WorldWideScience

Sample records for nitrogen-fixing microorganisms detected

  1. [SCREENING AND SELECTION OF THE SOIL MICROORGANISMS ON THE ABILITY OF "NITROGEN-FIXING ACTIVITY"].

    Science.gov (United States)

    Patyka V Ph; Kyrychenko, O V; Kots, S Ya

    2015-01-01

    The isolates of microorganisms from the rhizosphere of spring barley plants and soil at the use of analytical selection method was isolated. Its isolates on the ability of "nitrogen-fixing activity" was tested. It was shown that isolates of microorganisms had different of the colonies formed and cultural growth on the Eshbi's selective medium as well as the ability to fixing of molecular nitrogen. The different levels of intensity and dynamics of isolates nitrogenase activity in vitro were identified. New isolates of the soil microorganisms complement of the gene pool diazotrophic bacteria. Its isolates are perspectivity for the study as the basis or components of the bacterial fertilizers for the crops.

  2. [Diversity of nitrogen-fixing microorganisms in biological soil crusts of copper mine wastelands].

    Science.gov (United States)

    Zhan, Jing; Yang, Gui-De; Sun, Qing-Ye

    2014-06-01

    Biological soil crusts play an important role in increasing the accumulation of organic matter and nitrogen in re-vegetated mining wastelands. The diversity of nitrogen-fixing microorganisms in three types of biological soil crusts (algal crust, moss crust and algal-moss crust) from two wastelands of copper mine tailings were investigated by polymerase chain reaction-denaturing gradient gel electrophoresis, based on the nifH gene of diazotrophs, to investigate: The diversity of nifH gene in the crusts of mine wastelands, and whether and how the nifH gene diversity in the crusts could be affected by the development of plant communities. The algal crust on the barren area displayed the highest nifH gene diversity, followed by the algal-moss crusts within vascular plant communities, and the moss crust displayed the lowest nifH gene diversity. The diversity of diazotrophs in algal-moss crust within vascular plant communities decreased with the increase of height and cover of vascular plant communities. No significant relationship was found between wasteland properties (pH, water content, contents of organic matter, nitrogen and phosphorus and heavy metal concentration) and nifH gene diversity in the crusts. Sequencing and phylogenetic analysis indicated that most nitrogen-fixing taxa in the crusts of mine wastelands belonged to Cyanobacteria, especially nonheterocystous filamentous Cyanobacteria.

  3. Ecology of Nitrogen Fixing, Nitrifying, and Denitrifying Microorganisms in Tropical Forest Soils.

    Science.gov (United States)

    Pajares, Silvia; Bohannan, Brendan J M

    2016-01-01

    Soil microorganisms play important roles in nitrogen cycling within forest ecosystems. Current research has revealed that a wider variety of microorganisms, with unexpected diversity in their functions and phylogenies, are involved in the nitrogen cycle than previously thought, including nitrogen-fixing bacteria, ammonia-oxidizing bacteria and archaea, heterotrophic nitrifying microorganisms, and anammox bacteria, as well as denitrifying bacteria, archaea, and fungi. However, the vast majority of this research has been focused in temperate regions, and relatively little is known regarding the ecology of nitrogen-cycling microorganisms within tropical and subtropical ecosystems. Tropical forests are characterized by relatively high precipitation, low annual temperature fluctuation, high heterogeneity in plant diversity, large amounts of plant litter, and unique soil chemistry. For these reasons, regulation of the nitrogen cycle in tropical forests may be very different from that of temperate ecosystems. This is of great importance because of growing concerns regarding the effect of land use change and chronic-elevated nitrogen deposition on nitrogen-cycling processes in tropical forests. In the context of global change, it is crucial to understand how environmental factors and land use changes in tropical ecosystems influence the composition, abundance and activity of key players in the nitrogen cycle. In this review, we synthesize the limited currently available information regarding the microbial communities involved in nitrogen fixation, nitrification and denitrification, to provide deeper insight into the mechanisms regulating nitrogen cycling in tropical forest ecosystems. We also highlight the large gaps in our understanding of microbially mediated nitrogen processes in tropical forest soils and identify important areas for future research.

  4. Ecology of Nitrogen Fixing, Nitrifying, and Denitrifying Microorganisms in Tropical Forest Soils

    Science.gov (United States)

    Pajares, Silvia; Bohannan, Brendan J. M.

    2016-01-01

    Soil microorganisms play important roles in nitrogen cycling within forest ecosystems. Current research has revealed that a wider variety of microorganisms, with unexpected diversity in their functions and phylogenies, are involved in the nitrogen cycle than previously thought, including nitrogen-fixing bacteria, ammonia-oxidizing bacteria and archaea, heterotrophic nitrifying microorganisms, and anammox bacteria, as well as denitrifying bacteria, archaea, and fungi. However, the vast majority of this research has been focused in temperate regions, and relatively little is known regarding the ecology of nitrogen-cycling microorganisms within tropical and subtropical ecosystems. Tropical forests are characterized by relatively high precipitation, low annual temperature fluctuation, high heterogeneity in plant diversity, large amounts of plant litter, and unique soil chemistry. For these reasons, regulation of the nitrogen cycle in tropical forests may be very different from that of temperate ecosystems. This is of great importance because of growing concerns regarding the effect of land use change and chronic-elevated nitrogen deposition on nitrogen-cycling processes in tropical forests. In the context of global change, it is crucial to understand how environmental factors and land use changes in tropical ecosystems influence the composition, abundance and activity of key players in the nitrogen cycle. In this review, we synthesize the limited currently available information regarding the microbial communities involved in nitrogen fixation, nitrification and denitrification, to provide deeper insight into the mechanisms regulating nitrogen cycling in tropical forest ecosystems. We also highlight the large gaps in our understanding of microbially mediated nitrogen processes in tropical forest soils and identify important areas for future research. PMID:27468277

  5. Assessment of free-living nitrogen fixing microorganisms for commercial nitrogen fixation. [economic analysis of ammonia production

    Science.gov (United States)

    Stokes, B. O.; Wallace, C. J.

    1978-01-01

    Ammonia production by Klebsiella pneumoniae is not economical with present strains and improving nitrogen fixation to its theoretical limits in this organism is not sufficient to achieve economic viability. Because the value of both the hydrogen produced by this organism and the methane value of the carbon source required greatly exceed the value of the ammonia formed, ammonia (fixed nitrogen) should be considered the by-product. The production of hydrogen by KLEBSIELLA or other anaerobic nitrogen fixers should receive additional study, because the activity of nitrogenase offers a significant improvement in hydrogen production. The production of fixed nitrogen in the form of cell mass by Azotobacter is also uneconomical and the methane value of the carbon substrate exceeds the value of the nitrogen fixed. Parametric studies indicate that as efficiencies approach the theoretical limits the economics may become competitive. The use of nif-derepressed microorganisms, particularly blue-green algae, may have significant potential for in situ fertilization in the environment.

  6. Diversity of free-living nitrogen-fixing microorganisms in wastelands of copper mine tailings during the process of natural ecological restoration.

    Science.gov (United States)

    Zhan, Jing; Sun, Qingye

    2011-01-01

    Biological nitrogen fixing is an important source of nitrogen input in the natural ecological restoration of mine wastelands. The diversity of nifH genes in tailings samples under different plant communities in Yangshanchong and Tongguanshan wastelands in Tongling, was analyzed using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) approach. The nitrogen-fixing microorganism community in the upper layer of tailings of Tongguanshan wasteland discarded in 1980 showed higher Shannon-Wiener diversity index than that in Yangshanchong wasteland discarded in 1991. The diversity of nifH genes in Yangshanchong wasteland of copper mine tailings did not display a consistent successional tendency with development of plant communities during the process of natural ecological restoration. Phylogenetic analysis of 25 sequences of nifH gene fragments retrieved from the DGGE gels indicated that there were mainly two taxa of free-living nitrogen-fixing microorganisms, Proteobacteria and Cyanobacteria living in the wastelands investigated, most of which were unique and uncultured. Canonical correspondence analysis (CCA) based on the relationship between band patterns of DGGE profile and physico-chemical properties of tailings samples showed that the diversity of nifH genes in different tailing samples was mainly affected by loss of ignition, water content, pH and available Zn contents of wastelands. The dominant plant species and development period of plant communities by ameliorating pH, reducing the toxicity of heavy metals, increasing organic matter and water content affected the diversity and structure of the free-living nitrogen-fixing microorganisms in wastelands of copper mine tailings.

  7. Diversity of free-living nitrogen-fixing microorganisms in wastelands of copper mine tailings during the process of natural ecological restoration

    Institute of Scientific and Technical Information of China (English)

    Jing Zhan; Qingye Sun

    2011-01-01

    Biological nitrogen fixing is an important source of nitrogen input in the natural ecological restoration of mine wastelands.The diversity of nifH genes in tailings samples under different plant communities in Yangshanchong and Tongguanshan wastelands in Tongling, was analyzed using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) approach.The nitrogen-fixing microorganism community in the upper layer of tailings of Tongguanshan wasteland discarded in 1980 showed higher Shannon-Wiener diversity index than that in Yangshanchong wasteland discarded in 1991.The diversity of nifH genes in Yangshanchong wasteland of copper mine tailings did not display a consistent successional tendency with development of plant communities during the process of natural ecological restoration.Phylogenetic analysis of 25 sequences of nifH gene fragments retrieved from the DGGE gels indicated that there were mainly two taxa of free-living nitrogen-fixing microorganisms, Proteobacteria and Cyanobacteria living in the wastelands investigated, most of which were unique and uncultured.Canonical correspondence analysis (CCA) based on the relationship between band patterns of DGGE profile and physico-chemical properties of tailings samples showed that the diversity of nifH genes in different tailing samples was mainly affected by loss of ignition, water content, pH and available Zn contents of wastelands.The dominant plant species and development period of plant communities by ameliorating pH, reducing the toxicity of heavy metals, increasing organic matter and water content affected the diversity and structure of the free-living nitrogenfixing microorganisms in wastelands of copper mine tailings.

  8. Diversity of free-living nitrogen-fixing microorganisms in the rhizosphere and non-rhizosphere of pioneer plants growing on wastelands of copper mine tailings.

    Science.gov (United States)

    Zhan, Jing; Sun, Qingye

    2012-03-20

    The composition of free-living nitrogen-fixing microbial communities in rhizosphere and non-rhizosphere of pioneer plants growing on wastelands of copper mine tailings was studied by the presence of nifH genes using Polymerase Chain Reaction-Denatured Gradient Gel Electrophoresis (PCR-DGGE) approach. Eleven rhizosphere tailing samples and nine non-rhizosphere tailing samples from six plant communities were collected from two wastelands with different discarded periods. The nested PCR method was used to amplify the nifH genes from environmental DNA extracted from tailing samples. Twenty-two of 37 nifH gene sequences retrieved from DGGE gels clustered in Proteobacteria (α-Proteobacteria and β-Proteobacteria) and 15 nifH gene sequences in Cyanobacteria. Most nifH gene fragments sequenced were closely related to uncultured bacteria and cyanobacteria and exhibited less than 90% nucleotide acid identity with bacteria in the database, suggesting that the nifH gene fragments detected in copper mine tailings may represent novel sequences of nitrogen-fixers. Our results indicated that the non-rhizosphere tailings generally presented higher diversity of nitrogen-fixers than rhizosphere tailings and the diversity of free-living nitrogen-fixers in tailing samples was mainly affected by the physico-chemical properties of the wastelands and plant species, especially the changes of nutrient and heavy metal contents caused by the colonization of plant community. Copyright © 2011 Elsevier GmbH. All rights reserved.

  9. Detection of S-nitrosothiol and nitrosylated proteins in Arachis hypogaea functional nodule: response of the nitrogen fixing symbiont.

    Science.gov (United States)

    Maiti, Debasis; Sarkar, Tuhin Subhra; Ghosh, Sanjay

    2012-01-01

    To detect the presence of NO, ROS and RNS in nodules of crack entry legumes, we used Arachis hypogaea functional nodule. The response of two cognate partner rhizobia was compared towards NO and GSNO using S. meliloti and Bradyrhizobium sp NC921001. ROS, NO, nitrosothiol and bacteroids were detected by fluorescence microscopy. Redox enzymes and thiol pools were detected biochemically. Nitrosothiols were found to be present but ROS and NO were absent in A. hypogaea nodule. A number of S-nitrosylated proteins were also detected. The total thiol pool and most of the redox enzymes were low in nodule cytosolic extract but these were found to be high in the partner microorganisms indicating partner rhizobia could protect the nodule environment against the nitrosothiols. Both S. meliloti and Bradyrhizobium sp NC921001 were found to contain GSNO reductase. Interestingly, there was a marked difference in growth pattern between S. meliloti and Bradyrhizobium sp in presence of sodium nitroprusside (SNP) and S-nitrosoglutathione (GSNO). Bradyrhizobium sp was found to be much more tolerant to NO donor compounds than the S. meliloti. In contrast, S. meliloti showed resistance to GSNO but was sensitive to SNP. Together our data indicate that nodule environment of crack entry legumes is different than the nodules of infection mode entry in terms of NO, ROS and RNS. Based on our biochemical characterization, we propose that exchange of redox molecules and reactive chemical species is possible between the bacteroid and nodule compartment.

  10. Detection of S-nitrosothiol and nitrosylated proteins in Arachis hypogaea functional nodule: response of the nitrogen fixing symbiont.

    Directory of Open Access Journals (Sweden)

    Debasis Maiti

    Full Text Available To detect the presence of NO, ROS and RNS in nodules of crack entry legumes, we used Arachis hypogaea functional nodule. The response of two cognate partner rhizobia was compared towards NO and GSNO using S. meliloti and Bradyrhizobium sp NC921001. ROS, NO, nitrosothiol and bacteroids were detected by fluorescence microscopy. Redox enzymes and thiol pools were detected biochemically. Nitrosothiols were found to be present but ROS and NO were absent in A. hypogaea nodule. A number of S-nitrosylated proteins were also detected. The total thiol pool and most of the redox enzymes were low in nodule cytosolic extract but these were found to be high in the partner microorganisms indicating partner rhizobia could protect the nodule environment against the nitrosothiols. Both S. meliloti and Bradyrhizobium sp NC921001 were found to contain GSNO reductase. Interestingly, there was a marked difference in growth pattern between S. meliloti and Bradyrhizobium sp in presence of sodium nitroprusside (SNP and S-nitrosoglutathione (GSNO. Bradyrhizobium sp was found to be much more tolerant to NO donor compounds than the S. meliloti. In contrast, S. meliloti showed resistance to GSNO but was sensitive to SNP. Together our data indicate that nodule environment of crack entry legumes is different than the nodules of infection mode entry in terms of NO, ROS and RNS. Based on our biochemical characterization, we propose that exchange of redox molecules and reactive chemical species is possible between the bacteroid and nodule compartment.

  11. Research Progress on Functional Genomics of Nitrogen-fixing Microorganisms and Industrial Development of Bio-fertilizer%根际固氮微生物功能基因组及微生物肥料研究进展

    Institute of Scientific and Technical Information of China (English)

    燕永亮; 李力; 李俊

    2011-01-01

    固氮微生物为植物提供了大量的氮素来源,开展生物固氮的研究对缓解我国粮食短缺、能源消耗、环境污染等重大社会问题具有重要意义.综述了国际上关于固氮微生物功能基因组学以及微生物肥料产业的发展状况,并以巴西、阿根廷等国家在农业生产中的节肥增产的成功经验进行了案例分析.针对目前我国微生物肥料产业的发展状况以及行业前景提出了建设性意见,认为在功能基因组学平台上加强对固氮微生物基因表达调控及与宿主互作机制的研究将为后续开发性能优良的高效固氮、综合抗逆的固氮微生物工程菌株奠定重要理论基础.%Nitrogen-fixing microorganism provides large amount of nitrogen sources to crops. It is of great significance to carry out biological nitrogen fixation research in solving great social issues of grain shortage, energy consumption and environmental pollution in China. This paper reviews the current development status on nitrogen-fixing microorganism and bio-fertilizer industry in the world, and makes case analysis on successful cases in applying bio-fertilizer during agricultural production in Brazil, Argentina and other countries. The authors also put forward constructive suggestions for the development of industrial bio-fertilizer in China, such as studies on mechanisms of nif gene expression and regulation, together with interaction of microbe-plant at the functional genomic level must be strengthened. This will lay an important theoretical basis for developing comprehensive engineering strains with high nitrogen fixation and stress tolerance ability.

  12. Design and application of an oligonucleotide microarray (nifH-phylochip) for nifH gene-based detection of nitrogen-fixing prokaryotes

    OpenAIRE

    Zhang, Lei

    2005-01-01

    Biological nitrogen fixation, the enzymatic reduction of N:sub:2:/sub: to ammonium, is anexclusively prokaryotic process which is crucial to balance the global nitrogen cycle.The key enzyme of this process -- nitrogenase -- has been highly conserved throughevolution. Transcription of one of the nitrogenase structural genes, nifH, provides apractical genetic marker for nitrogen fixing conditions and diazotrophic activities, as itis not constitutively expressed and is regulated in response to f...

  13. Utilization of nitrogen fixing trees

    Energy Technology Data Exchange (ETDEWEB)

    Brewbaker, J.L.; Beldt, R. van den; MacDicken, K.; Budowski, G.; Kass, D.C.L.; Russo, R.O.; Escalante, G.; Herrera, R.; Aranguren, J.; Arkcoll, D.B.; Doebereinger, J. (cord.)

    1983-01-01

    Six papers from the symposium are noted. Brewbaker, J.L., Beldt, R. van den, MacDicken, K. Fuelwood uses and properties of nitrogen-fixing trees, pp 193-204, (Refs. 15). Includes a list of 35 nitrogen-fixing trees of high fuelwood value. Budowski, G.; Kass, D.C.L.; Russo, R.O. Leguminous trees for shade, pp 205-222, (Refs. 68). Escalante, G., Herrera, R., Aranguren, J.; Nitrogen fixation in shade trees (Erythrina poeppigiana) in cocoa plantations in northern Venezuela, pp 223-230, (Refs. 13). Arkcoll, D.B.; Some leguminous trees providing useful fruits in the North of Brazil, pp 235-239, (Refs. 13). This paper deals with Parkia platycephala, Pentaclethra macroloba, Swartzia sp., Cassia leiandra, Hymenaea courbaril, dipteryz odorata, Inga edulis, I. macrophylla, and I. cinnamonea. Baggio, A.J.; Possibilities of the use of Gliricidia sepium in agroforestry systems in Brazil, pp 241-243; (Refs. 15). Seiffert, N.F.; Biological nitrogen and protein production of Leucaena cultivars grown to supplement the nutrition of ruminants, pp 245-249, (Refs. 14). Leucaena leucocephala cv. Peru, L. campina grande (L. leucocephala), and L. cunningham (L. leucocephalae) were promising for use as browse by beef cattle in central Brazil.

  14. [Toxicological evaluation of biopreparations on the basis of nitrogen-fixing bacteria].

    Science.gov (United States)

    Omel'ianets', T H; Holovach, T M

    2009-01-01

    A comparative analysis of results of toxicological research of microbiological preparations on the basis of different species of nitrogen-fixing microorganisms of Azotobacter, Agrobacterium, Azospirillum general and pathogenic properties of strains-producers has been carried out. A possibility to improve methodical principles of toxicological estimation and hygienic regulation of associative nitrogen-fixing microorganisms-producers and preparations on their basis in the industrial objects and environment is substantiated. The paper is presented in Ukrainian.

  15. Nitrogen-fixing bacteria in Mediterranean seagrass (Posidonia oceanica) roots

    KAUST Repository

    Garcias Bonet, Neus

    2016-03-09

    Biological nitrogen fixation by diazotrophic bacteria in seagrass rhizosphere and leaf epiphytic community is an important source of nitrogen required for plant growth. However, the presence of endophytic diazotrophs remains unclear in seagrass tissues. Here, we assess the presence, diversity and taxonomy of nitrogen-fixing bacteria within surface-sterilized roots of Posidonia oceanica. Moreover, we analyze the nitrogen isotopic signature of seagrass tissues in order to notice atmospheric nitrogen fixation. We detected nitrogen-fixing bacteria by nifH gene amplification in 13 out of the 78 roots sampled, corresponding to 9 locations out of 26 meadows. We detected two different types of bacterial nifH sequences associated with P. oceanica roots, which were closely related to sequences previously isolated from the rhizosphere of a salt marsh cord grass and a putative anaerobe. Nitrogen content of seagrass tissues showed low isotopic signatures in all the sampled meadows, pointing out the atmospheric origin of the assimilated nitrogen by seagrasses. However, this was not related with the presence of endophytic nitrogen fixers, suggesting the nitrogen fixation occurring in rhizosphere and in the epiphytic community could be an important source of nitrogen for P. oceanica. The low diversity of nitrogen-fixing bacteria reported here suggests species-specific relationships between diazotrophs and P. oceanica, revealing possible symbiotic interactions that could play a major role in nitrogen acquisition by seagrasses in oligotrophic environments where they form lush meadows.

  16. Detection of microorganisms using terahertz metamaterials.

    Science.gov (United States)

    Park, S J; Hong, J T; Choi, S J; Kim, H S; Park, W K; Han, S T; Park, J Y; Lee, S; Kim, D S; Ahn, Y H

    2014-05-16

    Microorganisms such as fungi and bacteria cause many human diseases and therefore rapid and accurate identification of these substances is essential for effective treatment and prevention of further infections. In particular, contemporary microbial detection technique is limited by the low detection speed which usually extends over a couple of days. Here we demonstrate that metamaterials operating in the terahertz frequency range shows promising potential for use in fabricating the highly sensitive and selective microbial sensors that are capable of high-speed on-site detection of microorganisms in both ambient and aqueous environments. We were able to detect extremely small amounts of the microorganisms, because their sizes are on the same scale as the micro-gaps of the terahertz metamaterials. The resonant frequency shift of the metamaterials was investigated in terms of the number density and the dielectric constants of the microorganisms, which was successfully interpreted by the change in the effective dielectric constant of a gap area.

  17. Competition and facilitation between unicellular nitrogen-fixing cyanobacteria and non-nitrogen-fixing phytoplankton species

    NARCIS (Netherlands)

    Agawin, N.S.; Rabouille, S.; Veldhuis, M.; Servatius, L.; Hol, S.; van Overzee, H.M.J.; Huisman, J.

    2007-01-01

    Abstract: Recent discoveries show that small unicellular nitrogen-fixing cyanobacteria are more widespread than previously thought and can make major contributions to the nitrogen budget of the oceans. We combined theory and experiments to investigate competition for nitrogen and light between these

  18. Identification of Nitrogen-Fixing Genes and Gene Clusters from Metagenomic Library of Acid Mine Drainage

    OpenAIRE

    Zhimin Dai; Xue Guo; Huaqun Yin; Yili Liang; Jing Cong; Xueduan Liu

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large...

  19. Nitrogen fixing bacterial diversity in a tropical estuarine sediments.

    Science.gov (United States)

    Thajudeen, Jabir; Yousuf, Jesmi; Veetil, Vipindas Puthiya; Varghese, Sherin; Singh, Arvind; Abdulla, Mohamed Hatha

    2017-02-01

    Microorganisms play a significant role in biogeochemical cycles, especially in the benthic and pelagic ecosystems. Role of environmental parameters in regulating the diversity, distribution and physiology of these microorganisms in tropical marine environment is not well understood. In this study, we have identified dinitrogen (N2) fixing bacterial communities in the sediments by constructing clone libraries of nitrogenase (nifH) gene from four different stations in the Cochin estuary, along the southeastern Arabian Sea. N2 fixing bacterial clones revealed that over 20 putative diazotrophs belong to alpha-, beta-, gamma-, delta- and epsilon- proteobacteria and firmicutes. Predominant genera among these were Bradyrhizobium sp. (α-proteobacteria), Dechloromonas sp. (β-proteobacteria); Azotobactor sp., Teredinibacter sp., Methylobacter sp., Rheinheimera sp. and Marinobacterium sp. (γ-proteobacteria); Desulfobacter sp., Desulfobulbus sp. and Desulfovibrio sp. (δ -proteobacteria); Arcobacter sp. and Sulfurospirillum sp. (ε-proteobacteria). Nostoc sp. was solely identified among the cyanobacterial phylotype. Nitrogen fixing Sulfate reducing bacteria (SRBs) such as Desulfobulbus sp., Desulfovibrio sp., Desulfuromonas sp., Desulfosporosinus sp., Desulfobacter sp., were also observed in the study. Most of the bacterial nifH sequences revealed that the identities of N2 fixing bacteria were less than 95% similar to that available in the GenBank database, which suggested that the sequences were of novel N2 fixing microorganisms. Shannon-Weiner diversity index of nifH gene ranged from 2.95 to 3.61, indicating an inflated diversity of N2 fixing bacteria. Canonical correspondence analysis (CCA) implied positive correlation among nifH diversity, N2 fixation rate and other environmental variables.

  20. Nitrogen Fixing Legumes in the Plant Communities

    Directory of Open Access Journals (Sweden)

    M. A.A. Al-Fredan

    2011-01-01

    Full Text Available Problems statement: Numerous authors have used energetic to explain the ecological success of N-fixing plants. Legume biodiversity assessment, species dynamics, nitrogen fixation monitoring and environment impact assessment of these ecological events in Al-Hassa Oasis, Saudi Arabia are rare and need to be continuous and more frequent. Approach: Thus the objectives of this study were to analyze legume abundance within and outside Al-Hassa Oasis and relate it to the distribution of the different genera. Results: Thirty two legume plant species from 20 genera have been recorded within and outside the Oasis. The largest genera were Cassia (4 species, Indigofera (4 and Acacia (3. Annual herbs were the dominant growth form (34% of species recorded, followed by shrubs (28%, perennial herbs (19% and trees (19%. Eighteen alien plant species were recorded (maybe an underestimated number. The nitrogen fixation of the legume plant species in Al-Hassa Oasis was estimated/analyzing the fixing potentiality of these species and nonfixing reference species (Panicum turgidum using the 15N natural abundance method. Species with great nitrogen fixing capacity in Al-Hassa include: Medicago sativa, Vicia faba, Vicia sativa, Melitotus indicus, Dolicus lablab, Melitotus alba and Cliforia ternate. The mean biological fixation contribution of most of the recorded legume plants were high, varying from 3.9% (Indigofera argentea to 64.6% (Medicago sativa. Conclusion: Al-Hassa Oasis is richer than expected based on its location within the desert zone. This study confirms the importance of the Oasis for national flora conservation in the Kingdom. results showed a good potential for use of the 15N natural abundance methodology for evaluating the nitrogen fixation ability of the legume plants under field conditions as well as for the estimation of %Ndfa.

  1. Endophytic Actinobacteria and the Interaction of Micromonospora and Nitrogen Fixing Plants.

    Science.gov (United States)

    Trujillo, Martha E; Riesco, Raúl; Benito, Patricia; Carro, Lorena

    2015-01-01

    For a long time, it was believed that a healthy plant did not harbor any microorganisms within its tissues, as these were often considered detrimental for the plant. In the last three decades, the numbers of studies on plant microbe-interactions has led to a change in our view and we now know that many of these invisible partners are essential for the overall welfare of the plant. The application of Next Generation Sequencing techniques is a powerful tool that has permitted the detection and identification of microbial communities in healthy plants. Among the new plant microbe interactions recently reported several actinobacteria such as Micromonospora are included. Micromonospora is a Gram-positive bacterium with a wide geographical distribution; it can be found in the soil, mangrove sediments, and freshwater and marine ecosistems. In the last years our group has focused on the isolation of Micromonospora strains from nitrogen fixing nodules of both leguminous and actinorhizal plants and reported for the first time its wide distribution in nitrogen fixing nodules of both types of plants. These studies have shown how this microoganism had been largely overlooked in this niche due to its slow growth. Surprisingly, the genetic diversity of Micromonospora strains isolated from nodules is very high and several new species have been described. The current data indicate that Micromonospora saelicesensis is the most frequently isolated species from the nodular tissues of both leguminous and actinorhizal plants. Further studies have also been carried out to confirm the presence of Micromonospora inside the nodule tissues, mainly by specific in situ hybridization. The information derived from the genome of the model strain, Micromonospora lupini, Lupac 08, has provided useful information as to how this bacterium may relate with its host plant. Several strategies potentially necessary for Micromonospora to thrive in the soil, a highly competitive, and rough environment, and

  2. Microorganisms detection on substrates using QCL spectroscopy

    Science.gov (United States)

    Padilla-Jiménez, Amira C.; Ortiz-Rivera, William; Castro-Suarez, John R.; Ríos-Velázquez, Carlos; Vázquez-Ayala, Iris; Hernández-Rivera, Samuel P.

    2013-05-01

    Recent investigations have focused on the improvement of rapid and accurate methods to develop spectroscopic markers of compounds constituting microorganisms that are considered biological threats. Quantum cascade lasers (QCL) systems have revolutionized many areas of research and development in defense and security applications, including his area of research. Infrared spectroscopy detection based on QCL was employed to acquire mid infrared (MIR) spectral signatures of Bacillus thuringiensis (Bt), Escherichia coli (Ec) and Staphylococcus epidermidis (Se), which were used as biological agent simulants of biothreats. The experiments were carried out in reflection mode on various substrates such as cardboard, glass, travel baggage, wood and stainless steel. Chemometrics statistical routines such as principal component analysis (PCA) regression and partial least squares-discriminant analysis (PLS-DA) were applied to the recorded MIR spectra. The results show that the infrared vibrational techniques investigated are useful for classification/detection of the target microorganisms on the types of substrates studied.

  3. Evaluation of nutrient limitation in aquatic ecosystems with nitrogen fixing bacteria

    Institute of Scientific and Technical Information of China (English)

    WU Gen-fu; WU Xue-chang; XUAN Xiao-dong; ZHOU Xue-ping

    2006-01-01

    There has always been a great need for simple and accurate bioassays for evaluating nutrient limitation in aquatic ecosystems. Whereas organic carbon is usually considered to be the limiting nutrient for microbial growth in many aquatic ecosystems,there are, however, many water sources that are limited by phosphorus or nitrogen. A method named "nitrogen fixing bacterial growth potential" (NFBGP) test, which is based on pre-culturing ofautochthonous (target) microorganisms was described. The method was applied to evaluate phosphorus or nitrogen nutrient limitation in lake and sewage water samples using an isolate of the nitrogen fixing bacterium, Azorhizobium sp. WS6. The results corresponded well to those from the traditional algal growth potential (AGP) test and the bacterial regrowth potential (BRP) test, suggesting that the NFBGP test is a useful supplementary method for evaluating the limiting nutrient, especially phosphorus, in an aquatic environment.

  4. Endophytic Actinobacteria and The Interaction of Micromonospora and Nitrogen Fixing Plants

    Directory of Open Access Journals (Sweden)

    Martha E Trujillo

    2015-12-01

    Full Text Available For a long time, it was believed that a healthy plant did not harbor any microorganisms within its tissues, as these were often considered detrimental for the plant. In the last three decades, the numbers of studies on plant microbe-interactions has led to a change in our view and we now know that many of these invisible partners are essential for the overall welfare of the plant. The application of Next Generation Sequencing techniques is a powerful tool that has permitted the detection and identification of microbial communities in healthy plants. Among the new plant microbe interactions recently reported several actinobacteria such as Micromonospora are included.Micromonospora is a Gram-positive bacterium with a wide geographical distribution; it can be found in the soil, mangrove sediments, and freshwater and marine ecosistems. In the last years our group has focused on the isolation of Micromonospora strains from nitrogen fixing nodules of both leguminous and actinorhizal plants and reported for the first time its wide distribution in nitrogen fixing nodules of both types of plants. These studies have shown how this microoganism had been largely overlooked in this niche due to its slow growth. Surprisingly, the genetic diversity of Micromonospora strains isolated from nodules is very high and several new species have been described. The current data indicate that Micromonospora saelicesensis is the most frequently isolated species from the nodular tissues of both leguminous and actinorhizal plants. Further studies have also been carried out to confirm the presence of Micromonospora inside the nodule tissues, mainly by specific in-situ hybridization.The information derived from the genome of the model strain, Micromonospora lupini, Lupac 08, has provided useful information as to how this bacterium may relate with its host plant. Several strategies potentially necessary for Micromonospora to thrive in the soil, a highly competitive and rough

  5. Isolation and Characterisation of Endophytic Nitrogen Fixing Bacteria in Sugarcane.

    Science.gov (United States)

    Muangthong, Ampiga; Youpensuk, Somchit; Rerkasem, Benjavan

    2015-04-01

    Endophytic nitrogen fixing bacteria were isolated from the leaves, stems and roots of industrial variety (cv. U-Thong 3; UT3), wild and chewing sugarcane plants grown for 6 weeks in nitrogen (N)-free sand. Eighty nine isolates of endophytic bacteria were obtained on N-free agar. An acetylene reduction assay (ARA) detected nitrogenase activity in all 89 isolates. Three isolates from the chewing (C2HL2, C7HL1 and C34MR1) sugarcane and one isolate from the industrial sugarcane (UT3R1) varieties were characterised, and their responses to different yeast extract concentrations were investigated. Three different responses in nitrogenase activity were observed. Isolates C2HL2 and C7HL1 exhibited major increases with the addition of 0.005% yeast extract, C34MR1 exhibited no response, and UT3R1 exhibited a significant decrease in nitrogenase activity with 0.005% yeast extract. In all the isolates, nitrogenase activity decreased with further increase of the yeast extract to 0.05%. The highest nitrogenase activity was observed in isolates C2HL2 and C7HL1, which had 16S rRNA gene sequences that were closely related to Novosphingobium sediminicola and Ochrobactrum intermedium, respectively.

  6. Biodiversity, abundance, and activity of nitrogen-fixing bacteria during primary succession on a copper mine tailings.

    Science.gov (United States)

    Huang, Li-Nan; Tang, Feng-Zao; Song, Yong-Sheng; Wan, Cai-Yun; Wang, Sheng-Long; Liu, Wei-Qiu; Shu, Wen-Sheng

    2011-12-01

    Microorganisms are important in soil development, inputs and biogeochemical cycling of nutrients and organic matter during early stages of ecosystem development, but little is known about their diversity, distribution, and function in relation to the chemical and physical changes associated with the progress of succession. In this study, we characterized the community structure and activity of nitrogen-fixing microbes during primary succession on a copper tailings. Terminal fragment length polymorphism (T-RFLP) and clone sequencing of nifH genes indicated that different N(2) -fixing communities developed under primary succession. Phylogenetic analysis revealed a diversity of nifH sequences that were mostly novel, and many of these could be assigned to the taxonomic divisions Proteobacteria, Cyanobacteria, and Firmicutes. Members of the Cyanobacteria, mostly affiliated with Nostocales or not closely related to any known organisms, were detected exclusively in the biological soil crusts and represented a substantial fraction of the respective diazotrophic communities. Quantitative PCR (and statistical analyses) revealed that, overall, copy number of nifH sequences increased with progressing succession and correlated with changes in physiochemical properties (including elementary elements such as carbon and nitrogen) and the recorded nitrogenase activities of the tailings. Our study provides an initial insight into the biodiversity and community structure evolution of N(2) -fixing microorganisms in ecological succession of mine tailings. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  7. [DNA homology in various strains of nitrogen-fixing bacteria].

    Science.gov (United States)

    Vardevanian, P O; Minasbekian, L A; Parsadanian, M A

    2000-01-01

    Melting temperature and GC content were evaluated for DNA of some nitrogen-fixing bacteria of Rhizobium leguminosarum and Onobrychis spp. (Adans). The degree of homology between strains of the same species was determined. A combination of thermal denaturing and molecular hybridization can serve as a rapid test for evaluating the genome homology of the organisms compared.

  8. Identification of nitrogen-fixing genes and gene clusters from metagenomic library of acid mine drainage.

    Science.gov (United States)

    Dai, Zhimin; Guo, Xue; Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community.

  9. Identification of nitrogen-fixing genes and gene clusters from metagenomic library of acid mine drainage.

    Directory of Open Access Journals (Sweden)

    Zhimin Dai

    Full Text Available Biological nitrogen fixation is an essential function of acid mine drainage (AMD microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community.

  10. Fate of nitrogen-fixing bacteria in crude oil contaminated wetland ultisol.

    Science.gov (United States)

    John, R C; Itah, A Y; Essien, J P; Ikpe, D I

    2011-09-01

    The effect of crude oil on the growth of legumes (Calopogonium muconoides and Centrosema pubescens) and fate of nitrogen-fixing bacteria in wetland ultisol was investigated using standard cultural techniques. The results revealed observable effects of oil on soil physico-chemistry, plant growth and nodulation as well as on densities of heterotrophic, hydrocarbonoclastic and nitrogen fixing bacteria. The effects however varied with different levels (0.5%, 1%, 5%, 10%, 15% and 20%) of pollution. Ammonium and nitrate levels were high in the unpolluted soil but decreased with increase in pollution levels. Nitrite was not detected in contaminated soil probably due to the reduction in numbers of nitrogen fixers, from 5.26 ± 0.23 × l0(6)cfu/g in unpolluted soil to 9.0 ± 0.12 × 10(5) and 2.2 ± 0.08 × l0(5) cfu/g in soils with 5% and 20% levels of pollution respectively. The contaminated soil also exhibited gross reduction in the nodulation of legumes. A range of 13-57 nodules was observed in legumes from polluted soil against 476 nodules recorded for plants cultured on unpolluted soil. The heterogeneity of the microbial loads between oil-polluted and unpolluted soil were statistically significant (p bacteria (r = 0.91) and that of hydrocarbon utilizing bacteria (r = 0.86). On the other hand, relationships between the densities of nitrogen fixing bacteria and total hydrocarbons content was negative (r = -0.30) while positive relationships were recorded between the densities of different microbial groups and treatment periods except at 15% and 20% pollution levels. The LSD tests revealed highly significant differences (p nitrogen-fixing bacteria and total loss of soil fertility attributable to petroleum hydrocarbon contamination in the Niger Delta ultisol.

  11. Investigating the effects of metals on phenol oxidase-producing nitrogen-fixing Azotobacter chroococcum.

    Science.gov (United States)

    Herter, Susanne; Schmidt, Marlen; Thompson, Mark L; Mikolasch, Annett; Schauer, Frieder

    2013-06-01

    Expression of phenol oxidases (PO) in bacteria is often observed during physiological and morphological changes; in the nitrogen-fixing strain Azotobacter chroococcum SBUG 1484, it is accompanied by the formation of encysted cells and melanin. Herein, we studied the effects of copper and the depletion of the nitrogenase-relevant metals molybdenum and iron on physiological characteristics such as culture pigmentation, release of ortho-dihydroxylated melanin precursors, and expression of PO activity in A. chroococcum. Biomass production and melanogenic appearance were directly affected by the depletion of either iron or molybdenum, or in the absence of both metals. Only nitrogen-fixing cells growing in the presence of both metals and cultures supplemented with iron (molybdenum starved) showed the ability to produce an intensively brown-black melanin pigment typically associated with A. chroococcum. Accordingly, PO production was only detected in the presence of both metals and in iron-supplemented cultures starved of molybdenum. The total amount of catecholate siderophores produced by nitrogen-fixing melanogenic cells was considerably higher than in cultures starved of metal ions. Induction of enhanced PO activity was stimulated by additional copper sulfate, possibly related to cellular processes involved in the detoxification of this particular metal, and revealed distinct release of the ortho-dihydroxylated melanin precursors catechol and 3,4-dihydroxybenzoic acid.

  12. Biofilm formation enables free-living nitrogen-fixing rhizobacteria to fix nitrogen under aerobic conditions.

    Science.gov (United States)

    Wang, Di; Xu, Anming; Elmerich, Claudine; Ma, Luyan Z

    2017-07-01

    The multicellular communities of microorganisms known as biofilms are of high significance in agricultural setting, yet it is largely unknown about the biofilm formed by nitrogen-fixing bacteria. Here we report the biofilm formation by Pseudomonas stutzeri A1501, a free-living rhizospheric bacterium, capable of fixing nitrogen under microaerobic and nitrogen-limiting conditions. P. stutzeri A1501 tended to form biofilm in minimal media, especially under nitrogen depletion condition. Under such growth condition, the biofilms formed at the air-liquid interface (termed as pellicles) and the colony biofilms on agar plates exhibited nitrogenase activity in air. The two kinds of biofilms both contained large ovoid shape 'cells' that were multiple living bacteria embedded in a sac of extracellular polymeric substances (EPSs). We proposed to name such large 'cells' as A1501 cyst. Our results suggest that the EPS, especially exopolysaccharides enabled the encased bacteria to fix nitrogen while grown under aerobic condition. The formation of A1501 cysts was reversible in response to the changes of carbon or nitrogen source status. A1501 cyst formation depended on nitrogen-limiting signaling and the presence of sufficient carbon sources, yet was independent of an active nitrogenase. The pellicles formed by Azospirillum brasilense, another free-living nitrogen-fixing rhizobacterium, which also exhibited nitrogenase activity and contained the large EPS-encapsuled A1501 cyst-like 'cells'. Our data imply that free-living nitrogen-fixing bacteria could convert the easy-used carbon sources to exopolysaccharides in order to enable nitrogen fixation in a natural aerobic environment.

  13. Enriching vermicompost by nitrogen fixing and phosphate solubilizing bacteria.

    Science.gov (United States)

    Kumar, V; Singh, K P

    2001-01-01

    The effect of inoculation of vermicompost with nitrogen-fixing Azotobacter chroococcum strains, Azospirillum lipoferum and the phosphate solubilizing Pseudomonas striata on N and P contents of the vermicompost was assessed. Inoculation of N2 fixing bacteria into vermicompost increased contents of N and P. Enriching vermicompost with rock phosphate improved significantly the available P when inoculated with P. striata. During the incubation period, the inoculated bacterial strains proliferated rapidly, fixed N and solubilized added and native phosphate.

  14. Nitrogen fixing bacteria in the family Acetobacteraceae and their role in agriculture.

    Science.gov (United States)

    Reis, Veronica Massena; Teixeira, Kátia Regina dos Santos

    2015-08-01

    For centuries, the Acetobacteraceae is known as a family that harbors many species of organisms of biotechnological importance for industry. Nonetheless, since 1988 representatives of this family have also been described as nitrogen fixing bacteria able to plant growth promotion by a variety of mechanisms. Nitrogen fixation is a biological process that guarantees that the atmospheric N2 is incorporated into organic matter by several bacterial groups. Most representatives of this group, also known as diazotrophic, are generally associated with soil rhizosphere of many plants and also establishing a more specific association living inside roots, leaves, and others plants tissues as endophyte. Their roles as plant growth-promoting microorganisms are generally related to increase in plant biomass, phosphate and other mineral solubilization, and plant pathogen control. Here, we report many of these plant growth-promoting processes related to nitrogen fixing species already described in Acetobacteraceae family, especially Gluconacetobacter diazotrophicus and their importance to agriculture. In addition, a brief review of the state of art of the phylogenetics, main physiological and biochemical characteristics, molecular and functional genomic data of this group of Acetobacteraceae is presented.

  15. Improved RDX detoxification with starch addition using a novel nitrogen-fixing aerobic microbial consortium from soil contaminated with explosives.

    Science.gov (United States)

    Khan, Muhammad Imran; Yang, Jihoon; Yoo, Byungun; Park, Joonhong

    2015-04-28

    In this work, we developed and characterized a novel nitrogen-fixing aerobic microbial consortium for the complete detoxification of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Aerobic RDX biodegradation coupled with microbial growth and nitrogen fixation activity were effectively stimulated by the co-addition of starch and RDX under nitrogen limiting conditions. In the starch-stimulated nitrogen-fixing RDX degradative consortium, the RDX degradation activity was correlated with the xplA and nifH gene copy numbers, suggesting the involvement of nitrogen fixing populations in RDX biodegradation. Formate, nitrite, nitrate, and ammonia were detected as aerobic RDX degradation intermediates without the accumulation of any nitroso-derivatives or NDAB (4-nitro-2,4-diazabutanal), indicating nearly complete mineralization. Pyrosequencing targeting the bacterial 16S rRNA genes revealed that the Rhizobium, Rhizobacter and Terrimonas population increased as the RDX degradation activity increased, suggesting their involvement in the degradation process. These findings imply that the nitrogen-fixing aerobic RDX degrading consortium is a valuable microbial resource for improving the detoxification of RDX-contaminated soil or groundwater, especially when combined with rhizoremediation. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Unusual radioresistance of nitrogen-fixing cultures of Anabaena strains

    Indian Academy of Sciences (India)

    Harinder Singh; Tonina Fernandes; Shree Kumar Apte

    2010-09-01

    Nitrogen-fixing cultures of two species of the filamentous, heterocystous cyanobacterium Anabaena, namely Anabaena sp. strain L-31 and Anabaena torulosa were found to be highly tolerant to 60Co gamma radiation. No adverse effect on diazotrophic growth and metabolism were observed up to a dose of 5 kGy. At higher doses, radiation tolerance showed a correspondence with the inherent osmotolerance, with Anabaena L-31 being the more radiation tolerant as well as osmotolerant strain. In Anabaena L-31, exposure to 6 kGy of gamma rays resulted in genome disintegration, but did not reduce viability. Irradiation delayed heterocyst differentiation and nitrogen fixation, and marginally affected diazotrophic growth. All the affected parameters recovered after a short lag, without any discernible post-irradiation phenotype. The radiation tolerance of these Gram-negative photoautodiazotrophs is comparable with that of the adiazotrophic photoautotrophic cyanobacterium Chroococcidiopsis or adiazotrophic heterotroph Deinococcus radiodurans. This is the first report of extreme radioresistance in nitrogen-fixing Anabaena cultures.

  17. Detection of extracellular enzymatic activity in microorganisms ...

    African Journals Online (AJOL)

    sunny t

    2015-09-18

    Sep 18, 2015 ... bacterial and 14 fungi strains that presented positive lipolytic activity were obtained by detection through Rhodamine B ... The samples were placed in plastic bags, then ..... The ecology of chitin degradation. In: Marshall KC.

  18. Labeled Antimicrobial Peptides for Detection of Microorganisms

    Science.gov (United States)

    2008-12-01

    Beer , C, Koka, R. and Wang, X., 2001: Solid-Phase Capture of Proteins, Spores, and Bacteria. Applied and Environmental Microbiology , 67: 1300-1307. Yu...detection but often lack stability and sensitivity. Current biosensor technologies using fluorescently labeled antibodies are generally capable of...biosensor. J. ofRapid Methods and Automation in Microbiology , 9: 241- 257. Demarco, D. R. and Lim, D. Y., 2002: Detection of Escherichia coli 0157:H7

  19. Enumeration and Identification of Nitrogen-Fixing Bacteria from Forage Grass Roots

    OpenAIRE

    Wright, Sara F.; Weaver, R. W.

    1981-01-01

    Root-soil cores were collected from forage grasses growing in a subtropical region of Texas and tested for acetylene reduction activity. The population density of nitrogen-fixing bacteria was measured, using various media and incubation conditions. Bacteria were confirmed as nitrogen fixing, using the acetylene reduction assay, and were classified according to standard biochemical and cultural methods. The majority of the nitrogen-fixing bacteria isolated from roots were Enterobacter cloacae ...

  20. Effect of Nanohexaconazole on Nitrogen Fixing Blue Green Algae and Bacteria.

    Science.gov (United States)

    Kumar, Rajesh; Gopal, Madhuban; Pabbi, Sunil; Paul, Sangeeta; Alam, Md Imteyaz; Yadav, Saurabh; Nair, Kishore Kumar; Chauhan, Neetu; Srivastava, Chitra; Gogoi, Robin; Singh, Pradeep Kumar; Goswami, Arunava

    2016-01-01

    Nanohexaconazole is a highly efficient fungicide against Rhizoctonia solani. Nanoparticles are alleged to adversely affect the non-target organisms. In order to evaluate such concern, the present study was carried out to investigate the effect of nanohexaconazole and its commercial formulation on sensitive nitrogen fixing blue green algae (BGA) and bacteria. Various activities of algae and bacteria namely growth, N-fixation, N-assimilation, Indole acetic acid (IAA) production and phosphate solubilization were differently affected in the presence of hexaconazole. Although, there was stimulatory to slightly inhibitory effect on the growth measurable parameters of the organisms studied at the recommended dose of nanohexaconazole, but its higher dose was inhibitory to all these microorganisms. On the other hand, the recommended as well as higher dose of commercial hexaconazole showed much severe inhibition of growth and metabolic activity of these organisms as compared to the nano preparation. The uses of nanohexazconazole instead of hexaconazole as a fungicide will not only help to control various fungal pathogens but also sustain the growth and activity of these beneficial microorganisms for sustaining soil fertility and productivity.

  1. What Does It Take to Evolve A Nitrogen-Fixing Endosymbiosis?

    NARCIS (Netherlands)

    Geurts, Rene; Xiao, Ting Ting; Reinhold-Hurek, Barbara

    2016-01-01

    Plant rhizo- and phyllospheres are exposed to a plethora of nitrogen-fixing bacteria, providing opportunities for the establishment of symbiotic associations. Nitrogen-fixing endosymbioses are most profitable and have evolved more than ten times in the angiosperms. This suggests that the evolutio

  2. What Does It Take to Evolve A Nitrogen-Fixing Endosymbiosis?

    NARCIS (Netherlands)

    Geurts, Rene; Xiao, Ting Ting; Reinhold-Hurek, Barbara

    2016-01-01

    Plant rhizo- and phyllospheres are exposed to a plethora of nitrogen-fixing bacteria, providing opportunities for the establishment of symbiotic associations. Nitrogen-fixing endosymbioses are most profitable and have evolved more than ten times in the angiosperms. This suggests that the

  3. Characterization of nitrogen-fixing bacteria isolated from field-grown barley, oat, and wheat.

    Science.gov (United States)

    Venieraki, Anastasia; Dimou, Maria; Vezyri, Eleni; Kefalogianni, Io; Argyris, Nikolaos; Liara, Georgia; Pergalis, Panagiotis; Chatzipavlidis, Iordanis; Katinakis, Panagiotis

    2011-08-01

    Diazotrophic bacteria were isolated from the rhizosphere of field-grown Triticum aestivum, Hordeum vulgare, and Avena sativa grown in various regions of Greece. One isolate, with the highest nitrogen-fixation ability from each of the eleven rhizospheres, was selected for further characterisation. Diazotrophic strains were assessed for plant-growth-promoting traits such as indoleacetic acid production and phosphate solubilisation. The phylogenies of 16S rRNA gene of the selected isolates were compared with those based on dnaK and nifH genes. The constructed trees indicated that the isolates were members of the species Azospirillum brasilense, Azospirillum zeae, and Pseudomonas stutzeri. Furthermore, the ipdC gene was detected in all A. brasilence and one A. zeae isolates. The work presented here provides the first molecular genetic evidence for the presence of culturable nitrogen-fixing P. stutzeri and A. zeae associated with field-grown A. sativa and H. vulgare in Greece.

  4. Detection of extracellular proteases from microorganisms on agar plates

    Directory of Open Access Journals (Sweden)

    Alane Beatriz Vermelho

    1996-12-01

    Full Text Available We present herein an improved assay for detecting the presence of extracellular proteases from microorganisms on agar plates. Using different substrates (gelatin, BSA, hemoglobin incorporated into the agar and varying the culture medium composition, we were able to detect proteolytic activities from Pseudomonas aeruginosa, Micrococcus luteus and Serratia marcescens as well as the influence that these components displayed in the expression of these enzymes. For all microorganisms tested we found that in agar-BHI or yeast extract medium containing gelatin the sensitivity of proteinase detection was considerably greater than in BSA-agar or hemoglobin-agar. However, when BSA or hemoglobin were added to the culture medium, there was an increase in growth along with a marked reduction in the amount of proteinase production. In the case of M. luteus the incorporation of glycerol in BHI or yeast extract gelatin-agar induced protease liberation. Our results indicate that the technique described here is of value for detecting extracellular proteases directly in the culture medium, by means of a qualitative assay, simple, inexpensive, straight forward method to assess the presence of the proteolytic activity of a given microorganism colony with great freedom in substrate selection.

  5. Rhizosphere-bacterial community in Eperua falcata (Caesalpiniaceae) a putative nitrogen-fixing tree from French Guiana rainforest.

    Science.gov (United States)

    Villadas, P J; Fernández-López, M; Ramírez-Saad, H; Toro, N

    2007-02-01

    The rainforest of French Guiana is still largely unaffected by human activity. Various pristine sites like the Paracou Research Station are devoted to study this tropical ecosystem. We used culture-independent techniques, like polymerase chain reaction-temperature gradient gel electrophoresis, and construction of clone libraries of partial 16S rRNA and nifH genes, to analyze the composition of the bacterial community in the rhizosphere of mature trees of Eperua falcata and Dicorynia guianensis, both species within the Caesalpiniaceae family. E. falcata is one of the more abundant pioneer tree species in this ecosystem and so far, no root nodules have ever been found. However, its nitrogen-fixing status is regarded as "uncertain", whereas D. guianensis is clearly considered a non-nitrogen-fixing plant. The rhizospheres of these mature trees contain specific bacterial communities, including several currently found uncultured microorganisms. In these communities, there are putative nitrogen-fixing bacteria specifically associated to each tree: D. guianensis harbors several Rhizobium spp. and E. falcata members of the genera Burkholderia and Bradyrhizobium. In addition, nifH sequences in the rhizosphere of the latter tree were very diverse. Retrieved sequences were related to bacteria belonging to the alpha-, beta-, and gamma-Proteobacteria in the E. falcata rhizoplane, whereas only two sequences related to gamma-Proteobacteria were found in D. guianensis. Differences in the bacterial communities and the abundance and diversity of nifH sequences in E. falcata rhizosphere suggest that this tree could obtain nitrogen through a nonnodulating bacterial interaction.

  6. An Alternative Approach to "Identification of Unknowns": Designing a Protocol to Verify the Identities of Nitrogen Fixing Bacteria.

    Science.gov (United States)

    Martinez-Vaz, Betsy M; Denny, Roxanne; Young, Nevin D; Sadowsky, Michael J

    2015-12-01

    Microbiology courses often include a laboratory activity on the identification of unknown microbes. This activity consists of providing students with microbial cultures and running biochemical assays to identify the organisms. This approach lacks molecular techniques such as sequencing of genes encoding 16S rRNA, which is currently the method of choice for identification of unknown bacteria. A laboratory activity was developed to teach students how to identify microorganisms using 16S rRNA polymerase chain reaction (PCR) and validate microbial identities using biochemical techniques. We hypothesized that designing an experimental protocol to confirm the identity of a bacterium would improve students' knowledge of microbial identification techniques and the physiological characteristics of bacterial species. Nitrogen-fixing bacteria were isolated from the root nodules of Medicago truncatula and prepared for 16S rRNA PCR analysis. Once DNA sequencing revealed the identity of the organisms, the students designed experimental protocols to verify the identity of rhizobia. An assessment was conducted by analyzing pre- and posttest scores and by grading students' verification protocols and presentations. Posttest scores were higher than pretest scores at or below p = 0.001. Normalized learning gains (G) showed an improvement of students' knowledge of microbial identification methods (LO4, G = 0.46), biochemical properties of nitrogen-fixing bacteria (LO3, G = 0.45), and the events leading to the establishment of nitrogen-fixing symbioses (LO1&2, G = 0.51, G = 0.37). An evaluation of verification protocols also showed significant improvement with a p value of less than 0.001.

  7. Nitrogen fixed by cyanobacteria is utilized by deposit-feeders.

    Directory of Open Access Journals (Sweden)

    Agnes M L Karlson

    Full Text Available Benthic communities below the photic zone depend for food on allochthonous organic matter derived from seasonal phytoplankton blooms. In the Baltic Sea, the spring diatom bloom is considered the most important input of organic matter, whereas the contribution of the summer bloom dominated by diazotrophic cyanobacteria is less understood. The possible increase in cyanobacteria blooms as a consequence of eutrophication and climate change calls for evaluation of cyanobacteria effects on benthic community functioning and productivity. Here, we examine utilization of cyanobacterial nitrogen by deposit-feeding benthic macrofauna following a cyanobacteria bloom at three stations during two consecutive years and link these changes to isotopic niche and variations in body condition (assayed as C:N ratio of the animals. Since nitrogen-fixing cyanobacteria have δ(15N close to -2‰, we expected the δ(15N in the deposit-feeders to decrease after the bloom if their assimilation of cyanobacteria-derived nitrogen was substantial. We also expected the settled cyanobacteria with their associated microheterotrophic community and relatively high nitrogen content to increase the isotopic niche area, trophic diversity and dietary divergence between individuals (estimated as the nearest neighbour distance in the benthic fauna after the bloom. The three surface-feeding species (Monoporeia affinis, Macoma balthica and Marenzelleria arctia showed significantly lower δ(15N values after the bloom, while the sub-surface feeder Pontoporeia femorata did not. The effect of the bloom on isotopic niche varied greatly between stations; populations which increased niche area after the bloom had better body condition than populations with reduced niche, regardless of species. Thus, cyanobacterial nitrogen is efficiently integrated into the benthic food webs in the Baltic, with likely consequences for their functioning, secondary production, transfer efficiency, trophic

  8. Recent advances in nitrogen-fixing acetic acid bacteria.

    Science.gov (United States)

    Pedraza, Raúl O

    2008-06-30

    Nitrogen is an essential plant nutrient, widely applied as N-fertilizer to improve yield of agriculturally important crops. An interesting alternative to avoid or reduce the use of N-fertilizers could be the exploitation of plant growth-promoting bacteria (PGPB), capable of enhancing growth and yield of many plant species, several of agronomic and ecological significance. PGPB belong to diverse genera, including Azospirillum, Azotobacter, Herbaspirillum, Bacillus, Burkholderia, Pseudomonas, Rhizobium, and Gluconacetobacter, among others. They are capable of promoting plant growth through different mechanisms including (in some cases), the biological nitrogen fixation (BNF), the enzymatic reduction of the atmospheric dinitrogen (N(2)) to ammonia, catalyzed by nitrogenase. Aerobic bacteria able to oxidize ethanol to acetic acid in neutral or acid media are candidates of belonging to the family Acetobacteraceae. At present, this family has been divided into ten genera: Acetobacter, Gluconacetobacter, Gluconobacter, Acidomonas, Asaia, Kozakia, Saccharibacter, Swaminathania, Neoasaia, and Granulibacter. Among them, only three genera include N(2)-fixing species: Gluconacetobacter, Swaminathania and Acetobacter. The first N(2)-fixing acetic acid bacterium (AAB) was described in Brazil. It was found inside tissues of the sugarcane plant, and first named as Acetobacter diazotrophicus, but then renamed as Gluconacetobacter diazotrophicus. Later, two new species within the genus Gluconacetobacter, associated to coffee plants, were described in Mexico: G. johannae and G. azotocaptans. A salt-tolerant bacterium named Swaminathania salitolerans was found associated to wild rice plants. Recently, N(2)-fixing Acetobacter peroxydans and Acetobacter nitrogenifigens, associated with rice plants and Kombucha tea, respectively, were described in India. In this paper, recent advances involving nitrogen-fixing AAB are presented. Their natural habitats, physiological and genetic aspects

  9. Nitrogen fixed by cyanobacteria is utilized by deposit-feeders.

    Science.gov (United States)

    Karlson, Agnes M L; Gorokhova, Elena; Elmgren, Ragnar

    2014-01-01

    Benthic communities below the photic zone depend for food on allochthonous organic matter derived from seasonal phytoplankton blooms. In the Baltic Sea, the spring diatom bloom is considered the most important input of organic matter, whereas the contribution of the summer bloom dominated by diazotrophic cyanobacteria is less understood. The possible increase in cyanobacteria blooms as a consequence of eutrophication and climate change calls for evaluation of cyanobacteria effects on benthic community functioning and productivity. Here, we examine utilization of cyanobacterial nitrogen by deposit-feeding benthic macrofauna following a cyanobacteria bloom at three stations during two consecutive years and link these changes to isotopic niche and variations in body condition (assayed as C:N ratio) of the animals. Since nitrogen-fixing cyanobacteria have δ(15)N close to -2‰, we expected the δ(15)N in the deposit-feeders to decrease after the bloom if their assimilation of cyanobacteria-derived nitrogen was substantial. We also expected the settled cyanobacteria with their associated microheterotrophic community and relatively high nitrogen content to increase the isotopic niche area, trophic diversity and dietary divergence between individuals (estimated as the nearest neighbour distance) in the benthic fauna after the bloom. The three surface-feeding species (Monoporeia affinis, Macoma balthica and Marenzelleria arctia) showed significantly lower δ(15)N values after the bloom, while the sub-surface feeder Pontoporeia femorata did not. The effect of the bloom on isotopic niche varied greatly between stations; populations which increased niche area after the bloom had better body condition than populations with reduced niche, regardless of species. Thus, cyanobacterial nitrogen is efficiently integrated into the benthic food webs in the Baltic, with likely consequences for their functioning, secondary production, transfer efficiency, trophic interactions, and

  10. Secretion systems and signal exchange between nitrogen-fixing rhizobia and legumes.

    Science.gov (United States)

    Nelson, Matthew S; Sadowsky, Michael J

    2015-01-01

    The formation of symbiotic nitrogen-fixing nodules on the roots and/or stem of leguminous plants involves a complex signal exchange between both partners. Since many microorganisms are present in the soil, legumes and rhizobia must recognize and initiate communication with each other to establish symbioses. This results in the formation of nodules. Rhizobia within nodules exchange fixed nitrogen for carbon from the legume. Symbiotic relationships can become non-beneficial if one partner ceases to provide support to the other. As a result, complex signal exchange mechanisms have evolved to ensure continued, beneficial symbioses. Proper recognition and signal exchange is also the basis for host specificity. Nodule formation always provides a fitness benefit to rhizobia, but does not always provide a fitness benefit to legumes. Therefore, legumes have evolved a mechanism to regulate the number of nodules that are formed, this is called autoregulation of nodulation. Sequencing of many different rhizobia have revealed the presence of several secretion systems - and the Type III, Type IV, and Type VI secretion systems are known to be used by pathogens to transport effector proteins. These secretion systems are also known to have an effect on host specificity and are a determinant of overall nodule number on legumes. This review focuses on signal exchange between rhizobia and legumes, particularly focusing on the role of secretion systems involved in nodule formation and host specificity.

  11. Impact of five insecticides on chickpea (Cicer arietinum L. nodulation, yield and nitrogen fixing rhizospheric bacteria

    Directory of Open Access Journals (Sweden)

    H. Khan

    2009-05-01

    Full Text Available A field experiment was conducted to study the effect of five insecticides i.e. Lorsban (40% EC, Decis (25% EC, Pyrifos (40% EC, Karate (25% EC, and Ripcord (10% EC on the survival of rhizosphere N2-fixing microorganisms, nodulation, pod damage (by pod borer, and grain yield of chickpea (Cicer arietinum L. crop. The study revealed that Pyrifos suppressed nodulation in chickpea and specific rhizobial counts in the crop rhizosphere, indicating that this insecticide was harmful to rhizobial population in rhizosphere. All the other tested insecticides were safe as they did not affect nodulation of the crop and the specific rhizobial counts in the rhizosphere. The results also revealed that all the tested insecticides except Lorsban (40% EC suppressed Azotobacter population in the rhizospheric soil indicating that Lorsban was harmless to Azotobacter while all other tested insecticides were harmful to the survival of this important nitrogen fixing bacterium. Pyrifos proved to be the most effective insecticide in controlling the pod borer damage and also in increasing the grain yield significantly as compared to other tested insecticides.

  12. Population of Aerobic Heterotrophic Nitrogen-Fixing Bacteria Associated with Wetland and Dryland Rice

    OpenAIRE

    Barraquio, W.L.; de Guzman, M. R.; Barrion, M.; Watanabe, I.

    1982-01-01

    Nitrogen-fixing activity and populations of nitrogen-fixing bacteria associated with two varieties of rice grown in dryland and wetland conditions were measured at various growth stages during the dry season. Acetylene reduction activities were measured both in the field and for the hydroponically grown rice, which was transferred from the field to water culture 1 day before assay. The activities measured by both methods were higher in wetland than in dryland rice. The population of nitrogen-...

  13. Nitrogen-fixing cyanobacteria in a marine microbial mat

    NARCIS (Netherlands)

    Stal, Lucas Johannes

    2008-01-01

    The nitrogen cycle in nature ia essentially driven by prokaryotic microorganisms. Nitrogen is one of the most important elements for the synthesis of cell material; it accounts for approximately I4%. of. dry weight. All eukaryotes and the majority of the prokaryotic organisms are dependent on a

  14. Real-time detection of viable microorganisms by intracellular phototautomerism

    Directory of Open Access Journals (Sweden)

    Schuren Frank

    2010-06-01

    Full Text Available Abstract Background To date, the detection of live microorganisms present in the environment or involved in infections is carried out by enumeration of colony forming units on agar plates, which is time consuming, laborious and limited to readily cultivable microorganisms. Although cultivation-independent methods are available, they involve multiple incubation steps and do mostly not discriminate between dead or live microorganisms. We present a novel generic method that is able to specifically monitor living microorganisms in a real-time manner. Results The developed method includes exposure of cells to a weak acid probe at low pH. The neutral probe rapidly permeates the membrane and enters the cytosol. In dead cells no signal is obtained, as the cytosolic pH reflects that of the acidic extracellular environment. In live cells with a neutral internal pH, the probe dissociates into a fluorescent phototautomeric anion. After reaching peak fluorescence, the population of live cells decays. This decay can be followed real-time as cell death coincides with intracellular acidification and return of the probe to its uncharged non-fluorescent state. The rise and decay of the fluorescence signal depends on the probe structure and appears discriminative for bacteria, fungi, and spores. We identified 13 unique probes, which can be applied in the real-time viability method described here. Under the experimental conditions used in a microplate reader, the reported method shows a detection limit of 106 bacteria ml-1, while the frequently used LIVE/DEAD BacLight™ Syto9 and propidium iodide stains show detection down to 106 and 107 bacteria ml-1, respectively. Conclusions We present a novel fluorescence-based method for viability assessment, which is applicable to all bacteria and eukaryotic cell types tested so far. The RTV method will have a significant impact in many areas of applied microbiology including research on biocidal activity, improvement of

  15. Isolation and Identification of Phosphate Solubilizing and Nitrogen Fixing Bacteria from Soil in Wamena Biological Garden, Jayawijaya, Papua

    Directory of Open Access Journals (Sweden)

    SRI WIDAWATI

    2005-07-01

    Full Text Available A study was undertaken to investigate the occurrence of phosphate solubilizing bacteria (PSB and nitrogen-fixing bacteria (NFB from soil samples of Wamena Biological Garden (WbiG. Eleven soil samples were collected randomly to estimate microbial population which used plate count method. The result showed that the microbial population ranged from 5.0x103-7.5x106 cells of bacteria/gram of soil and 5.0x103-1.5x107 cells of bacteria/gram of soil for PSB and NFB respectively. There were 17 isolates which have been identified till genus and species. The isolated microorganism were identified as PSB i.e. Bacillus sp., B. pantothenticus, B. megatherium, Flavobacterium sp., F. breve, Klebsiella sp., K. aerogenes, Chromobacterium lividum, Enterobacter alvei, E. agglomerans, Pseudomonas sp., Proteus sp. and as NFB i.e. Azotobacter sp., A. chroococcum, A. paspalii, Rhizobium sp., and Azospirillum sp.

  16. Optical fiber Fabry-Perot interferometer for microorganism growth detection

    Science.gov (United States)

    Liu, Xiaohui; Jiang, Mingshun; Sui, Qingmei; Luo, Shuyang; Geng, Xiangyi

    2016-07-01

    An optical fiber Fabry-Perot interferometer (FPI) based on hollow-core photonic crystal fiber (HCPCF) for microorganism growth detection is proposed and demonstrated. The FPI is formed by splicing both ends of a short section of HCPCF to SMFs and cleaving the SMF pigtail to a proper length. By measuring the fringe contrast of interference pattern, the refractive index (RI) changes of analyte during microorganism growth can be obtained. RI response of the sensor was investigated theoretically and experimentally. It shows linear response with sensitivity of -136 dB/RIU and good repeatability. Temperature response was also tested and the result confirms the low temperature cross-sensitivity of the sensor. Detection of yeast growth in liquid medium by the FPI sensor was conducted and the result shows the characteristic of typical yeast growth curve. With its advantages of high RI sensitivity, low temperature cross-sensitivity, capability for real-time measurement and so on, this FPI sensor has great potential in biosensing.

  17. Effects of herbicide butachlor on soil microorganisms and on nitrogen-fixing abilities in paddy soil.

    Science.gov (United States)

    Chen, Wen-Ching; Yen, Jui-Hung; Chang, Ching-Shu; Wang, Yei-Shung

    2009-01-01

    The composition of culture-independent microbial communities and the change of nitrogenase activities under the application of butachlor in paddy soil were investigated. Nitrogen-fixation ability was expressed by the amount of acetylene reduction, and changes of microbial communities were studied by using denaturing gradient gel electrophoresis (DGGE) technique; afterward, minimum distance (MD, in brief) statistics was applied to determine the cluster numbers in UPGMA dendrograms. The results showed that the reduction of acetylene was suppressed shortly after butachlor application but was augmented after 37 days in both upper and lower layer soils. From UPGMA dendrograms, the diazotrophic divergences ranged from 33% to 64% throughout rice growth stages. For general bacterial communities, the diversities ranged from 28% to 52%. The divergences became higher with the cultivation period, and the application of butachlor imposed a significant variation on microbial community shift, which may be a reason for the boosting nitrogen-fixation ability in paddy soils.

  18. Exopolysaccharides produced by the symbiotic nitrogen-fixing bacteria of leguminosae

    Directory of Open Access Journals (Sweden)

    Cleide Aparecida Bomfeti

    2011-06-01

    Full Text Available The process of biological nitrogen fixation (BNF, performed by symbiotic nitrogen fixing bacteria with legume species, commonly known as α and β rhizobia, provides high sustainability for the ecosystems. Its management as a biotechnology is well succeeded for improving crop yields. A remarkable example of this success is the inoculation of Brazilian soybeans with Bradyrhizobium strains. Rhizobia produce a wide diversity of chemical structures of exopolysaccharides (EPS. Although the role of EPS is relatively well studied in the process of BNF, their economic and environmental potential is not yet explored. These EPS are mostly species-specific heteropolysaccharides, which can vary according to the composition of sugars, their linkages in a single subunit, the repeating unit size and the degree of polymerization. Studies have showed that the EPS produced by rhizobia play an important role in the invasion process, infection threads formation, bacteroid and nodule development and plant defense response. These EPS also confer protection to these bacteria when exposed to environmental stresses. In general, strains of rhizobia that produce greater amounts of EPS are more tolerant to adverse conditions when compared with strains that produce less. Moreover, it is known that the EPS produced by microorganisms are widely used in various industrial activities. These compounds, also called biopolymers, provide a valid alternative for the commonly used in food industry through the development of products with identical properties or with better rheological characteristics, which can be used for new applications. The microbial EPS are also able to increase the adhesion of soil particles favoring the mechanical stability of aggregates, increasing levels of water retention and air flows in this environment. Due to the importance of EPS, in this review we discuss the role of these compounds in the process of BNF, in the adaptation of rhizobia to environmental

  19. Metagenomic Analysis of Some Potential Nitrogen-Fixing Bacteria in Arable Soils at Different Formation Processes.

    Science.gov (United States)

    Wolińska, Agnieszka; Kuźniar, Agnieszka; Zielenkiewicz, Urszula; Banach, Artur; Izak, Dariusz; Stępniewska, Zofia; Błaszczyk, Mieczysław

    2017-01-01

    The main goal of the study was to determine the diversity of the potential nitrogen-fixing (PNF) bacteria inhabiting agricultural (A) soils versus wastelands serving as controls (C). The soils were classified into three groups based on the formation process: autogenic soils (Albic Luvisols, Brunic Arenosols, Haplic Phaeozem) formed on loess material, hydrogenic soils (Mollic Gleysols, Eutric Fluvisol, Eutric Histosol) formed under the effect of stagnant water and lithogenic soils (Rendzina Leptosols) formed on limestone. In order to determine the preferable conditions for PNF bacteria, the relationships between the soil chemical features and bacterial operational taxonomic units (OTUs) were tested. Additionally, the nitrogen content and fertilisation requirement of the lithogenic (LG), autogenic (AG) and hydrogenic (HG) soils were discussed. The composition of the bacterial communities was analysed with the next-generation sequencing (NGS) by the Ion Torrent™ technology. The sequences were clustered into OTU based on a 99 % similarity threshold. The arable soils tested were distinctly dominated by β-Proteobacteria representatives of PNF bacteria belonging to the genus Burkholderia. Bacteria from the α-Proteobacteria class and Devosia genus were subdominants. A free-living Cyanobacteria population dominated in A rather than in C soils. We have found that both soil agricultural management and soil formation processes are the most conducive factors for PNF bacteria, as a majority of these microorganisms inhabit the AG group of soils, whilst the LG soils with the lowest abundance of PNF bacteria revealed the need for additional mineral fertilisation. Our studies have also indicated that there are close relationships between soil classification with respect to soil formation processes and PNF bacteria preference for occupation of soil niches.

  20. Effects of three different PAHs on nitrogen-fixing bacterial diversity in mangrove sediment.

    Science.gov (United States)

    Sun, Fu-Lin; Wang, You-Shao; Sun, Cui-Ci; Peng, Ya-Lan; Deng, Chao

    2012-08-01

    Polycyclic aromatic hydrocarbons (PAHs) are of great environmental and human health concerns due to their widespread occurrence, persistence and carcinogenic properties. There is now compelling evidence that the mangrove sediment microbial structure is susceptible to PAHs contamination. The study aimed to assess the effects of PAHs on the nitrogen-fixing bacterial community of mangrove sediment. Three types of PAHs, naphthalene (NAP), a two-ring PAH; fluorene (FLU), a three-ring PAH; and pyrene (PYR), a four-ring PAH; were applied at three doses. After 7 and 24 days of incubation, the nitrogen-fixing bacterial population and diversity were evidenced in the nifH gene polymerase chain reaction denaturing gradient gel electrophoresis profile. DGGE pattern shows that the nitrogen-fixing bacterial community changed significantly with the types and doses of PAHs, and the incubation time. As far as single PAH is concerned, high concentration of PAH has larger impact on the nitrogen-fixing bacteria than low concentration of PAH. Besides, among the three types of PAHs, NAP has the greatest short term toxicity; PYR has the strongest long-term impact, whereas FLU has relatively higher long-time effect. Multidimensional scaling analysis and correspondence analysis are two reliable multivariate analysis methods for investigating the relationship between the nitrogen-fixing bacterial community and PAHs contamination. Investigating the effect of PAHs on the nitrogen-fixing bacterial diversity could yield useful information for understanding the process of biogeochemical cycling of nitrogen in mangrove sediment. The present study reveals that nitrogen-fixing bacterial community can be used as an important parameter indicating the impact of PAHs on mangrove sediment ecosystem.

  1. Genetically engineered microorganisms for the detection of explosives' residues

    Directory of Open Access Journals (Sweden)

    Benjamin eShemer

    2015-10-01

    Full Text Available The manufacture and use of explosives throughout the past century has resulted in the extensive pollution of soils and groundwater, and the widespread interment of landmines imposes a major humanitarian risk and prevents civil development of large areas. As most current landmine detection technologies require actual presence at the surveyed areas, thus posing a significant risk to personnel, diverse research efforts are aimed at the development of remote detection solutions. One possible means proposed to fulfill this objective is the use of microbial bioreporters: genetically engineered microorganisms tailored to generate an optical signal in the presence of explosives’ vapors. The use of such sensor bacteria will allow to pinpoint the locations of explosive devices in a minefield. While no study has yet resulted in a commercially operational system, significant progress has been made in the design and construction of explosives-sensing bacterial strains. In this article we review the attempts to construct microbial bioreporters for the detection of explosives, and analyze the steps that need to be undertaken for this strategy to be applicable for landmine detection.

  2. Genetically engineered microorganisms for the detection of explosives’ residues

    Science.gov (United States)

    Shemer, Benjamin; Palevsky, Noa; Yagur-Kroll, Sharon; Belkin, Shimshon

    2015-01-01

    The manufacture and use of explosives throughout the past century has resulted in the extensive pollution of soils and groundwater, and the widespread interment of landmines imposes a major humanitarian risk and prevents civil development of large areas. As most current landmine detection technologies require actual presence at the surveyed areas, thus posing a significant risk to personnel, diverse research efforts are aimed at the development of remote detection solutions. One possible means proposed to fulfill this objective is the use of microbial bioreporters: genetically engineered microorganisms “tailored” to generate an optical signal in the presence of explosives’ vapors. The use of such sensor bacteria will allow to pinpoint the locations of explosive devices in a minefield. While no study has yet resulted in a commercially operational system, significant progress has been made in the design and construction of explosives-sensing bacterial strains. In this article we review the attempts to construct microbial bioreporters for the detection of explosives, and analyze the steps that need to be undertaken for this strategy to be applicable for landmine detection. PMID:26579085

  3. A Holographic Microscope for Detection of Microorganisms on Icy Worlds

    Science.gov (United States)

    Lindensmith, C. A.; Nadeau, J. L.; Deming, J. W.; Showalter, G. M.; Rider, S.; Bedrossian, M.

    2015-12-01

    Holography is a well-established imaging technique that uses the interference of light to record and reproduce three-dimensional images of objects. Its use began in the 1960s with the invention of the laser. Digital holographic microscopy (DHM) has several advantages over ordinary imaging microscopy which make it ideal for field and astrobiology use, including no need for focus or scanning so that instruments are readily made autonomous. DHM can produce simultaneous bright-field and quantitative phase-contrast images of the same field, providing additional information about transparent objects, e.g., refractive index and/or thickness; thus it inherently supports effective label-free imaging. We have built a fieldable DHM for detection of microorganisms in bodies of water and in brines collected from sea ice. Ice that appears solid to the eye contains interconnected brine-filled microscopic pores and veins which are occupied by populations of prokaryotes and eukaryotes. The presence of life in "solid" ice has important implications for exploration of icy worlds, where it is unlikely that the first missions will be able to access the subsurface oceans. Using this new instrument, we examined several dozen samples from three different sites around Nuuk, Greenland. In all samples, mixed populations of both prokaryotic and eukaryotic microorganisms were observed. Many of the organisms were motile immediately upon extraction from sea ice, and others became motile after warming or addition of sugars and/or amino acids. Meaningful motility was readily distinguished from turbulence or fluid flow. The spatial resolution of the instrument was better than 1 μm, leading to unambiguous recognition of subcellular structures in eukaryotes, including nuclei and chloroplasts. We present mission scenrios for both orbiters and landers in which DHM may be used as a valuable complement to chemical-based life detection techniques for discovery of cellular life on icy worlds.

  4. Microbial community structure and functional diversity of nitrogen-fixing bacteria associated with Colophospermum mopane.

    Science.gov (United States)

    Burbano, Claudia Sofía; Grönemeyer, Jann Lasse; Hurek, Thomas; Reinhold-Hurek, Barbara

    2015-04-01

    Colophospermum mopane is an indigenous legume tree that grows in Southern Africa and is one of the predominant trees of the woodland vegetation. In order to increase knowledge about its ecology, especially how C. mopane thrives in the nitrogen-poor soils of the region, we analyzed the root-associated bacteria to assess the active diazotrophic diversity and total microbial diversity by culture-dependent and independent techniques. Root nodules were not detected but in some samples the lateral roots showed an outgrowth-like protuberance, that were not likely to have functions related to legume root nodules. The bacterial isolates recovered were related to Actinobacteria, Firmicutes and Proteobacteria. The total microbial diversity was dominated by Actinobacteria-related phylotypes, while the active diazotrophic diversity showed that the majority of the sequences were related to the order Rhizobiales but also to Spirochaetes, Firmicutes, Bacteroidetes and Deltaproteobacteria. Several isolates showed characteristics of plant growth-promoting bacteria. These findings increase the spectrum of possible phylotypes that can be found in legume trees that are typically nodulated by Alpha- and Betaproteobacteria, and reveal for the first time a surprising diversity of nitrogen-fixing bacteria active in legume tree roots. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. System for identification of microorganism and detection of infectious disorder

    DEFF Research Database (Denmark)

    2013-01-01

    Methods for the identification of microorganisms or infectious disorders are disclosed, comprising obtaining a suitable sample from sources such as persons, animals, plants, food, water or soil. The methods also comprise providing tailored nucleic acid substrate(s) designed to react with a type 1...... topoisomerase from one or more microorganism(s) or infectious agent(s), and incubating said substrate with said sample, or extracts or preparations from the sample, so that the substrate is processed by said topoisomerase if said microorganism(s) or infectious agent(s) is present in the sample. Finally......, processed substrates are identified and potentially quantified by one or more of a range of standard molecular biology methods and read-out systems. The identification and potential quantification of microorganisms and infectious agents, including but not limited to Plasmodium falciparum and Mycobacterium...

  6. Daily dynamics of the number and activity of nitrogen-fixing bacteria in fallow and intensely cultivated soils

    Science.gov (United States)

    Emer, N. R.; Semenov, A. M.; Zelenev, V. V.; Zinyakova, N. B.; Kostina, N. V.; Golichenkov, M. V.

    2014-08-01

    The daily dynamics (during 33 days) of the number (colony-forming units (CFU)) of nitrogen-fixing bacteria and of the nitrogen-fixing activity (the acetylene method) were determined in a gray forest soil under a fallow land and under an intensely cultivated field. The daily dynamics of the CFUs determined on the nitrogen-free medium in the samples from both plots had wavelike patterns. The daily values of the actual and potential activities of nitrogen fixation in the samples from the fallow land plot and of the actual activity of nitrogen fixation in the samples from the intensely cultivated soil were low and close to the detection limit. The potential activity of nitrogen fixation in the intensely cultivated soil was significant and also had a wavelike pattern. The harmonic analysis of the daily dynamics of the CFUs and nitrogen fixation showed the statistically significant harmonics of these biological characteristics pointing to the objective and regular character of the wavelike dynamics. The revealed dynamics of the biological characteristics of the soils and the methods of their analysis are important in terms of the comparative study of the biological properties of different soils.

  7. Methods, compounds and systems for detecting a microorganism in a sample

    Energy Technology Data Exchange (ETDEWEB)

    Colston, Jr, Bill W.; Fitch, J. Patrick; Gardner, Shea N.; Williams, Peter L.; Wagner, Mark C.

    2016-09-06

    Methods to identify a set of probe polynucleotides suitable for detecting a set of targets and in particular methods for identification of primers suitable for detection of target microorganisms related polynucleotides, set of polynucleotides and compositions, and related methods and systems for detection and/or identification of microorganisms in a sample.

  8. Nitrogen-fixing bacteria in Eucalyptus globulus plantations.

    Science.gov (United States)

    da Silva, Marliane de Cássia Soares; Paula, Thiago de Almeida; Moreira, Bruno Coutinho; Carolino, Manuela; Cruz, Cristina; Bazzolli, Denise Mara Soares; Silva, Cynthia Canedo; Kasuya, Maria Catarina Megumi

    2014-01-01

    Eucalypt cultivation is an important economic activity worldwide. In Portugal, Eucalyptus globulus plantations account for one-third of the total forested area. The nutritional requirements of this crop have been well studied, and nitrogen (N) is one of the most important elements required for vegetal growth. N dynamics in soils are influenced by microorganisms, such as diazotrophic bacteria (DB) that are responsible for biological nitrogen fixation (BNF), so the aim of this study was to evaluate and identity the main groups of DB in E. globulus plantations. Samples of soil and root systems were collected in winter and summer from three different Portuguese regions (Penafiel, Gavião and Odemira). We observed that DB communities were affected by season, N fertilization and moisture. Furthermore Bradyrhizobium and Burkholderia were the most prevalent genera in these three regions. This is the first study describing the dynamic of these bacteria in E. globulus plantations, and these data will likely contribute to a better understanding of the nutritional requirements of eucalypt cultivation and associated organic matter turnover.

  9. Cellulose fermentation by nitrogen-fixing anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Canale-Parola, E.

    1992-12-13

    In anaerobic natural environments cellulose is degraded to methane, carbon dioxide and other products by the combined activities of many diverse microorganisms. We are simulating processes occurring in natural environments by constructing biologically-defined, stable, heterogeneous bacterial communities (consortia) that we use as in vitro systems for quantitative studies of cellulose degradation under conditions of combined nitrogen deprivation. These studies include the investigation of (i) metabolic interactions among members of cellulose-degrading microbial populations, and (ii) processes that regulate the activity or biosynthesis of cellulolytic enzymes. In addition, we are studying the sensory mechanisms that, in natural environments, may enable motile cellulolytic bacteria to migrate toward cellulose. This part of our work includes biochemical characterization of the cellobiose chemoreceptor of cellulolytic bacteria. Finally, an important aspect of our research is the investigation of the mechanisms by which multienzyme complexes of anaerobic bacteria catalyze the depolymerization of crystalline cellulose and of other plant cell wall polysacchaddes. The research will provide fundamental information on the physiology and ecology of cellulose-fermenting, N{sub 2}-fixing bacteria, and on the intricate processes involved in C and N cycling in anaerobic environments. Furthermore, the information will be valuable for the development of practical applications, such as the conversion of plant biomass (e.g., agricultural, forestry and municipal wastes) to automotive fuels such as ethanol.

  10. Nitrogen-Fixing Bacteria in Eucalyptus globulus Plantations

    Science.gov (United States)

    da Silva, Marliane de Cássia Soares; Paula, Thiago de Almeida; Moreira, Bruno Coutinho; Carolino, Manuela; Cruz, Cristina; Bazzolli, Denise Mara Soares; Silva, Cynthia Canedo; Kasuya, Maria Catarina Megumi

    2014-01-01

    Eucalypt cultivation is an important economic activity worldwide. In Portugal, Eucalyptus globulus plantations account for one-third of the total forested area. The nutritional requirements of this crop have been well studied, and nitrogen (N) is one of the most important elements required for vegetal growth. N dynamics in soils are influenced by microorganisms, such as diazotrophic bacteria (DB) that are responsible for biological nitrogen fixation (BNF), so the aim of this study was to evaluate and identity the main groups of DB in E. globulus plantations. Samples of soil and root systems were collected in winter and summer from three different Portuguese regions (Penafiel, Gavião and Odemira). We observed that DB communities were affected by season, N fertilization and moisture. Furthermore Bradyrhizobium and Burkholderia were the most prevalent genera in these three regions. This is the first study describing the dynamic of these bacteria in E. globulus plantations, and these data will likely contribute to a better understanding of the nutritional requirements of eucalypt cultivation and associated organic matter turnover. PMID:25340502

  11. Nitrogen-fixing bacteria in Eucalyptus globulus plantations.

    Directory of Open Access Journals (Sweden)

    Marliane de Cássia Soares da Silva

    Full Text Available Eucalypt cultivation is an important economic activity worldwide. In Portugal, Eucalyptus globulus plantations account for one-third of the total forested area. The nutritional requirements of this crop have been well studied, and nitrogen (N is one of the most important elements required for vegetal growth. N dynamics in soils are influenced by microorganisms, such as diazotrophic bacteria (DB that are responsible for biological nitrogen fixation (BNF, so the aim of this study was to evaluate and identity the main groups of DB in E. globulus plantations. Samples of soil and root systems were collected in winter and summer from three different Portuguese regions (Penafiel, Gavião and Odemira. We observed that DB communities were affected by season, N fertilization and moisture. Furthermore Bradyrhizobium and Burkholderia were the most prevalent genera in these three regions. This is the first study describing the dynamic of these bacteria in E. globulus plantations, and these data will likely contribute to a better understanding of the nutritional requirements of eucalypt cultivation and associated organic matter turnover.

  12. Morphological, biochemical and molecular characterization of twelve nitrogen-fixing bacteria and their response to various zinc concentration.

    Science.gov (United States)

    Dadook, Mohammad; Mehrabian, Sedigheh; Salehi, Mitra; Irian, Saeed

    2014-04-01

    Zinc is an essential micronutrient used in the form of zinc sulfate in fertilizers in the agriculture production system. Nitrogen-fixing microorganisms are also of considerable value in promoting soil fertility. This study aimed to investigate the degree of sensitivity to varying concentrations of zinc, in the form of ZnSO4, in different strains of Azotobacter chroococcum in a laboratory environment. To isolate A. chroococcum strains, soil samples were collected from wheat, corn and asparagus rhizospheres and cultured in media lacking nitrogen at 30˚C for 48 hours. Strains were identified based on morphological and biochemical characteristics. The presence of the nitrogenase enzyme system was confirmed by testing for the presence of the nifH gene using PCR analysis. The minimum inhibitory concentration (MIC) and optimal zinc concentration for the growth of each strain was determined. A total of 12 bacterial strains were isolated from six different soil samples. A. chroococcum strains were morphologically and biochemically characterized. The presence of the nifH gene was confirmed in all the strains. MIC and the optimal zinc concentration for bacterial growth were 50 ppm and 20 ppm, respectively. It was concluded that increasing the concentration of zinc in the agricultural soil is harmful to beneficial microorganisms and reduces the soil fertility. A 20-ppm zinc concentration in soil is suggested to be optimal.

  13. Identification by Suppression Subtractive Hybridization of Frankia Genes Induced under Nitrogen-Fixing Conditions▿ †

    OpenAIRE

    Yamaura, Masatoshi; UCHIUMI, Toshiki; Higashi, Shiro; Abe, Mikiko; Kucho, Ken-ichi

    2010-01-01

    Frankia is an actinobacterium that fixes nitrogen under both symbiotic and free-living conditions. We identified genes upregulated in free-living nitrogen-fixing cells by using suppression subtractive hybridization. They included genes with predicted functions related to nitrogen fixation, as well as with unknown function. Their upregulation was a novel finding in Frankia.

  14. Complete Genome Sequence of Bradyrhizobium diazoefficiens USDA 122, a Nitrogen-Fixing Soybean Symbiont

    Science.gov (United States)

    Sugawara, Masayuki; Tsukui, Takahiro; Kaneko, Takakazu; Ohtsubo, Yoshiyuki; Sato, Shusei; Nagata, Yuji; Tsuda, Masataka; Mitsui, Hisayuki

    2017-01-01

    ABSTRACT We report the complete genome sequence of Bradyrhizobium diazoefficiens USDA 122, a nitrogen-fixing soybean symbiont. The genome consists of a 9.1 Mb circular chromosome, and 8,551 coding sequences (CDSs) were predicted on the genome. The sequence will provide insight into the evolution of rhizobial genome, and the symbiotic compatibility with host plants. PMID:28254989

  15. A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis

    NARCIS (Netherlands)

    Wang, D.; Griffitts, J.; Starker, C.; Fedorova, E.; Limpens, E.H.M.; Ivanov, S.E.; Bisseling, T.; Long, S.

    2010-01-01

    The nitrogen-fixing symbiosis between Sinorhizobium meliloti and its leguminous host plant Medicago truncatula occurs in a specialized root organ called the nodule. Bacteria that are released into plant cells are surrounded by a unique plant membrane compartment termed a symbiosome. We found that in

  16. The optimum energy harvest efficiency of nitrogen fixing hydrophyte: Azolla pinnata

    Energy Technology Data Exchange (ETDEWEB)

    Tennakone, K. (Institute of Fundamental Studies, Kandy (LK) Ruhuna Univ., Matara (LK). Dept. of Physics); Punchihewa, S.; Jayasuriya, A.C. (Institute of Fundamental Studies, Kandy (LK))

    1989-01-01

    Azolla is a nitrogen fixing hydrophyte that can be cultivated in absence of nitrogenous fertilizer. It is found that when biomass is continuously harvested from a culture of Azolla, solar energy can be converted at an optimum efficiency of 1.1%. (author).

  17. Draft Genome Sequence of Frankia sp. Strain BCU110501, a Nitrogen-Fixing Actinobacterium Isolated from Nodules of Discaria trinevis

    Science.gov (United States)

    Wall, Luis G.; Beauchemin, Nicholas; Cantor, Michael N.; Chaia, Eugenia; Chen, Amy; Detter, J. Chris; Furnholm, Teal; Ghodhbane-Gtari, Faten; Goodwin, Lynne; Gtari, Maher; Han, Cliff; Han, James; Huntemann, Marcel; Hua, Susan Xinyu; Ivanova, Natalia; Kyrpides, Nikos; Markowitz, Victor; Mavrommatis, Kostas; Mikhailova, Natalia; Nordberg, Henrik P.; Nouioui, Imen; Ovchinnikova, Galina; Pagani, Ioanna; Pati, Amrita; Sen, Arnab; Sur, Saubashya; Szeto, Ernest; Thakur, Subarna; Wei, Chia-Lin; Woyke, Tanja

    2013-01-01

    Frankia forms a nitrogen-fixing symbiosis with actinorhizal plants. We report a draft genome sequence for Frankia sp. strain BCU110501, a nitrogen-fixing actinobacterium isolated from nodules of Discaria trinevis grown in the Patagonia region of Argentina. PMID:23846281

  18. Draft Genome Sequence of Frankia sp. Strain BMG5.12, a Nitrogen-Fixing Actinobacterium Isolated from Tunisian Soils.

    Science.gov (United States)

    Nouioui, Imen; Beauchemin, Nicholas; Cantor, Michael N; Chen, Amy; Detter, J Chris; Furnholm, Teal; Ghodhbane-Gtari, Faten; Goodwin, Lynne; Gtari, Maher; Han, Cliff; Han, James; Huntemann, Marcel; Hua, Susan Xinyu; Ivanova, Natalia; Kyrpides, Nikos; Markowitz, Victor; Mavrommatis, Kostas; Mikhailova, Natalia; Nordberg, Henrik P; Ovchinnikova, Galina; Pagani, Ioanna; Pati, Amrita; Sen, Arnab; Sur, Saubashya; Szeto, Ernest; Thakur, Subarna; Wall, Luis; Wei, Chia-Lin; Woyke, Tanja; Tisa, Louis S

    2013-07-11

    Members of the actinomycete genus Frankia form a nitrogen-fixing symbiosis with 8 different families of actinorhizal plants. We report a draft genome sequence for Frankia sp. strain BMG5.12, a nitrogen-fixing actinobacterium isolated from Tunisian soils with the ability to infect Elaeagnus angustifolia and Myrica gale.

  19. A simple and rapid method for detecting living microorganisms in food using laser speckle decorrelation

    OpenAIRE

    Yoon, Jonghee; Lee, KyeoReh; Park, YongKeun

    2016-01-01

    Measuring microorganisms in food products is a critical issue for food safety and human health. Although various approaches for detecting low-levels of microorganisms in food have been developed, they require high-cost, complex equipment, invasive procedures, and skilled technicians which limit their widespread use in the food industry. Here, we present a simple, non-destructive, non-contact, and rapid optical method for measuring living microorganisms in meat products using laser speckle dec...

  20. Abundance and diversity of nitrogen-fixing bacteria in rhizosphere and bulk paddy soil under different duration of organic management.

    Science.gov (United States)

    Shu, Wang; Pablo, Gonzalez Perez; Jun, Ye; Danfeng, Huang

    2012-02-01

    Denaturing gradient gel electrophoresis (DGGE) and quantitative real-time PCR (qPCR) approaches were used to assess respectively the molecular diversity and quantity of the nifH gene sequences in rhizosphere and bulk paddy soil under conventional management and different duration of organic management (2, 3, 5, 9 years). The phylogenetic distribution of clones based on nifH gene sequence showed that taxonomic groups were consisted of Alphaproteobacteria (27.6%), Betaproteobacteria (24.1%) and Gammaproteobacteria (48.3%). Members of the order Rhizobiales and Pseudomonadales were prevalent among the dominant diazotrophs. When the quantity of the nifH gene sequences was determined by qPCR, 2.27 × 10(5) to 1.14 × 10(6) copies/g of soil were detected. Except for 2 years organically managed soil, nifH gene copy numbers in organic soil, both rhizosphere and bulk, were significantly higher than in CM soil. Moreover, nifH gene copy numbers in the organic rhizosphere soil (3, 5, 9 years) were significantly higher than in bulk soil. The abundance and diversity of nitrogen-fixing bacteria tended to increase with duration of organic management but the highest number of nifH gene copies was observed in the rhizosphere and bulk soil of 5 years organic management. In addition, analysis of variance and canonical correspondence analysis (CCA) showed that C/N, C and N were important factors influencing the abundance and community structure of nitrogen-fixing bacterial.

  1. Transfer of a plant chitinase gene into a nitrogen-fixing Azospirillum and study of its expression.

    Science.gov (United States)

    Jayaraj, Jayaraman; Muthukrishnan, Subbaratnam; Liang, George H

    2004-07-01

    Azospirillum is used extensively in rice and other cereal crops as a biofertilizer. There is a substantial opportunity to improve the efficiency of this bacterium through the transfer of genes of agricultural importance from other organisms. Chitinases are antifungal proteins, and expression of chitinase genes in Azospirillum would help to develop strains with potential antifungal activities. So far there are no reports about transfer of plant genes into Azospirillum and their expression. The present study was aimed at expressing an antifungal gene (a rice chitinase) of plant origin in Azospirillum brasilense. A rice chitinase cDNA (RC 7) that codes for a 35 kDa protein was subcloned into a broad host range plasmid pDSK519 under the control of LacZ promoter. The plasmid was mobilized into the nitrogen-fixing bacterium, Azospirillum brasilense strain SP51eFL1, through biparental mating. The conjugation frequency was in the range of 35-40 x 10(-6). The transconjugants grew in nitrogen-free media and fixed gaseous nitrogen in vitro. However, their growth and nitrogen-fixing ability were slightly less than those of the wild-type. Expression of the protein was demonstrated through western blotting of the total cell protein, which detected a 35 kDa band that was immuno-reactive to a barley chitinase antibody. The cell lysates also hydrolyzed various chitin substrates, which resulted in release of free sugars demonstrating the chitinase activity of transconjugants. The expressed protein also had antifungal activity as demonstrated by inhibition of growth of the plant pathogenic fungus, Rhizoctonia solani.

  2. [Diversity of associated nitrogen-fixing bacteria isolated from the pioneer plants-Vetiver zizanioides].

    Science.gov (United States)

    Zhao, Xianwei; Javed, Chaudhary Hassan; He, Yumei; Zhang, Zhiying; Peng, Guixiang; Tan, Zhiyuan

    2009-11-01

    Vetiver zizanioides is a perennial grass of the Poaceae family, known of its silage, soil and water conservation role. The aim of the study was to collect and identify the resources of the nitrogen-fixing bacteria associated with Vetiver zizanioides. Associated nitrogen-fixing bacteria isolated from Vetiver zizanioides were studied by SDS-PAGE whole-cell protein patterns, insert sequence (IS)-PCR finger printing, utilization of sole carbon sources and 16S rRNA gene sequence analysis. Based on the results of finger printing analysis, protein patterns and biological test, isolates were grouped into 6 clusters, except 4 single strains. Phylogenetic analysis of 16S rDNA sequences indicated that isolates belonged to Herbaspirillum frisingense, Enterobacter ludwigii, Pseudacidovorax intermedius, Mitsuaria chitosanitabida, Pseudomonas putida, Pseudomonas fluorescens, Burkholderia vietnamiensis and Enterobacter cloacae. The nitrogen fixers associated with Vetiver zizanioides showed great diversity and may have a potential application for the grass forage and agriculture.

  3. Genetic diversity of the unicellular nitrogen-fixing cyanobacteria UCYN-A and its prymnesiophyte host

    OpenAIRE

    Thompson, A.; Carter, BJ; Turk-Kubo, K; Malfatti, F; F. Azam; Zehr, JP

    2014-01-01

    © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd. Summary: Symbiotic interactions between nitrogen-fixing prokaryotes and photosynthetic eukaryotes are an integral part of biological nitrogen fixation at a global scale. One of these partnerships involves the cyanobacterium UCYN-A, which has been found in partnership with an uncultivated unicellular prymnesiophyte alga in open-ocean and coastal environments. Phylogenetic analysis of the UCYN-A nitrogenase gene (nifH) showed th...

  4. Whole-Genome Sequence of the Nitrogen-Fixing Symbiotic Rhizobium Mesorhizobium loti Strain TONO

    Science.gov (United States)

    Hirakawa, Hideki; Sato, Shusei; Saeki, Kazuhiko; Hayashi, Makoto

    2016-01-01

    Mesorhizobium loti is the nitrogen-fixing microsymbiont for legumes of the genus Lotus. Here, we report the whole-genome sequence of a Mesorhizobium loti strain, TONO, which is used as a symbiont for the model legume Lotus japonicus. The whole-genome sequence of the strain TONO will be a solid platform for comparative genomics analyses and for the identification of genes responsible for the symbiotic properties of Mesorhizobium species.

  5. Fourier transform infrared spectroscopic study of intact cells of the nitrogen-fixing bacterium Azospirillum brasilense

    Science.gov (United States)

    Kamnev, A. A.; Ristić, M.; Antonyuk, L. P.; Chernyshev, A. V.; Ignatov, V. V.

    1997-06-01

    The data of Fourier transform infrared (FTIR) spectroscopic measurements performed on intact cells of the soil nitrogen-fixing bacterium Azospirillum brasilense grown in a standard medium and under the conditions of an increased metal uptake are compared and discussed. The structural FTIR information obtained is considered together with atomic absorption spectrometry (AAS) data on the content of metal cations in the bacterial cells. Some methodological aspects concerning preparation of bacterial cell samples for FTIR measurements are also discussed.

  6. System for identification of microorganism and detection of infectious disorder

    DEFF Research Database (Denmark)

    2013-01-01

    Methods for the identification of microorganisms or infectious disorders are disclosed, comprising obtaining a suitable sample from sources such as persons, animals, plants, food, water or soil. The methods also comprise providing tailored nucleic acid substrate(s) designed to react with a type 1......, processed substrates are identified and potentially quantified by one or more of a range of standard molecular biology methods and read-out systems. The identification and potential quantification of microorganisms and infectious agents, including but not limited to Plasmodium falciparum and Mycobacterium...... the technology enables the testing of medical or chemical treatments designed to cure or prevent diseases based upon drugs targeting type 1 topoisomerases. Finally, the reagents and platforms needed for said purposes can be compiled from loose parts or provided as user-friendly kits, potentially enabling home...

  7. Effect of vegetation types on soil arbuscular mycorrhizal fungi and nitrogen-fixing bacterial communities in a karst region.

    Science.gov (United States)

    Liang, Yueming; Pan, Fujing; He, Xunyang; Chen, Xiangbi; Su, Yirong

    2016-09-01

    Arbuscular mycorrhizal (AM) fungi and nitrogen-fixing bacteria play important roles in plant growth and recovery in degraded ecosystems. The desertification in karst regions has become more severe in recent decades. Evaluation of the fungal and bacterial diversity of such regions during vegetation restoration is required for effective protection and restoration in these regions. Therefore, we analyzed relationships among AM fungi and nitrogen-fixing bacteria abundances, plant species diversity, and soil properties in four typical ecosystems of vegetation restoration (tussock (TK), shrub (SB), secondary forest (SF), and primary forest (PF)) in a karst region of southwest China. Abundance of AM fungi and nitrogen-fixing bacteria, plant species diversity, and soil nutrient levels increased from the tussock to the primary forest. The AM fungus, nitrogen-fixing bacterium, and plant community composition differed significantly between vegetation types (p fungi and nitrogen-fixing bacteria, respectively. Available phosphorus, total nitrogen, and soil organic carbon levels and plant richness were positively correlated with the abundance of AM fungi and nitrogen-fixing bacteria (p fungi and nitrogen-fixing bacteria increased from the tussock to the primary forest and highlight the essentiality of these communities for vegetation restoration.

  8. Genomic identification of nitrogen-fixing Klebsiella variicola, K. pneumoniae and K. quasipneumoniae.

    Science.gov (United States)

    Chen, Mingyue; Li, Yuanyuan; Li, Shuying; Tang, Lie; Zheng, Jingwu; An, Qianli

    2016-01-01

    It was difficult to differentiate Klebsiella pneumoniae, K. quasipneumoniae and K. variicola by biochemical and phenotypic tests. Genomics increase the resolution and credibility of taxonomy for closely-related species. Here, we obtained the complete genome sequence of the K. variicola type strain DSM 15968(T) (=F2R9(T)). The genome of the type strain is a circular chromosome of 5,521,203 bp with 57.56% GC content. From 540 Klebsiella strains whose genomes had been publicly available as at 3 March 2015, we identified 21 strains belonging to K. variicola and 8 strains belonging to K. quasipneumoniae based on the genome average nucleotide identities (ANI). All the K. variicola strains, one K. pneumoniae strain and five K. quasipneumoniae strains contained nitrogen-fixing genes. A phylogenomic analysis showed clear species demarcations for these nitrogen-fixing bacteria. In accordance with the key biochemical characteristics of K. variicola, the idnO gene encoding 5-keto-D-gluconate 5-reductase for utilization of 5-keto-D-gluconate and the sorCDFBAME operon for catabolism of L-sorbose were present whereas the rbtRDKT operon for catabolism of adonitol was absent in the genomes of K. variicola strains. Therefore, the genomic analyses supported the ANI-based species delineation; the genome sequence of the K. variicola type strain provides the reference genome for genomic identification of K. variicola, which is a nitrogen-fixing species.

  9. Starting points in plant-bacteria nitrogen-fixing symbioses: intercellular invasion of the roots.

    Science.gov (United States)

    Ibáñez, Fernando; Wall, Luis; Fabra, Adriana

    2017-04-01

    Agricultural practices contribute to climate change by releasing greenhouse gases such as nitrous oxide that are mainly derived from nitrogen fertilizers. Therefore, understanding biological nitrogen fixation in farming systems is beneficial to agriculture and environmental preservation. In this context, a better grasp of nitrogen-fixing systems and nitrogen-fixing bacteria-plant associations will contribute to the optimization of these biological processes. Legumes and actinorhizal plants can engage in a symbiotic interaction with nitrogen-fixing rhizobia or actinomycetes, resulting in the formation of specialized root nodules. The legume-rhizobia interaction is mediated by a complex molecular signal exchange, where recognition of different bacterial determinants activates the nodulation program in the plant. To invade plants roots, bacteria follow different routes, which are determined by the host plant. Entrance via root hairs is probably the best understood. Alternatively, entry via intercellular invasion has been observed in many legumes. Although there are common features shared by intercellular infection mechanisms, differences are observed in the site of root invasion and bacterial spread on the cortex reaching and infecting a susceptible cell to form a nodule. This review focuses on intercellular bacterial invasion of roots observed in the Fabaceae and considers, within an evolutionary context, the different variants, distribution and molecular determinants involved. Intercellular invasion of actinorhizal plants and Parasponia is also discussed. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Identification of symbiotic nitrogen-fixing bacteria from three African leguminous trees in Gorongosa National Park.

    Science.gov (United States)

    Teixeira, Helena; Rodríguez-Echeverría, Susana

    2016-07-01

    The symbiosis between leguminous plants and symbiotic nitrogen-fixing bacteria is a key component of terrestrial ecosystems. Woody legumes are well represented in tropical African forests but despite their ecological and socio-economic importance, they have been little studied for this symbiosis. In this study, we examined the identity and diversity of symbiotic-nitrogen fixing bacteria associated with Acacia xanthophloea, Faidherbia albida and Albizia versicolor in the Gorongosa National Park (GNP) in Mozambique. To the best of our knowledge, this is the first report on the identity of symbiotic-nitrogen fixing bacteria in this region. 166 isolates were obtained and subjected to molecular identification. BOX-A1R PCR was used to discriminate different bacterial isolates and PCR-sequencing of 16S rDNA, and two housekeeping genes, glnII and recA, was used to identify the obtained bacteria. The gene nifH was also analyzed to assess the symbiotic capacity of the obtained bacteria. All isolates from F. albida and Al. versicolor belonged to the Bradyrhizobium genus whereas isolates from Ac. xanthophloea clustered with Mesorhizobium, Rhizobium or Ensifer strains. Soil chemical analysis revealed significant differences between the soils occupied by the three studied species. Thus, we found a clear delimitation in the rhizobial communities and soils associated with Ac. xanthophloea, F. albida and Al. versicolor, and higher rhizobial diversity for Ac. xanthophloea than previously reported.

  11. Ultrasonication of pyrogenic microorganisms improves the detection of pyrogens in the Mono Mac 6 assay

    DEFF Research Database (Denmark)

    Moesby, Lise; Hansen, E W; Christensen, J D

    2000-01-01

    of the assay. The interleukin-6 inducing capacity of a broad spectrum of UV-killed and ultrasonicated microorganisms is examined in Mono Mac 6 cells. The interleukin-6 secretion is determined in a sandwich immunoassay (DELFIA). The Mono Mac 6 assay is able to detect UV-killed Bacillus subtilis, Staphylococcus...... aureus and Salmonella typhimurium, but neither Candida albicans nor Aspergillus niger. After ultrasonication of the microorganisms it is possible to detect C. albicans and A. niger. The interleukin-6 inducing ability of the examined microorganisms is in no case reduced after ultrasonic treatment. However...

  12. Molecular characterization of nitrogen-fixing bacteria isolated from brazilian agricultural plants at São Paulo state

    OpenAIRE

    Reinhardt,Érica. L.; Ramos,Patrícia L.; Manfio, Gilson P; Barbosa,Heloiza R.; Pavan, Crodowaldo; Moreira-Filho, Carlos A

    2008-01-01

    Fourteen strains of nitrogen-fixing bacteria were isolated from different agricultural plant species, including cassava, maize and sugarcane, using nitrogen-deprived selective isolation conditions. Ability to fix nitrogen was verified by the acetylene reduction assay. All potentially nitrogen-fixing strains tested showed positive hybridization signals with a nifH probe derived from Azospirillum brasilense. The strains were characterized by RAPD, ARDRA and 16S rDNA sequence analysis. RAPD anal...

  13. Plant Growth-Promoting Nitrogen-Fixing Enterobacteria Are in Association with Sugarcane Plants Growing in Guangxi, China

    OpenAIRE

    2012-01-01

    The current nitrogen fertilization for sugarcane production in Guangxi, the major sugarcane-producing area in China, is very high. We aim to reduce nitrogen fertilization and improve sugarcane production in Guangxi with the help of indigenous sugarcane-associated nitrogen-fixing bacteria. We initially obtained 196 fast-growing bacterial isolates associated with the main sugarcane cultivar ROC22 plants in fields using a nitrogen-deficient minimal medium and screened out 43 nitrogen-fixing isol...

  14. Large-scale phylogenetic analyses reveal multiple gains of actinorhizal nitrogen-fixing symbioses in angiosperms associated with climate change.

    Science.gov (United States)

    Li, Hong-Lei; Wang, Wei; Mortimer, Peter E; Li, Rui-Qi; Li, De-Zhu; Hyde, Kevin D; Xu, Jian-Chu; Soltis, Douglas E; Chen, Zhi-Duan

    2015-09-10

    Nitrogen is fundamental to all life forms and is also one of the most limiting of nutrients for plant growth. Several clades of angiosperms have developed symbiotic relationships with actinorhizal bacteria that fix atmospheric nitrogen and increase access to this nutrient. However, the evolutionary patterns of actinorhizal nitrogen-fixing symbioses remain unclear to date. Furthermore the underlying environmental pressures that led to the gain of symbiotic actinorhizal nitrogen fixation have never been investigated. Here, we present the most comprehensive genus-level phylogenetic analysis of the nitrogen-fixing angiosperms based on three plastid loci. We found that actinorhizal nitrogen-fixing species are distributed in nine distinct lineages. By dating the branching events, we determined that seven actinorhizal nitrogen-fixing lineages originated during the Late Cretaceous, and two more emerged during the Eocene. We put forward a hypothesis that multiple gains of actinorhizal nitrogen-fixing symbioses in angiosperms may have been associated with increased global temperatures and high levels of atmospheric carbon dioxide during these two time periods, as well as the availability of open habitats with high light conditions. Our nearly complete genus-level time-tree for the nitrogen-fixing clade is a significant advance in understanding the evolutionary and ecological background of this important symbiosis between plants and bacteria.

  15. Integrated sorting, concentration and real time PCR based detection system for sensitive detection of microorganisms

    Science.gov (United States)

    Nayak, Monalisha; Singh, Deepak; Singh, Himanshu; Kant, Rishi; Gupta, Ankur; Pandey, Shashank Shekhar; Mandal, Swarnasri; Ramanathan, Gurunath; Bhattacharya, Shantanu

    2013-11-01

    The extremely low limit of detection (LOD) posed by global food and water safety standards necessitates the need to perform a rapid process of integrated detection with high specificity, sensitivity and repeatability. The work reported in this article shows a microchip platform which carries out an ensemble of protocols which are otherwise carried in a molecular biology laboratory to achieve the global safety standards. The various steps in the microchip include pre-concentration of specific microorganisms from samples and a highly specific real time molecular identification utilizing a q-PCR process. The microchip process utilizes a high sensitivity antibody based recognition and an electric field mediated capture enabling an overall low LOD. The whole process of counting, sorting and molecular identification is performed in less than 4 hours for highly dilute samples.

  16. Cowpea symbiotic efficiency, pH and aluminum tolerance in nitrogen-fixing bacteria

    Directory of Open Access Journals (Sweden)

    Bruno Lima Soares

    2014-06-01

    Full Text Available Cowpea (Vigna unguiculata cultivation in northern and northeastern Brazil provides an excellent source of nutrients and carbohydrates for the poor and underprivileged. Production surplus leads to its consumption in other regions of Brazil and also as an export commodity. Its capacity to establish relationships with atmospheric nitrogen-fixing bacteria is crucial to the reduction of production costs and the environmental impact of nitrogen fertilizers. This study assessed the symbiotic efficiency of new strains of symbiotic nitrogen-fixing bacteria with cowpea and their tolerance to pH and aluminum. Twenty-seven strains of bacteria from different soils were evaluated under axenic conditions. These strains were compared to the following inoculant strains: INPA03-11B, UFLA03-84 and BR3267 and two controls that were not inoculated (with and without mineral nitrogen. Six strains and the three strains approved as inoculants were selected to increase the dry weight production of the aerial part (DWAP and were tested in pots with soil that had a high-density of nitrogen-fixing native rhizobia. In this experiment, three strains (UFLA03-164, UFLA03-153, and UFLA03-154 yielded higher DWAP values. These strains grow at pH levels of 5.0, 6.0, 6.8 and at high aluminum concentration levels, reaching 10(9 CFU mL-1. In particular UFLA03-84, UFLA03-153, and UFLA03-164 tolerate up to 20 mmol c dm-3 of Al+3. Inoculation with rhizobial strains, that had been carefully selected according to their ability to nodulate and fix N2, combined with their ability to compete in soils that are acidic and contain high levels of Al, is a cheaper and more sustainable alternative that can be made available to farmers than mineral fertilizers.

  17. Isoptopic evidence of the transfer of nitrogen fixed by legumes to coffee trees

    Directory of Open Access Journals (Sweden)

    Snoeck D.

    2000-01-01

    Full Text Available The use of isotopic methods has made it possible to quantify the contribution of nitrogen fixed by a coffee plantation. Thanks to the use of the natural 15N abundance assessment technique, we were able to show that, in field condition, roughly 30/ of the nitrogen effectively fixed by a legume (including biomass, roots and root exudates were transferred to the associated coffee trees. The quantities of N transferred by legume prunings to sole coffee trees were measured to evaluate the amount of N transferred to coffee via litter fall or soil.

  18. Novel metabolic attributes of the genus cyanothece, comprising a group of unicellular nitrogen-fixing Cyanothece.

    Science.gov (United States)

    Bandyopadhyay, Anindita; Elvitigala, Thanura; Welsh, Eric; Stöckel, Jana; Liberton, Michelle; Min, Hongtao; Sherman, Louis A; Pakrasi, Himadri B

    2011-01-01

    The genus Cyanothece comprises unicellular cyanobacteria that are morphologically diverse and ecologically versatile. Studies over the last decade have established members of this genus to be important components of the marine ecosystem, contributing significantly to the nitrogen and carbon cycle. System-level studies of Cyanothece sp. ATCC 51142, a prototypic member of this group, revealed many interesting metabolic attributes. To identify the metabolic traits that define this class of cyanobacteria, five additional Cyanothece strains were sequenced to completion. The presence of a large, contiguous nitrogenase gene cluster and the ability to carry out aerobic nitrogen fixation distinguish Cyanothece as a genus of unicellular, aerobic nitrogen-fixing cyanobacteria. Cyanothece cells can create an anoxic intracellular environment at night, allowing oxygen-sensitive processes to take place in these oxygenic organisms. Large carbohydrate reserves accumulate in the cells during the day, ensuring sufficient energy for the processes that require the anoxic phase of the cells. Our study indicates that this genus maintains a plastic genome, incorporating new metabolic capabilities while simultaneously retaining archaic metabolic traits, a unique combination which provides the flexibility to adapt to various ecological and environmental conditions. Rearrangement of the nitrogenase cluster in Cyanothece sp. strain 7425 and the concomitant loss of its aerobic nitrogen-fixing ability suggest that a similar mechanism might have been at play in cyanobacterial strains that eventually lost their nitrogen-fixing ability. The unicellular cyanobacterial genus Cyanothece has significant roles in the nitrogen cycle in aquatic and terrestrial environments. Cyanothece sp. ATCC 51142 was extensively studied over the last decade and has emerged as an important model photosynthetic microbe for bioenergy production. To expand our understanding of the distinctive metabolic capabilities of

  19. Microbiological detection of probiotic microorganisms in fermented milk products

    Directory of Open Access Journals (Sweden)

    Radka Burdychová

    2007-01-01

    Full Text Available A number of health benefits have been claimed for probiotic bacteria such as Lactobacillus acidophilus, Bifidobacterium spp. and Lactobacillus rhamnosus. Because of the potential health benefits, these organisms are increasingly incorporated into dairy foods. However, to reach health benefits, the concentration of probiotics have to be 106 CFU/g of a product. For assessing of required probiotic bacteria quantity, it is important to have a working method for selective enumeration of these probiotic bacteria. Five bacteriological media were evaluated to assess their suitability to selectively enumerate Streptococcus thermophilus, Lactobacillus rhamnosus, Lactobacillus acidophilus and Bifidobacterium spp. Bacteriological media evaluated included Streptococcus thermophilus agar, pH modified MRS agar, MRS-vancomycine agar and BSM (Bifidus selective medium agar under different culture conditions.Seven selected fermented milk products with probiotic culture were analyzed for their bacterial populations using the described selective bacteriological media and culture conditions. All milk products contained probiotic microorganisms claimed to be present in declared quantity (106–107/g.

  20. RESISTANCE OF KARST CAVERNS NITROGEN-FIXING BACTERIA TO EXTREME FACTORS

    Directory of Open Access Journals (Sweden)

    Tashyrev O. B.

    2014-10-01

    Full Text Available To determine the studied bacteria resistance quantitative parameters of extreme factors such as toxic metals (Cu2+, organic xenobiotics (p-nitrochlorobenzene and UV-irradiation were the aim of the research. Six strains of nitrogen-fixing bacteria isolated from clays of two caverns Mushkarova Yama (Podolia, Ukraine and Kuybyshevskaya (Western Caucasus, Abkhazia and Azotobacter vinelandii УКМ В-6017 as a reference strain have been tested. For this purpose the maximum permissible concentration of Cu2+ and p-nitrochlorobenzene in the concentration gradient and lethal doses of UV by the survival caverns have been determined. Maximum permissible concentrations for strains were as 10 ppm Cu2+, 70–120 ppm of p-nitrochlorobenzene. The maximum doses of UV-irradiation varied in the range of 55–85 J/m2 (LD99.99. It is shown that three classes of extreme factors resistance parameters of karst caverns strains are similar to the strain of terrestrial soil ecosystems. The most active studied strains reduce the concentration of p-nitrochlorobenzene in the medium in 13 times. The ability of nitrogen-fixing bacteria to degrade p-nitrochlorobenzene could be used in creation new environmental biotechnology for industrial wastewater treatment from nitrochloroaromatic xenobiotics. Isolated strains could be used as destructors for soils bioremediation in agrobiotechnologies and to optimize plants nitrogen nutrition in terrestrial ecosystems.

  1. Visualization of channels connecting cells in filamentous nitrogen-fixing cyanobacteria.

    Science.gov (United States)

    Omairi-Nasser, Amin; Haselkorn, Robert; Austin, Jotham

    2014-07-01

    Cyanobacteria, formerly called blue-green algae, are abundant bacteria that carry out green plant photosynthesis, fixing CO2 and generating O2. Many species can also fix N2 when reduced nitrogen sources are scarce. Many studies imply the existence of intracellular communicating channels in filamentous cyanobacteria, in particular, the nitrogen-fixing species. In a species such as Anabaena, growth in nitrogen-depleted medium, in which ∼10% of the cells differentiate into anaerobic factories for nitrogen fixation (heterocysts), requires the transport of amino acids from heterocysts to vegetative cells, and reciprocally, the transport of sugar from vegetative cells to heterocysts. Convincing physical evidence for such channels has been slim. Using improved preservation of structure by high-pressure rapid freezing of samples for electron microscopy, coupled with high-resolution 3D tomography, it has been possible to visualize and measure the dimensions of channels that breach the peptidoglycan between vegetative cells and between heterocysts and vegetative cells. The channels appear to be straight tubes, 21 nm long and 14 nm in diameter for the latter and 12 nm long and 12 nm in diameter for the former.-Omairi-Nasser, A., Haselkorn, R., Austin, J. II. Visualization of channels connecting cells in filamentous nitrogen-fixing cyanobacteria. © FASEB.

  2. Physico-chemical properties of polyhydroxyalkanoate produced by mixed-culture nitrogen-fixing bacteria.

    Science.gov (United States)

    Patel, Meeta; Gapes, Daniel J; Newman, Roger H; Dare, Peter H

    2009-03-01

    Ultra-high molecular weight polyhydroxyalkanoates (PHAs) with low polydispersity index (PDI = 1.3) were produced in a novel, pilot scale application of mixed cultures of nitrogen-fixing bacteria. The number average molecular weight (M (n)) of the poly(3-hydroxybutyrate) (P(3HB)) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3HV)) was determined to be 2.4 x 10(6) and 2.5 x 10(6) g mol(-1), respectively. Using two types of carbon sources, biomass contents of the P(3HB) and P(3HB-co-3HV) were 18% and 30% (PHA in dry biomass), respectively. The extracted polymers were analysed for their physical properties using analytical techniques such as nuclear magnetic resonance (NMR) spectroscopy, differential scanning calorimetry (DSC) and gel permeation chromatography (GPC). NMR confirmed the formation of homopolymer and copolymer. DSC showed a single melting endotherm peak for both polymers, with enthalpies that indicated crystallinity indices of 44% and 37% for P(3HB) and P(3HB-co-3HV), respectively. GPC showed a sharp unimodal trace for both polymers, reflecting the homogeneity of the polymer chains. The work described here emphasises the potential of mixed colony nitrogen-fixing bacteria cultures for producing biodegradable polymers which have properties that are very similar to those from their pure-culture counterparts and therefore making a more economically viable route for obtaining biopolyesters.

  3. Screening Substrate Properties of Microorganisms for Biosensor Detection of Oligosaccharides

    Science.gov (United States)

    Oligosaccharides feature high biological activity ensuring their wide application in the biotechnology, food, and cosmetic industries. On the other hand they are considered environmental pollutants. The study outlines a biosensor approach to detect these substances which is important from above st...

  4. Real-time detection of an airborne microorganism using inertial impaction and mini-fluorescent microscopy.

    Science.gov (United States)

    Kang, Joon Sang; Lee, Kang Soo; Kim, Sang Soo; Bae, Gwi-Nam; Jung, Jae Hee

    2014-01-07

    To achieve successful real-time detection of airborne pathogenic microorganisms, the problem must be considered in terms of their physical size and biological characteristics. We developed an airborne microorganism detection chip to realize the detection of microorganisms, ensuring compactness, sensitivity, cost-efficiency, and portability, using three key components: an inertial impaction system, a cartridge-type impaction plate, and a mini-fluorescent microscope. The inertial impaction system was used to separate microorganisms in terms of their aerodynamic particle size, and was fabricated with three impaction stages. Numerical analysis was performed to design the system; the calculated cutoff diameter at each impaction stage was 2.02 (first stage), 0.88 (second stage), and 0.54 μm (third stage). The measured cutoff diameters were 2.24, 0.91, and 0.49 μm, respectively. A cartridge-type impaction plate was used, composed of molded polydimethylsiloxane (PDMS) and an actual impaction region made of a SYBR green I dye-stained agar plate. A mini-fluorescent microscope was used to distinguish microbes from non-biological particles. Images of the microorganisms deposited at the impaction zone were obtained via mini-fluorescent microscopy, and fluorescent intensities of the images were calculated using in-house image-processing software. The results showed that the developed system successfully identified aerosolized biological particles from non-biological particles in real time.

  5. Plant growth-promoting nitrogen-fixing enterobacteria are in association with sugarcane plants growing in Guangxi, China.

    Science.gov (United States)

    Lin, Li; Li, Zhengyi; Hu, Chunjin; Zhang, Xincheng; Chang, Siping; Yang, Litao; Li, Yangrui; An, Qianli

    2012-01-01

    The current nitrogen fertilization for sugarcane production in Guangxi, the major sugarcane-producing area in China, is very high. We aim to reduce nitrogen fertilization and improve sugarcane production in Guangxi with the help of indigenous sugarcane-associated nitrogen-fixing bacteria. We initially obtained 196 fast-growing bacterial isolates associated with the main sugarcane cultivar ROC22 plants in fields using a nitrogen-deficient minimal medium and screened out 43 nitrogen-fixing isolates. Analysis of 16S rRNA gene sequences revealed that 42 of the 43 nitrogen-fixing isolates were affiliated with the genera Enterobacter and Klebsiella. Most of the nitrogen-fixing enterobacteria possessed two other plant growth-promoting activities of IAA production, siderophore production and phosphate solubilization. Two Enterobacter spp. strains of NN145S and NN143E isolated from rhizosphere soil and surface-sterilized roots, respectively, of the same ROC22 plant were used to inoculate micropropagated sugarcane plantlets. Both strains increased the biomass and nitrogen content of the sugarcane seedlings grown with nitrogen fertilization equivalent to 180 kg urea ha(-1), the recommended nitrogen fertilization for ROC22 cane crops at the seedling stage. (15)N isotope dilution assays demonstrated that biological nitrogen fixation contributed to plant growth promotion. These results suggested that indigenous nitrogen-fixing enterobacteria have the potential to fix N(2) associated with sugarcane plants grown in fields in Guangxi and to improve sugarcane production.

  6. Characterization of nitrogen-fixing moderate halophilic cyanobacteria isolated from saline soils of Songnen Plain in China

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Yujie Feng

    2008-01-01

    Twenty out of 200 isolates of cyanobacteria mainly from saline soils of Songnen Plain of China were successfully grown on BG11 N-free medium. The nitrogen-fixing activity was then demonstrated for the 20 isolates in modified BG11 medium using the acetylene reduction assay. All of them possessed appreciable nitrogenase activity (acetylene reduction) under non-saline conditions; however, at 5% NaCl only 60% of the isolates exhibited a high rate of this activity and 25% were completely negative under these conditions. The cyanobacteria isolates grew well in BG11 medium; nevertheless, growth of the majority of isolates was reduced by about 25-85% in the same medium containing 5% NaCl. Cellulolytic activity was detected in 50% of the 20 strains, amylolytic in 45%, and pectinolytic in 10% of the isolates. The cyanobacteria isolates showed also enzymatic activity under saline conditions (6%). The preliminary identification indicated that seven isolates were Nostoc, two were Microcystis, four were Oscillatoria, six were Anabaena, and one isolate was Synechococcus.

  7. Real-time PCR detection of aldoxime dehydratase genes in nitrile-degrading microorganisms.

    Science.gov (United States)

    Dooley-Cullinane, Tríona Marie; O'Reilly, Catherine; Coffey, Lee

    2017-02-01

    Aldoxime dehydratase catalyses the conversion of aldoximes to their corresponding nitriles. Utilization of the aldoxime-nitrile metabolising enzyme pathway can facilitate the move towards a greener chemistry. In this work, a real-time PCR assay was developed for the detection of aldoxime dehydratase genes in aldoxime/nitrile metabolising microorganisms which have been purified from environmental sources. A conventional PCR assay was also designed allowing gene confirmation via sequencing. Aldoxime dehydratase genes were identified in 30 microorganisms across 11 genera including some not previously shown to harbour the gene. The assay displayed a limit of detection of 1 pg/μL DNA or 7 CFU/reaction. This real-time PCR assay should prove valuable in the high-throughput screening of micro-organisms for novel aldoxime dehydratase genes towards pharmaceutical and industrial applications.

  8. Portable automatic bioaerosol sampling system for rapid on-site detection of targeted airborne microorganisms.

    Science.gov (United States)

    Usachev, Evgeny V; Pankova, Anna V; Rafailova, Elina A; Pyankov, Oleg V; Agranovski, Igor E

    2012-10-26

    Bioaerosols could cause various severe human and animal diseases and their opportune and qualitative precise detection and control is becoming a significant scientific and technological topic for consideration. Over the last few decades bioaerosol detection has become an important bio-defense related issue. Many types of portable and stationary bioaerosol samplers have been developed and, in some cases, integrated into automated detection systems utilizing various microbiological techniques for analysis of collected microbes. This paper describes a personal sampler used in conjunction with a portable real-time PCR technique. It was found that a single fluorescent dye could be successfully used in multiplex format for qualitative detection of numerous targeted bioaerosols in one PCR tube making the suggested technology a reliable "first alert" device. This approach has been specifically developed and successfully verified for rapid detection of targeted microorganisms by portable PCR devices, which is especially important under field conditions, where the number of microorganisms of interest usually exceeds the number of available PCR reaction tubes. The approach allows detecting targeted microorganisms and triggering some corresponding sanitary and quarantine procedures to localize possible spread of dangerous infections. Following detailed analysis of the sample under controlled laboratory conditions could be used to exactly identify which particular microorganism out of a targeted group has been rapidly detected in the field. It was also found that the personal sampler has a collection efficiency higher than 90% even for small-sized viruses (>20 nm) and stable performance over extended operating periods. In addition, it was found that for microorganisms used in this project (bacteriophages MS2 and T4) elimination of nucleic acids isolation and purification steps during sample preparation does not lead to the system sensitivity reduction, which is extremely

  9. Molecular characterization of nitrogen-fixing bacteria isolated from brazilian agricultural plants at São Paulo state.

    Science.gov (United States)

    Reinhardt, Erica L; Ramos, Patrícia L; Manfio, Gilson P; Barbosa, Heloiza R; Pavan, Crodowaldo; Moreira-Filho, Carlos A

    2008-07-01

    Fourteen strains of nitrogen-fixing bacteria were isolated from different agricultural plant species, including cassava, maize and sugarcane, using nitrogen-deprived selective isolation conditions. Ability to fix nitrogen was verified by the acetylene reduction assay. All potentially nitrogen-fixing strains tested showed positive hybridization signals with a nifH probe derived from Azospirillum brasilense. The strains were characterized by RAPD, ARDRA and 16S rDNA sequence analysis. RAPD analyses revealed 8 unique genotypes, the remaining 6 strains clustered into 3 RAPD groups, suggesting a clonal origin. ARDRA and 16S rDNA sequence analyses allowed the assignment of 13 strains to known groups of nitrogen-fixing bacteria, including organisms from the genera Azospirillum, Herbaspirillum, Pseudomonas and Enterobacteriaceae. Two strains were classified as Stenotrophomonas ssp. Molecular identification results from 16S rDNA analyses were also corroborated by morphological and biochemical data.

  10. Molecular characterization of nitrogen-fixing bacteria isolated from brazilian agricultural plants at São Paulo state

    Science.gov (United States)

    Reinhardt, Érica. L.; Ramos, Patrícia L.; Manfio, Gilson P.; Barbosa, Heloiza R.; Pavan, Crodowaldo; Moreira-Filho, Carlos A.

    2008-01-01

    Fourteen strains of nitrogen-fixing bacteria were isolated from different agricultural plant species, including cassava, maize and sugarcane, using nitrogen-deprived selective isolation conditions. Ability to fix nitrogen was verified by the acetylene reduction assay. All potentially nitrogen-fixing strains tested showed positive hybridization signals with a nifH probe derived from Azospirillum brasilense. The strains were characterized by RAPD, ARDRA and 16S rDNA sequence analysis. RAPD analyses revealed 8 unique genotypes, the remaining 6 strains clustered into 3 RAPD groups, suggesting a clonal origin. ARDRA and 16S rDNA sequence analyses allowed the assignment of 13 strains to known groups of nitrogen-fixing bacteria, including organisms from the genera Azospirillum, Herbaspirillum, Pseudomonas and Enterobacteriaceae. Two strains were classified as Stenotrophomonas ssp. Molecular identification results from 16S rDNA analyses were also corroborated by morphological and biochemical data. PMID:24031239

  11. Low-cost digital impedance meter for the detection of micro-organisms.

    Science.gov (United States)

    Felice, C J; Clavin, O E; Spinelli, J C; Valentinuzzi, M E; Gallo, B V

    1988-10-01

    The digital impedance meter is a microprocessor-based instrument able to detect, quantify and identify micro-organisms. The equipment makes use of the bipolar technique of measuring the impedance modulus of six cells containing inoculated culture broth. It performs temperature compensation automatically. Growth curves are stored in memory as time course events and can be displayed on any suitable device.

  12. Research Progress and Perspectives of Nitrogen Fixing Bacterium, Gluconacetobacter diazotrophicus, in Monocot Plants

    Directory of Open Access Journals (Sweden)

    N. Eskin

    2014-01-01

    Full Text Available Gluconacetobacter diazotrophicus is a nitrogen fixing bacterium originally found in monocotyledon sugarcane plants in which the bacterium actively fixes atmosphere nitrogen and provides significant amounts of nitrogen to plants. This bacterium mainly colonizes intercellular spaces within the roots and stems of plants and does not require the formation of the complex root organ like nodule. The bacterium is less plant/crop specific and indeed G. diazotrophicus has been found in a number of unrelated plant species. Importantly, as the bacterium was of monocot plant origin, there exists a possibility that the nitrogen fixation feature of the bacterium may be used in many other monocot crops. This paper reviews and updates the research progress of G. diazotrophicus for the past 25 years but focuses on the recent research development.

  13. Melanin from the nitrogen-fixing bacterium Azotobacter chroococcum: a spectroscopic characterization.

    Science.gov (United States)

    Banerjee, Aulie; Supakar, Subhrangshu; Banerjee, Raja

    2014-01-01

    Melanins, the ubiquitous hetero-polymer pigments found widely dispersed among various life forms, are usually dark brown/black in colour. Although melanins have variety of biological functions, including protection against ultraviolet radiation of sunlight and are used in medicine, cosmetics, extraction of melanin from the animal and plant kingdoms is not an easy task. Using complementary physicochemical techniques (i.e. MALDI-TOF, FTIR absorption and cross-polarization magic angle spinning solid-state (13)C NMR), we report here the characterization of melanins extracted from the nitrogen-fixing non-virulent bacterium Azotobacter chroococcum, a safe viable source. Moreover, considering dihydroxyindole moiety as the main constituent, an effort is made to propose the putative molecular structure of the melanin hetero-polymer extracted from the bacterium. Characterization of the melanin obtained from Azotobacter chroococcum would provide an inspiration in extending research activities on these hetero-polymers and their use as protective agent against UV radiation.

  14. The plant growth-promoting effect of the nitrogen-fixing endophyte Pseudomonas stutzeri A15.

    Science.gov (United States)

    Pham, Van T K; Rediers, Hans; Ghequire, Maarten G K; Nguyen, Hiep H; De Mot, René; Vanderleyden, Jos; Spaepen, Stijn

    2017-04-01

    The use of plant growth-promoting rhizobacteria as a sustainable alternative for chemical nitrogen fertilizers has been explored for many economically important crops. For one such strain isolated from rice rhizosphere and endosphere, nitrogen-fixing Pseudomonas stutzeri A15, unequivocal evidence of the plant growth-promoting effect and the potential contribution of biological nitrogen fixation (BNF) is still lacking. In this study, we investigated the effect of P. stutzeri A15 inoculation on the growth of rice seedlings in greenhouse conditions. P. stutzeri A15 induced significant growth promotion compared to uninoculated rice seedlings. Furthermore, inoculation with strain A15 performed significantly better than chemical nitrogen fertilization, clearly pointing to the potential of this bacterium as biofertilizer. To assess the contribution of BNF to the plant growth-promoting effect, rice seedlings were also inoculated with a nitrogen fixation-deficient mutant. Our results suggest that BNF (at best) only partially contributes to the stimulation of plant growth.

  15. [Electrooptical properties of soil nitrogen-fixing bacterium Azospirillum brasilense: effect of copper ions].

    Science.gov (United States)

    Ignatov, O V; Kamnev, A A; Markina, L N; Antoniuk, L P; Kolina, M; Ignatov, V V

    2001-01-01

    The effects of copper ions on the uptake of some essential metals in the biomass and the electrooptical properties of cell suspensions of the nitrogen-fixing soil bacterium Azospirillum brasilense sp. 245 were studied. Copper cations were shown to be effectively taken up by the cell biomass from the culture medium. The addition of copper ions increased the rate of uptake of some other metals present in the culture medium. This was accompanied by changes in the electrooptical characteristics of cell suspension as measured within the orienting electric field frequency range of 10 to 10,000 kHz. The effects observed during short-term incubation of A. brasilense in the presence of copper cations were less significant than during long-term incubation. These results can be used for rapid screening of microbial cultures for enhanced efficiency of sorption and uptake of metals.

  16. Seabird nutrient subsidies benefit non-nitrogen fixing trees and alter species composition in South American coastal dry forests.

    Directory of Open Access Journals (Sweden)

    Gilles Havik

    Full Text Available Marine-derived nutrients can increase primary productivity and change species composition of terrestrial plant communities in coastal and riverine ecosystems. We hypothesized that sea nutrient subsidies have a positive effect on nitrogen assimilation and seedling survival of non-nitrogen fixing species, increasing the relative abundance of non-nitrogen fixing species close to seashore. Moreover, we proposed that herbivores can alter the effects of nutrient supplementation by preferentially feeding on high nutrient plants. We studied the effects of nutrient fertilization by seabird guano on tree recruitment and how these effects can be modulated by herbivorous lizards in the coastal dry forests of northwestern Peru. We combined field studies, experiments and stable isotope analysis to study the response of the two most common tree species in these forests, the nitrogen-fixing Prosopis pallida and the non-nitrogen-fixing Capparis scabrida. We did not find differences in herbivore pressure along the sea-inland gradient. We found that the non-nitrogen fixing C. scabrida assimilates marine-derived nitrogen and is more abundant than P. pallida closer to guano-rich soil. We conclude that the input of marine-derived nitrogen through guano deposited by seabirds feeding in the Pacific Ocean affects the two dominant tree species of the coastal dry forests of northern Peru in contrasting ways. The non-nitrogen fixing species, C. scabrida may benefit from sea nutrient subsidies by incorporating guano-derived nitrogen into its foliar tissues, whereas P. pallida, capable of atmospheric fixation, does not.

  17. Paenibacillus jilunlii sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Begonia semperflorens.

    Science.gov (United States)

    Jin, Hao-Jie; Zhou, Yu-Guang; Liu, Hong-Can; Chen, San-Feng

    2011-06-01

    A nitrogen-fixing bacterium, designated strain Be17(T), was isolated from rhizosphere soil of Begonia semperflorens planted in Beijing Botanical Garden, PR China. Phylogenetic analyses based on a segment of the nifH gene sequence and a full-length 16S rRNA gene sequence revealed that strain Be17(T) was a member of the genus Paenibacillus. High levels of 16S rRNA gene sequence similarity were found between strain Be17(T) and Paenibacillus graminis RSA19(T) (97.9 %), Paenibacillus sonchi LMG 24727(T) (97.8 %), Paenibacillus riograndensis CECT 7330(T) (96.2 %) and Paenibacillus borealis DSM 13188(T) (96.1 %), respectively. Levels of 16S rRNA gene sequence similarity between strain Be17(T) and the type strains of other recognized members of the genus Paenibacillus were below 96.0 %. However, the DNA-DNA hybridization values between strain Be17(T) and P. graminis RSA19(T), P. sonchi LMG 24727(T) and P. riograndensis CECT 7330(T) were 47.9 %, 38.7 % and 37.5 %, respectively. The DNA G+C content of strain Be17(T) was 52.9 mol%. The major fatty acid component of strain Be17(T) was anteiso-branched C(15 : 0) (30.92 %). The major isoprenoid quinone was MK-7. The cell-wall peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. On the basis of its phenotypic characteristics, 16S rRNA gene sequences, DNA G+C content, DNA-DNA relatedness, chemotaxonomic properties and nifH gene sequence, strain Be17(T) represents a nitrogen-fixing strain of a novel species of the genus Paenibacillus, for which the name Paenibacillus jilunlii sp. nov. is proposed. The type strain is Be17(T) ( = CGMCC 1.10239(T) = DSM 23019(T)).

  18. Response of the nitrogen-fixing lichen Lobaria pulmonaria to phosphorus, molybdenum, and vanadium

    Science.gov (United States)

    Marks, Jade A; Pett-Ridge, Julie; Perakis, Steven S.; Allen, Jessica L; McCune, Bruce

    2015-01-01

    Nitrogen-fixing lichens (cyanolichens) are an important source of nitrogen (N) in Pacific Northwest forests, but limitation of lichen growth by elements essential for N fixation is poorly understood. To investigate how nutrient limitation may affect cyanolichen growth rates, we fertilized a tripartite cyanobacterial lichen (Lobaria pulmonaria) and a green algal non-nitrogen fixing lichen (Usnea longissima) with the micronutrients molybdenum (Mo) and vanadium (V), both known cofactors for enzymes involved in N fixation, and the macronutrient phosphorus (P). We then grew treated lichens in the field for one year in western Oregon, USA. Lichen growth was very rapid for both species and did not differ across treatments, despite a previous demonstration of P-limitation in L. pulmonaria at a nearby location. To reconcile these disparate findings, we analyzed P, Mo, and V concentrations, natural abundance δ15N isotopes, %N and change in thallus N in Lobaria pulmonaria from both growth experiments. Nitrogen levels in deposition and in lichens could not explain the large difference in growth or P limitation observed between the two studies. Instead, we provide evidence that local differences in P availability may have caused site-specific responses of Lobaria to P fertilization. In the previous experiment, Lobaria had low background levels of P, and treatment with P more than doubled growth. In contrast, Lobaria from the current experiment had much higher background P concentrations, similar to P-treated lichens in the previous experiment, consistent with the idea that ambient variation in P availability influences the degree of P limitation in cyanolichens. We conclude that insufficient P, Mo, and V did not limit the growth of either cyanolichens or chlorolichens at the site of the current experiment. Our findings point to the need to understand landscape-scale variation in P availability to cyanolichens, and its effect on spatial patterns of cyanolichen nutrient

  19. Nitrogen-fixing aerobic bacteria have higher genomic GC content than non-fixing species within the same genus

    OpenAIRE

    McEwan, Catriona E.; Gatherer, Derek; McEwan, Neil R.

    1998-01-01

    The genomic GC contents of both nitrogen-fixing and non-fixing members of eight genera of bacteria are investigated. Analysis by t-tests showed that in the two aerobic genera investigated (Aquaspirillum and Vibrio) there is a significantly higher GC content in the nitrogen-fixing members of the genus than in those unable to Fix nitrogen, whilst in anaerobic genera there is either no GC bias, or in the case of two genera (Rhodospirillum and Clostridium) there is a significantly higher GC conte...

  20. Electroanalytical sensors and devices for multiplexed detection of foodborne pathogen microorganisms.

    Science.gov (United States)

    Pedrero, María; Campuzano, Susana; Pingarrón, José M

    2009-01-01

    The detection and identification of pathogen microorganisms still rely on conventional culturing techniques, which are not suitable for on-site monitoring. Therefore, a great research challenge in this field is focused on the need to develop rapid, reliable, specific, and sensitive methods to detect these bacteria at low cost. Moreover, the growing interest in biochip development for large scale screening analysis implies improved miniaturization, reduction of analysis time and cost, and multi-analyte detection, which has nowadays become a crucial challenge. This paper reviews multiplexed foodborne pathogen microorganisms detection methods based on electrochemical sensors incorporating microarrays and other platforms. These devices usually involve antibody-antigen and DNA hybridization specific interactions, although other approaches such as the monitoring of oxygen consumption are also considered.

  1. Electroanalytical Sensors and Devices for Multiplexed Detection of Foodborne Pathogen Microorganisms

    Directory of Open Access Journals (Sweden)

    Susana Campuzano

    2009-07-01

    Full Text Available The detection and identification of pathogen microorganisms still rely on conventional culturing techniques, which are not suitable for on-site monitoring. Therefore, a great research challenge in this field is focused on the need to develop rapid, reliable, specific, and sensitive methods to detect these bacteria at low cost. Moreover, the growing interest in biochip development for large scale screening analysis implies improved miniaturization, reduction of analysis time and cost, and multi-analyte detection, which has nowadays become a crucial challenge. This paper reviews multiplexed foodborne pathogen microorganisms detection methods based on electrochemical sensors incorporating microarrays and other platforms. These devices usually involve antibody-antigen and DNA hybridization specific interactions, although other approaches such as the monitoring of oxygen consumption are also considered.

  2. A LAMP-based schematic prototype instrument for detection of microorganisms in human outer space activities

    Science.gov (United States)

    Hu, Yongfei; Liu, Zhiheng; Li, Junxiong; Zhu, Baoli

    One of the main tasks of human outer space exploration is to detect signs of life. Based on meteoritic evidence, common ancestry hypothesis has been posed. Therefore, searching for the fundamental molecules (DNA, RNA, and proteins) that constitute life as we know on Earth is feasible and now the typical approach. To achieve this goal, portable, robust, and highly sensitive instrument is also needed. In this study, based on Loop mediated isothermal amplification (LAMP) technique that targets life information storage molecular, DNA, we designed a schematic prototype instrument for microorganism detection. First, we designed LAMP primers used for amplification of DNA markers of Bacteria, Archaea, and Fungus; then, we optimized the LAMP reaction system for space using; and finally, we designed a prototype instrument and operating software system that are compatible with the LAMP reaction system. The results of simulation experiments showed that our instrument performed well for detecting representative microorganisms and the device can achieve semi-automatization. The detection process, from sample preparation to signal visualization, was completed in 1.5 hour. Our study provides a new method and corresponding device for detection of DNA molecular, which has great potential for applications in outer space exploration. Besides, the instrument we designed can also been used for monitoring changes of terrestrial microorganisms in outer space, for example in aircraft.

  3. Genome Sequence of Bradyrhizobium viridifuturi Strain SEMIA 690T, a Nitrogen-Fixing Symbiont of Centrosema pubescens

    Science.gov (United States)

    Helene, Luisa Caroline Ferraz; Gomes, Douglas Fabiano; Delamuta, Jakeline Renata Marçon; Ribeiro, Renan Augusto; Souza, Renata Carolini; Almeida, Luiz Gonzaga Paula; Vasconcelos, Ana Tereza Ribeiro

    2015-01-01

    SEMIA 690T is a nitrogen-fixing symbiont of Centrosema pubescens, and comprises the recently described species Bradyrhizobium viridifuturi. Its draft genome indicates that it belongs to the Bradyrhizobium elkanii superclade. SEMIA 690T carries two copies of the regulatory nodD gene, and the nod and nif operons resemble those of Bradyrhizobium diazoefficiens. PMID:26679590

  4. Effects of oxytetracycline on the abundance and community structure of nitrogen-fixing bacteria during cattle manure composting.

    Science.gov (United States)

    Sun, Jiajun; Qian, Xun; Gu, Jie; Wang, Xiaojuan; Gao, Hua

    2016-09-01

    The effects of oxytetracycline (OTC) on nitrogen-fixing bacterial communities were investigated during cattle manure composting. The abundance and community structure of nitrogen-fixing bacteria were determined by qPCR and denaturing gradient gel electrophoresis (DGGE), respectively. The matrix was spiked with OTC at four levels: no OTC, 10mg/kg dry weight (DW) OTC (L), 60mg/kg DW OTC (M), and 200mg/kg DW OTC (H). The high temperature period of composting was shorter with M and H, and the decline in temperature during the cooling stage was accelerated by OTC. OTC had a concentration-dependent inhibitory effect on the nitrogenase activity during early composting, and the nifH gene abundance declined significantly during the later composting stage. The DGGE profile and statistical analysis showed that OTC changed the nitrogen-fixing bacterial community succession and reduced the community richness and dominance. The nitrogen-fixing bacterial community structure was affected greatly by the high level of OTC.

  5. Characterization of free nitrogen fixing bacteria of the genus Azotobacter in organic vegetable-grown Colombian soils

    NARCIS (Netherlands)

    Jiménez Avella, Diego; Montaña, José Salvador; Martínez, María Mercedes

    2011-01-01

    With the purpose of isolating and characterizing free nitrogen fixing bacteria (FNFB) of the genus Azotobacter, soil samples were collected randomly from different vegetable organic cultures with neutral pH in different zones of Boyacá-Colombia. Isolations were done in selective free nitrogen Ashby-

  6. Novel expression pattern of cytosolic gln synthetase in nitrogen-fixing root nodules of the actinorhizal host, Datisca glomerata

    NARCIS (Netherlands)

    Berry, A.M.; Murphy, T.M.; Okubara, P.A.; Jacobsen, K.R.; Swensen, S.M.; Pawlowski, K.

    2004-01-01

    Gln synthetase (GS) is the key enzyme of primary ammonia assimilation in nitrogen-fixing root nodules of legumes and actinorhizal (Frankia-nodulated) plants. In root nodules of Datisca glomerata (Datiscaceae), transcripts hybridizing to a conserved coding region of the abundant nodule isoform, DgGS1

  7. Bacterial-induced calcium oscillations are common to nitrogen-fixing associations of nodulating legumes and nonlegumes.

    Science.gov (United States)

    Granqvist, Emma; Sun, Jongho; Op den Camp, Rik; Pujic, Petar; Hill, Lionel; Normand, Philippe; Morris, Richard J; Downie, J Allan; Geurts, Rene; Oldroyd, Giles E D

    2015-08-01

    Plants that form root-nodule symbioses are within a monophyletic 'nitrogen-fixing' clade and associated signalling processes are shared with the arbuscular mycorrhizal symbiosis. Central to symbiotic signalling are nuclear-associated oscillations in calcium ions (Ca(2+) ), occurring in the root hairs of several legume species in response to the rhizobial Nod factor signal. In this study we expanded the species analysed for activation of Ca(2+) oscillations, including nonleguminous species within the nitrogen-fixing clade. We showed that Ca(2+) oscillations are a common feature of legumes in their association with rhizobia, while Cercis, a non-nodulating legume, does not show Ca(2+) oscillations in response to Nod factors from Sinorhizobium fredii NGR234. Parasponia andersonii, a nonlegume that can associate with rhizobia, showed Nod factor-induced calcium oscillations to S. fredii NGR234 Nod factors, but its non-nodulating sister species, Trema tomentosa, did not. Also within the nitrogen-fixing clade are actinorhizal species that associate with Frankia bacteria and we showed that Alnus glutinosa induces Ca(2+) oscillations in root hairs in response to exudates from Frankia alni, but not to S. fredii NGR234 Nod factors. We conclude that the ability to mount Ca(2+) oscillations in response to symbiotic bacteria is a common feature of nodulating species within the nitrogen-fixing clade.

  8. Novel expression pattern of cytosolic gln synthetase in nitrogen-fixing root nodules of the actinorhizal host, Datisca glomerata

    NARCIS (Netherlands)

    Berry, A.M.; Murphy, T.M.; Okubara, P.A.; Jacobsen, K.R.; Swensen, S.M.; Pawlowski, K.

    2004-01-01

    Gln synthetase (GS) is the key enzyme of primary ammonia assimilation in nitrogen-fixing root nodules of legumes and actinorhizal (Frankia-nodulated) plants. In root nodules of Datisca glomerata (Datiscaceae), transcripts hybridizing to a conserved coding region of the abundant nodule isoform,

  9. Characterization of free nitrogen fixing bacteria of the genus Azotobacter in organic vegetable-grown Colombian soils

    NARCIS (Netherlands)

    Jiménez Avella, Diego; Montaña, José Salvador; Martínez, María Mercedes

    With the purpose of isolating and characterizing free nitrogen fixing bacteria (FNFB) of the genus Azotobacter, soil samples were collected randomly from different vegetable organic cultures with neutral pH in different zones of Boyacá-Colombia. Isolations were done in selective free nitrogen

  10. Seabird nutrient subsidies benefit non-nitrogen fixing trees and alter species composition in South American coastal dry forests

    NARCIS (Netherlands)

    Havik, G.; Catenazzi, A.; Holmgren, M.

    2014-01-01

    Marine-derived nutrients can increase primary productivity and change species composition of terrestrial plant communities in coastal and riverine ecosystems. We hypothesized that sea nutrient subsidies have a positive effect on nitrogen assimilation and seedling survival of non-nitrogen fixing spec

  11. Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus.

    Science.gov (United States)

    Eckert, B; Weber, O B; Kirchhof, G; Halbritter, A; Stoffels, M; Hartmann, A

    2001-01-01

    A new group of nitrogen-fixing Azospirillum sp. bacteria was isolated from the roots of the C4-gramineous plant Miscanthus. Polyphasic taxonomy was performed, including auxanography using API galleries, physiological tests and 16S rRNA sequence comparison. The ability of the isolates to fix dinitrogen was evaluated by amplification of the nifD gene, immunodetection of the dinitrogenase reductase and acetylene-reduction assay. On the basis of these results, the nitrogen-fixing isolates represent a new species within the genus Azospirillum. Its closest phylogenetic neighbours, as deduced by 16S rDNA-based analysis, are Azospirillum lipoferum, Azospirillum largimobile and Azospirillum brasilense with 96.6, 96.6 and 95.9% sequence similarity, respectively. Two 16S rRNA-targeting oligonucleotide probes were developed which differentiate the new species from the other Azospirillum species by whole-cell fluorescence hybridization. Strains of the new species are curved rods or S-shaped, 1.0-1.5 microm in width and 2,0-3.0 microm in length, Gram-negative and motile with a single polar flagellum. Optimum growth occurs at 30 degrees C and at pH values between 6.0 and 7.0. No growth takes place at 37 degrees C. They have a respiratory type of metabolism, grow well on arabinose, D-fructose, gluconate, glucose, glycerol, malate, mannitol and sorbitol. They differ from A. largimobile and A. lipoferum by their inability to use N-acetylglucosamine and D-ribose, from A. lipoferum by their ability to grow without biotin supplementation and from A. brasilense by their growth with D-mannitol and D-sorbitol as sole carbon sources. Nitrogen fixation occurs in microaerobic nitrogen-limited conditions. For this species, the name Azospirillum doebereinerae sp. nov. is suggested, with strain GSF71T as the type strain (= DSM 13131T; reference strain Ma4 = DSM 13400). Its G+C content is 70.7 mol%.

  12. Detection of boron removal capacities of different microorganisms in wastewater and effective removal process.

    Science.gov (United States)

    Laçin, Bengü; Ertit Taştan, Burcu; Dönmez, Gönül

    2015-01-01

    In this study boron removal capacities of different microorganisms were tested. Candida tropicalis, Rhodotorula mucilaginosa, Micrococcus luteus, Bacillus thuringiensis, Bacillus cereus, Bacillus megaterium, Bacillus pumilus, Pseudomonas aeruginosa and Aspergillus versicolor were examined for their boron bioaccumulation capacities in simulated municipal wastewater. A. versicolor and B. cereus were found as the most boron-tolerant microorganisms in the experiments. Also boron bioaccumulation yield of A. versicolor was 49.25% at 15 mg/L boron concentration. On the other hand biosorption experiments revealed that A. versicolor was more capable of boron removal in inactive form at the highest boron concentrations. In this paper maximum boron bioaccumulation yield was detected as 39.08% at 24.17 mg/L and the maximum boron biosorption yield was detected as 41.36% at 24.01 mg/L boron concentrations.

  13. Nitrogen-fixing bacteria associated with copepods in coastal waters of the North Atlantic Ocean.

    Science.gov (United States)

    Scavotto, Rosemary E; Dziallas, Claudia; Bentzon-Tilia, Mikkel; Riemann, Lasse; Moisander, Pia H

    2015-10-01

    The community composition of N2 -fixing microorganisms (diazotrophs) was investigated in copepods (primarily Acartia spp.) in parallel to that of seawater in coastal waters off Denmark (Øresund) and New England, USA. The unicellular cyanobacterial diazotroph UCYN-A was detected from seawater and full-gut copepods, suggesting that the new N contributed by UCYN-A is directly transferred to higher trophic levels in these waters. Deltaproteobacterial and Cluster 3 nifH sequences were detected in > 1 μm seawater particles and full-gut copepods, suggesting that they associate with copepods primarily via feeding. The dominant communities in starved copepods were Vibrio spp. and related Gammaproteobacteria, suggesting they represent the most permanent diazotroph associations in the copepods. N2 fixation rates were up to 3.02 pmol N copepod(-1) day(-1). Although at a typical copepod density in estuarine waters, these volumetric rates are low; considering the small size of a copepod, these mesozooplanktonic crustaceans may serve as hotspots of N2 fixation, at 12.9-71.9 μmol N dm(-3) copepod biomass day(-1). Taken together, diazotroph associations range from more permanent attachments to copepod feeding on some groups. Similar diazotroph groups detected on the eastern and western Atlantic Ocean suggest that these associations are a general phenomenon and play a role in the coastal N cycles. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Characterization of nitrogen-fixing bacteria from a temperate saltmarsh lagoon, including isolates that produce ethane from acetylene.

    Science.gov (United States)

    Tibbles, B J; Rawlings, D E

    1994-01-01

    Nitrogen-fixing bacteria were isolated from sediments and water of a saltmarsh lagoon on the west coast of South Africa, and characterized according to factors that regulate nitrogen fixation in the marine environment. The majority of isolates were assigned to the Photobacterium or Vibrio genera on the basis of physiological and biochemical characteristics. One isolate was further assigned to the species Vibrio diazotrophicus. Carbohydrate utilization by each diazotrophic isolate was examined. Abilities of the isolates to utilize a range of mono-, di-, and polysaccharides largely reflected the predicted availability of organic carbon and energy in the lagoon, except that chitin was not utilized. Biochemical tests on the utilization of combined nitrogen showed that one isolate could utilize nitrate, and that this strain was susceptible to full repression of nitrogenase activity by 10mM nitrate. Urease activity was not detected in any of the isolates. In the absence of molybdenum two of the isolates, a Photobacterium spp. and V. diazotrophicus, reduced acetylene to ethylene and ethane, a property frequently associated with the activity of alternative nitrogenases. Addition of 25µM molybdenum inhibited ethane production by V. diazotrophicus, but stimulated ethylene and ethane production by the Photobacterium isolate. Addition of 28µM vanadium did not appear to regulate ethane production by either strain. Assays of nitrogenase activity in sediments from which some isolates were obtained indicated that molybdenum was not limiting nitrogenase activity at naturally-occurring concentrations. Southern hybridizations of the chromosomes of these strains with the anfH and vnfH genes of Azotobacter vinelandii and the nifH gene of Klebsiella pneumoniae indicated the presence of only one nitrogenase in these isolates.

  15. Effects of Salinity on Leaf Spectral Reflectance and Biochemical Parameters of Nitrogen Fixing Soybean Plants (Glycine max L.)

    Science.gov (United States)

    Krezhova, Dora D.; Kirova, Elisaveta B.; Yanev, Tony K.; Iliev, Ilko Ts.

    2010-01-01

    Measurements of physiology and hyperspectral leaf reflectance were used to detect salinity stress in nitrogen fixing soybean plants. Seedlings were inoculated with suspension of Bradyrhizobium japonicum strain 273. Salinity was performed at the stage of 2nd-4th trifoliate expanded leaves by adding of NaCl in the nutrient solution of Helrigel in concentrations 40 mM and 80 mM. A comparative analysis was performed between the changes in the biochemical parameters - stress markers (phenols, proline, malondialdehyde, thiol groups), chlorophyll a and b, hydrogen peroxide, and leaf spectral reflectance in the spectral range 450-850 nm. The spectral measurements were carried out by an USB2000 spectrometer. The reflectance data of the control and treated plants in the red, green, red-edge and the near infrared ranges of the spectrum were subjected to statistical analysis. Statistically significant differences were found through the Student's t-criterion at the two NaCl concentrations in all of the ranges examined with the exception of the near infrared range at 40 mM NaCl concentration. Similar results were obtained through linear discriminant analysis. The tents of the phenols, malondialdehyde and chlorophyll a and b were found to decrease at both salinity treatments. In the spectral data this effect is manifested by decrease of the reflectance values in the green and red ranges. The contents of proline, hydrogen peroxide and thiol groups rose with the NaCl concentration increase. At 80 mM NaCl concentration the values of these markers showed a considerable increase giving evidence that the soybean plants were stressed in comparison with the control. This finding is in agreement with the results from the spectral reflectance analysis.

  16. Innovative use of platinum compounds to selectively detect live microorganisms by polymerase chain reaction.

    Science.gov (United States)

    Soejima, Takashi; Minami, Jun-Ichi; Xiao, Jin-Zhong; Abe, Fumiaki

    2016-02-01

    PCR cannot distinguish live microorganisms from dead ones. To circumvent this disadvantage, ethidium/propidium-monoazide (EMA/PMA) and psoralen to discriminate live from dead bacteria have been used for 2 decades. These methods require the use of numerous laborious procedures. We introduce an innovative method that uses platinum compounds, which are primarily used as catalysts in organic chemistry and partly used as anti-cancer drugs. Microorganisms are briefly exposed to platinum compounds in vivo, and these compounds penetrate dead (compromised) microorganisms but not live ones and are chelated by chromosomal DNA. The use of platinum compounds permits clear discrimination between live and dead microorganisms in water and milk (including Cronobacter sakazakii and Escherichia coli) via PCR compared with typically used PMA. This platinum-PCR method could enable the specific detection of viable coliforms in milk at a concentration of 5-10 CFU mL(-1) specified by EU/USA regulations after a 4-h process. For sample components, environmental water contains lower levels of PCR inhibitors than milk does, and milk is similar to infant formula, skim milk and blood; thus, the use of the platinum-PCR method could also prevent food poisoning due to the presence of C. sakazakii in dairy products. This method could provide outstanding rapidity for use in environmental/food/clinical tests. Platinum-PCR could also be a substitute for the typical culture-based methods currently used.

  17. Draft Genome sequence of Frankia sp. Strain QA3, a nitrogen-fixing actinobacterium isolated from the root nodule of Alnus nitida

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Arnab [University of North Bengal, Siliguri, India; Beauchemin, Nicholas [University of New Hampshire; Bruce, David [Los Alamos National Laboratory (LANL); Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Davenport, Karen W. [Los Alamos National Laboratory (LANL); Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Furnholm, Teal [University of New Hampshire; Ghodhbane-Gtari, Faten [University of New Hampshire; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Gtari, Maher [University of New Hampshire; Han, James [U.S. Department of Energy, Joint Genome Institute; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Nouioui, Imen [University of Tunis-El Manar, Tunisia; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Santos, Catarina [Instiuto Celular e Aplicada, Portugal; Sur, Saubashya [University of North Bengal, Siliguri, India; Szeto, Ernest [U.S. Department of Energy, Joint Genome Institute; Tavares, Fernando [Instiuto Celular e Aplicada, Portugal; Teshima, Hazuki [Los Alamos National Laboratory (LANL); Thakur, Subarna [University of North Bengal, Siliguri, India; Wall, Luis [University of Quilmes, Argentina; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Wishart, Jessie [University of New Hampshire; Tisa, Louis S. [University of New Hampshire

    2013-01-01

    Members of actinomycete genus Frankia form a nitrogen-fixing symbiosis with 8 different families of actinorhizal plants. We report a high-quality draft genome sequence for Frankia sp. stain QA3, a nitrogen-fixing actinobacterium isolated from root nodules of Alnus nitida.

  18. Melanin from the nitrogen-fixing bacterium Azotobacter chroococcum: a spectroscopic characterization.

    Directory of Open Access Journals (Sweden)

    Aulie Banerjee

    Full Text Available Melanins, the ubiquitous hetero-polymer pigments found widely dispersed among various life forms, are usually dark brown/black in colour. Although melanins have variety of biological functions, including protection against ultraviolet radiation of sunlight and are used in medicine, cosmetics, extraction of melanin from the animal and plant kingdoms is not an easy task. Using complementary physicochemical techniques (i.e. MALDI-TOF, FTIR absorption and cross-polarization magic angle spinning solid-state (13C NMR, we report here the characterization of melanins extracted from the nitrogen-fixing non-virulent bacterium Azotobacter chroococcum, a safe viable source. Moreover, considering dihydroxyindole moiety as the main constituent, an effort is made to propose the putative molecular structure of the melanin hetero-polymer extracted from the bacterium. Characterization of the melanin obtained from Azotobacter chroococcum would provide an inspiration in extending research activities on these hetero-polymers and their use as protective agent against UV radiation.

  19. A common genomic framework for a diverse assembly of plasmids in the symbiotic nitrogen fixing bacteria.

    Directory of Open Access Journals (Sweden)

    Lisa C Crossman

    Full Text Available This work centres on the genomic comparisons of two closely-related nitrogen-fixing symbiotic bacteria, Rhizobium leguminosarum biovar viciae 3841 and Rhizobium etli CFN42. These strains maintain a stable genomic core that is also common to other rhizobia species plus a very variable and significant accessory component. The chromosomes are highly syntenic, whereas plasmids are related by fewer syntenic blocks and have mosaic structures. The pairs of plasmids p42f-pRL12, p42e-pRL11 and p42b-pRL9 as well large parts of p42c with pRL10 are shown to be similar, whereas the symbiotic plasmids (p42d and pRL10 are structurally unrelated and seem to follow distinct evolutionary paths. Even though purifying selection is acting on the whole genome, the accessory component is evolving more rapidly. This component is constituted largely for proteins for transport of diverse metabolites and elements of external origin. The present analysis allows us to conclude that a heterogeneous and quickly diversifying group of plasmids co-exists in a common genomic framework.

  20. Ants are less attracted to the extrafloral nectar of plants with symbiotic, nitrogen-fixing rhizobia.

    Science.gov (United States)

    Godschalx, Adrienne L; Schädler, Martin; Trisel, Julie A; Balkan, Mehmet A; Ballhorn, Daniel J

    2015-02-01

    Plants simultaneously maintain mutualistic relationships with different partners that are connected through the same host, but do not interact directly. One or more participating mutualists may alter their host's phenotype, resulting in a shift in the host's ecological interactions with all other mutualists involved. Understanding the functional interplay of mutualists associated with the same host remains an important challenge in biology. Here, we show belowground nitrogen-fixing rhizobia on lima bean (Phaseolus lunatus) alter their host plant's defensive mutualism with aboveground ants. We induced extrafloral nectar (EFN), an indirect defense acting through ant attraction. We also measured various nutritive and defensive plant traits, biomass, and counted ants on rhizobial and rhizobia-free plants. Rhizobia increased plant protein as well as cyanogenesis, a direct chemical defense against herbivores, but decreased EFN. Ants were significantly more attracted to rhizobia-free plants, and our structural equation model shows a strong link between rhizobia and reduced EFN as well as between EFN and ants: the sole path to ant recruitment. The rhizobia-mediated effects on simultaneously expressed defensive plant traits indicate rhizobia can have significant bottom-up effects on higher trophic levels. Our results show belowground symbionts play a critical and underestimated role in determining aboveground mutualistic interactions.

  1. Comparison of biomass productivity and nitrogen fixing potential of Azolla SPP

    Energy Technology Data Exchange (ETDEWEB)

    Arora, A.; Singh, P.K. [Indian Agricultural Research Inst., New Delhi (India)

    2003-03-01

    Study was conducted on six different Azolla species, available in the germplasm collection of NCCUBGA, IARI, New Delhi namely A. filiculoides, A. mexicana, A. microphylla, A. pinnata, A. rubra and A. caroliniana in a polyhouse to assess their growth potential by determining their maximal biomass productivity, doubling time and relative growth rates. Their nitrogen fixing potential was assessed by acetylene reduction assay. Among them Azolla microphylla gave highest biomass production and relative growth rate followed by Azolla caroliniana. Both these had high nitrogenase activity also. Peak nitrogenase activity of these strains was found on 14th day of growth and it declined on further incubation. Azolla microphylla and Azolla rubra were more tolerant to salinity than others. On the other hand Azolla pinnata, which is endemic species found in India, exhibited low biomass production, relative growth rate and lower nitrogenase activity compared to other species. It was unable to sustain growth in saline medium. Under polyhouse conditions, A. microphylla was found to perform better than other cultures in terms of biomass productivity, N fixing ability and salt tolerance. Hence it is taken up for mass production.(author)

  2. Paenibacillus sonchi sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sonchus oleraceus.

    Science.gov (United States)

    Hong, Yuan-Yuan; Ma, Yu-Chao; Zhou, Yu-Guang; Gao, Fei; Liu, Hong-Can; Chen, San-Feng

    2009-11-01

    A nitrogen-fixing bacterium, designated strain X19-5(T), was isolated from rhizosphere soil of Sonchus oleraceus. Phylogenetic analysis based on a fragment of the nifH gene and the full-length 16S rRNA gene sequence revealed that strain X19-5(T) was a member of the genus Paenibacillus. Strain X19-5(T) showed the highest 16S rRNA gene sequence similarity (98.8 %) with Paenibacillus graminis RSA19(T) and below 97 % similarity with other recognized members of the genus. The level of DNA-DNA relatedness between strain X19-5(T) and P. graminis RSA19(T) was 45.7 %. The DNA G+C content of strain X19-5(T) was 46.8 mol%. The major fatty acids were anteiso-C(15 : 0), C(16 : 0) and iso-C(16 : 0). On the basis of its phenotypic characteristics and the level of DNA-DNA hybridization, strain X19-5(T) is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus sonchi sp. nov. is proposed. The type strain is X19-5(T) (=CCBAU 83901(T)=LMG 24727(T)).

  3. Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges.

    Science.gov (United States)

    Bhattacharjee, Rumpa Biswas; Singh, Aqbal; Mukhopadhyay, S N

    2008-08-01

    The potential of nitrogen-fixing (NF) bacteria to form a symbiotic relationship with leguminous plants and fix atmospheric nitrogen has been exploited in the field to meet the nitrogen requirement of the latter. This phenomenon provides an alternative to the use of the nitrogenous fertiliser whose excessive and imbalanced use over the decades has contributed to green house emission (N2O) and underground water leaching. Recently, it was observed that non-leguminous plants like rice, sugarcane, wheat and maize form an extended niche for various species of NF bacteria. These bacteria thrive within the plant, successfully colonizing roots, stems and leaves. During the association, the invading bacteria benefit the acquired host with a marked increase in plant growth, vigor and yield. With increasing population, the demand of non-leguminous plant products is growing. In this regard, the richness of NF flora within non-leguminous plants and extent of their interaction with the host definitely shows a ray of hope in developing an ecofriendly alternative to the nitrogenous fertilisers. In this review, we have discussed the association of NF bacteria with various non-leguminous plants emphasizing on their potential to promote host plant growth and yield. In addition, plant growth-promoting traits observed in these NF bacteria and their mode of interaction with the host plant have been described briefly.

  4. Nitrogen-fixing bacteria and arbuscular mycorrhizal fungi in Piptadenia gonoacantha (Mart.) Macbr.

    Science.gov (United States)

    Júnior, Joel Quintino de Oliveira; Jesus, Ederson da Conceição; Lisboa, Francy Junio; Berbara, Ricardo Luis Louro; Faria, Sergio Miana de

    The family Leguminosae comprises approximately 20,000 species that mostly form symbioses with arbuscular mycorrhizal fungi (AMF) and nitrogen-fixing bacteria (NFB). This study is aimed at investigating and confirming the dependence on nodulation and biological nitrogen fixation in the specie Piptadenia gonoacantha (Mart.) Macbr., which belongs to the Piptadenia group. Two consecutive experiments were performed in a greenhouse. The experiments were fully randomized with six replicates and a factorial scheme. For the treatments, the two AMF species and three NFB strains were combined to nodulate P. gonoacantha in addition to the control treatments. The results indicate this species' capacity for nodulation without the AMF; however, the AMF+NFB combinations yielded a considerable gain in P. gonoacantha shoot weight compared with the treatments that only included inoculating with bacteria or AMF. The results also confirm that the treatment effects among the AMF+NFB combinations produced different shoot dry weight/root dry weight ratios. We conclude that AMF is not necessary for nodulation and that this dependence improves species development because plant growth increases upon co-inoculation. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  5. Nitrogen-fixing bacteria, arbuscular mycorrhizal fungi, and the productivity and structure of prairie grassland communities.

    Science.gov (United States)

    Bauer, Jonathan T; Kleczewski, Nathan M; Bever, James D; Clay, Keith; Reynolds, Heather L

    2012-12-01

    Due to their complementary roles in meeting plant nutritional needs, arbuscular mycorrhizal fungi (AMF) and nitrogen-fixing bacteria (N(2)-fixers) may have synergistic effects on plant communities. Using greenhouse microcosms, we tested the effects of AMF, N(2)-fixers (symbiotic: rhizobia, and associative: Azospirillum brasilense), and their potential interactions on the productivity, diversity, and species composition of diverse tallgrass prairie communities and on the productivity of Panicum virgatum in monoculture. Our results demonstrate the importance of AMF and N(2)-fixers as drivers of plant community structure and function. In the communities, we found a positive effect of AMF on diversity and productivity, but a negative effect of N(2)-fixers on productivity. Both AMF and N(2)-fixers affected relative abundances of species. AMF shifted the communities from dominance by Elymus canadensis to Sorghastrum nutans, and seven other species increased in abundance with AMF, accounting for the increased diversity. N(2)-fixers led to increases in Astragalus canadensis and Desmanthus illinoense, two legumes that likely benefited from the presence of the appropriate rhizobia symbionts. Sorghastrum nutans declined 44 % in the presence of N(2)-fixers, with the most likely explanation being increased competition from legumes. Panicum monocultures were more productive with AMF, but showed no response to N(2)-fixers, although inference was constrained by low Azospirillum treatment effectivity. We did not find interactions between AMF and N(2)-fixers in communities or Panicum monocultures, indicating that short-term effects of these microbial functional groups are additive.

  6. The genetic diversity of culturable nitrogen-fixing bacteria in the rhizosphere of wheat.

    Science.gov (United States)

    Venieraki, Anastasia; Dimou, Maria; Pergalis, Panagiotis; Kefalogianni, Io; Chatzipavlidis, Iordanis; Katinakis, Panagiotis

    2011-02-01

    A total of 17 culturable nitrogen-fixing bacterial strains associated with the roots of wheat growing in different regions of Greece were isolated and characterized for plant-growth-promoting traits such as auxin production and phosphate solubilization. The phylogenetic position of the isolates was first assessed by the analysis of the PCR-amplified 16S rRNA gene. The comparative sequence analysis and phylogenetic analysis based on 16S rRNA gene sequences show that the isolates recovered in this study are grouped with Azospirillum brasilense, Azospirillum zeae, and Pseudomonas stutzeri. The diazotrophic nature of all isolates was confirmed by amplification of partial nifH gene sequences. The phylogenetic tree based on nifH gene sequences is consistent with 16S rRNA gene phylogeny. The isolates belonging to Azospirillum species were further characterized by examining the partial dnaK gene phylogenetic tree. Furthermore, it was demonstrated that the ipdC gene was present in all Azospirillum isolates, suggesting that auxin is mainly synthesized via the indole-3-pyruvate pathway. Although members of P. stutzeri and A. zeae are known diazotrophic bacteria, to the best of our knowledge, this is the first report of isolation and characterization of strains belonging to these bacterial genera associated with wheat.

  7. EFFECT OF NITROGEN-FIXING BACTERIA ON GRAIN YIELD AND DEVELOPMENT OF FLOODED IRRIGATED RICE

    Directory of Open Access Journals (Sweden)

    AMAURI NELSON BEUTLER

    2016-01-01

    Full Text Available This study aimed at evaluating the effect of Azospirillum brasilense , a nitrogen - fixing bacterium, on flooded irrigated rice yield. Evaluations were carried out in a shaded nursery, with seedlings grown on an Alfisol. Were performed two sets of experiments. In the first, were carried out four experiments using the flooded rice cultivars INIA Olimar, Puitá Inta - CL, Br Irga 409 and Irga 424; these trials were set up as completely randomized design in a 5x4 factorial scheme, with four replications. Treatments consisted of five nitrogen rates (0, 40, 80, 120 and 160 kg ha - 1 and four levels of liquid inoculant Ab - V5 and Ab - V6 - A. brasilense (0, 1, 2 and 4 times the manufacturer's recommendation without seed treatment. In second set, were performed two experiments using the cultivars Puitá Inta - CL and Br Irga 409, arranged in the same design, but using a 4x2 factorial. In this set, treatments were composed of four levels of Ab - V5 and Ab - V6 - A. brasilense liquid inoculant (0, 1, 2 and 4 times the recommendation of 100 mL ha - 1 , using rice seeds with and without insecticide and fungicide treatment. Shoot dry matter, number of panicles, and rice grain yield per pot were the assessed variables. The results showed that rice seed inoculation with A. brasilense had no effects on rice grain yield of the cultivars INIA Olimar, Puitá Inta - CL, Br Irga 409 and Irga 424.

  8. Azospirillum canadense sp. nov., a nitrogen-fixing bacterium isolated from corn rhizosphere.

    Science.gov (United States)

    Mehnaz, Samina; Weselowski, Brian; Lazarovits, George

    2007-03-01

    A free-living diazotrophic strain, DS2(T), was isolated from corn rhizosphere. Polyphasic taxonomy was performed including morphological characterization, Biolog analysis, and 16S rRNA, cpn60 and nifH gene sequence analyses. 16S rRNA gene sequence analysis indicated that strain DS2(T) was closely related to the genus Azospirillum (96 % similarity). Chemotaxonomic characteristics (DNA G+C content 67.9 mol%; Q-10 quinone system; major fatty acid 18 : 1omega7c) were also similar to those of the genus Azospirillum. In all the analyses, including phenotypic characterization using Biolog analysis and comparison of cellular fatty acids, this isolate was found to be different from the closely related species Azospirillum lipoferum, Azospirillum oryzae and Azospirillum brasilense. On the basis of these results, a novel species is proposed for this nitrogen-fixing strain. The name Azospirillum canadense sp. nov. is suggested with the type strain DS2(T) (=NCCB 100108(T)=LMG 23617(T)).

  9. Evaluation of bacterial aerotaxis for its potential use in detecting the toxicity of chemicals to microorganisms.

    Science.gov (United States)

    Shitashiro, Maiko; Kato, Junichi; Fukumura, Tsuyoshi; Kuroda, Akio; Ikeda, Tsukasa; Takiguchi, Noboru; Ohtake, Hisao

    2003-02-27

    Bacterial aerotaxis (the movement of a cell toward oxygen) was evaluated for its potential use in detecting the toxicity of chemicals to microorganisms. The level of toxicity was determined by the concentration of test chemicals resulting in a 50% inhibition of aerotaxis of Pseudomonas aeruginosa PAO1 after 40 min of exposure. The aerotactic responses of P. aeruginosa were measured by using chemotaxis well chambers. Each clear acrylic chamber had a lower and upper well separated by a polycarbonate filter with a uniform pore size of 8.0 microm. To automatically detect bacterial cells that crossed the filter in response to a gradient of oxygen, P. aeruginosa PAO1 was marked with green fluorescent protein (GFP), and the GFP fluorescence intensity in the upper well was continuously monitored by using a fluorescence spectrometer. By using this technique, volatile chlorinated aliphatic compounds, including trichloroethylene (TCE), trichloroethane, and tetrachloroethylene, were found to be inhibitory to bacterial aerotaxis, suggesting their possible toxicity to microorganisms. We also examined more than 20 potential toxicants for their ability to inhibit the aerotaxis of P. aeruginosa. Based on these experimental results, we concluded that bacterial aerotaxis has potential for use as a fast and reliable indicator in assessing the toxicity of chemicals to microorganisms.

  10. Short-term fertilizer application alters phenotypic traits of symbiotic nitrogen fixing bacteria

    Directory of Open Access Journals (Sweden)

    Anna K. Simonsen

    2015-10-01

    Full Text Available Fertilizer application is a common anthropogenic alteration to terrestrial systems. Increased nutrient input can impact soil microbial diversity or function directly through altered soil environments, or indirectly through plant-microbe feedbacks, with potentially important effects on ecologically-important plant-associated mutualists. We investigated the impacts of plant fertilizer, containing all common macro and micronutrients on symbiotic nitrogen-fixing bacteria (rhizobia, a group of bacteria that are important for plant productivity and ecosystem function. We collected rhizobia nodule isolates from natural field soil that was treated with slow-release plant fertilizer over a single growing season and compared phenotypic traits related to free-living growth and host partner quality in these isolates to those of rhizobia from unfertilized soils. Through a series of single inoculation assays in controlled glasshouse conditions, we found that isolates from fertilized field soil provided legume hosts with higher mutualistic benefits. Through growth assays on media containing variable plant fertilizer concentrations, we found that plant fertilizer was generally beneficial for rhizobia growth. Rhizobia isolated from fertilized field soil had higher growth rates in the presence of plant fertilizer compared to isolates from unfertilized field soil, indicating that plant fertilizer application favoured rhizobia isolates with higher abilities to utilize fertilizer for free-living growth. We found a positive correlation between growth responses to fertilizer and mutualism benefits among isolates from fertilized field soil, demonstrating that variable plant fertilizer induces context-dependent genetic correlations, potentially changing the evolutionary trajectory of either trait through increased trait dependencies. Our study shows that short-term application is sufficient to alter the composition of rhizobia isolates in the population or community

  11. Temporal dynamics of abundance and composition of nitrogen-fixing communities across agricultural soils.

    Directory of Open Access Journals (Sweden)

    Michele C Pereira E Silva

    Full Text Available BACKGROUND: Despite the fact that the fixation of nitrogen is one of the most significant nutrient processes in the terrestrial ecosystem, a thorough study of the spatial and temporal patterns in the abundance and distribution of N-fixing communities has been missing so far. METHODOLOGY/PRINCIPAL FINDINGS: In order to understand the dynamics of diazotrophic communities and their resilience to external changes, we quantified the abundance and characterized the bacterial community structures based on the nifH gene, using real-time PCR, PCR-DGGE and 454-pyrosequencing, across four representative Dutch soils during one growing season. In general, higher nifH gene copy numbers were observed in soils with higher pH than in those with lower pH, but lower numbers were related to increased nitrate and ammonium levels. Results from nifH gene pyrosequencing confirmed the observed PCR-DGGE patterns, which indicated that the N fixers are highly dynamic across time, shifting around 60%. Forward selection on CCA analysis identified N availability as the main driver of these variations, as well as of the evenness of the communities, leading to very unequal communities. Moreover, deep sequencing of the nifH gene revealed that sandy soils (B and D had the lowest percentage of shared OTUs across time, compared with clayey soils (G and K, indicating the presence of a community under constant change. Cosmopolitan nifH species (present throughout the season were affiliated with Bradyrhizobium, Azospirillum and Methylocistis, whereas other species increased their abundances progressively over time, when appropriate conditions were met, as was notably the case for Paenibacilus and Burkholderia. CONCLUSIONS: Our study provides the first in-depth pyrosequencing analysis of the N-fixing community at both spatial and temporal scales, providing insights into the cosmopolitan and specific portions of the nitrogen fixing bacterial communities in soil.

  12. Study of enzymatic properties of phenol oxidase from nitrogen-fixing Azotobacter chroococcum.

    Science.gov (United States)

    Herter, Susanne; Schmidt, Marlen; Thompson, Mark L; Mikolasch, Annett; Schauer, Frieder

    2011-06-24

    Azotobacter chroococcum is a widespread free-living soil bacterium within the genus of Azotobacter known for assimilation of atmospheric nitrogen and subsequent conversion into nitrogenous compounds, which henceforth enrich the nitrogen content of soils. A. chroococcum SBUG 1484, isolated from composted earth, exhibits phenol oxidase (PO) activity when growing under nitrogen-fixing conditions. In the present study we provide incipient analysis of the crude PO activity expressed by A. chroococcum SBUG 1484 within comparative analysis to fungal crude PO from the white-rot fungus Pycnoporus cinnabarinus SBUG-M 1044 and tyrosinase (PPO) from the mushroom Agaricus bisporus in an attempt to reveal desirable properties for exploitation with future recombinant expression of this enzyme. Catalytic activity increased with pre-incubation at 35°C; however 70% of activity remained after pre-treatment at 50°C. Native A. chroococcum crude PO exhibited not only strong preference for 2,6-dimethoxyphenol, but also towards related methoxy-activated substrates as well as substituted ortho-benzenediols from over 40 substrates tested. Presence of CuSO4 enhanced crude phenol oxidase activity up to 30%, whereas NaN3 (0.1 mM) was identified as the most inhibiting substance of all inhibitors tested. Lowest inhibition of crude PO activity occurred after 60 minutes of incubation in presence of 15% methanol and ethanol with 63% and 77% remaining activities respectively, and presence of DMSO even led to increasing oxidizing activities. Substrate scope and inhibitor spectrum strongly differentiated A. chroococcum PO activity comprised in crude extracts from those of PPO and confirmed distinct similarities to fungal PO.

  13. Microencapsulation by spray drying of nitrogen-fixing bacteria associated with lupin nodules.

    Science.gov (United States)

    Campos, Daniela C; Acevedo, Francisca; Morales, Eduardo; Aravena, Javiera; Amiard, Véronique; Jorquera, Milko A; Inostroza, Nitza G; Rubilar, Mónica

    2014-09-01

    Plant growth promoting bacteria and nitrogen-fixing bacteria (NFB) used for crop inoculation have important biotechnological potential as a sustainable fertilization tool. However, the main limitation of this technology is the low inoculum survival rate under field conditions. Microencapsulation of bacterial cells in polymer matrices provides a controlled release and greater protection against environmental conditions. In this context, the aim of this study was to isolate and characterize putative NFB associated with lupin nodules and to evaluate their microencapsulation by spray drying. For this purpose, 21 putative NFB were isolated from lupin nodules and characterized (16S rRNA genes). Microencapsulation of bacterial cells by spray drying was studied using a mixture of sodium alginate:maltodextrin at different ratios (0:15, 1:14, 2:13) and concentrations (15 and 30% solids) as the wall material. The microcapsules were observed under scanning electron microscopy to verify their suitable morphology. Results showed the association between lupin nodules of diverse known NFB and nodule-forming bacteria belonging to Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria and Bacteroidetes. In microencapsulation assays, the 1:14 ratio of sodium alginate:maltodextrin (15% solids) showed the highest cell survival rate (79%), with a microcapsule yield of 27% and spherical microcapsules of 5-50 µm in diameter. In conclusion, diverse putative NFB genera and nodule-forming bacteria are associated with the nodules of lupine plants grown in soils in southern Chile, and their microencapsulation by spray drying using sodium alginate:maltodextrin represents a scalable process to generate a biofertilizer as an alternative to traditional nitrogen fertilization.

  14. Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium.

    Directory of Open Access Journals (Sweden)

    Liang Ran

    can thus be considered at the initial phase of a transition from free-living organism to a nitrogen-fixing plant entity, a transition process which may mimic what drove the evolution of chloroplasts from a cyanobacterial ancestor.

  15. Enterobacter sacchari sp. nov., a nitrogen-fixing bacterium associated with sugar cane (Saccharum officinarum L.).

    Science.gov (United States)

    Zhu, Bo; Zhou, Qing; Lin, Li; Hu, Chunjin; Shen, Ping; Yang, Litao; An, Qianli; Xie, Guanlin; Li, Yangrui

    2013-07-01

    Five nitrogen-fixing bacterial strains (SP1(T), NN143, NN144, NN208 and HX148) were isolated from stem, root or rhizosphere soil of sugar cane (Saccharum officinarum L.) plants. Cells were Gram-negative, motile, rods with peritrichous flagella. DNA G+C content was 55.0 ± 0.5 mol%. Sequence determinations and phylogenetic analysis of 16S rRNA gene and rpoB indicated that the strains were affiliated with the genus Enterobacter and most closely related to E. radicincitans DSM 16656(T) and E. oryzae LMG 24251(T). Fluorimetric determination of thermal denaturation temperatures after DNA-DNA hybridization, enterobacterial repetitive intergenic consensus PCR and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry differentiated the whole-genome, genotype and protein profiles from those of E. radicincitans and E. oryzae. The strains' cell fatty acid composition differentiated them from E. radicincitans and E. oryzae by containing a higher level of summed feature 2 (C16 : 1ω7c and/or C16 : 1ω6c) and a lower level of C17 : 0 cyclo. Their physiological and biochemical profiles differentiated them from E. radicincitans by being positive for methyl red test, ornithine decarboxylase and utilization of putrescine, D-arabitol, L-fucose and methyl α-D-glucoside and being negative for arginine dihydrolase, and differentiated them from E. oryzae by being positive for aesculin hydrolysis and utilization of putrescine, D-arabitol and L-rhamnose and being negative for arginine dihydrolase, lysine decarboxylase and utilization of mucate. The five strains therefore represent a novel species, for which the name Enterobacter sacchari sp. nov. is proposed, with the type strain SP1(T) ( = CGMCC 1.12102(T) = LMG 26783(T)).

  16. Diversity of free-Living nitrogen fixing Streptomyces in soils of the badlands of South Dakota.

    Science.gov (United States)

    Dahal, Bibha; NandaKafle, Gitanjali; Perkins, Lora; Brözel, Volker S

    2017-01-01

    Biological Nitrogen Fixation is critical for ecosystem productivity. Select members of Bacteria and Archaea express a nitrogenase enzyme complex that reduces atmospheric nitrogen to ammonia. Several nitrogen fixing bacteria form symbiotic associations with plants, but free-living diazotrophs also contribute a substantial amount of nitrogen to ecosystems. The aim of this study was to isolate and characterize free-living diazotrophs in arid lands of South Dakota Badlands. Samples were obtained from sod tables and the surrounding base in spring and fall. Diazotrophs were isolated on solid nitrogen free medium (NFM) under hypoxic conditions, and their16S rRNA and nifH genes sequenced. nifH was also amplified directly from soil DNA extracts. The 16S rRNA gene data indicated a diversity of putative free-living diazotrophs across 4 phyla (Actinomycetes, Proteobacteria, Bacteroidetes, and Firmicutes), but ∼50% of these clustered with Streptomyces. These Streptomyces isolates grew in liquid NFM in an ammonia-depleted environment. Only 5 of these yielded a nifH gene product using the PolF/PolR primer set. Four of these aligned with nifH of the cyanobacteria Scytonema and Nostoc, and the other one aligned with nifH of Bradyrhizobium. Six selected Streptomyces isolates, three of which were nifH positive by PCR, all indicated (15)N2 incorporation, providing strong support of nitrogen fixation. All nifH amplicons from soil DNA extract resembled Cyanobacteria. This is the first known report of diazotrophic Streptomyces, other than the thermophilic, autotrophic S. thermoautotrophicus. nifH genes of these Streptomyces were related to those from Cyanobacteria. It is possible that the cyanobacteria-like nifH amplicons obtained from soil DNA were associated with Streptomyces.

  17. Short-term fertilizer application alters phenotypic traits of symbiotic nitrogen fixing bacteria.

    Science.gov (United States)

    Simonsen, Anna K; Han, Shery; Rekret, Phil; Rentschler, Christine S; Heath, Katy D; Stinchcombe, John R

    2015-01-01

    Fertilizer application is a common anthropogenic alteration to terrestrial systems. Increased nutrient input can impact soil microbial diversity or function directly through altered soil environments, or indirectly through plant-microbe feedbacks, with potentially important effects on ecologically-important plant-associated mutualists. We investigated the impacts of plant fertilizer, containing all common macro and micronutrients on symbiotic nitrogen-fixing bacteria (rhizobia), a group of bacteria that are important for plant productivity and ecosystem function. We collected rhizobia nodule isolates from natural field soil that was treated with slow-release plant fertilizer over a single growing season and compared phenotypic traits related to free-living growth and host partner quality in these isolates to those of rhizobia from unfertilized soils. Through a series of single inoculation assays in controlled glasshouse conditions, we found that isolates from fertilized field soil provided legume hosts with higher mutualistic benefits. Through growth assays on media containing variable plant fertilizer concentrations, we found that plant fertilizer was generally beneficial for rhizobia growth. Rhizobia isolated from fertilized field soil had higher growth rates in the presence of plant fertilizer compared to isolates from unfertilized field soil, indicating that plant fertilizer application favoured rhizobia isolates with higher abilities to utilize fertilizer for free-living growth. We found a positive correlation between growth responses to fertilizer and mutualism benefits among isolates from fertilized field soil, demonstrating that variable plant fertilizer induces context-dependent genetic correlations, potentially changing the evolutionary trajectory of either trait through increased trait dependencies. Our study shows that short-term application is sufficient to alter the composition of rhizobia isolates in the population or community, either directly

  18. Symbiotic nitrogen-fixing bacterial populations trapped from soils under agroforestry systems in the Western Amazon

    Directory of Open Access Journals (Sweden)

    Paula Marcela Duque Jaramillo

    2013-12-01

    Full Text Available Cowpea (Vigna unguiculata is an important grain-producing legume that can forego nitrogen fertilization by establishing an efficient symbiosis with nitrogen-fixing bacteria. Although inoculating strains have already been selected for this species, little is known about the genotypic and symbiotic diversity of native rhizobia. Recently, Bradyrhizobium has been shown to be the genus most frequently trapped by cowpea in agricultural soils of the Amazon region. We investigated the genetic and symbiotic diversity of 148 bacterial strains with different phenotypic and cultural properties isolated from the nodules of the trap species cowpea, which was inoculated with samples from soils under agroforestry systems from the western Amazon. Sixty non-nodulating strains indicated a high frequency of endophytic strains in the nodules. The 88 authenticated strains had varying symbiotic efficiency. The SPAD (Soil Plant Analysis Development index (indirect measurement of chlorophyll content was more efficient at evaluating the contribution of symbiotic N2-fixation than shoot dry matter under axenic conditions. Cowpea-nodulating bacteria exhibited a high level of genetic diversity, with 68 genotypes identified by BOX-PCR. Sequencing of the 16S rRNA gene showed a predominance of the genus Bradyrhizobium, which accounted for 70 % of all strains sequenced. Other genera identified were Rhizobium, Ochrobactrum, Paenibacillus, Bosea, Bacillus, Enterobacter, and Stenotrophomonas. These results support the promiscuity of cowpea and demonstrate the high genetic and symbiotic diversity of rhizobia in soils under agroforestry systems, with some strains exhibiting potential for use as inoculants. The predominance of Bradyrhizobium in land uses with different plant communities and soil characteristics reflects the adaptation of this genus to the Amazon region.

  19. Improved Alkane Production in Nitrogen-Fixing and Halotolerant Cyanobacteria via Abiotic Stresses and Genetic Manipulation of Alkane Synthetic Genes.

    Science.gov (United States)

    Kageyama, Hakuto; Waditee-Sirisattha, Rungaroon; Sirisattha, Sophon; Tanaka, Yoshito; Mahakhant, Aparat; Takabe, Teruhiro

    2015-07-01

    Cyanobacteria possess the unique capacity to produce alkane. In this study, effects of nitrogen deficiency and salt stress on biosynthesis of alkanes were investigated in three kinds of cyanobacteria. Intracellular alkane accumulation was increased in nitrogen-fixing cyanobacterium Anabaena sp. PCC7120, but decreased in non-diazotrophic cyanobacterium Synechococcus elongatus PCC7942 and constant in a halotolerant cyanobacterium Aphanothece halophytica under nitrogen-deficient condition. We also found that salt stress increased alkane accumulation in Anabaena sp. PCC7120 and A. halophytica. The expression levels of two alkane synthetic genes were not upregulated significantly under nitrogen deficiency or salt stress in Anabaena sp. PCC7120. The transformant Anabaena sp. PCC7120 cells with additional alkane synthetic gene set from A. halophytica increased intracellular alkane accumulation level compared to control cells. These results provide a prospect to improve bioproduction of alkanes in nitrogen-fixing halotolerant cyanobacteria via abiotic stresses and genetic engineering.

  20. Effects of monosulfuron-ester on metabolic processes of nitrogen-fixing cyanobacteria Anabaena flos-aquae and Anabaena azotica.

    Science.gov (United States)

    Shen, Jian Ying; Liao, Jin Zhi; Guo, Li Li; Su, Rui Fang

    Presence of the relatively new sulfonylurea herbicide monosulfuron-ester at 0.03-300nmol/L affected the growth of two non-target nitrogen-fixing cyanobacteria (Anabaena flos-aquae and Anabaena azotica) and substantially inhibited in vitro Acetolactate synthase activity, with IC50 of 3.3 and 101.3nmol/L for A. flos-aquae and A. azotica, respectively. Presenting in 30-300nmol/L, it inhibited protein synthesis of the cyanobacteria with less amino acids produced as its concentration increased. Our findings support the view that monosulfuron-ester toxicity in both nitrogen-fixing cyanobacteria is due to its interference with protein metabolism via inhibition of branch-chain amino acid biosynthesis, and particularly Acetolactate synthase activity. Copyright © 2017. Published by Elsevier Editora Ltda.

  1. Biochemical and Molecular Phylogenetic Study of Agriculturally Useful Association of a Nitrogen-Fixing Cyanobacterium and Nodule Sinorhizobium with Medicago sativa L.

    Directory of Open Access Journals (Sweden)

    E. V. Karaushu

    2015-01-01

    Full Text Available Seed inoculation with bacterial consortium was found to increase legume yield, providing a higher growth than the standard nitrogen treatment methods. Alfalfa plants were inoculated by mono- and binary compositions of nitrogen-fixing microorganisms. Their physiological and biochemical properties were estimated. Inoculation by microbial consortium of Sinorhizobium meliloti T17 together with a new cyanobacterial isolate Nostoc PTV was more efficient than the single-rhizobium strain inoculation. This treatment provides an intensification of the processes of biological nitrogen fixation by rhizobia bacteria in the root nodules and an intensification of plant photosynthesis. Inoculation by bacterial consortium stimulates growth of plant mass and rhizogenesis and leads to increased productivity of alfalfa and to improving the amino acid composition of plant leaves. The full nucleotide sequence of the rRNA gene cluster and partial sequence of the dinitrogenase reductase (nifH gene of Nostoc PTV were deposited to GenBank (JQ259185.1, JQ259186.1. Comparison of these gene sequences of Nostoc PTV with all sequences present at the GenBank shows that this cyanobacterial strain does not have 100% identity with any organisms investigated previously. Phylogenetic analysis showed that this cyanobacterium clustered with high credibility values with Nostoc muscorum.

  2. Biochemical and Molecular Phylogenetic Study of Agriculturally Useful Association of a Nitrogen-Fixing Cyanobacterium and Nodule Sinorhizobium with Medicago sativa L.

    Science.gov (United States)

    Karaushu, E V; Lazebnaya, I V; Kravzova, T R; Vorobey, N A; Lazebny, O E; Kiriziy, D A; Olkhovich, O P; Taran, N Yu; Kots, S Ya; Popova, A A; Omarova, E; Koksharova, O A

    2015-01-01

    Seed inoculation with bacterial consortium was found to increase legume yield, providing a higher growth than the standard nitrogen treatment methods. Alfalfa plants were inoculated by mono- and binary compositions of nitrogen-fixing microorganisms. Their physiological and biochemical properties were estimated. Inoculation by microbial consortium of Sinorhizobium meliloti T17 together with a new cyanobacterial isolate Nostoc PTV was more efficient than the single-rhizobium strain inoculation. This treatment provides an intensification of the processes of biological nitrogen fixation by rhizobia bacteria in the root nodules and an intensification of plant photosynthesis. Inoculation by bacterial consortium stimulates growth of plant mass and rhizogenesis and leads to increased productivity of alfalfa and to improving the amino acid composition of plant leaves. The full nucleotide sequence of the rRNA gene cluster and partial sequence of the dinitrogenase reductase (nifH) gene of Nostoc PTV were deposited to GenBank (JQ259185.1, JQ259186.1). Comparison of these gene sequences of Nostoc PTV with all sequences present at the GenBank shows that this cyanobacterial strain does not have 100% identity with any organisms investigated previously. Phylogenetic analysis showed that this cyanobacterium clustered with high credibility values with Nostoc muscorum.

  3. Diversity of Nitrogen-Fixing Bacteria Associated with Switchgrass in the Native Tallgrass Prairie of Northern Oklahoma

    OpenAIRE

    Bahulikar, Rahul A.; Torres-Jerez, Ivone; Worley, Eric; Craven, Kelly; Udvardi, Michael K.

    2014-01-01

    Switchgrass (Panicum virgatum L.) is a perennial C4 grass native to North America that is being developed as a feedstock for cellulosic ethanol production. Industrial nitrogen fertilizers enhance switchgrass biomass production but add to production and environmental costs. A potential sustainable alternative source of nitrogen is biological nitrogen fixation. As a step in this direction, we studied the diversity of nitrogen-fixing bacteria (NFB) associated with native switchgrass plants from ...

  4. Diversity of Nitrogen-Fixing Bacteria Associated with Switchgrass in the Native Tallgrass Prairie of Northern Oklahoma

    OpenAIRE

    Bahulikar, Rahul A.; Torres-Jerez, Ivone; Worley, Eric; Craven, Kelly; Udvardi, Michael K.

    2014-01-01

    Switchgrass (Panicum virgatum L.) is a perennial C4 grass native to North America that is being developed as a feedstock for cellulosic ethanol production. Industrial nitrogen fertilizers enhance switchgrass biomass production but add to production and environmental costs. A potential sustainable alternative source of nitrogen is biological nitrogen fixation. As a step in this direction, we studied the diversity of nitrogen-fixing bacteria (NFB) associated with native switchgrass plants from ...

  5. Phylogenetic diversity of nitrogen-fixing bacteria and the nifH gene from mangrove rhizosphere soil.

    Science.gov (United States)

    Liu, Jianyin; Peng, Mengjun; Li, Youguo

    2012-04-01

    Nine types of nitrogen-fixing bacterial strains were isolated from 3 rhizosphere soil samples taken from mangrove plants in the Dongzhaigang National Mangrove Nature Reserve of China. Most isolates belonged to Gammaproteobacteria Pseudomonas, showing that these environments constituted favorable niches for such abundant nitrogen-fixing bacteria. New members of the diazotrophs were also found. Using a soil DNA extraction and PCR-cloning-sequencing approach, 135 clones were analyzed by restriction fragment length polymorphism (RFLP) analysis, and 27 unique nifH sequence phylotypes were identified, most of which were closely related to sequences from uncultured bacteria. The diversity of nitrogen-fixing bacteria was assessed by constructing nifH phylogenetic trees from sequences of all isolates and clones in this work, together with related nifH sequences from other mangrove ecosystems in GenBank. The nifH diversity varied among soil samples, with distinct biogeochemical properties within a mangrove ecosystem. When comparing different mangrove ecosystems, the nifH gene sequences from a specific site tended to cluster as individual groups. The results provided interesting data and novel information on our understanding of diazotroph community diversity in the mangrove ecosystems.

  6. Fibre Optic Readout of Microcantilever Arrays for Fast Microorganism Growth Detection

    Directory of Open Access Journals (Sweden)

    N. Maloney

    2012-01-01

    Full Text Available We present a fibre-optic-based device for the automated readout of microcantilever arrays for fast microorganism growth detection. We determined the ability of our device to track shifts in resonance frequency due to an increase in mass on the cantilever surface or changes in mechanical stiffness. The resonance frequency response of 7 μm thick agarose-functionalised cantilevers was tracked as humidity levels were varied revealing a mass responsivity of ~51±1 pg/Hz. The resonance response of microcantilevers coated with Aspergillus niger (A. niger spores was monitored for >48 h revealing a growth detection time of >4 h. The growth of mycelium along the cantilevers surface is seen to result in an increase in resonance frequency due to the reinforcement of the cantilever structure. The use of our fibre optic detection technique allows data to be recorded continuously and faster than previously reported.

  7. Population dynamics of free living, nitrogen fixing bacteria Azospirillum in Manakkudi mangrove ecosystem, India.

    Science.gov (United States)

    Ravikumar, S; Gnanadesigan, M; Ignatiammal, S Thadedus Maria; Sumaya, S

    2012-05-01

    Seasonal variations of population dynamics of free living nitrogen fixing bacteria, Azospirillum in relation to chemical parameters in Manakkudi mangrove ecosystem was assessed in root and rhizosphere soil samples of mangroves and mangrove associated plants. In rhizosphere soil and root samples, the counts of Azospirillum were recorded maximum in Acrostichum aureum as 8.63 +/- 0.92 x 10(4) and 115.48 +/- 17.36 x 10(4) CFU g(-1), respectively. The counts of Azospirillum in non-rhizosphere soil varied from 0.01 +/- 0.001 x 10(4) to 5.77 +/- 0.92 x 10(4) CFU g(-1) and found maximum in February and minimum in March and September. Azospirillum counts in water samples were found maximum (2.24 x 10(4) CFU l(-1)) in February. During seasonal variations maximum counts of Azospirillum were recorded during southwest monsoon season in Avicennia officinalis (1.40 x 10(4) CFU g(-1)) followed by Rhizophora mucronata (1.07 x 10(4) CFU g(-1)). The average maximum population density of Azospirillum counts was found during non monsoon season (9.73 x 10(4) CFU g(-1)) and the average maximum population density of Azospirillum counts was found with the mangrove associated root samples (13.73 x 10(4) CFU g(-1)). Of the selected isolates Azospirillum lipoferum (60%) was found to be predominant followed by Azospirillum brasilense (25%), Azospirillum irakense (5%), Azospirillum halopraeferens (5%) and Azospirillum amazonense (5%). Of the isolated species, A. halopraeferens exhibited better growth at 35 g l(-1) NaCl. The level of Fe, Cu, Zn and Mn were varied from 0.91 to 15.93 ppm. The level of Mn (12.13 ppm) was found maximum during non-monsoon of rhizosphere soil sample. Highest rainfall (192.80 mm) and atmospheric temperature (25.10 degrees C) were recorded during south west monsoon and non monsoon seasons. The increased population density was greatly influenced by the pH (r = +0.686). The present finding provides enough information on the nitrogen flow through biological process in

  8. Genomic studies of nitrogen-fixing rhizobial strains from Phaseolus vulgaris seeds and nodules.

    Science.gov (United States)

    Peralta, Humberto; Aguilar, Alejandro; Díaz, Rafael; Mora, Yolanda; Martínez-Batallar, Gabriel; Salazar, Emmanuel; Vargas-Lagunas, Carmen; Martínez, Esperanza; Encarnación, Sergio; Girard, Lourdes; Mora, Jaime

    2016-09-06

    Rhizobia are soil bacteria that establish symbiotic relationships with legumes and fix nitrogen in root nodules. We recently reported that several nitrogen-fixing rhizobial strains, belonging to Rhizobium phaseoli, R. trifolii, R. grahamii and Sinorhizobium americanum, were able to colonize Phaseolus vulgaris (common bean) seeds. To gain further insight into the traits that support this ability, we analyzed the genomic sequences and proteomes of R. phaseoli (CCGM1) and S. americanum (CCGM7) strains from seeds and compared them with those of the closely related strains CIAT652 and CFNEI73, respectively, isolated only from nodules. In a fine structural study of the S. americanum genomes, the chromosomes, megaplasmids and symbiotic plasmids were highly conserved and syntenic, with the exception of the smaller plasmid, which appeared unrelated. The symbiotic tract of CCGM7 appeared more disperse, possibly due to the action of transposases. The chromosomes of seed strains had less transposases and strain-specific genes. The seed strains CCGM1 and CCGM7 shared about half of their genomes with their closest strains (3353 and 3472 orthologs respectively), but a large fraction of the rest also had homology with other rhizobia. They contained 315 and 204 strain-specific genes, respectively, particularly abundant in the functions of transcription, motility, energy generation and cofactor biosynthesis. The proteomes of seed and nodule strains were obtained and showed a particular profile for each of the strains. About 82 % of the proteins in the comparisons appeared similar. Forty of the most abundant proteins in each strain were identified; these proteins in seed strains were involved in stress responses and coenzyme and cofactor biosynthesis and in the nodule strains mainly in central processes. Only 3 % of the abundant proteins had hypothetical functions. Functions that were enriched in the genomes and proteomes of seed strains possibly participate in the successful

  9. Surface plasmon resonance biosensors for detection of pathogenic microorganisms: strategies to secure food and environmental safety.

    Science.gov (United States)

    Bergwerff, Aldert A; van Knapen, Frans

    2006-01-01

    This review describes the exploitation of exclusively optical surface plasmon resonance (SPR) biosensors for the direct and indirect detection of pathogenic microorganisms in food chains and the environment. Direct detection is, in most cases, facilitated by the use of defined monoclonal or polyclonal antibodies raised against (a part of) the target pathogenic microorganisms. The antibodies were immobilized to a solid phase of the sensor to capture the microbe from the sample. Alternatively, antibodies were used in an inhibition-like assay involving incubation with the target organism prior to analysis of nonbound antibodies. The free immunoglobins were screened on a sensor surface coated with either purified antigens or with Fc or Fab binding antibodies. Discussed examples of these approaches are the determination of Escherichia coli O1 57:H7, Salmonella spp., and Listeria monocytogenes. Another direct detection strategy involved SPR analysis of polymerase chain reaction products of Shiga toxin-2 genes reporting the presence of E. coli O157:H7 in human stool. Metabolic products have been exploited as biomarkers for the presence of a microbial agent, such as enterotoxin B and a virulence factor for the occurrence of Staphylococcus aureus and Streptococcus suis, respectively. Indirect detection, on the other hand, is performed by analysis of a humoral immune response of the infected animal or human. By immobilization of specific antigenic structures, infections with Herpes simplex and human immunodeficiency viruses, Salmonella and Treponema pallidum bacteria, and Schistosoma spp. parasites were revealed using human, avian, and porcine sera and avian eggs. Bound antibodies were easily isotyped using an SPR biosensor to reveal the infection history of the individual. Discussed studies show the recent recognition of the suitability of this type of instrument for (rapid) detection of health-threatening microbes to food and environmental microbial safety.

  10. Detection and quantification of waterborne microorganisms using an image cytometer based on angular spatial frequency processing

    CERN Document Server

    Pérez, Juan Miguel; Martínez, Pedro; Pruneri, Valerio

    2015-01-01

    We introduce a new image cytometer design for detection of very small particulate and demonstrate its capability in water analysis. The device is a compact microscope composed of off--the--shelf components, such as a light emitting diode (LED) source, a complementary metal--oxide--semiconductor (CMOS) image sensor, and a specific combination of optical lenses that allow, through an appropriate software, Fourier transform processing of the sample volume. Waterborne microorganisms, such as Escherichia coli (E. coli), Legionella pneumophila (L. pneumophila) and Phytoplankton, are detected by interrogating the volume sample either in a fluorescent or label-free mode, i.e. with or without fluorescein isothiocyanate (FITC) molecules attached to the micro-organisms, respectively. We achieve a sensitivity of 50 CFU/ml, which can be further increased to 0.2 CFU/ml by pre-concentrating an initial sample volume of 500 ml with an ad hoc fluidic system. We also prove the capability of the proposed image cytometer of diffe...

  11. Potential and limits of Raman spectroscopy for carotenoid detection in microorganisms: implications for astrobiology.

    Science.gov (United States)

    Jehlička, Jan; Edwards, Howell G M; Osterrothová, Kateřina; Novotná, Julie; Nedbalová, Linda; Kopecký, Jiří; Němec, Ivan; Oren, Aharon

    2014-12-13

    In this paper, it is demonstrated how Raman spectroscopy can be used to detect different carotenoids as possible biomarkers in various groups of microorganisms. The question which arose from previous studies concerns the level of unambiguity of discriminating carotenoids using common Raman microspectrometers. A series of laboratory-grown microorganisms of different taxonomic affiliation was investigated, such as halophilic heterotrophic bacteria, cyanobacteria, the anoxygenic phototrophs, the non-halophilic heterotrophs as well as eukaryotes (Ochrophyta, Rhodophyta and Chlorophyta). The data presented show that Raman spectroscopy is a suitable tool to assess the presence of carotenoids of these organisms in cultures. Comparison is made with the high-performance liquid chromatography approach of analysing pigments in extracts. Direct measurements on cultures provide fast and reliable identification of the pigments. Some of the carotenoids studied are proposed as tracers for halophiles, in contrast with others which can be considered as biomarkers of other genera. The limits of application of Raman spectroscopy are discussed for a few cases where the current Raman spectroscopic approach does not allow discriminating structurally very similar carotenoids. The database reported can be used for applications in geobiology and exobiology for the detection of pigment signals in natural settings.

  12. Soft gel medium solidified with gellan gum for preliminary screening for root-associating, free-living nitrogen-fixing bacteria inhabiting the rhizoplane of plants

    OpenAIRE

    Hashidoko, Yasuyuki; Tada, Motohiko; Osaki, Mitsuru; Tahara, Satoshi

    2002-01-01

    For preliminary screening for and characterization of free-living nitrogen-fixing bacteria from rhizoplane microflora, we used Winogradsky's mineral mixture-based nitrogen-free medium solidified with 0.3% gellan gum. The soft gel medium enabled some reference and wild free-living nitrogen-fixing bacteria to grow in characteristic colonies, including their reaction to oxygen and their motility change. Gellan gum is thus likely to be a better gel matrix than agarose for the investigation of roo...

  13. Plate screening methods for the detection of polysaccharase-producing microorganisms

    NARCIS (Netherlands)

    Ruijssenaars, H.J.; Hartmans, S.

    2000-01-01

    Polysaccharide-degrading enzymes (polysaccharases) are widely applied in industry. One of the sources of these enzymes are polysaccharide-degrading microorganisms. To obtain such microorganisms from enrichment cultures, strain collections or gene libraries, efficient plate screening methods are requ

  14. Genetic Diversity of Nitrogen-Fixing and Plant Growth Promoting Pseudomonas Species Isolated from Sugarcane Rhizosphere

    Directory of Open Access Journals (Sweden)

    Hai-Bi Li

    2017-07-01

    Full Text Available The study was designed to isolate and characterize Pseudomonas spp. from sugarcane rhizosphere, and to evaluate their plant- growth- promoting (PGP traits and nitrogenase activity. A biological nitrogen-fixing microbe has great potential to replace chemical fertilizers and be used as a targeted biofertilizer in a plant. A total of 100 isolates from sugarcane rhizosphere, belonging to different species, were isolated; from these, 30 isolates were selected on the basis of preliminary screening, for in vitro antagonistic activities against sugarcane pathogens and for various PGP traits, as well as nitrogenase activity. The production of IAA varied from 312.07 to 13.12 μg mL−1 in tryptophan supplemented medium, with higher production in AN15 and lower in CN20 strain. The estimation of ACC deaminase activity, strains CY4 and BA2 produced maximum and minimum activity of 77.0 and 15.13 μmoL mg−1 h−1. For nitrogenase activity among the studied strains, CoA6 fixed higher and AY1 fixed lower in amounts (108.30 and 6.16 μmoL C2H2 h−1 mL−1. All the strains were identified on the basis of 16S rRNA gene sequencing, and the phylogenetic diversity of the strains was analyzed. The results identified all strains as being similar to Pseudomonas spp. Polymerase chain reaction (PCR amplification of nifH and antibiotic genes was suggestive that the amplified strains had the capability to fix nitrogen and possessed biocontrol activities. Genotypic comparisons of the strains were determined by BOX, ERIC, and REP PCR profile analysis. Out of all the screened isolates, CY4 (Pseudomonas koreensis and CN11 (Pseudomonas entomophila showed the most prominent PGP traits, as well as nitrogenase activity. Therefore, only these two strains were selected for further studies; Biolog profiling; colonization through green fluorescent protein (GFP-tagged bacteria; and nifH gene expression using quantitative real-time polymerase chain reaction (qRT-PCR analysis. The

  15. Genetic Diversity of Nitrogen-Fixing and Plant Growth Promoting Pseudomonas Species Isolated from Sugarcane Rhizosphere.

    Science.gov (United States)

    Li, Hai-Bi; Singh, Rajesh K; Singh, Pratiksha; Song, Qi-Qi; Xing, Yong-Xiu; Yang, Li-Tao; Li, Yang-Rui

    2017-01-01

    The study was designed to isolate and characterize Pseudomonas spp. from sugarcane rhizosphere, and to evaluate their plant- growth- promoting (PGP) traits and nitrogenase activity. A biological nitrogen-fixing microbe has great potential to replace chemical fertilizers and be used as a targeted biofertilizer in a plant. A total of 100 isolates from sugarcane rhizosphere, belonging to different species, were isolated; from these, 30 isolates were selected on the basis of preliminary screening, for in vitro antagonistic activities against sugarcane pathogens and for various PGP traits, as well as nitrogenase activity. The production of IAA varied from 312.07 to 13.12 μg mL(-1) in tryptophan supplemented medium, with higher production in AN15 and lower in CN20 strain. The estimation of ACC deaminase activity, strains CY4 and BA2 produced maximum and minimum activity of 77.0 and 15.13 μmoL mg(-1) h(-1). For nitrogenase activity among the studied strains, CoA6 fixed higher and AY1 fixed lower in amounts (108.30 and 6.16 μmoL C2H2 h(-1) mL(-1)). All the strains were identified on the basis of 16S rRNA gene sequencing, and the phylogenetic diversity of the strains was analyzed. The results identified all strains as being similar to Pseudomonas spp. Polymerase chain reaction (PCR) amplification of nifH and antibiotic genes was suggestive that the amplified strains had the capability to fix nitrogen and possessed biocontrol activities. Genotypic comparisons of the strains were determined by BOX, ERIC, and REP PCR profile analysis. Out of all the screened isolates, CY4 (Pseudomonas koreensis) and CN11 (Pseudomonas entomophila) showed the most prominent PGP traits, as well as nitrogenase activity. Therefore, only these two strains were selected for further studies; Biolog profiling; colonization through green fluorescent protein (GFP)-tagged bacteria; and nifH gene expression using quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The Biolog phenotypic

  16. Diversity pattern of nitrogen fixing microbes in nodules of Trifolium arvense (L. at different initial stages of ecosystem development

    Directory of Open Access Journals (Sweden)

    M. Schloter

    2012-09-01

    Full Text Available Legumes can be considered as pioneer plants during ecosystem development, as they form a symbiosis with different nitrogen fixing rhizobia species, which enable the plants to grow on soils with low available nitrogen content. In this study we compared the abundance and diversity of nitrogen fixing microbes based on the functional marker gene nifH, which codes for a subunit of the Fe-protein of the dinitrogenase reductase, in nodules of different size classes of Trifolium arvense (L.. Additionally, carbon and nitrogen contents of the bulk soil and plant material were measured. Plants were harvested from different sites, reflecting 2 (2a and 5 (5a yr of ecosystem development, of an opencast lignite mining area in the south of Cottbus, Lower Lusatia (Germany where the artificial catchment "Chicken Creek" was constructed to study the development of terrestrial ecosystems. Plants from the 5a site revealed higher amounts of carbon and nitrogen, although nifH gene abundances in the nodules and carbon and nitrogen contents between the two soils did not differ significantly. Analysis of the nifH clone libraries showed a significant effect of the nodule size on the community composition of nitrogen fixing microbes. Medium sized nodules (2–5 mm contained a uniform community composed of Rhizobium leguminosarum bv. trifolii, whereas the small nodules (Rhizobium nifH gene sequences. Regarding the impact of the soil age on the community composition a clear distinction between the small and the medium nodules can be made. While clone libraries from the medium nodules were pretty similar at both soil ages, soil age had a significant effect on the community compositions of the small nodules, where the proportion of R. leguminosarum bv. trifolii increased with soil age.

  17. Diversity pattern of nitrogen fixing microbes in nodules of Trifolium arvense (L.) at different initial stages of ecosystem development

    Science.gov (United States)

    Schulz, S.; Engel, M.; Fischer, D.; Buegger, F.; Elmer, M.; Welzl, G.; Schloter, M.

    2013-02-01

    Legumes can be considered as pioneer plants during ecosystem development, as they form a symbiosis with different nitrogen fixing rhizobia species, which enable the plants to grow on soils with low available nitrogen content. In this study we compared the abundance and diversity of nitrogen fixing microbes based on the functional marker gene nifH, which codes for a subunit of the Fe-protein of the dinitrogenase reductase, in nodules of different size classes of Trifolium arvense (L.). Additionally, carbon and nitrogen contents of the bulk soil and plant material were measured. Plants were harvested from different sites, reflecting 2 (2a) and 5 (5a) yr of ecosystem development, of an opencast lignite mining area in the south of Cottbus, Lower Lusatia (Germany) where the artificial catchment "Chicken Creek" was constructed to study the development of terrestrial ecosystems. Plants from the 5a site revealed higher amounts of carbon and nitrogen, although nifH gene abundances in the nodules and carbon and nitrogen contents between the two soils did not differ significantly. Analysis of the nifH clone libraries showed a significant effect of the nodule size on the community composition of nitrogen fixing microbes. Medium sized nodules (2-5 mm) contained a uniform community composed of Rhizobium leguminosarum bv. trifolii, whereas the small nodules (<2 mm) consisted of a diverse community including clones with non-Rhizobium nifH gene sequences. Regarding the impact of the soil age on the community composition a clear distinction between the small and the medium nodules can be made. While clone libraries from the medium nodules were pretty similar at both soil ages, soil age had a significant effect on the community compositions of the small nodules, where the proportion of R. leguminosarum bv. trifolii increased with soil age.

  18. Diversity of Micromonospora strains isolated from nitrogen fixing nodules and rhizosphere of Pisum sativum analyzed by multilocus sequence analysis.

    Science.gov (United States)

    Carro, Lorena; Spröer, Cathrin; Alonso, Pilar; Trujillo, Martha E

    2012-03-01

    It was recently reported that Micromonospora inhabits the intracellular tissues of nitrogen fixing nodules of the wild legume Lupinus angustifolius. To determine if Micromonospora populations are also present in nitrogen fixing nodules of cultivated legumes such as Pisum sativum, we carried out the isolation of this actinobacterium from P. sativum plants collected in two man-managed fields in the region of Castilla and León (Spain). In this work, we describe the isolation of 93 Micromonospora strains recovered from nitrogen fixing nodules and the rhizosphere of P. sativum. The genomic diversity of the strains was analyzed by amplified ribosomal DNA restriction analysis (ARDRA). Forty-six isolates and 34 reference strains were further analyzed using a multilocus sequence analysis scheme developed to address the phylogeny of the genus Micromonospora and to evaluate the species distribution in the two studied habitats. The MLSA results were evaluated by DNA-DNA hybridization to determine their usefulness for the delineation of Micromonospora at the species level. In most cases, DDH values below 70% were obtained with strains that shared a sequence similarity of 98.5% or less. Thus, MLSA studies clearly supported the established taxonomy of the genus Micromonospora and indicated that genomic species could be delineated as groups of strains that share > 98.5% sequence similarity based on the 5 genes selected. The species diversity of the strains isolated from both the rhizosphere and nodules was very high and in many cases the new strains could not be related to any of the currently described species.

  19. Symbiosis between nitrogen-fixing bacteria and Medicago truncatula is not significantly affected by silver and silver sulfide nanomaterials.

    Science.gov (United States)

    Judy, Jonathan D; Kirby, Jason K; McLaughlin, Mike J; McNear, David; Bertsch, Paul M

    2016-07-01

    Silver (Ag) engineered nanomaterials (ENMs) are being released into waste streams and are being discharged, largely as Ag2S aged-ENMs (a-ENMs), into agroecosystems receiving biosolids amendments. Recent research has demonstrated that biosolids containing an environmentally relevant mixture of ZnO, TiO2, and Ag ENMs and their transformation products, including Ag2S a-ENMs, disrupted the symbiosis between nitrogen-fixing bacteria and legumes. However, this study was unable to unequivocally determine which ENM or combination of ENMs and a-ENMs was responsible for the observed inhibition. Here, we examined further the effects of polyvinylpyrollidone (PVP) coated pristine Ag ENMs (PVP-Ag), Ag2S a-ENMs, and soluble Ag (as AgSO4) at 1, 10, and 100 mg Ag kg(-1) on the symbiosis between the legume Medicago truncatula and the nitrogen-fixing bacterium, Sinorhizobium melliloti in biosolids-amended soil. Nodulation frequency, nodule function, glutathione reductase production, and biomass were not significantly affected by any of the Ag treatments, even at 100 mg kg(-1), a concentration analogous to a worst-case scenario resulting from long-term, repeated biosolids amendments. Our results provide additional evidence that the disruption of the symbiosis between nitrogen-fixing bacteria and legumes in response to a mixture of ENMs in biosolids-amended soil reported previously may not be attributable to Ag ENMs or their transformation end-products. We anticipate these findings will provide clarity to regulators and industry regarding potential unintended consequences to terrestrial ecosystems resulting from of the use of Ag ENMs in consumer products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Diversity pattern of nitrogen fixing microbes in nodules of Trifolium arvense (L. at different initial stages of ecosystem development

    Directory of Open Access Journals (Sweden)

    M. Schloter

    2013-02-01

    Full Text Available Legumes can be considered as pioneer plants during ecosystem development, as they form a symbiosis with different nitrogen fixing rhizobia species, which enable the plants to grow on soils with low available nitrogen content. In this study we compared the abundance and diversity of nitrogen fixing microbes based on the functional marker gene nifH, which codes for a subunit of the Fe-protein of the dinitrogenase reductase, in nodules of different size classes of Trifolium arvense (L.. Additionally, carbon and nitrogen contents of the bulk soil and plant material were measured. Plants were harvested from different sites, reflecting 2 (2a and 5 (5a yr of ecosystem development, of an opencast lignite mining area in the south of Cottbus, Lower Lusatia (Germany where the artificial catchment "Chicken Creek" was constructed to study the development of terrestrial ecosystems. Plants from the 5a site revealed higher amounts of carbon and nitrogen, although nifH gene abundances in the nodules and carbon and nitrogen contents between the two soils did not differ significantly. Analysis of the nifH clone libraries showed a significant effect of the nodule size on the community composition of nitrogen fixing microbes. Medium sized nodules (2–5 mm contained a uniform community composed of Rhizobium leguminosarum bv. trifolii, whereas the small nodules (Rhizobium nifH gene sequences. Regarding the impact of the soil age on the community composition a clear distinction between the small and the medium nodules can be made. While clone libraries from the medium nodules were pretty similar at both soil ages, soil age had a significant effect on the community compositions of the small nodules, where the proportion of R. leguminosarum bv. trifolii increased with soil age.

  1. Nitrogen-fixing bacteria with multiple plant growth-promoting activities enhance growth of tomato and red pepper.

    Science.gov (United States)

    Islam, Md Rashedul; Sultana, Tahera; Joe, M Melvin; Yim, Woojong; Cho, Jang-Cheon; Sa, Tongmin

    2013-12-01

    As a suitable alternative to chemical fertilizers, the application of plant growth-promoting rhizobacteria has been increasing in recent years due to their potential to be used as biofertilizers. In the present work, 13 nitrogen-fixing bacterial strains belonging to 11 different genera were tested for their PGP attributes. All of the strains were positive for 1-aminocyclopropane-1-carboxylate deaminase (ACCD), indole-3-acetic acid (IAA), salicylic acid, and ammonia production while negative for cellulase, pectinase, and hydrocyanic acid production. The strains Pseudomonas sp. RFNB3 and Serratia sp. RFNB14 were the most effective in solubilizing both tri-calcium phosphate and zinc oxide. In addition, all strains except Pseudomonas sp. RFNB3 were able to oxidize sulfur, and six strains were positive for siderophore synthesis. Each strain tested in this study possesses at least four PGP properties in addition to nitrogen fixation. Nine strains were selected based on their multiple PGP potential, particularly ACCD and IAA production, and evaluated for their effects on early growth of tomato and red pepper under gnotobiotic conditions. Bacterial inoculation considerably influenced root and shoot length, seedling vigor, and dry biomass of the two crop plants. Three strains that demonstrated substantial effects on plant performance were further selected for greenhouse trials with red pepper, and among them Pseudomonas sp. RFNB3 resulted in significantly higher plant height (26%) and dry biomass (28%) compared to control. The highest rate of nitrogen fixation, as determined by acetylene reduction assay, occurred in Novosphingobium sp. RFNB21 inoculated red pepper root (49.6 nM of ethylene/h/g of dry root) and rhizosphere soil (41.3 nM of ethylene/h/g of dry soil). Inoculation with nitrogen-fixing bacteria significantly increased chlorophyll content, and the uptake of different macro- and micro-nutrient contents enhancing also in red pepper shoots, in comparison with

  2. Effects of monosulfuron-ester on metabolic processes of nitrogen-fixing cyanobacteria Anabaena flos-aquae and Anabaena azotica

    OpenAIRE

    Shen, Jian Ying; Liao, Jin Zhi; Guo, Li Li; Su, Rui Fang

    2017-01-01

    Presence of the relatively new sulfonylurea herbicide monosulfuron-ester at 0.03?300?nmol/L affected the growth of two non-target nitrogen-fixing cyanobacteria (Anabaena flos-aquae and Anabaena azotica) and substantially inhibited in vitro Acetolactate synthase activity, with IC50 of 3.3 and 101.3?nmol/L for A. flos-aquae and A. azotica, respectively. Presenting in 30?300?nmol/L, it inhibited protein synthesis of the cyanobacteria with less amino acids produced as its concentration increased....

  3. Rapid Detection of Viable Microorganisms Based on a Plate Count Technique Using Arrayed Microelectrodes

    Directory of Open Access Journals (Sweden)

    Behraad Bahreyni

    2013-06-01

    Full Text Available Development of a miniaturized biosensor system that can be used for rapid detection and counting of microorganisms in food or water samples is described. The developed microsystem employs a highly sensitive impedimetric array of biosensors to monitor the growth of bacterial colonies that are dispersed across an agar growth medium. To use the system, a sample containing the bacteria is cultured above the agar layer. Using a multiplexing network, the electrical properties of the medium at different locations are continuously measured, recorded, and compared against a baseline signal. Variations of signals from different biosensors are used to reveal the presence of bacteria in the sample, as well as the locations of bacterial colonies across the biochip. This technique forms the basis for a label-free bacterial detection for rapid analysis of food samples, reducing the detection time by at least a factor of four compared to the current required incubation times of 24 to 72 hours for plate count techniques. The developed microsystem has the potential for miniaturization to a stage where it could be deployed for rapid analysis of food samples at commercial scale at laboratories, food processing facilities, and retailers.

  4. Rapid Detection of Microorganisms Based on Active and Passive Modes of QCM

    Directory of Open Access Journals (Sweden)

    Zdeněk Farka

    2014-12-01

    Full Text Available Label-free immunosensors are well suited for detection of microorganisms because of their fast response and reasonable sensitivity comparable to infection doses of common pathogens. Active (lever oscillator and frequency counter and passive (impedance analyzer modes of quartz crystal microbalance (QCM were used and compared for rapid detection of three strains of E. coli. Different approaches for antibody immobilization were compared, the immobilization of reduced antibody using Sulfo‑SMCC was most effective achieving the limit of detection (LOD 8 × 104 CFU·mL−1 in 10 min. For the passive mode, software evaluating impedance characteristics in real-time was developed and used. Almost the same results were achieved using both active and passive modes confirming that the sensor properties are not limited by the frequency evaluation method but mainly by affinity of the antibody. Furthermore, reference measurements were done using surface plasmon resonance. Effect of condition of cells on signal was observed showing that cells ruptured by ultrasonication provided slightly higher signal changes than intact microbes.

  5. Effect of abandonment on diversity and abundance of free-living nitrogen-fixing bacteria and total bacteria in the cropland soils of Hulun Buir, Inner Mongolia.

    Directory of Open Access Journals (Sweden)

    Huhe

    Full Text Available In Inner Mongolia, steppe grasslands face desertification or degradation because of human over activity. One of the reasons for this condition is that croplands have been abandoned after inappropriate agricultural management. The soils in these croplands present heterogeneous environments in which conditions affecting microbial growth and diversity fluctuate widely in space and time. In this study, we assessed the molecular ecology of total and free-living nitrogen-fixing bacterial communities in soils from steppe grasslands and croplands that were abandoned for different periods (1, 5, and 25 years and compared the degree of recovery. The abandoned croplands included in the study were natural restoration areas without human activity. Denaturing gradient gel electrophoresis and quantitative PCR (qPCR were used to analyze the nifH and 16S rRNA genes to study free-living diazotrophs and the total bacterial community, respectively. The diversities of free-living nitrogen fixers and total bacteria were significantly different between each site (P<0.001. Neither the total bacteria nor nifH gene community structure of a cropland abandoned for 25 years was significantly different from those of steppe grasslands. In contrast, results of qPCR analysis of free-living nitrogen fixers and total bacteria showed significantly high abundance levels in steppe grassland (P<0.01 and P<0.03, respectively. In this study, the microbial communities and their gene abundances were assessed in croplands that had been abandoned for different periods. An understanding of how environmental factors and changes in microbial communities affect abandoned croplands could aid in appropriate soil management to optimize the structures of soil microorganisms.

  6. Effect of abandonment on diversity and abundance of free-living nitrogen-fixing bacteria and total bacteria in the cropland soils of Hulun Buir, Inner Mongolia.

    Science.gov (United States)

    Huhe; Borjigin, Shinchilelt; Cheng, Yunxiang; Nomura, Nobukiko; Nakajima, Toshiaki; Nakamura, Toru; Uchiyama, Hiroo

    2014-01-01

    In Inner Mongolia, steppe grasslands face desertification or degradation because of human over activity. One of the reasons for this condition is that croplands have been abandoned after inappropriate agricultural management. The soils in these croplands present heterogeneous environments in which conditions affecting microbial growth and diversity fluctuate widely in space and time. In this study, we assessed the molecular ecology of total and free-living nitrogen-fixing bacterial communities in soils from steppe grasslands and croplands that were abandoned for different periods (1, 5, and 25 years) and compared the degree of recovery. The abandoned croplands included in the study were natural restoration areas without human activity. Denaturing gradient gel electrophoresis and quantitative PCR (qPCR) were used to analyze the nifH and 16S rRNA genes to study free-living diazotrophs and the total bacterial community, respectively. The diversities of free-living nitrogen fixers and total bacteria were significantly different between each site (Pbacteria nor nifH gene community structure of a cropland abandoned for 25 years was significantly different from those of steppe grasslands. In contrast, results of qPCR analysis of free-living nitrogen fixers and total bacteria showed significantly high abundance levels in steppe grassland (P<0.01 and P<0.03, respectively). In this study, the microbial communities and their gene abundances were assessed in croplands that had been abandoned for different periods. An understanding of how environmental factors and changes in microbial communities affect abandoned croplands could aid in appropriate soil management to optimize the structures of soil microorganisms.

  7. A new phenol oxidase produced during melanogenesis and encystment stage in the nitrogen-fixing soil bacterium Azotobacter chroococcum.

    Science.gov (United States)

    Herter, Susanne; Schmidt, Marlen; Thompson, Mark L; Mikolasch, Annett; Schauer, Frieder

    2011-05-01

    Laccases are copper-containing phenol oxidases that are commonly found in many types of plant, insect, fungi and bacteria. Whilst phenol oxidases have been well characterized in fungal species, laccase-type enzymes originating from bacteria have been much less well defined. Bacteria belonging to the family Azotobacteraceae share many morphological characteristics with strains already known to exhibit polyphenol and phenol oxidase activity; and hence the aim of this work was to identify and characterize a novel laccase from the isolated strain Azotobacter chroococcum SBUG 1484 in an attempt to provide further understanding of the roles such enzymes play in physiological development. Laccase activity was clearly observed through oxidation of 2,6-dimethoxyphenol, other typical substrates including: methoxy-monophenols, ortho- and para-diphenols, 4-hydroxyindole, and the non-phenolic compound para-phenylenediamine. A. chroococcum SBUG 1484 showed production of a cell-associated phenol oxidase when grown under nitrogen-fixing conditions, and was also observed when cells enter the melanogenic and encystment stages of growth. Catechol which is structurally related to melanin compounds was also released from Azotobacter cells into the surrounding culture medium during nitrogen-fixing growth. From our results we propose that a membrane-bound laccase plays an important role in the formation of melanin, which was monitored to correlate with progression of A. chroococcum SBUG 1484 cells into the encystment stage of growth.

  8. Effect of A Nitrogen-Fixing Actinorhizal Shrub on Herbaceous Vegetation in A Mixed Conifer Forest of Central Himalaya

    Directory of Open Access Journals (Sweden)

    Kiran Bargali

    2015-12-01

    Full Text Available In this study, we examined the effect of a nitrogen-fixing shrub Coriaria nepalensis Wall on herb species composition, diversity and biomass. The effect was measured in terms of species richness, diversity and biomass of herb species in three sites varying in Coriaria density viz. site 1 (low Coriaria density; 20 ha-1, site-2 (medium Coriaria density; 120 ha-1 and site-3 (high Coriaria density 190 ha-1. Species richness was minimum at Site-1 (16 species, and maximum at site-2 (27 species. G. aparine dominated site-1 and Arthraxon sp dominated site-2 and 3. The individual herb density ranged between 0.40 - 42.40 m-2, and total herb density ranged between 138- 170.4 m-2 and was maximum at site-2. Value for species richness (27 and Shannon Index (3.72 was highest for medium Coriaria density site and lowest for low Coriaria density site. Simpson Index ranged between 0.11 and 0.14 and was lowest for site-2(medium Coriaria density indicating that at this the dominance was shared by many species. Along the gradient of Coriaria density, maximum biomass was recorded at site-3 with highest Coriaria density and lowest at site-2 with medium Coriaria density. This may be due to the symbiotic nitrogen fixing ability of Coriaria that improve the habitat quality. The facilitative effect of C. nepalensis in terms of soil amelioration and herb growth can be used to regenerate degraded forest ecosystems.

  9. Detection of arboviruses and other micro-organisms in experimentally infected mosquitoes using massively parallel sequencing.

    Science.gov (United States)

    Hall-Mendelin, Sonja; Allcock, Richard; Kresoje, Nina; van den Hurk, Andrew F; Warrilow, David

    2013-01-01

    Human disease incidence attributed to arbovirus infection is increasing throughout the world, with effective control interventions limited by issues of sustainability, insecticide resistance and the lack of effective vaccines. Several promising control strategies are currently under development, such as the release of mosquitoes trans-infected with virus-blocking Wolbachia bacteria. Implementation of any control program is dependent on effective virus surveillance and a thorough understanding of virus-vector interactions. Massively parallel sequencing has enormous potential for providing comprehensive genomic information that can be used to assess many aspects of arbovirus ecology, as well as to evaluate novel control strategies. To demonstrate proof-of-principle, we analyzed Aedes aegypti or Aedes albopictus experimentally infected with dengue, yellow fever or chikungunya viruses. Random amplification was used to prepare sufficient template for sequencing on the Personal Genome Machine. Viral sequences were present in all infected mosquitoes. In addition, in most cases, we were also able to identify the mosquito species and mosquito micro-organisms, including the bacterial endosymbiont Wolbachia. Importantly, naturally occurring Wolbachia strains could be differentiated from strains that had been trans-infected into the mosquito. The method allowed us to assemble near full-length viral genomes and detect other micro-organisms without prior sequence knowledge, in a single reaction. This is a step toward the application of massively parallel sequencing as an arbovirus surveillance tool. It has the potential to provide insight into virus transmission dynamics, and has applicability to the post-release monitoring of Wolbachia in mosquito populations.

  10. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects.

    Science.gov (United States)

    Steenhoudt, O; Vanderleyden, J

    2000-10-01

    Azospirillum represents the best characterized genus of plant growth-promoting rhizobacteria. Other free-living diazotrophs repeatedly detected in association with plant roots, include Acetobacter diazotrophicus, Herbaspirillum seropedicae, Azoarcus spp. and Azotobacter. Four aspects of the Azospirillum-plant root interaction are highlighted: natural habitat, plant root interaction, nitrogen fixation and biosynthesis of plant growth hormones. Each of these aspects is dealt with in a comparative way. Azospirilla are predominantly surface-colonizing bacteria, whereas A. diazotrophicus, H. seropedicae and Azoarcus sp. are endophytic diazotrophs. The attachment of Azospirillum cells to plant roots occurs in two steps. The polar flagellum, of which the flagellin was shown to be a glycoprotein, mediates the adsorption step. An as yet unidentified surface polysaccharide is believed to be essential in the subsequent anchoring phase. In Azoarcus sp. the attachment process is mediated by type IV pili. Nitrogen fixation structural genes (nif) are highly conserved among all nitrogen-fixing bacteria, and in all diazotrophic species of the class of proteobacteria examined, the transcriptional activator NifA is required for expression of other nif genes in response to two major environmental signals (oxygen and fixed N). However, the mechanisms involved in this control can vary in different organisms. In Azospirillum brasilense and H. seropedicae (alpha- and beta-subgroup, respectively), NifA is inactive in conditions of excess nitrogen. Activation of NifA upon removal of fixed N seems to involve, either directly or indirectly, the signal transduction protein P(II). The presence of four conserved cysteine residues in the NifA protein might be an indication that NifA is directly sensitive to oxygen. In Azotobacter vinelandii (gamma-subgroup) nifA is cotranscribed with a second gene nifL. The nifL gene product inactivates NifA in response to high oxygen tension and cellular

  11. Application of FT-Raman spectroscopy for in situ detection of microorganisms on the surface of textiles.

    Science.gov (United States)

    Rygula, Anna; Jekiel, Katarzyna; Szostak-Kot, Jadwiga; Wrobel, Tomasz P; Baranska, Malgorzata

    2011-11-01

    In this work we present the usefulness of FT-Raman spectroscopy for microbiological analysis of textiles. This technique was used for non-destructive identification of Escherichia coli bacteria on cotton and polyester fabrics. It was possible to discriminate between infected and non-infected materials. Moreover, this technique allowed detection of detergent traces as well as investigation of the influence of microorganisms on different textiles. Raman analysis supported by chemometrics (cluster analysis and principal component analysis) was shown to be a method for identification of textiles with inoculum of microorganisms in a short time. The results can be potentially used in the fabric industry and related areas.

  12. Studies on utilization of nitrogen-fixing bacteria for saving energy; Chisso koteikin no katsuyo ni yoru sho energy no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Uozumi, T.; Koyama, R.; Horiuchi, M.; Hidaka, M.; Masaki, H. [The University of Tokyo, Tokyo (Japan); Shigematsu, T.; Inoue, A. [New Energy and Industrial Technology Development Organization, Tokyo, (Japan)

    1997-02-01

    This paper describes analysis and enhancement of nitrogen-fixing gene of rice root bacteria, such as Klebsiella oxytoca, Azospirillum lipoferumn and Sphingomonas paucimobilis, for realizing energy saving through conservation of nitrogenous fertilizers. For K. oxytoca, modified strain R-16 was developed, which can fix nitrogen effectively even in the presence of NH4{sup +}. Nitrogen-fixing ability of A. lipoferumn depends on the activity control by the modification of nitrogen-fixing enzyme as well as on the adjustment of transcription level by the transcription activating gene, nifA. The control gene relating to the above was analyzed by making clones. As a result, a modified strain TAl without the control by NH4{sup +} was developed. The R-16 and TAl strains were inoculated into rice sterile-cultured without nitrogen. Consequently, inoculated strains were settled in the root, which resulted in the increased vegetation weight of plant to two times heavier than that without inoculation. 9 refs.

  13. Requirement of Fra proteins for communication channels between cells in the filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120.

    Science.gov (United States)

    Omairi-Nasser, Amin; Mariscal, Vicente; Austin, Jotham R; Haselkorn, Robert

    2015-08-11

    The filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120 differentiates specialized cells, heterocysts, that fix atmospheric nitrogen and transfer the fixed nitrogen to adjacent vegetative cells. Reciprocally, vegetative cells transfer fixed carbon to heterocysts. Several routes have been described for metabolite exchange within the filament, one of which involves communicating channels that penetrate the septum between adjacent cells. Several fra gene mutants were isolated 25 y ago on the basis of their phenotypes: inability to fix nitrogen and fragmentation of filaments upon transfer from N+ to N- media. Cryopreservation combined with electron tomography were used to investigate the role of three fra gene products in channel formation. FraC and FraG are clearly involved in channel formation, whereas FraD has a minor part. Additionally, FraG was located close to the cytoplasmic membrane and in the heterocyst neck, using immunogold labeling with antibody raised to the N-terminal domain of the FraG protein.

  14. Proteomic analysis reveals contrasting stress response to uranium in two nitrogen-fixing Anabaena strains, differentially tolerant to uranium.

    Science.gov (United States)

    Panda, Bandita; Basu, Bhakti; Acharya, Celin; Rajaram, Hema; Apte, Shree Kumar

    2017-01-01

    Two strains of the nitrogen-fixing cyanobacterium Anabaena, native to Indian paddy fields, displayed differential sensitivity to exposure to uranyl carbonate at neutral pH. Anabaena sp. strain PCC 7120 and Anabaena sp. strain L-31 displayed 50% reduction in survival (LD50 dose), following 3h exposure to 75μM and 200μM uranyl carbonate, respectively. Uranium responsive proteome alterations were visualized by 2D gel electrophoresis, followed by protein identification by MALDI-ToF mass spectrometry. The two strains displayed significant differences in levels of proteins associated with photosynthesis, carbon metabolism, and oxidative stress alleviation, commensurate with their uranium tolerance. Higher uranium tolerance of Anabaena sp. strain L-31 could be attributed to sustained photosynthesis and carbon metabolism and superior oxidative stress defense, as compared to the uranium sensitive Anabaena sp. strain PCC 7120.

  15. The effect of salt tolerant nitrogen fixing bacteria on the growth of paddy rice (Oryza sativa. L

    Directory of Open Access Journals (Sweden)

    Suliasih Suliasih

    2014-06-01

    Full Text Available Nitrogen fixing bacteria (Azospirillum and Azotobacter were isolated from coastal mangrove in Pulau seribu. The aims of the experiment was to find out isolates of nitrogen fixing bacteria which were tolerant to high salinity. The isolates can be used as a biofertilizer to support coastal agriculture.A total of 28 isolates (14 isolates of Azospirillum and 14 isolates of Azotobacter were tested their tolerance to salt by growing them in their respective media containing 1% 2% and 3 % NaCl,. Salt tolerant isolates obtained, then used as inoculants in paddy. The experiment laid out factorial based randomized complete block design which was comprised of 7 fertilizer treatments and 5 watering treatments with 5 replicates for each treatment at green house of Microbiology Division, Research Center of Biology, Indonesian Institute of Sciences. The first factor was fertilizer treatments 1. Compost + mixed bacteria (K1, 2. Control without inoculant , 3. Compost, 4. NPK, 5. Compost + NPK + mixed microbial, 6. Azotobacter isolates; 7. Azospirillum isolates. The second factor was watering treatments, plant was watered by : 1. Freshwater, 2. freshwater + sea water at mixture ratio 1:1, 3. Sea water, 4. sea water + 2% NaCl (20 g NaCl / l , 5. freshwater + 5% NaCl (50 g NaCl / l.The result showed that there were 9 isolates of Azospirillum and 4 isolates of Azotobacter which were tolerant to grow at media with 3% NaCl The green house experimental result revealed that the plants were treated with bacteria can survive up to the level of salinity 12.43 dS-1m.

  16. Differentiation and detection of microorganisms using Fourier transform infrared photoacoustic spectroscopy

    Science.gov (United States)

    Irudayaraj, Joseph; Yang, Hong; Sakhamuri, Sivakesava

    2002-03-01

    Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) was used to differentiate and identify microorganisms on a food (apple) surface. Microorganisms considered include bacteria (Lactobacillus casei, Bacillus cereus, and Escherichia coli), yeast (Saccharomyces cerevisiae), and fungi (Aspergillus niger and Fusarium verticilliodes). Discriminant analysis was used to differentiate apples contaminated with the different microorganisms from uncontaminated apple. Mahalanobis distances were calculated to quantify the differences. The higher the value of the Mahalanobis distance metric between different microorganisms, the greater is their difference. Additionally, pathogenic (O157:H7) E. coli was successfully differentiated from non-pathogenic strains. Results demonstrate that FTIR-PAS spectroscopy has the potential to become a non-destructive analysis tool in food safety related research.

  17. Influences of Oyster Shell Soil Conditioner on Soil and Plant Rhizospheric Microorganisms

    Institute of Scientific and Technical Information of China (English)

    JIANG Guoliang; LIU Yun; DING Mingyu; KONG Xiuqin

    2003-01-01

    Oyster shell soil conditioner had significant influence on soil and rhizospheric microorganisms in their biomass,respiratory intensity and nutritional requirement. It could stimulate growth of soil and rhizospheric microorganisms, especially nitrogen-fixers, and intensify soil respiration in proportion to the dose and fertilizing time of the conditioner, leading to the increase in the number of nitrogen fixing bacteria and the decrease in the number of bacteria with special nutrition demands.

  18. 2-(Nitroaryl)benzothiazole and benzoxazole derivatives as fluorogenic substrates for the detection of nitroreductase activity in clinically important microorganisms.

    Science.gov (United States)

    Cellier, Marie; Gignoux, Amandine; James, Arthur L; Orenga, Sylvain; Perry, John D; Robinson, Shaun N; Stanforth, Stephen P; Turnbull, Graeme

    2015-12-15

    A series of carboxy-substituted 2-(nitroaryl)benzothiazole derivatives and carboxy-substituted 2-(nitroaryl)benzoxazole derivatives were prepared and evaluated as potential nitroreductase substrates for the purpose of detecting clinically important microorganisms. Several of the substrates produced highly fluorescent colonies with the majority of a panel of 10 Gram-negative bacteria and also with two of a panel of 8 Gram-positive bacteria.

  19. 16S ribosomal DNA characterization of nitrogen-fixing bacteria isolated from banana (Musa spp.) and pineapple (Ananas comosus (L.) Merril).

    Science.gov (United States)

    Magalhães Cruz, L; de Souza, E M; Weber, O B; Baldani, J I; Döbereiner, J; Pedrosa, F de O

    2001-05-01

    Nitrogen-fixing bacteria isolated from banana (Musa spp.) and pineapple (Ananas comosus (L.) Merril) were characterized by amplified 16S ribosomal DNA restriction analysis and 16S rRNA sequence analysis. Herbaspirillum seropedicae, Herbaspirillum rubrisubalbicans, Burkholderia brasilensis, and Burkholderia tropicalis were identified. Eight other types were placed in close proximity to these genera and other alpha and beta Proteobacteria.

  20. Detection of antibacterial substances in some plant residues and their effect on certain micro-organisms.

    Science.gov (United States)

    Abdel-Nasser, M; Safwat, M S; Ali, M Z

    1983-01-01

    The effect of dry residues from several plants, belonging to different families on certain microorganisms in vitro and in vivo, was studied. Dry residues of paprica leaves, tomato tops, egg plant leaves, guava leaves, onion peels, garlic tops, wheat straw, sugar cane leaves, cotton leaves, Egyptian clover tops, field bean tops or pea tops were examined for the presence of antibacterial substances, using successive extractions with hexane, ethyl ether, ethanol, and water, respectively, for each plant residue. On culture media, the antibacterial effect, expressed as width of inhibition zones, differed according to the type of plant, type of micro-organism, and extraction medium, used for each plant. Water extract from each of the studied plants showed no effect on any of the studied micro-organisms, while the other extracts indicated the presence of antibacterial substances in all the used plants. In most cases, ether extract showed the highest incidence of antimicrobial activities against the majority of test micro-organisms. In general, the antibacterial substances seemed to be more inhibitory to Gram-positive bacteria than to Gram-negative ones. Ethyl-ether extract of the residues of most of these plants markedly affected the growth of more than one of the different Rhizobium species when grown on culture medium, as indicated by the presence of wide zones of inhibition.

  1. Prone to fix: Resilience of the active nitrogen-fixing rice root microbiome

    Science.gov (United States)

    Hurek, Thomas; Sabale, Mugdha; Sarkar, Abhijit; Pees, Tobias; Reinhold-Hurek, Barbara

    2016-04-01

    Due to water consumption, many lowland rice areas in Asia are undergoing a transition that involves adoption of new management strategies, with crop rotations encompassing a non-flooded crop, including maize. Shifting from flooded to non-flooded cropping is likely to affect microbial nitrogen cycling. For analysis of the root-associated microbiome of rice and maize in response to flooding or nitrogen fertilizer, we combine methods of microbial ecology (Next-Generation sequencing of amplicons), and a reductionist approach with pure cultures of the endophytic diazotroph Azoarus sp.. Field plots of the ICON project (Introducing non-flooded crops in rice-dominated landscapes: Impact on Carbon, nitrogen and water budgets) at the International Rice Research Institute in the Philippines were analyzed. Root-associated activity of nitrogenase gene expression was assessed by quantitative RT-PCR of nifH. For rice, expression levels were surprisingly stable, in response to non-flooded versus flooded conditions, or in response to conventional nitrogen fertilizer applications versus lack of N-fertilizer. In contrast, the active diazotrophic population of maize roots was not resistant to N-fertilization, nifH expression strongly decreased. Concordant changes in the diazotrophic resident or active communities were detected by nifH amplicon sequence analysis, based on bacterial DNA or mRNA, respectively. For high-resolution analyses of the endobiome in gnotobiotic culture, we developed a dual fluorescence reporter system for Azoarcus sp. BH72 which allows to quantify and visualize epi- and endophytic gene expression by concfocal microscopy (CLSM). This allowed us to demonstrate sites of active nitrogen fixation (gene expression) in association with rice roots. We confirmed that at low nitrogen fertilizer levels, endophytic nifH gene expression persisted in rice roots, while it was repressed in maize roots. This supports our observation of remarkable stability of nitrogen fixation

  2. Thiol-based redox signaling in the nitrogen-fixing symbiosis

    Directory of Open Access Journals (Sweden)

    Pierre eFrendo

    2013-09-01

    Full Text Available In nitrogen poor soils legumes establish a symbiotic interaction with rhizobia that results in the formation of root nodules. These are unique plant organs where bacteria differentiate into bacteroids, which express the nitrogenase enzyme complex that reduces atmospheric N2 to ammonia. Nodule metabolism requires a tight control of the concentrations of reactive oxygen and nitrogen species (RONS so that they can perform useful signaling roles while avoiding nitro-oxidative damage. In nodules a thiol-dependent regulatory network that senses, transmits and responds to redox changes is starting to be elucidated. A combination of enzymatic, immunological, pharmacological and molecular analyses has allowed to conclude that glutathione and its legume-specific homolog, homoglutathione, are abundant in meristematic and infected cells, their spatio-temporally distribution is correlated with the corresponding (homoglutathione synthetase activities, and are crucial for nodule development and function. Glutathione is at high concentrations in the bacteroids and at moderate amounts in the mitochondria, cytosol and nuclei. Less information is available on other components of the network. The expression of multiple isoforms of glutathione peroxidases, peroxiredoxins, thioredoxins, glutaredoxins and NADPH-thioredoxin reductases has been detected in nodule cells using antibodies and proteomics. Peroxiredoxins and thioredoxins are essential to regulate and in some cases to detoxify RONS in nodules. Further research is necessary to clarify the regulation of the expression and activity of thiol redox-active proteins in response to abiotic, biotic and developmental cues, their interactions with downstream targets by disulfide-exchange reactions, and their participation in signaling cascades. The availability of mutants and transgenic lines will be crucial to facilitate systematic investigations into the function of the various proteins in the legume

  3. Nitrogen-fixing Rhizobium-legume symbiosis: Are polyploidy and host peptide-governed symbiont differentiation general principles of endosymbiosis?

    Directory of Open Access Journals (Sweden)

    Gergely eMaróti

    2014-06-01

    Full Text Available The symbiosis between rhizobia soil bacteria and legumes is facultative and initiated by nitrogen starvation of the host plant. Exchange of signal molecules between the partners leads to the formation of root nodules where bacteria are converted to nitrogen-fixing bacteroids. In this mutualistic symbiosis, the bacteria provide nitrogen sources for plant growth in return for photosynthates from the host. Depending on the host plant the symbiotic fate of bacteria can either be reversible or irreversible. In Medicago plants the bacteria undergo a host-directed multistep differentiation process culminating in the formation of elongated and branched polyploid bacteria with definitive loss of cell division ability. The plant factors are nodule-specific symbiotic peptides. About 500 of them are cysteine-rich NCR peptides produced in the infected plant cells. NCRs are targeted to the endosymbionts and the concerted action of different sets of peptides governs different stages of endosymbiont maturation. This review focuses on symbiotic plant cell development and terminal bacteroid differentiation and demonstrates the crucial roles of symbiotic peptides by showing an example of multi-target mechanism exerted by one of these symbiotic peptides.

  4. Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus.

    Science.gov (United States)

    Meneses, Carlos H S G; Rouws, Luc F M; Simoes-Araujo, Jean L; Vidal, Marcia S; Baldani, Jos I

    2011-12-01

    The genome of the endophytic diazotrophic bacterial species Gluconacetobacter diazotrophicus PAL5 (PAL5) revealed the presence of a gum gene cluster. In this study, the gumD gene homologue, which is predicted to be responsible for the first step in exopolysaccharide (EPS) production, was insertionally inactivated and the resultant mutant (MGD) was functionally studied. The mutant MGD presented normal growth and nitrogen (N(2)) fixation levels but did not produce EPS when grown on different carbon sources. MGD presented altered colony morphology on soft agar plates (0.3% agar) and was defective in biofilm formation on glass wool. Most interestingly, MGD was defective in rice root surface attachment and in root surface and endophytic colonization. Genetic complementation reverted all mutant phenotypes. Also, the addition of EPS purified from culture supernatants of the wild-type strain PAL5 to the mutant MGD was effective in partially restoring wild-type biofilm formation and plant colonization. These data provide strong evidence that the PAL5 gumD gene is involved in EPS biosynthesis and that EPS biosynthesis is required for biofilm formation and plant colonization. To our knowledge, this is the first report of a role of EPS in the endophytic colonization of graminaceous plants by a nitrogen-fixing bacterium.

  5. Hydrogen generation through indirect biophotolysis in batch cultures of the nonheterocystous nitrogen-fixing cyanobacterium Plectonema boryanum.

    Science.gov (United States)

    Huesemann, Michael H; Hausmann, Tom S; Carter, Blaine M; Gerschler, Jared J; Benemann, John R

    2010-09-01

    The nitrogen-fixing nonheterocystous cyanobacterium Plectonema boryanum was used as a model organism to study hydrogen generation by indirect biophotolysis in nitrogen-limited batch cultures that were continuously illuminated and sparged with argon/CO(2) to maintain anaerobiosis. The highest hydrogen-production rate (i.e., 0.18 mL/mg day or 7.3 micromol/mg day) was observed in cultures with an initial medium nitrate concentration of 1 mM at a light intensity of 100 micromol/m(2) s. The addition of photosystem II (PSII) inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) did not reduce hydrogen-production rates relative to unchallenged controls for 50 to 150 h, and intracellular glycogen concentrations decreased significantly during the hydrogen generation period. The insensitivity of the hydrogen-production process to DCMU is indicative of the fact that hydrogen was not derived from water splitting at PSII (i.e., direct biophotolysis) but rather from electrons provided by intracellular glycogen reserves (i.e., indirect biophotolysis). It was shown that hydrogen generation could be sustained for long time periods by subjecting the cultures to alternating cycles of aerobic, nitrogen-limited growth and anaerobic hydrogen production.

  6. Effect of shoot removal on remobilization of carbon and nitrogen during regrowth of nitrogen-fixing alfalfa.

    Science.gov (United States)

    Aranjuelo, Iker; Molero, Gemma; Erice, Gorka; Aldasoro, Joseba; Arrese-Igor, Cesar; Nogués, Salvador

    2015-01-01

    The contribution of carbon and nitrogen reserves to regrowth following shoot removal has been studied in the past. However, important gaps remain in understanding the effect of shoot cutting on nodule performance and its relevance during regrowth. In this study, isotopic labelling was conducted at root and canopy levels with both (15) N2 and (13) C-depleted CO2 on exclusively nitrogen-fixing alfalfa plants. As expected, our results indicate that the roots were the main sink organs before shoots were removed. Seven days after regrowth the carbon and nitrogen stored in the roots was invested in shoot biomass formation and partitioned to the nodules. The large depletion in nodule carbohydrate availability suggests that root-derived carbon compounds were delivered towards nodules in order to sustain respiratory activity. In addition to the limited carbohydrate availability, the upregulation of nodule peroxidases showed that oxidative stress was also involved during poor nodule performance. Fourteen days after cutting, and as a consequence of the stimulated photosynthetic and N2 -fixing machinery, availability of Cnew and Nnew strongly diminished in the plants due to their replacement by C and N assimilated during the post-labelling period. In summary, our study indicated that during the first week of regrowth, root-derived C and N remobilization did not overcome C- and N-limitation in nodules and leaves. However, 14 days after cutting, leaf and nodule performance were re-established.

  7. Diversity of nitrogen-fixing bacteria associated with switchgrass in the native tallgrass prairie of northern Oklahoma.

    Science.gov (United States)

    Bahulikar, Rahul A; Torres-Jerez, Ivone; Worley, Eric; Craven, Kelly; Udvardi, Michael K

    2014-09-01

    Switchgrass (Panicum virgatum L.) is a perennial C4 grass native to North America that is being developed as a feedstock for cellulosic ethanol production. Industrial nitrogen fertilizers enhance switchgrass biomass production but add to production and environmental costs. A potential sustainable alternative source of nitrogen is biological nitrogen fixation. As a step in this direction, we studied the diversity of nitrogen-fixing bacteria (NFB) associated with native switchgrass plants from the tallgrass prairie of northern Oklahoma (United States), using a culture-independent approach. DNA sequences from the nitrogenase structural gene, nifH, revealed over 20 putative diazotrophs from the alpha-, beta-, delta-, and gammaproteobacteria and the firmicutes associated with roots and shoots of switchgrass. Alphaproteobacteria, especially rhizobia, predominated. Sequences derived from nifH RNA indicated expression of this gene in several bacteria of the alpha-, beta-, delta-, and gammaproteobacterial groups associated with roots. Prominent among these were Rhizobium and Methylobacterium species of the alphaproteobacteria, Burkholderia and Azoarcus species of the betaproteobacteria, and Desulfuromonas and Geobacter species of the deltaproteobacteria. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. Field performance of new cowpea cultivars inoculated with efficient nitrogen-fixing rhizobial strains in the Brazilian Semiarid

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Nunes Marinho

    2014-05-01

    Full Text Available The objective of this work was to evaluate the contribution of efficient nitrogen-fixing rhizobial strains to grain yield of new cowpea cultivars, indicated for cultivation in the Brazilian Semiarid region, in the sub-medium of the São Francisco River Valley. Two experiments were set up at the irrigated perimeters of Mandacaru (Juazeiro, state of Bahia and Bebedouro (Petrolina, state of Pernambuco. The treatments consisted of single inoculation of five rhizobial strains - BR 3267, BR 3262, INPA 03-11B, UFLA 03-84 (Bradyrhizobium sp., and BR 3299T (Microvirga vignae -, besides a treatment with nitrogen and a control without inoculation or N application. The following cowpea cultivars were evaluated: BRS Pujante, BRS Tapaihum, BRS Carijó, and BRS Acauã. A randomized complete block design, with four replicates, was used. Inoculated plants showed similar grain yield to the one observed with plants fertilized with 80 kg ha-1 N. The cultivars BRS Tapaihum and BRS Pujante stood out in grain yield and protein contents when inoculated, showing their potential for cultivation in the sub-medium of the São Francisco River Valley.

  9. Vibrio oceanisediminis sp. nov., a nitrogen-fixing bacterium isolated from an artificial oil-spill marine sediment.

    Science.gov (United States)

    Kang, Sang Rim; Srinivasan, Sathiyaraj; Lee, Sang-Seob

    2015-10-01

    A Gram-staining-negative, halophilic, facultatively anaerobic, motile, rod-shaped and nitrogen-fixing bacterium, designated strain S37T, was isolated from an artificial oil-spill sediment sample from the coast of Taean, South Korea. Cells grew at 10-37 °C and pH 5.0-9.0, with optimal growth at 28 °C and pH 6.0-8.0. Growth was observed with 1-9 % (w/v) NaCl in marine broth, with optimal growth with 3-5 % NaCl, but no growth was observed in the absence of NaCl. According to the results of 16S rRNA gene sequence analysis, strain S37T represents a member of the genus Vibrio of the class Gammaproteobacteria and forms a clade with Vibrio plantisponsor MSSRF60T (97.38 %), Vibrio diazotrophicus ATCC 33466T (97.31 %), Vibrio aestuarianus ATCC 35048T (97.07 %) Vibrio areninigrae J74T (96.76 %) and Vibrio hispanicus LMG 13240T (96.76 %). The major fatty acids were C16 : 0, C16 : 1ω7c/C16 : 1ω6c and C18 : 1ω7c/C18 : 1ω6c. The DNA G+C content was 41.9 %. The DNA-DNA hybridization analysis results showed a 30.2 % association value with the closely related type strain V. plantisponsor DSM 21026T. On the basis of phenotypic and chemotaxonomic characteristics, strain S37T represents a novel species of the genus Vibrio, for which the name Vibrio oceanisediminis sp. nov., is proposed with the type strain S37T ( = KEMB 2255-005T = JCM 30409T).

  10. Characterization of free nitrogen fixing bacteria of the genus Azotobacter in organic vegetable-grown Colombian soils

    Directory of Open Access Journals (Sweden)

    Diego Javier Jiménez

    2011-09-01

    Full Text Available With the purpose of isolating and characterizing free nitrogen fixing bacteria (FNFB of the genus Azotobacter, soil samples were collected randomly from different vegetable organic cultures with neutral pH in different zones of Boyacá-Colombia. Isolations were done in selective free nitrogen Ashby-Sucrose agar obtaining a recovery of 40%. Twenty four isolates were evaluated for colony and cellular morphology, pigment production and metabolic activities. Molecular characterization was carried out using amplified ribosomal DNA restriction analysis (ARDRA. After digestion of 16S rDNA Y1-Y3 PCR products (1487pb with AluI, HpaII and RsaI endonucleases, a polymorphism of 16% was obtained. Cluster analysis showed three main groups based on DNA fingerprints. Comparison between ribotypes generated by isolates and in silico restriction of 16S rDNA partial sequences with same restriction enzymes was done with Gen Workbench v.2.2.4 software. Nevertheless, Y1-Y2 PCR products were analysed using BLASTn. Isolate C5T from tomato (Lycopersicon esculentum grown soils presented the same in silico restriction patterns with A. chroococcum (AY353708 and 99% of similarity with the same sequence. Isolate C5CO from cauliflower (Brassica oleracea var. botrytis grown soils showed black pigmentation in Ashby-Benzoate agar and high similarity (91% with A. nigricans (AB175651 sequence. In this work we demonstrated the utility of molecular techniques and bioinformatics tools as a support to conventional techniques in characterization of the genus Azotobacter from vegetable-grown soils.

  11. A genome-wide survey of sRNAs in the symbiotic nitrogen-fixing alpha-proteobacterium Sinorhizobium meliloti

    Directory of Open Access Journals (Sweden)

    Jänicke Sebastian

    2010-04-01

    Full Text Available Abstract Background Small untranslated RNAs (sRNAs are widespread regulators of gene expression in bacteria. This study reports on a comprehensive screen for sRNAs in the symbiotic nitrogen-fixing alpha-proteobacterium Sinorhizobium meliloti applying deep sequencing of cDNAs and microarray hybridizations. Results A total of 1,125 sRNA candidates that were classified as trans-encoded sRNAs (173, cis-encoded antisense sRNAs (117, mRNA leader transcripts (379, and sense sRNAs overlapping coding regions (456 were identified in a size range of 50 to 348 nucleotides. Among these were transcripts corresponding to 82 previously reported sRNA candidates. Enrichment for RNAs with primary 5'-ends prior to sequencing of cDNAs suggested transcriptional start sites corresponding to 466 predicted sRNA regions. The consensus σ70 promoter motif CTTGAC-N17-CTATAT was found upstream of 101 sRNA candidates. Expression patterns derived from microarray hybridizations provided further information on conditions of expression of a number of sRNA candidates. Furthermore, GenBank, EMBL, DDBJ, PDB, and Rfam databases were searched for homologs of the sRNA candidates identified in this study. Searching Rfam family models with over 1,000 sRNA candidates, re-discovered only those sequences from S. meliloti already known and stored in Rfam, whereas BLAST searches suggested a number of homologs in related alpha-proteobacteria. Conclusions The screening data suggests that in S. meliloti about 3% of the genes encode trans-encoded sRNAs and about 2% antisense transcripts. Thus, this first comprehensive screen for sRNAs applying deep sequencing in an alpha-proteobacterium shows that sRNAs also occur in high number in this group of bacteria.

  12. The Independent Acquisition of Plant Root Nitrogen-Fixing Symbiosis in Fabids Recruited the Same Genetic Pathway for Nodule Organogenesis

    Science.gov (United States)

    Svistoonoff, Sergio; Benabdoun, Faiza Meriem; Nambiar-Veetil, Mathish; Imanishi, Leandro; Vaissayre, Virginie; Cesari, Stella; Diagne, Nathalie; Hocher, Valérie; de Billy, Françoise; Bonneau, Jocelyne; Wall, Luis; Ykhlef, Nadia; Rosenberg, Charles; Bogusz, Didier; Franche, Claudine; Gherbi, Hassen

    2013-01-01

    Only species belonging to the Fabid clade, limited to four classes and ten families of Angiosperms, are able to form nitrogen-fixing root nodule symbioses (RNS) with soil bacteria. This concerns plants of the legume family (Fabaceae) and Parasponia (Cannabaceae) associated with the Gram-negative proteobacteria collectively called rhizobia and actinorhizal plants associated with the Gram-positive actinomycetes of the genus Frankia. Calcium and calmodulin-dependent protein kinase (CCaMK) is a key component of the common signaling pathway leading to both rhizobial and arbuscular mycorrhizal symbioses (AM) and plays a central role in cross-signaling between root nodule organogenesis and infection processes. Here, we show that CCaMK is also needed for successful actinorhiza formation and interaction with AM fungi in the actinorhizal tree Casuarina glauca and is also able to restore both nodulation and AM symbioses in a Medicago truncatula ccamk mutant. Besides, we expressed auto-active CgCCaMK lacking the auto-inhibitory/CaM domain in two actinorhizal species: C. glauca (Casuarinaceae), which develops an intracellular infection pathway, and Discaria trinervis (Rhamnaceae) which is characterized by an ancestral intercellular infection mechanism. In both species, we found induction of nodulation independent of Frankia similar to response to the activation of CCaMK in the rhizobia-legume symbiosis and conclude that the regulation of actinorhiza organogenesis is conserved regardless of the infection mode. It has been suggested that rhizobial and actinorhizal symbioses originated from a common ancestor with several independent evolutionary origins. Our findings are consistent with the recruitment of a similar genetic pathway governing rhizobial and Frankia nodule organogenesis. PMID:23741336

  13. The independent acquisition of plant root nitrogen-fixing symbiosis in Fabids recruited the same genetic pathway for nodule organogenesis.

    Directory of Open Access Journals (Sweden)

    Sergio Svistoonoff

    Full Text Available Only species belonging to the Fabid clade, limited to four classes and ten families of Angiosperms, are able to form nitrogen-fixing root nodule symbioses (RNS with soil bacteria. This concerns plants of the legume family (Fabaceae and Parasponia (Cannabaceae associated with the Gram-negative proteobacteria collectively called rhizobia and actinorhizal plants associated with the Gram-positive actinomycetes of the genus Frankia. Calcium and calmodulin-dependent protein kinase (CCaMK is a key component of the common signaling pathway leading to both rhizobial and arbuscular mycorrhizal symbioses (AM and plays a central role in cross-signaling between root nodule organogenesis and infection processes. Here, we show that CCaMK is also needed for successful actinorhiza formation and interaction with AM fungi in the actinorhizal tree Casuarina glauca and is also able to restore both nodulation and AM symbioses in a Medicago truncatula ccamk mutant. Besides, we expressed auto-active CgCCaMK lacking the auto-inhibitory/CaM domain in two actinorhizal species: C. glauca (Casuarinaceae, which develops an intracellular infection pathway, and Discaria trinervis (Rhamnaceae which is characterized by an ancestral intercellular infection mechanism. In both species, we found induction of nodulation independent of Frankia similar to response to the activation of CCaMK in the rhizobia-legume symbiosis and conclude that the regulation of actinorhiza organogenesis is conserved regardless of the infection mode. It has been suggested that rhizobial and actinorhizal symbioses originated from a common ancestor with several independent evolutionary origins. Our findings are consistent with the recruitment of a similar genetic pathway governing rhizobial and Frankia nodule organogenesis.

  14. Characterization of two naturally truncated, Ssb-like proteins from the nitrogen-fixing cyanobacterium, Anabaena sp. PCC7120.

    Science.gov (United States)

    Kirti, Anurag; Rajaram, Hema; Apte, Shree Kumar

    2013-11-01

    Single-stranded (ss) DNA-binding (Ssb) proteins are vital for all DNA metabolic processes and are characterized by an N-terminal OB-fold followed by P/G-rich spacer region and a C-terminal tail. In the genome of the heterocystous, nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC 7120, two genes alr0088 and alr7579 are annotated as ssb, but the corresponding proteins have only the N-terminal OB-fold and no P/G-rich region or acidic tail, thereby rendering them unable to interact with genome maintenance proteins. Both the proteins were expressed under normal growth conditions in Anabaena PCC7120 and regulated differentially under abiotic stresses which induce DNA damage, indicating that these are functional genes. Constitutive overexpression of Alr0088 in Anabaena enhanced the tolerance to DNA-damaging stresses which caused formation of DNA adducts such as UV and MitomycinC, but significantly decreased the tolerance to γ-irradiation, which causes single- and double-stranded DNA breaks. On the other hand, overexpression of Alr7579 had no significant effect on normal growth or stress tolerance of Anabaena. Thus, of the two truncated Ssb-like proteins, Alr0088 may be involved in protection of ssDNA from damage, but due to the absence of acidic tail, it may not aid in repair of damaged DNA. These two proteins are present across cyanobacterial genera and unique to them. These initial studies pave the way to the understanding of DNA repair in cyanobacteria, which is not very well documented.

  15. Diversity and activity of free-living nitrogen-fixing bacteria and total bacteria in organic and conventionally managed soils.

    Science.gov (United States)

    Orr, Caroline H; James, Angela; Leifert, Carlo; Cooper, Julia M; Cummings, Stephen P

    2011-02-01

    Agricultural soils are heterogeneous environments in which conditions affecting microbial growth and diversity fluctuate widely in space and time. In this study, the molecular ecology of the total bacterial and free-living nitrogen-fixing communities in soils from the Nafferton Factorial Systems Comparison (NFSC) study in northeast England were examined. The field experiment was factorial in design, with organic versus conventional crop rotation, crop protection, and fertility management factors. Soils were sampled on three dates (March, June, and September) in 2007. Total RNA was extracted from all soil samples and reverse transcribed. Denaturing gradient gel electrophoresis (DGGE) and quantitative PCR (qPCR) were used to analyze nifH and 16S rRNA genes in order to study free-living diazotrophs and the total bacterial community, respectively. Crop rotation was shown to have a significant effect on total bacterial diversity (and that of free-living N fixers) (P ≤ 0.001). On all three dates, nifH activity was higher in the conventional crop rotation. In contrast, qPCR analysis of free-living N fixers indicated significantly higher levels of activity in conventionally fertilized plots in June (P = 0.0324) and in plots with organic crop protection in September (P = 0.0143). To our knowledge, the effects of organic and conventional farming systems on free-living diazotrophs have never been studied. An increased understanding of the impacts of management practices on free-living N fixers could allow modifications in soil management practices to optimize the activity of these organisms.

  16. Efficient nitrogen-fixing Rhizobium strains isolated from amazonian soils are highly tolerant to acidity and aluminium.

    Science.gov (United States)

    Avelar Ferreira, Paulo Ademar; Bomfeti, Cleide Aparecida; Lima Soares, Bruno; de Souza Moreira, Fatima Maria

    2012-05-01

    One of the most cultivated and consumed vegetables in Brazil is the common bean, Phaseolus vulgaris L. The symbiosis of this plant species with nitrogen-fixing bacteria that are adapted to the stresses commonly found in tropical soils can increase production. The aim of this study was to evaluate the symbiotic effectiveness of bacterial strains from soils under different land uses in the Amazon region. Further, rhizobia tolerance to acidity and aluminium and the involvement of some possible physiological mechanisms of such tolerance were also investigated. In assessing the efficiency of biological nitrogen fixation, inoculation with strains UFLA04-195, UFLA04-173 and UFLA04-202, belonging to the genus Rhizobium, resulted in greater plant growth, higher shoot nitrogen content and good nodulation compared to the inoculation with the strain CIAT 899 (R. tropici), and to the mineral nitrogen control or Burkholderia fungorum strains that nodulated or not bean plants. These efficient strains grew better at pH 5.0 than at pH 6.0 or pH 6.9; they also tolerated up to 1 mmol l(-1) of Al(3+) and showed an increased production of exopolysaccharides where the growing rates were less (pH 6.0 and pH 6.9). With respect to aluminium, the highest production of EPS produced greater tolerance to this element. Taken together, these results indicate that the strains evaluated in this study were tolerant to acidity and aluminium; they appeared to have developed resistance mechanisms such as EPS production and a resistant cell outer membrane (indicated by resistance to polymyxin and methyl violet). As these strains also gave increased yields of the host species, further studies on whether to recommend these strains as inoculants are already underway.

  17. Effect of succinate on phosphate solubilization in nitrogen fixing bacteria harbouring chick pea and their effect on plant growth.

    Science.gov (United States)

    Iyer, Bhagya; Rajput, Mahendrapal Singh; Rajkumar, Shalini

    2017-09-01

    Diverse nitrogen fixing bacteria harbouring chick pea rhizosphere and root nodules were tested for multiple plant growth promoting traits like tricalcium phosphate (TCP) and rock phosphate (RP) solubilization, production of ammonia, indole 3-acetic acid, chitinase, phytase and alkaline phosphatase. Isolates belonged to diverse genus like Enterobacter, Acinetobacter, Erwinia, Pseudomonas, Rhizobium, Sinorhizobium, Ensifer, Klebsiella, etc. Most isolates solubilized TCP and RP along with the lowering of media pH, indicating acidification to be the chief mechanism behind this solubilization. However, lowering of media pH and P release decreased by 32-100% when media was supplemented with succinate, a major component of plant root exudates indicating succinate mediated repression of P solubilization. Maximum TCP and RP solubilization with P release of 850μg/mL and 2088μg/mL was obtained with lowering of media pH up to 2.8 and 3.3 for isolate E43 and PSB1 respectively. This pH drop changed to 4.4 and 4.8 with 80% and 87% decrease in P solubilization in the presence of succinate. Maximum 246μg/mL indole 3-acetic acid production in Lh3, 44.8U/mL chitinase activity in MB3, 11.3U/mL phytase activity in I91 and 9.4U/mL alkaline phosphatase activity in SM1 were also obtained. Most isolates showed multiple PGP traits which resulted in significant plant growth promotion of chick pea plants. Present study shows repression of P solubilization by succinate for various bacterial groups which might be one of the reasons why phosphate solubilizing bacteria which perform well in vitro often fail in vivo. Studying this repression mechanism might be critical in understanding the in vivo efficacy. Copyright © 2017. Published by Elsevier GmbH.

  18. Simulating changes in ecosystem structure and composition in response to climate change: a case study focused on tropical nitrogen-fixing trees (Invited)

    Science.gov (United States)

    Medvigy, D.; Levy, J.; Xu, X.; Batterman, S. A.; Hedin, L.

    2013-12-01

    Ecosystems, by definition, involve a community of organisms. These communities generally exhibit heterogeneity in their structure and composition as a result of local variations in climate, soil, topography, disturbance history, and other factors. Climate-driven shifts in ecosystems will likely include an internal re-organization of community structure and composition and as well as the introduction of novel species. In terms of vegetation, this ecosystem heterogeneity can occur at relatively small scales, sometimes of the order of tens of meters or even less. Because this heterogeneous landscape generally has a variable and nonlinear response to environmental perturbations, it is necessary to carefully aggregate the local competitive dynamics between individual plants to the large scales of tens or hundreds of kilometers represented in climate models. Accomplishing this aggregation in a computationally efficient way has proven to be an extremely challenging task. To meet this challenge, the Ecosystem Demography 2 (ED2) model statistically characterizes a distribution of local resource environments, and then simulates the competition between individuals of different sizes and species (or functional groupings). Within this framework, it is possible to explicitly simulate the impacts of climate change on ecosystem structure and composition, including both internal re-organization and the introduction of novel species or functional groups. This presentation will include several illustrative applications of the evolution of ecosystem structure and composition under climate change. One application pertains to the role of nitrogen-fixing species in tropical forests. Will increasing CO2 concentrations increase the demand for nutrients and perhaps give a competitive edge to nitrogen-fixing species? Will potentially warmer and drier conditions make some tropical forests more water-limited, reducing the demand for nitrogen, thereby giving a competitive advantage to non-nitrogen-fixing

  19. Diversity and Activity of Free-Living Nitrogen-Fixing Bacteria and Total Bacteria in Organic and Conventionally Managed Soils ▿ †

    OpenAIRE

    Orr, Caroline H.; James, Angela; Leifert, Carlo; Cooper, Julia M.; Cummings, Stephen P.

    2010-01-01

    Agricultural soils are heterogeneous environments in which conditions affecting microbial growth and diversity fluctuate widely in space and time. In this study, the molecular ecology of the total bacterial and free-living nitrogen-fixing communities in soils from the Nafferton Factorial Systems Comparison (NFSC) study in northeast England were examined. The field experiment was factorial in design, with organic versus conventional crop rotation, crop protection, and fertility management fact...

  20. Phylogenetic analyses of nitrogen-fixing cyanobacteria from the Baltic Sea reveal sequence anomalies in the phycocyanin operon.

    Science.gov (United States)

    Janson, Sven; Granéli, Edna

    2002-07-01

    The examination of molecular phylogenies of cyanobacteria and other micro-organisms is increasing dramatically. The use of a single locus in these studies leaves the resulting phylogenies unconfirmed. In this study, the partial sequences of two loci containing segments of protein-encoding genes, the hetR and the phycocyanin locus (PC-IGS), were examined. Laboratory strains and natural populations of the heterocyst-forming cyanobacteria Anabaena, Aphanizomenon and Nodularia from the Baltic Sea were used, in total 41 sequences were determined and their phylogenies were analysed with maximum-likelihood methods. The hetR phylogenies suggested that the planktonic Aphanizomenon and Nodularia each comprise one species, while there were numerous Anabaena species present in the Baltic Sea. In the case of Nodularia, the PC-IGS phylogenies were incongruent with this and suggested that several lineages of Nodularia plankton species existed. In the hetR phylogeny, the floating and nodularin-producing strains of Nodularia were grouped together. For both the hetR and PC-IGS loci of cultured species of Nodularia their molecular phylogeny did not correspond well with the affiliation suggested by morphology. In sequences derived from species of Anabaena and Aphanizomenon the PC-IGS and hetR phylogenies were congruent, suggesting that Aphanizomenon sp. from the Baltic Sea is genetically distinct from both Aphanizomenon flos-aquae from lakes and Aphanizomenon sp. TR183 from the Baltic Sea. In both Nodularia and Anabaena/Aphanizomenon, the PC-IGS sequences showed a significant degree of either recombination events or selection, while none was detected within the hetR sequences. This is the first study comprising the phylogenies of multiple loci from all heterocystous cyanobacteria from the Baltic Sea and shows that earlier results using the PC-IGS locus should be interpreted cautiously in the absence of a confirmation using a second locus.

  1. Broad-Range Detection of Microorganisms Directly from Bronchoalveolar Lavage Specimens by PCR/Electrospray Ionization-Mass Spectrometry

    Science.gov (United States)

    Ullberg, Måns; Lüthje, Petra; Mölling, Paula; Strålin, Kristoffer

    2017-01-01

    The clinical demand on rapid microbiological diagnostic is constantly increasing. PCR coupled to electrospray ionization-mass spectrometry, PCR/ESI-MS, offers detection and identification of over 750 bacteria and Candida species directly from clinical specimens within 6 hours. In this study, we investigated the clinical performance of the IRIDICA BAC LRT Assay for detection of bacterial pathogens in 121 bronchoalveolar lavage (BAL) samples that were received consecutively at our bacterial laboratory for BAL culture. Commensal or pathogenic microorganisms were detected in 118/121 (98%) BAL samples by PCR/ESI-MS, while in 104/121 (86%) samples by routine culture (PPCR/ESI-MS was evaluated in comparison with conventional culture-based or molecular methods. The agreement between positive findings was overall good. Most Staphylococcus aureus-positive PCR/ESI-MS results were confirmed by culture or species-specific PCR (27/33, 82%). The identity of Streptococcus pneumoniae could however be confirmed for only 6/17 (35%) PCR/ESI-MS-positive samples. Non-cultivable and fastidious pathogens, which were not covered by standard culture procedures were readily detected by PCR/ESI-MS, including Legionella pneumophila, Bordetella pertussis, Norcadia species and Mycoplasma pneumoniae. In conclusion, PCR/ESI-MS detected a broad range of potential pathogens with equal or superior sensitivity compared to conventional methods within few hours directly from BAL samples. This novel method might thus provide a relevant tool for diagnostics in critically ill patients. PMID:28085931

  2. Diversity and activity of nitrogen fixing archaea and bacteria associated with micro-environments of wetland rice

    Science.gov (United States)

    Schmidt, Hannes; Woebken, Dagmar

    2017-04-01

    Wetland rice is one of the world's most important crop plants. The cultivation on waterlogged paddy soils is strongly limited by nitrogen (N), which is typically supplied by industrial fertilizers that are not only costly but also exhibit hazardous effects on the environment. It has been reported that "Biological Nitrogen Fixation" through N2-fixing bacteria and archaea (diazotrophs) can alleviate the N-shortage in rice cultivation, thus carrying out an important ecosystem function. However, our understanding of the diversity and in situ N2 fixation activity of diazotrophs in flooded rice fields is still rudimentary. Moreover, knowledge on the impact of biochemical gradients established by root activity (i.e. exudation, radial oxygen loss) on the functioning of N-fixing microorganisms in paddy soil ecosystems is limited. We aimed at studying underlying processes on biologically relevant scales. Greenhouse studies were performed to identify key factors that control rice-diazotroph association and related N2 fixation activities. Paddy soils of different geographical origin were cultivated with two commercially used genotypes of wetland rice. Samples were separated into bulk soil, rhizosphere soil, rhizoplane, and roots at flowering stage of rice plant development. These samples were subjected to functional assays and various molecular biological techniques in order to analyze the associated diazotroph communities. Based on Illumina amplicon sequencing of nifH genes and transcripts, we show that the diversity and potential activity of diazotroph communities varies according to micro-environments. We will comparatively discuss the influence of (a) the soil microbial "seed bank" and (b) plant genotype in shaping the respective microbiomes and selecting for potentially active diazotrophs. Actual N2 fixation activities of soil-genotype combinations and micro-environments will be shown on the basis of incubation assays using 15N2-containing atmospheres. Areas of potential

  3. Nitrogen-fixing symbiosis inferred from stable isotope analysis of fossil tree rings from the Oligocene of Ethiopia

    Science.gov (United States)

    Erik L. Gulbranson; Bonnie F. Jacobs; William C. Hockaday; Michael C. Wiemann; Lauren A. Michel; Kaylee Richards; John W. Kappelman

    2017-01-01

    The acquisition of reduced nitrogen (N) is essential for plant life, and plants have developed numerous strategies and symbioses with soil microorganisms to acquire this form of N. The evolutionary history of specific symbiotic relationships of plants with soil bacteria, however, lacks evidence from the fossil record confirming these mutualistic relationships. Here we...

  4. The use of multiplex PCR to detect and differentiate food- and beverage-associated microorganisms: a review.

    Science.gov (United States)

    Settanni, L; Corsetti, A

    2007-04-01

    Regarding food safety, rapid detection of microbial species is crucial to develop effective preventive and/or adjustment measures. Classical methods for determining the presence of certain species are time-consuming and labor-intensive, hence, molecular methods, which offer speed, sensitivity and specificity, have been developed to address this problem. Multiplex PCR (MPCR) is widely applied in the various fields of microbiology for the rapid differentiation of microbial species without compromising accuracy. This paper describes the method and reports on the state-of-the-art application of this technique to the identification of microorganisms vehiculated with foods and beverages. The identification of both pathogens and probiotics and the species important for food fermentation or deterioration will be discussed. Applications of MPCR in combination with other techniques are also reviewed. Potentials, pitfalls, limitations and future prospects are summarised.

  5. Evaluation of terrestrial microcosms for detection, fate, and survival analysis of genetically engineered microorganisms and their recombinant genetic material

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, J.K.; Seidler, R.J.

    1989-02-01

    The research included in this document represents the current scientific information available regarding the applicability of terrestrial microcosms and related methodologies for evaluating detection methods and the fate and survival of microorganisms in the environment. The three terrestrial microcosms described in this document were used to evaluate the survival and fate of recombinant bacteria in soils and in association with plant surfaces and insects and their transport through soil with percolating water and root systems, and to test new methods and procedures to improve detection and enumeration of bacteria in soil. Simple (potting soil composed of peat mix and perlite, lacking environmental control and monitoring) and complex microcosms (agricultural soil with partial control and monitoring of environmental conditions) were demonstrated to be useful tools for preliminary assessments of microbial viability in terrestrial ecosystems. These studies evaluated the survival patterns of Enterobacter cloacae (pBR322) in soil and on plant surfaces and the ingestion of this same microorganism by cutworms and survival in the foregut and frass. The Versacore microcosm design was used to monitor the fate and competitiveness of genetically engineered bacteria in soil. Both selective media and gene probes were used successfully to follow the fate of two recombinant Pseudomonas sp. introduced into Versacore microcosms. Intact soil-core microcosms were employed to evaluate the fate and transport of genetically altered Azospirillum sp. and Pseudomonas sp. in soil and the plant rhizosphere. The usefulness of these various microcosms as a tool for risk assessment is underscored by the ease in obtaining soil from a proposed field release site to evaluate subsequent GEM fate and survival.

  6. DNA-microarray for detection of harmful microorganisms in indoor environments

    Energy Technology Data Exchange (ETDEWEB)

    Kaerkkaeinen, P.; Nevalainen, A.; Rintala, H. [National Public Health Institute, Kuopio (Finland); Ritari, J.; Pitkaeranta, M.; Paulin, L.; Auvinen, P. [Helsinki Univ. (Finland)

    2006-10-15

    The composition of the microbial flora in a building strongly correlates with moisture damage, and compounds of microbial origin are suspected to cause some of the related health effects. The method for reliable detection of such microbes is therefore needed, but to date methodology has not been up to the task. DNA microarrays have turned out to be a promising approach and the aim of this project is to test and develop a DNA microarray for quick and reliable simultaneous detection of several harmful microbes in an indoor air sample. The specific detection of species is based on ligation reaction whereby two probes are joined when they match the template perfectly. The ligation products are hybridized on a universal array with specific zip code sequence. The obtained results show that the universal array coupled to LDR is a feasible approach in detecting microbial species characteristic of moisture damaged buildings. The specificity and sensitivity of the method have turned out to be good and can be developed further. (orig.)

  7. Detection of soil microorganism in situ by combined gas chromatography mass spectrometry

    Science.gov (United States)

    Alexander, M.; Duxbury, J. M.; Francis, A. J.; Adamson, J.

    1972-01-01

    Experimental tests were made to determine whether analysis of volatile metabolic products, formed in situ, is a viable procedure for an extraterrestrial life detection system. Laboratory experiments, carried out under anaerobic conditions with addition of carbon source, extended to include a variety of soils and additional substrates. In situ experiments were conducted without amendment using a vacuum sampling system.

  8. Development of a Filtration-Based Bioluminescence Assay for Detection of Microorganisms in Tea Beverages.

    Science.gov (United States)

    Shinozaki, Yohei; Igarashi, Toshinori; Harada, Yasuhiro

    2016-03-01

    The market for tea drinks as healthy beverages has been steadily expanding, and ready-to-drink beverages in polyethylene terephthalate bottles have been popular. To more rapidly and accurately test tea beverages bottled in polyethylene terephthalate for microbial contamination, a newly developed filtration device and a washing method with a commercial bioluminescence assay were combined to detect low numbers of bacterial spores, fungal conidia, and ascospores. Washing buffers were formulated with nonionic detergents from the Tween series. Commercially available tea beverages were used to evaluate the filtration capacity of the filtration device, the effect of washing buffers, and the performance of the assay. The assay was tested with serially diluted suspensions of colonies of two bacterial strains, spores of three Bacillus strains, conidia of five fungal strains, and ascospores of four fungal strains. The filtration device enabled filtration of a large sample volume (100 to 500 ml), and the washing buffer significantly decreased the background bioluminescence intensity of tea samples when compared with the no-washing method. Low numbers (1 to 10 CFU/100 ml) of the tested strains of bacteria were detected within 8 to 18 h of cultivation, and fungi were detected within 24 to 48 h. Furthermore, a whole bottle (500 ml) of mixed tea was filtered through the filtration device and microbes were detected. This method could be used for quality control of bottled beverages without preincubation.

  9. Molecular techniques for the identification and detection of microorganisms relevant for the food industry

    NARCIS (Netherlands)

    Klijn, N.

    1996-01-01

    The research described in this thesis concerns the development and application in food microbiology of molecular identification and detection techniques based on 16S rRNA sequences. The technologies developed were applied to study the microbial ecology of two groups of bacteria, namely

  10. Molecular techniques for the identification and detection of microorganisms relevant for the food industry.

    NARCIS (Netherlands)

    Klijn, N.

    1996-01-01

    The research described in this thesis concerns the development and application in food microbiology of molecular identification and detection techniques based on 16S rRNA sequences. The technologies developed were applied to study the microbial ecology of two groups of bacteria, namely starter cultu

  11. Molecular techniques for the identification and detection of microorganisms relevant for the food industry

    NARCIS (Netherlands)

    Klijn, N.

    1996-01-01

    The research described in this thesis concerns the development and application in food microbiology of molecular identification and detection techniques based on 16S rRNA sequences. The technologies developed were applied to study the microbial ecology of two groups of bacteria, namely star

  12. Membrane targeting of MnSOD is essential for oxidative stress tolerance of nitrogen-fixing cultures of Anabaena sp. strain PCC7120.

    Science.gov (United States)

    Raghavan, Prashanth S; Rajaram, Hema; Apte, Shree Kumar

    2015-07-01

    The nitrogen-fixing cyanobacterium, Anabaena PCC7120 encodes for a membrane-targeted 30 kDa Mn-superoxide dismutase (MnSOD) and a cytosolic FeSOD. The MnSOD is post-translationally processed to 27 and 24 kDa forms in the cytosol and periplasm/thylakoid lumen. The extent of cleavage of signal and linker peptides at the N-terminus is dependent on the availability of combined nitrogen during growth. While the 24 and 27 kDa forms are present in near equal proportions under nitrogen-fixing conditions, the 24 kDa form is predominant under nitrogen-supplemented conditions. Individual contribution of these forms of MnSOD to total oxidative stress tolerance was analysed using recombinant Anabaena strains overexpressing either different molecular forms of MnSOD or MnSOD defective in the cleavage of signal/linker peptide. Targeting of MnSOD to the membrane and subsequent cleavage to release both the 24 and 27 kDa forms was essential for oxidative stress tolerance under nitrogen-fixing conditions. On the other hand, the cleavage of linker peptide was absolutely essential and the release of cytosolic 24 kDa form of MnSOD was obligatory for developing oxidative stress tolerance under nitrogen-supplemented conditions. Thus, a single MnSOD caters to the reduction of superoxide radical in both cytosol and thylakoid lumen/periplasm irrespective of the N-status of growth by regulating its cleavage. This is the first report on the physiological advantage of membrane-targeting and processing of MnSOD in either bacteria or plants. The higher oxidative stress tolerance offered by the cytosolic form of MnSOD has possibly resulted in retention of only the cytosolic form in bacterial non-nitrogen-fixers during evolution.

  13. [Regulatory genes of garden pea (Pisum sativum L.) controlling the development of nitrogen-fixing nodules and arbuscular mycorrhiza: a review of basic and applied aspects

    DEFF Research Database (Denmark)

    Borisov, A Iu; Vasil'chikov, A G; Voroshilova, V A

    2007-01-01

    The review sums up the long experience of the authors and other researchers in studying the genetic system of garden pea (Pisum sativum L.), which controls sthe development of nitrogen-fixing symbiosis and arbuscular mycorrhiza. A justified phenotypic classification of pea mutants is presented....... Progress in identifying and cloning symbiotic genes is adequately reflected. The feasibility of using double inoculation as a means of increasing the plant productivity is demonstrated, in which the potential of a tripartite symbiotic system (pea plants-root nodule bacteria-arbuscular mycorrhiza...

  14. Expression of the 1-Aminocyclopropane-1-Carboxylic Acid Deaminase Gene Requires Symbiotic Nitrogen-Fixing Regulator Gene nifA2 in Mesorhizobium loti MAFF303099

    OpenAIRE

    Nukui, Noriyuki; MINAMISAWA, KIWAMU; Ayabe, Shin-Ichi; Aoki, Toshio

    2006-01-01

    Many soil bacteria contain 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, which degrades ACC, a precursor of the phytohormone ethylene. In order to examine the regulation of the acdS gene encoding ACC deaminase in Mesorhizobium loti MAFF303099 during symbiosis with the host legume Lotus japonicus, we introduced the β-glucuronidase (GUS) gene into acdS so that GUS was expressed under control of the acdS promoter, and we also generated disruption mutants with mutations in a nitrogen fix...

  15. High radiation and desiccation tolerance of nitrogen-fixing cultures of the cyanobacterium Anabaena sp. strain PCC 7120 emanates from genome/proteome repair capabilities.

    Science.gov (United States)

    Singh, Harinder; Anurag, Kirti; Apte, Shree Kumar

    2013-10-12

    The filamentous nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC 7120 was found to tolerate very high doses of (60)Co-gamma radiation or prolonged desiccation. Post-stress, cells remained intact and revived all the vital functions. A remarkable capacity to repair highly disintegrated genome and recycle the damaged proteome appeared to underlie such high radioresistance and desiccation tolerance. The close similarity observed between the cellular response to irradiation or desiccation stress lends strong support to the notion that tolerance to these stresses may involve similar mechanisms.

  16. Burkholderia caballeronis sp. nov., a nitrogen fixing species isolated from tomato (Lycopersicon esculentum) with the ability to effectively nodulate Phaseolus vulgaris.

    Science.gov (United States)

    Martínez-Aguilar, Lourdes; Salazar-Salazar, Corelly; Méndez, Rafael Díaz; Caballero-Mellado, Jesús; Hirsch, Ann M; Vásquez-Murrieta, María Soledad; Estrada-de los Santos, Paulina

    2013-12-01

    During a survey of Burkholderia species with potential use in agrobiotechnology, a group of 12 strains was isolated from the rhizosphere and rhizoplane of tomato plants growing in Mexico (Nepantla, Mexico State). A phylogenetic analysis of 16S rRNA gene sequences showed that the strains are related to Burkholderia kururiensis and Burkholderia mimosarum (97.4 and 97.1 %, respectively). However, they induced effective nitrogen-fixing nodules on roots of Phaseolus vulgaris. Based on polyphasic taxonomy, the group of strains represents a novel species for which the name Burkholderia caballeronis sp. nov. is proposed. The type species is TNe-841(T) (= LMG 26416(T) = CIP 110324(T)).

  17. Assessment of the effect of azo dye RP2B on the growth of a nitrogen fixing cyanobacterium--Anabaena sp.

    Science.gov (United States)

    Hu, T L; Wu, S C

    2001-03-01

    Certain nitrogen fixing cyanobacteria are diazotrophic, which profoundly impacts the aquatic ecosystem chemically and biologically. Although certain types are banned due to their carcinogenicity, azo dyes are commonly used in the dyeing or textile industry. This work investigates the effect of azo dye on the growth of cyanobacteria. Anabaena sp. isolated from the Da Jia Brook is an odor producing, nitrogen fixing cyanobacterium. The growth rates of Anabaena sp. in the media with or without nitrogen source were 3.56 x 10(-2) mg/ml day and 2.44 x 10(-2) mg/ml day, respectively. Anabaena sp. could not use azo dye RP2B as the nitrogen source. Experimental results indicated that the growth of Anabaena sp. was inhibited in the medium containing RP2B. The degree of inhibition increased from 50% to 81% with an increasing concentration of RP2B (0-50 mg/l). The IC-50 (inhibitory concentration) of RP2B on the growth of Anabaena sp. was 5 mg/l (as based on dry weight) or 7 mg/l (as measured by chlorophyll a).

  18. Study on Sensitivity of PCR Method for Detection of Microorganisms in Water%水环境中微生物PCR检侧灵敏度的研究

    Institute of Scientific and Technical Information of China (English)

    王占朝; 刘文君

    2011-01-01

    Pure culture of E. coli and microorganisms in lake water and tap water from Tsinghua University were used to investigate the detection limits of microorganisms in different water environments by PCR. The results show that the detection limit of E. coli JM109 is 2.6×103 CFU/mL, and the detection limits of microorganisms in lake water and tap water are 1.2×103 CFU/mL and 2.3×103 CFU/mL respectively. The detection limits of microorganisms in lake water and tap water are less than that of pure culture of E. coli.%以大肠杆菌纯培养物和清华大学湖水以及自来水中的微生物为研究对象,研究了不同水环境中微生物PCR检刚的检出限,结果表明:大肠杆菌JM 109纯培养物的PCR检出限为2.6x10~3CFU/mL,湖水的PCR检出限为1.2x10~3CFU/mL,自来水中微生物的PCR检出限为2.3x10~3CFU/mL.湖水和自来水中的检出限均低于大肠杆菌纯培养物.

  19. Microorganisms involved in MIC

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, K. [Danish Technological Institute (Denmark)

    2011-07-01

    Microbiologically influenced corrosion (MIC) is a widespread problem that is difficult to detect and assess because of its complex mechanism. This paper presents the involvement of microorganisms in MIC. Some of the mechanisms that cause MIC include hydrogen consumption, production of acids, anode-cathode formation and electron shuttling. A classic bio-corrosive microorganism in the oil and gas industry is sulphate-reducing prokaryotes (SRP). Methanogens also increase corrosion rates in metals. Some of the phylogenetic orders detected while studying SRP and methanogens are archaeoglobales, clostridiales, methanosarcinales and methanothermococcus. There were some implications, such as growth of SRP not being correlated with growth of methanogens; methanogens were included in MIC risk assessment. A few examples are used to display how microorganisms are involved in topside corrosion and microbial community in producing wells. From the study, it can be concluded that, MIC risk assessment includes system data and empirical knowledge of the distribution and number of microorganisms in the system.

  20. Asymptomatic bacteriuria: prevalence rates of causal microorganisms, etiology of infection in different patient populations, and recent advances in molecular detection.

    Science.gov (United States)

    Ipe, Deepak S; Sundac, Lana; Benjamin, William H; Moore, Kate H; Ulett, Glen C

    2013-09-01

    Bacteriuria, or the presence of bacteria in urine, is associated with both asymptomatic and symptomatic urinary tract infection and underpins much of the dynamic of microbial colonization of the urinary tract. The prevalence of bacteriuria in dissimilar patient groups such as healthy adults, institutionalized elderly, pregnant women, and immune-compromised patients varies widely. In addition, assessing the importance of 'significant bacteriuria' in infected individuals represents a diagnostic challenge, partly due to various causal microorganisms, and requires careful consideration of the distinct etiologies of bacteriuria in different populations and circumstances. Recent molecular discoveries have revealed how some bacterial traits can enable organisms to grow in human urine, which, as a fitness adaptation, is likely to influence the progression of bacteriuria in some individuals. In this review, we comprehensively analyze currently available data on the prevalence of causal organisms with a focus on asymptomatic bacteriuria in dissimilar populations. We evaluate recent advances in the molecular detection of bacteriuria from a diagnostic viewpoint and briefly discuss the potential benefits and some of the challenges of these approaches. Overall, this review provides an update on the comparative prevalence and etiology of bacteriuria from both microbiological and clinical perspectives. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. Evaluation of concordance between the microorganisms detected in the nasopharynx and middle ear of children with otitis media.

    Science.gov (United States)

    van Dongen, Thijs M A; van der Heijden, Geert J M G; van Zon, Alice; Bogaert, Debby; Sanders, Elisabeth A M; Schilder, Anne G M

    2013-05-01

    Studies of microorganisms involved in otitis media in children often use a nasopharyngeal sample as a proxy for the middle ear fluid to test for bacteria and viruses. The question is whether such studies provide an accurate estimate of the prevalence of microorganisms involved in otitis media. We performed a systematic review of the literature reporting on the concordance between test results of nasopharyngeal and middle ear fluid samples for the most prevalent microorganisms in children with otitis media. Our findings show that the concordances vary from 68% to 97% per microorganism. For the most prevalent microbes, positive predictive values are around 50%. Most negative predictive values are moderate to high, with a range from 68% up to 97%. These results indicate that test results from nasopharyngeal samples do not always provide an accurate proxy for those of the middle ear fluid. It is important to interpret and use results of such studies carefully.

  2. 食品有害微生物快速检验方法%Fast Detection Methods of Harmful Microorganisms in Food

    Institute of Scientific and Technical Information of China (English)

    许佳妮

    2012-01-01

    食品有害微生物检验在食品卫生检验中具有十分重要的作用。综述食品有害微生物快速检验方法,涉及分子生物学技术、抗原抗体免疫检测技术、载体仪器技术、代谢学技术、生物传感器、色谱技术等方面内容,介绍各种检测方法的原理、应用、结果判断等,可为食品有害微生物的准确检测提供参考和指导。%Detection of harmful microorganisms in food was a important part in food hygiene examination.The paper summarized fast detection methods of harmful microorganisms in food,involving molecular biology technology, antigen antibody detection technology, carrier apparatus technique, metabolic imaging technique,biosensor,chromatographic technique and so on.Principle,application and judgment of various detection methods was introduced,it could provide references and guidance for the detection of harmful microorganisms in food.

  3. 山西黄芪根际固氮菌的分离与应用%Isolation and application of nitrogen-fixing bacteria in rhizosphere of Astragalus membranaceus Bunge in Shanxi

    Institute of Scientific and Technical Information of China (English)

    薛智权; 唐中伟; 李浩; 周然; 梁建萍

    2016-01-01

    [Objective]Astragalus membranaceus Bunge (AMB)is an important herb that has been used in traditional Chinese medicine for centuries,and Hunyuan County of Shanxi province is one of the most important planting bases for AMB.Nitrogen fertilizer input for AMB production in China is very high.It is essential to reduce nitrogen fertilizer in-put and thus cultivation cost while achieving a high yield for sustainable and environmentally friendly AMB production. Research on biological nitrogen fixation has increased significantly because of its potential importance to the economy and the environment.AMB plants can obtain nitrogen from biological nitrogen fixation via diazotrophs.The aim of this work was to screen and identify nitrogen-fixing bacteria from the rhizosphere of AMB cultivated in Hunyuan County, Shanxi province,and to demonstrate their potential for nitrogen fixation with AMB as well as plant growth promotion. [Methods]120 nitrogen fixing strains were isolated from soil samples using Ashby nitrogen free medium.Two strains of them,t1 6 and t21,with strong ability of nitrogen fixation were screened out according to the ability of nitrogen fixa-tion,growth speed and other characteristics in further screening with nitrogen fixing medium.To demonstrate their potential for nitrogen fixation with AMB and growth promotion activities,the bacterial liquid of the two isolates were used to soak AMB seeds and inoculate into AMB seedlings for 30 d at 28°C in a growth cabinet.[Results]Based on morphological detection,physiological and biochemical detection and 1 6S rRNA gene sequence analysis,the two strains of t1 6 and t21 were identified as Rhizobium sp.and Sinorhizobium sp.,respectively.Both of the two strains signifi-cantly promoted the growth of AMB seedlings.They also increased the nitrogen contents of dry weight by 14.23% to 18.67% and 13.10% to 18.77%,respectively,compared with the uninoculated controls.The bacterial liquids of T1 6 with 10 6 mL-1 and T21 with 10 8 m

  4. Evaluation of the Effects of Bio Fertilizers Containing non Symbiotic Nitrogen Fixing and Phosphate Solubilizing Bacteria on Quantitative and Qualitative Traits of Wheat

    Directory of Open Access Journals (Sweden)

    M Mohtadi

    2016-02-01

    Full Text Available Introduction Wheat crop plays an important role in food security in a country such as Iran. Therefore, serious attention has been paid to ecological farming systems and sustainable management of wheat. For this purpose extensive efforts is done to find proper strategies to improve the quality of soil, agricultural products and started removal pollutants. One of the factors to achieve sustainable agriculture is to use natural agents such as biofertilizers. Several mechanisms are proposed to explain how effective plant growth promoting rhizobacteria is for growth and development of plants. These mechanisms include two groups, direct and indirect in general. Indirect mechanism is to increase absorption and availability of the nutrient elements soluble, producing plant growth regulators, siderophore production of iron chelator, and the phosphate soluble. Through indirect mechanisms such as antagonistic relation, PGPRs moderate the harmful effects of of plant pathogens and thereby lead to increase plant growth. The main goal of this study was to investigate the effect of biofertilizers containing non-symbiotic nitrogen fixing and phosphate solubilizing bacteria on quantitative and qualitative traits of wheat. Materials and Methods This Experiment was conducted in the research farm of Baykola agricultural research stations affiliated by agriculture and natural resources research center of Mazandaran during 2011-12 cropping season. In order to determine physical and chemical properties of the soil samples were taken from the depth of 0-30 cm,. Experimental design was split plots arrangement based on randomized complete block design with three replications. In this experiment chemical fertilizer was assumed as the main plot in 3 levels include: 1- noconsumption (C0, 2- equivalent to 50% of the fertilizer recommendations (C1, 3- equivalent to 100% of the fertilizer recommendations(C2 and two types of biological fertilizers was applied in the sub plot in

  5. Comparative effectiveness of ACC-deaminase and/or nitrogen-fixing rhizobacteria in promotion of maize (Zea mays L.) growth under lead pollution.

    Science.gov (United States)

    Hassan, Waseem; Bano, Rizwana; Bashir, Farhat; David, Julie

    2014-09-01

    Lead (Pb) pollution is appearing as an alarming threat nowadays. Excessive Pb concentrations in agricultural soils result in minimizing the soil fertility and health which affects the plant growth and leads to decrease in crop production. Plant growth promoting rhizobacteria (PGPR) are beneficial bacteria which can protect the plants against many abiotic stresses, and enhance the growth. The study aimed to identify important rhizobacterial strains by using the 1-aminocyclopropane-1-carboxylate (ACC) enrichment technique and examine their inoculation effects in the growth promotion of maize, under Pb pollution. A pot experiment was conducted and six rhizobacterial isolates were used. Pb was added to 2 kg soil in each pot (with 4 seeds/pot) using Pb(NO3)2 at the rate of 0, 100, 200, 300, and 400 mg kg(-1) Pb with three replications in completely randomized design. Rhizobacterial isolates performed significantly better under all Pb levels, i.e., 100 to 400 Pb mg kg(-1) soil, compared to control. Comparing the efficacy of the rhizobacterial isolates under different Pb levels, rhizobacterial isolates having both ACC-deaminase and nitrogen-fixing activities (AN8 and AN12) showed highest increase in terms of the physical, chemical and enzymatic growth parameters of maize, followed by the rhizobacterial isolates having ACC-deaminase activity only (ACC5 and ACC8), and then the nitrogen-fixing rhizobia (Azotobacter and RN5). However, the AN8 isolate showed maximum efficiency, and highest shoot and root length (14.2 and 6.1 cm), seedling fresh and dry weights (1.91 and 0.14 g), chlorophyll a, b, and carotenoids (24.1, 30.2 and 77.7 μg/l), protein (0.82 mg/g), proline (3.42 μmol/g), glutathione S-transferase, peroxidase and catalase (12.3, 4.2 and 7.2 units/mg protein), while the lowest Pb uptake in the shoot and root (0.83 and 0.48 mg/kg) were observed under this rhizobial isolate at the highest Pb level (i.e., 400 Pb mg kg(-1) soil). The results revealed that PGPR

  6. Ascorbate oxidase: the unexpected involvement of a 'wasteful enzyme' in the symbioses with nitrogen-fixing bacteria and arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Balestrini, Raffaella; Ott, Thomas; Güther, Mike; Bonfante, Paola; Udvardi, Michael K; De Tullio, Mario C

    2012-10-01

    Ascorbate oxidase (AO, EC 1.10.3.3) catalyzes the oxidation of ascorbate (AsA) to yield water. AO over-expressing plants are prone to ozone and salt stresses, whereas lower expression apparently confers resistance to unfavorable environmental conditions. Previous studies have suggested a role for AO as a regulator of oxygen content in photosynthetic tissues. For the first time we show here that the expression of a Lotus japonicus AO gene is induced in the symbiotic interaction with both nitrogen-fixing bacteria and arbuscular mycorrhizal (AM) fungi. In this framework, high AO expression is viewed as a possible strategy to down-regulate oxygen diffusion in root nodules, and a component of AM symbiosis. A general model of AO function in plants is discussed. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  7. Complete Genome sequence of Burkholderia phymatum STM815T, a broad host range and efficient nitrogen-fixing symbiont of Mimosa species

    Science.gov (United States)

    Moulin, Lionel; Klonowska, Agnieszka; Caroline, Bournaud; Booth, Kristina; Vriezen, Jan A.C.; Melkonian, Rémy; James, Euan K.; Young, J. Peter W.; Bena, Gilles; Hauser, Loren; Land, Miriam; Kyrpides, Nikos; Bruce, David; Chain, Patrick; Copeland, Alex; Pitluck, Sam; Woyke, Tanja; Lizotte-Waniewski, Michelle; Bristow, Jim; Riley, Margaret

    2014-01-01

    Burkholderia phymatum is a soil bacterium able to develop a nitrogen-fixing symbiosis with species of the legume genus Mimosa, and is frequently found associated specifically with Mimosa pudica. The type strain of the species, STM 815T, was isolated from a root nodule in French Guiana in 2000. The strain is an aerobic, motile, non-spore forming, Gram-negative rod, and is a highly competitive strain for nodulation compared to other Mimosa symbionts, as it also nodulates a broad range of other legume genera and species. The 8,676,562 bp genome is composed of two chromosomes (3,479,187 and 2,697,374 bp), a megaplasmid (1,904,893 bp) and a plasmid hosting the symbiotic functions (595,108 bp). PMID:25197461

  8. Complete Genome sequence of Burkholderia phymatum STM815, a broad host range and efficient nitrogen-fixing symbiont of Mimosa species

    Energy Technology Data Exchange (ETDEWEB)

    Moulin, Lionel [UMR, France; Klonowska, Agnieszka [UMR, France; Caroline, Bournaud [UMR, France; Booth, Kristina [University of Massachusetts; Vriezen, Jan A.C. [University of Massachusetts; Melkonian, Remy [UMR, France; James, Euan [James Hutton Institute, Dundee, United Kingdom; Young, Peter W. [University of York, United Kingdom; Bena, Gilles [UMR, France; Hauser, Loren John [ORNL; Land, Miriam L [ORNL; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Copeland, A [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Lizotte-Waniewski, Michelle [University of Massachusetts; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Riley, Monica [Woods Hole Oceanographic Institution (WHOI), Woods Hole

    2014-01-01

    Burkholderia phymatum is a soil bacterium able to develop a nitrogen-fixing symbiosis with species of the legume genus Mimosa, and is frequently found associated specifically with Mimosa pudica. The type strain of the species, STM 815T, was isolated from a root nodule in French Guiana in 2000. The strain is an aerobic, motile, non-spore forming, Gram-negative rod, and is a highly competitive strain for nodulation compared to other Mimosa symbionts, as it also nodulates a broad range of other legume genera and species. The 8,676,562 bp genome is composed of two chromosomes (3,479,187 and 2,697,374 bp), a megaplasmid (1,904,893 bp) and a plasmid hosting the symbiotic functions (595,108 bp).

  9. Complete Genome sequence of Burkholderia phymatum STM815(T), a broad host range and efficient nitrogen-fixing symbiont of Mimosa species.

    Science.gov (United States)

    Moulin, Lionel; Klonowska, Agnieszka; Caroline, Bournaud; Booth, Kristina; Vriezen, Jan A C; Melkonian, Rémy; James, Euan K; Young, J Peter W; Bena, Gilles; Hauser, Loren; Land, Miriam; Kyrpides, Nikos; Bruce, David; Chain, Patrick; Copeland, Alex; Pitluck, Sam; Woyke, Tanja; Lizotte-Waniewski, Michelle; Bristow, Jim; Riley, Margaret

    2014-06-15

    Burkholderia phymatum is a soil bacterium able to develop a nitrogen-fixing symbiosis with species of the legume genus Mimosa, and is frequently found associated specifically with Mimosa pudica. The type strain of the species, STM 815(T), was isolated from a root nodule in French Guiana in 2000. The strain is an aerobic, motile, non-spore forming, Gram-negative rod, and is a highly competitive strain for nodulation compared to other Mimosa symbionts, as it also nodulates a broad range of other legume genera and species. The 8,676,562 bp genome is composed of two chromosomes (3,479,187 and 2,697,374 bp), a megaplasmid (1,904,893 bp) and a plasmid hosting the symbiotic functions (595,108 bp).

  10. Biodegradation of the neonicotinoid insecticide thiamethoxam by the nitrogen-fixing and plant-growth-promoting rhizobacterium Ensifer adhaerens strain TMX-23.

    Science.gov (United States)

    Zhou, Guang-Can; Wang, Ying; Zhai, Shan; Ge, Feng; Liu, Zhong-Hua; Dai, Yi-Jun; Yuan, Sheng; Hou, Jun-Yi

    2013-05-01

    Thiamethoxam (THIA), a second generation neonicotinoid insecticide in the thianicotinyl subclass, is used worldwide. Environmental studies revealed that microbial degradation is the major mode of removal of this pesticide from soil. However, microbial transformation of THIA is poorly understood. In the present study, we isolated a bacterium able to degrade THIA from rhizosphere soil. The bacterium was identified as Ensifer adhaerens by its morphology and 16S ribosomal DNA sequence analysis. High-performance liquid chromatography and mass spectrometry analysis suggested that the major metabolic pathway of THIA in E. adhaerens TMX-23 involves the transformation of its N-nitroimino group (=N-NO2) to N-nitrosoimino (=N-NO) and urea (=O) metabolites. E. adhaerens TMX-23 is a nitrogen-fixing bacterium harboring two types of nifH genes in its genome, one of which is 98 % identical to the nifH gene in the cyanobacterium Calothrix sp. MCC-3A. E. adhaerens TMX-23 released various plant-growth-promoting substances including indole-3-acetic acid, exopolysaccharides, ammonia, HCN, and siderophores. Inoculation of E. adhaerens TMX-23 onto soybean seeds (Glycine max L.) with NaCl at 50, 100, or 154 mmol/L increased the seed germination rate by 14, 21, and 30 %, respectively. THIA at 10 mg/L had beneficial effects on E. adhaerens TMX-23, enhancing growth of the bacterium and its production of salicylic acid, an important plant phytohormone associated with plant defense responses against abiotic stress. The nitrogen-fixing and plant-growth-promoting rhizobacterium E. adhaerens TMX-23, which is able to degrade THIA, has the potential for bioaugmentation as well as to promote growth of field crops in THIA-contaminated soil.

  11. Symbiosome-like intracellular colonization of cereals and other crop plants by nitrogen-fixing bacteria for reduced inputs of synthetic nitrogen fertilizers.

    Science.gov (United States)

    Cocking, Edward C; Stone, Philip J; Davey, Michael R

    2005-12-01

    It has been forecast that the challenge of meeting increased food demand and protecting environmental quality will be won or lost in maize, rice and wheat cropping systems, and that the problem of environmental nitrogen enrichment is most likely to be solved by substituting synthetic nitrogen fertilizers by the creation of cereal crops that are able to fix nitrogen symbiotically as legumes do. In legumes, rhizobia present intracellularly in membrane-bound vesicular compartments in the cytoplasm of nodule cells fix nitrogen endosymbiotically. Within these symbiosomes, membrane-bound vesicular compartments, rhizobia are supplied with energy derived from plant photosynthates and in return supply the plant with biologically fixed nitrogen, usually as ammonia. This minimizes or eliminates the need for inputs of synthetic nitrogen fertilizers. Recently we have demonstrated, using novel inoculation conditions with very low numbers of bacteria, that cells of root meristems of maize, rice, wheat and other major non-legume crops, such as oilseed rape and tomato, can be intracellularly colonized by the non-rhizobial, non-nodulating, nitrogen fixing bacterium, Gluconacetobacter diazotrophicus that naturally occurs in sugarcane. G. diazotrophicus expressing nitrogen fixing (nifH) genes is present in symbiosome-like compartments in the cytoplasm of cells of the root meristems of the target cereals and non-legume crop species, somewhat similar to the intracellular symbiosome colonization of legume nodule cells by rhizobia. To obtain an indication of the likelihood of adequate growth and yield, of maize for example, with reduced inputs of synthetic nitrogen fertilizers, we are currently determining the extent to which nitrogen fixation, as assessed using various methods, is correlated with the extent of systemic intracellular colonization by G. diazotrophicus, with minimal or zero inputs.

  12. Symbiosome-like intracellular colonization of cereals and other crop plants by nitrogen-fixing bacteria for reduced inputs of synthetic nitrogen fertilizers

    Institute of Scientific and Technical Information of China (English)

    Edward C. Cocking; Philip J. Stone; Michael R. Davey

    2005-01-01

    It has been forecast that the challenge of meeting increased food demand and protecting environmental quality will be won or lost in maize, rice and wheat cropping systems,and that the problem of environmental nitrogen enrichment is most likely to be solved by substituting synthetic nitrogen fertilizers by the creation of cereal crops that are able to fix nitrogen symbiotically as legumes do. In legumes, rhizobia present intraceliularly in membrane-bound vesicular compartments in the cytoplasm of nodule cells fix nitrogen endosymbiotically. Within these symbiosomes, membrane-bound vesicular compartments, rhizobia are supplied with energy derived from plant photosynthates and in return supply the plant with biologically fixed nitrogen, usually as ammonia. This minimizes or eliminates the need for inputs of synthetic nitrogen fertilizers. Recently we have demonstrated, using novel inoculation conditions with very low numbers of bacteria, that cells of root meristems of maize, rice, wheat and other major non-legume crops, such as oilseed rape and tomato, can be intracellularly colonized by the non-rhizobial, non-nodulating, nitrogen fixing bacterium, Gluconacetobacter diazotrophicus that naturally occurs in sugarcane. G. diazotrophicus expressing nitrogen fixing (nifH) genes is present in symbiosome-like compartments in the cytoplasm of cells of the root meristems of the target cereals and non-legume crop species, somewhat similar to the intracellular symbiosome colonization of legume nodule cells by rhizobia. To obtain an indication of the likelihood of adequate growth and yield, of maize for example, with reduced inputs of synthetic nitrogen fertilizers,we are currently determining the extent to which nitrogen fixation, as assessed using various methods, is correlated with the extent of systemic intracellular colonization by G. diazotrophicus,with minimal or zero inputs.

  13. Prevalence of potential nitrogen-fixing, green sulphur bacteria in the skeleton of reef-building coral Isopora palifera

    Science.gov (United States)

    Yang, S. H.

    2016-02-01

    Microbial endoliths, which inhabit interior pores of rocks, skeletons and coral, are ubiquitous in terrestrial and marine environments. In the present study, various colored layers stratified the endolithic environment within the skeleton of Isopora palifera; however, there was a distinct green-pigmented layer in the skeleton (beneath the living coral tissue). To characterize diversity of endolithic microorganisms, 16S ribosomal RNA gene amplicon pyrosequencing was used to investigate bacterial communities in the green layer of Isopora palifera coral colonies retrieved fromGreen Island, Taiwan. The dominant bacterial group in the green layer belonged to the bacterial phylum Chlorobi, green sulphur bacteria capable of anoxygenic photosynthesis and nitrogen fixation. Specifically, bacteria of the genus Prosthecochloris were dominant in this green layer. To our knowledge, this is the first study to provide a detailed profile of endolithic bacteria in coral and to determine prevalence of Prosthecochloris in the green layer. Based on our findings, we infer that these bacteria may have an important functional role in the coral holobiont in the nutrient-limited coral reef ecosystem.

  14. Novel technologies for foodborne pathogenic microorganism detection%食源性致病微生物的检测新技术

    Institute of Scientific and Technical Information of China (English)

    陈玉婷; 程楠; 许文涛

    2015-01-01

    研究和建立食源性致病微生物的有效检测方法对于食品安全风险控制及人们的身体健康具有重要意义。本文在简要介绍微生物传统检测技术的基础上,系统地介绍了各类食源性致病微生物检测新方法,包括微生物试纸片检测技术、微生物代谢物检测技术、微生物免疫学检测技术、微生物DNA检测技术、微生物传感器检测技术等,分析了各类食源性微生物检测方法的基本原理、优缺点和应用,并对食源性致病微生物的检测新技术的发展提出了设想。%It is very important to establish an effective detection method of foodborne pathogenic microorganism for food safety risk control and people's health. Based on a brief introduction to traditional microbial detection technology, some novel methods to detect foodborne pathogenic microorganism were introduced in this paper, including microbial test paper detection technology, microbial metabolites detection technology, microbial immunological detection technology, microbial DNA detection technology, microbial sensor detection technology, etc. Then the basic principle, advantages and disadvantages and application were analyzed, respectively. Finally, the trends of novel detection technologies for foodborne pathogenic microorganism were proposed.

  15. Enrichment and detection of microorganisms involved in direct and indirect methanogenesis from methanol in an anaerobic thermophilic bioreactor

    NARCIS (Netherlands)

    Roest, de K.; Altinbas, M.; Paulo, P.L.; Heilig, H.G.H.J.; Akkermans, A.D.L.; Smidt, H.; Vos, de W.M.; Stams, A.J.M.

    2005-01-01

    To gain insight into the microorganisms involved in direct and indirect methane formation from methanol in a laboratory-scale thermophilic (55°C) methanogenic bioreactor, reactor sludge was disrupted and serial dilutions were incubated in specific growth media containing methanol and possible interm

  16. Aislamientos de cepas fijadoras de nitrógeno y solubilizadoras de fósforo en un suelo alfisol venezolano Isolation of nitrogen-fixing and phosporus-solubilizing strains in alfisol soils of Venezuela

    Directory of Open Access Journals (Sweden)

    Learsy Padron

    2012-04-01

    Full Text Available Para evaluar el potencial de los suelos del Valle Medio del Río Yaracuy para la producción de biofertilizantes, se aislaron cepas fijadoras de nitrógeno (FNVL y solubilizadoras de fósforo (SF en suelos sometidos a diferentes condiciones de manejos. Para ello muestra rizosferica en los usos caña de azúcar (Sacharum oficcinarum, maíz (Zea mayz L., lechoza (Carica papaya, pasto (Brachiaria decumbens, además de un área bajo bosque natural, las muestras fueron tomadas en abril de 2010, las bacterias FNVL y SF fueron aisladas usando medio Ashby y Pikoskaya respectivamente, las principales propiedades químicas y físicas del suelo fueron evaluadas, para establecer su relación con el desarrollo de las cepas. Los resultados muestran que las FN se desarrollaron mejor en los usos pasto y caña de azúcar con 20 y 10 cepas respectivamente, lo que indica que las cepas FNVL se desarrollaron mejor en aquellos manejos con bajo contenido de materia orgánica o manejo intensivo, el mayor numero de bacterias SF se observaron en aquellos manejos con mayor contenido de fósforo (lechoza con 13 colonias, o en usos con adecuadas condiciones físicas para el desarrollo microorganismos (bosque, con 10 colonias.In order to evaluate the potential of soils in the Middle Valley of Yaracuy River in Venezuela for the production of biofertilizers, nitrogen fixed strains (FBN and phosphorus-solubilizing strains (SF were isolated in soils subjected to different management conditions. For this, rizhosferic samples in six different land uses were taken in April, 2010. Sugarcane (Sacharum officinarum, maize (Zea mayz L., pawpaw (Carica papaya, grass (Brachiaria decumbens and a forest area were sampled. Bacteria FNVL and SF were isolated using Ashby and Pikoskaya, respectively. Chemical and physical properties were evaluated in all soils to determine the relationship between them and the development of the strains. Results showed that Fn developed better in grass and

  17. Microorganism Billiards

    CERN Document Server

    Wahl, Colin; Spagnolie, Saverio E; Thiffeault, Jean-Luc

    2015-01-01

    Recent experiments and numerical simulations have shown that certain types of microorganisms "reflect" off of a flat surface at a critical angle of departure, independent of the angle of incidence. The nature of the reflection may be active (cell and flagellar contact with the surface) or passive (hydrodynamic) interactions. We explore the billiard-like motion of such a body inside a regular polygon and show that the dynamics can settle on a stable periodic orbit, or can be chaotic, depending on the swimmer's departure angle and the domain geometry. The dynamics are often found to be robust to the introduction of weak random fluctuations. The Lyapunov exponent of swimmer trajectories can be positive or negative, can have extremal values, and can have discontinuities depending on the degree of the polygon. A passive sorting device is proposed that traps swimmers of different departure angles into separate bins. We also study the external problem of a microorganism swimming in a patterned environment of square ...

  18. Burkholderia phymatum is a highly effective nitrogen-fixing symbiont of Mimosa spp. and fixes nitrogen ex planta.

    Science.gov (United States)

    Elliott, Geoffrey N; Chen, Wen-Ming; Chou, Jui-Hsing; Wang, Hui-Chun; Sheu, Shih-Yi; Perin, Liamara; Reis, Veronica M; Moulin, Lionel; Simon, Marcelo F; Bontemps, Cyril; Sutherland, Joan M; Bessi, Rosana; de Faria, Sergio M; Trinick, Michael J; Prescott, Alan R; Sprent, Janet I; James, Euan K

    2007-01-01

    * The ability of Burkholderia phymatum STM815 to effectively nodulate Mimosa spp., and to fix nitrogen ex planta, was compared with that of the known Mimosa symbiont Cupriavidus taiwanensis LMG19424. * Both strains were equally effective symbionts of M. pudica, but nodules formed by STM815 had greater nitrogenase activity. STM815 was shown to have a broader host range across the genus Mimosa than LMG19424, nodulating 30 out of 31 species, 21 of these effectively. LMG19424 effectively nodulated only nine species. GFP-marked variants were used to visualise symbiont presence within nodules. * STM815 gave significant acetylene reduction assay (ARA) activity in semisolid JMV medium ex planta, but no ARA activity was detected with LMG19424. 16S rDNA sequences of two isolates originally from Mimosa nodules in Papua New Guinea (NGR114 and NGR195A) identified them as Burkholderia phymatum also, with nodA, nodC and nifH genes of NGR195A identical to those of STM815. * B. phymatum is therefore an effective Mimosa symbiont with a broad host range, and is the first reported beta-rhizobial strain to fix nitrogen in free-living culture.

  19. Research Progress on Rapid Detection Technique of Microorganism in Raw Milk%生乳微生物快速检测技术研究进展

    Institute of Scientific and Technical Information of China (English)

    孔丽娜; 李祖明; 吴聪明; 许文涛

    2013-01-01

    随着乳品工业的迅速发展,研究和建立生乳微生物快速检测技术以加强对乳品卫生安全检测越来越受到各国的重视。本文对生乳微生物快速检测技术的原理、特点和研究进展进行了综述,包括普通PCR、实时荧光定量PCR、PCR-DGGE、基因芯片、ELISA、电化学阻抗、ATP生物发光法、流式细胞计数法、还原法和微生物自动检测仪等。最后对生乳微生物快速检测技术研究的广阔前景作了展望。%With the rapid development of milk food industry , studying and establishing rapid detection technique of microorganism in raw milk to strengthen the monitoring of hygiene and safety of milk food is paid more and more attention to by various countries. The research progress , principle and characteristic of the rapid detection technique of microorganism in raw milk were summarized in this paper , which including ordinary PCR, real-time fluorescent quantitative PCR, PCR-DGGE, gene chip, ELISA, electrochemical impedance, bioluminescence technique, flow cyLometry, reduction test and microbial automatic detection system. Finally , the future prospect of rapid detection technique of microorganism in raw milk was forecasted.

  20. Both plant and bacterial nitrate reductases contribute to nitric oxide production in Medicago truncatula nitrogen-fixing nodules.

    Science.gov (United States)

    Horchani, Faouzi; Prévot, Marianne; Boscari, Alexandre; Evangelisti, Edouard; Meilhoc, Eliane; Bruand, Claude; Raymond, Philippe; Boncompagni, Eric; Aschi-Smiti, Samira; Puppo, Alain; Brouquisse, Renaud

    2011-02-01

    Nitric oxide (NO) is a signaling and defense molecule of major importance in living organisms. In the model legume Medicago truncatula, NO production has been detected in the nitrogen fixation zone of the nodule, but the systems responsible for its synthesis are yet unknown and its role in symbiosis is far from being elucidated. In this work, using pharmacological and genetic approaches, we explored the enzymatic source of NO production in M. truncatula-Sinorhizobium meliloti nodules under normoxic and hypoxic conditions. When transferred from normoxia to hypoxia, nodule NO production was rapidly increased, indicating that NO production capacity is present in functioning nodules and may be promptly up-regulated in response to decreased oxygen availability. Contrary to roots and leaves, nodule NO production was stimulated by nitrate and nitrite and inhibited by tungstate, a nitrate reductase inhibitor. Nodules obtained with either plant nitrate reductase RNA interference double knockdown (MtNR1/2) or bacterial nitrate reductase-deficient (napA) and nitrite reductase-deficient (nirK) mutants, or both, exhibited reduced nitrate or nitrite reductase activities and NO production levels. Moreover, NO production in nodules was found to be inhibited by electron transfer chain inhibitors, and nodule energy state (ATP-ADP ratio) was significantly reduced when nodules were incubated in the presence of tungstate. Our data indicate that both plant and bacterial nitrate reductase and electron transfer chains are involved in NO synthesis. We propose the existence of a nitrate-NO respiration process in nodules that could play a role in the maintenance of the energy status required for nitrogen fixation under oxygen-limiting conditions.

  1. Exopolysaccharide production by nitrogen-fixing bacteria within nodules of Medicago plants exposed to chronic radiation in the Chernobyl exclusion zone.

    Science.gov (United States)

    Pawlicki-Jullian, Nathalie; Courtois, Bernard; Pillon, Michelle; Lesur, David; Le Flèche-Mateos, Anne; Laberche, Jean-Claude; Goncharova, Nadia; Courtois, Josiane

    2010-03-01

    Nitrogen-fixing bacteria isolated from root nodules of Medicago plants growing in the 10 km zone around the Chernobyl nuclear power plant were screened for the production of new water-soluble acidic exopolysaccharides (EPSs). The different strains belonged to the Enteriobacteriaceae family (Enterobacter ludwigii, Raoultella terrigena, Klebsiella oxytoca), except for one which belonged to the Rhizobiaceae family (Sinorhizobium meliloti). All of the bacteria produced highly viscous EPS with an average molecular weight comprised between 1 x 10(6) and 3 x 10(6) Da. Five different compositions of EPS were characterized by physico-chemical analyses and (1)H NMR spectroscopy: galactose/mannose (2/1), galactose/glucose (1/1), galactose/glucose/mannose (1/2/1), fucose/galactose/glucose (2/1/1) and fucose/galactose/glucose/mannose (2/2/1/1 or 1/1/2/4). Glucuronic acid, a charged monosaccharide, was also recovered in most of the different EPSs. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  2. Effect of free and symbiotic nitrogen fixing bacterial co-inoculation on seed and seedling of soybean seeds produced under deficit water condition

    Directory of Open Access Journals (Sweden)

    Hamed Hadi

    2016-04-01

    Full Text Available Effect of free and symbiotic nitrogen fixing bacteria on seed and seedling produced seeds under deficit irrigation was conducted in laboratory and field experiments in 2006. In laboratory of karaj’s Seed and Plant Research and Certificate Institute an experiment was conducted based on factorial in form of completely randomized design with four replications and in field’s of Islamic Azad University, Varamin Branch were split factorial in form of randomized completely block design with three replications. Treatments included water stress [Irrigation after 50 (Normal irrigation, 100 (Middle stress, 150 (Severe stress mm evaporation from pan class A], Cultivar [Manokin & Williams and SRF×T3 Line] and inoculation [Inoculation with Bradyrhizobium japonicum, Bradyrhizobium japonicum co-inoculated with Azotobacter chroococcum, No seed inoculation]. Results showed that drought stress decreased the uniformity and germination speed and seedling emergence. Bacteria increased leaf dry weight, stem dry weight, leaf area and seedling vigor index but had no effect on emergence. In irrigation levels inoculated treatments had higher seedling length, leaf, stem, seedling dry weight and seedling vigor. Severs stress seeds inoculated with Bradyrhizobium japonicum had higher root dry weight than control. Therefore in seeds which were produced under deficit irrigation conditions, bacteria increased seedlings vigor.

  3. Indole-3-acetic acid (IAA) production in symbiotic and non-symbiotic nitrogen-fixing bacteria and its optimization by Taguchi design.

    Science.gov (United States)

    Shokri, Dariush; Emtiazi, Giti

    2010-09-01

    Production of Indole-3-acetic acid (IAA) in 35 different symbiotic and non-symbiotic nitrogen-fixing bacteria strains isolated from soil and plant roots was studied and assayed by chromatography and colorimetric methods. These bacteria included Agrobacterium, Paenibacillus, Rhizobium, Klebsiella oxytoca, and Azotobacter. The best general medium and synergism effects of isolates for IAA production were investigated. Effects of different variables containing physical parameters and key media components and optimization of condition for IAA production were performed using the Design of Experiments. Qualitek-4 (W32b) software for automatic design and analysis of the experiments, both based on Taguchi method was used. The results showed that Rhizobium strains, symbiotic, and Paenibacillus non-symbiotic bacteria yielded the highest concentrations of IAA (in the range of 5.23-0.27 and 4.90-0.19 ppm IAA/mg biomass, respectively) and IAA production was increased by synergism effect of them. Yeast Extract Mannitol medium supplemented with L-tryptophan was the best general medium for IAA production. The analysis of experimental data using Taguchi method indicated that nitrogen source is very prominent variable in affecting the yield and mannitol as carbon source, potassium nitrate (1%), and L-tryptophan (3 g/l) as nitrogen sources after 72-h incubation at 30 degrees C were the optimum conditions for production of IAA. 5.89 ppm IAA/mg biomass was produced under these optimal conditions.

  4. Draft Genome Sequence of the Nitrogen-Fixing Rhizobium sullae Type Strain IS123T Focusing on the Key Genes for Symbiosis with its Host Hedysarum coronarium L.

    Directory of Open Access Journals (Sweden)

    Gaurav Sablok

    2017-07-01

    Full Text Available The prominent feature of rhizobia is their molecular dialogue with plant hosts. Such interaction is enabled by the presence of a series of symbiotic genes encoding for the synthesis and export of signals triggering organogenetic and physiological responses in the plant. The genome of the Rhizobium sullae type strain IS123T nodulating the legume Hedysarum coronarium, was sequenced and resulted in 317 scaffolds for a total assembled size of 7,889,576 bp. Its features were compared with those of genomes from rhizobia representing an increasing gradient of taxonomical distance, from a conspecific isolate (Rhizobium sullae WSM1592, to two congeneric cases (Rhizobium leguminosarum bv. viciae and Rhizobium etli and up to different genera within the legume-nodulating taxa. The host plant is of agricultural importance, but, unlike the majority of other domesticated plant species, it is able to survive quite well in the wild. Data showed that that the type strain of R. sullae, isolated from a wild host specimen, is endowed with a richer array of symbiotic genes in comparison to other strains, species or genera of rhizobia that were rescued from domesticated plant ecotypes. The analysis revealed that the bacterium by itself is incapable of surviving in the extreme conditions that its host plant can tolerate. When exposed to drought or alkaline condition, the bacterium depends on its host to survive. Data are consistent with the view of the plant phenotype as the primary factor enabling symbiotic nitrogen fixing bacteria to survive in otherwise limiting environments.

  5. Genetic and symbiotic diversity of nitrogen-fixing bacteria isolated from agricultural soils in the western Amazon by using cowpea as the trap plant.

    Science.gov (United States)

    Azarias Guimarães, Amanda; Duque Jaramillo, Paula Marcela; Simão Abrahão Nóbrega, Rafaela; Florentino, Ligiane Aparecida; Barroso Silva, Karina; de Souza Moreira, Fatima Maria

    2012-09-01

    Cowpea is a legume of great agronomic importance that establishes symbiotic relationships with nitrogen-fixing bacteria. However, little is known about the genetic and symbiotic diversity of these bacteria in distinct ecosystems. Our study evaluated the genetic diversity and symbiotic efficiencies of 119 bacterial strains isolated from agriculture soils in the western Amazon using cowpea as a trap plant. These strains were clustered into 11 cultural groups according to growth rate and pH. The 57 nonnodulating strains were predominantly fast growing and acidifying, indicating a high incidence of endophytic strains in the nodules. The other 62 strains, authenticated as nodulating bacteria, exhibited various symbiotic efficiencies, with 68% of strains promoting a significant increase in shoot dry matter of cowpea compared with the control with no inoculation and low levels of mineral nitrogen. Fifty genotypes with 70% similarity and 21 genotypes with 30% similarity were obtained through repetitive DNA sequence (BOX element)-based PCR (BOX-PCR) clustering. The 16S rRNA gene sequencing of strains representative of BOX-PCR clusters showed a predominance of bacteria from the genus Bradyrhizobium but with high species diversity. Rhizobium, Burkholderia, and Achromobacter species were also identified. These results support observations of cowpea promiscuity and demonstrate the high symbiotic and genetic diversity of rhizobia species in areas under cultivation in the western Amazon.

  6. Diversification of nitrogen fixing bacterial community using nifH gene as a biomarker in different geographical soils of Western Indian Himalayas.

    Science.gov (United States)

    Singh, Chhug; Soni, Ravindra; Jain, Sourabh; Roy, Subhadip; Goel, Reeta

    2010-09-01

    Six soil samples (Pantnagar, Chamoli, Almora, Ranichauri, Pithoragarh and Badrinath) belonging to different geographical locations of Western Himalayas in India, were analyzed to diversify the nitrogen fixing bacterial community using nifH gene biomarker DNA from soil samples were isolated and amplified using nifH gene specific primers. Genomic DNA and PCR amplified products were then individually subjected to restriction digestion with tetra to octacutter enzymes (AluI, MspI, BgIII, XbaI, HindIII, HaeIII, AluI, MspI and PasI. Further restriction pattern was studied by preparing dendograms on the basis of similarity matrix and compared for the nifH community. It was observed that temperate region soils (Ranichauri and Pithoragarh) were negative for nifH marker while subalpine region (Badrinath) and tarai region soils (Pantnagar) documented similar nifH community. Moreover; the direct genomic DNA restriction analysis indicated that subalpine region soil (Badrinath) was most diversified.

  7. Identification of a cis-acting element in nitrogen fixation genes recognized by CnfR in the nonheterocystous nitrogen-fixing cyanobacterium Leptolyngbya boryana.

    Science.gov (United States)

    Tsujimoto, Ryoma; Kamiya, Narumi; Fujita, Yuichi

    2016-08-01

    The filamentous cyanobacterium Leptolyngbya boryana has the ability to fix nitrogen without any heterocysts under microoxic conditions. Previously, we identified the cnfR gene for a master transcriptional activator for nitrogen fixation (nif) genes in a 50-kb gene cluster containing nif and nif-related genes in L. boryana. We showed that CnfR activates the transcription of nif genes in response to low oxygen conditions, which allows the oxygen-vulnerable enzyme nitrogenase to function. However, the regulatory mechanism that underlies regulation by CnfR remains unknown. In this study, we identified a conserved cis-acting element that is recognized by CnfR. We established a reporter system in the non-diazotrophic cyanobacterium Synechocystis sp. PCC 6803 using luciferase genes (luxAB). Reporter analysis was performed with a series of truncated and modified upstream regulatory regions of nifB and nifP. The cis-element can be divided into nine motifs I-IX, and it is located 76 bp upstream of the transcriptional start sites of nifB and nifP. Six motifs of them are essential for transcriptional activation by CnfR. This cis-acting element is conserved in the upstream regions of nif genes in all diazotrophic cyanobacteria, including Anabaena and Cyanothece, thereby suggesting that the transcriptional regulation by CnfR is widespread in nitrogen-fixing cyanobacteria.

  8. Expression profile analysis of the oxygen response in the nitrogen-fixing Pseudomonas stutzeri A1501 by genome-wide DNA microarray

    Institute of Scientific and Technical Information of China (English)

    DOU YueTan; YAN YongLiang; PING ShuZhen; LU Wei; CHEN Ming; ZHANG Wei; WANG YiPing; JIN Qi; LIN Min

    2008-01-01

    Pseudomonas stutzeri A1501, an associative nitrogen-fixing bacterium, was isolated from the rice paddy rhizosphere. This bacterium fixes nitrogen under microaerobic conditions. In this study, ge-nome-wide DNA microarrays were used to analyze the global transcription profile of A1501 under aerobic and microaerobic conditions. The expression of 135 genes was significantly altered by more than 2-fold in response to oxygen stress. Among these genes, 68 were down-regulated under aerobic conditions; these genes included those responsible for nitrogen fixation and denitrification. Sixty-seven genes were up-regulated under aerobic conditions; these genes included sodC, encoding a copper-zinc superoxide dismutase, PST2179, encoding an NAD(P)-dependent oxidoreductase, PST3584, encoding a 2OG-Fe(Ⅱ) oxygenase, and PST3602, encoding an NAD(P)H-flavin oxidoreductase. Addi-tionally, seven genes involved in capsular polysaccharide and antigen oligosaccharide biosynthesis together with 17 genes encoding proteins of unknown function were up-regulated under aerobic con-ditions. The overall analysis suggests that the genes we identified are involved in the protection of the bacterium from oxygen, but the mechanisms of their action remain to be elucidated.

  9. GroEL of the nitrogen-fixing cyanobacterium Anabaena sp. strain L-31 exhibits GroES and ATP-independent refolding activity.

    Science.gov (United States)

    Potnis, Akhilesh A; Rajaram, Hema; Apte, Shree K

    2016-03-01

    The nitrogen-fixing cyanobacterium, Anabaena L-31 has two Hsp60 proteins, 59 kDa GroEL coded by the second gene of groESL operon and 61 kDa Cpn60 coded by cpn60 gene. Anabaena GroEL formed stable higher oligomer (>12-mer) in the presence of K(+) and prevented thermal aggregation of malate dehydrogenase (MDH). Using three protein substrates (MDH, All1541 and green fluorescent protein), it was found that the refolding activity of Anabaena GroEL was lower than that of Escherichia coli GroEL, but independent of both GroES and ATP. This correlated with in vivo data. GroEL exhibited ATPase activity which was enhanced in the presence of GroES and absence of a denatured protein, contrary to that observed for bacterial GroEL. However, a significant role for ATP could not be ascertained during in vitro folding assays. The monomeric Cpn60 exhibited much lower refolding activity than GroEL, unaffected by GroES and ATP. In vitro studies revealed inhibition of the refolding activity of Anabaena GroEL by Cpn60, which could be due to their different oligomeric status. The role of GroES and ATP may have been added during the course of evolution from the ancient cyanobacteria to modern day bacteria enhancing the refolding ability and ensuring wider scope of substrates for GroEL.

  10. Sucrose synthesis in the nitrogen-fixing Cyanobacterium Anabaena sp. strain PCC 7120 is controlled by the two-component response regulator OrrA.

    Science.gov (United States)

    Ehira, Shigeki; Kimura, Satoshi; Miyazaki, Shogo; Ohmori, Masayuki

    2014-09-01

    The filamentous, nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120 accumulates sucrose as a compatible solute against salt stress. Sucrose-phosphate synthase activity, which is responsible for the sucrose synthesis, is increased by salt stress, but the mechanism underlying the regulation of sucrose synthesis remains unknown. In the present study, a response regulator, OrrA, was shown to control sucrose synthesis. Expression of spsA, which encodes a sucrose-phosphate synthase, and susA and susB, which encode sucrose synthases, was induced by salt stress. In the orrA disruptant, salt induction of these genes was completely abolished. The cellular sucrose level of the orrA disruptant was reduced to 40% of that in the wild type under salt stress conditions. Moreover, overexpression of orrA resulted in enhanced expression of spsA, susA, and susB, followed by accumulation of sucrose, without the addition of NaCl. We also found that SigB2, a group 2 sigma factor of RNA polymerase, regulated the early response to salt stress under the control of OrrA. It is concluded that OrrA controls sucrose synthesis in collaboration with SigB2.

  11. Evidence of reduced poly-B-hydroxybutyrate biosynthesis in free-living nitrogen-fixing bacteria, Azotobacter chroococcum, following acquired resistance to the fungicide captan.

    Science.gov (United States)

    Miclaus, N; Vannini, C; Celano, G; Piccolo, A; Simoncini, S

    1992-08-12

    Some biological activities of Azotobacter chroococcum, strain Azcap 1, (spontaneous mutant, captan resistant up to 300 micrograms/ml) were assayed on RM medium with and without the presence of the fungicide. Comparisons were also carried out with Az. chroococcum sensitive strains Azwt, Azcan 10 and 14. The hydrolysis of captan, incorporated in agar plates of RM at 100 micrograms/ml, was rapid, since on 4-day plates, no effect was found on the strain Azwt, while on freshly prepared ones its growth was completely blocked. As for Azcap 1, grown on RM only, the behaviour was similar to that of sensitive strains, whereas when grown on captan the results of experiments showed: (i) a lag of approximately 12 h to reach the maximum nitrogen-fixing activity; (ii) delay of 12-24 h in the full consumption of glucose present in the medium, although the invertase activity did not present differences; (iii) high ATP culture content during the 50 h of the experiment; (iv) approximately 6-10-fold lower production of PHB (poly-B-hydroxybutyrate); (v) lack of typical encystment phase, for the tested 96 h and reduced viability in developing colonies on agar RM medium. In contrast, when captan was added to cultural medium at sublethal concentration, 50 micrograms/ml for sensitive strain Azwt and 200 micrograms/ml for Azcap 1, the amount of glutathione produced (to remove the fungicide toxicity) was several times higher for the former.

  12. Distribution of community-acquired gram negative microorganisms detected in urine samples of pediatric patients and antibiotic resistance patterns at 2013

    Directory of Open Access Journals (Sweden)

    Seçil Conkar

    2015-06-01

    Full Text Available Objective: This study aims to determine the antibiotic susceptibility and distribution of community-acquired microorganisms obtained from urine samples of patients admitted to our clinic in Diyarbakır, and also detect the ratio of extended spectrum beta-lactamase producing E.coli and Klebsiella strains in urine samples, and identify the antibiotics that can be used for the empiric treatment by investigating the susceptibility of extended spectrum beta-lactamase positive strains. Methods: Patients admitted to the pediatric polyclinic of our hospital between the dates 1 January-31 December were included in the study. 1167 urine samples sent to Microbiology Laboratory were examined. E.coli and Klebsiella spp. strains isolated from the urine cultures were identified with traditional methods and the Biomerium Vitek-2 compact system. Antibiotic susceptibility tests were performed in accordance with the recommendations of Clinical and Laboratory Standards Institute using Biomerium Vitek-2 compact system. Results: 959 E.coli from 1167 urine samples and other microorganisms from 26 of 182 Klebsiella spp. were isolated. Extended spectrum beta-lactamase production was detected in 445 (46.4% of E.coli strains and in 72 (39.5% of Klebsiella spp.strains. Amicasin resistance was determined as 9.4% in Extended spectrum beta-lactamase positive E.coli strains, while amicasin resistance was detected as 11% in Extended spectrum beta-lactamase positive Klebsiella spp. strains. Conclusion: Resistance development against the antibiotics has been increasingly observed in most of the microorganisms that cause urinary tract infection. We are in the opinion that this study is important for our hospital, as urinary tract infection factors vary according to centers.

  13. Microorganism billiards

    Science.gov (United States)

    Spagnolie, Saverio E.; Wahl, Colin; Lukasik, Joseph; Thiffeault, Jean-Luc

    2017-02-01

    Recent experiments and numerical simulations have shown that certain types of microorganisms "reflect" off of a flat surface at a critical angle of departure, independent of the angle of incidence. The nature of the reflection may be active (cell and flagellar contact with the surface) or passive (hydrodynamic) interactions. We explore the billiard-like motion of a body with this empirical reflection law inside a regular polygon and show that the dynamics can settle on a stable periodic orbit or can be chaotic, depending on the swimmer's departure angle and the domain geometry. The dynamics are often found to be robust to the introduction of weak random fluctuations. The Lyapunov exponent of swimmer trajectories can be positive or negative, can have extremal values, and can have discontinuities depending on the degree of the polygon. A passive sorting device is proposed that traps swimmers of different departure angles into separate bins. We also study the external problem of a microorganism swimming in a patterned environment of square obstacles, where the departure angle dictates the possibility of trapping or diffusive trajectories.

  14. The Synthesis of L-Alanyl and β-Alanyl Derivatives of 2-Aminoacridone and Their Application in the Detection of Clinically-Important Microorganisms.

    Directory of Open Access Journals (Sweden)

    Marie Cellier

    Full Text Available In clinical microbiology the speed with which pathogenic microorganisms may be detected has a direct impact on patient health. One important strategy used in the laboratory is the growth of cultures in the presence of an enzymatic substrate which, once transformed by the appropriate microbial enzyme, generates a detectable colour or fluorescence output. Such substrates have previously been prepared by our group and others and are available as commercial diagnostic kits, however they all suffer from some degree of diffusion when used in a solid growth medium. This diffusion complicates the detection and differentiation of species in polymicrobial cultures and so we sought to improve on our previous work. In this work we have prepared and evaluated a series of novel fluorogenic enzyme substrates based on N-substituted-2-aminoacridones. All of the prepared substrates were found to be suitable for the detection and differentiation of certain microorganisms, however those based on the 2-amino-10-benzylacridone core in particular showed no apparent diffusion when incorporated into solid growth media. On transformation these substrates generated brightly fluorescent colonies that are clearly contrasted with the background medium due to the difference in emission wavelength (λem 445-450 nm for the substrate, λem 550 nm for the product. Here we have shown that our L-alanyl aminopeptidase substrate, 2-(N-L-alanylamino-10-benzylacridone, is particularly suited to the detection of Gram-negative bacteria, and our β-alanyl aminopeptidase substrate, 2-(N- β-alanylamino-10-benzylacridone, to the detection of Pseudomonas aeruginosa and Serratia marcescens when grown on solid media incorporating these substrates. The resulting fluorophore shows no apparent diffusion from the colonies of interest, and the enhanced sensitivity offered by fluorescent emission may allow for the detection of these organisms as microcolonies using automated fluorescence microscopy.

  15. 食品中微生物快速检测方法的研究进展%Research Progress on Rapid Detection Technology of Microorganism in Food

    Institute of Scientific and Technical Information of China (English)

    洪炳财; 陈向标; 赖明河

    2013-01-01

    介绍了食品中微生物快速检测方法及其应用,包括分子生物学技术、代谢技术、免疫学技术、生物传感器技术、仪器分析技术等.%The rapid detection of microorganism in food and its applications were introduced,including biology techniques,metabolic techniques,immunological techniques,instrumental analysis techniques and biosensor technology.

  16. A rapid, efficient and sensitive plate assay for detection and screening of l-asparaginase-producing microorganisms.

    Science.gov (United States)

    Mahajan, Richi V; Saran, Saurabh; Saxena, Rajendra K; Srivastava, Ayush K

    2013-04-01

    l-Asparaginase-producing microbes are conventionally screened on phenol red l-asparagine-containing plates. However, sometimes the contrast of the zone obtained (between yellow and pink) is not very sharp and distinct. In the present investigation, an improved method for screening of the microorganisms producing extracellular l-asparaginase is reported wherein bromothymol blue (BTB) is incorporated as pH indicator in l-asparagine-containing medium instead of phenol red. Plates containing BTB at acidic pH are yellow and turn dark blue at alkaline pH. Thus, a dense dark blue zone is formed around microbial colonies producing l-asparaginase, differentiating between enzyme producers and non-producers. The present method is more sensitive and accurate than the conventional method for screening of both fungi and bacteria producing extracellular l-asparaginase. Furthermore, BTB gives a transient green colour at neutral pH (7.0) and dark blue colour at higher pH 8.0-9.0, indicating the potency of the microorganism for l-asparaginase production.

  17. Lignite microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Bulankina, M.A.; Lysak, L.V.; Zvyagintsev, D.G. [Moscow MV Lomonosov State University, Moscow (Russian Federation). Faculty of Soil Science

    2007-03-15

    The first demonstration that samples of lignite at a depth of 10 m are considerably enriched in bacteria is reported. According to direct microscopy, the abundance of bacteria was about 10{sup 7} cells/g. About 70% of cells had intact cell membranes and small size, which points to their anabiotic state. The fungal mycelium length was no more than 1 m. Lignite inoculation onto solid glucose-yeast-peptone medium allowed us to isolate bacteria of the genera Bacillus, Rhodococcus, Arthrobacter, Micrococcus, Spirillum, and Cytophaga. Representatives of the genera Penicillium and Trichoderma were identified on Czapek medium. Moistening of lignite powder increased the microbial respiration rate and microbial and fungal abundance but did not increase their generic diversity. This finding suggests that the studied microorganisms are autochthonous to lignite.

  18. Selection of nitrogen-fixing deficient Burkholderia vietnamiensis strains by cystic fibrosis patients: involvement of nif gene deletions and auxotrophic mutations.

    Science.gov (United States)

    Menard, Aymeric; Monnez, Claire; Estrada de Los Santos, Paulina; Segonds, Christine; Caballero-Mellado, Jesus; Lipuma, John J; Chabanon, Gerard; Cournoyer, Benoit

    2007-05-01

    Burkholderia vietnamiensis is the third most prevalent species of the Burkholderia cepacia complex (Bcc) found in cystic fibrosis (CF) patients. Its ability at fixing nitrogen makes it one of the main Bcc species showing strong filiations with environmental reservoirs. In this study, 83% (29 over 35) of the B. vietnamiensis CF isolates and 100% of the environmental ones (over 29) were found expressing the dinitrogenase complex (encoded by the nif cluster) which is essential in N(2) fixation. Among the deficient strains, two were found growing with ammonium chloride suggesting that they were defective in N(2) fixation, and four with amino acids supplements suggesting that they were harbouring auxotrophic mutations. To get insights about the genetic events that led to the emergence of the N(2)-fixing defective strains, a genetic analysis of B. vietnamiensis nitrogen-fixing property was undertaken. A 40-kb-long nif cluster and nif regulatory genes were identified within the B. vietnamiensis strain G4 genome sequence, and analysed. Transposon mutagenesis and nifH genetic marker exchanges showed the nif cluster and several other genes like gltB (encoding a subunit of the glutamate synthase) to play a key role in B. vietnamiensis ability at growing in nitrogen-free media. nif cluster DNA probings of restricted genomic DNA blots showed a full deletion of the nif cluster for one of the N(2)-fixing defective strain while the other one showed a genetic organization similar to the one of the G4 strain. For 17% of B. vietnamiensis clinical strains, CF lungs appeared to have favoured the selection of mutations or deletions leading to N(2)-fixing deficiencies.

  19. A mutant GlnD nitrogen sensor protein leads to a nitrogen-fixing but ineffective Sinorhizobium meliloti symbiosis with alfalfa.

    Science.gov (United States)

    Yurgel, Svetlana N; Kahn, Michael L

    2008-12-02

    The nitrogen-fixing symbiosis between rhizobia and legume plants is a model of coevolved nutritional complementation. The plants reduce atmospheric CO(2) by photosynthesis and provide carbon compounds to symbiotically associated bacteria; the rhizobia use these compounds to reduce (fix) atmospheric N(2) to ammonia, a form of nitrogen the plants can use. A key feature of symbiotic N(2) fixation is that N(2) fixation is uncoupled from bacterial nitrogen stress metabolism so that the rhizobia generate "excess" ammonia and release this ammonia to the plant. In the symbiosis between Sinorhizobium meliloti and alfalfa, mutations in GlnD, the major bacterial nitrogen stress response sensor protein, led to a symbiosis in which nitrogen was fixed (Fix(+)) but was not effective (Eff(-)) in substantially increasing plant growth. Fixed (15)N(2) was transported to the shoots, but most fixed (15)N was not present in the plant after 24 h. Analysis of free-living S. meliloti strains with mutations in genes related to nitrogen stress response regulation (glnD, glnB, ntrC, and ntrA) showed that catabolism of various nitrogen-containing compounds depended on the NtrC and GlnD components of the nitrogen stress response cascade. However, only mutants of GlnD with an amino terminal deletion had the unusual Fix(+)Eff(-) symbiotic phenotype, and the data suggest that these glnD mutants export fixed nitrogen in a form that the plants cannot use. These results indicate that bacterial nitrogen stress regulation is important to symbiotic productivity and suggest that GlnD may act in a novel way to influence symbiotic behavior.

  20. Uptake and Requirements of Molybdenum and Vanadium in Nitrogen Fixing Bacteria: Implications for the Nitrogen Cycle Now and in the Past.

    Science.gov (United States)

    Bellenger, J.; Wichard, T.; Kraepiel, A. M.

    2008-12-01

    Three nitrogenases (Mo-, V- and Fe-Nase) have thus far been identified. The requirement and use efficiency of those metals are key parameters for the nitrogen cycle. Within present terrestrial ecosystems, the Mo- Nase is considered to be dominant and the so called alternative nitrogenases (V- and Fe-Nase) have heretofore been neglected, likely resulting in misconceptions about the soil nitrogen cycle. Here, I present an overview of recent findings on trace metals speciation in soils and requirements, homeostasis, and uptake of these metals by free-livng nitrogen fixing bacteria. Our data show that Mo in soils associates strongly with organic matter, contrary to the classic view of Mo being associated with iron oxides. We also find that free- living nitrogen fixers, such as Azotobacter vinelandii, acquire both Mo and V through highly regulated uptake systems using released ligands specifically targeting the required metals, similar to that of iron. Finally, our findings demonstrate that nitrogen fixers, e.g. A. vinelandii, use Mo and V to fix nitrogen with close efficiency. This, and recent work showing that Mo may be limiting N2 fixation in a variety of terrestrial systems suggest that the worldwide dominance of Mo-nitrogenase may have been overestimated, and the role of the alternative nitrogenases in present environments deserves more attention. Interestingly, two decades after the identification of the alternative V and Fe nitrogenases, their evolution and exact role in the terrestrial nitrogen cycle over geologic time are still unclear. As crustal V abundance is about 100 times higher than Mo, nitrogen fixers might have benefited throughout geologic time from being able to utilize this additional metal source to sustain nitrogen fixation. A better understanding of the past and present nitrogen cycle is critical to anticipate the possible responses of terrestrial environments to global changes due to recent and future anthropic activities.

  1. Cellvibrio diazotrophicus sp. nov., a nitrogen-fixing bacteria isolated from the rhizosphere of salt meadow plants and emended description of the genus Cellvibrio.

    Science.gov (United States)

    Suarez, Christian; Ratering, Stefan; Kramer, Irina; Schnell, Sylvia

    2014-02-01

    Two Gram-reaction-negative, aerobic, nitrogen-fixing, rod-shaped bacteria, designated strains E20 and E50(T), were isolated from the rhizosphere of salt meadow plants Plantago winteri and Hordeum secalinum, respectively, near Münzenberg, Germany. Based on the 16S rRNA gene sequence analysis both strains E20 and E50(T) are affiliated with the genus Cellvibrio, sharing the highest similarity with Cellvibrio gandavensis LMG 18551(T) (96.4%) and (97.1%), respectively. Strains E20 and E50(T) were oxidase and catalase-positive, grew at a temperature range between 16 and 37 °C and in the presence of 0-5% NaCl (w/v). The DNA G+C contents were 52.1 mol% (E20) and 51.6 mol% (E50(T)). Major fatty acids of strains E20 and E50(T) were summed feature 3 (C16 : 1ω7c and/or iso-C(15 : 0) 2-OH), C(16 : 0), C(18 : 1)ω7c, C(12 : 0), C(18 : 0) and C(12 : 0) 3-OH. The DNA-DNA relatedness of the strains to Cellvibrio gandavensis LMG 18551(T) was 39% for strain E20 and 58% for strain E50(T). The nitrogen fixation capability of strains E20 and E50(T) was confirmed by the acetylene reduction assay. On the basis of our polyphasic taxonomic study, strains E20 and E50(T) represent a novel species of the genus Cellvibrio, for which the name Cellvibrio diazotrophicus is proposed. The type strain of Cellvibrio diazotrophicus is E50(T) ( = LMG 27267(T) = KACC 17069(T)). An emended description of the genus Cellvibrio is proposed based on the capability of fixing nitrogen and growth in presence of up to 5% NaCl (w/v).

  2. A mutant GlnD nitrogen sensor protein leads to a nitrogen-fixing but ineffective Sinorhizobium meliloti symbiosis with alfalfa

    Science.gov (United States)

    Yurgel, Svetlana N.; Kahn, Michael L.

    2008-01-01

    The nitrogen-fixing symbiosis between rhizobia and legume plants is a model of coevolved nutritional complementation. The plants reduce atmospheric CO2 by photosynthesis and provide carbon compounds to symbiotically associated bacteria; the rhizobia use these compounds to reduce (fix) atmospheric N2 to ammonia, a form of nitrogen the plants can use. A key feature of symbiotic N2 fixation is that N2 fixation is uncoupled from bacterial nitrogen stress metabolism so that the rhizobia generate “excess” ammonia and release this ammonia to the plant. In the symbiosis between Sinorhizobium meliloti and alfalfa, mutations in GlnD, the major bacterial nitrogen stress response sensor protein, led to a symbiosis in which nitrogen was fixed (Fix+) but was not effective (Eff−) in substantially increasing plant growth. Fixed 15N2 was transported to the shoots, but most fixed 15N was not present in the plant after 24 h. Analysis of free-living S. meliloti strains with mutations in genes related to nitrogen stress response regulation (glnD, glnB, ntrC, and ntrA) showed that catabolism of various nitrogen-containing compounds depended on the NtrC and GlnD components of the nitrogen stress response cascade. However, only mutants of GlnD with an amino terminal deletion had the unusual Fix+Eff− symbiotic phenotype, and the data suggest that these glnD mutants export fixed nitrogen in a form that the plants cannot use. These results indicate that bacterial nitrogen stress regulation is important to symbiotic productivity and suggest that GlnD may act in a novel way to influence symbiotic behavior. PMID:19020095

  3. Final Report: The Rhizosphere Association of the Nitrogen Fixing Bacterial Species Azotobacter Paspali with the Tropical Grass Paspalum Notatum: Specificity of Colonization and Contribution to Plant Nutrition, July 1, 1995 - February 14, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Christina K.

    1997-02-14

    The nitrogen fixing bacterium azotobacter paspali was first isolated from the roots of the sub-tropical grass, palpium notatum, and added to the clenus in 1996, by Dr. J. Dobereiner (Brazil). It is mentioned that this root association bacteria shows remarkable signs of host-plant specificity to one eco-type of this grass. This specificity is rare in non-symbiotic plant microbe interactions so far identified.

  4. 贺兰山地区油松根际固氮菌的多样性研究%Diversity of nitrogen-fixing bacteria isolated from Pinus tabulaeformis in Helan Mountains

    Institute of Scientific and Technical Information of China (English)

    牛艳芳; 陈立红; 闫伟

    2016-01-01

    The diversity and community structure of nitrogen-fixing bacteria isolated from Pinus tabulaeformis rhizosphere in Helan Mountains was studied. Nitrogen-fixing bacteria from rhizosphere soil were isolated and purified by Ashby’ s Medium,the 16S rDNA gene of nitrogen-fixing bacteria was amplified using primers 27f/1492r and sequenced,the align-ment of 16S rDNA sequences was conducted by DNAMAN 6.0,and the neighbor-joining phylogenetic tree was construc-ted by MEGA 4.0 software. The results showed that nitrogen-fixing bacteria isolated from P. tabulaeformis belonged to nine groups,which were Pseudomonas,Bacillus,Phyllobacterium,Arthrobacter,Rhizobium,Paenibacillus,Sphin-gomonas,Caulobacter,Pedobacter,and Pseudomonas,Bacillus,Phyllobacterium,Arthrobacter were dominant groups.The results indicated that nitrogen-fixing bacteria from P. tabulaeformis in Helan Mountains have rich diversity.%对贺兰山北寺自然保护区油松(Pinus tabulaeformis)的根际土壤固氮菌多样性和群落结构进行研究。采用阿须贝培养基对土壤中的固氮菌进行分离和纯化,用通用引物27f/1492r对固氮菌进行16S rDNA扩增并测序,应用DNAMAN 6.0软件进行多序列比对,用MEGA 4.0软件构建聚类树。结果表明:从贺兰山北寺油松根际土壤中分离出的固氮菌属于假单胞菌属(Pseudomonas)、芽孢杆菌属(Bacillus)、叶杆菌属(Phyllobacteri-um)、节杆菌属(Arthrobacter)、根瘤菌属(Rhizobium)、类芽孢杆菌属(Paenibacillus)、鞘氨醇单胞菌属(Sphingomonas)、柄细菌属(Caulobacter)、土地杆菌属(Pedobacter)等9个不同的类群,其中假单胞菌属(Pseudomonas)、芽孢杆菌属(Bacillus)、叶杆菌属(Phyllobacterium)、节杆菌属(Arthrobacter)是优势类群。这表明贺兰山北寺地区油松根际土壤中固氮菌具有较丰富的多样性。

  5. Isolation of Nitrogen-Fixing Bacteria and Phosphate-Solubilizing Bacteria from the Rhizosphere of Mangrove Plants and Their Enhancement to the Growth of Kandelia candel Seedlings%红树林固氮菌和解磷菌的分离及对秋茄苗的促生效果

    Institute of Scientific and Technical Information of China (English)

    何雪香; 李玫; 廖宝文

    2012-01-01

    Fifty nine isolates of nitrogen-fixing bacteria and phosphate-solubilizing bacteria were isolated based on the characteristics of morphology and growth of the bacteria on the selective growth media from the rhizosphere of mangrove plants including Bruguiera gymnorhiza, B. Sexangula, Kandelia candel, Rhizophora stylosa, Sonneratia apetala and S. Caseolaris in Zhanjiang and Zhuhai, Guangdong Province and Dongzhai harbor, Hainan Island. Among them 7 isolates of nitrogen-fixing bacteria and 8 isolates of phosphate-solubilizing bacteria were screened as propagule inoculants of K. Candel in a series of potted experiments to examine their capability to promote the growth of plants. The results showed that the inoculation with a single isolate of phosphate-solubilizing bacteria He4# resulted in a significant increase in plant height, root mass and total biomass at the rate of 58.4% , 132. 1% and 133. 2% , respectively. The enhancement of isolate He4# on the plant growth is more significant than that of an alien isolate (Bacillus lichenciformis). The root biomass and total biomass of K. Candel inoculated He4# increased by 72. 7% and 90. 2% than those inoculated B. Lichenciformis. All pure inoculations with 7 different isolates of nitrogen-fixing bacteria showed positive response to the plant growth, and the inoculation with isolateNgqq-R14 resulted in the maximum increase in plant height, stem diameter, stem dry mass, root dry mass and total biomass at the rate of 38. 36% , 16. 19% , 75. 46% , 51. 55% and 59. 31% , respectively. Dual inoculations with 7 mixtures of one isolate of nitrogen-fixing bacteria and one isolate of phos-phate-solubilizing bacteria could result in synergistic effect on the growth of the seedlings of K. Candel, and the increase of plant height, stem dry mass, root dry mass and total biomass were 21. 1% -69. 4% , 70. 7% -271. 3% , 27. 1% - 111. 3% and 66. 9% - 123. 8% respectively. It can be concluded that u-sing mixed cultures of microorganisms is

  6. Detection of genetically modified microorganisms in soil using the most-probable-number method with multiplex PCR and DNA dot blot.

    Science.gov (United States)

    Yeom, Jinki; Lee, Yunho; Noh, Jaemin; Jung, Jaejoon; Park, Jungsoon; Seo, Hyoju; Kim, Jisun; Han, Jiwon; Jeon, Che Ok; Kim, Taesung; Park, Woojun

    2011-10-01

    The principal objective of this study was to detect genetically modified microorganisms (GMMs) that might be accidentally released into the environment from laboratories. Two methods [plate counting and most-probable-number (MPN)] coupled with either multiplex PCR or DNA dot blots were compared using genetically modified Escherichia coli, Pseudomonas putida, and Acinetobacter oleivorans harboring an antibiotic-resistance gene with additional gfp and lacZ genes as markers. Alignments of sequences collected from databases using the Perl scripting language (Perl API) and from denaturing gradient gel electrophoresis analysis revealed that the gfp, lacZ and antibiotic-resistance genes (kanamycin, tetracycline, and ampicillin) in GMMs differed from the counterpart genes in many sequenced genomes and in soil DNA. Thus, specific multiplex PCR primer sets for detection of plasmid-based gfp and lacZ antibiotic-resistance genes could be generated. In the plate counting method, many antibiotic-resistant bacteria from a soil microcosm grew as colonies on antibiotic-containing agar plates. The multiplex PCR verification of randomly selected antibiotic-resistant colonies with specific primers proved ineffective. The MPN-multiplex PCR method and antibiotic-resistant phenotype could be successfully used to detect GMMs, although this method is quite laborious. The MPN-DNA dot blot method screened more cells at a time in a microtiter plate containing the corresponding antibiotics, and was shown to be a more efficient method for the detection of GMMs in soil using specific probes in terms of labor and accuracy.

  7. Automated detection of micro-organisms in blood cultures by means of the Malthus Microbiological Growth Analyser.

    Science.gov (United States)

    Brown, D F; Warner, M; Taylor, C E; Warren, R E

    1984-01-01

    A prototype Malthus Microbiological Growth Analyser was compared with conventional methods for examining blood cultures in a trial of 651 cultures mostly from patients with haematological malignancy or undergoing haemodialysis or renal transplantation. Of 100 significantly positive cultures, organisms from 82 grew in the conventional aerobic (+ CO2) bottle, 78 in the conventional anaerobic bottle and 71 in the Malthus bottle. The differences were not statistically significant (p greater than 0.05). The Malthus system detected 83.6% of significantly positive cultures earlier than the comparable conventional bottles while 7.3% positive cultures were detected earlier by the conventional system. When use of the Malthus system was restricted to the hours of 09.00 to 17.30 daily 27.3% positive cultures were detected earlier by the Malthus system and 16.4% were detected earlier by the conventional system. One of the organisms which grew in the Malthus bottle, a contaminating Staphylococcus epidermidis, was not detected by the Malthus system. Instability of electrodes resulted in 26.9% false positive cultures with the prototype Malthus system. Contamination rates in both the Malthus and conventional anaerobic bottles were lower than in the aerobic bottles.

  8. Single-molecule detection of protein efflux from microorganisms using fluorescent single-walled carbon nanotube sensor arrays

    Science.gov (United States)

    Landry, Markita Patricia; Ando, Hiroki; Chen, Allen Y.; Cao, Jicong; Kottadiel, Vishal Isaac; Chio, Linda; Yang, Darwin; Dong, Juyao; Lu, Timothy K.; Strano, Michael S.

    2017-05-01

    A distinct advantage of nanosensor arrays is their ability to achieve ultralow detection limits in solution by proximity placement to an analyte. Here, we demonstrate label-free detection of individual proteins from Escherichia coli (bacteria) and Pichia pastoris (yeast) immobilized in a microfluidic chamber, measuring protein efflux from single organisms in real time. The array is fabricated using non-covalent conjugation of an aptamer-anchor polynucleotide sequence to near-infrared emissive single-walled carbon nanotubes, using a variable chemical spacer shown to optimize sensor response. Unlabelled RAP1 GTPase and HIV integrase proteins were selectively detected from various cell lines, via large near-infrared fluorescent turn-on responses. We show that the process of E. coli induction, protein synthesis and protein export is highly stochastic, yielding variability in protein secretion, with E. coli cells undergoing division under starved conditions producing 66% fewer secreted protein products than their non-dividing counterparts. We further demonstrate the detection of a unique protein product resulting from T7 bacteriophage infection of E. coli, illustrating that nanosensor arrays can enable real-time, single-cell analysis of a broad range of protein products from various cell types.

  9. The detection of BANA micro-organisms in adult periodontitis before and after scaling and root planing by BANA-Enzymatic TM test kit: An in vivo study

    Directory of Open Access Journals (Sweden)

    Nipun Dhalla

    2015-01-01

    Full Text Available Background: Many paraclinical methods are available today for an accurate assessment of the periodontal status prior and during the periodontal treatment. The microbial-enzymatic N-benzoyl-DL-arginine-2-napthylamide (BANA test is one of the modern alternatives to bacterial cultures. It detects the presence of three periodontal pathogens in the subgingival plaque (Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia. Aims and Objective: The aim and objective of this study was to detect the presence of BANA micro-organisms and also to determine the effect of scaling and root planning in adult periodontitis patients. Materials and Methods: A total number of 20 patients (80 sites all having periodontitis were selected. Four test sites (permanent molar from each quadrant were selected from each patient and assessed for plaque index, bleeding index and pocket depth before and after scaling and root planning. BANA test was used for the detection and prevalence of the "red complex" bacteria in plaque samples. Results: Showed that the BANA tests are statistically correlated with the severity of periodontal destruction. There was a significant correlation between the BANA test results and the quantity of bacterial plaque, the test being influenced by the composition of bacterial plaque. Conclusion: This study encourages the use of such chair-side tests for a proper diagnosis of periodontal disease and for a good evaluation of the treatment results.

  10. Colonization of Snow by Microorganisms as Revealed Using Miniature Raman Spectrometers - Possibilities for Detecting Carotenoids of Psychrophiles on Mars?

    Science.gov (United States)

    Jehlička, Jan; Culka, Adam; Nedbalová, Linda

    2016-12-01

    We tested the potential of a miniaturized Raman spectrometer for use in field detection of snow algae pigments. A miniature Raman spectrometer, equipped with an excitation laser at 532 nm, allowed for the detection of carotenoids in cells of Chloromonas nivalis and Chlamydomonas nivalis at different stages of their life cycle. Astaxanthin, the major photoprotective pigment, was detected in algal blooms originating in snows at two alpine European sites that differed in altitude (Krkonoše Mts., Czech Republic, 1502 m a.s.l., and Ötztal Alps, Austria, 2790 m a.s.l.). Comparison is made with a common microalga exclusively producing astaxanthin (Haematococcus pluvialis). The handheld Raman spectrometer is a useful tool for fast and direct field estimations of the presence of carotenoids (mainly astaxanthin) within blooms of snow algae. Application of miniature Raman instruments as well as flight prototypes in areas where microbes are surviving under extreme conditions is an important stage in preparation for successful deployment of this kind of instrumentation in the framework of forthcoming astrobiological missions to Mars.

  11. A species independent universal bio-detection microarray for pathogen forensics and phylogenetic classification of unknown microorganisms

    Directory of Open Access Journals (Sweden)

    McCormick John

    2011-06-01

    Full Text Available Abstract Background The ability to differentiate a bioterrorist attack or an accidental release of a research pathogen from a naturally occurring pandemic or disease event is crucial to the safety and security of this nation by enabling an appropriate and rapid response. It is critical in samples from an infected patient, the environment, or a laboratory to quickly and accurately identify the precise pathogen including natural or engineered variants and to classify new pathogens in relation to those that are known. Current approaches for pathogen detection rely on prior genomic sequence information. Given the enormous spectrum of genetic possibilities, a field deployable, robust technology, such as a universal (any species microarray has near-term potential to address these needs. Results A new and comprehensive sequence-independent array (Universal Bio-Signature Detection Array was designed with approximately 373,000 probes. The main feature of this array is that the probes are computationally derived and sequence independent. There is one probe for each possible 9-mer sequence, thus 49 (262,144 probes. Each genome hybridized on this array has a unique pattern of signal intensities corresponding to each of these probes. These signal intensities were used to generate an un-biased cluster analysis of signal intensity hybridization patterns that can easily distinguish species into accepted and known phylogenomic relationships. Within limits, the array is highly sensitive and is able to detect synthetically mixed pathogens. Examples of unique hybridization signal intensity patterns are presented for different Brucella species as well as relevant host species and other pathogens. These results demonstrate the utility of the UBDA array as a diagnostic tool in pathogen forensics. Conclusions This pathogen detection system is fast, accurate and can be applied to any species. Hybridization patterns are unique to a specific genome and these can be used

  12. Ecogenomic sensor reveals controls on N2-fixing microorganisms in the North Pacific Ocean

    DEFF Research Database (Denmark)

    Robidart, Julie C; Church, Matthew J; Ryan, John P

    2014-01-01

    Nitrogen-fixing microorganisms (diazotrophs) are keystone species that reduce atmospheric dinitrogen (N2) gas to fixed nitrogen (N), thereby accounting for much of N-based new production annually in the oligotrophic North Pacific. However, current approaches to study N2 fixation provide relatively...... limited spatiotemporal sampling resolution; hence, little is known about the ecological controls on these microorganisms or the scales over which they change. In the present study, we used a drifting robotic gene sensor to obtain high-resolution data on the distributions and abundances of N2-fixing...... populations over small spatiotemporal scales. The resulting measurements demonstrate that concentrations of N2 fixers can be highly variable, changing in abundance by nearly three orders of magnitude in less than 2 days and 30 km. Concurrent shipboard measurements and long-term time-series sampling uncovered...

  13. HPLC quantification of biogenic amines in cheeses: correlation with PCR-detection of tyramine-producing microorganisms.

    Science.gov (United States)

    Fernández, María; Linares, Daniel M; Del Río, Beatriz; Ladero, Victor; Alvarez, Miguel A

    2007-08-01

    The consumption of food and beverages containing high amounts of biogenic amines (BA) can have toxicological effects. BA found in foods and beverages are synthesized by the microbial decarboxylation of certain amino acids. This paper reports the concentrations of BAs in a number of commercial cheeses, as determined by HPLC. The cheeses studied were made from raw and pasteurized milk of different origin, and were subjected to different ripening periods. BA concentrations were lower in short ripening period than in long ripening period cheeses, and higher in cheeses made from raw milk than in those made from pasteurized milk. The highest BA concentrations were recorded in blue cheeses made from raw milk. Tyramine was the most commonly recorded and abundant BA. The presence of tyramine-producing bacteria was determined by PCR, and a good correlation obtained between the results of this method and tyramine detection by HPLC. These methods could be used to complement one another in the detection and quantification of tyramine in cheese prevention of tyramine accumulation in cheese.

  14. The detection and influence of food soils on microorganisms on stainless steel using scanning electron microscopy and epifluorescence microscopy.

    Science.gov (United States)

    Whitehead, Kathryn A; Smith, Lindsay A; Verran, Joanna

    2010-07-31

    A range of food soils and components (complex [meat extract, fish extract, and cottage cheese extract]; oils [cholesterol, fish oil, and mixed fatty acids]; proteins [bovine serum albumin (BSA), fish peptones, and casein]; and carbohydrates [glycogen, starch, and lactose]) were deposited onto 304 2B finish stainless steel surfaces at different concentrations (10-0.001%). Scanning electron microscopy (SEM) and epifluorescence microscopy were used to visualise the cell and food soil distribution across the surface. Epifluorescence microscopy was also used to quantify the percentage of a field covered by cells or soil. At 10% concentration, most soils, with the exception of BSA and fish peptone were easily visualised using SEM, presenting differences in gross soil morphology and distribution. When soil was stained with acridine orange and visualised by epifluorescence microscopy, the limit of detection of the method varied between soils, but some (meat, cottage cheese and glycogen) were detected at the lowest concentrations used (0.001%). The decrease in soil concentration did not always relate to the surface coverage measurement. When 10% food soil was applied to a surface with Escherichia coli and compared, cell attachment differed depending on the nature of the soil. The highest percentage coverage of cells was observed on surfaces with fish extract and related products (fish peptone and fish oil), followed by carbohydrates, meat extract/meat protein, cottage cheese/casein and the least to the oils (cholesterol and mixed fatty acids). Cells could not be clearly observed in the presence of some food soils using SEM. Findings demonstrate that food soils heterogeneously covered stainless steel surfaces in differing patterns. The pattern and amount of cell attachment was related to food soil type rather than to the amount of food soil detected. This work demonstrates that in the study of conditioning film and cell retention on the hygienic properties of surfaces, SEM

  15. 固氮类植物的生态功能及其在生态修复中的应用%The ecological functions of nitrogen -fixing plants and their applications in ecological restoration

    Institute of Scientific and Technical Information of China (English)

    赵玉洁; 张宇清

    2012-01-01

    The nitrogen cycle which is an important step in ecological restoration processes take an irreplaceable special role in life and material circulation on earth and maintain and rebuild of degraded ecosystems. The article made a scientific review about the ecological functions of nitrogen - fixing plants and the success which they make on ameliorating the soil physical and chemical properties and promoting restoration of the ecosystems. At last the author draw the conclusion that nitrogen - fixing plants take a significant part in ecological restoration and .the full use of the nitrogen - fixing plants is an important way in vegetation recovery. In the future, more quantitative studies on nitrogen -fixing processes on terrestrial ecosystem are needed and the influential dominant factors and ecological mechanisms shall be made clear. Thus the reliable theoretical basis will be provided for the restoration in terrestrial ecosystems.%氮素循环对地球生命与物质循环系统有着不可替代的特殊作用,维护和重建退化生态系统的氮素循环成为生态修复目标的重要步骤之一。文中系统介绍了固氮类植物改善土壤理化性质、促进生态修复等方面的生态功能和相关研究成果,认为固氮类植物在生态修复中具有重要的生态作用,固氮植物的选用是植被恢复的重要技术途径。建议未来研究中,应该加强对陆地生态系统固氮过程的量化研究,确定影响共生固氮的主导因子和生态机制,从而为陆地系统的生态恢复提供更为可靠的理论依据。

  16. Microorganisms detection in culture media by neutron radiography technique; Deteccao de microorganismos em meios de cultura pela tecnica de neutrongrafia

    Energy Technology Data Exchange (ETDEWEB)

    Wacha, Reinaldo; Lopes, Joana D' Arc L.; Crispim, Verginia R. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear; Lage, Claudia [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Biologia Carlos Chagas Filho

    1998-12-01

    The study aims to obtain a more effective and faster method forthe detection of bacteria in several culture media, such as portable water and blood. After the process of growth in the culture medium, separation and suspension in buffer solution based on boron, the bacteria are deposited in track detectors that are submitted to thermal neutron beams (neutron flux: 2,2 x 10{sup 5} n.cm{sup -2}.s{sup -1}), resulting from the channel J-9 of the Argonauta research reactor, from the Nuclear Engineering B(n,{alpha}) Li and, after having been revealed, are analyzed by an optical microscope that allows to the identification of the tracks of the alpha particles. (author)

  17. Profile of antimicrobial susceptibility isolated microorganisms from hospitalized patients in PICU ward and detection of Methicillin-resistant Staphylococcus aureus and ESBL-producing bacteria by phenotypic methods

    Directory of Open Access Journals (Sweden)

    Shahla Abbas Poor

    2014-10-01

    Full Text Available Background: Hospital-acquired infections are a major challenge to patient. A range of gram-negative organisms are responsible for hospital-acquired infections, the Enterobacteriaceae family being the most commonly identified group overall. Infections by ESBL producers are associated with severe adverse clinical outcomes that have led to increased mortality, prolonged hospitalization, and rising medical costs. The aim of this study was to survey profile of antimicrobial susceptibility isolated microorganisms from hospitalized patients in PICU ward and detection of methicillin-resistant Staphylococcus aureus and ESBL-producing bacteria by phenotypic methods. Material and Methods: In this study participants were patients hospitalized in PICU part of Bahrami Hospital, Tehran, with attention to involved organ. For isolation of bacteria from patient’s samples, culture performed on different selective and differential media. After confirmation of bacteria by biochemical tests, susceptibility testing was performed by disc diffusion method. Phenotypic detection of MRSA strains was performed using cefoxcitin disc. ESBL producing strains were detected by ceftazidime (CAZ and ceftazidime/clavulanic acid (CAZ/CLA discs. Results: Among all isolated organisms from clinical samples, the most common isolated organisms were Escherichia coli (24 cases, Pseudomonas areoginosa (9 cases and Staphylococcus aureus (8 cases, respectively. Among eight MRSA isolated strains from different clinical samples, six strains (75% were MRSA. Among 52 isolated gram negative organisms, 5 strains (9/6% were ESBL. Conclusion: Standard interventions to prevent the transmission of antimicrobial resistance in health care facilities include hand hygiene, using barrier precautions in the care of colonized and infected patients, using dedicated instruments and equipment for these patients. The colonized or infected patients should be isolated in single rooms, multibed rooms or areas

  18. in-silico analysis suggests alterations in the function of XisA protein as a possible mechanism of butachlor toxicity in the nitrogen fixing cyanobacterium Anabaena sp. PCC 7120.

    Science.gov (United States)

    Singh, Shilpi; Singh, Prem Pal

    2013-01-01

    Butachlor, a commonly used herbicide adversely affects the nitrogen fixing capability of Anabaena, an acclaimed nitrogen fixer in the Indian paddy fields. The nitrogen fixation in Anabaena is triggered by the excision of nifD element by xisA gene leading to rearrangement of nifD forming nifHDK operon in the heterocyst of Anabaena sp. PCC7120. Functional elucidation adjudged through in-silico analysis revealed that xisA belongs to integrase family of tyrosine recombinase. The predicted functional partners with XisA protein that have shown cooccurence with this protein in a network are mainly hypothetical proteins with unknown functions except psaK1 whose exact function in photosystem I is not yet known. The focus of this study was to find out the relation between XisA and butachlor using in-silico approaches. The XisA protein was modeled and its active sites were identified. Docking studies revealed that butachlor binds at the active site of XisA protein hampering its excision ability vis-à-vis nif genes in Anabaena sp. PCC7120. This study reveals that butachlor is not directly involved in hampering the nitrogen fixing ability of Anabaena sp. PCC7120 but by arresting the excision ability of XisA protein necessary for the functioning of nif gene and nitrogen fixation.

  19. Painel molecular para detecção de microrganismos associados à sepse Molecular panel for detection of sepsis-related microorganisms

    Directory of Open Access Journals (Sweden)

    Leslie Ecker Ferreira

    2011-03-01

    Full Text Available INTRODUÇÃO: A sepse é uma resposta inflamatória sistêmica relacionada com altas taxas de mortalidade no meio hospitalar. O diagnóstico etiológico tardio e terapia antimicrobiana inadequada se associam a falhas do tratamento. Exames moleculares baseados na reação em cadeia da polimerase são considerados métodos mais rápidos e precisos do que técnicas de hemocultura para identificação microbiana, proporcionando uma taxa mais elevada de sucesso terapêutico. OBJETIVO: Desenvolver um painel de seqüências iniciadoras (primers para fragmentos de DNA de microrganismos associados à sepse. MÉTODOS: Seqüências iniciadoras para amplificação de Enterobacter spp., Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus e Candida spp. foram desenvolvidos e testados quanto a sensibilidade e especificidade com base em suas respectivas cepas padrão. RESULTADOS: A especificidade pretendida foi obtida para os primers de P. aeruginosa, S. aureus e Candida spp. O teste de sensibilidade mostrou um limite de detecção de 5 ng a 500 fg em amostras de sangue contaminado com DNA microbiano. CONCLUSÕES: O painel molecular apresentado oferece a vantagem de constituir um sistema flexível "aberto" em comparação a outros métodos de detecção múltipla.INTRODUCTION: Sepsis is a systemic inflammatory response related to high mortality rates in the hospital environment. Delayed etiological diagnosis and inadequate antimicrobial therapy are associated with treatment failures. Molecular tests based on polymerase chain reaction are regarded as faster and more accurate procedures than culture techniques for microbial identification, providing a higher rate of therapeutic success. OBJECTIVE: To develop a panel of primers for DNA fragments of sepsis-related microorganisms. METHODS: Primers for amplification of Enterobacter spp., Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Candida spp. were designed and tested for

  20. Elucidation of the 3-O-deacylase gene, pagL, required for the removal of primary β-hydroxy fatty acid from the lipid A in the nitrogen-fixing endosymbiont Rhizobium etli CE3.

    Science.gov (United States)

    Brown, Dusty B; Muszynski, Artur; Salas, Omar; Speed, Kacie; Carlson, Russell W

    2013-04-26

    Until now, the gene responsible for the 3-O-deacylation of lipid A among nitrogen-fixing endosymbionts has not been characterized. Several Gram-negative animal pathogens such as Salmonella enterica, Pseudomonas aeruginosa, and Bordetella bronchiseptica contain an outer membrane 3-O-deacylase (PagL) that has been implicated in host immune evasion. The role of 3-O-deacylated lipid A among nitrogen-fixing endosymbionts, plant endophytes, and plant pathogens has not been studied. However, D'Haeze et al. (D'Haeze, W., Leoff, C., Freshour, G., Noel, K. D., and Carlson, R. W. (2007) J. Biol. Chem. 282, 17101-17113) reported that the lipopolysaccharide from Rhizobium etli CE3 bacteroids isolated from host bean root nodules contained exclusively tetraacylated lipid A that lacked a lipid A β-hydroxymyristyl residue, an observation that is consistent with the possibility of PagL activity being important in symbiosis. A putative pagL gene was identified in the R. etli genome sequence. With this information, we created a pagL(-) mutant strain derived from R. etli CE3. Using mass spectrometry, we demonstrated that the mutant lacks 3-O-deacylated lipid A. The parent and mutant LPS were very similar as determined by gel electrophoresis and glycosyl composition analysis using gas chromatography/mass spectrometry. However, fatty acid analysis showed that the mutant lipid A contained larger amounts of β-hydroxypentadecanoic acid than that of the parent. Furthermore, the mutant was adversely affected in establishing symbiosis with its host, Phaseolus vulgaris.

  1. Biosurfactants from marine microorganisms

    OpenAIRE

    Suppasil Maneerat

    2005-01-01

    Biosurfactants are the surface-active molecules synthesized by microorganisms. With the advantage of environmental compatibility, the demand for biosurfactants has been steadily increasing and may eventually replace their chemically synthesized counterparts. Marine biosurfactants produced by some marine microorganisms have been paid more attention, particularly for the bioremediation of the sea polluted by crude oil. This review describes screening of biosurfactant-producing microorganisms, t...

  2. 多重PCR快速检测3种食源性致病菌%Detection of three food-borne pathogenic microorganisms by multiplex PCR

    Institute of Scientific and Technical Information of China (English)

    吴建英; 宋建新; 曹金萍; 涂智杰; 余慧宏; 胡芹; 魏建萍; 潘剑

    2014-01-01

    目的:建立一种能同时检测金黄色葡萄球菌、产单核李斯特菌和沙门菌3种致病菌的多重PCR检测方法。方法采用LB培养液对金黄色葡萄球菌、产单核李斯特菌和沙门菌标准菌株进行增菌。根据金黄色葡萄球菌的nuc基因、产单核李斯特氏菌的hlyA基因、沙门氏菌的invA基因设计引物,通过多重聚合酶链反应(PCR)对上述3种食源性致病菌的目的基因进行扩增,同时对反应体系进行优化。结果对平均浓度为5cfu/ml的金黄色葡萄球菌、产单核李斯特菌和沙门氏菌在LB培养液中进行8h振荡培养,可以检出阳性结果;把金黄色葡萄球菌、产单核李斯特菌、沙门菌、志贺菌、蜡样芽孢杆菌、大肠埃希菌O157、阪崎肠杆菌7种菌混合在一起提取混合基因组DNA进行PCR扩增,显示出很好的特异性结果。结论建立的多重PCR检测方法适用于金黄色葡萄球菌、产单核李斯特菌和沙门菌的快速检测,具有快速、简便、灵敏的特点,可广泛应用于食品卫生检测、食物中毒应急处理和临床检验等领域。%Objective To establish a multiplex PCR method for simultaneous detection of Staphylococcus aures, Listeria monocytogens and Salmonella spp. in food. Methods Staphylococcus aures, Listeria monocytogens, and Salmonella spp. were en-riched by LB medium. The primers were designed according to nuc gene of Staphylococcus aures, hlyA gene of Listeria monocyto-gens and invA gene of Salmonella spp. The target genes of these pathogens in food were amplified by multiplex PCR, whose reac-tion conditions were optimized specifically. Results The multiplex PCR method established in this experiment had high specificity while seven kinds of microorganism DNA were mixed in one PCR reaction tube, and the detection limit of the method was 5 cfu/ml for Staphylococcus aures, Listeria monocytogens and Salmonella spp. Conclusion The multiplex PCR method, which was

  3. Genome-wide investigation and functional characterization of the β-ketoadipate pathway in the nitrogen-fixing and root-associated bacterium Pseudomonas stutzeri A1501

    Directory of Open Access Journals (Sweden)

    Geng Lizhao

    2010-02-01

    Full Text Available Abstract Background Soil microorganisms are mainly responsible for the complete mineralization of aromatic compounds that usually originate from plant products or environmental pollutants. In many cases, structurally diverse aromatic compounds can be converted to a small number of structurally simpler intermediates, which are metabolized to tricarboxylic acid intermediates via the β-ketoadipate pathway. This strategy provides great metabolic flexibility and contributes to increased adaptation of bacteria to their environment. However, little is known about the evolution and regulation of the β-ketoadipate pathway in root-associated diazotrophs. Results In this report, we performed a genome-wide analysis of the benzoate and 4-hydroxybenzoate catabolic pathways of Pseudomonas stutzeri A1501, with a focus on the functional characterization of the β-ketoadipate pathway. The P. stutzeri A1501 genome contains sets of catabolic genes involved in the peripheral pathways for catabolism of benzoate (ben and 4-hydroxybenzoate (pob, and in the catechol (cat and protocatechuate (pca branches of the β-ketoadipate pathway. A particular feature of the catabolic gene organization in A1501 is the absence of the catR and pcaK genes encoding a LysR family regulator and 4-hydroxybenzoate permease, respectively. Furthermore, the BenR protein functions as a transcriptional activator of the ben operon, while transcription from the catBC promoter can be activated in response to benzoate. Benzoate degradation is subject to carbon catabolite repression induced by glucose and acetate in A1501. The HPLC analysis of intracellular metabolites indicated that low concentrations of 4-hydroxybenzoate significantly enhance the ability of A1501 to degrade benzoate. Conclusions The expression of genes encoding proteins involved in the β-ketoadipate pathway is tightly modulated by both pathway-specific and catabolite repression controls in A1501. This strain provides an ideal

  4. Mass Spectrometry for Rapid Characterization of Microorganisms

    Science.gov (United States)

    Demirev, Plamen A.; Fenselau, Catherine

    2008-07-01

    Advances in instrumentation, proteomics, and bioinformatics have contributed to the successful applications of mass spectrometry (MS) for detection, identification, and classification of microorganisms. These MS applications are based on the detection of organism-specific biomarker molecules, which allow differentiation between organisms to be made. Intact proteins, their proteolytic peptides, and nonribosomal peptides have been successfully utilized as biomarkers. Sequence-specific fragments for biomarkers are generated by tandem MS of intact proteins or proteolytic peptides, obtained after, for instance, microwave-assisted acid hydrolysis. In combination with proteome database searching, individual biomarker proteins are unambiguously identified from their tandem mass spectra, and from there the source microorganism is also identified. Such top-down or bottom-up proteomics approaches permit rapid, sensitive, and confident characterization of individual microorganisms in mixtures and are reviewed here. Examples of MS-based functional assays for detection of targeted microorganisms, e.g., Bacillus anthracis, in environmental or clinically relevant backgrounds are also reviewed.

  5. Airborne microorganisms from waste containers.

    Science.gov (United States)

    Jedlicka, Sabrina S; Stravitz, David M; Lyman, Charles E

    2012-01-01

    In physician's offices and biomedical labs, biological waste is handled every day. This waste is disposed of in waste containers designed for holding red autoclave bags. The containers used in these environments are closed hands-free containers, often with a step pedal. While these containers protect the user from surface-borne microorganisms, the containers may allow airborne microorganisms to escape via the open/close mechanism because of the air current produced upon open/close cycles. In this study, the air current was shown to be sufficient to allow airborne escape of microorganisms held in the container, including Aspergillus niger. However, bacterial cultures, such as Escherichia coli and Lactococcus lactis did not escape. This may be due to the choice of bacterial cultures and the absence of solid waste, such as dust or other particulate matter in the waste containers, that such strains of bacteria could travel on during aerosolization. We compared these results to those obtained using a re-designed receptacle, which mimimizes air currents, and detected no escaping microorganisms. This study highlights one potential source of airborne contamination in labs, hospitals, and other environments that dispose of biological waste.

  6. Microorganisms (Microbes), Role of

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2013-01-01

    Microorganisms (microbes) are those life forms too small to be seen by the naked eye; that is, those that require a microscope or other form of magnification in order to be observed. The term microorganism is thus a functional description rather than a taxonomic one, and the grouping includes...

  7. Microorganisms (Microbes), Role of

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2013-01-01

    Microorganisms (microbes) are those life forms too small to be seen by the naked eye; that is, those that require a microscope or other form of magnification in order to be observed. The term microorganism is thus a functional description rather than a taxonomic one, and the grouping includes a w...

  8. 农田环境中固氮菌的促生潜能与分布特点%Growth Promotion Potential and Distribution Features of Nitrogen-Fixing Bacteria in Field Environments

    Institute of Scientific and Technical Information of China (English)

    孙建光; 胡海燕; 刘君; 陈倩; 高淼; 徐晶; 周义清

    2012-01-01

    [目的]了解小麦、水稻、玉米、蔬菜等作物根际固氮菌的优势种群、固氮菌菌株的固氮、抗病、促生潜能以及菌株在系统发育地位和来源作物种类上的分布特点.[方法]采用无氮培养基培养固氮菌,乙炔还原法测定菌株固氮酶活性,平板对峙法测定菌株拮抗病原真菌性能,ACC(1-氨基环丙烷-1-羧酸)唯一氮源法定性测定菌株产ACC脱氨酶特性,比色法定量测定ACC脱氨酶活性,通过16S rDNA序列测定和相似性分析研究菌株的分类地位.[结果] 94株供试菌株的固氮酶活性在0.99-180.59nmol C2H4/h·mg蛋白,其中大于10 nmol C2H4/h·mg蛋白的菌株有42株,占全部供试菌株的44.7%;类芽孢杆菌属(Paenibacillus)和芽孢杆菌属(Bacillus)是主要类群,分别占供试菌株总数的33.0%和26.6%,且不具有寄主专一性.供试菌株中有6株分别对核盘菌(Sclerotinia sclerotiorum)、玉米赤霉菌(Gibberella zeae)和大丽轮枝菌(Verticillium dahliae)3种植物病原真菌表现出拮抗作用,占菌株总数的6.4%,抑菌率为23.9%-65.9%.有20株固氮菌能够产生ACC脱氨酶,占全部供试菌株的21.3%,活性在0.33-21.98 μmolα-丁酮酸、h·mg蛋白,主要分布在芽孢杆菌属、类芽孢杆菌属和根瘤菌属(Rhizobium).[结论]小麦、水稻、玉米、白菜、芹菜等作物根际以及农田环境中固氮菌的优势种群为类芽孢杆菌属和芽孢杆菌属,多数固氮菌菌株具有较高的固氮潜能,部分菌株具有ACC脱氨酶活性和促生潜能,少数菌株具有抗病潜能;固氮、抗病、促生潜力菌株主要分布在类芽孢杆菌属、芽孢杆菌属和根瘤菌属,随作物分布广泛,无专一性.%[Objective! The objective of this experiment is to determine the dominant species and phylogenetic position of nitrogen fixing bacteria in crop rhizosphere and field environments, and to screen for nitrogen-fixing bacteria with growth promotion potential. [Method

  9. Isolation and functional characterizations of spinach endogenous nitrogen-fixing bacteria%菠菜内生固氮菌的分离及其功能特性研究

    Institute of Scientific and Technical Information of China (English)

    王泽; 徐齐; 袁梅; 张磊; 高淼; 孙建光

    2015-01-01

    Endogenous nitrogen-fixing bacteria have positive functions of promoting growth, pathogen prevention and biological nitrogen fixation and occupy the plant tissue which is conductive to nutrient supply and suitable micro ecological environment. In this study, seven endogenous nitrogen-fixing bacteria were isolated from the root of spinach. Among the 7 diazotrophic bac-teria, five were identified as Pseudomonas and two belonged to Rhodococcus and Flavobacterium, respecitively. The nitroge-nase activities of strain Pseudomonas sp. BC-E6 and Pseudomonas sp. BC-E8 were ( 13. 19 ± 0. 32 ) and ( 12. 11 ± 0. 96 ) C2H4 nmol/(mg protein ·h), which was significantly higher (P<0. 01) than that of Azotobacter chroococcum ACCC11104. For Strain Pseudomonas sp. BC-E7, the nitrogenase activity was (8.42 ±0.03) C2H4 nmol/(mg protein ·h), production of indole acetic acid (IAA) was (59. 58 ± 4. 15) μg/mL, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity was (5. 067 ± 0. 376) μmol/(mg protein·h), and it had the capability to antagonize the growth of Rhizoctonia solani ACCC36124, Gibberella zeae ACCC362724, Sclerotinia sclerotiorum ACCC36084 and Sclerotinia sclerotiorum ACCC36905. Strain Pseudomonas sp. BC-E7 had been a multifunctional endogenous nitrogen-fixing bacterium, which should have good application prospect.%内生固氮菌具有促生、 病原菌的防治及生物固氮等作用, 并且占据着植物组织内有利于营养供应和微环境适宜的生态位, 是重要的微生物菌种资源. 从菠菜根内分离筛选优势内生固氮菌7 株, 其中假单胞菌属( Pseudomonas) 5株, 红球菌属 ( Rhodococcus) 和黄杆菌属 ( Flavobacterium) 各1株. 菌株Pseudomonas sp. BC-E6和Pseudomonas sp. BC-E8固氮酶活性较高, 分别为 (13. 19 ± 0. 32) 和 (12. 11 ± 0. 96) C2 H4 nmol/ ( mg pro-tein·h) , 与圆褐固氮菌 ( ACCC11103 ) 的固氮酶活性具有极显著性差异 ( P <0. 01 ); 菌株 Pseudomonas sp. BC-E7

  10. Biosurfactants from marine microorganisms

    Directory of Open Access Journals (Sweden)

    Suppasil Maneerat

    2005-11-01

    Full Text Available Biosurfactants are the surface-active molecules synthesized by microorganisms. With the advantage of environmental compatibility, the demand for biosurfactants has been steadily increasing and may eventually replace their chemically synthesized counterparts. Marine biosurfactants produced by some marine microorganisms have been paid more attention, particularly for the bioremediation of the sea polluted by crude oil. This review describes screening of biosurfactant-producing microorganisms, the determination of biosurfactant activity as well as the recovery of marine surfactant. The uses of marine biosurfactants for bioremediation are also discussed.

  11. Research progress in the impedance method in the detection of microorganisms in food%阻抗法检测食品中微生物的研究进展

    Institute of Scientific and Technical Information of China (English)

    张爱萍; 唐佳妮; 刘东红

    2011-01-01

    As a rapid detection method of microorganisms,the impedance method can be used to rapidly detect the total number of colonies, coliform, mold, yeast, and so on.There is great prospect for the rapid detection of pathogens in food as the research of the impedance method developed.The development of the traditional impedance method and the latest research of the impedance method were reviewed ,aimed at the future research of the impedance method for rapid detection of microorganisms in food.%阻抗法作为微生物快速检测方法,可用于食品中菌落总数、大肠菌群、霉菌、酵母等常规微生物的快速检测;随着研究的深入,其在食品病原菌快速检测中也大有前景.综述了传统阻抗微生物检测的发展历程及阻抗法最新研究方向,旨在为今后阻抗法快速检测食品中微生物的研究奠定基础.

  12. Bacterial community analysis of an industrial wastewater treatment plant in Colombia with screening for lipid-degrading microorganisms.

    Science.gov (United States)

    Silva-Bedoya, Lina Marcela; Sánchez-Pinzón, María Solange; Cadavid-Restrepo, Gloria Ester; Moreno-Herrera, Claudia Ximena

    2016-11-01

    The operation of wastewater treatment technologies depends on a combination of physical, chemical and biological factors. Microorganisms present in wastewater treatment plants play essential roles in the degradation and removal of organic waste and xenobiotic pollutants. Several microorganisms have been used in complementary treatments to process effluents rich in fats and oils. Microbial lipases have received significant industrial attention because of their stability, broad substrate specificity, high yields, and regular supply, as well as the fact that the microorganisms producing them grow rapidly on inexpensive media. In Colombia, bacterial community studies have focused on populations of cultivable nitrifying, heterotrophic and nitrogen-fixing bacteria present in constructed wetlands. In this study, culture-dependent methods, culture-independent methods (TTGE, RISA) and enzymatic methods were used to estimate bacterial diversity, to monitor temporal and spatial changes in bacterial communities, and to screen microorganisms that presented lipolytic activity. The dominant microorganisms in the Wastewater Treatment Plant (WWTP) examined in this study belonged to the phyla Firmicutes, Proteobacteria and Bacteroidetes. The enzymatic studies performed indicated that five bacterial isolates and three fungal isolates possessed the ability to degrade lipids; additionally, the Serratia, Kosakonia and Mucor genera presented lipase-mediated transesterification activity. The implications of these findings in regard to possible applications are discussed later in this paper. Our results indicate that there is a wide diversity of aerobic Gram-negative bacteria inhabiting the different sections of the WWTP, which could indicate its ecological condition, functioning and general efficiency.

  13. Micro-Organ Device

    Science.gov (United States)

    Gonda, Steve R. (Inventor); Chang, Robert C. (Inventor); Starly, Binil (Inventor); Culbertson, Christopher (Inventor); Holtorf, Heidi L. (Inventor); Sun, Wei (Inventor); Leslie, Julia (Inventor)

    2013-01-01

    A method for fabricating a micro-organ device comprises providing a microscale support having one or more microfluidic channels and one or more micro-chambers for housing a micro-organ and printing a micro-organ on the microscale support using a cell suspension in a syringe controlled by a computer-aided tissue engineering system, wherein the cell suspension comprises cells suspended in a solution containing a material that functions as a three-dimensional scaffold. The printing is performed with the computer-aided tissue engineering system according to a particular pattern. The micro-organ device comprises at least one micro-chamber each housing a micro-organ; and at least one microfluidic channel connected to the micro-chamber, wherein the micro-organ comprises cells arranged in a configuration that includes microscale spacing between portions of the cells to facilitate diffusion exchange between the cells and a medium supplied from the at least one microfluidic channel.

  14. Rumen microorganisms and fermentation

    Directory of Open Access Journals (Sweden)

    AR Castillo-González

    2014-01-01

    Full Text Available The rumen consists of a complex ecosystem where nutrients consumed by ruminants are digested by fermentation process, which is executed by diverse microorganisms such as bacteria, protozoa, and fungi. A symbiotic relationship is found among different groups of microorganisms due to the diverse nature of these microbial species and their adaptability and interactions also coexist. The ruminant provides the necessary environment for the establishment of such microorganisms, while the microorganisms obtain energy from the host animal from microbial fermentation end products. Within the ruminal ecosystem, the microorganisms coexist in a reduced environment and pH remains close to neutral. Rumen microorganisms are involved in the fermentation of substrates contained in thedietof the animals (carbohydrates, proteins and lipids. However, the fermentation process is not 100% effective because there are energy losses mainly in the form of methane gas (CH4, which is a problem for the environment since it is a greenhouse gas. In order to improve the efficiency of ruminant production systems, nutritional strategies that aim to manipulate ruminal fermentation using additives in the diet such as monensin, tallow, buffers, nitrogen compounds, probiotics, and others have been used. These additives allow changing the ruminal fermentation process in ways that produce better growth efficiency while decreasing energy loss. The purpose of this review is to contribute to a better understanding of the fermentation processes taking place in the rumen, providing information that can be applied in the development of new nutritional strategies for the improvement of the digestion process to achieve maximum production.

  15. Application of flow cytometry to wine microorganisms.

    Science.gov (United States)

    Longin, Cédric; Petitgonnet, Clément; Guilloux-Benatier, Michèle; Rousseaux, Sandrine; Alexandre, Hervé

    2017-04-01

    Flow cytometry (FCM) is a powerful technique allowing detection and enumeration of microbial populations in food and during food process. Thanks to the fluorescent dyes used and specific probes, FCM provides information about cell physiological state and allows enumeration of a microorganism in a mixed culture. Thus, this technique is increasingly used to quantify pathogen, spoilage microorganisms and microorganisms of interest. Since one decade, FCM applications to the wine field increase greatly to determine population and physiological state of microorganisms performing alcoholic and malolactic fermentations. Wine spoilage microorganisms were also studied. In this review we briefly describe FCM principles. Next, a deep revision concerning enumeration of wine microorganisms by FCM is presented including the fluorescent dyes used and techniques allowing a yeast and bacteria species specific enumeration. Then, the last chapter is dedicated to fluorescent dyes which are used to date in fluorescent microscopy but applicable in FCM. This chapter also describes other interesting "future" techniques which could be applied to study the wine microorganisms. Thus, this review seeks to highlight the main advantages of the flow cytometry applied to wine microbiology.

  16. DNA生物传感器快速检测病原微生物的临床实验研究%Experimental studtes on DNA biosensors for rapid detection of pathogenic microorganism

    Institute of Scientific and Technical Information of China (English)

    张诒亮; 任玉琰

    2013-01-01

    目的:对DNA生物传感器在病原微生物的快速检测方面的临床实验效果进行分析探讨。方法采用SPR传感器对甲型流感病毒进行微生物快速检测。结果 SPR传感器在与流感病毒的核酸进行杂交后,能够灵敏、准确地将病毒的折射率反映出来,且效率和敏感性都比较高。结论 DNA生物传感器相较于传统检测方法更具优势,具有高通量、高敏感、高效率以及低成本等优点,值得推广应用。%Objective To evaluate the clinical effect of DNA biosensor for rapid detection of pathogenic microorganisms. Methods Using the SPR sensor for rapid detection of microorganisms on influenza a virus. Results SPR sensor in nucleic acid hybridization with influenza virus, the virus can sensitively, accurately reflected the refractive index, and the efficiency and sensitivity were high. Conclusion The traditional method of detecting DNA biosensor compared with more advantages, the advantages of high throughput, high sensitive, high efficiency and low cost, and is worthy of popularization and application.

  17. Alfalfa nodules elicited by a flavodoxin-overexpressing Ensifer meliloti strain display nitrogen-fixing activity with enhanced tolerance to salinity stress.

    Science.gov (United States)

    Redondo, Francisco J; Coba de la Peña, Teodoro; Lucas, M Mercedes; Pueyo, José J

    2012-12-01

    Nitrogen fixation by legumes is very sensitive to salinity stress, which can severely reduce the productivity of legume crops and their soil-enriching capacity. Salinity is known to cause oxidative stress in the nodule by generating reactive oxygen species (ROS). Flavodoxins are involved in the response to oxidative stress in bacteria and cyanobacteria. Prevention of ROS production by flavodoxin overexpression in bacteroids might lead to a protective effect on nodule functioning under salinity stress. Tolerance to salinity stress was evaluated in alfalfa nodules elicited by an Ensifer meliloti strain that overexpressed a cyanobacterial flavodoxin compared with nodules produced by the wild-type bacteria. Nitrogen fixation, antioxidant and carbon metabolism enzyme activities were determined. The decline in nitrogenase activity associated to salinity stress was significantly less in flavodoxin-expressing than in wild-type nodules. We detected small but significant changes in nodule antioxidant metabolism involving the ascorbate-glutathione cycle enzymes and metabolites, as well as differences in activity of the carbon metabolism enzyme sucrose synthase, and an atypical starch accumulation pattern in flavodoxin-containing nodules. Salt-induced structural and ultrastructural alterations were examined in detail in alfalfa wild-type nodules by light and electron microscopy and compared to flavodoxin-containing nodules. Flavodoxin reduced salt-induced structural damage, which primarily affected young infected tissues and not fully differentiated bacteroids. The results indicate that overexpression of flavodoxin in bacteroids has a protective effect on the function and structure of alfalfa nodules subjected to salinity stress conditions. Putative protection mechanisms are discussed.

  18. Screening and Preliminary Identification for a Strain of Nitrogen -Fixing Bacterium Producing PHB%一株产 PHB 固氮菌的筛选和初步鉴定

    Institute of Scientific and Technical Information of China (English)

    李贵正; 涂国全; 刘纪臣; 李新柱

    2015-01-01

    Eight nitrogen -fixing bacteria were isolated from the activated sludge from sewage farm of Kingenta by enriching culture and isolating in Ashby medium.Three strains producing PHB were obtained by Suda black staining.Strain N1 was regarded as the best one by the PHB diameter,content of PHB account for cell dry weight and the colony growth rate.Strain N1 was preliminary identified as Azotobacter chroococcum.%经 Ashby 培养基富集培养及平板分离,从金正大污水处理厂的活性污泥中分离到8株自生固氮菌。经苏丹黑染色初筛获得3株产 PHB 菌株。以菌株产生的 PHB 颗粒大小、PHB 占细胞干重的含量及菌落生长速度为指标,获得最佳菌株 N1。通过《伯杰氏细菌学鉴定手册》第九版初步鉴定此菌株为圆褐固氮菌(Azotobacter chroococcum)。

  19. Degradation of the neonicotinoid insecticide acetamiprid via the N-carbamoylimine derivate (IM-1-2) mediated by the nitrile hydratase of the nitrogen-fixing bacterium Ensifer meliloti CGMCC 7333.

    Science.gov (United States)

    Zhou, Ling-Yan; Zhang, Long-Jiang; Sun, Shi-Lei; Ge, Feng; Mao, Shi-Yun; Ma, Yuan; Liu, Zhong-Hua; Dai, Yi-Jun; Yuan, Sheng

    2014-10-15

    The metabolism of the widely used neonicotinoid insecticide acetamiprid (ACE) has been extensively studied in plants, animals, soils, and microbes. However, hydration of the N-cyanoimine group in ACE to the N-carbamoylimine derivate (IM-1-2) by purified microbes, the enzyme responsible for this biotransformation, and further degradation of IM-1-2 have not been studied. The present study used liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy to determine that the nitrogen-fixing bacterium Ensifer meliloti CGMCC 7333 transforms ACE to IM-1-2. CGMCC 7333 cells degraded 65.1% of ACE in 96 h, with a half-life of 2.6 days. Escherichia coli Rosetta (DE3) overexpressing the nitrile hydratase (NHase) from CGMCC 7333 and purified NHase converted ACE to IM-1-2 with degradation ratios of 97.1% in 100 min and 93.9% in 120 min, respectively. Interestingly, IM-1-2 was not further degraded by CGMCC 7333, whereas it was spontaneously hydrolyzed at the N-carbamoylimine group to the derivate ACE-NH, which was further converted to the derivative ACE-NH2. Then, ACE-NH2 was cleaved to the major metabolite IM-1-4. IM-1-2 showed significantly lower insecticidal activity than ACE against the aphid Aphis craccivora Koch. The present findings will improve the understanding of the environmental fate of ACE and the corresponding enzymatic mechanisms of degradation.

  20. Effect of Sodium Humate on Symbiotic Nitrogen - fixing and Photosynthetic Activity of Soybean%腐植酸钠对大豆共生固氮及光合作用的影响

    Institute of Scientific and Technical Information of China (English)

    吉利巴B.A.; 西涅果夫斯卡娅B.T.; 沃洛赫(N).Π.; 苏哈鲁科夫B.Π.

    2012-01-01

    Soybean was seed-coaled with Sodium humate,Rhizobia arid other fertilizers,and leaf sprayed with Sodium humate. Among the treatments,seed-coated with Sodium humate,Rhizobia(KB11 +MM117) ,Ammonium molybdate and leaf sprayed Sodium humate increased leaf area,photosynthetic potential, improved nodule number,weight and nitrogen-fixing efficiency, hence, got the highest seed yield of 2360 kg · ha-1, which was 22% higher than that of control.%以“和谐”号大豆为材料,研究了腐植酸钠与根瘤菌剂和不同肥料处理对大豆共生固氮和光合作用的影响.结果表明,利用腐植酸钠、钼酸铵、根瘤菌剂(KS11+ MM117)进行拌种和生育期间叶面喷施腐植酸钠处理,增加了叶面积和光合势,提高了根瘤数量、根瘤干物质积累量和固氮效率,最终获得的籽粒产量高达2360 kg·hm-2,较对照提高了22%.

  1. OPPORTUNISTIC MICROORGANISMS IN RHEUMATIC DISEASES

    Directory of Open Access Journals (Sweden)

    M. Yu. Gulneva

    2016-01-01

    Full Text Available The paper gives the data available in the literature on the role of opportunistic microorganisms (OMs in rheumatic diseases (RDs. OMs are anticipated to be involved as triggers initiating the development of chronic inflammation. Along with this, OMs in autoimmune diseases may play a defensive role through the interaction with Toll-like receptors and the activation of T cells that have suppressor activity. The possible involvement of OMs in the pathogenesis of RDs provides support not only the isolation of microorganisms, but also the detection of antibacterial antibodies of different classes. Of great importance are OMs in the etiology of comorbid infections, the risk of which is due to both the presence of autoimmune RDs and the necessity of using the drugs having immunosuppressive activity. The active clinical introduction of biological agents is followed by a rise in the rate and severity of different infections, including those caused by OMs. Having a marked biological and environmental plasticity, OMs are able to persist long when there are changes in the immune defense of patients with RDs. There is evidence for the higher adhesive properties and persistent potential of the microorganisms that colonize the body of patients with RDs. In the latter, OMs that are distinguished by pronounced antibiotic polyresistance are isolated, making the treatment and prevention of opportunistic infections more difficult in rheumatology. The results of the papers analyzed in the review suggest that the study of OMs in RDs is of practical importance.

  2. Cohnella capsici sp. nov., a novel nitrogen-fixing species isolated from Capsicum annuum rhizosphere soil, and emended description of Cohnella plantaginis.

    Science.gov (United States)

    Wang, Li-Ying; Wang, Tian-Shu; Chen, San-Feng

    2015-01-01

    A novel bacterial strain designated YN-59(T) was isolated from Capsicum annuum rhizosphere soil in China. The isolate was found to be aerobic, Gram-positive, rod-shaped and to form ellipsoidal or oval spores positioned centrally in swollen sporangia. On the basis of 16S rRNA gene sequence analysis, the isolated strain YN-59 was determined to be related to members of genus Cohnella. High levels of 16S rRNA gene sequence similarity were found between strain YN-59 and Cohnella plantaginis DSM 25424(T) (98.5 %) and Cohnella ginsengisoli DSM18997(T) (97.3 %); the 16S rRNA gene sequence similarities between strain YN-59 and the other strains recognized members of the genus Cohnella were below 97 %. The DNA-DNA hybridization values of strain YN-59 with C. plantaginis DSM 25424(T) and C. ginsengisoli DSM18997(T) were 44.2 ± 8.4 and 28.8 ± 5.8 %, respectively. The DNA G + C content of strain YN-59(T) was determined to be 59.32 mol %. The major isoprenoid quinone was identified as MK-7 and the predominant fatty acids as anteiso-C15:0 (45.32 %), iso-C16:0 (19.19 %), iso-C15:0 (9.65 %) and C16:0 (8.91 %). The polar lipids of strain YN-59(T) were found to consist of diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol; several unidentified phospholipids were also detected. The diagnostic diamino acid in the cell wall was identified as meso-diaminopimelic. On the basis of its phenotypic and genotypic characteristics and levels of DNA-DNA hybridization, strain YN-59(T) is considered to represent a novel species of the genus Cohnella, for which the name Cohnella capsici sp. nov. (type strain YN-59(T) = CGMCC 1.12046(T) = JCM 19168(T)) is proposed.

  3. Comparison of the sensitivity of RT-PCR and general PCR in detecting pathogenic microorganisms%实时荧光PCR和普通PCR方法检测病原微生物的灵敏度比较

    Institute of Scientific and Technical Information of China (English)

    钟岸; 蔡蓁; 王毅

    2013-01-01

    Objective To compare the detecting threshold of two different PCR methods,and to select the accurate and economical way to detect the pathogenic microorganisms.Methods Standard samples were applied to establish the optimal condition for the two kinds of PCR methods.Primer design was based on the targeting sequence of the pathogenic microorganism.The products of the PCR were detected by amplification plot or agarose-gel electrophoresis.The highest detecting sensitivity was set by the lowest concentration which is able to be detected by PCR.By comparison,the optimal method was chosen for the pathogenic microorganism detection.Results Supematant of bacteria lysis solution in real-time PCR after 10-8 dilution can still be observed with amplification curve.The general PCR products after agarose gel electrophoresis staining can be observed only with the concentration of 10-5.The sensitivity of general PCR was significantly lower than that of RT-PCR.Conclusion RT-PCR has higher detecting sensitivity,but general PCR is more economical.%目的 通过比较两种PCR检测的灵敏度,选择不同条件下经济准确的方法检测病原微生物.方法 制备标准样品用以两种PCR扩增条件的确定,通过目的基因片段设计引物,扩增菌体裂解液上清.PCR产物分别通过扩增曲线和琼脂糖电泳检测目的条带的存在,以最低检测的条带浓度作为两种不同PCR检测的最高灵敏度,通过比较,选择在不同的限制条件下较为方便经济的方法检测病原微生物.结果 实时PCR中裂解菌液上清经过10-8倍稀释后仍能观测到扩增曲线的存在.而普通PCR产物经过琼脂糖电泳染色后观测只能观测到10-5浓度的条带,灵敏度远不及RT-PCR.结论 荧光PCR检测灵敏度较高,普通PCR琼脂糖电泳方法只能达到RT-PCR检测灵敏度的一半但比较经济.

  4. Effects of Location Fertilization Managements on the Nitrogen-fixing Bacteria Diversities of Soybean in Dong-bei black soil%定位培肥对东北黑土土壤固氮菌多样性的影响

    Institute of Scientific and Technical Information of China (English)

    王大庆; 刘朴方; 孙泰朋; 孟雨田; 赵伟; 王宏燕

    2016-01-01

    基于10年的黑土培肥定位试验,本试验采用PCR-DGGE、克隆测序技术的方法,研究了培肥处理对大豆固氮菌多样性的影响。 DGGE 图谱分析表明对照土壤固氮菌多样性指数最高,其次为农肥低量处理、农化1:1处理、化肥低量处理和农肥高量处理,化肥高量处理土壤固氮菌多样性指数最低。在相似度60%水平上化肥处理聚成一群,对照、农肥处理和农化1:1处理量聚成一群。培肥处理降低了土壤固氮菌的多样性,影响了土壤中固氮菌的群落结构,其中培肥高量处理比低量处理降低土壤固氮菌多样性的效果更显著。%Through a 10-year experiment site on black soil, our paper studied the effects of location fertilization managements on the nitrogen-fixing bacteria diversities of soybean in Dong-bei black soil by PCR-DGGE and clone sequencing methods. DGGE atlas analysis demonstrated that nitrogen-fixing bacteria diversities of CK was the highest and the lowest nitrogen-fixing bacteria diversities was high chemical fertilizer treatment and then was low manure fertilizer, 1/2 manure fertilizer plus 1/2 chemical fertilizer, low chemical fertilizer, and high manure fertilizer. There were two groups in similarity 60% level, one was chemical fertilizer, the other was CK, manure fertilizer, and 1/2 manure fertilizer plus 1/2 chemical fertilizer. Fertilizer managements reduced nitrogen-fixing bacteria diversities of soybean and influenced community structures of nitrogen-fixing bacteria, especially high fertilizer managements could decrease nitrogen-fixing bacteria diversities of soybean more notablly than low fertilizer managements.

  5. Elastohydrodynamics of flagellated microorganisms

    Science.gov (United States)

    Li, Gaojin; Ardekani, Arezoo

    2016-11-01

    The swimming motion of many microorganisms and cells are achieved by the waving deformation of their cilia and flagella. The typical structure of flagella and cilia contains nine doublets of parallel microtubules in a cylindrical arrangement surrounding one pair of microtubules in the center. The dynein molecular motors internally drive the sliding motion between the neighboring microtubules and cause the bending motion of the flagella and cilia and drive the microorganism swimming motion. In this work, we develop a numerical model for a microorganism swimming by an internally self-driven filament. Our numerical method captures the interaction between the elasticity of the flagellum and the surround fluid. The no-slip boundary conditions are satisfied by an iterative distributed Lagrangian multiplier method. We also investigate the effects of the non-Newtonian fluid rheology on the motion of an elastic flagellum near a wall.

  6. Stress tolerant crops from nitrogen fixing trees

    Energy Technology Data Exchange (ETDEWEB)

    Becker, R.; Saunders, R.M.

    1983-01-01

    Notes are given on the nutritional quality and uses of: pods of Geoffroea decorticans, a species tolerant of saline and limed soils and saline water; seeds of Olneya tesota which nodulates readily and fixes nitrogen and photosynthesizes at low water potential; and pods of Prosopis chilensis and P. tamarugo which tolerate long periods without rain. 3 references.

  7. Nitrogen-fixing methane-utilizing bacteria

    NARCIS (Netherlands)

    Bont, de J.A.M.

    1976-01-01

    Methane occurs abundantly in nature. In the presence of oxygen this gas may be metabolized by bacteria that are able to use it as carbon and energy source. Several types of bacteria involved in the oxidation of methane have been described in literature. Methane-utilizing bacteria have in common that

  8. Nitrogen-fixing methane-utilizing bacteria

    NARCIS (Netherlands)

    Bont, de J.A.M.

    1976-01-01

    Methane occurs abundantly in nature. In the presence of oxygen this gas may be metabolized by bacteria that are able to use it as carbon and energy source. Several types of bacteria involved in the oxidation of methane have been described in literature. Methane-utilizing bacteria have in

  9. Radiation resistance of microorganisms on unsterilized infusion sets

    DEFF Research Database (Denmark)

    Christensen, E. Ahrensburg; Kristensen, H.; Hoborn, J.;

    1991-01-01

    Three different methods were used for detecting and isolating microorganisms with high radiation resistance from the microbial contamination on infusion sets prior to sterilization. By all three methods, microorganisms with a radiation resistance high enough to be a critical factor in a steriliza......Three different methods were used for detecting and isolating microorganisms with high radiation resistance from the microbial contamination on infusion sets prior to sterilization. By all three methods, microorganisms with a radiation resistance high enough to be a critical factor...

  10. Diversity of associated nitrogen-fixing bacteria isolated from the pioneer plants-Vetiver zizanioides%先锋牧草-香根草联合固氮菌多样性

    Institute of Scientific and Technical Information of China (English)

    赵现伟; Chaudhary Hassan Javed; 何玉梅; 张志英; 彭桂香; 谭志远

    2009-01-01

    [目的]香根草(Vetiver zizanioides)是一种多年生禾本科草本植物,具有极强的生态适应性和抗逆能力,可作饲料和水土保持用.通过研究香根草联合固氮菌多样性,为进一步研究和应用打下基础.[方法]采用无氮培养基,首次从香根草中分离到47株联合固氮菌,分别应用SDS-PAGE全细胞蛋白质电泳、DNA指纹图谱、唯一碳源和16S rDNA全序列测定等方法,进行聚类和多样性分析.[结果]SDS-PAGE、IS-PCR和Bio-BIQA碳源利用的聚类结果基本一致,将供试菌株分为6个类群和4个单菌株;16S rDNA序列测定表明,从香根草中分离的菌株包括了佛莱辛草螺菌(Herbaspirillum frisingense)、中型假食酸菌(Pseudacidovorax intermedius)、恶臭假单胞菌(Pseudomonas putida)、荧光假单胞菌(Pseudomonas fluorescens)、越南伯克氏菌(Burkholderia vietnamiensis)、阴沟肠杆菌(Enterobacter cloacae)、路德维希肠杆菌(Enterobacter ludwigii)和松江壳聚糖降解菌(Mitsuaria chitosanitabida)等不同菌种.[结论]香根草联合固氮菌具有较大的资源多样性,对固氮菌资源的扩展和将来牧草上的应用具有重要意义.%[Objective] Vetiver zizanioides is a perennial grass of the Poaceae family, known of its silage, soil and water conservation role. The aim of the study was to collect and identify the resources of the nitrogen-fixing bacteria associated with Vetiver zizanioides. [Methods] Associated nitrogen-fixing bacteria isolated from Vetiver zizanioides were studied by SDS-PAGE whole-cell protein patterns, insert sequence (IS)-PCR finger printing, utilization of sole carbon sources and 16S rRNA gene sequence analysis. [Results] Based on the results of finger printing analysis, protein patterns and biological test, isolates were grouped into 6 clusters, except 4 single strains. Phylogenetic analysis of 16S rDNA sequences indicated that isolates belonged to Herbaspirillum frisingense,Enterobacter ludwigii

  11. Isolation and identification of associative nitrogen-fixing bacteria in the rhizosphere of Axonopus compressus%地毯草根际固氮菌的分离及鉴定

    Institute of Scientific and Technical Information of China (English)

    樊俊华; 张晓波; 赵艳

    2012-01-01

    This study isolates and identifies associative nitrogen-fixing bacteria from the rhizo-sphere of Axonopus compressus by acetylene reduction assay (ARA) combined with gas chroma-tography(GC). Six strains were isolated, and showed that nitrogenase activity was large variation between strains (from 92.5 C2H4 to 295.2 C2H4 nmol·mL-1·h-1). Strains hnN2 and hnN6 showed higher nitrogenase activity (>200 C2H4 nmol·mL-1·h-'). All strains belonged to Bacillus(2 strains), Azotobacter (3 strains) and Pseudomonas (1 strains), respectively.%结合气相色谱仪,利用乙炔还原等方法对地毯草(Axonopus compressus)根际固氮菌进行分离和鉴定.结果表明,从地毯草根际土壤中分离获得6株固氮菌株,菌株的固氮酶活性相差较大(92.5 C2H4~295.2 C2H4nmol·mL-1·h-1),菌株hnN2及hnN6具有较高的固氮酶活性(>200 C2H4nmol·mL-1·h-1);菌株经鉴定分属Bacillus(2株)、Azotobacter(3株)和Pseudomonas(1株)3个属.

  12. Modelling microorganisms in food

    NARCIS (Netherlands)

    Brul, S.; Gerwen, van S.; Zwietering, M.H.

    2007-01-01

    Predicting the growth and behaviour of microorganisms in food has long been an aim in food microbiology research. In recent years, microbial models have evolved to become more exact and the discipline of quantitative microbial ecology has gained increasing importance for food safety management, part

  13. Imprinting of Microorganisms for Biosensor Applications

    Science.gov (United States)

    Idil, Neslihan; Mattiasson, Bo

    2017-01-01

    There is a growing need for selective recognition of microorganisms in complex samples due to the rapidly emerging importance of detecting them in various matrices. Most of the conventional methods used to identify microorganisms are time-consuming, laborious and expensive. In recent years, many efforts have been put forth to develop alternative methods for the detection of microorganisms. These methods include use of various components such as silica nanoparticles, microfluidics, liquid crystals, carbon nanotubes which could be integrated with sensor technology in order to detect microorganisms. In many of these publications antibodies were used as recognition elements by means of specific interactions between the target cell and the binding site of the antibody for the purpose of cell recognition and detection. Even though natural antibodies have high selectivity and sensitivity, they have limited stability and tend to denature in conditions outside the physiological range. Among different approaches, biomimetic materials having superior properties have been used in creating artificial systems. Molecular imprinting is a well suited technique serving the purpose to develop highly selective sensing devices. Molecularly imprinted polymers defined as artificial recognition elements are of growing interest for applications in several sectors of life science involving the investigations on detecting molecules of specific interest. These polymers have attractive properties such as high bio-recognition capability, mechanical and chemical stability, easy preparation and low cost which make them superior over natural recognition reagents. This review summarizes the recent advances in the detection and quantification of microorganisms by emphasizing the molecular imprinting technology and its applications in the development of sensor strategies. PMID:28353629

  14. Inactivation of Microorganisms

    Science.gov (United States)

    Alzamora, Stella Maris; Guerrero, Sandra N.; Schenk, Marcela; Raffellini, Silvia; López-Malo, Aurelio

    Minimal processing techniques for food preservation allow better retention of product flavor, texture, color, and nutrient content than comparable conventional treatments. A wide range of novel alternative physical factors have been intensely investigated in the last two decades. These physical factors can cause inactivation of microorganisms at ambient or sublethal temperatures (e.g., high hydrostatic pressure, pulsed electric fields, ultrasound, pulsed light, and ultraviolet light). These technologies have been reported to reduce microorganism population in foods while avoiding the deleterious effects of severe heating on quality. Among technologies, high-energy ultrasound (i.e., intensities higher than 1 W/cm2, frequencies between 18 and 100 kHz) has attracted considerable interest for food preservation applications (Mason et al., 1996; Povey and Mason, 1998).

  15. Informative communication of microorganisms

    Directory of Open Access Journals (Sweden)

    G. N. Kremenchutskу

    2010-06-01

    Full Text Available Macroorganism in combination with microbiota is considered as a “superorganism”. Microorganisms, belonging to the microbiota, are in dynamic equilibrium with a macroorganism. This balance is achieved through a molecular “language” of communication between prokaryotic and eukaryotic cells. Molecular communication between cells leads to positive and negative results. A large number of metabolites of microorganisms that carry the information load: autoinducers is revealed. Autoinducer affect on the immune systems, and variety of metabolic processes. This affects on practically all organs and systems of maсroorganism. Studied metabolites of aerococci affect on the immune system, regenerative cycles and other processes of macroorganism. The problem of informative communication between prokaryotes and eukaryotes provides new insights about vital functions of “superorganisms”.

  16. Cellulolytic Microorganisms from Thermal Environments

    Energy Technology Data Exchange (ETDEWEB)

    Vishnivetskaya, Tatiana A [ORNL; Raman, Babu [ORNL; Phelps, Tommy Joe [ORNL; Podar, Mircea [ORNL; Elkins, James G [ORNL

    2012-01-01

    Thermal, anaerobic environments rich in decaying plant material are a potential source of novel cellulolytic bacteria. Samples collected from geothermal aquifers in the Yellowstone National Park (YNP) were used to select for cellulolytic thermophiles. Laboratory enrichments on dilute-acid pretreated plant biomass (switchgrass, Populus), and crystalline cellulose (Avicel) resulted in the isolation of 247 environmental clones. The majority of individual clones were affiliated with the cellulolytic bacteria of phylum Firmicutes, followed by xylanolytic and saccharolytic members of the phylum Dictyoglomi. Among the Firmicutes, the clones were affiliated with the genera Caldicellulosiruptor (54.4%), Caloramator (11.5%), Thermoanaerobacter (8.8%), Thermovenabulum (4.1%), and Clostridium (2.0%). From established anaerobic thermophilic enrichments a total of 81 single strains of the genera Caldicellulosiruptor (57%) and Thermoanaerobacter (43%) were isolated. With continuous flow enrichment on Avicel, increases in the relative abundance of Caloramator sp. was observed over clones detected from the Caldicellulosiruptor. Complex communities of interacting microorganisms bring about cellulose decomposition in nature, therefore using up-to-date approaches may yield novel cellulolytic microorganisms with high activity and a rapid rate of biomass conversion to biofuels.

  17. Desempenho do arroz irrigado em resposta à utilização de cianobactérias fixadoras de nitrogênio = Performance of paddy rice in response to the use of nitrogen-fixing cyanobacteria

    Directory of Open Access Journals (Sweden)

    Edgardo Oscar Brenzoni

    2007-01-01

    Full Text Available O objetivo do presente estudo foi avaliar a utilização de inóculos decianobactérias fixadoras de nitrogênio como alternativa à adubação química de nitrogênio na cultura do arroz irrigado. Para tanto, foram conduzidos quatro experimentos, nos anos agrícolas de 1999/00 a 2002/03, avaliando os tratamentos: testemunha sem aplicação de N em cobertura; 20 kg ha-1 de N aplicado em cobertura; 40 kg ha-1 de N aplicado em cobertura; 90 kg ha-1 de N aplicado em cobertura; 50 g ha-1 de Rizogram®; 100 g ha-1 de Rizogram®. Verificou-se interação dos tratamentos com os anos avaliados, o que pode ter ocultado o desempenho destes. Além disso, verificou-se que, para a variável “número de grãos por panícula”, a utilização de cianobactérias nas duas dosagens estudadas (50 e 100 g ha-1 produziu resultados semelhantes à adubação nitrogenada (90 kg ha-1, com potencialredução do número porcentual de espiguetas estéreis. Os tratamentos não afetaram o rendimento de grãos do arroz irrigado, devido às variações ambientais dos anos avaliados.A four-year experiment irrigated rice was carried out in order to evaluate the performance of Nostoc sp. and Tolypothrix sp. nitrogen-fixing cyanobacteria strains (Rizogram™, as an alternative to chemical nitrogen fertilization in irrigated rice. The treatments evaluated in the experiments included: control without top dressing Napplication; top dressing application of 20, 40 and 90 kg ha-1; 50 g ha-1 of Rizogram™, and 100 g ha-1 of Rizogram™. It was verified interaction between the years of the study and the treatments, which may have affected the performance of these treatments. Moreover, it was observed that, for the number of grains per panicle, the use of cyanobacteria in two studied rates (50 e 100 g ha-1 produced the same results as the nitrogen fertilization (90 kg ha-1, showing potential reduction of sterile spikelets. However, the treatments did not affected rice grain yield.

  18. 结缕草根际联合固氮菌的分离及初步鉴定%Isolation and identification of associative nitrogen-fixing bacteria in the rhizosphere of Zoysia japonica

    Institute of Scientific and Technical Information of China (English)

    张晓波; 赵艳

    2011-01-01

    联合固氮菌在植物根际土壤生长或定植于植物根表细胞,这类细菌可将空气或土壤中的氮素转化为氨态氮供植物直接吸收利用.结合气相色谱仪,利用乙炔还原等方法对结缕草根际联合固氮菌进行了分离和鉴定.结果表明:从结缕草根际土壤中分离获得9株联合固氮菌株,菌株的固氮酶活性相差较大,为67.5~343.7 C2H4nmol/(ml·h),菌株N4及N6具有较高的固氮酶活性,>300 C2 H4nmol/(mL·h);除N4外其余菌株均为革兰氏阴性菌,菌株经鉴定分属Bacillus(1株)、Enterobacter(1株)、Azotobacter(4株)和Pseudomonas(3株)4个属.%Associative nitrogen-fixing bacteria(ANB)from the rhizosphere of Zoysia japonica were isolated and identified by acetylene reduction assay(ARA)combined with gas chromatography(GC). Nine ANB strains were isolated,and their nitrogenase activity were variation between strains(from 67. 5 C2 H4 nmol/mL · h to 343.7 C2 H4 nmol/mL · h). Strains N4 and N6 showed higher nitrogenase activity (>300 C2 H4 nmol/mL · h). In addition,all strains obtained were gram-negative except N4,and belonged to Bacillus(1 strains),Enterobacter (1 strains) ,Azotobacter(4 strains) and Pseudomonas(3 strains), respectively.

  19. 仪器法快速检测鲜乳微生物的可靠性研究%Reliability of Rapid Detection Fresh Milk Microorganism by Insrument Method

    Institute of Scientific and Technical Information of China (English)

    尚新彬; 李国恩

    2014-01-01

    本文通过乳制品微生物活性快速检测仪对鲜乳中微生物酶活性的测定,快速检测鲜乳中微生物数量的变化,判定鲜乳品质的优劣。试验结果表明:仪器法可以在30min内完成一个鲜乳样品的微生物含量的检测。利用鲜乳微生物快速检测仪和国标平板菌落计数法分别检测大肠杆菌、蜡样芽胞杆菌、变形杆菌、灰绿曲霉、黑曲霉、球拟酵母菌、金黄色葡萄球菌、伤寒沙门氏菌和志贺氏菌等主要危害鲜乳品质的菌落数量,两种方法的测定结果相关系数均在0.98以上,这表明两种方法间有很好的线性相关性,同样用两种方法监测鲜乳贮藏过程中的微生物活动情况,其检测结果R2=0.991,属于显著相关。%Method of fast detecting fresh milk microorganism was investigated by determining the enzyme activity with quick microorganism detector, which could monitor quality of fresh milk. Experimental results showed that detection of microbial content instrument method could be accomplished with a fresh milk samples in 30 minutes. Detect Escherichia coli, Bacillus cereus, Bacillus Proteus, Aspergillus glaucus, Kuroma, Torulopsis, Staphylococcus aureus, Salmonel-la typhi, Shigella and other major hazards of fresh milk quality by the number of colonies using fresh milk microbial rapid detection instrument and standard plate count method. Determination results of two methods of correlation coefficient was above 0.98, indicating that two methods had good linear correlation. Microbial activity of fresh milk two methods during storage, the R2=0.991, which belonged to significant correlation.

  20. Detection of microorganisms in culture medium through the neutron radiographic technique; Deteccao de microorganismos em meios de cultura pela tecnica de neutrongrafia

    Energy Technology Data Exchange (ETDEWEB)

    Wacha, Reinaldo

    1999-05-01

    The study aims to obtain a more effective and faster method for the detection of bacteria in several culture media, such as potable water and blood. After the process growth in the culture medium, separation and suspension in buffer solution based in boron, the bacteria are deposited in track detectors that are submitted to thermal neutron beams (neutron flux: 2,2 x 10{sup 5} n.cm{sup -2}.s{sup -1}), resulting from the channel J-9 of the Argonauta research reactor, from the Nuclear Engineering Institute, IEN/CNEN. The latent tracks arisen from the alpha particles proceeding from the reaction B ({eta}, {alpha}) Li and, after having been revealed, are analyzed by an optical microscope that allows to detect the existence of the bacteria. Afterwards, they were analyzed in a nanoscope which helps the identification of the tracks of the alpha particles. (author)

  1. A method of real-time PCR for detection of genetically modified microorganisms in microbiology derived enzyme%微生物酶制剂中转基因微生物的实时荧光PCR检测方法

    Institute of Scientific and Technical Information of China (English)

    张清平; 张奕南; 曲勤凤

    2013-01-01

    A new method of real-time PCR was built to detect genetically modified microoganisms in microbioloogy derived enzyme. The primer and the MGB probe were desgined on the sequence of the alcohol oxidase-1 (AOX1) promoter. The experimental result showed that the sensitivity of detction was 1pg Pichia pastoris DNA, and could accurately analyze the residue status of genetically modified microorganism in microbiology derived enzyme from different separation stage. This practical method could be used to monitor separation of transgenic mocrobiology in microbiology dereirved enzyme, and provide reference for the detction of genetically modified microorganism related stdudies.%针对微生物酶制剂中残留转基因微生物的检测问题,根据醇氧化酶-1(AOX1)启动子基因的序列信息设计一对引物及一条MGB探针,建立了转基因微生物的实时荧光PCR筛选检测方法.实验结果表明,该方法灵敏度达到1pg,可以准确判定生产线上不同分离阶段的微生物酶制剂中的转基因微生物残留情况.该方法准确度和灵敏度高,操作方便,可作为微生物酶制剂中转基因微生物分离状况的监测方法,也可为其他转基因微生物检测研究提供借鉴和参考.

  2. Métodos de ensayos rápidos de detección de microorganismos en la leche (Methods of quick rehearsals of detection of microorganisms in the milk

    Directory of Open Access Journals (Sweden)

    Nuria Dávila Fernández

    2006-08-01

    disadvantages of these microorganisms for the health of consumers as well as for marketing purposes. Reference is made to the existence of a group of microorganisms taken as indicators in the Dairy Industry to check the fulfillment of good hygienic practices. Then the different conventional methods used by food microbiology laboratories are described, which makes it possible to define a starting point to describe in the following block the quick and/or automated methods to diagnose hygienic-sanitary quality of milk and it byproducts and detect pathogens, a need established in the last few years to get an answer as soon as possible in order to take corrective actions for possible gaps in the hygiene of some stages along the chain of production before the product is released to the market. As a result of the analysis made in this article, it was concluded that these quick methods have common aspects that turn them into an important tool for laboratory work to determine microorganisms in milk.

  3. 乳品中有害微生物的检测技术和发展方向%Detection Technology and Development Direction of Harmful Microorganism in Dairy

    Institute of Scientific and Technical Information of China (English)

    张维平

    2016-01-01

    In recent years, China's dairy safety incidents occurred frequently, the vast majority of which are caused by large-scale dairy poisoning incidents due to pathogenic bacteria. Common pathogenic bacteria in dairy are salmonella, staphylococcus aureus, escherichia coli and campylobacter jejuni. The study from the perspective of food security, made a systematic introduction of the major high hazard dairy pathogens and the development direction of current detection methods of harmful microorganisms.%近几年来,中国的乳品安全事件屡屡发生,在所发生的乳品安全事件中,绝大多数都是由于污染致病菌引起的大规模乳品中毒事件。在乳品中较为常见的病原菌检测品种有沙门氏菌、金黄色葡萄球菌、大肠杆菌、空肠弯曲菌等。本研究从食品安全的角度出发,较为系统地介绍了乳品中主要的高危害致病菌以及当前乳品中有害微生物的检测方法、乳品中微生物检测技术的发展方向。

  4. 分子技术在食源性致病微生物检测中的应用%Application of molecular techniques in detection of foodborne pathogenic microorganisms

    Institute of Scientific and Technical Information of China (English)

    方婷子; 施春雷

    2014-01-01

    食品中的病原微生物是影响食品安全的主要因素之一,传统的细菌分离、培养与鉴定繁琐复杂、周期较长,难以适应食源性疾病预防控制的需要,因而快速、简便、特异的检测方法成为研究的热点。近年来,随着现代生物技术的快速发展,新的分子生物学技术和方法不断涌现并被广泛应用于微生物检测,为传染病的流行病学调查、基因的多样性、微生物的生物学特性、微生物的致病性等各个方面提供了重要的信息。本文较为系统地介绍了利用分子生物学技术快速检测食源性致病微生物的方法,总结了核酸杂交技术、核酸扩增技术、基因芯片技术在致病性大肠杆菌、沙门氏菌、金黄色葡萄球菌、单核细胞增生李斯特菌等致病微生物快速检测中的应用现状,并简要阐述了这几种检测方法的利弊。%Foodborne pathogen is one of the main factors affecting food safety. It takes a long time for tradi-tional bacteria isolation, culture and identification. As a complicated process, the traditional method is difficult to meet the needs of the foodborne disease prevention and control. In recent years, with the rapid development of modern biotechnologies, new techniques and methods of molecular biology are emerging and widely used in microbiological testing for infectious diseases investigation, gene diversity exploration, biological characteri-zation of microorganisms, and microbial pathogenicity characterization. In this paper, molecular techniques widely used for fast detection of foodborne pathogens, such as the nucleic acid hybridization, nucleic acid am-plification, and microarray, were systematically introduced, as well as the application status of some pathogen detection technologies applied in pathogenic E. coli, Salmonella sp., staphylococcus aureus, Listeria monocy-togenes, and other pathogenic microorganisms. The corresponding advantages and

  5. Development of an efficient method for screening microorganisms by using symbiotic association between Nasutitermes takasagoensis and intestinal microorganisms.

    Science.gov (United States)

    Hayashi, Arata; Aoyagi, Hideki; Kinjyo, Kazuhiko; Yoshimura, Tsuyoshi; Tanaka, Hideo

    2007-07-01

    Screening method of microorganisms that utilized the symbiotic association between insect (Nasutitermes takasagoensis: Nt) and intestinal microorganisms was developed. The existence of desired microorganisms that grew by degrading difficult-to-degrade materials in the gut was detected using survivability of Nt as an indicator. The desired microorganisms were isolated from the survived Nt. It was thought that guts of Nt behave as continuous culture systems whereby microorganisms that cannot degrade diet components are washed out, whereas those that can degrade it are retained and concentrated in the gut. About 60% of Nt fed with phenol artificial diet (PAD) died within 7 days, while 4% of termites survived for 9 days. The structure of intestinal microorganisms of the survived Nt fed with PAD differed from the bacterial communities obtained from enrichment culture (which contained phenol) of wood-feeding Nt. Relatively high colonies (650-times) were detected in the gut of Nt fed on phenol artificial diet compared with those obtained when Nt was fed on wood. Seven denaturing gradient gel electrophoresis (DGGE) bands were detected from gut of wood-feeding Nt, whereas 11 DGGE-bands were detected from that of phenol-feeding Nt. Out of 11 DGGE-bands, 5 of them were sequenced, and bacterial species including phenol-degrading bacteria were identified.

  6. Characterization of Airborne Microorganisms at Nationaltheatret Subway Station

    OpenAIRE

    Valen, Anja

    2011-01-01

    Bioaerosols containing pathogenic microorganisms can have health implications when respired. Of special concern are potential bioterrorism attacks conducted by deliberate aerosolization of hazardous toxins or pathogenic microorganisms. Investigation aiming at understanding the normal state of the bioaerosol environment is essential to facilitate detection of biological threat agents and deviations from the normal background. This MSc thesis presents a pilot study for investigation of the bioa...

  7. Textiles for protection against microorganism

    Science.gov (United States)

    Sauperl, O.

    2016-04-01

    Concerning micro-organisms such as bacteria, viruses and fungi, there is a huge progress in the development of textile materials and procedures which should effectively protect against these various pathogens. In this sense there is especially problematic hospital environment, where it is necessary to take into account properly designed textile material which, when good selected and composed, act as a good barrier against transfer of micro-organisms through material mainly in its wet state. Respect to this it is necessary to be familiar with the rules regarding selection of the input material, the choice of proper yarn construction, the choice of the proper weaving mode, the rules regarding selection of antimicrobial-active compound suitable for (eco-friendly) treatment, and the choice of the most appropriate test method by which it is possible objectively to conclude on the reduction of selected microorganism. As is well known, fabrics are three-dimensional structures with void and non-void areas. Therefore, the physical-chemical properties of the textile material/fabric, the surface characteristics together with the shape of microorganism, and the carriers' characteristics contribute to control the transfer of microorganism through textile material. Therefore, careful planning of textile materials and treatment procedure with the compound which is able to reduce micro-organism satisfactory is particularly important, especially due to the fact that in hospital environment population with impaired immune system is mainly presented.

  8. Molecular characterization of nitrogen-fixing bacteria isolated from brazilian agricultural plants at São Paulo state Caracterização molecular de bactérias fixadoras de nitrogênio isoladas de plantas brasileiras no estado de São Paulo

    Directory of Open Access Journals (Sweden)

    Érica. L. Reinhardt

    2008-09-01

    Full Text Available Fourteen strains of nitrogen-fixing bacteria were isolated from different agricultural plant species, including cassava, maize and sugarcane, using nitrogen-deprived selective isolation conditions. Ability to fix nitrogen was verified by the acetylene reduction assay. All potentially nitrogen-fixing strains tested showed positive hybridization signals with a nifH probe derived from Azospirillum brasilense. The strains were characterized by RAPD, ARDRA and 16S rDNA sequence analysis. RAPD analyses revealed 8 unique genotypes, the remaining 6 strains clustered into 3 RAPD groups, suggesting a clonal origin. ARDRA and 16S rDNA sequence analyses allowed the assignment of 13 strains to known groups of nitrogen-fixing bacteria, including organisms from the genera Azospirillum, Herbaspirillum, Pseudomonas and Enterobacteriaceae. Two strains were classified as Stenotrophomonas ssp. Molecular identification results from 16S rDNA analyses were also corroborated by morphological and biochemical data.Quatorze linhagens de bactérias fixadoras de nitrogênio foram isoladas de diferentes espécies de plantas, incluindo cassava, milho e cana-de-açúcar, usando condições seletivas desprovidas de nitrogênio. A capacidade de fixar nitrogênio foi verificada por ensaio de redução de acetileno. Todas as linhagens fixadoras de nitrogênio testadas apresentaram hibridização positiva com sonda de gene nifH derivada de Azospirillum brasilense. As linhagens foram caracterizadas por RAPD, ARDRA e sequenciamento do gene 16S rDNA. As análises de RAPD revelaram 8 genótipos, as 6 linhagens restantes foram agrupadas em 3 grupos de RAPD, sugerindo uma origem clonal. ARDRA e seqüências de 16S rDNA foram alocadas em 13 grupos conhecidos de bactérias fixadoras de nitrogênio, incluindo organismos dos gêneros Azospirillum, Herbaspirillum, Pseudomonas e Enterobacteriaceae. Duas linhagens foram classificadas como Stenotrophomonas ssp. Os resultados da identifica

  9. Identification of periodontopathogen microorganisms by PCR technique

    Directory of Open Access Journals (Sweden)

    Milićević Radovan

    2008-01-01

    Full Text Available INTRODUCTION Periodontitis is an inflammatory disease of the supporting tissues of teeth and is a major cause of tooth loss in adults. The onset and progression of periodontal disease is attributed to the presence of elevated levels of a consortium of pathogenic bacteria. Gram negative bacteria, mainly strict anaerobes, play the major role. OBJECTIVE The present study aimed to assess the presence of the main types of microorganisms involved in the aetiopathogenesis of periodontal disease: Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Eikenella corrodens, Treponema denticola, Tanerella forsythia and Prevotella intermedia in different samples collected from the oral cavity of 90 patients diagnosed with periodontitis. METHOD Bacterial DNA detection was performed in diverse biological materials, namely in dental plaque, gingival tissue and saliva, by means of multiplex PCR, a technique that allows simultaneous identification of two different bacterial genomes. RESULTS In the dental plaque of the periodontitis patients, Treponema denticola dominated. In the gingival tissue, Tannerella forsythia and Treponema denticola were the microbiota most frequently detected, whilst in saliva Treponema denticola and Eikenella corrodens were found with the highest percentage. CONCLUSION The identification of microorganisms by multiplex PCR is specific and sensitive. Rapid and precise assessment of different types of periodontopathogens is extremely important for early detection of the infection and consequently for the prevention and treatment of periodontal disease. In everyday clinical practice, for routine bacterial evaluation in patients with periodontal disease, the dental plaque is the most suitable biological material, because it is the richest in periodontal bacteria.

  10. Detection of phosphatase activity in aquatic and terrestrial cyanobacterial strains

    Directory of Open Access Journals (Sweden)

    Babić Olivera B.

    2013-01-01

    Full Text Available Cyanobacteria, as highly adaptable microorganisms, are characterized by an ability to survive in different environmental conditions, in which a significant role belongs to their enzymes. Phosphatases are enzymes produced by algae in relatively large quantities in response to a low orthophosphate concentration and their activity is significantly correlated with their primary production. The activity of these enzymes was investigated in 11 cyanobacterial strains in order to determine enzyme synthesis depending on taxonomic and ecological group of cyanobacteria. The study was conducted with 4 terrestrial cyanobacterial strains, which belong to Nostoc and Anabaena genera, and 7 filamentous water cyanobacteria of Nostoc, Oscillatoria, Phormidium and Microcystis genera. The obtained results showed that the activity of acid and alkaline phosphatases strongly depended on cyanobacterial strain and the environment from which the strain originated. Higher activity of alkaline phosphatases, ranging from 3.64 to 85.14 μmolpNP/s/dm3, was recorded in terrestrial strains compared to the studied water strains (1.11-5.96 μmolpNP/s/dm3. The activity of acid phosphatases was higher in most tested water strains (1.67-6.28 μmolpNP/s/dm3 compared to the activity of alkaline phosphatases (1.11-5.96 μmolpNP/s/dm3. Comparing enzyme activity of nitrogen fixing and non-nitrogen fixing cyanobacteria, it was found that most nitrogen fixing strains had a higher activity of alkaline phosphatases. The data obtained in this work indicate that activity of phosphatases is a strain specific property. The results further suggest that synthesis and activity of phosphatases depended on eco-physiological characteristics of the examined cyanobacterial strains. This can be of great importance for the further study of enzymes and mechanisms of their activity as a part of cyanobacterial survival strategy in environments with extreme conditions. [Projekat Ministarstva nauke Republike

  11. Why are some microorganisms boring?

    Science.gov (United States)

    Cockell, Charles S; Herrera, Aude

    2008-03-01

    Microorganisms from diverse environments actively bore into rocks, contributing significantly to rock weathering. Carbonates are the most common substrate into which they bore, although there are also reports of microbial borings into volcanic glass. One of the most intriguing questions in microbial evolutionary biology is why some microorganisms bore. A variety of possible selection pressures, including nutrient acquisition, protection from UV radiation and predatory grazing could promote boring. None of these pressures is mutually exclusive and many of them could have acted in concert with varying strengths in different environments to favour the development of microorganisms that bore. We suggest that microbial boring might have begun in some environments as a mechanism against entombment by mineralization.

  12. Review on the preparation of immunomagnetic microspheres and their application in the microorganism detection in food%免疫磁性微球的制备及其应用于食品微生物检测的研究进展

    Institute of Scientific and Technical Information of China (English)

    张小强; 赵晓蕾; 周鑫; 谭天伟

    2009-01-01

    Due to a series of food safety incidents, food safety has obtained more attention in our country.The detection of pathogenic microorganisms in food using immunomagnetic microsphere(IMMS) is more convenient and faster than conventional detection methods. The application principle and preparation methods of IMMS are reviewed. The application of IMMS for microorganism detection in food is further presented, and at the same time, the application of IMMS in conjunction with other detection methods such as PCR, ELISA, FIA and ECL applied in rapid pathogens detection is also introduced. This approach will become a trend in the development for food microorganism detection.%由于一系列食品安全事件的发生,食品安全在我国进一步受到重视,应用免疫磁性微球检测食品中的致病微生物比常规脸测方法更加方便、快捷.本文介绍了免疫磁性微球的应用原理和微球的制备方法,并进一步阐述了免疫磁性微球在食品微生物检测中的应用,以及食品致病菌的快速检测中免疫磁性微球与PCR、ELISA、FIA、ECL等检测手段的联用,表明该方法将成为食品微生物检测的一个发展趋势.

  13. MICROORGANISMS IN CONFECTIONERY PRODUCTS

    Directory of Open Access Journals (Sweden)

    Ľubomíra Juhaniaková

    2011-08-01

    Full Text Available The aim of this work was to determine microbiological quality of confectionery products. In confectionery products microbiological parameters: coliforms bacteria, microscopic filamentous fungi and yeasts, Salmonella sp. and staphylococci were observed. The confectionery products were evaluated: Kremes - honey cube, roll Arabica, roll Rona, roll stuffed with apricot cream, honey cube, pinwheel caramel, Sachovnica cut, Zora cut and curd cake. For microbiological tests 18 samples of confectionery products were used. Numbers of coliforms bacteria in confectionery products ranged from <1x101 to 4x102 cfu.g-1, the number of microscopic fungi ranged from 0 to <1x101 cfu.g-1, the number of yeasts from <1x101 to 5.5x102 cfu.g-1, cells of Salmonella sp. were not detected and the number of staphylococci was from 0 to <1x101 cfu.g-1. All investigated samples of confectionary products were in accordance with the Codex Alimentarius of the Slovak Republic.

  14. 呼伦贝尔沙地不同植被恢复模式对土壤固氮微生物多样性的影响%Effects of different vegetation restoration patterns on the diversity of soil nitrogen-fixing microbes in Hulunbeier sandy land, Inner Mongolia of North China

    Institute of Scientific and Technical Information of China (English)

    李刚; 王丽娟; 李玉洁; 乔江; 张海芳; 宋晓龙; 杨殿林

    2013-01-01

    利用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)技术及扩增产物序列分析方法,研究了经过4年不同植被恢复模式下呼伦贝尔沙地土壤固氮微生物的nifH基因多样性和群落结构的变化.结果表明:不同植被恢复模式间土壤固氮微生物群落组成差异显著.混播柠条+羊柴+冰草+披碱草模式(ACHE)下的土壤固氮微生物nifH基因多样性指数最高,其次为混播柠条+冰草(AC)、单播柠条(UC)、单播冰草(UA)和单播羊柴(UH)模式,对照(裸地)最低.除单播羊柴(UH)模式与对照的多样性指数差异不显著外,其余4种植被恢复模式均显著高于对照.单一恢复模式(UA、UH、UC)下,绝大多数土壤固氮微生物属于蓝藻门,结构比较单一;而混播模式(AC和ACHE)下,土壤固氮微生物组成发生明显变化,以变形菌门为主,还包含蓝藻门,其种类增加,多样性提高.不同植被恢复模式的速效磷(AP)、全磷(TP)、全氮(TN)和硝态氮(N03-N)对固氮微生物区系的影响均达到显著水平,且AP、TP、TN和NO3--N之间均具有显著相关性.不同植被恢复模式下土壤固氮微生物区系组成的变化是不同理化因子之间相互关联、共同影响的结果.%By using polymerase chain reaction-denaturing gradient gel electrophoresis (PCRDGGE) and sequence analysis,this paper studied the nifH gene diversity and community structure of soil nitrogen-fixing microbes in Hulunbeier sandy land of Inner Mongolia under four years management of five vegetation restoration modes,i.e.,mixed-planting of Agropyron cristatum,Hedysarum fruticosum,Caragana korshinskii,and Elymus nutans (ACHE) and of Agropyron cristatum and Hedysarum fruticosum (AC),and mono-planting of Caragana korshinskii (UC),Agropyron cristatum (UA),and Hedysarumfruticosum (UH),taking the bare land as the control (CK).There existed significant differences in the community composition of nitrogen-fixing microbes among the five vegetation

  15. Study of microorganisms degrading PCB in vegetated contaminated soil

    Directory of Open Access Journals (Sweden)

    Veronika Kurzawova

    2010-12-01

    Full Text Available Removal of PCBs from contaminated soil is one of the challenges ofenvironmental microbiology. In our study, we aimed to isolate,characterize and identify microorganisms from contaminated soiland to find out the plant effect on microbial diversity in theenvironment. Microorganisms were isolated by two ways, directextraction and isolation after cultivation with biphenyl as a solesource of carbon. Isolated bacteria were biochemically characterizedand the composition of ribosomal proteins in bacterial cells wasdetermined by mass spectrometry MALDI-TOF. Bacteria withrequired properties were chosen and the bphA gene was amplifiedand detected. Bacteria with detected bphA gene were then identifiedby 16S rRNA sequence analyses.

  16. [Immobilized microorganisms and water purification].

    Science.gov (United States)

    Mogilevich, N F

    1995-01-01

    Advantages and disadvantages of cells of aerobic microorganisms immobilized by the type of adhesion and incorporation into the gel beads, the amount of retained biomass, limitations of diffusion of oxygen and nutrients, viability, morphology, biochemical properties are described. Immobilized biocatalysts are discussed in the aspect of their use in purification of sewage waters.

  17. Biofuel production by recombinant microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Liao, James C.; Atsumi, Shota; Cann, Anthony F.

    2017-07-04

    Provided herein are metabolically-modified microorganisms useful for producing biofuels. More specifically, provided herein are methods of producing high alcohols including isobutanol, 1-butanol, 1-propanol, 2-methyl-1-butanol, 3-methyl-1-butanol and 2-phenylethanol from a suitable substrate.

  18. Capillary isoelectric focusing of native and inactivated microorganisms.

    Science.gov (United States)

    Horká, M; Kubícek, O; Růzicka, F; Holá, V; Malinovská, I; Slais, K

    2007-07-06

    The research of microorganisms includes the development of methods for the inactivation of viruses and other microbes. It also means to efficiently eliminate the infectivity of microorganisms without damage of their integrity and structure. According to the results of the last 5 years the capillary electromigration techniques appear to be very perspective for the comparison of the methods applicable for inactivation in the diagnostics and study of the pathogens. In this paper we suggest the capillary isoelectric focusing of the model microorganisms, Escherichia coli, Staphylococcus epidermidis, Candida albicans and bacteriophage PhiX 174, native or inactivated by different procedures. UV detection and fluorometric detection for the dynamically modified microbes by pyrenebutanoate on the basis of the non-ionogenic tenside were used here. Isoelectric points of native and/or dynamically modified microorganisms and other properties were compared with those obtained after microorganisms inactivation. The segmental injection of the sample pulse enabled the reproducible and efficient capillary isoelectric focusing in different pH gradients. The low-molecular-weight pI markers were used for tracing of the pH gradient.

  19. The rapid detection and control methods for the air microorganism during production process of raw milk%原料乳生产中空气源微生物的快速检测及控制方法

    Institute of Scientific and Technical Information of China (English)

    刘洋; 许晓曦; 赵楠

    2014-01-01

    微生物的污染是影响乳制品安全的重要因素,主要以空气为媒介污染原料乳进而影响乳制品安全。本文概述了原料乳中微生物的来源、种类;空气中微生物的采集方法、检测方法以及如何控制原料乳中微生物。原料乳中可能污染的微生物有葡萄球菌、沙门氏菌、志贺氏菌、链球菌属、大肠杆菌等病原微生物和腐败菌、真菌。空气微生物的采样方法有自然沉降法和微生物采样器采样法,比较而知采样器采样法具有稳定、不受气候影响的优点;同时比较了固体和液体微生物采样器的优缺点。原料乳质量好坏直接影响到后续加工乳制品,乳中微生物指标成为制约原料乳卫生指标的关键因素,该指标一直倍受乳品厂家及消费者的关注。因此,保证原料乳的安全是保证乳品安全的前提。%The contamination of microorganism is an important factor affecting the safety of dairy products, mainly by the medium of air to pollute the raw milk, thereby, affecting the safety of dairy products. This article outlines the sources and species of microorganism in raw milk; acquisition method of microorganisms in the air, testing methods, and how to control microorganisms in raw milk. Raw milk may be contaminated with patho-genic microorganism such asStaphylococcus aureus,Salmonella,Shigella,Streptococcus,E. coli and so on, and spoilage bacteria, fungi. Air microorganism sampling method has natural sedimentation method and air microoganism sampler sampling method, compared and then known sampler sampling method has the advan-tages of stable and is not affected by the climate; at the same time compared with the advantages and disadvan-tages of the solid air-sampler and liquid air-sampler for airborne microorganisms. The microbiological index of milk quality was always a question of people attention. So, the safety of the raw milk is the premise to ensure the safety of dairy

  20. Isolation and Phylogeny of Nitrogen-Fixing Endophytic Bacteria in Wheat, Rice, Maize, Chinese Cabbage and Celery%小麦、水稻、玉米、白菜、芹菜内生固氮菌及其系统发育

    Institute of Scientific and Technical Information of China (English)

    孙建光; 罗琼; 高淼; 胡海燕; 徐晶; 周义清

    2012-01-01

    [目的]了解小麦、水稻、玉米、白菜、芹菜内生固氮菌的主要类群,确定内生固氮菌的系统发育地位.[方法]样品表面灭菌后采用无氮培养基分离、培养内生固氮菌,乙炔还原法测定菌株固氮酶活性;PCR扩增得到菌株16S rDNA,通过序列测定和相似性分析研究菌株的系统发育.[结果]从大田小麦体内分离到内生固氮菌34株,固氮酶活性在0.30-30.24 nmol C2H4/h·mg蛋白,基于16S rDNA序列最大相似性,这些菌株分属于假单胞菌(Pseudomonas)、根瘤菌(Rhizobium)、芽孢杆菌(Bacillus)、黄杆菌(Fla vobac terium)等13属21种,种群分布较为广泛;从大田水稻体内分离到内生固氮菌25株,固氮酶活性在3.12-254.12 nmol C2H4/h·mg蛋白,属于芽孢杆菌、伯克霍尔德氏菌(Burkholderia)、肠杆菌(Enterobacter)、克雷伯氏菌(Klebsiella)等9属16种,伯克霍尔德氏菌、肠杆菌和克雷伯氏菌是水稻内生固氮菌特有种群;从大田玉米体内分离到内生固氮菌9株,固氮酶活性在7.27-59.58 nmol C2H4/h·mg蛋白,属于根瘤菌、鞘氨醇单胞菌(Sphingomonas)等5属6种;从盆栽试验小白菜体内分离到内生固氮菌14株,固氮酶活性在2.33-205.21 nmol GH4/h·mg蛋白,属于根瘤菌、节杆菌(Arthrobacter)等6属8种;从市售芹菜体内分离到内生固氮菌10株,固氮酶活性在1.23-46.70nmolC2H4/h·mg蛋白,属于鞘氨醇单胞菌、假单胞菌等5属8种.[结论]在生长期小麦、水稻、玉米和部分蔬菜体内普遍存在内生固氮菌,菌株固氮酶活性差异较大,在0.30-254.12 nmol C2H4/h·mg蛋白,系统发育地位分属于假单胞菌、根瘤菌、芽孢杆菌等25个属的56个种,这些内生固氮菌对于农业生产有巨大潜能.%[Objective] The objective of this study is to determine the main groups and phylogenetic position of nitrogen-fixing endophytic bacteria in wheat, rice, maize, Chinese cabbage and celery. [Method] Surface sterilization and

  1. Methods for identifying lipoxygenase producing microorganisms on agar plates

    NARCIS (Netherlands)

    Nyyssola, A.; Heshof, R.; Haarmann, T.; Eidner, J.; Westerholm-Parvinen, A.; Langfelder, K.; Kruus, K.; Graaff, de L.H.; Buchert, J.

    2012-01-01

    Plate assays for lipoxygenase producing microorganisms on agar plates have been developed. Both potassium iodide-starch and indamine dye formation methods were effective for detecting soybean lipoxygenase activity on agar plates. A positive result was also achieved using the beta-carotene bleaching

  2. Influences of Quinclorac on Culturable Microorganisms and Soil Respiration in Flooded Paddy Soil

    Institute of Scientific and Technical Information of China (English)

    ZHEN-MEI LU; HANG MIN; YANG-FANG YE

    2003-01-01

    Objective To investigate the potential effects of herbicide quinclorac (3,7-dichloro-8-quinoline-carboxylic) on the culturable microorganisms in flooded paddy soil. Methods Total soil aerobic bacteria, actinomycetes and fungi were counted by a 10-fold serial dilution plate technique. Numbers of anaerobic fermentative bacteria (AFB), denitrifying bacteria (DNB) and hydrogen-producing acetogenic bacteria (HPAB) were numerated by three-tube anaerobic most-probable-number (MPN)methods with anaerobic liquid enrichment media. The number of methanogenic bacteria (MB) and nitrogen-fixing bacteria (NFB) was determined by the rolling tube method in triplicate. Soil respiration was monitored by a 102G-type gas chromatography with a stainless steel column filled with GDX-104 and a thermal conductivity detector. Results Quinclorac concentration was an important factor affecting the populations of various culturable microorganisms. There were some significant differences in the aerobic heterotrophic bacteria. AFB and DNB between soils were supplemented with quinclorac and non-quinclorac at the early stage of incubation, but none of them was persistent. The number of fungi and DNB was increased in soil samples treated by lower than1.33 μg·g-1 dried soil, while the CFU of fungi and HPAB was inhibited in soil samples treated by higher than 1.33 μg·g-1 dried soil. The population of actinomycete declined in negative proportion to the concentrations of quinclorac applied after 4 days. However, application of quinclorac greatly stimulated the growth of AFB and NFB. MB was more sensitive to quinclorac than the others, and the three soil samples with concentrations higher than 1 μg·g-1 dried soil declined significantly to less than 40% of that in the control, but the number of samples with lower concentrations of quinclorac was nearly equal to that in the control at the end of experiments. Conclusion Quinclorac is safe to the soil microorganisms when applied at normal

  3. Phosphate Biomineralization of Cambrian Microorganisms

    Science.gov (United States)

    McKay, David S.; Rozanov, Alexei Yu.; Hoover, Richard B.; Westall, Frances

    1998-01-01

    As part of a long term study of biological markers (biomarkers), we are documenting a variety of features which reflect the previous presence of living organisms. As we study meteorites and samples returned from Mars, our main clue to recognizing possible microbial material may be the presence of biomarkers rather than the organisms themselves. One class of biomarkers consists of biominerals which have either been precipitated directly by microorganisms, or whose precipitation has been influenced by the organisms. Such microbe-mediated mineral formation may include important clues to the size, shape, and environment of the microorganisms. The process of fossilization or mineralization can cause major changes in morphologies and textures of the original organisms. The study of fossilized terrestrial organisms can help provide insight into the interpretation of mineral biomarkers. This paper describes the results of investigations of microfossils in Cambrian phosphate-rich rocks (phosphorites) that were found in Khubsugul, Northern Mongolia.

  4. Smaller Fleas: Viruses of Microorganisms

    OpenAIRE

    Paul Hyman; Stephen T. Abedon

    2012-01-01

    Life forms can be roughly differentiated into those that are microscopic versus those that are not as well as those that are multicellular and those that, instead, are unicellular. Cellular organisms seem generally able to host viruses, and this propensity carries over to those that are both microscopic and less than truly multicellular. These viruses of microorganisms, or VoMs, in fact exist as the world’s most abundant somewhat autonomous genetic entities and include the viruses of domain B...

  5. Microorganism Utilization for Synthetic Milk

    Science.gov (United States)

    Morford, Megan A.; Khodadad, Christina L.; Caro, Janicce I.; Spencer, LaShelle E.; Richards, Jeffery T.; Strayer, Richard F.; Birmele, Michele N.; Wheeler, Raymond M.

    2014-01-01

    A desired architecture for long duration spaceflight, like aboard the International Space Station or for future missions to Mars, is to provide a supply of fresh food crops for the astronauts. However, some crops can create a high proportion of inedible plant waste. The main goal of the Synthetic Biology project, Cow in a Column, was to produce the components of milk (sugar, lipid, protein) from inedible plant waste by utilizing microorganisms (fungi, yeast, bacteria). Of particular interest was utilizing the valuable polysaccharide, cellulose, found in plant waste, to naturally fuel-through microorganism cellular metabolism- the creation of sugar (glucose), lipid (milk fat), and protein (casein) in order to produce a synthetic edible food product. Environmental conditions such as pH, temperature, carbon source, aeration, and choice microorganisms were optimized in the laboratory and the desired end-products, sugars and lipids, were analyzed. Trichoderma reesei, a known cellulolytic fungus, was utilized to drive the production of glucose, with the intent that the produced glucose would serve as the carbon source for milk fat production and be a substitute for the milk sugar lactose. Lipid production would be carried out by Rhodosporidium toruloides, yeast known to accumulate those lipids that are typically found in milk fat. Results showed that glucose and total lipid content were below what was expected during this phase of experimentation. In addition, individual analysis of six fatty acids revealed that the percentage of each fatty acid was lower than naturally produced bovine milk. Overall, this research indicates that microorganisms could be utilized to breakdown inedible solid waste to produce useable products. For future work, the production of the casein protein for milk would require the development of a genetically modified organism, which was beyond the scope of the original project. Additional trials would be needed to further refine the required

  6. Transformation of the insecticide teflubenzuron by microorganisms

    NARCIS (Netherlands)

    Finkelstein, Z.I.; Baskunov, B.P.; Rietjens, I.M.C.M.; Boersma, M.G.; Vervoort, J.; Golovleva, L.A.

    2001-01-01

    Transformation of teflubenzuron, the active component in the insecticide commercialized as Nomolt, by soil microorganisms was studied. It was shown that microorganisms, belonging to Bacillus, Alcaligenes, Pseudomonas and Acinetobacter genera are capable to perform the hydrolytic cleavage of the phen

  7. PROBIOTICS BASED ON TRANSGENIC MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    S. А. Starovoitova

    2012-02-01

    Full Text Available Modern tendencies of recombinant microorganisms creation for obtaining on their basis a new effective biopreparations (probiotics with wider spectrum of biological and therapeutic properties were considered. A lot of attention was focused on the main genera of perspective bacteria for creation of recombinant probiotics particularly: Lactococcus, Bifidobac terium,Bacillus, Escherichia. The main created Ukrainian and foreign gene-modified strains, that are widely used today in creation of effective recombinant biopreparations were characterized. Some fundamental directions and methods of gene-modified strains obtaining, which are used in getting effective biopreparations that used for therapy and prophylactic illness were reported, under which this group of pharmaceutical drugs were not used earlier. The safety matters of probiotics using on basis of genemodified strains were examined. Medical and veterinary biopreparations on basis of recombinant microorganisms could be used directly and effectively for therapy and prophylaxis of different illness, beginning from disbacteriosis up to cardiovascular diseases. It is related with some probiotic microorganisms ability for lowering of serum cholesterol at the host organism.

  8. Secondary metabolites from marine microorganisms

    Directory of Open Access Journals (Sweden)

    KELECOM ALPHONSE

    2002-01-01

    Full Text Available After 40 years of intensive research, chemistry of marine natural products has become a mature field. Since 1995, there are signals of decreased interest in the search of new metabolites from traditional sources such as macroalgae and octocorals, and the number of annual reports on marine sponges stabilized. On the contrary, metabolites from microorganisms is a rapidly growing field, due, at least in part, to the suspicion that a number of metabolites obtained from algae and invertebrates may be produced by associated microorganisms. Studies are concerned with bacteria and fungi, isolated from seawater, sediments, algae, fish and mainly from marine invertebrates such as sponges, mollusks, tunicates, coelenterates and crustaceans. Although it is still to early to define tendencies, it may be stated that the metabolites from microorganisms are in most cases quite different from those produced by the invertebrate hosts. Nitrogenated metabolites predominate over acetate derivatives, and terpenes are uncommon. Among the latter, sesquiterpenes, diterpenes and carotenes have been isolated; among nitrogenated metabolites, amides, cyclic peptides and indole alkaloids predominate.

  9. From chemosensing in microorganisms to practical biosensors.

    Science.gov (United States)

    Ghosh, Surya K; Kundu, Tapanendu; Sain, Anirban

    2012-11-01

    Microorganisms like bacteria can sense concentrations of chemoattractants in their medium very accurately. They achieve this through interaction between the receptors on their cell surfaces and chemoattractant molecules (like sugar). Physical processes like diffusion set some limits on the accuracy of detection, which was discussed by Berg and Purcell in the late seventies. We re-examine their work in order to assess what insight it may offer for making efficient, practical biosensors. We model the functioning of a typical biosensor as a reaction-diffusion process in a confined geometry. Using available data first we characterize the system by estimating the kinetic constants for the binding and unbinding reactions between the chemoattractants and the receptors. Then we compute the binding flux for this system, which Berg and Purcell had discussed. Unlike in microorganisms where the interval between successive measurements determines the efficiency of the nutrient searching process, it turns out that biosensors depend on long time properties like signal saturation time, which we study in detail. We also develop a mean field description of the kinetics of the system.

  10. Microorganism Reduction Methods in Meat Products

    OpenAIRE

    ZÁHOROVÁ, Jana

    2011-01-01

    In Bachelor thesis I deal with a theme of the influences on the reduction of microorganisms of meat products. First, I focused on the characteristics of individual organisms, the factors affecting their growth, incidence of microorganisms in meat, forms of microbial degradation and contamination of meat microorganisms in slaughterhouses. The next section deals with the means to fight against microorganisms and methods which can reduce their presence in meat products. In the end there is menti...

  11. Effects of a nitrogen fixing plant Vigna radiata on growth, leaf stomatal gas exchange and hy-draulic characteristics of the intercropping Juglans regia seedlings%固氮植物绿豆对核桃幼苗生长、叶片气孔气体交换及水力特征的作用

    Institute of Scientific and Technical Information of China (English)

    张翠萍; 孟平; 张劲松; 万贤崇

    2014-01-01

    Aims Our main purposes were to determine the effects of Vigna radiata, a nitrogen fixing plant, on growth, wa-ter balance and gas exchange of the intercropping Juglans regia seedlings and to investigate the hydraulic mecha-nism involved in photosynthesis and growth. Methods We measured growth, hydraulic characteristics, and rate of gas exchange in J. regia seedlings, and ana-lyzed the effects of the intercropping nitrogen fixing V. radiata on xylem anatomic structure, water balance and photosynthetic characteristics of J. regia seedlings under conditions of nitrogen deprivation and enrichment. Important findings Under conditions of nitrogen deficiency, the nitrogen fixing V. radiata facilitated the growth of the intercropping J. regia seedlings by improving xylem development, water transport and hydraulic character-istics in high transpiration demand. However, with nitrogen addition, the occurrence of V. radiata inhibited the growth of J. regia seedlings, likely by competing for water and other elements.%采用砂培方法,在温室内将一年生核桃(Juglans regia)嫁接苗木和绿豆(Vigna radiata)进行间作,研究绿豆对核桃苗木生长、水分平衡和光合特性的影响。该研究设有5种处理,即:对照(核桃单作,正常供应氮素);核桃单作,不添加氮素;核桃绿豆间作,不添加氮素;核桃绿豆间作,正常供应氮素;绿豆单作,不添加氮素。结果显示:种植绿豆可以增加土壤氮含量和核桃茎内氮含量,但对核桃叶和根系中的氮含量影响不明显。种植绿豆显著增加不施氮核桃的高生长和直径生长,但降低了正常供氮核桃的生长。无论种植绿豆与否,不供氮处理降低了核桃的总叶面积,提高了根冠比。核桃叶片气孔气体交换对各处理的响应和生长有相同的趋势。缺氮显著降低了核桃叶柄在中午的导水率、提高了导水损失率;种植绿豆显著提高不供氮核桃的导水率

  12. Identification of beer spoilage microorganisms using the MALDI Biotyper platform.

    Science.gov (United States)

    Turvey, Michelle Elizabeth; Weiland, Florian; Meneses, Jon; Sterenberg, Nick; Hoffmann, Peter

    2016-03-01

    Beer spoilage microorganisms present a major risk for the brewing industry and can lead to cost-intensive recall of contaminated products and damage to brand reputation. The applicability of molecular profiling using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) in combination with Biotyper software was investigated for the identification of beer spoilage microorganisms from routine brewery quality control samples. Reference mass spectrum profiles for three of the most common bacterial beer spoilage microorganisms (Lactobacillus lindneri, Lactobacillus brevis and Pediococcus damnosus), four commercially available brewing yeast strains (top- and bottom-fermenting) and Dekkera/Brettanomyces bruxellensis wild yeast were established, incorporated into the Biotyper reference library and validated by successful identification after inoculation into beer. Each bacterial species could be accurately identified and distinguished from one another and from over 5600 other microorganisms present in the Biotyper database. In addition, wild yeast contaminations were rapidly detected and distinguished from top- and bottom-fermenting brewing strains. The applicability and integration of mass spectrometry profiling using the Biotyper platform into existing brewery quality assurance practices within industry were assessed by analysing routine microbiology control samples from a local brewery, where contaminating microorganisms could be reliably identified. Brewery-isolated microorganisms not present in the Biotyper database were further analysed for identification using LC-MS/MS methods. This renders the Biotyper platform a promising candidate for biological quality control testing within the brewing industry as a more rapid, high-throughput and cost-effective technology that can be tailored for the detection of brewery-specific spoilage organisms from the local environment.

  13. Molecular Identification of Microorganisms Associated to the Rhizosphere of Vanilla Plants in Colombia

    Directory of Open Access Journals (Sweden)

    Claudia Lucía Álvarez López

    2013-06-01

    Full Text Available The cultivation of vanilla (Vanilla planifolia is highly promising in Colombia, but more research is needed on its agronomical management and beneficial microorganisms that grow associated to its rhizosphere, on which the plant depends for its nutrition and growth. This study involved the identification of microorganisms associated to the rhizosphere of vanilla plants in a crop located in Sopetrán, Colombia. The microbes were isolated in selective media for functional groups such as cellulolytic, proteolytic, inorganic and organic phosphate (phytate solubilizers, and asymbiotic nitrogen fixing bacteria. After isolation and purification, 109 microbial isolates were obtained. DNA was extracted from 52 selected isolates for molecular identification based on ITS and 16S rDNA sequencing, for fungi and bacteria, respectively. The diversity of rhizosphere microorganismsfound was significant. Bacteria such as Bacillus megaterium, Pseudomonas koreensis and Acinetobacter sp., and the fungus Plectosphaerella sp., may have a high potential to be used as biofertilizers to improve vanilla plant nutrition and growth.IDENTIFICACIÓN MOLECULAR DE MICROORGANISMOS ASOCIADOS A LA RIZOSFERA DE PLANTAS DE VAINILLA EN COLOMBIAEl cultivo de vainilla es altamente promisorio en Colombia, pero se requiere mayor conocimiento de su manejo agronómico y de los microorganismos que crecen asociados a su rizosfera, de los cuales depende esta planta para su nutrición y crecimiento. En este trabajo se realizaron aislamientos de microorganismos de la rizosfera de plantas de vainilla en un cultivo piloto ubicado en el municipio de Sopetrán (Antioquia, Colombia. Los microorganismos se aislaron en medios selectivos de crecimiento para evaluar su capacidad para descomponer celulosa, proteínas, solubilizar fosfato inorgánico y orgánico (fitato y fijar nitrógeno en forma asimbiótica. Una vez aislados y purificados, se obtuvieron un total de 109 aislamientos, de los

  14. Functional Basis of Microorganism Classification.

    Directory of Open Access Journals (Sweden)

    Chengsheng Zhu

    2015-08-01

    Full Text Available Correctly identifying nearest "neighbors" of a given microorganism is important in industrial and clinical applications where close relationships imply similar treatment. Microbial classification based on similarity of physiological and genetic organism traits (polyphasic similarity is experimentally difficult and, arguably, subjective. Evolutionary relatedness, inferred from phylogenetic markers, facilitates classification but does not guarantee functional identity between members of the same taxon or lack of similarity between different taxa. Using over thirteen hundred sequenced bacterial genomes, we built a novel function-based microorganism classification scheme, functional-repertoire similarity-based organism network (FuSiON; flattened to fusion. Our scheme is phenetic, based on a network of quantitatively defined organism relationships across the known prokaryotic space. It correlates significantly with the current taxonomy, but the observed discrepancies reveal both (1 the inconsistency of functional diversity levels among different taxa and (2 an (unsurprising bias towards prioritizing, for classification purposes, relatively minor traits of particular interest to humans. Our dynamic network-based organism classification is independent of the arbitrary pairwise organism similarity cut-offs traditionally applied to establish taxonomic identity. Instead, it reveals natural, functionally defined organism groupings and is thus robust in handling organism diversity. Additionally, fusion can use organism meta-data to highlight the specific environmental factors that drive microbial diversification. Our approach provides a complementary view to cladistic assignments and holds important clues for further exploration of microbial lifestyles. Fusion is a more practical fit for biomedical, industrial, and ecological applications, as many of these rely on understanding the functional capabilities of the microbes in their environment and are less

  15. Biocorrosion produced by Thiobacillus-like microorganisms.

    Science.gov (United States)

    López, A I; Marín, I; Amils, R

    1994-01-01

    Biocorrosion can be produced by many different microorganisms through diverse mechanisms. The biocorrosion produced by acidophilic microorganisms of the genus Thiobacillus is based on the production of sulfuric acid and ferric ion from pyrites or related mineral structures, as a result of the chemolithotrophic metabolism of these microorganisms. The products of this aerobic respiration are also powerful oxidant elements, which can produce chemical oxidations of other metallic structures. The Tinto River, a very unusual extremophilic habitat (pH around 2, and high concentration of ferric ion), product of the growth of strict chemolithotrophic microorganisms, is discussed as a model case.

  16. Nitrogen fixed by cyanobacteria is utilized by deposit-feeders

    National Research Council Canada - National Science Library

    Karlson, Agnes M L; Gorokhova, Elena; Elmgren, Ragnar

    2014-01-01

    .... Here, we examine utilization of cyanobacterial nitrogen by deposit-feeding benthic macrofauna following a cyanobacteria bloom at three stations during two consecutive years and link these changes...

  17. Corals form characteristic associations with symbiotic nitrogen-fixing bacteria.

    Science.gov (United States)

    Lema, Kimberley A; Willis, Bette L; Bourne, David G

    2012-05-01

    The complex symbiotic relationship between corals and their dinoflagellate partner Symbiodinium is believed to be sustained through close associations with mutualistic bacterial communities, though little is known about coral associations with bacterial groups able to fix nitrogen (diazotrophs). In this study, we investigated the diversity of diazotrophic bacterial communities associated with three common coral species (Acropora millepora, Acropora muricata, and Pocillopora damicormis) from three midshelf locations of the Great Barrier Reef (GBR) by profiling the conserved subunit of the nifH gene, which encodes the dinitrogenase iron protein. Comparisons of diazotrophic community diversity among coral tissue and mucus microenvironments and the surrounding seawater revealed that corals harbor diverse nifH phylotypes that differ between tissue and mucus microhabitats. Coral mucus nifH sequences displayed high heterogeneity, and many bacterial groups overlapped with those found in seawater. Moreover, coral mucus diazotrophs were specific neither to coral species nor to reef location, reflecting the ephemeral nature of coral mucus. In contrast, the dominant diazotrophic bacteria in tissue samples differed among coral species, with differences remaining consistent at all three reefs, indicating that coral-diazotroph associations are species specific. Notably, dominant diazotrophs for all coral species were closely related to the bacterial group rhizobia, which represented 71% of the total sequences retrieved from tissue samples. The species specificity of coral-diazotroph associations further supports the coral holobiont model that bacterial groups associated with corals are conserved. Our results suggest that, as in terrestrial plants, rhizobia have developed a mutualistic relationship with corals and may contribute fixed nitrogen to Symbiodinium.

  18. Comparative diversity and composition of nitrogen-fixing ...

    African Journals Online (AJOL)

    Ethiopian Journal of Environmental Studies and Management ... Three contrasting land use systems: reserve forests, rice fields and coal fields located at ... that environmental factors and physico-chemical properties cumulatively decided the ...

  19. Biochemical changes induced by fungicides in nitrogen fixing Nostoc sp.

    Science.gov (United States)

    Deviram, G V N S; Pant, Gaurav; Prasuna, R Gyana

    2013-01-01

    The present study indicates the effect of fungicides (approved by WHO) and their behavior on nitrogen fixer of rice eco system Nostoc sp. Application of plant protecting chemicals at recommended levels braced up the growth of blue green algae thereby enhancing heterocyst formation and nitrogenase activity. Nostoc sp demoed varying degrees of sensitivity to fungicides. Biomass yield, protein, carbohydrate content reduced after 3pg/mL concentration. Heterocyst damage was observed from 4μg/mL, Proline content increased with increase in fungicide concentration, utmost yellowing of the culture started from 4μg/mL. The decreasing order of the toxicity to Nostoc sp with fungicides was Mancozeb> Ediphenphos> Carbendazim> Hexaconazole.

  20. Diversity of nitrogen-fixing bacteria in cyanobacterial mats

    OpenAIRE

    2010-01-01

    The structure of the microbial community and the diversity of the functional gene for dinitrogenase reductase and its transcripts were investigated by analyzing >1400 16S rRNA gene and nifH sequences from two microbial mats situated in the intertidal zone of the Dutch barrier island Schiermonnikoog. Although both microbial mat communities were dominated by Cyanobacteria, they differed with respect to the composition of the total bacterial community. Proteobacteria-related sequences were retri...

  1. Evolution: a fixed-nitrogen fix in the early ocean?

    Science.gov (United States)

    Lyons, Timothy W; Reinhard, Christopher T; Planavsky, Noah J

    2014-03-31

    A new study asserts that a late evolutionary leap in cyanobacterial nitrogen fixation terminated a long history of nitrogen-limited primary production in the ocean--and contributed to a dramatic increase in biospheric oxygen coincident with the rise of animals.

  2. Diversity of nitrogen-fixing bacteria in cyanobacterial mats

    NARCIS (Netherlands)

    Severin, I.; Acinas, S.G.; Stal, L.J.

    2010-01-01

    The structure of the microbial community and the diversity of the functional gene for dinitrogenase reductase and its transcripts were investigated by analyzing >1400 16S rRNA gene and nifH sequences from two microbial mats situated in the intertidal zone of the Dutch barrier island Schiermonnikoog.

  3. Symbiosis within Symbiosis: Evolving Nitrogen-Fixing Legume Symbionts.

    Science.gov (United States)

    Remigi, Philippe; Zhu, Jun; Young, J Peter W; Masson-Boivin, Catherine

    2016-01-01

    Bacterial accessory genes are genomic symbionts with an evolutionary history and future that is different from that of their hosts. Packages of accessory genes move from strain to strain and confer important adaptations, such as interaction with eukaryotes. The ability to fix nitrogen with legumes is a remarkable example of a complex trait spread by horizontal transfer of a few key symbiotic genes, converting soil bacteria into legume symbionts. Rhizobia belong to hundreds of species restricted to a dozen genera of the Alphaproteobacteria and Betaproteobacteria, suggesting infrequent successful transfer between genera but frequent successful transfer within genera. Here we review the genetic and environmental conditions and selective forces that have shaped evolution of this complex symbiotic trait. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Enrichment of anodophilic nitrogen fixing bacteria in a bioelectrochemical system.

    Science.gov (United States)

    Wong, Pan Yu; Cheng, Ka Yu; Kaksonen, Anna H; Sutton, David C; Ginige, Maneesha P

    2014-11-01

    We demonstrated the ability of a bio-anode to fix dinitrogen (N2), and confirmed that diazotrophs can be used to treat N-deficient wastewater in a bioelectrochemical system (BES). A two-compartment BES was fed with an N-deficient medium containing glucose for >200 days. The average glucose and COD removal at an anodic potential of +200 mV vs. Ag/AgCl was 100% and 76%, respectively. Glucose removal occurred via fermentation under open circuit (OC), with acetate as the key byproduct. Closing circuit remarkably reduced acetate accumulation, suggesting the biofilm could oxidise acetate under N-deficient conditions. Nitrogen fixation required an anode and glucose; removing either reduced N2 fixation significantly. This suggests that diazotroph utilised glucose directly at the anode or indirectly through syntrophic interaction of an N2-fixing fermenter and an anodophile. The enriched biofilm was dominated (68%) by the genus Clostridium, members of which are known to be electrochemically active and capable of fixing N2. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Lipogenesis and Redox Balance in Nitrogen-Fixing Pea Bacteroids.

    Science.gov (United States)

    Terpolilli, Jason J; Masakapalli, Shyam K; Karunakaran, Ramakrishnan; Webb, Isabel U C; Green, Rob; Watmough, Nicholas J; Kruger, Nicholas J; Ratcliffe, R George; Poole, Philip S

    2016-10-15

    Within legume root nodules, rhizobia differentiate into bacteroids that oxidize host-derived dicarboxylic acids, which is assumed to occur via the tricarboxylic acid (TCA) cycle to generate NAD(P)H for reduction of N2 Metabolic flux analysis of laboratory-grown Rhizobium leguminosarum showed that the flux from [(13)C]succinate was consistent with respiration of an obligate aerobe growing on a TCA cycle intermediate as the sole carbon source. However, the instability of fragile pea bacteroids prevented their steady-state labeling under N2-fixing conditions. Therefore, comparative metabolomic profiling was used to compare free-living R. leguminosarum with pea bacteroids. While the TCA cycle was shown to be essential for maximal rates of N2 fixation, levels of pyruvate (5.5-fold reduced), acetyl coenzyme A (acetyl-CoA; 50-fold reduced), free coenzyme A (33-fold reduced), and citrate (4.5-fold reduced) were much lower in bacteroids. Instead of completely oxidizing acetyl-CoA, pea bacteroids channel it into both lipid and the lipid-like polymer poly-β-hydroxybutyrate (PHB), the latter via a type III PHB synthase that is active only in bacteroids. Lipogenesis may be a fundamental requirement of the redox poise of electron donation to N2 in all legume nodules. Direct reduction by NAD(P)H of the likely electron donors for nitrogenase, such as ferredoxin, is inconsistent with their redox potentials. Instead, bacteroids must balance the production of NAD(P)H from oxidation of acetyl-CoA in the TCA cycle with its storage in PHB and lipids. Biological nitrogen fixation by symbiotic bacteria (rhizobia) in legume root nodules is an energy-expensive process. Within legume root nodules, rhizobia differentiate into bacteroids that oxidize host-derived dicarboxylic acids, which is assumed to occur via the TCA cycle to generate NAD(P)H for reduction of N2 However, direct reduction of the likely electron donors for nitrogenase, such as ferredoxin, is inconsistent with their redox potentials. Instead, bacteroids must balance oxidation of plant-derived dicarboxylates in the TCA cycle with lipid synthesis. Pea bacteroids channel acetyl-CoA into both lipid and the lipid-like polymer poly-β-hydroxybutyrate, the latter via a type II PHB synthase. Lipogenesis is likely to be a fundamental requirement of the redox poise of electron donation to N2 in all legume nodules. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Ecological genomics of mutualism decline in nitrogen-fixing bacteria.

    Science.gov (United States)

    Klinger, Christie R; Lau, Jennifer A; Heath, Katy D

    2016-03-16

    Anthropogenic changes can influence mutualism evolution; however, the genomic regions underpinning mutualism that are most affected by environmental change are generally unknown, even in well-studied model mutualisms like the interaction between legumes and their nitrogen (N)-fixing rhizobia. Such genomic information can shed light on the agents and targets of selection maintaining cooperation in nature. We recently demonstrated that N-fertilization has caused an evolutionary decline in mutualistic partner quality in the rhizobia that form symbiosis with clover. Here, population genomic analyses of N-fertilized versus control rhizobium populations indicate that evolutionary differentiation at a key symbiosis gene region on the symbiotic plasmid (pSym) contributes to partner quality decline. Moreover, patterns of genetic variation at selected loci were consistent with recent positive selection within N-fertilized environments, suggesting that N-rich environments might select for less beneficial rhizobia. By studying the molecular population genomics of a natural bacterial population within a long-term ecological field experiment, we find that: (i) the N environment is indeed a potent selective force mediating mutualism evolution in this symbiosis, (ii) natural variation in rhizobium partner quality is mediated in part by key symbiosis genes on the symbiotic plasmid, and (iii) differentiation at selected genes occurred in the context of otherwise recombining genomes, resembling eukaryotic models of adaptation.

  7. Microorganisms interacting in a bio filter

    Energy Technology Data Exchange (ETDEWEB)

    Barba-Avila, M. D.; Flores-Tene, F. J.; Moreno-Terrazas, R.; Ramirez-Lopez, E. M.

    2009-07-01

    Biofilm microorganisms developed on a bio filter support media allow the metabolism of volatile organic compounds (VOCs) to carbon dioxide and water. VOCs are present in polluted gaseous streams for varied industrial activities. The main objective of this study was to identify the microorganisms present in the biofilm developed on a bio filter support media using molecular biology techniques. (Author)

  8. Microorganisms Resistant to Free-Living Amoebae

    OpenAIRE

    Greub, Gilbert; Raoult, Didier

    2004-01-01

    Free-living amoebae feed on bacteria, fungi, and algae. However, some microorganisms have evolved to become resistant to these protists. These amoeba-resistant microorganisms include established pathogens, such as Cryptococcus neoformans, Legionella spp., Chlamydophila pneumoniae, Mycobacterium avium, Listeria monocytogenes, Pseudomonas aeruginosa, and Francisella tularensis, and emerging pathogens, such as Bosea spp., Simkania negevensis, Parachlamydia acanthamoebae, and Legionella-like amoe...

  9. Screening of Nitrogen-fixing Bacteria in Rhizosphere of Cunninghaimia Lanceolata and Investigation on Their Properties of Phosphate-solubilizing and IAA-producing%杉木根际固氮菌筛选及其溶磷性与分泌IAA特性研究

    Institute of Scientific and Technical Information of China (English)

    周德明; 李蓉

    2012-01-01

    Chinese fir ( Cunninghaimia Lanceolata) is a main tree species of planted fast-growing forest in China. The problem on rapid reduction of soil fertility resulted from nutrient consumption of Chinese fir plantation still remains to be solved since the studies on screening and application of rhizosphere bacteria of Chinese fir with growth-promoting effect are rarely reported. In our study, 16 strains of nitrogen-fixing bacteria are isolated from rhizosphere soil of Chinese fir by measurement of nitrogenase activities using acetylene reduction assay after culturing in Ashby medium. Their abilities of dissolving inorganic and organic phosphorus are evaluated by dissolving phosphate zone on Menkina media and molybdenum blue spectrophotometry. IAA-producing abilities of the strains are measurated by the Salkowski colorimetry. The results indicate that 5 strains show high potential of nitrogen fixing with nitrogenase activity of over 150 nmol · mL-1 · h-1. NGJ-4 has the highest nitrogenase activity (264.7 nmol · mL-1 · h-1) and NCX-5 takes the second place (237.4 nmol · mL-1 · h-1'). There are 8 strains with abilitiy of dissolving inorganic phosphorus. The available phosphorus increments of NGJ-8, NGJ-4 and NGX-3 are 182.7, 158.4 and 133.9 mg · L-1, respectively, which can't dissolve organic phosphorus. There are 5 strains with low dissolving organic phosphorus abilitiy. The highest available phosphorus increments derived from organic phosphorus is only 46.1 mg · L-1 of NGX-5. Most of the strains can secrete IAA. The first 5 strains have a high IAA concentration of more than 20 mg · L-1 in supernatant of bacteria solution. The IAA concentration levels of NGX-5, NGJ-3, NGJ-4 and NCX-3 are 35.8, 32.1, 27.8 and 27. 7 mg · L-1, respectively. Consequently, NGJ-4, NGX-5 and NGJ-8 integrated prominent nitrogen-fixing, phosphorus-dissolving and IAA-producing can be utilized in developing multiple-effective microbial fertilizer.%我国特有速生用材林主要造林

  10. Spoilage microorganisms in milk and dairy products

    Directory of Open Access Journals (Sweden)

    Andrea Skelin

    2007-12-01

    Full Text Available Spoilage microorganisms cause changes of primary characteristics and properties of milk and dairy products. The product defects depends on the specific species and number of microorganisms involved in pre- and post- technological processing. Most often, these changes are related to single undesirable sensory characteristic, smell, flavour or conistency. However, in the case of heavier microbial contamination all these undesirable characteristics can occur simultaneously. Besides, even small changes caused by presence of spoilage microorganisms lead to decreased quality of milk and various dairy products. Despite of the importance for the overall quality, the control of spoilage microorganisms for dairy industry is not obligated and therefore, only a few producers control them. Therefore, the present study describes the undesirable effect of spoilage microorganisms on quality of raw, pasteurized and sterilized milk, fermented milk, butter, sour cream and cheeses with the intention to emphasize the importance and significance of their control in the dairy industry.

  11. Biofouling of marbles by oxygenic photosynthetic microorganisms.

    Science.gov (United States)

    Karaca, Zeki; Öztürk, Ayten; Çolak, Emel

    2015-08-01

    Phototrophic microorganisms disfigure the surfaces of different types of stone. Stone structure is damaged by the activity of photoautotrophic and other microorganisms. However, to date few, investigations have been undertaken into the relationship between microorganisms and the properties of different types of marble. In this study, biological activity of photoautotrophic microorganisms on three types of marble (Yatagan White, Giallo Anticato and Afyon White) was investigated under laboratory conditions over a short period of time. The three types of marble supported the growth of phototrophic microbial communities on their outer and inner layers, turning their original colour from white to a yellowish green colour. The porosity of the marble types facilitated filamentous microbial growth in the presence of water. Scanning electron microscope analysis revealed the accumulation of aggregates such as small spherical, fibrillar, calcified globular bodies on the inner surfaces of the marbles. This suggests that the microscopic characteristics of particular marble types may stimulate the growth of certain types of microorganisms.

  12. FUNCTIONAL POLYHYDROXYALKANOATES SYNTHESIZED BY MICROORGANISMS

    Institute of Scientific and Technical Information of China (English)

    Guo-qiang Chen; Qiong Wu; Kai Zhao; Peter H.Yu

    2000-01-01

    Many bacteria have been found to synthesize a family of polyesters termed polyhydroxyalkanoate, abbreviated as PHA. Some interesting physical properties of PHAs such as piezoelectricity, non-linear optical activity, biocompatibility and biodegradability offer promising applications in areas such as degradable packaging, tissue engineering and drug delivery.Over 90 PHAs with various structure variations have been reported and the number is still increasing. The mechanical property of PHAs changes from brittle to flexible to elastic, depending on the side-chainlength of PHA. Many attempts have been made to produce PHAs as biodegradable plastics using various microorganisms obtained from screening natural environments, genetic engineering and mutation. Due to the high production cost, PHAs still can not compete with the nondegradable plastics, such as polyethylene and polypropylene. Various processes have been developed using low cost raw materials for fermentation and an inorganic extraction process for PHA purification. However, a super PHA production strain may play the most critical role for any large-scale PHA production. Our recent study showed that PHA synthesis is a common phenomenon among bacteria inhabiting various locations, especially oil-contaminated soils. This is very important for finding a suitable bacterial strain for PHA production. In fact, PHA production strains capable of rapid growth and rapid PHA synthesis on cheap molasses substrate have been found on molasses contaminated soils. A combination of novel properties and lower cost will allow easier commercialization of PHA for many applications.

  13. Systems biology of industrial microorganisms.

    Science.gov (United States)

    Papini, Marta; Salazar, Margarita; Nielsen, Jens

    2010-01-01

    The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.

  14. [Genome editing of industrial microorganism].

    Science.gov (United States)

    Zhu, Linjiang; Li, Qi

    2015-03-01

    Genome editing is defined as highly-effective and precise modification of cellular genome in a large scale. In recent years, such genome-editing methods have been rapidly developed in the field of industrial strain improvement. The quickly-updating methods thoroughly change the old mode of inefficient genetic modification, which is "one modification, one selection marker, and one target site". Highly-effective modification mode in genome editing have been developed including simultaneous modification of multiplex genes, highly-effective insertion, replacement, and deletion of target genes in the genome scale, cut-paste of a large DNA fragment. These new tools for microbial genome editing will certainly be applied widely, and increase the efficiency of industrial strain improvement, and promote the revolution of traditional fermentation industry and rapid development of novel industrial biotechnology like production of biofuel and biomaterial. The technological principle of these genome-editing methods and their applications were summarized in this review, which can benefit engineering and construction of industrial microorganism.

  15. Systems Biology of Industrial Microorganisms

    Science.gov (United States)

    Papini, Marta; Salazar, Margarita; Nielsen, Jens

    The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.

  16. Potential applications of plant probiotic microorganisms in agriculture and forestry

    Directory of Open Access Journals (Sweden)

    Luciana Porto de Souza Vandenberghe

    2017-07-01

    Full Text Available Agriculture producers, pushed by the need for high productivity, have stimulated the intensive use of pesticides and fertilizers. Unfortunately, negative effects on water, soil, and human and animal health have appeared as a consequence of this indiscriminate practice. Plant probiotic microorganisms (PPM, also known as bioprotectants, biocontrollers, biofertilizers, or biostimulants, are beneficial microorganisms that offer a promising alternative and reduce health and environmental problems. These microorganisms are involved in either a symbiotic or free-living association with plants and act in different ways, sometimes with specific functions, to achieve satisfactory plant development. This review deals with PPM presentation and their description and function in different applications. PPM includes the plant growth promoters (PGP group, which contain bacteria and fungi that stimulate plant growth through different mechanisms. Soil microflora mediate many biogeochemical processes. The use of plant probiotics as an alternative soil fertilization source has been the focus of several studies; their use in agriculture improves nutrient supply and conserves field management and causes no adverse effects. The species related to organic matter and pollutant biodegradation in soil and abiotic stress tolerance are then presented. As an important way to understand not only the ecological role of PPM and their interaction with plants but also the biotechnological application of these cultures to crop management, two main approaches are elucidated: the culture-dependent approach where the microorganisms contained in the plant material are isolated by culturing and are identified by a combination of phenotypic and molecular methods; and the culture-independent approach where microorganisms are detected without cultivating them, based on extraction and analyses of DNA. These methods combine to give a thorough knowledge of the microbiology of the studied

  17. Application of atomic force microscopy on rapid determination of microorganisms for food safety.

    Science.gov (United States)

    Yang, H; Wang, Y

    2008-10-01

    Rapid detection and quantification of microorganisms is important for food quality, safety, and security. In this field, nanotechnology appears to be promising in its ability to characterize an individual microorganism and detect heterogeneous distribution of microbes in food samples. In this study, atomic force microscopy (AFM), a nanotechnology tool, was used to investigate Escherichia coli (E. coli) qualitatively and quantitatively. E. coli strains B and K12 were used as surrogates to represent pathogenic strains, such as E. coli O157: H7. The results from AFM were compared with those from scanning/transmission electron microscopy (SEM/TEM). The qualitative determination was obtained using morphology and characteristic parameters from AFM images, and the quantitative determination was obtained by calculating the microorganisms in AFM images. The results show that AFM provides a new approach for rapid determination of microorganisms for food safety.

  18. Applications of the green fluorescent protein as a molecular marker in environmental microorganisms.

    Science.gov (United States)

    Errampalli, D; Leung, K; Cassidy, M B; Kostrzynska, M; Blears, M; Lee, H; Trevors, J T

    1999-04-01

    In this review, we examine numerous applications of the green fluorescent protein (GFP) marker gene in environmental microbiology research. The GFP and its variants are reviewed and applications in plant-microbe interactions, biofilms, biodegradation, bacterial-protozoan interactions, gene transfer, and biosensors are discussed. Methods for detecting GFP-marked cells are also examined. The GFP is a useful marker in environmental microorganisms, allowing new research that will increase our understanding of microorganisms in the environment.

  19. The Role of Microorganisms in Marine Corrosion

    Science.gov (United States)

    1990-02-12

    Electrochemical evaluation of hydrogen embrittlement by microorganisms. ’The Electrochemical Society ,’ 175th meeting, Los Angeles, CA. 4. Black, J.P...microbiologically-produced hydrogen permeation through palladium. Journal of the Electrochemical Society . (In Press). INVENTIONS: None TRAINING ACTIVITIES

  20. Alkaliphilic Micro-organisms and Habitats

    OpenAIRE

    Ulukanli, Zeynep

    2002-01-01

    Alkaline environments are typical extreme environments which include naturally occurring soda lakes, deserts, soils and artificially occurring industrial-derived waters. Micro-organisms that occupy extreme pH environments have resulted in the definition of an unusual group, termed alkaliphiles. In this review, the current status of the biodiversity of alkaliphilic micro-organisms in various environments and aspects of their biotechnological potential are summarised briefly.

  1. Reactions of fish to microorganisms in wastewater.

    OpenAIRE

    1985-01-01

    Fish were inoculated with various microorganisms present in wastewater. A threshold concentration was determined over which these microorganisms were recovered from the muscles. The threshold concentrations were different for bacteria, bacteriophages, and polio 1 LSc virus. The threshold values were lower when fish were inoculated than when they were immersed in water containing these organisms. Depuration experiments were efficient when the fish did not contain high concentrations of bacteri...

  2. Antimicrobial activity of different disinfectants against cariogenic microorganisms

    Directory of Open Access Journals (Sweden)

    Esra UZER CELIK

    Full Text Available Abstract The aim of this study was to assess the in vitro antimicrobial effects of chlorhexidine digluconate (CHX, polyhexamethylene biguanide (PHBM, and octenidine dihydrochloride (OCT on cariogenic microorganisms by using their minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC. CHX, PHBM, and OCT were diluted in distilled water to the final test concentrations. Using the in-tube dilution method, Streptococcus mutans, Lactobacillus acidophilus, Lactobacillus rhamnosus, and Actinomyces viscosus were cultivated on blood agar and Mueller–Hinton broth (MHB at 37°C for 48 h. They were read using a spectrophotometer to detect MIC. To determine MBC, samples in the range of the turbidity threshold after 24 h were transferred onto blood agar and evaluated for growth after 24 h. Different MICs and MBCs were observed in all disinfectants against each microorganism. The lowest MIC and MBC against S. mutans (60 mg/L were obtained from PHBM. The lowest values against L. rhamnosus (15 mg/L, 30 mg/L, A. viscosus (30 mg/L, and L. acidophilus (15 mg/L, 30 mg/L were determined by OCT. PHBM and OCT have the potential to be replaced with CHX because they were effective against cariogenic microorganisms.

  3. Long-term impact of farm management and crops on soil microorganisms assessed by combined DGGE and PLFA analyses

    Directory of Open Access Journals (Sweden)

    Fabio eStagnari

    2014-12-01

    Full Text Available In the present study, long-term organic and conventional managements were compared at the experimental field of Monsampolo del Tronto (Marche region, Italy with the aim of investigating soil chemical fertility and microbial community structure. A polyphasic approach, combining soil fertility indicators with microbiological analyses (plate counts, PCR-denaturing gradient gel electrophoresis [DGGE] and phospholipid fatty acid analysis [PLFA] was applied. Organic matter, N as well as some important macro and micronutrients (K, P, Mg, Mn, Cu and Zn for crop growth, were more available under organic management. Bacterial counts were higher in organic management. A significant influence of management system and management x crop interaction was observed for total mesophilic bacteria, nitrogen fixing bacteria and actinobacteria. Interestingly, cultivable fungi were not detected in all analyzed samples. PLFA biomass was higher in the organic and Gram positive bacteria dominated the microbial community in both systems. Even if fungal biomass was higher in organic management, fungal PCR-DGGE fingerprinting revealed that the two systems were very similar in terms of fungal species suggesting that 10 years were not enough to establish a new dynamic equilibrium among ecosystem components. A better knowledge of soil biota and in particular of fungal community structure will be useful for the development of sustainable management strategies.

  4. Microorganism detection in central air conditioning ventilation systems in hotels of Wenzhou%温州市部分酒店集中空调通风系统卫生监测与分析

    Institute of Scientific and Technical Information of China (English)

    章乐怡; 马雪莲; 吴跃进; 李毅

    2011-01-01

    Objective:To investigate sanitary condition of the central air conditioning ventilation system in hotels of Wenzhou.To provide a basis for sanitary control, prevention and control of air pollution caused by bacteria as well as the spread of respiratorytract infection and popular. Methods: 20 units with central air conditioning ventilation system have been investigated through detection and evaluation of the following indexes: the content of the dust, total count of fungi and bacteria, β - hemolytic streptococcus on the surface of air duct, PM10, the total number of bacteria and fungi in wind sending outlet, Legionella pneumophila of condensed water and cooling water. Results: The qualified rate of PM10, total bacterial count and total fungi count were 40% ( 8/20), 100% (20/20) and 95% (19/20), respectively. β - hemolytic Streptococcus were not detected. On the surface of airduc ,the qualified rate of dust accumulation was 30% (6/20). The qualified rate of total bacterial count and total fungi count were 95% and 50%, respectively. The contamination rate of Legionella pneumophila in condensed water was 5% (1/20) while the contamination rate of Legionella pneumophila in cooling water reached to 45% (9/20). Conclusion: It has a certain degree of contamination in centralized air ventilation system in some hotels of Wenzhou, especially Legionella pneumophila contamination in cooling water. Effective measures should be strengthened, including disinfection and health supervision in centralized air - conditioning system.%目的:调查分析温州市部分酒店集中空调通风系统的卫生状况,为卫生管理提供依据,预防和控制由空调细菌污染所带来的呼吸道传染病的传播和流行.方法:选取20家有集中空调通风系统的单位,分别对风管表面的积尘量、真菌总数、细菌总数、β-溶血性链球菌,送风中PM10、细菌和真菌总数,以及冷凝水和冷却水中的嗜肺军团菌进行检测

  5. Functional microorganisms for functional food quality.

    Science.gov (United States)

    Gobbetti, M; Cagno, R Di; De Angelis, M

    2010-09-01

    Functional microorganisms and health benefits represent a binomial with great potential for fermented functional foods. The health benefits of fermented functional foods are expressed either directly through the interactions of ingested live microorganisms with the host (probiotic effect) or indirectly as the result of the ingestion of microbial metabolites synthesized during fermentation (biogenic effect). Since the importance of high viability for probiotic effect, two major options are currently pursued for improving it--to enhance bacterial stress response and to use alternative products for incorporating probiotics (e.g., ice cream, cheeses, cereals, fruit juices, vegetables, and soy beans). Further, it seems that quorum sensing signal molecules released by probiotics may interact with human epithelial cells from intestine thus modulating several physiological functions. Under optimal processing conditions, functional microorganisms contribute to food functionality through their enzyme portfolio and the release of metabolites. Overproduction of free amino acids and vitamins are two classical examples. Besides, bioactive compounds (e.g., peptides, γ-amino butyric acid, and conjugated linoleic acid) may be released during food processing above the physiological threshold and they may exert various in vivo health benefits. Functional microorganisms are even more used in novel strategies for decreasing phenomenon of food intolerance (e.g., gluten intolerance) and allergy. By a critical approach, this review will aim at showing the potential of functional microorganisms for the quality of functional foods.

  6. Production of fats and oils by microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Osamu

    1987-10-20

    This paper describes the production of fats and oils by microorganisms. Various fat-productive bacteria have been found to produce the fats and oils by microorganisms which are roughly classified into enzyme and filiform fungus. The cells do not proliferate under the conditions adequate for producing the cells with the high content of lipid. A cell with high content of fat belonging to Mortierella filamentas fungi has been recently obtained at high density in the high concentration culture medium. The productivity of the fat similar to cocoa butter seems to be also high. A lot of microorganisms producing various functional fatty acids have been found. The microorganismic production methods of esters of longer-chain dicarboxylic acids and alcohols than C/sub 11/ hardly produced in nature form n-alkane also have been recently developed. Squalene has been able to produce by a cell from the other raw materials than the shark oil. Various sterols exist in microorganisms. The high-productivity manufacturing method of the fats containing gamma-linoleic acid by Mortierella filiform fungi has been developed and commercialized as the first production process of the fat by the microorganism. (5 figs, 7 tabs, 128 refs

  7. Application of thermotolerant microorganisms for biofertilizer preparation.

    Science.gov (United States)

    Chen, Kuo-Shu; Lin, Yann-Shying; Yang, Shang-Shyng

    2007-12-01

    Intensive agriculture is practised in Taiwan, and compost application is very popular as a means of improving the soil physical properties and supplying plant nutrition. We tested the potential of inoculation with thermotolerant microorganisms to shorten the maturity and improve the quality of biofertilizer prepared by composting. Thermotolerant microorganisms were isolated from compost and reinoculated for the preparation of biofertilizer. The physical, chemical and biological properties of the biofertilizer were determined during composting. The effects of biofertilizer application on the growth and yield of rape were also studied. Among 3823 colonies of thermotolerant microorganisms, Streptomyces thermonitrificans NTU-88, Streptococcus sp. NTU-130 and Aspergillus fumigatus NTU-132 exhibited high growth rates and cellulolytic and proteolytic activities. When a mixture of rice straw and swine manure were inoculated with these isolates and composted for 61 days, substrate temperature increased initially and then decreased gradually during composting. Substrate pH increased from 7.3 to 8.5. Microbial inoculation enhanced the rate of maturity, and increased the content of ash and total and immobilized nitrogen, improved the germination rate of alfalfa seed, and decreased the content of total organic carbon and the carbon/nitrogen ratio. Biofertilizer application increased the growth and yield of rape. Inoculation of thermotolerant and thermophilic microorganisms to agricultural waste for biofertilizer preparation enhances the rate of maturity and improves the quality of the resulting biofertilizer. Inoculation of appropriate microorganisms in biofertilizer preparation might be usefully applied to agricultural situations.

  8. PRESENCE OF MICROORGANISMS AT VARIOUS STAGES OF POULTRY WASTES MANAGEMENT. PART I. KERATINOLYTIC MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    Ilona Wrońska

    2016-11-01

    Based on the study, the presence of keratinolytic microorganisms was found in all materials. The slime was the most numerously inhabited waste, while proper compost the least. Predominant group of microorganisms, regardless of the tested material type, was composed of bacteria.

  9. Combating Antimicrobial Resistance in Foodborne Microorganisms.

    Science.gov (United States)

    Lai, Edward P C; Iqbal, Zafar; Avis, Tyler J

    2016-02-01

    This review addresses an important public health hazard affecting food safety. Antimicrobial agents are used in foods to reduce or eliminate microorganisms that cause disease. Many traditional organic compounds, novel synthetic organic agents, natural products, peptides, and proteins have been extensively studied for their effectiveness as antimicrobial agents against foodborne Campylobacter spp., Escherichia coli, Listeria spp. and Salmonella. However, antimicrobial resistance can develop in microorganisms, enhancing their ability to withstand the inhibiting or killing action of antimicrobial agents. Knowledge gaps still exist with regard to the actual chemical and microbiological mechanisms that must be identified to facilitate the search for new antimicrobial agents. Technical implementation of antimicrobial active packing films and coatings against target microorganisms must also be improved for extended product shelf life. Recent advances in antimicrobial susceptibility testing can provide researchers with new momentum to pursue their quest for a resistance panacea.

  10. Recovery of germanium from lignite by microorganism

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The recovery of Ge from lignite by microorganism includes two stages: (1) the breaking-down of Ge complex of humus in lignite into simple compounds assisted by microorganism; (2) the desorption of Ge compounds from the lignite. The recovery rate of Ge has been enhanced by 14% since the discovery of adsorption and desorption of Ge from coal. The effects of pH, leaching agents, and coal size on the recovery of Ge were experimentally investigated, and the optimized process parameters were obtained. The reaction heat of Ge adsorption and desorption in lignite was determined. It is about 23-53 kJ/mol, which reveals that the adsorption belongs to physical process. The recovery rate of Ge from lignite with direct microorganism leaching can reach about 85%, which is higher than that of 60% reported elsewhere. A potential process for leaching Ge in lignite was suggested.

  11. Selective enumeration of probiotic microorganisms in cheese.

    Science.gov (United States)

    Karimi, Reza; Mortazavian, Amir M; Amiri-Rigi, Atefeh

    2012-02-01

    Cheese is a dairy product which has a good potential for delivery of probiotic microorganisms into the human intestine. To be considered to offer probiotic health benefits, probiotics must remain viable in food products above a threshold level (e.g., 10(6) cfu g(-1)) until the time of consumption. In order to ensure that a minimal number of probiotic bacteria is present in the cheese, reliable methods for enumeration are required. The choice of culture medium for selective enumeration of probiotic strains in combination with starters depends on the product matrix, the target group and the taxonomic diversity of the bacterial background flora in the product. Enumeration protocol should be designed as a function of the target microorganism(s) to be quantified in the cheese. An overview of some series of culture media for selective enumeration of commercial probiotic cultures is presented in this review.

  12. Microorganism Utilization for Synthetic Milk Production

    Science.gov (United States)

    Birmele, Michele; Morford, Megan; Khodadad, Christina; Spencer, Lashelle; Richards, Jeffrey; Strayer, Richard; Caro, Janicce; Hummerick, Mary; Wheeler, Ray

    2014-01-01

    A desired architecture for long duration spaceflight, such as aboard the International Space Station (ISS) or for future missions to Mars, is to provide a supply of fresh food crops for the astronauts. However, some crops can create a high proportion of inedible plant waste. The main goal of this project was to produce the components of milk (sugar, lipid, protein) from inedible plant waste by utilizing microorganisms (fungi, yeast, bacteria). Of particular interest was utilizing the valuable polysaccharide, cellulose, found in plant waste, to naturally fuel- through microorganism cellular metabolism- the creation of sugar (glucose), lipid (milk fat), and protein (casein) to produce a synthetic edible food product. Environmental conditions such as pH, temperature, carbon source, aeration, and choice microorganisms.

  13. Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms.

    Science.gov (United States)

    Satpute, Surekha K; Banat, Ibrahim M; Dhakephalkar, Prashant K; Banpurkar, Arun G; Chopade, Balu A

    2010-01-01

    Marine biosphere offers wealthy flora and fauna, which represents a vast natural resource of imperative functional commercial grade products. Among the various bioactive compounds, biosurfactant (BS)/bioemulsifiers (BE) are attracting major interest and attention due to their structural and functional diversity. The versatile properties of surface active molecules find numerous applications in various industries. Marine microorganisms such as Acinetobacter, Arthrobacter, Pseudomonas, Halomonas, Myroides, Corynebacteria, Bacillus, Alteromonas sp. have been studied for production of BS/BE and exopolysaccharides (EPS). Due to the enormity of marine biosphere, most of the marine microbial world remains unexplored. The discovery of potent BS/BE producing marine microorganism would enhance the use of environmental biodegradable surface active molecule and hopefully reduce total dependence or number of new application oriented towards the chemical synthetic surfactant industry. Our present review gives comprehensive information on BS/BE which has been reported to be produced by marine microorganisms and their possible potential future applications.

  14. Functional Properties of Microorganisms in Fermented Foods

    Directory of Open Access Journals (Sweden)

    Jyoti Prakash Tamang

    2016-04-01

    Full Text Available Fermented foods have unique functional properties imparting some health benefits to consumers due to presence of functional microorganisms, which possess probiotics properties, antimicrobial, antioxidant, peptide production, etc. Health benefits of some global fermented foods are synthesis of nutrients, prevention of cardiovascular disease, prevention of cancer, gastrointestinal disorders, allergic reactions, diabetes, among others. The present paper is aimed to review the information on some functional properties of the microorganisms associated with fermented foods and beverages, and their health-promoting benefits to consumers.

  15. Risk Assessment of Genetically Modified Microorganisms

    DEFF Research Database (Denmark)

    Jacobsen, B. L.; Wilcks, Andrea

    2001-01-01

    the industry, national administration and research institutions were gathered to discuss which elements should be considered in a risk assessment of genetically modified microorganisms used as food or food ingredients. The existing EU and national regulations were presented, together with the experiences......The rapid development of recombinant DNA techniques for food organisms urges for an ongoing discussion on the risk assessment of both new as traditional use of microorganisms in food production. This report, supported by the Nordic Council of Ministers, is the result of a workshop where people from...

  16. [Metagenomics in studying gastrointestinal tract microorganism].

    Science.gov (United States)

    Xu, Bo; Yang, Yunjuan; Li, Junjun; Tang, Xianghua; Mu, Yuelin; Huang, Zunxi

    2013-12-01

    Animal gastrointestinal tract contains a complex community of microbes, whose composition ultimately reflects the co-evolution of microorganisms with their animal host. The gut microbial community of humans and animals has received significant attention from researchers because of its association with health and disease. The application of metagenomics technology enables researchers to study not only the microbial composition but also the function of microbes in the gastrointestinal tract. In this paper, combined with our own findings, we summarized advances in studying gastrointestinal tract microorganism with metagenomics and the bioinformatics technology.

  17. Antibacterial Effect of Copper on Microorganisms Isolated from Bovine Mastitis

    Science.gov (United States)

    Reyes-Jara, Angelica; Cordero, Ninoska; Aguirre, Juan; Troncoso, Miriam; Figueroa, Guillermo

    2016-01-01

    The antimicrobial properties of copper have been recognized for several years; applying these properties to the prevention of diseases such as bovine mastitis is a new area of research. The aim of the present study was to evaluate in vitro the antimicrobial activity of copper on bacteria isolated from subclinical and clinical mastitis milk samples from two regions in Chile. A total of 327 microorganisms were recovered between March and September 2013, with different prevalence by sample origin (25 and 75% from the central and southern regions of Chile, respectively). In the central region, Escherichia coli and coagulase negative Staphylococci (CNS) were the most frequently detected in clinical mastitis cases (33%), while in the southern region S. uberis, S. aureus, and CNS were detected with frequencies of 22, 21, and 18%, respectively. Antibiotic susceptibility studies revealed that 34% of isolates were resistant to one or more antibiotics and the resistance profile was different between bacterial species and origins of isolation of the bacteria. The minimum inhibitory concentration of copper (MIC-Cu) was evaluated in all the isolates; results revealed that a concentration as low as 250 ppm copper was able to inhibit the great majority of microorganisms analyzed (65% of isolates). The remaining isolates showed a MIC-Cu between 375 and 700 ppm copper, and no growth was observed at 1000 ppm. A linear relationship was found between the logarithm of viable bacteria number and time of contact with copper. With the application of the same concentration of copper (250 ppm), CNS showed the highest tolerance to copper, followed by S. uberis and S. aureus; the least resistant was E. coli. Based on these in vitro results, copper preparations could represent a good alternative to dipping solutions, aimed at preventing the presence and multiplication of potentially pathogenic microorganisms involved in bovine mastitis disease. PMID:27199953

  18. Antibacterial effect of copper on microorganisms isolated from bovine mastitis

    Directory of Open Access Journals (Sweden)

    Angelica eReyes-Jara

    2016-04-01

    Full Text Available The antimicrobial properties of copper have been recognized for several years; applying these properties to the prevention of diseases such as bovine mastitis is a new area of research. The aim of the present study was to evaluate in vitro the antimicrobial activity of copper on bacteria isolated from subclinical and clinical mastitis milk samples from two regions in Chile. A total of 327 microorganisms were recovered between March and September 2013, with different prevalence by sample origin (25% and 75% from the central and southern regions of Chile, respectively. In the central region, E. coli and coagulase negative Staphylococci (CNS were the most frequently detected in clinical mastitis cases (33%, while in the southern region S. uberis, S. aureus and CNS were detected with frequencies of 22%, 21% and 18%, respectively. Antibiotic susceptibility studies revealed that 34% of isolates were resistant to one or more antibiotics and the resistance profile was different between bacterial species and origins of isolation of the bacteria.The minimum inhibitory concentration of copper (MIC-Cu was evaluated in all the isolates; results revealed that a concentration as low as 250 ppm copper was able to inhibit the great majority of microorganisms analyzed (65% of isolates. The remaining isolates showed a MIC-Cu between 375 and 700 ppm copper, and no growth was observed at 1000 ppm. A linear relationship was found between the logarithm of viable bacteria number and time of contact with copper. With the application of the same concentration of copper (250 ppm, CNS showed the highest tolerance to copper, followed by S. uberis and S. aureus; the least resistant was E.coli. Based on these in vitro results, copper preparations could represent a good alternative to dipping solutions, aimed at preventing the presence and multiplication of potentially pathogenic microorganisms involved in bovine mastitis disease.

  19. Study on methylene blue reductive enzymatic application in rapid detection on microorganism for sud-den water pollution%美蓝还原酶法应用于突发水污染微生物指标快速检测的研究

    Institute of Scientific and Technical Information of China (English)

    邱颖; 王敏娣; 邱贺民

    2013-01-01

    目的 探讨美蓝还原酶法快速检测突发水污染微生物指标即菌落总数的可行性.方法 通过对美蓝的褪色时间与GB/T5750.12-2006 平板计数法的比较,对菌落总数进行检测.结果 美蓝的还原褪色时间与菌量的多少呈反比,即菌量越大美蓝褪色时间越短.结论 美蓝还原酶法操作简便,快速,结果准确可靠,可应用于突发水污染的菌落总数的快速检测.%Objective To study the feasibility that methylene blue reductase method to the rapid detection on microorganism index in sudden water pollution. Methods The total number of colonies was tested by the comparison between the fading time of methylene blue and the GB/T5750.12—2006 plate count method. Results There was an inverse relationship between the fading time of methylene blue and total number of colonies. The more the number of colonies, the shorter the fading time of methylene blue. Conclusion Methylene blue reduction method is simple, rapid, accurate, reliable and can be applied to rapid detection of the total bacterial colonies in sudden water pollution.

  20. Distribution of Prx-linked hydroperoxide reductase activity among microorganisms.

    Science.gov (United States)

    Takeda, Kouji; Nishiyama, Yoshitaka; Yoda, Koji; Watanabe, Toshihiro; Nimura-Matsune, Kaori; Mura, Kiyoshi; Tokue, Chiyoko; Katoh, Tetzuya; Kawasaki, Shinji; Niimura, Youichi

    2004-01-01

    Peroxiredoxin (Prx) constitutes a large family of enzymes found in microorganisms, animals, and plants, but the detection of the activities of Prx-linked hydroperoxide reductases (peroxiredoxin reductases) in cell extracts, and the purification based on peroxide reductase activity, have only been done in bacteria and Trypanosomatidae. A peroxiredoxin reductase (NADH oxidase) from a bacterium, Amphibacillus, displayed only poor activities in the presence of purified Prx from Saccharomyces or Synechocystis, while it is highly active in the presence of bacterial Prx. These results suggested that an enzyme system different from that in bacteria might exist for the reduction of Prx in yeast and cyanobacteria. Prx-linked hydroperoxide reductase activities were detected in cell extracts of Saccharomyces, Synechocystis, and Chlorella, and the enzyme activities of Saccharomyces and Chlorella were induced under vigorously aerated culture conditions and intensive light exposure conditions, respectively. Partial purification of Prx-linked peroxidase from the induced yeast cells indicated that the Prx-linked peroxidase system consists of two protein components, namely, thioredoxin and thioredoxin reductase. This finding is consistent with the previous report on its purification based on its protein protection activity against oxidation [Chae et al., J. Biol. Chem., 269, 27670-27678 (1994)]. In this study we have confirmed that Prx-linked peroxidase activity are widely distributed, not only in bacteria species and Trypanosomatidae, but also in yeast and photosynthetic microorganisms, and showed reconstitution of the activity from partially purified interspecies components.

  1. A novel measurement method of microorganism growth by tunable diode laser-absorption spectroscopy

    Science.gov (United States)

    Xiang, Jindong; Shao, Jie; Ying, Chaofu; Wang, Liming; Guo, Jie

    2015-05-01

    The objective of this work was to attain essential parameters by using a Gompertz model that employed a new approach of wavelength modulation spectroscopy (WMS) to describe the microorganism growth. The measurement method of WMS introduces noninvasive technique instead of complicated invasive microorganism operation analysis and quickly obtains the accurate real-time measurement results. By using the WMS measurement, the specific growth curve of microorganism growth clearly displayed every three minute, which has characteristics of high sensitivity, high spectral resolution, fast time response and overcomes the randomness and error operation of traditional analysis methods. The measurement value of BF and AF in the range of 1.008 to 1.043 and the lower MSE showed that Gompertz model can fit the data well and be capable of describing bacteria growth rate and lag time. The results of experiment data suggested that the specific growth rate of microorganism depends on the temperature. With the increase of temperature ranging from 25 °C to 42 °C , the lag time of bacteria growth has been shortened. And the suitable temperature of bacteria growth is about 37 °C . Judging from the growth rate of microorganisms, we can identify the microbial species, not only to improve the precision and efficiency, but also to provides a rapidly sensitive way for microbial detection. The lag time of microorganism growth also provides a great application prospect for shelf life of the food safety.

  2. Modelling the morphology of filamentous microorganisms

    DEFF Research Database (Denmark)

    Nielsen, Jens Bredal

    1996-01-01

    The rapid development in image analysis techniques has made it possible to study the growth kinetics of filamentous microorganisms in more detail than previously, However, owing to the many different processes that influence the morphology it is important to apply mathematical models to extract...

  3. Food fermentations: Microorganisms with technological beneficial use

    DEFF Research Database (Denmark)

    Bourdichon, François; Casaregola, Serge; Farrokh, Choreh

    2012-01-01

    Microbial food cultures have directly or indirectly come under various regulatory frameworks in the course of the last decades. Several of those regulatory frameworks put emphasis on “the history of use”, “traditional food”, or “general recognition of safety”. Authoritative lists of microorganisms...

  4. Engineered microorganisms having resistance to ionic liquids

    Science.gov (United States)

    Ruegg, Thomas Lawrence; Thelen, Michael P.

    2016-03-22

    The present invention provides for a method of genetically modifying microorganisms to enhance resistance to ionic liquids, host cells genetically modified in accordance with the methods, and methods of using the host cells in a reaction comprising biomass that has been pretreated with ionic liquids.

  5. Ecophysiology of microorganisms in microbial elctrolysis cells

    NARCIS (Netherlands)

    Croese, E.

    2012-01-01

    One of the main challenges for improvement of the microbial electrolysis cell (MEC) has been the reduction of the cost of the cathode catalyst. As catalyst at the cathode, microorganisms offer great possibilities. Previous research has shown the principle possibilities for the biocathode for H2

  6. Microorganisms as Indicators of Soil Health

    DEFF Research Database (Denmark)

    Nielsen, M. N.; Winding, A.; Binnerup, S.;

    Microorganisms are an essential part of living soil and of outmost importance for soil health. As such they can be used as indicators of soil health. This report reviews the current and potential future use of microbial indicators of soil health and recommends specific microbial indicators for soil...... indicators into soil monitoring programmes as they become applicable....

  7. Pesticides in Soil: Effects on Microorganisms

    Directory of Open Access Journals (Sweden)

    Ljiljana Radivojević

    2007-01-01

    Full Text Available Since their discovery to the present day, pesticides have been an inevitable segment of agricultural production and efforts have been made to synthesize compounds that would share a required efficacy along with selectivity, sufficient persistence on the object of protection and favourable toxicological and ecotoxicological characteristics so as to minimize their effect on the environment.When a pesticide gets into soil after application, it takes part in a number of physical, chemical and biological processes that depend not only on the compound itself, but a number of other factors as well, such as: physical, chemical and biological characteristics of soil; climatic factors, equipment used, method of application, method of storage, handling and disposal of waste, site characteristics (proximity of ground and underground waters, biodiversity and sensitivity of the environment. Microorganisms play an important role in pesticide degradation as they are able to utilize the biogenic elements from those compounds, as well as energy for their physiological processes. On the other hand, pesticides are more or less toxic substances that can have adverse effect on populations of microorganisms and prevent their development, reduce their abundance, deplete their taxonomic complexity and create communities with a lower level of diversity and reduced physiological activity.The article discusses complex interactions between pesticides and microorganisms in soil immediately after application and over the ensuing period. Data on changes in the abundance of some systematic and physiological groups of microorganisms, their microbial biomass and enzymatic activity caused under pesticide activity are discussed as indicators of these processes.

  8. 40 CFR 725.85 - Microorganism identity.

    Science.gov (United States)

    2010-07-01

    ... information confidential in a TERA submission and wishes the same information to remain confidential in a subsequent TERA or MCAN submission, the person must reassert and resubstantiate the claim in the subsequent... under paragraph (a) of this section in any TERA submitted for the microorganism, but subsequently...

  9. Ecophysiology of microorganisms in microbial elctrolysis cells

    NARCIS (Netherlands)

    Croese, E.

    2012-01-01

    One of the main challenges for improvement of the microbial electrolysis cell (MEC) has been the reduction of the cost of the cathode catalyst. As catalyst at the cathode, microorganisms offer great possibilities. Previous research has shown the principle possibilities for the biocathode for H2 prod

  10. Attaching substances to micro-organisms

    NARCIS (Netherlands)

    Buist, Girbe; Leenhouts, Cornelis Johannes; Venema, Gerard; Kok, Jan

    1999-01-01

    The invention relates to surface display of proteins on micro-organisms via the targeting and anchoring of heterologous proteins to the outer surface of cells such as yeast, fungi, mammalian and plant cells, and bacteria. The invention provides a proteinaceous substance comprising a reactive group a

  11. Novel Industrial Enzymes from Uncultured Arctic Microorganisms

    DEFF Research Database (Denmark)

    Vester, Jan Kjølhede

    on the diversity of microorganisms from the ikaite columns as well as bioprospecting for enzyme activities using both culture dependent and independent methods. Two cold-active β-galactosidases and one extremely cold-active α-amylase, all related to Clostridia, were characterized in more details....

  12. Radiation sensitivity of hyperthermal composting microorganisms

    Science.gov (United States)

    Choi, Jong-Il; Yoon, Min-Chul; Kim, Jae-Hun; Yamashita, Masamichi; Kim, Geun Joong; Lee, Ju-Woon

    In the space station and vehicles designed for long human mission, high-temperature compost is a promising technology for decomposing organic waste and producing the fertilizers. In space, the microorganisms could have the changed biological activities or even be mutated by ionizing irradiation. Therefore, in this study, the effect of gamma irradiation on the sensitivity of bacteria in hyperthermal composting was investigated. The sequence analysis of the amplified 16s rDNA genes and amoA gene were used for the identification of composting microorganisms. Viability of microorganisms in compost soil after gamma irradiation was directly visualized with LIVE/DEAD Baclight viability kit. The dominant bacterial genera are Weissella cibaria and Leuconostoc sp. and fungus genera are Metschnikowia bicuspidate and Pichia guilliermondii, respectively. By the gamma irradiation up to the dose of 1 kGy, the microbial population was not changed. Also, the enzyme activities of amylase and cellulose were sustained by the gamma irradiation. These results show that these hyperthermia microorganisms might have the high resistance to gamma radiation and could be used for agriculture in the Space Station.

  13. Airborne microorganisms and dust from livestock houses

    NARCIS (Netherlands)

    Zhao, Y.; Aarnink, A.J.A.; Jong, de M.C.M.; Groot Koerkamp, P.W.G.

    2011-01-01

    The objective of this study was to evaluate the efficiencies and suitability of samplers for airborne microorganisms and dust, which could be used in practical livestock houses. Two studies were performed: 1) Testing impaction and cyclone pre-separators for dust sampling in livestock houses; 2) Dete

  14. Biodiversity of deep-sea microorganisms

    Directory of Open Access Journals (Sweden)

    Fengping Wang

    2013-07-01

    Full Text Available The oceans, with an average depth of 3,800 meters and an average pressure about 38 MPa, cover about 70% of the surface of the Earth. Geological structures under the seawater, such as marine sediments, oceanic crust, hydrothermal vents, and the cold seeps, vary significantly with regard to physical and chemical properties. In combination, these diverse environments contain the largest microbial ecosystem in the world. In deep seawater, the major microorganism groups are Alpha-& Gammaproteobacteria, and Marine Group I. In deep-sea sediments, the abundance of microbes is related to the content of organic matter and distance from land. Methane Oxidizing Archaea (ANME and sulfate reducing bacteria (Deltaproteobacteria are common in deep-sea cold seep environments; while in hydrothermal vents, the richness and dynamics of chemical substances have led to highly diversified archaeal and bacterial groups. In contrast, the oceanic crust is mainly composed of basic and ultrabasic rocks rich in minerals, and as a result houses microorganisms that are mainly autotrophic, utilizing iron, manganese and sulfur. Because more than 99% of deep-sea microorganisms cannot be cultured, an understanding of their diversity, physiological features, and biogeochemical roles remains to be fully achieved. In this article, we review and summarize what is known about the distribution and diversity of deep-sea microorganisms in diverse habitats. It is emphasized that there is much to learn about these microbes.

  15. Artifical Microorganism Infection in Aviation Kerosene

    Directory of Open Access Journals (Sweden)

    Dušan Vallo

    2004-12-01

    Full Text Available The fuel used in the aviation engineering has to be clean and dry, it may not contain mechanical impurities and water. Water inaviation kerosene may occur in soluble and insoluble form. The danger inheres in the insoluble form, which may drop out in the crystallineform and cause various failures, such as those caused by mechanical impurities. The water assists in the biological matter formation createdby various species of microorganisms (bacteria, mould fungi and yeast. The microorganisms, present in water phase occurring on thebottom of tanks or on the interface water phase – kerosene, grow and reproduce and subsequently may pollute (impair the fuel by thebiomass or by the products of their metabolism. There is a possibility to infect the fuel artificially by a selected reference microorganismstrain, which usually occur in contaminated fuel, or by microorganisms which cause a biological contamination of aviation kerosene.Out of the selected reference strains used in the experiments, the reference strains of Proteus vulgaris, Sacharamyces cerevisiae andClostridium perfringens were not cultivated in the sterile aviation kerosene and the propagating nutrient medium. The aviation kerosene actsas a biocide medium for the presented reference microorganism strains.

  16. How Microorganisms Affect Food Safety and Quality

    OpenAIRE

    Bacon, Karleigh

    2012-01-01

    The main methods of preservation for shelf-stable foods are controlling the water activity or lowering the pH. Factors are often combined, like lowering pH AND using refrigeration. Understanding how food supports the growth of microorganisms can help improve both food safety AND food quality. This guide can help you manipulate your food to create a safe product.

  17. Survival and transfer of microorganisms from kitchen sponges to surfaces of stainless steel and polyethylene.

    Science.gov (United States)

    Rossi, Eliandra Mirlei; Scapin, Diane; Tondo, Eduardo César

    2013-03-14

    Contaminated sponges might lead to cross-contamination in kitchens since they can transfer microorganisms to surfaces where microorganisms can survive for hours or days and contaminate food. The main objective of this study was to evaluate the transfer and the survival of bacteria from kitchen sponges to surfaces of AISI 316 stainless steel and polyethylene. Twenty-four sponges were collected from industrial kitchens in the state of Rio Grande do Sul and aseptically split into two equal parts. One part was subjected to enumeration of heterotrophic microorganisms, faecal coliforms, coagulase-positive Staphylococcus and search detection of Salmonella enterica. The other part was rubbed on surfaces of AISI 316 stainless steel (12 sponges) or polyethylene (12 sponges). The transfer and survival of microorganisms was quantified by swab collection and pour-plate method using plate count agar. All sponges were contaminated by heterotrophic microorganisms (average of 6.8 log CFU/sponge) and 83.3% with faecal coliforms (average of 5 log CFU/sponge). None of the sponges were contaminated by S. enterica and/or coagulase-positive Staphylococcus. The average transfer of microorganisms varied between 3.3 and 5.5 log CFU/cm2 for stainless steel and from 3.5 to 5.6 log CFU/cm2 for polyethylene. Although the survival rate decreased over time, more than 1 log CFU/cm2 of heterotrophic microorganisms survived after 24 hours on both surfaces. The sponges used in food services were significantly contaminated and could transfer large amounts of microorganisms to surfaces of AISI 316 stainless steel and polyethylene.

  18. Recombinant microorganisms for increased production of organic acids

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Jian; Kleff, Susanne; Guettler, Michael V

    2013-04-30

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  19. Microorganisms human control pathological of aerial transport; Control de microorganismos patogenos humanos de transmision aerea

    Energy Technology Data Exchange (ETDEWEB)

    Pascual, L.; Moreno, C.; Amo, A.; Luz, S.P.; Apraiz, D.; Catalan, V.

    1999-05-01

    The search of methods of display and effective analysis in order to could detect and carry out a recount of human pathological microorganisms of aerial transmission has been one of the fields that more has worried to the micro biologists from beginnings of the XX century. (Author) 14 refs.

  20. Assessment of microorganisms from Indonesian Oil Fields

    Energy Technology Data Exchange (ETDEWEB)

    Kadarwati, S.; Udiharto, M.; Rahman, M.; Jasjfi, E.; Legowo, E.H. [Research and Development Centre for Oil and Gas Technology LEMIGAS, Jakarta Selatan (Indonesia)

    1995-12-31

    Petroleum resources have been the mainstay of the national development in Indonesia. However, resources are being depleted after over a century of exploitation, while the demand continues to grow with the rapid economic development of the country. In facing the problem, EOR has been applied in Indonesia, such as the steamflooding project in Duri field, but a more energy efficient technology would be preferable. Therefore, MEOR has been recommended as a promising solution. Our study, aimed at finding indigenous microorganisms which can be developed for application in MEOR, has isolated microbes from some oil fields of Indonesia. These microorganisms have been identified, their activities studied, and the effects of their metabolisms examined. This paper describes the research carried out by LEMIGAS in this respect, giving details on the methods of sampling, incubation, identification, and activation of the microbes as well as tests on the effects of their metabolites, with particular attention to those with potential for application in MEOR.

  1. UV inactivation of pathogenic and indicator microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J.C.; Ossoff, S.F.; Lobe, D.C.; Dorfman, M.H.; Dumais, C.M.; Qualls, R.G.; Johnson, J.D.

    1985-06-01

    Survival was measured as a function of the dose of germicidal UV light for the bacteria Escherichia coli, Salmonella typhi, Shigella sonnei, Streptococcus faecalis, Staphylococcus aureus, and Bacillus subtilis spores, the enteric viruses poliovirus type 1 and simian rotavirus SA11, the cysts of the protozoan Acanthamoeba castellanii, as well as for total coliforms and standard plate count microorganisms from secondary effluent. The doses of UV light necessary for a 99.9% inactivation of the cultured vegetative bacteria, total coliforms, and standard plate count microorganisms were comparable. However, the viruses, the bacterial spores, and the amoebic cysts required about 3 to 4 times, 9 times, and 15 times, respectively, the dose required for E. coli. These ratios covered a narrower relative dose range than that previously reported for chlorine disinfection of E. coli, viruses, spores, and cysts.

  2. Interactions of chromium with microorganisms and plants.

    Science.gov (United States)

    Cervantes, C; Campos-García, J; Devars, S; Gutiérrez-Corona, F; Loza-Tavera, H; Torres-Guzmán, J C; Moreno-Sánchez, R

    2001-05-01

    Chromium is a highly toxic non-essential metal for microorganisms and plants. Due to its widespread industrial use, chromium (Cr) has become a serious pollutant in diverse environmental settings. The hexavalent form of the metal, Cr(VI), is considered a more toxic species than the relatively innocuous and less mobile Cr(III) form. The presence of Cr in the environment has selected microbial and plant variants able to tolerate high levels of Cr compounds. The diverse Cr-resistance mechanisms displayed by microorganisms, and probably by plants, include biosorption, diminished accumulation, precipitation, reduction of Cr(VI) to Cr(III), and chromate efflux. Some of these systems have been proposed as potential biotechnological tools for the bioremediation of Cr pollution. In this review we summarize the interactions of bacteria, algae, fungi and plants with Cr and its compounds.

  3. Consolidated bioprocessing method using thermophilic microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Mielenz, Jonathan Richard

    2016-02-02

    The present invention is directed to a method of converting biomass to biofuel, and particularly to a consolidated bioprocessing method using a co-culture of thermophilic and extremely thermophilic microorganisms which collectively can ferment the hexose and pentose sugars produced by degradation of cellulose and hemicelluloses at high substrate conversion rates. A culture medium therefor is also provided as well as use of the methods to produce and recover cellulosic ethanol.

  4. Control of microorganisms in flowing nutrient solutions.

    Science.gov (United States)

    Evans, R D

    1994-11-01

    Controlling microorganisms in flowing nutrient solutions involves different techniques when targeting the nutrient solution, hardware surfaces in contact with the solution, or the active root zone. This review presents basic principles and applications of a number of treatment techniques, including disinfection by chemicals, ultrafiltration, ultrasonics, and heat treatment, with emphasis on UV irradiation and ozone treatment. Procedures for control of specific pathogens by nutrient solution conditioning also are reviewed.

  5. Mass Spectrometer for Airborne Micro-Organisms

    Science.gov (United States)

    Sinha, M. P.; Friedlander, S. K.

    1986-01-01

    Bacteria and other micro-organisms identified continously with aid of new technique for producing samples for mass spectrometer. Technique generates aerosol of organisms and feeds to spectrometer. Given species of organism produces characteristic set of peaks in mass spectrum and thereby identified. Technique useful for monitoring bacterial makeup in environmental studies and in places where cleanliness is essential, such as hospital operating rooms, breweries, and pharmaceutical plants.

  6. Biology Students’ Initial Mental Model about Microorganism

    Science.gov (United States)

    Hamdiyati, Y.; Sudargo, F.; Redjeki, S.; Fitriani, A.

    2017-02-01

    The purpose of this study was to identify biology students’ initial mental model about microorganism. This research used descriptive method with 32 sixth semester biology students at Biology Education Departement-Universitas Pendidikan Indonesia as its respondents. Data was taken at the beginning of the 6th semester before respondents endure microbiology course. Instrument used to assess mental model was drawing-writing test in which it contains concepts such as structure of bacteria, archaea, virus, and fungi. Students were asked to describe their imagination about the structure of microorganisms and subsequently asked to explain the structure of microorganisms in writing through open-ended questions. Students’ response was then compared to scientists or experts’ mental models as the targeted mental model. Student mental models were categorized into five levels (levels 1-5), namely “there is no drawing/writing,” “wrong or irrelevant drawing/writing of question,” “partially correct drawing/writing,” “the drawing/writing that has some deficiencies,” and “completely correct and complete drawing/writing.” Results showed that the level of mental models through drawing or writing about the four concepts were varied. The highest level of mental models through drawing (D5) was found in the concept of bacteria, while the highest level of mental models through writing (W3) was found in the concept of bacteria, virus, and fungi. Mental model levels most commonly found in each concept through drawing-writing tests (D/W) were bacteria (D2/W2), Archaea (D1/W1 and D2/W2), virus (D3/W3), and fungi (D2/W1). From these results it is advisable to improve lectures and assessment strategy to enhance or complement students’ mental models about microorganisms.

  7. Role of microorganisms in mural paintings decay

    OpenAIRE

    Rosado, T; J. Mirão; Gil, M.; Candeias, A.; Caldeira, A. T.

    2014-01-01

    The action of microbial communities on mural paintings, particularly in mortars and in pictorial layers, triggered numerous studies to identify the main biodeteriogenic agents and to better understand the role of microorganisms in the biodeterioration/biodegradation of these artworks. The biodegradation phenomenon is an important issue for the conservation of cultural heritage that needs urgent answers to their rehabilitation. Microbial activity and their ability to obtain elements by bios...

  8. MODELING THE FATE OF MICROORGANISMS IN WATER, WASTEWATER, AND SOIL

    Science.gov (United States)

    The natural environment is filled with microorganisms, most of which are natural residents and colonize various ecological niches. These microorganisms either live independently within the environment, or live in association with various host organisms. There also are places and ...

  9. Bioemulsan Production by Iranian Oil Reservoirs Microorganisms

    Directory of Open Access Journals (Sweden)

    A Amiriyan, M Mazaheri Assadi, VA Saggadian, A Noohi

    2004-10-01

    Full Text Available The biosurfactants are believed to be surface active components that are shed into the surrounding medium during the growth of the microorganisms. The oil degrading microorganism Acinetobacter calcoaceticus RAG-1 produces a poly-anionic biosurfactant, hetero-polysaccharide bioemulsifier termed as emulsan which forms and stabilizes oil-water emulsions with a variety of hydrophobic substrates. In the present paper results of the possibility of biosurfactant (Emulsan production by microorganisms isolated from Iranian oil reservoirs is presented. Fourthy three gram negative and gram positive, non fermentative, rod bacilli and coccobacilli shaped baceria were isolated from the oil wells of Bibi Hakimeh, Siri, Maroon, Ilam , East Paydar and West Paydar. Out of the isolated strains, 39 bacterial strains showed beta haemolytic activity, further screening revealed the emulsifying activity and surface tension. 11 out of 43 tested emulsifiers were identified as possible biosurfactant producers and two isolates produced large surface tension reduction, indicating the high probability of biosurfactant production. Further investigation revealed that, two gram negative, oxidase negative, aerobic and coccoid rods isolates were the best producers and hence designated as IL-1, PAY-4. Whole culture broth of isolates reduced surface tension from 68 mN /m to 30 and 29.1mN/m, respectively, and were stable during exposure to high salinity (10%NaCl and elevated temperatures(120C for 15 min .

  10. Stress-tolerant P-solubilizing microorganisms.

    Science.gov (United States)

    Vassilev, N; Eichler-Löbermann, B; Vassileva, M

    2012-08-01

    Drought, high/low temperature, and salinity are abiotic stress factors accepted as the main reason for crop yield losses in a world with growing population and food price increases. Additional problems create nutrient limitations and particularly low P soil status. The problem of phosphate fertilizers, P plant nutrition, and existing phosphate bearing resources can also be related to the scarcity of rock phosphate. The modern agricultural systems are highly dependent on the existing fertilizer industry based exclusively of this natural, finite, non-renewable resource. Biotechnology offers a number of sustainable solutions that can mitigate these problems by using plant beneficial, including P-solubilizing, microorganisms. This short review paper summarizes the current and future trends in isolation, development, and application of P-solubilizing microorganisms in stress environmental conditions bearing also in mind the imbalanced cycling and unsustainable management of P. Special attention is devoted to the efforts on development of biotechnological strategies for formulation of P-solubilizing microorganisms in order to increase their protection against adverse abiotic factors.

  11. Biomining: metal recovery from ores with microorganisms.

    Science.gov (United States)

    Schippers, Axel; Hedrich, Sabrina; Vasters, Jürgen; Drobe, Malte; Sand, Wolfgang; Willscher, Sabine

    2014-01-01

    Biomining is an increasingly applied biotechnological procedure for processing of ores in the mining industry (biohydrometallurgy). Nowadays the production of copper from low-grade ores is the most important industrial application and a significant part of world copper production already originates from heap or dump/stockpile bioleaching. Conceptual differences exist between the industrial processes of bioleaching and biooxidation. Bioleaching is a conversion of an insoluble valuable metal into a soluble form by means of microorganisms. In biooxidation, on the other hand, gold is predominantly unlocked from refractory ores in large-scale stirred-tank biooxidation arrangements for further processing steps. In addition to copper and gold production, biomining is also used to produce cobalt, nickel, zinc, and uranium. Up to now, biomining has merely been used as a procedure in the processing of sulfide ores and uranium ore, but laboratory and pilot procedures already exist for the processing of silicate and oxide ores (e.g., laterites), for leaching of processing residues or mine waste dumps (mine tailings), as well as for the extraction of metals from industrial residues and waste (recycling). This chapter estimates the world production of copper, gold, and other metals by means of biomining and chemical leaching (bio-/hydrometallurgy) compared with metal production by pyrometallurgical procedures, and describes new developments in biomining. In addition, an overview is given about metal sulfide oxidizing microorganisms, fundamentals of biomining including bioleaching mechanisms and interface processes, as well as anaerobic bioleaching and bioleaching with heterotrophic microorganisms.

  12. Protein languages differ depending on microorganism lifestyle.

    Directory of Open Access Journals (Sweden)

    Joseph J Grzymski

    Full Text Available Few quantitative measures of genome architecture or organization exist to support assumptions of differences between microorganisms that are broadly defined as being free-living or pathogenic. General principles about complete proteomes exist for codon usage, amino acid biases and essential or core genes. Genome-wide shifts in amino acid usage between free-living and pathogenic microorganisms result in fundamental differences in the complexity of their respective proteomes that are size and gene content independent. These differences are evident across broad phylogenetic groups-a result of environmental factors and population genetic forces rather than phylogenetic distance. A novel comparative analysis of amino acid usage-utilizing linguistic analyses of word frequency in language and text-identified a global pattern of higher peptide word repetition in 376 free-living versus 421 pathogen genomes across broad ranges of genome size, G+C content and phylogenetic ancestry. This imprint of repetitive word usage indicates free-living microorganisms have a bias for repetitive sequence usage compared to pathogens. These findings quantify fundamental differences in microbial genomes relative to life-history function.

  13. Airborne microorganisms in Lascaux Cave (France

    Directory of Open Access Journals (Sweden)

    Pedro M Martin-Sanchez

    2014-09-01

    Full Text Available Lascaux Cave in France contains valuable Palaeolithic paintings. The importance of the paintings, one of the finest examples of European rock art paintings, was recognized shortly after their discovery in 1940. In the 60’s of the past century the cave received a huge number of visitors and suffered a microbial crisis due to the impact of massive tourism and the previous adaptation works carried out to facilitate visits. In 1963, the cave was closed due to the damage produced by visitors’ breath, lighting and algal growth on the paintings. In 2001, an outbreak of the fungus Fusarium solani covered the walls and sediments. Later, black stains, produced by the growth of the fungus Ochroconis lascauxensis, appeared on the walls. In 2006, the extensive black stains constituted the third major microbial crisis. In an attempt to know the dispersion of microorganisms inside the cave, aerobiological and microclimate studies were carried out in two different seasons, when a climate system for preventing condensation of water vapor on the walls was active (September 2010 or inactive (February 2010. The data showed that in September the convection currents created by the climate system evacuated the airborne microorganisms whereas in February they remained in suspension which explained the high concentrations of bacteria and fungi found in the air. This double aerobiological and microclimate study inLascauxCave can help to understand the dispersion of microorganisms and to adopt measures for a correct cave management.

  14. Food fermentations: microorganisms with technological beneficial use.

    Science.gov (United States)

    Bourdichon, François; Casaregola, Serge; Farrokh, Choreh; Frisvad, Jens C; Gerds, Monica L; Hammes, Walter P; Harnett, James; Huys, Geert; Laulund, Svend; Ouwehand, Arthur; Powell, Ian B; Prajapati, Jashbhai B; Seto, Yasuyuki; Ter Schure, Eelko; Van Boven, Aart; Vankerckhoven, Vanessa; Zgoda, Annabelle; Tuijtelaars, Sandra; Hansen, Egon Bech

    2012-03-15

    Microbial food cultures have directly or indirectly come under various regulatory frameworks in the course of the last decades. Several of those regulatory frameworks put emphasis on "the history of use", "traditional food", or "general recognition of safety". Authoritative lists of microorganisms with a documented use in food have therefore come into high demand. One such list was published in 2002 as a result of a joint project between the International Dairy Federation (IDF) and the European Food and Feed Cultures Association (EFFCA). The "2002 IDF inventory" has become a de facto reference for food cultures in practical use. However, as the focus mainly was on commercially available dairy cultures, there was an unmet need for a list with a wider scope. We present an updated inventory of microorganisms used in food fermentations covering a wide range of food matrices (dairy, meat, fish, vegetables, legumes, cereals, beverages, and vinegar). We have also reviewed and updated the taxonomy of the microorganisms used in food fermentations in order to bring the taxonomy in agreement with the current standing in nomenclature.

  15. Fossil micro-organisms evidenced by electronic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Prashnowsky, A.A.; Oberlies, F.; Burger, K.

    1983-04-01

    Fossil microorganisms in colonies and in the form of isolated cells (iron bacteria, fungi, actinomycetes etc.) were detected by electron microscopy of rocks containing remains of plant roots, carbonaceous substance, and strata of clay iron stone with ooids. These findings suggest an environment favourable to bacterial activity during sedimentation in the Upper Carboniferous and during the later processes of peat and coal formation. They also suggest that bacterial processes are an important factor in coal formation. Accurate data on coal formation can only be obtained by systematic biochemical studies. Analyses of the defined organic substances provide a better understanding of the conversion processes of the original substances. For example, the results of sterine analysis provide information on the mycoplancton, phytoplancton and zooplancton of the Upper Carboniferous. For some types of rock, the ratio of saponifiable to non-saponifiable constituents of the organic compounds yield information on stability under various geochemical conditions. The interactions between the various groups of microorganisms also play a major role in the solution of ecological problems.

  16. Oral micro-organisms in the etiology of cancer.

    Science.gov (United States)

    Meurman, Jukka H; Uittamo, Johanna

    2008-01-01

    We present a novel concept on carcinogenesis mediated by oral microbiota. Oral micro-organisms are capable of metabolizing alcohol to acetaldehyde. This finding casts light on the observed association between poor oral hygiene and oral cancer. Ethanol, as such, is not carcinogenic, but its first metabolite acetaldehyde is indisputably carcinogenic. Several gastro-intestinal microbial species possess the enzyme alcohol dehydrogenase (ADH), which is also the enzyme responsible for alcohol metabolism in the liver. In oral microbiota, we observed that species such as the ubiquitous viridans streptococci and Candida also possess ADH. Ethanol can be detected in the mouth hours after the consumption of alcoholic beverages. Patients with poor oral health status have shown higher salivary acetaldehyde concentrations than those with better oral health. It is thus understandable that ADH-containing micro-organisms in the mouth present a risk for carcinogenic acetaldehyde production, with subsequent potential for the development of oral cancer, particularly among heavy drinkers. In this article, we briefly review this area of investigation and conclude by highlighting some future possibilities for the control of carcinogenesis.

  17. Scanning respirometer for toxicity tests using micro-organisms

    Science.gov (United States)

    Zhang, Min-Quan; Li, Xiang-Ming; Wong, Yuk-Shan; Kwan, FolkYear

    1995-09-01

    A novel respirometer is developed for microbial toxicity tests. The respirometer is based on luminescent quenching of oxygen to measure the concentration of dissolved oxygen in cell vessels and evaluate the toxicity of chemicals by monitoring the effect of toxicants on cell respiration of micro-organisms. The oxygen sensing element is ruthenium complex absorbed on the surface of silica particles followed by immobilizing on a silicone rubber film. The oxygen sensing film is coated on the inner bottom of a transparent cell vessel. A sensing device scanning under the cell vessel is used for remote monitoring of the oxygen concentration inside the cell vessels so that a large number of samples can be handled in one batch. The sensing device includes the excitation light sources and an optical cable connected to a filter and a photomultiplier tube for detecting the luminescence in the cell vessel which can then be related to the dissolved oxygen concentration inside the cell vessel. The movement of the sensing device and data acquisition are controlled by a personal computer. The toxicity of heavy metals to activated sludge, soil bacteria and E. coli were tested using the present device. The scanning respirometer provides a new alternative for fast and large scale screening and monitoring of toxicants using micro-organisms.

  18. A Comprehensive Characterization of Microorganisms and Allergens in Spacecraft Environment

    Science.gov (United States)

    Castro, V.A.; Ott, C.M.; Garcia, V.M.; John, J.; Buttner, M.P.; Cruz, P.; Pierson, D.L.

    2009-01-01

    The determination of risk from infectious disease during long-duration missions is composed of several factors including the concentration and the characteristics of the infectious agent. Thus, a thorough knowledge of the microorganisms aboard spacecraft is essential in mitigating infectious disease risk to the crew. While stringent steps are taken to minimize the transfer of potential pathogens to spacecraft, several medically significant organisms have been isolated from both the Mir and International Space Station (ISS). Historically, the method for isolation and identification of microorganisms from spacecraft environmental samples depended upon their growth on culture media. Unfortunately, only a fraction of the organisms may grow on a culture medium, potentially omitting those microorganisms whose nutritional and physical requirements for growth are not met. Thus, several pathogens may not have been detected, such as Legionella pneumophila, the etiological agent of Legionnaire s disease. We hypothesize that environmental analysis using non-culture-based technologies will reveal microorganisms, allergens, and microbial toxins not previously reported in spacecraft, allowing for a more complete health assessment. The development of techniques for this flight experiment, operationally named SWAB, has already provided advances in NASA laboratory processes and beneficial information toward human health risk assessment. The translation of 16S ribosomal DNA sequencing for the identification of bacteria from the SWAB experiment to nominal operations has increased bacterial speciation of environmental isolates from previous flights three fold compared to previous conventional methodology. The incorporation of molecular-based DNA fingerprinting using repetitive sequence-based polymerase chain reaction (rep-PCR) into the capabilities of the laboratory has provided a methodology to track microorganisms between crewmembers and their environment. Both 16S ribosomal DNA

  19. 21 CFR 866.2660 - Microorganism differentiation and identification device.

    Science.gov (United States)

    2010-04-01

    ... § 866.2660 Microorganism differentiation and identification device. (a) Identification. A microorganism differentiation and identification device is a device intended for medical purposes that consists of one or more... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Microorganism differentiation and identification...

  20. THE ASPECTS OF INVESTIGATION OF MICROORGANISM ANTIBIOTIC RESISTANCE AT THE PRESENT STAGE

    Directory of Open Access Journals (Sweden)

    Andreeva I.A.

    2015-05-01

    Full Text Available Introduction. At the present stage for ensuring epidemic safety and prevention of nosocomial infections the complex of analytical study and managerial procedure to improve the epidemiological supervision over nosocomial infections through the introduction of infection control in health care practice are using. The microbiological monitoring is part of the infectious control and allows supervising circulation of microorganisms and their antimicrobial resistance by dynamic observation over structure and level of resistance to antibiotics that are used in the given particular hospital. Materials and methods. For the dynamic observation of the structure and the level of resistance of microorganisms to antimicrobial agents the computer software WHONET recommended by WHO has been used. With using WHONET in Dnepropetrovsk Children's Hospital № 3 the computer database has been created. In this database the information about each patient, hospital department, samples under test and the date of its excretion, the data about the detected microorganism and its sensitivity/resistance to antimicrobial agents have been stored. The examination and analysis of antibiotic resistance of microorganisms has been provided for 2010- 2014 years, in total the data on 6168 isolates from 3876 patients have been analyzed. Results and discussion. By the total data the isolates belong to a wide spectrum of microorganisms (more than 40 different types. By means of the analysis of isolating of clinically significant microorganisms it has been established that one of the most frequent isolated were Escherichia coli (1-20 %, Klebsiella pneumoniae (4-18 %, Staphylococcus epidermidis (1-12 %, S. aureus (1-10 %, Enterobacter cloacae (2-9 %, Pseudomonas aeruginosa (1-8 %. Detection of other microorganisms was irregular and its frequency is varied from 0 % to 10 %. As a result of examining the sensitivity of microorganisms it has been shown that tested strains of bacteria were

  1. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted...

  2. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted...... by that enzyme...

  3. Dynamical patterns and regime shifts in the nonlinear model of soil microorganisms growth

    Science.gov (United States)

    Zaitseva, Maria; Vladimirov, Artem; Winter, Anna-Marie; Vasilyeva, Nadezda

    2017-04-01

    Dynamical model of soil microorganisms growth and turnover is formulated as a system of nonlinear partial differential equations of reaction-diffusion type. We consider spatial distributions of concentrations of several substrates and microorganisms. Biochemical reactions are modelled by chemical kinetic equations. Transport is modelled by simple linear diffusion for all chemical substances, while for microorganisms we use different transport functions, e.g. some of them can actively move along gradient of substrate concentration, while others cannot move. We solve our model in two dimensions, starting from uniform state with small initial perturbations for various parameters and find parameter range, where small initial perturbations grow and evolve. We search for bifurcation points and critical regime shifts in our model and analyze time-space profile and phase portraits of these solutions approaching critical regime shifts in the system, exploring possibility to detect such shifts in advance. This work is supported by NordForsk, project #81513.

  4. Removal of Salmonella and indicator micro-organisms in integrated constructed wetlands treating agricultural wastewater.

    Science.gov (United States)

    McCarthy, Gemma; Lawlor, Peadar G; Gutierrez, Montserrat; Gardiner, Gillian E

    2011-01-01

    The purpose of this study was to investigate the removal of pathogenic and indicator micro-organisms in integrated constructed wetland (ICW) systems treating agricultural wastewater. Nine ICW's treating piggery (3) or dairy (6) wastewaters were sampled and indicator micro-organisms were enumerated in the influent as well as the effluent from the first, mid- and final cells. The presence/absence of Salmonella was also determined and any Salmonella isolates recovered were characterized. Mean counts of coliform, E. coli and Enterococcus across all nine ICW systems were lower in the final effluent than in the effluent from cell 1 (P micro-organisms were reduced significantly within ICW, with E. coli and Enterococcus non-detectable in the final effluent. Moreover, Salmonella, when present in the influent, appears to have been removed.

  5. Amplification, cloning, and sequencing of a nifH segment from aquatic microorganisms and natural communities.

    Science.gov (United States)

    Kirshtein, J D; Paerl, H W; Zehr, J

    1991-09-01

    By use of the polymerase chain reaction and degenerate oligonucleotide primers for highly conserved regions of nifH, a segment of nifH DNA was amplified from several aquatic microorganisms, including an N2-fixing bacterium closely associated with the marine filamentous cyanobacterium Trichodesmium sp., a heterotrophic isolate from the root/rhizome of the seagrass Ruppia maritima, and the heterocystous freshwater cyanobacterium Anabaena oscillarioides. nifH segments were amplified directly from DNA extracted from the rhizosphere of roots of the seagrass Halodule wrightii. The nifH fragments were then cloned and sequenced. The DNA and deduced amino acid sequences were compared with known sequences, revealing distinct differences between taxonomic groups. This technique was shown to be useful for (i) the detection of N2-fixing microorganisms and (ii) rapidly obtaining the DNA sequence of the nifH gene, which provides information about general taxonomic groups of N2-fixing microorganisms.

  6. Methods for identifying lipoxygenase producing microorganisms on agar plates.

    Science.gov (United States)

    Nyyssölä, Antti; Heshof, Ruud; Haarmann, Thomas; Eidner, Jasmin; Westerholm-Parvinen, Ann; Langfelder, Kim; Kruus, Kristiina; de Graaff, Leo; Buchert, Johanna

    2012-03-26

    Plate assays for lipoxygenase producing microorganisms on agar plates have been developed. Both potassium iodide-starch and indamine dye formation methods were effective for detecting soybean lipoxygenase activity on agar plates. A positive result was also achieved using the β-carotene bleaching method, but the sensitivity of this method was lower than the other two methods. The potassium iodide-starch and indamine dye formation methods were also applied for detecting lipoxygenase production by Trichoderma reesei and Pichia pastoris transformants expressing the lipoxygenase gene of the fungus Gaeumannomyces graminis. In both cases lipoxygenase production in the transformants could be identified. For detection of the G. graminis lipoxygenase produced by Aspergillus nidulans the potassium iodide-starch method was successful. When Escherichia coli was grown on agar and soybean lipoxygenase was applied on the culture lipoxygenase activity could clearly be detected by the indamine dye formation method. This suggests that the method has potential for screening of metagenomic libraries in E. coli for lipoxygenase activity.

  7. Phylogenetic relationships among subsurface microorganisms. Project technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Nierzwicki-Bauer, S.A.

    1993-08-01

    The development of group-specific, 16S ribosomal RNA-targeted oligonucleotide hybridization probes for the rapid detection of specific types of subsurface microorganisms is described. Because portions of the 16S RRNA molecule are unique to particular organisms or groups, these unique sequences can serve as targets for hybridization probes with varied specificity. Target sequences for selected microbial groups have been identified by analysis of the available RRNA sequence data for subsurface microbes. Hybridization probes for these target sequences were produced and their effectiveness and specificity tested with RNA cell blot and in situ hybridizations. Selected probes were used to study phylogenetic relationships among subsurface microbes and to classify these organisms into the specific groups that the probes are designed to detect. To date, this work has been performed on the P24 and C10 borehole isolates from the Savannah River Site. The probes will also be used, with in situ hybridizations, to detect and monitor selected microbial groups in freshly collected subsurface samples and laboratory microcosms in collaboration with other investigators. In situ hybridizations permit detection of selected microbial types without the necessity to isolate and culture them in the laboratory.

  8. Isolation and screening of microorganisms capable of degrading nicosulfuron in water

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to screen and isolate microorganisms capable of degrading nicosulfuron,five strains of microorganisms coded as YF1,YB1,YB2,YB3,and YB4 that can take nicosulfuron as the only source of carbon,nitrogen,and energy were obtained by enrichment culture.Of the five strains,YF1 was a fungus and the others were bacteria.All of the microorganisms were inoculated into the culture media with different concentrations of nicosulfuron and shaking culture was performed for 5 days at 30℃ and 150 r·min-1.High Performance Liquid Chromatography (HPLC) was used to detect the concentration of nicosulfuron and calculate the degradation efficiency.The results showed that the degradation rates of the five strains of microorganisms were higher in low concentrations than in high concentrations of nicosulfuron.YF1 had the highest degradation rate of 80.31%,followed by YB 1 and YB2 with degradation rates of 78.18% and 73.72%,respectively.However,YB3 and YB4 had lower degradation rates of 36.82% and 25.75%,respectively.Upon primary identification of the three strains of microorganisms with higher degradation rates,it was discovered that YF1 was Aspergillus niger,while YBI and YB2 were Bacillus sp.

  9. Extracellular electron transfer mechanisms between microorganisms and minerals

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Liang; Dong, Hailiang; Reguera, Gemma; Beyenal, Haluk; Lu, Anhuai; Liu, Juan; Yu, Han-Qing; Fredrickson, James K.

    2016-08-30

    Electrons can be transferred from microorganisms to multivalent metal ions that are associated with minerals and vice versa. As the microbial cell envelope is neither physically permeable to minerals nor electrically conductive, microorganisms have evolved strategies to exchange electrons with extracellular minerals. In this Review, we discuss the molecular mechanisms that underlie the ability of microorganisms to exchange electrons, such as c-type cytochromes and microbial nanowires, with extracellular minerals and with microorganisms of the same or different species. Microorganisms that have extracellular electron transfer capability can be used for biotechnological applications, including bioremediation, biomining and the production of biofuels and nanomaterials.

  10. Effects of Heavy Metals on Activated Sludge Microorganism

    Institute of Scientific and Technical Information of China (English)

    XIE Bing; XI Dan-li; CHEN Ji-hua

    2002-01-01

    The efforts of heavy metals on activated sludge microorganisms are reviewed. Although some heavy metals play an important role in the life of microorganism, heavy metals concentrations above toxic levels inhibit biological processes. Copper, zinc, nickel,cadmium and chromium were mostly studied because of their toxicity and widely used, regardless of single or combination. The microorganism response to these heavy metals varied with species and concentrations of metals,factors such as pH, sludge age, MLSS etc. also affect toxicity on the microorganism. The acclimation could extend the microorganism tolerance of heavy metals. The effects of heavy metals on sludge microorganisms could be described with different models, such as Sigmoidal and Monod equation. The kinetic constants are the useful indexes to estimate the heavy metals inhibition on activated sludge system. Methods to measure the toxicity and effects on microorganism community were also reviewed.

  11. Screening of biosurfactants from cloud microorganisms

    Science.gov (United States)

    Sancelme, Martine; Canet, Isabelle; Traikia, Mounir; Uhliarikova, Yveta; Capek, Peter; Matulova, Maria; Delort, Anne-Marie; Amato, Pierre

    2015-04-01

    The formation of cloud droplets from aerosol particles in the atmosphere is still not well understood and a main source of uncertainties in the climate budget today. One of the principal parameters in these processes is the surface tension of atmospheric particles, which can be strongly affected by trace compounds called surfactants. Within a project devoted to bring information on atmospheric surfactants and their effects on cloud droplet formation, we focused on surfactants produced by microorganisms present in atmospheric waters. From our unique collection of microorganisms, isolated from cloud water collected at the Puy-de-Dôme (France),1 we undertook a screening of this bank for biosurfactant producers. After extraction of the supernatants of the pure cultures, surface tension of crude extracts was determined by the hanging drop technique. Results showed that a wide variety of microorganisms are able to produce biosurfactants, some of them exhibiting strong surfactant properties as the resulting tension surface decreases to values less then 35 mN.m-1. Preliminary analytical characterization of biosurfactants, obtained after isolation from overproducing cultures of Rhodococcus sp. and Pseudomonas sp., allowed us to identify them as belonging to two main classes, namely glycolipids and glycopeptides. 1. Vaïtilingom, M.; Attard, E.; Gaiani, N.; Sancelme, M.; Deguillaume, L.; Flossmann, A. I.; Amato, P.; Delort, A. M. Long-term features of cloud microbiology at the puy de Dôme (France). Atmos. Environ. 2012, 56, 88-100. Acknowledgements: This work is supported by the French-USA ANR SONATA program and the French-Slovakia programs Stefanik and CNRS exchange.

  12. Microorganisms as Indicators of Soil Health

    DEFF Research Database (Denmark)

    Nielsen, M. N.; Winding, A.; Binnerup, S.

    Microorganisms are an essential part of living soil and of outmost importance for soil health. As such they can be used as indicators of soil health. This report reviews the current and potential future use of microbial indicators of soil health and recommends specific microbial indicators for soil...... ecosystem parameters representing policy relevant end points. It is further recommended to identify a specific minimum data set for specific policy relevant end points, to carefully establish baseline values, to improve scientific knowledge on biodiversity and modelling of soil data, and to implement new...... indicators into soil monitoring programmes as they become applicable....

  13. Resistance of soil microorganisms to starvation.

    Science.gov (United States)

    Chen, M.; Alexander, M.

    1972-01-01

    Most groups of soil microorganisms died when exposed to prolonged starvation in a carbon-free solution, but the relative abundance of Bacillus and actinomycetes increased with time. Certain nonspore-forming bacteria also persisted. The ability of individual soil isolates to endure starvation in solution was not correlated with their glycogen content or rate of endogenous respiration. However, cells of the resistant populations were rich in poly-beta-hydroxybutyrate, whereas the starvation-susceptible bacteria generally contained little of this substance. Poly-beta-hydroxybutyrate was used rapidly in cells deprived of exogenous sources of carbon.

  14. Green biosynthesis of floxuridine by immobilized microorganisms.

    Science.gov (United States)

    Rivero, Cintia W; Britos, Claudia N; Lozano, Mario E; Sinisterra, Jose V; Trelles, Jorge A

    2012-06-01

    This work describes an efficient, simple, and green bioprocess for obtaining 5-halogenated pyrimidine nucleosides from thymidine by transglycosylation using whole cells. Biosynthesis of 5-fluoro-2'-deoxyuridine (floxuridine) was achieved by free and immobilized Aeromonas salmonicida ATCC 27013 with an 80% and 65% conversion occurring in 1 h, respectively. The immobilized biocatalyst was stable for more than 4 months in storage conditions (4 °C) and could be reused at least 30 times without loss of its activity. This microorganism was able to biosynthesize 2.0 mg L(-1) min(-1) (60%) of 5-chloro-2'-deoxyuridine in 3 h. These halogenated pyrimidine 2'-deoxynucleosides are used as antitumoral agents.

  15. Toolbox for Antibiotics Discovery from Microorganisms.

    Science.gov (United States)

    Fisch, Katja M; Schäberle, Till F

    2016-09-01

    Microorganisms produce a vast array of biologically active metabolites. Such compounds are applied by humans to positively influence their health and, therefore, natural products serve as drug leads for pharmaceutical and medicinal chemistry. In this minireview, tools for the discovery and the production of potential drug leads are explained. A snapshot is provided, starting from the isolation of new producer strains, across genomic mining of (meta)genomes to identify biosynthetic gene clusters corresponding to natural products, toward heterologous expression to produce potential drug leads. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Lead resistance in micro-organisms.

    Science.gov (United States)

    Jarosławiecka, Anna; Piotrowska-Seget, Zofia

    2014-01-01

    Lead (Pb) is an element present in the environment that negatively affects all living organisms. To diminish its high toxicity, micro-organisms have developed several mechanisms that allow them to survive exposure to Pb(II). The main mechanisms of lead resistance involve adsorption by extracellular polysaccharides, cell exclusion, sequestration as insoluble phosphates, and ion efflux to the cell exterior. This review describes the various lead resistance mechanisms, and the regulation of their expression by lead binding regulatory proteins. Special attention is given to the Pbr system from Cupriavidus metallidurans CH34, which involves a unique mechanism combining efflux and lead precipitation.

  17. Microorganisms and biomolecules in space hard environment

    Science.gov (United States)

    Horneck, G.

    1981-01-01

    Microorganisms and biomolecules exposed to space vacuum and to different intensities of selected wavelengths of solar ultraviolet radiation is studied. The influence of these factors, applied singly or simultaneously, on the integrity of microbial systems and biomolecules is measured. Specifically, this experiment will study in Bacillus subtilis spores (1) disturbances in subsequent germination, outgrowth, and colony formation; (2) photochemical reactions of the DNA and protein in vivo and in vitro and their role in biological injury; and (3) the efficiency of repair processes in these events.

  18. Mixing by microorganisms in stratified fluids

    CERN Document Server

    Wagner, Gregory L; Lauga, Eric

    2014-01-01

    We examine the vertical mixing induced by the swimming of microorganisms at low Reynolds and P\\'eclet numbers in a stably stratified ocean, and show that the global contribution of oceanic microswimmers to vertical mixing is negligible. We propose two approaches to estimating the mixing efficiency, $\\eta$, or the ratio of the rate of potential energy creation to the total rate-of-working on the ocean by microswimmers. The first is based on scaling arguments and estimates $\\eta$ in terms of the ratio between the typical organism size, $a$, and an intrinsic length scale for the stratified flow, $\\ell = \\left ( \

  19. Microorganisms and radionuclides in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Yoshitomo [Central Research Inst. of Electric Power Industry, Abiko, Chiba (Japan)

    2002-11-01

    The influence of microorganisms on the behavior of radionuclides in the subsurface environment is one of the factors to be concerned with for the safety assessment of the geological disposal of radioactive waste. It is considered that the important microbiological aspects with respect to radionuclide behavior are biological adsorption, oxidation-reduction and complex formation between organic matter and radionuclides. These phenomena with respect to radionuclides, especially actinides, in the environment should be understood. A description of two studies, illustrating these points are presented. (author)

  20. Engineering photosynthesis in plants and synthetic microorganisms.

    Science.gov (United States)

    Maurino, Veronica G; Weber, Andreas P M

    2013-01-01

    Photosynthetic organisms, such as cyanobacteria, algae, and plants, sustain life on earth by converting light energy, water, and CO(2) into chemical energy. However, due to global change and a growing human population, arable land is becoming scarce and resources, including water and fertilizers, are becoming exhausted. It will therefore be crucial to design innovative strategies for sustainable plant production to maintain the food and energy bases of human civilization. Several different strategies for engineering improved photosynthesis in crop plants and introducing novel photosynthetic capacity into microorganisms have been reviewed.

  1. Microorganisms in human milk: lights and shadows.

    Science.gov (United States)

    Civardi, Elisa; Garofoli, Francesca; Tzialla, Chryssoula; Paolillo, Piermichele; Bollani, Lina; Stronati, Mauro

    2013-10-01

    Human milk has been traditionally considered germ free, however, recent studies have shown that it represents a continuous supply of commensal and potentially probiotic bacteria to the infant gut. Mammary microbioma may exercise anti-infective, anti-inflammatory, immunomodulatory and metabolic properties. Moreover human milk may be a source of pathogenic microorganism during maternal infection, if contaminated during expression or in case of vaccination of the mother. The non-sterility of breast milk can, thus, be seen as a protective factor, or rarely, as a risk factor for the newborn.

  2. Effects of sewage irrigation on quantity and distribution of microorganisms in soils%污灌对农田土壤微生物特性影响研究

    Institute of Scientific and Technical Information of China (English)

    张翠英; 汪永进; 徐德兰; 王同勋

    2014-01-01

    Sewage irrigation has an important effect on farmland soil properties and crop growth. In order to provide theoretical basis for putting sewage irrigation into practical use, microorganisms characteristics in soils were studied. The plate counting method and most-probable-number (MPN) method were employed to research the effects of sewage irrigation on quantity and distribution of common microorganisms such as bacteria, actinomycetes and fungus and functional microorganisms such as nitrite bacteria (NOB), nitrate bacteria (NB), ammonia oxidizing bacteria (AOB), denitrifying bacteria (DB), aerobic nitrogens-fixing bacteria (ANB) and cellulose decomposing bacteria (CDB) in soils. And the correlation between microorganisms quantities and physical and chemical properties was also analyzed. The results indicated that the quantities of actinomycetes, fungus, nitrite bacteria, nitrate bacteria and denitrifying bacteria were reduced, but the quantities of bacteria, ammonia oxidizing bacteria and aerobic cellulose decomposing bacteria were increased significantly (P<0.05) after sewage irrigation. There was a big difference among soil microorganisms quantities of soybean, corn and rice root system, but the quantities variation of fungus, aerobic nitrogens-fixing bacteria and cellulose decomposing bacteria of them were always significant(P<0.05). The correlation analysis showed that organic matter was positively correlated to bacteria (r = 0.843, P<0.05) , denitrifying bacteria (r=0.220, P<0.05) and cellulose decomposing bacteria (r=0.220, P<0.05), there was a significant negatively correlation between actinomycetes and total phosphorus(r=-0.921, P<0.01), ammonia nitrogen was positively correlated to nitrite bacteria (r = 0.973, P<0.05) and aerobic nitrogens-fixing bacteria (r=0.988, P<0.05), available phosphorus was negatively correlated to ammonia oxidizing bacteria (r=-0.967, P<0.05) and denitrifying bacteria (r=-0.988, P<0.05). The research showed that sewage irrigation

  3. Soil:An Extreme Habitat for Microorganisms?

    Institute of Scientific and Technical Information of China (English)

    M.BOLTER

    2004-01-01

    The question is asked whether soils can be regarded as extreme environments with respect to microorganisms. After defining some extreme environments in a general sense, special properties of extreme environments are compared to soil habitats, with special emphasis laid on time frame and localities. In relation to water availability, nutrients and other properties, such places as aggregates can show properties of extreme habitats. These features, which can act at different levels of the system from the community level down to the cellular level, are summarized as stress factors. The latter,where many switches are located leading to different strategies of survival, is described as the most important one. This raises the question of how organisms have adapted to such conditions. The soil system demands a broad spectrum of adaptations and/or adjustments for a highly variable environment.The soil microorganisms'adaptation can thus be seen as the highest kind of flexibility and is more useful than any other special adaptation.

  4. [Sensitivity of surface microorganisms to disinfectants].

    Science.gov (United States)

    Krzywicka, H; Janowska, J; Tadeusiak, B

    1991-01-01

    The influence of humidity and temperature on survival of S. aureus and P. aeruginosa on the surfaces of titles, glass and blanket carriers has been estimated. The number of CFU was examined after exposure time 6 and 24 hours in temperatures of 21 degrees C, 37 degrees C and RH 35%, 95%. It was observed: 1. The important reduction of numbers of both microorganisms at temperature 37 degrees C and RH 95%, 2. The relatively high number of survival cells of P. aeruginosa on the surface of blankets at temp. 21 degrees C and RH 95%. The microorganisms on the carriers were previously kept for 24 h at temp. 21 degrees C, RH 35% and 95% and then exposed to solutions of chloramine, formalin, lysol and Sterinol (QAC). It was observed that there was a great dependence of the disinfecting effect on the degree of dessication of the surfaces. In all cases the resistance of contaminated carriers stored 24 h was higher at 95% RH than at 35% RH.

  5. Bioremediation of trinitrotolulene by a ruminal microorganism

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taejin; Williamson, K.J.; Craig, A.M. [Oregon State Univ., Corvallis, OR (United States)

    1995-10-01

    2,4,6-trinitrotoluene (TNT) has been widely used for the production of explosives because of its low boiling point, high stability, low impact sensitivity, and safe manufacture. More than 1,100 military facilities, each potentially contaminated with munitions waste, are expected to require treatment of more than one million cubic yards of contaminated soils. The cost associated with remediation of these sites has been estimated to be in excess of $1.5 billion. Recently, researchers have studied ruminal microorganisms in relation to their ability to degrade xenobiotic compounds. Many of these organisms are strict anaerobes with optimal redox potentials as low as -420 mV. Ruminal organisms have been shown capable of destroying some pesticides, such as parathion, p-nitrophenol, and biphenyl-type compounds; thiono isomers, and nitrogen-containing heterocyclic plant toxins such as the pyrrolizidine alkaloids. Many of these compounds have structures similar to TNT. A TNT-degrading ruminal microorganism has been isolated from goat rumen fluid with successive enrichments on triaminotoluene (TAT) and TNT. The isolate, designated G.8, utilizes nitrate and lactate as the primary energy source. G.8 was able to tolerate and metabolite levels of TNT up to the saturation point of 125 mg/l.

  6. Treatment of landfill leachate by immobilized microorganisms

    Institute of Scientific and Technical Information of China (English)

    YE ZhengFang; YU HongYan; WEN LiLi; NI JinRen

    2008-01-01

    This paper focuses on the outcome and the main performance of the immobilized microbial that treats landfill leachate. Based on the analysis of COD and ammonia-nitrogen of the influent and effluent, research was done on the high removal efficiency of COD and ammonium nitrogen by immobilized microbial. The leachate composition was analyzed qualitatively using GC-MS before and after being treated. Biological loading of efficient microbial flora on the carrier was measured by Kjeldahl's method. Finally, the patterns of immobilized microbe were observed through scanning electron microscopy (SEM). The results showed that in immobilized microorganisms system, the efficiencies of COD and nitrogen were 98.3% and 99.9%, respectively. There was a great reduction of organic components in effluent. When the immobilized biomass on the carrier was 38 g·L-1 (H2O), the filamentous microorganism was highly developed. There was no inhibitory effect on the nitrobacteria and nitrococcus, when ammonia was over 200 mg·L-1 and NH3 over 150 mg·L-1, At a high organic loading, it still had good nitrification. This paper also compares the performance of immobilized microbial with free microbial under the same condition. The immobilized microbial technology demonstrated better than the latter in all aspects.

  7. Treatment of landfill leachate by immobilized microorganisms

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper focuses on the outcome and the main performance of the immobilized microbial that treats landfill leachate. Based on the analysis of COD and ammonia-nitrogen of the influent and effluent, research was done on the high removal efficiency of COD and ammonium nitrogen by immobilized microbial. The leachate composition was analyzed qualitatively using GC-MS before and after being treated. Biological loading of efficient microbial flora on the carrier was measured by Kjeldahl’s method. Finally, the patterns of immobilized microbe were observed through scanning electron microscopy (SEM). The results showed that in immobilized microorganisms system, the efficiencies of COD and nitrogen were 98.3% and 99.9%, respectively. There was a great reduction of organic components in effluent. When the immobilized biomass on the carrier was 38 g·L?1 (H2O), the filamentous microorganism was highly developed. There was no inhibitory effect on the nitrobacteria and nitrococcus, when ammonia was over 200 mg·L?1 and NH3 over 150 mg·L?1. At a high organic loading, it still had good nitrification. This paper also compares the performance of immobilized microbial with free microbial under the same condition. The immobilized microbial technology demonstrated better than the latter in all aspects.

  8. Microorganisms as bioindicators of pollutants in soil

    Directory of Open Access Journals (Sweden)

    Milošević Nada

    2010-01-01

    Full Text Available Microorganisms are the predominant portion of the soil's biological phase and they are indicators of soil health and quality. Soil microorganisms a take part in degradation of organic and inorganic compounds, b their activity, number and diversity may serve as bioindicators of toxic effects on soil biological activity, c some microbial species may be used for soil bioremediation and d some sensitive microbes are used in eco-toxicity tests. The primary microbial population starts to decompose herbicides several days after their arrival into the soil. The secondary population produces induced enzymes and decomposes herbicides after a period of adaptation. Certain microbial groups are indifferent to the applied herbicides. Effect of heavy metals on soil microbial activity depends on the element, their concentration, microbial species, as well as physical and chemical soil properties. Toxic level of individual pollutants depends on their origin and composition. However, combined application of chemicals makes room for the occurrence of synergistic toxic effects detrimental for the ecosystem and human health. .

  9. Microorganisms resistant to free-living amoebae.

    Science.gov (United States)

    Greub, Gilbert; Raoult, Didier

    2004-04-01

    Free-living amoebae feed on bacteria, fungi, and algae. However, some microorganisms have evolved to become resistant to these protists. These amoeba-resistant microorganisms include established pathogens, such as Cryptococcus neoformans, Legionella spp., Chlamydophila pneumoniae, Mycobacterium avium, Listeria monocytogenes, Pseudomonas aeruginosa, and Francisella tularensis, and emerging pathogens, such as Bosea spp., Simkania negevensis, Parachlamydia acanthamoebae, and Legionella-like amoebal pathogens. Some of these amoeba-resistant bacteria (ARB) are lytic for their amoebal host, while others are considered endosymbionts, since a stable host-parasite ratio is maintained. Free-living amoebae represent an important reservoir of ARB and may, while encysted, protect the internalized bacteria from chlorine and other biocides. Free-living amoebae may act as a Trojan horse, bringing hidden ARB within the human "Troy," and may produce vesicles filled with ARB, increasing their transmission potential. Free-living amoebae may also play a role in the selection of virulence traits and in adaptation to survival in macrophages. Thus, intra-amoebal growth was found to enhance virulence, and similar mechanisms seem to be implicated in the survival of ARB in response to both amoebae and macrophages. Moreover, free-living amoebae represent a useful tool for the culture of some intracellular bacteria and new bacterial species that might be potential emerging pathogens.

  10. Identification and quantification of ice nucleation active microorganisms by digital droplet PCR (ddPCR)

    Science.gov (United States)

    Linden, Martin; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2015-04-01

    Several bioaerosol types, including bacteria, fungi, pollen and lichen, have been identified as sources of biological ice nucleators (IN) which induce ice formation already at temperatures as high as -10 °C or above. Accordingly, they potentially contribute widely to environmental ice nucleation in the atmosphere and are of great interest in the study of natural heterogenous ice nucleation processes. Ice nucleation active microorganisms have been found and studied among bacteria (Proteobacteria) and fungi (phyla Basidiomycota and Ascomycota). The mechanisms enabling the microorganisms to ice nucleation are subject to ongoing research. While it has been demonstrated that whole cells can act as ice nucleators in the case of bacteria due to the presence of specific membrane proteins, cell-free ice nucleation active particles seem to be responsible for this phenomenon in fungi and lichen. The identification and quantification of these ice nucleation active microorganisms and their IN in atmospheric samples is crucial to understand their contribution to the pool of atmospheric IN. This is not a trivial task since the respective microorganisms are often prevalent in lowest concentrations and a variety of states, be it viable cells, spores or cell debris from dead cells. Molecular biology provides tools to identify and quantify ice nucleation active microorganisms independent of their state by detecting genetic markers specific for the organism of interest. Those methods are not without their drawbacks in terms of sample material concentration required or reliable standardization. Digital Droplet Polymerase Chain Reaction (ddPCR) was chosen for our demands as a more elegant, quick and specific method in the investigation of ice nucleation active microorganisms in atmospheric samples. The advantages of ddPCR lie in the simultaneous detection and quantification of genetic markers and their original copy numbers in a sample. This is facilitated by the fractionation of the

  11. Morbidity and mortality associated with arterial surgery site infections by resistant microorganisms

    Directory of Open Access Journals (Sweden)

    Eduardo Lichtenfels

    2014-09-01

    Full Text Available Background:Surgical site infection is a severe complication of peripheral vascular surgery with high morbidity and mortality rates.Objective:To evaluate the morbidity and mortality of infections of peripheral artery surgery sites caused by resistant microorganisms.Methods:This was a prospective study of a cohort of patients who underwent peripheral artery revascularization procedures and developed surgical site infections between March 2007 and March 2011.Results:Mean age was 63.7 years; males accounted for 64.3% of all cases. The overall prevalence of bacterial resistance to antimicrobials was 65.7%. The most common microorganism identified was Staphylococcus aureus (30%. Comparison of the demographic and surgical characteristics of both subsets (resistant versus non-resistant detected a significant difference in length of preoperative hospital stay (9.3 days vs. 3.7 days. The subset of patients with infections by resistant microorganisms had higher rates of reoperation, lower numbers of limb amputations and lower mortality, but the differences compared to the subset without resistant infections were not significant. Long-term survival was similar.Conclusions:This study detected no statistically significant differences in morbidity or mortality between subsets with surgical wound infections caused by resistant and not-resistant microorganisms.

  12. Serologic prevalence of amoeba-associated microorganisms in intensive care unit pneumonia patients.

    Directory of Open Access Journals (Sweden)

    Sabri Bousbia

    Full Text Available BACKGROUND: Patients admitted to intensive care units are frequently exposed to pathogenic microorganisms present in their environment. Exposure to these microbes may lead to the development of hospital-acquired infections that complicate the illness and may be fatal. Amoeba-associated microorganisms (AAMs are frequently isolated from hospital water networks and are reported to be associated to cases of community and hospital-acquired pneumonia. METHODOLOGY/PRINCIPAL FINDINGS: We used a multiplexed immunofluorescence assay to test for the presence of antibodies against AAMs in sera of intensive care unit (ICU pneumonia patients and compared to patients at the admission to the ICU (controls. Our results show that some AAMs may be more frequently detected in patients who had hospital-acquired pneumonia than in controls, whereas other AAMs are ubiquitously detected. However, ICU patients seem to exhibit increasing immune response to AAMs when the ICU stay is prolonged. Moreover, concomitant antibodies responses against seven different microorganisms (5 Rhizobiales, Balneatrix alpica, and Mimivirus were observed in the serum of patients that had a prolonged ICU stay. CONCLUSIONS/SIGNIFICANCE: Our work partially confirms the results of previous studies, which show that ICU patients would be exposed to water amoeba-associated microorganisms, and provides information about the magnitude of AAM infection in ICU patients, especially patients that have a prolonged ICU stay. However, the incidence of this exposure on the development of pneumonia remains to assess.

  13. Survival of probiotic microorganisms in the gastrointestinal tract of experimental animals

    Directory of Open Access Journals (Sweden)

    I. V. Darmov

    2012-01-01

    Full Text Available Development of methodology for the identification of certified probiotic microorganisms in the intestinal contents of white mice and uinea pigs and study of their survival in the gastrointestinal tract of experimental animals. Rifampicin-resistant bifidobacteria and lactobacilli were used in the experiments. Cultures of microorganisms that have retained the species features were administered orally for 14 days and the number of viable bifidobacteria and lactobacilli were determined by sowing of feces in a dense nutrient medium with rifampicin. Probiotic microorganisms administered orally to experimental animals for 14 days are detected in the feces on the second day of the experiment. Live probiotic bacteria ceases completely to be detected in the feces of animals 3 days after the termination of their oral administration. Using the developed universal method of differentiation of probiotic microorganisms entering the living organisms and strains of their own intestinal microflora a significant decrease (4–7 orders of magnitude in survival of bifidobacteria and lactobacilli in the organisms of experimental animals was shown, followed by a lack of probiotic effect.

  14. MICROORGANISMS ANTIBIOTIC SENSITIVITY DETERMINATION IN URINARY TRACT INFECTIONS

    Directory of Open Access Journals (Sweden)

    Shapovalova O.V.

    2016-06-01

    the range of 3,0x106 CFU/ml to 3,0x109 CFU/ml, and the most bacterial isolates content was equal 1,5x109 CFU/ml. Among the most commonly identified microorganisms Escherichia coli and Staphylococcus spp. were often detected in 5,3x108 CFU/ml concentrations. For Streptococcus spp. and Proteus mirabilis that value was 1,5x109 CFU/ml; for Klebsiella pneumonia - 3,0x108 CFU/ml; for Candida spp. - 3,0x106 CFU/ml respectively. The most common microorganisms (which frequency of occurrence in urine was ≥ 5% were: E. coli (14,5±4,7%, Str. agalactiae and St. haemolyticus (10,9±4,2%; St. aureus and Pr. mirabilis (7,3±3,5%; St. epidermidis, Kl. pneumoniae, St. hominis, Candida spp. (5,4±3,0%. While analyzing obtained results we concluded that meropenem was the most effective drug, 78,7% of all cultures had the sensitivity to it. The sensitivity to gatifloxacin had 73,7% of cultures; to tigecycline – 71,1% of isolates; to amikacin -67,3% of cultures; to moxifloxacin – 59,6% of isolates; to two drugs (levofloxacin and pefloxacin - 55,8% of isolates respectively. It was found that Staphylococcus aureus appeared to be resistant to vancomycin, ampicillin, cefuroxime, cefazolin, azithromycin, linezolid. This species and St. epidermidis and St. hominis isolates were multi-drug resistant to four or more drugs from different groups. All Streptococcus agalactiae isolates were insensitive to cefuroxime. All Escherichia cultures were resistant to cefuroxime, Proteus - to cefuroxime, ampicillin and cefazolin. E. coli, Pr. mirabilis, K. pneumoniae, Ps. aeruginosa, Ac. haemolyticus had multi-drug resistance. In addition, (73,1 ± 6,1% of all 52 bacterial isolates obtained were resistant to amoxiclav. Conclusions. 1. The most common microorganisms (which incidence in urine were ≥ 5% are: Escherichia coli (14,5±4,7%, Streptococcus agalactiae and Staphylococcus haemolyticus (10,9±4,2%; Staphylococcus aureus and Proteus mirabilis (7,3±3,5%; Staphylococcus epidermidis, Klebsiella

  15. Bioluminescent bioreporter integrated circuit devices and methods for detecting ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Michael L [Knoxville, TN; Paulus, Michael J [Knoxville, TN; Sayler, Gary S [Blaine, TN; Applegate, Bruce M [West Lafayette, IN; Ripp, Steven A [Knoxville, TN

    2007-04-24

    Monolithic bioelectronic devices for the detection of ammonia includes a microorganism that metabolizes ammonia and which harbors a lux gene fused with a heterologous promoter gene stably incorporated into the chromosome of the microorganism and an Optical Application Specific Integrated Circuit (OASIC). The microorganism is generally a bacterium.

  16. Biotransformation of Spanish coals by microorganisms; Biotransformacion de Carbones Espanoles por Microorganismos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    some newly isolated microorganisms could solubilized different kinds of Spanish coals (hard coal, subbituminous coal and lignite). Certain fungi and bacteria could solubilized lignite when growing in a mineral medium. However, to solubilized higher rank coals (hard coal and subbituminous coal) microorganisms require a complete medium. Microorganisms, which showed higher capacity to solubilized coal, were incubated in the presence of coal (hard coal, subbituminous coal and lignite) at the optimal conditions to get coal liquefaction/solubilization. The resultant products were analysed by IR and UV/visible spectrometry. No major differences among the original coal, solubilized/liquefied coal and residual coal were detected. However, an increase in metallic carboxylate and a decrease in OH'- carboxylic groups were observed in the liquefied lignite. Humic acids derived from original lignite residual lignite and liquefied/solubilized lignite by microorganisms were analysed. Several differences were observed in the humic acids extracted from the liquefied lignite, such as an increase in the total acidity and in the proportion of the phenolic groups. Differences on the humic acid molecular weight were observed too. Several fungal and bacterial strains were able to grow using humic acids as sole carbon source. Microorganisms growing in humic acid were observed by Scanning Electron Microscopy. Besides, the coal solubilization capacity of several fungal strains (M2, m$ and AGI) growing in different culture media was assayed. In order to get some insight into the mechanisms of the liquefaction/solubilization of Spanish coals (hard coal, subbituminous coal and lignite) by these microorganisms, some features in the culture supernatants were studied: pH values; extracellular specific proteins; enzyme activities possibly related with coal solubilization and the presence of oxalate. M2 and M4 fungal strains grown in the presence of coal produced some specific extracellular

  17. Histamine and tyramine degradation by food fermenting microorganisms.

    Science.gov (United States)

    Leuschner, R G; Heidel, M; Hammes, W P

    1998-01-06

    Microorganisms suitable for food fermentation were examined with regard to their potential to degrade histamine and tyramine. Out of 64 lactic acid bacteria evaluated in this study, 27 degraded histamine and one tyramine, respectively, with low activity. Among 32 strains of Brevibacterium linens and coryneform bacteria, 21 exhibited histamine and tyramine oxidase activity. None of 20 strains of Staphylococcus carnosus tested degraded histamine or tyramine. One strain out of nine strains of Geotrichum candidum degraded tyramine slightly. Among 44 strains of Micrococcus sp. examined, 17 degraded either one or two biogenic amines. In this study Micrococcus varians (M. varians) LTH 1540 exhibited the highest tyramine oxidase activity of all strains tested and was therefore investigated in detail. The enzyme was found to be located in the cytoplasm and was not membrane bound. The reaction end product p-hydroxyphenyl acetic acid was detected by HPLC analysis. An activity staining for the amine oxidase in a native polyacrylamide gel based on the formation of H2O2 during amine oxidation was developed. Resting cells of the strain exhibited optimal tyramine oxidase activity at a pH of 7 at 37-40 degrees C. The enzyme in the cell free extract had a pH optimum between 7-8. The enzyme activity was decreased by NaCl, glucose and hydralazine. Phenylethylamine and tryptamine were oxidized at lower concentrations than tyramine. The potential for amine degradation was not found to be associated with that of formation of biogenic amines, as 23 microorganisms with the ability to metabolise biogenic amines exhibited no decarboxylase activity toward histidine, tyrosine, phenylalanine, lysine or ornithine.

  18. Feldspars as a source of nutrients for microorganisms

    Science.gov (United States)

    Rogers, J.R.; Bennett, P.C.; Choi, W.J.

    1998-01-01

    Phosphorus and nitrogen are essential macronutrients necessary for the survival of virtually all living organisms. In groundwater systems, these nutrients can be quite scarce and can represent limiting elements for growth of subsurface microorganisms. In this study we examined silicate sources of these elements by characterizing the colonization and weathering of feldspars in situ using field microcosms. We found that in carbon-rich anoxic groundwaters where P and N are scarce, feldspars that contain inclusions of P-minerals such as apatite are preferentially colonized over similar feldspars without P. A microcline from S. Dakota, which contains 0.24% P2O5 but ,1 mmol/ g NH , was heavily colonized 1 4 and deeply weathered. A similar microcline from Ontario, which has no detectable P or NH , was barren of attached organisms and completely unweathered after one year. An- 1 4 orthoclase (0.28% P2O5, ;1 mmol/g NH ) was very heavily colonized and weathered, 1 4 whereas plagioclase specimens (,0.01% P, ,1 mmmol/g NH ) were uncolonized and 1 4 unweathered. In addition, the observed weathering rates are faster than expected based on laboratory rates. We propose that this system is particularly sensitive to the availability of P, and the native subsurface microorganisms have developed biochemical strategies to aggressively scavenge P (or some other essential nutrient such as Fe31 ) from resistant feldspars. The result of this interaction is that only minerals containing P will be signifi- cantly colonized, and these feldspars will be preferentially destroyed, as the subsurface microbial community scavenges a limiting nutrient.

  19. Itaconic Acid Production by Microorganisms: A Review

    Directory of Open Access Journals (Sweden)

    Helia Hajian

    2015-04-01

    Full Text Available Itaconic acid (C5H6O4 is an organic acid with unique structure and characteristics. In order to promote the bio-based economy, the US-Department of Energy (DOE assigned a “top-12” of platform chemicals, which include numerous of organic acids. In particular di-carboxylic acids, like itaconic acid, can be used as monomers for bio-polymers. Thus the need to produce itaconic acid attracts much attention. The favored production process is fermentation of carbohydrates by fungi and Aspergillus terreus is the mostly frequently employed commercial producer of itaconic acid. This review reports the current status of use of microorganisms in enhancing productivity.

  20. Laboratory studies of ocean mixing by microorganisms

    Science.gov (United States)

    Martinez-Ortiz, Monica; Dabiri, John O.

    2011-11-01

    Ocean mixing plays a major role in nutrient and energy transport and is an important input to climate models. Recent studies suggest that the contribution of fluid transport by swimming microorganisms to ocean mixing may be of the same order of magnitude as winds and tides. An experimental setup has been designed in order to study the mixing efficiency of vertical migration of plankton. To this end, a stratified water column is created to model the ocean's density gradient. The vertical migration of Artemia Salina (brine shrimp) within the water column is controlled via luminescent signals on the top and bottom of the column. By fluorescently labelling portions of the water column, the stirring of the density gradient by the animals is visualized and quantified. Preliminary results show that the vertical movement of these organisms produces enhanced mixing relative to control cases in which only buoyancy forces and diffusion are present.