitrous oxide and nitrogen using three parameters: explosion limit, peak explosion pressure, and time to the peak explosion pressure. Then, similar mixtures of n-pentane, diethyl ether, diethylamine, or n-butyraldehyde with oxygen and nitrogen were prepared to compare their explosion characteristics with the mixtures containing nitrous oxide. The explosion experiments were performed in a cylindrical vessel at atmospheric pressure and room temperature. The measurements showed that explosion ranges of the mixtures containing nitrous oxide were narrow compared to those of the mixtures containing oxygen. On the other hand, the maximum explosion pressures of the mixtures containing nitrous oxide were higher than those of the mixtures containing oxygen. Moreover, our experiments revealed that these mixtures differed in equivalence ratios at which the maximum explosion pressures were observed: the pressures of the mixtures containing nitrous oxide were observed at stoichiometry; in contrast, those of the mixtures containing oxygen were found at fuel-rich area. Chemical equilibrium calculations confirmed these behaviors.

  2. Optimization of the nitrous vapors experimental conditions production by nitric acid electrochemical reduction; Optimisation des conditions operatoires de production de vapeurs nitreuses par reduction electrochimique d`acide nitrique

    Energy Technology Data Exchange (ETDEWEB)

    Lemaire, M.

    1996-11-22

    Gaseous nitrogen oxides (NO and NO{sub 2}) involved as oxidizing agents in nuclear fuel reprocessing can be produced by electrochemical reduction of nitric acid. This is an interesting alternative to the existing process because no wastes are generated. voltammetric studies on a platinum electrode show that two reduction potential regions are observed in concentrated nitric acid solutions, between 0,05 V{sub SHE} and between 0,5 V{sub SHE} and 1 V{sub SHE}. The highest potential region reduction mechanism was studied by: classical micro-electrolysis methods, macro-electrolysis methods, infrared spectroscopy coupled to electrochemistry. It was determined that the origin of nitric acid reduction is the electrochemical reduction of nitrous acid in nitric oxide which chemically reduces nitric acid. This reaction produces nitrous acid back which indicate an auto-catalytic behaviour of nitric acid reduction mechanism. Nitrogen dioxide evolution during nitric reduction can also explained by an other chemical reaction. If the potential value of platinum electrode is above 0,8 V{sub SHE}, products of the indirect nitric acid reduction are nitrous acid, nitrogen oxide and nitrogen dioxide. Below this value nitric oxide can be reduced in nitrous oxide. Thus the potential value is the most important parameter for the nitrogen oxides production selectivity. However, owing to the auto-catalytic character of the reduction mechanism, potential value can be controlled during intentiostatic industrial electrolysis. (author). 91 refs.

  3. Assessment of reinforcement enhancing effects of toluene vapor and nitrous oxide in intracranial self-stimulation

    Science.gov (United States)

    Tracy, Matthew E.; Slavova-Hernandez, Galina G.; Shelton, Keith L.

    2013-01-01

    Rationale Despite widespread abuse there are few validated methods to study the rewarding effects of inhalants. One model that that may have utility for this purpose is intracranial self-stimulation (ICSS). Objectives We wished to compare and contrast the ICSS reward-facilitating effects of abused inhalants to other classes of abused drugs. Compounds were examined using two different ICSS procedures in mice to determine the generality of each drug's effects on ICSS and the sensitivity of the procedures. Methods Male C57BL/6J mice with electrodes implanted in the medial forebrain bundle were trained under a three component rate-frequency as well as a progressive ratio (PR) ICSS procedure. The effects of nitrous oxide, toluene vapor, cocaine and diazepam on ICSS were then examined. Results Concentrations of 1360-2900 ppm inhaled toluene vapor significantly facilitated ICSS in the rate frequency procedure and 1360 ppm increased PR breakpoint. A concentration of 40% nitrous oxide facilitated ICSS in the rate-frequency procedure but reduced PR breakpoint. Doses of 3-18 mg/kg cocaine facilitated ICSS in the rate frequency procedure and 10 and 18 mg/kg increased PR breakpoint. Doses of 1 and 3 mg/kg diazepam facilitated ICSS in the rate frequency procedure and 3 mg/kg increased PR breakpoint. Conclusions The reinforcement facilitating effect of toluene in ICSS is at least as great as diazepam. In contrast, nitrous oxide weakly enhances ICSS in only the rate frequency procedure. The data suggest that the rate frequency procedure may be more sensitive than the PR schedule to the reward facilitating effects of abused inhalants. PMID:24186077

  4. Experimental Study on Unconfined Vapor Cloud Explosion

    Institute of Scientific and Technical Information of China (English)

    毕明树; ABULITI; Abudula

    2003-01-01

    An experimental system was setup to study the pressure field of unconfined vapor cloud explosions.The semi-spherical vapor clouds were formed by slotted 0.02mm polyethylene film.In the Center of the cloud was an ignition electrode that met ISO6164"Explosion protection System" and NFPA68 "Guide for Venting of Deflagrations". A data-acquisition system,with dymame responding time less than 0.001s with 0.5% accuracy,recorded the pressure-time diagram of acetylene-air mixture explosion with stoichiometrical ratio.The initial cloud diameters varied from 60cm to 300cm.Based on the analysis of experimental data,the quantitative relationship is obtained for the cloud explosion pressure,the cloud radius and the distance from ignition point .Present results provide a useful way to evaluate the building damage caused by unconfined vapor cloud explosions and to determine the indispensable explosion grade in the application of multi-energy model.

  5. Experimental study of external fuel vaporization

    Science.gov (United States)

    Szetela, E. J.; Tevelde, J. A.

    1982-01-01

    The fuel properties used in the design of a flash vaporization system for aircraft gas turbine engines were evaluated in experiments using a flowing system to determine critical temperature and pressure, boiling points, dew points, heat transfer coefficients, deposit formation rates, and deposit removal. Three fuels were included in the experiments: Jet-A, an experimental referree broad specification fuel, and a premium No. 2 diesel fuel. Engine conditions representing a NASA Energy Efficient Engine at sea-level take-off, cruise, and idle were simulated in the vaporization system and it was found that single phase flow was maintained in the heat exchanger and downstream of the throttle. Deposits encountered in the heat exchanger represented a thermal resistance as high as 1300 sq M K/watt and a deposit formation rate over 1000 gC/sq cm hr.

  6. Experimental testing of a liquid bipropellant rocket engine using nitrous oxide and ethanol diluted with water

    Science.gov (United States)

    Phillip, Jeff; Morales, Rudy; Youngblood, Stewart; Saul, W. Venner; Grubelich, Mark; Hargather, Michael

    2016-11-01

    A research scale liquid bipropellant rocket engine testing facility was constructed at New Mexico Tech to perform research with various propellants. The facility uses a modular engine design that allows for variation of nozzle geometry and injector configurations. Initial testing focused on pure nitrous oxide and ethanol propellants, operating in the range of 5.5-6.9 MPa (800-1000 psi) chamber pressure with approximately 667 N (150 lbf) thrust. The system is instrumented with sensors for temperature, pressure, and thrust. Experimentally found values for specific impulse are in the range of 250-260 s which match computational predictions. Exhaust flow visualization is performed using high speed schlieren imaging. The engine startup and steady state exhaust flow features are studied through these videos. Computational and experimental data are presented for a study of dilution of the ethanol-nitrous oxide propellants with water. The study has shown a significant drop in chamber temperature compared to a small drop in specific impulse with increasing water dilution.

  7. The experimental and numerical investigation of a grooved vapor chamber

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Ming [Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education and Key Laboratory of Heat Transfer and Energy Conversion, Beijing Education Commission, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022 (China); Liu Zhongliang [Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education and Key Laboratory of Heat Transfer and Energy Conversion, Beijing Education Commission, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022 (China)], E-mail: liuzhl@bjut.edu.cn; Ma Guoyuan [Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education and Key Laboratory of Heat Transfer and Energy Conversion, Beijing Education Commission, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022 (China)

    2009-02-15

    An effective thermal spreader can achieve more uniform heat flux distribution and thus enhance heat dissipation of heat sinks. Vapor chamber is one of highly effective thermal spreaders. In this paper, a novel grooved vapor chamber was designed. The grooved structure of the vapor chamber can improve its axial and radial heat transfer and also can form the capillary loop between condensation and evaporation surfaces. The effect of heat flux, filling amount and gravity to the performance of this vapor chamber is studied by experiment. From experiment, we also obtained the best filling amount of this grooved vapor chamber. By comparing the thermal resistance of a solid copper plate with that of the vapor chamber, it is suggested that the critical heat flux condition should be maintained to use vapor chamber as efficient thermal spreaders for electronics cooling. A two-dimensional heat and mass transfer model for the grooved vapor chamber is developed. The numerical simulation results show the thickness distribution of liquid film in the grooves is not uniform. The temperature and velocity field in vapor chamber are obtained. The thickness of the liquid film in groove is mainly influenced by pressure of vapor and liquid beside liquid-vapor interface. The thin liquid film in heat source region can enhance the performance of vapor chamber, but if the starting point of liquid film is backward beyond the heat source region, the vapor chamber will dry out easily. The optimal filling ratio should maintain steady thin liquid film in heat source region of vapor chamber. The vapor condenses on whole condensation surface, so that the condensation surface achieves great uniform temperature distribution. By comparing the experimental results with numerical simulation results, the reliability of the numerical model can be verified.

  8. Contamination of the operating room by anesthetic gases and vapors. II. Gas chromatographic analysis of nitrous oxide

    Energy Technology Data Exchange (ETDEWEB)

    Cattaneo, A.D.; Ferraiolo, G.; Rovatti, M.; Zattoni, J.; Donato, A.

    1981-12-01

    The contamination by nitrous oxide of an operating room atmosphere was studied in a number of experiments, in the absence of personnel and using a gaschromatographic method. The evacuating device of the anesthesia machine proved to be ineffective to overcome the hazard of leaks in the breathing system, whereas the air conditioning flow rates (12 outside air changes per hour) minimized waste anesthetic gas concentrations.

  9. Experimental Study of a Cu-Mo Alloy Vapor Chamber

    Directory of Open Access Journals (Sweden)

    Obata Daniel H.S.

    2016-01-01

    Full Text Available In this research, the thermal behavior of a vapor chamber embedded in the base of a heat sink was experimentally analyzed considering the influence of the heat source position. The vapor chamber was produced by a copper and molybdenum alloy with length of 240 mm, width of 54 mm, thickness of 3 mm, and capillary structures composed by copper screen meshes. The working fluid used was de-ionized water. The pure aluminum heat sink was cooled by air forced convection and the evaporator vapor chamber was heated using an electrical resistor simulating integrated circuit power dissipation. The experimental tests were done in a suction type wind tunnel with open return for a heat load varying from 20 to 80 W, for an airflow velocity varying from 1 to 4 m/s, and for three different heat source positions. The experimental results showed that, independently of the heat source position, the considered vapor chamber worked successfully, maintaining low operating temperature.

  10. A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor

    Science.gov (United States)

    Min, K.-E.; Washenfelder, R. A.; Dubé, W. P.; Langford, A. O.; Edwards, P. M.; Zarzana, K. J.; Stutz, J.; Lu, K.; Rohrer, F.; Zhang, Y.; Brown, S. S.

    2016-02-01

    We describe a two-channel broadband cavity enhanced absorption spectrometer (BBCEAS) for aircraft measurements of glyoxal (CHOCHO), methylglyoxal (CH3COCHO), nitrous acid (HONO), nitrogen dioxide (NO2), and water (H2O). The instrument spans 361-389 and 438-468 nm, using two light-emitting diodes (LEDs) and a single grating spectrometer with a charge-coupled device (CCD) detector. Robust performance is achieved using a custom optical mounting system, high-power LEDs with electronic on/off modulation, high-reflectivity cavity mirrors, and materials that minimize analyte surface losses. We have successfully deployed this instrument during two aircraft and two ground-based field campaigns to date. The demonstrated precision (2σ) for retrievals of CHOCHO, HONO and NO2 are 34, 350, and 80 parts per trillion (pptv) in 5 s. The accuracy is 5.8, 9.0, and 5.0 %, limited mainly by the available absorption cross sections.

  11. A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor

    Directory of Open Access Journals (Sweden)

    K.-E. Min

    2015-10-01

    Full Text Available We describe a two-channel broadband cavity enhanced absorption spectrometer (BBCEAS for aircraft measurements of glyoxal (CHOCHO, methylglyoxal (CH3COCHO, nitrous acid (HONO, nitrogen dioxide (NO2, and water (H2O. The instrument spans 361–389 and 438–468 nm, using two light emitting diodes (LEDs and a grating spectrometer with a charge-coupled device (CCD detector. Robust performance is achieved using a custom optical mounting system, high power LEDs with electronic on/off modulation, state-of-the-art cavity mirrors, and materials that minimize analyte surface losses. We have successfully deployed this instrument during two aircraft and two ground-based field campaigns to date. The demonstrated precision (2σ for retrievals of CHOCHO, HONO and NO2 are 34, 350 and 80 pptv in 5 s. The accuracy is 5.8, 9.0 and 5.0 % limited mainly by the available absorption cross sections.

  12. RESEARCH METHODS OF SATURATED VAPOR PRESSURE AND EXPERIMENTAL INSTALLATIONS

    Directory of Open Access Journals (Sweden)

    Kharchenko P. M.

    2015-02-01

    Full Text Available The static method is the most common, because it is applicable for measuring SVP of substances in wide ranges of temperatures and pressures. The essence of the method consists in measuring of vapor pressure in equilibrium with its liquid at a given temperature. Dynamic method is based on measurement of the boiling point of the liquid at a certain pressure. Saturation method of moving gas used in the case when the SVP does not exceed a few mm Hg. The method consists the following: the liquid is passed through the inert gas and saturated with vapor of liquids and then it flows into a cooler where the absorbed vapors are condensed. Knowing the amount of absorbed liquid and gas, as well as their molecular weight, allow us calculate saturated vapor pressure of the liquid. Knudsen effusion method is applicable for the measurement of very low pressures (up to 100 Pa. This method consists in researching of depending between the pressure and volume of saturated steam at a constant temperature. At the point of saturation an isotherm should have a break and turn into a straight line. Chromatographic method is based on complete chromatographic analysis of liquid and calculating the sum of partial pressures of all mixture components. Also, the article has a description of existing experimental installation for these researches and their advantages and disadvantages compared with each other

  13. Experimental Study of Water Droplet Vaporization on Nanostructured Surfaces

    Science.gov (United States)

    Padilla, Jorge, Jr.

    This dissertation summarizes results of an experimental exploration of heat transfer during vaporization of a water droplet deposited on a nanostructured surface at a temperature approaching and exceeding the Leidenfrost point for the surface and at lower surface temperatures 10-40 degrees C above the saturated temperature of the water droplet at approximately 101 kPa. The results of these experiments were compared to those performed on bare smooth copper and aluminum surfaces in this and other studies. The nanostructured surfaces were composed of a vast array of zinc oxide (ZnO) nanocrystals grown by hydrothermal synthesis on a smooth copper substrate having an average surface roughness of approximately 0.06 micrometer. Various nanostructured surface array geometries were produced on the copper substrate by performing the hydrothermal synthesis for 4, 10 and 24 hours. The individual nanostructures were randomly-oriented and, depending on hydrothermal synthesis time, had a mean diameter of about 500-700 nm, a mean length of 1.7-3.3 micrometers,and porosities of approximately 0.04-0.58. Surface wetting was characterized by macroscopic measurements of contact angle based on the droplet profile and calculations based on measurements of liquid film spread area. Scanning electron microscope imaging was used to document the nanoscale features of the surface before and after the experiments. The nanostructured surfaces grown by hydrothermal synthesis for 4 and 24 hours exhibited contact angles of approximately 10, whereas the surfaces grown for 10 hours were superhydrophilic, exhibiting contact angles typically less than 3 degrees. In single droplet deposition experiments at 101 kPa, a high-speed video camera was used to document the droplet-surface interaction. Distilled and degassed water droplets ranging in size from 2.5-4.0 mm were deposited onto the surface from heights ranging from approximately 0.2-8.1 cm, such that Weber numbers spanned a range of approximately 0

  14. Experimental Study of the Low Supersaturation Nucleation in Crystal Growth by Contactless Physical Vapor Transport

    Science.gov (United States)

    Grasza, K.; Palosz, W.; Trivedi, S. B.

    1998-01-01

    The process of the development of the nuclei and of subsequent seeding in 'contactless' physical vapor transport is investigated experimentally. Consecutive stages of the Low Supersaturation Nucleation in 'contactless' geometry for growth of CdTe crystals from the vapor are shown. The effects of the temperature field, geometry of the system, and experimental procedures on the process are presented and discussed. The experimental results are found to be consistent with our earlier numerical modeling results.

  15. Experimental investigation of fuel evaporation in the vaporizing elements of combustion chambers

    Science.gov (United States)

    Vezhba, I.

    1979-01-01

    A description is given of the experimental apparatus and the methods used in the investigation of the degree of fuel (kerosene) evaporation in two types of vaporizing elements in combustion chambers. The results are presented as dependences of the degree of fuel evaporation on the factors which characterize the functioning of the vaporizing elements: the air surplus coefficient, the velocity of flow and temperature of the air at the entrance to the vaporizing element and the temperature of the wall of the vaporizing element.

  16. Experimental Study on Vapor Pressure of HFC—134a

    Institute of Scientific and Technical Information of China (English)

    Ming-ShanZhu; Yi-DongFu; 等

    1992-01-01

    As part of the study on thermophysical properties of HFC-134a,this paper concerns itself with vapor pressure of HFC-134a in the temperature range of 279.15K to 365.15K,A total of 43 measurement data were measured during the experiment which was conducted on a high precision pVTx test apparatus designed by the authors with slight modifications,Uncertainties of temperature was ±10mK and of pressure was±500Pa,purity of sample was either 99.95wt%,or 99.98wt%,Data resulting from this experiment matched closely with the newest data published internationalyy,Compared to our porposed equation for calculating vapor pressure of HFC-134a,the RMS deviation cfexperimental data was only 0.0531%,showing relatively high precision.

  17. Experimental and numerical study of liquefied natural gas (LNG) pool spreading and vaporization on water.

    Science.gov (United States)

    Gopalaswami, Nirupama; Kakosimos, Konstantinos; Zhang, Bin; Liu, Yi; Mentzer, R; Mannan, M Sam

    2017-07-15

    The investigation of pool spreading and vaporization phenomenon is an essential part of consequence analysis to determine the severity of LNG spills on water. In this study, release of LNG on water during marine operations is studied through experimental and numerical methods The study involves emulation of an LNG leak from transfer arms during side by side loading operations. The experimental part involves flow of LNG in a narrow trench filled with water and subsequent measurement of pool spreading and vaporization parameters. The numerical part involves CFD simulation using a three dimensional hybrid homogenous Eulerian multiphase solver to model the pool spreading and vaporization phenomenon. In this method, LNG is modeled as dispersed phase droplets which can interact with continuous phases - water and air through interphase models. The numerical study also employs a novel user-defined routine for capturing the LNG vaporization process. The CFD solver was capable of capturing the salient features of LNG pool spreading and vaporization phenomena. It was observed from experiment and CFD simulation that wind influenced both pool spreading and vaporization phenomenon through entrainment and convection. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Experimental and numerical investigation of shock-induced full vaporization of zinc

    Energy Technology Data Exchange (ETDEWEB)

    Brannon, R.M.; Chhabildas, L.C.

    1994-11-01

    Prediction of the interaction between expanded vaporized debris and target materials for applications such as meteorite impact on space vehicles, ballistic penetration of armors, debris shield design, etc. demands an accurate treatment of the melting and vaporization process and the kinetics of liquid-vapor propagation. A systematic computational and experimental study is presented on shock-induced full vaporization of zinc resulting from record-high impact speeds recently achieved on the Sandia Hyper-Velocity Launcher. In these experiments, a thin target plate of zinc is impacted by a tantalum flier plate at speeds ranging from 8 to 10.1 km/s, producing pressures from 3 Mbar to over 5.5 Mbar and temperatures as high as 3,900 K. Such high pressures produce essentially full vaporization of the zinc because the thermodynamic release isentropes pass into the vapor dome near the critical point. To characterize vapor flow. the velocity history produced by stagnation of the zinc expansion products against a witness plate is measured with velocity interferometry. For each experiment, the time-resolved experimental interferometer record is compared with wavecode calculations using an analytical equation of state, called ANEOS, that is known to have performed well at lower impact speeds where vaporization is negligible. Significant discrepancies between experiment and calculation are shown to exist under conditions of the more recent higher impact speeds in excess of 7km/s. Numerical predictions underestimate witness-plate velocity for impact speeds up to about 9 km/s but overestimate witness-plate velocity for impact exceeding 9 km/s.

  19. Nitrous Oxide Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Nitrous Oxide (N20) flux is the net rate of nitrous oxide exchange between an ecosystem and the atmosphere. Data of this variable were generated by the USGS...

  20. Estudo teórico e experimental de uma máquina a vapor alternativa.

    OpenAIRE

    Rodrigo Bernardello Unzueta

    2014-01-01

    Este trabalho apresenta uma revisão dos ciclos teóricos estudados por outros autores sobre o funcionamento de uma máquina a vapor funcionando como máquina de expansão e propõe um ciclo generalizado para o estudo. Esse ciclo generalizado é equacionado e seus pontos operacionais de otimização são determinados. Ao estudar os ciclos teóricos, verificou-se que a máquina a vapor pode atingir a eficiência isentrópica igual de 100%. Um estudo experimental foi conduzido em uma máquina a vapor, a fim d...

  1. An experimental study on the solubility of copper bichloride in water vapor

    Institute of Scientific and Technical Information of China (English)

    SHANG LinBo; BI XianWu; HU RuiZhong; FAN WenLing

    2007-01-01

    Using the solubility method, the solubility of CuCl2 in liquid-undersaturated HCl-bearing water vapor was investigated experimentally at temperatures of 330-370℃ and pressures of 4.2-10 MPa. The results have shown that hydration could significantly enhance copper solubility and the concentrations of copper were positively correlated with PH2O. The solubility of copper in vapor phase increased with increasing PH2O at the constant temperature. CuCl2 was transported as hydrated species CuCl2(H2O)ngas in water vapor. The formation of complexes is proposed to be the result of the following reaction:CuCl2solid + nH2Ogas = CuCl2 (H2O)ngas The hydration number n decreased slightly with increasing temperature. Statistical hydration numbers are 4.0, 3.6 and 3.3 at 330, 350 and 370℃, respectively.

  2. Overview: Homogeneous nucleation from the vapor phase—The experimental science

    Science.gov (United States)

    Wyslouzil, Barbara E.; Wölk, Judith

    2016-12-01

    Homogeneous nucleation from the vapor phase has been a well-defined area of research for ˜120 yr. In this paper, we present an overview of the key experimental and theoretical developments that have made it possible to address some of the fundamental questions first delineated and investigated in C. T. R. Wilson's pioneering paper of 1897 [C. T. R. Wilson, Philos. Trans. R. Soc., A 189, 265-307 (1897)]. We review the principles behind the standard experimental techniques currently used to measure isothermal nucleation rates, and discuss the molecular level information that can be extracted from these measurements. We then highlight recent approaches that interrogate the vapor and intermediate clusters leading to particle formation, more directly.

  3. Development and experimental study of a miniature vapor compression refrigeration equipment

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A miniature vapor compression refrigeration equipment prototype was developed for a range of microclimate control applications, including man portable cooling and distributed space conditioning. The miniature refrigeration equipment has dimensions of 260 mm × 250 mm × 120 mm, and weighs approximately 2.85 kg. The optimal motor and its transmission ratio, the optimal dimension of capillary tube and the optimal quantity of refrigerant charge were obtained by matching and operating performance experimental study. Experimental results show that the miniature refrigeration equipment can provide 300 W cooling, and its COPc is above 2.0.

  4. Development and experimental study of a miniature vapor compression refrigeration equipment

    Institute of Scientific and Technical Information of China (English)

    ZHONG XiaoHui; GOU YuJun; WU YuTing; MA ChongFang

    2008-01-01

    A miniature vapor compression refrigeration equipment prototype was developed for a range of microclimate control applications,including man portable cooling and distributed space conditioning.The miniature refrigeration equipment has di-mensions of 260 mm×250 mm×120 mm,and weighs approximately 2.85 kg.The optimal motor and its transmission ratio,the optimal dimension of capillary tube and the optimal quantity of refrigerant charge were obtained by matching and op-erating performance experimental study.Experimental results show that the miniature refrigeration equipment can provide 300 W cooling,and its COPc is above 2.0.

  5. Experimental vapor-liquid equilibria data for binary mixtures of xylene isomers

    Directory of Open Access Journals (Sweden)

    W.L. Rodrigues

    2005-09-01

    Full Text Available Separation of aromatic C8 compounds by distillation is a difficult task due to the low relative volatilities of the compounds and to the high degree of purity required of the final commercial products. For rigorous simulation and optimization of this separation, the use of a model capable of describing vapor-liquid equilibria accurately is necessary. Nevertheless, experimental data are not available for all binaries at atmospheric pressure. Vapor-liquid equilibria data for binary mixtures were isobarically obtained with a modified Fischer cell at 100.65 kPa. The vapor and liquid phase compositions were analyzed with a gas chromatograph. The methodology was initially tested for cyclo-hexane+n-heptane data; results obtained are similar to other data in the literature. Data for xylene binary mixtures were then obtained, and after testing, were considered to be thermodynamically consistent. Experimental data were regressed with Aspen Plus® 10.1 and binary interaction parameters were reported for the most frequently used activity coefficient models and for the classic mixing rules of two cubic equations of state.

  6. Experimental Validation of Hybrid Distillation-Vapor Permeation Process for Energy Efficient Ethanol-Water Separation

    Science.gov (United States)

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation step,...

  7. Experimental Validation of Hybrid Distillation-Vapor Permeation Process for Energy Efficient Ethanol-Water Separation

    Science.gov (United States)

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation step,...

  8. Nitrous Paraffin Hybrid Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nitrous Oxide Paraffin Hybrid engine (N2OP) is a proposed technology designed to provide small launch vehicles with high specific impulse, indefinitely storable...

  9. CONSTRUCTION OF EXPERIMENTAL INSTALLATION FOR RESEARCHING OF DENSITY AND SATURATED VAPOR PRESSURE (SVP OF PETROLEUM PRODUCTS

    Directory of Open Access Journals (Sweden)

    Kharchenko P. M.

    2015-03-01

    Full Text Available The most important physical properties that characterize the substance are density and saturated vapor pressure (SVP. These parameters are required for the development of new technical processes in the petroleum and chemical industries, design of pipelines, pumping and fuel equipment, etc. Existing methods for calculating of density near and on the saturation lines are imperfect, and finding of the analytic dependence of SVP of petroleum products from all defining parameters associated with great difficulties. The purpose of present work is an experimental research and development of methods for calculating the density (specific volume near and on saturation lines, and saturated vapor pressure of gasoline straight-run fraction derived from petroleums from three fields: Mangyshlaksky, Trinity-Anastasevsky and West Siberian. The choice of objects for research is due to the necessity of creating methods for calculating of density and SVP of oils obtained from various hydrocarbon group composition petroleums. Area of state parameters in the present work by temperature (20 ÷ 320°C and pressure (0,03 ÷ 30 MPa provides the ability to research gasoline fractions to supercritical regions. Measurement of density and SVP of petroleum fractions performed with help of a specially created for this purpose experimental installation

  10. Segregating gas from melt: an experimental study of the Ostwald ripening of vapor bubbles in magmas

    Science.gov (United States)

    Lautze, Nicole C.; Sisson, Thomas W.; Mangan, Margaret T.; Grove, Timothy L.

    2011-01-01

    Diffusive coarsening (Ostwald ripening) of H2O and H2O-CO2 bubbles in rhyolite and basaltic andesite melts was studied with elevated temperature–pressure experiments to investigate the rates and time spans over which vapor bubbles may enlarge and attain sufficient buoyancy to segregate in magmatic systems. Bubble growth and segregation are also considered in terms of classical steady-state and transient (non-steady-state) ripening theory. Experimental results are consistent with diffusive coarsening as the dominant mechanism of bubble growth. Ripening is faster in experiments saturated with pure H2O than in those with a CO2-rich mixed vapor probably due to faster diffusion of H2O than CO2 through the melt. None of the experimental series followed the time1/3 increase in mean bubble radius and time-1 decrease in bubble number density predicted by classical steady-state ripening theory. Instead, products are interpreted as resulting from transient regime ripening. Application of transient regime theory suggests that bubbly magmas may require from days to 100 years to reach steady-state ripening conditions. Experimental results, as well as theory for steady-state ripening of bubbles that are immobile or undergoing buoyant ascent, indicate that diffusive coarsening efficiently eliminates micron-sized bubbles and would produce mm-sized bubbles in 102–104 years in crustal magma bodies. Once bubbles attain mm-sizes, their calculated ascent rates are sufficient that they could transit multiple kilometers over hundreds to thousands of years through mafic and silicic melt, respectively. These results show that diffusive coarsening can facilitate transfer of volatiles through, and from, magmatic systems by creating bubbles sufficiently large for rapid ascent.

  11. Numerical and experimental analysis of middle-bore copper-vapor laser discharge

    Science.gov (United States)

    Yu, Deli; Tao, Yongxiang; Yin, Xianhua; Chen, Lin; Yang, Yan; Li, Hailan; Wang, Runwen

    1998-08-01

    A single simulation model describing the discharge circuitry is introduced. First the differential equations are presented. In order to calculate the laser head discharge current, the thyratron resistance with a switching time coefficient (tau) s is investigated. The plasma conductivity used in these models is estimated using the available data on plasma parameters. Here 0.6 eV of the average electron temperature and 80 nH of thyratron inductance are assumed according to our previous model. The laser head discharge current of the differential equations is calculated with the method of Runge- Kutta. The discharge current profiles of the simulation are found to be in close agreement with the experimental data which come from 4.8-cm-diameter and 6.5-cm-diameter middle- bore Copper-Vapor Laser. In this way, the factors which effect the short rise time to increase lasing ability in the CVL (Copper-Vapor Laser) are studied on the bases of studying the storage capacitor's and the peaking capacitor's effect. As a calculation result, the inductance of the laser head takes an inferior effect to the thyratron circuit inductance on the discharge current rise time. Very good agreement exists between the calculated and measured results. This is a successful single discharge model.

  12. Biofiltration of methyl tert-butyl ether vapors by cometabolism with pentane: modeling and experimental approach.

    Science.gov (United States)

    Dupasquier, David; Revah, Sergio; Auria, Richard

    2002-01-15

    Degradation of methyl tert-butyl ether (MTBE) vapors by cometabolism with pentane using a culture of pentane-oxidizing bacteria (Pseudomonas aeruginosa) was studied in a 2.4-L biofilter packed with vermiculite, an inert mineral support. Experimental pentane elimination capacity (EC) of approximately 12 g m(-3) h(-1) was obtained for an empty bed residence time (EBRT) of 1.1 h and inlet concentration of 18.6 g m(-3). For these experimental conditions, EC of MTBE between 0.3 and 1.8 g m(-3) h(-1) were measured with inlet MTBE concentration ranging from 1.1 to 12.3 g m(-3). The process was modeled with general mass balance equations that consider a kinetic model describing cross-competitive inhibition between MTBE (cosubstrate) and pentane (substrate). The experimental data of pentane and MTBE removal efficiencies were compared to the theoretical predictions of the model. The predicted pentane and MTBE concentration profiles agreed with the experimental data for steady-state operation. Inhibition by MTBE of the pentane EC was demonstrated. Increasing the inlet pentane concentration improved the EC of MTBE but did not significantly change the EC of pentane. MTBE degradation rates obtained in this study were much lower than those using consortia or pure strains that can mineralize MTBE. Nevertheless, the system can be improved by increasing the active biomass.

  13. Nitrous Oxide Micro Engines Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nitrous Oxide Micro Engines (NOME) are a new type of nitrous oxide dissociation thruster designed to generate low levels of thrust that can be used for RCS control...

  14. The structure of small, vapor-deposited particles. II - Experimental study of particles with hexagonal profile

    Science.gov (United States)

    Yacaman, M. J.; Heinemann, K.; Yang, C. Y.; Poppa, H.

    1979-01-01

    'Multiply-twinned' gold particles with hexagonal bright field TEM profile were determined to be icosahedra composed of 20 identical and twin-related tetrahedral building units that do not have an fcc structure. The crystal structure of these slightly deformed tetrahedra is rhombohedral. Experimental evidence supporting this particle model was obtained by selected-zone dark field and weak beam dark field electron microscopy. In conjunction with the results of part I, it has been concluded that multiply-twinned gold particles of pentagonal or hexagonal profile that are found during the early stages of the vapor deposition growth process on alkali halide surfaces do not have an fcc crystal structure, which is in obvious contrast to the structure of bulk gold.

  15. Experimental study of flow and heat transfer in a rotating chemical vapor deposition reactor

    Science.gov (United States)

    Wong, Sun

    An experimental model was set up to study the rotating vertical impinging chemical vapor deposition reactor. Deposition occurs only when the system has enough thermal energy. Therefore, understanding the fluid characteristic and heat transfer of the system will provide a good basis to understand the full model. Growth rate and the uniformity of the film are the two most important factors in CVD process and it is depended on the flow and thermal characteristic within the system. Optimizing the operating parameters will result in better growth rate and uniformity. Operating parameters such as inflow velocity, inflow diameter and rotational speed are used to create different design simulations. Fluid velocities and various temperatures are recorded to see the effects of the different operating parameters. Velocities are recorded by using flow meter and hot wire anemometer. Temperatures are recorded by using various thermocouples and infrared thermometer. The result should provide a quantitative basis for the prediction, design and optimization of the system and process for design and fabrication of future CVD reactors. Further assessment of the system results will be discuss in detail such as effects of buoyancy and effects of rotation. The experimental study also coupled with a numerical study for further validation of both model. Comparisons between the two models are also presented.

  16. AN EXPERIMENTAL STUDY ON A VAPOR COMPRESSION REFRIGERATION CYCLE BY ADDING INTERNAL HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    Muhammad Asmail Eleiwi

    2013-05-01

    Full Text Available Thispaper presents practical study to improve the indication COP of a vaporcompression refrigeration cycle in instrumented automobile air conditioner bydesigning internal heat exchanger and installing it in the vapor compressionrefrigeration cycle.  Two cases of  vapor compression refrigeration cycle were takenin this paper:  the first case is thatthe vapor compression refrigeration cycle without internal heat exchanger andin  the second case the vapor compressionrefrigeration cycle with heat exchanger ; in these two cases, the temperatureat each point of  a vapor compressionrefrigeration cycle, the low and the high pressure ,the indoor temperature andthe outdoor temperature were measured at each time at compressor speed 1450 rpmand 2900 rpm for each blower speed 1, blower speed 2 and blower speed 3.Therefrigerant fluid was used in the vapor compression refrigeration cycle withoutIHE and with IHE is R134a..

  17. Adverse Cardiovascular Effects of Nitrous Oxide: It is not all about Hyperhomocysteinaemia

    Directory of Open Access Journals (Sweden)

    Ata Mahmoodpoor

    2015-04-01

    due the dilution effect. This would alter the total and instantaneous nitrous oxide and volatile anesthetic delivery to the patients affecting the results of the study. In the meantime, another confounding factor is the “Carrier Gas Composition”. Vaporizer output is influenced by the composition of the carrier gas, i.e. oxygen, nitrous oxide or air, which flows through the vaporizer (5. Nitrous oxide is more soluble than oxygen in the halogenated liquid within the vaporizer sump, changing the composition of carrier gas would be associated with different steady-state values altering the amount of the delivered volatile anesthetic (6. Increased or decreased amounts of the delivered volatile agents play a major role in the hemodynamic and cardiovascular events both intra- and post-operatively. Factors that contribute to the characteristic steady-state response resulting when various carrier gases are used include the viscosity and density of the carrier gas, the relative solubility of the carrier gas in the anesthetic liquid, the flow-splitting characteristics of the specific vaporizer, and the concentration control dial setting (6.

  18. Vapor-Liquid Equilibrium of Carbon Dioxide + Ethanol: Experimental Measurements with Acoustic Method and Thermodynamic Modeling

    Directory of Open Access Journals (Sweden)

    Ana Mehl

    2011-01-01

    Full Text Available Phase behavior of systems composed by supercritical carbon dioxide and ethanol is of great interest, especially in the processes involving supercritical extraction in which ethanol is used as a cosolvent. The development of an apparatus, which is able to perform the measurements of vapor-liquid equilibrium (VLE at high pressure using a combination of the visual and the acoustic methods, was successful and was proven to be suited for determining the isothermal VLE data of this system. The acoustic method, based on the variation of the amplitude of an ultra-sound signal passing through a mixture during a phase transition, was applied to investigate the phase equilibria of the system carbon dioxide + ethanol at temperatures ranging from 298.2 K to 323.2 K and pressures from 3.0 MPa to 9.0 MPa. The VLE data were correlated with Peng-Robinson equation of state combined with two different mixing rules and the SAFT equations of state as well. The compositions calculated with the models are in good agreement with the experimental data for the isotherms evaluated.

  19. [Experimental research of oil vapor pollution control for gas station with membrane separation technology].

    Science.gov (United States)

    Zhu, Ling; Chen, Jia-Qing; Zhang, Bao-Sheng; Wang, Jian-Hong

    2011-12-01

    Two kinds of membranes modules, vapor retained glassy membrane based on PEEK hollow fiber membrane modules and vapor permeated rubbery membrane system based on GMT plate-and-frame membrane modules, were used to control the oil vapor pollution during the course of receiving and transferring gasoline in oil station. The efficiencies of the membrane module and the membrane system of them were evaluated and compared respectively in the facilities which were developed by ourselves. It was found that both the two kinds of membranes modules had high efficiency for the separation of VOCs-air mixed gases, and the outlet vapor after treatment all can meet the national standard. When the vapor-enriched gas was returned to the oil tank to simulate the continuously cycle test, the concentration of VOCs in the outlet was also below 25 g x m(-3).

  20. A Preliminary experimental study of the boron concentration in vapor and the isotopic A preliminary experimental study of the boron concentrationin vapor and the isotopic fractionation of boron betweenseawater and vapor during evaporation of seawater

    Institute of Scientific and Technical Information of China (English)

    XIAO; Yingkai

    2001-01-01

    [1]Gast, J. A., Thompson, T. G., Evaporation of boric acid from seawater, Tellus, 1959, 6: 344-347.[2]Nishimura, M., Tanaka, K., Seawater may not be a source of boron in the atmosphere, J. Geoph. Res., 1972, 77: 5239-5242.[3]Fogg, T. R., Duce, R. A., Fasching, J. L., Sampling and determination of boron in the atmosphere, Anal. Chem., 1983, 55:2179-2184.[4]Fogg, T. R., Duce, R. A., Boron in the troposphere: Distribution and fluxes, J. Geoph. Res., 1985, 90: 3781-3796.[5]Spivack, A. J., Berndt, M. E., Seyfreid, W. E., Boron isotope fractionation during supercritical phase separation, Geochim.Cosmochim. Acta, 1990, 54: 2337-2339.[6]Palmer, M. R., London, D., Morgan, G. B. et al., Experimental determination of fractionation of 11B/10B between tourma-line and aqueous vapor: A temperature and pressure-dependent isotopic system, Chem. Geol., 1992, 101:123-129.[7]Hervig, R. L., London, D., Morgan, G. B. et al., Large boron isotope fractionation between hydrous vapor and silicate meltat igneous temperatures, in the Seventh Annual V. M. Goldschmidt Conf., LPI Contribution No. 921, Houston: Lunar and Planetary Institute, 1997, 93-94.[8]Vengosh, A., Starinsky, A., Kolodny, Y. et al., Boron isotope variations during fractional evaporation of seawater: New constraints on the marine vs. nonmarine debate, Geology, 1992, 20: 799-802.[9]Zhang, X. P., Shi, Y. E, Yao, T. D., The variation characteristics of δo18O in precipitation in Northeastern Qing-Zhang Plateau, Science in China, Series B (in Chinese), 1995, 25(5): 540-547.[10]Yu, J. S., Yu, E J., Liu, D. P., The hydrogen and oxygen of isotopic compositions of meteoric water in the eastern part of China, Geochimica (in Chinese), 1987, (1): 22-26.[11]Xiao, Y. K., Xiao, Y., Swihart, G. H. et al., Separation of boron by ion exchange with boron specific resin, Acta Geosci.Sinica (in Chinese), 1997, 18: 286-289.[12]Kiss, E., Ion-exchange separation and spectrophotometric determination of

  1. Propellant Vaporization as a Criterion for Rocket-Engine Design; Experimental Performance, Vaporization and Heat-Transfer Rates with Various Propellant Combinations

    Science.gov (United States)

    Clark, Bruce J.; Hersch, Martin; Priem, Richard J.

    1959-01-01

    Experimental combustion efficiencies of eleven propellant combinations were determined as a function of chamber length. Efficiencies were measured in terms of characteristic exhaust velocities at three chamber lengths and in terms of gas velocities. The data were obtained in a nominal 200-pound-thrust rocket engine. Injector and engine configurations were kept essentially the same to allow comparison of the performance. The data, except for those on hydrazine and ammonia-fluorine, agreed with predicted results based on the assumption that vaporization of the propellants determines the rate of combustion. Decomposition in the liquid phase may be.responsible for the anomalous behavior of hydrazine. Over-all heat-transfer rates were also measured for each combination. These rates were close to the values predicted by standard heat-transfer calculations except for the combinations using ammonia.

  2. Experimental analysis on adjusting performance of vapor-liquid two-phase flow controller

    Institute of Scientific and Technical Information of China (English)

    LI Hui-jun; TU Shan

    2006-01-01

    The vapor-liquid self-adjusting controller is an innovative automatic regulating valve. In order to ensure adjusted objects run safely and economically, the controller automatically adjusts the liquid flux to keep liquid level at a required level according to physical properties of vapor-liquid two-phase fluid. The adjusting mechanics, the controller' s performance and influencing factors of its stability have been analyzed in this paper. The theoretical analysis and successful applications have demonstrated this controller can keep the liquid level steady with good performance. The actual application in industry has shown that the controller can satisfactorily meet the requirement of industrial production and has wide application areas.

  3. Experimental Evidence of the Vapor Recoil Mechanism in the Boiling Crisis

    CERN Document Server

    Nikolayev, Vadim; Garrabos, Y; Beysens, D

    2016-01-01

    Boiling crisis experiments are carried out in the vicinity of the liquid-gas critical point of H2. A magnetic gravity compensation setup is used to enable nucleate boiling at near critical pressure. The measurements of the critical heat flux that defines the threshold for the boiling crisis are carried out as a function of the distance from the critical point. The obtained power law behavior and the boiling crisis dynamics agree with the predictions of the vapor recoil mechanism and disagree with the classical vapor column mechanism.

  4. Evaporation and Vapor Formation of Graphite Suspensions Based on Water in a High-Temperature Gas Environment: an Experimental Investigation

    Directory of Open Access Journals (Sweden)

    Borisova Anastasia G.

    2016-01-01

    Full Text Available We performed an experimental research on evaporation and vapor formation of water droplets containing large (2 mm in size and small (0.05 mm and 0.2 mm in diameter graphite inclusions, when heated in a high-temperature gas environment. We applied a high-speed (up to 104 fps video recording to establish mechanisms of the processes considered. Moreover, we revealed the positive influence of addition of small graphite inclusions on intensifying the evaporation of heterogeneous suspension droplets. In addition, we made the assumption on the formation of vapor layer around the 10 and 15 μl suspension droplets, as well as its negative influence on the lifetimes of suspension droplets τh (increasing the times in a high-temperature gas environment.

  5. Experimental investigation of vapor shielding effects induced by ELM-like pulsed plasma loads using the double plasma gun device

    Science.gov (United States)

    Sakuma, I.; Kikuchi, Y.; Kitagawa, Y.; Asai, Y.; Onishi, K.; Fukumoto, N.; Nagata, M.

    2015-08-01

    We have developed a unique experimental device of so-called double plasma gun, which consists of two magnetized coaxial plasma gun (MCPG) devices, in order to clarify effects of vapor shielding on material erosion due to transient events in magnetically confined fusion devices. Two ELM-like pulsed plasmas produced by the two MCPG devices were injected into a target chamber with a variable time difference. For generating ablated plasmas in front of a target material, an aluminum foil sample in the target chamber was exposed to a pulsed plasma produced by the 1st MCPG device. The 2nd pulsed plasma was produced with a time delay of 70 μs. It was found that a surface absorbed energy measured by a calorimeter was reduced to ∼66% of that without the Al foil sample. Thus, the reduction of the incoming plasma energy by the vapor shielding effect was successfully demonstrated in the present experiment.

  6. Experimental investigation of vapor shielding effects induced by ELM-like pulsed plasma loads using the double plasma gun device

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, I., E-mail: eu13z002@steng.u-hyogo.ac.jp; Kikuchi, Y.; Kitagawa, Y.; Asai, Y.; Onishi, K.; Fukumoto, N.; Nagata, M.

    2015-08-15

    We have developed a unique experimental device of so-called double plasma gun, which consists of two magnetized coaxial plasma gun (MCPG) devices, in order to clarify effects of vapor shielding on material erosion due to transient events in magnetically confined fusion devices. Two ELM-like pulsed plasmas produced by the two MCPG devices were injected into a target chamber with a variable time difference. For generating ablated plasmas in front of a target material, an aluminum foil sample in the target chamber was exposed to a pulsed plasma produced by the 1st MCPG device. The 2nd pulsed plasma was produced with a time delay of 70 μs. It was found that a surface absorbed energy measured by a calorimeter was reduced to ∼66% of that without the Al foil sample. Thus, the reduction of the incoming plasma energy by the vapor shielding effect was successfully demonstrated in the present experiment.

  7. Experimental Evaluation of Hybrid Distillation-Vapor Permeation Process for Efficient Ethanol Recovery from Ethanol-Water Mixtures

    Science.gov (United States)

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions [1]. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation ...

  8. Experimental Evaluation of Hybrid Distillation-Vapor Permeation Process for Efficient Ethanol Recovery from Ethanol-Water Mixtures

    Science.gov (United States)

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions [1]. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation ...

  9. Experimental study of vapor local characteristics in upward low pressure boiling tube

    Institute of Scientific and Technical Information of China (English)

    SUN Qi; ZHAO Hua; XI Zhao; YANG Rui-Chang

    2003-01-01

    Radial distribution of vapor local parameters, including local void fraction, interfacial velocity, bubblesize, bubble frequency and interfacial area concentration, are investigated through the measurement in an upwardboiling tube using dual-sensor optical probe. In addition, a new local parameter -"local bubble number concentra-tion" is developed on the basis of bubble frequency. The analysis shows that this parameter can reflect bubble numberdensity in space, and has clear physical meaning.

  10. Dissolution kinetics of volatile organic compound vapors in water: An integrated experimental and computational study

    Science.gov (United States)

    Mahmoodlu, Mojtaba G.; Pontedeiro, Elizabeth M.; Pérez Guerrero, Jesús S.; Raoof, Amir; Majid Hassanizadeh, S.; van Genuchten, Martinus Th.

    2017-01-01

    In this study we performed batch experiments to investigate the dissolution kinetics of trichloroethylene (TCE) and toluene vapors in water at room temperature and atmospheric pressure. The batch systems consisted of a water reservoir and a connected headspace, the latter containing a small glass cylinder filled with pure volatile organic compound (VOC). Results showed that air phase concentrations of both TCE and toluene increased relatively quickly to their maximum values and then became constant. We considered subsequent dissolution into both stirred and unstirred water reservoirs. Results of the stirred experiments showed a quick increase in the VOC concentrations with time up to their solubility limit in water. VOC vapor dissolution was found to be independent of pH. In contrast, salinity had a significant effect on the solubility of TCE and toluene vapors. VOC evaporation and vapor dissolution in the stirred water reservoirs followed first-order rate processes. Observed data could be described well using both simplified analytical solutions, which decoupled the VOC dynamics in the air and water phases, as well as using more complete coupled solutions. However, the estimated evaporation (ke) and dissolution (kd) rate constants differed by up to 70% between the coupled and uncoupled formulations. We also numerically investigated the effects of fluid withdrawal from the small water reservoir due to sampling. While decoupling the VOC air and water phase mass transfer processes produced unreliable estimates of kd, the effects of fluid withdrawal on the estimated rate constants were found to be less important. The unstirred experiments showed a much slower increase in the dissolved VOC concentrations versus time. Molecular diffusion of the VOCs within the aqueous phase became then the limiting factor for mass transfer from air to water. Fluid withdrawal during sampling likely caused some minor convection within the reservoir, which was simulated by increasing the

  11. An Experimental Procedure to Estimate Lifetime of Water Drop with Graphite Inclusion under Intensive Vaporization with Explosive Breakup

    Directory of Open Access Journals (Sweden)

    Legros Jean C.

    2016-01-01

    Full Text Available We developed an experimental setup equipped with tube furnace for continuous heating of heterogeneous drops at a constant temperature and high-speed camera to study characteristics of phase transitions at interfaces of these drops. Also, an experimental procedure was proposed to estimate time characteristics of processes occurring when heated heterogeneous drops in high-temperature environment. As an example, at temperature of heating of 1373 K, lifetime of 15 μl water drop with 1 mm solid inclusion made of natural graphite in high-temperature environment equals almost to 1 s. Experimental data also enabled to reveal minimum temperature at which intensive vaporization of 5 μl, 10 μl and 15 μl drops with inclusions in size of 2×2×2 mm proceeds with explosive breakup. This temperature equals to 803 ± 10 K depending on initial water volume in heterogeneous drops.

  12. Experimental measurements of vapor-liquid equilibria of the H2O + CO2 + CH4 ternary system

    Science.gov (United States)

    Qin, J.; Rosenbauer, R.J.; Duan, Zhenhao

    2008-01-01

    Reported are the experimental measurements on vapor-liquid equilibria in the H2O + CO2 + CH4 ternary system at temperatures from (324 to 375) K and pressures from (10 to 50) MPa. The results indicate that the CH4 solubility in the ternary mixture is about 10 % to 40 % more than that calculated by interpolation from the Henry's law constants of the binary system, H2O + CH4, and the solubility of CO2 is 6 % to 20 % more than what is calculated by the interpolation from the Henry's law constants of the binary mixture, H 2O + CO2. ?? 2008 American Chemical Society.

  13. Resonating Nitrous Oxide Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — AeroAstro proposes decomposing nitrous oxide (N2O) as an alternative propellant to existing spacecraft propellants. Decomposing N2O can be used as either a high Isp,...

  14. Isobaric (vapor + liquid) equilibria of 1-ethyl-3-methylimidazolium ethylsulfate plus (propionaldehyde or valeraldehyde): Experimental data and prediction

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Victor H. [School of Chemical Engineering, University of Campinas (UNICAMP), Av. Albert Einstein 500, 13083-852 Campinas, SP (Brazil); Mattedi, Silvana [Chemical Engineering Department, Polytechnic School, Federal University of Bahia (UFBA), R. Aristides Novis 2, 40210-630 Salvador, BA (Brazil); Aznar, Martin, E-mail: maznar@feq.unicamp.b [School of Chemical Engineering, University of Campinas (UNICAMP), Av. Albert Einstein 500, 13083-852 Campinas, SP (Brazil)

    2011-06-15

    Research highlights: We report density, refraction index, and VLE for (propionaldehyde or valeraldehyde) + [emim][EtSO{sub 4}]. The Peng-Robinson + Wong-Sandler + COSMO-SAC model was used to predict density and VLE. The densities were predicted with deviations below than 2.3%. The experimental VLE was predicted with deviations below than 1.6%. - Abstract: This paper reports the density, refraction index, and (vapor + liquid) equilibria (VLE) for binary systems {l_brace}aldehyde + 1-ethyl-3-methylimidazolium ethylsulfate ([emim][EtSO{sub 4}]){r_brace}: {l_brace}propionaldehyde + [emim][EtSO{sub 4}]{r_brace} and {l_brace}valeraldehyde + [emim][EtSO{sub 4}]{r_brace}. The uncertainties for the temperature, pressure, and compositions measurements for the phase equilibria are {+-}0.1 K, {+-}0.01 kPa and {+-}0.0004, respectively. A qualitative analysis of the variation of the properties with changes in solvent and temperature was performed. The Peng-Robinson equation of state (PR EoS), coupled with the Wong-Sandler mixing rule (WS), is used to describe the experimental data. To calculate activity coefficients we used three different models: NRTL, UNIQUAC, and COSMO-SAC. Since the predictive liquid activity coefficient model COSMO-SAC is used in the Wong-Sandler mixing rule, the resulting thermodynamic model is a completely predictive one. The prediction results for the density and for the (vapor + liquid) equilibria have a deviation lower than 2.3% and 1.6%, respectively. The (vapor + liquid) equilibria predictions show a good description for the propionaldehyde system and only a qualitative description for the valeraldehyde system.

  15. Arsenic removal by solar-driven membrane distillation: modeling and experimental investigation with a new flash vaporization module.

    Science.gov (United States)

    Pa, Parimal; Manna, Ajay Kumar; Linnanen, Lassi

    2013-01-01

    A modeling and simulation study was carried out on a new flux-enhancing and solar-driven membrane distillation module for removal of arsenic from contaminated groundwater. The developed new model was validated with rigorous experimental investigations using arsenic-contaminated groundwater. By incorporating flash vaporization dynamics, the model turned out to be substantially different from the existing direct contact membrane distillation models and could successfully predict (with relative error of only 0.042 and a Willmott d-index of 0.997) the performance of such an arsenic removal unit where the existing models exhibited wide variation with experimental findings in the new design. The module with greater than 99% arsenic removal efficiency and greater than 50 L/m2 x h flux could be implemented in arsenic-affected villages in Southeast Asian countries with abundant solar energy, and thus could give relief to millions of affected people. These encouraging results will raise scale-up confidence.

  16. Design and experimental study of an integrated vapor chamber-thermal energy storage system

    Science.gov (United States)

    Kota, Krishna M.

    Future defense, aerospace and automotive technologies involve electronic systems that release high pulsed waste heat like during high power microwave and laser diode applications in tactical and combat aircraft, and electrical and electronic systems in hybrid electric vehicles, which will require the development of an efficient thermal management system. A key design issue is the need for fast charging so as not to overheat the key components. The goal of this work is to study the fabrication and technology implementation feasibility of a novel high energy storage, high heat flux passive heat sink. Key focus is to verify by theory and experiments, the practicability of using phase change materials as a temporary storage of waste heat for heat sink applications. The reason for storing the high heat fluxes temporarily is to be able to reject the heat at the average level when the heat source is off. Accordingly, a concept of a dual latent heat sink intended for moderate to low thermal duty cycle electronic heat sink applications is presented. This heat sink design combines the features of a vapor chamber with rapid thermal energy storage employing graphite foam inside the heat storage facility along with phase change materials and is attractive owing to its passive operation unlike some of the current thermal management techniques for cooling of electronics employing forced air circulation or external heat exchangers. In addition to the concept, end-application dependent criteria to select an optimized design for this dual latent heat sink are presented. A thermal resistance concept based design tool/model has been developed to analyze and optimize the design for experiments. The model showed that it is possible to have a dual latent heat sink design capable of handling 7 MJ of thermal load at a heat flux of 500 W/cm2 (over an area of 100 cm 2) with a volume of 0.072 m3 and weighing about 57.5 kg. It was also found that with such high heat flux absorption capability

  17. An Experimental Study on the Dynamics of a Single Droplet Vapor Explosion

    Energy Technology Data Exchange (ETDEWEB)

    Concilio Hansson, Roberta

    2010-07-01

    The present study aims to develop a mechanistic understanding of the thermal-hydraulic processes in a vapor explosion, which may occur in nuclear power plants during a hypothetical severe accident involving interactions of high-temperature corium melt and volatile coolant. Over the past several decades, a large body of literature has been accumulated on vapor explosion phenomenology and methods for assessment of the related risk. Vapor explosion is driven by a rapid fragmentation of high temperature melt droplets, leading to a substantial increase of heat transfer areas and subsequent explosive evaporation of the volatile coolant. Constrained by the liquid-phase coolant, the rapid vapor production in the interaction zone causes pressurization and dynamic loading on surrounding structures. While such a general understanding has been established, the triggering mechanism and subsequent dynamic fine fragmentation have yet not been clearly understood. A few mechanistic fragmentation models have been proposed, however, computational efforts to simulate the phenomena generated a large scatter of results. Dynamics of the hot liquid (melt) droplet and the volatile liquid (coolant) are investigated in the MISTEE (Micro-Interactions in Steam Explosion Experiments) facility by performing well-controlled, externally triggered, single-droplet experiments, using a high-speed visualization system with synchronized digital cinematography and continuous X-ray radiography, called SHARP (Simultaneous High-speed Acquisition of X-ray Radiography and Photography). After an elaborate image processing, the SHARP images depict the evolution of both melt material (dispersal) and coolant (bubble dynamics), and their microscale interactions, i.e. the triggering phenomenology. The images point to coolant entrainment into the droplet surface as the mechanism for direct contact/mixing ultimately responsible for energetic interactions. Most importantly, the MISTEE data reveals an inverse

  18. Experimental Measurements and Correlations Isobaric Vapor-Liquid Equilibria for Water + Acetic Acid + Sec-butyl Acetate at 101.3 kPa

    Institute of Scientific and Technical Information of China (English)

    LI Ling; HE Yong; WU Yanxiang; ZOU Wenhu

    2013-01-01

    Isobaric vapor-liquid equilibrium(VLE) data for acetic acid + sec-butyl acetate and water + acetic acid + sec-butyl acetate systems were determined at 101.3 kPa using a modified Rose type.The nonideality of the vapor phase caused by the association of the acetic acid was corrected by the chemical theory and Hayden-O'Connell method.Thermodynamic consistency was tested for the binary VLE data.The experimental data were correlated successfully with the Non-Random Two Liquids (NRTL) model.The Root Mean Square Deviation (RMSD) of the ternary system was 0.0038.The saturation vapor pressure of sec-butyl acetate at 329 to 385 K was measured by means of two connected equilibrium cells.The vapor pressures of water and sec-butyl acetate were correlated with the Antoine equation.The binary interaction parameters and the ternary VLE data were obtained from this work.

  19. Nitrous oxide sedation and sexual phenomena.

    Science.gov (United States)

    Jastak, J T; Malamed, S F

    1980-07-01

    Nine cases of sexual phenomena that occurred with use of nitrous oxide and oxygen sedation are described. Dentists involved routinely used concentrations of nitrous oxide greater than 50% and did not have assistants in the room during dental procedures. Recommendations on the concentrations of nitrous oxide and the presence of an assistant are made.

  20. Experimental study of vaporization effect on steady state and dynamic behavior of catalytic pellets

    NARCIS (Netherlands)

    Kulikov, A.V.; Kuzin, N.A.; Shigarov, A.B.; Kirillov, V.A.; Westerterp, K.R.; Kronberg, Alexandre E.

    2001-01-01

    The impact of the combined evaporation of the liquid phase and reaction on single catalyst pellet performance has been studied experimentally. The exothermic, catalyzed hydrogenation of α-methylstyrene (AMS) to cumene has been employed as a model reaction. Steady state and dynamic experiments have

  1. Experimental study of vaporization effect on steady state and dynamic behavior of catalytic pellets

    NARCIS (Netherlands)

    Kulikov, A.V.; Kuzin, N.A.; Shigarov, A.B.; Kirillov, V.A.; Kronberg, A.E.; Westerterp, K.R.

    2001-01-01

    The impact of the combined evaporation of the liquid phase and reaction on single catalyst pellet performance has been studied experimentally. The exothermic, catalyzed hydrogenation of α-methylstyrene (AMS) to cumene has been employed as a model reaction. Steady state and dynamic experiments have b

  2. Hybrid Vapor Stripping-Vapor Permeation Process for Recovery and Dehydration of 1-Butanol and Acetone/Butanol/Ethanol from Dilute Aqueous Solutions. Part 2. Experimental Validation with Simple Mixtures and Actual Fermentation Broth

    Science.gov (United States)

    BACKGROUND: In Part1 of this work, a process integrating vapor stripping, vapor compression, and a vapor permeation membrane separation step, Membrane Assisted Vapor Stripping (MAVS), was predicted to produce energy savings compared to traditional distillation systems for separat...

  3. Hybrid Vapor Stripping-Vapor Permeation Process for Recovery and Dehydration of 1-Butanol and Acetone/Butanol/Ethanol from Dilute Aqueous Solutions. Part 2. Experimental Validation with Simple Mixtures and Actual Fermentation Broth

    Science.gov (United States)

    BACKGROUND: In Part1 of this work, a process integrating vapor stripping, vapor compression, and a vapor permeation membrane separation step, Membrane Assisted Vapor Stripping (MAVS), was predicted to produce energy savings compared to traditional distillation systems for separat...

  4. Experimental determination and prediction of the compressibility factor of high CO2 content natural gas with and without water vapor

    Institute of Scientific and Technical Information of China (English)

    Xiaoqiang Bian; Zhimin Du; YongTang

    2011-01-01

    In order to study the effect of different CO2 contents on gas compressibility factor (Z-factor),the JEFRI-PVT apparatus has been used to measure the Z-factor of dry natural gas with CO2 content range from 10.74 to 70.42 mol% at the temperature range from 301.2 to 407.3 K and pressure range from 7 to 44 MPa.The results show that Z-factor decreases with increasing CO2 content in natural gas at constant temperature and increases with increasing temperature for natural gas with the same CO2 content.In addition,the Z-factor of water-saturated natural gas with high CO2 content has been measured.A comparison of the Z-factor between natural gas with and without saturated water vapor indicates that the former shows a higher Z-factor than the latter.Furthermore,Peng-Robinson,Hall-Yarborough,and Soave-Benedict-WebbRubin equations of state (EoS) are used for the calculation of Z-factor of high CO2 content natural gas with and without water vapor.The optimal binary interaction parameters (BIP) for PR EoS are presented.The measured Z-factor is compared with the calculated Z-factor based on three models,which shows that PR EoS combined with van der Waals mixing rule for gas without water and Huron-Vidal mixing rule for water-saturated gas,are in good agreement with the experimental data.

  5. Experimental and theoretical comparison of different optical excitation schemes for a compact coherent population trapping Rb vapor clock

    Science.gov (United States)

    Warren, Z.; Shahriar, M. S.; Tripathi, R.; Pati, G. S.

    2017-08-01

    We have investigated, theoretically as well as experimentally, the relative merits and demerits of using three different optical configurations for a compact coherent population trapping (CPT) vapor clock using 87Rb. These correspond to the following choices of polarizations for the two Raman beams: \\text{lin} \\parallel \\text{lin} , (σ,~σ ), and push-pull optical pumping (PPOP), applied on the D1 manifold. We have used a multi-level atomic model to study the dependence of the CPT spectrum on axial as well as transverse magnetic fields for these three schemes. Corresponding experimental studies have been performed using a laboratory scale CPT clock employing a two cm long, isotopically pure rubidium cell, loaded with a buffer gas. We observed a CPT contrast close to 20% with a sub-kilohertz linewidth by adopting the PPOP scheme. We discuss the strengths and weaknesses of each of the three optical excitation schemes, and present frequency-stability measurement data for the prototype clock.

  6. Intraoperative nitrous oxide as a preventive analgesic.

    Science.gov (United States)

    Stiglitz, D K; Amaratunge, L N; Konstantatos, A H; Lindholm, D E

    2010-09-01

    Preventive analgesia is defined as the persistence of the analgesic effects of a drug beyond the clinical activity of the drug. The N-methyl D-aspartate receptor plays a critical role in the sensitisation of pain pathways induced by injury. Nitrous oxide inhibits excitatory N-methyl D-aspartate sensitive glutamate receptors. The objective of our study was to test the efficacy of nitrous oxide as a preventive analgesic. We conducted a retrospective analysis of data from a subset of patients (n = 100) randomly selected from a previous major multicentre randomised controlled trial on nitrous oxide (ENIGMA trial). Data analysed included postoperative analgesic requirements, pain scores and duration of patient-controlled analgesia during the first 72 postoperative hours. There was no significant difference in postoperative oral morphine equivalent usage (nitrous group 248 mg, no nitrous group 289 mg, mean difference -43 mg, 95% confidence interval 141 to 54 mg). However, patients who received nitrous oxide had a shorter duration of patient-controlled analgesia use (nitrous group 35 hours, no nitrous group 51 hours, mean difference -16 hours, 95% confidence interval -29 to -2 hours, P = 0.022). There was no difference in pain scores between the groups. The shorter patient-controlled analgesia duration in the nitrous oxide group suggests that intraoperative nitrous oxide may have a preventive analgesic effect.

  7. Experimental Validation of the Simulation Model of a DOAS Equipped with a Desiccant Wheel and a Vapor Compression Refrigeration System

    Directory of Open Access Journals (Sweden)

    Pedro J. Martínez

    2017-09-01

    Full Text Available A dedicated outdoor air system (DOAS can be designed to supply 100% of the outside air and meet the latent load of the room with dry air. The objectives of this study were to develop a model of a DOAS equipped with a desiccant wheel and a vapor-compression refrigeration system, build a prototype, validate the model with experimental data, and gain knowledge about the system operation. The test facility was designed with the desiccant wheel downstream of the cooling coil to take advantage of the operating principles of cooling coils and desiccants. A model of the DOAS was developed in the TRNSYS environment. The root mean standard error (RMSE was used for model validation by comparing the measured air and refrigerant properties with the corresponding calculated values. The results obtained with the developed model showed that the DOAS was able to maintain an indoor humidity ratio depending on outdoor conditions. Laboratory tests were also used to investigate the effect of changes in the regeneration air temperature and the process airflow rate on the process air humidity ratio at the outlet of the wheel. The results are consistent with the technical literature.

  8. Water vapor effect on the HNO3 yield in the HO2 + NO reaction: experimental and theoretical evidence.

    Science.gov (United States)

    Butkovskaya, Nadezhda; Rayez, Marie-Thérèse; Rayez, Jean-Claude; Kukui, Alexandre; Le Bras, Georges

    2009-10-22

    The influence of water vapor on the production of nitric acid in the gas-phase HO(2) + NO reaction was determined at 298 K and 200 Torr using a high-pressure turbulent flow reactor coupled with a chemical ionization mass spectrometer. The yield of HNO(3) was found to increase linearly with the increase of water concentration reaching an enhancement factor of about 8 at [H(2)O] = 4 x 10(17) molecules cm(-3) ( approximately 50% relative humidity). A rate constant value k(1bw) = 6 x 10(-13) cm(3) molecule(-1) s(-1) was derived for the reaction involving the HO(2)xH(2)O complex: HO(2)xH(2)O + NO --> HNO(3) (1bw), assuming that the water enhancement is due to this reaction. k(1bw) is approximately 40 times higher than the rate constant of the reaction HO(2) + NO --> HNO(3) (1b), at the same temperature and pressure. The experimental findings are corroborated by density functional theory (DFT) calculations performed on the H(2)O/HO(2)/NO system. The significance of this result for atmospheric chemistry and chemical amplifier instruments is briefly discussed. An appendix containing a detailed consideration of the possible contribution from the surface reactions in our previous studies of the title reaction and in the present one is included.

  9. Air-source heat pump coupled with economized vapor injection scroll compressor and ejector:Design and experimental research

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Ejector can utilize high pressure energy from liquid mechanism,it can be used in heat pump system coupled with economized vapor injection(EVI)scroll compressor.When running under low temperature conditions,the performance of the EVI system with ejector can be improved further.In this paper,the design method of the heat pump system with ejector is presented,and the process for designing the heat pump with ejector(EVIe)was summarized.One prototype heat pump was designed under the condition of the evaporation temperature of -20oC,and an experimental setup was established to test the prototype.The measured results demonstrated that the heating EER(energy efficiency ratio)of the EVIe could reach about 4%higher than that of the system without the ejector when the heating capacity remained nearly constant.The design method is helpful to development of a heat pump system coupled with scroll compressor and ejector.

  10. An experimental investigation of a 100-W high-power light-emitting diode array using vapor chamber–based plate

    Directory of Open Access Journals (Sweden)

    Ping Zhang

    2015-11-01

    Full Text Available In this study, a compact 100-W input power light-emitting diode array vapor chamber–based plate has been fabricated to investigate the thermal performance. To make a comparison, a typical commercial chip on board–type light-emitting diode array using a copper-based plate which has the same chip layout and the same power input was also investigated. The surface temperature distribution and total thermal resistance corresponding to these two high-power light-emitting diode modules were measured using a thermal infrared camera and a MicReD T3Ster. The experimental results show that the thermal performance of the compact light-emitting diode array using vapor chamber–based plate is much better than that using copper-based plate. The average temperatures of light-emitting diode copper- and vapor chamber–based plates are 100.5°C and 41.5°C at 100 W power input, respectively. In addition, the maximal temperature difference of the 100-W light-emitting diode array vapor chamber–based plate is 2.2°C far less than 31.7°C of copper-based plate. Furthermore, the measurement results show that the vapor chamber can prominently lower the spreading resistance, diminish the hot-spot effect, and increase durability.

  11. Experimental Study of Ambient Air Temperature Effects on The Performance of a General Vapor-Compression Refrigeration Cycle

    Directory of Open Access Journals (Sweden)

    Ayad T. Mustafa

    2013-05-01

    Full Text Available         In this work an experimental study for the vapor – compression refrigeration cycle has been performed under temperature range of  9.7-32°C. The effect of      varying temperature on heat exchangers pressures, cooling capacity, net power consumption, and coefficient of performance COP are studied .                                   The results indicated that condenser pressure, evaporator pressure, and power consumption increased with the increase of temperature. The data also indicated that cooling capacity increased as temperature increased until 15.6°C then after it decreased with further temperature increase. Also COP follow the same tread of cooling capacity.                                                                                                              

  12. Nitrous oxide in emergency medicine.

    Science.gov (United States)

    O'Sullivan, I; Benger, J

    2003-05-01

    Safe and predictable analgesia is required for the potentially painful or uncomfortable procedures often undertaken in an emergency department. The characteristics of an ideal analgesic agent are safety, predictability, non-invasive delivery, freedom from side effects, simplicity of use, and a rapid onset and offset. Newer approaches have threatened the widespread use of nitrous oxide, but despite its long history this simple gas still has much to offer. "I am sure the air in heaven must be this wonder-working gas of delight". Robert Southey, Poet (1774 to 1843)

  13. Formation and removal of apical vapor lock during syringe irrigation: a combined experimental and Computational Fluid Dynamics approach

    NARCIS (Netherlands)

    Boutsioukis, C.; Kastrinakis, E.; Lambrianidis, T.; Verhaagen, B.; Versluis, M.; Sluis, van der L.W.M.

    2014-01-01

    Aim (i) To evaluate the effect of needle type and insertion depth, root canal size and irrigant flow rate on the entrapment of air bubbles in the apical part of a root canal (apical vapor lock) during syringe irrigation using experiments and a Computational Fluid Dynamics (CFD) model, (ii) to invest

  14. Formation and removal of apical vapor lock during syringe irrigation : a combined experimental and Computational Fluid Dynamics approach

    NARCIS (Netherlands)

    Boutsioukis, C.; Kastrinakis, E.; Lambrianidis, T.; Verhaagen, B.; Versluis, M.; van der Sluis, L. W. M.

    2014-01-01

    Aim(i) To evaluate the effect of needle type and insertion depth, root canal size and irrigant flow rate on the entrapment of air bubbles in the apical part of a root canal (apical vapor lock) during syringe irrigation using experiments and a Computational Fluid Dynamics (CFD) model, (ii) to investi

  15. Experimental verification of the vaporization's contribution to the shock waves generated by underwater electrical wire explosion under micro-second timescale pulsed discharge

    Science.gov (United States)

    Han, Ruoyu; Zhou, Haibin; Wu, Jiawei; Clayson, Thomas; Ren, Hang; Wu, Jian; Zhang, Yongmin; Qiu, Aici

    2017-06-01

    This paper studies pressure waves generated by exploding a copper wire in a water medium, demonstrating the significant contribution of the vaporization process to the formation of shock waves. A test platform including a pulsed current source, wire load, chamber, and diagnostic system was developed to study the shock wave and optical emission characteristics during the explosion process. In the experiment, a total of 500 J was discharged through a copper wire load 0.2 mm in diameter and 4 cm in length. A water gap was installed adjacent to the load so that the current was diverted away from the load after breakdown occurred across the water gap. This allows the electrical energy injection into the load to be interrupted at different times and at different stages of the wire explosion process. Experimental results indicate that when the load was bypassed before the beginning of the vaporization phase, the measured peak pressure was less than 2.5 MPa. By contrast, the peak pressure increased significantly to over 6.5 MPa when the water gap broke down after the beginning of the vaporization phase. It was also found that when bypassing the load after the voltage peak, similar shock waves were produced to those from a non-bypassed load. However, the total optical emission of these bypassed loads was at least an order of magnitude smaller. These results clearly demonstrate that the vaporization process is vital to the formation of shock waves and the energy deposited after the voltage collapse may only have a limited effect.

  16. Nitrous Oxide flux measurements under various amendments

    Data.gov (United States)

    U.S. Environmental Protection Agency — The dataset consists of measurements of soil nitrous oxide emissions from soils under three different amendments: glucose, cellulose, and manure. Data includes the...

  17. Nitrous Oxide Ethane Ethylene Engine Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nitrous Oxide Ethane-Ethylene (NEE) engine is a proposed technology designed to provide spacecraft with non-toxic non-cryogenic high-performance propulsion. With...

  18. Nitrous oxide emission by aquatic macrofauna

    DEFF Research Database (Denmark)

    Stief, Peter; Poulsen, Morten; Nielsen, Lars Peter

    2009-01-01

      A large variety of aquatic animals was found to emit the potent greenhouse gas nitrous oxide when nitrate was present in the environment. The emission was ascribed to denitrification by ingested bacteria in the anoxic animal gut, and the exceptionally high N2O-to-N2 production ratio suggested...... delayed induction of the last step of denitrification. Filter- and deposit-feeding animal species showed the highest rates of nitrous oxide emission and predators the lowest, probably reflecting the different amounts of denitrifying bacteria in the diet. We estimate that nitrous oxide emission by aquatic...... animals is quantitatively important in nitraterich aquatic environments like freshwater, coastal marine, and deep-sea ecosystems. The contribution of this source to overall nitrous oxide emission from aquatic environments might further increase because of the projected increase of nitrate availability...

  19. Nitrous Oxide Production by Abundant Benthic Macrofauna

    DEFF Research Database (Denmark)

    Stief, Peter; Schramm, Andreas

    Detritivorous macrofauna species co-ingest large quantities of microorganisms some of which survive the gut passage. Denitrifying bacteria, in particular, become metabolically induced by anoxic conditions, nitrate, and labile organic compounds in the gut of invertebrates. A striking consequence...... of the short-term metabolic induction of gut denitrification is the preferential production of nitrous oxide rather than dinitrogen. On a large scale, gut denitrification in, for instance, Chironomus plumosus larvae can increase the overall nitrous oxide emission of lake sediment by a factor of eight. We...... that do not ingest large quantities of microorganisms produced insignificant amounts of nitrous oxide. Ephemera danica, a very abundant mayfly larva, was monitored monthly in a nitrate-polluted stream. Nitrous oxide production by this filter-feeder was highly dependent on nitrate availability...

  20. Experimental generation of quadruple quantum-correlated beams from hot rubidium vapor by cascaded four-wave mixing using spatial multiplexing

    Science.gov (United States)

    Cao, Leiming; Qi, Jian; Du, Jinjian; Jing, Jietai

    2017-02-01

    Multimode quantum states, such as multipartite quantum entanglement or quantum correlations, are important for both fundamental science and the future development of quantum technologies. Here we theoretically propose and experimentally realize a scheme that can fully exploit the multi-spatial-mode nature of the four-wave-mixing (FWM) process, i.e., spatial multiplexing, and thus integrates multiple FWM processes into a single cell at each stage of the cascaded process. The number of generated quantum-correlated beams 2n is exponentially dependent on the number of vapor cells n . In addition, the quantum correlations between the multiple beams also increase as the number of vapor cell increases. For the case of n =2 , we experimentally show that the degree of intensity-difference squeezing between the four quantum-correlated beams in our scheme is enhanced to -8.2 ±0.2 dB from -5.6 ±0.3 and -6.5 ±0.2 dB of squeezing obtained with a single FWM process. Our system may find applications in quantum information and precision measurement.

  1. Numerical Modeling and Experimental Validation by Calorimetric Detection of Energetic Materials Using Thermal Bimorph Microcantilever Array: A Case Study on Sensing Vapors of Volatile Organic Compounds (VOCs).

    Science.gov (United States)

    Kang, Seok-Won; Fragala, Joe; Banerjee, Debjyoti

    2015-08-31

    Bi-layer (Au-Si₃N₄) microcantilevers fabricated in an array were used to detect vapors of energetic materials such as explosives under ambient conditions. The changes in the bending response of each thermal bimorph (i.e., microcantilever) with changes in actuation currents were experimentally monitored by measuring the angle of the reflected ray from a laser source used to illuminate the gold nanocoating on the surface of silicon nitride microcantilevers in the absence and presence of a designated combustible species. Experiments were performed to determine the signature response of this nano-calorimeter platform for each explosive material considered for this study. Numerical modeling was performed to predict the bending response of the microcantilevers for various explosive materials, species concentrations, and actuation currents. The experimental validation of the numerical predictions demonstrated that in the presence of different explosive or combustible materials, the microcantilevers exhibited unique trends in their bending responses with increasing values of the actuation current.

  2. Flammability limits and explosion characteristics of toluene-nitrous oxide mixtures.

    Science.gov (United States)

    Vandebroek, L; Van den Schoor, F; Verplaetsen, F; Berghmans, J; Winter, H; van't Oost, E

    2005-04-11

    Flammability limits and explosion characteristics of toluene-nitrous oxide mixtures are experimentally determined in an 8l spherical vessel, and are compared with corresponding values of toluene-air mixtures. The experiments, performed at atmospheric pressure and at an initial temperature of 70 degrees C, show that the flammable range of toluene in nitrous oxide (0.25-22.5 mol%) is about three times as wide as the corresponding range of toluene in air (1.3-7.1 mol%). Maximum values of the explosion pressure ratio and the deflagration index, K(G), are clearly higher when nitrous oxide is applied as an oxidizer. This can be attributed to the increased flame temperature and burning velocity of toluene-nitrous oxide flames. Moreover, extremely high values of K(G) for near-stoichiometric mixtures in combination with strong acoustic oscillations in the pressure signals of these mixtures indicate the existence of a flame accelerating mechanism. These phenomena are enhanced when an initial pressure of 6 bara is applied. Finally, when evaluating the lower flammability limit, it was found that pure nitrous oxide decomposes at pressures above 4.5 bara when applying an ignition energy of about 10 J.

  3. Interference and non-linear properties of four-wave mixing resonances in thermal vapor: analytical results and experimental verification

    CERN Document Server

    Parniak, Michał

    2014-01-01

    We develop a model to calculate non-linear polarization in a non-degenerrate four-wave mixing in diamond configuration which includes the effects of hyperfine structure and Doppler broadening. We verify it against the experiment with $5^{2}S_{1/2}$, $5^{2}P_{3/2}$, $5^{2}D_{3/2}$ and $5^{2}P_{1/2}$ levels of rubidium 85. Uncomplicated algebra enables us to express the non-linear susceptibility of a thermal ensemble in low intensity regime in terms of Voight-like profiles and conforms precisely with the experiment. The agreement is also satisfactory at high intensity and the analytical model correctly predicts the position and shape of resonances. Our intelligible results elucidate the physics of coherent interaction of light with atoms involving higher excited levels in vapors at room temperature, which is used in an increasing range of applications.

  4. Experimental determination of the (vapor + liquid) equilibrium data of binary mixtures of fatty acids by differential scanning calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Matricarde Falleiro, Rafael M. [LPT, Department of Chemical Processes (DPQ), School of Chemical Engineering, University of Campinas (UNICAMP), P.O. Box 6066, 13083-970 Campinas, SP (Brazil); Meirelles, Antonio J.A. [EXTRAE, Department of Food Engineering (DEA), School of Food Engineering, University of Campinas (UNICAMP), P.O. Box 6121, 13083-862 Campinas, SP (Brazil); Kraehenbuehl, Maria A., E-mail: mak@feq.unicamp.b [LPT, Department of Chemical Processes (DPQ), School of Chemical Engineering, University of Campinas (UNICAMP), P.O. Box 6066, 13083-970 Campinas, SP (Brazil)

    2010-01-15

    (Vapor + liquid) equilibrium (VLE) data for three binary mixtures of saturated fatty acids were obtained by differential scanning calorimetry (DSC). However, changes in the calorimeter pressure cell and the use of hermetic pans with holes (phi = 250 mm) in the lids were necessary to make it possible to apply this analytical technique, obtaining accurate results with smaller samples and shorter operational times. The systems evaluated in this study were: myristic acid (C{sub 14:0}) + palmitic acid (C{sub 16:0}), myristic acid (C{sub 14:0}) + stearic acid (C{sub 18:0}), and palmitic acid (C{sub 16:0}) + stearic acid (C{sub 18:0}), all measured at 50 mm Hg and with mole fractions between 0.0 and 1.0 in relation to the most volatile component of each diagram. The fugacity coefficients for the components in the vapor phase were calculated using the Hayden and O'Connell method [J.G. Hayden, J.P. O'Connell, Ind. Eng. Chem. Process Design Develop. 14 (3) (1975) 209-216] and the activity coefficients for the liquid phase were correlated with the traditional g{sup E} models (NRTL [H. Renon, J.M. Prausnitz, Aiche J. 14 (1968) 135-144], UNIQUAC [D.S. Abrams, J.M. Prausnitz, Aiche J. 21 (1975) 116-128], and Wilson [J.M. Prausnitz, N.L. Linchtenthaler, E.G. Azevedo, Molecular Thermodynamics of Fluid-phase Equilibria, River-Prentice Hall, Upper Saddle, 1999]). The sets of parameters were then compared in order to determine which adjustments best represented the VLE.

  5. High Performance Nitrous Oxide Analyzer for Atmospheric Research Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project targets the development of a highly sensitive gas sensor to monitor atmospheric nitrous oxide. Nitrous oxide is an important species in Earth science...

  6. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    Energy Technology Data Exchange (ETDEWEB)

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  7. Experimental study of the vaporization of a droplets injection in a fluidized gas-solid media; Etude experimentale de la vaporisation d'un jet de goutelettes au contact d'un milieu gaz-solide fluidise

    Energy Technology Data Exchange (ETDEWEB)

    Leclere, K.

    2002-09-01

    The quality of feedstock injection in the Fluid Catalytic Process (FCC) is essential to ensure a good vaporization. The vaporization should be fast so that the cracking reaction in the gaseous phase can happen within the short residence time in the riser (a few seconds). Vaporization is helped by a uniform injection of droplets as small as possible as well as a good mixing with the catalyst particles that represent the main heat source. Several models were developed to predict the droplet vaporization in a gas-solid media. However, no experimental validation exists for these models, whose predictions vary (from 1 to several hundreds of milliseconds). The objective of this study was to get a better understanding of the physical phenomena taking place during droplet vaporization. This was done in two steps. First, operating limits had to be defined to ensure an optimal vaporization and to avoid local saturation and agglomerate formation. These limits were precisely determined under laboratory conditions to validate a model that showed that agglomeration does not occur under industrial conditions. Then, a kinematic study of vaporization under operating conditions without agglomerate formation was performed. An original measurement technique was developed to get samples at very short times (tens of milliseconds). Experiments showed that heat transfer was not limiting and that mass transfer was the limiting process during vaporization. The developed model was thus based on mass transfer through a boundary layer. The validation of this model in a dense fluidized bed justified its application to operating conditions were the bed voidance is higher. A detailed study of operating parameters will help determine how to improve vaporization. (author)

  8. Numerical and experimental investigation of DNAPL removal mechanisms in a layered porous medium by means of soil vapor extraction

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hongkyu; Oostrom, Martinus; Wietsma, Thomas W.; Werth, Charles J.; Valocchi, Albert J.

    2009-10-13

    The purpose of this work is to identify the mechanisms that govern the removal of carbon tetrachloride (CT) during soil vapor extraction (SVE) by comparing multiphase flow simulations with a detailed data set from a well-defined two-dimensional flow cell experiment. The flow cell was packed with two sandy soils including an embedded fine-grained sand layer. Gas concentrations at the outlet of the flow cell and 15 sampling ports inside the flow cell were measured during SVE. A dual-energy gamma radiation system was used to measure an initial NAPL saturation profile in a fine-grained sand layer. Imaging result from a dual-energy gamma radiation system with dyed CT mark along CT migration was used to construct the distribution of initial NAPL saturation in the flow cell for input to numerical simulations. Gas concentration results and photographs during SVE were compared to simulation results using a continuum-based multiphase flow simulator, STOMP (Subsurface Transport Over Multiple Phases). The measured effluent gas concentration decreased quickly at first, and then started to decrease gradually, resulting in long-term tailing. CT mass was removed quickly in coarse sand, followed by a slow removal from the fine-grained sand layer. An analytical solution for a one-dimensional advection and first-order volatilization model matched the tailing well with two fitting parameters. However, given detailed knowledge of the permeability field and initial NAPL distribution, we can predict the tailing and gas concentration profiles at sampling ports using equilibrium NAPL volatilization. NAPL flow occurs in the presence of free NAPL, and must be accounted for to accurately predict NAPL removal during the SVE experiment. The model prediction was accurate within the uncertainty of the measured or literature derived parameters (i.e., dispersivity and soil parameters). This study provides insights into the physical mechanisms of NAPL removal from a low permeability zone, and use of

  9. Nitrous oxide emission during wastewater treatment

    NARCIS (Netherlands)

    Kampschreur, M.J.; Temmink, B.G.; Kleerebezem, R.; Jetten, M.S.M.; Loosdrecht, M.C.M.

    2009-01-01

    Nitrous oxide (N2O), a potent greenhouse gas, can be emitted during wastewater treatment, significantly contributing to the greenhouse gas footprint. Measurements at lab-scale and full-scale wastewater treatment plants (WWTPs) have demonstrated that N2O can be emitted in substantial amounts during n

  10. Nitrous oxide emission during wastewater treatment

    NARCIS (Netherlands)

    Kampschreur, M.J.; Temmink, B.G.; Kleerebezem, R.; Jetten, M.S.M.; Loosdrecht, M.C.M.

    2009-01-01

    Nitrous oxide (N2O), a potent greenhouse gas, can be emitted during wastewater treatment, significantly contributing to the greenhouse gas footprint. Measurements at lab-scale and full-scale wastewater treatment plants (WWTPs) have demonstrated that N2O can be emitted in substantial amounts during n

  11. Numerical Modeling and Experimental Validation by Calorimetric Detection of Energetic Materials Using Thermal Bimorph Microcantilever Array: A Case Study on Sensing Vapors of Volatile Organic Compounds (VOCs)

    Science.gov (United States)

    Kang, Seok-Won; Fragala, Joe; Banerjee, Debjyoti

    2015-01-01

    Bi-layer (Au-Si3N4) microcantilevers fabricated in an array were used to detect vapors of energetic materials such as explosives under ambient conditions. The changes in the bending response of each thermal bimorph (i.e., microcantilever) with changes in actuation currents were experimentally monitored by measuring the angle of the reflected ray from a laser source used to illuminate the gold nanocoating on the surface of silicon nitride microcantilevers in the absence and presence of a designated combustible species. Experiments were performed to determine the signature response of this nano-calorimeter platform for each explosive material considered for this study. Numerical modeling was performed to predict the bending response of the microcantilevers for various explosive materials, species concentrations, and actuation currents. The experimental validation of the numerical predictions demonstrated that in the presence of different explosive or combustible materials, the microcantilevers exhibited unique trends in their bending responses with increasing values of the actuation current. PMID:26334276

  12. Numerical Modeling and Experimental Validation by Calorimetric Detection of Energetic Materials Using Thermal Bimorph Microcantilever Array: A Case Study on Sensing Vapors of Volatile Organic Compounds (VOCs

    Directory of Open Access Journals (Sweden)

    Seok-Won Kang

    2015-08-01

    Full Text Available Bi-layer (Au-Si3N4 microcantilevers fabricated in an array were used to detect vapors of energetic materials such as explosives under ambient conditions. The changes in the bending response of each thermal bimorph (i.e., microcantilever with changes in actuation currents were experimentally monitored by measuring the angle of the reflected ray from a laser source used to illuminate the gold nanocoating on the surface of silicon nitride microcantilevers in the absence and presence of a designated combustible species. Experiments were performed to determine the signature response of this nano-calorimeter platform for each explosive material considered for this study. Numerical modeling was performed to predict the bending response of the microcantilevers for various explosive materials, species concentrations, and actuation currents. The experimental validation of the numerical predictions demonstrated that in the presence of different explosive or combustible materials, the microcantilevers exhibited unique trends in their bending responses with increasing values of the actuation current.

  13. A aplicação da neuropsicologia na pesquisa experimental: o exemplo da intoxicação por vapor de mercúrio

    Directory of Open Access Journals (Sweden)

    Anita Taub

    2006-01-01

    Full Text Available O desenvolvimento da neuropsicologia acompanhou a evolução do estudo do cérebro desde os registros mais antigos. A ciência neuropsicológica faz uso de medidas quantitativas de desempenho e tecnologias para produção de neuroimagem que, em conjunto, permitem a observação das relações cérebro-comportamento. No âmbito experimental, a neuropsicologia tem revelado novos conhecimentos na investigação de alterações cognitivas, psicomotoras ou comportamentais associadas a patologias congênitas ou adquiridas. No presente artigo são abordados aspectos históricos da neuropsicologia experimental e apresentados os principais resultados de um estudo referente às alterações neuropsicológicas de pacientes com histórico de intoxicação por vapor de mercúrio, presentes anos após o período de exposição ao metal.

  14. Experimental determination of the retention time of reduced temperature of gas-vapor mixture in trace of water droplets moving in counterflow of combustion products

    Science.gov (United States)

    Volkov, R. S.; Kuznetsov, G. V.; Strizhak, P. A.

    2016-06-01

    We have experimentally studied temporal variation of the temperature of gas-vapor mixture in the trace of water droplets moving in the counterflow of high-temperature combustion products. The initial gas temperature was within 500-950 K. The water droplet radius in the aerosol flow varied from 40 to 400 μm. The motion of water droplets in the counterflow of combustion products in a 1-m-high hollow quartz cylinder with an internal diameter of 20 cm was visualized by optical flow imaging techniques (interferometric particle imaging, shadow photography, particle tracking velocimetry, and particle image velocimetry) with the aid of a cross-correlation complex setup. The scale of temperature decrease in the mixture of combustion products and water droplets was determined for a pulsed (within 1 s) and continuous supply of aerosol with various droplet sizes. Retention times of reduced temperature (relative to the initial level) in trace of water droplets (aerosol temperature trace) are determined. A hypothesis concerning factors responsible for the variation of temperature in the trace of droplets moving in the counterflow of combustion products is experimentally verified.

  15. High-pressure vapor-liquid equilibria of systems containing ethylene glycol, water and methane - Experimental measurements and modeling

    DEFF Research Database (Denmark)

    Folas, Georgios; Berg, Ole J.; Solbraa, Even;

    2007-01-01

    This work presents new experimental phase equilibrium measurements of the binary MEG-methane and the ternary MEG-water-methane system at low temperatures and high pressures which are of interest to applications related to natural gas processing. Emphasis is given to MEG and water solubility...... measurements in the gas phase. The CPA and SRK EoS, the latter using either conventional or EoS/G(E) mixing rules are used to predict the solubility of the heavy components in the gas phase. It is concluded that CPA and SRK using the Huron-Vidal mixing rule perform equally satisfactory, while CPA requires...

  16. Vapor Bubbles

    Science.gov (United States)

    Prosperetti, Andrea

    2017-01-01

    This article reviews the fundamental physics of vapor bubbles in liquids. Work on bubble growth and condensation for stationary and translating bubbles is summarized and the differences with bubbles containing a permanent gas stressed. In particular, it is shown that the natural frequency of a vapor bubble is proportional not to the inverse radius, as for a gas bubble, but to the inverse radius raised to the power 2/3. Permanent gas dissolved in the liquid diffuses into the bubble with strong effects on its dynamics. The effects of the diffusion of heat and mass on the propagation of pressure waves in a vaporous bubbly liquid are discussed. Other topics briefly touched on include thermocapillary flow, plasmonic nanobubbles, and vapor bubbles in an immiscible liquid.

  17. Nitrous oxide and nitrate concentration in under-drainage from arable fields subject to diffuse pollution mitigation measures

    Science.gov (United States)

    Hama-Aziz, Zanist; Hiscock, Kevin; Adams, Christopher; Reid, Brian

    2016-04-01

    Atmospheric nitrous oxide concentrations are increasing by 0.3% annually and a major source of this greenhouse gas is agriculture. Indirect emissions of nitrous oxide (e.g. from groundwater and surface water) account for about quarter of total nitrous oxide emissions. However, these indirect emissions are subject to uncertainty, mainly due to the range in reported emission factors. It's hypothesised in this study that cover cropping and implementing reduced (direct drill) cultivation in intensive arable systems will reduce dissolved nitrate concentration and subsequently indirect nitrous oxide emissions. To test the hypothesis, seven fields with a total area of 102 ha in the Wensum catchment in eastern England have been chosen for experimentation together with two fields (41 ha) under conventional cultivation (deep inversion ploughing) for comparison. Water samples from field under-drainage have been collected for nitrate and nitrous oxide measurement on a weekly basis from April 2013 for two years from both cultivation areas. A purge and trap preparation line connected to a Shimadzu GC-8A gas chromatograph fitted with an electron capture detector was used for dissolved nitrous oxide analysis. Results revealed that with an oilseed radish cover crop present, the mean concentration of nitrate, which is the predominant form of N, was significantly depleted from 13.9 mg N L-1 to 2.5 mg N L-1. However, slightly higher mean nitrous oxide concentrations under the cover crop of 2.61 μg N L-1 compared to bare fields of 2.23 μg N L-1 were observed. Different inversion intensity of soil tended to have no effect on nitrous oxide and nitrate concentrations. The predominant production mechanism for nitrous oxide was nitrification process and the significant reduction of nitrate was due to plant uptake rather than denitrification. It is concluded that although cover cropping might cause a slight increase of indirect nitrous oxide emission, it can be a highly effective

  18. ESTIMATES OF THE ERROR OF EXPERIMENTAL DATA AT STUDIES OF DENSITY AND THE SATURATED VAPOR PRESSURE (SVP PETROLEUM PRODUCTS

    Directory of Open Access Journals (Sweden)

    Kharchenko P. M.

    2015-10-01

    Full Text Available At calculations, we have used the next assumptions: 1. Not excluded systematic errors distributed with equal probability; 2. Random errors are normally distributed; 3. Total error is the composition of not excluded systematic and random errors. In calculating of measurement error of pressure, we proceeded from working formula. The confidence interval of each variable less than instrumental error, therefore, to characterize the total error of the measured value P, we use the instrumental errors of all variables. In estimating of temperature measurement error was consider the systematic and random error. To estimate random error we used measurement data of the specific volume of water on six isotherms. Obtained values were compared with published data. As an approximate estimate of the random error of our experimental data, we can take it as a total for all the isotherms of the specific volume in comparison with the published data. For studied fractions confidence limit of total error of measurement results located in the range of 0,03 ч 0,1%. At temperatures close to the critical increasing influence of errors of reference and the error associated with the introduction of corrections on the thermal expansion of the piezometer. In the two-phase area confidence limit of total error increases and located between 0,08 ч 0,15%. This is due to the sharp increase in this area of reference error of pressure and error in determining to the weight of the substance in the piezometer

  19. Nitrous oxide production associated with coastal marine invertebrates

    DEFF Research Database (Denmark)

    Heisterkamp, Ines Maria; Schramm, Andreas; de Beer, Dirk

    2010-01-01

    with an experimentally cleaned shell. Thus, the N2O production associated with marine invertebrates is apparently not due to gut denitrification in every species, but may also result from microbial activity on the external surfaces of animals. The high abundance and potential N2O emission rates of many marine......Several freshwater and terrestrial invertebrate species emit the greenhouse gas nitrous oxide (N2O). The N2O production associated with these animals was ascribed to incomplete denitrification by ingested sediment or soil bacteria. The present study shows that many marine invertebrates also emit N2...... gut by incomplete denitrification. Statistical analysis revealed that body weight, habitat, and exoskeletal biofilms were important determinants of animal-associated N2O production. The snail Hinia reticulata emitted about 3.5 times more N2O with an intact exoskeletal biofilm on its shell than...

  20. Polarographic determination of metyrosine through treatment with nitrous acid.

    Science.gov (United States)

    Aly, F A; Belal, F; el-Brashy, A

    1993-10-15

    A simple and sensitive polarographic method is described for the determination of metyrosine through treatment with nitrous acid. The different experimental parameters affecting the derivatization process, as well as the polarographic analysis were studied. The derivatization product was found to be reducible at the dropping mercury electrode over the whole pH range in Britton Robinson buffers. At pH 5, a well-defined diffusion-controlled cathodic wave was produced. The limiting current versus the concentration plot was linear over the range 8-80 mumol/l in the direct current mode with a detection limit of 0.2 mumol/l. The method was then applied to the determination of metyrosine capsules, and the results obtained were in good agreement with those given by the USP method.

  1. Greenhouse effect due to atmospheric nitrous oxide

    Science.gov (United States)

    Yung, Y. L.; Wang, W. C.; Lacis, A. A.

    1976-01-01

    The greenhouse effect due to nitrous oxide in the present atmosphere is about 0.8 K. Increase in atmospheric N2O due to perturbation of the nitrogen cycle by man may lead to an increase in surface temperature as large as 0.5 K by 2025, or 1.0 K by 2100. Other climatic effects of N2O are briefly discussed.

  2. Closing the Gaps in the Budgets of Methane and Nitrous Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Aslam; Rice, Andrew; Rasmussen, Reinhold

    2013-11-22

    Together methane and nitrous oxide contribute almost 40% of the estimated increase in radiative forcing caused by the buildup of greenhouse gases during the last 250 years (IPCC, 2007). These increases are attributed to human activities. Since the emissions of these gases are from biogenic sources and closely associated with living things in the major terrestrial ecosystems of the world, climate change is expected to cause feedbacks that may further increase emissions even from systems normally classified as natural. Our results support the idea that while past increases of methane were driven by direct emissions from human activities, some of these have reached their limits and that the future of methane changes may be determined by feedbacks from warming temperatures. The greatly increased current focus on the arctic and the fate of the carbon frozen in its permafrost is an example of such a feedback that could exceed the direct increases caused by future human activities (Zimov et al. 2006). Our research was aimed at three broad areas to address open questions about the global budgets of methane and nitrous oxide. These areas of inquiry were: The processes by which methane and nitrous oxide are emitted, new sources such as trees and plants, and integration of results to refine the global budgets both at present and of the past decades. For the process studies the main research was to quantify the effect of changes in the ambient temperature on the emissions of methane and nitrous oxide from rice agriculture. Additionally, the emissions of methane and nitrous oxide under present conditions were estimated using the experimental data on how fertilizer applications and water management affect emissions. Rice was chosen for detailed study because it is a prototype system of the wider terrestrial source, its role in methane emissions is well established, it is easy to cultivate and it represents a major anthropogenic source. Here we will discuss the highlights of the

  3. Closing the Gaps in the Budgets of Methane and Nitrous Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Aslam; Rice, Andrew; Rasmussen, Reinhold

    2013-11-22

    Together methane and nitrous oxide contribute almost 40% of the estimated increase in radiative forcing caused by the buildup of greenhouse gases during the last 250 years (IPCC, 2007). These increases are attributed to human activities. Since the emissions of these gases are from biogenic sources and closely associated with living things in the major terrestrial ecosystems of the world, climate change is expected to cause feedbacks that may further increase emissions even from systems normally classified as natural. Our results support the idea that while past increases of methane were driven by direct emissions from human activities, some of these have reached their limits and that the future of methane changes may be determined by feedbacks from warming temperatures. The greatly increased current focus on the arctic and the fate of the carbon frozen in its permafrost is an example of such a feedback that could exceed the direct increases caused by future human activities (Zimov et al. 2006). Our research was aimed at three broad areas to address open questions about the global budgets of methane and nitrous oxide. These areas of inquiry were: The processes by which methane and nitrous oxide are emitted, new sources such as trees and plants, and integration of results to refine the global budgets both at present and of the past decades. For the process studies the main research was to quantify the effect of changes in the ambient temperature on the emissions of methane and nitrous oxide from rice agriculture. Additionally, the emissions of methane and nitrous oxide under present conditions were estimated using the experimental data on how fertilizer applications and water management affect emissions. Rice was chosen for detailed study because it is a prototype system of the wider terrestrial source, its role in methane emissions is well established, it is easy to cultivate and it represents a major anthropogenic source. Here we will discuss the highlights of the

  4. Experimental measurement of vapor pressures and (vapor + liquid) equilibrium for {l_brace}1,1,1,2-tetrafluoroethane (R134a) + propane (R290){r_brace} by a recirculation apparatus with view windows

    Energy Technology Data Exchange (ETDEWEB)

    Dong Xueqiang [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Gong Maoqiong, E-mail: gongmq@mail.ipc.ac.c [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China); Liu Junsheng [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Wu Jianfeng, E-mail: jfwu@mail.ipc.ac.c [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China)

    2011-03-15

    The saturated vapor pressures of 1,1,1,2-tetrafluoroethane (R134a) and propane (R290), and the (vapor + liquid) equilibrium (VLE) data at (255.000, 265.000, 275.000, and 285.000) K for the (R134a + R290) system were measured by a recirculation apparatus with view windows. The uncertainty of the temperatures, pressures, and compositions are less than {+-}5 mK, {+-}0.0005 MPa, and {+-}0.005, respectively. The saturated vapor pressures data were correlated by a Wagner type equation and compared with the reference data. The binary VLE data were correlated with the Peng-Robinson equation of state (PR EoS) incorporating the Huron-Vidal (HV) mixing rule utilizing the nonrandom two-liquid (NRTL) activity coefficient model. For mixtures, the maximum average absolute relative deviation of pressure is 0.15%, while the maximum average absolute deviation of vapor phase mole fraction is 0.0045. Azeotropic behavior can be found for the (R134a + R290) system at measured temperatures.

  5. Thermocamera studies of nitrous oxide dispersion in the dental surgery

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, P.; Hallen, B.; Hallonsten, A.L.; Ljungqvist, B.

    1983-06-01

    Nitrous oxide is used in dentistry for sedation and analgesia. Chronic occupational exposure of dental personnel to trace concentrations of nitrous oxide has been reported as a potential health hazard. A new application of the thermocamera technique was used to study the dispersion of nitrous oxide during dental analgesia. Four breathing systems with different evacuation systems were tested and found to vary in scavenging efficiency. A local exhaust system ensured minimal exposure when nitrous oxide leaks contaminating the air in the dentist's breathing zone occur.

  6. Experimental Study of the Distribution of Au and Cu in Aqueous Vapor Phase at High Temperatures and Its Role on Ore-forming Transportation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ronghua; HU Shumin; ZHANG Xuetong

    2008-01-01

    This study focuses on experiments of Au and Cu dissolved in vapor phase in hydrothernmlfluids. Experiments prove that Au and Cu can re-distribute in vapor phase and liquid phase duringseparation of Au- and Cu-bearing supercriticai fluids to vapor and liquid phases. These experimentalresults can illustrate some ore geneses, where boiling phenomena of ore fluids were found. Au- and Cu-bearing NaHCO3-HCl solutions were heated up to more than 350℃ in the main vessel, and then passedthrough a phase separator in a temperature range from 250oC to 300℃, separated into vapor andliquid phases. We collected and analyzed the liquid and vapor samples separately, and found that Auand Cu dissolved and distributed in vapor phase. In some cases, the concentrations of Au and Cu invapor are higher than those in liquid phase. Those experiments are used to interpret field observationsof fluid inclusion data of some Au and Cu deposits, and demonstrate that some Au and Cu ore depositsare derived from metals transportation in vapor phase.

  7. Theoretical and experimental studies on freezing point depression and vapor pressure deficit as methods to measure osmotic pressure of aqueous polyethylene glycol and bovine serum albumin solutions.

    Science.gov (United States)

    Kiyosawa, Keitaro

    2003-05-01

    For survival in adverse environments where there is drought, high salt concentration or low temperature, some plants seem to be able to synthesize biochemical compounds, including proteins, in response to changes in water activity or osmotic pressure. Measurement of the water activity or osmotic pressure of simple aqueous solutions has been based on freezing point depression or vapor pressure deficit. Measurement of the osmotic pressure of plants under water stress has been mainly based on vapor pressure deficit. However, differences have been noted for osmotic pressure values of aqueous polyethylene glycol (PEG) solutions measured by freezing point depression and vapor pressure deficit. For this paper, the physicochemical basis of freezing point depression and vapor pressure deficit were first examined theoretically and then, the osmotic pressure of aqueous ethylene glycol and of PEG solutions were measured by both freezing point depression and vapor pressure deficit in comparison with other aqueous solutions such as NaCl, KCl, CaCl(2), glucose, sucrose, raffinose, and bovine serum albumin (BSA) solutions. The results showed that: (1) freezing point depression and vapor pressure deficit share theoretically the same physicochemical basis; (2) theoretically, they are proportional to the molal concentration of the aqueous solutions to be measured; (3) in practice, the osmotic pressure levels of aqueous NaCl, KCl, CaCl(2), glucose, sucrose, and raffinose solutions increase in proportion to their molal concentrations and there is little inconsistency between those measured by freezing point depression and vapor pressure deficit; (4) the osmotic pressure levels of aqueous ethylene glycol and PEG solutions measured by freezing point depression differed from the values measured by vapor pressure deficit; (5) the osmotic pressure of aqueous BSA solution measured by freezing point depression differed slightly from that measured by vapor pressure deficit.

  8. Vapor phase heat transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Hedstrom, J.C.; Neeper, D.A.

    1985-09-01

    This report describes progress in theoretical and experimental investigations of various forms of a vapor transport system for solar space heating, which could also be applied to service water heating. Refrigerant is evaporated in a solar collector, which may be located on the external wall or roof of a building. The vapor is condensed in a passively discharged thermal storage unit located within the building. The condensed liquid can be returned to the collector either by a motor-driven pump or by a completely passive self-pumping mechanism in which the vapor pressure lifts the liquid from the condenser to the collector. The theoretical investigation analyzes this self-pumping scheme. Experiments in solar test cells compare the operation of both passive and active forms of the vapor system with the operation of a passive water wall. The vapor system operates as expected, with potential advantages over other passive systems in design flexibility and energy yield.

  9. Dependence of riverine nitrous oxide emissions on dissolved oxygen levels

    Science.gov (United States)

    Rosamond, Madeline S.; Thuss, Simon J.; Schiff, Sherry L.

    2012-10-01

    Nitrous oxide is a potent greenhouse gas, and it destroys stratospheric ozone. Seventeen per cent of agricultural nitrous oxide emissions come from the production of nitrous oxide in streams, rivers and estuaries, in turn a result of inorganic nitrogen input through leaching, runoff and sewage. The Intergovernmental Panel on Climate Change and global nitrous oxide budgets assume that riverine nitrous oxide emissions increase linearly with dissolved inorganic nitrogen loads, but data are sparse and conflicting. Here we report measurements over two years of nitrous oxide emissions in the Grand River, Canada, a seventh-order temperate river that is affected by agricultural runoff and outflow from a waste-water treatment plant. Emissions were disproportionately high in urban areas and during nocturnal summer periods. Moreover, annual emission estimates that are based on dissolved inorganic nitrogen loads overestimated the measured emissions in a wet year and underestimated them in a dry year. We found no correlations of nitrous oxide emissions with nitrate or dissolved inorganic nitrogen, but detected negative correlations with dissolved oxygen, suggesting that nitrate concentrations did not limit emissions. We conclude that future increases in nitrate export to rivers will not necessarily lead to higher nitrous oxide emissions, but more widespread hypoxia most likely will.

  10. Catalytic abatement of nitrous oxide from nitric and production

    NARCIS (Netherlands)

    Oonk, J.

    1998-01-01

    Nitric acid production is identified as a main source of nitrous oxide. Options for emission reduction however are not available. TNO and Hydro Agri studied the technological and economic feasibility of catalytic decomposition of nitrous oxide in nitric acid tail-gases. Although in literature promis

  11. Experimental Line List of Water Vapor Absorption Lines in the Spectral Ranges 1850 - 2280 CM-1 and 2390-4000 CM-1

    Science.gov (United States)

    Loos, Joep; Birk, Manfred; Wagner, Georg

    2017-06-01

    A new experimental line parameter list of water vapor absorption lines in the spectral ranges 1850 - 2280 cm-1 and 2390 - 4000 cm-1 is presented. The line list is based on the analysis of several transmittance spectra measured using a Bruker IFS 125 HR high resolution Fourier transform spectrometer. A total of 54 measurements of pure water and water/air-mixtures at 296 K as well as water/air-mixtures at high and low temperatures were performed. A multispectrum fitting approach was used applying a quadratic speed-dependent hard collision line shape model in the Hartmann-Tran implementation extended to account for line mixing in the Rosenkranz approximation in order to retrieve line positions, intensities, self- and air-broadening parameters, their speed-dependence, self- and air-shifts as well as line mixing and in some cases collisional narrowing parameters. Additionally, temperature dependence parameters for widths, shifts and in a few cases line mixing were retrieved. For every parameter an extensive error estimation calculation was performed identifying and specifying systematic error sources. The resulting parameters are compared to the databases HITRAN12 as well as experimental values. For intensities, a detailed comparison to results of recent ab initio calculations performed at University College London was done showing an agreement within 2 % for a majority of the data. However, for some bands there are systematic deviations attributed to ab initio calculation errors. .H. Ngo et al. JQSRT 129, 89-100 (2013) doi:10.1016/j.jqsrt.2013.05.034; JQSRT 134, 105 (2014) doi:10.1016/j.jqsrt.2013.10.016. H. Tran et al. JQSRT 129, 199-203 (2013) doi:10.1016/j.jqsrt.2013.06.015; JQSRT 134, 104 (2014) doi:10.1016/j.jqsrt.2013.10.015. L.S. Rothman et al. JQSRT 130, 4-50 (2013) doi:10.1016/j.jqsrt.2013.07.002. N. Jacquinet-Husson et al. JMS 112, 2395-2445 (2016) doi:10.1016/j.jms.2016.06.007.

  12. Experimental measurement of the solubility of bismuth phases in water vapor from 220 deg. C to 300 deg. C: Implications for ore formation

    Energy Technology Data Exchange (ETDEWEB)

    Kruszewski, Jason M. [Department of Geological Sciences, University of Idaho, Moscow, ID 83844-3022 (United States); Wood, Scott A., E-mail: swood@uidaho.edu [Department of Geological Sciences, University of Idaho, Moscow, ID 83844-3022 (United States)

    2009-04-15

    Preliminary measurements were carried out of the solubility of the O{sub 2-}buffering assemblage bismuth + bismite (Bi{sub 2}O{sub 3}) in aqueous liquid-vapor and vapor-only systems at temperatures of 220, 250 and 300 deg. C. All experiments were carried out in Ti reaction vessels and were designed such that the Bi solids were contained in a silica tube that prevented contact with liquid water at any time during the experiment. Two blank (no Bi solids present) liquid-vapor experiments at 220 deg. C yielded Bi concentrations ({+-}1{sigma}) in the condensed liquid of 0.22 {+-} 0.02 mg/L, whereas the solubility measurements at this temperature yielded an average value of approximately 6 {+-} 9 mg/L, with replicate experiments ranging from 0.3 to 26 mg/L. Although the 6 mg/L value is associated with a considerable degree of uncertainty, the experiments do indicate transport of Bi through the vapor phase. Measured Bi concentrations in the condensed liquid at 250 deg. C were in the same range as those at 220 deg. C, whereas those at 300 deg. C were significantly lower (i.e., all below the blank value). Vapor-only experiments necessarily contained much smaller initial volumes of water, thereby making the results more susceptible to contamination. Single blank runs at 220 and 300 deg. C yielded Bi concentrations of 82 and 16 mg/L, respectively. Measured concentrations ({+-}1{sigma}) of Bi in the vapor-only solubility experiments at 220 deg. C were 235 {+-} 78 mg/L for an initial water volume of 0.5 mL, and at 300 deg. C were 56 {+-} 30 mg/L and 33 {+-} 21 for initial water volumes of 1 and 2 mL, respectively, suggesting strong preferential partitioning of Bi into the vapor. The results indicate a negative dependence of Bi solubility on temperature, but are inconclusive with respect to the dependence of Bi solubility on water density or fugacity. The experiments reported here suggest that significant Bi transport is possible in the vapor phase. Comparison of the liquid-vapor

  13. Determination of emissions of methane and nitrous oxide in rice plantations in Guanacaste, Costa Rica

    Directory of Open Access Journals (Sweden)

    Jorge Herrera

    2013-12-01

    Full Text Available Methane and nitrous oxide emissions fluxes were measured in 10 rice plantations located in Liberia, Guanacaste, working at least with 04 varieties of rice and two types of soil in the period August 2012 - April 2013. For the determination of flows static camera technique were used taking four air gas samples located in the headspace of the chamber using a plastic syringe of 12 ml at 0, 10, 20 and 30 min after camera location. The gas samples were analyzed with a gas chromatograph, equipped with FID and ECD. Averages of flow methane and nitrous oxide were recorded between 0,12 to 1,9 kg ha-1d-1 and 0,11 - 1,1 mg ha-1d-1, respectively, and no significant difference was found (p < 0,05 in the values between different rice varieties and soil types subject experimental design.

  14. Nitrous Oxide Emission by Aquatic Macrofauna

    DEFF Research Database (Denmark)

    Stief, Peter; Nielsen, Lars Peter; Schramm, Andreas

    -term metabolic induction of gut denitrification is the preferential production of nitrous oxide rather than dinitrogen. These observations were made in detailed studies on the larvae of the freshwater insects Chironomus plumosus and Ephemera danica which both can be very abundant in lake and stream sediments......Many macrofauna species co-ingest large quantities of microorganisms some of which survive the gut passage. Denitrifying bacteria, in particular, become metabolically induced by anoxic conditions, nitrate, and labile organic compounds in the gut of invertebrates. A striking consequence of the short...

  15. Biochar and soil nitrous oxide emissions

    Directory of Open Access Journals (Sweden)

    Carlos Francisco Brazão Vieira Alho

    2012-05-01

    Full Text Available The objective of this work was to evaluate the effect of biochar application on soil nitrous oxide emissions. The experiment was carried out in pots under greenhouse conditions. Four levels of ground commercial charcoal of 2 mm (biochar were evaluated in a sandy Albaqualf (90% of sand: 0, 3, 6, and 9 Mg ha-1. All treatments received 100 kg ha-1 of N as urea. A cubic effect of biochar levels was observed on the N2O emissions. Biochar doses above 5 Mg ha-1 started to mitigate the emissions in the evaluated soil. However, lower doses promote the emissions.

  16. Dose-response and concentration-response relation of rocuronium infusion during propofol nitrous oxide and isoflurane nitrous oxide anaesthesia

    NARCIS (Netherlands)

    Kansanaho, M; Olkkola, KT; Wierda, JMKH

    1997-01-01

    The dose-response and concentration-response relation of rocuronium infusion was studied in 20 adult surgical patients during proporfol-nitrous oxide and isoflurane (1 MAC) -nitrous oxide anaesthesia. Neuromuscular block was kept constant, initially at 90% and then at 50% with a closed-loop feedback

  17. Management matters: Testing a mitigation strategy of nitrous oxide emissions on managed grassland

    Science.gov (United States)

    Fuchs, Kathrin; Hörtnagl, Lukas; Eugster, Werner; Koller, Patrick; Käslin, Florian; Merbold, Lutz

    2017-04-01

    The magnitude of greenhouse gas (GHG) exchange between managed grasslands and the atmosphere depends besides climate predominantly on management practices. While natural or extensively managed grasslands are known to function as GHG sinks, intensively managed grasslands are characterized by substantial nitrous oxide (N2O) emissions diminishing their sink function. One potential N2O mitigation strategy is to reduce the required amount of nitrogen (N) fertilizer input by using biological nitrogen fixation (BNF) via legumes. However, the effect of legumes on nitrous oxide emissions is still not fully understood. In this study we quantify net GHG fluxes from two differently managed grassland parcels (mitigation, control) and relate our results to productivity (yields). In addition, we aim at revealing the influence of various driver variables on N2O exchange. Our experimental setup consisted of an eddy covariance tower that measured the net exchange of the three major anthropogenic GHGs, nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2). Both grassland parcels can be covered with this tower due to two prevailing wind directions. GHG flux measurements were accompanied by measurements of commonly known driver variables such as water filled pore space, soil temperature, soil oxygen concentrations and mineral N to disentangle the soil meteorological influence of N2O fluxes from human drivers. Following organic fertilizer application, we measured elevated N2O emissions (>1 nmol m-2 s-1) at the control parcel and unchanged N2O emissions at the treatment parcel. Net annual fluxes were 54% and 50% lower at the experimental parcel in 2015 and 2016, respectively. Annual yields did not significantly differ between parcels, but were slightly lower at the experimental parcel compared to the control parcel. Significantly lower nitrous oxide fluxes under experimental management indicate that nitrous oxide emissions can be effectively reduced at very low costs with a clover

  18. Simulation of nitrous oxide effluxes, crop yields and soil physical properties using the LandscapeDNDC model in managed ecosystem

    Science.gov (United States)

    Nyckowiak, Jedrzej; Lesny, Jacek; Haas, Edwin; Juszczak, Radoslaw; Kiese, Ralf; Butterbach-Bahl, Klaus; Olejnik, Janusz

    2014-05-01

    Modeling of nitrous oxide emissions from soil is very complex. Many different biological and chemical processes take place in soils which determine the amount of emitted nitrous oxide. Additionaly, biogeochemical models contain many detailed factors which may determine fluxes and other simulated variables. We used the LandscapeDNDC model in order to simulate N2O emissions, crop yields and soil physical properties from mineral cultivated soils in Poland. Nitrous oxide emissions from soils were modeled for fields with winter wheat, winter rye, spring barley, triticale, potatoes and alfalfa crops. Simulations were carried out for the plots of the Brody arable experimental station of Poznan University of Life Science in western Poland and covered the period 2003 - 2012. The model accuracy and its efficiency was determined by comparing simulations result with measurements of nitrous oxide emissions (measured with static chambers) from about 40 field campaigns. N2O emissions are strongly dependent on temperature and soil water content, hence we compared also simulated soil temperature at 10cm depth and soil water content at the same depth with the daily measured values of these driving variables. We compared also simulated yield quantities for each individual experimental plots with yield quantities which were measured in the period 2003-2012. We conclude that the LandscapeDNDC model is capable to simulate soil N2O emissions, crop yields and physical properties of soil with satisfactorily good accuracy and efficiency.

  19. Nitrous Oxide/Paraffin Hybrid Rocket Engines

    Science.gov (United States)

    Zubrin, Robert; Snyder, Gary

    2010-01-01

    Nitrous oxide/paraffin (N2OP) hybrid rocket engines have been invented as alternatives to other rocket engines especially those that burn granular, rubbery solid fuels consisting largely of hydroxyl- terminated polybutadiene (HTPB). Originally intended for use in launching spacecraft, these engines would also be suitable for terrestrial use in rocket-assisted takeoff of small airplanes. The main novel features of these engines are (1) the use of reinforced paraffin as the fuel and (2) the use of nitrous oxide as the oxidizer. Hybrid (solid-fuel/fluid-oxidizer) rocket engines offer advantages of safety and simplicity over fluid-bipropellant (fluid-fuel/fluid-oxidizer) rocket en - gines, but the thrusts of HTPB-based hybrid rocket engines are limited by the low regression rates of the fuel grains. Paraffin used as a solid fuel has a regression rate about 4 times that of HTPB, but pure paraffin fuel grains soften when heated; hence, paraffin fuel grains can, potentially, slump during firing. In a hybrid engine of the present type, the paraffin is molded into a 3-volume-percent graphite sponge or similar carbon matrix, which supports the paraffin against slumping during firing. In addition, because the carbon matrix material burns along with the paraffin, engine performance is not appreciably degraded by use of the matrix.

  20. Photo release of nitrous oxide from the hyponitrite ion studied by infrared spectroscopy. Evidence for the generation of a cobalt-N2O complex. Experimental and DFT calculations

    Science.gov (United States)

    Chacón Villalba, M. Elizabeth; Franca, Carlos A.; Güida, Jorge A.

    2017-04-01

    The solid state photolysis of sodium, silver and thallium hyponitrite (M2N2O2, M = Na, Ag, Tl) salts and a binuclear complex of cobalt bridged by hyponitrite ([Co(NH3)5-N(O)-NO-Co(NH3)5]4 +) were studied by irradiation with visible and UV light in the electronic absorption region. The UV-visible spectra for free hyponitrite ion and binuclear complex of cobalt were interpreted in terms of Density Functional Theory calculations in order to explain photolysis behavior. The photolysis of each compound depends selectively on the irradiation wavelength. Irradiation with 340-460 nm light and with the 488 nm laser line generates photolysis only in silver and thallium hyponitrite salts, while 253.7 nm light photolyzed all the studied compounds. Infrared spectroscopy was used to follow the photolysis process and to identify the generated products. Remarkably, gaseous N2O was detected after photolysis in the infrared spectra of sodium, silver, and thallium hyponitrite KBr pellets. The spectra for [Co(NH3)5-N(O)-NO-Co(NH3)5]4 + suggest that one cobalt ion remains bonded to N2O from which the generation of a [(NH3)5CoNNO]+ 3 complex is inferred. Density Functional Theory (DFT) based calculations confirm the stability of this last complex and provide the theoretical data which are used in the interpretation of the electronic spectra of the hyponitrite ion and the cobalt binuclear complex and thus in the elucidation of their photolysis behavior. Carbonate ion is also detected after photolysis in all studied compounds, presumably due to the reaction of atmospheric CO2 with the microcrystal surface reaction products. Kinetic measurements for the photolysis of the binuclear complex suggest a first order law for the intensity decay of the hyponitrite IR bands and for the intensity increase in the N2O generation. Predicted and experimental data are in very good agreement.

  1. 饱和蒸汽压式波纹管疏水阀热动元件实验研究%Experimental study on the saturated vapor pressure type thermostatic bellows for steam traps

    Institute of Scientific and Technical Information of China (English)

    李树勋; 徐登伟; 把桥环

    2011-01-01

    针对液体膨胀式波纹管蒸汽疏水阀排量不稳定、漏汽率高等问题,分析波纹管热动元件的热工特性.基于Riedel蒸汽压方程和气液平衡方程,建立饱和蒸汽压式波纹管热动元件的热力学模型,设计相应实验系统,进行不同参数下的实验研究.结果表明,饱和蒸汽压式波纹管热动元件伸长量是相变温度的单值函数,近似呈指数关系;采用不同混合比、刚度及填充方式,可调节疏水阀的排水过冷度.%In view of the instabilities of displacement and high steam leakage rate for the liquid-expansion type ther-mostatic bellows steam traps, thermodynamic characteristical of thermostatic bellows was analyzed. Based on the Riedel equation and the vapor-liquid equilibrium equation, thermodynamic model of the saturated vapor pressure type thermostatic bellows was set up, corresponding experimental system was designed, and experimental studies with different parameters was carried out. The experimental results agree well with the theoretical analysis. The results show that the elongation A/I of the saturated vapor pressure type thermostatic bellows is monodrome function of phase transition temperature T, and relationship between the elongation A/I and the phase change temperature t is an exponential function. The subcooled temperature of steam trap can be adjusted by using different mixture ratio, different bellows' stiffness and different sufficient attire method. This paper establishes theoretical and experimental foundation for improving the performance of thermostatic bellows steam traps.

  2. Petroleum Vapor Intrusion

    Science.gov (United States)

    One type of vapor intrusion is PVI, in which vapors from petroleum hydrocarbons such as gasoline, diesel, or jet fuel enter a building. Intrusion of contaminant vapors into indoor spaces is of concern.

  3. Reducing nitrous oxide emissions from agroecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Desjardins, R. L.; Keng, J. C.; Haugen-Kozyra, K. L. [eds.

    1999-08-01

    Nitrous oxide accounts for over 60 per cent of agricultural greenhouse gases (GHG) emissions. Since agriculture is by far the largest source of nitrous oxide emissions, it is appropriate that the industry attempts to find its own specific technologies and solutions to reducing GHG emission. This international workshop was conceived, planned, and organized as part of a collaborative effort with partners across Canada to review the state of the science and identify research needed to better measure and reduce emissions of N{sub 2}O from agroecosystems. Major topics covered included (1) modelling and scaling losses in N{sub 2}O estimates; (2) effects of farming practices on N{sub 2}O emissions; (3) mitigation approaches for agriculture; and (4) development of a science plan. There were 67 Canadian and international participants including eight international guest speakers. The proceedings contains 20 technical papers, group reports and a science plan which attempts to summarize the presentations and discussions at the workshop. Recommendations for actions in the longer-term included developing improved databases, standardizing procedures for measuring N{sub 2}O emissions, increasing understanding of the processes associated with nitrification and denitrification to improve N{sub 2}O models, and developing management strategies to mitigate emissions of N{sub 2}O and to foster sustainability of the agricultural industry. Short-term recommendations dealt with improving the modeling capability for quantifying N{sub 2}O emissions from agroecosystems, quantifying N{sub 2}O losses associated with efforts to increase carbon sequestration in soils and obtaining independent flux measurements of N{sub 2}O at a field scale and at a regional scale to evaluate and validate model estimates.

  4. Complexation of Nitrous Oxide by Frustrated Lewis Pairs

    NARCIS (Netherlands)

    Otten, Edwin; Neu, Rebecca C.; Stephan, Douglas W.

    2009-01-01

    Frustrated Lewis pairs comprised of a basic yet sterically encumbered phosphine with boron Lewis acids bind nitrous oxide to give intact PNNOB linkages. The synthesis, structure, and bonding of these species are described.

  5. Nitrous Oxide Liquid Injection Thrust Vector Control System Testing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A Nitrous Oxide-fed Liquid Thrust Vector Control system is proposed as an efficient method for vehicle attitude control during powered flight. Pulled from a N2O main...

  6. Carbon dioxide and nitrous oxide in the North Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.; Naqvi, S.W.A.; Jayakumar, D.A.; George, M.D.; Narvekar, P.V.; DeSousa, S.N.

    The understanding of biogeochemical cycling of carbon dioxide and nitrous oxide in the oceans is essential for predicting the fate of anthropogenically emitted components. The North Indian Ocean, with its diverse regimes, provides us with a natural...

  7. Miniature Nontoxic Nitrous Oxide-Propane (MINNOP) Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop the Miniature Nontoxic Nitrous Oxide-Propane (MINNOP) propulsion system, a small bipropellant propulsion system which we offer as an...

  8. An assessment of the liquid-gas partitioning behavior of major wastewater odorants using two comparative experimental approaches: liquid sample-based vaporization vs. impinger-based dynamic headspace extraction into sorbent tubes.

    Science.gov (United States)

    Iqbal, Mohammad Asif; Kim, Ki-Hyun; Szulejko, Jan E; Cho, Jinwoo

    2014-01-01

    The gas-liquid partitioning behavior of major odorants (acetic acid, propionic acid, isobutyric acid, n-butyric acid, i-valeric acid, n-valeric acid, hexanoic acid, phenol, p-cresol, indole, skatole, and toluene (as a reference)) commonly found in microbially digested wastewaters was investigated by two experimental approaches. Firstly, a simple vaporization method was applied to measure the target odorants dissolved in liquid samples with the aid of sorbent tube/thermal desorption/gas chromatography/mass spectrometry. As an alternative method, an impinger-based dynamic headspace sampling method was also explored to measure the partitioning of target odorants between the gas and liquid phases with the same detection system. The relative extraction efficiency (in percent) of the odorants by dynamic headspace sampling was estimated against the calibration results derived by the vaporization method. Finally, the concentrations of the major odorants in real digested wastewater samples were also analyzed using both analytical approaches. Through a parallel application of the two experimental methods, we intended to develop an experimental approach to be able to assess the liquid-to-gas phase partitioning behavior of major odorants in a complex wastewater system. The relative sensitivity of the two methods expressed in terms of response factor ratios (RFvap/RFimp) of liquid standard calibration between vaporization and impinger-based calibrations varied widely from 981 (skatole) to 6,022 (acetic acid). Comparison of this relative sensitivity thus highlights the rather low extraction efficiency of the highly soluble and more acidic odorants from wastewater samples in dynamic headspace sampling.

  9. Clinical study of diffusion hypoxia after nitrous oxide analgesia.

    OpenAIRE

    Quarnstrom, F. C.; Milgrom, P.; Bishop, M. J.; DeRouen, T. A.

    1991-01-01

    In order to estimate the incidence of diffusion hypoxia, arterial oxygen saturation was measured in 104 healthy adult dental patients who were administered nitrous oxide-oxygen analgesia and who did not receive postcessation oxygen. Pretreatment saturation levels as determined by pulse oximetry ranged from 93% to 100%. When the nitrous oxide-oxygen administration ceased, the saturation levels were from 95% to 100%. The mean saturation dropped about 2% over the next 4 min and then stabilized. ...

  10. 酒精-水混合蒸气在水平管外凝结换热的实验研究%Experimental research of condensation heat transfer of ethanol-water vapor outside horizontal tube

    Institute of Scientific and Technical Information of China (English)

    乔宏斌; 王顺; 胡申华

    2016-01-01

    在压力分别为31.16 kPa和47.5 kPa下,进行了酒精气相质量分数为0%、1%、5%,10%的凝结换热实验并观测了凝结形态,混合蒸气的质量流量为10 kg/h 和14 kg/h,实验圆管长度为150 mm,外径为16 mm,壁厚为3 mm,管外的换热系数通过 Gnielinski关联式计算.实验研究发现,混合蒸气的凝结形态为珠状凝结,混合蒸气的换热系数比同样实验条件的纯水蒸气都有不同程度的提高,尤其是1%浓度的混合蒸气.随着质量流量和压力的增大,换热系数有所提高,在当前的流量变化范围内,压力的影响更大一些.%An experimental loop has been established to measure the condensation heat transfer coefficient of ethanol-water mixed vapor in a tube,the pressures are 31.16 kPa and 47.16 kPa,the mass concentrations of ethanol vapor phase are 0%,1%,5% and 10%,vapor mass flux is 10 kg/h or 14 kg/h.The experimental tube has a length of 1 500 mm,outer diameter of 16 mm and a wall thickness of 3 mm.The heat transfer coefficient of outside of tube is acquired by Gnielinski correlation.The experiment shows that dropwise mode would appear mixed vapor condensing,for different concentration vapor,heat transfer coefficient increased in various degrees,especially for 1%.The HTC also increased a little with increase of mass flux and pressure,and the effect of pressure on HTC is greater compared to mass flux.

  11. 过冷沸腾起始点和净蒸汽产生点的实验研究%EXPERIMENTAL STUDY ON ONSET OF SUBCOOLED BOILING AND POINT OF NET VAPOR GENERATION

    Institute of Scientific and Technical Information of China (English)

    杨瑞昌; 王彦武; 唐虹; 司徒荣

    2001-01-01

    This paper reports the experimental study of onset of subcooled boiling and point of net vapor generation in a natural circulation system with subcooled boiling. Freon-12 was used as the working medium. In the experiments the onset of subcooled boiling and the point of net vapor generation were determined byvisual observation. The influence of the system pressure, inlet subcooling of the working medium and the input power to the heated section on the onset of subcooled boiling and the point of net vapor generation were investigated in the experiments. Based on the data reduction, the calculation methods of the onset of subcooled boiling and the net vapor generation in the natural circulation system have been presented respectively.%本文报告了使用R-12作工质进行的自然循环过冷沸腾起始点和净蒸汽产生点的实验结果。实验过程中使用可视化方法观察确定过冷沸腾起始点和净蒸汽产生点. 在相当宽广的工质压力、入口过冷度及加热功率范围内研究了上述参数对过冷沸腾起始点和净蒸汽产生点的影响, 在此基础上提出了计算自然循环过冷沸腾起始点和净蒸汽产生点的计算方法。

  12. Cryoemission of Nitrous Oxide and Ethanol: Dynamic and Energy Characteristics

    Science.gov (United States)

    Drobyshev, A.; Strzhemechny, Yu.; Aldiyarov, A.; Korshikov, E.; Kurnosov, V.; Sokolov, D.

    2016-11-01

    We studied dynamic and spectral characteristics of light emission produced during cryodeposition of nitrous oxide and ethanol onto metal substrates at a temperature of 10 K and a pressure of a gas phase of 10^{-2} Torr. It was established that this radiation is comprised of a large number of individual flashes of varying amplitude, wavelength and duration. Our measurements indicated that for nitrous oxide the rise time required to reach the maximum intensity of a single flash is 0.015 × 10^{-3} s, whereas for ethanol such time is 0.3× 10^{-3} s (i.e., 20 times greater). We attribute such discrepancy to the significant difference between the intrinsic molecular dipole moments of nitrous oxide (μ = 0.097 D) and ethanol (μ = 1.68 D) . Emission spectra of both nitrous oxide and ethanol were measured in the wavelength range of 350-1050 nm. They consist of discrete peaks located at 517, 562, 690, 726, 805 and 866 nm for nitrous oxide and 387, 392, 822, 995 and 1019 nm for ethanol. To explain the obtained results, we consider two models based on the assumptions of existence of isomeric states of the nitrous oxide molecules, as well as of processes of molecular dipole ordering/disordering during cryodeposition from the gas phase.

  13. Cryoemission of Nitrous Oxide and Ethanol: Dynamic and Energy Characteristics

    Science.gov (United States)

    Drobyshev, A.; Strzhemechny, Yu.; Aldiyarov, A.; Korshikov, E.; Kurnosov, V.; Sokolov, D.

    2017-04-01

    We studied dynamic and spectral characteristics of light emission produced during cryodeposition of nitrous oxide and ethanol onto metal substrates at a temperature of 10 K and a pressure of a gas phase of 10^{-2} Torr. It was established that this radiation is comprised of a large number of individual flashes of varying amplitude, wavelength and duration. Our measurements indicated that for nitrous oxide the rise time required to reach the maximum intensity of a single flash is 0.015 × 10^{-3} s, whereas for ethanol such time is 0.3× 10^{-3} s (i.e., 20 times greater). We attribute such discrepancy to the significant difference between the intrinsic molecular dipole moments of nitrous oxide (μ = 0.097 D) and ethanol (μ = 1.68 D). Emission spectra of both nitrous oxide and ethanol were measured in the wavelength range of 350-1050 nm. They consist of discrete peaks located at 517, 562, 690, 726, 805 and 866 nm for nitrous oxide and 387, 392, 822, 995 and 1019 nm for ethanol. To explain the obtained results, we consider two models based on the assumptions of existence of isomeric states of the nitrous oxide molecules, as well as of processes of molecular dipole ordering/disordering during cryodeposition from the gas phase.

  14. An experimental investigation of a 100-W high-power light-emitting diode array using vapor chamber–based plate

    OpenAIRE

    Ping Zhang; Jianhua Zeng; Xianping Chen; Miao Cai; Jing Xiao; Daoguo Yang

    2015-01-01

    In this study, a compact 100-W input power light-emitting diode array vapor chamber–based plate has been fabricated to investigate the thermal performance. To make a comparison, a typical commercial chip on board–type light-emitting diode array using a copper-based plate which has the same chip layout and the same power input was also investigated. The surface temperature distribution and total thermal resistance corresponding to these two high-power light-emitting diode modules were measured...

  15. Emissions of nitrous oxide from soils

    Energy Technology Data Exchange (ETDEWEB)

    Duxbury, J.M. (Cornell Univ., Ithaca, NY); Bouldin, D.R.; Terry, R.E.; Tate, R.L. III

    1982-07-29

    Potential changes in the concentration of nitrous oxide (N/sub 2/O) in the atmosphere have sparked considerable inerest because of the proposed role of N/sub 2/O in regulating stratospheric ozone levels, and in contributing to the atmospheric greenhouse effect. A substantial portion of the atmospheric N/sub 2/O is thought to result from microbial transformations of inorganic forms of nitrogen in soils; N/sub 2/O is an intermediate in denitrification (reduction of NO/sub 3//sup -/ to N/sub 2/) and is formed during nitrification (oxidation of NH/sub 4//sup +/ to NO/sub 3//sup -/) in soils, although the mechanism is unclear. Several models have predicted that input of nitrogen into cropland, either from commercial fertilizers or N-fixing leguminous crops, could sufficiently increase emissions of N/sub 2/O from soils to deplete stratospheric ozone levels and raise average world temperatures. Researchers report here N/sub 2/O emissions from mineral and organic soil sites in New York and from organic soil sites in the Florida Everglades Agricultural Area.

  16. [Nitrous oxide - oxygen analgesia in aesthetic dermatology].

    Science.gov (United States)

    Drosner, M

    2013-06-01

    Local anaesthesia often is insufficient for more extensive procedures. Instead of general anaesthesia or sedation, pediatricians, gynaecologists and dentists increasingly use nitrous oxide (N2O). This study evaluates the suitability of this form of anesthesia in dermatology. In 24 patients (18 w, 6 m, mean age 49 y.) N2O/O2 inhalation (Livopan®) was used during 46 procedures with indications including fractional RF/wrinkle reduction, IPL/rosacea, q-sw. laser/tattoos and hemosiderosis as well as fractional Er:Glass laser for scars and hypopigmentation. In 26 procedures subjective pain intensity was measured (visual analogue scale 0-10). With N2O the treatment pain was lowered from 6.6 ± 1.6 to 2.9 ± 1.7 (median, p = 0.000). 23/24 patients chose N2O for their next treatment. Beside euphoria, fatigue, slight drowsiness, dizziness, nausea or change in auditory perception, no other side effects occurred. The pronounced analgesia, the easy self-administration, the fast onset and complete recovery after a few minutes and the low ratio of side effects make the N2O/O2 inhalation to an ideal addendum in the management of larger painful procedures in dermatology as long as contraindications and safety precautions are respected.

  17. Global oceanic production of nitrous oxide.

    Science.gov (United States)

    Freing, Alina; Wallace, Douglas W R; Bange, Hermann W

    2012-05-05

    We use transient time distributions calculated from tracer data together with in situ measurements of nitrous oxide (N(2)O) to estimate the concentration of biologically produced N(2)O and N(2)O production rates in the ocean on a global scale. Our approach to estimate the N(2)O production rates integrates the effects of potentially varying production and decomposition mechanisms along the transport path of a water mass. We estimate that the oceanic N(2)O production is dominated by nitrification with a contribution of only approximately 7 per cent by denitrification. This indicates that previously used approaches have overestimated the contribution by denitrification. Shelf areas may account for only a negligible fraction of the global production; however, estuarine sources and coastal upwelling of N(2)O are not taken into account in our study. The largest amount of subsurface N(2)O is produced in the upper 500 m of the water column. The estimated global annual subsurface N(2)O production ranges from 3.1 ± 0.9 to 3.4 ± 0.9 Tg N yr(-1). This is in agreement with estimates of the global N(2)O emissions to the atmosphere and indicates that a N(2)O source in the mixed layer is unlikely. The potential future development of the oceanic N(2)O source in view of the ongoing changes of the ocean environment (deoxygenation, warming, eutrophication and acidification) is discussed.

  18. Nitrous Oxide Emissions from Open-Lot Cattle Feedyards: A Review

    Science.gov (United States)

    Nitrous oxide volatilization from concentrated animal feeding operations (CAFO), including cattle feedyards, has become an important research topic. However, there are limitations to current measurement techniques, uncertainty in the magnitude of feedyard nitrous oxide fluxes and a lack of effective...

  19. Formation of methane and nitrous oxide in plants

    Science.gov (United States)

    Keppler, Frank; Lenhart, Katharina

    2017-04-01

    Methane, the second important anthropogenic greenhouse gas after carbon dioxide, is the most abundant reduced organic compound in the atmosphere and plays a central role in atmospheric chemistry. The global atmospheric methane budget is determined by many natural and anthropogenic terrestrial and aquatic surface sources, balanced primarily by one major sink (hydroxyl radicals) in the atmosphere. Natural sources of atmospheric methane in the biosphere have until recently been attributed to originate solely from strictly anaerobic microbial processes in wetland soils and rice paddies, the intestines of termites and ruminants, human and agricultural waste, and from biomass burning, fossil fuel mining and geological sources including mud volcanoes and seeps. However, recent studies suggested that terrestrial vegetation, fungi and mammals may also produce methane without the help of methanogens and under aerobic conditions (e.g. Keppler et al. 2009, Wang et al. 2013). These novel sources have been termed "aerobic methane production" to distinguish them from the well-known anaerobic methane production pathway. Nitrous oxide is another important greenhouse gas and major source of ozone-depleting nitric oxide. About two thirds of nitrous oxide emissions are considered to originate from anthropogenic and natural terrestrial sources, and are almost exclusively related to microbial processes in soils and sediments. However, the global nitrous oxide budget still has major uncertainties since it is unclear if all major sources have been identified but also the emission estimates of the know sources and stratospheric sink are afflicted with high uncertainties. Plants contribute, although not yet quantified, to nitrous oxide emissions either indirectly as conduits of soil derived nitrous oxide (Pihlatie et al. 2005), or directly via generation of nitrous oxide in leaves (Dean & Harper 1986) or on the leaf surface induced by UV irradiation (Bruhn et al. 2014). Moreover, lichens

  20. Experimental evidence supporting the insensitivity of cloud droplet formation to the mass accommodation coefficient for condensation of water vapor to liquid water

    Science.gov (United States)

    Langridge, Justin M.; Richardson, Mathews S.; Lack, Daniel A.; Murphy, Daniel M.

    2016-06-01

    The mass accommodation coefficient for uptake of water vapor to liquid water, αM, has been constrained using photoacoustic measurements of aqueous absorbing aerosol. Measurements performed over a range of relative humidities and pressures were compared to detailed model calculations treating coupled heat and mass transfer occurring during photoacoustic laser heating cycles. The strengths and weaknesses of this technique are very different to those for droplet growth/evaporation experiments that have typically been applied to these measurements, making this a useful complement to existing studies. Our measurements provide robust evidence that αM is greater than 0.1 for all humidities tested and greater than 0.3 for data obtained at relative humidities greater than 88% where the aerosol surface was most like pure water. These values of αM are above the threshold at which kinetic limitations are expected to impact the activation and growth of aerosol particles in warm cloud formation.

  1. Role of Sulfur Vapor on PGE-Fractionation Processes in Cu-Ni Deposits: Experimental Study by ICP-MS Laser Ablation

    Science.gov (United States)

    Peregoedova, A.; Barnes, S.; Baker, D. R.

    2004-05-01

    We have investigated the transport of platinum-group elements (PGE) and base-metals (BM) by S-vapor in the systems Fe-S-PGE and Fe-Ni-Cu-PGE-S at 1 atm pressure, 1000° C and 1100° C. Open-system, with respect to the gas-phase, conditions were set up using the tube-in-tube technique. A S-rich donor, (Fe,Ni,Cu)1-xS of variable BM ratio, was doped with 2000 ppm of each PGE. A S-poor pyrrhotite (Po) was used as the PGE receiver. The metal/S ratio of the system was varied by changing the donor/receiver ratio to assess whether the metals were transported as S-species or metals. In the system Fe-S-PGE the run products were receiver Po and donor Po containing exsolutions of individual PGE phases (PGM). In the system Fe-Cu-Ni-S-PGE the run products were receiver Po and a donor association composed of monosulfide solid-solution ± Cu-rich sulfide melt ± PGM. The final compositions of both PGE receivers and donors were determined by electron microprobe at McGill University for the major PGE, BM and S, and by ICP-MS-LA at the University of Quebec in Chicoutimi for trace PGE. The detection limit for all PGE is in the 10 to 30 ppb range. The receiver Po contained significant quantities of transported Pt and Pd (PPGE), Os and Au, but little Ir, Ru and Rh (IPGE). In addition, a much higher quantity of Ni was transported trough the vapor-phase (700 ppm to 11300 ppm) compared to Cu (1000 ppm). There is a dependence of the amount of Ni and PPGE transported on the metal/S ratio of the system. This suggests that Ni and the PPGE were transported as BM sulfide species whereas Cu and the IPGE were transported as metals. In experiments where no Cu-rich sulfide liquid formed, Pt (12-38 ppm) was slightly better transported than Pd (7-27 ppm), while in the presence of a sulfide liquid Pd (48-69 ppm) appears to be more effectively transported than Pt (31-44 ppm). In most natural examples where mobilization of PGE has been suggested, the remobilized material is enriched in Cu, Pd and to a

  2. Study of Removal Nitrous Acid From Nitric Acid Solution Using Packed Column

    Institute of Scientific and Technical Information of China (English)

    LAN; Tian; CHANG; Shang-wen; LIU; Jin-ping; ZHOU; Xian-ming; LI; Gao-liang; TANG; Hong-bin; HE; Hui

    2013-01-01

    It is necessary that the adjustment of the Pu(Ⅲ)to Pu(Ⅳ)should be used excess nitride gases befor the cycle of Pu purification in Purex.The mass of nitrous acid were present in solution after adjustment.Ifthe solution contain the mass of nitrous acid arrived at the cycle of Pupurification,the nitrous could react with Pu reducing agent in the processof Pu back-extractionbecause nitrous acid could extracted to organic,

  3. The Lithium Vapor Box Divertor

    Science.gov (United States)

    Goldston, Robert; Hakim, Ammar; Hammett, Gregory; Jaworski, Michael; Myers, Rachel; Schwartz, Jacob

    2015-11-01

    Projections of scrape-off layer width to a demonstration power plant suggest an immense parallel heat flux, of order 12 GW/m2, which will necessitate nearly fully detached operation. Building on earlier work by Nagayama et al. and by Ono et al., we propose to use a series of differentially pumped boxes filled with lithium vapor to isolate the buffering vapor from the main plasma chamber, allowing stable detachment. This powerful differential pumping is only available for condensable vapors, not conventional gases. We demonstrate the properties of such a system through conservation laws for vapor mass and enthalpy, and then include plasma entrainment and ultimately an estimate of radiated power. We find that full detachment should be achievable with little leakage of lithium to the main plasma chamber. We also present progress towards solving the Navier-Stokes equation numerically for the chain of vapor boxes, including self-consistent wall boundary conditions and fully-developed shocks, as well as concepts for an initial experimental demonstration-of-concept. This work supported by DOE Contract No. DE-AC02-09CH11466.

  4. Controls of nitrous oxide emission after simulated cattle urine deposition

    DEFF Research Database (Denmark)

    Baral, Khagendra Raj; Thomsen, Anton Gårde; Olesen, Jørgen E

    2014-01-01

    Urine deposited during grazing is a significant source of atmospheric nitrous oxide (N2O). The potential for N2O emissions from urine patches is high, and a better understanding of controls is needed. This study investigated soil nitrogen (N) dynamics and N2O emissions from cattle urine, and effe......Urine deposited during grazing is a significant source of atmospheric nitrous oxide (N2O). The potential for N2O emissions from urine patches is high, and a better understanding of controls is needed. This study investigated soil nitrogen (N) dynamics and N2O emissions from cattle urine...

  5. Modelling nitrous oxide emissions from organic soils in Europe

    Science.gov (United States)

    Leppelt, Thomas; Dechow, Rene; Gebbert, Sören; Freibauer, Annette

    2013-04-01

    The greenhouse gas emission potential of peatland ecosystems are mandatory for a complete annual emission budget in Europe. The GHG-Europe project aims to improve the modelling capabilities for greenhouse gases, e.g., nitrous oxide. The heterogeneous and event driven fluxes of nitrous oxide are challenging to model on European scale, especially regarding the upscaling purpose and certain parameter estimations. Due to these challenges adequate techniques are needed to create a robust empirical model. Therefore a literature study of nitrous oxide fluxes from organic soils has been carried out. This database contains flux data from boreal and temperate climate zones and covers the different land use categories: cropland, grassland, forest, natural and peat extraction sites. Especially managed crop- and grassland sites feature high emission potential. Generally nitrous oxide emissions increases significantly with deep drainage and intensive application of nitrogen fertilisation. Whereas natural peatland sites with a near surface groundwater table can act as nitrous oxide sink. An empirical fuzzy logic model has been applied to predict annual nitrous oxide emissions from organic soils. The calibration results in two separate models with best model performances for bogs and fens, respectively. The derived parameter combinations of these models contain mean groundwater table, nitrogen fertilisation, annual precipitation, air temperature, carbon content and pH value. Influences of the calibrated parameters on nitrous oxide fluxes are verified by several studies in literature. The extrapolation potential has been tested by an implemented cross validation. Furthermore the parameter ranges of the calibrated models are compared to occurring values on European scale. This avoid unknown systematic errors for the regionalisation purpose. Additionally a sensitivity analysis specify the model behaviour for each alternating parameter. The upscaling process for European peatland

  6. Determination of nitrous oxide concentrations by spectroscopic method

    Science.gov (United States)

    Mirzoeva, Larissa A.; Kiseleva, Margarete S.; Sinelnikova, Galina E.

    1990-08-01

    In the proposed paper an empirical method has been developed for determination of nitrous oxide concentration using the absorption band 2'), in proximity of), 3.87J4m, free from overlapping with absorption bands from other atmospheric gases. The transmission spectra of the atmospheric air are recorded with unresolved rotation-vibration structure. The method is inexpensive, simple and efficient It may be used for determination of enviromental pollution in homogeneous media (laboratory or production plant conditions, ground layer of atmosphere) and of unhomogeneous composistion mixtures when studying the contents of nitrous oxide along slope paths in troposphere and stratosphere.

  7. Experimental and numerical study on growth of high-quality ZnO single-crystal microtubes by optical vapor supersaturated precipitation method

    Science.gov (United States)

    Wang, Qiang; Yan, Yinzhou; Zeng, Yong; Jiang, Yijian

    2017-06-01

    In this work, high-quality free-standing ZnO single-crystal microtubes with hexagonal cross-section were fabricated by an optical image furnace. Optical vapor supersaturated precipitation (OVSP) and axial photo-thermal-decomposition were proposed to interpret the microrods growth and microtubes formation, respectively. The maximum dimensions of the grown microtube were 5 mm in length, 100 μm in diameter and 1 μm in facet wall thickness. In our previous work, a new room-temperature photoluminescence (PL) peak ( 392 nm) of ZnO microtubes was attributed to VZn-related donor-acceptor-pairs (DAP) transition. This work further confirmed the VZn-related acceptors widely existing during ZnO microrods/ microtubes growth by OVSP. The effects of major growth parameters (e.g. lamp power, filament geometry and growth platform shape) on temperature field at the growth platform of precursor rod were studied by a finite element model as well. The lamp power of 65% (1500 W), thick single-filament and appropriate conical growth platform were optimized for a uniform temperature field to achieve consistent finish quality of microtubes and prevent twin-microtubes formation. This work would be beneficial for batch growth of the novel ZnO microtubes/microrods with high quality for a variety of applications.

  8. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium.

    Science.gov (United States)

    McCarron, Daniel J; Hughes, Ifan G; Tierney, Patrick; Cornish, Simon L

    2007-09-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D(2) transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude.

  9. Experimental determination and numerical simulation of vapor diffusion and emission in loading gasoline into tank%汽油装罐油气扩散排放的实验测定及数值模拟

    Institute of Scientific and Technical Information of China (English)

    黄维秋; 王兆利; 纪虹; 赵晨露; 吕爱华; 徐先阳; 王翊红

    2016-01-01

    It was of great significance correctly to predict the vapor diffusion and emission inside the tank for the researches of gasoline evaporation loss and vapor pollution control during the operation of loading gasoline into a tank. Then, two key parameters of the volumetric ratioλ of the displacement mixture gas of the vapor-air to the loaded gasoline and the qualitative ratioη of the evaporation loss to the loaded gasoline were mainly considered. Based on the models of volume of fluid (VOF), mass transfer and RNGk-ε turbulence, the evaporation loss was numerically simulated and experimentally investigated during the splash loading operation, and the oil vapor-air diffusion was analyzed and compared for the different loading exit heights, different loading velocity and the different initial vapor mass fraction. Meanwhile, an experimental system of evaporation loss in loading into a tank was built up to verify the numerical simulation, and the results of the numerical simulation were agreed well with the experimental data. The simulation results furthermore showed that the higher of the loading exit, the greater the qualitative ratioη of the evaporation loss to the loaded gasoline. The qualitative ratio of high exit was at around 0.34% and the qualitative ratio of low exit at around 0.025% by the increase of the loading velocity. The qualitative ratioηof high exit was at around of 0.44%, the qualitative ratio of mid exit at around 0.21% and the qualitative ratio of low exit at around 0.043% by increasing the initial vapor mass fraction. It was recommended that the effect of loading velocity and the initial vapor mass fraction should be considered in API loss formula by using a clean tank and low exit when loading and reducing loading speed appropriately before the loading pipe exit was submerged.%正确预测储油罐收油作业时罐内油气扩散排放规律对研究油品蒸发损耗及污染控制具有重要意义,因而两个关键参数(油罐排放

  10. Municipal gravity sewers: an unrecognised source of nitrous oxide

    Science.gov (United States)

    Nitrous oxide (N2O) is a primary ozone-depleting substance and powerful greenhouse gas. N2O emissions from secondary-level wastewater treatment processes are relatively well understood as a result of intensive international research effort in recent times, yet little information...

  11. Nitrous oxide in the western Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Jayakumar, D.A.; Nair, M.; DileepKumar, M.; George, M.D.

    Extensive observations on nitrous oxide (N@d2@@O) in the atmosphere and waters of the western Bay of Bengal during March-April 1991 yield surface saturations and atmospheric fluxes ranging from 89.3 to 213.9% (mean 125.2%), and from 0.10 to 10...

  12. Pitfalls in measuring nitrous oxide production by nitrifiers

    NARCIS (Netherlands)

    Wrage, N.

    2003-01-01

    Nitrous oxide (N 2 O) is an important greenhouse gas. At present, it causes 6% of global warming. The atmospheric concentration of N 2 O continues to increase at a rate of 0.8 ppb per year. The main known sink of N 2 O is its destruction in the

  13. Compilation of a global inventory of emissions of nitrous oxide.

    NARCIS (Netherlands)

    Bouwman, A.F.

    1995-01-01

    A global inventory with 1°x1° resolution was compiled of emissions of nitrous oxide (N 2 O) to the atmosphere, including emissions from soils under natural vegetation, fertilized agricultural land, grasslands and animal excreta, biomass burning, forest clearing, oceans, fossil fuel and bi

  14. Strategies to mitigate nitrous oxide emissions from herbivore production systems

    NARCIS (Netherlands)

    Schils, R.L.M.; Eriksen, J.; Ledgard, S.; Vellinga, Th.V.; Kuikman, P.J.; Luo, J.; Petersen, S.O.; Velthof, G.L.

    2013-01-01

    Herbivores are a significant source of nitrous oxide (N2O) emissions. They account for a large share of manure-related N2O emissions, as well as soil-related N2O emissions through the use of grazing land, and land for feed and forage production. It is widely acknowledged that mitigation measures are

  15. Controlling nitrous oxide emissions from grassland livestock production systems

    NARCIS (Netherlands)

    Oenema, O.; Gebauer, G.; Rodriguez, M.; Sapek, A.; Jarvis, S.C.; Corré, W.J.; Yamulki, S.

    1998-01-01

    There is growing awareness that grassland livestock production systems are major sources of nitrous oxide (N2O). Controlling these emissions requires a thorough understanding of all sources and controlling factors at the farm level. This paper examines the various controlling factors and proposes

  16. Compilation of a global inventory of emissions of nitrous oxide

    NARCIS (Netherlands)

    Bouwman, A.F.

    1995-01-01

    A global inventory with 1°x1° resolution was compiled of emissions of nitrous oxide (N 2 O) to the atmosphere, including emissions from soils under natural vegetation, fertilized agricultural land, grasslands and animal excreta, biomass burning, forest clearing,

  17. Pitfalls in measuring nitrous oxide production by nitrifiers

    NARCIS (Netherlands)

    Wrage, N.

    2003-01-01

    Nitrous oxide (N 2 O) is an important greenhouse gas. At present, it causes 6% of global warming. The atmospheric concentration of N 2 O continues to increase at a rate of 0.8 ppb per year. The main known sink of N 2 O is its destruction in the stratos

  18. Municipal gravity sewers: an unrecognised source of nitrous oxide

    Science.gov (United States)

    Nitrous oxide (N2O) is a primary ozone-depleting substance and powerful greenhouse gas. N2O emissions from secondary-level wastewater treatment processes are relatively well understood as a result of intensive international research effort in recent times, yet little information...

  19. Continuous measurements of nitrous oxide isotopomers during incubation experiments

    DEFF Research Database (Denmark)

    Winther, Malte Nordmann; Balslev-Harder, David; Christensen, Søren;

    2016-01-01

    Nitrous oxide (N2O) is an important and strong greenhouse gas in the atmosphere and part of a feed-back loop with climate. N2O is produced by microbes during nitrification and denitrification in terrestrial and aquatic ecosystems. The main sinks for N2O are turnover by denitrification and photoly...

  20. Cryotherapy gas--to use nitrous oxide or carbon dioxide?

    Science.gov (United States)

    Maiti, H; Cheyne, M F; Hobbs, G; Jeraj, H A

    1999-02-01

    Cryotherapy is regularly used in our clinic for treating genital warts. Nitrous oxide was used as the cryogenic gas. Following a health and safety review it was decided to monitor the nitrous oxide levels in the treatment room under different conditions. The Occupational Exposure Standard for nitrous oxide is 100 parts per million (PPM) (8-h time weighted average) and an indicative short-term exposure limit of 300 PPM (15-min reference period). High levels of gas were detected, especially when the exhaust was not vented to the outside. Venting of the gas to the outside could also present a hazard to adjacent areas. The situation was considered to be unacceptable and carbon dioxide was proposed as an alternative. The Occupational Exposure Standard for carbon dioxide is 5000 PPM (8-h time weighted average) and a short-term limit of 15,000 PPM (15-min reference period). Carbon dioxide levels were found to be within the Occupational Exposure Standard. There is no noticeable difference in the cryogenic efficacy of the 2 gases. Carbon dioxide is, therefore, a safer alternative. It also offers significant savings when compared with nitrous oxide.

  1. Nitrous Oxide Production in a Sequence Batch Reactor Wastewater Treatment System Using Synthetic Wastewater

    Institute of Scientific and Technical Information of China (English)

    MAO Jian; JIANG Xiao-Qin; YANG Lin-Zhang; ZHANG Jian; QIAO Qing-Yun; HE Chen-Da; YIN Shi-Xue

    2006-01-01

    The rate of nitrous oxide emission from a laboratory sequence batch reactor (SBR) wastewater treatment system using synthetic wastewater was measured under controlled conditions. The SBR was operated in the mode of 4 h for aeration, 3.5 h for stirring without aeration, 0.5 h for settling and drainage, and 4 h of idle. The sludge was acclimated by running the system to achieve a stable running state as indicated by rhythmic changes of total N, dissolved oxygen,chemical oxygen demand, NO2-, NO3-, NH4+, pH, and N2O. Under the present experimental conditions measured nitrous oxide emitted from the off-gas in the aerobic and anaerobic phases, respectively, accounted for 8.6%-16.1% and 0-0.05%of N removed, indicating that the aerobic phase was the main source of N2O emission from the system. N2O dissolved in discharged water was considerable in term of concentration. Thus, measures to be developed for the purpose of reducing N2O emission from the system should be effective in the aeration phase.

  2. Atmospheric nitrous oxide uptake in boreal spruce forest soil

    Science.gov (United States)

    Siljanen, Henri; Welti, Nina; Heikkinen, Juha; Biasi, Christina; Martikainen, Pertti

    2017-04-01

    Nitrous oxide (N2O) uptake from the atmosphere has been found in forest soils but environmental factors controlling the uptake and its atmospheric impact are poorly known. We measured N2O fluxes over growing season in a boreal spruce forest having control plots and plots with long nitrogen fertilization history. Also methane (CH4) fluxes were measured to compare the atmospheric impact of N2O and CH4fluxes. Soil chemical and physical characteristics and climatic conditions were measured as background data. Nitrous oxide consumption and uptake mechanisms were measured in complementary laboratory incubation experiments using stable isotope approaches. Gene transcript numbers of nitrous oxide reductase (nosZ) I and II genes were quantified along the incubation with elevated N2O atmosphere. The spruce forests without fertilization history showed highest N2O uptake rates whereas pine forest had low emissions. Nitrous oxide uptake correlated positively with soil moisture, high soil silt content, and low temperature. Nitrous oxide uptake varied seasonally, being highest in spring and autumn when temperature was low and water content was high. The spruce forest was sink for CH4.Methane fluxes were decoupled from the N2O fluxes (i.e. when the N2O uptake was high the CH4 uptake was low). By using GWP approach, the cooling effect of N2O uptake was on average 30% of the cooling effect of CH4 uptake in spruce forest without fertilization. Anoxic conditions promoted higher N2O consumption rates in all soils. Gene transcription of nosZ-I genes were activated at beginning of the incubation. However, atypical/clade-II nosZ was not detected. These results suggests, that also N2O uptake rates have to be considered when accounting for the GHG budget of spruce forests.

  3. Pure component vapor pressures of organic isomers

    Science.gov (United States)

    Dang, Caroline; Bannan, Thomas; Topping, David

    2017-04-01

    Atmospheric aerosols affect the Earth's climate directly through light scattering and absorption as well as indirectly by affecting cloud formation. There are many unanswered questions about how material properties of organic aerosols affect the climate. Predicting the formation of secondary organic aerosol (SOA), arising from gas to particle partitioning of potentially millions of compounds, remains one of the most challenging aspects in this regards. Of particular importance on predicting SOA formation is the saturation vapor pressure of each component. This property is typically obtained from group contribution methods (GCMs). However, it is currently unclear as to what level of accuracy is required or attainable from such techniques. Researchers have recently been able to measure low vapor pressures (lower limit of 10-8 Pa) experimentally using various techniques, and the University of Manchester Knudsen Effusion Mass Spectrometer (KEMS) has previously been used to measure vapor pressure of low volatility organics. Our recent KEMS work shows that functional group positioning has an effect on vapor pressure that is not accurately captured with estimation methods, and that experimental vapor pressures are 1-4 orders of magnitudes lower than predictive techniques. This has atmospheric impact through the variable amount of organic aerosol that is predicted to condense. In this study we present new measurements from the KEMS that can then be used to refine different experimental vapor pressure techniques as well as to provide data sets for building regression models to improve current predictive techniques.

  4. Experimental Research on Effects of Nozzle Geometrical Structure on Liquid-Vapor Ejector using Aqueous LiBr Solution as Primary Fluid

    Directory of Open Access Journals (Sweden)

    Hongtao Gao

    2012-08-01

    Full Text Available From the standpoint of offering reference for its optimal design, liquid-gas ejector is applied to lithium bromide absorption refrigerator in order to improve mass transfer efficiency. Many nozzles with different geometrical structures are adopted and experimental research is conducted to investigate the influence of physical dimension on performance of ejector. By comparison between convergent-divergent nozzle and convergent nozzle, the results show that, the reason for the influence on cooling capacity is different. With convergent-divergent nozzle, the cooling capacity increases with the decrease of throat diameter. With convergent nozzle, the tendency is on the contrary. With the same minimum cross area, the cooling capacity with convergent-divergent nozzle is better than that with convergent nozzle.

  5. Influence of Soil Moisture on Soil Gas Vapor Concentration for Vapor Intrusion.

    Science.gov (United States)

    Shen, Rui; Pennell, Kelly G; Suuberg, Eric M

    2013-10-01

    Mathematical models have been widely used in analyzing the effects of various environmental factors in the vapor intrusion process. Soil moisture content is one of the key factors determining the subsurface vapor concentration profile. This manuscript considers the effects of soil moisture profiles on the soil gas vapor concentration away from any surface capping by buildings or pavement. The "open field" soil gas vapor concentration profile is observed to be sensitive to the soil moisture distribution. The van Genuchten relations can be used for describing the soil moisture retention curve, and give results consistent with the results from a previous experimental study. Other modeling methods that account for soil moisture are evaluated. These modeling results are also compared with the measured subsurface concentration profiles in the U.S. EPA vapor intrusion database.

  6. Microwave sterilization of nitrous oxide nasal hoods contaminated with virus

    Energy Technology Data Exchange (ETDEWEB)

    Young, S.K.; Graves, D.C.; Rohrer, M.D.; Bulard, R.A.

    1985-12-01

    Although there exists a desire to eliminate the possibility of cross-infection from microbial contaminated nitrous oxide nasal hoods, effective and practical methods of sterilization in a dental office are unsatisfactory. Microwaves have been used to sterilize certain contaminated dental instruments without damage. In this study nasal hoods contaminated with rhinovirus, parainfluenza virus, adenovirus, and herpes simplex virus were sterilized in a modified microwave oven. Ninety-five percent of the virus activity was destroyed after 1 minute of exposure of the contaminated nasal hoods to microwaves. By the end of 4 minutes, complete inactivation of all four viruses was found. Repeated exposure of the nasal hoods to microwaves resulted in no damage to their texture and flexibility. Microwave sterilization may potentially provide a simple and practical method of sterilizing nitrous oxide anesthesia equipment in a dental or medical practice.

  7. Measurement system for nitrous oxide based on amperometric gas sensor

    Science.gov (United States)

    Siswoyo, S.; Persaud, K. C.; Phillips, V. R.; Sneath, R.

    2017-03-01

    It has been well known that nitrous oxide is an important greenhouse gas, so monitoring and control of its concentration and emission is very important. In this work a nitrous oxide measurement system has been developed consisting of an amperometric sensor and an appropriate lab-made potentiostat that capable measuring picoampere current ranges. The sensor was constructed using a gold microelectrode as working electrode surrounded by a silver wire as quasi reference electrode, with tetraethyl ammonium perchlorate and dimethylsulphoxide as supporting electrolyte and solvent respectively. The lab-made potentiostat was built incorporating a transimpedance amplifier capable of picoampere measurements. This also incorporated a microcontroller based data acquisition system, controlled by a host personal computer using a dedicated computer program. The system was capable of detecting N2O concentrations down to 0.07 % v/v.

  8. Nitrous oxide-oxygen: a new look at a very old technique.

    Science.gov (United States)

    Malamed, Stanley F; Clark, Moris S

    2003-05-01

    Inhalation sedation utilizing nitrous oxide-oxygen has been a primary technique in the management of dental fears and anxieties for more than 150 years and remains so today. Though other, more potent, anesthetics have been introduced, nitrous oxide is still the most used gaseous anesthetic in the world. Administered properly with well-maintained equipment, the nitrous oxide-oxygen technique has an extremely high success rate coupled with a very low rate of adverse effects and complications.

  9. Ab initio intermolecular potential energy surface and thermophysical properties of nitrous oxide

    Energy Technology Data Exchange (ETDEWEB)

    Crusius, Johann-Philipp, E-mail: johann-philipp.crusius@uni-rostock.de; Hassel, Egon [Lehrstuhl für Technische Thermodynamik, Universität Rostock, 18059 Rostock (Germany); Hellmann, Robert, E-mail: robert.hellmann@uni-rostock.de; Bich, Eckard [Institut für Chemie, Universität Rostock, 18059 Rostock (Germany)

    2015-06-28

    We present an analytical intermolecular potential energy surface (PES) for two rigid nitrous oxide (N{sub 2}O) molecules derived from high-level quantum-chemical ab initio calculations. Interaction energies for 2018 N{sub 2}O–N{sub 2}O configurations were computed utilizing the counterpoise-corrected supermolecular approach at the CCSD(T) level of theory using basis sets up to aug-cc-pVQZ supplemented with bond functions. A site-site potential function with seven sites per N{sub 2}O molecule was fitted to the pair interaction energies. We validated our PES by computing the second virial coefficient as well as shear viscosity and thermal conductivity in the dilute-gas limit. The values of these properties are substantiated by the best experimental data.

  10. Quantum cascade laser photoacoustic detection of nitrous oxide released from soils for biofuel production

    Science.gov (United States)

    Couto, F. M.; Sthel, M. S.; Castro, M. P. P.; da Silva, M. G.; Rocha, M. V.; Tavares, J. R.; Veiga, C. F. M.; Vargas, H.

    2014-12-01

    In order to investigate the generation of greenhouse gases in sugarcane ethanol production chain, a comparative study of N2O emission in artificially fertilized soils and soils free from fertilizers was carried out. Photoacoustic spectroscopy using quantum cascade laser with an emission ranging from 7.71 to 7.88 µm and differential photoacoustic cell were applied to detect nitrous oxide (N2O), an important greenhouse gas emitted from soils cultivated with sugar cane. Owing to calibrate the experimental setup, an initial N2O concentration was diluted with pure nitrogen and detection limit of 50 ppbv was achieved. The proposed methodology was selective and sensitive enough to detect N2O from no fertilized and artificially fertilized soils. The measured N2O concentration ranged from ppmv to ppbv.

  11. The effect of nitrous oxide (entonox on labour

    Directory of Open Access Journals (Sweden)

    Devendra B. Naddoni

    2016-03-01

    Conclusions: Entonox is cheap, safe and easily available. Though associated with few maternal side effects, it can be quickly and easily used during painful labour. While nitrous oxide analgesia may not be effective for every woman, it is considered a fairly safe and low cost way to manage pain during labour. [Int J Reprod Contracept Obstet Gynecol 2016; 5(3.000: 835-839

  12. Assessment of human exposure effects of nitrous acid

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, T.R.; Kjaergaard, S.K. (University of Aarhus. Institute of Environmental and Occupational Medicine (Denmark)); Brauer, M. (Harvard School of Public Health. Department of Environmental Health, Exposure Assessment and Engineering Program (United States))

    1993-01-01

    The study aimed at an estimation of the relative contribution of nitrous acid to measurable human exposure effects in relation to indoor environments with unvented gas combustion. Fifteen medically examined totally healthy non-smoker adults aged between 22 and 57 years were exposed in a double-blind, balanced design (3x3 latin square) to clean air and nitrous acid (HONO) concentration in an empty 74 m[sup 3] climate chamber. 3 teams of 5 subjects each were randomly exposed and the latin square was selected at random. Each exposure period was 3.5 hours and preceded by a 1 hour base-line pre-exposure measurement period. After 1 hr 40 minutes the subjects exercised for ten minutes on bicycle ergometers in order to increase the uptake of HONO by increasing ventilatory rate 3-4 fold. Workloads were calculated individually and ranged from 21800-34600 kpm/h. During the 10 minutes the test subjects were mouth-breathing to encourage deeper penetration of nitrous acid in the respiratory system so as to induce a mild cooling which would increase their responsiveness to irritants. The amount of deliverable H[sup +] was estimated at 16.350 nmoles with exposure to 395 ppb HONO with subjects breathing at the rate of 5 L min[sup -1]. It was assumed that HONO is efficiently absorbed into the respiratory system. Details are given of the results. Findings were highly variable, largely negative effects of exposure to nitrous acid which appear similiar to results seen in nitrogen dioxide exposure studies. It is concluded to be unlikely that HONO exposures alone can be responsible for exposure misclassification in NO[sub 2] exposure studies. (AB) (52 refs.).

  13. Assessment of human exposure effects of nitrous acid

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, T.R.; Kjaergaard, S.K. [University of Aarhus. Institute of Environmental and Occupational Medicine (Denmark); Brauer, M. [Harvard School of Public Health. Department of Environmental Health, Exposure Assessment and Engineering Program (United States)

    1993-01-01

    The study aimed at an estimation of the relative contribution of nitrous acid to measurable human exposure effects in relation to indoor environments with unvented gas combustion. Fifteen medically examined totally healthy non-smoker adults aged between 22 and 57 years were exposed in a double-blind, balanced design (3x3 latin square) to clean air and nitrous acid (HONO) concentration in an empty 74 m{sup 3} climate chamber. 3 teams of 5 subjects each were randomly exposed and the latin square was selected at random. Each exposure period was 3.5 hours and preceded by a 1 hour base-line pre-exposure measurement period. After 1 hr 40 minutes the subjects exercised for ten minutes on bicycle ergometers in order to increase the uptake of HONO by increasing ventilatory rate 3-4 fold. Workloads were calculated individually and ranged from 21800-34600 kpm/h. During the 10 minutes the test subjects were mouth-breathing to encourage deeper penetration of nitrous acid in the respiratory system so as to induce a mild cooling which would increase their responsiveness to irritants. The amount of deliverable H{sup +} was estimated at 16.350 nmoles with exposure to 395 ppb HONO with subjects breathing at the rate of 5 L min{sup -1}. It was assumed that HONO is efficiently absorbed into the respiratory system. Details are given of the results. Findings were highly variable, largely negative effects of exposure to nitrous acid which appear similiar to results seen in nitrogen dioxide exposure studies. It is concluded to be unlikely that HONO exposures alone can be responsible for exposure misclassification in NO{sub 2} exposure studies. (AB) (52 refs.).

  14. Multiwavelength Strontium Vapor Lasers

    Science.gov (United States)

    Soldatov, A. N.; Yudin, N. A.

    2016-08-01

    Based on an analysis of experimental and theoretical works, modern notion on conditions of forming of population density inversion on self-terminating IR transitions of alkali-earth metals is given. It is demonstrated that there is a significant difference in the inversion formation in lasers on self-terminating transitions in the visible and near-IR ranges and lasers on self-terminating transitions of alkali-earth metals lasing IR lines in the mid-IR range. It is shown that in the discharge circuit of lasers on self-terminating metal atom transitions (LSMT) there are processes strengthening the influence of the known mechanism limiting the frequency and energy characteristics (FEC) of radiation caused by the presence of prepulse electron concentration. The mechanism of influence of these processes on FEC of the LSMT and technical methods of their neutralization are considered. The possibility of obtaining average lasing power of ~200 W from one liter volume of the active medium of the strontium vapor laser is demonstrated under conditions of neutralization of these processes.

  15. Archimedes Mass Filter Vaporizer

    Science.gov (United States)

    Putvinski, S.; Agnew, A. F.; Cluggish, B. P.; Ohkawa, T.; Sevier, L.; Umstadter, K. R.; Dresvin, S. V.; Kuteev, B. V.; Feygenson, O. N.; Ivanov, D. V.; Zverev, S. G.; Miroshnikov, I. V.; Egorov, S. M.; Kiesewetter, D. V.; Maliugin, V. I.

    2001-10-01

    Archimedes Technology Group, Inc., is developing a plasma mass separator called the Archimedes Filter that separates waste oxide mixtures ion by ion into two mass groups: light and heavy. Since high-level waste at Hanford has 99.9its radioactivity associated with heavy elements, the Archimedes Filter can effectively decontaminate over three-quarters of that waste. The Filter process involves some preprocessing followed by volatilization and separation by the magnetic and electric fields of the main plasma. This presentation describes the approach to volatilization of the waste oxy-hydroxide mixture by means of a very high heat flux (q > 10 MW/m2). Such a high heat flux is required to ensure congruent evaporation of the complex oxy-hydroxide mixture and is achieved by injection of small droplets of molten waste into an inductively coupled plasma (ICP) torch. This presentation further addresses different issues related to evaporation of the waste including modeling of droplet evaporation, estimates of parameters of plasma torch, and 2D modeling of the plasma. The experimental test bed for oxide vaporization and results of the initial experiments on oxide evaporation in 60 kW ICP torch will also be described.

  16. The unaccounted yet abundant nitrous oxide-reducing microbial community: a potential nitrous oxide sink

    Science.gov (United States)

    Jones, Christopher M; Graf, Daniel RH; Bru, David; Philippot, Laurent; Hallin, Sara

    2013-01-01

    Nitrous oxide (N2O) is a major radiative forcing and stratospheric ozone-depleting gas emitted from terrestrial and aquatic ecosystems. It can be transformed to nitrogen gas (N2) by bacteria and archaea harboring the N2O reductase (N2OR), which is the only known N2O sink in the biosphere. Despite its crucial role in mitigating N2O emissions, knowledge of the N2OR in the environment remains limited. Here, we report a comprehensive phylogenetic analysis of the nosZ gene coding the N2OR in genomes retrieved from public databases. The resulting phylogeny revealed two distinct clades of nosZ, with one unaccounted for in studies investigating N2O-reducing communities. Examination of N2OR structural elements not considered in the phylogeny revealed that the two clades differ in their signal peptides, indicating differences in the translocation pathway of the N2OR across the membrane. Sequencing of environmental clones of the previously undetected nosZ lineage in various environments showed that it is widespread and diverse. Using quantitative PCR, we demonstrate that this clade was most often at least as abundant as the other, thereby more than doubling the known extent of the overall N2O-reducing community in the environment. Furthermore, we observed that the relative abundance of nosZ from either clade varied among habitat types and environmental conditions. Our results indicate a physiological dichotomy in the diversity of N2O-reducing microorganisms, which might be of importance for understanding the relationship between the diversity of N2O-reducing microorganisms and N2O reduction in different ecosystems. PMID:23151640

  17. Vapor scavenging by atmospheric aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, E.

    1996-05-01

    Particle growth due to vapor scavenging was studied using both experimental and computational techniques. Vapor scavenging by particles is an important physical process in the atmosphere because it can result in changes to particle properties (e.g., size, shape, composition, and activity) and, thus, influence atmospheric phenomena in which particles play a role, such as cloud formation and long range transport. The influence of organic vapor on the evolution of a particle mass size distribution was investigated using a modified version of MAEROS (a multicomponent aerosol dynamics code). The modeling study attempted to identify the sources of organic aerosol observed by Novakov and Penner (1993) in a field study in Puerto Rico. Experimentally, vapor scavenging and particle growth were investigated using two techniques. The influence of the presence of organic vapor on the particle`s hydroscopicity was investigated using an electrodynamic balance. The charge on a particle was investigated theoretically and experimentally. A prototype apparatus--the refractive index thermal diffusion chamber (RITDC)--was developed to study multiple particles in the same environment at the same time.

  18. Critical points of metal vapors

    Energy Technology Data Exchange (ETDEWEB)

    Khomkin, A. L., E-mail: alhomkin@mail.ru; Shumikhin, A. S. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-09-15

    A new method is proposed for calculating the parameters of critical points and binodals for the vapor–liquid (insulator–metal) phase transition in vapors of metals with multielectron valence shells. The method is based on a model developed earlier for the vapors of alkali metals, atomic hydrogen, and exciton gas, proceeding from the assumption that the cohesion determining the basic characteristics of metals under normal conditions is also responsible for their properties in the vicinity of the critical point. It is proposed to calculate the cohesion of multielectron atoms using well-known scaling relations for the binding energy, which are constructed for most metals in the periodic table by processing the results of many numerical calculations. The adopted model allows the parameters of critical points and binodals for the vapor–liquid phase transition in metal vapors to be calculated using published data on the properties of metals under normal conditions. The parameters of critical points have been calculated for a large number of metals and show satisfactory agreement with experimental data for alkali metals and with available estimates for all other metals. Binodals of metals have been calculated for the first time.

  19. Exposure control practices for administering nitrous oxide: a survey of dentists, dental hygienists and dental assistants.

    Science.gov (United States)

    Boiano, James M; Steege, Andrea L; Sweeney, Marie H

    2016-12-12

    Engineering, administrative, and work practice controls have been recommended for many years to minimize exposure to nitrous oxide during dental procedures. To better understand the extent to which these exposure controls are used, the NIOSH Health and Safety Practices Survey of Healthcare Workers was conducted among members of professional practice organizations representing dentists, dental hygienists and dental assistants. The anonymous, modular, web-based survey was completed by 284 dental professionals in private practice who administered nitrous oxide to adult and/or pediatric patients in the seven days prior to the survey. Use of primary engineering controls [i.e., nasal scavenging mask and/or local exhaust ventilation (LEV) near the patient's mouth] was nearly universal, reported by 93% and 96% of respondents who administered to adult (A) and pediatric (P) patients, respectively. However, adherence to other recommended precautionary practices were lacking to varying degrees, and were essentially no different among those administering nitrous oxide to adult or pediatric patients. Examples of work practices which increase exposure risk, expressed as percent of respondents, included: not checking nitrous oxide equipment for leaks (41% A; 48% P); starting nitrous oxide gas flow before delivery mask or airway mask was applied to patient (13% A; 12% P); and not turning off nitrous oxide gas flow before turning off oxygen flow to the patient (8% A; 7% P). Absence of standard procedures to minimize worker exposure to nitrous oxide (13% of all respondents) and not being trained on safe handling and administration of nitrous oxide (3%) were examples of breaches of administrative controls which may also increase exposure risk. Successful management of nitrous oxide emissions should include properly fitted nasal scavenging masks, supplemental LEV (when nitrous oxide levels cannot be adequately controlled using nasal masks alone), adequate general ventilation, regular

  20. Gross nitrous oxide production drives net nitrous oxide fluxes across a salt marsh landscape.

    Science.gov (United States)

    Yang, Wendy H; Silver, Whendee L

    2016-06-01

    Sea level rise will change inundation regimes in salt marshes, altering redox dynamics that control nitrification - a potential source of the potent greenhouse gas, nitrous oxide (N2 O) - and denitrification, a major nitrogen (N) loss pathway in coastal ecosystems and both a source and sink of N2 O. Measurements of net N2 O fluxes alone yield little insight into the different effects of redox conditions on N2 O production and consumption. We used in situ measurements of gross N2 O fluxes across a salt marsh elevation gradient to determine how soil N2 O emissions in coastal ecosystems may respond to future sea level rise. Soil redox declined as marsh elevation decreased, with lower soil nitrate and higher ferrous iron in the low marsh compared to the mid and high marshes (P Net N2 O fluxes differed significantly among marsh zones (P = 0.009), averaging 9.8 ± 5.4 μg N m(-2)  h(-1) , -2.2 ± 0.9 μg N m(-2)  h(-1) , and 0.67 ± 0.57 μg N m(-2)  h(-1) in the low, mid, and high marshes, respectively. Both net N2 O release and uptake were observed in the low and high marshes, but the mid-marsh was consistently a net N2 O sink. Gross N2 O production was highest in the low marsh and lowest in the mid-marsh (P = 0.02), whereas gross N2 O consumption did not differ among marsh zones. Thus, variability in gross N2 O production rates drove the differences in net N2 O flux among marsh zones. Our results suggest that future studies should focus on elucidating controls on the processes producing, rather than consuming, N2 O in salt marshes to improve our predictions of changes in net N2 O fluxes caused by future sea level rise.

  1. AMTEC vapor-vapor series connected cells

    Science.gov (United States)

    Underwood, Mark L.; Williams, Roger M.; Ryan, Margaret A.; Nakamura, Barbara J.; Oconnor, Dennis E.

    1995-08-01

    An alkali metal thermoelectric converter (AMTEC) having a plurality of cells structurally connected in series to form a septum dividing a plenum into two chambers, and electrically connected in series, is provided with porous metal anodes and porous metal cathodes in the cells. The cells may be planar or annular, and in either case a metal alkali vapor at a high temperature is provided to the plenum through one chamber on one side of the wall and returned to a vapor boiler after condensation at a chamber on the other side of the wall in the plenum. If the cells are annular, a heating core may be placed along the axis of the stacked cells. This arrangement of series-connected cells allows efficient generation of power at high voltage and low current.

  2. A heated vapor cell unit for DAVLL in atomic rubidium

    OpenAIRE

    McCarron, Daniel J.; Hughes, Ifan G.; Tierney, Patrick; Cornish, Simon L

    2007-01-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D2 transitions in atomic rubidium is described. A 5 cm-long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field...

  3. [Technology of nitrous oxide/oxygen inhalation sedation and its clinical application in pediatric dentistry].

    Science.gov (United States)

    Zhong, Tian; Hu, Daoyong

    2014-02-01

    Dental fear is a common problem in pediatric dentistry. Therefore, sedation for pediatric patients is an essential tool for anxiety management. Nitrous oxide/oxygen inhalation sedation is a safe, convenient, effective way to calm children. The review is about the technology of nitrous oxide/oxygen inhalation sedation and its clinical application in pediatric dentistry.

  4. Nitrous Oxide Production in an Eastern Cornbelt Soil: Sources and Redox Range

    Science.gov (United States)

    Nitrous oxide derived from soils is a main contributor to the greenhouse gas effect and ozone layer depletion; however, sources and regulation are not clearly understood. This study was conducted to estimate magnitude and sources of nitrous oxide (N2O) production as affect by N source, soil water co...

  5. NITROUS OXIDE EMISSIONS FROM SOUTHERN HIGH PLAINS BEEF CATTLE FEEDYARDS: MEASUREMENT AND MODELING

    Science.gov (United States)

    Predictive models for nitrous oxide emission are crucial for assessing the greenhouse gas footprint of beef cattle production. The Texas Panhandle produces approximately 42% of finished beef in the U.S. and cattle production is estimated to contribute 8 Tg carbon dioxide equivalents from nitrous oxi...

  6. The effect of nitrous oxide on cerebral blood flow velocity in children anaesthetised with sevoflurane.

    Science.gov (United States)

    Rowney, D A; Fairgrieve, R; Bissonnette, B

    2004-01-01

    To determine the effects of nitrous oxide on middle cerebral artery blood flow velocity (CBFV) during sevoflurane anaesthesia in children, CBFV was measured using transcranial Doppler sonography in 16 ASA I or II children. Anaesthesia consisted of 1.0 MAC sevoflurane in 30% oxygen with intermittent positive pressure ventilation maintaining FEco2 at 38 mmHg (5.0 kPa) and a caudal epidural block using 0.25% bupivacaine 1.0 ml.kg-1. The remainder of the inspired gas was varied in one of two sequences either air/nitrous oxide/air or nitrous oxide/air/nitrous oxide. The results showed that CBFV decreased when nitrous oxide was replaced by air (p = 0.03) and returned to its initial value when nitrous oxide was reintroduced. CBFV increased when air was replaced by nitrous oxide (p = 0.04) and returned to its initial value when air was reintroduced. Mean heart rate and blood pressure remained constant. We conclude that nitrous oxide increases cerebral blood flow velocity in healthy children anaesthetised with 1.0 MAC sevoflurane.

  7. Gasoline Vapor Recovery

    Science.gov (United States)

    1979-01-01

    Gasoline is volatile and some of it evaporates during storage, giving off hydrocarbon vapor. Formerly, the vapor was vented into the atmosphere but anti-pollution regulations have precluded that practice in many localities, so oil companies and storage terminals are installing systems to recover hydrocarbon vapor. Recovery provides an energy conservation bonus in that most of the vapor can be reconverted to gasoline. Two such recovery systems are shown in the accompanying photographs (mid-photo at right and in the foreground below). They are actually two models of the same system, although.configured differently because they are customized to users' needs. They were developed and are being manufactured by Edwards Engineering Corporation, Pompton Plains, New Jersey. NASA technological information proved useful in development of the equipment.

  8. Gasoline Reid Vapor Pressure

    Science.gov (United States)

    EPA regulates the vapor pressure of gasoline sold at retail stations during the summer ozone season to reduce evaporative emissions from gasoline that contribute to ground-level ozone and diminish the effects of ozone-related health problems.

  9. Vapor Control Layer Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-09-08

    This information sheet describes the level of vapor control required on the interior side of framed walls with typical fibrous cavity insulation (fibreglass, rockwool, or cellulose, based on DOE climate zone of construction.

  10. Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels; Phase 3: Effects of Winter Gasoline Volatility and Ethanol Content on Blend Flammability; Flammability Limits of Denatured Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Gardiner, D. P.; Bardon, M. F.; Clark, W.

    2011-07-01

    This study assessed differences in headspace flammability for summertime gasolines and new high-ethanol content fuel blends. The results apply to vehicle fuel tanks and underground storage tanks. Ambient temperature and fuel formulation effects on headspace vapor flammability of ethanol/gasoline blends were evaluated. Depending on the degree of tank filling, fuel type, and ambient temperature, fuel vapors in a tank can be flammable or non-flammable. Pure gasoline vapors in tanks generally are too rich to be flammable unless ambient temperatures are extremely low. High percentages of ethanol blended with gasoline can be less volatile than pure gasoline and can produce flammable headspace vapors at common ambient temperatures. The study supports refinements of fuel ethanol volatility specifications and shows potential consequences of using noncompliant fuels. E85 is flammable at low temperatures; denatured ethanol is flammable at warmer temperatures. If both are stored at the same location, one or both of the tanks' headspace vapors will be flammable over a wide range of ambient temperatures. This is relevant to allowing consumers to splash -blend ethanol and gasoline at fueling stations. Fuels compliant with ASTM volatility specifications are relatively safe, but the E85 samples tested indicate that some ethanol fuels may produce flammable vapors.

  11. Chronic pain relief after the exposure of nitrous oxide during dental treatment: longitudinal retrospective study

    Directory of Open Access Journals (Sweden)

    Francisco Moreira Mattos Júnior

    2015-07-01

    Full Text Available The objective was to investigate the effect of nitrous/oxygen in chronic pain. Seventy-seven chronic pain patients referred to dental treatment with conscious sedation with nitrous oxide/oxygen had their records included in this research. Data were collected regarding the location and intensity of pain by the visual analogue scale before and after the treatment. Statistical analysis was performed comparing pre- and post-treatment findings. It was observed a remarkable decrease in the prevalence of pain in this sample (only 18 patients still had chronic pain, p < 0.001 and in its intensity (p < 0.001. Patients that needed fewer sessions received higher proportions of nitrous oxide/oxygen. Nitrous oxide may be a tool to be used in the treatment of chronic pain, and future prospective studies are necessary to understand the underlying mechanisms and the effect of nitrous oxide/oxygen in patients according to the pain diagnosis and other characteristics.

  12. The Neurotoxicity of Nitrous Oxide: The Facts and “Putative” Mechanisms

    Directory of Open Access Journals (Sweden)

    Sinead Savage

    2014-01-01

    Full Text Available Nitrous oxide is a widely used analgesic agent, used also in combination with anaesthetics during surgery. Recent research has raised concerns about possible neurotoxicity of nitrous oxide, particularly in the developing brain. Nitrous oxide is an N-methyl-d-aspartate (NMDA-antagonist drug, similar in nature to ketamine, another anaesthetic agent. It has been linked to post-operative cardiovascular problems in clinical studies. It is also widely known that exposure to nitrous oxide during surgery results in elevated homocysteine levels in many patients, but very little work has investigated the long term effect of these increased homocysteine levels. Now research in rodent models has found that homocysteine can be linked to neuronal death and possibly even cognitive deficits. This review aims to examine the current knowledge of mechanisms of action of nitrous oxide, and to describe some pathways by which it may have neurotoxic effects.

  13. Valuation of the effectiveness of the nitrous oxide administration to the paediatric patient during channelling a peripheral venous

    Directory of Open Access Journals (Sweden)

    Beatriz Margenta Gutiérrez

    2011-01-01

    Full Text Available Objective: To valuate if the administration of nitrous oxide (Kalinox® during the technique of channelling a peripheral venous level decreases pain, improves the child´s behavior and facilitates the realization of the technique for the nurse. Experimental, randomized clinical trial. Population: children between 6-12 years old with an indication of peripheral venous channeling and medical approbation for administration of Kalinox to the Pediatric ICU unit of the Hospital in Toledo. Sample: 54 subjects in each group (alpha error of 0.05, with a study power of 90% and expecting a mean effect d/s = 0.5 for reducing pain in the experimental group. Main variables: the administration of nitrous oxide (independent variable and level of pain, motor behavior, degree of difficulty in performing the technique, and complications (dependent variables, besides, sociodemographic and clinical variables will be measured. It was used differents validated scales (Oucher, VAS y Frankl and one performed by us. Data will be analyze by SPSS software programme.

  14. Methane and nitrous oxide in the ice core record.

    Science.gov (United States)

    Wolff, Eric; Spahni, Renato

    2007-07-15

    Polar ice cores contain, in trapped air bubbles, an archive of the concentrations of stable atmospheric gases. Of the major non-CO2 greenhouse gases, methane is measured quite routinely, while nitrous oxide is more challenging, with some artefacts occurring in the ice and so far limited interpretation. In the recent past, the ice cores provide the only direct measure of the changes that have occurred during the industrial period; they show that the current concentration of methane in the atmosphere is far outside the range experienced in the last 650,000 years; nitrous oxide is also elevated above its natural levels. There is controversy about whether changes in the pre-industrial Holocene are natural or anthropogenic in origin. Changes in wetland emissions are generally cited as the main cause of the large glacial-interglacial change in methane. However, changing sinks must also be considered, and the impact of possible newly described sources evaluated. Recent isotopic data appear to finally rule out any major impact of clathrate releases on methane at these time-scales. Any explanation must take into account that, at the rapid Dansgaard-Oeschger warmings of the last glacial period, methane rose by around half its glacial-interglacial range in only a few decades. The recent EPICA Dome C (Antarctica) record shows that methane tracked climate over the last 650,000 years, with lower methane concentrations in glacials than interglacials, and lower concentrations in cooler interglacials than in warmer ones. Nitrous oxide also shows Dansgaard-Oeschger and glacial-interglacial periodicity, but the pattern is less clear.

  15. Pneumomediastinum Secondary to Barotrauma after Recreational Nitrous Oxide Inhalation

    Directory of Open Access Journals (Sweden)

    H. Jeddy

    2016-01-01

    Full Text Available We present a case of a seventeen-year-old patient, admitted in the care of the surgical team following inhalation of nitrous oxide at high pressure, leading to extensive pneumomediastinum and surgical emphysema. We discuss the subsequent investigations and management for this patient. In the absence of history of airway injury and respiratory problems including asthma and with no oesophageal perforation on investigations, the diagnostic and management challenges encountered have been discussed which will help in future management of similar cases.

  16. Portable nitrous oxide sensor for understanding agricultural and soil emissions

    Energy Technology Data Exchange (ETDEWEB)

    Stanton, Alan [Southwest Sciences, Inc., Santa Fe, NM (United States); Zondlo, Mark [Princeton Univ., NJ (United States); Gomez, Anthony [Southwest Sciences, Inc., Santa Fe, NM (United States); Pan, Da [Princeton Univ., NJ (United States)

    2017-02-27

    Nitrous oxide (N2O) is the third most important greenhouse gas (GHG,) with an atmospheric lifetime of ~114 years and a global warming impact ~300 times greater than that of carbon dioxide. The main cause of nitrous oxide’s atmospheric increase is anthropogenic emissions, and over 80% of the current global anthropogenic flux is related to agriculture, including associated land-use change. An accurate assessment of N2O emissions from agriculture is vital not only for understanding the global N2O balance and its impact on climate but also for designing crop systems with lower GHG emissions. Such assessments are currently hampered by the lack of instrumentation and methodologies to measure ecosystem-level fluxes at appropriate spatial and temporal scales. Southwest Sciences and Princeton University are developing and testing new open-path eddy covariance instrumentation for continuous and fast (10 Hz) measurement of nitrous oxide emissions. An important advance, now being implemented, is the use of new mid-infrared laser sources that enable the development of exceptionally low power (<10 W) compact instrumentation that can be used even in remote sites lacking in power. The instrumentation will transform the ability to measure and understand ecosystem-level nitrous oxide fluxes. The Phase II results included successful extended field testing of prototype flux instruments, based on quantum cascade lasers, in collaboration with Michigan State University. Results of these tests demonstrated a flux detection limit of 5 µg m-2 s-1 and showed excellent agreement and correlation with measurements using chamber techniques. Initial tests of an instrument using an interband cascade laser (ICL) were performed, verifying that an order of magnitude reduction in instrument power requirements can be realized. These results point toward future improvements and testing leading to introduction of a commercial open path instrument for N2O flux measurements that is truly portable and

  17. Study on Nitrous Oxide Emission in Boiler Furnace

    Institute of Scientific and Technical Information of China (English)

    ZHONGB.J; FUW.B.

    1997-01-01

    A theoretical investigation on a kinetic mechanism of nitrous oxide formation in flames with different fuels was carried out for purposes of minimzing the total NOx yield.The effect of fuel type and combustion condition on N2O emission is discussed.It is found that N2O constitutes a relatively small fraction of the total NOx formation,but it is of great importance to both NO formation and NO reduction from fuel nitrogen(Nf) and molecular nitrogen(N2).

  18. A novel heterogeneous reaction for generating gaseous nitrous acid

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The short-lived reactive specimen nitrous acid HONO was generated in the gas phase by the heterogeneous reaction of gaseous HCl with AgNO2 which can generate higher concentration of HONO than other methods. We investigated the process from generation to dissociation in the gas phase under different controlled temperatures, and discussed the ionization and reaction on the solid surface by com-bination of the photoelectron spectroscopy and photoionization mass spectroscopy (PES-PIMS) and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS).

  19. Vaporization of synthetic fuels. Final report. [Thesis

    Energy Technology Data Exchange (ETDEWEB)

    Sirignano, W.A.; Yao, S.C.; Tong, A.Y.; Talley, D.

    1983-01-01

    The problem of transient droplet vaporization in a hot convective environment is examined. The main objective of the present study is to develop an algorithm for the droplet vaporization which is simple enough to be feasibly incorporated into a complete spray combustion analysis and yet will also account for the important physics such as liquid-phase internal circulation, unsteady droplet heating and axisymmetric gas-phase convection. A simplified liquid-phase model has been obtained based on the assumption of the existence of a Hill's spherical vortex inside the droplet together with some approximations made in the governing diffusion equation. The use of the simplified model in a spray situation has also been examined. It has been found that droplet heating and vaporization are essentially unsteady and droplet temperature is nonuniform for a significant portion of its lifetime. It has also been found that the droplet vaporization characteristic can be quite sensitive to the particular liquid-phase and gas-phase models. The results of the various models are compared with the existing experimental data. Due to large scattering in the experimental measurements, particularly the droplet diameter, no definite conclusion can be drawn based on the experimental data. Finally, certain research problems which are related to the present study are suggested for future studies.

  20. Convergence of Biological Nitration and Nitrosation via Symmetrical Nitrous Anhydride

    Science.gov (United States)

    Vitturi, Dario A.; Minarrieta, Lucia; Salvatore, Sonia R.; Postlethwait, Edward M.; Fazzari, Marco; Ferrer-Sueta, Gerardo; Lancaster, Jack R.; Freeman, Bruce A.; Schopfer, Francisco J.

    2015-01-01

    Current perspective holds that the generation of secondary signaling mediators from nitrite (NO2−) requires acidification to nitrous acid (HNO2) or metal catalysis. Herein, the use of stable isotope-labeled NO2− and LC-MS/MS analysis of products revealed that NO2− also participates in fatty acid nitration and thiol S-nitrosation at neutral pH. These reactions occur in the absence of metal centers and are stimulated by nitric oxide (•NO) autoxidation via symmetrical dinitrogen trioxide (nitrous anhydride, symN2O3) formation. While theoretical models have predicted physiological symN2O3 formation, its generation is now demonstrated in aqueous reaction systems, cell models and in viv, with the concerted reactions of •NO and NO2− shown to be critical for symN2O3 formation. These results reveal new mechanisms underlying the NO2− propagation of •NO signaling and the regulation of both biomolecule function and signaling network activity via NO2−-dependent nitrosation and nitration reactions. PMID:26006011

  1. Shell biofilm-associated nitrous oxide production in marine molluscs

    DEFF Research Database (Denmark)

    Heisterkamp, I.M.; Schramm, Andreas; Larsen, Lone Heimann

    2013-01-01

    Emission of the greenhouse gas nitrous oxide (N2O) from freshwater and terrestrial invertebrates has exclusively been ascribed to N2O production by ingested denitrifying bacteria in the anoxic gut of the animals. Our study of marine molluscs now shows that also microbial biofilms on shell surface...... was demonstrated in a long-term microcosm experiment with the snail H.reticulata, where shell biofilms exhibited the highest N2O emission rates when the animal was still living inside the shell. © 2012 John Wiley & Sons Ltd and Society for Applied Microbiology.......Emission of the greenhouse gas nitrous oxide (N2O) from freshwater and terrestrial invertebrates has exclusively been ascribed to N2O production by ingested denitrifying bacteria in the anoxic gut of the animals. Our study of marine molluscs now shows that also microbial biofilms on shell surfaces...... are important sites of N2O production. The shell biofilms of Mytilus edulis, Littorina littorea and Hinia reticulata contributed 18-94% to the total animal-associated N2O emission. Nitrification and denitrification were equally important sources of N2O in shell biofilms as revealed by 15N-stable isotope...

  2. Vapor pressures and enthalpies of vaporization of azides

    Energy Technology Data Exchange (ETDEWEB)

    Verevkin, Sergey P., E-mail: sergey.verevkin@uni-rostock.de [Department of Physical Chemistry, University of Rostock, Dr-Lorenz-Weg 1, D-18059 Rostock (Germany); Emel' yanenko, Vladimir N. [Department of Physical Chemistry, University of Rostock, Dr-Lorenz-Weg 1, D-18059 Rostock (Germany); Algarra, Manuel [Centro de Geologia do Porto, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Manuel Lopez-Romero, J. [Department of Organic Chemistry, University of Malaga. Campus de Teatinos s/n, 29071 Malaga (Spain); Aguiar, Fabio; Enrique Rodriguez-Borges, J.; Esteves da Silva, Joaquim C.G. [Centro de Investigacao em Quimica (CIQ-UP), Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2011-11-15

    Highlights: > We prepared and measured vapor pressures and vaporization enthalpies of 7 azides. > We examined consistency of new and available in the literature data. > Data for geminal azides and azido-alkanes selected for thermochemical calculations. - Abstract: Vapor pressures of some azides have been determined by the transpiration method. The molar enthalpies of vaporization {Delta}{sub l}{sup g}H{sub m} of these compounds were derived from the temperature dependencies of vapor pressures. The measured data sets were successfully checked for internal consistency by comparison with vaporization enthalpies of similarly structured compounds.

  3. Vapor-liquid partitioning of alkaline earth and transition metals in NaCl-dominated hydrothermal fluids: An experimental study from 360 to 465 °C, near-critical to halite saturated conditions

    Science.gov (United States)

    Pester, Nicholas J.; Ding, Kang; Seyfried, William E.

    2015-11-01

    Multi-phase fluid flow is a common occurrence in magmatic hydrothermal systems; and extensive modeling efforts using currently established P-V-T-x properties of the NaCl-H2O system are impending. We have therefore performed hydrothermal flow experiments (360-465 °C) to observe vapor-liquid partitioning of alkaline earth and first row transition metals in NaCl-dominated source solutions. The data allow extraction of partition coefficients related to the intrinsic changes in both chlorinity and density along the two-phase solvus. The coefficients yield an overall decrease in vapor affinity in the order Cu(I) > Na > Fe(II) > Zn > Ni(II) ⩾ Mg ⩾ Mn(II) > Co(II) > Ca > Sr > Ba, distinguished with 95% confidence for vapor densities greater than ∼0.2 g/cm3. The alkaline earth metals are limited to purely electrostatic interactions with Cl ligands, resulting in an excellent linear correlation (R2 > 0.99) between their partition coefficients and respective ionic radii. Though broadly consistent with this relationship, relative behavior of the transition metals is not well resolved, being likely obscured by complex bonding processes and the potential participation of Na in the formation of tetra-chloro species. At lower densities (at/near halite saturation) partitioning behavior of all metals becomes highly non-linear, where M/Cl ratios in the vapor begin to increase despite continued decreases in chlorinity and density. We refer to this phenomenon as "volatility", which is broadly associated with substantial increases in the HCl/NaCl ratio (eventually to >1) due to hydrolysis of NaCl. Some transition metals (e.g., Fe, Zn) exhibit volatility prior to halite stability, suggesting a potential shift in vapor speciation relative to nearer critical regions of the vapor-liquid solvus. The chemistry of deep-sea hydrothermal fluids appears affected by this process during magmatic events, however, our results do not support suggestions of subseafloor halite precipitation

  4. Vapor concentration monitor

    Science.gov (United States)

    Bayly, John G.; Booth, Ronald J.

    1977-01-01

    An apparatus for monitoring the concentration of a vapor, such as heavy water, having at least one narrow bandwidth in its absorption spectrum, in a sample gas such as air. The air is drawn into a chamber in which the vapor content is measured by means of its radiation absorption spectrum. High sensitivity is obtained by modulating the wavelength at a relatively high frequency without changing its optical path, while high stability against zero drift is obtained by the low frequency interchange of the sample gas to be monitored and of a reference sample. The variable HDO background due to natural humidity is automatically corrected.

  5. Soil nitrogen cycling and nitrous oxide flux in a Rocky Mountain Douglas-fir forest - Effects of fertilization, irrigation and carbon addition

    Science.gov (United States)

    Matson, Pamela A.; Gower, Stith T.; Volkmann, Carol; Billow, Christine; Grier, Charles C.

    1992-01-01

    Nitrous oxide fluxes and soil nitrogen transformations were measured in experimentally-treated high elevation Douglas-fir forests in northwestern New Mexico. On an annual basis, forests that were fertilized with 200 kg N/ha emitted an average of 0.66 kg/ha of N2O-N, with highest fluxes occurring in July and August when soils were both warm and wet. Control, irrigated, and woodchip treated plots were not different from each other, and annual average fluxes ranged from 0.03 to 0.23 kg/ha. Fertilized soil mineralized 277 kg/ha per year in contrast to 18 kg/ha per year in control plots. Relative recovery of (N-15)H4-N applied to soil in laboratory incubations was principally in the form of NO3-N in the fertilized soils, while recovery was mostly in microbial biomass-N in the other treatments. Fertilization apparently added nitrogen that exceeded the heterotrophic microbial demand, resulting in higher rates of nitrate production and higher nitrous oxide fluxes. Global inputs of nitrogen into forests are not currently contributing significantly to the increasing concentrations of nitrous oxide in the atmosphere.

  6. Nitrous oxide emissions from European agriculture – an analysis of variability and drivers of emissions from field experiments

    Directory of Open Access Journals (Sweden)

    R. M. Rees

    2013-04-01

    Full Text Available Nitrous oxide emissions from a network of agricultural experiments in Europe were used to explore the relative importance of site and management controls of emissions. At each site, a selection of management interventions were compared within replicated experimental designs in plot-based experiments. Arable experiments were conducted at Beano in Italy, El Encin in Spain, Foulum in Denmark, Logården in Sweden, Maulde in Belgium, Paulinenaue in Germany, and Tulloch in the UK. Grassland experiments were conducted at Crichton, Nafferton and Peaknaze in the UK, Gödöllö in Hungary, Rzecin in Poland, Zarnekow in Germany and Theix in France. Nitrous oxide emissions were measured at each site over a period of at least two years using static chambers. Emissions varied widely between sites and as a result of manipulation treatments. Average site emissions (throughout the study period varied between 0.04 and 21.21 kg N2O-N ha−1 yr−1, with the largest fluxes and variability associated with the grassland sites. Total nitrogen addition was found to be the single most important determinant of emissions, accounting for 15% of the variance (using linear regression in the data from the arable sites (p 2O emissions within sites that occurred as a result of manipulation treatments was greater than that resulting from site-to-site and year-to-year variation, highlighting the importance of management interventions in contributing to greenhouse gas mitigation.

  7. Density functional theory study of nitrous oxide decomposition over Fe- and Co-ZSM-5

    Energy Technology Data Exchange (ETDEWEB)

    Ryder, Jason A.; Chakraborty, Arup K.; Bell, Alexis T.

    2001-12-19

    Iron- and cobalt-exchanged ZSM-5 are active catalysts for the dissociation of nitrous oxide. In this study, density functional theory was used to assess a possible reaction pathway for the catalytic dissociation of N2O. The active center was taken to be mononuclear [FeO]+ or [CoO]+, and the surrounding portion of the zeolite was represented by a 24-atom cluster. The first step of N2O decomposition involves the formation of [FeO2]+ or [CoO2]+ and the release of N2. The metal-oxo species produced in this step then reacts with N2O again, to release N2 and O2. The apparent activation energies for N2O dissociation in Fe-ZSM-5 and Co-ZSM-5 are 39.4 and 34.6 kcal/mol, respectively. The preexponential factor for the apparent first-order rate coefficient is estimated to be of the order 107 s-1 Pa-1. While the calculated activation energy for Fe-ZSM-5 is in good agreement with that measured experimentally, the value of the preexponential factor is an order of magnitude smaller than that observed . The calculated activation energy for Co-ZSM-5 is higher than that reported experimentally. However, consistent with experiment, the rate of N2O decomposition on Co-ZSM-5 is predicted to be significantly higher than that on Fe-ZSM-5.

  8. Investigation of odd-order nonlinear susceptibilities in atomic vapors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yaqi [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Teaching and Research Section of Maths and Physics, Guangzhou Commanding Academy of Chinese People’s Armed Police Force, Guangzhou, 510440 (China); Wu, Zhenkun; Si, Jinhai; Yan, Lihe; Zhang, Yiqi; Yuan, Chenzhi; Sun, Jia [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, Yanpeng, E-mail: ypzhang@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China)

    2013-06-15

    We theoretically deduce the macroscopic symmetry constraints for arbitrary odd-order nonlinear susceptibilities in homogeneous media including atomic vapors for the first time. After theoretically calculating the expressions using a semiclassical method, we demonstrate that the expressions for third- and fifth-order nonlinear susceptibilities for undressed and dressed four- and six-wave mixing (FWM and SWM) in atomic vapors satisfy the macroscopic symmetry constraints. We experimentally demonstrate consistence between the macroscopic symmetry constraints and the semiclassical expressions for atomic vapors by observing polarization control of FWM and SWM processes. The experimental results are in reasonable agreement with our theoretical calculations. -- Highlights: •The macroscopic symmetry constraints are deduced for homogeneous media including atomic vapors. •We demonstrate that odd-order nonlinear susceptibilities satisfy the constraints. •We experimentally demonstrate the deduction in part.

  9. Passive Vaporizing Heat Sink

    Science.gov (United States)

    Knowles, TImothy R.; Ashford, Victor A.; Carpenter, Michael G.; Bier, Thomas M.

    2011-01-01

    A passive vaporizing heat sink has been developed as a relatively lightweight, compact alternative to related prior heat sinks based, variously, on evaporation of sprayed liquids or on sublimation of solids. This heat sink is designed for short-term dissipation of a large amount of heat and was originally intended for use in regulating the temperature of spacecraft equipment during launch or re-entry. It could also be useful in a terrestrial setting in which there is a requirement for a lightweight, compact means of short-term cooling. This heat sink includes a hermetic package closed with a pressure-relief valve and containing an expendable and rechargeable coolant liquid (e.g., water) and a conductive carbon-fiber wick. The vapor of the liquid escapes when the temperature exceeds the boiling point corresponding to the vapor pressure determined by the setting of the pressure-relief valve. The great advantage of this heat sink over a melting-paraffin or similar phase-change heat sink of equal capacity is that by virtue of the =10x greater latent heat of vaporization, a coolant-liquid volume equal to =1/10 of the paraffin volume can suffice.

  10. Study on the effect of subcooling on vapor film collapse on high temperature particle surface

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Yutaka; Tochio, Daisuke; Yanagida, Hiroshi [Department of Mechanical Systems Engineering, Yamagata Univ., Yonezawa, Yamagata (Japan)

    2000-11-01

    Thermal detonation model is proposed to describe vapor explosion. According to this model, vapor film on pre-mixed high temperature droplet surface is needed to be collapsed for the trigger of the vapor explosion. It is pointed out that the vapor film collapse behavior is significantly affected by the subcooling of low temperature liquid. However, the effect of subcooling on micro-mechanism of vapor film collapse behavior is not experimentally well identified. The objective of the present research is to experimentally investigate the effect of subcooling on micro-mechanism of film boiling collapse behavior. As the results, it is experimentally clarified that the vapor film collapse behavior in low subcooling condition is qualitatively different from the vapor film collapse behavior in high subcooling condition. In case of vapor film collapse by pressure pulse, homogeneous vapor generation occurred all over the surface of steel particle in low subcooling condition. On the other hand, heterogeneous vapor generation was observed for higher subcooling condition. In case of vapor film collapse spontaneously, fluctuation of the gas-liquid interface after quenching propagated from bottom to top of the steel particle heterogeneously in low subcooling condition. On the other hand, simultaneous vapor generation occurred for higher subcooling condition. And the time transient of pressure, particle surface temperature, water temperature and visual information were simultaneously measured in the vapor film collapse experiment by external pressure pulse. Film thickness was estimated by visual data processing technique with the pictures taken by the high-speed video camera. Temperature and heat flux at the vapor-liquid interface were estimated by solving the heat condition equation with the measured pressure, liquid temperature and vapor film thickness as boundary conditions. Movement of the vapor-liquid interface were estimated with the PIV technique with the visual observation

  11. Winter Cover Crops and Nitrous Oxide Emissions in Early Spring

    Science.gov (United States)

    Morris, C. K.; Walter, M. T.; Reiss, E. R.

    2015-12-01

    Winter cover crops mixtures can be used to manage greenhouse gas (GHG) emissions during critical periods such as spring thaw. Legumes are added to cover crops mixtures to increase crop productivity, but it is unknown if this effect decreases N2O emissions. In this project we investigate the relationship between biodiversity, productivity and GHG fluxes in cover crops varieties typically grown for soil heath in agricultural systems. Surface GHG emissions were measured with closed chambers beginning during snowmelt events and continuing until crops were tilled into the soil in early summer. We found that nitrous oxide emissions were reduced in cover cropped plots during the early spring thaw period when compared to bare soil. GHG emission reductions in agriculture can be achieved with proper selection of winter hardy cover crops.

  12. Observation of atmospheric nitrous acid with DOAS in Beijing, China

    Institute of Scientific and Technical Information of China (English)

    QIN Min; XIE Pin-hua; LIU Wen-qing; LI Ang; DOU Ke; FANG Wu; LIU Jian-guo; ZHANG Wei-jun

    2006-01-01

    Measurements of nitrous acid (HONO) and nitrogen dioxide (NO2) in Beijing City have been performed by means of a developed differential optical absorption spectroscopy (DOAS) system based on photodiode array (PDA), during the autumn of 2004.HONO and NO2 were simultaneously identified by their characteristic absorption bands in the spectral region between 337 nm and 372 nm with high sensibility and time resolution. The concentrations of HONO exhibit obviously diurnal variation with a nocturnal maximum and a daytime minimum. The highest HONO value up to 11.8 μg/m3 was observed during the night of 2/3 September.Possible sources of the observed HONO were discussed. Good correlation to NO2 indicates that NO2 is a main source component. The measurement also shows direct emission of HONO is an important source in strongly polluted urban area.

  13. Nitrous Oxide as a Green Monopropellant for Small Satellites

    Science.gov (United States)

    Wallbank, J.; Sermon, P.; Baker, A.; Courtney, L.; Sambrook, R.

    2004-10-01

    Nitrous oxide (N2O), has been suggested as a green monopropellant for hydrazine replacement [1,2]. It has extremely low toxicity and has a higher theoretical specific impulse (ISP) than 90% hydrogen peroxide (HTP): N2O ISP(t)~206s, HTP ISP(t)~180s [3]. It has largely been overlooked though due to the difficulty involved in maintaining reproducible catalytic decomposition. The authors are developing N2O thruster technology to prove its viability as a monopropellant alternative to hydrazine. Towards this purpose the authors have developed a novel catalyst for the decomposition of N2O, that has high activity and is thermally stable in oxidising conditions. The catalyst is being engineered into a form to be used efficiently within the thruster housing. This paper reports on the development of this catalyst.

  14. Sources of nitrous oxide emitted from European forest soils

    DEFF Research Database (Denmark)

    Ambus, P.; Zechmeister-Boltenstern, S.; Butterbach-Bahl, K.

    2006-01-01

    0.67% (deciduous) and 0.44% (coniferous). Our study suggests that changes in forest composition in response to land use activities and global change may have implications for regional budgets of greenhouse gases. From the study it also became clear that N2O emissions were driven by the nitrification......Forest ecosystems may provide strong sources of nitrous oxide (N2O), which is important for atmospheric chemical and radiative properties. Nonetheless, our understanding of controls on forest N2O emissions is insufficient to narrow current flux estimates, which still are associated with great...... uncertainties. In this study, we have investigated the quantitative and qualitative relationships between N-cycling and N2O production in European forests in order to evaluate the importance of nitrification and denitrification for N2O production. Soil samples were collected in 11 different sites characterized...

  15. Shell biofilm-associated nitrous oxide production in marine molluscs

    DEFF Research Database (Denmark)

    Heisterkamp, I.M.; Schramm, Andreas; Larsen, Lone Heimann

    2013-01-01

    Emission of the greenhouse gas nitrous oxide (N2O) from freshwater and terrestrial invertebrates has exclusively been ascribed to N2O production by ingested denitrifying bacteria in the anoxic gut of the animals. Our study of marine molluscs now shows that also microbial biofilms on shell surfaces...... are important sites of N2O production. The shell biofilms of Mytilus edulis, Littorina littorea and Hinia reticulata contributed 18-94% to the total animal-associated N2O emission. Nitrification and denitrification were equally important sources of N2O in shell biofilms as revealed by 15N-stable isotope...... experiments with dissected shells. Microsensor measurements confirmed that both nitrification and denitrification can occur in shell biofilms due to a heterogeneous oxygen distribution. Accordingly, ammonium, nitrite and nitrate were important drivers of N2O production in the shell biofilm of the three...

  16. Analysis of nitrous oxide emissions from conventional combustion processes

    Energy Technology Data Exchange (ETDEWEB)

    Danihelka, P.; Juchelkova, D. [VSB-Technical Univ. of Ostrava (Czech Republic); Kula, P. [Academy of Science, Ostrava (Czech Republic). Inst. of Geonics

    1995-12-31

    Since 1980 it has been recognized that N{sub 2}O plays important roles in stratospheric ozone depletion and global climate change. Even if the emission of N{sub 2}O is considered to be a potential environmental problem, most countries, Czech Republic included, has no legislative limits for N{sub 2}O emissions. VSB-Technical University, in cooperation with the Academy of Sciences of the Czech Republic and TU Vienna (Austria), started research on N{sub 2}O emissions from stationary industrial sources. Non-continuous sampling technique which prevents positive errors caused by the N{sub 2}O formation in the container has been developed and the GC-ECD analytical technique used for N{sub 2}O detection. Sulfur dioxide, carbon dioxide and moisture should be completely removed from the sample. For typical stationary sources in the Czech Republic, the concentrations of nitrous oxide have been measured.

  17. Nitrous oxide-induced hypothermia in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Quock, R.M.; Panek, R.W.; Kouchich, F.J.; Rosenthal, M.A.

    1987-08-10

    Exposure of rats to high levels of nitrous oxide (N2O) in oxygen reduced body temperature in a concentration-related manner. The hypothermia was partly reversed by pretreatment with naloxone but not naltrexone. But in rats rendered tolerant to morphine by pellet implantation, exposure to 75% N2O/25% O2 evoked a marked hypothermia similar to that observed in morphine-naive animals. In another experiment, the hypothermic effect of chloral hydrate was also sensitive to antagonism by pretreatment with naloxone but not naltrexone. These observations lead the authors to suspect that N2O-induced hypothermia in rats is possibly not mediated by opiate receptors. The thermotropic activity of N2O may result from some non-opioid action of N2O. Its selective antagonism by naloxone (but not naltrexone) may be due to a unique non-opioid analeptic action of naloxone. 32 references, 4 figures.

  18. Strategies to mitigate nitrous oxide emissions from herbivore production systems

    DEFF Research Database (Denmark)

    Schils, R L M; Eriksen, Jørgen; Ledgard, S F

    2013-01-01

    Herbivores are a significant source of nitrous oxide (N2O) emissions. They account for a large share of manure-related N2O emissions, as well as soil-related N2O emissions through the use of grazing land, and land for feed and forage production. It is widely acknowledged that mitigation measures...... are necessary to avoid an increase in N2O emissions while meeting the growing global food demand. The production and emissions of N2O are closely linked to the efficiency of nitrogen (N) transfer between the major components of a livestock system, that is, animal, manure, soil and crop. Therefore, mitigation...... options in this paper have been structured along these N pathways. Mitigation technologies involving diet-based intervention include lowering the CP content or increasing the condensed tannin content of the diet. Animal-related mitigation options also include breeding for improved N conversion and high...

  19. Electrical properties of carbon nanotubes in flowing vapor

    Institute of Scientific and Technical Information of China (English)

    XIAO Peng; WANG Xin-qiang; ZHANG Yun-huai

    2006-01-01

    Electric potentials were generated from carbon nanotubes immersed in flowing vapors.The nanomaterials used in this study were multiwall carbon nanotubes(MWCNTs) and silver nanopowders.These nanomaterials were dispersed and densely packed on a substrate and immersed in flowing vapors generated from solution such as water,ethanol and KCl.The potentials generated from these samples were measured by a voltmeter.Experimental results showed that the electric potentials were produced at the surface of the MWCNT samlpes,and strongly dependent on the pretreatment of MWCNT and properties of the flowing vapors.The mechanism of vapor-flow induced potentials may be ascribed to ions in the flowing vapors.This property of MWCNTs can advantage their application to nanoscale sensors,detectors and power cells.

  20. Estimation of methane and nitrous oxide emissions from Indian livestock.

    Science.gov (United States)

    Patra, Amlan K

    2012-10-26

    Greenhouse gas (GHG; methane and nitrous oxide) emissions from enteric fermentation and manure management of Indian livestock were estimated from the last two Indian livestock census datasets (2003 and 2007) using IPCC Tier 2 (2006) guidelines. The total annual GHG emissions from Indian livestock increased in 2007 compared to the year 2003 with an annual growth rate of 1.52% over this period. The contributions of GHG by dairy cattle, non-dairy cattle, buffaloes, goats, sheep and other animals (yak, mithun, horse, donkeys, pigs and poultry) were 30.52, 24.0, 37.7, 4.34, 2.09 and 3.52%, respectively, in 2007. Enteric fermentation was the major source of methane, accounting for 89.2% of the total GHG emissions, followed by manure methane (9.49%). Nitrous oxide emissions accounted for 1.34%. GHG emissions (CO(2)-eq. per kg of fat and protein corrected milk (FPCM)) by female animals were considerably lower for crossbred cows (1161 g), followed by buffaloes (1332 g) and goats (2699 g), and were the highest for indigenous cattle (3261 g) in 2007. There was a decreasing trend in GHG emissions (-1.82% annual growth rate) in relation to milk production from 2003 to 2007 (1818 g and 1689 g CO(2)-eq. per kg FPCM in 2003 and 2007, respectively). This study revealed that GHG emissions (total as well as per unit of products) from dairy and other categories of livestock populations could be reduced substantially through proper dairy herd management without compromising animal production. In conclusion, although the total GHG emissions from Indian livestock increased in 2007, there was a decreasing trend in GHG production per kg of milk production or animal products.

  1. Fluxes of methane and nitrous oxide from an Indian mangrove

    Energy Technology Data Exchange (ETDEWEB)

    Krithika, K.; Purvaja, R.; Ramesh, R. [Anna Univ., Chennai (India). Institute for Ocean Management

    2008-01-25

    Methane and nitrous oxide are atmospheric trace gases and contribute about 15 and 6% respectively to the greenhouse effect. Both have a long atmospheric residence time of about 114 and 12 years respectively and since they are key compounds in the chemical reaction cycles of the troposphere and the stratosphere, their potential to directly or indirectly influence global climate is high. Fluxes of greenhouse gases, methane (CH{sub 4}) and nitrous oxide (N{sub 2}O), were measured from a mangrove ecosystem of the Cauvery delta (Muthupet) in South India. CH{sub 4} emissions were in the range between 18.99 and 37.53 mg/sq. m/d, with an average of 25.21 mg/sq. m/d, whereas N{sub 2}O emission ranged between 0.41 and 0.80 mg/sq. m/d (average of 0.62 mg/sq. m/d). The emission of CH{sub 4} and N{sub 2}O correlated positively with the number of pneumatophores. In addition to the flux measurements, different parts of the roots of Avicennia marina were quantified for CH{sub 4} concentration. Invariably in all the seasons, measured CH{sub 4} concentrations were high in the cable roots, with gradual decrease through the pneumatophores below water level and the above water level. This clearly indicates the transport of CH{sub 4} through the roots. We were able to establish that CH{sub 4} was released passively through the mangrove pneumatophores and is also a source to the atmosphere. We present some additional information on transport mechanisms of CH{sub 4} through the pneumatophores and bubble release from the mangrove ecosystems.

  2. Direct nitrous oxide emissions from rapeseed in Germany

    Science.gov (United States)

    Fuß, Roland; Andres, Monique; Hegewald, Hannes; Kesenheimer, Katharina; Köbke, Sarah; Räbiger, Thomas; Suarez, Teresa; Stichnothe, Heinz; Flessa, Heiner

    2014-05-01

    The production of first generation biofuels has increased over the last decade in Germany. However, there is a strong public and scientific debate concerning ecological impact and sustainability of biofuel production. The EU Renewables Directive requires biofuels to save 35 % of GHG emissions compared to fossil fuels. Starting in 2017, 50 % mitigation of GHG emissions must be achieved. This presents challenges for production of biofuels from rapeseed, which is one of the major renewable resources used for fuel production. Field emissions of nitrous oxide (N2O) and GHG emissions during production of fertilizers contribute strongest to the GHG balance of rapeseed biofuel. Thus, the most promising GHG mitigation option is the optimization of nitrogen fertilization. Since 2012, field trials are conducted on five German research farms to quantify direct GHG emissions. The sites were selected to represent the main rapeseed production regions in Germany as well as climatic regions and soil types. Randomized plot designs were established, which allow monitoring (using manual chambers) impact of fertilization intensity on direct emissions and yield of the typical crop sequence (winter rape - winter wheat - winter barley). The effect of substituting mineral fertilizer with biogas digestate with and without addition of a nitrification inhibitor is also studied. Here we present results from the first cropping season. In 2013, annual direct N2O emissions as well as yield normalized N2O emissions from rape were low. This can be explained with the weather conditions as 2013 was characterized by a cold and long winter with snow until mid spring. As a result, emissions were smaller than predicted by the IPCC emission factors or by the Global Nitrous Oxide Calculator (GNOC). However, emissions still depend on nitrogen input.

  3. HONO (nitrous acid) emissions from acidic northern soils

    Science.gov (United States)

    Maljanen, Marja; Yli-Pirilä, Pasi; Joutsensaari, Jorma; Martikainen, Pertti J.

    2015-04-01

    The photolysis of HONO (nitrous acid) is an important source of OH radical, the key oxidizing agent in the atmosphere, contributing also to removal of atmospheric methane (CH4), the second most important greenhouse gas after carbon dioxide (CO2). The emissions of HONO from soils have been recently reported in few studies. Soil HONO emissions are regarded as missing sources of HONO when considering the chemical reactions in the atmosphere. The soil-derived HONO has been connected to soil nitrite (NO2-) and also directly to the activity of ammonia oxidizing bacteria, which has been studied with one pure culture. Our hypothesis was that boreal acidic soils with high nitrification activity could be also sources of HONO and the emissions of HONO are connected with nitrification. We selected a range of dominant northern acidic soils and showed in microcosm experiments that soils which have the highest nitrous oxide (N2O) and nitric oxide (NO) emissions (drained peatlands) also have the highest HONO production rates. The emissions of HONO are thus linked to nitrogen cycle and also NO and N2O emissions. Natural peatlands and boreal coniferous forests on mineral soils had the lowest HONO emissions. It is known that in natural peatlands with high water table and in boreal coniferous forest soils, low nitrification activity (microbial production of nitrite and nitrate) limits their N2O production. Low availability of nitrite in these soils is the likely reason also for their low HONO production rates. We also studied the origin of HONO in one peat soil with acetylene and other nitrification inhibitors and we found that HONO production is not closely connected to ammonium oxidation (nitrification). Acetylene blocked NO emissions but did not affect HONO or N2O emissions, thus there is another source behind HONO emission from these soils than ammonium oxidation. It is still an open question if this process is microbial or chemical origin.

  4. Data for "Controls on nitrous oxide production and consumption in reservoirs of the Ohio River Basin"

    Data.gov (United States)

    U.S. Environmental Protection Agency — Dissolved oxygen, dissolved nitrous oxide, and water temperature in reservoirs. This dataset is associated with the following publication: Beaulieu , J., C. Nietch ,...

  5. Effectiveness of Nitrous Oxide as a Liquid Injection Thrust Vector Control Fluid Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nitrous Oxide is proposed as an energetic liquid injection thrust vector control fluid for vehicle attitude control during dynamic vehicle maneuvers. Pulled from the...

  6. Denitrification: An important pathway for nitrous oxide production in tropical mangrove sediments (Goa, India)

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, S.O.; LokaBharathi, P.A.; Bonin, P.C.; Michotey, V.D.

    Net nitrous oxide production and denitrification activity were measured in two mangrove ecosystems of Goa, India. The relatively pristine site Tuvem was compared to Divar, which is prone to high nutrient input. Stratified sampling at 2-cm intervals...

  7. Nitrous Oxide Fuel Blend-Continuous Operation Lunar Thruster (NOFB-COLT) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose conducting further development for a Nitrous Oxide Fuel Blend (NOFB) propulsion system. Phase I activities will concentrate on a revising a previous 5 lbf...

  8. Nitrous Oxide Fuel Blend-Continuous Operation Lunar Thruster (NOFB-COLT) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Firestar Engineering has developed a set of Nitrous Oxide Fuel Blend monopropellants that are: 1) Non-toxic, 2) Specific Impulse> 310 s, 3) Freezing point <...

  9. Laboratory flammability studies of mixtures of hydrogen, nitrous oxide, and air

    Energy Technology Data Exchange (ETDEWEB)

    Cashdollar, K L; Hertzberg, M; Zlochower, I A; Lucci, C E; Green, G M; Thomas, R A [Bureau of Mines, Pittsburgh, PA (United States). Pittsburgh Research Center

    1992-06-26

    At the request of the Department of Energy and the Westinghouse Hanford Company, the Bureau of Mines has investigated the flammability of mixtures of hydrogen, nitrous oxide, and air. This work is relevant to the possible hazards of flammable gas generation from nuclear waste tanks at Hanford, WA. The tests were performed in a 120-L spherical chamber under both quiescent and turbulent conditions using both electric spark and pyrotechnic ignition sources. The data reported here for binary mixtures of hydrogen in air generally confirm the data of previous investigators, but they are more comprehensive than those reported previously. The results clarify to a greater extent the complications associated with buoyancy, turbulence, and selective diffusion. The data reported here for ternary mixtures of hydrogen and nitrous oxide in air indicate that small additions of nitrous oxide (relative to the amount of air) have little effect, but that higher concentrations of nitrous oxide (relative to air) significantly increase the explosion hazard.

  10. Nitrous Oxide During Labor: Maternal Satisfaction Does Not Depend Exclusively on Analgesic Effectiveness

    National Research Council Canada - National Science Library

    Richardson, Michael G; Lopez, Brandon M; Baysinger, Curtis L; Shotwell, Matthew S; Chestnut, David H

    2017-01-01

    .... Even fewer studies have looked at patient satisfaction. Although nitrous oxide appears less effective than neuraxial analgesia, it is unclear whether labor analgesic effectiveness is the most important factor in patient satisfaction...

  11. Effect of nitrous oxide on cisatracurium infusion demands: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Illman Hanna L

    2010-08-01

    Full Text Available Abstract Background Recent studies have questioned our previous understanding on the effect of nitrous oxide on muscle relaxants, since nitrous oxide has been shown to potentiate the action of bolus doses of mivacurium, rocuronium and vecuronium. This study was aimed to investigate the possible effect of nitrous oxide on the infusion requirements of cisatracurium. Methods 70 ASA physical status I-III patients aged 18-75 years were enrolled in this randomized trial. The patients were undergoing elective surgery requiring general anesthesia with a duration of at least 90 minutes. Patients were randomized to receive propofol and remifentanil by target controlled infusion in combination with either a mixture of oxygen and nitrous oxide (Nitrous oxide/TIVA group or oxygen in air (Air/TIVA group. A 0.1 mg/kg initial bolus of cisatracurium was administered before tracheal intubation, followed by a closed-loop computer controlled infusion of cisatracurium to produce and maintain a 90% neuromuscular block. Cumulative dose requirements of cisatracurium during the 90-min study period after bolus administration were measured and the asymptotic steady state rate of infusion to produce a constant 90% block was determined by applying nonlinear curve fitting to the data on the cumulative dose requirement during the study period. Results Controller performance, i.e. the ability of the controller to maintain neuromuscular block constant at the setpoint and patient characteristics were similar in both groups. The administration of nitrous oxide did not affect cisatracurium infusion requirements. The mean steady-state rates of infusion were 0.072 +/- 0.018 and 0.066 +/- 0.017 mg * kg-1 * h-1 in Air/TIVA and Nitrous oxide/TIVA groups, respectively. Conclusions Nitrous oxide does not affect the infusion requirements of cisatracurium. Trial registration ClinicalTrials.gov NCT01152905; European Clinical Trials Database at http://eudract.emea.eu.int/2006-006037-41.

  12. Modelling vaporous cavitation on fluid transients

    CERN Document Server

    Shu, Jian-Jun

    2014-01-01

    A comprehensive study of the problem of modelling vaporous cavitation in transmission lines is presented. The two-phase homogeneous equilibrium vaporous cavitation model which has been developed is compared with the conventional column separation model. The latter predicts unrealistically high pressure spikes because of a conflict arising from the prediction of negative cavity sizes if the pressure is not permitted to fall below the vapour pressure, or the prediction of negative absolute pressures if the cavity size remains positive. This is verified by a comparison of predictions with previously published experimental results on upstream, midstream and downstream cavitation. The new model has been extended to include frequency-dependent friction. The characteristics predicted by the frequency-dependent friction model show close correspondence with experimental data.

  13. Influence of nitrous oxide anesthesia, B-vitamins, and MTHFR gene polymorphisms on perioperative cardiac events: the vitamins in nitrous oxide (VINO) randomized trial.

    Science.gov (United States)

    Nagele, Peter; Brown, Frank; Francis, Amber; Scott, Mitchell G; Gage, Brian F; Miller, J Philip

    2013-07-01

    Nitrous oxide causes an acute increase in plasma homocysteine that is more pronounced in patients with the methylenetetrahydrofolate reductase (MTHFR) C677T or A1298C gene variant. In this randomized controlled trial, the authors sought to determine whether patients carrying the MTHFR C677T or A1298C variant had a higher risk for perioperative cardiac events after nitrous oxide anesthesia and whether this risk could be mitigated by B-vitamins. The authors randomized adult patients with cardiac risk factors undergoing noncardiac surgery, to receive nitrous oxide plus intravenous B-vitamins before and after surgery, or to nitrous oxide and placebo. Serial cardiac biomarkers and 12-lead electrocardiograms were obtained. The primary study endpoint was the incidence of myocardial injury, as defined by cardiac troponin I increase within the first 72 h after surgery. A total of 500 patients completed the trial. Patients who were homozygous for either MTHFR C677T, or A1298C gene variant (n=98; 19.6%) had no increased rate of postoperative cardiac troponin I increase compared with wild-type and heterozygous patients (11.2 vs. 14.0%; relative risk 0.96; 95% CI, 0.85-1.07; P=0.48). B-vitamins blunted the rise in homocysteine, but had no effect on cardiac troponin I increase compared with patients receiving placebo (13.2 vs. 13.6%; relative risk 1.02; 95% CI 0.78 to 1.32; P=0.91). Neither MTHFR C677T and A1298C gene variant, nor acute homocysteine increase are associated with perioperative cardiac troponin increase after nitrous oxide anesthesia. B-vitamins blunt nitrous oxide-induced homocysteine increase but have no effect on cardiac troponin I increase.

  14. Nitrous oxide emissions from a commercial cornfield (Zea mays) measured using the eddy covariance technique

    Science.gov (United States)

    Huang, H.; Wang, J.; Hui, D.; Miller, D. R.; Bhattarai, S.; Dennis, S.; Smart, D.; Sammis, T.; Reddy, K. C.

    2014-12-01

    Increases in observed atmospheric concentrations of the long-lived greenhouse gas nitrous oxide (N2O) have been well documented. However, information on event-related instantaneous emissions during fertilizer applications is lacking. With the development of fast-response N2O analyzers, the eddy covariance (EC) technique can be used to gather instantaneous measurements of N2O concentrations to quantify the exchange of nitrogen between the soil and atmosphere. The objectives of this study were to evaluate the performance of a new EC system, to measure the N2O flux with the system, and finally to examine relationships of the N2O flux with soil temperature, soil moisture, precipitation, and fertilization events. An EC system was assembled with a sonic anemometer and a fast-response N2O analyzer (quantum cascade laser spectrometer) and applied in a cornfield in Nolensville, Tennessee during the 2012 corn growing season (4 April-8 August). Fertilizer amounts totaling 217 kg N ha-1 were applied to the experimental site. Results showed that this N2O EC system provided reliable N2O flux measurements. The cumulative emitted N2O amount for the entire growing season was 6.87 kg N2O-N ha-1. Seasonal fluxes were highly dependent on soil moisture rather than soil temperature. This study was one of the few experiments that continuously measured instantaneous, high-frequency N2O emissions in crop fields over a growing season of more than 100 days.

  15. Stable Isotope and Isotopomeric Constraints on Nitrous Oxide Production in a Wastewater Treatment Plant

    Science.gov (United States)

    Bellucci, F.; Gonzalez-Meler, M. A.; Sturchio, N. C.; Bohlke, J. K.; Ostrom, N. E.; Kozak, J. A.

    2011-12-01

    Estimates of US anthropogenic greenhouse gas emissions by USEPA (Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2009; 2011) indicate that wastewater treatment plants are the 7th highest contributor to atmospheric nitrous oxide. This unregulated gas has an estimated global warming potential (GWP) 310 times that of carbon dioxide on a per mol basis. There is general agreement that, within wastewater treatment plants, the vast majority of the nitrous oxide emissions occur in the aerobic zones for biological ammonia oxidation and/or downstream from anoxic zones used in biological nitrogen removal. However, the exact mechanism of production is not well understood, as both incomplete nitrification and denitrification might contribute to the overall nitrous oxide emissions. Determining the dominant biological pathways responsible for these emissions is important for the development of improved treatment systems that can reduce nitrous oxide greenhouse gas emissions to the atmosphere. In this study, we determined the total nitrous oxide flux from a single tank of one of the aeration basins from a large metropolitan wastewater treatment plant in Stickney, Illinois. Furthermore, we analyzed the changes in nitrogen and oxigen stable isotopic composition for ammonium, nitrate, and nitrous oxide, as well as the intramolecular site preference (SP) for δ15N within the linear N-N-O molecule, along the 520 meter wastewater flow path within the tank. Assuming the measured tank was representative of the 32 tanks constituting the 4 aeration basins of the plant, we estimate the combined annual nitrous oxide flux from this source to be approximately 230 metric ton/y. The δ15N values for ammonium ranged between +19.9% and +6.4%, those for nitrate ranged between +20.4% and +5.3%, and those for nitrous oxide ranged between -34.4% and 0.4%. The nitrous oxide SP ranged between +11.7% and -4.5%. The concentrations and δ15N values of ammonium and nitrate showed trends along the

  16. Cesium vapor thermionic converter anomalies arising from negative ion emission

    Energy Technology Data Exchange (ETDEWEB)

    Rasor, Ned S., E-mail: ned.rasor@gmail.com [532 Pauley Woods Circle Kettering, Ohio 45429 (United States)

    2016-08-14

    Compelling experimental evidence is given that a longstanding limit encountered on cesium vapor thermionic energy converter performance improvement and other anomalies arise from thermionic emission of cesium negative ions. It is shown that the energy that characterizes thermionic emission of cesium negative ions is 1.38 eV and, understandably, is not the electron affinity 0.47 eV determined for the photodetachment threshold of the cesium negative ion. The experimental evidence includes measurements of collector work functions and volt-ampere characteristics in quasi-vacuum cesium vapor thermionic diodes, along with reinterpretation of the classic Taylor-Langmuir S-curve data on electron emission in cesium vapor. The quantitative effects of negative ion emission on performance in the ignited, unignited, and quasi-vacuum modes of cesium vapor thermionic converter operation are estimated.

  17. Cesium vapor thermionic converter anomalies arising from negative ion emission

    Science.gov (United States)

    Rasor, Ned S.

    2016-08-01

    Compelling experimental evidence is given that a longstanding limit encountered on cesium vapor thermionic energy converter performance improvement and other anomalies arise from thermionic emission of cesium negative ions. It is shown that the energy that characterizes thermionic emission of cesium negative ions is 1.38 eV and, understandably, is not the electron affinity 0.47 eV determined for the photodetachment threshold of the cesium negative ion. The experimental evidence includes measurements of collector work functions and volt-ampere characteristics in quasi-vacuum cesium vapor thermionic diodes, along with reinterpretation of the classic Taylor-Langmuir S-curve data on electron emission in cesium vapor. The quantitative effects of negative ion emission on performance in the ignited, unignited, and quasi-vacuum modes of cesium vapor thermionic converter operation are estimated.

  18. 基于玻璃态膜组件的油气污染排放控制技术研究%Experimental research of oil vapor pollution control with galssy membrane separation technology

    Institute of Scientific and Technical Information of China (English)

    朱玲; 陈家庆; 张宝生; 王建宏; 赵岩

    2011-01-01

    针对加油站收油和发油过程中产生的油气污染,采用新型的玻璃态油气截留型PEEK中空纤维膜组件,在自行设计建造的膜分离设备上,分别考察了膜组件和整个膜系统对油气污染治理和回收的效果,提出了一种研究膜法油气回收过程的新思路。对于膜组件的分离实验结果发现,处理流量在2.5~7.5 m3/h、系统压力在525~825 Pa之间的中试规模运行条件下,膜组件对油气-氮气混合气有很好的净化能力,尾气能够达标排放;在渗余的富油气返回油罐的模拟加油站实际运行情况的循环实验条件下,尾气也低于25g/m3的国标。%A new type of vapor retained galssy membrance, which was based on PEEK hollow fiber membranes , was used to control the oil vapor pollution during the course of receieving and transfering gasoline in oil stations. The efficiencies of the membrance module and the membrance system were evaluated respectively in the facalities which were designed and set up by ourselves, and the results of these experiments may provide a new method for membrance seperation on oil vapor recovery. It was found that the membrance module had high efficiency for the seperation of VOCs-N2 mixed gases, with the operational capacity from 2. 5 mVh to 7. 5 mVh and the systemic pressure from 525 Pa to 825 Pa. The outlet vapor after treatment can meet the national standard. When the residue vapor-enriched gas was returned to the oil tank to simulate the continuously cycle test, the concentration of VOCs in the outlet was also below 25 g/m3.

  19. Excess liquid in heat-pipe vapor spaces

    Science.gov (United States)

    Eninger, J. E.; Edwards, D. K.

    1977-01-01

    A mathematical model is developed of excess liquid in heat pipes that is used to calculate the parameters governing the axial flow of liquid in fillets and puddles that form in vapor spaces. In an acceleration field, the hydrostatic pressure variation is taken into account, which results in noncircular meniscus shapes. The two specific vapor-space geometries considered are circular and the 'Dee-shape' that is formed by a slab wick in a circular tube. Also presented are theoretical and experimental results for the conditions under which liquid slugs form at the ends of the vapor spaces. These results also apply to the priming of arteries.

  20. Boiling Heat Transfer on Porous Surfaces with Vapor Channels

    Institute of Scientific and Technical Information of China (English)

    吴伟; 杜建华; 王补宣

    2002-01-01

    Boiling heat transfer on porous coated surfaces with vapor channels was investigated experimentally to determine the effects of the size and density of the vapor channels on the boiling heat transfer. Observations showed that bubbles escaping from the channels enhanced the heat transfer. Three regimes were identified: liquid flooding, bubbles in the channel and the bottom drying out region. The maximum heat transfer occurred for an optimum vapor channel density and the boiling heat transfer performance was increased if the channels were open to the bottom of the porous coating.

  1. Surface acoustic wave vapor sensors based on resonator devices

    Science.gov (United States)

    Grate, Jay W.; Klusty, Mark

    1991-05-01

    Surface acoustic wave (SAW) devices fabricated in the resonator configuration have been used as organic vapor sensors and compared with delay line devices more commonly used. The experimentally determined mass sensitivities of 200, 300, and 400 MHz resonators and 158 MHz delay lines coated with Langmuir-Blodgett films of poly(vinyl tetradecanal) are in excellent agreement with theoretical predictions. The response of LB- and spray-coated sensors to various organic vapors were determined, and scaling laws for mass sensitivities, vapor sensitivities, and detection limits are discussed. The 200 MHz resonators provide the lowest noise levels and detection limits of all the devices examined.

  2. Heat Transfer in Flue Gas with Vapor Condensation

    Institute of Scientific and Technical Information of China (English)

    贾力; 彭晓峰

    2002-01-01

    This paper combines the film model with Nusselt's condensation theory to analyze the effects of water vapor condensation on the heat transfer performance of flue gas flowing through a vertical tube. The analysis compares the condensation and convective heat transfer rates. For the concentration range investigated, the water vapor condensation transfers more energy than the flue gas convection, but the convective heat transfer can not be neglected. The heat transfer intensification due to the condensation increased as the water vapor fraction increased. The theoretical results compared well with experimental data.

  3. Modeling Nitrous Oxide Production during Biological Nitrogen Removal via Nitrification and Denitrification: Extensions to the General ASM Models

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Ruscalleda, Maël; Pellicer i Nàcher, Carles

    2011-01-01

    Nitrous oxide (N2O) can be formed during biological nitrogen (N) removal processes. In this work, a mathematical model is developed that describes N2O production and consumption during activated sludge nitrification and denitrification. The well-known ASM process models are extended to capture N2O...... dynamics during both nitrification and denitrification in biological N removal. Six additional processes and three additional reactants, all involved in known biochemical reactions, have been added. The validity and applicability of the model is demonstrated by comparing simulations with experimental data...... on N2O production from four different mixed culture nitrification and denitrification reactor study reports. Modeling results confirm that hydroxylamine oxidation by ammonium oxidizers (AOB) occurs 10 times slower when NO2– participates as final electron acceptor compared to the oxic pathway. Among...

  4. Oral Pseudoephedrine Decreases the Rate of Trans-mucosal Nitrous Oxide Exchange for the Middle Ear

    Science.gov (United States)

    Teixeira, Miriam S.; Alper, Cuneyt M.; Martin, Brian S; Cullen Doyle, Brendan M.; Doyle, William J.

    2015-01-01

    Objective Determine if oral pretreatment with a vasoconstrictor decreases the blood to middle-ear exchange-rate of the perfusion-limited gas, Nitrous Oxide (N2O). Study Design Randomized, double-blind, crossover study. Methods Ten adult subjects with and 10 without past middle-ear disease completed paired experimental sessions, identical but for oral pretreatment with either pseudoephedrine HCL or lactose placebo. At each session, subjects were fitted with a non-rebreathing mask and breathed room air for 20 minutes (acclimation period), 50% N2O:50% O2 for 20 minutes (experimental period) and 100% O2 for 10 minutes (recovery period). Throughout, heart-rate, blood-pressure and O2 saturation were monitored and bilateral middle-ear pressures were recorded by tympanometry every minute. The primary outcome was the slope of the middle-ear pressure-time function for the experimental period which estimates the volume N2O exchange-rate. Using repeated measures ANOVA, the effects of Group (disease history), Treatment (active vs. placebo) and Period (1 vs. 2) on the recorded vital signs, and of Group, Treatment and Ear (left/right) on the middle-ear pressure-time slope were evaluated for statistical significance. Results Statistically significant effects of Period on O2 saturation (Period 2>Period 1) and of Treatment on heart-rate (Active>Placebo) were documented. Only Treatment was statistically significant for the middle-ear pressure-time slope with a shallower slope characterizing the active treatment session. Conclusion The volume exchange-rate across the middle-ear mucosa of perfusion-limited gases can be modulated pharmacologically. Theoretically, similar drugs can be used to reduce the requisite Eustachian tube opening efficiency for adequate middle-ear pressure regulation. PMID:26152838

  5. Theorical and experimental study of the induced forces by the mixed, divergent, convergent and straight labyrinth of seal systems on the steam turbines, gas turbines and compressor rotors; Estudio teorico-experimental de las fuerzas inducidas por los sistemas de sellos de laberinto rectos, convergentes, divergentes y mixtos sobre los rotores de turbinas de vapor, turbinas de gas y compresores

    Energy Technology Data Exchange (ETDEWEB)

    Salazar San Andres, Octavio Ramon

    1991-12-31

    A theoretical and experimental research is conducted in order to determine the labyrinth seal forces, as well as the stiffness and damping coefficients for straight, convergent, divergent, and combined shapes on turbine and compressor rotors. The mathematical model is deduced on the basis of the single volume method and its solution is obtained by the perturbation procedure. The validation is achieved with published results. Experimental work carried out on a test bench is described in the text. This involved labyrinth seals with straight, convergent, and divergent profiles, as the published information relating to mixed type is sufficient to perform the evaluation. The conclusions demonstrate that the model is able to predict and determine the performance of labyrinth seals based on forces and rotordynamic coefficients for static and dynamic motions. Finally, tests on real steam turbines of 300 MW are recommended. In this case the high pressures and use of wheels with strips on the periphery and supported by the upper part of blades, increase the susceptibility of self excited subsynchronous vibrations. [Espanol] Se presenta una investigacion teorica-experimental relacionada con la obtencion y validacion de un modelo matematico capaz de predecir las fuerzas y los coeficientes de rigidez y amortiguamiento de los sellos de laberinto de tipo recto, convergente, divergente y mixto que se emplean en turbinas y compresores tanto terrestres como aereos. El modelo matematico propuesto se deduce a partir del metodo de un solo volumen y su solucion se obtiene a traves de metodos perturbatorios. La validacion del mismo se consigue al comparar con resultados experimentales publicados en revistas especializadas y con los datos medidos en un banco de pruebas cuya descripcion se incluye en el trabajo, cualculado para sellos rectos, convergentes y divergentes, ya que la informacion publicada respecto al tipo mixto o combinado es suficiente. Las conclusiones de la investigacion

  6. Health-hazard evaluation report HETA 85-408-1666, Doctors Hiatt, Metcalfe, and Schaad, Denver, Colorado. [Nitrous oxide

    Energy Technology Data Exchange (ETDEWEB)

    Gunter, B.J.; Pryor, P.D.

    1986-02-01

    Nitrous-oxide concentrations in office air were measured directly in September of 1985, and a follow-up environmental survey was made in January, 1986 at the Hiatt, Metcalfe, and Schaad dental clinic, Denver, Colorado. The office manager of the clinic had requested an evaluation of nitrous-oxide exposures during dental procedures. General area samples were taken on the nitrous-oxide administering equipment throughout the dental operatory, in the secretarial work area, and in the breathing zone of the two dental hygienists. Concentrations ranging from 100 to greater than 1000 parts per million (ppm) were found. The average nitrous-oxide concentration was approximately 500 to 600ppm in the breathing zone of the hygienists during the cleaning procedure. Hygienists used 3.5 to 4.5 liters of nitrous oxide per minute. Nitrous-oxide concentrations in the secretarial areas were 350 to 400ppm while the hygienists were using the gas. NIOSH recommended a 25ppm environmental limit for nitrous oxide. The author concludes that a health hazard exists from overexposures to nitrous oxide. A nitrous-oxide scavenging system, lower flow rates, and a better dilution ventilation system are recommended to lower these exposure concentrations.

  7. Effects of sevoflurane with and without nitrous oxide on human cerebral circulation. Transcranial Doppler study.

    Science.gov (United States)

    Cho, S; Fujigaki, T; Uchiyama, Y; Fukusaki, M; Shibata, O; Sumikawa, K

    1996-10-01

    This study was designed to evaluate the effects of sevoflurane with and without nitrous oxide on human middle cerebral artery (MCA) flow velocity, cerebrovascular carbon dioxide reactivity, and autoregulation compared with the awake state using transcranial Doppler ultrasonography. In 14 patients, the time-mean middle cerebral artery flow velocity (Vmca) was measured when the end-tidal carbon dioxide level was approximately 30, 40, and 50 mmHg under the following conditions: (1) awake; (2) with 2% (1.2 MAC) sevoflurane; and (3) with 1.2 MAC sevoflurane-60% nitrous oxide. In six other patients, the cerebrovascular autoregulation during anesthesia was determined using intravenous phenylephrine to increase blood pressure. Sevoflurane (1.2 MAC) significantly decreased Vmca compared with the awake value at each level of end-tidal carbon dioxide, whereas 1.2 MAC sevoflurane-60% nitrous oxide did not exert significant influence. The Vmca in normocapnic patients decreased from 69 cm/s to 55 cm/s with 1.2 MAC sevoflurane and then increased to 70 cm/s when nitrous oxide was added. Sevoflurane (1.2 MAC) with and without 60% nitrous oxide had a negligible effect on cerebrovascular carbon dioxide reactivity. A phenylephrine-induced increase of mean arterial pressure did not influence Vmca during anesthesia. Sevoflurane (1.2 MAC) reduced Vmca compared with the awake condition, whereas the addition of nitrous oxide caused Vmca to increase toward the values obtained in the awake condition. The cerebrovascular carbon dioxide reactivity and autoregulation were well maintained during 1.2 MAC sevoflurane with and without 60% nitrous oxide.

  8. Effects of cracks and some key factors on emissions of nitrous oxide in paddy fields

    Institute of Scientific and Technical Information of China (English)

    HUANG Shu-hui; LU Jun; TIAN Guang-ming

    2005-01-01

    Paddy field is a primary agricultural landscape in the south of China and is often regarded as one of main sources emitting nitrous oxide to atmosphere. The nitrous oxide emissions under a variety of paddy field practices, such as fertilization, flooding/draining management were investigated to study on agricultural activities on paddy field affect the dynamic process of the emission. Under no addition of fertilizers the average emission flux of nitrous oxide was 8.55 μg/(m2· h) during the rice( Oryza Sativa L. ) growth season. The results indicated that most of nitrous oxide emissions occurred during the crack forming-and-expansion period when paddy field was being drained. The diurnal emissions peak of nitrous oxide appeared at 20:30 at night in cracked rice fields. The statistical analysis suggested that the correlation of nitrous oxide emissions flux (Y) with soil water content ( X1 ), soil temperature ( X2 ), and Eh ( X3 ), could be described in a regression equation: Y= - 1498.95 + 2895.48 X1 + 50.63 X2 -96.99X1 · X2 + 0.006X2· X3. There were the different power equations to simulate the correlations between the everyday dynamic N2O emissions and the mean surface area of cracks, mean volume and depth of cracks respectively during paddy soil drying by soil columns incubation experiments. Taken all together, the current study presented a dynamic analysis of nitrous oxide emission of paddy field under various conditions, therefore provided a basis for the management to balance between environmental effect and paddy field activities.

  9. Evaluación experimental del Isobutano (R600a) como substituto del R134a en instalaciones de compresión simple de vapor que utilizan compresores herméticos

    OpenAIRE

    Orihuela Gracia, Aitor

    2015-01-01

    Treball Final de Grau en Enginyeria Mecànica. Codi: EM1047. Curs: 2014/2015 El ser humano lleva miles de años desarrollando, inventando y construyendo centenares de proyectos tecnológicos, desde pequeñas herramientas de mano hasta grandes rascacielos o puentes. Uno de los mayores saltos tecnológicos se produjo con la primera Revolución Industrial. En ese momento apareció la máquina de vapor, revolucionando así el mundo del transporte. También se descubrió la electricidad y los motores de ...

  10. Nitrous oxide fluxes from upland soils in central Hokkaido, Japan

    Institute of Scientific and Technical Information of China (English)

    MU Zhijian; Sonoko D. KIMURA; Yo TOMA; Ryusuke HATANO

    2008-01-01

    Nitrous oxide (N2O) fluxes from soils were measured using the closed chamber method during the snow-free seasons (middle April to early November), for three years, in a total of 11 upland crop fields in central Hokkaido, Japan. The annual mean N2O fluxes ranged fluxes showed a large temporal variation with peak emissions generally occurring following fertilization and heavy rainfall events around harvesting in autumn. No clear common factor regulating instantaneous N2O fluxes was found at any of the study sites. Instead,instantaneous N2O fluxes at different sites were affected by different soil variables. The cumulative N2O emissions during the study period within each year varied from 0.15 to 7.05 kgN/hm2 for different sites, which accounted for 0.33% to 5.09% of the applied fertilizer N. No obvious relationship was observed between cumulative N2O emission and applied fertilizer N rate (P>0.4). However,the cumulative N2O emission was significantly correlated with gross mineralized N as estimated by CO2 emissions from bare soils divided by C/N ratios of each soil, and with soil mineral N pool (I.e., the sum of gross mineralized N and fertilizer N) (P<0.001).

  11. Denitrifying kinetics and nitrous oxide emission under different copper concentrations.

    Science.gov (United States)

    Wu, Guangxue; Zhai, Xiaofeng; Jiang, Chengai; Guan, Yuntao

    2014-01-01

    Denitrifying activities and nitrous oxide (N2O) emission during denitrification can be affected by copper concentrations. Different denitrifiers were acclimated in sequencing batch reactors with acetate or methanol as the electron donor and nitrate as the electron acceptor. The effect of copper concentrations on the denitrifying activity and N2O emission for the acclimated denitrifiers was examined in batch experiments. Denitrifying activities of the acclimated denitrifiers declined with increasing copper concentrations, and the copper concentration exhibited a higher effect on denitrifiers acclimated with acetate than those acclimated with methanol. Compared with the control without the addition of copper, at the copper concentration of 1 mg/L, the acetate utilization rate reduced by 89% for acetate-acclimated denitrifiers, while the methanol utilization rate only reduced by 15% for methanol-acclimated denitrifiers. Copper also had different effects on N2O emission during denitrification carried out by various types of denitrifiers. For the acetate-acclimated denitrifiers, N2O emission initially increased and then decreased with increasing copper concentrations, while for the methanol-acclimated denitrifiers, N2O emission decreased with increasing copper concentrations.

  12. Nitrous oxide emission reduction in temperate biochar-amended soils

    Science.gov (United States)

    Felber, R.; Hüppi, R.; Leifeld, J.; Neftel, A.

    2012-01-01

    Biochar, a pyrolysis product of organic residues, is an amendment for agricultural soils to improve soil fertility, sequester CO2 and reduce greenhouse gas (GHG) emissions. In highly weathered tropical soils laboratory incubations of soil-biochar mixtures revealed substantial reductions for nitrous oxide (N2O) and carbon dioxide (CO2). In contrast, evidence is scarce for temperate soils. In a three-factorial laboratory incubation experiment two different temperate agricultural soils were amended with green waste and coffee grounds biochar. N2O and CO2 emissions were measured at the beginning and end of a three month incubation. The experiments were conducted under three different conditions (no additional nutrients, glucose addition, and nitrate and glucose addition) representing different field conditions. We found mean N2O emission reductions of 60 % compared to soils without addition of biochar. The reduction depended on biochar type and soil type as well as on the age of the samples. CO2 emissions were slightly reduced, too. NO3- but not NH4+ concentrations were significantly reduced shortly after biochar incorporation. Despite the highly significant suppression of N2O emissions biochar effects should not be transferred one-to-one to field conditions but need to be tested accordingly.

  13. Nitrous oxide (N2O) emission from aquaculture: a review.

    Science.gov (United States)

    Hu, Zhen; Lee, Jae Woo; Chandran, Kartik; Kim, Sungpyo; Khanal, Samir Kumar

    2012-06-19

    Nitrous oxide (N(2)O) is an important greenhouse gas (GHG) which has a global warming potential 310 times that of carbon dioxide (CO(2)) over a hundred year lifespan. N(2)O is generated during microbial nitrification and denitrification, which are common in aquaculture systems. To date, few studies have been conducted to quantify N(2)O emission from aquaculture. Additionally, very little is known with respect to the microbial pathways through which N(2)O is formed in aquaculture systems. This review suggests that aquaculture can be an important anthropogenic source of N(2)O emission. The global N(2)O-N emission from aquaculture in 2009 is estimated to be 9.30 × 10(10) g, and will increase to 3.83 × 10(11)g which could account for 5.72% of anthropogenic N(2)O-N emission by 2030 if the aquaculture industry continues to increase at the present annual growth rate (about 7.10%). The possible mechanisms and various factors affecting N(2)O production are summarized, and two possible methods to minimize N(2)O emission, namely aquaponic and biofloc technology aquaculture, are also discussed. The paper concludes with future research directions.

  14. Concentrations of methoxyflurane and nitrous oxide in veterinary operating rooms

    Energy Technology Data Exchange (ETDEWEB)

    Ward, G.S.; Byland, R.R.

    1982-02-01

    The surgical rooms of 14 private veterinary practices were monitored to determined methoxyflurane (MOF) concentrations during surgical procedure under routine working conditions. The average room volume for these 14 rooms was 29 m3. The average MOF value for all rooms was 2.3 ppm, with a range of 0.7 to 7.4 ppm. Four of the 14 rooms exceeded the maximum recommended concentration of 2 ppm. Six rooms which had 6 or more air changes/hr averaged 1.1 ppm, whereas 8 rooms with less than 6 measurable air changes/hr averaged 3.2 ppm. Operating rooms that had oxygen flows of more than 1,000 cm3/min averaged 4.4 ppm, whereas those with flows of less than 1,000 cm3/min averaged 1.5 ppm. The average time spent during a surgical procedure using MOF, for all 14 facilities, was 2 hours. Nitrous oxide (N/sub 2/O) concentrations were determined in 4 veterinary surgical rooms. The average N/sub 2/O concentration for 3 rooms without waste anesthetic gas scavenging was 138 ppm. Concentration of N/sub 2/O in the waste anesthetic gas-scavenged surgical room was 14 ppm, which was below the maximum recommended concentration of 25 ppm.

  15. Nitrous oxide emission reduction in temperate biochar-amended soils

    Directory of Open Access Journals (Sweden)

    R. Felber

    2012-01-01

    Full Text Available Biochar, a pyrolysis product of organic residues, is an amendment for agricultural soils to improve soil fertility, sequester CO2 and reduce greenhouse gas (GHG emissions. In highly weathered tropical soils laboratory incubations of soil-biochar mixtures revealed substantial reductions for nitrous oxide (N2O and carbon dioxide (CO2. In contrast, evidence is scarce for temperate soils. In a three-factorial laboratory incubation experiment two different temperate agricultural soils were amended with green waste and coffee grounds biochar. N2O and CO2 emissions were measured at the beginning and end of a three month incubation. The experiments were conducted under three different conditions (no additional nutrients, glucose addition, and nitrate and glucose addition representing different field conditions. We found mean N2O emission reductions of 60 % compared to soils without addition of biochar. The reduction depended on biochar type and soil type as well as on the age of the samples. CO2 emissions were slightly reduced, too. NO3 but not NH4+ concentrations were significantly reduced shortly after biochar incorporation. Despite the highly significant suppression of N2O emissions biochar effects should not be transferred one-to-one to field conditions but need to be tested accordingly.

  16. Nitrous oxide emissions from clover in the Mediterranean environment

    Directory of Open Access Journals (Sweden)

    Iride Volpi

    2016-06-01

    Full Text Available Introducing nitrogen N2-fixing crops into cereal-based crop rotations reduces N-fertiliser use and may mitigate soil emissions of nitrous oxide (N2O. However, the effect of the cultivation of N2-fixing crops on N2O emissions is still not well understood. N2O from N2-fixing crops can be emitted in two ways: during biological N2 fixation itself and when legume residues are returned to the soil. A field trial was carried out on clover (Trifolium squarrosum Savi to test the role of leguminous crops on N2O emissions in the Mediterranean environment. Monitoring was performed from December 2013 to September 2014. Cumulated N-N2O fluxes were calculated for the growing season (Phase 1 and the post-harvest period (Phase 2 in order to assess the importance of each phase. Our results did not show statistically significant differences between the two phases in term of contribution to the total cumulative N-N2O emissions, in fact Phase 1 and Phase 2 accounted respectively for 43 and 57% of the total.

  17. Representative concentration pathways and mitigation scenarios for nitrous oxide

    Science.gov (United States)

    Davidson, Eric A.

    2012-06-01

    The challenges of mitigating nitrous oxide (N2O) emissions are substantially different from those for carbon dioxide (CO2) and methane (CH4), because nitrogen (N) is essential for food production, and over 80% of anthropogenic N2O emissions are from the agricultural sector. Here I use a model of emission factors of N2O to demonstrate the magnitude of improvements in agriculture and industrial sectors and changes in dietary habits that would be necessary to match the four representative concentration pathways (RCPs) now being considered in the fifth assessment report (AR5) of the Intergovernmental Panel on Climate Change (IPCC). Stabilizing atmospheric N2O by 2050, consistent with the most aggressive of the RCP mitigation scenarios, would require about 50% reductions in emission factors in all sectors and about a 50% reduction in mean per capita meat consumption in the developed world. Technologies exist to achieve such improved efficiencies, but overcoming social, economic, and political impediments for their adoption and for changes in dietary habits will present large challenges.

  18. Experimental research on vapor-liquid equilibrium of gasoline modeling thiophene/isooctane%噻吩/异辛烷模拟汽油体系气液平衡实验

    Institute of Scientific and Technical Information of China (English)

    张娇静; 宋华; 李雪源

    2011-01-01

    以噻吩,异辛烷模拟汽油为原料,采用自制的小型气液平衡装置,考察了萃取剂、剂油比对体系气液相平衡的影响,确定了噻吩/异辛烷相对挥发度.采用PRO/Ⅱ和Aspen两大化工工艺流程模拟软件进行模拟计算,发现实验结果与模拟计算结果相吻合.以N,N-二甲基甲酰胺作萃取剂,剂油比为4:1时模拟体系噻吩,异辛烷相对挥发度为1.466.%Using thiophene/isooctane to model gasoline, the effects of extractant and solvent/oil ratio on vapor-liquid equilibrium were researched on a self-made small vapor-liquid equilibrium apparatus and the relative volatility of thiophene/isooctane system was determined. Two chemical process flow simulation softwares of PRO/II and Aspen were used in simulation of the system. Good agreement between the measured results by this work and those of computer simulation was obtained. The relative volatility of thiophene/isooctane is 1.466 by using N,N-dimethylformamide as extractant at solvent/oil ratio of 4: 1.

  19. Atomic vapor spectroscopy in integrated photonic structures

    CERN Document Server

    Ritter, Ralf; Pernice, Wolfram; Kübler, Harald; Pfau, Tilman; Löw, Robert

    2015-01-01

    We investigate an integrated optical chip immersed in atomic vapor providing several waveguide geometries for spectroscopy applications. The narrow-band transmission through a silicon nitride waveguide and interferometer is altered when the guided light is coupled to a vapor of rubidium atoms via the evanescent tail of the waveguide mode. We use grating couplers to couple between the waveguide mode and the radiating wave, which allow for addressing arbitrary coupling positions on the chip surface. The evanescent atom-light interaction can be numerically simulated and shows excellent agreement with our experimental data. This work demonstrates a next step towards miniaturization and integration of alkali atom spectroscopy and provides a platform for further fundamental studies of complex waveguide structures.

  20. The ideal oxygen/nitrous oxide fresh gas flow sequence with the Anesthesia Delivery Unit machine.

    Science.gov (United States)

    Hendrickx, Jan F A; Cardinael, Sara; Carette, Rik; Lemmens, Hendrikus J M; De Wolf, Andre M

    2007-06-01

    To determine whether early reduction of oxygen and nitrous oxide fresh gas flow from 6 L/min to 0.7 L/min could be accomplished while maintaining end-expired nitrous oxide concentration > or =50% with an Anesthesia Delivery Unit anesthesia machine. Prospective, randomized clinical study. Large teaching hospital in Belgium. 53 ASA physical status I and II patients requiring general endotracheal anesthesia and controlled mechanical ventilation. Patients were randomly assigned to one of 4 groups depending on the duration of high oxygen/nitrous oxide fresh gas flow (two and 4 L/min, respectively) before lowering total fresh gas flow to 0.7 L/min (0.3 and 0.4 L/min oxygen and nitrous oxide, respectively): one, two, three, or 5 minutes (1-minute group, 2-minute group, 3-minute group, and 5-minute group), with n = 10, 12, 13, and 8, respectively. The course of the end-expired nitrous oxide concentration and bellows volume deficit at end-expiration was compared among the 4 groups during the first 30 minutes. At the end of the high-flow period the end-expired nitrous oxide concentration was 35.6 +/- 6.2%, 48.4 +/- 4.8%, 53.7 +/- 8.7%, and 57.3 +/- 1.6% in the 4 groups, respectively. Thereafter, the end-expired nitrous oxide concentration decreased to a nadir of 36.1 +/- 4.5%, 45.4 +/- 3.8%, 50.9 +/- 6.1%, and 55.4 +/- 2.8% after three, 4, 6, and 8 minutes after flows were lowered in the 1- to 5-minute groups, respectively. A decrease in bellows volume was observed in most patients, but was most pronounced in the 2-minute group. The bellows volume deficit gradually faded within 15 to 20 minutes in all 4 groups. A 3-minute high-flow period (oxygen and nitrous oxide fresh gas flow of 2 and 4 L/min, respectively) suffices to attain and maintain end-expired nitrous oxide concentration > or =50% and ensures an adequate bellows volume during the ensuing low-flow period.

  1. Water vapor: An extraordinary terahertz wave source under optical excitation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Keith [Massachusetts Institute of Technology, PO Box 380792, Cambridge, MA 02238-0792 (United States); HydroElectron Ventures Inc., 1303 Greene Avenue Suite 102, Westmount, QC, H3Z 2A7 (Canada)], E-mail: kjohnson@mit.edu; Price-Gallagher, Matthew [HydroElectron Ventures Inc., 1303 Greene Avenue Suite 102, Westmount, QC, H3Z 2A7 (Canada); Mamer, Orval; Lesimple, Alain [Mass Spectroscopy Unit, 740 Dr. Penfield, Suite 5300, McGill University, Montreal, QC, H3A 1A4 (Canada); Fletcher, Clark [HydroElectron Ventures Inc., 1303 Greene Avenue Suite 102, Westmount, QC, H3Z 2A7 (Canada); Chen Yunqing; Lu Xiaofei; Yamaguchi, Masashi; Zhang, X.-C. [W.M. Keck Laboratory for Terahertz Science, Center for Terahertz Research, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2008-09-15

    In modern terahertz (THz) sensing and imaging spectroscopy, water is considered a nemesis to be avoided due to strong absorption in the THz frequency range. Here we report the first experimental demonstration and theoretical implications of using femtosecond laser pulses to generate intense broadband THz emission from water vapor. When we focused an intense laser pulse in water vapor contained in a gas cell or injected from a gas jet nozzle, an extraordinarily strong THz field from optically excited water vapor is observed. Water vapor has more than 50% greater THz generation efficiency than dry nitrogen. It had previously been assumed that the nonlinear generation of THz waves in this manner primarily involves a free-electron plasma, but we show that the molecular structure plays an essential role in the process. In particular, we found that THz wave generation from H{sub 2}O vapor is significantly stronger than that from D{sub 2}O vapor. Vibronic activities of water cluster ions, occurring naturally in water vapor, may possibly contribute to the observed isotope effect along with rovibrational contributions from the predominant monomers.

  2. Impact of nitrous acid chemistry on air quality modeling results over the Pearl River Delta region

    Directory of Open Access Journals (Sweden)

    R. Zhang

    2011-05-01

    Full Text Available The impact of nitrous acid chemistry on regional ozone and particulate matter in Pearl River Delta region was investigated using the Community Mutilscale Air Quality modeling system and the CB05 mechanism. Model simulations were conducted for a ten-day period in October 2004. Compared with available observed data, the model performance for NOx, SO2, PM10, and sulfate is reasonably good; however, predictions of HONO are an order of magnitude lower than observed data. The CB05 mechanism contains several homogenous reactions related to nitrous acid. To improve the model performance for nitrous acid, direct emissions, two heterogeneous reactions, and two surface photolysis reactions were incorporated into the model. The inclusion of the additional formation pathways significantly improved simulated nitrous acid compared with observed data. The addition of nitrous acid sources enhance daily maximum 8-h ozone by up to 6 ppb V (8 % and daily mean PM2.5 by up to 17 μg m−3 (12 %. They also affected ozone control strategy in Pearl River Delta region.

  3. Benzodiazepine receptor-mediated behavioral effects of nitrous oxide in the rat social interaction test.

    Science.gov (United States)

    Quock, R M; Wetzel, P J; Maillefer, R H; Hodges, B L; Curtis, B A; Czech, D A

    1993-09-01

    The present study was conducted to ascertain whether an anxiolytic effect of nitrous oxide was demonstrable in rats using the social interaction test and whether this drug effect might be mediated by benzodiazepine receptors. Compared to behavior of vehicle-pretreated, room air-exposed rats, rat pairs exposed to nitrous oxide showed a generally inverted U-shaped dose-response curve with the maximum increase in social interaction encounters occurring at 25% and significant increase in time of active social interaction at 15-35%; higher concentrations produced a sedative effect that reduced social interaction. Treatment with 5.0 mg/kg of the anxiolytic benzodiazepine chlordiazepoxide also increased social interaction. Pretreatment with 10 mg/kg of the benzodiazepine receptor blocker flumazenil, which alone had no effect, significantly antagonized the social interaction-increasing effects of both nitrous oxide and chlordiazepoxide. In summary, these findings suggest that nitrous oxide produces a flumazenil-sensitive effect comparable to that of chlordiazepoxide and implicate central benzodiazepine mechanisms in mediation of the anxiolytic effect of nitrous oxide.

  4. Nitrous oxide emissions in a membrane bioreactor treating saline wastewater contaminated by hydrocarbons.

    Science.gov (United States)

    Mannina, Giorgio; Cosenza, Alida; Di Trapani, Daniele; Laudicina, Vito Armando; Morici, Claudia; Ødegaard, Hallvard

    2016-11-01

    The joint effect of wastewater salinity and hydrocarbons on nitrous oxide emission was investigated. The membrane bioreactor pilot plant was operated with two phases: i. biomass acclimation by increasing salinity from 10gNaClL(-1) to 20gNaClL(-1) (Phase I); ii. hydrocarbons dosing at 20mgL(-1) with a constant salt concentration of 20gNaClL(-1) (Phase II). The Phase I revealed a relationship between nitrous oxide emissions and salinity. During the end of the Phase I, the activity of nitrifiers started to recover, indicating a partial acclimatization. During the Phase II, the hydrocarbon shock induced a temporary inhibition of the biomass with the suppression of nitrous oxide emissions. The results revealed that the oxic tank was the major source of nitrous oxide emission, likely due to the gas stripping by aeration. The joint effect of salinity and hydrocarbons was found to be crucial for the production of nitrous oxide.

  5. Sedation with nitrous oxide compared with no sedation during catheterization for urologic imaging in children

    Energy Technology Data Exchange (ETDEWEB)

    Zier, Judith L. [Children' s Hospitals and Clinics of Minnesota, Pediatric Critical Care, Minneapolis, MN (United States); Children' s Respiratory and Critical Care Specialists, Minneapolis, MN (United States); Kvam, Kathryn A. [University of Michigan Medical School, Ann Arbor, MI (United States); Kurachek, Stephen C. [Children' s Hospitals and Clinics of Minnesota, Pediatric Critical Care, Minneapolis, MN (United States); Finkelstein, Marsha [Children' s Hospitals and Clinics of Minnesota, Center for Care Innovation and Research, Minneapolis, MN (United States)

    2007-07-15

    Various strategies to mitigate children's distress during voiding cystourethrography (VCUG) have been described. Sedation with nitrous oxide is comparable to that with oral midazolam for VCUG, but a side-by-side comparison of nitrous oxide sedation and routine care is lacking. The effects of sedation/analgesia using 70% nitrous oxide and routine care for VCUG and radionuclide cystography (RNC) were compared. A sample of 204 children 4-18 years of age scheduled for VCUG or RNC with sedation or routine care were enrolled in this prospective study. Nitrous oxide/oxygen (70%/30%) was administered during urethral catheterization to children in the sedated group. The outcomes recorded included observed distress using the Brief Behavioral Distress Score, self-reported pain, and time in department. The study included 204 patients (99 nonsedated, 105 sedated) with a median age of 6.3 years (range 4.0-15.2 years). Distress and pain scores were greater in nonsedated than in sedated patients (P < 0.001). Time in department was longer in the sedated group (90 min vs. 30 min); however, time from entry to catheterization in a non-imaging area accounted for most of the difference. There was no difference in radiologic imaging time. Sedation with nitrous oxide is effective in reducing distress and pain during catheterization for VCUG or RNC in children. (orig.)

  6. A Numerical Approach for Multicomponent Vapor Solid Equilibrium Calculations in Gas Hydrate Formation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new numerical approach has been developed for vapor solid equilibrium calculations and for predicting vapor solid equilibrium constant and composition of vapor and solid phases in gas hydrate formation. Equation of state methods generally do a good job of determining vapor phase properties,but for solid phase it is much more difficult and inaccurate. This proposed new model calculates vapor solid equilibrium constant and vapor and solid phase composition as a function of temperature and partial pressure. The results of this proposed numerical approach, for vapor solid equilibrium, have a good agreement with the available reported data. This new numerical model also has an advantage to tune coefficients, to cover different sets of experimental data accurately.

  7. Nitrous oxide emissions from European agriculture; an analysis of variability and drivers of emissions from field experiments

    Directory of Open Access Journals (Sweden)

    R. M. Rees

    2012-07-01

    Full Text Available Nitrous oxide emissions from a network of agricultural experiments in Europe and Zimbabwe were used to explore the relative importance of site and management controls of emissions. At each site, a selection of management interventions were compared within replicated experimental designs in plot based experiments. Arable experiments were conducted at Beano in Italy, El Encin in Spain, Foulum in Denmark, Logården in Sweden, Maulde in Belgium, Paulinenaue in Germany, Harare in Zimbabwe and Tulloch in the UK. Grassland experiments were conducted at Crichton, Nafferton and Peaknaze in the UK, Gödöllö in Hungary, Rzecin in Poland, Zarnekow in Germany and Theix in France. Nitrous oxide emissions were measured at each site over a period of at least two years using static chambers. Emissions varied widely between sites and as a result of manipulation treatments. Average site emissions (throughout the study period varied between 0.04 and 21.21 kg N2O-N ha−1 yr−1, with the largest fluxes and variability associated with the grassland sites. Total nitrogen addition was found to be the single most important determinant of emissions, accounting for 15% of the variance (using linear regression in the data from the arable sites (p < 0.0001, and 77% in the grassland sites. The annual emissions from arable sites were significantly greater than those that would be predicted by IPCC default emission factors. Variability in N2O within sites that occurred as a result of manipulation treatments was greater than that resulting from site to site and year to year variation, highlighting the importance of management interventions in contributing to greenhouse gas mitigation.

  8. Optofluidic ring resonator sensors for rapid DNT vapor detection.

    Science.gov (United States)

    Sun, Yuze; Liu, Jing; Frye-Mason, Greg; Ja, Shiou-jyh; Thompson, Aaron K; Fan, Xudong

    2009-07-01

    We demonstrated rapid 2,4-dinitrotoluene (DNT) vapor detection at room temperature based on an optofluidic ring resonator (OFRR) sensor. With the unique on-column separation and detection features of OFRR vapor sensors, DNT can be identified from other interferences coexisting in the analyte sample mixture, which is especially useful in the detection of explosives from practical complicated vapor samples usually containing more volatile analytes. The DNT detection limit is approximately 200 pg, which corresponds to a solid phase microextraction (SPME) sampling time of only 1 second at room temperature from equilibrium headspace. A theoretical analysis was also performed to account for the experimental results. Our study shows that the OFRR vapor sensor is a promising platform for the development of a rapid, low-cost, and portable analytical device for explosive detection and monitoring.

  9. Investigation of vapor film motion regularities at boiling liquids

    Directory of Open Access Journals (Sweden)

    Zeigarnik Y.U.

    2013-04-01

    Full Text Available The experimental investigation of the saturated Freon-113 and distilled water film boiling on spheres with different diameters at atmospheric pressure under conditions of free convection is executed. With high-speed video average thickness and cumulative distribution function of vapor film as a function of the angle was measured. It was found that with increasing the angle the average thickness of vapor film can change by different laws depending on diameter of the sphere and the temperature difference. It was found also that the increase in the average vapor film thickness with increasing angle is more connected with the increase of large components of cumulative distribution function. It also noted the presence of quasi-periodic pulsations of the vapor film thickness in the lower part, which eventually largely determine the behavior of the interface at large angles.

  10. Chemical reaction between water vapor and stressed glass

    Science.gov (United States)

    Soga, N.; Okamoto, T.; Hanada, T.; Kunugi, M.

    1979-01-01

    The crack velocity in soda-lime silicate glass was determined at room temperature at water-vapor pressures of 10 to 0.04 torr using the double torsion technique. A precracked glass specimen (70 x 16 x 1.6 mm) was placed in a vacuum chamber containing a four-point bending test apparatus. The plotted experimental results show that the crack propagation curve in water agrees fairly well with that of Wiederhorn (1967). Attention is given to the effect of water vapor pressure on crack velocity at K(I) = 550,000 N/m to the 3/2 power, with (Wiederhorn's data) or without N2 present. The plotted results reveal that the present crack velocity is about two orders of magnitude higher than that of Wiederhorn at high water-vapor conditions, but the difference decreases as the water-vapor concentration diminishes or the crack velocity slows down.

  11. Short exposure to acetylene to distinguish between nitrifier and denitrifier nitrous oxide production in soil and sediment samples

    NARCIS (Netherlands)

    Kester, R.A.; De Boer, W.; Laanbroek, H.J.

    1996-01-01

    The contribution of nitrifiers and denitrifiers to the nitrous oxide production in slurries of calcareous silt loam and river bank sediment at different oxygen concentrations was determined using acetylene as nitrification inhibitor. The addition of 10 Pa acetylene resulted in inhibition of nitrous

  12. Short exposure to acetylene to distinguish between nitrifier and denitrifier nitrous oxide production in soil and sediment samples

    NARCIS (Netherlands)

    Kester, R.A.; Boer, W. de; Laanbroek, H.J.

    1996-01-01

    The contribution of nitrifiers and denitrifiers to the nitrous oxide production in slurries of calcareous silt loam and river bank sediment at different oxygen concentrations was determined using acetylene as nitrification inhibitor. The addition of 10 Pa acetylene resulted in inhibition of nitrous

  13. Nitrogen source effects on nitrous oxide emissions from irrigated cropping systems in Colorado. American Chemical Society Symposium Series

    Science.gov (United States)

    Nitrogen (N) fertilization is essential in most irrigated cropping systems to optimize crop yields and economic returns. Application of inorganic N fertilizers to these cropping systems generally results in increased nitrous oxide (N2O-N) emissions. Nitrous oxide emissions resulting from the appli...

  14. Solvents and vapor intrusion pathways.

    Science.gov (United States)

    Phillips, Scott D; Krieger, Gary R; Palmer, Robert B; Waksman, Javier C

    2004-08-01

    Vapor intrusion must be recognized appropriately as a separate pathway of contamination. Although many issues resemble those of other forms of contamination (particularly its entryway, which is similar to that of radon seepage), vapor intrusion stands apart as a unique risk requiring case-specific action. This article addresses these issues and the current understanding of the most appropriate and successful remedial actions.

  15. Stability of Materials in High Temperature Water Vapor: SOFC Applications

    Science.gov (United States)

    Opila, E. J.; Jacobson, N. S.

    2010-01-01

    Solid oxide fuel cell material systems require long term stability in environments containing high-temperature water vapor. Many materials in fuel cell systems react with high-temperature water vapor to form volatile hydroxides which can degrade cell performance. In this paper, experimental methods to characterize these volatility reactions including the transpiration technique, thermogravimetric analysis, and high pressure mass spectrometry are reviewed. Experimentally determined data for chromia, silica, and alumina volatility are presented. In addition, data from the literature for the stability of other materials important in fuel cell systems are reviewed. Finally, methods for predicting material recession due to volatilization reactions are described.

  16. Iron bromide vapor laser

    Science.gov (United States)

    Sukhanov, V. B.; Shiyanov, D. V.; Trigub, M. V.; Dimaki, V. A.; Evtushenko, G. S.

    2016-03-01

    We have studied the characteristics of a pulsed gas-discharge laser on iron bromide vapor generating radiation with a wavelength of 452.9 nm at a pulse repetition frequency (PRF) of 5-30 kHz. The maximum output power amounted to 10 mW at a PRF within 5-15 kHz for a voltage of 20-25 kV applied to electrodes of the discharge tube. Addition of HBr to the medium produced leveling of the radial profile of emission. Initial weak lasing at a wavelength of 868.9 nm was observed for the first time, which ceased with buildup of the main 452.9-nm line.

  17. Control of occupational exposure to nitrous oxide in the dental operatory

    Energy Technology Data Exchange (ETDEWEB)

    Whitcher, C.E.; Zimmerman, D.C.; Tonn, E.M.; Piziali, R.L.

    1977-10-01

    Methods were developed for controlling the dental team's occupational exposure to nitrous oxide. The most applicable and effective use of these methods included the use of properly maintained gas delivery equipment, a double-walled scavenging nosepiece and vented suction machine, and minimizing speech by the patient. These methods were evaluated by measuring concentrations of nitrous oxide present in the air inspired by dental personnel. Before their use, the dentist inhaled 900 ppM nitrous oxide; their application reduced his inhaled concentration to 31 ppM, representing a 97% reduction. These methods were well accepted during 157 procedures completed by a group of eight dentists engaged in private practice (four general practitioners, two pedodontists, and two oral surgeons).

  18. Anti nitrous reagents in organic solvent: the case of the n-tributylphosphate

    Energy Technology Data Exchange (ETDEWEB)

    Pochon, P.; Moisy, Ph.; Bisel, I.; Sans, D.; Maurin, J

    2004-07-01

    In order to stabilize uranium(IV) in Purex solvent (TBP 30% - alkane) during reductive stripping operations, nitrous acid elimination in the organic phase is needed to fulfill hydrazinium nitrate action in aqueous phase. In this field, organic phase soluble reagents like oximes, and substituted hydroxyl-amines or hydrazines have been selected and studied. A reactivity comparison with nitrous acid has been established from kinetic constants determination in nitric acid media. Nitrous acid destruction in organic phase (equilibrated with nitric acid) has then been observed for the most efficient molecules for which distribution coefficient have also been measured under process representative conditions. Analytical developments therefore needed are shown. Stability under acid and alkaline hydrolysis has also been investigated. Finally, stability of uranium(IV) in organic phase (TBP 30% vol. - alkane) in the presence of plutonium(III) has been checked for most attractive reagents. (authors)

  19. Quantifying the effect of isoflurane and nitrous oxide on somatosensory-evoked potentials

    Directory of Open Access Journals (Sweden)

    Usha Devadoss

    2010-01-01

    Full Text Available Anaesthetic techniques may have a significant effect on intraoperative-evoked potentials (EP. The present study is designed to compare Propofol anaesthesia with Isoflurane (with or without nitrous oxide during intraoperative somatosensory-evoked potential (SSEP monitoring in 15 ASA Grade I and II patients undergoing surgery for intracranial tumours. SSEPs in response to median and posterior tibial nerve stimulation were recorded under four different anaesthetic conditions: 1 Propofol infusion and ventilation with air-oxygen, 2 Isoflurane, 1.0 MAC and ventilation with air-oxygen, 3 Isoflurane 1.0 MAC and ventilation with nitrous oxide-oxygen, and 4 Return to Isoflurane, 1.0 MAC and ventilation with air-oxygen. Intraoperative monitoring of somatosensory evoked potentials is best recordable using Propofol. The morphology of the EP is reproducible with Isoflurane. This effect is exaggerated when it is advisable to avoid nitrous oxide.

  20. Suffocation caused by plastic wrap covering the face combined with nitrous oxide inhalation

    DEFF Research Database (Denmark)

    Leth, Peter Mygind; Astrup, Birgitte Schmidt

    2017-01-01

    Suicide using a combination of a plastic bag over the head and inhalation of a non-irritating gas, such as helium, argon or nitrogen, has been reported in the literature. Here an unusual suicide method in a 17-year old man by suffocation from covering the face with household plastic wrap, combined...... with headspace-gas chromatography-mass spectrometry (headspace-GCMS). The cause of death was assumed to be suffocation caused by plastic wrap covering the face, combined with nitrous oxide inhalation. Suicide was suspected because of a history of depression for several months. Nitrous oxide, also known...... as laughing gas, has a euphoric effect and is used as a recreational inhalant drug that can be purchased legally. Deaths caused by recreational nitrous oxide abuse are rare but may occur if used in combination with a plastic bag over the head. This is the first report of suicide by suffocation by external...

  1. Nitrous oxide flux and nitrogen transformations across a landscape gradient in Amazonia

    Science.gov (United States)

    Livingston, Gerald P.; Vitousek, Peter M.; Matson, Pamela A.

    1988-01-01

    Nitrous oxide flux and nitrogen turnover were measured in three types of Amazonian forest ecosystems within Reserva Florestal Ducke near Manaus, Brazil. Nitrogen mineralization and nitrate production measured during 10-day laboratory incubations were 3-4 times higher in clay soils associated with 'terra firme' forests on ridge-top and slope positions than in 'campinarana' forests on bottomland sand soils. In contrast, nitrous oxide fluxes did not differ significantly among sites, but were highly variable in space and time. The observed frequency distribution of flux was positively skewed, with a mean overall sites and all sampling times of 1.3 ng N2O-N/sq cm per hr. Overall, the flux estimates were comparable to or greater than those of temperature forests, but less than others reported for Amazoonia. Results from a field fertilization experiment suggest that most nitrous oxide flux was associated with denitrification of soil nitrate.

  2. 33 CFR 154.828 - Vapor recovery and vapor destruction units.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vapor recovery and vapor... SECURITY (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Vapor Control Systems § 154.828 Vapor recovery and vapor destruction units. (a) The inlet to a vapor recovery unit...

  3. Pristine mangrove creek waters are a sink of nitrous oxide

    Science.gov (United States)

    Maher, Damien T.; Sippo, James Z.; Tait, Douglas R.; Holloway, Ceylena; Santos, Isaac R.

    2016-05-01

    Nitrous oxide (N2O) is an important greenhouse gas, but large uncertainties remain in global budgets. Mangroves are thought to be a source of N2O to the atmosphere in spite of the limited available data. Here we report high resolution time series observations in pristine Australian mangroves along a broad latitudinal gradient to assess the potential role of mangroves in global N2O budgets. Surprisingly, five out of six creeks were under-saturated in dissolved N2O, demonstrating mangrove creek waters were a sink for atmospheric N2O. Air-water flux estimates showed an uptake of 1.52 ± 0.17 μmol m-2 d-1, while an independent mass balance revealed an average sink of 1.05 ± 0.59 μmol m-2 d-1. If these results can be upscaled to the global mangrove area, the N2O sink (~2.0 × 108 mol yr-1) would offset ~6% of the estimated global riverine N2O source. Our observations contrast previous estimates based on soil fluxes or mangrove waters influenced by upstream freshwater inputs. We suggest that the lack of available nitrogen in pristine mangroves favours N2O consumption. Widespread and growing coastal eutrophication may change mangrove waters from a sink to a source of N2O to the atmosphere, representing a positive feedback to climate change.

  4. Nitrous oxide emission from denitrification in stream and river networks

    Science.gov (United States)

    Beaulieu, J.J.; Tank, J.L.; Hamilton, S.K.; Wollheim, W.M.; Hall, R.O.; Mulholland, P.J.; Peterson, B.J.; Ashkenas, L.R.; Cooper, L.W.; Dahm, Clifford N.; Dodds, W.K.; Grimm, N. B.; Johnson, S.L.; McDowell, W.H.; Poole, G.C.; Maurice, Valett H.; Arango, C.P.; Bernot, M.J.; Burgin, A.J.; Crenshaw, C.L.; Helton, A.M.; Johnson, L.T.; O'Brien, J. M.; Potter, J.D.; Sheibley, R.W.; Sobota, D.J.; Thomas, S.M.

    2011-01-01

    Nitrous oxide (N2O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N 2O via microbial denitrification that converts N to N2O and dinitrogen (N2). The fraction of denitrified N that escapes as N2O rather than N2 (i.e., the N2O yield) is an important determinant of how much N2O is produced by river networks, but little is known about the N2O yield in flowing waters. Here, we present the results of whole-stream 15N-tracer additions conducted in 72 headwater streams draining multiple land-use types across the United States. We found that stream denitrification produces N2O at rates that increase with stream water nitrate (NO3-) concentrations, but that production, but does not increase the N2O yield. In our study, most streams were sources of N2O to the atmosphere and the highest emission rates were observed in streams draining urban basins. Using a global river network model, we estimate that microbial N transformations (e.g., denitrification and nitrification) convert at least 0.68 Tg??y -1 of anthropogenic N inputs to N2O in river networks, equivalent to 10% of the global anthropogenic N2O emission rate. This estimate of stream and river N2O emissions is three times greater than estimated by the Intergovernmental Panel on Climate Change.

  5. Stratospheric ozone depletion from future nitrous oxide increases

    Directory of Open Access Journals (Sweden)

    W. Wang

    2014-12-01

    Full Text Available We have investigated the impact of the assumed nitrous oxide (N2O increases on stratospheric chemistry and dynamics using a series of idealized simulations with a coupled chemistry-climate model (CCM. In a future cooler stratosphere the net yield of NOy from N2O is shown to decrease in a reference run following the IPCC A1B scenario, but NOy can still be significantly increased by extra increases of N2O over 2001–2050. Over the last decade of simulations, 50% increases in N2O result in a maximal 6% reduction in ozone mixing ratios in the middle stratosphere at around 10 hPa and an average 2% decrease in the total ozone column (TCO compared with the control run. This enhanced destruction could cause an ozone decline in the first half of this century in the middle stratosphere around 10 hPa, while global TCO still shows an increase at the same time. The results from a multiple linear regression analysis and sensitivity simulations with different forcings show that the chemical effect of N2O increases dominates the N2O-induced ozone depletion in the stratosphere, while the dynamical and radiative effects of N2O increases are overall insignificant. The analysis of the results reveals that the ozone depleting potential of N2O varies with the time period and is influenced by the environmental conditions. For example, carbon dioxide (CO2 increases can strongly offset the ozone depletion effect of N2O.

  6. Modelling nitrous oxide emissions from cropland at the regional scale

    Directory of Open Access Journals (Sweden)

    Gabrielle Benoît

    2006-11-01

    Full Text Available Arable soils are a large source of nitrous oxide (N2O emissions, making up half of the biogenic emissions worldwide. Estimating their source strength requires methods capable of capturing the spatial and temporal variability of N2O emissions, along with the effects of crop management. Here, we applied a process-based model, CERES, with geo-referenced input data on soils, weather, and land use to map N2O emissions from wheat-cropped soils in three agriculturally intensive regions in France. Emissions were mostly controlled by soil type and local climate conditions, and only to a minor extent by the doses of fertilizer nitrogen applied. As a result, the direct emission factors calculated at the regional level were much smaller (ranging from 0.0007 to 0.0033 kg N2O-N kg–1 N than the value of 0.0125 kg N2O-N kg–1 N currently recommended in the IPCC Tier 1 methodology. Regional emissions were far more sensitive to the soil microbiological parameter s governing denitrification and its fraction evolved as N2O, soil bulk density, and soil initial inorganic N content. Mitigation measures should therefore target a reduction in the amount of soil inorganic N upon sowing of winter crops, and a decrease of the soil N2O production potential itself. From a general perspective, taking into account the spatial variability of soils and climate thereby appears necessary to improve the accuracy of national inventories, and to tailor mitigation strategies to regional characteristics. The methodology and results presented here may easily be transferred to winter oilseed rape, whose has growing cycle and fertilser requirements are similar.

  7. Investigation on high temperature vapor pressure of UO 2 containing simulated fission-product elements

    Science.gov (United States)

    Yano, T.; Ohtsubo, A.; Ishii, T.

    1984-06-01

    During the hypothetical core disruptive accident (HCDA) of a fast breeder reactor (FBR), the temperature of the fuel would rise above 3000 K. The experimental data concerning the saturated fuel vapor pressure are necessary for the analysis of the HCDA. In this study, the UO 2 containing Cs, Ba, Ag, or Sn was used to simulate the irradiated fuel in the FBR. The saturated vapor pressure of pure UO 2 and UO 2 containing Cs, Ba, Ag, or Sn at 3000 to 5000 K was measured dynamically with a pulse laser and a torsion pendulum. The surface of a specimen on the pendulum was heated to eject vapor by the injection of a giant pulse ruby laser beam. The pressure of the ejected vapor was measured by both the maximum rotation angle of the pendulum and the duration of vapor ejection. The saturated vapor pressure was theoretically calculated by using the ejected vapor pressure. The surface temperature of the specimen was estimated from the irradiated energy density measured with a laser energy meter. The saturated vapor pressure of UO 2 at 3640 to 5880 K measured in this study was near the extrapolated value of Ackermann's low temperature data. The vapor pressure of UO 2 containing Cs, Ba, Ag or Sn was higher than that of UO 2. The saturated vapor pressure of UO 2 and a solid fission products system was calculated by using these experimental data.

  8. Vapor pressure measured with inflatable plastic bag

    Science.gov (United States)

    1965-01-01

    Deflated plastic bag in a vacuum chamber measures initial low vapor pressures of materials. The bag captures the test sample vapors and visual observation of the vapor-inflated bag under increasing external pressures yields pertinent data.

  9. A Citizen's Guide to Vapor Intrusion Mitigation

    Science.gov (United States)

    This guide describes how vapor intrusion is the movement of chemical vapors from contaminated soil and groundwater into nearby buildings.Vapors primarily enter through openings in the building foundation or basement walls.

  10. A Lithium Vapor Box similarity experiment employing water vapor

    Science.gov (United States)

    Schwartz, Ja; Jagoe, C.; Goldston, Rj; Jaworski, Ma

    2016-10-01

    Handling high power loads and heat flux in the divertor is a major challenge for fusion power plants. A detached plasma will likely be required. However, hydrogenic and impurity puffing experiments show that detached operation leads easily to X-point MARFEs, impure plasmas, degradation in confinement, and lower helium pressure at the exhaust. The concept of the Lithium Vapor Box Divertor is to use local evaporation and strong differential pumping through condensation to localize the gas-phase material that absorbs the plasma heat flux, and so avoid those difficulties. In order to design such a box first the vapor without plasma must be simulated. The density of vapor required can be estimated using the SOL power, major radius, poloidal box length, and cooling energy per lithium atom. For an NSTX-U-sized machine, the Knudsen number Kn spans 0.01 to 1, the transitional flow regime. This regime cannot handled by fluid codes or collisionless Monte Carlo codes, but can be handled by Direct Simulation Monte Carlo (DSMC) codes. To validate a DSMC model, we plan to build a vapor box test stand employing more-convenient water vapor instead of lithium vapor as the working fluid. Transport of vapor between the chambers at -50C will be measured and compared to the model. This work supported by DOE Contract No. DE-AC02-09CH11466.

  11. Collapsing criteria for vapor film around solid spheres as a fundamental stage leading to vapor explosion

    Energy Technology Data Exchange (ETDEWEB)

    Freud, Roy [Nuclear Research Center - Negev, Beer-Sheva (Israel)], E-mail: freud@bgu.ac.il; Harari, Ronen [Nuclear Research Center - Negev, Beer-Sheva (Israel); Sher, Eran [Pearlstone Center for Aeronautical Studies, Department of Mechanical Engineering, Ben-Gurion University, Beer-Sheva (Israel)

    2009-04-15

    Following a partial fuel-melting accident, a Fuel-Coolant Interaction (FCI) can result with the fragmentation of the melt into tiny droplets. A vapor film is then formed between the melt fragments and the coolant, while preventing a contact between them. Triggering, propagation and expansion typically follow the premixing stage. In the triggering stage, vapor film collapse around one or several of the fragments occurs. This collapse can be the result of fragments cooling, a sort of mechanical force, or by any other means. When the vapor film collapses and the coolant re-establishes contact with the dry surface of the hot melt, it may lead to a very rapid and rather violent boiling. In the propagation stage the shock wave front leads to stripping of the films surrounding adjacent droplets which enhance the fragmentation and the process escalates. During this process a large quantity of liquid vaporizes and its expansion can result in destructive mechanical damage to the surrounding structures. This multiphase thermal detonation in which high pressure shock wave is formed is regarded as 'vapor explosion'. The film boiling and its possible collapse is a fundamental stage leading to vapor explosion. If the interaction of the melt and the coolant does not result in a film boiling, no explosion occurs. Many studies have been devoted to determine the minimum temperature and heat flux that is required to maintain a film boiling. The present experimental study examines the minimum temperature that is required to maintain a film boiling around metal spheres immersed into a liquid (subcooled distilled water) reservoir. In order to simulate fuel fragments that are small in dimension and has mirror-like surface, small spheres coated with anti-oxidation layer were used. The heat flux from the spheres was calculated from the sphere's temperature profiles and the sphere's properties. The vapor film collapse was associated with a sharp rise of the heat flux

  12. Effects of organic nitrification inhibitors on methane and nitrous oxide emission from tropical rice paddy

    Science.gov (United States)

    Datta, A.; Adhya, T. K.

    2014-08-01

    We have studied the effects of application of different nitrification inhibitors on methane (CH4) and nitrous oxide (N2O) emissions from rice paddy and associated soil chemical and biological dynamics during wet and dry seasons of rice crop in a tropical climate of eastern India. The experiment consisted of four treatments viz. (i) Prilled urea amended control (ii) urea + Dicyandiamide (DCD), (iii) urea + Nimin and (iv) urea + Karanjin. CH4 emission was significantly higher from the DCD (372.36 kg ha-1) and Karanjin (153.07 kg ha-1) applied plots during the wet and dry season, respectively. N2O emission was significantly inhibited in the Nimin applied plots during both seasons (69% and 85% over control during wet season and dry season respectively). CH4 and N2O emissions per Mg of rice grain yield were lowest from the Nimin applied plots during both seasons. Global warming potential (GWP) of the plot treated with DCD (13.93) was significantly higher during the experimental period. CH4 production potential was significantly higher from the nitrification inhibitor applied plots compared to control. While, CH4 oxidation potential followed the order; urea + Nimin > urea + Karanjin > urea + DCD > control. Application of Nimin significantly increased the methanotrophic bacterial population in the soil during the maximum tillering to flowering stage and may be attributed to low CH4 emission from the plots. Denitrification enzyme activity (DEA) of the soil was significantly low from the Nimin and Karanjin applied plots. Results suggest that apart from being potent nitrification inhibitors, Nimin and Karanjin also have the potential to reduce the denitrification activity in the soil. This in turn, would reduce N2O emission from flooded paddy where both nitrification and denitrification processes causes N2O emission.

  13. Nitrous oxide production during nitrification from organic solid waste under temperature and oxygen conditions.

    Science.gov (United States)

    Nag, Mitali; Shimaoka, Takayuki; Komiya, Teppei

    2016-11-01

    Landfill aeration can accelerate the biological degradation of organic waste and reduce methane production; however, it induces nitrous oxide (N2O), a potent greenhouse gas. Nitrification is one of the pathways of N2O generation as a by-product during aerobic condition. This study was initiated to demonstrate the features of N2O production rate from organic solid waste during nitrification under three different temperatures (20°C, 30°C, and 40°C) and three oxygen concentrations (5%, 10%, and 20%) with high moisture content and high substrates' concentration. The experiment was carried out by batch experiment using Erlenmeyer flasks incubated in a shaking water bath for 72 h. A duplicate experiment was carried out in parallel, with addition of 100 Pa of acetylene as a nitrification inhibitor, to investigate nitrifiers' contribution to N2O production. The production rate of N2O ranged between 0.40 × 10(-3) and 1.14 × 10(-3) mg N/g-DM/h under the experimental conditions of this study. The rate of N2O production at 40°C was higher than at 20°C and 30°C. Nitrification was found to be the dominant pathway of N2O production. It was evaluated that optimization of O2 content is one of the crucial parameters in N2O production that may help to minimize greenhouse gas emissions and N turnover during aeration.

  14. Estimating global nitrous oxide emissions by lichens and bryophytes with a process-based productivity model

    Science.gov (United States)

    Porada, Philipp; Pöschl, Ulrich; Kleidon, Axel; Beer, Christian; Weber, Bettina

    2017-04-01

    Lichens and bryophytes have been shown to release significant amounts of nitrous oxide (N2O), which is a strong greenhouse gas and atmospheric ozone - depleting agent. Relative contributions of lichens and bryophytes to nitrous oxide emissions are largest in dryland and tundra regions, with potential implications for the nitrogen balance of these ecosystems. So far, this estimate is based on large-scale values of net primary productivity of lichens and bryophytes, which are derived from empirical upscaling of field measurements. Productivity is then converted to nitrous oxide emissions by empirical relationships between productivity and respiration, as well as respiration and nitrous oxide release. Alternatively, we quantify nitrous oxide emissions using a global process-based non-vascular vegetation model of lichens and bryophytes. The model simulates photosynthesis and respiration of lichens and bryophytes directly as a function of climatic conditions, such as light and temperature. Nitrous oxide emissions are then derived from simulated respiration, assuming a fixed relationship between the two fluxes, which is based on laboratory experiments under varying environmental conditions. Our approach yields a global estimate of 0.27 (0.19 - 0.35) Tg N2O yr-1 released by lichens and bryophytes. This is at the lower end of the range of a previous, empirical estimate, but corresponds to about 50 % of the atmospheric deposition of nitrous oxide into the oceans or 25 % of the atmospheric deposition on land. We conclude that, while productivity of lichens and bryophytes at large scale is relatively well constrained, improved estimates of their respiration may help to reduce uncertainty of predicted N2O emissions. This is particularly important for quantifying the spatial distribution of N2O emissions by lichens and bryophytes, since simulated respiration shows a different global pattern than productivity. We find that both physiological variation among species as well as

  15. 氨氮污泥负荷及DO对高浓度亚硝化系统的影响%The effects of nitrogen sludge load and DO on high concentration nitrous nitrifying system

    Institute of Scientific and Technical Information of China (English)

    魏琛; 钟仁超; 盛贵尚

    2011-01-01

    The purpose of this paper is to investigate the impact of nitrogen sludge load and dissolved oxygen(DO) on nitrite nitrification system. The following conclusions have been drawn based on the experimental data and analysis results: 1) The ammonium degradation rate and the nitrous accumulation rate of high concentration nitrous nitrifying system decline with the increase of NH4+-N sludge load. When HRT is less than two days, the ammonium degradation rate rapidly declines to 25%~29% with the increase of NH4+ -N sludge load. When HRT is beyond two days, the ammonium rate of the system slowly falls to 50%~60% with the NH4+-N sludge load increased. When HRT is 2. 5 days or 3 days, the declined trend of the system nitrous accumulation rate is not obvious with the NH4+-N sludge load increased. When HRT is 5 days, the decrease of nitrous accumulation rate is caused by the adaptation of sludge. So the NH1+ -N sludge load of high concentration nitrous accumulation system should not be too high; 2) With the increase of DO, the ammonium degradation of high concentration nitrous nitrifying system is gradually increased. When the DO is less than 0. 7 mg/L, it is not conductive to the ammonium degradation. When the DO is higher than 2 mg/L, the oxide of NH4+-N is changed into the increased of NO3-N and the nitrous accumulation rate declined. If the concentration of IX) is controlled within 0. 7to 1. 3 mg/L, the high concentration nitrous nitrifying system can have a good NH4+-N degradation rate and nitrous accumulation rate.%通过氨氮污泥负荷影响试验和DO影响试验数据分析,得出以下结论:1)高浓度亚硝化系统氨氮降解率及亚硝化率均随着NH4+-N污泥负荷的增高而下降.HRT<2 d系统随NH4+-N污泥负荷增加,氨氮降解率迅速下跌到25%~29%;HRT≥2d系统随NH4+-N污泥负荷增加,氨氮降解率缓慢下降到50%~60%;HRT=2.5 d和HRT=3 d的系统中亚硝化率随NH4+-N污泥负荷增加而下

  16. Steady State Vapor Bubble in Pool Boiling

    Science.gov (United States)

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C.; Maroo, Shalabh C.

    2016-02-01

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.

  17. Steady State Vapor Bubble in Pool Boiling.

    Science.gov (United States)

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C; Maroo, Shalabh C

    2016-02-03

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.

  18. Effects of Vapor Pressure and Super-Hydrophobic Nanocomposite Coating on Microelectronics Reliability

    Directory of Open Access Journals (Sweden)

    Xuejun Fan

    2015-09-01

    Full Text Available Modeling vapor pressure is crucial for studying the moisture reliability of microelectronics, as high vapor pressure can cause device failures in environments with high temperature and humidity. To minimize the impact of vapor pressure, a super-hydrophobic (SH coating can be applied on the exterior surface of devices in order to prevent moisture penetration. The underlying mechanism of SH coating for enhancing device reliability, however, is still not fully understood. In this paper, we present several existing theories for predicting vapor pressure within microelectronic materials. In addition, we discuss the mechanism and effectiveness of SH coating in preventing water vapor from entering a device, based on experimental results. Two theoretical models, a micro-mechanics-based whole-field vapor pressure model and a convection-diffusion model, are described for predicting vapor pressure. Both methods have been successfully used to explain experimental results on uncoated samples. However, when a device was coated with an SH nanocomposite, weight gain was still observed, likely due to vapor penetration through the SH surface. This phenomenon may cast doubt on the effectiveness of SH coatings in microelectronic devices. Based on current theories and the available experimental results, we conclude that it is necessary to develop a new theory to understand how water vapor penetrates through SH coatings and impacts the materials underneath. Such a theory could greatly improve microelectronics reliability.

  19. Psychopharmacology's debt to experimental psychology.

    Science.gov (United States)

    Schmied, Lori A; Steinberg, Hannah; Sykes, Elizabeth A B

    2006-05-01

    The role of experimental psychology in the development of psychopharmacology has largely been ignored in recent historical accounts. In this article the authors attempt to redress that gap by outlining work in early experimental psychology that contributed significantly to the field. While psychiatrists focused on the therapeutic nature of drugs or their mimicry of psychopathology, experimental psychologists used psychoactive drugs as tools to study individual differences in normal behavior as well as to develop methodologies using behavior to study mechanisms of drug action. Experimental work by Kraepelin, Rivers, and Hollingworth was particularly important in establishing drug-screening protocols still used today. Research on nitrous oxide and on the effects of drug combinations is discussed to illustrate the importance of experimental psychology to psychopharmacology.

  20. Biofiltration of solvent vapors from air

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Young-sook.

    1993-01-01

    For various industrial solvent vapors, biofiltration promises to offer a cost-effective emission control technology. Exploiting the full potential of this technology will help attain the goals of the Clean Air Act Amendments of 1990. Concentrating on large volumes of volatile industrial solvents, stable multicomponent microbial enrichments capable of growing a mineral medium with solvent vapors as their only source of carbon and energy were obtained from soil and sewage sludge. These consortia were immobilized on an optimized porous solid support (ground peat moss and perlite). The biofilter material was packed in glass columns connected to an array of pumps and flow meters that allowed the independent variation of superficial velocity and solvent vapor concentrations. In various experiments, single solvents, such as methanol, butanol, acetonitrile, hexane and nitrobenzene, and solvent mixtures, such as benzene-toluene-xylene (BTX) and chlorobenzene-o-dichlorobenzene (CB/DCB) were biofiltered with rates ranging from 15 to334 g solvent removed per m[sup 3] filter volume /h. Pressure drops were low to moderate (0-10 mmHg/m) and with periodic replacement of moisture, the biofiltration activity could be maintained for a period of several months. The experimental data on methanol biofiltration were subjected to mathematical analysis and modeling by the group of Dr. Baltzis at NJIT for a better understanding and a possible scale up of solvent vapor biofilters. In the case of chlorobenzenes and nitrobenzene, the biofilter columns had to be operated with water recirculation in a trickling filter mode. To prevent inactivation of the trickling filter by acidity during CB/DCB removal, pH control was necessary, and the removal rate of CB/DCB was strongly influenced by the flow rate of the recyling water. Nitrobenzene removal in a trickling filter did not require pH control, since the nitro group was reduced and volatilized as ammonia.

  1. Final Report for DOE grant no. DE-FG02-04ER63883: Can soil genomics predict the impact of precipitation on nitrous oxide flux from soil

    Energy Technology Data Exchange (ETDEWEB)

    Egbert Schwartz

    2008-12-15

    Nitrous oxide is a potent greenhouse gas that is released by microorganisms in soil. However, the production of nitrous oxide in soil is highly variable and difficult to predict. Future climate change may have large impacts on nitrous oxide release through alteration of precipitation patterns. We analyzed DNA extracted from soil in order to uncover relationships between microbial processes, abundance of particular DNA sequences and net nitrous oxide fluxes from soil. Denitrification, a microbial process in which nitrate is used as an electron acceptor, correlated with nitrous oxide flux from soil. The abundance of ammonia oxidizing archaea correlated positively, but weakly, with nitrous oxide production in soil. The abundance of bacterial genes in soil was negatively correlated with gross nitrogen mineralization rates and nitrous oxide release from soil. We suggest that the most important control over nitrous oxide production in soil is the growth and death of microorganisms. When organisms are growing nitrogen is incorporated into their biomass and nitrous oxide flux is low. In contrast, when microorganisms die, due to predation or infection by viruses, inorganic nitrogen is released into the soil resulting in nitrous oxide release. Higher rates of precipitation increase access to microorganisms by predators or viruses through filling large soil pores with water and therefore can lead to large releases of nitrous oxide from soil. We developed a new technique, stable isotope probing with 18O-water, to study growth and mortality of microorganisms in soil.

  2. Three Dimensional Vapor Intrusion Modeling: Model Validation and Uncertainty Analysis

    Science.gov (United States)

    Akbariyeh, S.; Patterson, B.; Rakoczy, A.; Li, Y.

    2013-12-01

    Volatile organic chemicals (VOCs), such as chlorinated solvents and petroleum hydrocarbons, are prevalent groundwater contaminants due to their improper disposal and accidental spillage. In addition to contaminating groundwater, VOCs may partition into the overlying vadose zone and enter buildings through gaps and cracks in foundation slabs or basement walls, a process termed vapor intrusion. Vapor intrusion of VOCs has been recognized as a detrimental source for human exposures to potential carcinogenic or toxic compounds. The simulation of vapor intrusion from a subsurface source has been the focus of many studies to better understand the process and guide field investigation. While multiple analytical and numerical models were developed to simulate the vapor intrusion process, detailed validation of these models against well controlled experiments is still lacking, due to the complexity and uncertainties associated with site characterization and soil gas flux and indoor air concentration measurement. In this work, we present an effort to validate a three-dimensional vapor intrusion model based on a well-controlled experimental quantification of the vapor intrusion pathways into a slab-on-ground building under varying environmental conditions. Finally, a probabilistic approach based on Monte Carlo simulations is implemented to determine the probability distribution of indoor air concentration based on the most uncertain input parameters.

  3. Acetone vapor sensing using a vertical cavity surface emitting laser diode coated with polystyrene

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgaard; Larsen, Niels Bent

    2009-01-01

    We report theoretical and experimental on a new vapor sensor, using a single-mode vertical-cavity surface-emitting laser (VCSEL) coated with a polymer sensor coating, which can detect acetone vapor at a volume fraction of 2.5%. The sensor provides the advantage of standard packaging, small form-f...

  4. Measuring Vapor Pressure with an Isoteniscope: A Hands-on Introduction to Thermodynamic Concepts

    Science.gov (United States)

    Chen, Wenqian; Haslam, Andrew J.; Macey, Andrew; Shah, Umang V.; Brechtelsbauer, Clemens

    2016-01-01

    Characterization of the vapor pressure of a volatile liquid or azeotropic mixture, and its fluid phase diagram, can be achieved with an isoteniscope and an industrial grade digital pressure sensor using the experimental method reported in this study. We describe vapor-pressure measurements of acetone and n-hexane and their azeotrope, and how the…

  5. Acetone vapor sensing using a vertical cavity surface emitting laser diode coated with polystyrene

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgaard; Larsen, Niels Bent

    2009-01-01

    We report theoretical and experimental on a new vapor sensor, using a single-mode vertical-cavity surface-emitting laser (VCSEL) coated with a polymer sensor coating, which can detect acetone vapor at a volume fraction of 2.5%. The sensor provides the advantage of standard packaging, small form...

  6. Production of oceanic nitrous oxide by ammonia-oxidizing archaea

    Directory of Open Access Journals (Sweden)

    C. R. Löscher

    2012-07-01

    Full Text Available The recent finding that microbial ammonia oxidation in the ocean is performed by archaea to a greater extent than by bacteria has drastically changed the view on oceanic nitrification. The numerical dominance of archaeal ammonia-oxidizers (AOA over their bacterial counterparts (AOB in large parts of the ocean leads to the hypothesis that AOA rather than AOB could be the key organisms for the oceanic production of the strong greenhouse gas nitrous oxide (N2O that occurs as a by-product of nitrification. Very recently, enrichment cultures of marine ammonia-oxidizing archaea have been reported to produce N2O.

    Here, we demonstrate that archaeal ammonia monooxygenase genes (amoA were detectable throughout the water column of the eastern tropical North Atlantic (ETNA and eastern tropical South Pacific (ETSP Oceans. Particularly in the ETNA, comparable patterns of abundance and expression of archaeal amoA genes and N2O co-occurred in the oxygen minimum, whereas the abundances of bacterial amoA genes were negligible. Moreover, selective inhibition of archaea in seawater incubations from the ETNA decreased the N2O production significantly. In studies with the only cultivated marine archaeal ammonia-oxidizer Nitrosopumilus maritimus SCM1, we provide the first direct evidence for N2O production in a pure culture of AOA, excluding the involvement of other microorganisms as possibly present in enrichments. N. maritimus showed high N2O production rates under low oxygen concentrations comparable to concentrations existing in the oxycline of the ETNA, whereas the N2O production from two AOB cultures was comparably low under similar conditions. Based on our findings, we hypothesize that the production of N2O in tropical ocean areas results mainly from archaeal nitrification and will be affected by the predicted decrease in dissolved

  7. Production of oceanic nitrous oxide by ammonia-oxidizing archaea

    Directory of Open Access Journals (Sweden)

    C. R. Loescher

    2012-02-01

    Full Text Available The recent finding that microbial ammonia oxidation in the ocean is performed by archaea to a greater extent than by bacteria has drastically changed the view on oceanic nitrification. The numerical dominance of archaeal ammonia-oxidizers (AOA over their bacterial counterparts (AOB in large parts of the ocean leads to the hypothesis that AOA rather than AOB could be the key organisms for the oceanic production of the strong greenhouse gas nitrous oxide (N2O which occurs as a by-product of nitrification. Very recently, enrichment cultures of marine ammonia-oxidizing archaea have been described to produce N2O. Here, we demonstrate that archaeal ammonia monooxygenase genes (amoA were detectable throughout the water column of the Eastern Tropical North Atlantic (ETNA and Eastern Tropical South Pacific Oceans (ETSP. Particularly in the ETNA, maxima in abundance and expression of archaeal amoA genes correlated with the N2O maximum and the oxygen minimum, whereas the abundances of bacterial amoA genes were negligible. Moreover, selective inhibition of archaea in seawater incubations from the ETNA decreased the N2O production significantly. In studies with the only cultivated marine archaeal ammonia-oxidizer Nitrosopumilus maritimus SCM1, we provide the first direct evidence for N2O production in a pure culture of AOA, excluding the involvement of other microorganisms as possibly present in enrichments. N. maritimus showed high N2O production rates under low oxygen concentrations comparable to concentrations existing in the oxycline of the ETNA, whereas the N2O production from two AOB cultures was comparably low under similar conditions. Based on our findings, we hypothesize that the production of N2O in tropical ocean areas results mainly from archaeal nitrification and will be affected by the predicted decrease in dissolved oxygen

  8. Nitrous oxide emission hotspots from organic soils in Europe

    Directory of Open Access Journals (Sweden)

    T. Leppelt

    2014-06-01

    Full Text Available Organic soils are a main source of direct nitrous oxide (N2O emissions, an important greenhouse gas (GHG. Observed N2O emissions from organic soils are highly variable in space and time which causes high uncertainties in national emission inventories. Those uncertainties could be reduced when relating the upscaling process to a priori identified key drivers by using available N2O observations from plot scale in empirical approaches. We used the empirical fuzzy modelling approach MODE to identify main drivers for N2O and utilize them to predict the spatial emission pattern of European organic soils. We conducted a meta study with a total amount of 659 annual N2O measurements which was used to derive separate models for different land use types. We applied our models to available, spatial explicit input driver maps to upscale N2O emissions on European level and compared the inventory with recently published IPCC emission factors. The final statistical models explained up to 60% of the N2O variance. Our study results showed that cropland and grasslands emitted the highest N2O fluxes 0.98 ± 1.08 and 0.58 ± 1.03 g N2O-N m−2 a−1, respectively. High fluxes from cropland sites were mainly controlled by low soil pH-value and deep drained groundwater tables. Grassland hotspot emissions were strongly related to high amount of N-fertilizer inputs and warmer winter temperatures. In contrast N2O fluxes from natural peatlands were predominantly low (0.07±0.27 g N2O-N m−2 a−1 and we found no relationship with the tested drivers. The total inventory for direct N2O emissions from organic soils in Europe amount up to 149.5 Gg N2O-N a−1, which included also fluxes from forest and peat extraction sites and exceeds the inventory calculated by IPCC emission factors of 87.4 Gg N2O-N a−1. N2O emissions from organic soils represent up to 13% of total European N2O emissions reported in the European Union (EU greenhouse gas inventory of 2011 from only 7% of

  9. Health hazard evaluation report HETA 86-157-1678, Stag Dental Clinic, Boulder, Colorado. [Nitrous oxide exposure

    Energy Technology Data Exchange (ETDEWEB)

    Gunter, B.J.

    1986-03-01

    Employees of the Stag Dental Clinic, Boulder, Colorado requested an evaluation of nitrous oxide exposure during dental procedures. Direct reading measurements taken in the dental operatory immediately after nitrous oxide was administered showed levels exceeding 1000 parts per million (ppm) in the breathing zone of the dentist and his assistant. The levels remained high throughout the 1-hour procedure. The level of nitrous oxide in the hallway outside the operatory was 300 ppm and that in the adjacent operatory, 150 ppm (background). General-room air in the operatory in use was 800 ppm nitrous oxide. Levels of nitrous oxide decreased to 50 ppm 1.5 hours after the gas was turned off. The current NIOSH recommended time weighted average is 25 ppm. The author concludes that a health hazard existed at the dental office due to high exposures of nitrous oxide. It was recommended that a scavenging system should be installed. Recommendations also include routine maintenance on anesthetic and suction equipment, a follow-up evaluation after the exhaust systems have been in place, advising all dentists and other personnel in the clinic of the adverse health effects due to nitrous oxide, and use of more dilution ventilation.

  10. Vapor Intrusion Facilities - South Bay

    Data.gov (United States)

    U.S. Environmental Protection Agency — POINT locations for the South Bay Vapor Instrusion Sites were derived from the NPL data for Region 9. One site, Philips Semiconductor, was extracted from the...

  11. Understanding Latent Heat of Vaporization.

    Science.gov (United States)

    Linz, Ed

    1995-01-01

    Presents a simple exercise for students to do in the kitchen at home to determine the latent heat of vaporization of water using typical household materials. Designed to stress understanding by sacrificing precision for simplicity. (JRH)

  12. Modeling vapor dominated geothermal reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Marconcini, R.; McEdwards, D.; Neri, G.; Ruffilli, C.; Schroeder, R.; Weres, O.; Witherspoon, P.

    1977-09-12

    The unresolved questions with regard to vapor-dominated reservoir production and longevity are reviewed. The simulation of reservoir behavior and the LBL computer program are discussed. The geology of Serrazzano geothermal field and its reservoir simulation are described. (MHR)

  13. 2004 Methane and Nitrous Oxide Emissions from Manure Management in South Africa

    Directory of Open Access Journals (Sweden)

    Mokhele Edmond Moeletsi

    2015-03-01

    Full Text Available Manure management in livestock makes a significant contribution towards greenhouse gas emissions in the Agriculture; Forestry and Other Land Use category in South Africa. Methane and nitrous oxide emissions are prevalent in contrasting manure management systems; promoting anaerobic and aerobic conditions respectively. In this paper; both Tier 1 and modified Tier 2 approaches of the IPCC guidelines are utilized to estimate the emissions from South African livestock manure management. Activity data (animal population, animal weights, manure management systems, etc. were sourced from various resources for estimation of both emissions factors and emissions of methane and nitrous oxide. The results show relatively high methane emissions factors from manure management for mature female dairy cattle (40.98 kg/year/animal, sows (25.23 kg/year/animal and boars (25.23 kg/year/animal. Hence, contributions for pig farming and dairy cattle are the highest at 54.50 Gg and 32.01 Gg respectively, with total emissions of 134.97 Gg (3104 Gg CO2 Equivalent. Total nitrous oxide emissions are estimated at 7.10 Gg (2272 Gg CO2 Equivalent and the three main contributors are commercial beef cattle; poultry and small-scale beef farming at 1.80 Gg; 1.72 Gg and 1.69 Gg respectively. Mitigation options from manure management must be taken with care due to divergent conducive requirements of methane and nitrous oxide emissions requirements.

  14. Nitrous Oxide and Methane Fluxes from Smallholder Farms: A Scoping Study in the Anjeni Watershed

    Directory of Open Access Journals (Sweden)

    Haimanote K. Bayabil

    2016-12-01

    Full Text Available While agricultural practices are widely reported to contribute to anthropogenic greenhouse gas (GHG emissions, there are only limited measurements available for emission rates in the monsoon climate of the African continent. We conducted a scoping study to measure nitrous oxide (N2O-N and methane (CH4 emission rates from 24 plots constructed on smallholder agricultural farms along the slope catena of three transects in the sub-humid Anjeni watershed in the Ethiopian highlands. Greenhouse gas flux samples were collected in 2013, before, towards the end, and after the rainy monsoon phase. At each location, three plots were installed in groups: two plots grown with barley (one enriched with charcoal and the other without soil amendment and lupine was grown on the third plot without any soil amendment. Preliminary study results showed that nitrous oxide emission rates varied from −275 to 522 μg·m−2·h−1 and methane emissions ranged from −206 to 264 μg·m−2·h−1 with overall means of 51 and 5 μg·m−2·h−1 for N2O-N and CH4, respectively. Compared with the control, charcoal and lupine plots had elevated nitrous oxide emissions. Plots amended with charcoal showed on average greater methane uptake than was emitted. While this study provides insights regarding nitrous oxide and methane emission levels from smallholder farms, studies of longer durations are needed to verify the results.

  15. Emissions of nitrous oxide from Irish arable soils: effects of tillage and reduced N input

    DEFF Research Database (Denmark)

    Abdalla, M.; Jones, M.B.; Ambus, Per

    2010-01-01

    Nitrous oxide (N2O) flux measurements from an Irish spring barley field managed under conventional and reduced tillage and different N fertilizer applications at the Teagasc Oak Park Research Centre were made for two consecutive seasons. The aim was to investigate the efficacy of reduced tillage ...

  16. Spatial oxygen distribution and nitrous oxide emissions from soil after manure application

    DEFF Research Database (Denmark)

    Zhu, Kun; Bruun, Sander; Larsen, Morten;

    2014-01-01

    The availability and spatial distribution of oxygen (O2) in agricultural soil are controlling factors in the production and emission of nitrous oxide (N2O) to the atmosphere, but most experiments investigating the effects of various factors on N2O emissions in soil have been conducted without det...

  17. Nitrous oxide production in grassland soils: assessing the contribution of nitrifier denitrification

    NARCIS (Netherlands)

    Wrage, N.; Velthof, G.L.; Laanbroek, H.J.; Oenema, O.

    2004-01-01

    Nitrifier denitrification is the reduction of NO2- to N2 by nitrifiers. It leads to the production of the greenhouse gas nitrous oxide (N2O) as an intermediate and possible end product. It is not known how important nitrifier denitrification is for the production of N2O in soils. We explored N2O

  18. Determination of Distribution Coefficient of Nitrous Acid and Evaluation of Influential Factors

    Institute of Scientific and Technical Information of China (English)

    ZHU; Li-yang; CHEN; Yan-xin; TANG; Hong-bin; HE; Hui

    2013-01-01

    Nitrous acid is inevitably present in Purex process,thus,it is desired to build a HNO2 distribution model which could be incorporated into Purex computer simulation code.In this work base titration and diazotization-coupling reaction was used to determine the concentration of HNO3 and HNO2 in both

  19. Effect of copper dosing on sulfide inhibited reduction of nitric and nitrous oxide

    NARCIS (Netherlands)

    Manconi, I.; Maas, van der P.M.F.; Lens, P.N.L.

    2006-01-01

    The stimulating effect of copper addition on the reduction rate of nitrous oxide (N2O) to dinitrogen (N2) in the presence of sulfide was investigated in batch experiments (pH 7.0; 55 °C). N2O was dosed either directly as a gas to the headspace of the bottles or formed as intermediate during the deni

  20. Nitrous oxide emission budgets and land-use-driven hotspots for organic soils in Europe

    DEFF Research Database (Denmark)

    Leppelt, T; Dechow, R; Gebbert, S;

    2014-01-01

    Organic soils are a main source of direct emissions of nitrous oxide (N2O), an important greenhouse gas (GHG). Observed N2O emissions from organic soils are highly variable in space and time, which causes high uncertainties in national emission inventories. Those uncertainties could be reduced wh...... the significant reduction potential by rewetting and extensification of agriculturally used peat soils....

  1. Nitrous oxide in the Schelde estuary: production by nitrification and emission to the atmosphere

    NARCIS (Netherlands)

    De Wilde, H.; De Bie, M.J.M.

    2000-01-01

    Concentrations of nitrous oxide (N2O), oxygen, nitrate, and ammonium, as well as nitrification activity were determined along the salinity gradient of the Schelde Estuary, Northwest Europe, in October 1993, March 1994, and July 1996, The entire estuary was always supersaturated with N2O. Concentrati

  2. Effects of land use on regional nitrous oxide emissions in the humid tropics of Costa Rica

    NARCIS (Netherlands)

    Plant, R.A.J.

    1999-01-01

    Atmospheric concentrations of the greenhouse gas nitrous oxide (N 2 O) have increased significantly since pre-industrial days. Greenhouse gases absorb infrared radiation reflected by earth's surface, thereby causing global warming. The increase in atmospheric N 2 O concentratio

  3. Nitrous Oxide (N2O) emissions from human waste in 1970-2050

    NARCIS (Netherlands)

    Strokal, M.; Kroeze, C.

    2014-01-01

    Nitrous oxide (N2O) is an important contributor to climate change. Human waste is an important source of N2O emissions in several world regions, and its share in global emissions may increase in the future. In this paper we, therefore, address N2O emission from human waste: collected (from treatment

  4. Nitrous Oxide Levels In Operating and Recovery Rooms of Iranian Hospitals

    Directory of Open Access Journals (Sweden)

    Sh Sadigh Maroufi

    2011-06-01

    Full Text Available "nBackground: Nitrous oxide (N2O is the oldest anesthetic in routine clinical use and its occupational exposure is under regulation by many countries. As studies are lacking to demonstrate the status of nitrous oxide levels in operating and recovery rooms of Iranian hospitals, we aimed to study its level in teaching hospitals of Tehran University of Medical Sciences."nMethods: During a 6-month period, we have measured the shift-long time weighted average concentration of N2O in 43 op­erating and 12 recovery rooms of teaching hospitals of Tehran University of Medical Sciences."nResults: The results show that the level of nitrous oxide in all hospitals is higher than the limits set by different countries and anesthetists are at higher risk of exposure. In addition, it was shown that installation of air ventilation could reduce not only the overall exposure level, but also the level of exposure of anesthetists in comparison with other personnel."nConclusion: The high nitrous oxide level in Iranian hospitals necessitates improvement of waste gas evacuation systems and regular monitoring to bring the concentration of this gas into the safe level.

  5. Biochar's role in mitigating soil nitrous oxide emissions: a review and meta-analysis

    NARCIS (Netherlands)

    Cayuela, M.L.; Zwieten, van L.; Singh, B.P.; Jeffery, S.L.; Roig, A.; Sánchez-Monedero, M.A.

    2014-01-01

    More than two thirds of global nitrous oxide (N2O) emissions originate from soil, mainly associated with the extensive use of nitrogen (N) fertilizers in agriculture. Although the interaction of black carbon with the N cycle has been long recognized, the impact of biochar on N2O emissions has only

  6. Testing hypotheses on global emissions of nitrous oxide using atmospheric models

    NARCIS (Netherlands)

    Bouwman, A.F.; Taylor, J.A.; Kroeze, C.

    2000-01-01

    The nitrous oxide (N2O) budget has been the least well constrained of the global trace gas budgets. For biogenic sources the uncertainty is caused by their extreme spatial and temporal heterogeneity. For the anthropogenic sources political, economic and cultural factors are major uncertainties assoc

  7. Development and performance test of a continuous source of nitrous acid (HONO)

    Energy Technology Data Exchange (ETDEWEB)

    Ammann, M.; Roessler, E.; Kalberer, M.; Bruetsch, S.; Schwikowski, M.; Baltensperger, U.; Zellweger, C.; Gaeggeler, H.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Laboratory investigations involving nitrous acid (HONO) require a stable, continuous source of HONO at ppb levels. A flow type generation system based on the reaction of sodium nitrite with sulfuric acid has been developed. Performance and speciation of gaseous products were tested with denuder and chemiluminescence techniques. (author) 2 figs., 2 refs.

  8. Fluxed of nitrous oxide and methane in a lake border ecosystem in northern Germany

    Energy Technology Data Exchange (ETDEWEB)

    Rusch, H.; Rembges, D.; Papke, H.; Rennenberg, H. [Fraunhofer Inst. for Atmospheric Environmental Research, Garmisch-Partenkirchen (Germany)

    1995-12-31

    Methane and nitrous oxide are radiatively active trace gases. This accounts for approximately 20 % of the total anticipated greenhouse effect. The atmospheric mixing ratio of both gases has increased significantly during the last decades at a rate of 0.25 % yr{sup -l} for N{sub 2}O and a rate of 1 % yr{sup -1} for CH{sub 4}. Whether this increase is caused by enhanced biogenic production of both gases or is due to decreased global sinks, has not been definitely elucidated. Soils are an important source of methane and nitrous oxide. Natural wetlands, e.g., have a similar global source strength of methane as rice paddies. On the other hand, well aerated grasslands have been shown to be a sink for atmospheric methane due to methane oxidation. Nitrous oxide is emitted by a wide range of soil types. Its rate of emission is strongly enhanced by nitrogen fertilization. In the present study, fluxes of methane and nitrous oxide were determined in a lake border ecosystem along a toposequence from reed to dry pasture. The aim of this study was to characterize the influence of soil type, land use and season on the flux rates of these greenhouse gases. (author)

  9. Emissions of methane and nitrous oxide from full-scale municipal wastewater treatment plants

    NARCIS (Netherlands)

    Daelman, M.R.J.

    2014-01-01

    Since 1750, the year that commonly marks the start of the Industrial Revolution, the atmospheric concentrations of carbon dioxide, methane and nitrous oxide have risen about 40 %, 150 % and 20 %, respectively, above the pre-industrial levels due to human activity (IPCC (2013) Climate Change 2013: Th

  10. Effect of manure application technique on nitrous oxide emission from agricultural soils

    NARCIS (Netherlands)

    Velthof, G.L.; Mosquera, J.; Huis in 't Veld, J.W.H.; Hummelink, E.W.J.

    2010-01-01

    Effect van de uitstoot van kunstmeststoffen.The emission factors for nitrous oxide (N2O) emission of applied manure are not well quantified. The effect of manure application technique on N2O emission was quantified in field and laboratory experiments in order to derive N2O emission factors for (shal

  11. Nitrous oxide fluxes from grassland in the Netherlands. 1. Statistical analysis of flux-chamber measurements

    NARCIS (Netherlands)

    Velthof, G.L.; Oenema, O.

    1995-01-01

    Accurate estimates of total nitrous oxide (N2O) losses from grasslands derived from flux-chamber measurements are hampered by the large spatial and temporal variability of N2O fluxes from these sites. In this study, four methods for the calculation o

  12. Nitrous oxide (N2O). Emission inventory and options for control in the Netherlands

    NARCIS (Netherlands)

    Kroeze C; LAE

    1994-01-01

    This study was initiated to overview current knowledge on nitrous oxide (N2O). The report reviews atmospheric behaviour of N2O, global sources and sinks, Dutch emissions in 1990, options to reduce emissions, and past and future emissions. Despite the uncertainties involved, it is likely that without

  13. Interaction between Nitrous Oxide, Sevoflurane, and Opioids A Response Surface Approach

    NARCIS (Netherlands)

    Vereecke, Hugo E. M.; Proost, Johannes H.; Heyse, Bjorn; Eleveld, Douglas J.; Katoh, Takasumi; Luginbuehl, Martin; Struys, Michel M. R. F.

    2013-01-01

    Background: The interaction of sevoflurane and opioids can be described by response surface modeling using the hierarchical model. We expanded this for combined administration of sevoflurane, opioids, and 66 vol.% nitrous oxide (N2O), using historical data on the motor and hemodynamic responsiveness

  14. Temporal nitrous oxide emissions from beef cattle feedlot manure following a simulated rainfall event

    Science.gov (United States)

    A pilot-scale, recirculating-flow-through, non-steady-state (RFT-NSS) chamber system was designed for quantifying nitrous oxide (N2O) emissions from simulated open-lot beef cattle feedlot pens. The system employed five 1 square meter steel pans. A lid was placed systematically on each pan and heads...

  15. Designing efficient nitrous oxide sampling strategies in agroecosystems using simulation models

    Science.gov (United States)

    Debasish Saha; Armen R. Kemanian; Benjamin M. Rau; Paul R. Adler; Felipe Montes

    2017-01-01

    Annual cumulative soil nitrous oxide (N2O) emissions calculated from discrete chamber-based flux measurements have unknown uncertainty. We used outputs from simulations obtained with an agroecosystem model to design sampling strategies that yield accurate cumulative N2O flux estimates with a known uncertainty level. Daily soil N2O fluxes were simulated for Ames, IA (...

  16. Electrochemical reduction of nitrous oxide on La1-xSrxFeO3 perovskites

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent

    2010-01-01

    The electrochemical reduction of nitrous oxide and oxygen has been studied on cone-shaped electrodes of La1-xSrxFeO3-delta perovskites in an all solid state cell, using cyclic voltammetry. It was shown that the activity of the La1-xSrxFeO3-delta perovskites for the electrochemical reduction...

  17. The impact of slurry application technique on nitrous oxide emission from agricultural soils

    NARCIS (Netherlands)

    Velthof, G.L.; Mosquera, J.

    2011-01-01

    Direct nitrous oxide (N2O) emissions from fertilized soils are generally estimated using emission factors. However, the emission factors for N2O emission of applied slurry are not well quantified. The effect of slurry application technique on N2O emission was quantified in field experiments in the N

  18. AMMONIA REMOVAL AND NITROUS OXIDE PRODUCTION IN GAS-PHASE COMPOST BIOFILTERS

    Science.gov (United States)

    Biofiltration technology is widely utilized for treating ammonia gas (NH3), with one of its potential detrimental by-products being nitrous oxide (N2O), a greenhouse gas approximately 300 times more reactive to infrared than CO2. The present work intends to provide the relation between NH3 removal d...

  19. The 18O signature of biogenic nitrous oxide is determined by O exchange with water

    NARCIS (Netherlands)

    Kool, D.M.; Wrage, N.; Oenema, O.; Harris, D.; Groenigen, van J.W.

    2009-01-01

    To effectively mitigate emissions of the greenhouse gas nitrous oxide (N2O) it is essential to understand the biochemical pathways by which it is produced. The 18O signature of N2O is increasingly used to characterize these processes. However, assumptions on the origin of the O atom and resultant is

  20. Biochar's role in mitigating soil nitrous oxide emissions: a review and meta-analysis

    NARCIS (Netherlands)

    Cayuela, M.L.; Zwieten, van L.; Singh, B.P.; Jeffery, S.L.; Roig, A.; Sánchez-Monedero, M.A.

    2014-01-01

    More than two thirds of global nitrous oxide (N2O) emissions originate from soil, mainly associated with the extensive use of nitrogen (N) fertilizers in agriculture. Although the interaction of black carbon with the N cycle has been long recognized, the impact of biochar on N2O emissions has only r

  1. Emissions of nitrous oxide from arable organic and conventional cropping systems on two soil types

    DEFF Research Database (Denmark)

    Chirinda, N.; Carter, Mette Sustmann; Albert, Kristian Rost

    2010-01-01

    . The main objective of this study was to compare nitrous oxide (N2O) emissions from soil under winter wheat (Triticum aestivum L.) within three organic and one conventional cropping system that differed in type of fertilizer, presence of catch crops and proportion of N2-fixing crops. The study...

  2. Inverse modeling estimates of the global nitrous oxide surface flux from 1998-2001

    NARCIS (Netherlands)

    Hirsch, A. I.; Michalak, A. M.; Bruhwiler, L. M.; Peters, W.; Dlugokencky, E. J.; Tans, P. P.

    2006-01-01

    Measurements of nitrous oxide in air samples from 48 sites in the Cooperative Global Air Sampling Network made by NOAA/ESRL GMD CCGG (the Carbon Cycle Greenhouse Gases group in the Global Monitoring Division at the NOAA Earth System Research Laboratory in Boulder, Colorado) and the three-dimensional

  3. Eddy covariance observations of methane and nitrous oxide emissions: Towards more accurate estimates from ecosystems

    NARCIS (Netherlands)

    Kroon-van Loon, P.S.

    2010-01-01

    About 30% of the increased greenhouse gas (GHG) emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) are related to land use changes and agricultural activities. In order to select effective measures, knowledge is required about GHG emissions from these ecosystems and how these e

  4. The nitrous oxide "dream" of Cora Gray: a dental anesthesia story of 1884.

    Science.gov (United States)

    Christen, Arden G; Christen, Joan A

    2014-01-01

    In the September 1884 issue of Frank Leslie's Popular Monthly magazine, a fictional dramatic short story was published concerning the dental use of nitrous oxide. Entitled, "Cora Gray," it was written by the well-known American journalist and poet John Whittaker Watson (1815-1848), who authored hundreds of sentimental, tragic and dramatic poems, serials and stories concerning the destitute lives and deaths of downtrodden young women of that time. His greatest poetic effort, "Beautiful Snow," (1869) tells of a young prostitute who freezes to death in a snow bank. Watson, born in New York City, was educated at the University of New York, where he studied medicine. He also developed and used his skills as an engraver, journalist and writer. Watson obviously based his imaginative narrative on his medical knowledge of nitrous oxide and its physical and psychological side effects when inhaled. The story centers around the dreamlike romantic experiences of a 19-year-old female dental patient while she is under the effects of this gas. It explicitly depicts the administration of nitrous oxide and the resulting erotic visions and hallucinations that the young patient experiences. We make reference to other cautionary scientific writings from the late 1800s, in order to point out and clarify the potentially negative repercussions of nitrous oxide when administered to female dental patients without the presence of a third party. The ethics and propriety of anesthesia administration remain as perennial questions in dentistry to this day.

  5. Biochar's role in mitigating soil nitrous oxide emissions: a review and meta-analysis

    NARCIS (Netherlands)

    Cayuela, M.L.; Zwieten, van L.; Singh, B.P.; Jeffery, S.L.; Roig, A.; Sánchez-Monedero, M.A.

    2014-01-01

    More than two thirds of global nitrous oxide (N2O) emissions originate from soil, mainly associated with the extensive use of nitrogen (N) fertilizers in agriculture. Although the interaction of black carbon with the N cycle has been long recognized, the impact of biochar on N2O emissions has only r

  6. Future trends in worldwide river nitrogen transport and related nitrous oxide emissions : a scenario analysis

    NARCIS (Netherlands)

    Kroeze, C.; Seitzinger, S.P.; Domingues, R.

    2001-01-01

    We analyze possible future trends in dissolved inorganic nitrogen (DIN) export by world rivers and associated emissions of nitrous oxide (N2O). Our scenarios either assume that current trends continue or that nitrogen (N) inputs to aquatic systems are reduced as a result of changes in agriculture pr

  7. Emissions of methane and nitrous oxide from full-scale municipal wastewater treatment plants

    NARCIS (Netherlands)

    Daelman, M.R.J.

    2014-01-01

    Since 1750, the year that commonly marks the start of the Industrial Revolution, the atmospheric concentrations of carbon dioxide, methane and nitrous oxide have risen about 40 %, 150 % and 20 %, respectively, above the pre-industrial levels due to human activity (IPCC (2013) Climate Change 2013:

  8. Effects of measures on nitrous oxide emissions from agriculture : using INITIATOR and IPCC methods

    NARCIS (Netherlands)

    Vries, de W.; Kros, J.

    2011-01-01

    The mandatory national reporting of nitrous oxide (N2O) emissions under the UN Climate Change Convention is usually done with the IPCC inventory approach using default emission factors for N2O emissions from different sources. Although simple and transparent, the drawback is that emissions will

  9. Nitrous oxide does not influence operating conditions or postoperative course in colonic surgery

    DEFF Research Database (Denmark)

    Krogh, B; Jørn Jensen, P; Henneberg, S W;

    1994-01-01

    groups. Anaesthesia included propofol by infusion, pancuronium and fentanyl 3 micrograms kg-1 h-1. The air-oxygen group required a continuous infusion of propofol of 4-6 mg kg-1 h-1 whereas the nitrous oxide-oxygen group required only 1-2 mg kg-1 h-1. There were no differences between the groups...

  10. Kinetic Study of the Reaction between Tert-butyl Hydrazine and Nitrous Acid

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The kinetic study of the reaction between tert-butyl hydrazine(TBH)and nitrous acid in nitric acid system is performed by spectrophotometry. The effect of some factors such as the concentration of TBH, the concentration of nitric acid, ionic strength, temperature and the

  11. Nitrogen loss from grassland on peat soils through nitrous oxide production.

    NARCIS (Netherlands)

    Koops, J.G.; Beusichem, van M.L.; Oenema, O.

    1997-01-01

    Nitrous oxide (N2O) in soils is produced through nitrification and denitrification. The N2O produced is considered as a nitrogen (N) loss because it will most likely escape from the soil to the atmosphere as N2O or N2. Aim of the study was to quantify N2O production in grassland on peat soils in rel

  12. Determination of the bacterial processes which are sources of nitrous oxide production in marine samples.

    Science.gov (United States)

    Bonin, Patricia; Tamburini, Christian; Michotey, Valerie

    2002-02-01

    Partial denitrification and the initial step of nitrification are the main biological processes which produce nitrous oxide. In order to determine the contribution that these processes have in nitrous oxide production, the efficiency of different inhibitors on nitrifying activity has been tested, and the effect on denitrifying activity has been investigated, using culture strains and natural marine samples. A good nitrification inhibitor should not affect denitrification. A low partial pressure of C2H2 provided the best conditions, inhibiting 75%, Nitrosococcus oceanus (culture sample) and 100% (natural sample) of the nitrifying activity and having only a small inhibitory effect (12%) on denitrifying activity. These conditions have been applied on samples from the dilution plume of the Rhĵne River, an area characterized as a source of nitrous oxide. Using these inhibitors, it has been shown that in this area, incomplete denitrification is the main process producing nitrous oxide in the surface layers at the mouth of the river and in the bottom nepheloid layer, whereas in the marine surface layer the dominant process is nitrification.

  13. Temperature and moisture affect methane and nitrous oxide emission from bovine manure patches in tropical conditions

    NARCIS (Netherlands)

    Mazzetto, A.M.; Barneze, A.S.; Feigl, B.J.; Groenigen, van J.W.; Oenema, O.; Cerri, C.C.

    2014-01-01

    Animal production systems are important sources of greenhouse gases (GHG), especially methane (CH4) and nitrous oxide (N2O). Brazilian beef production is almost exclusively (more than 90%) pasture-based. GHG emissions from faeces deposited in pastures have been extensively studied in temperate clima

  14. Factors controlling nitrous oxide at the microbial community and estuarine scale

    NARCIS (Netherlands)

    Bie, M.J.M. de; Middelburg, J.J.; Starink, M.; Laanbroek, H.J.

    2002-01-01

    This paper examines the effect of oxygen on nitrous oxide (N2O) concentrations in estuarine waters. N2O has been measured year-round in the Schelde estuary, a high-nitrogen, lowoxygen macrotidal system. N2O concentrations were above atmospheric equilibrium levels indicating that this estuary represe

  15. Factors controlling nitrous oxide at the microbial community and estuarine scale

    NARCIS (Netherlands)

    De Bie, M.J.M.; Middelburg, J.J.; Starink, Mathieu; Laanbroek, H.J.

    2002-01-01

    This paper examines the effect of oxygen on nitrous oxide (N2O) concentrations in estuarine waters. N2O has been measured year-round in the Schelde estuary, a high-nitrogen, low-oxygen macrotidal system. N2O concentrations were above atmospheric equilibrium levels indicating that this estuary repres

  16. Continuous wet denuder measurements of atmospheric nitric and nitrous acids during the 1999 Atlanta Supersite

    NARCIS (Netherlands)

    Genfa, Z.; Slanina, J.; Boring, C.B.; Jongejan, A.C.; Purnendu, K.D.

    2003-01-01

    Two different measurement methods for atmospheric nitric and nitrous acid during the Atlanta Supersite study are described and compared. Both approaches combined wet denuder collection coupled to ion chromatographic analysis. One of these utilized a rotating wet annular denuder maintained indoor wit

  17. Nitrous oxide emissions from multiple combined applications of fertiliser and cattle slurry to grassland

    NARCIS (Netherlands)

    Schils, R.L.M.; Groenigen, van J.W.; Velthof, G.L.; Kuikman, P.J.

    2008-01-01

    Fertiliser and manure application are important sources of nitrous oxide (N2O) emissions from agricultural soils. The current default IPCC emission factor of 1.0% is independent of the type of fertiliser and manure, and application time, method and rate. However, in the IPCC Tiered system it is poss

  18. Nitrous oxide in the Schelde estuary: production by nitrification and emission to the atmosphere

    NARCIS (Netherlands)

    De Wilde, H.; De Bie, M.J.M.

    2000-01-01

    Concentrations of nitrous oxide (N2O), oxygen, nitrate, and ammonium, as well as nitrification activity were determined along the salinity gradient of the Schelde Estuary, Northwest Europe, in October 1993, March 1994, and July 1996, The entire estuary was always supersaturated with N2O.

  19. Earthworms can increase nitrous oxide emissions from managed grassland: a field study

    NARCIS (Netherlands)

    Lubbers, I.M.; López González, E.; Hummelink, E.W.J.; Groenigen, van J.W.

    2013-01-01

    Earthworms are important in determining the greenhouse gas (GHG) balance of soils. In laboratory studies they have been shown to increase emissions of the potent GHG nitrous oxide (N2O). Here we test whether these earthworm-induced N2O emissions also occur in the field. We quantified N2O emissions

  20. A geostatistical approach to identify and mitigate agricultural nitrous oxide emission hotspots

    Science.gov (United States)

    Anthropogenic emissions of nitrous oxide (N2O), a trace gas with severe environmental costs, are greatest from agricultural soils amended with nitrogen (N) fertilizer. However, accurate N2O emission estimates at fine spatial scales are made difficult by their high variability, which represents a cr...

  1. EEG entropy values during isoflurane, sevoflurane and halothane anesthesia with and without nitrous oxide.

    Science.gov (United States)

    Prabhakar, Hemanshu; Ali, Zulfiqar; Bithal, Parmod K; Singh, Gyaninder P; Laithangbam, Pradip K; Dash, Hari H

    2009-04-01

    We hypothesized that like bispectral index, entropy may be anesthetic agent specific. We carried out a study to assess the entropy values of different anesthetics at equi-minimal alveolar concentrations (MACs) with air and nitrous oxide as carrier gases. Thirty adult patients undergoing spine surgery were randomized to receive halothane, isoflurane, or sevoflurane, in 2 stages, (a) with air/oxygen mixture (2:1) and (b) in nitrous oxide/oxygen (2:1). Heart rate, mean arterial blood pressure, response entropy (RE), and state entropy (SE) were noted at 1.0 and 1.5 MACs for each agent. Statistical analysis was done using the 2-way analysis of variance followed by Bonferroni correction and Student t test for paired data. P value of less than 0.05 were considered significant. The demographics and baseline values of heart rate, mean arterial blood pressure, RE, and SE were comparable. Changing from air/oxygen as carrier gas to 66% nitrous oxide in oxygen resulted in significant increase in both RE and SE at 1.0 MAC for all the agents (Psevoflurane and isoflurane (P0.05). Again the values of RE and SE remained high for halothane as compared with isoflurane and sevoflurane. In conclusion, our data suggest a possibility of misinterpretation of anesthetic hypnosis when entropy values increase with addition of nitrous oxide to 1 MAC isoflurane and sevoflurane.

  2. Dynamics of Nitric Oxide and Nitrous Oxide Emission during Nitrogen Conversion Processes

    NARCIS (Netherlands)

    Kampschreur, M.J.

    2010-01-01

    Nitric oxide (NO) and nitrous oxide (N2O) emissions can be a serious threat to the environment. Rising levels of N2O in the atmosphere contribute to global warming and destruction of the ozone layer. This thesis describes an investigation on the emission of NO and N2O during nitrogen conversion proc

  3. Nitrous oxide does not influence operating conditions or postoperative course in colonic surgery

    DEFF Research Database (Denmark)

    Krogh, B; Jørn Jensen, P; Henneberg, S W

    1994-01-01

    We studied 150 patients undergoing elective colonic surgery; they were allocated randomly to undergo artificial ventilation with either air-oxygen or nitrous oxide-oxygen during surgery. Eleven patients were excluded. Preoperative management, surgery and postoperative analgesia were similar in bo...

  4. Contemporary and projected biogenic fluxes of methane and nitrous oxide in North American terrestrial ecosystems

    Science.gov (United States)

    The importance of methane (CH4) and nitrous oxide (N2O) in determining global climate change has been increasingly recognized, but terrestrial CH4 and N2O budgets and the underlying mechanisms remain far from certain. Accurate estimation of terrestrial CH4 and N2O budgets would be a critical step fo...

  5. 共聚物-深剂体系的气液平衡:新UNIFAC基团热力学模型与实验研究%Vapor-Liquid Equilibrium of Copolymer+solvent Systems:Experimental Data and Thermodynamic Modeling with New UNIFAC groups

    Institute of Scientific and Technical Information of China (English)

    Rogério A.G. Sé; Martín Aznar

    2008-01-01

    Vapor-liquid equilibrium (VLE)data for copolymer solutions are necessary for several chemical processes.However,VLE data for copolymer solutions in the published report are rare.In this study.experimental VLE data for binary systems copolymer+solvent were obtained using a gravimetric-sorption apparatus.The studied systems were hexane+poly(21%acrylonitrile-co-butadiene),hexanc+poly(33%acrylonitrile-co-butadiene),hexane+poly(51%acrylonitrile-co-butadiene),hexanc+poly(23%styrene-co-butadiene),hexane+poly(45%styrene-co-butadiene),and benzene+poly(44%styrene-co-methyl methacrylate)in the range 50-70℃.The experimental data were correlated with the UNIFAC and Elbro-FV group contribution models for the activity coefficient.Two sets of functional groups had been used to represent the monomers in copolymers:literature groups and new proposed groups.The mean deviations between experimental and calculated mass fractions about 2.4%with ElbroFV and 13.3%witll Zhong were observed when the groups proposed in this study were USed.and of 3.5%for E1bro-FV and 13.2%for Zhong when literature groups were used.

  6. Synchrotron X-ray studies of liquid-vapor interfaces

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1986-01-01

    The density profile ρ(z) across a liquid-vapor interface may be determined by the reflectivity R(θ) of X-rays at grazing angle incidence θ. The relation between R(θ) and ρ(z) is discussed, and experimental examples illustrating thermal roughness of simple liquids and smectic layering of liquid...

  7. Pore scale mechanisms for enhanced vapor transport through partially saturated porous media

    Science.gov (United States)

    Shahraeeni, Ebrahim; Or, Dani

    2012-05-01

    Recent theoretical and experimental studies of vapor transport through porous media question the existence and significance of vapor transport enhancement mechanisms postulated by Philip and de Vries. Several enhancement mechanisms were proposed to rectify shortcomings of continuum models and to reconcile discrepancies between predicted and observed vapor fluxes. The absence of direct experimental and theoretical confirmation of these commonly invoked pore scale mechanisms prompted alternate explanations considering the (often neglected) role of transport via capillary connected pathways. The objective of this work was to quantify the specific roles of liquid bridges and of local thermal and capillary gradients on vapor transport at the pore scale. We considered a mechanistic pore scale model of evaporation and condensation dynamics as a building block for quantifying vapor diffusion through partially saturated porous media. Simulations of vapor diffusion in the presence of isolated liquid phase bridges reveal that the so-called enhanced vapor diffusion under isothermal conditions reflects a reduced gaseous diffusion path length. The presence of a thermal gradient may augment or hinder this effect depending on the direction of thermal relative to capillary gradients. As liquid phase saturation increases, capillary transport becomes significant and pore scale vapor enhancement is limited to low water contents as postulated by Philip and deVries. Calculations show that with assistance of a mild thermal gradient water vapor flux could be doubled relative to diffusion of an inert gas through the same system.

  8. Dispensing fuel with aspiration of condensed vapors

    Energy Technology Data Exchange (ETDEWEB)

    Butkovich, M.S.; Strock, D.J.

    1993-08-10

    A vapor recovery process is described, comprising the steps of: fueling a motor vehicle with gasoline by discharging gasoline into a fill opening or filler pipe of a tank of said vehicle through a fuel outlet conduit of a nozzle; emitting gasoline vapors from said tank during said fueling; substantially collecting said vapors during said fueling with a vapor return conduit of said nozzle and passing said vapors through said vapor return conduit in counter current flow relationship to said discharging gasoline in said fuel conduit; conveying said vapors from said vapor return conduit to a vapor return hose; at least some of said vapors condensing to form condensate in said vapor return hose; substantially removing said condensate from said vapor return hose during said fueling with a condensate pickup tube from said nozzle by passing said condensate through said condensate pickup tube in counter current flow relationship to said conveying vapors in said vapor return hose; sensing the presence of gasoline with a liquid sensing tube in said vapor return conduit of said nozzle between inner and outer spouts of said nozzle to detect when said tank of said vehicle is filled with said fuel conduit being within the inner spout of said nozzle; and automatically shutting off said fueling and condensate removing when said liquid sensing tube detects when said tank of said vehicle is filled and fuel enters said vapor return conduit.

  9. Oxygen concentrators performance with nitrous oxide at 50:50 volume

    Directory of Open Access Journals (Sweden)

    Jorge Ronaldo Moll

    2014-06-01

    Full Text Available Background and objectives: Few investigations have addressed the safety of oxygen from concentrators for use in anesthesia in association with nitrous oxide. This study evaluated the percent of oxygen from a concentrator in association with nitrous oxide in a semi-closed rebreathing circuit. Methods: Adult patients undergoing low risk surgery were randomly allocated into two groups, receiving a fresh gas flow of oxygen from concentrators (O293 or of oxygen from concentrators and nitrous oxide (O293N2O. The fraction of inspired oxygen and the percentage of oxygen from fresh gas flow were measured every 10 min. The ratio of FiO2/oxygen concentration delivered was compared at various time intervals and between the groups. Results: Thirty patients were studied in each group. There was no difference in oxygen from concentrators over time for both groups, but there was a significant improvement in the FiO2 (p < 0.001 for O293 group while a significant decline (p < 0.001 for O293N2O. The FiO2/oxygen ratio varied in both groups, reaching a plateau in the O293 group. Pulse oximetry did not fall below 98.5% in either group. Conclusion: The FiO2 in the mixture of O293 and nitrous oxide fell during the observation period although oxygen saturation was higher than 98.5% throughout the study. Concentrators can be considered a stable source of oxygen for use during short anesthetic procedures, either pure or in association with nitrous oxide at 50:50 volume.

  10. Medical workers' cognition of using 50% nitrous oxide in children with burns: a qualitative study.

    Science.gov (United States)

    Wang, Hai-Xia; Li, Yu-Xiang; Zhou, Ru-Zhen; Zhao, Ji-Jun

    2015-09-01

    Pain caused by dressing among children with burns is an issue worth discussing. Medical workers' understanding of pain during dressing in children with burns is correlated with the quality of pain management. Effective pain management is significant to improve anxiety and reduce pain and psychological distress during dressing for children with burns. We aimed to investigate medical workers' understanding of current pain management during dressing among children with burns and their attitudes toward the application of 50% nitrous oxide in pain management. Interviews were conducted with seven doctors and nurses from a burn center in East China. Data were collected by in-depth interviews and qualitative description after full transcription of each interview. Three themes were identified: (1) Medical workers felt sympathy for children with burns and believed that a gap existed between the current and expected situation in pain management. In addition, the prescription of analgesics during dressing for children with burns was not favored. (2) Given the fact that 50% nitrous oxide is effective in pain management for adult patients with burns, medical workers tended to apply it to children with burns during dressing after being provided the literature on the use of 50% nitrous oxide in children. (3) Guidelines for the application of 50% nitrous oxide during dressing for children with burns require further modification. Medical workers deemed the pain management for children with burns unsatisfactory, and they supported the application of 50% nitrous oxide during dressing for children with burns. Meanwhile, they hoped that administrators would also support it. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  11. Reinforcing, subjective, and psychomotor effects of sevoflurane and nitrous oxide in moderate-drinking healthy volunteers.

    Science.gov (United States)

    Zacny, J P; Janiszewski, D; Sadeghi, P; Black, M L

    1999-12-01

    To characterize the reinforcing, subjective and psychomotor effects of sevoflurane, a volatile anesthetic, across a range of subanesthetic concentrations in non-drug-abusing humans. In addition, a concentration of nitrous oxide was included in the design in order to compare and contrast behavioral effects of a gaseous to a volatile anesthesic. Repeated measures, double-blind, placebo control experiment. Human psychopharmacology laboratory. Fourteen moderate-drinking healthy volunteers. In each of four sessions, subjects first sampled placebo-oxygen and an active drug (end-tidal concentrations of 0.2, 0.4, 0.6% sevoflurane and 30% nitrous oxide in oxygen) and then chose between the two Mood and psychomotor performance during the sampling trials, and choice of drug or placebo-oxygen during choice trial. Nitrous oxide was chosen by 71% of the subjects, and 0.2, 0.4 and 0.6% sevoflurane were chosen by 50%, 57% and 50% of the subjects, respectively. Neither drug was chosen at levels that exceeded that of chance. Sevoflurane and nitrous oxide both impaired psychomotor performance and produced changes in mood. There were several differences in subjective effects between sevoflurane and nitrous oxide at concentrations which were considered to be equivalent in anesthetic effect. Finally, although sevoflurane did not function as a reinforcer in the majority of individuals tested, there was evidence that sevoflurane functioned as a reinforcer in some volunteers: subjects who chose to inhale sevoflurane over placebo-oxygen tended to report a positive spectrum of subjective effects during the sevoflurane sampling trial, relative to those subjects who chose placebo-oxygen over sevoflurane. Although sevoflurane did not function as a reinforcer in the majority of subjects tested, the correspondence between positive subjective effects of sevoflurane and subsequent sevoflurane choice suggests that the volatile anesthetic drug can function as a reinforcer in some moderate drinkers.

  12. Experimental study of mechanical vapor recompression of heat pump driven by roots compressor%罗茨压缩机驱动MVR热泵系统的实验研究

    Institute of Scientific and Technical Information of China (English)

    顾承真; 洪厚胜; 张志强; 颜旭

    2015-01-01

    Mechanical vapor recompression(MVR) evaporation system is a new energy efficient evaporation technology. This paper established a set of MVR evaporator device using water as raw material, falling-film evaporator as evaporating body,and roots compressor as steam compressors. This paper investigated the effects of feed temperature,evaporation pressure and compressor frequency on the evaporation of the total amount of water and specific moisture extraction rate(SMER),which is considered performance indicator of MVR. The results showed that the optimum temperature of the feed was the saturated liquid temperature at the evaporator pressure;the optimum evaporation pressure was closely related to evaporation capacity and compressor efficiency in specific systems;lower the evaporator pressure was beneficial to energy saving when maintaining a high level of efficiency of the compressor;frequency of the compressor directly affected evaporation of the total amount of water and compressor power; SMER increased with the increase of the frequency of the compressor within the allowable range.%机械蒸汽再压缩(MVR)蒸发系统是一种高效节能的蒸发体系。本文采用降膜蒸发器为蒸发主体、罗茨压缩机为蒸汽压缩机,并以水为实验原料研究了一套MVR蒸发装置。实验中以总蒸发水量和单位能耗蒸发水量(SMER)作为MVR蒸发系统的性能指标,分别研究了进料温度、蒸发压强、压缩机频率对其影响。结果表明:最佳进料温度是蒸发压强下的饱和液体温度;最适蒸发压强与具体系统的蒸发能力和压缩机效率密切有关,在压缩机效率保持较高水平的前提下,适当降低蒸发压强有利于系统的节能;压缩机的频率直接影响系统的蒸发量和压缩机的功耗,在压缩机允许的范围内增大压缩机频率,单位能耗蒸发量是增加的。

  13. A Review of Vapor Intrusion Models

    OpenAIRE

    Yao, Yijun; Suuberg, Eric M.

    2013-01-01

    A complete vapor intrusion (VI) model, describing vapor entry of volatile organic chemicals (VOCs) into buildings located on contaminated sites, generally consists of two main parts-one describing vapor transport in the soil and the other its entry into the building. Modeling the soil vapor transport part involves either analytically or numerically solving the equations of vapor advection and diffusion in the subsurface. Contaminant biodegradation must often also be included in this simulatio...

  14. Recent advances in vapor intrusion site investigations.

    Science.gov (United States)

    McHugh, Thomas; Loll, Per; Eklund, Bart

    2017-02-22

    Our understanding of vapor intrusion has evolved rapidly since the discovery of the first high profile vapor intrusion sites in the late 1990s and early 2000s. Research efforts and field investigations have improved our understanding of vapor intrusion processes including the role of preferential pathways and natural barriers to vapor intrusion. This review paper addresses recent developments in the regulatory framework and conceptual model for vapor intrusion. In addition, a number of innovative investigation methods are discussed.

  15. Spectroscopy underlying microwave remote sensing of atmospheric water vapor

    Science.gov (United States)

    Tretyakov, M. Yu.

    2016-10-01

    The paper presents a spectroscopist's view on the problem of recovery of the atmosphere humidity profile using modern microwave radiometers. Fundamental equations, including the description of their limitations, related to modeling of atmospheric water vapor absorption are given. A review of all reported to date experimental studies aimed at obtaining corresponding numerical parameters is presented. Best estimates of these parameters related to the Voigt (Lorentz, Gross, Van Vleck - Weisskopf and other equivalent) profile based modeling of the 22- and 183-GHz water vapor diagnostic lines and to non-resonance absorption as well as corresponding uncertainties are made on the basis of their comparative analysis.

  16. CONDENSATION OF WATER VAPOR IN A VERTICAL TUBE CONDENSER

    Directory of Open Access Journals (Sweden)

    Jan Havlík

    2015-10-01

    Full Text Available This paper presents an analysis of heat transfer in the process of condensation of water vapor in a vertical shell-and-tube condenser. We analyze the use of the Nusselt model for calculating the condensation heat transfer coefficient (HTC inside a vertical tube and the Kern, Bell-Delaware and Stream-flow analysis methods for calculating the shell-side HTC from tubes to cooling water. These methods are experimentally verified for a specific condenser of waste process vapor containing air. The operating conditions of the condenser may be different from the assumptions adopted in the basic Nusselt theory. Modifications to the Nusselt condensation model are theoretically analyzed.

  17. Experimental and theoretical study of polarized photoluminescence caused by anisotropic strain relaxation in nonpolar a-plane textured ZnO grown by a low-pressure chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Chih-Ming [Department of Electronic Engineering, Ming Chuan University, Taoyuan 333, Taiwan (China); Huang, Yu-En; Feng, Shih-Wei, E-mail: swfeng@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Kou, Kuang-Yang [Department of Traffic Science, Central Police University, Taoyuan 333, Taiwan (China); Chen, Chien-Hsun [Green Energy and Environment Research Labs, Industrial Technology Research Institute, Hsinchu 310, Taiwan (China); Tu, Li-Wei [Department of Physics and Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China)

    2015-07-13

    Anisotropic strain relaxation and the resulting degree of polarization of photoluminescence (PL) in nonpolar a-plane textured ZnO are experimentally and theoretically studied. A thicker nonpolar a-plane textured ZnO film enhances the anisotropic in-plane strain relaxation, resulting in a larger degree of polarization of PL and better sample quality. Anisotropic in-plane strains, sample quality, and degree of polarization of PL in nonpolar a-plane ZnO are consequences of the degree of anisotropic in-plane strain relaxation. By the k·p perturbation approach, simulation results of the variation of the degree of polarization for the electronic transition upon anisotropic in-plane strain relaxation agree with experimental results.

  18. Halothane, isoflurane, xenon, and nitrous oxide inhibit calcium ATPase pump activity in rat brain synaptic plasma membranes

    National Research Council Canada - National Science Library

    Franks, J J; Horn, J L; Janicki, P K; Singh, G

    1995-01-01

    .... For studies of anesthetic effects on PMCA activity, Ca2+ uptake or Pi release was measured in SPM exposed to halothane, isoflurane, xenon, and nitrous oxide at partial pressures ranging from 0 to 1.6 MAC equivalents...

  19. BIODEGRADATION OF MONOAROMATIC HYDROCARBONS BY AQUIFER MICROORGANISMS USING OXYGEN, NITRATE, OR NITROUS OXIDE AS THE TERMINAL ELECTRON ACCEPTOR

    Science.gov (United States)

    Microcosms were prepared from aquifer material, spiked with monoaromatic hydrocarbons, and amended with oxygen, nitrate, and nitrous oxide. Benzene and alkylbenzenes were degraded to concentrations below 5 µg/liter within 7 days under aerobic conditions, whereas only the alkylbe...

  20. Stage 2 vapor recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Koch, W.H.; Strock, D.J.; Butkovich, M.S.; Hartman, H.B.

    1993-05-25

    A vapor recovery system is described, comprising: a set of elongated underground storage tanks, each storage tank containing a different grade of gasoline; vent pipes; a series of dispensing units; fuel flow lines; vapor return lines; an array of fuel pumps for pumping gasoline from said storage tanks to said dispenser units; an elongated condensate liquid pickup tube; an elongated inner spout providing a fuel conduit and having an outer tip defining a fuel outlet for discharging gasoline into a filler pipe of a motor vehicle tank during fueling; an outer spout assembly; extending into and engaging said spout-receiving socket, said outer spout assembly comprising an outer spout providing a vapor return conduit and defining apertures providing a vapor inlet spaced from said fuel outlet for withdrawing, removing, and returning a substantial amount of gasoline vapors emitted during said fueling; an elongated liquid sensing tube; a manually operable level; a flow control valve assembly; an automatic shutoff valve assembly; and a venturi sleeve assembly positioned in said venturi sleeve receiving chamber.

  1. Vapour pressure and enthalpy of vaporization of aliphatic dialkyl carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Kozlova, Svetlana A.; Emel' yanenko, Vladimir N.; Georgieva, Miglena [Department of Physical Chemistry, University of Rostock, Hermannstrasse 14, D-18051 Rostock (Germany); Verevkin, Sergey P. [Department of Physical Chemistry, University of Rostock, Hermannstrasse 14, D-18051 Rostock (Germany)], E-mail: sergey.verevkin@uni-rostock.de; Chernyak, Yury [Huntsman Corporation, Advanced Technology Center, 8600 Gosling Road, The Woodlands, TX 77381 (United States); Schaeffner, Benjamin; Boerner, Armin [Leibniz Institut fuer Katalyse an der Universitaet Rostock e.V., Albert-Einstein Strasse 29a, 18059 Rostock (Germany)

    2008-07-15

    Molar enthalpies of vaporization of aliphatic alkyl carbonates: dimethyl carbonate [616-38-6], diethyl carbonate [105-58-8], di-n-propyl carbonate [623-96-1], di-n-butyl carbonate [542-52-9], and dibenzyl carbonate [3459-92-5] were obtained from the temperature dependence of the vapour pressure measured by the transpiration method. A large number of the primary experimental results on temperature dependences of vapour pressures have been collected from the literature and have been treated uniformly in order to derive vaporization enthalpies of dialkyl carbonates at the reference temperature 298.15 K. An internal consistency check was performed on enthalpy of vaporization values for dialkyl carbonates studied in this work.

  2. Nitrous oxide distribution and its origin in the central and eastern South Pacific Subtropical Gyre

    Directory of Open Access Journals (Sweden)

    J. Charpentier

    2007-05-01

    Full Text Available The biogeochemical mechanism of bacterial N2O production in the ocean has been the subject of many discussions in recent years. New isotopomeric tools can help further knowledge on N2O sources in natural environments. This research shows and compares hydrographic, nitrous oxide concentration, and N2O isotopic and isotopomeric data from three stations across the South Pacific Ocean, from the center of the subtropical oligotrophic gyre (~26° S; 114° W to the upwelling zone along the central Chilean coast (~34° S. Althought AOU/N2O and NO3 trends support the idea that most of N2O source (mainly from intermediate water (200–1000 m come from nitrification, N2O isotopomeric composition (intramolecular distribution of 15N isotopes in N2O reveals an abrupt change in the mechanism of nitrous oxide production, always observed through lower SP (site preference of 15N, at a high – stability layer, where particles could act as microsites and N2O would be produced by nitrifier denitrification (reduction of nitrite to nitrous oxide mediated by primary nitrifiers. There, nitrifier denitrification can account for 40% and 50% (center and east border of the gyre, respectively of the nitrous oxide produced in this specific layer. This process could be associated with the deceleration of sinking organic particles in highly stable layers of the water column. In constrast, coastal upwelling system is characterized by oxygen deficient condition and some N deficit in a eutrophic system. Here, nitrous oxide accumulates up to 480% saturation, and isotopic and isotopomer signal show highly complex nitrous oxide production processes, which presumably reflect both the effect of nitrification and denitrification at low oxygen levels on N2O production, but non N2O consumption by denitrification was observed.

  3. Optimization of metal vapor lasers

    Science.gov (United States)

    Buchanov, V. V.; Molodykh, E. I.; Tykotskii, V. V.

    1983-03-01

    The method proposed here for performing numerical calculations on a computer in order to predict and optimize the characteristics of metal vapor lasers is based on the use of a universal program for numerical experiments designed expressly for metal vapor lasers and on a simultaneous application of an algorithm for multifactor optimization of the output parameters. The latter, in turn, is based on the complex Boks method (Himmelblau, 1970) and on the Gel'fand-Tsetlin ravine method (Himmelblau, 1970). Calculations carried out for a metal with a copper vapor in neon reveal that for optimization with respect to the geometry of the active zone and the parameters of the electrical circuits (including the voltage pulses and excitation frequency) it is sufficient to use the Boks method. The objective function optimum regarding the concentration of the metal particles and the buffer gas found using this algorithm calls for further refinement; this can be performed efficiently with the Gel'fand-Tsetlin ravine method.

  4. Graphitic carbon nitride: Synthesis, characterization and photocatalytic decomposition of nitrous oxide

    Energy Technology Data Exchange (ETDEWEB)

    Praus, Petr, E-mail: petr.praus@vsb.cz [Institute of Environmental Technology, VŠB-Technical University of Ostrava, 17. Listopadu 15/2172, Ostrava 708 33 (Czech Republic); Department of Chemistry, Faculty of Metallurgy and Materials Engineering, VŠB-Technical University of Ostrava, 17. Listopadu 15/2172, Ostrava 708 33 (Czech Republic); Svoboda, Ladislav [Institute of Environmental Technology, VŠB-Technical University of Ostrava, 17. Listopadu 15/2172, Ostrava 708 33 (Czech Republic); Department of Chemistry, Faculty of Metallurgy and Materials Engineering, VŠB-Technical University of Ostrava, 17. Listopadu 15/2172, Ostrava 708 33 (Czech Republic); Ritz, Michal [Department of Chemistry, Faculty of Metallurgy and Materials Engineering, VŠB-Technical University of Ostrava, 17. Listopadu 15/2172, Ostrava 708 33 (Czech Republic); Troppová, Ivana; Šihor, Marcel; Kočí, Kamila [Institute of Environmental Technology, VŠB-Technical University of Ostrava, 17. Listopadu 15/2172, Ostrava 708 33 (Czech Republic)

    2017-06-01

    Graphitic carbon nitride (g-C{sub 3}N{sub 4}) was synthetized by condensation of melamine at the temperatures of 400–700 °C in air for 2 h and resulting products were characterized and finally tested for the photocatalytic decomposition of nitrous oxide. The characterization methods were elemental analysis, UV–Vis diffuse reflectance spectroscopy (DRS), photoluminescence (PL), Fourier transform infrared (FTIR) and Raman spectroscopy, measurement of specific surface area (SSA), X-ray powder diffraction (XRD), scanning (SEM) and transmission (TEM) electron microscopy. The XRD patterns, FTIR and Raman spectra proved the presence of g-C{sub 3}N{sub 4} at above 550 °C but the optimal synthesis temperature of 600–650 °C was found. Under these conditions graphitic carbon nitride of the overall empirical composition of C{sub 6}N{sub 9}H{sub 2} was formed. At lower temperatures g-C{sub 3}N{sub 4} with a higher content of hydrogen was formed but at higher temperatures g-C{sub 3}N{sub 4} was decomposed. At the temperatures above 650 °C, its exfoliation was observed. The photocatalytic experiments showed that the activity of all the samples synthetized at 400–700 °C was very similar, that is, within the range of experimental error (5 %). The total conversion of N{sub 2}O reached about 43 % after 14 h. - Highlights: • Graphitic carbon nitride (g-C{sub 3}N{sub 4}) was thermally synthetized from melamine in the range of 400–700 °C. • The optimal temperature was determined at 600–650 °C. • All synthesis products were properly characterized by physico-chemical methods. • Exfoliation of g-C{sub 3}N{sub 4} at above 600 °C was observed. • g-C{sub 3}N{sub 4} was used for the photocatalytic decomposition of N{sub 2}O.

  5. The uncertainty of nitrous oxide emissions from grazed grasslands: A New Zealand case study

    Science.gov (United States)

    Kelliher, Francis M.; Henderson, Harold V.; Cox, Neil R.

    2017-01-01

    Agricultural soils emit nitrous oxide (N2O), a greenhouse gas and the primary source of nitrogen oxides which deplete stratospheric ozone. Agriculture has been estimated to be the largest anthropogenic N2O source. In New Zealand (NZ), pastoral agriculture uses half the land area. To estimate the annual N2O emissions from NZ's agricultural soils, the nitrogen (N) inputs have been determined and multiplied by an emission factor (EF), the mass fraction of N inputs emitted as N2Osbnd N. To estimate the associated uncertainty, we developed an analytical method. For comparison, another estimate was determined by Monte Carlo numerical simulation. For both methods, expert judgement was used to estimate the N input uncertainty. The EF uncertainty was estimated by meta-analysis of the results from 185 NZ field trials. For the analytical method, assuming a normal distribution and independence of the terms used to calculate the emissions (correlation = 0), the estimated 95% confidence limit was ±57%. When there was a normal distribution and an estimated correlation of 0.4 between N input and EF, the latter inferred from experimental data involving six NZ soils, the analytical method estimated a 95% confidence limit of ±61%. The EF data from 185 NZ field trials had a logarithmic normal distribution. For the Monte Carlo method, assuming a logarithmic normal distribution for EF, a normal distribution for the other terms and independence of all terms, the estimated 95% confidence limits were -32% and +88% or ±60% on average. When there were the same distribution assumptions and a correlation of 0.4 between N input and EF, the Monte Carlo method estimated 95% confidence limits were -34% and +94% or ±64% on average. For the analytical and Monte Carlo methods, EF uncertainty accounted for 95% and 83% of the emissions uncertainty when the correlation between N input and EF was 0 and 0.4, respectively. As the first uncertainty analysis of an agricultural soils N2O emissions

  6. Sheep Excreta as Source of Nitrous Oxide in Ryegrass Pasture in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Michely Tomazi

    2015-10-01

    Full Text Available ABSTRACT Livestock urine and dung are important components of the N cycle in pastures, but little information on its effect on soil nitrous oxide (N2O emissions is available. We conducted a short-term (39-day trial to quantify the direct N2O-N emissions from sheep excreta on an experimental area of ryegrass pasture growing on a Typic Paleudult in southern Brazil. Four rates of urine-N (161, 242, 323, and 403 kg ha-1 N and one of dung-N (13 kg ha-1 N were applied, as well as a control plot receiving no excreta. The N2O-N emission factor (EF = % of added N released as N2O-N for urine and dung was calculated, taking into account the N2O fluxes in the field, over a period of 39 days. The EF value of the urine and dung was used to estimate the emissions of N2O-N over a 90-day period of pasture in the winter under two grazing intensities (2.5 or 5.0 times the herbage intake potential of grazing lambs. The soil N2O-N fluxes ranged from 4 to 353 µg m-2h-1. The highest N2O-N fluxes occurred 16 days after application of urine and dung, when the highest soil nitrate content was also recorded and the water-filled pore space exceeded 60 %. The mean EF for urine was 0.25 % of applied N, much higher than that for dung (0.06 %. We found that N2O-N emissions for the 90-day winter pasture period were 0.54 kg ha-1 for low grazing intensity and 0.62 kg ha-1 for moderate grazing intensity. Comparison of the two forms of excreta show that urine was the main contributor to N2O-N emissions (mean of 36 %, whereas dung was responsible for less than 0.1 % of total soil N2O-N emissions.

  7. Nitrous oxide emissions from a commercial cornfield (Zea mays) measured using the eddy-covariance technique

    Science.gov (United States)

    Huang, H.; Wang, J.; Hui, D.; Miller, D. R.; Bhattarai, S.; Dennis, S.; Smart, D.; Sammis, T.; Reddy, K. C.

    2014-08-01

    Increases in observed atmospheric concentrations of the long-lived greenhouse gas, nitrous oxide (N2O), have been well documented. However, information on event-related instantaneous emissions during fertilizer applications is lacking. With the development of fast-response N2O analyzers, the eddy covariance (EC) technique can be used to gather instantaneous measurements of N2O concentrations to quantify the exchange of nitrogen between the soil and atmosphere. The objectives of this study were to evaluate the performance of a new EC system, to measure the N2O flux with the system, and finally to examine relationships of the N2O flux with soil temperature, soil moisture, precipitation, and fertilization events. We assembled an EC system that included a sonic anemometer and a fast-response N2O analyzer (quantum cascade laser spectrometer) in a cornfield in Nolensville, Tennessee during the 2012 corn growing season (4 April-8 August). Fertilizer amounts totaling 217 kg N ha-1 were applied to the experimental site. The precision of the instrument was 0.066 ppbv for 10 Hz measurements. The seasonal mean detection limit of the N2O flux measurements was 2.10 ng N m-2 s-1. This EC system can be used to provide reliable N2O flux measurements. The cumulative emitted N2O for the entire growing season was 6.87 kg N2O-N ha-1. The 30 min average N2O emissions ranged from 0 to 11 100 μg N2O{-}N m-2 h-1 (mean = 257.5, standard deviation = 817.7). Average daytime emissions were much higher than night emissions (278.8 ± 865.8 vs. 100.0 ± 210.0 μg N2O-N m-2 h-1). Seasonal fluxes were highly dependent on soil moisture rather than soil temperature, although the diurnal flux was positively related to soil temperature. This study was one of the few experiments that continuously measured instantaneous, high-frequency N2O emissions in crop fields over a growing season of more than 100 days.

  8. Impacts of Nitrate Input on Nitrous Oxide Production in Lake Sediments

    Science.gov (United States)

    Ruder, C. K.; Schade, J. D.

    2016-12-01

    Denitrification in lake sediments removes nitrogen from the ecosystem and produces the greenhouse gas nitrous oxide (N2O) as a byproduct. However, little is understood about the rates and controls of N2O production in lake sediments. Agricultural activity in lake catchments often results in the runoff of nitrogen fertilizers, leading to increased N inputs in the form of nitrate (NO3-). This study evaluates the influence of nitrate input on N2O concentrations in a series of lakes across a range of agricultural land use intensities. We measured N2O concentrations in lakes across seasons, and also used lake sediment samples to perform anaerobic incubations with NO3- additions, with and without the addition of acetylene (blocking conversion of N2O to N2), to assess denitrification potentials and the rate of N2O production in sediments. Our results suggest that N2O concentrations are strongly impacted by the availability of NO3- across all agricultural land use intensities, with incubation NO3- additions leading to a marked increase in N2O production. However, sediments reacted differently by site in incubations without experimental additions of NO3- or acetylene, with half of the study lakes experiencing net N2O production and half exhibiting net N2O consumption over the course of the 24-hour incubation period. These results suggest the potential influence of sediment organic matter as a control on N2O concentrations. The positive influence of NO3- on N2O production is supported by observational data at each of the study sites, though water column total nitrogen (TN) appears to be a better indicator of dissolved N2O concentrations than aqueous NO3-, perhaps due to variations in internal N recycling. This study concludes that agricultural runoff of NO3- has the potential to enhance sediment N2O production; however, further investigation into the effects of sediment organic matter on N2O production, analysis of N2O vertical diffusion efficiency to link production rates

  9. Vapor pressure of perfluoroalkylalkanes: the role of the dipole.

    Science.gov (United States)

    Morgado, Pedro; Das, Gaurav; McCabe, Clare; Filipe, Eduardo J M

    2015-01-29

    The vapor pressure of four liquid perfluoroalkylalkanes (CF3(CF2)n(CH2)mCH3; n = 3, m = 4,5,7; n = 5, m = 5) was measured as a function of temperature between 278 and 328 K. Molar enthalpies of vaporization were calculated from the experimental data, and the results were compared with data from the literature for the corresponding alkanes and perfluoroalkanes. The heterosegmented statistical associating fluid theory was used to interpret the results at the molecular level both with and without the explicit inclusion of the dipolar nature of the molecules. Additionally, ab initio calculations were performed for all perfluoroalkylalkanes studied to determine the dipole moment to be used in the theoretical calculations. We demonstrate that the inclusion of a dipolar term is essential for describing the vapor-liquid equilibria of perfluoroalkylalkanes. It is also shown that vapor-liquid equilibria in these compounds result from a subtle balance between dipolar interactions, which decrease the vapor pressure, and the relatively weak dispersive interactions between the hydrogenated and fluorinated segments.

  10. Dynamic response of vaporizing droplet to pressure oscillation

    Science.gov (United States)

    Yuan, Lei; Shen, Chibing; Zhang, Xinqiao

    2017-02-01

    Combustion instability is a major challenge in the development of the liquid propellant engines, and droplet vaporization is viewed as a potential mechanism for driving instabilities. Based on the previous work, an unsteady droplet heating and vaporization model was developed. The model and numerical method are validated by experimental data available in literature, and then the oscillatory vaporization of n-Heptane droplet exposed to unsteady harmonic nitrogen atmosphere was numerically investigated over a wide range of amplitudes and frequencies. Also, temperature variations inside the droplet were demonstrated under oscillation environments. It was found that the thermal wave is attenuated with significantly reduced wave intensities as it penetrates deep into droplet from the ambient gas. Droplet surface temperature exhibits smaller fluctuation than that of the ambient gas, and it exhibits a time lag with regard to the pressure variation. Furthermore, the mechanism leading to phase lag of vaporization rate with respect to pressure oscillation was unraveled. Results show that this phase lag varies during the droplet lifetime and it is strongly influenced by oscillation frequency, indicating droplet vaporization is only capable of driving combustion instability in some certain frequency domains. Instead, the amplitude of the oscillation does not have very significant effects. It is noteworthy that thermal inertia of the droplet also plays a considerable role in determining the phase lag.

  11. Modeling nitrous oxide production during biological nitrogen removal via nitrification and denitrification: extensions to the general ASM models.

    Science.gov (United States)

    Ni, Bing-Jie; Ruscalleda, Maël; Pellicer-Nàcher, Carles; Smets, Barth F

    2011-09-15

    Nitrous oxide (N(2)O) can be formed during biological nitrogen (N) removal processes. In this work, a mathematical model is developed that describes N(2)O production and consumption during activated sludge nitrification and denitrification. The well-known ASM process models are extended to capture N(2)O dynamics during both nitrification and denitrification in biological N removal. Six additional processes and three additional reactants, all involved in known biochemical reactions, have been added. The validity and applicability of the model is demonstrated by comparing simulations with experimental data on N(2)O production from four different mixed culture nitrification and denitrification reactor study reports. Modeling results confirm that hydroxylamine oxidation by ammonium oxidizers (AOB) occurs 10 times slower when NO(2)(-) participates as final electron acceptor compared to the oxic pathway. Among the four denitrification steps, the last one (N(2)O reduction to N(2)) seems to be inhibited first when O(2) is present. Overall, N(2)O production can account for 0.1-25% of the consumed N in different nitrification and denitrification systems, which can be well simulated by the proposed model. In conclusion, we provide a modeling structure, which adequately captures N(2)O dynamics in autotrophic nitrification and heterotrophic denitrification driven biological N removal processes and which can form the basis for ongoing refinements.

  12. UV Discharge Lamp on Alcohol Vapor

    Science.gov (United States)

    Avtaeva, Svetlana; Heneral, Andrij

    2009-10-01

    The non coherent sources of UV radiation based on safe and nontoxic gaseous mixtures have good aspects for different applications. The paper reports about experimental investigations of the high voltage capacitive discharge in alcohol vapor. The time-integrated emission spectra have been studied in the wavelength interval from 200 to 400 nm at alcohol vapor pressure of 1 Torr. In the spectra the most intensive bands were vibrational bands of the CO(b->a) transition with heads at 283.3 (0-0), 297.7 (0-1), 313.4 (0-2), 330.5 (0-3) and 349.3 nm (0-4). The (0-2) band of CO molecules superimposes with (0-0) and (1-1) vibrational bands of the CH(C->X) transition with Q-heads at 314.49 and 315.66 nm on the long wavelength side and with bands of OH radicals with intensity maximums at 308.1 and 309.2 nm (A->X transition) on the short wavelength side. No other radiating species were detected. The emitting surface area of the lamp is 220 cm^2, average output power of the UV radiation is 70 mW and the estimated efficiency is 0.2%. This source of UV radiation can be applied in photochemistry, in medicine, for disinfection of medical tools, in ecology and for purification and disinfection of water from different pathogenic microorganisms.

  13. Nitrous oxide emissions from irrigated cotton in north eastern Australia

    Science.gov (United States)

    Grace, P.; Rowlings, D.; Weier, K.; Rochester, I.; Kiese, R.; Butterbach-Bahl, K.

    2009-04-01

    Cotton is one of many agricultural industries in Australia heavily reliant on nitrogenous fertilizers and water storages to maintain high levels of production. Cotton-based farming systems are therefore labelled as potentially high-risk agricultural systems with respect to gaseous losses of nitrogen to the atmosphere. The on-farm study was undertaken at Dalby in the Darling Downs region of Queensland in north eastern Australia. The field was furrow irrigated and had been under continuous cotton (with winter bare fallow) for 10 years. The block was conventionally tilled, with a spraying regime typical for cotton production in this area. The black clay (with a surface clay content of 68%) and soil organic carbon content (0-10 cm) of 1.0% and a pH of 8.5, is typical of the region. During the the 2006/07 season, soil water (0-50 cm with Enviroscan), mineral nitrogen (0-10 cm) and crop production data was also collected to develop accurate models for predicting greenhouse gas emissions as a function of key chemical, physical and biological processes and specific management events. The 2006/07 experiment also attempted to directly measure the specific losses of N2O and N2 from a single application of N fertiliser using 15N isotopically labelled urea. The automated greenhouse gas measuring system (developed by Butterbach-Bahl et al.) consists of six chambers connected to sequential sampling unit, a gas chromatograph (equipped with both electron capture and flame ionization detectors for nitrous oxide and methane analysis respectively), and a Licor for carbon dioxide. To meet the demand for high mobility, the sample acquisition and analysis system is trailer mounted. During a normal sampling period, the chambers were closed for 90 minutes (unless temperatures within the chambers exceeded 55oC). The sampling program ensured that that a single gas sample was drawn back from each chamber every 20 minutes. To facilitate 15N gas sampling, Swagelok T-pieces were inserted into

  14. Myeloneuropathy following nitrous oxide anesthaesia in a patient with macrocytic anaemia

    Energy Technology Data Exchange (ETDEWEB)

    Sesso, R.M.C.C.; Iunes, Y.; Melo, A.C.P. [Department of Neurology, Instituto de Assistencia Medica ao Servidor Publico Estadual, Sao Paulo (Brazil)

    1999-08-01

    The neurological condition triggered by anaesthesia with nitrous oxide involves the cyanocobalamine pathway and is characterised by progressive demyelination and axonal lesions of the peripheral nerves and cervicothoracic spinal cord (posterior and anterolateral columns) giving a peripheral neuropathy and very frequently subacute combined degeneration of the spinal cord. It is possible to show these demyelinating lesions by MRI of the spine, allowing early diagnosis and follow-up. We describe a case of myeloneuropathy with onset a few hours after nitrous oxide anaesthesia in a patient with macrocytic anaemia and possible subclinical vitamin B{sub 12} deficiency and MRI evidence of a lesion of the cervical spinal cord. Neurological and haematological improvement followed cyanocobalamine replacement. (orig.) With 2 figs., 15 refs.

  15. Interest of 50% nitrous oxide and oxygen premix sedation in gerodontology

    Science.gov (United States)

    Nicolas, Emmanuel; Lassauzay, Claire

    2009-01-01

    Elderly patients presenting cardiovascular, respiratory, or neurological disorders require a specific dental care approach, especially patients presenting Alzheimer’s disease. Sedative procedures can prevent dental care-induced stress, even when there is effective pain control, but they have to be adapted to accommodate age-induced physiological modifications, age-related pathologies, and the concomitant treatments. In many situations, routine sedative prescriptions for dental care, such as benzodiazepine or antihistaminics, are not recommended for these patients. Nitrous oxide inhalation together with a specific behavioral threshold is currently the only sedative procedure adapted to cognitively-impaired elderly patients. Nitrous oxide is able to curb stress and its cardiovascular consequences, improve oxygenation, and optimize cooperation during dental care, making not only rehabilitation treatments but also routine dental care a viable option. PMID:19503768

  16. Vibrational Infrared Lifetime of the Anesthetic nitrous oxide gas in solution

    CERN Document Server

    Chieffo, Logan; Shattuck, Jeffrey; Hong, Mi K; Ziegler, Lawrence; Erramilli, Shyamsunder

    2006-01-01

    The lifetime of the asymmetric fundamental stretching 2218 cm$^{-1}$ vibration of the anesthetic gas nitrous oxide (N$_2$O) dissolved in octanol and olive oil is reported. These solvents are model systems commonly used to assess anesthetic potency. Picosecond time-scale molecular dynamics simulations have suggested that protein dynamics or membrane dynamics play a role in the molecular mechanism of anesthetic action. Ultrafast infrared spectroscopy with 100 fs time resolution is an ideal tool to probe dynamics of anesthetic molecules on such timescales. Pump-probe studies at the peak of the vibrational band yield a lifetime of $55 \\pm 1$ ps in olive oil and $52 \\pm 1 ps$ in octanol. The similarity of lifetimes suggests that energy relaxation of the anesthetic is determined primarily by the hydrophobic nature of the environment, consistent with models of anesthetic action. The results show that nitrous oxide is a good model system for probing anesthetic-solvent interactions using nonlinear infrared spectroscop...

  17. Interest of 50% nitrous oxide and oxygen premix sedation in gerodontology.

    Science.gov (United States)

    Nicolas, Emmanuel; Lassauzay, Claire

    2009-01-01

    Elderly patients presenting cardiovascular, respiratory, or neurological disorders require a specific dental care approach, especially patients presenting Alzheimer's disease. Sedative procedures can prevent dental care-induced stress, even when there is effective pain control, but they have to be adapted to accommodate age-induced physiological modifications, age-related pathologies, and the concomitant treatments. In many situations, routine sedative prescriptions for dental care, such as benzodiazepine or antihistaminics, are not recommended for these patients. Nitrous oxide inhalation together with a specific behavioral threshold is currently the only sedative procedure adapted to cognitively-impaired elderly patients. Nitrous oxide is able to curb stress and its cardiovascular consequences, improve oxygenation, and optimize cooperation during dental care, making not only rehabilitation treatments but also routine dental care a viable option.

  18. Non-covalent interactions of nitrous oxide with aromatic compounds: Spectroscopic and computational evidence for the formation of 1:1 complexes

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qian [Department of Chemistry, P.O. Box 55, University of Helsinki, Helsinki FI-00014 (Finland); School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Gor, Gennady Y., E-mail: ggor@princeton.edu [Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Krogh-Jespersen, Karsten [Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903 (United States); Khriachtchev, Leonid [Department of Chemistry, P.O. Box 55, University of Helsinki, Helsinki FI-00014 (Finland)

    2014-04-14

    We present the first study of intermolecular interactions between nitrous oxide (N{sub 2}O) and three representative aromatic compounds (ACs): phenol, cresol, and toluene. The infrared spectroscopic experiments were performed in a Ne matrix and were supported by high-level quantum chemical calculations. Comparisons of the calculated and experimental vibrational spectra provide direct identification and characterization of the 1:1 N{sub 2}O-AC complexes. Our results show that N{sub 2}O is capable of forming non-covalently bonded complexes with ACs. Complex formation is dominated by dispersion forces, and the interaction energies are relatively low (about −3 kcal mol{sup −1}); however, the complexes are clearly detected by frequency shifts of the characteristic bands. These results suggest that N{sub 2}O can be bound to the amino-acid residues tyrosine or phenylalanine in the form of π complexes.

  19. Non-covalent interactions of nitrous oxide with aromatic compounds: Spectroscopic and computational evidence for the formation of 1:1 complexes

    Science.gov (United States)

    Cao, Qian; Gor, Gennady Y.; Krogh-Jespersen, Karsten; Khriachtchev, Leonid

    2014-04-01

    We present the first study of intermolecular interactions between nitrous oxide (N2O) and three representative aromatic compounds (ACs): phenol, cresol, and toluene. The infrared spectroscopic experiments were performed in a Ne matrix and were supported by high-level quantum chemical calculations. Comparisons of the calculated and experimental vibrational spectra provide direct identification and characterization of the 1:1 N2O-AC complexes. Our results show that N2O is capable of forming non-covalently bonded complexes with ACs. Complex formation is dominated by dispersion forces, and the interaction energies are relatively low (about -3 kcal mol-1); however, the complexes are clearly detected by frequency shifts of the characteristic bands. These results suggest that N2O can be bound to the amino-acid residues tyrosine or phenylalanine in the form of π complexes.

  20. Estimated vapor pressure for WTP process streams

    Energy Technology Data Exchange (ETDEWEB)

    Pike, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-01

    Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused by organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.

  1. Nitrous Oxide Persistently Alleviates Pain Hypersensitivity in Neuropathic Rats: A Dose-Dependent Effect

    Directory of Open Access Journals (Sweden)

    Meric Ben Boujema

    2015-01-01

    Full Text Available BACKGROUND: Despite numerous pharmacological approaches, there are no common analgesic drugs that produce meaningful relief for the majority of patients with neuropathic pain. Although nitrous oxide (N2O is a weak analgesic that acts via opioid-dependent mechanisms, it is also an antagonist of the N-methyl-D-aspartate receptor (NMDAR. The NMDAR plays a critical role in the development of pain sensitization induced by nerve injury.

  2. Evaluation of nitrous oxide-oxygen and triclofos sodium as conscious sedative agents

    Directory of Open Access Journals (Sweden)

    Priya Subramaniam

    2017-01-01

    Full Text Available Background: Conscious sedation is used in the pediatric dentistry to reduce fear and anxiety in children and promote favorable treatment outcomes. To achieve them, the primary clinical need is for a well-tolerated, effective, and expedient analgesic and sedative agent that is safe to use. Aim: The aim of the present study was to evaluate the efficacy of nitrous oxide-oxygen and triclofos sodium as conscious sedative agents in 5–10-year-old children. Methodology: Sixty children aged 5–10 years showing anxious, uncooperative, and apprehensive behavior were randomly divided and assigned into two groups (Groups A and B such that Group A received 40% nitrous oxide-60% oxygen and Group B received triclofos sodium in the dose of 70 mg/kg body weight, given 30 min before the treatment procedure. During the whole course of sedation procedure, the response of the child was assessed using Houpt's behavior rating scale. The acceptance of route of drug administration by the patient and parent was also assessed. Data obtained were statistically evaluated using the Mann–Whitney U-test and Chi-square test. Results: Children sedated with triclofos sodium were significantly more drowsy and disoriented compared to those sedated with nitrous oxide. The overall behavior of children in both the groups was similar. Good parental acceptance was observed for both the routes of administration. Patients accepted the oral route significantly better than inhalation route. Conclusion: Both nitrous oxide-oxygen and triclofos sodium were observed to be effective sedative agents, for successful and safe use in 5–10-year-old dental patients. Patients showed a good acceptance of the oral route compared to the inhalation route for sedation.

  3. Plant physiological and soil characteristics associated with methane and nitrous oxide emission from rice paddy

    OpenAIRE

    Baruah, K.K.; Gogoi, Boby; Gogoi, P.

    2010-01-01

    Methane (CH4) and nitrous oxide (N2O) are important greenhouse gases causing global warming and climate change. Efforts were made to analyze the CH4 and N2O flux in relation to plant and soil factors from rice (Oryza sativa L.) paddy. Ten popularly grown rice varieties namely Rashmisali, Bogajoha, Basmuthi, Lalkalamdani, Choimora (traditional varieties); Mahsuri, Moniram, Kushal, Gitesh and Profulla (high yielding varieties = HYV) were grown during monsoon season of July 2006. The CH4 and N2O...

  4. Molecular structure of vapor-deposited amorphous selenium

    Science.gov (United States)

    Goldan, A. H.; Li, C.; Pennycook, S. J.; Schneider, J.; Blom, A.; Zhao, W.

    2016-10-01

    The structure of amorphous selenium is clouded with much uncertainty and contradictory results regarding the dominance of polymeric chains versus monomer rings. The analysis of the diffraction radial distribution functions are inconclusive because of the similarities between the crystalline allotropes of selenium in terms of the coordination number, bond length, bond angle, and dihedral angle. Here, we took a much different approach and probed the molecular symmetry of the thermodynamically unstable amorphous state via analysis of structural phase transformations. We verified the structure of the converted metastable and stable crystalline structures using scanning transmission electron microscopy. In addition, given that no experimental technique can tell us the exact three-dimensional atomic arrangements in glassy semiconductors, we performed molecular-dynamic simulations using a well-established empirical three-body interatomic potential. We developed a true vapor-deposited process for the deposition of selenium molecules onto a substrate using empirical molecular vapor compositions and densities. We prepared both vapor-deposited and melt-quenched samples and showed that the simulated radial distribution functions match very well to experiment. The combination of our experimental and molecular-dynamic analyses shows that the structures of vapor- and melt-quenched glassy/amorphous selenium are quite different, based primarily on rings and chains, respectively, reflecting the predominant structure of the parent phase in its thermodynamic equilibrium.

  5. Final OSWER Vapor Intrusion Guidance

    Science.gov (United States)

    EPA is preparing to finalize its guidance on assessing and addressing vapor intrusion, which is defined as migration of volatile constituents from contaminated media in the subsurface (soil or groundwater) into the indoor environment. In November 2002, EPA issued draft guidance o...

  6. Simple Chemical Vapor Deposition Experiment

    Science.gov (United States)

    Pedersen, Henrik

    2014-01-01

    Chemical vapor deposition (CVD) is a process commonly used for the synthesis of thin films for several important technological applications, for example, microelectronics, hard coatings, and smart windows. Unfortunately, the complexity and prohibitive cost of CVD equipment makes it seldom available for undergraduate chemistry students. Here, a…

  7. Hydrazine vapor inactivates Bacillus spores

    Science.gov (United States)

    Schubert, Wayne W.; Engler, Diane L.; Beaudet, Robert A.

    2016-05-01

    NASA policy restricts the total number of bacterial spores that can remain on a spacecraft traveling to any planetary body which might harbor life or have evidence of past life. Hydrazine, N2H4, is commonly used as a propellant on spacecraft. Hydrazine as a liquid is known to inactivate bacterial spores. We have now verified that hydrazine vapor also inactivates bacterial spores. After Bacillus atrophaeus ATCC 9372 spores deposited on stainless steel coupons were exposed to saturated hydrazine vapor in closed containers, the spores were recovered from the coupons, serially diluted, pour plated and the surviving bacterial colonies were counted. The exposure times required to reduce the spore population by a factor of ten, known as the D-value, were 4.70 ± 0.50 h at 25 °C and 2.85 ± 0.13 h at 35 °C. These inactivation rates are short enough to ensure that the bioburden of the surfaces and volumes would be negligible after prolonged exposure to hydrazine vapor. Thus, all the propellant tubing and internal tank surfaces exposed to hydrazine vapor do not contribute to the total spore count.

  8. Overview of Nitrous Oxides Treatment%氮氧化物处理方法概述

    Institute of Scientific and Technical Information of China (English)

    曹洪波

    2014-01-01

    Nitrous oxides had an extreme harm to environment and human health.According to the different of element type , content and the existence forms , different methods can be used in treatment of nitrous oxides.The progress in nitrous oxides treatments was described , such as the traditional NH 3 -SCR and three -effect catalytic converter.Finally, a brief discussion on future developments was proposed.%氮氧化物给生态环境及人类健康带来了极大的危害。氮氧化物根据其元素种类、含量以及存在形态的不同,采用不同的方法进行治理。本文综述了传统氨( NH3)选择性催化还原法、三效催化转化器技术等治理技术的进展。最后指出了氮氧化物污染治理的发展方向。

  9. Interest of 50% nitrous oxide and oxygen premix sedation in gerodontology

    Directory of Open Access Journals (Sweden)

    Emmanuel Nicolas

    2008-12-01

    Full Text Available Emmanuel Nicolas1,2, Claire Lassauzay1,21CHU de Clermont-Ferrand, 63000 Clermont-Ferrand, France; 2Université Clermont 1, EA 3847, Faculty of Dentistry, 63000 Clermont-Ferrand, FranceAbstract: Elderly patients presenting cardiovascular, respiratory, or neurological disorders require a specific dental care approach, especially patients presenting Alzheimer’s disease. Sedative procedures can prevent dental care-induced stress, even when there is effective pain control, but they have to be adapted to accommodate age-induced physiological modifications, age-related pathologies, and the concomitant treatments. In many situations, routine sedative prescriptions for dental care, such as benzodiazepine or antihistaminics, are not recommended for these patients. Nitrous oxide inhalation together with a specific behavioral threshold is currently the only sedative procedure adapted to cognitively-impaired elderly patients. Nitrous oxide is able to curb stress and its cardiovascular consequences, improve oxygenation, and optimize cooperation during dental care, making not only rehabilitation treatments but also routine dental care a viable option.Keywords: nitrous oxide, oxygen, premix, sedation, gerodontology, dental care

  10. Clinical observation on abortion with nitrous oxide and nitrous oxide plus misoprostol%氧化亚氮及氧化亚氮联合米索前列醇在人工流产术中的疗效观察

    Institute of Scientific and Technical Information of China (English)

    姚敏玲; 张佩琼; 骆敏豪

    2014-01-01

    目的:观察氧化亚氮及氧化亚氮联合米索前列醇在人工流产负压吸引手术中的镇痛效果。方法:采用回顾性分析近3年来自愿人工终止妊娠的孕妇120例,随机分为氧化亚氮组、氧化亚氮联合米索前列醇组以及对照组,观察人流术中的宫颈扩张程度、患者疼痛程度及人流时间的长短。结果:氧化亚氮组及氧化亚氮配伍米索前列醇组的宫颈扩张程度、术中疼痛程度及人流综合症的出现率均优于对照组。结论:氧化亚氮配伍米索前列醇用于早期终止妊娠安全,有效,操作简便,副作用小,值得推广,单纯氧化亚氮在早期终止妊娠时也有一定的疗效。%To observe analgesic effects of nitrous oxide and nitrous oxide plus misoprostol on abortion. Methods:120 pregnant patients were randomly divided into three groups, the degree of cervical dilation and pain in patients, the length of the flow of time in the surgery were observed. Results: Those in the nitrous oxide group and nitrous oxide plus misoprostol group were better. Conclusion: Nitrous oxide and nitrous oxide plus misoprostol was safety on early termination of pregnancy, worthy of promotion, pure nitrous oxide also has certain effects.

  11. Boiler for generating high quality vapor

    Science.gov (United States)

    Gray, V. H.; Marto, P. J.; Joslyn, A. W.

    1972-01-01

    Boiler supplies vapor for use in turbines by imparting a high angular velocity to the liquid annulus in heated rotating drum. Drum boiler provides a sharp interface between boiling liquid and vapor, thereby, inhibiting the formation of unwanted liquid droplets.

  12. Biodegradation of methanol vapor in a biofilter

    Institute of Scientific and Technical Information of China (English)

    Durai Arulneyam; T. Swaminathan

    2003-01-01

    Volatile organic compounds (VOCs) are a new class of air pollutants posing threat to the environment. Newer technologies are being developed for their control among which biofiltration seem to be most attractive. Biofiltration of methanol vapor from air stream was evaluated in this study. Experimental investigations were conducted on a laboratory scale biofilter, containing mixture of compost and polystyrene inert particles as the filter materials. Mixed consortium of activated sludge was used as an inoculum. The continuous performance of biofilter for methanol removal was monitored for different concentrations and flow rates. The removal efficiencies decreased at higher concentrations and higher gas flow rates. A maximum elimination capacity of 85 g/(m3.h) was achieved. The response of biofilter to upset loading operation showed that the biofilm in the biofilters was quite stable and quickly adapted to adverse operational conditions.

  13. Vapor Pressure Data Analysis and Statistics

    Science.gov (United States)

    2016-12-01

    VAPOR PRESSURE DATA ANALYSIS AND STATISTICS ECBC-TR-1422 Ann Brozena RESEARCH AND TECHNOLOGY DIRECTORATE...DATE XX-12-2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) Nov 2015 – Apr 2016 4. TITLE Vapor Pressure Data Analysis and Statistics 5a...1 VAPOR PRESSURE DATA ANALYSIS AND STATISTICS 1. INTRODUCTION Knowledge of the vapor pressure of materials as a function of temperature is

  14. Effect of waste anesthetic gas and vapor exposure on reproductive outcome in veterinary personnel

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.A.

    1986-01-01

    This study was designed to investigate potential adverse reproductive outcome in veterinary personnel who are exposed to waste anesthetic gas and vapor at levels near the NIOSH recommended standards. Subjects for this case-control study of births with congenital abnormalities and spontaneous abortion, selected from the American Veterinary Medical Association roster, were contacted by mail and asked to complete a screening questionnaire regarding reproductive history. Crude prevalence rates for spontaneous abortion, births with congenital abnormalities and stillbirths, determined on the basis of the responses to the screening questionnaire, showed no excess rates when compared with national statistics. All pregnancies resulting in spontaneous abortion, stillbirth, or birth with congenital abnormality were selected as cases. Controls were selected from the reported normal births on a stratified random basis to match maternal age and pregnancy number for cases. Occupational exposure to waste anesthetic gas and vapor in general was not found to be significantly associated with adverse reproductive outcome when adjustment was made for radiation exposure. For nitrous oxide exposure, however, an odds ratio significantly greater than one was found for spontaneous abortion among female veterinary assistants and wives of exposed male veterinarians. Use of diagnostic x-rays in veterinary practice was associated with spontaneous abortion in exposed females with a statistically significant dose response effect observed in female veterinarians.

  15. Reverse motion characteristics of water-vapor mixture in supercavitating flow around a hydrofoil

    Institute of Scientific and Technical Information of China (English)

    李向宾; 李楠; 王国玉; 张敏弟

    2016-01-01

    The supercavitation has attracted a growing interest because of its potential for high-speed vehicle maneuvering and drag reduction. To better understand the reverse flow characteristics of a water-vapor mixture in supercavitating flows around a hydrofoil, a numerical simulation is conducted using a unified supercavitation model, which combines a modified RNGk-e turbulence model and a cavitation one. By comparing the related experimental results, the reverse motion of the water-vapor mixture is found in the cavitation area in all supercavitation stages. The inverse pressure gradient leads to reverse pressure fluctuations in the cavity, followed by the reverse motion of the water-vapor two-phase interface. Compared with the water-vapor mixture area at the back of the cavity, the pressure in the vapor area is inversely and slowly reduced,a higher-pressure gradient occurs near the cavity boundary.

  16. Nonisothermal particle modeling of municipal solid waste combustion with heavy metal vaporization

    Energy Technology Data Exchange (ETDEWEB)

    Mazza, G. [Facultad de Ingenieria, Departamento de Quimica, Universidad Nacional del Comahue, IDEPA (CONICET - UNCo), Buenos Aires 1400, 8300 Neuquen (Argentina); Falcoz, Q.; Gauthier, D.; Flamant, G. [Laboratoire Procedes et Materiaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu Cedex (France); Soria, J. [Facultad de Ingenieria, Departamento de Quimica, Universidad Nacional del Comahue, IDEPA (CONICET - UNCo), Buenos Aires 1400, 8300 Neuquen (Argentina); Laboratoire Procedes et Materiaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu Cedex (France)

    2010-12-15

    A particulate model was developed for municipal solid-waste incineration in a fluidized bed combining solid-waste-particle combustion and heavy metal vaporization from the burning particles. Based on a simpler, isothermal version presented previously, this model combines an asymptotic-combustion model for carbonaceous-solid combustion and a shrinking-core model to describe the heavy metal vaporization phenomenon, in which the particle is now considered nonisothermal. A parametric study is presented that shows the influence of temperature on the global metal-vaporization process. The simulation results are compared to experimental data obtained with a lab-scale fluid bed incinerator and to the results of the simpler isothermal model. It is shown that conduction in the particle strongly affects the variation of the vaporization rate with time and that the present version of the model well fits both the shape of the plots and the maximum heavy metal vaporization rates for all bed temperatures. (author)

  17. A Preliminary Study of the Solubility of Copper in Water Vapor at Elevated Temperatures and Pressures

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to understand the capacity of water vapor to transport copper and its mechanism,using the solubility method, the solubility of copper in undersaturated water vapor was investigated experimentally at temperatures from 310 ℃ to 350 ℃ and pressures from 42 × 105 to 100 × 105 Pa. Results of these experiments show that the presence of water vapor increases the concentration of Cu in the gus. At a constant temperature, the solubility of copper increases with increasing water vapor pressure.Copper may exist as hydrated gaseous particles in the vapor phase, and the dissolution process can be denumber decreases with increasing temperature, varying from ~6 at 310 ℃, to ~5 at 330 ℃, and ~4at 350 ℃. The results show that interactions between gas-solvent H2O and copper will significantly enhance the dissolution and transport capacity of copper in the gas phase.

  18. Weather and climate analyses using improved global water vapor observations

    National Research Council Canada - National Science Library

    Vonder Haar, Thomas H; Bytheway, Janice L; Forsythe, John M

    2012-01-01

    The NASA Water Vapor Project (NVAP) dataset is a global (land and ocean) water vapor dataset created by merging multiple sources of atmospheric water vapor to form a global data base of total and layered precipitable water vapor...

  19. Removal of gasoline vapors from air streams by biofiltration

    Energy Technology Data Exchange (ETDEWEB)

    Apel, W.A.; Kant, W.D.; Colwell, F.S.; Singleton, B.; Lee, B.D.; Andrews, G.F.; Espinosa, A.M.; Johnson, E.G.

    1993-03-01

    Research was performed to develop a biofilter for the biodegradation of gasoline vapors. The overall goal of this effort was to provide information necessary for the design, construction, and operation of a commercial gasoline vapor biofilter. Experimental results indicated that relatively high amounts of gasoline vapor adsorption occur during initial exposure of the biofilter bed medium to gasoline vapors. Biological removal occurs over a 22 to 40{degrees}C temperature range with removal being completely inhibited at 54{degrees}C. The addition of fertilizer to the relatively fresh bed medium used did not increase the rates of gasoline removal in short term experiments. Microbiological analyses indicated that high levels of gasoline degrading microbes are naturally present in the bed medium and that additional inoculation with hydrocarbon degrading cultures does not appreciably increase gasoline removal rates. At lower gasoline concentrations, the vapor removal rates were considerably lower than those at higher gasoline concentrations. This implies that system designs facilitating gasoline transport to the micro-organisms could substantially increase gasoline removal rates at lower gasoline vapor concentrations. Test results from a field scale prototype biofiltration system showed volumetric productivity (i.e., average rate of gasoline degradation per unit bed volume) values that were consistent with those obtained with laboratory column biofilters at similar inlet gasoline concentrations. In addition, total benzene, toluene, ethyl-benzene, and xylene (BTEX) removal over the operating conditions employed was 50 to 55%. Removal of benzene was approximately 10 to 15% and removal of the other members of the BTEX group was much higher, typically >80%.

  20. Removal of gasoline vapors from air streams by biofiltration

    Energy Technology Data Exchange (ETDEWEB)

    Apel, W.A.; Kant, W.D.; Colwell, F.S.; Singleton, B.; Lee, B.D.; Andrews, G.F.; Espinosa, A.M.; Johnson, E.G.

    1993-03-01

    Research was performed to develop a biofilter for the biodegradation of gasoline vapors. The overall goal of this effort was to provide information necessary for the design, construction, and operation of a commercial gasoline vapor biofilter. Experimental results indicated that relatively high amounts of gasoline vapor adsorption occur during initial exposure of the biofilter bed medium to gasoline vapors. Biological removal occurs over a 22 to 40[degrees]C temperature range with removal being completely inhibited at 54[degrees]C. The addition of fertilizer to the relatively fresh bed medium used did not increase the rates of gasoline removal in short term experiments. Microbiological analyses indicated that high levels of gasoline degrading microbes are naturally present in the bed medium and that additional inoculation with hydrocarbon degrading cultures does not appreciably increase gasoline removal rates. At lower gasoline concentrations, the vapor removal rates were considerably lower than those at higher gasoline concentrations. This implies that system designs facilitating gasoline transport to the micro-organisms could substantially increase gasoline removal rates at lower gasoline vapor concentrations. Test results from a field scale prototype biofiltration system showed volumetric productivity (i.e., average rate of gasoline degradation per unit bed volume) values that were consistent with those obtained with laboratory column biofilters at similar inlet gasoline concentrations. In addition, total benzene, toluene, ethyl-benzene, and xylene (BTEX) removal over the operating conditions employed was 50 to 55%. Removal of benzene was approximately 10 to 15% and removal of the other members of the BTEX group was much higher, typically >80%.

  1. Vapor Pressure of Saturated Aqueous Solutions of Potassium Sulfate from 310 K to 345 K

    Directory of Open Access Journals (Sweden)

    Matias O. Maggiolo

    2011-01-01

    Full Text Available The experimental evaluation of the vapor pressure of saturated aqueous solutions of potassium sulfate was carried out in the range of temperatures 310 K≤T≤345 K. The experimental data were used to determine the corresponding values of the water activity in such solutions. The analytical expressions as a function of temperature of both, vapor pressure and water activity, were obtained from the correlation of the experimental results. The vapor pressure expression was also extrapolated to a different temperature range in order to make a comparison with the results obtained by other authors.

  2. A copper vapor laser by using a copper-vapor-complex reaction at a low temperature

    OpenAIRE

    Kano, Toshiyuki; Taniguchi, Hiroshi; Saito, Hiroshi

    1987-01-01

    A copper vapor laser performance by using ametal-vapor-complex reaction (Cu+AlBr3) is reported. The laser operation is obtained at a low temperature without externalheating because of the AlBr3 vapors evaporating at a room temperature. The copper vapor laser using this metal-vapor-complex reaction has an advantage of deposition-free of a metallic copper to the laser tube wall, which is different from the copper halide and the organometallic copper lasers.

  3. What Good is Raman Water Vapor Lidar?

    Science.gov (United States)

    Whitman, David

    2011-01-01

    Raman lidar has been used to quantify water vapor in the atmosphere for various scientific studies including mesoscale meteorology and satellite validation. Now the international networks of NDACC and GRUAN have interest in using Raman water vapor lidar for detecting trends in atmospheric water vapor concentrations. What are the data needs for addressing these very different measurement challenges. We will review briefly the scientific needs for water vapor accuracy for each of these three applications and attempt to translate that into performance specifications for Raman lidar in an effort to address the question in the title of "What good is Raman water vapor Iidar."

  4. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  5. The response of methane and nitrous oxide fluxes to forest change in Europe

    Directory of Open Access Journals (Sweden)

    P. Gundersen

    2012-10-01

    Full Text Available Forests in Europe are changing due to interactions between climate change, nitrogen (N deposition and new forest management practices. The concurrent impact on the forest greenhouse gas (GHG balance is at present difficult to predict due to a lack of knowledge on controlling factors of GHG fluxes and response to changes in these factors. To improve the mechanistic understanding of the ongoing changes, we studied the response of soil–atmosphere exchange of nitrous oxide (N2O and methane (CH4 at twelve experimental or natural gradient forest sites, representing anticipated future forest change. The experimental manipulations, one or more per site, included N addition (4 sites, changes of climate (temperature, 1 site; precipitation, 2 sites, soil hydrology (3 sites, harvest intensity (1 site, wood ash fertilisation (1 site, pH gradient in organic soil (1 site and afforestation of cropland (1 site.

    On average, N2O emissions increased by 0.06 ± 0.03 (range 0–0.3 g N2O-N m−2 yr−1 across all treatments on mineral soils, but the increase was up to 10 times higher in an acidic organic soil. Soil moisture together with mineral soil C / N ratio and pH were found to significantly influence N2O emissions across all treatments. Emissions were increased by elevated N deposition, especially in interaction with increased soil moisture. High pH reduced the formation of N2O, even under otherwise favourable soil conditions.

    Oxidation (uptake of CH4 was on average reduced from 0.16 ± 0.02 to 0.04 ± 0.05 g CH4-C m−2 yr−1 by the investigated treatments. The CH4 exchange was significantly influenced by soil moisture and soil C / N ratio across all treatments, and CH4 emissions occurred only in wet or water-saturated conditions.

    For most of the investigated forest manipulations

  6. Observation of light dragging in rubidium vapor cell

    CERN Document Server

    Strekalov, D V; Yu, N; Maleki, L; Strekalov, Dmitry; Matsko, Andrey B.; Yu, Nan; Maleki, Lute

    2003-01-01

    We report on the experimental demonstration of light dragging effect due to atomic motion in a rubidium vapor cell. We found that the minimum group velocity is achieved for light red-shifted from the center of the atomic resonance, and that the value of this shift increases with decreasing group velocity, in agreement with the theoretical predictions by Kocharovskaya, Rostovtsev, and Scully [Phys. Rev. Lett. {\\bf 86}, 628 (2001)].

  7. Investigating the Droplet Formation in a Nucleonic Vapor

    CERN Document Server

    Ogul, R

    2003-01-01

    The droplet formation in a supersaturated vapor which may occur during the expansion of an excited blob of nuclear matter in the metastable region at subnuclear densities is investigated. The free energy change accompanying the formation of a drop is calculated as a function of droplet radius for various saturation ratios on the basis of Fisher's model. The results are related to the experimental data

  8. Active Hydrazine Vapor Sampler (AHVS)

    Science.gov (United States)

    Young, Rebecca C.; Mcbrearty, Charles F.; Curran, Daniel J.

    1993-01-01

    The Active Hydrazine Vapor Sampler (AHVS) was developed to detect vapors of hydrazine (HZ) and monomethylhydrazine (MMH) in air at parts-per-billion (ppb) concentration levels. The sampler consists of a commercial personal pump that draws ambient air through paper tape treated with vanillin (4-hydroxy-3-methoxybenzaldehyde). The paper tape is sandwiched in a thin cardboard housing inserted in one of the two specially designed holders to facilitate sampling. Contaminated air reacts with vanillin to develop a yellow color. The density of the color is proportional to the concentration of HZ or MMH. The AHVS can detect 10 ppb in less than 5 minutes. The sampler is easy to use, low cost, and intrinsically safe and contains no toxic material. It is most beneficial for use in locations with no laboratory capabilities for instrumentation calibration. This paper reviews the development, laboratory test, and field test of the device.

  9. Vapor stabilizing surfaces for superhydrophobicity

    Science.gov (United States)

    Patankar, Neelesh

    2010-11-01

    The success of rough substrates designed for superhydrophobicity relies crucially on the presence of air pockets in the roughness grooves. This air is supplied by the surrounding environment. However, if the rough substrates are used in enclosed configurations, such as in fluidic networks, the air pockets may not be sustained in the roughness grooves. In this work a design approach based on sustaining a vapor phase of the liquid in the roughness grooves, instead of relying on the presence of air, is explored. The resulting surfaces, referred to as vapor stabilizing substrates, are deemed to be robust against wetting transition even if no air is present. Applications of this approach include low drag surfaces, nucleate boiling, and dropwise condensation heat transfer, among others.

  10. Vaporization chambers and associated methods

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Terry D.; Wilding, Bruce M.; McKellar, Michael G.; Shunn, Lee P.

    2017-02-21

    A vaporization chamber may include at least one conduit and a shell. The at least one conduit may have an inlet at a first end, an outlet at a second end and a flow path therebetween. The shell may surround a portion of each conduit and define a chamber surrounding the portion of each conduit. Additionally, a plurality of discrete apertures may be positioned at longitudinal intervals in a wall of each conduit, each discrete aperture of the plurality of discrete apertures sized and configured to direct a jet of fluid into each conduit from the chamber. A liquid may be vaporized by directing a first fluid comprising a liquid into the inlet at the first end of each conduit, directing jets of a second fluid into each conduit from the chamber through discrete apertures in a wall of each conduit and transferring heat from the second fluid to the first fluid.

  11. Internal Water Vapor Photoacoustic Calibration

    Science.gov (United States)

    Pilgrim, Jeffrey S.

    2009-01-01

    Water vapor absorption is ubiquitous in the infrared wavelength range where photoacoustic trace gas detectors operate. This technique allows for discontinuous wavelength tuning by temperature-jumping a laser diode from one range to another within a time span suitable for photoacoustic calibration. The use of an internal calibration eliminates the need for external calibrated reference gases. Commercial applications include an improvement of photoacoustic spectrometers in all fields of use.

  12. Heats of vaporization of room temperature ionic liquids by tunable vacuum ultraviolet photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; To, Albert; Koh, Christine; Strasser, Daniel; Kostko, Oleg; Leone, Stephen R.

    2009-11-25

    The heats of vaporization of the room temperature ionic liquids (RTILs) N-butyl-N-methylpyrrolidinium bistrifluorosulfonylimide, N-butyl-N-methylpyrrolidinium dicyanamide, and 1-butyl-3-methylimidazolium dicyanamide are determined using a heated effusive vapor source in conjunction with single photon ionization by a tunable vacuum ultraviolet synchrotron source. The relative gas phase ionic liquid vapor densities in the effusive beam are monitored by clearly distinguished dissociative photoionization processes via a time-of-flight mass spectrometer at a tunable vacuum ultraviolet beamline 9.0.2.3 (Chemical Dynamics Beamline) at the Advanced Light Source synchrotron facility. Resulting in relatively few assumptions, through the analysis of both parent cations and fragment cations, the heat of vaporization of N-butyl-N-methylpyrrolidinium bistrifluorosulfonylimide is determined to be Delta Hvap(298.15 K) = 195+-19 kJ mol-1. The observed heats of vaporization of 1-butyl-3-methylimidazolium dicyanamide (Delta Hvap(298.15 K) = 174+-12 kJ mol-1) and N-butyl-N-methylpyrrolidinium dicyanamide (Delta Hvap(298.15 K) = 171+-12 kJ mol-1) are consistent with reported experimental values using electron impact ionization. The tunable vacuum ultraviolet source has enabled accurate measurement of photoion appearance energies. These appearance energies are in good agreement with MP2 calculations for dissociative photoionization of the ion pair. These experimental heats of vaporization, photoion appearance energies, and ab initio calculations corroborate vaporization of these RTILs as intact cation-anion ion pairs.

  13. Water vapor diffusion membrane development

    Science.gov (United States)

    Tan, M. K.

    1977-01-01

    An application of the water vapor diffusion technique is examined whereby the permeated water vapor is vented to space vacuum to alleviate on-board waste storage and provide supplemental cooling. The work reported herein deals primarily with the vapor diffusion-heat rejection (VD-HR) as it applies to the Space Shuttle. A stack configuration was selected, designed and fabricated. An asymmetric cellulose acetate membrane, used in reverse osmosis application was selected and a special spacer was designed to enhance mixing and promote mass transfer. A skid-mount unit was assembled from components used in the bench unit although no attempt was made to render it flight-suitable. The operating conditions of the VD-HR were examined and defined and a 60-day continuous test was carried out. The membranes performed very well throughout the test; no membrane rupture and no unusual flux decay was observed. In addition, a tentative design for a flight-suitable VD-HR unit was made.

  14. Nitrous oxide production associated with coastal marine invertebrates

    DEFF Research Database (Denmark)

    Heisterkamp, Ines Maria; Schramm, Andreas; de Beer, Dirk

    2010-01-01

    , excluding the aquacultured shrimp Litopenaeus vannamei, which showed the highest rate of N2O emission measured so far for any marine species (3.569 nmol ind.–1 h–1), probably due to very high nitrate concentrations in the rearing tanks. The N2O emitted by L. vannamei was almost exclusively produced in its...... with an experimentally cleaned shell. Thus, the N2O production associated with marine invertebrates is apparently not due to gut denitrification in every species, but may also result from microbial activity on the external surfaces of animals. The high abundance and potential N2O emission rates of many marine...

  15. Size control of vapor bubbles on a silver film by a tuned CW laser

    Directory of Open Access Journals (Sweden)

    Y. J. Zheng

    2012-06-01

    Full Text Available A vapor bubble is created by a weakly focused continuous-wave (CW laser beam on the surface of a silver film. The temporal dynamics of the bubble is experimentally investigated with a tuned incident laser. The expansion and contraction rates of the vapor bubble are determined by the laser power. The diameter of the vapor bubble can be well controlled through tuning the laser power. A theory model is given to explain the underlying physics in the process. The method reported will have some interesting applications in micro-fluidics and bio-techniques.

  16. CFD modelling of condensation process of water vapor in supersonic flows

    DEFF Research Database (Denmark)

    Wen, Chuang; Walther, Jens Honore; Yan, Yuying

    2016-01-01

    theories. The numerical approach is validated with the experimental data, which shows a good agreement between them. The condensation characteristics of water vapor in the Laval nozzle are studied numerically in this paper. The results show that the condensation process is a rapid variation of the vapor......-liquid phase change both in space and in time. The spontaneous condensation of water vapor will not appear immediately when the steam reaches the saturation state. Instead, it occurs further downstream the nozzle throat, where the steam is in the state of supersaturation....

  17. CFD modeling of condensation process of water vapor in supersonic flows

    DEFF Research Database (Denmark)

    Yang, Yan; Walther, Jens Honore; Yan, Yuying

    2017-01-01

    theories. The numerical approach is validated with the experimental data, which shows a good agreement between them. The condensation characteristics of water vapor in the Laval nozzle are described in detail. The results show that the condensation process is a rapid variation of the vapor-liquid phase...... change both in the space and in time. The spontaneous condensation of water vapor will not appear immediately when the steam reaches the saturation state. Instead, it occurs further downstream the nozzle throat, where the steam is in the state of supersaturation....

  18. An Electrochemical Gas Biosensor Based on Enzymes Immobilized on Chromatography Paper for Ethanol Vapor Detection.

    Science.gov (United States)

    Kuretake, Tatsumi; Kawahara, Shogo; Motooka, Masanobu; Uno, Shigeyasu

    2017-02-01

    This paper presents a novel method of fabricating an enzymatic biosensor for breath analysis using chromatography paper as enzyme supporting layer and a liquid phase layer on top of screen printed carbon electrodes. We evaluated the performance with ethanol vapor being one of the breathing ingredients. The experimental results show that our sensor is able to measure the concentration of ethanol vapor within the range of 50 to 500 ppm. These results suggest the ability of detecting breath ethanol, and it can possibly be applied as a generic vapor biosensor to a wide range of diseases.

  19. Theory of supercompression of vapor bubbles and nanoscale thermonuclear fusion

    Science.gov (United States)

    Nigmatulin, Robert I.; Akhatov, Iskander Sh.; Topolnikov, Andrey S.; Bolotnova, Raisa Kh.; Vakhitova, Nailya K.; Lahey, Richard T.; Taleyarkhan, Rusi P.

    2005-10-01

    This paper provides the theoretical basis for energetic vapor bubble implosions induced by a standing acoustic wave. Its primary goal is to describe, explain, and demonstrate the plausibility of the experimental observations by Taleyarkhan et al. [Science 295, 1868 (2002); Phys. Rev. E 69, 036109 (2004)] of thermonuclear fusion for imploding cavitation bubbles in chilled deuterated acetone. A detailed description and analysis of these data, including a resolution of the criticisms that have been raised, together with some preliminary HYDRO code simulations, has been given by Nigmatulin et al. [Vestnik ANRB (Ufa, Russia) 4, 3 (2002); J. Power Energy 218-A, 345 (2004)] and Lahey et al. [Adv. Heat Transfer (to be published)]. In this paper a hydrodynamic shock (i.e., HYDRO) code model of the spherically symmetric motion for a vapor bubble in an acoustically forced liquid is presented. This model describes cavitation bubble cluster growth during the expansion period, followed by a violent implosion during the compression period of the acoustic cycle. There are two stages of the bubble dynamics process. The first, low Mach number stage, comprises almost all the time of the acoustic cycle. During this stage, the radial velocities are much less than the sound speeds in the vapor and liquid, the vapor pressure is very close to uniform, and the liquid is practically incompressible. This process is characterized by the inertia of the liquid, heat conduction, and the evaporation or condensation of the vapor. The second, very short, high Mach number stage is when the radial velocities are the same order, or higher, than the sound speeds in the vapor and liquid. In this stage high temperatures, pressures, and densities of the vapor and liquid take place. The model presented herein has realistic equations of state for the compressible liquid and vapor phases, and accounts for nonequilibrium evaporation/condensation kinetics at the liquid/vapor interface. There are interacting

  20. Correlation of vapor - liquid equilibrium data for acetic acid - isopropanol - water - isopropyl acetate mixtures

    Directory of Open Access Journals (Sweden)

    B. A. Mandagarán

    2006-03-01

    Full Text Available A correlation procedure for the prediction of vapor - liquid equilibrium of acetic acid - isopropanol - water - isopropyl acetate mixtures has been developed. It is based on the NRTL model for predicting liquid activity coefficients, and on the Hayden-O'Connell second virial coefficients for predicting the vapor phase of systems containing association components. When compared with experimental data the correlation shows a good agreement for binary and ternary data. The correlation also shows good prediction for reactive quaternary data.

  1. Extended XG Equation for the Prediction of Adsorption Equilibrium of Vapor Mixture on Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    谢自立; 敦坤敏; 吴菊芳; 袁存禾

    2003-01-01

    The XG equation, which is developed by us previously for describing the adsorption equilibrium of pure vapor on activated carbon, is extended to multi-component system. Verified by experimental data, the extended XG equation was found to be more successful in predicting the adsorption equilibrium of vapor mixture on activated carbon than the extended Langmuir equation, the extended BET equation and the ideal adsorbed solution theory (IAST).

  2. Direct and indirect nitrous oxide emissions from agricultural soils, 1990 - 2003. Background document on the calculation method for the Dutch National Inventory Report

    NARCIS (Netherlands)

    Hoek KW van der; Schijndel MW van; Kuikman PJ; MNP; Alterra; LVM

    2007-01-01

    Since 2005 the Dutch method to calculate the nitrous oxide emissions from agricultural soils has fully complied with the Intergovernmental Panel on Climate Change (IPCC) Good Practice Guidelines. In order to meet the commitments of the Convention on Climate Change and the Kyoto Protocol, nitrous oxi

  3. A particulate model of solid waste incineration in a fluidized bed combining combustion and heavy metal vaporization

    Energy Technology Data Exchange (ETDEWEB)

    Mazza, G. [Facultad de Ingenieria, Departamento de Quimica, Universidad Nacional del Comahue, UE Neuquen (CONICET - UNCo), Buenos Aires 1400, 8300 Neuquen (Argentina); Falcoz, Q.; Gauthier, D.; Flamant, G. [Laboratoire Procedes Materiaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France)

    2009-11-15

    This study aims to develop a particulate model combining solid waste particle combustion and heavy metal vaporization from burning particles during MSW incineration in a fluidized bed. The original approach for this model combines an asymptotic combustion model for the carbonaceous solid combustion and a shrinking core model to describe the heavy metal vaporization. A parametric study is presented. The global metal vaporization process is strongly influenced by temperature. Internal mass transfer controls the metal vaporization rate at low temperatures. At high temperatures, the chemical reactions associated with particle combustion control the metal vaporization rate. A comparison between the simulation results and experimental data obtained with a laboratory-scale fluid bed incinerator and Cd-spiked particles shows that the heavy metal vaporization is correctly predicted by the model. The predictions are better at higher temperatures because of the temperature gradient inside the particle. Future development of the model will take this into account. (author)

  4. Emissions of nitrous acid (HONO), nitric oxide (NO) and nitrous oxide (N2O) from boreal agricultural soil - Effect of N fertilization

    Science.gov (United States)

    Bhattarai, Hem Raj; Virkajärvi, Perttu; -Yli Pirilä, Pasi; Maljanen, Marja

    2017-04-01

    There is no doubt that nitrogen (N) fertilization has crucial role in increasing food production. However, in parallel it can cause severe impact in environment such as eutrophication, surface/groundwater pollution via nitrate (NO3-) leaching and emissions of N trace gases. Fertilization increases the emissions of nitrous oxide (N2O) which is 260 stronger greenhouse gas than carbon dioxide (CO2). It also enhances the emissions of nitric oxide (NO); an oxidized and very reactive form of nitrogen which can fluctuate the ozone (O3) concentration in atmosphere and cause acidification. The effects of N- fertilization on the emission of N2O and NO from agricultural soil are well known. However, the effects of N fertilization on nitrous acid (HONO) emissions are unknown. Few studies have shown that HONO is emitted from soil but they lack to interlink fertilization and HONO emission. HONO accounts for 17-34 % of hydroxyl (OH-) radical production? in the atmosphere, OH- radicals have vital role in atmospheric chemistry; they can cause photochemical smog, form O3, oxidize volatile organic compounds and also atmospheric methane (CH4). We formulated hypothesis that N fertilization will increase the HONO emissions as it does for N2O and NO. To study this, we took soil samples from agricultural soil receiving different amount of N-fertilizer (0, 250 and 450 kg ha-1) in eastern Finland. HONO emissions were measured by dynamic chamber technique connected with LOPAP (Quma Elektronik & Analytik GmbH), NO by NOx analyzer (Thermo scientific) and static chamber technique and gas chromatograph was used for N2O gas sampling and analysis. Several soil parameters were also measured to establish the relationship between the soil properties, fertilization rate and HONO emission. This study is important because eventually it will open up more questions regarding the forms of N loss from soils and impact of fertilization on atmospheric chemistry.

  5. Baroreflex control of heart rate in man awake and during enflurane and enflurane--nitrous oxide anesthesia.

    Science.gov (United States)

    Morton, M; Duke, P C; Ong, B

    1980-03-01

    Baroreflex control of heart rate was assessed by means of a pressor test in two groups of subjects while awake and at two levels of anesthesia with enflurane (Group I) and enflurane-nitrous oxide (Group II). In the awake control situation, calculated mean slopes (+/- SD) were 23 +/- 8 (Group I) and 25 +/- 11 (Group II). There was no significant difference between the groups. During enflurane anesthesia (Group I) mean slopes were significantly depressed to 5 +/- 5 at 1 MAC and 6 +/- 6 at 0.8 MAC. During enflurane-nitrous oxide anesthesia (Group II), slopes were significantly depressed to 5 +/- 3 at 1 MAC and 6 +/- 4 at 0.9 MAC. There was no significant difference between the extents of depression in the two groups. It is concluded that both enflurane anesthesia and enflurane-nitrous oxide anesthesia at 1 MAC produce significant depression of baroreflex control of heart rate in man.

  6. Narcotic effects produced by nitrous oxide and hyperbaric nitrogen narcosis in rats performing a fixed-ratio test.

    Science.gov (United States)

    Turle-Lorenzo, N; Zouani, B; Risso, J J

    1999-09-01

    Narcosis is a neurological syndrome that reduces capacities of divers. Although this phenomenon appeared at the end of 19th century, the mechanisms are not yet elucidated. The greatest technical problem is that these studies are carried out under hyperbaric conditions. Nitrous oxide is known to be an inducer of narcosis, at atmospheric pressure. The aim of this study is to compare two narcotic environments; a normobaric narcosis under several percentages of nitrous oxide, and an hyperbaric narcosis under 0.9 MPa of Nitrox (N2O2 mixture). This comparison is realized on rats submitted to a fixed-ratio 15 test, in which they have to press a lever to get rewarded. The results show significant performances decreases: the number of pressed lever are reduced by 50% under Nitrox and by 70% under N2O. Nitrous oxide could be considered as a normobaric model of hyperbaric narcosis.

  7. The effect of age on the behavioral responses of mice following diazepam and midazolam sedation in combination with nitrous oxide.

    Science.gov (United States)

    Press, S H; Condouris, G; Houpt, M

    1995-01-01

    This study examined the effects of age on the behavior of mice administered one of two benzodiazepines with and without nitrous oxide. Young (3 wk +/- 3 days) and adolescent (7 wk +/- 3 days) male DBA-2 mice were administered oral diazepam (2.0 or 3.5 mg/kg), midazolam (0.75 or 1.2 mg/kg), or a placebo in combination with 50% nitrous oxide/50% oxygen, or room air. The mouse staircase model was used, where the number of rears (NR) served as an index of anxiety, and the number of steps ascended (NSA) as an index of sedation. No significant differences in the responses between the ages were noted. Nitrous oxide seemed to increase the NR and NSA, whereas the benzodiazepines alone did not affect behavior. These DBA-2 mice may represent a strain that is less sensitive to the anxiolytic-sedative effects of the benzodiazepines than are other strains.

  8. Phenol by direct hydroxylation of benzene with nitrous oxide - role of surface oxygen species in the reaction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Reitzmann, A.; Klemm, E.; Emig, G. [Erlangen-Nuernberg Univ., Erlangen (Germany). Lehrstuhl fuer Technische Chemie 1; Buchholz, S.A.; Zanthoff, H.W. [Bochum Univ. (Germany). Inst. of Technical Chemistry

    1998-12-31

    Transient experiments in a Temporal Analysis of Products (TAP) Reactor were performed to elucidate the role of surface oyxgen species in the oxidation of benzene to phenol on ZSM-5 type zeolites with nitrous oxide as a selective oxidant. It was shown by puls experiments with nitrous oxide that the mean lifetime of the generated surface oxygen species is between 0.2s at 500 C and about 4.2 s at 400 C. Afterwards the surface oxygen species desorb as molecular oxygen into the gas phase where total oxidation will take place if hydrocarbons are present. Dual puls experiments consisting of a nitrous oxide puls followed by a benzene puls allowed studying the reactivity of the surface oxygen species formed during the first puls. The observation of the phenol formation was impeded due to the strong sorption of phenol. Multipulse experiments were necessary to reach a pseudo steady state phenol yield. (orig.)

  9. From the Gut of an Insect to the Global Climate: Denitrification and Nitrous Oxide Production inside Lake Chironomidae

    DEFF Research Database (Denmark)

    Stief, Peter; Nielsen, Lars Peter; Revsbech, Niels Peter

    2006-01-01

    FROM THE GUT OF AN INSECT TO THE GLOBAL CLIMATE: DENITRIFICATION AND NITROUS OXIDE PRODUCTION INSIDE LAKE CHIRONOMIDAE P. Stief, L.P. Nielsen, N.P. Revsbech, A. Schramm Department of Biological Sciences, Microbiology, University of Aarhus, Denmark Denitrifying bacteria in lake sediments drive...... an environmentally relevant ecosystem function by reducing nitrate to dinitrogen gas. Thereby, they remove inorganic nitrogen that originates from organic matter mineralisation and anthropogenic pollution. Nitrous oxide, a greenhouse gas 300 times more potent than carbon dioxide, is emitted from lakes only...... as a minor fraction of the nitrate reduced. However, when lake sediments are densely colonised by macrofauna, the rates of nitrous oxide emission increase significantly. We hypothesise that the guts of bacterivorous macrofauna represent short-term habitats in which high denitrification activity...

  10. Performances of electrically heated microgroove vaporizers

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An electrically heated microgroove vaporizer was proposed. The vaporizer mainly comprised an outer tube, an inner tube and an electrical heater cartridge. Microgrooves were fabricated on the external surface of the inner tube by micro-cutting method,which formed the flow passage for fluid between the external surface of the inner tube and the internal surface of the outer tube.Experiments related to the temperature rise response of water and the thermal conversion efficiency of vaporizer were done to estimate the influences of microgroove's direction, feed flow rate and input voltage on the performances of the vaporizer. The results indicate that the microgroove's direction dominates the vaporizer performance at a lower input voltage. The longitudina lmicrogroove vaporizer exhibits the best performances for the temperature rise response of water and thermal conversion efficiency of vaporizer. For a moderate input voltage, the microgroove's direction and the feed flow rate of water together govern the vaporizer performances. The input voltage becomes the key influencing factor when the vaporizer works at a high input voltage, resulting in the similar performances of longitudinal, oblique and latitudinal microgroove vaporizers.

  11. Interactions of Water Vapor with Oxides at Elevated Temperatures

    Science.gov (United States)

    Jacobson, Nathan; Opila, Elizabeth; Copland, Evan; Myers, Dwight

    2003-01-01

    Many volatile metal hydroxides form by reaction of the corresponding metal oxide with water vapor. These reactions are important in a number of high temperature corrosion processes. Experimental methods for studying the thermodynamics of metal hydroxides include: gas leak Knudsen cell mass spectrometry, free jet sampling mass spectrometry, transpiration and hydrogen-oxygen flame studies. The available experimental information is reviewed and the most stable metal hydroxide species are correlated with position in the periodic table. Current studies in our laboratory on the Si-O-H system are discussed.

  12. Flow Rate of He Ⅱ Liquid-Vapor Phase Separator

    Institute of Scientific and Technical Information of China (English)

    Xingen YU; Qing LI; Qiang LI; Zhengyu LI

    2005-01-01

    Experimental results are presented for superfluld (He Ⅱ) flow through porous plug liquid-vapor phase separators.Tests have been performed on seven porous plugs with different thicknesses or different permeabilities. The temperature was measured from 1.5K to 1.9K. Two flow regions were observed in small and large pressure and temperature differences regions respectively. The experimental data are compared with theoretical predictions.The performance and applicability of the basic theory are discussed. Hysteresis of the flow rate is also observed and discussed.

  13. Denitrifying bacterial communities affect current production and nitrous oxide accumulation in a microbial fuel cell.

    Directory of Open Access Journals (Sweden)

    Ariadna Vilar-Sanz

    Full Text Available The biocathodic reduction of nitrate in Microbial Fuel Cells (MFCs is an alternative to remove nitrogen in low carbon to nitrogen wastewater and relies entirely on microbial activity. In this paper the community composition of denitrifiers in the cathode of a MFC is analysed in relation to added electron acceptors (nitrate and nitrite and organic matter in the cathode. Nitrate reducers and nitrite reducers were highly affected by the operational conditions and displayed high diversity. The number of retrieved species-level Operational Taxonomic Units (OTUs for narG, napA, nirS and nirK genes was 11, 10, 31 and 22, respectively. In contrast, nitrous oxide reducers remained virtually unchanged at all conditions. About 90% of the retrieved nosZ sequences grouped in a single OTU with a high similarity with Oligotropha carboxidovorans nosZ gene. nirS-containing denitrifiers were dominant at all conditions and accounted for a significant amount of the total bacterial density. Current production decreased from 15.0 A · m(-3 NCC (Net Cathodic Compartment, when nitrate was used as an electron acceptor, to 14.1 A · m(-3 NCC in the case of nitrite. Contrarily, nitrous oxide (N2O accumulation in the MFC was higher when nitrite was used as the main electron acceptor and accounted for 70% of gaseous nitrogen. Relative abundance of nitrite to nitrous oxide reducers, calculated as (qnirS+qnirK/qnosZ, correlated positively with N2O emissions. Collectively, data indicate that bacteria catalysing the initial denitrification steps in a MFC are highly influenced by main electron acceptors and have a major influence on current production and N2O accumulation.

  14. Synthesis of nitrous oxide by lightning in the early anoxic Earth's atmosphere

    Science.gov (United States)

    Navarro, K. F.; Navarro-Gonzalez, R.; McKay, C. P.

    2013-12-01

    Carbon dioxide (CO2) was the main atmospheric component of the early Earth's atmosphere and exerted a key role in climate by maintaining a hydrosphere during a primitive faint Sun [1]; however, CO2 was eventually removed from the atmosphere by rock weathering and sequestered in the Earth's crust and mantle [1]. Nitric oxide (NO) was fixed by lightning discharges at a rate of 1×1016 molecules J-1 in CO2 (50-80%) rich atmospheres [2]. As the levels of atmospheric CO2 dropped to 20%, the production rate of NO by lightning rapidly decreased to 2×1014 molecules J-1 and then slowly diminished to 1×1014 molecules J-1 at CO2 levels of about 2.5% [2]. In order to maintain the existence of liquid water in the early Earth, it is required to warm up the planet with other greenhouse gases such as methane (CH4) [3]. Here we report an experimental study of the effects of lightning discharges on the nitrogen fixation rate during the evolution of the Earth's early atmosphere from 10 to 0.8 percent of carbon dioxide with methane concentrations from 0 to 1,000 ppm in molecular nitrogen. Lightning was simulated in the laboratory by a plasma generated with a pulsed Nd-YAG laser [2]. Our results show that the production of NO by lightning is independent of the presence of methane but drops from 3×1014 molecules J-1 in 10% CO2 to 5×1013 molecules J-1 in 1% CO2. Surprisingly, nitrous oxide (N2O) is also produced at a rate of 4×1013 molecules J-1 independent of the levels of CH4 and CO2. N2O is produced by lightning in the contemporaneous oxygenated Earth's atmosphere at a comparable rate of (0.4-1.5)×1013 molecules J-1 [4, 5], but was not detected in nitrogen-carbon dioxide mixtures in the absence of oxygen [6]. The only previously reported abiotic synthesis of N2O was by corona discharges in rich CO2 atmospheres (20-80%) with a production rate of 8×1012 molecules J-1 [6]; however at lower CO2 (atmosphere was the main source of N2O in nitrogen dominated atmospheres. N2O is not

  15. Subacute combined degeneration of the spinal cord in a patient abusing nitrous oxide and self-medicating with cyanocobalamin.

    Science.gov (United States)

    Pugliese, Robert S; Slagle, Evan J; Oettinger, Glenn R; Neuburger, Kenneth J; Ambrose, Timothy M

    2015-06-01

    A case of subacute combined degeneration (SCD) of the spinal cord manifesting as severe ataxia and urinary retention in a patient with a history of heavy nitrous oxide abuse and self-supplementation with cyanocobalamin is reported. A 27-year-old woman was treated in the emergency department for complaints of abdominal pain and inability to urinate for about 12 hours. The patient also complained of worsening lower-extremity weakness for 10 days and a "pins and needles" sensation in the lower extremities for approximately 1 year. She reported nitrous oxide abuse over 3 years (an average of 100-200 "whippit" cartridges daily on 3 or 4 days per week), as well as long-term self-medication with oral and i.m. cyanocobalamin for the purpose of preventing nitrous oxide-induced neurologic symptoms. Results of magnetic resonance imaging (MRI) were highly suggestive of SCD, which is typically seen in primary vitamin B12 deficiency but has been reported in the context of chronic nitrous oxide exposure. Treatment was initiated with cyanocobalamin 1000 μg i.m. daily, to be continued for 5 days and followed by a four-week regimen of 1000 μg i.m. weekly. The patient was discharged after 3 days, despite continued symptoms, with instructions to obtain ongoing care but was lost to follow-up. A patient who abused nitrous oxide chronically developed ataxia, paresthesia, and urinary retention while self-medicating with cyanocobalamin. A diagnosis of SCD was supported by MRI findings, symptoms, and the known relationship between nitrous oxide exposure and vitamin B12 deficiency. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  16. Environmental and microbial factors influencing methane and nitrous oxide fluxes in Mediterranean cork oak woodlands: trees make a difference.

    Science.gov (United States)

    Shvaleva, Alla; Siljanen, Henri M P; Correia, Alexandra; Costa E Silva, Filipe; Lamprecht, Richard E; Lobo-do-Vale, Raquel; Bicho, Catarina; Fangueiro, David; Anderson, Margaret; Pereira, João S; Chaves, Maria M; Cruz, Cristina; Martikainen, Pertti J

    2015-01-01

    Cork oak woodlands (montado) are agroforestry systems distributed all over the Mediterranean basin with a very important social, economic and ecological value. A generalized cork oak decline has been occurring in the last decades jeopardizing its future sustainability. It is unknown how loss of tree cover affects microbial processes that are consuming greenhouse gases in the montado ecosystem. The study was conducted under two different conditions in the natural understory of a cork oak woodland in center Portugal: under tree canopy (UC) and open areas without trees (OA). Fluxes of methane and nitrous oxide were measured with a static chamber technique. In order to quantify methanotrophs and bacteria capable of nitrous oxide consumption, we used quantitative real-time PCR targeting the pmoA and nosZ genes encoding the subunit of particulate methane mono-oxygenase and catalytic subunit of the nitrous oxide reductase, respectively. A significant seasonal effect was found on CH4 and N2O fluxes and pmoA and nosZ gene abundance. Tree cover had no effect on methane fluxes; conversely, whereas the UC plots were net emitters of nitrous oxide, the loss of tree cover resulted in a shift in the emission pattern such that the OA plots were a net sink for nitrous oxide. In a seasonal time scale, the UC had higher gene abundance of Type I methanotrophs. Methane flux correlated negatively with abundance of Type I methanotrophs in the UC plots. Nitrous oxide flux correlated negatively with nosZ gene abundance at the OA plots in contrast to that at the UC plots. In the UC soil, soil organic matter had a positive effect on soil extracellular enzyme activities, which correlated positively with the N2O flux. Our results demonstrated that tree cover affects soil properties, key enzyme activities and abundance of microorganisms and, consequently net CH4 and N2O exchange.

  17. Environmental and microbial factors influencing methane and nitrous oxide fluxes in Mediterranean cork oak woodlands: trees make a difference

    Directory of Open Access Journals (Sweden)

    Alla eShvaleva

    2015-10-01

    Full Text Available Cork oak woodlands (montado are agroforestry systems distributed all over the Mediterranean basin with a very important social, economic and ecological value. A generalized cork oak decline has been occurring in the last decades jeopardizing its future sustainability. It is unknown how loss of tree cover affects microbial processes that are consuming greenhouse gas fluxes in the montado ecosystem. The study was conducted under two different conditions in the natural understory of a cork oak woodland in center Portugal: under tree canopy (UC and open areas without trees (OA. Fluxes of methane and nitrous oxide were measured with a static chamber technique. In order to quantify methanotrophs and bacteria capable of nitrous oxide consumption, we used quantitative real-time PCR targeting the pmoA and nosZ gene encoding the subunit of particulate methane mono-oxygenase and catalytic subunit of the nitrous oxide reductase, respectively. A significant seasonal effect was found on CH4 and N2O fluxes and pmoA and nosZ gene abundance. Tree cover had no effect on methane fluxes; conversely, whereas the UC plots were net emitters of nitrous oxide, the loss of tree cover resulted in a shift in the emission pattern such that the OA plots were a net sink for nitrous oxide. In a seasonal time scale, the UC had higher gene abundance of Type I methanotrophs. Methane flux correlated negatively with abundance of Type I methanotrophs in the UC plots. Nitrous oxide flux correlated negatively with nosZ gene abundance at the OA plots in contrast to that at the UC plots. In the UC soil, SOM had a positive effect on soil extracellular enzyme activities (EEA, which correlated positively with the N2O flux. Our results demonstrated that tree cover affects soil properties, key enzyme activities and abundance of microorganisms and, consequently net CH4 and N2O exchange.

  18. Vapor pressures of the fluorinated telomer alcohols--limitations of estimation methods.

    Science.gov (United States)

    Stock, Naomi L; Ellis, David A; Deleebeeck, Lisa; Muir, Derek C G; Mabury, Scott A

    2004-03-15

    The influence of the unique, physical properties of poly- and perfluorinated chemicals on vapor pressure was investigated. Vapor pressures of a suite of fluorinated telomer alcohols (FTOHs) (CF3(CF2)nCH2CH2OH, where n = 3, 5, 7, or 9) were measured using the boiling point method and ranged from 144 to 992 Pa. Comparison of experimental and literature values indicate that perfluorocarbons (CF3(CF2)nCF3, where n = 0-6) and fluorinated telomer alcohols have vapor pressures equal to or greater than that of their hydrogen analogues. These chemically counterintuitive results can be explained by the unique geometry of poly- and perfluorinated chemicals--in particular the stiff, helical perfluorinated chain and the significant intramolecular hydrogen bonding of the FTOHs. The majority of models investigated for the estimation of vapor pressure did not compensate for this unique geometry and consistently underpredicted the vapor pressures of the FTOHs. Calculation of partitioning constants using both experimental and estimated vapor pressures indicate that both the Antoine and Modified Grain models, and to a lesser degree the Mackay model, are insufficiently accurate for estimating the vapor pressures of the FTOHs, particularly the longer chain FTOHs. Future models should consider parameters such as geometry, strength, and location of intramolecular hydrogen bonds and otherfunction groups in the molecule in order to improve vapor pressure estimation accuracy. It appears likely that the unique molecular geometry of the FTOHs influences not only their vapor pressure but also other physical properties and hence environmental fate and dissemination.

  19. Estimation of methane and nitrous oxide emissions from rice field with rice straw management in Cambodia.

    Science.gov (United States)

    Vibol, S; Towprayoon, S

    2010-02-01

    To estimate the greenhouse gas emissions from paddy fields of Cambodia, the methodology of the Intergovernmental Panel on Climate Change (IPCC) guidelines, IPCC coefficients, and emission factors from the experiment in Thailand and another country were used. Total area under rice cultivation during the years 2005-2006 was 2,048,360 ha in the first crop season and 298,529 ha in the second crop season. The emission of methane from stubble incorporation with manure plus fertilizer application areas in the first crop season was estimated to be 192,783.74 ton higher than stubble with manure, stubble with fertilizer, and stubble without fertilizer areas. The fields with stubble burning emitted the highest emission of methane (75,771.29 ton) followed by stubble burning with manure (22,251.08 ton), stubble burning with fertilizer (13,213.27 ton), and stubble burning with fertilizer application areas (3,222.22 ton). The total emission of methane from rice field in Cambodia for the years 2005-2006 was approximately 342,649.26 ton (342.65 Gg) in the first crop season and 36,838.88 ton (36.84 Gg) in the second crop season. During the first crop season in the years 2005-2006, Battambang province emitted the highest amount of CH(4) (38,764.48 ton) and, in the second crop season during the years 2005-2006, the highest emission (8,262.34 ton) was found in Takeo province (8,262.34 ton). Nitrous oxide emission was between 2.70 and 1,047.92 ton in the first crop season and it ranged from 0 to 244.90 ton in the second crop season. Total nitrous oxide emission from paddy rice field was estimated to be 9,026.28 ton in the first crop season and 1,091.93 ton in the second crop season. Larger area under cultivation is responsible for higher emission of methane and nitrous oxide. Total emission of nitrous oxide by using IPCC default emission coefficient was approximately 2,328.85 ton. The total global warming potential of Cambodian paddy rice soil is 11,723,217.03 ton (11,723 Gg

  20. Dynamic modelling of nitrous oxide emissions from three Swedish sludge liquor treatment systems

    DEFF Research Database (Denmark)

    Lindblom, E.; Arnell, M.; Flores-Alsina, X.

    2014-01-01

    The objective of this paper is to model the dynamics and validate the results of nitrous oxide (N2O)emissions from three Swedish nitrifying/denitrifying, nitritation and anammox systems treating real anaerobic digester sludge liquor. The Activated Sludge Model No. 1 is extended to describe N2O......) a moving-bed biofilm reactor. Results show that the calibrated model is partly capable of reproducing the behaviour of N2O as well as the nitritation/nitrification/denitrification dynamics. However, the results emphasize that additional work is required before N2O emissions from sludge liquor treatment...

  1. Dynamic modelling of nitrous oxide emissions from three Swedish sludge liquor treatment systems

    DEFF Research Database (Denmark)

    Lindblom, E.; Arnell, M.; Flores-Alsina, X.

    2016-01-01

    The objective of this paper is to model the dynamics and validate the results of nitrous oxide (N2O)emissions from three Swedish nitrifying/denitrifying, nitritation and anammox systems treating real anaerobic digester sludge liquor. The Activated Sludge Model No. 1 is extended to describe N2O......) a moving-bed biofilm reactor. Results show that the calibrated model is partly capable of reproducing the behaviour of N2O as well as the nitritation/nitrification/denitrification dynamics. However, the results emphasize that additional work is required before N2O emissions from sludge liquor treatment...

  2. Direct Nitrous Oxide Emission from the Aquacultured Pacific White Shrimp (Litopenaeus vannamei)

    OpenAIRE

    Heisterkamp, Ines M; Schramm, Andreas; De Beer, Dirk; Stief, Peter

    2016-01-01

    The Pacific white shrimp (Litopenaeus vannamei) is widely used in aquaculture, where it is reared at high stocking densities, temperatures, and nutrient concentrations. Here we report that adult L. vannamei shrimp emit the greenhouse gas nitrous oxide (N2O) at an average rate of 4.3 nmol N2O/individual × h, which is 1 to 2 orders of magnitude higher than previously measured N2O emission rates for free-living aquatic invertebrates. Dissection, incubation, and inhibitor experiments with specime...

  3. Clinical experience with TENS and TENS combined with nitrous oxide-oxygen. Report of 371 patients.

    OpenAIRE

    Quarnstrom, F. C.; Milgrom, P.

    1989-01-01

    Transcutaneous electrical nerve stimulation (TENS) alone or TENS combined with nitrous oxide-oxygen (N2O) was administered for restorative dentistry without local anesthesia to 371 adult patients. A total of 55% of TENS alone and 84% of TENS/N2O visits were rated successful. A total of 53% of TENS alone and 82% of TENS/N2O patients reported slight or no pain. In multivariable analyses, pain reports were related to the anesthesia technique and patient fear and unrelated to sex, race, age, toot...

  4. Theoretical and experimental evidence of a metal-carbon synergism for the catalytic growth of carbon nanotubes by chemical vapor deposition%化学气相沉积反应中金属-碳协同催化碳纳米管生长的理论和实验证据

    Institute of Scientific and Technical Information of China (English)

    杜桂香; 康志荣; 宋金玲; 赵江红; 宋昌; 朱珍平

    2008-01-01

    从理论和实验角度研究了金属-碳协同催化的化学气相沉积反应中碳纳米管的成核和生长过程.结果表明:多壁碳纳米管的成核和生长不仅受金属的催化作用,碳核一旦形成也会促进碳纳米管向轴向和径向的生长.金属催化剂颗粒仅仅在促进最内层碳核的形成及生长,碳原子向有序的石墨结构转化有催化作用.多壁碳纳米管和单壁碳纳米管形成的本质区别在于是否存在碳的自催化作用.%The nucleation and growth of carbon nanotubes (CNTs) using chemical vapor deposition with a metal-carbon catalyst have been studied experimentally and theoretically.Results suggest that the nucleation and growth of multiwalled CNTs are not due to the metal alone,but that carbon nuclei (once formed) also contribute to radial and axial growth.Metal particles mainly promote the nucleation and growth of the innermost carbon shell(s),and catalyze the ordering of the carbon atoms to form graphene structures.The intrinsic difference between multiwalled CNT formation and single-walled CNT formation seems to be associated with a self-catalytic function of carbon nuclei.

  5. Nitrogen fertilizer increases nitrous oxide, but not dinitrogen, emissions from moist tropical forest soils in Puerto Rico

    Science.gov (United States)

    Almaraz, M.; Porder, S.; Groffman, P. M.

    2015-12-01

    Nitrogen (N) deposition in tropical forests may increase substantially in coming decades, stimulating a concomitant increase of soil N gas emissions (dinitrogen (N2), nitrous (N2O) and nitric oxides). How N deposition might alter the relative emissions of these gases is unclear, and has ramifications for the global climate since N2O is a potent greenhouse gas. We used a small-scale fertilization study in the Luquillo Experimental Forest (LEF) of Puerto Rico to simulate the effects of N deposition on N gas emissions. Fertilizer was applied by placing mesh bags filled with ammonium saturated weak cation exchange resin directly on the mineral soil for two months. At that time, intact soil cores (0-10cm) were taken from below the bags. The cores were shipped to the Cary Institute of Ecosystem Studies, where they were incubated in a helium headspace with either 0 or 20% oxygen (O2), and analyzed for N2 and N2O emissions. N fertilization increased N2O emissions fourfold (p=0.03). N2O production was positively correlated with field soil moisture (r=0.45, p=0.002), and was higher under 20% than 0% atmospheric O2 (p=0.003). With the exception of a handful of samples, we detected no measureable N2 production from these soils, and fertilization did not influence N2 production. This may have been because our experiment occurred during a drought that reduced soil moisture in the field by ˜20%. We have found that N2 emissions correlate with soil moisture elsewhere in the LEF. While we conclude that N deposition may not influence the N2O:N2 of soil emissions under such conditions, it is still unclear whether this result would hold under higher rainfall.

  6. A novel and simple treatment for control of sulfide induced sewer concrete corrosion using free nitrous acid.

    Science.gov (United States)

    Sun, Xiaoyan; Jiang, Guangming; Bond, Philip L; Keller, Jurg; Yuan, Zhiguo

    2015-03-01

    Improved technologies are currently required for mitigating microbially induced concrete corrosion caused by the oxidation of sulfide to sulfuric acid in sewer systems. This study presents a novel strategy for reducing H2S oxidation on concrete surfaces that accommodate an active corrosion biofilm. The strategy aims to reduce biological oxidation of sulfide through treating the corrosion biofilm with free nitrous acid (FNA, i.e. HNO2). Two concrete coupons with active corrosion activity and surface pH of 3.8 ± 0.3 and 2.7 ± 0.2 were sprayed with nitrite. For both coupons, the H2S uptake rates were reduced by 84%-92% 15 days after the nitrite spray. No obvious recovery of the H2S uptake rate was observed during the entire experimental period (up to 12 months after the spray), indicating the long-term effectiveness of the FNA treatment in controlling the activity of the corrosion-causing biofilms. Live/Dead staining tests on the microorganisms on the concrete coupon surfaces demonstrated that viable bacterial cells decreased by > 80% 39 h after the nitrite spray, suggesting that biofilm cells were killed by the treatment. Examination of a corrosion layer within a suspended solution, containing the corrosion-causing biofilms, indicated that biological activity (ATP level and ratio of viable bacterial cells) was severely decreased by the treatment, confirming the bactericidal effect of FNA on the microorganisms in the biofilms. While field trials are still required to verify its effectiveness, it has been demonstrated here that the FNA spray is potentially a very cheap and effective strategy to reduce sewer corrosion.

  7. IPOMOEA BATATAS SYRUP DECREASE MALONDIALDEHYDE AND INCREASE NITROUS OXIDE PLASMA LEVELS AMONGST MODERATE SMOKER WORKERS AT DENPASAR

    Directory of Open Access Journals (Sweden)

    I Dewa Ayu Intan Dwi-Primayanti

    2012-09-01

    Full Text Available Objective: Cells and tissues are continuously damaged by reactive oxygen species. Cigarette smoke is one of an exogenous source of free radical containing more than 4000 chemical compounds, that triggering the formation of free radicals related to diseases and aging process. Anthocyanins are potent antioxidants that are widely distributed in fruit, vegetables, red wines and Ipomea batatas. The aim of this study was to determine the effect of Ipomea batatas as a source of antioxidants in decreasing levels of alondialdehyde (MDA and increasing of Nitrous oxide (nitrite/nitrate/NOxplasma in moderate smokers of workers at Denpasar.Method: This was an experimental study with a pretest-posttest control groups design. There are 33 moderate smokers who were divided into three groups, control group (placebo, treatment group with 15 ml purple sweet potato syrup (P1 and 30 ml (P2, for 14 days. All groups were performed the laboratory examinations for MDA and NOx plasma before and after the treatment.Results: This study showed that there were significant differences (p<0.05 both in MDA and NOx plasma levels in the control group, P1 and P2. The decrease of MDAlevels on P1 was 35.39% and on P2 was 49.87%. The increase of NOx plasma levels was 7.78% for P1 and 14.68% for P2.Conclusion: From this study, it can be concluded that Ipomea batatas syrup contains of 8mg/mL anthocyanins, probably play a role in reducing the free radical and thus reducingthe risk of disease and slowing the aging process.

  8. The role of small acid-soluble proteins (SASPs) in protection of spores of Clostridium botulinum against nitrous acid.

    Science.gov (United States)

    Meaney, Carolyn A; Cartman, Stephen T; McClure, Peter J; Minton, Nigel P

    2016-01-04

    Mutant strains of Clostridium botulinum ATCC 3502 were generated using the ClosTron in four genes (CBO1789, CBO1790, CBO3048, CBO3145) identified as encoding α/β-type SASP homologues. The spores of mutant strains in which CBO1789 or CBO1790 was inactivated demonstrated a significant increase in sensitivity to the damaging agent nitrous acid (P0.05), two other chemicals commonly used as components of disinfection regimes. These data indicate that the SASPs CBO1789 or CBO1790 play a significant role in resistance to nitrous acid, but not in resistance to formaldehyde or hydrogen peroxide.

  9. Photoelectron spectroscopy of phthalocyanine vapors

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, J.

    1979-01-01

    The He(I) photoelectron spectra of several metal phthalocyanines and metal-free phthalocyanine vapor shows that: a sharp peak at 4.99 eV is an artifact due to ionization of atomic He by He(II) radiation; the first phthalocyanine peak (metal-containing or metal-free) occurs at 6.4 eV; and the metal-like d orbitals lie at least 1 to 2 eV deeper, except in the case of Fe. (DLC)

  10. Photovoltaic driven vapor compression cycles

    Science.gov (United States)

    Anand, D. K.

    Since the vast majority of heat pumps, air conditioning and refrigeration equipment employs the vapor compression cycle (VCC), the use of renewable energy represents a significant opportunity. As discussed in this report, it is clear that the use of photovoltaics (PV) to drive the VCC has more potential than any other active solar cooling approach. This potential exists due to improvements in not only the PV cells but VCC machinery and control algorithms. It is estimated that the combined improvements will result in reducing the PV cell requirements by as much as one half.

  11. Study of film boiling collapse behavior during vapor explosion

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Masahiro; Yamano, Norihiro; Sugimoto, Jun [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Abe, Yutaka; Adachi, Hiromichi; Kobayashi, Tomoyoshi

    1996-06-01

    Possible large scale vapor explosions are safety concern in nuclear power plants during severe accident. In order to identify the occurrence of the vapor explosion and to estimate the magnitude of the induced pressure pulse, it is necessary to investigate the triggering condition for the vapor explosion. As a first step of this study, scooping analysis was conducted with a simulation code based on thermal detonation model. It was found that the pressure at the collapse of film boiling much affects the trigger condition of vapor explosion. Based on this analytical results, basic experiments were conducted to clarify the collapse conditions of film boiling on a high temperature solid ball surface. Film boiling condition was established by flooding water onto a high temperature stainless steel ball heated by a high frequency induction heater. After the film boiling was established, the pressure pulse generated by a shock tube was applied to collapse the steam film on the ball surface. As the experimental boundary conditions, materials and size of the balls, magnitude of pressure pulse and initial temperature of the carbon and stainless steel balls were varied. The transients of pressure and surface temperature were measured. It was found that the surface temperature on the balls sharply decreased when the pressure wave passed through the film on balls. Based on the surface temperature behavior, the film boiling collapse pattern was found to be categorized into several types. Especially, the pattern for stainless steel ball was categorized into three types; no collapse, collapse and reestablishment after collapse. It was thus clarified that the film boiling collapse behavior was identified by initial conditions and that the pressure required to collapse film boiling strongly depended on the initial surface temperature. The present results will provide a useful information for the analysis of vapor explosions based on the thermal detonation model. (J.P.N.)

  12. Effects of soil temperature and moisture on methane uptake and nitrous oxide emissions across three different ecosystem types

    Directory of Open Access Journals (Sweden)

    G. J. Luo

    2013-05-01

    Full Text Available In this paper, we investigate similarities of effects of soil environmental drivers on year-round daily soil fluxes of nitrous oxide and methane for three distinct semi-natural or natural ecosystems: temperate spruce forest, Germany; tropical rain forest, Queensland, Australia; and ungrazed semi-arid steppe, Inner Mongolia, China. Annual cumulative fluxes of nitrous oxide and methane varied markedly among ecosystems, with nitrous oxide fluxes being highest for the tropical forest site (tropical forest: 0.96 kg N ha−1 yr−1; temperate forest: 0.67 kg N ha−1 yr−1; steppe: 0.22 kg N ha−1 yr−1, while rates of soil methane uptake were approximately equal for the temperate forest (−3.45 kg C ha−1 yr−1 and the steppe (−3.39 kg C ha−1 yr−1, but lower for the tropical forest site (−2.38 kg C ha−1 yr−1. In order to allow for cross-site comparison of effects of changes in soil moisture and soil temperature on fluxes of methane and nitrous oxide, we used a normalization approach. Data analysis with normalized data revealed that, across sites, optimum rates of methane uptake are found at environmental conditions representing approximately average site environmental conditions. This might have rather important implications for understanding effects of climate change on soil methane uptake potential, since any shift in environmental conditions is likely to result in a reduction of soil methane uptake ability. For nitrous oxide, our analysis revealed expected patterns: highest nitrous oxide emissions under moist and warm conditions and large nitrous oxide fluxes if soils are exposed to freeze–thawing effects at sufficiently high soil moisture contents. However, the explanatory power of relationships of soil moisture or soil temperature to nitrous oxide fluxes remained rather poor (R2 ≤ 0.36. When combined effects of changes in soil moisture and soil temperature were considered, the explanatory power of our empirical

  13. Microcomponents manufacturing for precise devices by copper vapor laser

    Science.gov (United States)

    Gorny, Sergey; Nikonchuk, Michail O.; Polyakov, Igor V.

    2001-06-01

    This paper presents investigation results of drilling of metal microcomponents by copper vapor laser. The laser consists of master oscillator - spatial filter - amplifier system, electronics switching with digital control of laser pulse repetition rate and quantity of pulses, x-y stage with computer control system. Mass of metal, removed by one laser pulse, is measured and defined by means of diameter and depth of holes. Interaction of next pulses on drilled material is discussed. The difference between light absorption and metal evaporation processes is considered for drilling and cutting. Efficiency of drilling is estimated by ratio of evaporation heat and used laser energy. Maximum efficiency of steel cutting is calculated with experimental data of drilling. Applications of copper vapor laser for manufacturing is illustrated by such microcomponents as pin guide plate for printers, stents for cardio surgery, encoded disks for security systems and multiple slit masks for spectrophotometers.

  14. Prospects for trivalent rare earth molecular vapor lasers for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Krupke, W.F.

    1976-04-12

    The dynamical properties of three types of RE/sup 3 +/ molecular vapors were considered: (1) rare earth trihalogens, (2) rare earth trihalogens complexed with transition metal trihalogens, and (3) rare earth chelates. Radiative and nonradiative (unimolecular and bimolecular) transition probabilities have been calculated using phenomenological models predicted on the unique electronic structure of the triply ionized RE ion (well shielded ground electronic configuration of equivalent of electrons). Although all the lanthanide ions have been treated in some detail, specific results are presented for the Nd/sup 3 +/ and Tb/sup 3 +/ ions to illustrate the systematics of these vapors as a class of new laser media. Once verified, these phenomenological models will provide a powerful tool for the directed experimental exploration of these systems. Because of the structural similarity to the triply ionized actinides, comments offered here for the lanthanide rare earth series generally apply to gaseous actinide lasers which are also under consideration.

  15. Detonation wave driven by condensation of supersaturated carbon vapor.

    Science.gov (United States)

    Emelianov, A; Eremin, A; Fortov, V; Jander, H; Makeich, A; Wagner, H Gg

    2009-03-01

    An experimental observation of a detonation wave driven by the energy of condensation of supersaturated carbon vapor is reported. The carbon vapor was formed by the thermal decay of unstable carbon suboxide C3O2 behind shock waves in mixtures containing 10-30% C3O2 in Ar. In the mixture 10% C3O2+Ar the insufficient heat release resulted in a regime of overdriven detonation. In the mixture 20% C3O2+Ar measured values of the pressure and wave velocity coincident with calculated Chapman-Jouguet parameters were attained. In the richest mixture 30% C3O2+Ar an excess heat release caused the slowing down of the condensation rate and the regime of underdriven detonation was observed.

  16. Vaporization Studies from Slag Surfaces Using a Thin Film Technique

    Science.gov (United States)

    Seetharaman, Seshadri; Shyrokykh, Tetiana; Schröder, Christina; Scheller, Piotr R.

    2013-08-01

    The investigations of vanadium vaporization from CaO-SiO2-FeO-V2O5 thin film slags were conducted using the single hot thermocouple technique (SHTT) with air as the oxidizing atmosphere. The slag samples were analyzed after the experiments by SEM/EDX. The vanadium content was found to decrease as a function of time. The loss of vanadium from the slag film after 30 minutes of oxidation was approximately 18 pct and after 50 minutes, it was nearly 56 pct. The possible mechanism of vanadium loss would be the surface oxidation of vanadium oxide in the slag, VO x to V5+, followed by surface evaporation of V2O5, which has a high vapor pressure at the experimental temperature.

  17. Model analysis of mechanisms controlling pneumatic soil vapor extraction

    DEFF Research Database (Denmark)

    Høier, Camilla Kruse; Sonnenborg, Torben Obel; Jensen, Karsten Høgh;

    2009-01-01

    The efficiency of traditional soil venting or soil vapor extraction (SVE) highly depends on the architecture of the subsurface because imposed advective air flow tends to bypass low-permeable contaminated areas. Pneumatic SVE is a technique developed to enhance remediation efficiency of heterogen...... level the pneumatic venting technology is superior to the traditional technique, and that the method is particularly efficient in cases where large permeability contrasts exist between soil units in the subsurface.......The efficiency of traditional soil venting or soil vapor extraction (SVE) highly depends on the architecture of the subsurface because imposed advective air flow tends to bypass low-permeable contaminated areas. Pneumatic SVE is a technique developed to enhance remediation efficiency...... of heterogeneous soils by enforcing large fluctuating pressure fronts through the contaminated area. Laboratory experiments have suggested that pneumatic SVE considerably improves the recovery rate from low-permeable units. We have analyzed the experimental results using a numerical code and quantified...

  18. Determination of a Vapor Compression Refrigeration System Refrigerant Charge

    Institute of Scientific and Technical Information of China (English)

    YangChun-Xin; DangChao-Bin

    1995-01-01

    A physical model is established in this paper to describe the heat transfer and two phase flow of a refrigerant in the evaporator and condenser of a vapor compression refrigeration system.The model in then used to determine the refrigerant charge in vapor compression units.The model is used for a sensitivity analysis to determine the effect that varing design parameters on the refrigerant charge,The model is also used to evaluate the effect of refrigerant charge and the thermal physical properties on the refrigeration cycle,The predicted value of the refigerant charge and experimental data agree well The model and the method presented in this paper could be used to design vapour compression units such as domestic refrigeratirs and air conditioners.

  19. Influence of Soil Moisture on Soil Gas Vapor Concentration for Vapor Intrusion

    OpenAIRE

    Shen, Rui; Pennell, Kelly G.; Suuberg, Eric M.

    2013-01-01

    Mathematical models have been widely used in analyzing the effects of various environmental factors in the vapor intrusion process. Soil moisture content is one of the key factors determining the subsurface vapor concentration profile. This manuscript considers the effects of soil moisture profiles on the soil gas vapor concentration away from any surface capping by buildings or pavement. The “open field” soil gas vapor concentration profile is observed to be sensitive to the soil moisture di...

  20. Characteristic of nitrous oxide production in partial denitrification process with high nitrite accumulation.

    Science.gov (United States)

    Du, Rui; Peng, Yongzhen; Cao, Shenbin; Wang, Shuying; Niu, Meng

    2016-03-01

    Nitrous oxide (N2O) production during the partial denitrification process with nitrate (NO3(-)-N) to nitrite (NO2(-)-N) transformation ratio of 80% was investigated in this study. Results showed that N2O was seldom observed before complete depletion of NO3(-)-N, but it was closely related to the reduction of NO2(-)-N rather than NO3(-)-N. High COD/NO3(-)-N was in favor of N2O production in partial denitrification with high NO2(-)-N accumulation. It was seriously enhanced at constant acidic pH due to the free nitrous acid (FNA) inhibition. However, the N2O production was much lower at initial pH of 5.5 and 6.5 due to the pH increase during denitrification process. Significantly, the pH turning point could be chosen as a controlled parameter to denote the end of NO3(-)-N reduction, which could not only achieve high NO2(-)-N accumulation but also decrease the N2O production significantly for practical application.

  1. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions.

    Science.gov (United States)

    Thomson, Andrew J; Giannopoulos, Georgios; Pretty, Jules; Baggs, Elizabeth M; Richardson, David J

    2012-05-05

    Nitrous oxide (N(2)O) is a powerful atmospheric greenhouse gas and cause of ozone layer depletion. Global emissions continue to rise. More than two-thirds of these emissions arise from bacterial and fungal denitrification and nitrification processes in soils, largely as a result of the application of nitrogenous fertilizers. This article summarizes the outcomes of an interdisciplinary meeting, 'Nitrous oxide (N(2)O) the forgotten greenhouse gas', held at the Kavli Royal Society International Centre, from 23 to 24 May 2011. It provides an introduction and background to the nature of the problem, and summarizes the conclusions reached regarding the biological sources and sinks of N(2)O in oceans, soils and wastewaters, and discusses the genetic regulation and molecular details of the enzymes responsible. Techniques for providing global and local N(2)O budgets are discussed. The findings of the meeting are drawn together in a review of strategies for mitigating N(2)O emissions, under three headings, namely: (i) managing soil chemistry and microbiology, (ii) engineering crop plants to fix nitrogen, and (iii) sustainable agricultural intensification.

  2. Emissions of greenhouse gases (methane and nitrous oxide) from cattle slurry storage in Northern Europe

    Science.gov (United States)

    Rodhe, L.; Ascue, J.; Nordberg, Å.

    2009-11-01

    Total greenhouse gas (GHG) emissions from stored manure corresponded to 14% of overall GHG emissions from Swedish agriculture in 2006 according to calculations using standard values for a cool climate. The present study identified storage conditions for cattle slurry in different regions of Sweden, developed methodology for measuring GHGs from slurry stored under similar conditions to full-scale storage, and determined annual GHG emissions (methane and nitrous oxide) from stored cattle slurry under Swedish conditions. Temperature measurements in full-scale storage of cattle slurry on farms showed a mean annual slurry temperature of 9.7°C in south-west Sweden and 5.6°C in the north. The closed chamber methodology and equipment developed for measuring GHG emissions were implemented for one year in a pilot-scale plant with similar conditions to full-scale storage as regards slurry temperature, climate and filling/emptying routines. During winter (Oct-April), methane emissions from stored cattle slurry were 3.6 g CH4-C per kg VS, while during summer (May-Sept) they were 6.5 g CH4-C per kg VS. This corresponded to an annual methane conversion factor (MCF) of 2.7%. Losses of nitrous oxide were close to zero.

  3. The impact of Southwest Airline's contribution to atmospheric Carbon Dioxide and Nitrous Oxide totals

    Science.gov (United States)

    Wilkerson, Cody L.

    Over the last century, aviation has grown to become an economical juggernaut. The industry creates innovation, connects people, and maintains a safety goal unlike any other field. However, as the world becomes more populated with technology and individuals, a general curiosity as to how human activity effects the planet is becoming of greater interest. This study presents what one domestic airline in the United States, Southwest Airlines, contributes to the atmospheric make-up of the planet. Utilizing various sources of quantifiable data, an outcome was reached that shows the amount of Carbon Dioxide and Nitrous Oxide produced by Southwest Airlines from 2002 to 2013. This topic was chosen due to the fact that there are no real quantifiable values of emission statistics from airlines available to the public. Further investigation allowed for Southwest Airlines to be compared to the overall Carbon Dioxide and Nitrous Oxide contributions of the United States for the year 2011. The results showed that with the absence of any set standard on emissions, it is vital that one should be established. The data showed that the current ICAO standard emission values showed a higher level of emissions than when Southwest Airline's fleet was analyzed using their actual fleet mix.

  4. Monitoring atmospheric nitrous oxide background concentrations at Zhongshan Station, east Antarctica.

    Science.gov (United States)

    Ye, Wenjuan; Bian, Lingen; Wang, Can; Zhu, Renbin; Zheng, Xiangdong; Ding, Minghu

    2016-09-01

    At present, continuous observation data for atmospheric nitrous oxide (N2O) concentrations are still lacking, especially in east Antarctica. In this paper, nitrous oxide background concentrations were measured at Zhongshan Station (69°22'25″S, 76°22'14″E), east Antarctica during the period of 2008-2012, and their interannual and seasonal characteristics were analyzed and discussed. The mean N2O concentration was 321.9nL/L with the range of 320.5-324.8nL/L during the five years, and it has been increasing at a rate of 0.29% year(-1). Atmospheric N2O concentrations showed a strong seasonal fluctuation during these five years. The concentrations appeared to follow a downtrend from spring to autumn, and then increased in winter. Generally the highest concentrations occurred in spring. This trend was very similar to that observed at other global observation sites. The overall N2O concentration at the selected global sites showed an increasing annual trend, and the mean N2O concentration in the Northern Hemisphere was slightly higher than that in the Southern Hemisphere. Our result could be representative of atmospheric N2O background levels at the global scale. This study provided valuable data for atmospheric N2O concentrations in east Antarctica, which is important to study on the relationships between N2O emissions and climate change.

  5. Nitrous oxide uptake rates in boreal coniferous forests are associated with soil characteristics

    Science.gov (United States)

    Siljanen, Henri; Biasi, Christina; Martikainen, Pertti

    2014-05-01

    Nitrous oxide (N2O) is a strong greenhouse gas and a significant contributor to the destruction of the ozone layer. The radiative forcing of N2O is considered to be 320 more efficient than carbon dioxide.The major portion of global N2O is emitted from agricultural soils. There are studies suggesting that N2O has also a sink in forest soils. However there is relatively limited knowledge on factors controlling N2O consumption in forest soils. Hence N2O consumption was studied in boreal coniferous forests having different forest cover, soil chemical and physical structure and land-use history. The N2O consumption was measured by static chamber technique in the field across spatio-seasonal sampling design. Typical and atypical denitrifiers were quantified with nosZ functional gene marker. Additionally chemical and physical environmental parameters were analyzed to link N2O flux, microbial community and composition of soils. Nitrous oxide uptake could be associated with specific ecosystem and environmental conditions. Soil physical structure and land-use history were shown to be prior factors determining the strength of the uptake rate.

  6. Details and Consequences of Water Vapor Diffusion In The Pore Space of Snow

    Science.gov (United States)

    Sokratov, S. A.; Bartelt, P.; Schneebeli, M.; Lehning, M.

    Despite a long history of extensive experimental and theoretical studies on the process of water vapor diffusion in snow, no quantitative explanation for the observed diffu- sion characteristics such as mass-transfer rates and snow density change is available at present. Results of a detailed investigatation of the process are presented. The pro- posed description of water vapor flux in snow now includes thermal diffusion, grav- itation, convective air flow, and volumetric mass-production. The relative importance of the components in the overall mass-transfer is analyzed. Although experimental data of sufficient detail concerning the individual components are not available, the results of our analysis provide an improved understanding of the sources of discrepan- cies in published experimental results. The consequences of the water vapor transport description for heat transfer and metamorphism are also discussed.

  7. Mechanisms of suppressing cup-burner flame with water vapor

    Institute of Scientific and Technical Information of China (English)

    CONG BeiHua; LIAO GuangXuan

    2008-01-01

    The mechanisms of suppressing a laminar methane-air co-flow diffusion flame formed on a cup burner with water vapor have been studied experimentally and numerically. The methane burned in a steel cup surrounded by a glass chimney. A mist generator produced fine droplets delivered though the glass chimney with air. These droplets were heated into water vapor when they went though the diffuser. The extinguishing limit was obtained by gradually increasing the amount of water vapor to replace the air in the coflowing oxidizer stream. Results showed that the agent concentration required for extinguishment was constant over a wide range of the oxidizer velocity, i.e., a so-called "plateau region". The measured extinguishing mass fractions of the agents were: (16.7±0.6)% for H2O, (15.9±0.6)% for CO2, and (31.9±0.6)% for N2. The computation used the Fire Dynamics Simulator (FDS) de-veloped by the NIST. The numerical simulations showed that the predicted water vapor extinguishing limits and the flickering frequency were in good agreements with the experimental observations and, more importantly, revealed that the sup-pression of cup-burner flames occurred via a partial extinction mechanism (in which the flame base drifts downstream and then blows off) rather than the global extinction mechanism of typical counter-flow diffusion flames. And the flame-base oscillation just before the blow-off was the key step for the non-premixed flame extinction in the cup burner.

  8. Mechanisms of suppressing cup-burner flame with water vapor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The mechanisms of suppressing a laminar methane-air co-flow diffusion flame formed on a cup burner with water vapor have been studied experimentally and numerically. The methane burned in a steel cup surrounded by a glass chimney. A mist generator produced fine droplets delivered though the glass chimney with air. These droplets were heated into water vapor when they went though the diffuser. The extinguishing limit was obtained by gradually increasing the amount of water vapor to replace the air in the coflowing oxidizer stream. Results showed that the agent concentration required for extinguishment was constant over a wide range of the oxidizer velocity, i.e., a so-called "plateau region". The measured extinguishing mass fractions of the agents were: (16.7 ± 0.6)% for H2O, (15.9 ± 0.6)% for CO2, and (31.9 ± 0.6)% for N2. The computation used the Fire Dynamics Simulator (FDS) de- veloped by the NIST. The numerical simulations showed that the predicted water vapor extinguishing limits and the flickering frequency were in good agreements with the experimental observations and, more importantly, revealed that the sup- pression of cup-burner flames occurred via a partial extinction mechanism (in which the flame base drifts downstream and then blows off) rather than the global extinction mechanism of typical counter-flow diffusion flames. And the flame-base oscillation just before the blow-off was the key step for the non-premixed flame extinction in the cup burner.

  9. Optical Sensor for Diverse Organic Vapors at ppm Concentration Ranges

    Directory of Open Access Journals (Sweden)

    Dora M. Paolucci

    2011-03-01

    Full Text Available A broadly responsive optical organic vapor sensor is described that responds to low concentrations of organic vapors without significant interference from water vapor. Responses to several classes of organic vapors are highlighted, and trends within classes are presented. The relationship between molecular properties (vapor pressure, boiling point, polarizability, and refractive index and sensor response are discussed.

  10. Source characterization of nitrous oxide using a stable isotope fingerprint technique; Antei doitai finger print wo riyoshita asanka chisso no hasseigen characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, S. [National Institute for Resources and Environment, Tsukuba (Japan)

    1995-07-25

    The tropospheric mixing ratio of nitrous oxide is increasing 0.25-0.31% annually. A number of studies have been carried out to describe global cycle of nitrous oxide. However, no clear cut understanding has been obtained. For example, stratospheric decomposition of nitrous oxide is significantly larger than the total emission from the earth`s surface to atmosphere. The imbalance suggests existence of unidentified sources. Recently, the tropospheric formation of nitrous oxide has been reported as a forgotten mechanism to provide nitrous oxide to atmosphere. However, its source strength has not been evaluated precisely. Possible error in extrapolating flux determinations at source sites to some large scale may be an additional reason for the imbalance. As nitrous oxide produced by different mechanisms differ in stable isotopic signature, measurement of stable isotope ratio is a way to re-evaluate the global budget. This report discusses the progress that has been made regarding stable isotope study on biogeochemistry of nitrous oxide. 22 refs., 1 fig., 1 tab.

  11. Using silicon diodes for detecting the liquid-vapor interface in hydrogen

    Science.gov (United States)

    Dempsey, Paula J.; Fabik, Richard H.

    1992-01-01

    Tests were performed using commercially available silicon diode temperature sensors to detect the location of the liquid-vapor interface in hydrogen during ground test programs. Results show that by increasing the current into the sensor, silicon diodes can be used as liquid level point sensors. After cycling the sensors from liquid to vapor several times, it was found that with a 30 mA (milliamps) input current, the sensors respond within 2 seconds by measuring a large voltage difference when transitioning from liquid to vapor across the interface. Nearly instantaneous response resulted during a transition from vapor to liquid. Detailed here are test procedures, experimental results, and guidelines for applying this information to other test facilities.

  12. A semiempirical correlation between enthalpy of vaporization and saturation concentration for organic aerosol.

    Science.gov (United States)

    Epstein, Scott A; Riipinen, Ilona; Donahue, Neil M

    2010-01-15

    To model the temperature-induced partitioning of semivolatile organics in laboratory experiments or atmospheric models, one must know the appropriate heats of vaporization. Current treatments typically assume a constant value of the heat of vaporization or else use specific values from a small set of surrogate compounds. With published experimental vapor-pressure data from over 800 organic compounds, we have developed a semiempirical correlation between the saturation concentration (C*, microg m(-3)) and the heat of vaporization (deltaH(VAP), kJ mol(-1)) for organics in the volatility basis set. Near room temperature, deltaH(VAP) = -11 log(10)C(300)(*) + 129. Knowledge of the relationship between C* and deltaH(VAP) constrains a free parameter in thermodenuder data analysis. A thermodenuder model using our deltaH(VAP) values agrees well with thermal behavior observed in laboratory experiments.

  13. Influences of friction drag on spontaneous condensation in water vapor supersonic flows

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A mathematical model was developed to investigate the water vapor spontaneous condensation under supersonic flow conditions. A numerical simulation was performed for the water vapor condensable supersonic flows through Laval nozzles under different flow friction conditions. The comparison between numerical and experimental results shows that the model is accurate enough to investigate the supersonic spontaneous condensation flow of water vapor inside Laval nozzles. The influences of flow friction drag on supersonic spontaneous condensation flow of water vapor inside Laval nozzles were investigated. It was found that the flow friction has a direct effect on the spontaneous condensation process and therefore it is important for an accurate friction prediction in designing this kind of Laval nozzles.

  14. Vapor pressure of R-410A/oil and R-407C/oil mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Yeau-Ren Jeng; Cheng-Shion Chang [National Chung Cheng University (Taiwan). Dept. of Mechanical Engineering; Chi-Chuan Wang [Industrial Technology Research Institute, Hsinchu (Taiwan). Energy and Resources Laboratories

    2001-06-01

    An experimental study was carried out to examine the vapor pressure of R-410A and R-407C in the presence of lubricant oil. The grades of the tested lubricants are ISO-32 and ISO-100. For R-410A refrigerant, the vapor pressure decreases with the increase of oil concentration. In addition, it is found that there are no significant changes of vapor pressures for the presence of lubricant oils for T{sub s} {<=} 25{sup o}C. For R- 407C refrigerant, the change of vapor pressure with oil concentration is comparatively small. It is likely that this phenomenon is related to the zeotropic nature of R-407C. (author)

  15. Dichroic atomic vapor laser lock with multi-gigahertz stabilization range

    Energy Technology Data Exchange (ETDEWEB)

    Pustelny, S., E-mail: pustelny@uj.edu.pl [Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków (Poland); Department of Physics, University of California at Berkeley, Berkeley, California 94720-7300 (United States); Schultze, V.; Scholtes, T. [Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, D-07745 Jena (Germany); Budker, D. [Department of Physics, University of California at Berkeley, Berkeley, California 94720-7300 (United States); Helmholtz-Institut Mainz, Johannes Gutenberg Universität Mainz, 55128 Mainz (Germany)

    2016-06-15

    A dichroic atomic vapor laser lock (DAVLL) system exploiting buffer-gas-filled millimeter-scale vapor cells is presented. This system offers similar stability as achievable with conventional DAVLL system using bulk vapor cells, but has several important advantages. In addition to its compactness, it may provide continuous stabilization in a multi-gigahertz range around the optical transition. This range may be controlled either by changing the temperature of the vapor or by application of a buffer gas under an appropriate pressure. In particular, we experimentally demonstrate the ability of the system to lock the laser frequency between two hyperfine components of the {sup 85}Rb ground state or as far as 16 GHz away from the closest optical transition.

  16. TRACER-II: a complete computational model for mixing and propagation of vapor explosions

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K.H. [School of Mechanical Engineering, Korea Maritime Univ., Pusan (Korea, Republic of); Park, I.G.; Park, G.C.

    1998-01-01

    A vapor explosion is a physical process in which very rapid energy transfer occurs between a hot liquid and a volatile, colder liquid when the two liquids come into a sudden contact. For the analyses of potential impacts from such explosive events, a computer program, TRACER-II, has been developed, which contains a complete description of mixing and propagation phases of vapor explosions. The model consists of fuel, fragmented fuel (debris), coolant liquid, and coolant vapor in two-dimensional Eulerian coordinates. The set of governing equations are solved numerically using finite difference method. The results of this numerical simulation of vapor explosions are discussed in comparison with the recent experimental data of FARO and KROTOS tests. When compared to some selected FARO and KROTOS data, the fuel-coolant mixing and explosion propagation behavior agree reasonably with the data, although the results are yet sensitive primarily to the melt breakup and fragmentation modeling. (author)

  17. Influences of friction drag on spontaneous condensation in water vapor supersonic flows

    Institute of Scientific and Technical Information of China (English)

    JIANG WenMing; LIU ZhongLiang; LIU HengWei; PANG HuiZhong; BAO LingLing

    2009-01-01

    A mathematical model was developed to investigate the water vapor spontaneous condensation under supersonic flow conditions. A numerical simulation was performed for the water vapor condensable supersonic flows through Laval nozzles under different flow friction conditions. The comparison be-tween numerical and experimental results shows that the model is accurate enough to investigate the supersonic spontaneous condensation flow of water vapor inside Laval nozzles. The influences of flow friction drag on supersonic spontaneous condensation flow of water vapor inside Laval nozzles were investigated, It was found that the flow friction has a direct effect on the spontaneous condensation process and therefore it is important for an accurate friction prediction in designing this kind of Laval nozzles.

  18. Acetylene and oxygen as inhibitors of nitrous oxide production in Nitrosomonas europaea and Nitrosospira briensis: a cautionary tale

    NARCIS (Netherlands)

    Wrage, N.; Velthof, G.L.; Oenema, O.; Laanbroek, H.J.

    2004-01-01

    Autotrophic ammonia-oxidizing bacteria produce nitrous oxide (N2O) as a by-product of nitrification or as an intermediate of nitrifier denitrification. In soil incubations, acetylene (C2H2) and large partial pressures of oxygen (O2) are used to distinguish between these sources. C2H2 inhibits

  19. Comparing the effects of cryotherapy with nitrous oxide gas versus topical corticosteroids in the treatment of oral lichen planus

    Directory of Open Access Journals (Sweden)

    Dariush Amanat

    2014-01-01

    Conclusion: Cryotherapy with nitrous oxide gas is as effective as topical triamcinolone acetonide in the treatment of OLP with no systemic side effects and needs less patient compliance. It can be considered as an alternative or adjuvant therapy in OLP patients to reduce the use of treatments with adverse effects.

  20. Examining the Impact of Nitrous Acid Chemistry on Ozone and PM over the Pearl River Delta Region

    Science.gov (United States)

    The impact of nitrous acid (HONO) chemistry on regional ozone and particulate matter in Pearl River Delta region was investigated using the community multiscale air quality (CMAQ) modeling system and the CB05 mechanism. Model simulations were conducted for a ten-day period in Oct...