WorldWideScience

Sample records for nitrogen fixing trees

  1. Utilization of nitrogen fixing trees

    Energy Technology Data Exchange (ETDEWEB)

    Brewbaker, J.L.; Beldt, R. van den; MacDicken, K.; Budowski, G.; Kass, D.C.L.; Russo, R.O.; Escalante, G.; Herrera, R.; Aranguren, J.; Arkcoll, D.B.; Doebereinger, J. (cord.)

    1983-01-01

    Six papers from the symposium are noted. Brewbaker, J.L., Beldt, R. van den, MacDicken, K. Fuelwood uses and properties of nitrogen-fixing trees, pp 193-204, (Refs. 15). Includes a list of 35 nitrogen-fixing trees of high fuelwood value. Budowski, G.; Kass, D.C.L.; Russo, R.O. Leguminous trees for shade, pp 205-222, (Refs. 68). Escalante, G., Herrera, R., Aranguren, J.; Nitrogen fixation in shade trees (Erythrina poeppigiana) in cocoa plantations in northern Venezuela, pp 223-230, (Refs. 13). Arkcoll, D.B.; Some leguminous trees providing useful fruits in the North of Brazil, pp 235-239, (Refs. 13). This paper deals with Parkia platycephala, Pentaclethra macroloba, Swartzia sp., Cassia leiandra, Hymenaea courbaril, dipteryz odorata, Inga edulis, I. macrophylla, and I. cinnamonea. Baggio, A.J.; Possibilities of the use of Gliricidia sepium in agroforestry systems in Brazil, pp 241-243; (Refs. 15). Seiffert, N.F.; Biological nitrogen and protein production of Leucaena cultivars grown to supplement the nutrition of ruminants, pp 245-249, (Refs. 14). Leucaena leucocephala cv. Peru, L. campina grande (L. leucocephala), and L. cunningham (L. leucocephalae) were promising for use as browse by beef cattle in central Brazil.

  2. Nitrogen-fixing trees inhibit growth of regenerating Costa Rican rainforests.

    Science.gov (United States)

    Taylor, Benton N; Chazdon, Robin L; Bachelot, Benedicte; Menge, Duncan N L

    2017-08-15

    More than half of the world's tropical forests are currently recovering from human land use, and this regenerating biomass now represents the largest carbon (C)-capturing potential on Earth. How quickly these forests regenerate is now a central concern for both conservation and global climate-modeling efforts. Symbiotic nitrogen-fixing trees are thought to provide much of the nitrogen (N) required to fuel tropical secondary regrowth and therefore to drive the rate of forest regeneration, yet we have a poor understanding of how these N fixers influence the trees around them. Do they promote forest growth, as expected if the new N they fix facilitates neighboring trees? Or do they suppress growth, as expected if competitive inhibition of their neighbors is strong? Using 17 consecutive years of data from tropical rainforest plots in Costa Rica that range from 10 y since abandonment to old-growth forest, we assessed how N fixers influenced the growth of forest stands and the demographic rates of neighboring trees. Surprisingly, we found no evidence that N fixers facilitate biomass regeneration in these forests. At the hectare scale, plots with more N-fixing trees grew slower. At the individual scale, N fixers inhibited their neighbors even more strongly than did nonfixing trees. These results provide strong evidence that N-fixing trees do not always serve the facilitative role to neighboring trees during tropical forest regeneration that is expected given their N inputs into these systems.

  3. Differences in Plant Traits among N-fixing Trees in Hawaii Affect Understory Nitrogen Cycling

    Science.gov (United States)

    August-Schmidt, E.; D'Antonio, C. M.

    2016-12-01

    Nitrogen (N) fixing trees are frequently used to restore soil functions to degraded ecosystems because they can increase soil organic matter and N availability. Although N-fixers are lumped into a single functional group, the quality and quantity of the plant material they produce and the rate at which they accrete and add N to the cycling pool likely vary. This talk will focus on the questions: (1) How does N-cycling differ among N-fixing tree species? And (2) Which plant traits are most important in distinguishing the soil N environment? To address these questions, we investigated planted stands of two Hawaiian native N-fixing trees (Acacia koa and Sophora chrysophylla) and `natural' stands of an invasive N-fixing tree (Morella faya) in burned seasonal submontane woodlands in Hawaii Volcanoes National Park. We measured the relative availability of nitrogen in the soil pool and understory plant community as well as characterizing the rate and amount of N cycling in these stands both in the field and using long term soil incubations in the laboratory. We found that N is cycled very differently under these three N-fixers and that this correlates with differences in their leaf traits. S. chrysophylla had the highest foliar %N and highest specific leaf area, and stands of these trees are associated with faster N-cycling, resulting in greater N availability compared to all other site types. Incubated S. chrysophylla soils mineralized almost twice as much N as any other soil type over the course of the experiment. The comparatively high-N environment under S. chrysophylla suggests that litter quality may be more important than litter quantity in determining nitrogen availability to the understory community.

  4. Phylogenetic constraints do not explain the rarity of nitrogen-fixing trees in late-successional temperate forests.

    Science.gov (United States)

    Menge, Duncan N L; DeNoyer, Jeanne L; Lichstein, Jeremy W

    2010-08-06

    Symbiotic nitrogen (N)-fixing trees are rare in late-successional temperate forests, even though these forests are often N limited. Two hypotheses could explain this paradox. The 'phylogenetic constraints hypothesis' states that no late-successional tree taxa in temperate forests belong to clades that are predisposed to N fixation. Conversely, the 'selective constraints hypothesis' states that such taxa are present, but N-fixing symbioses would lower their fitness. Here we test the phylogenetic constraints hypothesis. Using U.S. forest inventory data, we derived successional indices related to shade tolerance and stand age for N-fixing trees, non-fixing trees in the 'potentially N-fixing clade' (smallest angiosperm clade that includes all N fixers), and non-fixing trees outside this clade. We then used phylogenetically independent contrasts (PICs) to test for associations between these successional indices and N fixation. Four results stand out from our analysis of U.S. trees. First, N fixers are less shade-tolerant than non-fixers both inside and outside of the potentially N-fixing clade. Second, N fixers tend to occur in younger stands in a given geographical region than non-fixers both inside and outside of the potentially N-fixing clade. Third, the potentially N-fixing clade contains numerous late-successional non-fixers. Fourth, although the N fixation trait is evolutionarily conserved, the successional traits are relatively labile. These results suggest that selective constraints, not phylogenetic constraints, explain the rarity of late-successional N-fixing trees in temperate forests. Because N-fixing trees could overcome N limitation to net primary production if they were abundant, this study helps to understand the maintenance of N limitation in temperate forests, and therefore the capacity of this biome to sequester carbon.

  5. Global climate change will increase the abundance of symbiotic nitrogen-fixing trees in much of North America.

    Science.gov (United States)

    Liao, Wenying; Menge, Duncan N L; Lichstein, Jeremy W; Ángeles-Pérez, Gregorio

    2017-11-01

    Symbiotic nitrogen (N)-fixing trees can drive N and carbon cycling and thus are critical components of future climate projections. Despite detailed understanding of how climate influences N-fixation enzyme activity and physiology, comparatively little is known about how climate influences N-fixing tree abundance. Here, we used forest inventory data from the USA and Mexico (>125,000 plots) along with climate data to address two questions: (1) How does the abundance distribution of N-fixing trees (rhizobial, actinorhizal, and both types together) vary with mean annual temperature (MAT) and precipitation (MAP)? (2) How will changing climate shift the abundance distribution of N-fixing trees? We found that rhizobial N-fixing trees were nearly absent below 15°C MAT, but above 15°C MAT, they increased in abundance as temperature rose. We found no evidence for a hump-shaped response to temperature throughout the range of our data. Rhizobial trees were more abundant in dry than in wet ecosystems. By contrast, actinorhizal trees peaked in abundance at 5-10°C MAT and were least abundant in areas with intermediate precipitation. Next, we used a climate-envelope approach to project how N-fixing tree relative abundance might change in the future. The climate-envelope projection showed that rhizobial N-fixing trees will likely become more abundant in many areas by 2080, particularly in the southern USA and western Mexico, due primarily to rising temperatures. Projections for actinorhizal N-fixing trees were more nuanced due to their nonmonotonic dependence on temperature and precipitation. Overall, the dominant trend is that warming will increase N-fixing tree abundance in much of the USA and Mexico, with large increases up to 40° North latitude. The quantitative link we provide between climate and N-fixing tree abundance can help improve the representation of symbiotic N fixation in Earth System Models. © 2017 John Wiley & Sons Ltd.

  6. Stress tolerant crops from nitrogen fixing trees

    Energy Technology Data Exchange (ETDEWEB)

    Becker, R.; Saunders, R.M.

    1983-01-01

    Notes are given on the nutritional quality and uses of: pods of Geoffroea decorticans, a species tolerant of saline and limed soils and saline water; seeds of Olneya tesota which nodulates readily and fixes nitrogen and photosynthesizes at low water potential; and pods of Prosopis chilensis and P. tamarugo which tolerate long periods without rain. 3 references.

  7. Demography of Symbiotic Nitrogen-Fixing Trees Explains Their Rarity and Successional Decline in Temperate Forests in the United States.

    Science.gov (United States)

    Liao, Wenying; Menge, Duncan N L

    2016-01-01

    Symbiotic nitrogen (N) fixation is the major N input to many ecosystems. Although temperate forests are commonly N limited, symbiotic N-fixing trees ("N fixers") are rare and decline in abundance as succession proceeds-a challenging paradox that remains unexplained. Understanding demographic processes that underlie N fixers' rarity and successional decline would provide a proximate answer to the paradox. Do N fixers grow slower, die more frequently, or recruit less in temperate forests? We quantified demographic rates of N-fixing and non-fixing trees across succession using U.S. forest inventory data. We used an individual-based model to evaluate the relative contribution of each demographic process to community dynamics. Compared to non-fixers, N fixers had lower growth rates, higher mortality rates, and lower recruitment rates throughout succession. The mortality effect contributed more than the growth effect to N fixers' successional decline. Canopy and understory N fixers experienced these demographic disadvantages, indicating that factors in addition to light limitation likely contribute to N fixers' successional decline. We show that the rarity and successional decline of N-fixing trees in temperate forests is due more to their survival disadvantage than their growth disadvantage, and a recruitment disadvantage might also play a large role.

  8. Nitrogen availability for nitrogen fixing cyanobacteria upon growth ...

    African Journals Online (AJOL)

    The filamentous cyanobacterium Nostoc PCC 7120 is able to convert dinitrogen to ammonia in the absence of combined nitrogen. The expression of 20% of coding sequences from all major metabolic categories was examined in nitrogen fixing and non-nitrogen fixing growth conditions. The expression data were correlated ...

  9. Higher survival drives the success of nitrogen-fixing trees through succession in Costa Rican rainforests.

    Science.gov (United States)

    Menge, Duncan N L; Chazdon, Robin L

    2016-02-01

    Trees capable of symbiotic nitrogen (N) fixation ('N fixers') are abundant in many tropical forests. In temperate forests, it is well known that N fixers specialize in early-successional niches, but in tropical forests, successional trends of N-fixing species are poorly understood. We used a long-term census study (1997-2013) of regenerating lowland wet tropical forests in Costa Rica to document successional patterns of N fixers vs non-fixers, and used an individual-based model to determine the demographic drivers of these trends. N fixers increased in relative basal area during succession. In the youngest forests, N fixers grew 2.5 times faster, recruited at a similar rate and were 15 times less likely to die as non-fixers. As succession proceeded, the growth and survival disparities decreased, whereas N fixer recruitment decreased relative to non-fixers. According to our individual-based model, high survival was the dominant driver of the increase in basal area of N fixers. Our data suggest that N fixers are successful throughout secondary succession in tropical rainforests of north-east Costa Rica, and that attempts to understand this success should focus on tree survival. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  10. On Determining if Tree-based Networks Contain Fixed Trees.

    Science.gov (United States)

    Anaya, Maria; Anipchenko-Ulaj, Olga; Ashfaq, Aisha; Chiu, Joyce; Kaiser, Mahedi; Ohsawa, Max Shoji; Owen, Megan; Pavlechko, Ella; St John, Katherine; Suleria, Shivam; Thompson, Keith; Yap, Corrine

    2016-05-01

    We address an open question of Francis and Steel about phylogenetic networks and trees. They give a polynomial time algorithm to decide if a phylogenetic network, N, is tree-based and pose the problem: given a fixed tree T and network N, is N based on T? We show that it is [Formula: see text]-hard to decide, by reduction from 3-Dimensional Matching (3DM) and further that the problem is fixed-parameter tractable.

  11. Competition and facilitation between unicellular nitrogen-fixing cyanobacteria and non-nitrogen-fixing phytoplankton species

    NARCIS (Netherlands)

    Agawin, N.S.; Rabouille, S.; Veldhuis, M.; Servatius, L.; Hol, S.; van Overzee, H.M.J.; Huisman, J.

    2007-01-01

    Abstract: Recent discoveries show that small unicellular nitrogen-fixing cyanobacteria are more widespread than previously thought and can make major contributions to the nitrogen budget of the oceans. We combined theory and experiments to investigate competition for nitrogen and light between these

  12. Fixed point theorems in spaces and -trees

    Directory of Open Access Journals (Sweden)

    Kirk WA

    2004-01-01

    Full Text Available We show that if is a bounded open set in a complete space , and if is nonexpansive, then always has a fixed point if there exists such that for all . It is also shown that if is a geodesically bounded closed convex subset of a complete -tree with , and if is a continuous mapping for which for some and all , then has a fixed point. It is also noted that a geodesically bounded complete -tree has the fixed point property for continuous mappings. These latter results are used to obtain variants of the classical fixed edge theorem in graph theory.

  13. (15)N in tree rings as a bio-indicator of changing nitrogen cycling in tropical forests: an evaluation at three sites using two sampling methods.

    Science.gov (United States)

    van der Sleen, Peter; Vlam, Mart; Groenendijk, Peter; Anten, Niels P R; Bongers, Frans; Bunyavejchewin, Sarayudh; Hietz, Peter; Pons, Thijs L; Zuidema, Pieter A

    2015-01-01

    Anthropogenic nitrogen deposition is currently causing a more than twofold increase of reactive nitrogen input over large areas in the tropics. Elevated (15)N abundance (δ(15)N) in the growth rings of some tropical trees has been hypothesized to reflect an increased leaching of (15)N-depleted nitrate from the soil, following anthropogenic nitrogen deposition over the last decades. To find further evidence for altered nitrogen cycling in tropical forests, we measured long-term δ(15)N values in trees from Bolivia, Cameroon, and Thailand. We used two different sampling methods. In the first, wood samples were taken in a conventional way: from the pith to the bark across the stem of 28 large trees (the "radial" method). In the second, δ(15)N values were compared across a fixed diameter (the "fixed-diameter" method). We sampled 400 trees that differed widely in size, but measured δ(15)N in the stem around the same diameter (20 cm dbh) in all trees. As a result, the growth rings formed around this diameter differed in age and allowed a comparison of δ(15)N values over time with an explicit control for potential size-effects on δ(15)N values. We found a significant increase of tree-ring δ(15)N across the stem radius of large trees from Bolivia and Cameroon, but no change in tree-ring δ(15)N values over time was found in any of the study sites when controlling for tree size. This suggests that radial trends of δ(15)N values within trees reflect tree ontogeny (size development). However, for the trees from Cameroon and Thailand, a low statistical power in the fixed-diameter method prevents to conclude this with high certainty. For the trees from Bolivia, statistical power in the fixed-diameter method was high, showing that the temporal trend in tree-ring δ(15)N values in the radial method is primarily caused by tree ontogeny and unlikely by a change in nitrogen cycling. We therefore stress to account for tree size before tree-ring δ(15)N values can be properly

  14. 15N in tree rings as a bio-indicator of changing nitrogen cycling in tropical forests: an evaluation at three sites using two sampling methods

    Directory of Open Access Journals (Sweden)

    Peter evan der Sleen

    2015-04-01

    Full Text Available Anthropogenic nitrogen deposition is currently causing a more than twofold increase of reactive nitrogen input over large areas in the tropics. Elevated 15N abundance (δ15N in the growth rings of some tropical trees has been hypothesized to reflect an increased leaching of 15N-depleted nitrate from the soil following anthropogenic nitrogen deposition over the last decades. To find further evidence for altered nitrogen cycling in tropical forests we measured long-term δ15N values in trees from Bolivia, Cameroon and Thailand. We used two different sampling methods. In the first, wood samples were taken in a conventional way: from the pit to the bark across the stem of 28 large trees (the ‘radial’ method. In the second, δ15N values were compared across a fixed diameter (the ‘fixed-diameter’ method. We sampled 400 trees that differed widely in size, but measured δ15N in the stem around the same diameter (20 cm dbh in all trees. As a result, the growth rings formed around this diameter differed in age and allowed a comparison of δ15N values over time with an explicit control for the potential size-effects on δ15N values. We found a significant increase of tree-ring δ15N across the stem radius of large trees from Bolivia and Cameroon, but no change in tree-ring δ15N values over time was found in any of the study sites when controlling for tree size. This suggests that radial trends of δ15N values within trees reflect tree ontogeny (size development. However, for the trees from Cameroon and Thailand, a low statistical power in the fixed-diameter method prevents to conclude this with high certainty. For the trees from Bolivia, statistical power in the fixed-diameter method was high, showing that the temporal trend in tree-ring δ15N values in the radial method is primarily caused by tree ontogeny and unlikely by a change in nitrogen cycling. We therefore stress to account for tree size before tree-ring δ15N values can be properly

  15. Identification of symbiotic nitrogen-fixing bacteria from three African leguminous trees in Gorongosa National Park.

    Science.gov (United States)

    Teixeira, Helena; Rodríguez-Echeverría, Susana

    2016-07-01

    The symbiosis between leguminous plants and symbiotic nitrogen-fixing bacteria is a key component of terrestrial ecosystems. Woody legumes are well represented in tropical African forests but despite their ecological and socio-economic importance, they have been little studied for this symbiosis. In this study, we examined the identity and diversity of symbiotic-nitrogen fixing bacteria associated with Acacia xanthophloea, Faidherbia albida and Albizia versicolor in the Gorongosa National Park (GNP) in Mozambique. To the best of our knowledge, this is the first report on the identity of symbiotic-nitrogen fixing bacteria in this region. 166 isolates were obtained and subjected to molecular identification. BOX-A1R PCR was used to discriminate different bacterial isolates and PCR-sequencing of 16S rDNA, and two housekeeping genes, glnII and recA, was used to identify the obtained bacteria. The gene nifH was also analyzed to assess the symbiotic capacity of the obtained bacteria. All isolates from F. albida and Al. versicolor belonged to the Bradyrhizobium genus whereas isolates from Ac. xanthophloea clustered with Mesorhizobium, Rhizobium or Ensifer strains. Soil chemical analysis revealed significant differences between the soils occupied by the three studied species. Thus, we found a clear delimitation in the rhizobial communities and soils associated with Ac. xanthophloea, F. albida and Al. versicolor, and higher rhizobial diversity for Ac. xanthophloea than previously reported. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Determination of isotopic identity of nitrogen fixed by Frankia associated with the genus Alnus

    International Nuclear Information System (INIS)

    Kurdali, F.; Domenach, A.M.; Daniere, C.; Bardin, R.

    1988-01-01

    To use the 15 N natural abundance method to evaluate the symbiotic nitrogen fixation by actinorhizal trees, it is necessary to determine the isotopic identity of assimilated nitrogen from two sources: the soil and the air. This study reports an isotopic value of fixed nitrogen by two alder species (Alnus Incana(L.) Moench and Alnus glutinosa(L.) Gaertn.) growing on nitrogen-free medium in greenhouse experiments. The δ 15 N value of the aerial parts was -2. This value was stable with time and did not depend on the Frankia strains used. This value could be used to estimate the nitrogen fixation in the natural ecosystem. Other parameters such as the mobilization of nitrogen reserves and the choice of the reference plant must be investigated to apply this method. The nodules of these two alder species were enriched in 15 N relative to the rest of the plant but there was no relationship between symbiotic effectiveness of Frankia strains and 15 N enrichment of nodules. On the other hand, for naturally growing trees, an enrichment in 15 N was found primarily in the vesicles of nodules that are the sites of nitrogen fixation. 37 refs., 4 figs., 3 tabs. (author)

  17. Tracing the evolutionary path to nitrogen-fixing crops.

    Science.gov (United States)

    Delaux, Pierre-Marc; Radhakrishnan, Guru; Oldroyd, Giles

    2015-08-01

    Nitrogen-fixing symbioses between plants and bacteria are restricted to a few plant lineages. The plant partner benefits from these associations by gaining access to the pool of atmospheric nitrogen. By contrast, other plant species, including all cereals, rely only on the scarce nitrogen present in the soil and what they can glean from associative bacteria. Global cereal yields from conventional agriculture are dependent on the application of massive levels of chemical fertilisers. Engineering nitrogen-fixing symbioses into cereal crops could in part mitigate the economic and ecological impacts caused by the overuse of fertilisers and provide better global parity in crop yields. Comparative phylogenetics and phylogenomics are powerful tools to identify genetic and genomic innovations behind key plant traits. In this review we highlight recent discoveries made using such approaches and we discuss how these approaches could be used to help direct the engineering of nitrogen-fixing symbioses into cereals. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. High diversity of nitrogen-fixing bacteria in the upper reaches of the Heihe River, northwestern China

    Directory of Open Access Journals (Sweden)

    X. S. Tai

    2013-08-01

    Full Text Available Vegetation plays a key role in water conservation in the southern Qilian Mountains (northwestern China, located in the upper reaches of the Heihe River. Nitrogen-fixing bacteria are crucial for the protection of the nitrogen supply for vegetation in the region. In the present study, nifH gene clone libraries were established to determine differences between the nitrogen-fixing bacterial communities of the Potentilla parvifolia shrubland and the Carex alrofusca meadow in the southern Qilian Mountains. All of the identified nitrogen-fixing bacterial clones belonged to the Proteobacteria. At the genus level, Azospirillum was only detected in the shrubland soil, while Thiocapsa, Derxia, Ectothiorhodospira, Mesorhizobium, Klebsiella, Ensifer, Methylocella and Pseudomonas were only detected in the meadow soil. The phylogenetic tree was divided into five lineages: lineages I, II and III mainly contained nifH sequences obtained from the meadow soils, while lineage IV was mainly composed of nifH sequences obtained from the shrubland soils. The Shannon–Wiener index of the nifH genes ranged from 1.5 to 2.8 and was higher in the meadow soils than in the shrubland soils. Based on these analyses of diversity and phylogeny, the plant species were hypothesised to influence N cycling by enhancing the fitness of certain nitrogen-fixing taxa. The number of nifH gene copies and colony-forming units (CFUs of the cultured nitrogen-fixing bacteria were lower in the meadow soils than in the shrubland soils, ranging from 0.4 × 107 to 6.9 × 107 copies g−1 soil and 0.97 × 106 to 12.78 × 106 g−1 soil, respectively. Redundancy analysis (RDA revealed that the diversity and number of the nifH gene copies were primarily correlated with aboveground biomass in the shrubland soil. In the meadow soil, nifH gene diversity was most affected by altitude, while copy number was most impacted by soil-available K. These results suggest that the nitrogen-fixing bacterial

  19. High diversity of nitrogen-fixing bacteria in the upper reaches of the Heihe River, northwestern China

    Science.gov (United States)

    Tai, X. S.; Mao, W. L.; Liu, G. X.; Chen, T.; Zhang, W.; Wu, X. K.; Long, H. Z.; Zhang, B. G.; Zhang, Y.

    2013-08-01

    Vegetation plays a key role in water conservation in the southern Qilian Mountains (northwestern China), located in the upper reaches of the Heihe River. Nitrogen-fixing bacteria are crucial for the protection of the nitrogen supply for vegetation in the region. In the present study, nifH gene clone libraries were established to determine differences between the nitrogen-fixing bacterial communities of the Potentilla parvifolia shrubland and the Carex alrofusca meadow in the southern Qilian Mountains. All of the identified nitrogen-fixing bacterial clones belonged to the Proteobacteria. At the genus level, Azospirillum was only detected in the shrubland soil, while Thiocapsa, Derxia, Ectothiorhodospira, Mesorhizobium, Klebsiella, Ensifer, Methylocella and Pseudomonas were only detected in the meadow soil. The phylogenetic tree was divided into five lineages: lineages I, II and III mainly contained nifH sequences obtained from the meadow soils, while lineage IV was mainly composed of nifH sequences obtained from the shrubland soils. The Shannon-Wiener index of the nifH genes ranged from 1.5 to 2.8 and was higher in the meadow soils than in the shrubland soils. Based on these analyses of diversity and phylogeny, the plant species were hypothesised to influence N cycling by enhancing the fitness of certain nitrogen-fixing taxa. The number of nifH gene copies and colony-forming units (CFUs) of the cultured nitrogen-fixing bacteria were lower in the meadow soils than in the shrubland soils, ranging from 0.4 × 107 to 6.9 × 107 copies g-1 soil and 0.97 × 106 to 12.78 × 106 g-1 soil, respectively. Redundancy analysis (RDA) revealed that the diversity and number of the nifH gene copies were primarily correlated with aboveground biomass in the shrubland soil. In the meadow soil, nifH gene diversity was most affected by altitude, while copy number was most impacted by soil-available K. These results suggest that the nitrogen-fixing bacterial communities beneath Potentilla

  20. Nitrogen-fixing bacteria in Mediterranean seagrass (Posidonia oceanica) roots

    KAUST Repository

    Garcias Bonet, Neus

    2016-03-09

    Biological nitrogen fixation by diazotrophic bacteria in seagrass rhizosphere and leaf epiphytic community is an important source of nitrogen required for plant growth. However, the presence of endophytic diazotrophs remains unclear in seagrass tissues. Here, we assess the presence, diversity and taxonomy of nitrogen-fixing bacteria within surface-sterilized roots of Posidonia oceanica. Moreover, we analyze the nitrogen isotopic signature of seagrass tissues in order to notice atmospheric nitrogen fixation. We detected nitrogen-fixing bacteria by nifH gene amplification in 13 out of the 78 roots sampled, corresponding to 9 locations out of 26 meadows. We detected two different types of bacterial nifH sequences associated with P. oceanica roots, which were closely related to sequences previously isolated from the rhizosphere of a salt marsh cord grass and a putative anaerobe. Nitrogen content of seagrass tissues showed low isotopic signatures in all the sampled meadows, pointing out the atmospheric origin of the assimilated nitrogen by seagrasses. However, this was not related with the presence of endophytic nitrogen fixers, suggesting the nitrogen fixation occurring in rhizosphere and in the epiphytic community could be an important source of nitrogen for P. oceanica. The low diversity of nitrogen-fixing bacteria reported here suggests species-specific relationships between diazotrophs and P. oceanica, revealing possible symbiotic interactions that could play a major role in nitrogen acquisition by seagrasses in oligotrophic environments where they form lush meadows.

  1. Dissecting hormonal pathways in nitrogen-fixing rhizobium symbioses

    NARCIS (Netherlands)

    Zeijl, van Arjan

    2017-01-01

    Nitrogen is a key element for plant growth. To meet nitrogen demands, some plants establish an endosymbiotic relationship with nitrogen-fixing rhizobium or Frankia bacteria. This involves formation of specialized root lateral organs, named nodules. These nodules are colonized

  2. Evaluation of Frankia and Rhizobial strains as inocula for nitrogen-fixing trees in saline conditions

    International Nuclear Information System (INIS)

    Hafeez, F.Y.; Hameed, S.; Malik, K.A.

    1998-01-01

    Frankia strains isolated from various Casuarina species were screened for nodulation and N 2 -fixing ability on C. glauca and C. obesa under controlled-environment conditions. Five out of thirteen strains induced effective root nodules on C. glauca, but none did so on C. obesa; two strains were selected. Similarly, various rhizobial strains were screened for nodulation and N 2 fixation on four Acacia species and finally three were selected for compatibility with A. ampliceps. The two Frankia strains (CcOl and CcI3) and three Rhizobium strains (Abal, Ar2-1 and PMA63/1) were checked for NaCl-tolerance in vitro, and were used as inocula to estimate N 2 fixation in fast-growing trees under highly saline field conditions. The isotope-dilution method was used to estimate the proportion and amount of N 2 -fixed by A. ampliceps and C. glauca with Eucalyptus camaldulensis as the non-fixing check. After a year, A. ampliceps plants formed a few root nodules at low Ec c levels, but during the second and third years profuse nodulation was observed. In 1-year-old plants the fraction of N derived from fixation (Ndfa) ranged from 7 to 55% (average 31%) in A. ampliceps and from 7 to 24% (average 15%) in C. glauca, and after two years %Ndfa for A. ampliceps increased markedly, with values up to 86%. On the other hand, increases in %Ndfa for C. glauca were insignificant, possibly due to the use of E. camaldulensis as the non-fixing reference plant. Infection of tree roots by vesicular arbuscular mycorrhiza (VAM), scored after 3 years, showed a negative relationship with soil electric conductivity, as did VAM spore number. The spores isolated from saline soils had thicker walls than those from a fertile soil. Decreases in the soil salinity levels were observed at the end of the 3-year experiment. (author)

  3. What Does It Take to Evolve A Nitrogen-Fixing Endosymbiosis?

    NARCIS (Netherlands)

    Geurts, Rene; Xiao, Ting Ting; Reinhold-Hurek, Barbara

    2016-01-01

    Plant rhizo- and phyllospheres are exposed to a plethora of nitrogen-fixing bacteria, providing opportunities for the establishment of symbiotic associations. Nitrogen-fixing endosymbioses are most profitable and have evolved more than ten times in the angiosperms. This suggests that the

  4. Endophytic colonization of plant roots by nitrogen-fixing bacteria

    International Nuclear Information System (INIS)

    Cocking, Edward C.

    2001-01-01

    Nitrogen-fixing bacteria are able to enter into roots from the rhizosphere, particularly at the base of emerging lateral roots, between epidermal cells and through root hairs. In the rhizosphere growing root hairs play an important role in symbiotic recognition in legume crops. Nodulated legumes in endosymbiosis with rhizobia are amongst the most prominent nitrogen-fixing systems in agriculture. The inoculation of non-legumes, especially cereals, with various non-rhizobial diazotrophic bacteria has been undertaken with the expectation that they would establish themselves intercellularly within the root system, fixing nitrogen endophytic ally and providing combined nitrogen for enhanced crop production. However, in most instances bacteria colonize only the surface of the roots and remain vulnerable to competition from other rhizosphere micro-organisms, even when the nitrogen-fixing bacteria are endophytic, benefits to the plant may result from better uptake of soil nutrients rather than from endophytic nitrogen fixation. Azorhizobium caulinodans is known to enter the root system of cereals, other nonlegume crops and Arabidopsis, by intercellular invasion between epidermal cells and to internally colonize the plant intercellularly, including the xylem. This raises the possibility that xylem colonization might provide a nonnodular niche for endosymbiotic nitrogen fixation in rice, wheat, maize, sorghum and other non-legume crops. A particularly interesting, naturally occurring, non-qodular xylem colonising endophytic diazotrophic interaction with evidence for endophytic nitrogen fixation is that of Gluconacetobacter diazotrophicus in sugarcane. Could this beneficial endophytic colonization of sugarcane by G. diazotrophicus be extended to other members of the Gramineae, including the major cereals, and to other major non-legume crops of the World? (author)

  5. Nitrogen fixation in legume trees: Measurement based on 15N techniques

    International Nuclear Information System (INIS)

    Sisworo, E.L.; Rasyid, H.; Sisworo, H.W.; Solahuddin, S.; Wemay, J.

    2000-01-01

    A field experiment has been conducted to measure the N2-fixation in six legume trees, namely Gliricidia sepium(F1), Sesbania sesban(F2), Caliandra tetragona(F3), Flemengia conges-7ta(F4), Acacia mangium(F5), and Leucena leucocephala (F6), using 15N techniques, e.g. the isotope dilution method. For this technique a reference tress, that is a non N2--fixing trees has to be used. In this experiment three reference trees were planted, but only one was used, which above ground growth was equal to the legyme trees. The reference tree chosen was Eucalyptus alba (R1). Data obtained from this experiment show that in general the legume trees have growth then the reference trees expressed, in dray weight of various plant parts and plants and total-N uptake (TN). At harvest some of the legume and reference tree have reached a 2.5 m height. The percentage of N2-fixation(%-fix) ranges from 50-70%. The highest %N-Fix was shown by Leucena leucocephala (F6) (70%N-Fix). High %N-Fix does not necessarily mean hgh N-Fix uptake(gn/tree)too. The N-Fix appears to be determined by the TN (gn/tree). The highest N-Fix was contributed by the leaves, which also has the highest percentage of total -N(%TN) compare to the other plant parts, i.e. roots, stem, and branches

  6. Nitrogen-fixing bacteria in Mediterranean seagrass (Posidonia oceanica) roots

    KAUST Repository

    Garcias Bonet, Neus; Arrieta, J M; Duarte, Carlos M.; Marbà , Nú ria

    2016-01-01

    of nitrogen for P. oceanica. The low diversity of nitrogen-fixing bacteria reported here suggests species-specific relationships between diazotrophs and P. oceanica, revealing possible symbiotic interactions that could play a major role in nitrogen acquisition

  7. Storage and recycling utilization of leaf-nitrogen of jujube tree

    International Nuclear Information System (INIS)

    Zeng Xiang; Hao Zhongning

    1991-01-01

    16 N-urea was foliarly applied on bearing or young jujube tree in autumn of 1987. The effects of leaf-nitrogen retranslocation in the trees, positions of the N stored, forms of reserved N, and reutilization of storage N in the next year were studied. The results were as follows: 15 N returned and stored in all parts of the tree following foliar application of 15 N-urea. Root could use the nitrogen not only absorbed from soil but also transported from leaves. The above-ground organs and roots of jujube tree played the same important roles on nitrogen storage in winter. The main forms of storage nitrogen were protein-N, which was 2-3 fold more than non-protein-N. The storage nitrogen existed in above-ground parts was used first in early spring, and that returned from leaves last year could be prior used for the developments of leaves, branchlets and infloresences. The relative distribution of nitrogen in floresence was more in bearing tree than in young tree. In the next year, 15 N was redistributed in branchlets, leaves, flowers, young fruits and perennial spurs in autumn. The 15 N transported out of the treated spurs reappeared in next spring and further transported to neighboring spurs. The local storage N was prior used for growth. There was 21.49% of fertilizer-N stored in the young jujube trees when treated foliarly with urea in autumn of 1987. After one years's use, there was still 18.91% of fertilizer-N existed in the trees, which indicated a characteristic of circulatory utilization of nitrogen for a long period and the reutilized nitrogen was mainly from jujube leaves and deciduous branchlets

  8. Steiner trees for fixed orientation metrics

    DEFF Research Database (Denmark)

    Brazil, Marcus; Zachariasen, Martin

    2009-01-01

    We consider the problem of constructing Steiner minimum trees for a metric defined by a polygonal unit circle (corresponding to s = 2 weighted legal orientations in the plane). A linear-time algorithm to enumerate all angle configurations for degree three Steiner points is given. We provide...... a simple proof that the angle configuration for a Steiner point extends to all Steiner points in a full Steiner minimum tree, such that at most six orientations suffice for edges in a full Steiner minimum tree. We show that the concept of canonical forms originally introduced for the uniform orientation...... metric generalises to the fixed orientation metric. Finally, we give an O(s n) time algorithm to compute a Steiner minimum tree for a given full Steiner topology with n terminal leaves....

  9. Distribution of total nitrogen and N-15 labelled nitrogen applied to apple trees

    International Nuclear Information System (INIS)

    Calvache, Marcelo.

    1990-01-01

    The efficiency of nitrogen fertilization from one year's application was studied in apple trees. Urea enriched with 1,5% N-15 a.e. was applied to 2 years old apple trees. Two irrigation treatments were studied, Al approx. 200mm/week and A2 approx. 100 mm/week. The distribution of N in the different parts of the trees was determined after 2 months of fertilization and after the experimental trees were excavated. The recovery of labelled fertilizer N was different in the trees in both treatments (Al = 1,2% and A2 = 3,1%). However, the distribution in the tree's parts was similar: 46% in leaves, 34% in branches and 20% in roots. We also determined that sampling only 20% of leaves at the beginning and the end of the experiment it is possible to know the quantity of nitrogen from fertilizer, without the excavation trees

  10. Carbon and nitrogen isotope variations in tree-rings as records of perturbations in regional carbon and nitrogen cycles.

    Science.gov (United States)

    Bukata, Andrew R; Kyser, T Kurtis

    2007-02-15

    Increasing anthropogenic pollution from urban centers and fossil fuel combustion can impact the carbon and nitrogen cycles in forests. To assess the impact of twentieth century anthropogenic pollution on forested system carbon and nitrogen cycles, variations in the carbon and nitrogen isotopic compositions of tree-rings were measured. Individual annual growth rings in trees from six sites across Ontario and one in New Brunswick, Canada were used to develop site chronologies of tree-ring delta 15N and delta 13C values. Tree-ring 615N values were approximately 0.5% per hundred higher and correlated with contemporaneous foliar samples from the same tree, but not with delta 15N values of soil samples. Temporal trends in carbon and nitrogen isotopic compositions of these tree-rings are consistent with increasing anthropogenic influence on both the carbon and nitrogen cycles since 1945. Tree-ring delta 13C values and delta 15N values are correlated at both remote and urban-proximal sites, with delta 15N values decreasing since 1945 and converging on 1% per hundred at urban-proximal sites and decreasing but not converging on a single delta 15N value in remote sites. These results indicate that temporal trends in tree-ring nitrogen and carbon isotopic compositions record the regional extent of pollution.

  11. Actinorhizal nitrogen fixing nodules: infection process, molecular ...

    African Journals Online (AJOL)

    Actinorhizal nitrogen fixing nodules: infection process, molecular biology and genomics. Mariana Obertello, Mame Oureye SY, Laurent Laplaze, Carole Santi, Sergio Svistoonoff, Florence Auguy, Didier Bogusz, Claudine Franche ...

  12. Assessment of free-living nitrogen fixing microorganisms for commercial nitrogen fixation. [economic analysis of ammonia production

    Science.gov (United States)

    Stokes, B. O.; Wallace, C. J.

    1978-01-01

    Ammonia production by Klebsiella pneumoniae is not economical with present strains and improving nitrogen fixation to its theoretical limits in this organism is not sufficient to achieve economic viability. Because the value of both the hydrogen produced by this organism and the methane value of the carbon source required greatly exceed the value of the ammonia formed, ammonia (fixed nitrogen) should be considered the by-product. The production of hydrogen by KLEBSIELLA or other anaerobic nitrogen fixers should receive additional study, because the activity of nitrogenase offers a significant improvement in hydrogen production. The production of fixed nitrogen in the form of cell mass by Azotobacter is also uneconomical and the methane value of the carbon substrate exceeds the value of the nitrogen fixed. Parametric studies indicate that as efficiencies approach the theoretical limits the economics may become competitive. The use of nif-derepressed microorganisms, particularly blue-green algae, may have significant potential for in situ fertilization in the environment.

  13. Visualization of channels connecting cells in filamentous nitrogen-fixing cyanobacteria.

    Science.gov (United States)

    Omairi-Nasser, Amin; Haselkorn, Robert; Austin, Jotham

    2014-07-01

    Cyanobacteria, formerly called blue-green algae, are abundant bacteria that carry out green plant photosynthesis, fixing CO2 and generating O2. Many species can also fix N2 when reduced nitrogen sources are scarce. Many studies imply the existence of intracellular communicating channels in filamentous cyanobacteria, in particular, the nitrogen-fixing species. In a species such as Anabaena, growth in nitrogen-depleted medium, in which ∼10% of the cells differentiate into anaerobic factories for nitrogen fixation (heterocysts), requires the transport of amino acids from heterocysts to vegetative cells, and reciprocally, the transport of sugar from vegetative cells to heterocysts. Convincing physical evidence for such channels has been slim. Using improved preservation of structure by high-pressure rapid freezing of samples for electron microscopy, coupled with high-resolution 3D tomography, it has been possible to visualize and measure the dimensions of channels that breach the peptidoglycan between vegetative cells and between heterocysts and vegetative cells. The channels appear to be straight tubes, 21 nm long and 14 nm in diameter for the latter and 12 nm long and 12 nm in diameter for the former.-Omairi-Nasser, A., Haselkorn, R., Austin, J. II. Visualization of channels connecting cells in filamentous nitrogen-fixing cyanobacteria. © FASEB.

  14. Plant delta 15N correlates with the transpiration efficiency of nitrogen acquisition in tropical trees.

    Science.gov (United States)

    Cernusak, Lucas A; Winter, Klaus; Turner, Benjamin L

    2009-11-01

    Based upon considerations of a theoretical model of (15)N/(14)N fractionation during steady-state nitrate uptake from soil, we hypothesized that, for plants grown in a common soil environment, whole-plant delta(15)N (deltaP) should vary as a function of the transpiration efficiency of nitrogen acquisition (F(N)/v) and the difference between deltaP and root delta(15)N (deltaP - deltaR). We tested these hypotheses with measurements of several tropical tree and liana species. Consistent with theoretical expectations, both F(N)/v and deltaP - deltaR were significant sources of variation in deltaP, and the relationship between deltaP and F(N)/v differed between non-N(2)-fixing and N(2)-fixing species. We interpret the correlation between deltaP and F(N)/v as resulting from variation in mineral nitrogen efflux-to-influx ratios across plasma membranes of root cells. These results provide a simple explanation of variation in delta(15)N of terrestrial plants and have implications for understanding nitrogen cycling in ecosystems.

  15. Nitrogen symbiotically fixed by cowpea and gliricidia in traditional and agroforestry systems under semiarid conditions

    Directory of Open Access Journals (Sweden)

    Júlio César Rodrigues Martins

    2015-02-01

    Full Text Available The objective of this work was to estimate the amounts of N fixed by cowpea in a traditional system and by cowpea and gliricidia in an agroforestry system in the Brazilian Northeast semiarid. The experiment was carried out in a randomized complete block design, in a split-plot arrangement, with four replicates, in the semiarid region of the state of Paraíba, Brazil. Plots consisted of agroforestry and traditional systems (no trees, and split-plots of the three crops planted between the tree rows in the agroforestry system. To estimate N fixation, plant samples were collected in the fourth growth cycle of the perennial species and in the fourth planting cycle of the annual species. In the agroforestry system with buffel grass and prickly-pear cactus, gliricidia plants symbiotically fix high proportions of N (>50% and contribute with higher N amounts (40 kg ha-1 in leaves than in the traditional system (11 kg ha-1 in grain and 18 kg ha-1 in straw. In the agroforestry system with maize and cowpea, gliricidia plants do not fix nitrogen, and N input is limited to the fixation by cowpea (2.7 kg ha-1, which is lower than in the traditional system due to its lower biomass production.

  16. Simulating changes in ecosystem structure and composition in response to climate change: a case study focused on tropical nitrogen-fixing trees (Invited)

    Science.gov (United States)

    Medvigy, D.; Levy, J.; Xu, X.; Batterman, S. A.; Hedin, L.

    2013-12-01

    Ecosystems, by definition, involve a community of organisms. These communities generally exhibit heterogeneity in their structure and composition as a result of local variations in climate, soil, topography, disturbance history, and other factors. Climate-driven shifts in ecosystems will likely include an internal re-organization of community structure and composition and as well as the introduction of novel species. In terms of vegetation, this ecosystem heterogeneity can occur at relatively small scales, sometimes of the order of tens of meters or even less. Because this heterogeneous landscape generally has a variable and nonlinear response to environmental perturbations, it is necessary to carefully aggregate the local competitive dynamics between individual plants to the large scales of tens or hundreds of kilometers represented in climate models. Accomplishing this aggregation in a computationally efficient way has proven to be an extremely challenging task. To meet this challenge, the Ecosystem Demography 2 (ED2) model statistically characterizes a distribution of local resource environments, and then simulates the competition between individuals of different sizes and species (or functional groupings). Within this framework, it is possible to explicitly simulate the impacts of climate change on ecosystem structure and composition, including both internal re-organization and the introduction of novel species or functional groups. This presentation will include several illustrative applications of the evolution of ecosystem structure and composition under climate change. One application pertains to the role of nitrogen-fixing species in tropical forests. Will increasing CO2 concentrations increase the demand for nutrients and perhaps give a competitive edge to nitrogen-fixing species? Will potentially warmer and drier conditions make some tropical forests more water-limited, reducing the demand for nitrogen, thereby giving a competitive advantage to non-nitrogen-fixing

  17. Nitrogen research for perennial crops

    International Nuclear Information System (INIS)

    Bowen, G.D.; Danso, S.K.A.

    1987-01-01

    The article describes the role of trees in restoring and maintaining soil fertility. Cropping systems that include trees can provide the ecological framework within which food, fuelwood, and fibre production can be intergrated. The IAEA has been actively involved in studies on nitrogen-fixing pasture legumes and is ready to embark on similar studies of trees. 1 tab

  18. Symbiosome-like intracellular colonization of cereals and other crop plants by nitrogen-fixing bacteria for reduced inputs of synthetic nitrogen fertilizers.

    Science.gov (United States)

    Cocking, Edward C; Stone, Philip J; Davey, Michael R

    2005-09-01

    It has been forecast that the challenge of meeting increased food demand and protecting environmental quality will be won or lost in maize, rice and wheat cropping systems, and that the problem of environmental nitrogen enrichment is most likely to be solved by substituting synthetic nitrogen fertilizers by the creation of cereal crops that are able to fix nitrogen symbiotically as legumes do. In legumes, rhizobia present intracellularly in membrane-bound vesicular compartments in the cytoplasm of nodule cells fix nitrogen endosymbiotically. Within these symbiosomes, membrane-bound vesicular compartments, rhizobia are supplied with energy derived from plant photosynthates and in return supply the plant with biologically fixed nitrogen, usually as ammonia. This minimizes or eliminates the need for inputs of synthetic nitrogen fertilizers. Recently we have demonstrated, using novel inoculation conditions with very low numbers of bacteria, that cells of root meristems of maize, rice, wheat and other major non-legume crops, such as oilseed rape and tomato, can be intracellularly colonized by the non-rhizobial, non-nodulating, nitrogen fixing bacterium,Gluconacetobacter diazotrophicus that naturally occurs in sugarcane.G. diazotrophicus expressing nitrogen fixing (nifH) genes is present in symbiosome-like compartments in the cytoplasm of cells of the root meristems of the target cereals and non-legume crop species, somewhat similar to the intracellular symbiosome colonization of legume nodule cells by rhizobia. To obtain an indication of the likelihood of adequate growth and yield, of maize for example, with reduced inputs of synthetic nitrogen fertilizers, we are currently determining the extent to which nitrogen fixation, as assessed using various methods, is correlated with the extent of systemic intracellular colonization byG. diazotrophicus, with minimal or zero inputs.

  19. Growth and foliar nitrogen concentrations of interplanted native woody legumes and pecan

    Science.gov (United States)

    J.W. Van Sambeek; Nadia E. Navarrete-Tindall; Kenneth L. Hunt

    2008-01-01

    The interplanting and underplanting of nodulated nitrogen-fixing plants in tree plantings can increase early growth and foliage nitrogen content of hardwoods, especially black walnut and pecan. Recent studies have demonstrated that some non-nodulated woody legumes may be capable of fixing significant levels of atmospheric nitrogen. The following nine nurse crop...

  20. Pollution and Climate Effects on Tree-Ring Nitrogen Isotopes

    Science.gov (United States)

    Savard, M. M.; Bégin, C.; Marion, J.; Smirnoff, A.

    2009-04-01

    BACKGROUND Monitoring of nitrous oxide concentration only started during the last 30 years in North America, but anthropogenic atmospheric nitrogen has been significantly emitted over the last 150 years. Can geochemical characteristics of tree rings be used to infer past changes in the nitrogen cycle of temperate regions? To address this question we use nitrogen stable isotopes in 125 years-long ring series from beech specimens (Fagus grandifolia) of the Georgian Bay Islands National Park (eastern Ontario), and pine (Pinus strobus) and beech trees of the Arboretum Morgan near Montreal (western Quebec). To evaluate the reliability of the N stable isotopes in wood treated for removal of soluble materials, we tested both tree species from the Montreal area. The reproducibility from tree to tree was excellent for both pine and beech trees, the isotopic trends were strongly concordant, and they were not influenced by the heartwood-sapwood transition zone. The coherence of changes of the isotopic series observed for the two species suggests that their tree-ring N isotopic values can serve as environmental indicator. RESULTS AND INTERPRETATION In Montreal and Georgian Bay, the N isotopes show strong and similar parallel agreement (Gleichlaufigkeit test) with the climatic parameters. So in fact, the short-term isotopic fluctuations correlate directly with summer precipitation and inversely with summer and spring temperature. A long-term decreasing isotope trend in Montreal indicates progressive changes in soil chemistry after 1951. A pedochemical change is also inferred for the Georgian Bay site on the basis of a positive N isotopic trend initiated after 1971. At both sites, the long-term ^15N series correlate with a proxy for NOx emissions (Pearson correlation), and carbon-isotope ring series suggest that the same trees have been impacted by phytotoxic pollutants (Savard et al., 2009a). We propose that the contrasted long-term nitrogen-isotope changes of Montreal and

  1. Differential Sensitivity of Nitrogen-Fixing, Azolla Microphylla to ...

    African Journals Online (AJOL)

    Michael Horsfall

    photosynthesizing and nitrogen fixing micro-organisms contributing significantly ... Pesticide treatment with increasing doses accelerated the formation of reactive ... increased amount of proline in all the insecticide treated concentrations was .... monitoring the nitrite formation from ... centrifuged for 10 minutes in high speed.

  2. Indigenous Fixed Nitrogen on Mars: Implications for Habitability

    Science.gov (United States)

    Stern, J. C.; Sutter, B.; Navarro-Gonzalez, R.; McKay, C. P.; Freissinet, C.; Archer, D., Jr.; Eigenbrode, J. L.; Mahaffy, P. R.; Conrad, P. G.

    2015-12-01

    Nitrate has been detected in Mars surface sediments and aeolian deposits by the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory Curiosity rover (Stern et al., 2015). This detection is significant because fixed nitrogen is necessary for life, a requirement that drove the evolution of N-fixing metabolism in life on Earth. The question remains as to the extent to which a primitive N cycle ever developed on Mars, and whether N is currently being deposited on the martian surface at a non-negligible rate. It is also necessary to consider processes that could recycle oxidized N back into the atmosphere, and how these processes may have changed the soil inventory of N over time. The abundance of fixed nitrogen detected as NO from thermal decomposition of nitrate is consistent with both delivery of nitrate via impact generated thermal shock early in martian history and dry deposition from photochemistry of thermospheric NO, occurring in the present. Processes that could recycle N back into the atmosphere may include nitrate reduction by Fe(II) in aqueous environments on early Mars, impact decomposition, and/or UV photolysis. In order to better understand the history of nitrogen fixation on Mars, we look to cycling of N in Mars analog environments on Earth such as the Atacama Desert and the Dry Valleys of Antarctica. In particular, we examine the ratio of nitrate to perchlorate (NO3-/ClO4-) in these areas compared to those calculated from data acquired on Mars.

  3. An oceanic fixed nitrogen sink exceeding 400 Tg N a−1 vs the concept of homeostasis in the fixed-nitrogen inventory

    Directory of Open Access Journals (Sweden)

    L. A. Codispoti

    2007-01-01

    Full Text Available Measurements of the N2 produced by denitrification, a better understanding of non-canonical pathways for N2 production such as the anammox reaction, better appreciation of the multiple environments in which denitrification can occur (e.g. brine pockets in ice, within particles outside of suboxic water, etc. suggest that it is unlikely that the oceanic denitrification rate is less than 400 Tg N a−1. Because this sink term far exceeds present estimates for nitrogen fixation, the main source for oceanic fixed-N, there is a large apparent deficit (~200 Tg N a−1 in the oceanic fixed-N budget. The size of the deficit appears to conflict with apparent constraints of the atmospheric carbon dioxide and sedimentary δ15N records that suggest homeostasis during the Holocene. In addition, the oceanic nitrate/phosphate ratio tends to be close to the canonical Redfield biological uptake ratio of 16 (by N and P atoms which can be interpreted to indicate the existence of a powerful feed-back mechanism that forces the system towards a balance. The main point of this paper is that one cannot solve this conundrum by reducing the oceanic sink term. To do so would violate an avalanche of recent data on oceanic denitrification. A solution to this problem may be as simple as an upwards revision of the oceanic nitrogen fixation rate, and it is noted that most direct estimates for this term have concentrated on nitrogen fixation by autotrophs in the photic zone, even though nitrogen fixing genes are widespread. Another simple explanation may be that we are simply no longer in the Holocene and one might expect to see temporary imbalances in the oceanic fixed-N budget as we transition from the Holocene to the Anthropocene in line with an apparent denitrification maximum during the Glacial-Holocene transition. Other possible full or partial explanations involve plausible changes in the oceanic nitrate/phosphate and N/C ratios, an oceanic phosphorus budget that may also

  4. Timber tree-based contour hedgerow system on sloping acid upland soils: the use of 15N in quantifying tree-crop interaction in agroforestry system

    International Nuclear Information System (INIS)

    Rosales, Crispina M.; Pailagao, Charmaine; Grafia, Alfonso O.; Rivera, Faye G.; Mercado, Agustin R. Jr.

    2004-01-01

    nutrients yield was proportional to the volume of pruning biomass. Upland rice rows close to the trees had reduced plant height and grain yield. G. arborea was found out to be the most competitive affecting over-all yield of upland rice. But its competitiveness was reduced when interplanted with A. mangium. Grain yield was affected by the different hedgerow species and N-fixing interplant. Row analyses indicated that the first crop of rice was significantly affected by the hedgerows regardless of species. But G. arborea was the most competitive providing the lowest over-all rice yield. Soil nutrients were not affected by the different hedgerow species. Available P was affected by soil depth. Planting of N-fixing and non-N-fixing timber trees had no significant effect on fertilizer nitrogen (FN) yield, % fertilizer nitrogen utilization (FNU) of both grain and straw of upland rice. Significant effects of interplanting N-fixing timber trees on upland rice were only observed on total dry matter yield (TDMY), nitrogen yield (NY), % nitrogen derived from fertilizer (%Ndff) of both grain and straw. This study will be continued to understand more in-depth the tree-soil crop interactions, particularly on the long term N dynamics of this agroforestry system. (Author)

  5. The optimum energy harvest efficiency of nitrogen fixing hydrophyte: Azolla pinnata

    Energy Technology Data Exchange (ETDEWEB)

    Tennakone, K. (Institute of Fundamental Studies, Kandy (LK) Ruhuna Univ., Matara (LK). Dept. of Physics); Punchihewa, S.; Jayasuriya, A.C. (Institute of Fundamental Studies, Kandy (LK))

    1989-01-01

    Azolla is a nitrogen fixing hydrophyte that can be cultivated in absence of nitrogenous fertilizer. It is found that when biomass is continuously harvested from a culture of Azolla, solar energy can be converted at an optimum efficiency of 1.1%. (author).

  6. Effect of vegetation types on soil arbuscular mycorrhizal fungi and nitrogen-fixing bacterial communities in a karst region.

    Science.gov (United States)

    Liang, Yueming; Pan, Fujing; He, Xunyang; Chen, Xiangbi; Su, Yirong

    2016-09-01

    Arbuscular mycorrhizal (AM) fungi and nitrogen-fixing bacteria play important roles in plant growth and recovery in degraded ecosystems. The desertification in karst regions has become more severe in recent decades. Evaluation of the fungal and bacterial diversity of such regions during vegetation restoration is required for effective protection and restoration in these regions. Therefore, we analyzed relationships among AM fungi and nitrogen-fixing bacteria abundances, plant species diversity, and soil properties in four typical ecosystems of vegetation restoration (tussock (TK), shrub (SB), secondary forest (SF), and primary forest (PF)) in a karst region of southwest China. Abundance of AM fungi and nitrogen-fixing bacteria, plant species diversity, and soil nutrient levels increased from the tussock to the primary forest. The AM fungus, nitrogen-fixing bacterium, and plant community composition differed significantly between vegetation types (p fungi and nitrogen-fixing bacteria, respectively. Available phosphorus, total nitrogen, and soil organic carbon levels and plant richness were positively correlated with the abundance of AM fungi and nitrogen-fixing bacteria (p fungi and nitrogen-fixing bacteria increased from the tussock to the primary forest and highlight the essentiality of these communities for vegetation restoration.

  7. Effect of liquid nitrogen storage on seed germination of 51 tree species

    Science.gov (United States)

    Jill R. Barbour; Bernard R. Parresol

    2003-01-01

    Two liquid nitrogen storage experiments were performed on 51 tree species. In experiment 1, seeds of 9western tree species were placed in a liquid nitrogen tank for 3 time periods: 24 hours, 4 weeks, and 222 days. A corresponding control sample accompanied each treatment. For three species,Calocedrus decurrens, Pinus jefferyi, and ...

  8. High diversity of nitrogen-fixing bacteria in upper reaches of Heihe River, Northwestern China

    Science.gov (United States)

    Tai, X. S.; Mao, W. L.; Liu, G. X.; Chen, T.; Zhang, W.; Wu, X. K.; Long, H. Z.; Zhang, B. G.

    2013-03-01

    Vegetation plays a key role to water conservation in southern Qilian Mountains (Northwestern China), the upper reaches of Heihe River. Nitrogen-fixing bacteria are crucial for vegetation protection because they can supply plants with nitrogen source. Nevertheless, little is known about nitrogen-fixing bacteria in this region. In present study, nifH gene clone libraries were established for detecting the difference of nitrogen-fixing bacterial communities between Potentilla parvifolia shrub and Carex alrofusca meadow in the southern Qilian Mountains. All the identified nitrogen-fixing bacterial clones belonged to Proteobacteria. At the genus level, the Azospirillum sp. was only detected in shrub soil while Thiocapsa sp., Derxiasp., Ectothiorhodospira sp., Mesorhizobium sp., Klebsiella sp., Ensifer sp., Methylocella sp. and Peseudomonas sp. were just detected in meadow soil. Shannon-Wiener index of nifH gene ranged from 1.5 to 2.8 and was higher in meadow soil than shrub soil. Contrarily, the nifH gene copies and CFUs of cultured nitrogen-fixing bacteria ranged from 0.4 × 107 to 6.9 × 107 copies g-1 soil and 0.97 × 106 to 12.78 × 106 g-1 soil, respectively. Furthermore, both of them were lower in meadow soil than shrub soil. Statistical analysis revealed that diversity and copies of nifH gene mostly correlated with aboveground biomass in shrub soil. In meadow soil, nifH gene diversity was principally affected by altitude while copies did by soil available K.

  9. Estimate of symbiotically fixed nitrogen in field grown soybeans using variations in 15N natural abundance

    International Nuclear Information System (INIS)

    Amarger, N.; Durr, J.C.; Bourguignon, C.; Lagacherie, B.; Mariotti, A.; Mariotti, F.

    1979-01-01

    The use of variations in natural abundance of 15 N between nitrogen fixing and non nitrogen fixing soybeans was investigated for quantitative estimate of symbiotic nitrogen fixation. Isotopic analysis of 4 varieties of inoculated and non-inoculated soybeans growing under field conditions, with and without N-fertilizer was determined. It was found that inoculated soybeans had a significantly lower 15 N content than non-inoculated ones. Estimates of the participation of fixed N to the total nitrogen content of inoculated soybeans were calculated from these differences. They were compared to estimates calculated from differences in N yield between inoculated and non-inoculated plants and to the nitrogenase activity, measured by the C 2 H 2 reduction assay over the growing season. Estimates given by the 15 N measurements were correlated with the C 2 H 2 reducing activity but not with the differences in the N yield. This shows that the isotopic composition was dependent on the amount of fixed nitrogen and consequently that the estimates of fixed nitrogen based on natural 15 N abundance should be reliable. The absence of correlation between estimates based on 15 N content and estimates based on N yield was explained by differences in the uptake of soil nitrogen between inoculated and non inoculated soybeans. (Auth.)

  10. Evaluation of the influence of nitrogen fixing, phosphate solubilizing ...

    African Journals Online (AJOL)

    Three biofertilizers nitrobein, phosphorein, and potash, containing nitrogen fixing, phosphate solubilizing, and potash mobilizing microorganisms, respectively were studied in peanut (Arachis hypogea L.) and sunflower (Helianthus annuus L.). Amendment with each of these biofertilizers enhanced different growth ...

  11. Novel nitrogen-fixing Acetobacter nitrogenifigens sp. nov., isolated from Kombucha tea.

    Science.gov (United States)

    Dutta, Debasree; Gachhui, Ratan

    2006-08-01

    The four nitrogen-fixing bacteria so far described in the family Acetobacteraceae belong to the genera Gluconacetobacter and Acetobacter. Nitrogen-fixing bacterial strain RG1(T) was isolated from Kombucha tea and, based on the phylogenetic analysis of 16S rRNA gene sequence which is supported by a high bootstrap value, was found to belong to the genus Acetobacter. Strain RG1(T) differed from Acetobacter aceti, the nearest member with a 16S rRNA gene sequence similarity of 98.2 %, and type strains of other Acetobacter species with regard to several characteristics of growth features in culture media, growth in nitrogen-free medium, production of gamma-pyrone from glucose and dihydroxyacetone from glycerol. Strain RG1(T) utilized maltose, glycerol, sorbitol, fructose, galactose, arabinose and ethanol, but not methanol as a carbon source. These results, along with electrophoretic mobility patterns of nine metabolic enzymes, suggest that strain RG1(T) represents a novel nitrogen-fixing species. The ubiquinone present was Q-9 and DNA G+C content was 64.1 mol%. Strain RG1(T) exhibited a low value of 2-24 % DNA-DNA relatedness to the type strains of related acetobacters, which placed it as a separate taxon. On the basis of this data, the name Acetobacter nitrogenifigens sp. nov. is proposed, with the type strain RG1(T) (=MTCC 6912(T)=LMG 23498(T)).

  12. Long-term trends in nitrogen isotope composition and nitrogen concentration in brazilian rainforest trees suggest changes in nitrogen cycle.

    Science.gov (United States)

    Hietz, Peter; Dünisch, Oliver; Wanek, Wolfgang

    2010-02-15

    Direct or indirect anthropogenic effects on ecosystem nitrogen cycles are important components of global change. Recent research has shown that N isotopes in tree rings reflect changes in ecosystem nitrogen sources or cycles and can be used to study past changes. We analyzed trends in two tree species from a remote and pristine tropical rainforest in Brazil, using trees of different ages to distinguish between the effect of tree age and long-term trends. Because sapwood differed from heartwood in delta(15)N and N concentration and N can be translocated between living sapwood cells, long-term trends are best seen in dead heartwood. Heartwood delta(15)N in Spanish cedar (Cedrela odorata) and big-leaf mahogany (Swietenia macrophylla) increased with tree age, and N concentrations increased with age in Cedrela. Controlling for tree age, delta(15)N increased significantly during the past century even when analyzing only heartwood and after removing labile N compounds. In contrast to northern temperate and boreal forests where wood delta(15)N often decreased, the delta(15)N increase in a remote rainforest is unlikely to be a direct signal of changed N deposition. More plausibly, the change in N isotopic composition indicates a more open N cycle, i.e., higher N losses relative to internal N cycling in the forest, which could be the result of changed forest dynamics.

  13. Beneficial effects of aluminum enrichment on nitrogen-fixing cyanobacteria in the South China Sea.

    Science.gov (United States)

    Liu, Jiaxing; Zhou, Linbin; Ke, Zhixin; Li, Gang; Shi, Rongjun; Tan, Yehui

    2018-04-01

    Few studies focus on the effects of aluminum (Al) on marine nitrogen-fixing cyanobacteria, which play important roles in the ocean nitrogen cycling. To examine the effects of Al on the nitrogen-fixing cyanobacteria, bioassay experiments in the oligotrophic South China Sea (SCS) and culture of Crocosphaera watsonii in the laboratory were conducted. Field data showed that 200 nM Al stimulated the growth and the nitrogenase gene expression of Trichodesmium and unicellular diazotrophic cyanobacterium group A, and the nitrogen fixation rates of the whole community. Laboratory experiments demonstrated that Al stimulated the growth and nitrogen fixation of C. watsonii under phosphorus limited conditions. Both field and laboratory results indicated that Al could stimulate the growth of diazotrophs and nitrogen fixation in oligotrophic oceans such as the SCS, which is likely related to the utilization of phosphorus, implying that Al plays an important role in the ocean nitrogen and carbon cycles by influencing nitrogen fixation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Study On Ammonia Accumulation of Cellulose-Utilizing and Nitrogen-Fixing Bacteria Isolated from Various Soils

    International Nuclear Information System (INIS)

    Soe Myat Thandar; Aung Ko Ko Oo; Weine Nway Nway Oo

    2011-12-01

    Cellulose-utilizing and nitrogen-fixing bacteria were isolated from various soil. 42 bacterial strains were obtained. Among those stains, 13 strains were screened for nitrogen-fixing activity. Among them, 4 strains coded as CPB1, CMB1, GPB2 and 3LC4 showed the high nitrogen-fixing activity. Different strains produced different amount of ammonium compounds at various incubation periods. CMB1 produced the maximum amount of ammonium 1.2 mg/L NH4+ at 6th day culture but 3LC4, GPB2 and CPB1 produced more amount of NH4+ with 2, 2.5 and 3 mg/L NH4+ respectively at 5th day culture.

  15. Cowpea symbiotic efficiency, pH and aluminum tolerance in nitrogen-fixing bacteria

    Directory of Open Access Journals (Sweden)

    Bruno Lima Soares

    2014-06-01

    Full Text Available Cowpea (Vigna unguiculata cultivation in northern and northeastern Brazil provides an excellent source of nutrients and carbohydrates for the poor and underprivileged. Production surplus leads to its consumption in other regions of Brazil and also as an export commodity. Its capacity to establish relationships with atmospheric nitrogen-fixing bacteria is crucial to the reduction of production costs and the environmental impact of nitrogen fertilizers. This study assessed the symbiotic efficiency of new strains of symbiotic nitrogen-fixing bacteria with cowpea and their tolerance to pH and aluminum. Twenty-seven strains of bacteria from different soils were evaluated under axenic conditions. These strains were compared to the following inoculant strains: INPA03-11B, UFLA03-84 and BR3267 and two controls that were not inoculated (with and without mineral nitrogen. Six strains and the three strains approved as inoculants were selected to increase the dry weight production of the aerial part (DWAP and were tested in pots with soil that had a high-density of nitrogen-fixing native rhizobia. In this experiment, three strains (UFLA03-164, UFLA03-153, and UFLA03-154 yielded higher DWAP values. These strains grow at pH levels of 5.0, 6.0, 6.8 and at high aluminum concentration levels, reaching 10(9 CFU mL-1. In particular UFLA03-84, UFLA03-153, and UFLA03-164 tolerate up to 20 mmol c dm-3 of Al+3. Inoculation with rhizobial strains, that had been carefully selected according to their ability to nodulate and fix N2, combined with their ability to compete in soils that are acidic and contain high levels of Al, is a cheaper and more sustainable alternative that can be made available to farmers than mineral fertilizers.

  16. Estimate of symbiotically fixed nitrogen in field grown soybeans using variations in /sup 15/N natural abundance

    Energy Technology Data Exchange (ETDEWEB)

    Amarger, N; Durr, J C; Bourguignon, C; Lagacherie, B [INRA Centre de Recherches de Dijon, 21 (France). Lab. de Microbiologie des Sols; Mariotti, A; Mariotti, F [Paris-6 Univ., 75 (France). Lab. de Geologie Dynamique

    1979-07-01

    The use of variations in natural abundance of /sup 15/N between nitrogen fixing and non nitrogen fixing soybeans was investigated for quantitative estimate of symbiotic nitrogen fixation. Isotopic analysis of 4 varieties of inoculated and non-inoculated soybeans growing under field conditions, with and without N-fertilizer was determined. It was found that inoculated soybeans had a significantly lower /sup 15/N content than non-inoculated ones. Estimates of the participation of fixed N to the total nitrogen content of inoculated soybeans were calculated from these differences. They were compared to estimates calculated from differences in N yield between inoculated and non-inoculated plants and to the nitrogenase activity, measured by the C/sub 2/H/sub 2/ reduction assay over the growing season. Estimates given by the /sup 15/N measurements were correlated with the C/sub 2/H/sub 2/ reducing activity but not with the differences in the N yield. This shows that the isotopic composition was dependent on the amount of fixed nitrogen and consequently that the estimates of fixed nitrogen based on natural /sup 15/N abundance should be reliable. The absence of correlation between estimates based on /sup 15/N content and estimates based on N yield was explained by differences in the uptake of soil nitrogen between inoculated and non inoculated soybeans.

  17. Nitrogen studies for achieving the whole-year harvest

    International Nuclear Information System (INIS)

    Boven, G.D.; Danso, K.A.

    1987-01-01

    The IAEA activity in solving the problems related to recovery of productivity of soils subjected to erosion in tropical regions using nitrogen-fixator plants which include pasture bean crops and trees, is considered. The IAEA activity covers development of appropriate methods of changing fixed nitrogen in perennial plants, determination of practical ways of increasing nitrogen fixation and development of reliable and high-productivity systems of bean-herb pastures. The main attention is paid to methods of farming and selection. Favourable effect of forest planting on recovery and preservation of soil productivity and important role of isotopic and nuclear methods (using 15 N) in care for trees and nitrogen fixation improvement are underlined

  18. Ecophysiology of the internal cycling of nitrogen in deciduous fruit trees

    International Nuclear Information System (INIS)

    Millard, P.

    2005-01-01

    In EU Countries, society’s expectations and political decisions have pushed the adoption of ecologically sustainable ways to manage orchards. Nitrogen (N) nutrition is a powerful means of controlling growth and fruiting of trees and guidelines for N management now aim to limit fertiliser applications below threshold values in order to reduce N losses. Increasing the effectiveness of the recycling of N pools available in the orchard is a basic step to reduce external N inputs. The availability of the stable isotope 15N as experimental tool has made possible significant advancements in the knowledge of the fluxes of N in the soil-tree system. Within-tree N sources for vegetative tree growth and reproduction include remobilization of winter stored N (within the tree and between the years) and root-shoot-root N recycling (within the tree and within each year). Nitrogen remobilization from storage is the major source of N in spring, until root uptake becomes predominant. As trees age, relatively more N in new growth is derived from storage and trees become relatively less dependent on root N uptake. Specific amino acids and amides have been identified in the xylem sap of several trees, including apple and cherry, that are considered responsible for remobilization of N compounds in spring. Most evidence has been obtained with relatively young trees grown in pot so there is a need for developing new approaches for quantifying N storage by adult trees in the field. Shoot-root transport of N and subsequent xylem reloading at the root level is a normal feature of vascular plants. While qualitative evidence of this phenomenon are based on detailed analysis of phloem and xylem sap, quantifying reloading N in the xylem was approached by comparing the N fluxes in the xylem with the accumulation of N in tree canopy. Results indicate that recycling of N in the xylem is a mechanism by which plants might regulate N uptake by roots. The adoption of stable isotope techniques in tree

  19. Nitrogen and phosphorus economy of a legume tree-cereal intercropping system under controlled conditions

    International Nuclear Information System (INIS)

    Isaac, M.E.; Hinsinger, P.; Harmand, J.M.

    2012-01-01

    Considerable amounts of nitrogen (N) and phosphorus (P) fertilizers have been mis-used in agroecosystems, with profound alteration to the biogeochemical cycles of these two major nutrients. To reduce excess fertilizer use, plant-mediated nutrient supply through N 2 -fixation, transfer of fixed N and mobilization of soil P may be important processes for the nutrient economy of low-input tree-based intercropping systems. In this study, we quantified plant performance, P acquisition and belowground N transfer from the N 2 -fixing tree to the cereal crop under varying root contact intensity and P supplies. We cultivated Acacia senegal var senegal in pot-culture containing 90% sand and 10% vermiculite under 3 levels of exponentially supplied P. Acacia plants were then intercropped with durum wheat (Triticum turgidum durum) in the same pots with variable levels of adsorbed P or transplanted and intercropped with durum wheat in rhizoboxes excluding direct root contact on P-poor red Mediterranean soils. In pot-culture, wheat biomass and P content increased in relation to the P gradient. Strong isotopic evidence of belowground N transfer, based on the isotopic signature (δ 15 N) of tree foliage and wheat shoots, was systematically found under high P in pot-culture, with an average N transfer value of 14.0% of wheat total N after 21 days of contact between the two species. In the rhizoboxes, we observed limitations on growth and P uptake of intercropped wheat due to competitive effects on soil resources and minimal evidence of belowground N transfer of N from acacia to wheat. In this intercrop, specifically in pot-culture, facilitation for N transfer from the legume tree to the crop showed to be effective especially when crop N uptake was increased (or stimulated) as occurred under high P conditions and when competition was low. Understanding these processes is important to the nutrient economy and appropriate management of legume-based agroforestry systems. -- Highlights

  20. Sterol Compositions of the Filamentous Nitrogen-Fixing Terrestrial Cyanobacterium Scytonema sp

    Czech Academy of Sciences Publication Activity Database

    Řezanka, Tomáš; Dembitsky, V. M.; Go, J. V.; Dor, I.; Prell, Aleš; Hanuš, L.

    2003-01-01

    Roč. 48, č. 3 (2003), s. 357-360 ISSN 0015-5632 Institutional research plan: CEZ:AV0Z5020903 Keywords : nitrogen-fixing * cyanobacterium * scytonema Subject RIV: EE - Microbiology, Virology Impact factor: 0.857, year: 2003

  1. Effects of oxytetracycline on the abundance and community structure of nitrogen-fixing bacteria during cattle manure composting.

    Science.gov (United States)

    Sun, Jiajun; Qian, Xun; Gu, Jie; Wang, Xiaojuan; Gao, Hua

    2016-09-01

    The effects of oxytetracycline (OTC) on nitrogen-fixing bacterial communities were investigated during cattle manure composting. The abundance and community structure of nitrogen-fixing bacteria were determined by qPCR and denaturing gradient gel electrophoresis (DGGE), respectively. The matrix was spiked with OTC at four levels: no OTC, 10mg/kg dry weight (DW) OTC (L), 60mg/kg DW OTC (M), and 200mg/kg DW OTC (H). The high temperature period of composting was shorter with M and H, and the decline in temperature during the cooling stage was accelerated by OTC. OTC had a concentration-dependent inhibitory effect on the nitrogenase activity during early composting, and the nifH gene abundance declined significantly during the later composting stage. The DGGE profile and statistical analysis showed that OTC changed the nitrogen-fixing bacterial community succession and reduced the community richness and dominance. The nitrogen-fixing bacterial community structure was affected greatly by the high level of OTC. Copyright © 2016. Published by Elsevier Ltd.

  2. Nitrogen and phosphorus economy of a legume tree-cereal intercropping system under controlled conditions.

    Science.gov (United States)

    Isaac, M E; Hinsinger, P; Harmand, J M

    2012-09-15

    Considerable amounts of nitrogen (N) and phosphorus (P) fertilizers have been mis-used in agroecosystems, with profound alteration to the biogeochemical cycles of these two major nutrients. To reduce excess fertilizer use, plant-mediated nutrient supply through N(2)-fixation, transfer of fixed N and mobilization of soil P may be important processes for the nutrient economy of low-input tree-based intercropping systems. In this study, we quantified plant performance, P acquisition and belowground N transfer from the N(2)-fixing tree to the cereal crop under varying root contact intensity and P supplies. We cultivated Acacia senegal var senegal in pot-culture containing 90% sand and 10% vermiculite under 3 levels of exponentially supplied P. Acacia plants were then intercropped with durum wheat (Triticum turgidum durum) in the same pots with variable levels of adsorbed P or transplanted and intercropped with durum wheat in rhizoboxes excluding direct root contact on P-poor red Mediterranean soils. In pot-culture, wheat biomass and P content increased in relation to the P gradient. Strong isotopic evidence of belowground N transfer, based on the isotopic signature (δ(15)N) of tree foliage and wheat shoots, was systematically found under high P in pot-culture, with an average N transfer value of 14.0% of wheat total N after 21 days of contact between the two species. In the rhizoboxes, we observed limitations on growth and P uptake of intercropped wheat due to competitive effects on soil resources and minimal evidence of belowground N transfer of N from acacia to wheat. In this intercrop, specifically in pot-culture, facilitation for N transfer from the legume tree to the crop showed to be effective especially when crop N uptake was increased (or stimulated) as occurred under high P conditions and when competition was low. Understanding these processes is important to the nutrient economy and appropriate management of legume-based agroforestry systems. Copyright

  3. Beijerinckia derxii stimulates the viability of non-N2-fixing bacteria in nitrogen-free media

    Directory of Open Access Journals (Sweden)

    Barbosa Heloiza R.

    2000-01-01

    Full Text Available The interactions between the nitrogen-fixing microorganism Beijerinckia derxii with two non-diazotrophic bacteria, either Escherichia coli or a facultative sulphur-oxidizing chemolitotroph, were studied in mixed cultures. Direct and indirect contact between B. derxii and E. coli were tested. B. derxii increased CFU numbers and/or maintained the viability of the non-diazotrophic bacteria, but neither growth nor nitrogenase activity of the nitrogen-fixing bacterium were affected by either partner.

  4. Nitrogen use strategies of seedlings from neotropical tree species of distinct successional groups.

    Science.gov (United States)

    Oliveira, Halley Caixeta; da Silva, Ligia Maria Inocêncio; de Freitas, Letícia Dias; Debiasi, Tatiane Viegas; Marchiori, Nidia Mara; Aidar, Marcos Pereira Marinho; Bianchini, Edmilson; Pimenta, José Antonio; Stolf-Moreira, Renata

    2017-05-01

    Few studies have analyzed the strategies of neotropical tree seedlings for absorbing, translocating and assimilating the nitrogen. Here, we compared the nitrogen use strategies of seedlings from six tree species that are native to the Brazilian Atlantic Forest and that belong to different successional groups: Trema micrantha, Heliocarpus popayanensis and Cecropia pachystachya (pioneers), Cariniana estrellensis, Eugenia brasiliensis and Guarea kunthiana (non-pioneers). The effects of cultivating seedlings with nitrate or ammonium on the growth, physiology and nitrogen metabolism were analyzed. Nitrate-grown pioneer species had much higher leaf nitrate reductase activity than non-pioneer ones, but non-pioneer seedlings were also able to use nitrate as a nitrogen source. In addition to this remarkable difference between the groups in the capacity for leaf nitrate assimilation, substantial variations in the nitrogen use strategies were observed within the successional classes. Differently from the other non-pioneers, the canopy species C. estrellensis seemed to assimilate nitrate mainly in the leaves. Morphophysiological analyses showed a gradient of ammonium toxicity response, with E. brasiliensis as the most tolerant species, and T. micrantha and H. popayanensis as the most sensitive ones. Guarea kunthiana showed a relatively low tolerance to ammonium and an unusual high translocation of this cation in the xylem sap. In contrast to the other pioneers, C. pachystachya had a high plasticity in the use of nitrogen sources. Overall, these results suggest that nitrogen use strategies of neotropical tree seedlings were not determined solely by their successional position. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Nutrient and organic matter inputs to Hawaiian anchialine ponds: influences of n-fixing and non-n-fixing trees

    Science.gov (United States)

    Kehauwealani K. Nelson-Kaula; Rebecca Ostertag; R. Flint Hughes; Bruce D. Dudley

    2016-01-01

    Invasive nitrogen-fixing plants often increase energy and nutrient inputs to both terrestrial and aquatic ecosystems via litterfall, and these effects may be more pronounced in areas lacking native N2-fixers. We examined organic matter and nutrient inputs to and around anchialine ponds...

  6. Studies on utilization of nitrogen-fixing bacteria for saving energy; Chisso koteikin no katsuyo ni yoru sho energy no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Uozumi, T; Koyama, R; Horiuchi, M; Hidaka, M; Masaki, H [The University of Tokyo, Tokyo (Japan); Shigematsu, T; Inoue, A [New Energy and Industrial Technology Development Organization, Tokyo, (Japan)

    1997-02-01

    This paper describes analysis and enhancement of nitrogen-fixing gene of rice root bacteria, such as Klebsiella oxytoca, Azospirillum lipoferumn and Sphingomonas paucimobilis, for realizing energy saving through conservation of nitrogenous fertilizers. For K. oxytoca, modified strain R-16 was developed, which can fix nitrogen effectively even in the presence of NH4{sup +}. Nitrogen-fixing ability of A. lipoferumn depends on the activity control by the modification of nitrogen-fixing enzyme as well as on the adjustment of transcription level by the transcription activating gene, nifA. The control gene relating to the above was analyzed by making clones. As a result, a modified strain TAl without the control by NH4{sup +} was developed. The R-16 and TAl strains were inoculated into rice sterile-cultured without nitrogen. Consequently, inoculated strains were settled in the root, which resulted in the increased vegetation weight of plant to two times heavier than that without inoculation. 9 refs.

  7. Kinetics of Nif gene expression in a nitrogen-fixing bacterium.

    Science.gov (United States)

    Poza-Carrión, César; Jiménez-Vicente, Emilio; Navarro-Rodríguez, Mónica; Echavarri-Erasun, Carlos; Rubio, Luis M

    2014-02-01

    Nitrogen fixation is a tightly regulated trait. Switching from N2 fixation-repressing conditions to the N2-fixing state is carefully controlled in diazotrophic bacteria mainly because of the high energy demand that it imposes. By using quantitative real-time PCR and quantitative immunoblotting, we show here how nitrogen fixation (nif) gene expression develops in Azotobacter vinelandii upon derepression. Transient expression of the transcriptional activator-encoding gene, nifA, was followed by subsequent, longer-duration waves of expression of the nitrogenase biosynthetic and structural genes. Importantly, expression timing, expression levels, and NifA dependence varied greatly among the nif operons. Moreover, the exact concentrations of Nif proteins and their changes over time were determined for the first time. Nif protein concentrations were exquisitely balanced, with FeMo cofactor biosynthetic proteins accumulating at levels 50- to 100-fold lower than those of the structural proteins. Mutants lacking nitrogenase structural genes or impaired in FeMo cofactor biosynthesis showed overenhanced responses to derepression that were proportional to the degree of nitrogenase activity impairment, consistent with the existence of at least two negative-feedback regulatory mechanisms. The first such mechanism responded to the levels of fixed nitrogen, whereas the second mechanism appeared to respond to the levels of the mature NifDK component. Altogether, these findings provide a framework to engineer N2 fixation in nondiazotrophs.

  8. RESISTANCE OF KARST CAVERNS NITROGEN-FIXING BACTERIA TO EXTREME FACTORS

    Directory of Open Access Journals (Sweden)

    Tashyrev O. B.

    2014-10-01

    Full Text Available To determine the studied bacteria resistance quantitative parameters of extreme factors such as toxic metals (Cu2+, organic xenobiotics (p-nitrochlorobenzene and UV-irradiation were the aim of the research. Six strains of nitrogen-fixing bacteria isolated from clays of two caverns Mushkarova Yama (Podolia, Ukraine and Kuybyshevskaya (Western Caucasus, Abkhazia and Azotobacter vinelandii УКМ В-6017 as a reference strain have been tested. For this purpose the maximum permissible concentration of Cu2+ and p-nitrochlorobenzene in the concentration gradient and lethal doses of UV by the survival caverns have been determined. Maximum permissible concentrations for strains were as 10 ppm Cu2+, 70–120 ppm of p-nitrochlorobenzene. The maximum doses of UV-irradiation varied in the range of 55–85 J/m2 (LD99.99. It is shown that three classes of extreme factors resistance parameters of karst caverns strains are similar to the strain of terrestrial soil ecosystems. The most active studied strains reduce the concentration of p-nitrochlorobenzene in the medium in 13 times. The ability of nitrogen-fixing bacteria to degrade p-nitrochlorobenzene could be used in creation new environmental biotechnology for industrial wastewater treatment from nitrochloroaromatic xenobiotics. Isolated strains could be used as destructors for soils bioremediation in agrobiotechnologies and to optimize plants nitrogen nutrition in terrestrial ecosystems.

  9. Impact of Crab Bioturbation on Nitrogen-Fixation Rates in Red Sea Mangrove Sediment

    KAUST Repository

    Qashqari, Maryam S.

    2017-05-01

    Mangrove plants are a productive ecosystem that provide several benefits for marine organisms and industry. They are considered to be a food source and habitat for many organisms. However, mangrove growth is limited by nutrient availability. According to some recent studies, the dwarfism of the mangrove plants is due to the limitation of nitrogen in the environment. Biological nitrogen fixation is the process by which atmospheric nitrogen is fixed into ammonium. Then, this fixed nitrogen can be uptaken by plants. Hence, biological nitrogen fixation increases the input of nitrogen in the mangrove ecosystem. In this project, we focus on measuring the rates of nitrogen fixation on Red Sea mangrove (Avicennia marina) located at Thuwal, Saudi Arabia. The nitrogen fixation rates are calculated by the acetylene reduction assay. The experimental setup will allow us to analyze the effect of crab bioturbation on nitrogen fixing rates. This study will help to better understand the nitrogen dynamics in mangrove ecosystems in Saudi Arabia. Furthermore, this study points out the importance of the sediment microbial community in mangrove trees development. Finally, the role of nitrogen fixing bacteria should be taken in account for future restoration activities.

  10. Nitrogen fixation in trees - 1

    Energy Technology Data Exchange (ETDEWEB)

    Dobereiner, J.; Gauthier, D.L.; Diem, H.G.; Dommergues, Y.R.; Bonetti, R.; Oliveira, L.A.; Magalhaes, F.M.M.; Faria, S.M. de; Franco, A.A.; Menandro, M.S.

    1984-01-01

    Six papers are presented from the symposium. Dobereiner, J.; Nodulation and nitrogen fixation in leguminous trees, 83-90, (15 ref.), reviews studies on Brazilian species. Gauthier, D.L., Diem, H.G., Dommergues, Y.R., Tropical and subtropical actinorhizal plants, 119-136, (Refs. 50), reports on studies on Casuarinaceae. Bonetti, R., Oliveira, L.A., Magalhaes, F.M.M.; Rhizobium populations and occurrence of VA mycorrhizae in plantations of forest trees, 137-142, (Refs. 15), studies Amazonia stands of Cedrelinga catenaeformis, Calophyllum brasiliense, Dipteryx odorata, D. potiphylla, Carapa guianensis, Goupia glabra, Tabebuia serratifolia, Clarisia racemosa, Pithecellobium racemosum, Vouacapoua pallidior, Eperua bijuga, and Diplotropis species. Nodulation was observed in Cedrelinga catenaeformis and V. pallidior. Faria, S.M. de, Franco, A.A., Menandro, M.S., Jesus, R.M. de, Baitello, J.B.; Aguiar, O.T. de, Doebereiner, J; survey of nodulation in leguminous tree species native to southeastern Brazil, 143-153, (Refs. 7), reports on 119 species, with first reports of nodulation in the genera Bowdichia, Poecilanthe, Melanoxylon, Moldenhaurea (Moldenhawera), and Pseudosamanea. Gaiad, S., Carpanezzi, A.A.; Occurrence of Rhizobium in Leguminosae of silvicultural interest for south Brazil, 155-158, (Refs. 2). Nodulation is reported in Mimosa scabrella, Acacia mearnsii, A. longifolia various trinervis, Enterolobium contortisiliquum, and Erythrina falcata. Magalhaes, L.M.S., Blum, W.E.H., Nodulation and growth of Cedrelinga catanaeformis in experimental stands in the Manaus region - Amazonas, 159-164, (Refs. 5). Results indicate that C. catenaeformis can be used in degraded areas of very low soil fertility.

  11. Nitrogen and phosphorus economy of a legume tree-cereal intercropping system under controlled conditions

    Energy Technology Data Exchange (ETDEWEB)

    Isaac, M.E., E-mail: marney.isaac@utoronto.ca [CIRAD, UMR Eco and Sols, 34060 Montpellier (France); University of Toronto, Department of Physical and Environmental Sciences, 1265 Military Trail, Toronto, Canada M1C 1A4 (Canada); Hinsinger, P. [INRA, UMR Eco and Sols, 34060 Montpellier (France); Harmand, J.M. [CIRAD, UMR Eco and Sols, 34060 Montpellier (France)

    2012-09-15

    Considerable amounts of nitrogen (N) and phosphorus (P) fertilizers have been mis-used in agroecosystems, with profound alteration to the biogeochemical cycles of these two major nutrients. To reduce excess fertilizer use, plant-mediated nutrient supply through N{sub 2}-fixation, transfer of fixed N and mobilization of soil P may be important processes for the nutrient economy of low-input tree-based intercropping systems. In this study, we quantified plant performance, P acquisition and belowground N transfer from the N{sub 2}-fixing tree to the cereal crop under varying root contact intensity and P supplies. We cultivated Acacia senegal var senegal in pot-culture containing 90% sand and 10% vermiculite under 3 levels of exponentially supplied P. Acacia plants were then intercropped with durum wheat (Triticum turgidum durum) in the same pots with variable levels of adsorbed P or transplanted and intercropped with durum wheat in rhizoboxes excluding direct root contact on P-poor red Mediterranean soils. In pot-culture, wheat biomass and P content increased in relation to the P gradient. Strong isotopic evidence of belowground N transfer, based on the isotopic signature ({delta}{sup 15}N) of tree foliage and wheat shoots, was systematically found under high P in pot-culture, with an average N transfer value of 14.0% of wheat total N after 21 days of contact between the two species. In the rhizoboxes, we observed limitations on growth and P uptake of intercropped wheat due to competitive effects on soil resources and minimal evidence of belowground N transfer of N from acacia to wheat. In this intercrop, specifically in pot-culture, facilitation for N transfer from the legume tree to the crop showed to be effective especially when crop N uptake was increased (or stimulated) as occurred under high P conditions and when competition was low. Understanding these processes is important to the nutrient economy and appropriate management of legume-based agroforestry systems

  12. Aerobic and anaerobic nitrogen transformation processes in N2-fixing cyanobacterial aggregates.

    Science.gov (United States)

    Klawonn, Isabell; Bonaglia, Stefano; Brüchert, Volker; Ploug, Helle

    2015-06-01

    Colonies of N(2)-fixing cyanobacteria are key players in supplying new nitrogen to the ocean, but the biological fate of this fixed nitrogen remains poorly constrained. Here, we report on aerobic and anaerobic microbial nitrogen transformation processes that co-occur within millimetre-sized cyanobacterial aggregates (Nodularia spumigena) collected in aerated surface waters in the Baltic Sea. Microelectrode profiles showed steep oxygen gradients inside the aggregates and the potential for nitrous oxide production in the aggregates' anoxic centres. (15)N-isotope labelling experiments and nutrient analyses revealed that N(2) fixation, ammonification, nitrification, nitrate reduction to ammonium, denitrification and possibly anaerobic ammonium oxidation (anammox) can co-occur within these consortia. Thus, N. spumigena aggregates are potential sites of nitrogen gain, recycling and loss. Rates of nitrate reduction to ammonium and N(2) were limited by low internal nitrification rates and low concentrations of nitrate in the ambient water. Presumably, patterns of N-transformation processes similar to those observed in this study arise also in other phytoplankton colonies, marine snow and fecal pellets. Anoxic microniches, as a pre-condition for anaerobic nitrogen transformations, may occur within large aggregates (⩾1 mm) even when suspended in fully oxygenated waters, whereas anoxia in small aggregates (1.5 μM), O(2)-depleted water layers, for example, in the chemocline of the Baltic Sea or the oceanic mesopelagic zone, aggregates may promote N-recycling and -loss processes.

  13. Novel Metabolic Attributes of the Genus Cyanothece, Comprising a Group of Unicellular Nitrogen-Fixing Cyanobacteria

    Science.gov (United States)

    Bandyopadhyay, Anindita; Elvitigala, Thanura; Welsh, Eric; Stöckel, Jana; Liberton, Michelle; Min, Hongtao; Sherman, Louis A.; Pakrasi, Himadri B.

    2011-01-01

    ABSTRACT The genus Cyanothece comprises unicellular cyanobacteria that are morphologically diverse and ecologically versatile. Studies over the last decade have established members of this genus to be important components of the marine ecosystem, contributing significantly to the nitrogen and carbon cycle. System-level studies of Cyanothece sp. ATCC 51142, a prototypic member of this group, revealed many interesting metabolic attributes. To identify the metabolic traits that define this class of cyanobacteria, five additional Cyanothece strains were sequenced to completion. The presence of a large, contiguous nitrogenase gene cluster and the ability to carry out aerobic nitrogen fixation distinguish Cyanothece as a genus of unicellular, aerobic nitrogen-fixing cyanobacteria. Cyanothece cells can create an anoxic intracellular environment at night, allowing oxygen-sensitive processes to take place in these oxygenic organisms. Large carbohydrate reserves accumulate in the cells during the day, ensuring sufficient energy for the processes that require the anoxic phase of the cells. Our study indicates that this genus maintains a plastic genome, incorporating new metabolic capabilities while simultaneously retaining archaic metabolic traits, a unique combination which provides the flexibility to adapt to various ecological and environmental conditions. Rearrangement of the nitrogenase cluster in Cyanothece sp. strain 7425 and the concomitant loss of its aerobic nitrogen-fixing ability suggest that a similar mechanism might have been at play in cyanobacterial strains that eventually lost their nitrogen-fixing ability. PMID:21972240

  14. Competition and facilitation between the marine nitrogen-fixing cyanobacterium Cyanothece and its associated bacterial community

    NARCIS (Netherlands)

    Brauer, Verena S; Stomp, Maayke; Bouvier, Thierry; Fouilland, Eric; Leboulanger, Christophe; Confurius-Guns, Veronique; Weissing, Franz J; Stal, Lucas J; Huisman, Jef

    2015-01-01

    N2-fixing cyanobacteria represent a major source of new nitrogen and carbon for marine microbial communities, but little is known about their ecological interactions with associated microbiota. In this study we investigated the interactions between the unicellular N2-fixing cyanobacterium Cyanothece

  15. Compatibility between Legumes and Rhizobia for the Establishment of a Successful Nitrogen-Fixing Symbiosis.

    Science.gov (United States)

    Clúa, Joaquín; Roda, Carla; Zanetti, María Eugenia; Blanco, Flavio A

    2018-02-27

    The root nodule symbiosis established between legumes and rhizobia is an exquisite biological interaction responsible for fixing a significant amount of nitrogen in terrestrial ecosystems. The success of this interaction depends on the recognition of the right partner by the plant within the richest microbial ecosystems on Earth, the soil. Recent metagenomic studies of the soil biome have revealed its complexity, which includes microorganisms that affect plant fitness and growth in a beneficial, harmful, or neutral manner. In this complex scenario, understanding the molecular mechanisms by which legumes recognize and discriminate rhizobia from pathogens, but also between distinct rhizobia species and strains that differ in their symbiotic performance, is a considerable challenge. In this work, we will review how plants are able to recognize and select symbiotic partners from a vast diversity of surrounding bacteria. We will also analyze recent advances that contribute to understand changes in plant gene expression associated with the outcome of the symbiotic interaction. These aspects of nitrogen-fixing symbiosis should contribute to translate the knowledge generated in basic laboratory research into biotechnological advances to improve the efficiency of the nitrogen-fixing symbiosis in agronomic systems.

  16. Molecular fundamentals of nitrogen uptake and transport in trees.

    Science.gov (United States)

    Castro-Rodríguez, Vanessa; Cañas, Rafael A; de la Torre, Fernando N; Pascual, Ma Belén; Avila, Concepción; Cánovas, Francisco M

    2017-05-01

    Nitrogen (N) is frequently a limiting factor for tree growth and development. Because N availability is extremely low in forest soils, trees have evolved mechanisms to acquire and transport this essential nutrient along with biotic interactions to guarantee its strict economy. Here we review recent advances in the molecular basis of tree N nutrition. The molecular characteristics, regulation, and biological significance of membrane proteins involved in the uptake and transport of N are addressed. The regulation of N uptake and transport in mycorrhized roots and transcriptome-wide studies of N nutrition are also outlined. Finally, several areas of future research are suggested. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Response of nitrogen-fixing water fern Azolla biofertilization to rice crop.

    Science.gov (United States)

    Bhuvaneshwari, K; Singh, Pawan Kumar

    2015-08-01

    The water fern Azolla harbors nitrogen-fixing cyanobacterium Anabaena azollae as symbiont in its dorsal leaves and is known as potent N 2 fixer. Present investigation was carried out to study the influence of fresh Azolla when used as basal incorporation in soil and as dual cropped with rice variety Mahsoori separately and together with and without chemical nitrogen fertilizer in pots kept under net house conditions. Results showed that use of Azolla as basal or dual or basal plus dual influenced the rice crop positively where use of fern as basal plus dual was superior and served the nitrogen requirement of rice. There was marked increase in plant height, number of effective tillers, dry mass and nitrogen content of rice plants with the use of Azolla and N-fertilizers alone and other combinations. The use of Azolla also increased organic matter and potassium contents of the soil.

  18. Nitrogen-fixing cyanobacterium with a high phycoerythrin content.

    Science.gov (United States)

    Rodriguez, H; Rivas, J; Guerrero, M G; Losada, M

    1989-03-01

    The elemental and molecular composition, pigment content, and productivity of a phycoerythrin-rich nitrogen-fixing cyanobacterium-an Anabaena strain isolated from the coastal lagoon Albufera de Valencia, Spain-has been investigated. When compared with other heterocystous species, this strain exhibits similar chlorophyll a, carotene, and total phycobiliprotein contents but differs remarkably in the relative proportion of specific phycobiliproteins; the content of C-phycoerythrin amounts to 8.3% (versus about 1% in the other species) of cell dry weight. Absorption and fluorescence spectra of intact phycobilisomes isolated from this Anabaena sp. corroborate the marked contribution of phycoerythrin as an antenna pigment, a circumstance that is unusual for cyanobacteria capable of fixing N(2). The pigment content of cells is affected by variations in irradiance and cell density, these adaptive changes being more patent for C-phycoerythrin than for phycocyanins. The Anabaena strain is clumpy and capable of rapid flocculation. It exhibits outdoor productivities higher than 20 g (dry weight) m day during summer.

  19. N2-fixing red alder indirectly accelerates ecosystem nitrogen cycling

    Science.gov (United States)

    Perakis, Steven S.; Matkins, Joselin J.; Hibbs, David E.

    2012-01-01

    Symbiotic N2-fixing tree species can accelerate ecosystem N dynamics through decomposition via direct pathways by producing readily decomposed leaf litter and increasing N supply to decomposers, as well as via indirect pathways by increasing tissue and detrital N in non-fixing vegetation. To evaluate the relative importance of these pathways, we compared three-year decomposition and N dynamics of N2-fixing red alder leaf litter (2.34 %N) to both low-N (0.68 %N) and high-N (1.21 %N) litter of non-fixing Douglas-fir, and decomposed each litter source in four forests dominated by either red alder or Douglas-fir. We also used experimental N fertilization of decomposition plots to assess elevated N availability as a potential mechanism of N2-fixer effects on litter mass loss and N dynamics. Direct effects of N2-fixing red alder on decomposition occurred primarily as faster N release from red alder than Douglas-fir litter, but direct increases in N supply to decomposers via fertilization did not stimulate decomposition of any litter. Fixed N indirectly influenced detrital dynamics by increasing Douglas-fir tissue and litter N concentrations, which accelerated litter N release without accelerating mass loss. By increasing soil N, tissue N, and the rate of N release from litter of non-fixers, we conclude that N2-fixing vegetation can indirectly foster plant-soil feedbacks that contribute to the persistence of elevated N availability in terrestrial ecosystems.

  20. Competition between trees and grasses for both soil water and mineral nitrogen in dry savannas.

    Science.gov (United States)

    Donzelli, D; De Michele, C; Scholes, R J

    2013-09-07

    The co-existence of trees and grasses in savannas in general can be the result of processes involving competition for resources (e.g. water and nutrients) or differential response to disturbances such as fire, animals and human activities; or a combination of both broad mechanisms. In moist savannas, the tree-grass coexistence is mainly attributed to of disturbances, while in dry savannas, limiting resources are considered the principal mechanism of co-existence. Virtually all theoretical explorations of tree-grass dynamics in dry savannas consider only competition for soil water. Here we investigate whether coexistence could result from a balanced competition for two resources, namely soil water and mineral nitrogen. We introduce a simple dynamical resource-competition model for trees and grasses. We consider two alternative hypotheses: (1) trees are the superior competitors for nitrogen while grasses are superior competitors for water, and (2) vice-versa. We study the model properties under the two hypotheses and test each hypothesis against data from 132 dry savannas in Africa using Kendall's test of independence. We find that Hypothesis 1 gets much more support than Hypothesis 2, and more support than the null hypothesis that neither is operative. We further consider gradients of rainfall and nitrogen availability and find that the Hypothesis 1 model reproduces the observed patterns in nature. We do not consider our results to definitively show that tree-grass coexistence in dry savannas is due to balanced competition for water and nitrogen, but show that this mechanism is a possibility, which cannot be a priori excluded and should thus be considered along with the more traditional explanations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Influence of leafy biomass transfer of agroforestry trees with nitrogen ...

    African Journals Online (AJOL)

    Cultivation of leguminous tree crops and biomass transfer is the main possibility for soil enrichment with nutrients, especially with nitrogen and play alternative role as source of organic fertilizer. This study investigated the influence of leafy biomass transfer of Albizia lebbeck and Parkia biglobosa leguminous agroforestry ...

  2. Effects of exotic invasive trees on nitrogen cycling: a case study in Central Spain

    NARCIS (Netherlands)

    Castro-Diez, P.; González-Muñoz, N.; Alonso, A.; Gallardo, A.; Poorter, L.

    2009-01-01

    We assess the hypothesis that rates of nitrogen transformations in the soil are altered upon replacement of native by exotic trees, differing in litter properties. Ailanthus altissima and Robinia pseudoacacia, two common exotic trees naturalized in the Iberian Peninsula, were compared with the

  3. Seasonal changes in amino acids, protein and total nitrogen in needles of fertilized Scots pine trees.

    Science.gov (United States)

    Näsholm, T; Ericsson, A

    1990-09-01

    Seasonal changes in amino acids, protein and total nitrogen in needles of 30-year-old, fertilized Scots pine (Pinus sylvestris L.) trees growing in Northern Sweden were investigated over two years in field experiments. The studied plots had been fertilized annually for 17 years with (i) a high level of N, (ii) a medium level of N, or (iii) a medium level of N, P and K. Trees growing on unfertilized plots served as controls. In control trees, glutamine, glutamic acid, gamma-aminobutyric acid, aspartic acid and proline represented 50-70% of the total free amino acids determined. Arginine was present only in low concentrations in control trees throughout the year, but it was usually the most abundant amino acid in fertilized trees. Glutamine concentrations were high during the spring and summer in both years of study, whereas proline concentrations were high in the spring but otherwise low throughout the year. In the first year of study, glutamic acid concentrations were high during the spring and summer, whereas gamma-aminobutyric acid was present in high concentrations during the winter months. This pattern was less pronounced in the second year of investigation. The concentrations of most amino acids, except glutamic acid, increased in response to fertilization. Nitrogen fertilization increased the foliar concentration of arginine from trees to a maximum of 110 micromol g(dw) (-1). Trees fertilized with nitrogen, phosphorus and potassium had significantly lower arginine concentrations than trees fertilized with the same amount of nitrogen only. Protein concentrations were similar in all fertilized trees but higher than those in control trees. For all treatments, protein concentrations were high in winter and at a minimum in early spring. In summer, the protein concentration remained almost constant except for a temporary decrease which coincided with the expansion of new shoots. Apart from arginine, the amino acid composition of proteins was similar in all

  4. Fixed Parameter Evolutionary Algorithms and Maximum Leaf Spanning Trees: A Matter of Mutations

    DEFF Research Database (Denmark)

    Kratsch, Stefan; Lehre, Per Kristian; Neumann, Frank

    2011-01-01

    Evolutionary algorithms have been shown to be very successful for a wide range of NP-hard combinatorial optimization problems. We investigate the NP-hard problem of computing a spanning tree that has a maximal number of leaves by evolutionary algorithms in the context of fixed parameter tractabil...... two common mutation operators, we show that an operator related to spanning tree problems leads to an FPT running time in contrast to a general mutation operator that does not have this property....

  5. Functional Genomics Approaches to Studying Symbioses between Legumes and Nitrogen-Fixing Rhizobia.

    Science.gov (United States)

    Lardi, Martina; Pessi, Gabriella

    2018-05-18

    Biological nitrogen fixation gives legumes a pronounced growth advantage in nitrogen-deprived soils and is of considerable ecological and economic interest. In exchange for reduced atmospheric nitrogen, typically given to the plant in the form of amides or ureides, the legume provides nitrogen-fixing rhizobia with nutrients and highly specialised root structures called nodules. To elucidate the molecular basis underlying physiological adaptations on a genome-wide scale, functional genomics approaches, such as transcriptomics, proteomics, and metabolomics, have been used. This review presents an overview of the different functional genomics approaches that have been performed on rhizobial symbiosis, with a focus on studies investigating the molecular mechanisms used by the bacterial partner to interact with the legume. While rhizobia belonging to the alpha-proteobacterial group (alpha-rhizobia) have been well studied, few studies to date have investigated this process in beta-proteobacteria (beta-rhizobia).

  6. Overlap in nitrogen sources and redistribution of nitrogen between trees and grasses in a semi-arid savanna.

    Science.gov (United States)

    Priyadarshini, K V R; Prins, Herbert H T; de Bie, Steven; Heitkönig, Ignas M A; Woodborne, Stephan; Gort, Gerrit; Kirkman, Kevin; Fry, Brian; de Kroon, Hans

    2014-04-01

    A key question in savanna ecology is how trees and grasses coexist under N limitation. We used N stable isotopes and N content to study N source partitioning across seasons from trees and associated grasses in a semi-arid savanna. We also used (15)N tracer additions to investigate possible redistribution of N by trees to grasses. Foliar stable N isotope ratio (δ(15)N) values were consistent with trees and grasses using mycorrhiza-supplied N in all seasons except in the wet season when they switched to microbially fixed N. The dependence of trees and grasses on mineralized soil N seemed highly unlikely based on seasonal variation in mineralization rates in the Kruger Park region. Remarkably, foliar δ(15)N values were similar for all three tree species differing in the potential for N fixation through nodulation. The tracer experiment showed that N was redistributed by trees to understory grasses in all seasons. Our results suggest that the redistribution of N from trees to grasses and uptake of N was independent of water redistribution. Although there is overlap of N sources between trees and grasses, dependence on biological sources of N coupled with redistribution of subsoil N by trees may contribute to the coexistence of trees and grasses in semi-arid savannas.

  7. The symbiotic relationship between dominant canopy trees and soil microbes affects the nitrogen source utilization of co-existing understory trees

    Science.gov (United States)

    Iwaoka, C.; Hyodo, F.; Taniguchi, T.; Shi, W.; Du, S.; Yamanaka, N.; Tateno, R.

    2017-12-01

    The symbiotic relationship between dominant canopy trees and soil microbes such as mycorrhiza or nitrogen (N) fixer are important determinants of soil N dynamics of a forest. However, it is not known how and to what extent the symbiotic relationship of dominant canopy trees with soil microbes affect the N source of co-existing trees in forest. We measured the δ15N of surface soils (0-10 cm), leaves, and roots of the dominant canopy trees and common understory trees in an arbuscular mycorrhizal N-fixing black locust (Robinia pseudoacacia) plantation and an ectomycorrhizal oak (Quercus liaotungensis) natural forest in a China dryland. We also analyzed the soil dissolved N content in soil extracts and absorbed by ion exchange resin, and soil ammonia-oxidizer abundance using real-time PCR. The δ15N of soil and leaves were higher in the black locust forest than in the oak forest, although the δ15N of fine roots was similar in the two forests, in co-existing understory trees as well as dominant canopy trees. Accordingly, the δ15N of leaves was similar to or higher than that of fine roots in the black locust forest, whereas it was consistently lower than that of fine roots in the oak forest. In the black locust forest, the soil dissolved organic N and ammonium N contents were less abundant but the nitrate N contents in soils and absorbed by the ion exchange resin and ammonia-oxidizer abundance were greater, due to N fixation or less uptake of organic N from arbuscular mycorrhiza. In contrast, the soil dissolved organic N and ammonium N contents were more abundant in the oak forest, whereas the N content featured very low nitrate, due to ectomycorrhizal ability to access organic N. These results suggest that the main N source is nitrate N in the black locust forest, but dissolved organic N or ammonium N in the oak forest. N fixation or high N loss due to high N availability would cause high δ15N in soil and leaves in black locust forest. On the other hand, low soil N

  8. Vertical zonation and seed germination indices of chromium resistant cellulolytic and nitrogen fixing bacteria from a chronically metal exposed land area

    International Nuclear Information System (INIS)

    Aslam, S.; Qazi, J.I.

    2014-01-01

    Twenty eight cellulolytic and 25 nitrogen fixing bacteria were isolated from 20, 40 and 60 cm depths of the chromium contaminated land area. The cellulolytic as well as nitrogen fixing microbial communities in soil profiles were dominated by genus Bacillus. More diverse nitrogen fixing bacterial isolates belonging to different genera Paenibacillus, Corynebacterium and Pseudomonas were observed as compared to cellulolytic bacterial community. Majority of the cellulolytic bacteria were found inhabitants of 20 cm soil layer while 40 cm depth was the preferred zone for the nitrogen fixing bacteria. Screening of the bacterial isolates for chromium resistance showed that isolates designated as ASK15 and ASK16 were able to resist up to 1800 mg/l of chromium while the nitrogen fixing isolates which offered a maximum resistant level up to 1650 mg/l of chromium were ASNt10 and ASNS13. Nitrogen fixing isolates enhanced seed germination by 33% and expressed efficient nitrogenase activity up to 0.80 (C/sub 2/H/sub 2/ nmol/ml/hr). Growth promoting assay proved ASNt10 a potential isolate which produced 90 meu g/ml of indoleacetic acid (IAA). Though cellulolytic isolates did not affect seed germination, a significant influence on root length similar to that of ASNt10 and ASNS13 with nearly 5-fold increase in comparison with uninoculated control was observed. The isolates ASK15, ASK16 were identified as Bacillus cereus while ASNt10 and ASNS13 as Paenibacillus barcinonensis and Bacillus megaterium, respectively. (author)

  9. Water and nitrogen dynamics in rotational woodlots of five tree species in western Tanzania

    NARCIS (Netherlands)

    Nyadzi, G.I.; Janssen, B.H.; Otsyina, R.M.; Booltink, H.W.G.; Ong, C.K.; Oenema, O.

    2003-01-01

    The objective of this study was to compare the effects of woodlots of five tree species, continuous maize (Zea mays L.) and natural fallow on soil water and nitrogen dynamics in western Tanzania. The tree species evaluated were Acacia crassicarpa (A. Cunn. ex Benth.), Acacia julifera ( Berth.),

  10. Network analysis reveals ecological links between N-fixing bacteria and wood-decaying fungi.

    Science.gov (United States)

    Hoppe, Björn; Kahl, Tiemo; Karasch, Peter; Wubet, Tesfaye; Bauhus, Jürgen; Buscot, François; Krüger, Dirk

    2014-01-01

    Nitrogen availability in dead wood is highly restricted and associations with N-fixing bacteria are thought to enable wood-decaying fungi to meet their nitrogen requirements for vegetative and generative growth. We assessed the diversity of nifH (dinitrogenase reductase) genes in dead wood of the common temperate tree species Fagus sylvatica and Picea abies from differently managed forest plots in Germany using molecular tools. By incorporating these genes into a large compilation of published nifH sequences and subsequent phylogenetic analyses of deduced proteins we verified the presence of diverse pools corresponding to functional nifH, almost all of which are new to science. The distribution of nifH genes strongly correlated with tree species and decay class, but not with forest management, while higher fungal fructification was correlated with decreasing nitrogen content of the dead wood and positively correlated with nifH diversity, especially during the intermediate stage of wood decay. Network analyses based on non-random species co-occurrence patterns revealed interactions among fungi and N-fixing bacteria in the dead wood and strongly indicate the occurrence of at least commensal relationships between these taxa.

  11. Network analysis reveals ecological links between N-fixing bacteria and wood-decaying fungi.

    Directory of Open Access Journals (Sweden)

    Björn Hoppe

    Full Text Available Nitrogen availability in dead wood is highly restricted and associations with N-fixing bacteria are thought to enable wood-decaying fungi to meet their nitrogen requirements for vegetative and generative growth. We assessed the diversity of nifH (dinitrogenase reductase genes in dead wood of the common temperate tree species Fagus sylvatica and Picea abies from differently managed forest plots in Germany using molecular tools. By incorporating these genes into a large compilation of published nifH sequences and subsequent phylogenetic analyses of deduced proteins we verified the presence of diverse pools corresponding to functional nifH, almost all of which are new to science. The distribution of nifH genes strongly correlated with tree species and decay class, but not with forest management, while higher fungal fructification was correlated with decreasing nitrogen content of the dead wood and positively correlated with nifH diversity, especially during the intermediate stage of wood decay. Network analyses based on non-random species co-occurrence patterns revealed interactions among fungi and N-fixing bacteria in the dead wood and strongly indicate the occurrence of at least commensal relationships between these taxa.

  12. Characterization of free nitrogen fixing bacteria of the genus Azotobacter in organic vegetable-grown Colombian soils

    NARCIS (Netherlands)

    Jiménez Avella, Diego; Montaña, José Salvador; Martínez, María Mercedes

    With the purpose of isolating and characterizing free nitrogen fixing bacteria (FNFB) of the genus Azotobacter, soil samples were collected randomly from different vegetable organic cultures with neutral pH in different zones of Boyacá-Colombia. Isolations were done in selective free nitrogen

  13. Fagaceae tree species allocate higher fraction of nitrogen to photosynthetic apparatus than Leguminosae in Jianfengling tropical montane rain forest, China.

    Science.gov (United States)

    Tang, Jingchao; Cheng, Ruimei; Shi, Zuomin; Xu, Gexi; Liu, Shirong; Centritto, Mauro

    2018-01-01

    Variation in photosynthetic-nitrogen use efficiency (PNUE) is generally affected by several factors such as leaf nitrogen allocation and leaf diffusional conductances to CO2, although it is still unclear which factors significantly affect PNUE in tropical montane rain forest trees. In this study, comparison of PNUE, photosynthetic capacity, leaf nitrogen allocation, and diffusional conductances to CO2 between five Fagaceae tree species and five Leguminosae tree species were analyzed in Jianfengling tropical montane rain forest, Hainan Island, China. The result showed that PNUE of Fagaceae was significantly higher than that of Leguminosae (+35.5%), attributed to lower leaf nitrogen content per area (Narea, -29.4%). The difference in nitrogen allocation was the main biochemical factor that influenced interspecific variation in PNUE of these tree species. Fagaceae species allocated a higher fraction of leaf nitrogen to the photosynthetic apparatus (PP, +43.8%), especially to Rubisco (PR, +50.0%) and bioenergetics (PB +33.3%) in comparison with Leguminosae species. Leaf mass per area (LMA) of Leguminosae species was lower than that of Fagaceae species (-15.4%). While there was no significant difference shown for mesophyll conductance (gm), Fagaceae tree species may have greater chloroplast to total leaf surface area ratios and that offset the action of thicker cell walls on gm. Furthermore, weak negative relationship between nitrogen allocation in cell walls and in Rubisco was found for Castanopsis hystrix, Cyclobalanopsis phanera and Cy. patelliformis, which might imply that nitrogen in the leaves was insufficient for both Rubisco and cell walls. In summary, our study concluded that higher PNUE might contribute to the dominance of most Fagaceae tree species in Jianfengling tropical montane rain forest.

  14. Fagaceae tree species allocate higher fraction of nitrogen to photosynthetic apparatus than Leguminosae in Jianfengling tropical montane rain forest, China

    Science.gov (United States)

    Cheng, Ruimei; Shi, Zuomin; Xu, Gexi; Liu, Shirong; Centritto, Mauro

    2018-01-01

    Variation in photosynthetic-nitrogen use efficiency (PNUE) is generally affected by several factors such as leaf nitrogen allocation and leaf diffusional conductances to CO2, although it is still unclear which factors significantly affect PNUE in tropical montane rain forest trees. In this study, comparison of PNUE, photosynthetic capacity, leaf nitrogen allocation, and diffusional conductances to CO2 between five Fagaceae tree species and five Leguminosae tree species were analyzed in Jianfengling tropical montane rain forest, Hainan Island, China. The result showed that PNUE of Fagaceae was significantly higher than that of Leguminosae (+35.5%), attributed to lower leaf nitrogen content per area (Narea, –29.4%). The difference in nitrogen allocation was the main biochemical factor that influenced interspecific variation in PNUE of these tree species. Fagaceae species allocated a higher fraction of leaf nitrogen to the photosynthetic apparatus (PP, +43.8%), especially to Rubisco (PR, +50.0%) and bioenergetics (PB +33.3%) in comparison with Leguminosae species. Leaf mass per area (LMA) of Leguminosae species was lower than that of Fagaceae species (-15.4%). While there was no significant difference shown for mesophyll conductance (gm), Fagaceae tree species may have greater chloroplast to total leaf surface area ratios and that offset the action of thicker cell walls on gm. Furthermore, weak negative relationship between nitrogen allocation in cell walls and in Rubisco was found for Castanopsis hystrix, Cyclobalanopsis phanera and Cy. patelliformis, which might imply that nitrogen in the leaves was insufficient for both Rubisco and cell walls. In summary, our study concluded that higher PNUE might contribute to the dominance of most Fagaceae tree species in Jianfengling tropical montane rain forest. PMID:29390007

  15. Novel metabolic attributes of the genus cyanothece, comprising a group of unicellular nitrogen-fixing Cyanothece.

    Science.gov (United States)

    Bandyopadhyay, Anindita; Elvitigala, Thanura; Welsh, Eric; Stöckel, Jana; Liberton, Michelle; Min, Hongtao; Sherman, Louis A; Pakrasi, Himadri B

    2011-01-01

    The genus Cyanothece comprises unicellular cyanobacteria that are morphologically diverse and ecologically versatile. Studies over the last decade have established members of this genus to be important components of the marine ecosystem, contributing significantly to the nitrogen and carbon cycle. System-level studies of Cyanothece sp. ATCC 51142, a prototypic member of this group, revealed many interesting metabolic attributes. To identify the metabolic traits that define this class of cyanobacteria, five additional Cyanothece strains were sequenced to completion. The presence of a large, contiguous nitrogenase gene cluster and the ability to carry out aerobic nitrogen fixation distinguish Cyanothece as a genus of unicellular, aerobic nitrogen-fixing cyanobacteria. Cyanothece cells can create an anoxic intracellular environment at night, allowing oxygen-sensitive processes to take place in these oxygenic organisms. Large carbohydrate reserves accumulate in the cells during the day, ensuring sufficient energy for the processes that require the anoxic phase of the cells. Our study indicates that this genus maintains a plastic genome, incorporating new metabolic capabilities while simultaneously retaining archaic metabolic traits, a unique combination which provides the flexibility to adapt to various ecological and environmental conditions. Rearrangement of the nitrogenase cluster in Cyanothece sp. strain 7425 and the concomitant loss of its aerobic nitrogen-fixing ability suggest that a similar mechanism might have been at play in cyanobacterial strains that eventually lost their nitrogen-fixing ability. The unicellular cyanobacterial genus Cyanothece has significant roles in the nitrogen cycle in aquatic and terrestrial environments. Cyanothece sp. ATCC 51142 was extensively studied over the last decade and has emerged as an important model photosynthetic microbe for bioenergy production. To expand our understanding of the distinctive metabolic capabilities of

  16. The Impact of Nitrogen Limitation and Mycorrhizal Symbiosis on Aspen Tree Growth and Development

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Bich Thi Ngoc [Univ. of Alabama, Huntsville, AL (United States)

    2014-08-18

    Nitrogen deficiency is the most common and widespread nutritional deficiency affecting plants worldwide. Ectromycorrhizal symbiosis involves the beneficial interaction of plants with soil fungi and plays a critical role in nutrient cycling, including the uptake of nitrogen from the environment. The main goal of this study is to understand how limiting nitrogen in the presence or absence of an ectomycorrhizal fungi, Laccaria bicolor, affects the health of aspen trees, Populus temuloides.

  17. Identification of nitrogen-fixing genes and gene clusters from metagenomic library of acid mine drainage.

    Directory of Open Access Journals (Sweden)

    Zhimin Dai

    Full Text Available Biological nitrogen fixation is an essential function of acid mine drainage (AMD microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community.

  18. Identification of nitrogen-fixing genes and gene clusters from metagenomic library of acid mine drainage.

    Science.gov (United States)

    Dai, Zhimin; Guo, Xue; Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community.

  19. Identification of Nitrogen-Fixing Genes and Gene Clusters from Metagenomic Library of Acid Mine Drainage

    Science.gov (United States)

    Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community. PMID:24498417

  20. Screening Prosopis (mesquite) germplasm for biomass production and nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    Felker, P.; Cannell, G.H.; Clark, P.R.; Osborn, J.F.

    1980-01-01

    The nitrogen-fixing trees of the genus Prosopis (mesquite or algaroba) are well adapted to the semi-arid and often saline regions of the world. These trees may produce firewood or pods for livestock food, they may stabilize sand dunes and they may enrich the soil by production of leaf litter supported by nitrogen fixation. A collection of nearly 500 Prosopis accessions representing North and South American and African germplasm has been established. Seventy of these accessions representing 14 taxa are being grown under field conditions where a 30-fold range in biomass productivity among accessions has been estimated. In a greehouse experiment, 13 Prosopis taxa grew on nitrogen-free medium nodulated, and had a 10-fold difference in nitrogen fixation (acetylene reduction). When Prosopis is propagated by seed the resulting trees are extremely variable in growth rate and presence or absence of thorns. Propagation of 6 Prosopis taxa by stem cuttings has been achieved with low success (1 to 10%) in field-grown plants and with higher success (50 to 100%) with young actively growing greenhouse plants.

  1. Parallel loss of symbiosis genes in relatives of nitrogen-fixing non-legume Parasponia

    NARCIS (Netherlands)

    Velzen, van R.; Holmer, R.; Bu, F.; Rutten, L.J.J.; Zeijl, van A.L.; Liu, W.; Santuari, L.; Cao, Q.; Sharma, Trupti; Shen, D.; Purwana Roswanjaya, Yuda; Wardhani, T.; Seifi Kalhor, M.; Jansen, Joelle; Hoogen, van den D.J.; Gungor, Berivan; Hartog, M.V.; Hontelez, J.; Verver, J.W.G.; Yang, W.C.; Schijlen, E.G.W.M.; Repin, Rimi; Schilthuizen, M.; Schranz, M.E.; Heidstra, R.; Miyata, Kana; Fedorova, E.; Kohlen, W.; Bisseling, A.H.J.; Smit, S.; Geurts, R.

    2017-01-01

    Rhizobium nitrogen-fixing nodules are a well-known trait of legumes, but nodules also occur in other plant lineages either with rhizobium or the actinomycete Frankia as microsymbiont. The widely accepted hypothesis is that nodulation evolved independently multiple times, with only a few losses.

  2. N2-fixing legumes are linked to enhanced mineral dissolution and microbiome modulations in Neotropical rainforests

    Science.gov (United States)

    Epihov, Dimitar; Batterman, Sarah; Hedin, Lars; Saltonstall, Kristin; Hall, Jefferson; Leake, Jonathan; Beerling, David

    2017-04-01

    Legumes represent the dominant family of many tropical forests with estimates of 120 billion legume trees in the Amazon basin alone. Many rainforest legume trees form symbioses with N2-fixing bacteria. In the process of atmospheric N2-fixation large amounts of nitrogen-rich litter are generated, supplying half of all nitrogen required to support secondary rainforest succession. However, it is unclear how N2-fixers affect the biogeochemical cycling of other essential nutrients by affecting the rates of mineral dissolution and rock weathering. Here we show that N2-fixing legumes in young Panamanian rainforests promote acidification and enhance silicate rock weathering by a factor of 2 compared to non-fixing trees. We report that N2-fixers also associate with enhanced dissolution of Al- and Fe-bearing secondary minerals native to tropical oxisols. In legume-rich neighbourhoods, non-fixers benefited from raised weathering rates relative to those of legume-free zones thus suggesting a positive community effect driven by N2-fixers. These changes in weathering potential were tracked by parallel functional and structural changes in the soil and rock microbiomes. Our findings support the view that N2-fixing legumes are central components of biogeochemical cycling, associated with enhanced release of Fe- and Al-bound P and primary mineral products (Mg, Mo). Rainforest legume services therefore bear important implications to short-term C cycling related to forest growth and the long-term C cycle related to marine carbonate deposition fuelled by silicate weathering.

  3. Inhibition of nitrogen-fixing activity of the cyanobiont affects the localization of glutamine synthetase in hair cells of Azolla.

    Science.gov (United States)

    Uheda, Eiji; Maejima, Kazuhiro

    2009-10-15

    In the Azolla-Anabaena association, the host plant Azolla efficiently incorporates and assimilates ammonium ions that are released from the nitrogen-fixing cyanobiont, probably via glutamine synthetase (GS; EC 6.3.1.2) in hair cells, which are specialized cells protruding into the leaf cavity. In order to clarify the regulatory mechanism underlying ammonium assimilation in the Azolla-Anabaena association, Azolla plants were grown under an argon environment (Ar), in which the nitrogen-fixing activity of the cyanobiont was inhibited specifically and completely. The localization of GS in hair cells was determined by immunoelectron microscopy and quantitative analysis of immunogold labeling. Azolla plants grew healthily under Ar when nitrogen sources, such as NO(3)(-) and NH(4)(+), were provided in the growth medium. Both the number of cyanobacterial cells per leaf and the heterocyst frequency of the plants under Ar were similar to those of plants in a nitrogen environment (N(2)). In hair cells of plants grown under Ar, regardless of the type of nitrogen source provided, only weak labeling of GS was observed in the cytoplasm and in chloroplasts. In contrast, in hair cells of plants grown under N(2), abundant labeling of GS was observed in both sites. These findings indicate that specific inhibition of the nitrogen-fixing activity of the cyanobiont affects the localization of GS isoenzymes. Ammonium fixed and released by the cyanobiont could stimulate GS synthesis in hair cells. Simultaneously, the abundant GS, probably GS1, in these cells, could assimilate ammonium rapidly.

  4. Nitrogen and carbon source-sink relationships in trees at the Himalayan treelines compared with lower elevations.

    Science.gov (United States)

    Li, Mai-He; Xiao, Wen-Fa; Shi, Peili; Wang, San-Gen; Zhong, Yong-De; Liu, Xing-Liang; Wang, Xiao-Dan; Cai, Xiao-Hu; Shi, Zuo-Min

    2008-10-01

    No single hypothesis or theory has been widely accepted for explaining the functional mechanism of global alpine/arctic treeline formation. The present study tested whether the alpine treeline is determined by (1) the needle nitrogen content associated with photosynthesis (carbon gain); (2) a sufficient source-sink ratio of carbon; or (3) a sufficient C-N ratio. Nitrogen does not limit the growth and development of trees studied at the Himalayan treelines. Levels of non-structural carbohydrates (NSC) in trees were species-specific and site-dependent; therefore, the treeline cases studied did not show consistent evidence of source/carbon limitation or sink/growth limitation in treeline trees. However, results of the combined three treelines showed that the treeline trees may suffer from a winter carbon shortage. The source capacity and the sink capacity of a tree influence its tissue NSC concentrations and the carbon balance; therefore, we suggest that the persistence and development of treeline trees in a harsh alpine environment may require a minimum level of the total NSC concentration, a sufficiently high sugar:starch ratio, and a balanced carbon source-sink relationship.

  5. Corals Form Characteristic Associations with Symbiotic Nitrogen-Fixing Bacteria

    Science.gov (United States)

    Lema, Kimberley A.; Willis, Bette L.

    2012-01-01

    The complex symbiotic relationship between corals and their dinoflagellate partner Symbiodinium is believed to be sustained through close associations with mutualistic bacterial communities, though little is known about coral associations with bacterial groups able to fix nitrogen (diazotrophs). In this study, we investigated the diversity of diazotrophic bacterial communities associated with three common coral species (Acropora millepora, Acropora muricata, and Pocillopora damicormis) from three midshelf locations of the Great Barrier Reef (GBR) by profiling the conserved subunit of the nifH gene, which encodes the dinitrogenase iron protein. Comparisons of diazotrophic community diversity among coral tissue and mucus microenvironments and the surrounding seawater revealed that corals harbor diverse nifH phylotypes that differ between tissue and mucus microhabitats. Coral mucus nifH sequences displayed high heterogeneity, and many bacterial groups overlapped with those found in seawater. Moreover, coral mucus diazotrophs were specific neither to coral species nor to reef location, reflecting the ephemeral nature of coral mucus. In contrast, the dominant diazotrophic bacteria in tissue samples differed among coral species, with differences remaining consistent at all three reefs, indicating that coral-diazotroph associations are species specific. Notably, dominant diazotrophs for all coral species were closely related to the bacterial group rhizobia, which represented 71% of the total sequences retrieved from tissue samples. The species specificity of coral-diazotroph associations further supports the coral holobiont model that bacterial groups associated with corals are conserved. Our results suggest that, as in terrestrial plants, rhizobia have developed a mutualistic relationship with corals and may contribute fixed nitrogen to Symbiodinium. PMID:22344646

  6. Nitrogen fixed by wheat plants as affected by nitrogen fertilizer levels and Non-symbiotic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, S; Aly, S S.M.; Gadalla, A M [Soils and Water Dept., Atomic Energy Authority, Cairo (Egypt); Abou Seeda, M [Soils and Water Dept., National Res. Centre, Cairo (Egypt)

    1995-10-01

    Inorganic nitrogen is required for all egyptian soils for wheat. Free living and N 2-fixing microorganisms are able associate closely related with the roots of geraminacae. Pot experiment studies were carried out to examine the response of wheat plants to inoculation with Azospirillum Brasilense and Azotobacter Chroococcum, single or in combination, under various levels of ammonium sulfate interaction between both the inoculants increased straw or grain yield as well as N-uptake by wheat plants with increasing N levels. Results showed that grains of wheat plants derived over 19,24 and 15% of its N content from the atmospheric - N 2 (Ndfa) with application of 25,50 and 75 mg N kg-1 soil in the presence of + Azospirillum + azotobacter. The final amount of N 2-fixers. The highest values of N 2-fixed were observed with mixed inoculants followed by inoculation with Azospirillum and then azotobacter. The recovery of applied ammonium sulfate-N was markedly increased by inoculation with combined inoculants, but less in uninoculated treatments. Seeds inoculated with non-symbiotic fixing bacteria could be saved about 25 kg N without much affecting the grain yield. i fig., 4 tabs.

  7. Nitrogen fixed by wheat plants as affected by nitrogen fertilizer levels and Non-symbiotic bacteria

    International Nuclear Information System (INIS)

    Soliman, S.; Aly, S.S.M.; Gadalla, A.M.; Abou Seeda, M.

    1995-01-01

    Inorganic nitrogen is required for all egyptian soils for wheat. Free living and N 2-fixing microorganisms are able associate closely related with the roots of geraminacae. Pot experiment studies were carried out to examine the response of wheat plants to inoculation with Azospirillum Brasilense and Azotobacter Chroococcum, single or in combination, under various levels of ammonium sulfate interaction between both the inoculants increased straw or grain yield as well as N-uptake by wheat plants with increasing N levels. Results showed that grains of wheat plants derived over 19,24 and 15% of its N content from the atmospheric - N 2 (Ndfa) with application of 25,50 and 75 mg N kg-1 soil in the presence of + Azospirillum + azotobacter. The final amount of N 2-fixers. The highest values of N 2-fixed were observed with mixed inoculants followed by inoculation with Azospirillum and then azotobacter. The recovery of applied ammonium sulfate-N was markedly increased by inoculation with combined inoculants, but less in uninoculated treatments. Seeds inoculated with non-symbiotic fixing bacteria could be saved about 25 kg N without much affecting the grain yield. i fig., 4 tabs

  8. Impacts of atmospheric nitrogen deposition on vegetation and soils in Joshua Tree National Park

    Science.gov (United States)

    E.B. Allen; L. Rao; R.J. Steers; A. Bytnerowicz; M.E. Fenn

    2009-01-01

    The western Mojave Desert is downwind of nitrogen emissions from coastal and inland urban sources, especially automobiles. The objectives of this research were to measure reactive nitrogen (N) in the atmosphere and soils along a N-deposition gradient at Joshua Tree National Park and to examine its effects on invasive and native plant species. Atmospheric nitric acid (...

  9. Nitrogen fixed by cyanobacteria is utilized by deposit-feeders.

    Science.gov (United States)

    Karlson, Agnes M L; Gorokhova, Elena; Elmgren, Ragnar

    2014-01-01

    Benthic communities below the photic zone depend for food on allochthonous organic matter derived from seasonal phytoplankton blooms. In the Baltic Sea, the spring diatom bloom is considered the most important input of organic matter, whereas the contribution of the summer bloom dominated by diazotrophic cyanobacteria is less understood. The possible increase in cyanobacteria blooms as a consequence of eutrophication and climate change calls for evaluation of cyanobacteria effects on benthic community functioning and productivity. Here, we examine utilization of cyanobacterial nitrogen by deposit-feeding benthic macrofauna following a cyanobacteria bloom at three stations during two consecutive years and link these changes to isotopic niche and variations in body condition (assayed as C:N ratio) of the animals. Since nitrogen-fixing cyanobacteria have δ(15)N close to -2‰, we expected the δ(15)N in the deposit-feeders to decrease after the bloom if their assimilation of cyanobacteria-derived nitrogen was substantial. We also expected the settled cyanobacteria with their associated microheterotrophic community and relatively high nitrogen content to increase the isotopic niche area, trophic diversity and dietary divergence between individuals (estimated as the nearest neighbour distance) in the benthic fauna after the bloom. The three surface-feeding species (Monoporeia affinis, Macoma balthica and Marenzelleria arctia) showed significantly lower δ(15)N values after the bloom, while the sub-surface feeder Pontoporeia femorata did not. The effect of the bloom on isotopic niche varied greatly between stations; populations which increased niche area after the bloom had better body condition than populations with reduced niche, regardless of species. Thus, cyanobacterial nitrogen is efficiently integrated into the benthic food webs in the Baltic, with likely consequences for their functioning, secondary production, transfer efficiency, trophic interactions, and

  10. Nitrogen fixed by cyanobacteria is utilized by deposit-feeders.

    Directory of Open Access Journals (Sweden)

    Agnes M L Karlson

    Full Text Available Benthic communities below the photic zone depend for food on allochthonous organic matter derived from seasonal phytoplankton blooms. In the Baltic Sea, the spring diatom bloom is considered the most important input of organic matter, whereas the contribution of the summer bloom dominated by diazotrophic cyanobacteria is less understood. The possible increase in cyanobacteria blooms as a consequence of eutrophication and climate change calls for evaluation of cyanobacteria effects on benthic community functioning and productivity. Here, we examine utilization of cyanobacterial nitrogen by deposit-feeding benthic macrofauna following a cyanobacteria bloom at three stations during two consecutive years and link these changes to isotopic niche and variations in body condition (assayed as C:N ratio of the animals. Since nitrogen-fixing cyanobacteria have δ(15N close to -2‰, we expected the δ(15N in the deposit-feeders to decrease after the bloom if their assimilation of cyanobacteria-derived nitrogen was substantial. We also expected the settled cyanobacteria with their associated microheterotrophic community and relatively high nitrogen content to increase the isotopic niche area, trophic diversity and dietary divergence between individuals (estimated as the nearest neighbour distance in the benthic fauna after the bloom. The three surface-feeding species (Monoporeia affinis, Macoma balthica and Marenzelleria arctia showed significantly lower δ(15N values after the bloom, while the sub-surface feeder Pontoporeia femorata did not. The effect of the bloom on isotopic niche varied greatly between stations; populations which increased niche area after the bloom had better body condition than populations with reduced niche, regardless of species. Thus, cyanobacterial nitrogen is efficiently integrated into the benthic food webs in the Baltic, with likely consequences for their functioning, secondary production, transfer efficiency, trophic

  11. Regime shift by an exotic nitrogen-fixing shrub mediates plant facilitation in primary succession.

    Directory of Open Access Journals (Sweden)

    Adriano Stinca

    Full Text Available Ecosystem invasion by non-native, nitrogen-fixing species is a global phenomenon with serious ecological consequences. However, in the Mediterranean basin few studies addressed the impact of invasion by nitrogen-fixing shrubs on soil quality and hydrological properties at local scale, and the possible effects on succession dynamics and ecosystem invasibility by further species. In this multidisciplinary study we investigated the impact of Genista aetnensis (Biv. DC., an exotic nitrogen-fixing shrub, on the Vesuvius Grand Cone (Southern Italy. Specifically, we tested the hypotheses that the invasion of G. aetnensis has a significant impact on soil quality, soil hydrological regime, local microclimate and plant community structure, and that its impact increases during the plant ontogenetic cycle. We showed that G. aetnensis, in a relatively short time-span (i.e. ~ 40 years, has been able to build-up an island of fertility under its canopy, by accumulating considerable stocks of C, N, and P in the soil, and by also improving the soil hydrological properties. Moreover, G. aetnensis mitigates the daily range of soil temperature, reducing the exposure of coexisting plants to extremely high temperatures and water loss by soil evaporation, particularly during the growing season. Such amelioration of soil quality, coupled with the mitigation of below-canopy microclimatic conditions, has enhanced plant colonization of the barren Grand Cone slopes, by both herbaceous and woody species. These results suggest that the invasion of G. aetnensis could eventually drive to the spread of other, more resource-demanding exotic species, promoting alternative successional trajectories that may dramatically affect the local landscape. Our study is the first record of the invasion of G. aetnensis, an additional example of the regime shifts driven by N-fixing shrubs in Mediterranean region. Further studies are needed to identity specific management practices that can

  12. Effects of tree species, water and nitrogen on mycorrhizal C flux

    Science.gov (United States)

    Menyailo, O.; Matvienko, A.

    2012-12-01

    Mycorrhiza plays an important role in global carbon cycle, especially, in forest soils, yet the effect of tree species on the amount and timing of C transfer through roots to myccorhiza is largely unknown. We studied the C transport to mycorrhiza under 6 most commonly dominant in boreal forests tree species using the mesh collars installed at the Siberian afforestation experiment. The CO2 flux from mycorrhizal and non-mycorrhizal mesh collars indicated the mycorrhizal C flux. Tree species strongly differed in C flux to mycorrhiza: more C was transferred by deciduous species than by conifers. The mycorrhizal CO2 flux was not linked to soil temperature but rather to trees phenology and to photosynthetic activity. All tree species transfered more carbon to mycorrhiza during the second half of summer and in September, this is because all the carbon photosynthesized earlier is used for building the tree biomass. Seasonal variation in C transfer to mycorrhiza was much larger than hourly variation (within a day). Nitrogen application (50 kg/ha) increased mycorrhizal C flux only under Scots pine, but not under larch, thus the effect of N application is tree species dependent. We found under most tree species that more C was transferred by trees to mycorrhiza in root-free collars, where the soil moisture was higher than in collars with roots. This suggests that trees preferentially support those parts of mycorrhiza, which can gain extra-resources.

  13. Mechanisms of nitrogen deposition effects on temperate forest lichens and trees

    Science.gov (United States)

    Therese S. Carter; Christopher M. Clark; Mark E. Fenn; Sarah Jovan; Steven S. Perakis; Jennifer Riddell; Paul G. Schaberg; Tara L. Greaver; Meredith G. Hastings

    2017-01-01

    We review the mechanisms of deleterious nitrogen (N) deposition impacts on temperate forests, with a particular focus on trees and lichens. Elevated anthropogenic N deposition to forests has varied effects on individual organisms depending on characteristics both of the N inputs (form, timing, amount) and of the organisms (ecology, physiology) involved. Improved...

  14. Bacteroidales ectosymbionts of gut flagellates shape the nitrogen-fixing community in dry-wood termites

    Science.gov (United States)

    Desai, Mahesh S; Brune, Andreas

    2012-01-01

    Although it is well documented that the lack of nitrogen in the diet of wood-feeding termites is compensated by the nitrogen-fixing capacity of their gut microbiota, the bacteria responsible for this activity are largely unknown. Here, we analyzed the diversity and expression of nitrogenase genes (homologs of nifH) in four species of dry-wood termites (Kalotermitidae), which thrive on a particularly nitrogen-poor resource. Although each species harbored a highly diverse suite of termite-specific homologs in their microliter-sized hindgut, only a core set related to nifH genes of Treponema and Azoarcus spp., ‘Azobacteroides pseudotrichonymphae', the first member of the Bacteroidales identified as a diazotroph, and termite-gut-specific anfH genes of hitherto unknown origin were preferentially expressed. Transcription patterns corroborated that the populations of active diazotrophs differ fundamentally between termite genera. Capillary-picked suspensions of the flagellates Devescovina arta and Snyderella tabogae revealed that their bacterial ectosymbionts each possess two paralogs of nifH, which apparently have been acquired consecutively during evolution of Bacteroidales, but only one of them (anfH) is actively expressed. Transcription patterns correlated neither with the molybdenum content of the diet nor with intestinal hydrogen concentrations, measured with microsensors. We propose that the nitrogen-fixing community in different dry-wood termites is shaped by the symbionts of their specific flagellate populations. Our findings suggest that the diazotrophic nature of ‘Armantifilum devescovinae' has an important role in the nitrogen metabolism of dry-wood termites and is the driving force of co-evolution with its flagellate host. PMID:22189498

  15. Improved Alkane Production in Nitrogen-Fixing and Halotolerant Cyanobacteria via Abiotic Stresses and Genetic Manipulation of Alkane Synthetic Genes.

    Science.gov (United States)

    Kageyama, Hakuto; Waditee-Sirisattha, Rungaroon; Sirisattha, Sophon; Tanaka, Yoshito; Mahakhant, Aparat; Takabe, Teruhiro

    2015-07-01

    Cyanobacteria possess the unique capacity to produce alkane. In this study, effects of nitrogen deficiency and salt stress on biosynthesis of alkanes were investigated in three kinds of cyanobacteria. Intracellular alkane accumulation was increased in nitrogen-fixing cyanobacterium Anabaena sp. PCC7120, but decreased in non-diazotrophic cyanobacterium Synechococcus elongatus PCC7942 and constant in a halotolerant cyanobacterium Aphanothece halophytica under nitrogen-deficient condition. We also found that salt stress increased alkane accumulation in Anabaena sp. PCC7120 and A. halophytica. The expression levels of two alkane synthetic genes were not upregulated significantly under nitrogen deficiency or salt stress in Anabaena sp. PCC7120. The transformant Anabaena sp. PCC7120 cells with additional alkane synthetic gene set from A. halophytica increased intracellular alkane accumulation level compared to control cells. These results provide a prospect to improve bioproduction of alkanes in nitrogen-fixing halotolerant cyanobacteria via abiotic stresses and genetic engineering.

  16. Symbiosis within Symbiosis: Evolving Nitrogen-Fixing Legume Symbionts.

    Science.gov (United States)

    Remigi, Philippe; Zhu, Jun; Young, J Peter W; Masson-Boivin, Catherine

    2016-01-01

    Bacterial accessory genes are genomic symbionts with an evolutionary history and future that is different from that of their hosts. Packages of accessory genes move from strain to strain and confer important adaptations, such as interaction with eukaryotes. The ability to fix nitrogen with legumes is a remarkable example of a complex trait spread by horizontal transfer of a few key symbiotic genes, converting soil bacteria into legume symbionts. Rhizobia belong to hundreds of species restricted to a dozen genera of the Alphaproteobacteria and Betaproteobacteria, suggesting infrequent successful transfer between genera but frequent successful transfer within genera. Here we review the genetic and environmental conditions and selective forces that have shaped evolution of this complex symbiotic trait. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Elevated enzyme activities in soils under the invasive nitrogen-fixing tree Falcataria moluccana

    Science.gov (United States)

    Steven D. Allison; Caroline Nielsen; R. Flint. Hughes

    2006-01-01

    Like other N-fixing invasive species in Hawaii, Falcataria moluccana dramatically alters forest structure, litterfall quality and quantity, and nutrient dynamics. We hypothesized that these biogeochemical changes would also affect the soil microbial community and the extracellular enzymes responsible for carbon and nutrient mineralization. Across...

  18. Benefits of tree mixes in carbon plantings

    Science.gov (United States)

    Hulvey, Kristin B.; Hobbs, Richard J.; Standish, Rachel J.; Lindenmayer, David B.; Lach, Lori; Perring, Michael P.

    2013-10-01

    Increasingly governments and the private sector are using planted forests to offset carbon emissions. Few studies, however, examine how tree diversity -- defined here as species richness and/or stand composition -- affects carbon storage in these plantings. Using aboveground tree biomass as a proxy for carbon storage, we used meta-analysis to compare carbon storage in tree mixtures with monoculture plantings. Tree mixes stored at least as much carbon as monocultures consisting of the mixture's most productive species and at times outperformed monoculture plantings. In mixed-species stands, individual species, and in particular nitrogen-fixing trees, increased stand biomass. Further motivations for incorporating tree richness into planted forests include the contribution of diversity to total forest carbon-pool development, carbon-pool stability and the provision of extra ecosystem services. Our findings suggest a two-pronged strategy for designing carbon plantings including: (1) increased tree species richness; and (2) the addition of species that contribute to carbon storage and other target functions.

  19. Nitrogen fertilization has a stronger effect on soil nitrogen-fixing bacterial communities than elevated atmospheric CO2.

    Science.gov (United States)

    Berthrong, Sean T; Yeager, Chris M; Gallegos-Graves, Laverne; Steven, Blaire; Eichorst, Stephanie A; Jackson, Robert B; Kuske, Cheryl R

    2014-05-01

    Biological nitrogen fixation is the primary supply of N to most ecosystems, yet there is considerable uncertainty about how N-fixing bacteria will respond to global change factors such as increasing atmospheric CO2 and N deposition. Using the nifH gene as a molecular marker, we studied how the community structure of N-fixing soil bacteria from temperate pine, aspen, and sweet gum stands and a brackish tidal marsh responded to multiyear elevated CO2 conditions. We also examined how N availability, specifically, N fertilization, interacted with elevated CO2 to affect these communities in the temperate pine forest. Based on data from Sanger sequencing and quantitative PCR, the soil nifH composition in the three forest systems was dominated by species in the Geobacteraceae and, to a lesser extent, Alphaproteobacteria. The N-fixing-bacterial-community structure was subtly altered after 10 or more years of elevated atmospheric CO2, and the observed shifts differed in each biome. In the pine forest, N fertilization had a stronger effect on nifH community structure than elevated CO2 and suppressed the diversity and abundance of N-fixing bacteria under elevated atmospheric CO2 conditions. These results indicate that N-fixing bacteria have complex, interacting responses that will be important for understanding ecosystem productivity in a changing climate.

  20. Nitrogen fixation in four dryland tree species in central Chile

    International Nuclear Information System (INIS)

    Ovalle, C.; Arredondo, S.; Aronson, J.; Longeri, L.; Avendano, J.

    1998-01-01

    Results are presented from a 5-year experiment using 15 N-enriched fertilizer to determine N 2 fixation in four tree species on degraded soils in a Mediterranean-climate region of central Chile in which there are 5 months of drought. Species tested included three slow-growing but long-lived savannah trees native to southers South America, (acacia caven, Prosopic alba and P. chilensis; Mimosoideae), and Tagasaste (Chamaecytisus proliferus ssp. palmensis; Papilonoideae), a fast-growing but medium-lived tree from the Canary Islands. Tagasaste produced four- to twenty-fold more biomass than the other species, but showed declining N 2 fixation and biomass accumulation during the 5th year, corresponding to the juvenile-to-adult developmental transition. Nitrogen content was significantly higher in Tagasaste and Acacia caven than in the other species. The data revealed inter-specific differences in resource allocation and phenology of N 2 fixation rarely detailed for woody plants in dryland regions. (author)

  1. Rhizospheric fungi and their link with the nitrogen-fixing Frankia harbored in host plant Hippophae rhamnoides L.

    Science.gov (United States)

    Zhou, Xue; Tian, Lei; Zhang, Jianfeng; Ma, Lina; Li, Xiujun; Tian, Chunjie

    2017-12-01

    Sea buckthorn (Hippophae rhamnoides L.) is a pioneer plant used for land reclamation and an appropriate material for studying the interactions of symbiotic microorganisms because of its nitrogen-fixing root nodules and mycorrhiza. We used high-throughput sequencing to reveal the diversities and community structures of rhizospheric fungi and their link with nitrogen-fixing Frankia harbored in sea buckthorn collected along an altitude gradient from the Qinghai Tibet Plateau to interior areas. We found that the fungal diversities and compositions varied between different sites. Ascomycota, Basidiomycota, and Zygomycota were the dominant phyla. The distribution of sea buckthorn rhizospheric fungi was driven by both environmental factors and the geographic distance. Among all examined soil characteristics, altitude, AP, and pH were found to have significant (p < 0.05) effect on the rhizospheric fungal community. The rhizospheric fungal communities became more distinct as the distance increased. Moreover, co-inertia analysis identified significant co-structures between Frankia and AMF communities in the rhizosphere of sea buckthorn. We conclude that at the large scale, there are certain linkages between nitrogen-fixing bacteria and the AMF expressed in the distributional pattern. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Regionalization of meso-scale physically based nitrogen modeling outputs to the macro-scale by the use of regression trees

    Science.gov (United States)

    Künne, A.; Fink, M.; Kipka, H.; Krause, P.; Flügel, W.-A.

    2012-06-01

    In this paper, a method is presented to estimate excess nitrogen on large scales considering single field processes. The approach was implemented by using the physically based model J2000-S to simulate the nitrogen balance as well as the hydrological dynamics within meso-scale test catchments. The model input data, the parameterization, the results and a detailed system understanding were used to generate the regression tree models with GUIDE (Loh, 2002). For each landscape type in the federal state of Thuringia a regression tree was calibrated and validated using the model data and results of excess nitrogen from the test catchments. Hydrological parameters such as precipitation and evapotranspiration were also used to predict excess nitrogen by the regression tree model. Hence they had to be calculated and regionalized as well for the state of Thuringia. Here the model J2000g was used to simulate the water balance on the macro scale. With the regression trees the excess nitrogen was regionalized for each landscape type of Thuringia. The approach allows calculating the potential nitrogen input into the streams of the drainage area. The results show that the applied methodology was able to transfer the detailed model results of the meso-scale catchments to the entire state of Thuringia by low computing time without losing the detailed knowledge from the nitrogen transport modeling. This was validated with modeling results from Fink (2004) in a catchment lying in the regionalization area. The regionalized and modeled excess nitrogen correspond with 94%. The study was conducted within the framework of a project in collaboration with the Thuringian Environmental Ministry, whose overall aim was to assess the effect of agro-environmental measures regarding load reduction in the water bodies of Thuringia to fulfill the requirements of the European Water Framework Directive (Bäse et al., 2007; Fink, 2006; Fink et al., 2007).

  3. Global Transcriptomic and Proteomic Responses of Dehalococcoides ethenogenes Strain 195 to Fixed Nitrogen Limitation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Patrick K. H. [University of California, Berkeley; Dill, Brian [ORNL; Louie, Tiffany S. [University of California, Berkeley; Shah, Manesh B [ORNL; Verberkmoes, Nathan C [ORNL; Andersen, Gary L. [Lawrence Berkeley National Laboratory (LBNL); Zinder, Stephen H. [Cornell University; Alvarez-Cohen, Lisa [Lawrence Berkeley National Laboratory (LBNL)

    2012-01-01

    Bacteria of the genus Dehalococcoides play an important role in the reductive dechlorination of chlorinated ethenes. A systems level approach was taken in this study to examine the global transcriptomic and proteomic responses of exponentially growing D. ethenogenes strain 195 to fixed nitrogen limitation (FNL) as dechlorination activity and cell yield both decrease during FNL. As expected, the nitrogen-fixing (nif) genes were differentially up-regulated in the transcriptome and proteome of strain 195 during FNL. Aside from the nif operon, a putative methylglyoxal synthase-encoding gene (DET1576), the product of which is predicted to catalyze the formation of the toxic electrophile methylglyoxal and implicated in the uncoupling of anabolism from catabolism in bacteria, was strongly up-regulated in the transcriptome and could potentially play a role in the observed growth inhibition during FNL. Carbon catabolism genes were generally down regulated in response to FNL and a number of transporters were differentially regulated in response to nitrogen limitation, with some playing apparent roles in nitrogen acquisition while others were associated with general stress responses. A number of genes related to the functions of nucleotide synthesis, replication, transcription, translation, and post-translational modifications were also differentially expressed. One gene coding for a putative reductive dehalogenase (DET1545) and a number coding for oxidoreductases, which have implications in energy generation and redox reactions, were also differentially regulated. Interestingly, most of the genes within the multiple integrated elements were not differentially expressed. Overall, this study elucidates the molecular responses of strain 195 to FNL and identifies differentially expressed genes that are potential biomarkers to evaluate environmental cellular nitrogen status.

  4. Estimates of biological nitrogen fixation by Pterocarpus lucens in a ...

    African Journals Online (AJOL)

    Nitrogen (N2) fixation by Pterocarpus lucens in a natural semi arid ecosystem, in Ferlo, Senegal was estimated using 15N natural abundance (15N) procedure. Other non-fixing trees accompanying P. lucens in the same area were also investigated as control. Results showed an important variation of 15N in leaves between ...

  5. The Effect of Nitrogen Form on pH and Petunia Growth in a WholeTree Substrate

    Science.gov (United States)

    The objective of our research was to investigate the effect of nitrogen form and proportion on peat-lite (PL) and WholeTree (WT) substrate pH and petunia growth. Chipped whole pine trees (consisting of needles, limbs, bark, wood and cones) were obtained from a commercial fuel wood chipping operation...

  6. Root-to-seed transport and metabolism of fixed nitrogen in soybean

    International Nuclear Information System (INIS)

    McClure, P.R.

    1983-01-01

    The great energetic demand of nitrogen fixation to support growth of the exceptionally high-N seeds is certainly a major yield barrier for soybeans. Transport of carbohydrate energy supplies to the root and of fixed nitrogen (N) from the root appear to contribute to the yield barrier, also. N is loaded into the soybean xylem stream principally as allantoin (ALL), and allantonic acid (ALLA), but xylem carries only dilute N and cannot reach the seeds at sufficient rate to support their N needs. Explants consisting of stem and a few leaves and pods were allowed to take up 14 C- and/or 15 N-ALL/ALLA in synthetic xylem sap. The 14 C label was found to become fairly quantitatively immobilized in leaves. The N (and 15 N label) almost certainly is separated from the C( 14 C label) at this time

  7. Carbon and Nitrogen dynamics in deciduous and broad leaf trees under drought stress

    Science.gov (United States)

    Joseph, Jobin; Schaub, Marcus; Arend, Matthias; Saurer, Matthias; siegwolf, Rolf; Weiler, Markus; Gessler, Arthur

    2017-04-01

    Climate change is projected to lead to an increased frequency and duration of severe drought events in future. Already within the last twenty years, however, drought stress related forest mortality has been increasing across the globe. Tree and forest die off events have multiple adverse effects on ecosystem functioning and might convert previous carbon sinks to act as carbon sources instead and can thus intensify the effect of climate change and global warming. Current predictions of forest's functioning under drought and thus forest mortality under future climatic conditions are constrained by a still incomplete picture of the trees' physiological reactions that allows some trees to survive drought periods while others succumb. Concerning the effects of drought on the carbon balance and on tree hydraulics our picture is getting more complete, but still interactions between abiotic factors and pest and diseases as well as the interaction between carbon and nutrient balances as factors affecting drought induced mortality are not well understood. Reduced carbon allocation from shoots to roots might cause a lack of energy for root nutrient uptake and to a shortage of carbon skeletons for nitrogen assimilation and thus to an impaired nutrient status of trees. To tackle these points, we have performed a drought stress experiment with six different plant species, 3 broad leaf (maple, beech and oak) and 3 deciduous (pine, fir and spruce). Potted two-year-old seedlings were kept inside a greenhouse for 5 months and 3 levels of drought stress (no stress (control), intermediate and intensive drought stress) were applied by controlling water supply. Gas exchange measurements were performed periodically to monitor photosynthesis, transpiration, stomatal conductance. At the pinnacle of drought stress, we applied isotopic pulse labelling: On the one hand we exposed trees to 13CO2 to investigate on carbon dynamics and the allocation of new assimilates within the plant. Moreover

  8. Response of the nitrogen-fixing lichen Lobaria pulmonaria to phosphorus, molybdenum, and vanadium

    Science.gov (United States)

    Marks, Jade A; Pett-Ridge, Julie; Perakis, Steven S.; Allen, Jessica L; McCune, Bruce

    2015-01-01

    Nitrogen-fixing lichens (cyanolichens) are an important source of nitrogen (N) in Pacific Northwest forests, but limitation of lichen growth by elements essential for N fixation is poorly understood. To investigate how nutrient limitation may affect cyanolichen growth rates, we fertilized a tripartite cyanobacterial lichen (Lobaria pulmonaria) and a green algal non-nitrogen fixing lichen (Usnea longissima) with the micronutrients molybdenum (Mo) and vanadium (V), both known cofactors for enzymes involved in N fixation, and the macronutrient phosphorus (P). We then grew treated lichens in the field for one year in western Oregon, USA. Lichen growth was very rapid for both species and did not differ across treatments, despite a previous demonstration of P-limitation in L. pulmonaria at a nearby location. To reconcile these disparate findings, we analyzed P, Mo, and V concentrations, natural abundance δ15N isotopes, %N and change in thallus N in Lobaria pulmonaria from both growth experiments. Nitrogen levels in deposition and in lichens could not explain the large difference in growth or P limitation observed between the two studies. Instead, we provide evidence that local differences in P availability may have caused site-specific responses of Lobaria to P fertilization. In the previous experiment, Lobaria had low background levels of P, and treatment with P more than doubled growth. In contrast, Lobaria from the current experiment had much higher background P concentrations, similar to P-treated lichens in the previous experiment, consistent with the idea that ambient variation in P availability influences the degree of P limitation in cyanolichens. We conclude that insufficient P, Mo, and V did not limit the growth of either cyanolichens or chlorolichens at the site of the current experiment. Our findings point to the need to understand landscape-scale variation in P availability to cyanolichens, and its effect on spatial patterns of cyanolichen nutrient

  9. Nitrogen Nutrition of Fruit Trees to Reconcile Productivity and Environmental Concerns.

    Science.gov (United States)

    Carranca, Corina; Brunetto, Gustavo; Tagliavini, Massimo

    2018-01-10

    Although perennial fruit crops represent 1% of global agricultural land, they are of a great economic importance in world trade and in the economy of many regions. The perennial woody nature of fruit trees, their physiological stages of growth, the root distribution pattern, and the presence of herbaceous vegetation in alleys make orchard systems efficient in the use and recycling of nitrogen (N). The present paper intends to review the existing literature on N nutrition of young and mature deciduous and evergreen fruit trees with special emphasis to temperate and Mediterranean climates. There are two major sources of N contributing to vegetative tree growth and reproduction: root N uptake and internal N cycling. Optimisation of the use of external and internal N sources is important for a sustainable fruit production, as N use efficiency by young and mature fruit trees is generally lower than 55% and losses of fertilizer N may occur with the consequent economic and environmental concern. Organic alternatives to mineral N fertilizer like the application of manure, compost, mulching, and cover crops are scarcely used in perennial fruit trees, in spite of the fact that society's expectations call for more sustainable production techniques and the demand for organic fruits is increasing.

  10. Genomics and ecophysiology of heterotrophic nitrogen fixing bacteria isolated from estuarine surface water

    DEFF Research Database (Denmark)

    Bentzon-Tilia, Mikkel; Severin, Ina; Hansen, Lars H.

    2015-01-01

    The ability to reduce atmospheric nitrogen (N2) to ammonia, known as N2 fixation, is a widely distributed trait among prokaryotes that accounts for an essential input of new N to a multitude of environments. Nitrogenase reductase gene (nifH) composition suggests that putative N2-fixing heterotrop......The ability to reduce atmospheric nitrogen (N2) to ammonia, known as N2 fixation, is a widely distributed trait among prokaryotes that accounts for an essential input of new N to a multitude of environments. Nitrogenase reductase gene (nifH) composition suggests that putative N2-fixing...... heterotrophic organisms are widespread in marine bacterioplankton, but their autecology and ecological significance are unknown. Here, we report genomic and ecophysiology data in relation to N2 fixation by three environmentally relevant heterotrophic bacteria isolated from Baltic Sea surface water: Pseudomonas...... liter-1, presumably accommodated through aggregate formation. Glucose stimulated N2 fixation in general, and reactive N repressed N2 fixation, except that ammonium (NH4 ) stimulated N2 fixation in R. palustris BAL398, indicating the use of nitrogenase as an electron sink. The lack of correlations...

  11. Transfer of biologically fixed nitrogen to the non-legume component of mixed pastures

    International Nuclear Information System (INIS)

    Haystead, A.

    1983-01-01

    Pasture ecosystems are extremely diverse, as are the management procedures imposed upon them by the pastoralist. In low input pasture enterprises in marginal areas, legume nitrogen fixation is frequently (but not invariably) crucial to continued productivity. Legumes usually do not dominate a pasture and their role in transferring fixed nitrogen to a non-legume, frequently graminaceous, species is important. Methods for measuring this transfer are critically assessed in terms of their usefulness in realistic pasture environments. Existing techniques all have serious disadvantages in this respect. Isotopic studies of individual processes within the transfer system are described and some new lines of investigation are proposed. The value of isotopic studies in improving pasture management is discussed. (author)

  12. Transcriptional Activities of the Microbial Consortium Living with the Marine Nitrogen-Fixing Cyanobacterium Trichodesmium Reveal Potential Roles in Community-Level Nitrogen Cycling.

    Science.gov (United States)

    Lee, Michael D; Webb, Eric A; Walworth, Nathan G; Fu, Fei-Xue; Held, Noelle A; Saito, Mak A; Hutchins, David A

    2018-01-01

    Trichodesmium is a globally distributed cyanobacterium whose nitrogen-fixing capability fuels primary production in warm oligotrophic oceans. Like many photoautotrophs, Trichodesmium serves as a host to various other microorganisms, yet little is known about how this associated community modulates fluxes of environmentally relevant chemical species into and out of the supraorganismal structure. Here, we utilized metatranscriptomics to examine gene expression activities of microbial communities associated with Trichodesmium erythraeum (strain IMS101) using laboratory-maintained enrichment cultures that have previously been shown to harbor microbial communities similar to those of natural populations. In enrichments maintained under two distinct CO 2 concentrations for ∼8 years, the community transcriptional profiles were found to be specific to the treatment, demonstrating a restructuring of overall gene expression had occurred. Some of this restructuring involved significant increases in community respiration-related transcripts under elevated CO 2 , potentially facilitating the corresponding measured increases in host nitrogen fixation rates. Particularly of note, in both treatments, community transcripts involved in the reduction of nitrate, nitrite, and nitrous oxide were detected, suggesting the associated organisms may play a role in colony-level nitrogen cycling. Lastly, a taxon-specific analysis revealed distinct ecological niches of consistently cooccurring major taxa that may enable, or even encourage, the stable cohabitation of a diverse community within Trichodesmium consortia. IMPORTANCE Trichodesmium is a genus of globally distributed, nitrogen-fixing marine cyanobacteria. As a source of new nitrogen in otherwise nitrogen-deficient systems, these organisms help fuel carbon fixation carried out by other more abundant photoautotrophs and thereby have significant roles in global nitrogen and carbon cycling. Members of the Trichodesmium genus tend to

  13. Is the distribution of nitrogen-fixing cyanobacteria in the oceans related to temperature?

    Science.gov (United States)

    Stal, Lucas J

    2009-07-01

    Approximately 50% of the global natural fixation of nitrogen occurs in the oceans supporting a considerable part of the new primary production. Virtually all nitrogen fixation in the ocean occurs in the tropics and subtropics where the surface water temperature is 25°C or higher. It is attributed almost exclusively to cyanobacteria. This is remarkable firstly because diazotrophic cyanobacteria are found in other environments irrespective of temperature and secondly because primary production in temperate and cold oceans is generally limited by nitrogen. Cyanobacteria are oxygenic phototrophic organisms that evolved a variety of strategies protecting nitrogenase from oxygen inactivation. Free-living diazotrophic cyanobacteria in the ocean are of the non-heterocystous type, namely the filamentous Trichodesmium and the unicellular groups A-C. I will argue that warm water is a prerequisite for these diazotrophic organisms because of the low-oxygen solubility and high rates of respiration allowing the organism to maintain anoxic conditions in the nitrogen-fixing cell. Heterocystous cyanobacteria are abundant in freshwater and brackish environments in all climatic zones. The heterocyst cell envelope is a tuneable gas diffusion barrier that optimizes the influx of both oxygen and nitrogen, while maintaining anoxic conditions inside the cell. It is not known why heterocystous cyanobacteria are absent from the temperate and cold oceans and seas.

  14. Potential Nitrification and Nitrogen Mineral of Soil in Coffee Agroforestry System with Various Shading Trees

    Directory of Open Access Journals (Sweden)

    Purwanto .

    2007-05-01

    Full Text Available The role of shading trees in coffee farms has been well understood to establish suitable condition for the growth of coffee trees, on the other hand their role in nitrogen cycle in coffee farming is not yet well understood. The objectives of this study are to investigate the influence of various legume shading trees on the concentration of soil mineral N (N-NH4 + and N-NO3-, potential nitrification and to study the controlling factors of nitrification under field conditions. This field explorative research was carried out in Sumberjaya, West Lampung. Twelve observation plots covered four land use systems (LUS, i.e. 1 Coffee agroforestry with Gliricidiasepium as shade trees; 2 Coffee agroforestry with Gliricidiaas shade trees and Arachis pintoias cover crops; 3Coffee agroforestry with Paraserianthes falcataria as shade trees; and 4 Mixed/multistrata coffee agroforestry with Gliricidiaand other fruit crops as shade trees. Measurements of soil mineral-N concentration were carried out every three weeks for three months. Results showed that shade tree species in coffee agroforestry significantly affected concentrations of soil NH4 +, NO3- and potential nitrification. Mixed coffee agroforestry had the highest NH4+/N-mineral ratio (7.16% and the lowest potential nitrification (0.13 mg NO2-kg-1 hour -1 compared to other coffee agroforestry systems using single species of leguminous shade trees. Ratio of NH4 + /N-mineral increased 0.8—21% while potential nitrification decreased 55—79% in mixed coffee agroforestry compared to coffee agroforestry with Gliricidia or P. falcatariaas shade trees. Coffee agroforestry with P. falcatariaas shade trees had potential nitrification 53% lower and ratio of NH4 + /N-mineral concentration 20% higher than that with Gliricidia. Coffee agroforestry with P. falcataria as shade trees also had organic C content 17% higher, total N 40% higher, available P 112% higher than that with Gliricidia. The presence of A. pintoiin

  15. Paenibacillus brasilensis sp nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil

    NARCIS (Netherlands)

    Weid, von der I.; Duarte, G.F.; Elsas, van J.D.; Seldin, L.

    2002-01-01

    Sixteen nitrogen-fixing strains isolated from the rhizosphere of maize planted in Cerrado soil, Brazil, which showed morphological and biochemical characteristics similar to the gas-forming Paenibacillus spp., were phenotypically and genetically characterized. Their identification as members of the

  16. Is nitrogen the next carbon?

    Science.gov (United States)

    Battye, William; Aneja, Viney P.; Schlesinger, William H.

    2017-09-01

    Just as carbon fueled the Industrial Revolution, nitrogen has fueled an Agricultural Revolution. The use of synthetic nitrogen fertilizers and the cultivation of nitrogen-fixing crops both expanded exponentially during the last century, with most of the increase occurring after 1960. As a result, the current flux of reactive, or fixed, nitrogen compounds to the biosphere due to human activities is roughly equivalent to the total flux of fixed nitrogen from all natural sources, both on land masses and in the world's oceans. Natural fluxes of fixed nitrogen are subject to very large uncertainties, but anthropogenic production of reactive nitrogen has increased almost fivefold in the last 60 years, and this rapid increase in anthropogenic fixed nitrogen has removed any uncertainty on the relative importance of anthropogenic fluxes to the natural budget. The increased use of nitrogen has been critical for increased crop yields and protein production needed to keep pace with the growing world population. However, similar to carbon, the release of fixed nitrogen into the natural environment is linked to adverse consequences at local, regional, and global scales. Anthropogenic contributions of fixed nitrogen continue to grow relative to the natural budget, with uncertain consequences.

  17. Responses of tree and insect herbivores to elevated nitrogen inputs: A meta-analysis

    Science.gov (United States)

    Li, Furong; Dudley, Tom L.; Chen, Baoming; Chang, Xiaoyu; Liang, Liyin; Peng, Shaolin

    2016-11-01

    Increasing atmospheric nitrogen (N) inputs have the potential to alter terrestrial ecosystem function through impacts on plant-herbivore interactions. The goal of our study is to search for a general pattern in responses of tree characteristics important for herbivores and insect herbivorous performance to elevated N inputs. We conducted a meta-analysis based on 109 papers describing impacts of nitrogen inputs on tree characteristics and 16 papers on insect performance. The differences in plant characteristics and insect performance between broadleaves and conifers were also explored. Tree aboveground biomass, leaf biomass and leaf N concentration significantly increased under elevated N inputs. Elevated N inputs had no significantly overall effect on concentrations of phenolic compounds and lignin but adversely affected tannin, as defensive chemicals for insect herbivores. Additionally, the overall effect of insect herbivore performance (including development time, insect biomass, relative growth rate, and so on) was significantly increased by elevated N inputs. According to the inconsistent responses between broadleaves and conifers, broadleaves would be more likely to increase growth by light interception and photosynthesis rather than producing more defensive chemicals to elevated N inputs by comparison with conifers. Moreover, the overall carbohydrate concentration was significantly reduced by 13.12% in broadleaves while increased slightly in conifers. The overall tannin concentration decreased significantly by 39.21% in broadleaves but a 5.8% decrease in conifers was not significant. The results of the analysis indicated that elevated N inputs would provide more food sources and ameliorate tree palatability for insects, while the resistance of trees against their insect herbivores was weakened, especially for broadleaves. Thus, global forest insect pest problems would be aggravated by elevated N inputs. As N inputs continue to rise in the future, forest

  18. Ecological occurrence of Gluconacetobacter diazotrophicus and nitrogen-fixing Acetobacteraceae members: their possible role in plant growth promotion.

    Science.gov (United States)

    Saravanan, V S; Madhaiyan, M; Osborne, Jabez; Thangaraju, M; Sa, T M

    2008-01-01

    Gluconacetobacter diazotrophicus has a long-standing history of bacterial-plant interrelationship as a symbiotic endophyte capable of fixing atmospheric nitrogen. In low nitrogen fertilized sugarcane fields it plays a significant role and its occurrence was realised in most of the sugarcane growing countries. In this mini review, the association of G. diazotrophicus with sugarcane, other crop plants and with various hosts is discussed. The factors affecting survival in the rhizosphere and the putative soil mode of transmission are emphasized. In addition, other N(2)-fixing Acetobacteraceae members, including Gluconacetobacter azotocaptans, Gluconacetobacter johannae and Swaminathania salitolerans, occurring in coffee, corn and rice plants are also covered. Lastly, the plant-growth-promoting traits identified in this group of bacteria, including N(2) fixation, phytohormone synthesis, P and Zn solubilization and biocontrol, are analysed.

  19. Carbon and nitrogen in forest floor and mineral soil under six common European tree species

    DEFF Research Database (Denmark)

    Vesterdal, Lars; Schmidt, Inger K.; Callesen, Ingeborg

    2007-01-01

    The knowledge of tree species effects on soil C and N pools is scarce, particularly for European deciduous tree species. We studied forest floor and mineral soil carbon and nitrogen under six common European tree species in a common garden design replicated at six sites in Denmark. Three decades...... on forest floor C and N content was primarily attributed to large differences in turnover rates as indicated by fractional annual loss of forest floor C and N. The C/N ratio of foliar litterfall was a good indicator of forest floor C and N contents, fractional annual loss of forest floor C and N...

  20. Nitrogen-Fixing Nodules Are an Important Source of Reduced Sulfur, Which Triggers Global Changes in Sulfur Metabolism in Lotus japonicus.

    Science.gov (United States)

    Kalloniati, Chrysanthi; Krompas, Panagiotis; Karalias, Georgios; Udvardi, Michael K; Rennenberg, Heinz; Herschbach, Cornelia; Flemetakis, Emmanouil

    2015-09-01

    We combined transcriptomic and biochemical approaches to study rhizobial and plant sulfur (S) metabolism in nitrogen (N) fixing nodules (Fix(+)) of Lotus japonicus, as well as the link of S-metabolism to symbiotic nitrogen fixation and the effect of nodules on whole-plant S-partitioning and metabolism. Our data reveal that N-fixing nodules are thiol-rich organs. Their high adenosine 5'-phosphosulfate reductase activity and strong (35)S-flux into cysteine and its metabolites, in combination with the transcriptional upregulation of several rhizobial and plant genes involved in S-assimilation, highlight the function of nodules as an important site of S-assimilation. The higher thiol content observed in nonsymbiotic organs of N-fixing plants in comparison to uninoculated plants could not be attributed to local biosynthesis, indicating that nodules are an important source of reduced S for the plant, which triggers whole-plant reprogramming of S-metabolism. Enhanced thiol biosynthesis in nodules and their impact on the whole-plant S-economy are dampened in plants nodulated by Fix(-) mutant rhizobia, which in most respects metabolically resemble uninoculated plants, indicating a strong interdependency between N-fixation and S-assimilation. © 2015 American Society of Plant Biologists. All rights reserved.

  1. Increased needle nitrogen contents did not improve shoot photosynthetic performance of mature nitrogen-poor Scots pine trees

    Directory of Open Access Journals (Sweden)

    Lasse Tarvainen

    2016-07-01

    Full Text Available Numerous studies have shown that temperate and boreal forests are limited by nitrogen (N availability. However, few studies have provided a detailed account of how carbon (C acquisition of such forests reacts to increasing N supply. We combined measurements of needle-scale biochemical photosynthetic capacities and continuous observations of shoot-scale photosynthetic performance from several canopy positions with simple mechanistic modelling to evaluate the photosynthetic responses of mature N-poor boreal Pinus sylvestris to N fertilization. The measurements were carried out in August 2013 on 90-year-old pine trees growing at Rosinedalsheden research site in northern Sweden. In spite of a nearly doubling of needle N content in response to the fertilization, no effect on the long-term shoot-scale C uptake was recorded. This lack of N-effect was due to strong light limitation of photosynthesis in all investigated canopy positions. The effect of greater N availability on needle photosynthetic capacities was also constrained by development of foliar P deficiency following N addition. Thus, P deficiency and accumulation of N in arginine appeared to contribute towards lower shoot-scale nitrogen-use efficiency in the fertilized trees, thereby additionally constraining tree-scale responses to increasing N availability. On the whole our study suggests that the C uptake response of the studied N-poor boreal P. sylvestris stand to enhanced N availability is constrained by the efficiency with which the additional N is utilized. This efficiency, in turn, depends on the ability of the trees to use the greater N availability for additional light capture. For stands that have not reached canopy closure, increase in leaf area following N fertilization would be the most effective way for improving light capture and C uptake while for mature stands an increased leaf area may have a rather limited effect on light capture owing to increased self-shading. This raises

  2. Increased Needle Nitrogen Contents Did Not Improve Shoot Photosynthetic Performance of Mature Nitrogen-Poor Scots Pine Trees.

    Science.gov (United States)

    Tarvainen, Lasse; Lutz, Martina; Räntfors, Mats; Näsholm, Torgny; Wallin, Göran

    2016-01-01

    Numerous studies have shown that temperate and boreal forests are limited by nitrogen (N) availability. However, few studies have provided a detailed account of how carbon (C) acquisition of such forests reacts to increasing N supply. We combined measurements of needle-scale biochemical photosynthetic capacities and continuous observations of shoot-scale photosynthetic performance from several canopy positions with simple mechanistic modeling to evaluate the photosynthetic responses of mature N-poor boreal Pinus sylvestris to N fertilization. The measurements were carried out in August 2013 on 90-year-old pine trees growing at Rosinedalsheden research site in northern Sweden. In spite of a nearly doubling of needle N content in response to the fertilization, no effect on the long-term shoot-scale C uptake was recorded. This lack of N-effect was due to strong light limitation of photosynthesis in all investigated canopy positions. The effect of greater N availability on needle photosynthetic capacities was also constrained by development of foliar phosphorus (P) deficiency following N addition. Thus, P deficiency and accumulation of N in arginine appeared to contribute toward lower shoot-scale nitrogen-use efficiency in the fertilized trees, thereby additionally constraining tree-scale responses to increasing N availability. On the whole our study suggests that the C uptake response of the studied N-poor boreal P. sylvestris stand to enhanced N availability is constrained by the efficiency with which the additional N is utilized. This efficiency, in turn, depends on the ability of the trees to use the greater N availability for additional light capture. For stands that have not reached canopy closure, increase in leaf area following N fertilization would be the most effective way for improving light capture and C uptake while for mature stands an increased leaf area may have a rather limited effect on light capture owing to increased self-shading. This raises the

  3. Microbial removal of fixed nitrogen in an oceanic oxygen minimum zone

    DEFF Research Database (Denmark)

    Dalsgaard, Tage; Thamdrup, Bo; Revsbech, Niels Peter

    We quantified the removal of fixed nitrogen as N2 production by anammox and N2 and N2O production by denitrification over a distance of 1900 km along the coast of Chile and Peru, using short-term incubations with 15N-labeled substrates. The eastern tropical South Pacific (ETSP) holds an oxygen...... and that denitrification is needed for the mineralization of organic matter and production of NH4+ for anammox. Our data from frequent sampling along a 1900 km cruise track parallel to the coast of Chile and Peru show that denitrification does indeed occur, but less frequent and at higher rates than anammox...

  4. New, national bottom-up estimate for tree-based biological ...

    Science.gov (United States)

    Nitrogen is a limiting nutrient in many ecosystems, but is also a chief pollutant from human activity. Quantifying human impacts on the nitrogen cycle and investigating natural ecosystem nitrogen cycling both require an understanding of the magnitude of nitrogen inputs from biological nitrogen fixation (BNF). A bottom-up approach to estimating BNF—scaling rates up from measurements to broader scales—is attractive because it is rooted in actual BNF measurements. However, bottom-up approaches have been hindered by scaling difficulties, and a recent top-down approach suggested that the previous bottom-up estimate was much too large. Here, we used a bottom-up approach for tree-based BNF, overcoming scaling difficulties with the systematic, immense (>70,000 N-fixing trees) Forest Inventory and Analysis (FIA) database. We employed two approaches to estimate species-specific BNF rates: published ecosystem-scale rates (kg N ha-1 yr-1) and published estimates of the percent of N derived from the atmosphere (%Ndfa) combined with FIA-derived growth rates. Species-specific rates can vary for a variety of reasons, so for each approach we examined how different assumptions influenced our results. Specifically, we allowed BNF rates to vary with stand age, N-fixer density, and canopy position (since N-fixation is known to require substantial light).Our estimates from this bottom-up technique are several orders of magnitude lower than previous estimates indicating

  5. Temporal dynamics of abundance and composition of nitrogen-fixing communities across agricultural soils.

    Directory of Open Access Journals (Sweden)

    Michele C Pereira E Silva

    Full Text Available BACKGROUND: Despite the fact that the fixation of nitrogen is one of the most significant nutrient processes in the terrestrial ecosystem, a thorough study of the spatial and temporal patterns in the abundance and distribution of N-fixing communities has been missing so far. METHODOLOGY/PRINCIPAL FINDINGS: In order to understand the dynamics of diazotrophic communities and their resilience to external changes, we quantified the abundance and characterized the bacterial community structures based on the nifH gene, using real-time PCR, PCR-DGGE and 454-pyrosequencing, across four representative Dutch soils during one growing season. In general, higher nifH gene copy numbers were observed in soils with higher pH than in those with lower pH, but lower numbers were related to increased nitrate and ammonium levels. Results from nifH gene pyrosequencing confirmed the observed PCR-DGGE patterns, which indicated that the N fixers are highly dynamic across time, shifting around 60%. Forward selection on CCA analysis identified N availability as the main driver of these variations, as well as of the evenness of the communities, leading to very unequal communities. Moreover, deep sequencing of the nifH gene revealed that sandy soils (B and D had the lowest percentage of shared OTUs across time, compared with clayey soils (G and K, indicating the presence of a community under constant change. Cosmopolitan nifH species (present throughout the season were affiliated with Bradyrhizobium, Azospirillum and Methylocistis, whereas other species increased their abundances progressively over time, when appropriate conditions were met, as was notably the case for Paenibacilus and Burkholderia. CONCLUSIONS: Our study provides the first in-depth pyrosequencing analysis of the N-fixing community at both spatial and temporal scales, providing insights into the cosmopolitan and specific portions of the nitrogen fixing bacterial communities in soil.

  6. Stress Effects of Chlorate on Longan (Dimocarpus longan Lour.) Trees: Changes in Nitrogen and Carbon Nutrition

    OpenAIRE

    Jiemei LU; Ruitao YANG; Huicong WANG; Xuming HUANG

    2017-01-01

    Three-year-old potted longan (Dimocarpus longan Lour. cv. Shixia) trees were treated with potassium chlorate and effects on nitrogen and carbon nutrition were examined. The results showed that potassium chlorate at 10 and 20 g per pot failed to induce flower but suppressed shoot growth and caused leaf chlorosis and drop. The treatment significantly inhibited nitrate reductase but increased nitrogen concentration in the leaves and buds. Concentration of soluble amino acids in the leaves of tre...

  7. FY1995 studies on saving energy by use of nitrogen- fixing bacteria; 1995 nendo chisso koteikin no katsuyo ni yoru sho energy no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    To save energy by improving the ability of nitrogen-fixing bacteria (Kebsiella oxytoca, Azospirillum lipoferum and Sphingomonas paucimobilis) in the rhizosphere of rice, by means of genetic analysis and engineering of the nif genes. Analysis and improvement of the nif genes were performed in 3 species of nitrogen-fixing bacteria in the rhizoshere of rice. (1) In an facultative anaerobe, K. oxytoca, the repressor gene, nifL was destroyed, and the activator gene, nifA was fortified, to attain a novel mutant strain R16, which fixes nitrogen even in the presence of NH{sub 4}{sup +}. (2) In a microaerophilic nitrogen fixer, A. lipoferum, the regulatory genes draT and draG were cloned and analysed, and an improved strain TA1 was obtained by introduction of K. oxytoca nifA gene. (3) In an aerobic nitrogen-fixer S. paucimobilis, the nifA gene was cloned and sequenced, and the activity was expressed in E. coil to show that the product activates the nif promoters of Azospirillurn and Klebsiella. (4) The improved strains K. oxytoca R16 and A. lipoferun TA1 were inoculated to rice plant cultured in a pot without addition of nitrogen source. The inoculated plant showed twice as much dry weight as the noninoculated plant, showing that the improved strains are effective to stimulate the growth of rice. (NEDO)

  8. Effect of industrial air pollution on decorative trees and shrubs in the area of the Nitrogen Fertilizer Factory at Pulawy

    Energy Technology Data Exchange (ETDEWEB)

    Kawecka, A

    1973-01-01

    This paper discusses the effects that the gaseous wastes from a nitrogen fertilizer plant have on decorative trees and shrubs. It lists 28 species of broadleaved trees and shrubs, and assigns them to four groups according to their resistance or susceptibility to the pollution. 6 references.

  9. Nitrogen-fixing and cellulose-producing Gluconacetobacter kombuchae sp. nov., isolated from Kombucha tea.

    Science.gov (United States)

    Dutta, Debasree; Gachhui, Ratan

    2007-02-01

    A few members of the family Acetobacteraceae are cellulose-producers, while only six members fix nitrogen. Bacterial strain RG3T, isolated from Kombucha tea, displays both of these characteristics. A high bootstrap value in the 16S rRNA gene sequence-based phylogenetic analysis supported the position of this strain within the genus Gluconacetobacter, with Gluconacetobacter hansenii LMG 1527T as its nearest neighbour (99.1 % sequence similarity). It could utilize ethanol, fructose, arabinose, glycerol, sorbitol and mannitol, but not galactose or xylose, as sole sources of carbon. Single amino acids such as L-alanine, L-cysteine and L-threonine served as carbon and nitrogen sources for growth of strain RG3T. Strain RG3T produced cellulose in both nitrogen-free broth and enriched medium. The ubiquinone present was Q-10 and the DNA base composition was 55.8 mol% G+C. It exhibited low values of 5.2-27.77 % DNA-DNA relatedness to the type strains of related gluconacetobacters, which placed it within a separate taxon, for which the name Gluconacetobacter kombuchae sp. nov. is proposed, with the type strain RG3T (=LMG 23726T=MTCC 6913T).

  10. Controlling cyanobacterial blooms in hypertrophic Lake Taihu, China: will nitrogen reductions cause replacement of non-N2 fixing by N2 fixing taxa?

    Directory of Open Access Journals (Sweden)

    Hans W Paerl

    Full Text Available Excessive anthropogenic nitrogen (N and phosphorus (P inputs have caused an alarming increase in harmful cyanobacterial blooms, threatening sustainability of lakes and reservoirs worldwide. Hypertrophic Lake Taihu, China's third largest freshwater lake, typifies this predicament, with toxic blooms of the non-N2 fixing cyanobacteria Microcystis spp. dominating from spring through fall. Previous studies indicate N and P reductions are needed to reduce bloom magnitude and duration. However, N reductions may encourage replacement of non-N2 fixing with N2 fixing cyanobacteria. This potentially counterproductive scenario was evaluated using replicate, large (1000 L, in-lake mesocosms during summer bloom periods. N+P additions led to maximum phytoplankton production. Phosphorus enrichment, which promoted N limitation, resulted in increases in N2 fixing taxa (Anabaena spp., but it did not lead to significant replacement of non-N2 fixing with N2 fixing cyanobacteria, and N2 fixation rates remained ecologically insignificant. Furthermore, P enrichment failed to increase phytoplankton production relative to controls, indicating that N was the most limiting nutrient throughout this period. We propose that Microcystis spp. and other non-N2 fixing genera can maintain dominance in this shallow, highly turbid, nutrient-enriched lake by outcompeting N2 fixing taxa for existing sources of N and P stored and cycled in the lake. To bring Taihu and other hypertrophic systems below the bloom threshold, both N and P reductions will be needed until the legacy of high N and P loading and sediment nutrient storage in these systems is depleted. At that point, a more exclusive focus on P reductions may be feasible.

  11. A comprehensive aligned nifH gene database: a multipurpose tool for studies of nitrogen-fixing bacteria.

    Science.gov (United States)

    Gaby, John Christian; Buckley, Daniel H

    2014-01-01

    We describe a nitrogenase gene sequence database that facilitates analysis of the evolution and ecology of nitrogen-fixing organisms. The database contains 32 954 aligned nitrogenase nifH sequences linked to phylogenetic trees and associated sequence metadata. The database includes 185 linked multigene entries including full-length nifH, nifD, nifK and 16S ribosomal RNA (rRNA) gene sequences. Evolutionary analyses enabled by the multigene entries support an ancient horizontal transfer of nitrogenase genes between Archaea and Bacteria and provide evidence that nifH has a different history of horizontal gene transfer from the nifDK enzyme core. Further analyses show that lineages in nitrogenase cluster I and cluster III have different rates of substitution within nifD, suggesting that nifD is under different selection pressure in these two lineages. Finally, we find that that the genetic divergence of nifH and 16S rRNA genes does not correlate well at sequence dissimilarity values used commonly to define microbial species, as stains having <3% sequence dissimilarity in their 16S rRNA genes can have up to 23% dissimilarity in nifH. The nifH database has a number of uses including phylogenetic and evolutionary analyses, the design and assessment of primers/probes and the evaluation of nitrogenase sequence diversity. Database URL: http://www.css.cornell.edu/faculty/buckley/nifh.htm.

  12. Effects of elevated carbon dioxide concentration on growth and nitrogen fixation in Alnus glutinosa in a long-term field experiment

    Energy Technology Data Exchange (ETDEWEB)

    Temperton, V. M.; Jackson, G.; Barton, C. V. M.; Jarvis, P. G. [Edinburgh Univ., Inst. of Ecology and Resource Management, Edinburgh (United Kingdom); Grayston, S. J. [Macaulay Land Use Research Inst., Plant-Soil Interaction Group, Aberdeen (United Kingdom)

    2003-10-01

    Total biomass, relative growth rate, net assimilation rate, leaf area and net photosynthetic rate of nitrogen-fixing were measured in common alder trees, grown for three years in open-top chambers in the presence of either ambient or elevated atmospheric carbon dioxide, and in two soil nitrogen regimes: i.e. full nutrient solution or no fertilizer. The objective was to clarify the relationship between elevated carbon dioxide and the rate of nitrogen fixation of nodulated trees growing under field conditions. Results showed that growth in elevated carbon dioxide stimulated net photosynthesis and total biomass accumulation. However, relative growth rate was not significantly affected by elevated carbon dioxide. Leaf area and leaf phosphorus concentration were also unaffected. Nodule mass on roots of unfertilized trees exposed to elevated carbon dioxide increased, compared with fertilized trees exposed to ambient carbon dioxide levels. Since neither in the fertilized, nor the unfertilized trees was there any evidence of effects on growth, biomass and photosynthesis that could be attributed to the interaction of fertilizer and elevated carbon dioxide interaction, it was concluded that both types exhibit similar carbon dioxide-induced growth and photosynthetic enhancements. 40 refs., 5 tabs., 3 figs.

  13. Effects of elevated carbon dioxide concentration on growth and nitrogen fixation in Alnus glutinosa in a long-term field experiment

    International Nuclear Information System (INIS)

    Temperton, V. M.; Jackson, G.; Barton, C. V. M.; Jarvis, P. G.; Grayston, S. J.

    2003-01-01

    Total biomass, relative growth rate, net assimilation rate, leaf area and net photosynthetic rate of nitrogen-fixing were measured in common alder trees, grown for three years in open-top chambers in the presence of either ambient or elevated atmospheric carbon dioxide, and in two soil nitrogen regimes: i.e. full nutrient solution or no fertilizer. The objective was to clarify the relationship between elevated carbon dioxide and the rate of nitrogen fixation of nodulated trees growing under field conditions. Results showed that growth in elevated carbon dioxide stimulated net photosynthesis and total biomass accumulation. However, relative growth rate was not significantly affected by elevated carbon dioxide. Leaf area and leaf phosphorus concentration were also unaffected. Nodule mass on roots of unfertilized trees exposed to elevated carbon dioxide increased, compared with fertilized trees exposed to ambient carbon dioxide levels. Since neither in the fertilized, nor the unfertilized trees was there any evidence of effects on growth, biomass and photosynthesis that could be attributed to the interaction of fertilizer and elevated carbon dioxide interaction, it was concluded that both types exhibit similar carbon dioxide-induced growth and photosynthetic enhancements. 40 refs., 5 tabs., 3 figs

  14. Comparison of biomass productivity and nitrogen fixing potential of Azolla SPP

    Energy Technology Data Exchange (ETDEWEB)

    Arora, A.; Singh, P.K. [Indian Agricultural Research Inst., New Delhi (India)

    2003-03-01

    Study was conducted on six different Azolla species, available in the germplasm collection of NCCUBGA, IARI, New Delhi namely A. filiculoides, A. mexicana, A. microphylla, A. pinnata, A. rubra and A. caroliniana in a polyhouse to assess their growth potential by determining their maximal biomass productivity, doubling time and relative growth rates. Their nitrogen fixing potential was assessed by acetylene reduction assay. Among them Azolla microphylla gave highest biomass production and relative growth rate followed by Azolla caroliniana. Both these had high nitrogenase activity also. Peak nitrogenase activity of these strains was found on 14th day of growth and it declined on further incubation. Azolla microphylla and Azolla rubra were more tolerant to salinity than others. On the other hand Azolla pinnata, which is endemic species found in India, exhibited low biomass production, relative growth rate and lower nitrogenase activity compared to other species. It was unable to sustain growth in saline medium. Under polyhouse conditions, A. microphylla was found to perform better than other cultures in terms of biomass productivity, N fixing ability and salt tolerance. Hence it is taken up for mass production.(author)

  15. High-quality forage production under salinity by using a salt-tolerant AtNXH1-expressing transgenic alfalfa combined with a natural stress-resistant nitrogen-fixing bacterium.

    Science.gov (United States)

    Stritzler, Margarita; Elba, Pagano; Berini, Carolina; Gomez, Cristina; Ayub, Nicolás; Soto, Gabriela

    2018-06-20

    Alfalfa, usually known as the "Queen of Forages", is the main source of vegetable protein to meat and milk production systems worldwide. This legume is extremely rich in proteins due to its highly efficient symbiotic association with nitrogen-fixing strains. In the last years, alfalfa culture has been displaced to saline environments by other important crops, including major cereals, a fact that has reduced its biomass production and symbiotic nitrogen fixation. In this short communication, we report the high forage production and nutrient quality of alfalfa under saline conditions by alfalfa transformation with the AtNHX1 Na + /H + antiporter and inoculation with the stress-resistant nitrogen-fixing strain Sinorhizobium meliloti B401. Therefore, the incorporation of transgenic traits into salt-sensitive legumes in association with the inoculation with natural stress-resistant isolates could be a robust approach to improve the productivity and quality of these important nitrogen-fixing crops. Copyright © 2018. Published by Elsevier B.V.

  16. Symbioses with nitrogen-fixing bacteria: nodulation and phylogenetic data across legume genera.

    Science.gov (United States)

    Afkhami, Michelle E; Luke Mahler, D; Burns, Jean H; Weber, Marjorie G; Wojciechowski, Martin F; Sprent, Janet; Strauss, Sharon Y

    2018-02-01

    How species interactions shape global biodiversity and influence diversification is a central - but also data-hungry - question in evolutionary ecology. Microbially based mutualisms are widespread and could cause diversification by ameliorating stress and thus allowing organisms to colonize and adapt to otherwise unsuitable habitats. Yet the role of these interactions in generating species diversity has received limited attention, especially across large taxonomic groups. In the massive angiosperm family Leguminosae, plants often associate with root-nodulating bacteria that ameliorate nutrient stress by fixing atmospheric nitrogen. These symbioses are ecologically-important interactions, influencing community assembly, diversity, and succession, contributing ~100-290 million tons of N annually to natural ecosystems, and enhancing growth of agronomically-important forage and crop plants worldwide. In recent work attempting to determine whether mutualism with N-fixing bacteria led to increased diversification across legumes, we were unable to definitively resolve the relationship between diversification and nodulation. We did, however, succeed in compiling a very large searchable, analysis-ready database of nodulation data for 749 legume genera (98% of Leguminosae genera; LPWG 2017), which, along with associated phylogenetic information, will provide a valuable resource for future work addressing this question and others. For each legume genus, we provide information about the species richness, frequency of nodulation, subfamily association, and topological correspondence with an additional data set of 100 phylogenetic trees curated for database compatibility. We found 386 legume genera were confirmed nodulators (i.e., all species examined for nodulation nodulated), 116 were non-nodulating, four were variable (i.e., containing both confirmed nodulators and confirmed non-nodulators), and 243 had not been examined for nodulation in published studies. Interestingly

  17. Catchment features controlling nitrogen dynamics in running waters above the tree line (central Italian Alps

    Directory of Open Access Journals (Sweden)

    R. Balestrini

    2013-03-01

    Full Text Available The study of nitrogen cycling in mountain areas has a long tradition, as it was applied to better understand and describe ecosystem functioning, as well as to quantify long-distance effects of human activities on remote environments. Nonetheless, very few studies, especially in Europe, have considered catchment features controlling nitrogen dynamics above the tree line with focus on running waters. In this study, relationships between some water chemistry descriptors – including nitrogen species and dissolved organic carbon (DOC – and catchment characteristics were evaluated for a range of sites located above the tree line (1950–2650 m a.s.l. at Val Masino, in the central Italian Alps. Land cover categories as well as elevation and slope were assessed at each site. Water samples were collected during the 2007 and 2008 snow free periods, with a nearly monthly frequency. In contrast to dissolved organic nitrogen, nitrate concentrations in running waters showed a spatial pattern strictly connected to the fractional extension of tundra and talus in each basin. Exponential models significantly described the relationships between maximum NO3 and the fraction of vegetated soil cover (negative relation and talus (positive relation, explaining almost 90% of nitrate variation in running waters. Similarly to nitrate but with an opposite behavior, DOC was positively correlated with vegetated soil cover and negatively correlated with talus. Therefore, land cover can be considered one of the most important factors affecting water quality in high-elevation catchments with contrasting effects on N and C pools.

  18. Nitrogen-fixing bacteria and arbuscular mycorrhizal fungi in Piptadenia gonoacantha (Mart. Macbr.

    Directory of Open Access Journals (Sweden)

    Joel Quintino de Oliveira Júnior

    Full Text Available Abstract The family Leguminosae comprises approximately 20,000 species that mostly form symbioses with arbuscular mycorrhizal fungi (AMF and nitrogen-fixing bacteria (NFB. This study is aimed at investigating and confirming the dependence on nodulation and biological nitrogen fixation in the specie Piptadenia gonoacantha (Mart. Macbr., which belongs to the Piptadenia group. Two consecutive experiments were performed in a greenhouse. The experiments were fully randomized with six replicates and a factorial scheme. For the treatments, the two AMF species and three NFB strains were combined to nodulate P. gonoacantha in addition to the control treatments. The results indicate this species’ capacity for nodulation without the AMF; however, the AMF + NFB combinations yielded a considerable gain in P. gonoacantha shoot weight compared with the treatments that only included inoculating with bacteria or AMF. The results also confirm that the treatment effects among the AMF + NFB combinations produced different shoot dry weight/root dry weight ratios. We conclude that AMF is not necessary for nodulation and that this dependence improves species development because plant growth increases upon co-inoculation.

  19. Endophytic Actinobacteria and the Interaction of Micromonospora and Nitrogen Fixing Plants

    Science.gov (United States)

    Trujillo, Martha E.; Riesco, Raúl; Benito, Patricia; Carro, Lorena

    2015-01-01

    For a long time, it was believed that a healthy plant did not harbor any microorganisms within its tissues, as these were often considered detrimental for the plant. In the last three decades, the numbers of studies on plant microbe-interactions has led to a change in our view and we now know that many of these invisible partners are essential for the overall welfare of the plant. The application of Next Generation Sequencing techniques is a powerful tool that has permitted the detection and identification of microbial communities in healthy plants. Among the new plant microbe interactions recently reported several actinobacteria such as Micromonospora are included. Micromonospora is a Gram-positive bacterium with a wide geographical distribution; it can be found in the soil, mangrove sediments, and freshwater and marine ecosistems. In the last years our group has focused on the isolation of Micromonospora strains from nitrogen fixing nodules of both leguminous and actinorhizal plants and reported for the first time its wide distribution in nitrogen fixing nodules of both types of plants. These studies have shown how this microoganism had been largely overlooked in this niche due to its slow growth. Surprisingly, the genetic diversity of Micromonospora strains isolated from nodules is very high and several new species have been described. The current data indicate that Micromonospora saelicesensis is the most frequently isolated species from the nodular tissues of both leguminous and actinorhizal plants. Further studies have also been carried out to confirm the presence of Micromonospora inside the nodule tissues, mainly by specific in situ hybridization. The information derived from the genome of the model strain, Micromonospora lupini, Lupac 08, has provided useful information as to how this bacterium may relate with its host plant. Several strategies potentially necessary for Micromonospora to thrive in the soil, a highly competitive, and rough environment, and

  20. Dinitrogen fixation by legume shade trees and direct transfer of fixed N to associated cacao in a tropical agroforestry system.

    Science.gov (United States)

    Nygren, Pekka; Leblanc, Humberto A

    2015-02-01

    Natural abundance of (15)N (δ (15)N) was determined in bulk soil, rhizospheric soil and vegetation in an organically managed cacao (Theobroma cacao L.) plantation with Inga edulis Mart. legume trees (inga) as the principal shade for studying the nitrogen (N) cycle in the system. Cacao without contact with legumes in an adjacent plantation was used as the reference for N2 fixation and direct N transfer calculations. Bulk and rhizospheric soils contained 72 and 20%, respectively, of whole- system N. No vegetation effect on δ (15)N in rhizospheric soil was detected, probably due to the high native soil N pool. Fine roots of the cacaos associated with inga contained ∼35% of N fixed from the atmosphere (Nf) out of the total N. Leaves of all species had significantly higher δ (15)N than fine roots. Twenty percent of system Nf was found in cacao suggesting direct N transfer from inga via a common mycelial network of mycorrhizal fungi or recycling of N-rich root exudates of inga. Inga had accumulated 98 kg [Nf] ha(-1) during the 14-year history of the plantation. The conservative estimate of current N2 fixation rate was 41 kg [Nf] ha(-1) year(-1) based on inga biomass only and 50 kg [Nf] ha(-1) year(-1) based on inga and associated trees. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Seasonal differences in leaf-level physiology give lianas a competitive advantage over trees in a tropical seasonal forest.

    Science.gov (United States)

    Cai, Zhi-Quan; Schnitzer, Stefan A; Bongers, Frans

    2009-08-01

    Lianas are an important component of most tropical forests, where they vary in abundance from high in seasonal forests to low in seasonal forests. We tested the hypothesis that the physiological ability of lianas to fix carbon (and thus grow) during seasonal drought may confer a distinct advantage in seasonal tropical forests, which may explain pan-tropical liana distributions. We compared a range of leaf-level physiological attributes of 18 co-occurring liana and 16 tree species during the wet and dry seasons in a tropical seasonal forest in Xishuangbanna, China. We found that, during the wet season, lianas had significantly higher CO(2) assimilation per unit mass (A(mass)), nitrogen concentration (N(mass)), and delta(13)C values, and lower leaf mass per unit area (LMA) than trees, indicating that lianas have higher assimilation rates per unit leaf mass and higher integrated water-use efficiency (WUE), but lower leaf structural investments. Seasonal variation in CO(2) assimilation per unit area (A(area)), phosphorus concentration per unit mass (P(mass)), and photosynthetic N-use efficiency (PNUE), however, was significantly lower in lianas than in trees. For instance, mean tree A(area) decreased by 30.1% from wet to dry season, compared with only 12.8% for lianas. In contrast, from the wet to dry season mean liana delta(13)C increased four times more than tree delta(13)C, with no reduction in PNUE, whereas trees had a significant reduction in PNUE. Lianas had higher A(mass) than trees throughout the year, regardless of season. Collectively, our findings indicate that lianas fix more carbon and use water and nitrogen more efficiently than trees, particularly during seasonal drought, which may confer a competitive advantage to lianas during the dry season, and thus may explain their high relative abundance in seasonal tropical forests.

  2. Symbiosis between nitrogen-fixing bacteria and Medicago truncatula is not significantly affected by silver and silver sulfide nanomaterials.

    Science.gov (United States)

    Judy, Jonathan D; Kirby, Jason K; McLaughlin, Mike J; McNear, David; Bertsch, Paul M

    2016-07-01

    Silver (Ag) engineered nanomaterials (ENMs) are being released into waste streams and are being discharged, largely as Ag2S aged-ENMs (a-ENMs), into agroecosystems receiving biosolids amendments. Recent research has demonstrated that biosolids containing an environmentally relevant mixture of ZnO, TiO2, and Ag ENMs and their transformation products, including Ag2S a-ENMs, disrupted the symbiosis between nitrogen-fixing bacteria and legumes. However, this study was unable to unequivocally determine which ENM or combination of ENMs and a-ENMs was responsible for the observed inhibition. Here, we examined further the effects of polyvinylpyrollidone (PVP) coated pristine Ag ENMs (PVP-Ag), Ag2S a-ENMs, and soluble Ag (as AgSO4) at 1, 10, and 100 mg Ag kg(-1) on the symbiosis between the legume Medicago truncatula and the nitrogen-fixing bacterium, Sinorhizobium melliloti in biosolids-amended soil. Nodulation frequency, nodule function, glutathione reductase production, and biomass were not significantly affected by any of the Ag treatments, even at 100 mg kg(-1), a concentration analogous to a worst-case scenario resulting from long-term, repeated biosolids amendments. Our results provide additional evidence that the disruption of the symbiosis between nitrogen-fixing bacteria and legumes in response to a mixture of ENMs in biosolids-amended soil reported previously may not be attributable to Ag ENMs or their transformation end-products. We anticipate these findings will provide clarity to regulators and industry regarding potential unintended consequences to terrestrial ecosystems resulting from of the use of Ag ENMs in consumer products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. NAD1 Controls Defense-Like Responses in Medicago truncatula Symbiotic Nitrogen Fixing Nodules Following Rhizobial Colonization in a BacA-Independent Manner

    Science.gov (United States)

    Domonkos, Ágota; Kovács, Szilárd; Gombár, Anikó; Kiss, Ernő; Horváth, Beatrix; Kováts, Gyöngyi Z.; Farkas, Attila; Tóth, Mónika T.; Ayaydin, Ferhan; Bóka, Károly; Fodor, Lili; Endre, Gabriella; Kaló, Péter

    2017-01-01

    Legumes form endosymbiotic interaction with host compatible rhizobia, resulting in the development of nitrogen-fixing root nodules. Within symbiotic nodules, rhizobia are intracellularly accommodated in plant-derived membrane compartments, termed symbiosomes. In mature nodule, the massively colonized cells tolerate the existence of rhizobia without manifestation of visible defense responses, indicating the suppression of plant immunity in the nodule in the favur of the symbiotic partner. Medicago truncatula DNF2 (defective in nitrogen fixation 2) and NAD1 (nodules with activated defense 1) genes are essential for the control of plant defense during the colonization of the nitrogen-fixing nodule and are required for bacteroid persistence. The previously identified nodule-specific NAD1 gene encodes a protein of unknown function. Herein, we present the analysis of novel NAD1 mutant alleles to better understand the function of NAD1 in the repression of immune responses in symbiotic nodules. By exploiting the advantage of plant double and rhizobial mutants defective in establishing nitrogen-fixing symbiotic interaction, we show that NAD1 functions following the release of rhizobia from the infection threads and colonization of nodule cells. The suppression of plant defense is self-dependent of the differentiation status of the rhizobia. The corresponding phenotype of nad1 and dnf2 mutants and the similarity in the induction of defense-associated genes in both mutants suggest that NAD1 and DNF2 operate close together in the same pathway controlling defense responses in symbiotic nodules. PMID:29240711

  4. NAD1 Controls Defense-Like Responses in Medicago truncatula Symbiotic Nitrogen Fixing Nodules Following Rhizobial Colonization in a BacA-Independent Manner

    Directory of Open Access Journals (Sweden)

    Ágota Domonkos

    2017-12-01

    Full Text Available Legumes form endosymbiotic interaction with host compatible rhizobia, resulting in the development of nitrogen-fixing root nodules. Within symbiotic nodules, rhizobia are intracellularly accommodated in plant-derived membrane compartments, termed symbiosomes. In mature nodule, the massively colonized cells tolerate the existence of rhizobia without manifestation of visible defense responses, indicating the suppression of plant immunity in the nodule in the favur of the symbiotic partner. Medicago truncatula DNF2 (defective in nitrogen fixation 2 and NAD1 (nodules with activated defense 1 genes are essential for the control of plant defense during the colonization of the nitrogen-fixing nodule and are required for bacteroid persistence. The previously identified nodule-specific NAD1 gene encodes a protein of unknown function. Herein, we present the analysis of novel NAD1 mutant alleles to better understand the function of NAD1 in the repression of immune responses in symbiotic nodules. By exploiting the advantage of plant double and rhizobial mutants defective in establishing nitrogen-fixing symbiotic interaction, we show that NAD1 functions following the release of rhizobia from the infection threads and colonization of nodule cells. The suppression of plant defense is self-dependent of the differentiation status of the rhizobia. The corresponding phenotype of nad1 and dnf2 mutants and the similarity in the induction of defense-associated genes in both mutants suggest that NAD1 and DNF2 operate close together in the same pathway controlling defense responses in symbiotic nodules.

  5. NAD1 Controls Defense-Like Responses in Medicago truncatula Symbiotic Nitrogen Fixing Nodules Following Rhizobial Colonization in a BacA-Independent Manner.

    Science.gov (United States)

    Domonkos, Ágota; Kovács, Szilárd; Gombár, Anikó; Kiss, Ernő; Horváth, Beatrix; Kováts, Gyöngyi Z; Farkas, Attila; Tóth, Mónika T; Ayaydin, Ferhan; Bóka, Károly; Fodor, Lili; Ratet, Pascal; Kereszt, Attila; Endre, Gabriella; Kaló, Péter

    2017-12-14

    Legumes form endosymbiotic interaction with host compatible rhizobia, resulting in the development of nitrogen-fixing root nodules. Within symbiotic nodules, rhizobia are intracellularly accommodated in plant-derived membrane compartments, termed symbiosomes. In mature nodule, the massively colonized cells tolerate the existence of rhizobia without manifestation of visible defense responses, indicating the suppression of plant immunity in the nodule in the favur of the symbiotic partner. Medicago truncatula DNF2 (defective in nitrogen fixation 2) and NAD1 (nodules with activated defense 1) genes are essential for the control of plant defense during the colonization of the nitrogen-fixing nodule and are required for bacteroid persistence. The previously identified nodule-specific NAD1 gene encodes a protein of unknown function. Herein, we present the analysis of novel NAD1 mutant alleles to better understand the function of NAD1 in the repression of immune responses in symbiotic nodules. By exploiting the advantage of plant double and rhizobial mutants defective in establishing nitrogen-fixing symbiotic interaction, we show that NAD1 functions following the release of rhizobia from the infection threads and colonization of nodule cells. The suppression of plant defense is self-dependent of the differentiation status of the rhizobia. The corresponding phenotype of nad1 and dnf2 mutants and the similarity in the induction of defense-associated genes in both mutants suggest that NAD1 and DNF2 operate close together in the same pathway controlling defense responses in symbiotic nodules.

  6. Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium.

    Directory of Open Access Journals (Sweden)

    Liang Ran

    can thus be considered at the initial phase of a transition from free-living organism to a nitrogen-fixing plant entity, a transition process which may mimic what drove the evolution of chloroplasts from a cyanobacterial ancestor.

  7. Plant growth promoting potential and phylogenetic characteristics of a lichenized nitrogen fixing bacterium, Enterobacter cloacae.

    Science.gov (United States)

    Swamy, Chidanandamurthy Thippeswamy; Gayathri, Devaraja; Devaraja, Thimmalapura Neelakantaiah; Bandekar, Mandar; D'Souza, Stecy Elvira; Meena, Ram Murti; Ramaiah, Nagappa

    2016-12-01

    Lichens are complex symbiotic association of mycobionts, photobionts, and bacteriobionts, including chemolithotropic bacteria. In the present study, 46 lichenized bacteria were isolated by conventional and enrichment culture methods on nitrogen-free bromothymol blue (NFb) medium. Only 11 of the 46 isolates fixed nitrogen on NFb and had reduced acetylene. All these 11 isolates had also produced siderophore and 10 of them the IAA. Further, ammonia production was recorded from nine of these nitrogen fixers (NF). On molecular characterization, 16 S rRNA sequencing recorded that, nine NF belonged to Proteobacteria, within Gammaproteobacteria, and were closely related to Enterobacter sp. with a maximum similarity to Enterobacter cloacae. Each one of our NF isolates was aligned closely to Enterobacter pulveris strain E443, Cronobacter sakazakii strain PNP8 and Providencia rettgeri strain ALK058. Notably, a few strains we examined found to possess plant growth promoting properties. This is the first report of Enterobacter sp. from lichens which may be inhabit lichen thalli extrinsically or intrinsically. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Exploiting an ancient signalling machinery to enjoy a nitrogen fixing symbiosis.

    Science.gov (United States)

    Geurts, Rene; Lillo, Alessandra; Bisseling, Ton

    2012-08-01

    For almost a century now it has been speculated that a transfer of the largely legume-specific symbiosis with nitrogen fixing rhizobium would be profitable in agriculture [1,2]. Up to now such a step has not been achieved, despite intensive research in this era. Novel insights in the underlying signalling networks leading to intracellular accommodation of rhizobium as well as mycorrhizal fungi of the Glomeromycota order show extensive commonalities between both interactions. As mycorrhizae symbiosis can be established basically with most higher plant species it raises questions why is it only in a few taxonomic lineages that the underlying signalling network could be hijacked by rhizobium. Unravelling this will lead to insights that are essential to achieve an old dream. Copyright © 2012. Published by Elsevier Ltd.

  9. Fourier transform infrared spectroscopic study of intact cells of the nitrogen-fixing bacterium Azospirillum brasilense

    Science.gov (United States)

    Kamnev, A. A.; Ristić, M.; Antonyuk, L. P.; Chernyshev, A. V.; Ignatov, V. V.

    1997-06-01

    The data of Fourier transform infrared (FTIR) spectroscopic measurements performed on intact cells of the soil nitrogen-fixing bacterium Azospirillum brasilense grown in a standard medium and under the conditions of an increased metal uptake are compared and discussed. The structural FTIR information obtained is considered together with atomic absorption spectrometry (AAS) data on the content of metal cations in the bacterial cells. Some methodological aspects concerning preparation of bacterial cell samples for FTIR measurements are also discussed.

  10. Prone to fix: Resilience of the active nitrogen-fixing rice root microbiome

    Science.gov (United States)

    Hurek, Thomas; Sabale, Mugdha; Sarkar, Abhijit; Pees, Tobias; Reinhold-Hurek, Barbara

    2016-04-01

    Due to water consumption, many lowland rice areas in Asia are undergoing a transition that involves adoption of new management strategies, with crop rotations encompassing a non-flooded crop, including maize. Shifting from flooded to non-flooded cropping is likely to affect microbial nitrogen cycling. For analysis of the root-associated microbiome of rice and maize in response to flooding or nitrogen fertilizer, we combine methods of microbial ecology (Next-Generation sequencing of amplicons), and a reductionist approach with pure cultures of the endophytic diazotroph Azoarus sp.. Field plots of the ICON project (Introducing non-flooded crops in rice-dominated landscapes: Impact on Carbon, nitrogen and water budgets) at the International Rice Research Institute in the Philippines were analyzed. Root-associated activity of nitrogenase gene expression was assessed by quantitative RT-PCR of nifH. For rice, expression levels were surprisingly stable, in response to non-flooded versus flooded conditions, or in response to conventional nitrogen fertilizer applications versus lack of N-fertilizer. In contrast, the active diazotrophic population of maize roots was not resistant to N-fertilization, nifH expression strongly decreased. Concordant changes in the diazotrophic resident or active communities were detected by nifH amplicon sequence analysis, based on bacterial DNA or mRNA, respectively. For high-resolution analyses of the endobiome in gnotobiotic culture, we developed a dual fluorescence reporter system for Azoarcus sp. BH72 which allows to quantify and visualize epi- and endophytic gene expression by concfocal microscopy (CLSM). This allowed us to demonstrate sites of active nitrogen fixation (gene expression) in association with rice roots. We confirmed that at low nitrogen fertilizer levels, endophytic nifH gene expression persisted in rice roots, while it was repressed in maize roots. This supports our observation of remarkable stability of nitrogen fixation

  11. Variable Nitrogen Fixation in Wild Populus.

    Directory of Open Access Journals (Sweden)

    Sharon L Doty

    Full Text Available The microbiome of plants is diverse, and like that of animals, is important for overall health and nutrient acquisition. In legumes and actinorhizal plants, a portion of essential nitrogen (N is obtained through symbiosis with nodule-inhabiting, N2-fixing microorganisms. However, a variety of non-nodulating plant species can also thrive in natural, low-N settings. Some of these species may rely on endophytes, microorganisms that live within plants, to fix N2 gas into usable forms. Here we report the first direct evidence of N2 fixation in the early successional wild tree, Populus trichocarpa, a non-leguminous tree, from its native riparian habitat. In order to measure N2 fixation, surface-sterilized cuttings of wild poplar were assayed using both 15N2 incorporation and the commonly used acetylene reduction assay. The 15N label was incorporated at high levels in a subset of cuttings, suggesting a high level of N-fixation. Similarly, acetylene was reduced to ethylene in some samples. The microbiota of the cuttings was highly variable, both in numbers of cultured bacteria and in genetic diversity. Our results indicated that associative N2-fixation occurred within wild poplar and that a non-uniformity in the distribution of endophytic bacteria may explain the variability in N-fixation activity. These results point to the need for molecular studies to decipher the required microbial consortia and conditions for effective endophytic N2-fixation in trees.

  12. Burkholderia vietnamiensis isolated from root tissues of Nipa Palm (Nypa fruticans) in Sarawak, Malaysia, proved to be its major endophytic nitrogen-fixing bacterium.

    Science.gov (United States)

    Tang, Sui-Yan; Hara, Shintaro; Melling, Lulie; Goh, Kah-Joo; Hashidoko, Yasuyuki

    2010-01-01

    Root-associating bacteria of the nipa palm (Nypa fruticans), preferring brackish-water affected mud in Sarawak, Malaysia, were investigated. In a comparison of rhizobacterial microbiota between the nipa and the sago (Metroxylon sagu) palm, it was found that the nipa palm possessed a group of Burkholderia vietnamiensis as its main active nitrogen-fixing endophytic bacterium. Acetylene reduction by the various isolates of B. vietnamiensis was constant (44 to 68 nmol h(-1) in ethylene production rate) in soft gel medium containing 0.2% sucrose as sole carbon source, and the bacterium also showed motility and biofilm-forming capacity. This is the first report of endophytic nitrogen-fixing bacteria from nipa palm.

  13. NITROGEN CONTENT AND DRY-MATTER DIGESTIBILITY OF GUINEA AND SABI GRASSES AS INFLUENCED BY TREE LEGUME CANOPY

    Directory of Open Access Journals (Sweden)

    Andi Lagaligo Amar

    2012-08-01

    Full Text Available A research study was undertaken to study the grass layer across a mini landscape dominated by tree legume Albizia lebbeck to explore the nutritional differences of two introduced grasses, guinea grass (Panicum maximum and sabi grass (Urochloa mosambicensis, paying particular attention to the presence or absence of tree legume canopy of Albizia lebbeck. The two grass species showed a tendency to replace the native spear grass (Heteropogon contortus; their dominance was more or less complete under tree canopies but was increasing in open areas between trees. Nutritional differences were examined by nitrogen concentration and dry matter digestibility. For comparison, Heteropogon contortus, a native species only found in the open, was included in the nutritional determination using the same methods as the guinea and sabi grasses. The quality parameters of the pasture species were statistically compared (LSD, P=0.05. The quality of herbage was different between the species. Urochloa mosambicensis was better than Panicum maximum. In the open, sabi grass has higher N content (0.62% than guinea grass (0.55%, but they were similar when grown under the canopy (0.69% and 0.72%, respectively. Sabi grass has consistently higher dry matter digestibility (41.39% and 36.83%, respectively under the canopy and in the open, than guinea grass (27.78% and 24.77%. These two species are much higher in both N concentration and dry matter digestibility than the native spear grass. The native species has contained 0.28% N, and 17.65% digestible dry matter. The feeding values of herbage were influenced by the canopy factor. Both guinea and sabi grasses have better quality when grown under the tree canopies than in between canopies. Nitrogen concentration and dry matter digestibility of the guinea grass under canopy were, 0.72% and 27.78%, respectively, significantly higher than those from the open area, 0.55% and 24.77%. Similarly, herbage of sabi grass under canopy has 0

  14. Ground cover and tree growth on calcareous minesoils: Greater influence of soil surface than nitrogen rate or seed mix

    International Nuclear Information System (INIS)

    Kost, D.A.; Vimmerstedt, J.P.

    1994-01-01

    Growth of ground cover and trees was evaluated for five growing seasons on calcareous coal minesoil surfaces (standard graded topsoil, graded and ripped topsoil, graded gray cast overburden) in southeastern Ohio. Soil surface plots were seeded in September 1987 with either a standard herbaceous seed mix [orchardgrass (Dactylis glomerata L.), timothy (Phleum pratense L.), perennial ryegrass (Lolium perenne L.), Kentucky bluegrass (Poa pratensis L.), Ranger alfalfa (Medicago sativa L.), Mammoth red clover (Trifolium pratense L.), Empire birdsfoot trefoil (Lotus corniculatus L.), and wheat (Triticum aestivum L.)], or a modified mix using no alfalfa and half the rate of orchardgrass. Nitrogen (45, 90, or 135 kg ha/N) was applied as ammonium nitrate in September 1987 and April 1989. White ash (Fraxinus americana L.), silver maple (Acer saccharinum L.), northern red oak (Quercus rubra L.), and eastern white pine (Pinus strobus L.) were planted in spring 1989 into 0.8 m-wide strips sprayed with glyphosate herbicide at 2.24 kg/ha in October 1988. Total cover and total biomass were highest in July 1989, following the last application of nitrogen fertilizer in April 1989. Total cover ranged from 44% to 56%, and total biomass ranged from 102 to 162 g/0.5 m 2 from 1990 to 1993. Total cover and total biomass were lower at the lowest nitrogen rate in 1989 only. Type of herbaceous seed mix did not affect growth of ground cover or trees. Overall tree survival was 82.0% the first year but declined to 40.6% after 5 yr. Survival varied significantly among all tree species (3.5% for pine, 22.2% for oak, 38.5% for maple, 98.1% for ash)

  15. Computing the Stretch Factor of Paths, Trees, and Cycles in Weighted Fixed Orientation Metrics

    DEFF Research Database (Denmark)

    Wulff-Nilsen, Christian

    2008-01-01

    Let G be a graph embedded in the L_1-plane. The stretch factor of G is the maximum over all pairs of distinct vertices p and q of G of the ratio L_1^G(p,q)/L_1(p,q), where L_1^G(p,q) is the L_1-distance in G between p and q. We show how to compute the stretch factor of an n-vertex path in O(n*(log...... n)^2) worst-case time and O(n) space and we mention generalizations to trees and cycles, to general weighted fixed orientation metrics, and to higher dimensions....

  16. Functional Single-Cell Approach to Probing Nitrogen-Fixing Bacteria in Soil Communities by Resonance Raman Spectroscopy with 15N2 Labeling.

    Science.gov (United States)

    Cui, Li; Yang, Kai; Li, Hong-Zhe; Zhang, Han; Su, Jian-Qiang; Paraskevaidi, Maria; Martin, Francis L; Ren, Bin; Zhu, Yong-Guan

    2018-04-17

    Nitrogen (N) fixation is the conversion of inert nitrogen gas (N 2 ) to bioavailable N essential for all forms of life. N 2 -fixing microorganisms (diazotrophs), which play a key role in global N cycling, remain largely obscure because a large majority are uncultured. Direct probing of active diazotrophs in the environment is still a major challenge. Herein, a novel culture-independent single-cell approach combining resonance Raman (RR) spectroscopy with 15 N 2 stable isotope probing (SIP) was developed to discern N 2 -fixing bacteria in a complex soil community. Strong RR signals of cytochrome c (Cyt c, frequently present in diverse N 2 -fixing bacteria), along with a marked 15 N 2 -induced Cyt c band shift, generated a highly distinguishable biomarker for N 2 fixation. 15 N 2 -induced shift was consistent well with 15 N abundance in cell determined by isotope ratio mass spectroscopy. By applying this biomarker and Raman imaging, N 2 -fixing bacteria in both artificial and complex soil communities were discerned and imaged at the single-cell level. The linear band shift of Cyt c versus 15 N 2 percentage allowed quantification of N 2 fixation extent of diverse soil bacteria. This single-cell approach will advance the exploration of hitherto uncultured diazotrophs in diverse ecosystems.

  17. Relationship between sodium influx and salt tolerance of nitrogen-fixing cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Apte, S.K.; Reddy, B.R.; Thomas, J.

    1987-08-01

    The relationship between sodium uptake and cyanobacterial salt (NaCl) tolerance has been examined in two filamentous, heterocystous, nitrogen-fixing species of Anabaena. During diazotrophic growth at neutral pH of the growth medium, Anabaena sp. strain L-31, a freshwater strain, showed threefold higher uptake of Na+ than Anabaena torulosa, a brackish-water strain, and was considerably less salt tolerant (50% lethal dose of NaCl, 55 mM) than the latter (50% lethal dose of NaCl, 170 mM). Alkaline pH or excess K+ (more than 25 mM) in the medium causes membrane depolarization and inhibits Na+ influx in both cyanobacteria (S.K. Apte and J. Thomas, Eur. J. Biochem. 154:395-401, 1986). The presence of nitrate or ammonium in the medium caused inhibition of Na+ influx accompanied by membrane depolarization. These experimental manipulations affecting Na+ uptake demonstrated a good negative correlation between Na+ influx and salt tolerance. All treatments which inhibited Na+ influx (such as alkaline pH, K+ above 25 mM, NO3-, and NH4+), enhanced salt tolerance of not only the brackish-water but also the freshwater cyanobacterium. The results indicate that curtailment of Na+ influx, whether inherent or effected by certain environmental factors (e.g., combined nitrogen, alkaline pH), is a major mechanism of salt tolerance in cyanobacteria. (Refs. 27)

  18. Effect of combined N applied at low level on the nitrogen fixation by grasses and contribution to nitrogen fertility in soil

    International Nuclear Information System (INIS)

    Yao Yunyin; Chen Ming; Ma Changlin

    1990-01-01

    This paper reports the study on the effect of combined N applied at low level on teh nitrogen fixation by alfalfa in monoculture and mixed culture with meadow fescue, and the effect on the absorption and utilization of indigenous soil nitrogen and nitrogen fertilizer. Amount of nitrogen fixed by alfalfa could be raised and duration of high peak of symbiotic nitrogen fixation activity could be extended when nitrogen fertilizer was applied reasonably. It was especially important for the early pastures or pastures with low supporting nitrogen capacity. Transfer of nitrogen fixed by alfalfa to meadow fescue occured in mixed culture. Nitrogen fixed from alfalfa was uptaken more easily than indigenous nitrogen in soil. Planting alfalfa could raise soil fertility significantly. Meadow fescue may be able to fix nitrogen from the air in some way. When combined N was appropriately applied to soil, on which alfalfa and meadow fescue had been planted, it could promote increasing nitrogen fertility in soil

  19. PGPRs and nitrogen-fixing legumes: a perfect team for efficient Cd phytoremediation?

    Directory of Open Access Journals (Sweden)

    María Teresa eGómez-Sagasti

    2015-02-01

    Full Text Available Cadmium (Cd is a toxic, biologically non-essential and highly mobile metal that has become an increasingly important environmental hazard to both wildlife and humans. In contrast to conventional remediation technologies, phytoremediation based on rhizobia-legume symbiosis has emerged as an inexpensive decontamination alternative which also revitalize contaminated soils due to the role of legumes in nitrogen cycling. In recent years, there is growing interest in understanding symbiotic rhizobia-legume relationship and its interactions with Cd. The aim of the present review is to provide a comprehensive picture of the main effects of Cd in N2-fixing leguminous plants and the benefits of exploiting this symbiosis together with plant growth promoting rhizobacteria (PGPRs to boost an efficient reclamation of Cd-contaminated soils.

  20. Biome-scale nitrogen fixation strategies selected by climatic constraints on nitrogen cycle.

    Science.gov (United States)

    Sheffer, Efrat; Batterman, Sarah A; Levin, Simon A; Hedin, Lars O

    2015-11-23

    Dinitrogen fixation by plants (in symbiosis with root bacteria) is a major source of new nitrogen for land ecosystems(1). A long-standing puzzle(2) is that trees capable of nitrogen fixation are abundant in nitrogen-rich tropical forests, but absent or restricted to early successional stages in nitrogen-poor extra-tropical forests. This biome-scale pattern presents an evolutionary paradox(3), given that the physiological cost(4) of nitrogen fixation predicts the opposite pattern: fixers should be out-competed by non-fixers in nitrogen-rich conditions, but competitively superior in nitrogen-poor soils. Here we evaluate whether this paradox can be explained by the existence of different fixation strategies in tropical versus extra-tropical trees: facultative fixers (capable of downregulating fixation(5,6) by sanctioning mutualistic bacteria(7)) are common in the tropics, whereas obligate fixers (less able to downregulate fixation) dominate at higher latitudes. Using a game-theoretic approach, we assess the ecological and evolutionary conditions under which these fixation strategies emerge, and examine their dependence on climate-driven differences in the nitrogen cycle. We show that in the tropics, transient soil nitrogen deficits following disturbance and rapid tree growth favour a facultative strategy and the coexistence of fixers and non-fixers. In contrast, sustained nitrogen deficits following disturbance in extra-tropical forests favour an obligate fixation strategy, and cause fixers to be excluded in late successional stages. We conclude that biome-scale differences in the abundance of nitrogen fixers can be explained by the interaction between individual plant strategies and climatic constraints on the nitrogen cycle over evolutionary time.

  1. Nitrogen deposition outweighs climatic variability in driving annual growth rate of canopy beech trees: Evidence from long-term growth reconstruction across a geographic gradient.

    Science.gov (United States)

    Gentilesca, Tiziana; Rita, Angelo; Brunetti, Michele; Giammarchi, Francesco; Leonardi, Stefano; Magnani, Federico; van Noije, Twan; Tonon, Giustino; Borghetti, Marco

    2018-07-01

    In this study, we investigated the role of climatic variability and atmospheric nitrogen deposition in driving long-term tree growth in canopy beech trees along a geographic gradient in the montane belt of the Italian peninsula, from the Alps to the southern Apennines. We sampled dominant trees at different developmental stages (from young to mature tree cohorts, with tree ages spanning from 35 to 160 years) and used stem analysis to infer historic reconstruction of tree volume and dominant height. Annual growth volume (G V ) and height (G H ) variability were related to annual variability in model simulated atmospheric nitrogen deposition and site-specific climatic variables, (i.e. mean annual temperature, total annual precipitation, mean growing period temperature, total growing period precipitation, and standard precipitation evapotranspiration index) and atmospheric CO 2 concentration, including tree cambial age among growth predictors. Generalized additive models (GAM), linear mixed-effects models (LMM), and Bayesian regression models (BRM) were independently employed to assess explanatory variables. The main results from our study were as follows: (i) tree age was the main explanatory variable for long-term growth variability; (ii) GAM, LMM, and BRM results consistently indicated climatic variables and CO 2 effects on G V and G H were weak, therefore evidence of recent climatic variability influence on beech annual growth rates was limited in the montane belt of the Italian peninsula; (iii) instead, significant positive nitrogen deposition (N dep ) effects were repeatedly observed in G V and G H ; the positive effects of N dep on canopy height growth rates, which tended to level off at N dep values greater than approximately 1.0 g m -2  y -1 , were interpreted as positive impacts on forest stand above-ground net productivity at the selected study sites. © 2018 John Wiley & Sons Ltd.

  2. Can mushrooms fix atmospheric nitrogen?

    Indian Academy of Sciences (India)

    Unknown

    Introduction. Rhizobium is a genus of symbiotic N2-fixing soil bacteria that induce ... To produce biofilm cultures, a 2 × 2 cm yeast manitol agar. (YMA) slab was .... determination of antibiotic susceptibilities of bacterial biofilms;. J. Clin. Microbiol.

  3. Can mushrooms fix atmospheric nitrogen?

    Indian Academy of Sciences (India)

    Unknown

    culation was maintained as a control. At maximum mycelial colonization by the ... cant increase in nitrogen concentration were observed in the inoculated cultures compared to the controls. The mycelial weight reduction could be .... ing of Belgian Administration for Development Corpora- tion (BADC) during that period were ...

  4. Responses of the nitrogen-fixing aquatic fern Azolla to water contaminated with ciprofloxacin: Impacts on biofertilization.

    Science.gov (United States)

    Gomes, Marcelo Pedrosa; de Brito, Júlio César Moreira; Carvalho Carneiro, Marília Mércia Lima; Ribeiro da Cunha, Mariem Rodrigues; Garcia, Queila Souza; Figueredo, Cleber Cunha

    2018-01-01

    We investigated the ability of the aquatic fern Azolla to take up ciprofloxacin (Cipro), as well as the effects of that antibiotic on the N-fixing process in plants grown in medium deprived (-N) or provided (+N) with nitrogen (N). Azolla was seen to accumulate Cipro at concentrations greater than 160 μg g -1 dry weight when cultivated in 3.05 mg Cipro l -1 , indicating it as a candidate for Cipro recovery from water. Although Cipro was not seen to interfere with the heterocyst/vegetative cell ratios, the antibiotic promoted changes with carbon and nitrogen metabolism in plants. Decreased photosynthesis and nitrogenase activity, and altered plant's amino acid profile, with decreases in cell N concentrations, were observed. The removal of N from the growth medium accentuated the deleterious effects of Cipro, resulting in lower photosynthesis, N-fixation, and assimilation rates, and increased hydrogen peroxide accumulation. Our results shown that Cipro may constrain the use of Azolla as a biofertilizer species due to its interference with nitrogen fixation processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Long-term tree growth rate, water use efficiency, and tree ring nitrogen isotope composition of Pinus massoniana L. in response to global climate change and local nitrogen deposition in Southern China

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Fangfang [Chinese Academy of Sciences, Guangzhou (China). South China Botanical Garden; Graduate Univ. of Chinese Academy of Sciences, Beijing (China); Griffith Univ., Nathan, QLD (Australia). Environmental Future Centre; Kuang, Yuanwen; Wen, Dazhi [Chinese Academy of Sciences, Guangzhou (China). South China Botanical Garden; Chinese Academy of Sciences, Guangzhou (China). Pearl River Delta Research Centre of Environmental Pollution and Control; Xu, Zhihong [Griffith Univ., Nathan, QLD (Australia). Environmental Future Centre; Li, Jianli; Zuo, Weidong [Agriculture and Forestry Technology Extension Centre, Nanhai District, Guangdong (China); Hou, Enqing [Chinese Academy of Sciences, Guangzhou (China). South China Botanical Garden; Graduate Univ. of Chinese Academy of Sciences, Beijing (China)

    2010-12-15

    We aimed to investigate long-term tree growth rates, water use efficiencies (WUE), and tree ring nitrogen (N) isotope compositions ({delta}{sup 15}N) of Masson pine (Pinus massoniana L.) in response to global climate change and local N deposition in Southern China. Tree annual growth rings of Masson pine were collected from four forest sites, viz. South China Botanical Garden (SBG), Xi Qiao Shan (XQS) Forest Park, Ding Hu Shan (DHS) Natural Reserve, and Nan Kun Shan (NKS) Natural Reserve in Southern China. The mean annual basal area increment (BAI), WUE, and {delta}{sup 15}N at every 5-year intervals of Masson pine during the last 50 years were determined. Regression analyses were used to quantify the relationships of BAI and WUE with atmospheric carbon dioxide concentration ([CO{sub 2}]), temperature, rainfall, and tree ring elemental concentrations at the four study sites. Tree BAI showed a quadratic relationship with rising [CO{sub 2}]. The tipping points of [CO{sub 2}] for BAI, the peaks of BAI when the critical [CO{sub 2}] was reached, occurred earlier at the sites of SBG, XQS, and DHS which were exposed to higher temperature, N deposition, and lower mineral nutrient availability, as compared with the tipping points of [CO{sub 2}] for BAI at the site of NKS which had higher rainfall, lower temperature, and better nutritional status. The average tipping point of [CO{sub 2}] at the four sites for the BAI response curves was 356 ppm, after which, the BAI would be expected to decrease quadratically with rising [CO{sub 2}]. The multiple regressions of BAI confirmed the relationships of long-term tree growth rate with rainfall, tree WUE, and nutrients and {delta}{sup 15}N in tree rings. Nonlinear relationships between BAI and tree ring {delta}{sup 15}N at DHS and negatively linear one at NKS reflected the fertilization effect of N deposition on tree growth rate initially, but this effect peaked or became negative once the forest approached or passed the N saturation

  6. Monitoring plant tissue nitrogen isotopes to assess nearshore inputs of nitrogen to Lake Crescent, Olympic National Park, Washington

    Science.gov (United States)

    Cox, Stephen E.; Moran, Patrick W.; Huffman, Raegan L.; Fradkin, Steven C.

    2016-05-31

    Mats of filamentous-periphytic algae present in some nearshore areas of Lake Crescent, Olympic National Park, Washington, may indicate early stages of eutrophication from nutrient enrichment of an otherwise highly oligotrophic lake. Natural abundance ratios of stable isotopes of nitrogen (δ15N) measured in plant tissue growing in nearshore areas of the lake indicate that the major source of nitrogen used by these primary producing plants is derived mainly from atmospherically fixed nitrogen in an undeveloped forested ecosystem. Exceptions to this pattern occurred in the Barnes Point area where elevated δ15N ratios indicate that effluent from septic systems also contribute nitrogen to filamentous-periphytic algae growing in the littoral zone of that area. Near the Lyre River outlet of Lake Crescent, the δ15N of filamentous-periphytic algae growing in close proximity to the spawning areas of a unique species of trout show little evidence of elevated δ15N indicating that nitrogen from on-site septic systems is not a substantial source of nitrogen for these plants. The δ15N data corroborate estimates that nitrogen input to Lake Crescent from septic sources is comparatively small relative to input from motor vehicle exhaust and vegetative sources in undeveloped forests, including litterfall, pollen, and symbiotic nitrogen fixation. The seasonal timing of blooms of filamentous-periphytic algal near the lake shoreline is also consistent with nitrogen exported from stands of red alder trees (Alnus rubra). Isotope biomonitoring of filamentous-periphytic algae may be an effective approach to monitoring the littoral zone for nutrient input to Lake Crescent from septic sources.

  7. The nitrogen cycle on Mars

    Science.gov (United States)

    Mancinelli, Rocco L.

    1989-01-01

    Nirtogen is an essential element for the evolution of life, because it is found in a variety of biologically important molecules. Therefore, N is an important element to study from a exobiological perspective. In particular, fixed nitrogen is the biologically useful form of nitrogen. Fixed nitrogen is generally defines as NH3, NH4(+), NO(x), or N that is chemically bound to either inorganic or organic molecules, and releasable by hydrolysis to NH3 or NH4(+). On Earth, the vast majority of nitrogen exists as N2 in the atmosphere, and not in the fixes form. On early Mars the same situations probably existed. The partial pressure of N2 on early Mars was thought to be 18 mb, significantly less than that of Earth. Dinitrogen can be fixed abiotically by several mechanisms. These mechanisms include thernal shock from meteoritic infall and lightning, as well as the interaction of light and sand containing TiO2 which produces NH3 that would be rapidly destroyed by photolysis and reaction with OH radicals. These mechanisms could have been operative on primitive Mars.The chemical processes effecting these compounds and possible ways of fixing or burying N in the Martian environment are described. Data gathered in this laboratory suggest that the low abundance of nitrogen along (compared to primitive Earth) may not significantly deter the origin and early evolution of a nitrogen utilizing organisms. However, the conditions on current Mars with respect to nitrogen are quite different, and organisms may not be able to utilize all of the available nitrogen.

  8. An antimicrobial peptide essential for bacterial survival in the nitrogen-fixing symbiosis.

    Science.gov (United States)

    Kim, Minsoo; Chen, Yuhui; Xi, Jiejun; Waters, Christopher; Chen, Rujin; Wang, Dong

    2015-12-08

    In the nitrogen-fixing symbiosis between legume hosts and rhizobia, the bacteria are engulfed by a plant cell membrane to become intracellular organelles. In the model legume Medicago truncatula, internalization and differentiation of Sinorhizobium (also known as Ensifer) meliloti is a prerequisite for nitrogen fixation. The host mechanisms that ensure the long-term survival of differentiating intracellular bacteria (bacteroids) in this unusual association are unclear. The M. truncatula defective nitrogen fixation4 (dnf4) mutant is unable to form a productive symbiosis, even though late symbiotic marker genes are expressed in mutant nodules. We discovered that in the dnf4 mutant, bacteroids can apparently differentiate, but they fail to persist within host cells in the process. We found that the DNF4 gene encodes NCR211, a member of the family of nodule-specific cysteine-rich (NCR) peptides. The phenotype of dnf4 suggests that NCR211 acts to promote the intracellular survival of differentiating bacteroids. The greatest expression of DNF4 was observed in the nodule interzone II-III, where bacteroids undergo differentiation. A translational fusion of DNF4 with GFP localizes to the peribacteroid space, and synthetic NCR211 prevents free-living S. meliloti from forming colonies, in contrast to mock controls, suggesting that DNF4 may interact with bacteroids directly or indirectly for its function. Our findings indicate that a successful symbiosis requires host effectors that not only induce bacterial differentiation, but also that maintain intracellular bacteroids during the host-symbiont interaction. The discovery of NCR211 peptides that maintain bacterial survival inside host cells has important implications for improving legume crops.

  9. N2-fixing tropical legume evolution: a contributor to enhanced weathering through the Cenozoic?

    Science.gov (United States)

    Epihov, Dimitar Z; Batterman, Sarah A; Hedin, Lars O; Leake, Jonathan R; Smith, Lisa M; Beerling, David J

    2017-08-16

    Fossil and phylogenetic evidence indicates legume-rich modern tropical forests replaced Late Cretaceous palm-dominated tropical forests across four continents during the early Cenozoic (58-42 Ma). Tropical legume trees can transform ecosystems via their ability to fix dinitrogen (N 2 ) and higher leaf N compared with non-legumes (35-65%), but it is unclear how their evolutionary rise contributed to silicate weathering, the long-term sink for atmospheric carbon dioxide (CO 2 ). Here we hypothesize that the increasing abundance of N 2 -fixing legumes in tropical forests amplified silicate weathering rates by increased input of fixed nitrogen (N) to terrestrial ecosystems via interrelated mechanisms including increasing microbial respiration and soil acidification, and stimulating forest net primary productivity. We suggest the high CO 2 early Cenozoic atmosphere further amplified legume weathering. Evolution of legumes with high weathering rates was probably driven by their high demand for phosphorus and micronutrients required for N 2 -fixation and nodule formation. © 2017 The Author(s).

  10. Nitrogen-fixing symbiosis inferred from stable isotope analysis of fossil tree rings from the Oligocene of Ethiopia

    Science.gov (United States)

    Erik L. Gulbranson; Bonnie F. Jacobs; William C. Hockaday; Michael C. Wiemann; Lauren A. Michel; Kaylee Richards; John W. Kappelman

    2017-01-01

    The acquisition of reduced nitrogen (N) is essential for plant life, and plants have developed numerous strategies and symbioses with soil microorganisms to acquire this form of N. The evolutionary history of specific symbiotic relationships of plants with soil bacteria, however, lacks evidence from the fossil record confirming these mutualistic relationships. Here we...

  11. Deposition of organic material in a coral reef lagoon, One Tree Island, Great Barrier Reef

    Science.gov (United States)

    Koop, K.; Larkum, A. W. D.

    1987-07-01

    Deposition of organic material was measured at four sites on One Tree Island coral reef using fixed sediment traps. Although no reliable data were obtained for the reef crest area because of problems of resuspension, mean deposition in the backreef area amounted to some 4 g organic C m -2 day -1 whereas in the lagoon it was about 1·5 g C m -2 day -1. This amounted to mean nitrogen deposition rates of 160 and 95 mg N m -2 day -1, respectively. As primary production by turf algae, the principal producers at One Tree Island, has been estimated at about 2·3 g C m -2 day -1 for the whole reef system and the weighted mean carbon deposition is estimated at 2·2 g C m -2 day -1, it is clear that the carbon produced by plants is largely retained in the system. Nitrogen deposition, on the other hand, amounted to only about 60% of that produced by turf algae and it must be assumed that much of this leached into the water during sedimentation. Losses of nitrogen may be minimized by incorporation of dissolved nitrogen by pelagic microheterotrophs which may in turn be consumed by filter feeders before they leave the reef.

  12. The role of trees in agroecology and sustainable agriculture in the tropics.

    Science.gov (United States)

    Leakey, Roger R B

    2014-01-01

    Shifting agriculture in the tropics has been replaced by sedentary smallholder farming on a few hectares of degraded land. To address low yields and low income both, the soil fertility, the agroecosystem functions, and the source of income can be restored by diversification with nitrogen-fixing trees and the cultivation of indigenous tree species that produce nutritious and marketable products. Biodiversity conservation studies indicate that mature cash crop systems, such as cacao and coffee with shade trees, provide wildlife habitat that supports natural predators, which, in turn, reduce the numbers of herbivores and pathogens. This review offers suggestions on how to examine these agroecological processes in more detail for the most effective rehabilitation of degraded land. Evidence from agroforestry indicates that in this way, productive and environmentally friendly farming systems that provide food and nutritional security, as well as poverty alleviation, can be achieved in harmony with wildlife.

  13. Melanin from the nitrogen-fixing bacterium Azotobacter chroococcum: a spectroscopic characterization.

    Directory of Open Access Journals (Sweden)

    Aulie Banerjee

    Full Text Available Melanins, the ubiquitous hetero-polymer pigments found widely dispersed among various life forms, are usually dark brown/black in colour. Although melanins have variety of biological functions, including protection against ultraviolet radiation of sunlight and are used in medicine, cosmetics, extraction of melanin from the animal and plant kingdoms is not an easy task. Using complementary physicochemical techniques (i.e. MALDI-TOF, FTIR absorption and cross-polarization magic angle spinning solid-state (13C NMR, we report here the characterization of melanins extracted from the nitrogen-fixing non-virulent bacterium Azotobacter chroococcum, a safe viable source. Moreover, considering dihydroxyindole moiety as the main constituent, an effort is made to propose the putative molecular structure of the melanin hetero-polymer extracted from the bacterium. Characterization of the melanin obtained from Azotobacter chroococcum would provide an inspiration in extending research activities on these hetero-polymers and their use as protective agent against UV radiation.

  14. Genetic Diversity of Nitrogen-Fixing and Plant Growth Promoting Pseudomonas Species Isolated from Sugarcane Rhizosphere.

    Science.gov (United States)

    Li, Hai-Bi; Singh, Rajesh K; Singh, Pratiksha; Song, Qi-Qi; Xing, Yong-Xiu; Yang, Li-Tao; Li, Yang-Rui

    2017-01-01

    The study was designed to isolate and characterize Pseudomonas spp. from sugarcane rhizosphere, and to evaluate their plant- growth- promoting (PGP) traits and nitrogenase activity. A biological nitrogen-fixing microbe has great potential to replace chemical fertilizers and be used as a targeted biofertilizer in a plant. A total of 100 isolates from sugarcane rhizosphere, belonging to different species, were isolated; from these, 30 isolates were selected on the basis of preliminary screening, for in vitro antagonistic activities against sugarcane pathogens and for various PGP traits, as well as nitrogenase activity. The production of IAA varied from 312.07 to 13.12 μg mL -1 in tryptophan supplemented medium, with higher production in AN15 and lower in CN20 strain. The estimation of ACC deaminase activity, strains CY4 and BA2 produced maximum and minimum activity of 77.0 and 15.13 μmoL mg -1 h -1 . For nitrogenase activity among the studied strains, CoA6 fixed higher and AY1 fixed lower in amounts (108.30 and 6.16 μmoL C 2 H 2 h -1 mL -1 ). All the strains were identified on the basis of 16S rRNA gene sequencing, and the phylogenetic diversity of the strains was analyzed. The results identified all strains as being similar to Pseudomonas spp. Polymerase chain reaction (PCR) amplification of nifH and antibiotic genes was suggestive that the amplified strains had the capability to fix nitrogen and possessed biocontrol activities. Genotypic comparisons of the strains were determined by BOX, ERIC, and REP PCR profile analysis. Out of all the screened isolates, CY4 ( Pseudomonas koreensis ) and CN11 ( Pseudomonas entomophila ) showed the most prominent PGP traits, as well as nitrogenase activity. Therefore, only these two strains were selected for further studies; Biolog profiling; colonization through green fluorescent protein (GFP)-tagged bacteria; and nifH gene expression using quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The Biolog

  15. 15N in tree rings as a bio-indicator of changing nitrogen cycling in tropical forests: an evaluation at three sites using two sampling methods

    NARCIS (Netherlands)

    Sleen, van der J.P.; Vlam, M.; Groenendijk, P.; Anten, N.P.R.; Bongers, F.; Bunyavejchewin, S.; Hietz, P.; Pons, T.L.; Zuidema, P.

    2015-01-01

    Anthropogenic nitrogen deposition is currently causing a more than twofold increase of reactive nitrogen input over large areas in the tropics. Elevated N-15 abundance (delta N-15) in the growth rings of some tropical trees has been hypothesized to reflect an increased leaching of N-15-depleted

  16. Stress Effects of Chlorate on Longan (Dimocarpus longan Lour. Trees: Changes in Nitrogen and Carbon Nutrition

    Directory of Open Access Journals (Sweden)

    Jiemei LU

    2017-11-01

    Full Text Available Three-year-old potted longan (Dimocarpus longan Lour. cv. Shixia trees were treated with potassium chlorate and effects on nitrogen and carbon nutrition were examined. The results showed that potassium chlorate at 10 and 20 g per pot failed to induce flower but suppressed shoot growth and caused leaf chlorosis and drop. The treatment significantly inhibited nitrate reductase but increased nitrogen concentration in the leaves and buds. Concentration of soluble amino acids in the leaves of treated trees increased within 14 days and then declined to the control level, while it increased constantly in buds. In both organs, the amino acid increase was an all-round one, with all the tested 21 amino acids increased. However, soluble proteins in the leaves were slightly increased by chlorate, indicating that de novo synthesis of amino acids was activated. Chlorate reduced photosynthetic rate and stomatal conductance but slightly increased CO2 concentration in the mesophyll, suggesting that chlorate treatment damaged photosynthetic apparatus. The damage was reflected by the destruction of thylakoids and grana in the chloroplasts. Chlorate also caused depletion of starch with significant accumulation of soluble sugars in the leaves. Accumulation of sugars and soluble amino acids indicates osmotic adjustment in response to the stress caused by chlorate treatment.

  17. Stable Isotope Identification of Nitrogen Sources for United ...

    Science.gov (United States)

    We used natural abundance stable isotope data to evaluate nitrogen sources to U.S. west coast estuaries. We collected δ15N of macroalgae data and supplemented this with available data from the literature for estuaries from Mexico to Alaska. Stable isotope ratios of green macroalgae were compared to δ15N of dissolved inorganic nitrogen of oceanic and watershed end members. There was a latitudinal gradient in δ15N of macroalgae with southern estuaries being 7 per mil heavier than northern estuaries. Gradients in isotope data were compared to nitrogen sources estimated by the USGS using the SPARROW model. In California estuaries, the elevation of isotope data appeared to be related to anthropogenic nitrogen sources. In Oregon systems, the nitrogen levels of streams flowing into the estuaries are related to forest cover, rather than to developed land classes. In addition, the δ15N of macroalgae suggested that the ocean and nitrogen-fixing trees in the watersheds were the dominant nitrogen sources. There was also a strong gradient in δ15N of macroalgae with heavier sites located near the estuary mouth. In some Oregon estuaries, there was an elevation an elevation of δ15N above marine end members in the vicinity of wastewater treatment facility discharge locations, suggesting isotopes may be useful for distinguishing inputs along an estuarine gradient. Nutrients are the leading cause of water quality impairments in the United States, and as a result too

  18. Culture-independent molecular approaches reveal a mostly unknown high diversity of active nitrogen-fixing bacteria associated with Pennisetum purpureum—a bioenergy crop

    NARCIS (Netherlands)

    Videira, Sandy Sampaio; de Cássia Pereira e Silva, Michele; Galisa, Pericles de Souza; Franco Dias, Armando Cavalcante; Nissinen, Riitta; Baldani Divan, Vera Lucia; van Elsas, Jan Dirk; Baldani, Jose Ivo; Salles, Joana Falcao

    2013-01-01

    Previous studies have shown that elephant grass is colonized by nitrogen-fixing bacterial species; however, these results were based on culture-dependent methods, an approach that introduces bias due to an incomplete assessment of the microbial community. In this study, we used culture-independent

  19. Functional indicators of response mechanisms to nitrogen deposition, ozone, and their interaction in two Mediterranean tree species.

    Directory of Open Access Journals (Sweden)

    Lina Fusaro

    Full Text Available The effects of nitrogen (N deposition, tropospheric ozone (O3 and their interaction were investigated in two Mediterranean tree species, Fraxinus ornus L. (deciduous and Quercus ilex L. (evergreen, having different leaf habits and resource use strategies. An experiment was conducted under controlled condition to analyse how nitrogen deposition affects the ecophysiological and biochemical traits, and to explore how the nitrogen-induced changes influence the response to O3. For both factors we selected realistic exposures (20 kg N ha-1 yr-1 and 80 ppb h for nitrogen and O3, respectively, in order to elucidate the mechanisms implemented by the plants. Nitrogen addition resulted in higher nitrogen concentration at the leaf level in F. ornus, whereas a slight increase was detected in Q. ilex. Nitrogen enhanced the maximum rate of assimilation and ribulose 1,5-bisphosphate regeneration in both species, whereas it influenced the light harvesting complex only in the deciduous F. ornus that was also affected by O3 (reduced assimilation rate and accelerated senescence-related processes. Conversely, Q. ilex developed an avoidance mechanism to cope with O3, confirming a substantial O3 tolerance of this species. Nitrogen seemed to ameliorate the harmful effects of O3 in F. ornus: the hypothesized mechanism of action involved the production of nitrogen oxide as the first antioxidant barrier, followed by enzymatic antioxidant response. In Q. ilex, the interaction was not detected on gas exchange and photosystem functionality; however, in this species, nitrogen might stimulate an alternative antioxidant response such as the emission of volatile organic compounds. Antioxidant enzyme activity was lower in plants treated with both O3 and nitrogen even though reactive oxygen species production did not differ between the treatments.

  20. The oceanic fixed nitrogen and nitrous oxide budgets: Moving targets as we enter the anthropocene?

    Directory of Open Access Journals (Sweden)

    L. A. Codispoti

    2001-12-01

    Full Text Available New data force us to raise previous estimates of oceanic denitrification. Our revised estimate of ~ 450 Tg N yr-1 (Tg = 1012 g produces an oceanic fixed N budget with a large deficit (~ 200 Tg N yr-1 that can be explained only by positing an ocean that has deviated far from a steady-state, the need for a major upwards revision of fixed N inputs, particularly nitrogen fixation, or both. Oceanic denitrification can be significantly altered by small re-distributions of carbon and dissolved oxygen. Since fixed N is a limiting nutrient, uncompensated changes in denitrification affect the ocean´s ability to sequester atmospheric CO2 via the "biological pump". We have also had to modify our concepts of the oceanic N2O regime to take better account of the extremely high N2O saturations that can arise in productive, low oxygen waters. Recent results from the western Indian Shelf during a period when hypoxic, suboxic and anoxic waters were present produced a maximum surface N2O saturation of > 8000%, a likely consequence of "stop and go" denitrification. The sensitivity of N2O production and consumption to small changes in the oceanic dissolved oxygen distribution and to the "spin-up" phase of denitrification suggests that the oceanic source term for N2O could change rapidly.

  1. Diversity and activity of nitrogen fixing archaea and bacteria associated with micro-environments of wetland rice

    Science.gov (United States)

    Schmidt, Hannes; Woebken, Dagmar

    2017-04-01

    Wetland rice is one of the world's most important crop plants. The cultivation on waterlogged paddy soils is strongly limited by nitrogen (N), which is typically supplied by industrial fertilizers that are not only costly but also exhibit hazardous effects on the environment. It has been reported that "Biological Nitrogen Fixation" through N2-fixing bacteria and archaea (diazotrophs) can alleviate the N-shortage in rice cultivation, thus carrying out an important ecosystem function. However, our understanding of the diversity and in situ N2 fixation activity of diazotrophs in flooded rice fields is still rudimentary. Moreover, knowledge on the impact of biochemical gradients established by root activity (i.e. exudation, radial oxygen loss) on the functioning of N-fixing microorganisms in paddy soil ecosystems is limited. We aimed at studying underlying processes on biologically relevant scales. Greenhouse studies were performed to identify key factors that control rice-diazotroph association and related N2 fixation activities. Paddy soils of different geographical origin were cultivated with two commercially used genotypes of wetland rice. Samples were separated into bulk soil, rhizosphere soil, rhizoplane, and roots at flowering stage of rice plant development. These samples were subjected to functional assays and various molecular biological techniques in order to analyze the associated diazotroph communities. Based on Illumina amplicon sequencing of nifH genes and transcripts, we show that the diversity and potential activity of diazotroph communities varies according to micro-environments. We will comparatively discuss the influence of (a) the soil microbial "seed bank" and (b) plant genotype in shaping the respective microbiomes and selecting for potentially active diazotrophs. Actual N2 fixation activities of soil-genotype combinations and micro-environments will be shown on the basis of incubation assays using 15N2-containing atmospheres. Areas of potential

  2. MASS LOSS AND NITROGEN DYNAMICS DURING THE DECOMPOSITION OF A N-LABELED N2-FIXING EPOPHYTIC LICHEN, LOBARIA OREGANA (TUCK.) MULL. ARG.

    Science.gov (United States)

    We studied mass loss and nitrogen dynamics during fall and spring initiated decomposition of an N2-fixing epiphytic lichen, Lobaria oregana (Tuck.) Mull. Arg. using 15N. We developed a method of labeling lichens with 15N that involved spraying lichen material with a nutrient sol...

  3. Wood nitrogen concentrations in tropical trees: phylogenetic patterns and ecological correlates.

    Science.gov (United States)

    Martin, Adam R; Erickson, David L; Kress, W John; Thomas, Sean C

    2014-11-01

    In tropical and temperate trees, wood chemical traits are hypothesized to covary with species' life-history strategy along a 'wood economics spectrum' (WES), but evidence supporting these expected patterns remains scarce. Due to its role in nutrient storage, we hypothesize that wood nitrogen (N) concentration will covary along the WES, being higher in slow-growing species with high wood density (WD), and lower in fast-growing species with low WD. In order to test this hypothesis we quantified wood N concentrations in 59 Panamanian hardwood species, and used this dataset to examine ecological correlates and phylogenetic patterns of wood N. Wood N varied > 14-fold among species between 0.04 and 0.59%; closely related species were more similar in wood N than expected by chance. Wood N was positively correlated with WD, and negatively correlated with log-transformed relative growth rates, although these relationships were relatively weak. We found evidence for co-evolution between wood N and both WD and log-transformed mortality rates. Our study provides evidence that wood N covaries with tree life-history parameters, and that these patterns consistently co-evolve in tropical hardwoods. These results provide some support for the hypothesized WES, and suggest that wood is an increasingly important N pool through tropical forest succession. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  4. 16S Ribosomal DNA Characterization of Nitrogen-Fixing Bacteria Isolated from Banana (Musa spp.) and Pineapple (Ananas comosus (L.) Merril)

    Science.gov (United States)

    Magalhães Cruz, Leonardo; Maltempi de Souza, Emanuel; Weber, Olmar Baler; Baldani, José Ivo; Döbereiner, Johanna; de Oliveira Pedrosa, Fábio

    2001-01-01

    Nitrogen-fixing bacteria isolated from banana (Musa spp.) and pineapple (Ananas comosus (L.) Merril) were characterized by amplified 16S ribosomal DNA restriction analysis and 16S rRNA sequence analysis. Herbaspirillum seropedicae, Herbaspirillum rubrisubalbicans, Burkholderia brasilensis, and Burkholderia tropicalis were identified. Eight other types were placed in close proximity to these genera and other alpha and beta Proteobacteria. PMID:11319127

  5. Citizen science identifies the effects of nitrogen deposition, climate and tree species on epiphytic lichens across the UK.

    Science.gov (United States)

    Welden, N A; Wolseley, P A; Ashmore, M R

    2018-01-01

    A national citizen survey quantified the abundance of epiphytic lichens that are known to be either sensitive or tolerant to nitrogen (N) deposition. Records were collected across the UK from over 10,000 individual trees of 22 deciduous species. Mean abundance of tolerant and sensitive lichens was related to mean N deposition rates and climatic variables at a 5 km scale, and the response of lichens was compared on the three most common trees (Quercus, Fraxinus and Acer) and by assigning all 22 tree species to three bark pH groups. The abundance of N-sensitive lichens on trunks decreased with increasing total N deposition, while that of N-tolerant lichens increased. The abundance of N-sensitive lichens on trunks was reduced close to a busy road, while the abundance of N-tolerant lichens increased. The abundance of N-tolerant lichen species on trunks was lower on Quercus and other low bark pH species, but the abundance of N-sensitive lichens was similar on different tree species. Lichen abundance relationships with total N deposition did not differ between tree species or bark pH groups. The response of N-sensitive lichens to reduced nitrogen was greater than to oxidised N, and the response of N-tolerant lichens was greater to oxidised N than to reduced N. There were differences in the response of N-sensitive and N-tolerant lichens to rainfall, humidity and temperature. Relationships with N deposition and climatic variables were similar for lichen presence on twigs as for lichen abundance on trunks, but N-sensitive lichens increased, rather than decreased, on twigs of Quercus/low bark pH species. The results demonstrate the unique power of citizen science to detect and quantify the air pollution impacts over a wide geographical range, and specifically to contribute to understanding of lichen responses to different chemical forms of N deposition, local pollution sources and bark chemistry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Bacterial nitrogen fixation in sand bioreactors treating winery wastewater with a high carbon to nitrogen ratio.

    Science.gov (United States)

    Welz, Pamela J; Ramond, Jean-Baptiste; Braun, Lorenz; Vikram, Surendra; Le Roes-Hill, Marilize

    2018-02-01

    Heterotrophic bacteria proliferate in organic-rich environments and systems containing sufficient essential nutrients. Nitrogen, phosphorus and potassium are the nutrients required in the highest concentrations. The ratio of carbon to nitrogen is an important consideration for wastewater bioremediation because insufficient nitrogen may result in decreased treatment efficiency. It has been shown that during the treatment of effluent from the pulp and paper industry, bacterial nitrogen fixation can supplement the nitrogen requirements of suspended growth systems. This study was conducted using physicochemical analyses and culture-dependent and -independent techniques to ascertain whether nitrogen-fixing bacteria were selected in biological sand filters used to treat synthetic winery wastewater with a high carbon to nitrogen ratio (193:1). The systems performed well, with the influent COD of 1351 mg/L being reduced by 84-89%. It was shown that the nitrogen fixing bacterial population was influenced by the presence of synthetic winery effluent in the surface layers of the biological sand filters, but not in the deeper layers. It was hypothesised that this was due to the greater availability of atmospheric nitrogen at the surface. The numbers of culture-able nitrogen-fixing bacteria, including presumptive Azotobacter spp. exhibited 1-2 log increases at the surface. The results of this study confirm that nitrogen fixation is an important mechanism to be considered during treatment of high carbon to nitrogen wastewater. If biological treatment systems can be operated to stimulate this phenomenon, it may obviate the need for nitrogen addition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The importance of regulation of nitrogen fixation

    Science.gov (United States)

    Menge, D. N.

    2012-12-01

    I am not a proponent of including more detail in models simply because it makes them more realistic. More complexity increases the difficulty of model interpretation, so it only makes sense to include complexity if its benefit exceeds its costs. Biological nitrogen (N) fixation (BNF) is one process for which I feel the benefits of including greater complexity far outweigh the costs. I don't think that just because I work on BNF; I work on BNF because I think that. BNF, a microbial process carried out by free-living and symbiotic microbes, is the dominant N input to many ecosystems, the primary mechanism by which N deficiency can feed back to N inputs, and a main mechanism by which N surplus can develop. The dynamics of BNF, therefore, have huge implications for the rate of carbon uptake and the extent of CO2 fertilization, as well as N export to waterways and N2O emissions to the atmosphere. Unfortunately, there are serious deficiencies in our understanding of BNF. One main deficiency in our understanding is the extent to which various symbiotic N fixing organisms respond to imbalanced nutrition. Theory suggests that these responses, which I will call "strategies," have fundamental consequences for N fixer niches and ecosystem-level N and C cycling. Organisms that fix N regardless of whether they need it, a strategy that I will call "obligate," occupy post-disturbance niches and rapidly lead to N surplus. On the contrary, organisms that only fix as much N as they need, a "facultative" strategy, can occupy a wider range of successional niches, do not produce surplus N, and respond more rapidly to increased atmospheric CO2. In this talk I will show new results showing that consideration of these strategies could on its own explain the latitudinal distribution of symbiotic N fixing trees in North America. Specifically, the transition in N-fixing tree abundance from ~10% of basal area south of 35° latitude to ~1% of basal area north of 35° latitude that we observe

  8. Characterization of the Symbiotic Nitrogen-Fixing Common Bean Low Phytic Acid (lpa1) Mutant Response to Water Stress.

    Science.gov (United States)

    Chiozzotto, Remo; Ramírez, Mario; Talbi, Chouhra; Cominelli, Eleonora; Girard, Lourdes; Sparvoli, Francesca; Hernández, Georgina

    2018-02-15

    The common bean ( Phaseolus vulgaris L.) low phytic acid ( lpa1 ) biofortified genotype produces seeds with improved nutritional characteristics and does not display negative pleiotropic effects. Here we demonstrated that lpa1 plants establish an efficient nitrogen-fixing symbiosis with Rhizobium etli CE3. The lpa1 nodules showed a higher expression of nodule-function related genes than the nodules of the parental wild type genotype (BAT 93). We analyzed the response to water stress of lpa1 vs. BAT 93 plants grown under fertilized or under symbiotic N₂-fixation conditions. Water stress was induced by water withholding (up to 14% soil moisture) to fertilized or R. etli nodulated plants previously grown with normal irrigation. The fertilized lpa1 plants showed milder water stress symptoms during the water deployment period and after the rehydration recovery period when lpa1 plants showed less biomass reduction. The symbiotic water-stressed lpa1 plants showed decreased nitrogenase activity that coincides with decreased sucrose synthase gene expression in nodules; lower turgor weight to dry weight (DW) ratio, which has been associated with higher drought resistance index; downregulation of carbon/nitrogen (C/N)-related and upregulation of stress-related genes. Higher expression of stress-related genes was also observed in bacteroids of stressed lpa1 plants that also displayed very high expression of the symbiotic cbb ₃ oxidase ( fixN d).

  9. Trees and highway safety.

    Science.gov (United States)

    2011-03-01

    To minimize the severity of run-off-road collisions of vehicles with trees, departments of transportation (DOTs) : commonly establish clear zones for trees and other fixed objects. Caltrans clear zone on freeways is 30 feet : minimum (40 feet pref...

  10. Comparative effectiveness of ACC-deaminase and/or nitrogen-fixing rhizobacteria in promotion of maize (Zea mays L.) growth under lead pollution.

    Science.gov (United States)

    Hassan, Waseem; Bano, Rizwana; Bashir, Farhat; David, Julie

    2014-09-01

    Lead (Pb) pollution is appearing as an alarming threat nowadays. Excessive Pb concentrations in agricultural soils result in minimizing the soil fertility and health which affects the plant growth and leads to decrease in crop production. Plant growth promoting rhizobacteria (PGPR) are beneficial bacteria which can protect the plants against many abiotic stresses, and enhance the growth. The study aimed to identify important rhizobacterial strains by using the 1-aminocyclopropane-1-carboxylate (ACC) enrichment technique and examine their inoculation effects in the growth promotion of maize, under Pb pollution. A pot experiment was conducted and six rhizobacterial isolates were used. Pb was added to 2 kg soil in each pot (with 4 seeds/pot) using Pb(NO3)2 at the rate of 0, 100, 200, 300, and 400 mg kg(-1) Pb with three replications in completely randomized design. Rhizobacterial isolates performed significantly better under all Pb levels, i.e., 100 to 400 Pb mg kg(-1) soil, compared to control. Comparing the efficacy of the rhizobacterial isolates under different Pb levels, rhizobacterial isolates having both ACC-deaminase and nitrogen-fixing activities (AN8 and AN12) showed highest increase in terms of the physical, chemical and enzymatic growth parameters of maize, followed by the rhizobacterial isolates having ACC-deaminase activity only (ACC5 and ACC8), and then the nitrogen-fixing rhizobia (Azotobacter and RN5). However, the AN8 isolate showed maximum efficiency, and highest shoot and root length (14.2 and 6.1 cm), seedling fresh and dry weights (1.91 and 0.14 g), chlorophyll a, b, and carotenoids (24.1, 30.2 and 77.7 μg/l), protein (0.82 mg/g), proline (3.42 μmol/g), glutathione S-transferase, peroxidase and catalase (12.3, 4.2 and 7.2 units/mg protein), while the lowest Pb uptake in the shoot and root (0.83 and 0.48 mg/kg) were observed under this rhizobial isolate at the highest Pb level (i.e., 400 Pb mg kg(-1) soil). The results revealed that PGPR

  11. Microencapsulation by spray drying of nitrogen-fixing bacteria associated with lupin nodules.

    Science.gov (United States)

    Campos, Daniela C; Acevedo, Francisca; Morales, Eduardo; Aravena, Javiera; Amiard, Véronique; Jorquera, Milko A; Inostroza, Nitza G; Rubilar, Mónica

    2014-09-01

    Plant growth promoting bacteria and nitrogen-fixing bacteria (NFB) used for crop inoculation have important biotechnological potential as a sustainable fertilization tool. However, the main limitation of this technology is the low inoculum survival rate under field conditions. Microencapsulation of bacterial cells in polymer matrices provides a controlled release and greater protection against environmental conditions. In this context, the aim of this study was to isolate and characterize putative NFB associated with lupin nodules and to evaluate their microencapsulation by spray drying. For this purpose, 21 putative NFB were isolated from lupin nodules and characterized (16S rRNA genes). Microencapsulation of bacterial cells by spray drying was studied using a mixture of sodium alginate:maltodextrin at different ratios (0:15, 1:14, 2:13) and concentrations (15 and 30% solids) as the wall material. The microcapsules were observed under scanning electron microscopy to verify their suitable morphology. Results showed the association between lupin nodules of diverse known NFB and nodule-forming bacteria belonging to Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria and Bacteroidetes. In microencapsulation assays, the 1:14 ratio of sodium alginate:maltodextrin (15% solids) showed the highest cell survival rate (79%), with a microcapsule yield of 27% and spherical microcapsules of 5-50 µm in diameter. In conclusion, diverse putative NFB genera and nodule-forming bacteria are associated with the nodules of lupine plants grown in soils in southern Chile, and their microencapsulation by spray drying using sodium alginate:maltodextrin represents a scalable process to generate a biofertilizer as an alternative to traditional nitrogen fertilization.

  12. Can Canopy Uptake Influence Nitrogen Acquisition and Allocation by Trees?

    Science.gov (United States)

    Nair, Richard; Perks, Mike; Mencuccini, Maurizio

    2015-04-01

    Nitrogen (N) fertilization due to atmospheric deposition of anthropogenic nitrogen (NDEP) may explain some of the net carbon (C) sink (0.6-0.7 Pg y-1) in temperate forests, but estimates of the additional C uptake due to atmospheric N additions (ΔCΔN) can vary by over an order of magnitude (~ 5 to 200 ΔCΔN). High estimates from several recent studies [e.g. Magnani (2007), Nature 447 848-850], deriving ΔCΔN from regional correlations between NDEP and measures of C uptake (such as eddy covariance -derived net ecosystem production, or forest inventory data) contradict estimates from other studies of 15N tracer applications added as fertilizer to the forest floor. A strong ΔCΔN effect requires nitrogen to be efficiently acquired by trees and allocated to high C:N, long-lived woody tissues, but these isotope experiments typically report relatively little (~ 20 %) of 15N added is found above-ground, with estimates are often attributed to co-variation with other factors across the range of sites investigated. However 15N-fertilization treatments often impose considerably higher total N loads than ambient NDEP and almost exclusively only apply mineral 15N treatments to the soil, often in a limited number of treatment events over relatively short periods of time. Excessive N deposition loads can induce negative physiological effects and limit the resulting ΔCΔN observed, and applying treatments to the soil may ignore the importance of canopy nitrogen uptake in overall forest nutrition. As canopies can directly take up nitrogen, the chronic, (relatively) low levels of ambient NDEP inputs from pollution may be acquired without some of the effects of heavy N loads, obtaining this N before it reaches the soil, and allowing canopies to substitute for, or supplement, edaphic N nutrition. The strength of this effect depends on how much N uptake can occur across the canopy under field conditions, and if this extra N supplies growth in woody tissues such as the stem, as

  13. Effect of nitrogen on the seasonal course of growth and maintenance respiration in stems of Norway spruce trees.

    Science.gov (United States)

    Stockfors, Jan; Linder, Sune

    1998-03-01

    To determine effects of stem nitrogen concentration ([N]) on the seasonal course of respiration, rates of stem respiration of ten control and ten irrigated-fertilized (IL), 30-year-old Norway spruce trees (Picea abies (L.) Karst.), growing in northern Sweden, were measured on seven occasions from June 1993 to April 1994. To explore sources of seasonal variation and mechanisms of fertilization effects on respiration, we separated total respiration into growth and maintenance respiration for both xylem and phloem bark. Stem respiration increased in response to the IL treatment and was positively correlated with growth rate, volume of living cells and stem nitrogen content. However, no significant effect of IL treatment or [N] in the living cells was found for respiration per unit volume of live cells. Total stem respiration during the growing season (June to September) was estimated to be 16.7 and 29.7 mol CO(2) m(-2) for control and IL-treated trees, respectively. Respiration during the growing season accounted for approximately 64% of total annual respiration. Depending on the method, estimated growth respiration varied between 40 and 60% of total respiration during the growing season. Between 75 and 80% of the live cell volume in the stems was in the phloem, and phloem maintenance accounted for about 70% of maintenance respiration. Because most of the living cells were found in the phloem, and the living xylem cells were concentrated in the outer growth rings, we concluded that the best base for expressing rates of stem growth and maintenance respiration in young Norway spruce trees is stem surface area.

  14. Evaluation of the Effects of Bio Fertilizers Containing non Symbiotic Nitrogen Fixing and Phosphate Solubilizing Bacteria on Quantitative and Qualitative Traits of Wheat

    Directory of Open Access Journals (Sweden)

    M Mohtadi

    2016-02-01

    Full Text Available Introduction Wheat crop plays an important role in food security in a country such as Iran. Therefore, serious attention has been paid to ecological farming systems and sustainable management of wheat. For this purpose extensive efforts is done to find proper strategies to improve the quality of soil, agricultural products and started removal pollutants. One of the factors to achieve sustainable agriculture is to use natural agents such as biofertilizers. Several mechanisms are proposed to explain how effective plant growth promoting rhizobacteria is for growth and development of plants. These mechanisms include two groups, direct and indirect in general. Indirect mechanism is to increase absorption and availability of the nutrient elements soluble, producing plant growth regulators, siderophore production of iron chelator, and the phosphate soluble. Through indirect mechanisms such as antagonistic relation, PGPRs moderate the harmful effects of of plant pathogens and thereby lead to increase plant growth. The main goal of this study was to investigate the effect of biofertilizers containing non-symbiotic nitrogen fixing and phosphate solubilizing bacteria on quantitative and qualitative traits of wheat. Materials and Methods This Experiment was conducted in the research farm of Baykola agricultural research stations affiliated by agriculture and natural resources research center of Mazandaran during 2011-12 cropping season. In order to determine physical and chemical properties of the soil samples were taken from the depth of 0-30 cm,. Experimental design was split plots arrangement based on randomized complete block design with three replications. In this experiment chemical fertilizer was assumed as the main plot in 3 levels include: 1- noconsumption (C0, 2- equivalent to 50% of the fertilizer recommendations (C1, 3- equivalent to 100% of the fertilizer recommendations(C2 and two types of biological fertilizers was applied in the sub plot in

  15. Seeing the forest for the trees

    DEFF Research Database (Denmark)

    Ribbons, Relena Rose

    Tree species influence soils above and belowground communities through leaf litter and root inputs. Soil microbial communities can directly influence tree growth and development through processes such as decomposition of leaves, and indirectly through chemical transformation of nutrients in soils...... as an influence of altered C:N ratios due to leaf litter inputs. This thesis aims to document some of the mechanisms by which trees influence soil microbial communities and nitrogen cycling processes like gross and net ammonification and nitrification. This thesis also aims to determine the role of site nitrogen...... status on modulating those tree species effects. The effects of tree species on ammonification and nitrification rates in forest floors and mineral soils were explored, and related to functional genetic markers for ammonia-oxidation by archaea and bacteria (amoA AOA and AOB), bacterial denitrification...

  16. Effects of simultaneous ozone exposure and nitrogen loads on carbohydrate concentrations, biomass, and growth of young spruce trees (Picea abies)

    International Nuclear Information System (INIS)

    Thomas, V.F.D.; Braun, S.; Flueckiger, W.

    2005-01-01

    Spruce saplings were grown under different nitrogen fertilization regimes in eight chamberless fumigation systems, which were fumigated with either charcoal-filtered (F) or ambient air (O 3 ). After the third growing season trees were harvested for biomass and non-structural carbohydrate analysis. Nitrogen had an overall positive effect on the investigated plant parameters, resulting in increased shoot elongation, biomass production, fine root soluble carbohydrate concentrations, and also slightly increased starch concentrations of stems and roots. Only needle starch concentrations and fine root sugar alcohol concentrations were decreased. Ozone fumigation resulted in needle discolorations and affected most parameters negatively, including decreased shoot elongation and decreased starch concentrations in roots, stems, and needles. In fine roots, however, soluble carbohydrate concentrations remained unaffected or increased by ozone fumigation. The only significant interaction was an antagonistic effect on root starch concentrations, where higher nitrogen levels alleviated the negative impact of ozone. - Simultaneous ozone fumigation and nitrogen fertilization have no synergistic impacts on carbohydrate concentrations, biomass, or growth of Picea abies saplings

  17. Anthropogenic nitrogen deposition ameliorates the decline in tree growth caused by a drier climate.

    Science.gov (United States)

    Ibáñez, Inés; Zak, Donald R; Burton, Andrew J; Pregitzer, Kurt S

    2018-02-01

    Most forest ecosystems are simultaneously affected by concurrent global change drivers. However, when assessing these effects, studies have mainly focused on the responses to single factors and have rarely evaluated the joined effects of the multiple aspects of environmental change. Here, we analyzed the combined effects of anthropogenic nitrogen (N) deposition and climatic conditions on the radial growth of Acer saccharum, a dominant tree species in eastern North American forests. We capitalized on a long-term N deposition study, replicated along a latitudinal gradient, that has been taking place for more than 20 yr. We analyzed tree radial growth as a function of anthropogenic N deposition (ambient and experimental addition) and of summer temperature and soil water conditions. Our results reveal that experimental N deposition enhances radial growth of this species, an effect that was accentuated as temperature increased and soil water became more limiting. The spatial and temporal extent of our data also allowed us to assert that the positive effects of growing under the experimental N deposition are likely due to changes in the physiological performance of this species, and not due to the positive correlation between soil N and soil water holding capacity, as has been previously speculated in other studies. Our simulations of tree growth under forecasted climate scenarios specific for this region also revealed that although anthropogenic N deposition may enhance tree growth under a large array of environmental conditions, it will not mitigate the expected effects of growing under the considerably drier conditions characteristic of our most extreme climatic scenario. © 2018 by the Ecological Society of America.

  18. Soil macrofauna in wooded pasture with legume trees

    Directory of Open Access Journals (Sweden)

    Lusimar Lamarte Gonzaga Galindo da Silva

    2015-07-01

    Full Text Available Grasslands afforestation aims at adding different soil uses in a way they become profitable for their owners. As such handling aims at minimizing impacts, the current study had as its goal the use of soil macrofauna in order to evaluate legume afforestation effects on the soil, regardless the depth. Thus, nitrogen fixing species were inserted onto grassland areas and the macrofauna collection was performed 6 years after their planting in the 0-10cm, 10-20cm and 20.30cm layers, in winter and summer. Leguminous influence was different between depths and times of the year. It mostly favors communities under "Mimosa" Genus treetops. Besides, the effects from climatic seasonal variations on invertebrates were mitigated by the implementation of such legume trees

  19. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree

    Directory of Open Access Journals (Sweden)

    Kodner Robin B

    2010-10-01

    Full Text Available Abstract Background Likelihood-based phylogenetic inference is generally considered to be the most reliable classification method for unknown sequences. However, traditional likelihood-based phylogenetic methods cannot be applied to large volumes of short reads from next-generation sequencing due to computational complexity issues and lack of phylogenetic signal. "Phylogenetic placement," where a reference tree is fixed and the unknown query sequences are placed onto the tree via a reference alignment, is a way to bring the inferential power offered by likelihood-based approaches to large data sets. Results This paper introduces pplacer, a software package for phylogenetic placement and subsequent visualization. The algorithm can place twenty thousand short reads on a reference tree of one thousand taxa per hour per processor, has essentially linear time and memory complexity in the number of reference taxa, and is easy to run in parallel. Pplacer features calculation of the posterior probability of a placement on an edge, which is a statistically rigorous way of quantifying uncertainty on an edge-by-edge basis. It also can inform the user of the positional uncertainty for query sequences by calculating expected distance between placement locations, which is crucial in the estimation of uncertainty with a well-sampled reference tree. The software provides visualizations using branch thickness and color to represent number of placements and their uncertainty. A simulation study using reads generated from 631 COG alignments shows a high level of accuracy for phylogenetic placement over a wide range of alignment diversity, and the power of edge uncertainty estimates to measure placement confidence. Conclusions Pplacer enables efficient phylogenetic placement and subsequent visualization, making likelihood-based phylogenetics methodology practical for large collections of reads; it is freely available as source code, binaries, and a web service.

  20. Importance of Arboreal Cyanolichen Abundance to Nitrogen Cycling in Sub-Boreal Spruce and Fir Forests of Central British Columbia, Canada

    Directory of Open Access Journals (Sweden)

    Ania Kobylinski

    2015-07-01

    Full Text Available The importance of N2-fixing arboreal cyanolichens to the nitrogen (N-balance of sub-boreal interior hybrid spruce (Picea glauca × engelmannii and subalpine fir (Abies lasiocarpa forests was examined at field sites in central BC, Canada. Host trees were accessed by a single-rope climbing technique and foliage as well as arboreal macrolichen functional groups were sampled by branch height in eight random sample trees from each of two high (High Cyano and two low (Low Cyano cyanolichen abundance sites for a total of 32 sample trees. Natural abundances of stable isotopes of N (15N, 14N and carbon (13C, 12C were determined for aggregate host tree and epiphytic lichen samples, as well as representative samples of upper organic and soil horizons (Ae and Bf from beneath host trees. As expected, N2-fixing cyanolichens had 2–6-fold greater N-contents than chlorolichens and a δ15N close to atmospheric N2, while foliage and chlorolichens were more depleted in 15N. By contrast, soils at all trees and sites were 15N-enriched (positive δ15N, with declining (not significant δ15N with increased tree-level cyanolichen abundance. Lichen functional groups and tree foliage fell into three distinct groups with respect to δ13C; the tripartite cyanolichen Lobaria pulmonaria (lightest, host-tree needles (intermediate, and bipartite cyanolichens, hair (Alectoria and Bryoria spp. and chlorolichens (heaviest. Branch height of host trees was an effective predictor of needle δ13C. Our results showed a modest positive correlation between host tree foliage N and cyanolichen abundance, supporting our initial hypothesis that higher cyanolichen abundances would elevate host tree foliar N. Further study is required to determine if high cyanolichen abundance enhances host tree and/or stand-level productivity in sub-boreal forests of central BC, Canada.

  1. Growth responses of trees and understory plants to nitrogen fertilization in a subtropical forest in China

    Science.gov (United States)

    Tian, Di; Li, Peng; Fang, Wenjing; Xu, Jun; Luo, Yongkai; Yan, Zhengbing; Zhu, Biao; Wang, Jingjing; Xu, Xiaoniu; Fang, Jingyun

    2017-07-01

    Reactive nitrogen (N) increase in the biosphere has been a noteworthy aspect of global change, producing considerable ecological effects on the functioning and dynamics of the terrestrial ecosystems. A number of observational studies have explored responses of plants to experimentally simulated N enrichment in boreal and temperate forests. Here we investigate how the dominant trees and different understory plants respond to experimental N enrichment in a subtropical forest in China. We conducted a 3.4-year N fertilization experiment in an old-aged subtropical evergreen broad-leaved forest in eastern China with three treatment levels applied to nine 20 m × 20 m plots and replicated in three blocks. We divided the plants into trees, saplings, shrubs (including tree seedlings), and ground-cover plants (ferns) according to the growth forms, and then measured the absolute and relative basal area increments of trees and saplings and the aboveground biomass of understory shrubs and ferns. We further grouped individuals of the dominant tree species, Castanopsis eyrei, into three size classes to investigate their respective growth responses to the N fertilization. Our results showed that the plot-averaged absolute and relative growth rates of basal area and aboveground biomass of trees were not affected by N fertilization. Across the individuals of C. eyrei, the small trees with a DBH (diameter at breast height) of 5-10 cm declined by 66.4 and 59.5 %, respectively, in N50 (50 kg N ha-1 yr-1) and N100 fertilized plots (100 kg N ha-1 yr-1), while the growth of median and large trees with a DBH of > 10 cm did not significantly change with the N fertilization. The growth rate of small trees, saplings, and the aboveground biomass of understory shrubs and ground-cover ferns decreased significantly in the N-fertilized plots. Our findings suggested that N might not be a limiting nutrient in this mature subtropical forest, and that the limitation of other nutrients in the forest

  2. Growth responses of trees and understory plants to nitrogen fertilization in a subtropical forest in China

    Directory of Open Access Journals (Sweden)

    D. Tian

    2017-07-01

    Full Text Available Reactive nitrogen (N increase in the biosphere has been a noteworthy aspect of global change, producing considerable ecological effects on the functioning and dynamics of the terrestrial ecosystems. A number of observational studies have explored responses of plants to experimentally simulated N enrichment in boreal and temperate forests. Here we investigate how the dominant trees and different understory plants respond to experimental N enrichment in a subtropical forest in China. We conducted a 3.4-year N fertilization experiment in an old-aged subtropical evergreen broad-leaved forest in eastern China with three treatment levels applied to nine 20 m  ×  20 m plots and replicated in three blocks. We divided the plants into trees, saplings, shrubs (including tree seedlings, and ground-cover plants (ferns according to the growth forms, and then measured the absolute and relative basal area increments of trees and saplings and the aboveground biomass of understory shrubs and ferns. We further grouped individuals of the dominant tree species, Castanopsis eyrei, into three size classes to investigate their respective growth responses to the N fertilization. Our results showed that the plot-averaged absolute and relative growth rates of basal area and aboveground biomass of trees were not affected by N fertilization. Across the individuals of C. eyrei, the small trees with a DBH (diameter at breast height of 5–10 cm declined by 66.4 and 59.5 %, respectively, in N50 (50 kg N ha−1 yr−1 and N100 fertilized plots (100 kg N ha−1 yr−1, while the growth of median and large trees with a DBH of  >  10 cm did not significantly change with the N fertilization. The growth rate of small trees, saplings, and the aboveground biomass of understory shrubs and ground-cover ferns decreased significantly in the N-fertilized plots. Our findings suggested that N might not be a limiting nutrient in this mature subtropical

  3. Effects of soil type and light on height growth, biomass partitioning, and nitrogen dynamics on 22 species of tropical dry forest tree seedlings: Comparisons between legumes and nonlegumes.

    Science.gov (United States)

    Smith-Martin, Christina M; Gei, Maria G; Bergstrom, Ellie; Becklund, Kristen K; Becknell, Justin M; Waring, Bonnie G; Werden, Leland K; Powers, Jennifer S

    2017-03-01

    The seedling stage is particularly vulnerable to resource limitation, with potential consequences for community composition. We investigated how light and soil variation affected early growth, biomass partitioning, morphology, and physiology of 22 tree species common in tropical dry forest, including eight legumes. Our hypothesis was that legume seedlings are better at taking advantage of increased resource availability, which contributes to their successful regeneration in tropical dry forests. We grew seedlings in a full-factorial design under two light levels in two soil types that differed in nutrient concentrations and soil moisture. We measured height biweekly and, at final harvest, biomass partitioning, internode segments, leaf carbon, nitrogen, δ 13 C, and δ 15 N. Legumes initially grew taller and maintained that height advantage over time under all experimental conditions. Legumes also had the highest final total biomass and water-use efficiency in the high-light and high-resource soil. For nitrogen-fixing legumes, the amount of nitrogen derived from fixation was highest in the richer soil. Although seed mass tended to be larger in legumes, seed size alone did not account for all the differences between legumes and nonlegumes. Both belowground and aboveground resources were limiting to early seedling growth and function. Legumes may have a different regeneration niche, in that they germinate rapidly and grow taller than other species immediately after germination, maximizing their performance when light and belowground resources are readily available, and potentially permitting them to take advantage of high light, nutrient, and water availability at the beginning of the wet season. © 2017 Botanical Society of America.

  4. Ecosystem consequences of tree monodominance for nitrogen cycling in lowland tropical forest.

    Science.gov (United States)

    Brookshire, E N Jack; Thomas, Steven A

    2013-01-01

    Understanding how plant functional traits shape nutrient limitation and cycling on land is a major challenge in ecology. This is especially true for lowland forest ecosystems of the tropics which can be taxonomically and functionally diverse and rich in bioavailable nitrogen (N). In many tropical regions, however, diverse forests occur side-by-side with monodominant forest (one species >60% of canopy); the long-term biogeochemical consequences of tree monodominance are unclear. Particularly uncertain is whether the monodominant plant-soil system modifies nutrient balance at the ecosystem level. Here, we use chemical and stable isotope techniques to examine N cycling in old-growth Mora excelsa and diverse watershed rainforests on the island of Trinidad. Across 26 small watershed forests and 4 years, we show that Mora monodominance reduces bioavailable nitrate in the plant-soil system to exceedingly low levels which, in turn, results in small hydrologic and gaseous N losses at the watershed-level relative to adjacent N-rich diverse forests. Bioavailable N in soils and streams remained low and remarkably stable through time in Mora forests; N levels in diverse forests, on the other hand, showed high sensitivity to seasonal and inter-annual rainfall variation. Total mineral N losses from diverse forests exceeded inputs from atmospheric deposition, consistent with N saturation, while losses from Mora forests did not, suggesting N limitation. Our measures suggest that this difference cannot be explained by environmental factors but instead by low internal production and efficient retention of bioavailable N in the Mora plant-soil system. These results demonstrate ecosystem-level consequences of a tree species on the N cycle opposite to cases where trees enhance ecosystem N supply via N2 fixation and suggest that, over time, Mora monodominance may generate progressive N draw-down in the plant-soil system.

  5. Ecosystem consequences of tree monodominance for nitrogen cycling in lowland tropical forest.

    Directory of Open Access Journals (Sweden)

    E N Jack Brookshire

    Full Text Available Understanding how plant functional traits shape nutrient limitation and cycling on land is a major challenge in ecology. This is especially true for lowland forest ecosystems of the tropics which can be taxonomically and functionally diverse and rich in bioavailable nitrogen (N. In many tropical regions, however, diverse forests occur side-by-side with monodominant forest (one species >60% of canopy; the long-term biogeochemical consequences of tree monodominance are unclear. Particularly uncertain is whether the monodominant plant-soil system modifies nutrient balance at the ecosystem level. Here, we use chemical and stable isotope techniques to examine N cycling in old-growth Mora excelsa and diverse watershed rainforests on the island of Trinidad. Across 26 small watershed forests and 4 years, we show that Mora monodominance reduces bioavailable nitrate in the plant-soil system to exceedingly low levels which, in turn, results in small hydrologic and gaseous N losses at the watershed-level relative to adjacent N-rich diverse forests. Bioavailable N in soils and streams remained low and remarkably stable through time in Mora forests; N levels in diverse forests, on the other hand, showed high sensitivity to seasonal and inter-annual rainfall variation. Total mineral N losses from diverse forests exceeded inputs from atmospheric deposition, consistent with N saturation, while losses from Mora forests did not, suggesting N limitation. Our measures suggest that this difference cannot be explained by environmental factors but instead by low internal production and efficient retention of bioavailable N in the Mora plant-soil system. These results demonstrate ecosystem-level consequences of a tree species on the N cycle opposite to cases where trees enhance ecosystem N supply via N2 fixation and suggest that, over time, Mora monodominance may generate progressive N draw-down in the plant-soil system.

  6. Nitrogen release, tree uptake, and ecosystem retention in a mid-rotation loblolly pine plantation following fertilization with 15N-enriched enhanced efficiency fertilizers.

    OpenAIRE

    Werner, Amy

    2013-01-01

    Nitrogen is the most frequently limiting nutrient in southern pine plantations.  Previous studies found that only 10 to 25% of applied urea fertilizer N is taken up by trees.  Enhanced efficiency fertilizers could increase tree uptake efficiency by controlling the release of N and/or stabilize N.  Three enhanced efficiency fertilizers were selected as a representation of fertilizers that could be used in forestry: 1) NBPT treated urea (NBPT urea), 2) polymer coated urea (PC urea), and 3) mono...

  7. Needle-Age Related Variability in Nitrogen, Mobile Carbohydrates, and δ13C within Pinus koraiensis Tree Crowns

    Science.gov (United States)

    Yan, Cai-Feng; Han, Shi-Jie; Zhou, Yu-Mei; Wang, Cun-Guo; Dai, Guan-Hua; Xiao, Wen-Fa; Li, Mai-He

    2012-01-01

    For both ecologists and physiologists, foliar physioecology as a function of spatially and temporally variable environmental factors such as sunlight exposure within a tree crown is important for understanding whole tree physiology and for predicting ecosystem carbon balance and productivity. Hence, we studied concentrations of nitrogen (N), non-structural carbohydrates (NSC = soluble sugars + starch), and δ13C in different-aged needles within Pinus koraiensis tree crowns, to understand the needle age- and crown position-related physiology, in order to test the hypothesis that concentrations of N, NSC, and δ13C are needle-age and crown position dependent (more light, more photosynthesis affecting N, NSC, and δ13C), and to develop an accurate sampling strategy. The present study indicated that the 1-yr-old needles had significantly higher concentration levels of mobile carbohydrates (both on a mass and an area basis) and Narea (on an area basis), as well as NSC-N ratios, but significantly lower levels of Nmass (on a mass basis) concentration and specific leaf area (SLA), compared to the current-year needles. Azimuthal (south-facing vs. north-facing crown side) effects were found to be significant on starch [both on a mass (STmass) and an area basis (STarea)], δ13C values, and Narea, with higher levels in needles on the S-facing crown side than the N-facing crown side. Needle Nmass concentrations significantly decreased but needle STmass, STarea, and δ13C values significantly increased with increasing vertical crown levels. Our results suggest that the sun-exposed crown position related to photosynthetic activity and water availability affects starch accumulation and carbon isotope discrimination. Needle age associated with physiological activity plays an important role in determining carbon and nitrogen physiology. The present study indicates that across-scale sampling needs to carefully select tissue samples with equal age from a comparable crown position

  8. Achieving mainstream nitrogen removal through simultaneous partial nitrification, anammox and denitrification process in an integrated fixed film activated sludge reactor.

    Science.gov (United States)

    Wang, Chao; Liu, Sitong; Xu, Xiaochen; Zhang, Chaolei; Wang, Dong; Yang, Fenglin

    2018-07-01

    The anaerobic ammonium oxidation (anammox) is becoming a critical technology for energy neutral in mainstream wastewater treatment. However, the presence of chemical oxygen demanding in influent would result in a poor nitrogen removal efficiency during the deammonification process. In this study, the simultaneous partial nitrification, anammox and denitrification process (SNAD) for mainstream nitrogen removal was investigated in an integrated fixed film activated sludge (IFAS) reactor. SNAD-IFAS process achieved a total nitrogen (TN) removal efficiency of 72 ± 2% and an average COD removal efficiency was 88%. The optimum COD/N ratio for mainstream wastewater treatment was 1.2 ± 0.2. Illumina sequencing analysis and activity tests showed that anammox and denitrifying bacteria were the dominant nitrogen removal microorganism in the biofilm and the high COD/N ratios (≥2.0) leaded to the proliferation of heterotrophic bacteria (Hydrogenophaga) and nitrite-oxidizing bacteria (Nitrospira) in the suspended sludge. Network analysis confirmed that anammox bacteria (Candidatus Kuenenia) could survive in organic matter environment due to that anammox bacteria displayed significant co-occurrence through positive correlations with some heterotrophic bacteria (Limnobacter) which could protect anammox bacteria from hostile environments. Overall, the results of this study provided more comprehensive information regarding the community composition and assemblies in SNAD-IFAS process for mainstream nitrogen removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Incorporating nitrogen fixing cyanobacteria in the global biogeochemical model HAMOCC

    Science.gov (United States)

    Paulsen, Hanna; Ilyina, Tatiana; Six, Katharina

    2015-04-01

    Nitrogen fixation by marine diazotrophs plays a fundamental role in the oceanic nitrogen and carbon cycle as it provides a major source of 'new' nitrogen to the euphotic zone that supports biological carbon export and sequestration. Since most global biogeochemical models include nitrogen fixation only diagnostically, they are not able to capture its spatial pattern sufficiently. Here we present the incorporation of an explicit, dynamic representation of diazotrophic cyanobacteria and the corresponding nitrogen fixation in the global ocean biogeochemical model HAMOCC (Hamburg Ocean Carbon Cycle model), which is part of the Max Planck Institute for Meteorology Earth system model (MPI-ESM). The parameterization of the diazotrophic growth is thereby based on available knowledge about the cyanobacterium Trichodesmium spp., which is considered as the most significant pelagic nitrogen fixer. Evaluation against observations shows that the model successfully reproduces the main spatial distribution of cyanobacteria and nitrogen fixation, covering large parts of the tropical and subtropical oceans. Besides the role of cyanobacteria in marine biogeochemical cycles, their capacity to form extensive surface blooms induces a number of bio-physical feedback mechanisms in the Earth system. The processes driving these interactions, which are related to the alteration of heat absorption, surface albedo and momentum input by wind, are incorporated in the biogeochemical and physical model of the MPI-ESM in order to investigate their impacts on a global scale. First preliminary results will be shown.

  10. Total belowground carbon flux in subalpine forests is related to leaf area index, soil nitrogen, and tree height

    Science.gov (United States)

    Berryman, Erin Michele; Ryan, Michael G.; Bradford, John B.; Hawbaker, Todd J.; Birdsey, R.

    2016-01-01

    In forests, total belowground carbon (C) flux (TBCF) is a large component of the C budget and represents a critical pathway for delivery of plant C to soil. Reducing uncertainty around regional estimates of forest C cycling may be aided by incorporating knowledge of controls over soil respiration and TBCF. Photosynthesis, and presumably TBCF, declines with advancing tree size and age, and photosynthesis increases yet C partitioning to TBCF decreases in response to high soil fertility. We hypothesized that these causal relationships would result in predictable patterns of TBCF, and partitioning of C to TBCF, with natural variability in leaf area index (LAI), soil nitrogen (N), and tree height in subalpine forests in the Rocky Mountains, USA. Using three consecutive years of soil respiration data collected from 22 0.38-ha locations across three 1-km2 subalpine forested landscapes, we tested three hypotheses: (1) annual soil respiration and TBCF will show a hump-shaped relationship with LAI; (2) variability in TBCF unexplained by LAI will be related to soil nitrogen (N); and (3) partitioning of C to TBCF (relative to woody growth) will decline with increasing soil N and tree height. We found partial support for Hypothesis 1 and full support for Hypotheses 2 and 3. TBCF, but not soil respiration, was explained by LAI and soil N patterns (r2 = 0.49), and the ratio of annual TBCF to TBCF plus aboveground net primary productivity (ANPP) was related to soil N and tree height (r2 = 0.72). Thus, forest C partitioning to TBCF can vary even within the same forest type and region, and approaches that assume a constant fraction of TBCF relative to ANPP may be missing some of this variability. These relationships can aid with estimates of forest soil respiration and TBCF across landscapes, using spatially explicit forest data such as national inventories or remotely sensed data products.

  11. Toward a mechanistic modeling of nitrogen limitation for photosynthesis

    Science.gov (United States)

    Xu, C.; Fisher, R. A.; Travis, B. J.; Wilson, C. J.; McDowell, N. G.

    2011-12-01

    The nitrogen limitation is an important regulator for vegetation growth and global carbon cycle. Most current ecosystem process models simulate nitrogen effects on photosynthesis based on a prescribed relationship between leaf nitrogen and photosynthesis; however, there is a large amount of variability in this relationship with different light, temperature, nitrogen availability and CO2 conditions, which can affect the reliability of photosynthesis prediction under future climate conditions. To account for the variability in nitrogen-photosynthesis relationship under different environmental conditions, in this study, we developed a mechanistic model of nitrogen limitation for photosynthesis based on nitrogen trade-offs among light absorption, electron transport, carboxylization and carbon sink. Our model shows that strategies of nitrogen storage allocation as determined by tradeoff among growth and persistence is a key factor contributing to the variability in relationship between leaf nitrogen and photosynthesis. Nitrogen fertilization substantially increases the proportion of nitrogen in storage for coniferous trees but much less for deciduous trees, suggesting that coniferous trees allocate more nitrogen toward persistence compared to deciduous trees. The CO2 fertilization will cause lower nitrogen allocation for carboxylization but higher nitrogen allocation for storage, which leads to a weaker relationship between leaf nitrogen and maximum photosynthesis rate. Lower radiation will cause higher nitrogen allocation for light absorption and electron transport but less nitrogen allocation for carboxylyzation and storage, which also leads to weaker relationship between leaf nitrogen and maximum photosynthesis rate. At the same time, lower growing temperature will cause higher nitrogen allocation for carboxylyzation but lower allocation for light absorption, electron transport and storage, which leads to a stronger relationship between leaf nitrogen and maximum

  12. Natural isotopes abundance of 15N and 13C in leaves of some N2-fixing and non N2-fixing trees and shrubs in Syria

    International Nuclear Information System (INIS)

    Kurdali, F.; Al-Shamma'a, M.

    2007-12-01

    Variability in the natural abundance isotopes of 15 N and 13 C in leaves of several legume and non-legume plant species grown at different sites of two areas in semi-arid regions of Syria was determined. In the first area (non-saline soil), the 15 N values of a number of fixing and non-fixing reference plants ranged from -2.09 to +9.46, depending on plant species and studied site. 15 N in a number of legume species including Acacia cyanopylla (-1.73), Acacia farnesiana (-0.55), Prosopis juliflora (-1.64) and Medicago arborea (+1.6) were close to the atmospheric value pointing to a major contribution of N 2 fixing in these species; whereas, those of reference plants were highly positive (between +3.6 and +9.46%). In the actinorhizal tree, Elaeagnus angustifolia, the 15 N abundance was far lower (-0.46 to -2.1%) strongly suggesting that the plant obtained large proportional contribution from BNF. In contrast, δ 15 N values in some other legumes and actinorhizal plants were relatively similar to those of reference plants, suggesting that the contribution of fixed N 2 is negligible. On the other hand, δ 13 C% values in leaves of C3 plants were affected by plant species, ranging from a minimum of -28.67% to a maximum of -23%. However, they were the same within each plant species although they were grown at different sites. Moreover, dual stable isotope analysis in leaves of Prosopis juliflora and other non- legumes grown on a salt affected soil (second area) was also conducted. Results showed that salinity did not affect C assimilation in this woody legume since a higher carbon discrimination was obtained indicating that this plant is a salt tolerant species; whereas, N2-fixation was drastically affected (δ 15 N= +7.03). (Author)

  13. Effects of nitrogen fertilization on forest trees in relation to insect resistance and to red-listed insect species

    International Nuclear Information System (INIS)

    Glynn, C.; Herms, D.A.

    2001-10-01

    Ecosystems worldwide are experiencing unprecedented nitrogen enrichment through fertilization and pollution. While longterm ecological consequences are difficult to predict, it seems that plants and animals adapted to nitrogen-limited environments are at particular risk from these changes. This report summarizes the limited body of literature which addresses this important topic. From a herbivoreAes perspective, fertilization increases the nutritional quality of host plant tissues. In some cases fertilization has lead to decreased production of defensive compounds. How this affects populations of insects is unclear because fertilization affects not only herbivores but their natural enemies. This report outlines how fertilization affects tree processes such as growth, photosynthesis, and production of defensive compounds. The many factors that affect insect repsonse to fertilization and the difficulties in assessing how fertilization affects insect populations are discussed

  14. Natural abundances of 15N and 13C in leaves of some N2- fixing and non N2- fixing trees and shrubs in Syria

    International Nuclear Information System (INIS)

    Kurdali, F.; Al-Shamma'a, M.

    2010-01-01

    A survey study was conducted on man-made plantations located at two different areas in the arid region of Syria to determine the variations in natural abundances of the 12 N and 13 C isotopes in leaves of several woody legume and non-legume species, and to better understand the consequence of such variations on nitrogen fixation and carbon assimilation. In the first study area (non-saline soil), the δ 15 N values in four legume species (Acacia cyanopylla, -1.73 %; Acacia farnesiana, -0.55%; Prosopis juliflora, -1.64%, and Medicago arborea, +1.6%) and one actinorhizal plant (Elaeagnus angustifolia, -0.46 to -2.1%) were found to be close to that of the atmospheric value pointing to a major contribution of N 2 fixing in these species; whereas, δ 15 N values of the non-fixing plant species were highly positive.δ 13 C% in leaves of the C 3 plants were found to be affected by plant species, ranging from a minimum of -28.67% to a maximum of -23%. However, they were relatively similar within each plant species although they were grown at different sites. In the second study area (salt affected soil) a higher carbon discrimination value (Δ 3 C%) was exhibited by Prosopis juliflora indicating that the latter is a salt tolerant species; however, its δ 15 N was highly positive (+7.03%) suggesting a negligible contribution of the fixed N 2 . Hence, it was concluded that the enhancement of N 2 fixation might be achieved by selection of salt-tolerant rhizobium strains. (author)

  15. Transformation of nitrogenous fertilizers of surface and deep application in calcareous soil

    International Nuclear Information System (INIS)

    Zuo Dongfeng

    1990-01-01

    The transformations of 15 N labelled fertilizer N in calcareous soil were studied under greennhouse conditions. The experimental results indicate that the ratio of fixed ammonium is closely related to the methods of fertilizer application to the soil. When fertilizer N applied as deep dressing the fixation of nitrogen by clay minerals and microorganisms may markedly reduce the losses of nitrogen, but the amount of nitrogen fixed by the clay minerals and that by microorganisms showed negative correlation (r = -0.9185 ** ). The more the amount of fixed nitrogen by clay minerals, the less by microorganisms. No obvious interrelation between the residual utilization of urea, ammonium bicarbonate, ammonium sulfate and the ammount of nitrogen fixed by organisms can be observed, but the residual utilization of these fertilizers by the succeeding crop has been related to the total amount of mineral nitrogen

  16. Biological nitrogen fixation in non-legume plants.

    Science.gov (United States)

    Santi, Carole; Bogusz, Didier; Franche, Claudine

    2013-05-01

    Nitrogen is an essential nutrient in plant growth. The ability of a plant to supply all or part of its requirements from biological nitrogen fixation (BNF) thanks to interactions with endosymbiotic, associative and endophytic symbionts, confers a great competitive advantage over non-nitrogen-fixing plants. Because BNF in legumes is well documented, this review focuses on BNF in non-legume plants. Despite the phylogenic and ecological diversity among diazotrophic bacteria and their hosts, tightly regulated communication is always necessary between the microorganisms and the host plant to achieve a successful interaction. Ongoing research efforts to improve knowledge of the molecular mechanisms underlying these original relationships and some common strategies leading to a successful relationship between the nitrogen-fixing microorganisms and their hosts are presented. Understanding the molecular mechanism of BNF outside the legume-rhizobium symbiosis could have important agronomic implications and enable the use of N-fertilizers to be reduced or even avoided. Indeed, in the short term, improved understanding could lead to more sustainable exploitation of the biodiversity of nitrogen-fixing organisms and, in the longer term, to the transfer of endosymbiotic nitrogen-fixation capacities to major non-legume crops.

  17. Proteomic analysis reveals contrasting stress response to uranium in two nitrogen-fixing Anabaena strains, differentially tolerant to uranium

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Bandita; Basu, Bhakti; Acharya, Celin; Rajaram, Hema; Apte, Shree Kumar, E-mail: aptesk@barc.gov.in

    2017-01-15

    Highlights: • Response of two native cyanobacterial strains to uranium exposure was studied. • Anabaena L-31 exhibited higher tolerance to uranium as compared to Anabaena 7120. • Uranium exposure differentially affected the proteome profiles of the two strains. • Anabaena L-31 showed better sustenance of photosynthesis and carbon metabolism. • Anabaena L-31 displayed superior oxidative stress defense than Anabaena 7120. - Abstract: Two strains of the nitrogen-fixing cyanobacterium Anabaena, native to Indian paddy fields, displayed differential sensitivity to exposure to uranyl carbonate at neutral pH. Anabaena sp. strain PCC 7120 and Anabaena sp. strain L-31 displayed 50% reduction in survival (LD{sub 50} dose), following 3 h exposure to 75 μM and 200 μM uranyl carbonate, respectively. Uranium responsive proteome alterations were visualized by 2D gel electrophoresis, followed by protein identification by MALDI-ToF mass spectrometry. The two strains displayed significant differences in levels of proteins associated with photosynthesis, carbon metabolism, and oxidative stress alleviation, commensurate with their uranium tolerance. Higher uranium tolerance of Anabaena sp. strain L-31 could be attributed to sustained photosynthesis and carbon metabolism and superior oxidative stress defense, as compared to the uranium sensitive Anabaena sp. strain PCC 7120. Significance: Uranium responsive proteome modulations in two nitrogen-fixing strains of Anabaena, native to Indian paddy fields, revealed that rapid adaptation to better oxidative stress management, and maintenance of metabolic and energy homeostasis underlies superior uranium tolerance of Anabaena sp. strain L-31 compared to Anabaena sp. strain PCC 7120.

  18. Modeling the Ecosystem Services Provided by Trees in Urban Ecosystems: Using Biome-BGC to Improve i-Tree Eco

    Science.gov (United States)

    Brown, Molly E.; McGroddy, Megan; Spence, Caitlin; Flake, Leah; Sarfraz, Amna; Nowak, David J.; Milesi, Cristina

    2012-01-01

    As the world becomes increasingly urban, the need to quantify the effect of trees in urban environments on energy usage, air pollution, local climate and nutrient run-off has increased. By identifying, quantifying and valuing the ecological activity that provides services in urban areas, stronger policies and improved quality of life for urban residents can be obtained. Here we focus on two radically different models that can be used to characterize urban forests. The i-Tree Eco model (formerly UFORE model) quantifies ecosystem services (e.g., air pollution removal, carbon storage) and values derived from urban trees based on field measurements of trees and local ancillary data sets. Biome-BGC (Biome BioGeoChemistry) is used to simulate the fluxes and storage of carbon, water, and nitrogen in natural environments. This paper compares i-Tree Eco's methods to those of Biome-BGC, which estimates the fluxes and storage of energy, carbon, water and nitrogen for vegetation and soil components of the ecosystem. We describe the two models and their differences in the way they calculate similar properties, with a focus on carbon and nitrogen. Finally, we discuss the implications of further integration of these two communities for land managers such as those in Maryland.

  19. The independent acquisition of plant root nitrogen-fixing symbiosis in Fabids recruited the same genetic pathway for nodule organogenesis.

    Directory of Open Access Journals (Sweden)

    Sergio Svistoonoff

    Full Text Available Only species belonging to the Fabid clade, limited to four classes and ten families of Angiosperms, are able to form nitrogen-fixing root nodule symbioses (RNS with soil bacteria. This concerns plants of the legume family (Fabaceae and Parasponia (Cannabaceae associated with the Gram-negative proteobacteria collectively called rhizobia and actinorhizal plants associated with the Gram-positive actinomycetes of the genus Frankia. Calcium and calmodulin-dependent protein kinase (CCaMK is a key component of the common signaling pathway leading to both rhizobial and arbuscular mycorrhizal symbioses (AM and plays a central role in cross-signaling between root nodule organogenesis and infection processes. Here, we show that CCaMK is also needed for successful actinorhiza formation and interaction with AM fungi in the actinorhizal tree Casuarina glauca and is also able to restore both nodulation and AM symbioses in a Medicago truncatula ccamk mutant. Besides, we expressed auto-active CgCCaMK lacking the auto-inhibitory/CaM domain in two actinorhizal species: C. glauca (Casuarinaceae, which develops an intracellular infection pathway, and Discaria trinervis (Rhamnaceae which is characterized by an ancestral intercellular infection mechanism. In both species, we found induction of nodulation independent of Frankia similar to response to the activation of CCaMK in the rhizobia-legume symbiosis and conclude that the regulation of actinorhiza organogenesis is conserved regardless of the infection mode. It has been suggested that rhizobial and actinorhizal symbioses originated from a common ancestor with several independent evolutionary origins. Our findings are consistent with the recruitment of a similar genetic pathway governing rhizobial and Frankia nodule organogenesis.

  20. Alteration of the exopolysaccharide production and the transcriptional profile of free-living Frankia strain CcI3 under nitrogen-fixing conditions.

    Science.gov (United States)

    Lee, Hae-In; Donati, Andrew J; Hahn, Dittmar; Tisa, Louis S; Chang, Woo-Suk

    2013-12-01

    We investigated the effect of different nitrogen (N) sources on exopolysaccharide (EPS) production and composition by Frankia strain CcI3, a N2-fixing actinomycete that forms root nodules with Casuarina species. Frankia cells grown in the absence of NH4Cl (i.e., under N2-fixing conditions) produced 1.7-fold more EPS, with lower galactose (45.1 vs. 54.7 mol%) and higher mannose (17.3 vs. 9.7 mol%) contents than those grown in the presence of NH4Cl as a combined N-source. In the absence of the combined N-source, terminally linked and branched residue contents were nearly twice as high with 32.8 vs. 15.1 mol% and 15.1 vs. 8.7 mol%, respectively, than in its presence, while the content of linearly linked residues was lower with 52.1 mol% compared to 76.2 mol%. To find out clues for the altered EPS production at the transcriptional level, we performed whole-gene expression profiling using quantitative reverse transcription PCR and microarray technology. The transcription profiles of Frankia strain CcI3 grown in the absence of NH4Cl revealed up to 2 orders of magnitude higher transcription of nitrogen fixation-related genes compared to those of CcI3 cells grown in the presence of NH4Cl. Unexpectedly, microarray data did not provide evidence for transcriptional regulation as a mechanism for differences in EPS production. These findings indicate effects of nitrogen fixation on the production and composition of EPS in Frankia strain CcI3 and suggest posttranscriptional regulation of enhanced EPS production in the absence of the combined N-source.

  1. Combining multiple isotopes and metagenomic to delineate the role of tree canopy nitrification in European forests along nitrogen deposition and climate gradients

    Science.gov (United States)

    Guerrieri, R.; Avila, A.; Barceló, A.; Elustondo, D.; Hellstein, S.; Magnani, F.; Mattana, S.; Matteucci, G.; Merilä, P.; Michalski, G. M.; Nicolas, M.; Vanguelova, E.; Verstraeten, A.; Waldner, P.; Watanabe, M.; Penuelas, J.; Mencuccini, M.

    2017-12-01

    Forest canopies influence our climate through carbon, water and energy exchanges with the atmosphere. However, less investigated is whether and how tree canopies change the chemical composition of precipitation, with important implications on forest nutrient cycling. Recently, we provided for the first time isotopic evidence that biological nitrification in tree canopies was responsible for significant changes in the amount of nitrate from rainfall to throughfall across two UK forests at high nitrogen (N) deposition [1]. This finding strongly suggested that bacteria and/or Archaea species of the phyllosphere are responsible for transforming atmospheric N before it reaches the soil. Despite microbial epiphytes representing an important component of tree canopies, attention has been mostly directed to their role as pathogens, while we still do not know whether and how they affect nutrient cycling. Our study aims to 1) characterize microbial communities harboured in tree canopies for two of the most dominant species in Europe (Fagus sylvatica L. and Pinus sylvestris L.) using metagenomic techniques, 2) quantify the functional genes related to nitrification but also to denitrification and N fixation, and 3) estimate the contribution of NO3 derived from biological canopy nitrification vs. atmospheric NO3 input by using δ15N, δ18O and δ17O of NO3in forest water. We considered i) twelve sites included in the EU ICP long term intensive forest monitoring network, chosen along a climate and nitrogen deposition gradient, spanning from Fennoscandia to the Mediterranean and ii) a manipulation experiment where N mist treatments were carried out either to the soil or over tree canopies. We will present preliminary results regarding microbial diversity in the phyllosphere, water (rainfall and throughfall) and soil samples over the gradient. Furthermore, we will report differences between the two investigated tree species for the phyllosphere core microbiome in terms of relative

  2. Nitrogen fixation by cyanobacteria stimulates production in Baltic food webs.

    Science.gov (United States)

    Karlson, Agnes M L; Duberg, Jon; Motwani, Nisha H; Hogfors, Hedvig; Klawonn, Isabell; Ploug, Helle; Barthel Svedén, Jennie; Garbaras, Andrius; Sundelin, Brita; Hajdu, Susanna; Larsson, Ulf; Elmgren, Ragnar; Gorokhova, Elena

    2015-06-01

    Filamentous, nitrogen-fixing cyanobacteria form extensive summer blooms in the Baltic Sea. Their ability to fix dissolved N2 allows cyanobacteria to circumvent the general summer nitrogen limitation, while also generating a supply of novel bioavailable nitrogen for the food web. However, the fate of the nitrogen fixed by cyanobacteria remains unresolved, as does its importance for secondary production in the Baltic Sea. Here, we synthesize recent experimental and field studies providing strong empirical evidence that cyanobacterial nitrogen is efficiently assimilated and transferred in Baltic food webs via two major pathways: directly by grazing on fresh or decaying cyanobacteria and indirectly through the uptake by other phytoplankton and microbes of bioavailable nitrogen exuded from cyanobacterial cells. This information is an essential step toward guiding nutrient management to minimize noxious blooms without overly reducing secondary production, and ultimately most probably fish production in the Baltic Sea.

  3. NifH and NifD phylogenies: an evolutionary basis for understanding nitrogen fixation capabilities of methanotrophic bacteria.

    Science.gov (United States)

    Dedysh, Svetlana N; Ricke, Peter; Liesack, Werner

    2004-05-01

    The ability to utilize dinitrogen as a nitrogen source is an important phenotypic trait in most currently known methanotrophic bacteria (MB). This trait is especially important for acidophilic MB, which inhabit acidic oligotrophic environments, highly depleted in available nitrogen compounds. Phylogenetically, acidophilic MB are most closely related to heterotrophic dinitrogen-fixing bacteria of the genus BEIJERINCKIA: To further explore the phylogenetic linkage between these metabolically different organisms, the sequences of nifH and nifD gene fragments from acidophilic MB of the genera Methylocella and Methylocapsa, and from representatives of Beijerinckia, were determined. For reference, nifH and nifD sequences were also obtained from some type II MB of the alphaproteobacterial Methylosinus/Methylocystis group and from gammaproteobacterial type I MB. The trees constructed for the inferred amino acid sequences of nifH and nifD were highly congruent. The phylogenetic relationships among MB in the NifH and NifD trees also agreed well with the corresponding 16S rRNA-based phylogeny, except for two distinctive features. First, different methods used for phylogenetic analysis grouped the NifH and NifD sequences of strains of the gammaproteobacterial MB Methylococcus capsulatus within a clade mainly characterized by Alphaproteobacteria, including acidophilic MB and type II MB of the Methylosinus/Methylocystis group. From this and other genomic data from Methylococcus capsulatus Bath, it is proposed that an ancient event of lateral gene transfer was responsible for this aberrant branching. Second, the identity values of NifH and NifD sequences between Methylocapsa acidiphila B2 and representatives of Beijerinckia were clearly higher (98.5 and 96.6 %, respectively) than would be expected from their 16S rRNA-based relationships. Possibly, these two bacteria originated from a common acidophilic dinitrogen-fixing ancestor, and were subject to similar evolutionary pressure

  4. Comparative diversity and composition of nitrogen-fixing ...

    African Journals Online (AJOL)

    Three contrasting land use systems: reserve forests, rice fields and coal fields located at Upper Assam region of North East India were explored for documenting diversity and species composition of N2-fixing cyanobacteria. Altogether 24 taxa (16 heterocystous and 8 non-heterocystous) belonging to nine different genera ...

  5. Natural abundances of 15N and 13C in leaves of some N2-fixing and non-N2-fixing trees and shrubs in Syria.

    Science.gov (United States)

    Kurdali, F; Al-Shamma'a, M

    2009-09-01

    A survey study was conducted on man-made plantations located at two different areas in the arid region of Syria to determine the variations in natural abundances of the (15)N and (13)C isotopes in leaves of several woody legume and non-legume species, and to better understand the consequence of such variations on nitrogen fixation and carbon assimilation. In the first study area (non-saline soil), the delta(15)N values in four legume species (Acacia cyanophylla,-1.73 per thousand Acacia farnesiana,-0.55 per thousand Prosopis juliflora,-1.64 per thousand; and Medicago arborea,+1.6 \\textperthousand) and one actinorhizal plant (Elaeagnus angustifolia,-0.46 to-2.1 per thousand) were found to be close to that of the atmospheric value pointing to a major contribution of N(2) fixing in these species; whereas, delta(15)N values of the non-fixing plant species were highly positive. delta(13)C per thousand; in leaves of the C3 plants were found to be affected by plant species, ranging from a minimum of-28.67 per thousand; to a maximum of-23 per thousand. However, they were relatively similar within each plant species although they were grown at different sites. In the second study area (salt affected soil), a higher carbon discrimination value (Delta(13)C per thousand) was exhibited by P. juliflora, indicating that the latter is a salt tolerant species; however, its delta(15)N was highly positive (+7.03 per thousand) suggesting a negligible contribution of the fixed N(2). Hence, it was concluded that the enhancement of N(2) fixation might be achieved by selection of salt-tolerant Rhizobium strains.

  6. Nitrogen-Fixing Bacteria in Eucalyptus globulus Plantations

    Science.gov (United States)

    da Silva, Marliane de Cássia Soares; Paula, Thiago de Almeida; Moreira, Bruno Coutinho; Carolino, Manuela; Cruz, Cristina; Bazzolli, Denise Mara Soares; Silva, Cynthia Canedo; Kasuya, Maria Catarina Megumi

    2014-01-01

    Eucalypt cultivation is an important economic activity worldwide. In Portugal, Eucalyptus globulus plantations account for one-third of the total forested area. The nutritional requirements of this crop have been well studied, and nitrogen (N) is one of the most important elements required for vegetal growth. N dynamics in soils are influenced by microorganisms, such as diazotrophic bacteria (DB) that are responsible for biological nitrogen fixation (BNF), so the aim of this study was to evaluate and identity the main groups of DB in E. globulus plantations. Samples of soil and root systems were collected in winter and summer from three different Portuguese regions (Penafiel, Gavião and Odemira). We observed that DB communities were affected by season, N fertilization and moisture. Furthermore Bradyrhizobium and Burkholderia were the most prevalent genera in these three regions. This is the first study describing the dynamic of these bacteria in E. globulus plantations, and these data will likely contribute to a better understanding of the nutritional requirements of eucalypt cultivation and associated organic matter turnover. PMID:25340502

  7. Nitrogen-fixing bacteria in Eucalyptus globulus plantations.

    Science.gov (United States)

    da Silva, Marliane de Cássia Soares; Paula, Thiago de Almeida; Moreira, Bruno Coutinho; Carolino, Manuela; Cruz, Cristina; Bazzolli, Denise Mara Soares; Silva, Cynthia Canedo; Kasuya, Maria Catarina Megumi

    2014-01-01

    Eucalypt cultivation is an important economic activity worldwide. In Portugal, Eucalyptus globulus plantations account for one-third of the total forested area. The nutritional requirements of this crop have been well studied, and nitrogen (N) is one of the most important elements required for vegetal growth. N dynamics in soils are influenced by microorganisms, such as diazotrophic bacteria (DB) that are responsible for biological nitrogen fixation (BNF), so the aim of this study was to evaluate and identity the main groups of DB in E. globulus plantations. Samples of soil and root systems were collected in winter and summer from three different Portuguese regions (Penafiel, Gavião and Odemira). We observed that DB communities were affected by season, N fertilization and moisture. Furthermore Bradyrhizobium and Burkholderia were the most prevalent genera in these three regions. This is the first study describing the dynamic of these bacteria in E. globulus plantations, and these data will likely contribute to a better understanding of the nutritional requirements of eucalypt cultivation and associated organic matter turnover.

  8. Nitrogen-fixing bacteria in Eucalyptus globulus plantations.

    Directory of Open Access Journals (Sweden)

    Marliane de Cássia Soares da Silva

    Full Text Available Eucalypt cultivation is an important economic activity worldwide. In Portugal, Eucalyptus globulus plantations account for one-third of the total forested area. The nutritional requirements of this crop have been well studied, and nitrogen (N is one of the most important elements required for vegetal growth. N dynamics in soils are influenced by microorganisms, such as diazotrophic bacteria (DB that are responsible for biological nitrogen fixation (BNF, so the aim of this study was to evaluate and identity the main groups of DB in E. globulus plantations. Samples of soil and root systems were collected in winter and summer from three different Portuguese regions (Penafiel, Gavião and Odemira. We observed that DB communities were affected by season, N fertilization and moisture. Furthermore Bradyrhizobium and Burkholderia were the most prevalent genera in these three regions. This is the first study describing the dynamic of these bacteria in E. globulus plantations, and these data will likely contribute to a better understanding of the nutritional requirements of eucalypt cultivation and associated organic matter turnover.

  9. Visualizing Individual Tree Differences in Tree-Ring Studies

    Directory of Open Access Journals (Sweden)

    Mario Trouillier

    2018-04-01

    Full Text Available Averaging tree-ring measurements from multiple individuals is one of the most common procedures in dendrochronology. It serves to filter out noise from individual differences between trees, such as competition, height, and micro-site effects, which ideally results in a site chronology sensitive to regional scale factors such as climate. However, the climate sensitivity of individual trees can be modulated by factors like competition, height, and nitrogen deposition, calling attention to whether average chronologies adequately assess climatic growth-control. In this study, we demonstrate four simple but effective methods to visually assess differences between individual trees. Using individual tree climate-correlations we: (1 employed jitter plots with superimposed metadata to assess potential causes for these differences; (2 plotted the frequency distributions of climate correlations over time as heat maps; (3 mapped the spatial distribution of climate sensitivity over time to assess spatio-temporal dynamics; and (4 used t-distributed Stochastic Neighborhood Embedding (t-SNE to assess which trees were generally more similar in terms of their tree-ring pattern and their correlation with climate variables. This suite of exploratory methods can indicate if individuals in tree-ring datasets respond differently to climate variability, and therefore, should not solely be explored with climate correlations of the mean population chronology.

  10. A restricted Steiner tree problem is solved by Geometric Method II

    Science.gov (United States)

    Lin, Dazhi; Zhang, Youlin; Lu, Xiaoxu

    2013-03-01

    The minimum Steiner tree problem has wide application background, such as transportation system, communication network, pipeline design and VISL, etc. It is unfortunately that the computational complexity of the problem is NP-hard. People are common to find some special problems to consider. In this paper, we first put forward a restricted Steiner tree problem, which the fixed vertices are in the same side of one line L and we find a vertex on L such the length of the tree is minimal. By the definition and the complexity of the Steiner tree problem, we know that the complexity of this problem is also Np-complete. In the part one, we have considered there are two fixed vertices to find the restricted Steiner tree problem. Naturally, we consider there are three fixed vertices to find the restricted Steiner tree problem. And we also use the geometric method to solve such the problem.

  11. Nitrogen fixation and molecular oxygen: comparative genomic reconstruction of transcription regulation in Alphaproteobacteria

    Directory of Open Access Journals (Sweden)

    Olga V Tsoy

    2016-08-01

    Full Text Available Biological nitrogen fixation plays a crucial role in the nitrogen cycle. An ability to fix atmospheric nitrogen, reducing it to ammonium, was described for multiple species of Bacteria and Archaea. Being a complex and sensitive process, nitrogen fixation requires a complicated regulatory system, also, on the level of transcription. The transcriptional regulatory network for nitrogen fixation was extensively studied in several representatives of the class Alphaproteobacteria. This regulatory network includes the activator of nitrogen fixation NifA, working in tandem with the alternative sigma-factor RpoN as well as oxygen-responsive regulatory systems, one-component regulators FnrN/FixK and two-component system FixLJ. Here we used a comparative genomics analysis for in silico study of the transcriptional regulatory network in 50 genomes of Alphaproteobacteria. We extended the known regulons and proposed the scenario for the evolution of the nitrogen fixation transcriptional network. The reconstructed network substantially expands the existing knowledge of transcriptional regulation in nitrogen-fixing microorganisms and can be used for genetic experiments, metabolic reconstruction, and evolutionary analysis.

  12. Enzymology of biological nitrogen fixation. Final report, May 1, 1987--April 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    Biological nitrogen fixation is of central importance in the earth`s nitrogen economy. Fixation of nitrogen is accomplished by a variety of microorganisms, all of them procaryotic. Some operate independently and some function symbiotically or associatively with photosynthesizing plants. Biological nitrogen fixation is accomplished via the reaction: N{sub 2} + 8H{sup +} + 8e{sup {minus}} {yields} 2NH{sub 3} + H{sub 2}. This reaction requires a minimum of 16 ATP under ideal laboratory conditions, so it is obvious that the energy demand of the reaction is very high. When certain nitrogen-fixing organisms are supplied fixed nitrogen (e.g., ammonium) the organisms use the fixed nitrogen and turn off their nitrogenase system, thus conserving energy. When the fixed nitrogen is exhausted, the organism reactivates its nitrogenase. The system is turned off by dinitrogenase reductase ADP-ribosyl transferase (DRAT) and turned back on by dinitrogenase reductase-activating glycohydrolase (DRAG). The authors have investigated the details of how DRAT and DRAG are formed, how they function, and the genetics of their formation and operation.

  13. Content of nitrogen in atmospheric precipitation in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Angstroem, A; Hoegberg, L

    1952-01-01

    In the present paper an attempt is made to give a general idea of the geographical distribution of fixed nitrogen (NH/sub 4/-N) transferred to the soil through precipitation in Sweden. Further a map is given showing the distribution af alpha, a quantity proportional to the nitrogen concentration in the precipitation at the beginning of a rain and, it is assumed, representative for the content of fixed nitrogen in the atmosphere before the rain is falling. A discussion of different causes of the concentration of fixed nitrogen in precipitation is presented and a photochemical process is suggested, which would explain the almost constant ratio between NH/sub 4//sup -n/ and NO/sub 3//sup -n/ frequently found within the temperate zones. It is evident, however, that other causes also are at work, especially at lower latitudes. The need of laboratory experiments is emphasized.

  14. Field performance of new cowpea cultivars inoculated with efficient nitrogen-fixing rhizobial strains in the Brazilian Semiarid

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Nunes Marinho

    2014-05-01

    Full Text Available The objective of this work was to evaluate the contribution of efficient nitrogen-fixing rhizobial strains to grain yield of new cowpea cultivars, indicated for cultivation in the Brazilian Semiarid region, in the sub-medium of the São Francisco River Valley. Two experiments were set up at the irrigated perimeters of Mandacaru (Juazeiro, state of Bahia and Bebedouro (Petrolina, state of Pernambuco. The treatments consisted of single inoculation of five rhizobial strains - BR 3267, BR 3262, INPA 03-11B, UFLA 03-84 (Bradyrhizobium sp., and BR 3299T (Microvirga vignae -, besides a treatment with nitrogen and a control without inoculation or N application. The following cowpea cultivars were evaluated: BRS Pujante, BRS Tapaihum, BRS Carijó, and BRS Acauã. A randomized complete block design, with four replicates, was used. Inoculated plants showed similar grain yield to the one observed with plants fertilized with 80 kg ha-1 N. The cultivars BRS Tapaihum and BRS Pujante stood out in grain yield and protein contents when inoculated, showing their potential for cultivation in the sub-medium of the São Francisco River Valley.

  15. Synthetic biology approaches to engineering the nitrogen symbiosis in cereals.

    Science.gov (United States)

    Rogers, Christian; Oldroyd, Giles E D

    2014-05-01

    Nitrogen is abundant in the earth's atmosphere but, unlike carbon, cannot be directly assimilated by plants. The limitation this places on plant productivity has been circumvented in contemporary agriculture through the production and application of chemical fertilizers. The chemical reduction of nitrogen for this purpose consumes large amounts of energy and the reactive nitrogen released into the environment as a result of fertilizer application leads to greenhouse gas emissions, as well as widespread eutrophication of aquatic ecosystems. The environmental impacts are intensified by injudicious use of fertilizers in many parts of the world. Simultaneously, limitations in the production and supply of chemical fertilizers in other regions are leading to low agricultural productivity and malnutrition. Nitrogen can be directly fixed from the atmosphere by some bacteria and Archaea, which possess the enzyme nitrogenase. Some plant species, most notably legumes, have evolved close symbiotic associations with nitrogen-fixing bacteria. Engineering cereal crops with the capability to fix their own nitrogen could one day address the problems created by the over- and under-use of nitrogen fertilizers in agriculture. This could be achieved either by expression of a functional nitrogenase enzyme in the cells of the cereal crop or through transferring the capability to form a symbiotic association with nitrogen-fixing bacteria. While potentially transformative, these biotechnological approaches are challenging; however, with recent advances in synthetic biology they are viable long-term goals. This review discusses the possibility of these biotechnological solutions to the nitrogen problem, focusing on engineering the nitrogen symbiosis in cereals.

  16. Decomposing highly edge-connected graphs into homomorphic copies of a fixed tree

    DEFF Research Database (Denmark)

    Merker, Martin

    2016-01-01

    far this conjecture has only been verified for paths, stars, and a family of bistars. We prove a weaker version of the Tree Decomposition Conjecture, where we require the subgraphs in the decomposition to be isomorphic to graphs that can be obtained from T by vertex-identifications. We call......The Tree Decomposition Conjecture by Barát and Thomassen states that for every tree T there exists a natural number k(T) such that the following holds: If G is a k(T)-edge-connected simple graph with size divisible by the size of T, then G can be edge-decomposed into subgraphs isomorphic to T. So...... such a subgraph a homomorphic copy of T. This implies the Tree Decomposition Conjecture under the additional constraint that the girth of G is greater than the diameter of T. As an application, we verify the Tree Decomposition Conjecture for all trees of diameter at most 4....

  17. Unusual radioresistance of nitrogen-fixing cultures of Anabaena ...

    Indian Academy of Sciences (India)

    Prakash

    Atlas R M 2004 Handbook of microbiological media; third edition. (Florida: CRC Press) ... nitrogen-fixation, and nodularin production by two Baltic sea cyanobacteria ... Sharma A 1998 Mycotoxins: risk evaluation and management in radiation ...

  18. Nitrogen fixation by the Azolla-Anabaena azollae symbiosis

    International Nuclear Information System (INIS)

    Becking, J.H.

    1985-01-01

    A concise outline is presented on the main characteristics of the Azolla association in relation to tropical wetland rice cultivation and the nitrogen economy of paddy soils. Due to the presence of a nitrogen fixing cyanobiont occurring in a special leaf cavity of the Azolla leaf, the water fern Azolla can grow in a nitrogen-deficient environment and is able to contribute considerably to the nitrogen status of the soil. An experimental set-up is presented for how the nitrogen-fixing capacity of Azolla plants can be measured in the field by means of the acetylene reduction assay using a rather simple glass vessel. A comparison was made between 15 N 2 fixation by Azolla and acetylene reduction of Azolla plants under identical conditions

  19. Energy transfer in Anabaena variabilis filaments adapted to nitrogen-depleted and nitrogen-enriched conditions studied by time-resolved fluorescence.

    Science.gov (United States)

    Onishi, Aya; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2017-09-01

    Nitrogen is among the most important nutritious elements for photosynthetic organisms such as plants, algae, and cyanobacteria. Therefore, nitrogen depletion severely compromises the growth, development, and photosynthesis of these organisms. To preserve their integrity under nitrogen-depleted conditions, filamentous nitrogen-fixing cyanobacteria reduce atmospheric nitrogen to ammonia, and self-adapt by regulating their light-harvesting and excitation energy-transfer processes. To investigate the changes in the primary processes of photosynthesis, we measured the steady-state absorption and fluorescence spectra and time-resolved fluorescence spectra (TRFS) of whole filaments of the nitrogen-fixing cyanobacterium Anabaena variabilis at 77 K. The filaments were grown in standard and nitrogen-free media for 6 months. The TRFS were measured with a picosecond time-correlated single photon counting system. Despite the phycobilisome degradation, the energy-transfer paths within phycobilisome and from phycobilisome to both photosystems were maintained. However, the energy transfer from photosystem II to photosystem I was suppressed and a specific red chlorophyll band appeared under the nitrogen-depleted condition.

  20. Natural and anthropogenic variations in the N cycle - A perspective provided by nitrogen isotopes in trees near oil-sand developments

    Science.gov (United States)

    Savard, M. M.; Bégin, C.; Marion, J.; Smirnoff, A.

    2011-12-01

    Nitrogen stable isotopes of tree-ring series have been recently used to detect past air pollution effects on forests in the contexts of point sources, highways or peri-urban regions. Here, we want to assess their potential to understand changes in soil processes and reveal perturbations of the N cycle. Our approach involves combining tree-ring N, C and O stable isotope series with statistical modelling to distinguish the responses of trees due to natural (climatic) conditions from the ones potentially caused by emissions from the Athabasca oil-sand developments where truck fleets, oil upgraders, desulphurization and hydrogen plants, boilers, heaters and turbines have been active since 1967. Three white spruce trees [Picea glauca (Moench)] 165 years or older, were selected in a well drained brunisolic site, at 55 km from the heart of the development operations (white and black spruce trees from other sites are currently being investigated). Their growth rings were dated and separated at a time resolution of 1 or 2 years for the 1880-2009 period. The average oxygen isotope ratios of cellulose do not show long-term anomalies and reflect climatic conditions. The average C isotope ratios of cellulose covering the 1880-1965 period show short-term variations mostly explained by local climatic conditions, whereas the 1966-1995 series presents similar short-term variations superimposed on a long-term isotopic increase significantly departing from the oxygen isotope curve. Most importantly, the nitrogen isotope series of treated wood shows an average decrease of 1.0% during the 1970-2009 period. The statistical links between the variations of the regional drought index and the isotopic C and N responses during the pre-operation period allows to develop predictive climatic models. When we apply these models to predict the natural isotopic behaviour of the recent period, the measured isotopic trends of the operation period depart from the modelled curves. In contrast, using

  1. EFFECT OF NITROGEN-FIXING BACTERIA ON GRAIN YIELD AND DEVELOPMENT OF FLOODED IRRIGATED RICE

    Directory of Open Access Journals (Sweden)

    AMAURI NELSON BEUTLER

    2016-01-01

    Full Text Available This study aimed at evaluating the effect of Azospirillum brasilense , a nitrogen - fixing bacterium, on flooded irrigated rice yield. Evaluations were carried out in a shaded nursery, with seedlings grown on an Alfisol. Were performed two sets of experiments. In the first, were carried out four experiments using the flooded rice cultivars INIA Olimar, Puitá Inta - CL, Br Irga 409 and Irga 424; these trials were set up as completely randomized design in a 5x4 factorial scheme, with four replications. Treatments consisted of five nitrogen rates (0, 40, 80, 120 and 160 kg ha - 1 and four levels of liquid inoculant Ab - V5 and Ab - V6 - A. brasilense (0, 1, 2 and 4 times the manufacturer's recommendation without seed treatment. In second set, were performed two experiments using the cultivars Puitá Inta - CL and Br Irga 409, arranged in the same design, but using a 4x2 factorial. In this set, treatments were composed of four levels of Ab - V5 and Ab - V6 - A. brasilense liquid inoculant (0, 1, 2 and 4 times the recommendation of 100 mL ha - 1 , using rice seeds with and without insecticide and fungicide treatment. Shoot dry matter, number of panicles, and rice grain yield per pot were the assessed variables. The results showed that rice seed inoculation with A. brasilense had no effects on rice grain yield of the cultivars INIA Olimar, Puitá Inta - CL, Br Irga 409 and Irga 424.

  2. The mobility of nitrogen across tree-rings of Norway spruce (Picea abies L.) and the effect of extraction method on tree-ring δ¹⁵N and δ¹³C values.

    Science.gov (United States)

    Tomlinson, G; Siegwolf, R T W; Buchmann, N; Schleppi, P; Waldner, P; Weber, P

    2014-06-15

    The use of stable nitrogen (N) isotope ratios (δ(15)N values) in dendroecological studies is often preceded by an extraction procedure using organic solvents to remove mobile N compounds from tree-rings. Although these mobile N compounds may be capable of distorting potential environmental signals in the tree-ring δ(15)N values, recent investigations question the necessity of such an extraction. We used an on-going experiment with simulated elevated N deposition previously labelled with (15)N, in conjunction with control trees, to investigate the necessity of extracting mobile N compounds (using a rapid extraction procedure) for tree-ring δ(15)N and δ(13)C studies, as well as N and C concentration analyses. In addition, we examined the magnitude of radial redistribution of N across tree-rings of Norway spruce (Picea abies). The (15)N label, applied in 1995/96, was found in tree-rings as far back as 1951, although the increased N availability did not cause any significant relative increase in tree growth. The rapid extraction procedure had no significant effect on tree-ring δ(15)N or δ(13)C values in either labelled or control trees, or on N concentration. The C concentrations, however, were significantly higher after extraction in control samples, with the opposite effect observed in labelled samples. Our results indicate that the extraction of mobile N compounds through the rapid extraction procedure is not necessary prior to the determination of Norway spruce δ(15)N or δ(13)C values in dendrochemical studies. δ(15)N values, however, must be interpreted with great care, particularly when used as a proxy for the N status of trees, due to the very high mobility of N within the tree stem sapwood of Norway spruce over several decades. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Temperature sensitivity of nitrogen productivity

    OpenAIRE

    Ladanai, Svetlana; Ågren, Göran

    2002-01-01

    Environmental conditions control physiological processes in plants and thus their growth. The predicted global warming is expected to accelerate tree growth. However, the growth response is a complex function of several processes. To circumvent this problem we have used the nitrogen productivity (dry matter production per unit of nitrogen in the plant), which is an aggregate parameter. Data on needle dry matter, production, and nitrogen content in needles of Scots pine (Pinus sylvestris) from...

  4. Effects of water and nitrogen availability on nitrogen contribution by the legume, Lupinus argenteus Pursh

    Science.gov (United States)

    Erin Goergen; Jeanne C. Chambers; Robert Blank

    2009-01-01

    Nitrogen-fixing species contribute to ecosystem nitrogen budgets, but background resource levels influence nodulation, fixation, and plant growth. We conducted a greenhouse experiment to examine the separate and interacting effects of water and N availability on biomass production, tissue N concentration, nodulation, nodule activity, and rhizodeposition of ...

  5. Nitrogen fixation in Red Sea seagrass meadows

    KAUST Repository

    Abdallah, Malak

    2017-05-01

    Seagrasses are key coastal ecosystems, providing many ecosystem services. Seagrasses increase biodiversity as they provide habitat for a large set of organisms. In addition, their structure provides hiding places to avoid predation. Seagrasses can grow in shallow marine coastal areas, but several factors regulate their growth and distribution. Seagrasses can uptake different kinds of organic and inorganic nutrients through their leaves and roots. Nitrogen and phosphorous are the most important nutrients for seagrass growth. Biological nitrogen fixation is the conversion of atmospheric nitrogen into ammonia by diazotrophic bacteria. This process provides a significant source of nitrogen for seagrass growth. The nitrogen fixation is controlled by the nif genes which are found in diazotrophs. The main goal of the project is to measure nitrogen fixation rates on seagrass sediments, in order to compare among various seagrass species from the Red Sea. Moreover, we will compare the fixing rates of the Vegetated areas with the bare sediments. This project will help to ascertain the role of nitrogen fixing bacteria in the development of seagrass meadows.

  6. Reconstructing Century-Scale Changes in Nitrogen Cycling in Forests Throughout the United States using Tree-Ring δ15N Chronologies

    Science.gov (United States)

    Gerhart-Barley, L.; McLauchlan, K. K.; Battles, J. J.; Craine, J. M.; Higuera, P. E.; Mack, M. C.; McNeil, B. E.; Nelson, D. M.; Pederson, N.; Perakis, S. S.

    2016-12-01

    In recent decades, human perturbation of the global nitrogen (N) cycle has been immense with reactive nitrogen supply to ecosystems from anthropogenic sources now exceeding that of natural fixation. The impact of these perturbations on ecosystem nutrient cycling and plant communities is limited by the lack of long-term `baseline' assessments of N cycling prior to anthropogenic influences. Stable N isotope analysis (δ15N) of dendrochronological records have the potential to provide this baseline data, but to date have focused on short term, regional assessments. Here, we address this question with a data set incorporating 311 individual trees and 7,661 δ15N measurements from 50 sites throughout the contiguous United States. These sites represent the diversity of US forest types, climate conditions, N deposition, soil types, and disturbance histories. The chronologies span, on average, the last 162 calendar years, with the oldest chronology dating back to 1572 C.E. Consequently, this study is the first century- and continental-scale assessment of ecosystem N cycling using tree-ring chronologies. When aggregated, the chronologies show a consistent decline from 1825 C.E. to present, indicating declining N availability in US forests, despite global increases in N supply. Environmental factors such as mean annual precipitation (MAP), mean annual temperature (MAT), and mean annual nitrogen deposition (Ndep) did not contribute to average site δ15N values; however, MAP and MAT significantly affected temporal trajectories in tree-ring δ15N, with more negative slopes toward present occurring in regions with low MAT and high MAP. Quantity of atmospheric N deposition had no discernible impact on mean δ15N values or on the temporal slope. This lack of response is either because levels of N deposition are too low to produce a discernible response in any meaningful aspects of the N cycle, and/or the δ15N signature of depositional N is similar enough to ecosystem N pools that

  7. Functional specialization of one copy of glutamine phosphoribosyl pyrophosphate amidotransferase in ureide production from symbiotically fixed nitrogen in Phaseolus vulgaris.

    Science.gov (United States)

    Coleto, Inmaculada; Trenas, Almudena T; Erban, Alexander; Kopka, Joachim; Pineda, Manuel; Alamillo, Josefa M

    2016-08-01

    Purines are essential molecules formed in a highly regulated pathway in all organisms. In tropical legumes, the nitrogen fixed in the nodules is used to generate ureides through the oxidation of de novo synthesized purines. Glutamine phosphoribosyl pyrophosphate amidotransferase (PRAT) catalyses the first committed step of de novo purine synthesis. In Phaseolus vulgaris there are three genes coding for PRAT. The three full-length sequences, which are intron-less genes, were cloned, and their expression levels were determined under conditions that affect the synthesis of purines. One of the three genes, PvPRAT3, is highly expressed in nodules and protein amount and enzymatic activity in these tissues correlate with nitrogen fixation activity. Inhibition of PvPRAT3 gene expression by RNAi-silencing and subsequent metabolomic analysis of the transformed roots shows that PvPRAT3 is essential for the synthesis of ureides in P. vulgaris nodules. © 2016 John Wiley & Sons Ltd.

  8. Anaerobic Nitrogen Fixers on Mars

    Science.gov (United States)

    Lewis, B. G.

    2000-07-01

    The conversion of atmospheric nitrogen gas to the protein of living systems is an amazing process of nature. The first step in the process is biological nitrogen fixation, the transformation of N2 to NH3. The phenomenon is crucial for feeding the billions of our species on Earth. On Mars, the same process may allow us to discover how life can adapt to a hostile environment, and render it habitable. Hostile environments also exist on Earth. For example, nothing grows in coal refuse piles due to the oxidation of pyrite and marcasite to sulfuric acid. Yet, when the acidity is neutralized, alfalfa and soybean plants develop root nodules typical of symbiotic nitrogen fixation with Rhizobium species possibly living in the pyritic material. When split open, these nodules exhibited the pinkish color of leghemoglobin, a protein in the nodule protecting the active nitrogen-fixing enzyme nitrogenase against the toxic effects of oxygen. Although we have not yet obtained direct evidence of nitrogenase activity in these nodules (reduction of acetylene to ethylene, for example), these findings suggested the possibility that nitrogen fixation was taking place in this hostile, non-soil material. This immediately raises the possibility that freeliving anaerobic bacteria which fix atmospheric nitrogen on Earth, could do the same on Mars.

  9. Increased protein content of chickpea (Cicer arietinum L.) inoculated with arbuscular mycorrhizal fungi and nitrogen-fixing bacteria under water deficit conditions.

    Science.gov (United States)

    Oliveira, Rui S; Carvalho, Patrícia; Marques, Guilhermina; Ferreira, Luís; Nunes, Mafalda; Rocha, Inês; Ma, Ying; Carvalho, Maria F; Vosátka, Miroslav; Freitas, Helena

    2017-10-01

    Chickpea (Cicer arietinum L.) is a widely cropped pulse and an important source of proteins for humans. In Mediterranean regions it is predicted that drought will reduce soil moisture and become a major issue in agricultural practice. Nitrogen (N)-fixing bacteria and arbuscular mycorrhizal (AM) fungi have the potential to improve plant growth and drought tolerance. The aim of the study was to assess the effects of N-fixing bacteria and AM fungi on the growth, grain yield and protein content of chickpea under water deficit. Plants inoculated with Mesorhizobium mediterraneum or Rhizophagus irregularis without water deficit and inoculated with M. mediterraneum under moderate water deficit had significant increases in biomass. Inoculation with microbial symbionts brought no benefits to chickpea under severe water deficit. However, under moderate water deficit grain crude protein was increased by 13%, 17% and 22% in plants inoculated with M. mediterraneum, R. irregularis and M. mediterraneum + R. irregularis, respectively. Inoculation with N-fixing bacteria and AM fungi has the potential to benefit agricultural production of chickpea under water deficit conditions and to contribute to increased grain protein content. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Climate change affects key nitrogen-fixing bacterial populations on coral reefs

    NARCIS (Netherlands)

    Santos, Henrique F.; Carmo, Flavia L.; Duarte, Gustavo; Dini-Andreote, Francisco; Castro, Clovis B.; Rosado, Alexandre S.; van Elsas, Jan Dirk; Peixoto, Raquel S.

    2014-01-01

    Coral reefs are at serious risk due to events associated with global climate change. Elevated ocean temperatures have unpredictable consequences for the ocean's biogeochemical cycles. The nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation. This study

  11. Climate change affects key nitrogen-fixing bacterial populations on coral reefs

    NARCIS (Netherlands)

    Santos, Henrique F.; Carmo, Flavia L.; Duarte, Gustavo; Dini-Andreote, Francisco; Castro, Clovis B.; Rosado, Alexandre S.; van Elsas, Jan Dirk; Peixoto, Raquel S.

    Coral reefs are at serious risk due to events associated with global climate change. Elevated ocean temperatures have unpredictable consequences for the ocean's biogeochemical cycles. The nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation. This study

  12. Mangrove endophyte promotes reforestation tree (Acacia polyphylla growth

    Directory of Open Access Journals (Sweden)

    Renata Assis Castro

    Full Text Available ABSTRACT Mangroves are ecosystems located in the transition zone between land and sea that serve as a potential source of biotechnological resources. Brazil's extensive coast contains one of the largest mangrove forests in the world (encompassing an area of 25,000 km2 along all the coast. Endophytic bacteria were isolated from the following three plant species: Rhizophora mangle, Laguncularia racemosa and Avicennia nitida. A large number of these isolates, 115 in total, were evaluated for their ability to fix nitrogen and solubilize phosphorous. Bacteria that tested positive for both of these tests were examined further to determine their level of indole acetic acid production. Two strains with high indole acetic acid production were selected for use as inoculants for reforestation trees, and then the growth of the plants was evaluated under field conditions. The bacterium Pseudomonas fluorescens (strain MCR1.10 had a low phosphorus solubilization index, while this index was higher in the other strain used, Enterobacter sp. (strain MCR1.48. We used the reforestation tree Acacia polyphylla. The results indicate that inoculation with the MCR1.48 endophyte increases Acacia polyphylla shoot dry mass, demonstrating that this strain effectively promotes the plant's growth and fitness, which can be used in the seedling production of this tree. Therefore, we successfully screened the biotechnological potential of endophyte isolates from mangrove, with a focus on plant growth promotion, and selected a strain able to provide limited nutrients and hormones for in plant growth.

  13. Taxonomic identity determines N2 fixation by canopy trees across lowland tropical forests.

    Science.gov (United States)

    Wurzburger, Nina; Hedin, Lars O

    2016-01-01

    Legumes capable of fixing atmospheric N2 are abundant and diverse in many tropical forests, but the factors determining ecological patterns in fixation are unresolved. A long-standing idea is that fixation depends on soil nutrients (N, P or Mo), but recent evidence shows that fixation may also differ among N2-fixing species. We sampled canopy-height trees across five species and one species group of N2-fixers along a landscape P gradient, and manipulated P and Mo to seedlings in a shadehouse. Our results identify taxonomy as the major determinant of fixation, with P (and possibly Mo) only influencing fixation following tree-fall disturbances. While 44% of trees did not fix N2, other trees fixed at high rates, with two species functioning as superfixers across the landscape. Our results raise the possibility that fixation is determined by biodiversity, evolutionary history and species-specific traits (tree growth rate, canopy stature and response to disturbance) in the tropical biome. © 2015 John Wiley & Sons Ltd/CNRS.

  14. Leucaena 2: the tree that defies the woodcutter

    Energy Technology Data Exchange (ETDEWEB)

    Benge, M D

    1981-07-01

    This article emphasises Leucaena's ability to obtain nutrients from soil strata that are not accessible to most other plants by means of its deep-growing root system. Surrounding the roots of Leucaena are masses of mychorrhizae that can metabolise unavailable phosphorous and other minerals which are then slowly released to the plant. In addition, symbiotic nitrogen-fixing bacteria fix nitrogen from the air. The plant then transfers minerals and nitrogen to its leaves. In one system of upland farming, Leucaena is intercropped with root crops and is cut and applied to the intercropped annual crops as an organic mulch, providing fertilizer that the marginal farmer could not otherwise afford.

  15. Quantitative determination of nitrogen biological fixation by the N-15 isotopic method

    International Nuclear Information System (INIS)

    Basantes, Emilio; Trivelin, Paulo; Mui Tsai, Siu

    1993-01-01

    In order to quantify the biological nitrogen fixation (BNF) and to evaluate the mycorrhiza effect in the BNF, an experiment was carried on by applying 1 5 N -ammonium sulphate and mycorrhiza fungi to the soil. The treatments included legumes: mucuna negra(Stizolobium atterrinum Piper et Tracv) and caupi (Vigna unguiculoata L. Walp). Two control plants: non nodulating soybean (Glycine max L.Merril) and rice (Oryza sativa), were used for measuring the fixed N in the legumes by isotope dilution method. Both legumes and control plants assimmilated the same ammounts of nitrogen from the soil and fertilizer. The greater N content in the legumnes was determined as coming from the fixed nitrogen. Rice and non nodulating soybean showed to be good controls for measuring biological nitrogen fixation using isotopic dilution method. The values of fixed nitrogen for legumes calculated using rice as control plant were slightly greater than those with non nodulating soybean, nevertheless there were no significant statistical differences between the values. The mucuna fixed more N than caupi in both mycorrhiza treatments (76.7, 66.6 and 56. 7 per cent of N fixed, respectively). The mycorrhiza increased dry matter yield (13.84 per cent), accumulation of N in the plant(14.85 per cent N) and the biological N fixation (16.06 per cent N-fixed) in caupi

  16. Fixed capacity and variable member grouping assignment of orthogonal variable spreading factor code tree for code division multiple access networks

    Directory of Open Access Journals (Sweden)

    Vipin Balyan

    2014-08-01

    Full Text Available Orthogonal variable spreading factor codes are used in the downlink to maintain the orthogonality between different channels and are used to handle new calls arriving in the system. A period of operation leads to fragmentation of vacant codes. This leads to code blocking problem. The assignment scheme proposed in this paper is not affected by fragmentation, as the fragmentation is generated by the scheme itself. In this scheme, the code tree is divided into groups whose capacity is fixed and numbers of members (codes are variable. A group with maximum number of busy members is used for assignment, this leads to fragmentation of busy groups around code tree and compactness within group. The proposed scheme is well evaluated and compared with other schemes using parameters like code blocking probability and call establishment delay. Through simulations it has been demonstrated that the proposed scheme not only adequately reduces code blocking probability, but also requires significantly less time before assignment to locate a vacant code for assignment, which makes it suitable for the real-time calls.

  17. Skewed Binary Search Trees

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Moruz, Gabriel

    2006-01-01

    It is well-known that to minimize the number of comparisons a binary search tree should be perfectly balanced. Previous work has shown that a dominating factor over the running time for a search is the number of cache faults performed, and that an appropriate memory layout of a binary search tree...... can reduce the number of cache faults by several hundred percent. Motivated by the fact that during a search branching to the left or right at a node does not necessarily have the same cost, e.g. because of branch prediction schemes, we in this paper study the class of skewed binary search trees....... For all nodes in a skewed binary search tree the ratio between the size of the left subtree and the size of the tree is a fixed constant (a ratio of 1/2 gives perfect balanced trees). In this paper we present an experimental study of various memory layouts of static skewed binary search trees, where each...

  18. Effects of elevated carbon dioxide concentration on growth and N2 fixation of young Robinia pseudoacacia

    International Nuclear Information System (INIS)

    Feng, Z; Flessa, H.; Dyckmans, J.

    2004-01-01

    The effects of elevated carbon dioxide concentration on carbon and nitrogen uptake and nitrogen source partitioning were determined in one year-old locust trees using a dual 13 C and 15 N continuous labelling experiment. Elevated carbon dioxide increased the fraction of new carbon in total carbon, but it did not alter carbon partitioning among plant compartments. Elevated carbon dioxide also increased the fraction of new nitrogen in total nitrogen. This was coupled with a shift in nitrogen source partitioning toward nitrogen fixation. Soil nitrogen uptake was not affected, but nitrogen fixation was markedly increased by elevated carbon dioxide treatment. The increased nitrogen fixation tended to decrease the C/N ratio in the presence of elevated carbon dioxide. Total dry mass of root nodules doubled in response to elevated carbon dioxide, however, this effect was not considered significant because of the great variability in root nodule formation. Overall, it was concluded that the growth of locust trees in an elevated carbon dioxide environment will not primarily be limited by nitrogen availability, giving the R. pseudoacacia species a competitive advantage over non-nitrogen-fixing tree species. It was also suggested that the increase in nitrogen fixation observed in response to elevated carbon dioxide treatment may play a key role in the growth response of forest ecosystems to elevated carbon dioxide by improving nitrogen availability for non-nitrogen-fixing trees. 51 refs., 1 tab., 4 figs

  19. Effect of systemic herbicides on N2-fixing and phosphate solubilizing microorganisms in relation to availability of nitrogen and phosphorus in paddy soils of West Bengal.

    Science.gov (United States)

    Das, Amal Chandra; Debnath, Anjan

    2006-11-01

    A field experiment has been conducted with four systemic herbicides viz., butachlor [N-(butoxymethyl)-2-chloro-2',6'-diethyl-acetanilide], fluchloralin [N-(2-chloroethyl)-(2,6-dinitro-N-propyl-4-trifluoromethyl) aniline], oxadiazon [5-terbutyl-3-(2,4-dichloro-5-isopro poxyphenyl)-1,3,4-oxadiazol-2-one] and oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenyl)-4-(trifluoromethyl) benzene] at their recommended field rates (2.0, 1.5, 0.4 and 0.12kga.i.ha(-1), respectively) to investigate their effects on growth and activities of aerobic non-symbiotic N(2)-fixing bacteria and phosphate solubilizing microorganisms in relation to availability of nitrogen and phosphorus in the rhizosphere soils as well as yield of the rice crop (Oryza sativa L cv. IR-36). Application of herbicides, in general, highly stimulated the population and activities of the target microorganisms, which resulted in a greater amount of atmospheric nitrogen fixation and phosphate solubilization in the rhizosphere soils of the test crop. The greater microbial activities subsequently augmented the mineralization and availability of nitrogen and phosphorus in the soil solution, which in turn increased the yield of the crop. Among the herbicides, oxyfluorfen was most stimulative followed by fluchloralin and oxadiazon in augmenting the microbial activities in soil. Butachlor also accentuated the mineralization and availability of nitrogen due to higher incitement of non-symbiotic N(2)-fixing bacteria in paddy soil. The grain and straw yields of the crop were also significantly increased due to the application of oxyfluorfen (20.2% and 21%) followed by fluchloralin (13.1% and 15.4%) and butachlor (9.1% and 10.2%), respectively.

  20. Denitrification, anammox and fixed nitrogen removal in the water column of a tropical great lake

    Science.gov (United States)

    Darchambeau, François; Roland, Fleur; Crowe, Sean A.; De Brabandere, Loreto; Llirós, Marc; Garcia-Armisen, Tamara; Inceoglu, Ozgul; Michiels, Céline; Servais, Pierre; Morana, Cédric D. T.; Bouillon, Steven; Meysman, Filip; Veuger, Bart; Masilya, Pascal M.; Descy, Jean-Pierre; Borges, Alberto V.

    2013-04-01

    If rates of microbial denitrification in aquatic systems are poorly constrained, it is much more the case for tropical water bodies. Lake Kivu [2.50° S 1.59° S, 29.37° E 28.83° E] is one of the great lakes of the East African Rift. It is an oligotrophic lake characterized by anoxic deep waters rich in dissolved gases (methane and carbon dioxide) and nutrients, and by well oxygenated and nutrient-depleted surface waters. During the seasonally stratified rainy season (October to May), a nitrogenous zone characterized by the accumulation of nitrite (NO2-) and nitrate (NO3-) is often observed in the lower layer of the mixolimnion. It results from nitrification of ammonium released by decaying organic matter. With the seasonal uplift of the oxygen minimum zone, the nitrogenous zone becomes anoxic and might be the most preferential area for fixed nitrogen (N) removal in Lake Kivu. Our work aimed at identifying and quantifying the processes of N losses by denitrification and/or anammox in the nitrogenous zone of the Lake Kivu water column. During 5 sampling campaigns (March 2010, October 2010, June 2011, February 2012 and September 2012), isotopic labelling experiments were used to quantify denitrification and anammox rates along vertical profiles at two pelagic stations of the main lake. Moreover, N2:Ar ratios were estimated during the September 2012 campaign, and 16S rDNA pyrosequencing was used to describe bacterial community composition during the last 2 campaigns. No bacteria related to organisms performing anammox was observed and labelling experiments failed to detect anammox at any locations and any depths. In Lake Kivu, denitrifying bacteria were mainly related to Denitratisoma and Thiobacillus genus. Significant denitrification rates were observed at several occasions, especially under the oxic-anoxic interface in the bottom of the nitracline. The annual average denitrification rate was estimated at ~150 μmoles N m-2 d-1. Denitrification was not the only

  1. Nitrogen fixation by free-living microorganisms in tropical rice soils using labelled fertilizer. Part of a coordinated programme on isotope techniques in studies of biological nitrogen fixation for the dual purpose of increasing crop production and decreasing nitrogen fertilizer use to conserve the environment

    International Nuclear Information System (INIS)

    Rao, V.R.

    1981-11-01

    Both acetylene-reduction and 15 N techniques were used to study heterotrophic N fixation in the rhizosphere of rice plants. Soils subjected to flooding in 4 soil types in both greenhouse and the field were found to stimulate greater heterotrophic nitrogen fixation than moist soils. The addition of organic materials, in particular, cellulose and rice straw, in general, enhanced nitrogen fixed by heterotrophic organisms living in the rhizosphere of rice plants. The highest amount of N fixed was 38 kg N/ha, and was obtained in a flooded lateritic soil to which had been added cellulose. Heterotrophic nitrogen fixation was influenced by soil type. In this study, the lowest value for fixed N was recorded in an acid sulphate soil of low pH. The addition of increasing amounts of inorganic nitrogen fertilizer in the form of ammonium sulphate suppressed rhizospheric nitrogen fixation in all soils, but the extent of suppression differed in the different soils. Benomyl fungicide and methyl carbamate insecticide had a stimulatory effect on heterotrophic nitrogen fixation in soils under rice roots. Different rice cultivars stimulated strains of Azospirillum to varying extent, and thus did not fix nitrogen to the same extent. It is thus possible that varieties of rice could be selected on the basis of their ability to support non-symbiotic N fixation in their rhizosphere

  2. Effects of acid deposition on tree roots

    Energy Technology Data Exchange (ETDEWEB)

    Persson, H. [Swedish Univ. of Agricultural Sciences (Sweden). Dept. of Ecology and Environmental Research

    1995-12-31

    Large forest regions in SW Sweden have been exposed to high levels of acid deposition for many decades, causing soil acidification in forest soils. Historically, SO{sub 2} has been the major acidification agent, but lately nitrogen compounds increasingly have become important. The amount and chemical form of nitrogen strongly affects the pH in the rhizosphere and rhizoplane. Many forest stands show a positive growth response to increased nitrogen input, even in heavily N-loaded areas. Nitrogen fertilization experiments suggest that part of the increased forest production is caused by a translocation of biomass production from below-ground to above-ground parts. At the same time fine-root growth dynamics are strongly affected by the high N supply. Deficiencies of various nutrients (Mg,Ca,K,Mn and Zn) obtained from needle analyses have been reported from different Picea abies stands. In areas with more extensive acidification and nutrient leaching, a decline in tree vitality has been observed. Although deficiency symptoms in forest trees may be reflected in nitrogen/cation ratios in fine roots, few attempts have been made to explain forest damage symptoms from fine-root chemistry. Root damage is often described as a decline in the amount of living fine roots, an increase in the amount of dead versus live fine roots (a lower live/dead ratio) and an increasing amount of dead medium and coarse roots. The primary objectives of the present presentation were to analyse available data on the effects of high nitrogen and sulphur deposition on mineral nutrient balance in tree fine roots and to evaluate the risk of Al interference with cation uptake by roots

  3. Effects of acid deposition on tree roots

    Energy Technology Data Exchange (ETDEWEB)

    Persson, H [Swedish Univ. of Agricultural Sciences (Sweden). Dept. of Ecology and Environmental Research

    1996-12-31

    Large forest regions in SW Sweden have been exposed to high levels of acid deposition for many decades, causing soil acidification in forest soils. Historically, SO{sub 2} has been the major acidification agent, but lately nitrogen compounds increasingly have become important. The amount and chemical form of nitrogen strongly affects the pH in the rhizosphere and rhizoplane. Many forest stands show a positive growth response to increased nitrogen input, even in heavily N-loaded areas. Nitrogen fertilization experiments suggest that part of the increased forest production is caused by a translocation of biomass production from below-ground to above-ground parts. At the same time fine-root growth dynamics are strongly affected by the high N supply. Deficiencies of various nutrients (Mg,Ca,K,Mn and Zn) obtained from needle analyses have been reported from different Picea abies stands. In areas with more extensive acidification and nutrient leaching, a decline in tree vitality has been observed. Although deficiency symptoms in forest trees may be reflected in nitrogen/cation ratios in fine roots, few attempts have been made to explain forest damage symptoms from fine-root chemistry. Root damage is often described as a decline in the amount of living fine roots, an increase in the amount of dead versus live fine roots (a lower live/dead ratio) and an increasing amount of dead medium and coarse roots. The primary objectives of the present presentation were to analyse available data on the effects of high nitrogen and sulphur deposition on mineral nutrient balance in tree fine roots and to evaluate the risk of Al interference with cation uptake by roots

  4. Nitrogen fixation in rice systems: State of knowledge and future prospects

    International Nuclear Information System (INIS)

    Ladha, J.K.; Reddy, P.M.

    2001-01-01

    Rice is the most important cereal crop. In the next three decades, the world will need to produce about 60% more rice than today's global production to feed the extra billion people. Nitrogen is the major nutrient limiting rice production. Development of fertilizer-responsive varieties in the Green Revolution, coupled with the realization by farmers of the importance of nitrogen, has led to high rates of N fertilizer use on rice. Increased future demand for rice will entail increased application of fertilizer N. Awareness is growing, however, that such an increase in agricultural production needs to be achieved without endangering the environment. To achieve food security through sustainable agriculture, the requirement for fixed nitrogen must increasingly met by biological nitrogen fixation (BNF) rather than by using nitrogen fixed industrially. It is thus imperative to improve existing BNF systems and develop N 2 -fixing non-leguminous crops such as rice. Here we review the potentials and constraints of conventional BNF systems in rice agriculture, as well as the prospects of achieving in planta nitrogen fixation in rice. (author)

  5. Swivel Joint For Liquid Nitrogen

    Science.gov (United States)

    Milner, James F.

    1988-01-01

    Swivel joint allows liquid-nitrogen pipe to rotate through angle of 100 degree with respect to mating pipe. Functions without cracking hard foam insulation on lines. Pipe joint rotates on disks so mechanical stress not transmitted to thick insulation on pipes. Inner disks ride on fixed outer disks. Disks help to seal pressurized liquid nitrogen flowing through joint.

  6. Genome analysis of the freshwater planktonic Vulcanococcus limneticus sp. nov. reveals horizontal transfer of nitrogenase operon and alternative pathways of nitrogen utilization.

    Science.gov (United States)

    Di Cesare, Andrea; Cabello-Yeves, Pedro J; Chrismas, Nathan A M; Sánchez-Baracaldo, Patricia; Salcher, Michaela M; Callieri, Cristiana

    2018-04-16

    Many cyanobacteria are capable of fixing atmospheric nitrogen, playing a crucial role in biogeochemical cycling. Little is known about freshwater unicellular cyanobacteria Synechococcus spp. at the genomic level, despite being recognised of considerable ecological importance in aquatic ecosystems. So far, it has not been shown whether these unicellular picocyanobacteria have the potential for nitrogen fixation. Here, we present the draft-genome of the new pink-pigmented Synechococcus-like strain Vulcanococcus limneticus. sp. nov., isolated from the volcanic Lake Albano (Central Italy). The novel species Vulcanococcus limneticus sp. nov. falls inside the sub-cluster 5.2, close to the estuarine/marine strains in a maximum-likelihood phylogenetic tree generated with 259 marker genes with representatives from marine, brackish, euryhaline and freshwater habitats. V.limneticus sp. nov. possesses a complete nitrogenase and nif operon. In an experimental setup under nitrogen limiting and non-limiting conditions, growth was observed in both cases. However, the nitrogenase genes (nifHDK) were not transcribed, i.e., V.limneticus sp. nov. did not fix nitrogen, but instead degraded the phycobilisomes to produce sufficient amounts of ammonia. Moreover, the strain encoded many other pathways to incorporate ammonia, nitrate and sulphate, which are energetically less expensive for the cell than fixing nitrogen. The association of the nif operon to a genomic island, the relatively high amount of mobile genetic elements (52 transposases) and the lower observed GC content of V.limneticus sp. nov. nif operon (60.54%) compared to the average of the strain (68.35%) support the theory that this planktonic strain may have obtained, at some point of its evolution, the nif operon by horizontal gene transfer (HGT) from a filamentous or heterocystous cyanobacterium. In this study, we describe the novel species Vulcanococcus limneticus sp. nov., which possesses a complete nif operon for

  7. [Assimilation of biological nitrogen by European beaver].

    Science.gov (United States)

    Vecherskiĭ, M V; Naumova, E I; Kostina, N V; Umarov, M M

    2009-01-01

    Nitrogenase activity, the abundance of diazotrophic bacteria, the structure and functional characteristics of the complex of microorganisms, and the content of nitrogen and carbon were determined in the contents of the gastrointestinal tract of the European beaver. A high nitrogen-fixing activity in the large intestine correlated with an increase in nitrogen content in the chyme upon its transfer over the gastrointestinal tract. It is assumed that microbial nitrogen fixation plays a major role in nitrogen nutrition of the European beaver.

  8. The role of nitrogen fixation in neotropical dry forests: insights from ecosystem modeling and field data

    Science.gov (United States)

    Trierweiler, A.; Xu, X.; Gei, M. G.; Powers, J. S.; Medvigy, D.

    2016-12-01

    Tropical dry forests (TDFs) have immense functional diversity and face multiple resource constraints (both water and nutrients). Legumes are abundant and exhibit a wide diversity of N2-fixing strategies in TDFs. The abundance and diversity of legumes and their interaction with N2-fixing bacteria may strongly control the coupled carbon-nitrogen cycle in the biome and influence whether TDFs will be particularly vulnerable or uniquely adapted to projected global change. However, the importance of N2-fixation in TDFs and the carbon cost of acquiring N through symbiotic relationships are not fully understood. Here, we use models along with field measurements to examine the role of legumes, nitrogen fixation, and plant-symbiont nutrient exchanges in TDFs. We use a new version of the Ecosystem Demography (ED2) model that has been recently parameterized for TDFs. The new version incorporates plant-mycorrhizae interactions and multiple resource constraints (carbon, nitrogen, phosphorus, and water). We represent legumes and other functional groups found in TDFs with a range of resource acquisition strategies. In the model, plants then can dynamically adjust their carbon allocation and nutrient acquisition strategies (e.g. N2-fixing bacteria and mycorrhizal fungi) according to the nutrient limitation status. We test (i) the model's performance against a nutrient gradient of field sites in Costa Rica and (ii) the model's sensitivity to the carbon cost to acquire N through fixation and mycorrhizal relationships. We also report on simulated tree community responses to ongoing field nutrient fertilization experiments. We found that the inclusion of the N2-fixation legume plant functional traits were critical to reproducing community dynamics of Costa Rican field TDF sites and have a large impact on forest biomass. Simulated ecosystem fixation rates matched the magnitude and temporal patterns of field measured fixation. Our results show that symbiotic nitrogen fixation plays an

  9. Foliar nitrogen metabolism of adult Douglas-fir trees is affected by soil water availability and varies little among provenances.

    Science.gov (United States)

    Du, Baoguo; Kreuzwieser, Jürgen; Dannenmann, Michael; Junker, Laura Verena; Kleiber, Anita; Hess, Moritz; Jansen, Kirstin; Eiblmeier, Monika; Gessler, Arthur; Kohnle, Ulrich; Ensminger, Ingo; Rennenberg, Heinz; Wildhagen, Henning

    2018-01-01

    The coniferous forest tree Douglas-fir (Pseudotsuga menziesii) is native to the pacific North America, and is increasingly planted in temperate regions worldwide. Nitrogen (N) metabolism is of great importance for growth, resistance and resilience of trees. In the present study, foliar N metabolism of adult trees of three coastal and one interior provenance of Douglas-fir grown at two common gardens in southwestern Germany (Wiesloch, W; Schluchsee, S) were characterized in two subsequent years. Both the native North American habitats of the seed sources and the common garden sites in Germany differ in climate conditions. Total and mineral soil N as well as soil water content were higher in S compared to W. We hypothesized that i) provenances differ constitutively in N pool sizes and composition, ii) N pools are affected by environmental conditions, and iii) that effects of environmental factors on N pools differ among interior and coastal provenances. Soil water content strongly affected the concentrations of total N, soluble protein, total amino acids (TAA), arginine and glutamate. Foliar concentrations of total N, soluble protein, structural N and TAA of trees grown at W were much higher than in trees at S. Provenance effects were small but significant for total N and soluble protein content (interior provenance showed lowest concentrations), as well as arginine, asparagine and glutamate. Our data suggest that needle N status of adult Douglas-fir is independent from soil N availability and that low soil water availability induces a re-allocation of N from structural N to metabolic N pools. Small provenance effects on N pools suggest that local adaptation of Douglas-fir is not dominated by N conditions at the native habitats.

  10. Biological nitrogen fixation in Crotalaria species estimated using the 15N isotope dilution method

    International Nuclear Information System (INIS)

    Samba, R.T.; Neyra, M.; Gueye, M.; Sylla, S.N.; Ndoye, I.; Dreyfus, B.

    2002-01-01

    Growing in Senegal by using 15 N direct isotope dilution technique. Two non-fixing plants, Senna obtusifolia and Senna occidentalis served as reference plants. The amount of nitrogen fixed two months after planting was obtained using the average of the two reference plants. The atom % 15 N excess in the Crotalaria species was significantly lower than that of the reference plants, indicating that significant nitrogen fixation occurred in the three plants. Significant differences were observed between the Crotalaria species; C. ochroleuca yielded more dry matter weight and total nitrogen than did C. perrottetti and C. retusa. The % nitrogen derived from atmosphere (%Ndfa) in leaves and stems was also higher in C. ochroleuca. There was no significant difference in %Ndfa in the whole plant between the three Crotalaria species (47% to 53%). In contrast, interspecific variability was observed based on the %Ndfa. C. ochroleuca significantly exhibited the higher amount of total nitrogen fixed, equivalent to 83 kg of nitrogen fixed per hectare. Based on these data, it was concluded that C. ochroleuca could be used in multiple cropping systems in Senegal for making more nitrogen available to other plants. (author)

  11. Engineering Pseudomonas protegens Pf-5 for Nitrogen Fixation and its Application to Improve Plant Growth under Nitrogen-Deficient Conditions

    Science.gov (United States)

    Setten, Lorena; Soto, Gabriela; Mozzicafreddo, Matteo; Fox, Ana Romina; Lisi, Christian; Cuccioloni, Massimiliano; Angeletti, Mauro; Pagano, Elba; Díaz-Paleo, Antonio; Ayub, Nicolás Daniel

    2013-01-01

    Nitrogen is the second most critical factor for crop production after water. In this study, the beneficial rhizobacterium Pseudomonas protegens Pf-5 was genetically modified to fix nitrogen using the genes encoding the nitrogenase of Pseudomonas stutzeri A1501 via the X940 cosmid. Pf-5 X940 was able to grow in L medium without nitrogen, displayed high nitrogenase activity and released significant quantities of ammonium to the medium. Pf-5 X940 also showed constitutive expression and enzymatic activity of nitrogenase in ammonium medium or in nitrogen-free medium, suggesting a constitutive nitrogen fixation. Similar to Pseudomonas protegens Pf-5, Pseudomonas putida, Pseudomonas veronii and Pseudomonas taetrolens but not Pseudomonas balearica and Pseudomonas stutzeri transformed with cosmid X940 showed constitutive nitrogenase activity and high ammonium production, suggesting that this phenotype depends on the genome context and that this technology to obtain nitrogen-fixing bacteria is not restricted to Pf-5. Interestingly, inoculation of Arabidopsis, alfalfa, tall fescue and maize with Pf-5 X940 increased the ammonium concentration in soil and plant productivity under nitrogen-deficient conditions. In conclusion, these results open the way to the production of effective recombinant inoculants for nitrogen fixation on a wide range of crops. PMID:23675499

  12. The effects of arbuscular mycorrhizal fungus and free living nitrogen fixing bacteria on growth, photosynthesis and yield of corn

    Directory of Open Access Journals (Sweden)

    mohsen jahan

    2009-06-01

    Full Text Available In recent years, biological fertilizers have received special attention by scientists in sustainable and low input agriculture. In order to study the effects of arbuscular mycorrhizal fungi and free living nitrogen fixing bacteria on growth and photosynthesis characteristics of corn in conventional and ecological cropping systems, a field experiment was conducted at the Research Farm of Ferdowsi University of Mashhad during year 2006. A split plots arrangement based on randomized complete block design with three replications was used. Treatments consisted four cropping systems (1- High input conventional system, 2- Medium input conventional system, 3- Low input conventional system and 4- Ecological system and four inoculations (1- Mycorrhiza fungus, Glomus intraradices, 2- Bacteria, Azotobacter paspali and Azospirillum brasilense, 3- Dual inoculation, Fungus plus bacteria, and 4- No-inoculation, control, which were allocated to main plots and sub plots, respectively. All agronomic practices and inputs application during planting and nursing for each of cropping systems were conducted according to regional traditions. Results showed that the effect of inoculation on photosynthesis rates of corn was significant, as the highest photosynthesis rate obtained in dual inoculation. Single inoculation (fungus or bacteria was ranked second. The effect of all inoculations on corn dry matter production was significant and dual inoculation produced the highest dry matter yield. The cropping systems have significant effect on corn yield and the difference between medium input conventional system and high input conventional system was significant, but the high input, low input and ecological cropping systems showed no differences. Inoculants affected the SPAD readings, and dual inoculation showed the highest SPAD readings. This study showed that utilization of low input conventional and ecological systems in combination with use of dual inoculation of

  13. Biochemical and Molecular Phylogenetic Study of Agriculturally Useful Association of a Nitrogen-Fixing Cyanobacterium and Nodule Sinorhizobium with Medicago sativa L.

    Directory of Open Access Journals (Sweden)

    E. V. Karaushu

    2015-01-01

    Full Text Available Seed inoculation with bacterial consortium was found to increase legume yield, providing a higher growth than the standard nitrogen treatment methods. Alfalfa plants were inoculated by mono- and binary compositions of nitrogen-fixing microorganisms. Their physiological and biochemical properties were estimated. Inoculation by microbial consortium of Sinorhizobium meliloti T17 together with a new cyanobacterial isolate Nostoc PTV was more efficient than the single-rhizobium strain inoculation. This treatment provides an intensification of the processes of biological nitrogen fixation by rhizobia bacteria in the root nodules and an intensification of plant photosynthesis. Inoculation by bacterial consortium stimulates growth of plant mass and rhizogenesis and leads to increased productivity of alfalfa and to improving the amino acid composition of plant leaves. The full nucleotide sequence of the rRNA gene cluster and partial sequence of the dinitrogenase reductase (nifH gene of Nostoc PTV were deposited to GenBank (JQ259185.1, JQ259186.1. Comparison of these gene sequences of Nostoc PTV with all sequences present at the GenBank shows that this cyanobacterial strain does not have 100% identity with any organisms investigated previously. Phylogenetic analysis showed that this cyanobacterium clustered with high credibility values with Nostoc muscorum.

  14. Competition for light and light use efficiency for Acacia mangium and Eucalyptus grandis trees in mono-specific and mixed-species plantations in Brazil

    Science.gov (United States)

    Le Maire, G.; Nouvellon, Y.; Gonçalves, J.; Bouillet, J.; Laclau, J.

    2010-12-01

    Mixed plantations with N-fixing species might be an attractive option for limiting the use of fertilizer in highly productive Eucalyptus plantations. A randomized block design was set up in southern Brazil, including a replacement series and an additive series design, as well as a nitrogen fertilization treatment, and conducted during a full 6 years rotation. The gradient of competition between Eucalyptus and Acacia in this design resulted in very different conditions of growth of Acacia, from totally dominated up to dominant canopies. We used the MAESTRA model to estimate the amount of absorbed photosynthetically active radiation (APAR) at tree level. This model requires the description of the scene and distinct structural variables of the two species, and their evolution with time. The competition for light is analysed by comparing the inter-specific values of APAR during a period of 2 years at the end of the rotation. APAR is further compared to the measured increment in stem wood biomass of the tree, and their ratio is an estimation of the light use efficiency for stemwood production at tree-scale. Variability of these LUE are analysed in respect to the species, the size of the tree, and at plot scale (competition level). Stemwood production was 3400, 3900 and 2400 gDM/m2 while APAR was 1640, 2280 and 2900 MJ/y for the pure Eucalyptus, pure Acacia and 50/50 mixed plantation, respectively, for an average LAI of 3.7, 3.3 and 4.5, respectively. Individual LUE for stemwood was estimated at an average value of 1.72 and 1.41 gDM/MJ/tree for Eucalyptus and Acacia, respectively, and at 0.92 and 0.40 gDM/MJ/tree when they were planted in mixed 50/50 plantations. LUE was highly dependant on tree size for both species. At the plot scale, LUE for stemwood were 2.1 gDM/MJ and 1.75 for Eucalyptus and Acacias, respectively, and 0.85 for the mixed 50/50 plantation. These results suggest that the mixed 50/50 plantation, which absorbed a higher amount of light, produce less

  15. The nitrogen cycle.

    Science.gov (United States)

    Stein, Lisa Y; Klotz, Martin G

    2016-02-08

    Nitrogen is the fourth most abundant element in cellular biomass, and it comprises the majority of Earth's atmosphere. The interchange between inert dinitrogen gas (N2) in the extant atmosphere and 'reactive nitrogen' (those nitrogen compounds that support, or are products of, cellular metabolism and growth) is entirely controlled by microbial activities. This was not the case, however, in the primordial atmosphere, when abiotic reactions likely played a significant role in the inter-transformation of nitrogen oxides. Although such abiotic reactions are still important, the extant nitrogen cycle is driven by reductive fixation of dinitrogen and an enzyme inventory that facilitates dinitrogen-producing reactions. Prior to the advent of the Haber-Bosch process (the industrial fixation of N2 into ammonia, NH3) in 1909, nearly all of the reactive nitrogen in the biosphere was generated and recycled by microorganisms. Although the Haber-Bosch process more than quadrupled the productivity of agricultural crops, chemical fertilizers and other anthropogenic sources of fixed nitrogen now far exceed natural contributions, leading to unprecedented environmental degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Redistribution of soil nitrogen, carbon and organic matter by mechanical disturbance during whole-tree harvesting in northern hardwoods

    Science.gov (United States)

    Ryan, D.F.; Huntington, T.G.; Wayne, Martin C.

    1992-01-01

    To investigate whether mechanical mixing during harvesting could account for losses observed from forest floor, we measured surface disturbance on a 22 ha watershed that was whole-tree harvested. Surface soil on each 10 cm interval along 81, randomly placed transects was classified immediately after harvesting as mineral or organic, and as undisturbed, depressed, rutted, mounded, scarified, or scalped (forest floor scraped away). We quantitatively sampled these surface categories to collect soil in which preharvest forest floor might reside after harvest. Mechanically mixed mineral and organic soil horizons were readily identified. Buried forest floor under mixed mineral soil occurred in 57% of mounds with mineral surface soil. Harvesting disturbed 65% of the watershed surface and removed forest floor from 25% of the area. Mechanically mixed soil under ruts with organic or mineral surface soil, and mounds with mineral surface soil contained organic carbon and nitrogen pools significantly greater than undisturbed forest floor. Mechanical mixing into underlying mineral soil could account for the loss of forest floor observed between the preharvest condition and the second growing season after whole-tree harvesting. ?? 1992.

  17. The characteristics and diversity of indigenous rhizobia that nodulate selected indigenous multipurpose leguminous trees and shrubs in three soils of Ghana

    International Nuclear Information System (INIS)

    Boakye, Emmanuel Yaw

    2013-03-01

    Trees in general and leguminous trees in particular form an integral part of the traditional farming systems in Ghana. Compared to other plants, leguminous trees have the advantage that, they are generally capable of growing better on N-deficient soils due to their ability to convert unavailable atmospheric N_2 into plant utilizable N. However, several factors including the abundance and effectiveness of the specific rhizobial partner, the available N and P in soil, are among the important factors that severely affect how much N_2 can be fixed in these trees. This study was thus conducted to assess the abundance and characteristics of the rhizobia that nodulate 18 selected indigenous tree legumes grown in three representative soils of Ghana and to ascertain important soil nutrient constraints that affect their nodulation, nitrogen fixation and growth. The three soils belonged to the Hatso, Toje and Alajo local series (equivalent to Haplic lixisol, Rhodic lixisol and Calcic vertisol, respectively). The 200 Rhizobium isolates obtained from nodules of these tree legumes were found to be highly diverse and varied in their abilities to nodulate legumes other than the host plants from which they were isolated. The isolates were further characterized culturally, metabolically, phenotypically and for their effectiveness in fixing atmospheric nitrogen. Of the 10 multi-purpose shrubs and tree species belonging to the subfamily Mimosoideae examined as much as 70% of them formed nodules in the three soils, whiles only 20% and 10% of the tree legumes that formed nodules belong to Papilionoideae and Caesalpinoideae sub-families respectively. As to the Rhizobium isolates from these shrubs and tree species, those obtained from Pithecelobium spp and Melletia thonningi appeared to be highly specific, nodulating only their respective homologous hosts, while those from Acacia mangium, Albizia lebbek and Acacia auricloformis appeared to be slightly promiscuous, and moderately

  18. Biological invasion by Myrica faya in Hawaii: Plant demography, nitrogen fixation, ecosystem effects

    International Nuclear Information System (INIS)

    Vitousek, P.M.; Walker, L.R.

    1989-01-01

    Myrica faya, an introduced actinorhizal nitrogen fixer, in invading young volcanic sites in Hawaii Volcanoes National Park. We examined the population biology of the invader and ecosystem-level consequences of its invasion in open-canopied forests resulting from volcanic cinder-fall. Although Myrica faya is nominally dioecious, both males and females produce large amounts of fruit that are utilized by a number of exotic and native birds, particularly the exotic Zosterops japonica. In areas of active colonization, Myrica seed rain under perch trees of the dominant native Metrosideros polymorpha ranged from 6 to 60 seeds m -2 yr -1 ; no seeds were captured in the open. Planted seeds of Myrica also germinated an established better under isolated individuals of Metrosideros than in the open. Diameter growth of Myrica is > 15-fold greater than that of Metrosideros, and the Myrica population is increasing rapidly. Rates of nitrogen fixation were measured using the acetylene reduction assay calibrated with 15 N. Myrica nodules reduced acetylene at between 5 and 20 μmol g -1 h -1 , a rate that extrapolated to nitrogen fixation of 18 kg ha -1 in a densely colonized site. By comparison, all native sources of nitrogen fixation summed to 0.2 kg ha -1 yr -1 , and precipitation added -1 yr -1 . Measurements of litter decomposition and nitrogen release, soil nitrogen mineralization, and plant growth in bioassays all demonstrated that nitrogen fixed by Myrica becomes available to other organisms as well. We conclude that biological invasion by Myrica faya alters ecosystem-level properties in this young volcanic area; at least in this case, the demography and physiology of one species controls characteristics of a whole ecosystem

  19. Assessing nitrogen fixation in mixed- and single-species plantations of Eucalyptus globulus and Acacia mearnsii.

    Science.gov (United States)

    Forrester, David I; Schortemeyer, Marcus; Stock, William D; Bauhus, Jürgen; Khanna, Partap K; Cowie, Annette L

    2007-09-01

    Mixtures of Eucalyptus globulus Labill. and Acacia mearnsii de Wildeman are twice as productive as E. globulus monocultures growing on the same site in East Gippsland, Victoria, Australia, possibly because of increased nitrogen (N) availability owing to N(2) fixation by A. mearnsii. To investigate whether N(2) fixation by A. mearnsii could account for the mixed-species growth responses, we assessed N(2) fixation by the accretion method and the (15)N natural abundance method. Nitrogen gained by E. globulus and A. mearnsii mixtures and monocultures was calculated by the accretion method with plant and soil samples collected 10 years after plantation establishment. Nitrogen in biomass and soil confirmed that A. mearnsii influenced N dynamics. Assuming that the differences in soil, forest floor litter and biomass N of plots containing A. mearnsii compared with E. globulus monocultures were due to N(2) fixation, the 10-year annual mean rates of N(2) fixation were 38 and 86 kg ha(-1) year(-1) in 1:1 mixtures and A. mearnsii monocultures, respectively. Nitrogen fixation by A. mearnsii could not be quantified on the basis of the natural abundance of (15)N because such factors as mycorrhization type and fractionation of N isotopes during N cycling within the plant confounded the effect of the N source on the N isotopic signature of plants. This study shows that A. mearnsii fixed significant quantities of N(2) when mixed with E. globulus. A decline in delta(15)N values of E. globulus and A. mearnsii with time, from 2 to 10 years, is further evidence that N(2) was fixed and cycled through the stands. The increased aboveground biomass production of E. globulus trees in mixtures when compared with monocultures can be attributed to increases in N availability.

  20. Photosynthetic and nitrogen fixation capability in several soybean mutant lines

    International Nuclear Information System (INIS)

    Gandanegara, S.; Hendratno, K.

    1987-01-01

    Photosynthetic and nitrogen fixation capability in several soybean mutant lines. A greenhouse experiment has been carried out to study photosynthetic and nitrogen fixation capability of five mutant lines and two soybean varieties. An amount of 330 uCi of 14 CO 2 was fed to the plants including of the non-fixing reference crop (Chippewa non-nodulating isoline). Nitrogen fixation measurements was carried out using 15 N isotope dilution technique according to A-value concept. Results showed that beside variety/mutant lines, plant growth also has important role in photosynthetic and N fixing capability. Better growth and a higher photosynthetic capability in Orba, mutant lines nos. 63 and 65 resulted in a greater amount of N 2 fixed (mg N/plant) than other mutant lines. (author). 12 refs.; 5 figs

  1. Mangrove endophyte promotes reforestation tree (Acacia polyphylla) growth.

    Science.gov (United States)

    Castro, Renata Assis; Dourado, Manuella Nóbrega; Almeida, Jaqueline Raquel de; Lacava, Paulo Teixeira; Nave, André; Melo, Itamar Soares de; Azevedo, João Lucio de; Quecine, Maria Carolina

    Mangroves are ecosystems located in the transition zone between land and sea that serve as a potential source of biotechnological resources. Brazil's extensive coast contains one of the largest mangrove forests in the world (encompassing an area of 25,000km 2 along all the coast). Endophytic bacteria were isolated from the following three plant species: Rhizophora mangle, Laguncularia racemosa and Avicennia nitida. A large number of these isolates, 115 in total, were evaluated for their ability to fix nitrogen and solubilize phosphorous. Bacteria that tested positive for both of these tests were examined further to determine their level of indole acetic acid production. Two strains with high indole acetic acid production were selected for use as inoculants for reforestation trees, and then the growth of the plants was evaluated under field conditions. The bacterium Pseudomonas fluorescens (strain MCR1.10) had a low phosphorus solubilization index, while this index was higher in the other strain used, Enterobacter sp. (strain MCR1.48). We used the reforestation tree Acacia polyphylla. The results indicate that inoculation with the MCR1.48 endophyte increases Acacia polyphylla shoot dry mass, demonstrating that this strain effectively promotes the plant's growth and fitness, which can be used in the seedling production of this tree. Therefore, we successfully screened the biotechnological potential of endophyte isolates from mangrove, with a focus on plant growth promotion, and selected a strain able to provide limited nutrients and hormones for in plant growth. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  2. Symbiotic nitrogen-fixing bacterial populations trapped from soils under agroforestry systems in the Western Amazon

    Directory of Open Access Journals (Sweden)

    Paula Marcela Duque Jaramillo

    2013-12-01

    Full Text Available Cowpea (Vigna unguiculata is an important grain-producing legume that can forego nitrogen fertilization by establishing an efficient symbiosis with nitrogen-fixing bacteria. Although inoculating strains have already been selected for this species, little is known about the genotypic and symbiotic diversity of native rhizobia. Recently, Bradyrhizobium has been shown to be the genus most frequently trapped by cowpea in agricultural soils of the Amazon region. We investigated the genetic and symbiotic diversity of 148 bacterial strains with different phenotypic and cultural properties isolated from the nodules of the trap species cowpea, which was inoculated with samples from soils under agroforestry systems from the western Amazon. Sixty non-nodulating strains indicated a high frequency of endophytic strains in the nodules. The 88 authenticated strains had varying symbiotic efficiency. The SPAD (Soil Plant Analysis Development index (indirect measurement of chlorophyll content was more efficient at evaluating the contribution of symbiotic N2-fixation than shoot dry matter under axenic conditions. Cowpea-nodulating bacteria exhibited a high level of genetic diversity, with 68 genotypes identified by BOX-PCR. Sequencing of the 16S rRNA gene showed a predominance of the genus Bradyrhizobium, which accounted for 70 % of all strains sequenced. Other genera identified were Rhizobium, Ochrobactrum, Paenibacillus, Bosea, Bacillus, Enterobacter, and Stenotrophomonas. These results support the promiscuity of cowpea and demonstrate the high genetic and symbiotic diversity of rhizobia in soils under agroforestry systems, with some strains exhibiting potential for use as inoculants. The predominance of Bradyrhizobium in land uses with different plant communities and soil characteristics reflects the adaptation of this genus to the Amazon region.

  3. The sweet side of global change-dynamic responses of non-structural carbohydrates to drought, elevated CO2 and nitrogen fertilization in tree species.

    Science.gov (United States)

    Li, Weibin; Hartmann, Henrik; Adams, Henry D; Zhang, Hongxia; Jin, Changjie; Zhao, Chuanyan; Guan, Dexin; Wang, Anzhi; Yuan, Fenghui; Wu, Jiabing

    2018-06-11

    Non-structural carbohydrates (NSC) play a central role in plant functioning as energy carriers and building blocks for primary and secondary metabolism. Many studies have investigated how environmental and anthropogenic changes, like increasingly frequent and severe drought episodes, elevated CO2 and atmospheric nitrogen (N) deposition, influence NSC concentrations in individual trees. However, this wealth of data has not been analyzed yet to identify general trends using a common statistical framework. A thorough understanding of tree responses to global change is required for making realistic predictions of vegetation dynamics. Here we compiled data from 57 experimental studies on 71 tree species and conducted a meta-analysis to evaluate general responses of stored soluble sugars, starch and total NSC (soluble sugars + starch) concentrations in different tree organs (foliage, above-ground wood and roots) to drought, elevated CO2 and N deposition. We found that drought significantly decreased total NSC in roots (-17.3%), but not in foliage and above-ground woody tissues (bole, branch, stem and/or twig). Elevated CO2 significantly increased total NSC in foliage (+26.2%) and roots (+12.8%), but not in above-ground wood. By contrast, total NSC significantly decreased in roots (-17.9%), increased in above-ground wood (+6.1%), but was unaffected in foliage from N fertilization. In addition, the response of NSC to three global change drivers was strongly affected by tree taxonomic type, leaf habit, tree age and treatment intensity. Our results pave the way for a better understanding of general tree function responses to drought, elevated CO2 and N fertilization. The existing data also reveal that more long-term studies on mature trees that allow testing interactions between these factors are urgently needed to provide a basis for forecasting tree responses to environmental change at the global scale.

  4. Environmental factors influencing milk urea nitrogen in South African ...

    African Journals Online (AJOL)

    p2492989

    following fixed effects model, in matrix notation, was used for the ANOVA: .... Estimation of genetic parameters for milk urea nitrogen and its ... urea nitrogen concentration: Heritability and genetic correlations with reproductive performance and.

  5. Fixed-nitrogen loss associated with sinking zooplankton carcasses in a coastal oxygen minimum zone (Golfo Dulce, Costa Rica)

    DEFF Research Database (Denmark)

    Stief, Peter; Lundgaard, Ann Sofie Birch; Morales Ramirez, Alvaro

    2017-01-01

    Oxygen minimum zones (OMZs) in the ocean are of key importance for pelagic fixed-nitrogen loss (N-loss) through microbial denitrification and anaerobic ammonium oxidation (anammox). Recent studies document that zooplankton is surprisingly abundant in and around OMZs and that the microbial community...... associated with carcasses of a large copepod species mediates denitrification. Here, we investigate the complex N-cycling associated with sinking zooplankton carcasses exposed to the steep O2 gradient in a coastal OMZ (Golfo Dulce, Costa Rica). 15N-stable-isotope enrichment experiments revealed...... that the carcasses of abundant copepods and ostracods provide anoxic microbial hotspots in the pelagic zone by hosting intense anaerobic N-cycle activities even in the presence of ambient O2. Carcass-associated anaerobic N-cycling was clearly dominated by dissimilatory nitrate reduction to ammonium (DNRA) at up...

  6. Gene Deletions Resulting in Increased Nitrogen Release by Azotobacter vinelandii: Application of a Novel Nitrogen Biosensor

    Science.gov (United States)

    Eberhart, Lauren J.; Ohlert, Janet M.; Knutson, Carolann M.; Plunkett, Mary H.

    2015-01-01

    Azotobacter vinelandii is a widely studied model diazotrophic (nitrogen-fixing) bacterium and also an obligate aerobe, differentiating it from many other diazotrophs that require environments low in oxygen for the function of the nitrogenase. As a free-living bacterium, A. vinelandii has evolved enzymes and transporters to minimize the loss of fixed nitrogen to the surrounding environment. In this study, we pursued efforts to target specific enzymes and further developed screens to identify individual colonies of A. vinelandii producing elevated levels of extracellular nitrogen. Targeted deletions were done to convert urea into a terminal product by disrupting the urease genes that influence the ability of A. vinelandii to recycle the urea nitrogen within the cell. Construction of a nitrogen biosensor strain was done to rapidly screen several thousand colonies disrupted by transposon insertional mutagenesis to identify strains with increased extracellular nitrogen production. Several disruptions were identified in the ammonium transporter gene amtB that resulted in the production of sufficient levels of extracellular nitrogen to support the growth of the biosensor strain. Further studies substituting the biosensor strain with the green alga Chlorella sorokiniana confirmed that levels of nitrogen produced were sufficient to support the growth of this organism when the medium was supplemented with sufficient sucrose to support the growth of the A. vinelandii in coculture. The nature and quantities of nitrogen released by urease and amtB disruptions were further compared to strains reported in previous efforts that altered the nifLA regulatory system to produce elevated levels of ammonium. These results reveal alternative approaches that can be used in various combinations to yield new strains that might have further application in biofertilizer schemes. PMID:25888177

  7. Leaf litter nitrogen concentration as related to climatic factors in Eurasian forests

    DEFF Research Database (Denmark)

    Liu, Chunjiang; Berg, Bjørn; Kutsch, Werner

    2006-01-01

    The aim of this study is to determine the patterns of nitrogen (N) concentrations in leaf litter of forest trees as functions of climatic factors, annual average temperature (Temp, °C) and annual precipitation (Precip, dm) and of forest type (coniferous vs. broadleaf, deciduous vs. evergreen, Pinus...... concentration and Temp and Precip by means of regression analysis. Leaf litter data from N2-fixing species were excluded from the analysis. Results: Over the Eurasian continent, leaf litter N concentration increased with increasing Temp and Precip within functional groups such as conifers, broadleaf, deciduous....... In the context of global warming, these regression equations are useful for a better understanding and modelling of the effects of geographical and climatic factors on leaf litter N at a regional and continental scale....

  8. Rate of tree carbon accumulation increases continuously with tree size.

    Science.gov (United States)

    Stephenson, N L; Das, A J; Condit, R; Russo, S E; Baker, P J; Beckman, N G; Coomes, D A; Lines, E R; Morris, W K; Rüger, N; Alvarez, E; Blundo, C; Bunyavejchewin, S; Chuyong, G; Davies, S J; Duque, A; Ewango, C N; Flores, O; Franklin, J F; Grau, H R; Hao, Z; Harmon, M E; Hubbell, S P; Kenfack, D; Lin, Y; Makana, J-R; Malizia, A; Malizia, L R; Pabst, R J; Pongpattananurak, N; Su, S-H; Sun, I-F; Tan, S; Thomas, D; van Mantgem, P J; Wang, X; Wiser, S K; Zavala, M A

    2014-03-06

    Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle--particularly net primary productivity and carbon storage--increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree's total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to undertand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.

  9. Nitrogen efficiency of Dutch dairy farms : A shadow cost system approach

    NARCIS (Netherlands)

    Reinhard, S.; Thijssen, G.J.

    2000-01-01

    In this paper we analyse the cost efficiency and nitrogen efficiency of an unbalanced panel of Dutch dairy farms. Nitrogen efficiency is defined as the ratio of minimal to observed use of nitrogen (N-containing inputs), conditional on output and quasi-fixed inputs. Nitrogen efficiency is computed in

  10. Changes in Nitrogen Cycling during Tropical Forest Secondary Succession on Abandoned Pastures

    Science.gov (United States)

    Mirza, S.; Rivera, R. J.; Marin-Spiotta, E.

    2017-12-01

    Nitrogen (N) plays two important roles in Earth's climate. As a plant nutrient, the availability of N affects plant growth and the uptake of carbon (C) from the atmosphere into plant biomass. The accumulation of C in long-lived biomass and in soils contributes to reducing the amount of CO2 in the atmosphere. Secondly, excess N can lead to the production of N2O, which is a more potent greenhouse than CO2. Humans have altered the cycling of N in terrestrial ecosystems, affecting their potential to sequester C and help mitigate climate change. Land-use change, specifically deforestation and reforestation, can affect N availability for plant growth and N2O production. Long-term agricultural use can deplete nitrogen sources, even in tropical soils where N is not expected to limit productivity. Secondary succession and reforestation can allow for the recovery of N stocks and fluxes, with implications for C cycling and N2O emissions. N limitation in pastures and early successional forests increases the demand for N-fixing tree species, but previous research has shown that there is a greater abundance of N-fixing species in older forests (Batterman et. al 2013). Successional trends in N mineralization and denitrification vary across studies, with some showing greater rates in agricultural soils or in mature forest soils, compared to early successional sites. Here we examine changes in N-fixing species, above and belowground N pools, and N cycling rates in secondary forests on former pastures on Oxisols in the wet tropical forest life zone of Puerto Rico. The availability of a long-term well-replicated chronosequence provides us with the opportunity to study decadal trends in N processes during forest recovery after agricultural abandonment.

  11. Achieve efficient nitrogen removal from real sewage in a plug-flow integrated fixed-film activated sludge (IFAS) reactor via partial nitritation/anammox pathway.

    Science.gov (United States)

    Yang, Yandong; Zhang, Liang; Cheng, Jun; Zhang, Shujun; Li, Baikun; Peng, Yongzhen

    2017-09-01

    This study tested the feasibility of plug-flow integrated fixed-film activated sludge (IFAS) reactor in applying sewage partial nitritation/anammox (PN/A) process. The IFAS reactor was fed with real pre-treated sewage (C/N ratio=1.3) and operated for 200days. High nitrogen removal efficiency of 82% was achieved with nitrogen removal rates of 0.097±0.019kgN/(m 3 ·d). Therefore, plug-flow IFAS reactor could be an alternative to applying sewage PN/A process. Besides, it was found that the stability of sewage PN/A process was significantly affected by residual ammonium. Nitrate accumulated in effluent and PN/A performance deteriorated when residual ammonium was below 1mg/L. On the contrary, long-term stable PN/A operation was achieved when residual ammonium was over 3mg/L. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Characterization of free nitrogen fixing bacteria of the genus Azotobacter in organic vegetable-grown Colombian soils

    Directory of Open Access Journals (Sweden)

    Diego Javier Jiménez

    2011-09-01

    Full Text Available With the purpose of isolating and characterizing free nitrogen fixing bacteria (FNFB of the genus Azotobacter, soil samples were collected randomly from different vegetable organic cultures with neutral pH in different zones of Boyacá-Colombia. Isolations were done in selective free nitrogen Ashby-Sucrose agar obtaining a recovery of 40%. Twenty four isolates were evaluated for colony and cellular morphology, pigment production and metabolic activities. Molecular characterization was carried out using amplified ribosomal DNA restriction analysis (ARDRA. After digestion of 16S rDNA Y1-Y3 PCR products (1487pb with AluI, HpaII and RsaI endonucleases, a polymorphism of 16% was obtained. Cluster analysis showed three main groups based on DNA fingerprints. Comparison between ribotypes generated by isolates and in silico restriction of 16S rDNA partial sequences with same restriction enzymes was done with Gen Workbench v.2.2.4 software. Nevertheless, Y1-Y2 PCR products were analysed using BLASTn. Isolate C5T from tomato (Lycopersicon esculentum grown soils presented the same in silico restriction patterns with A. chroococcum (AY353708 and 99% of similarity with the same sequence. Isolate C5CO from cauliflower (Brassica oleracea var. botrytis grown soils showed black pigmentation in Ashby-Benzoate agar and high similarity (91% with A. nigricans (AB175651 sequence. In this work we demonstrated the utility of molecular techniques and bioinformatics tools as a support to conventional techniques in characterization of the genus Azotobacter from vegetable-grown soils.

  13. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession

    Science.gov (United States)

    Batterman, Sarah A.; Hedin, Lars O.; van Breugel, Michiel; Ransijn, Johannes; Craven, Dylan J.; Hall, Jefferson S.

    2013-10-01

    Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO2 may be constrained by nitrogen, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N2), but it is unclear whether this functional group can supply the nitrogen needed as forests recover from disturbance or previous land use, or expand in response to rising CO2 (refs 6, 8). Here we identify a powerful feedback mechanism in which N2 fixation can overcome ecosystem-scale deficiencies in nitrogen that emerge during periods of rapid biomass accumulation in tropical forests. Over a 300-year chronosequence in Panama, N2-fixing tree species accumulated carbon up to nine times faster per individual than their non-fixing neighbours (greatest difference in youngest forests), and showed species-specific differences in the amount and timing of fixation. As a result of fast growth and high fixation, fixers provided a large fraction of the nitrogen needed to support net forest growth (50,000kg carbon per hectare) in the first 12years. A key element of ecosystem functional diversity was ensured by the presence of different N2-fixing tree species across the entire forest age sequence. These findings show that symbiotic N2 fixation can have a central role in nitrogen cycling during tropical forest stand development, with potentially important implications for the ability of tropical forests to sequester CO2.

  14. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession.

    Science.gov (United States)

    Batterman, Sarah A; Hedin, Lars O; van Breugel, Michiel; Ransijn, Johannes; Craven, Dylan J; Hall, Jefferson S

    2013-10-10

    Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO2 may be constrained by nitrogen, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N2), but it is unclear whether this functional group can supply the nitrogen needed as forests recover from disturbance or previous land use, or expand in response to rising CO2 (refs 6, 8). Here we identify a powerful feedback mechanism in which N2 fixation can overcome ecosystem-scale deficiencies in nitrogen that emerge during periods of rapid biomass accumulation in tropical forests. Over a 300-year chronosequence in Panama, N2-fixing tree species accumulated carbon up to nine times faster per individual than their non-fixing neighbours (greatest difference in youngest forests), and showed species-specific differences in the amount and timing of fixation. As a result of fast growth and high fixation, fixers provided a large fraction of the nitrogen needed to support net forest growth (50,000 kg carbon per hectare) in the first 12 years. A key element of ecosystem functional diversity was ensured by the presence of different N2-fixing tree species across the entire forest age sequence. These findings show that symbiotic N2 fixation can have a central role in nitrogen cycling during tropical forest stand development, with potentially important implications for the ability of tropical forests to sequester CO2.

  15. Metabolic profiling of two maize (Zea mays L.) inbred lines inoculated with the nitrogen fixing plant-interacting bacteria Herbaspirillum seropedicae and Azospirillum brasilense

    Science.gov (United States)

    Brusamarello-Santos, Liziane Cristina; Gilard, Françoise; Brulé, Lenaïg; Quilleré, Isabelle; Gourion, Benjamin; Ratet, Pascal; Maltempi de Souza, Emanuel; Lea, Peter J.; Hirel, Bertrand

    2017-01-01

    Maize roots can be colonized by free-living atmospheric nitrogen (N2)-fixing bacteria (diazotrophs). However, the agronomic potential of non-symbiotic N2-fixation in such an economically important species as maize, has still not been fully exploited. A preliminary approach to improve our understanding of the mechanisms controlling the establishment of such N2-fixing associations has been developed, using two maize inbred lines exhibiting different physiological characteristics. The bacterial-plant interaction has been characterized by means of a metabolomic approach. Two established model strains of Nif+ diazotrophic bacteria, Herbaspirillum seropedicae and Azospirillum brasilense and their Nif- couterparts defficient in nitrogenase activity, were used to evaluate the impact of the bacterial inoculation and of N2 fixation on the root and leaf metabolic profiles. The two N2-fixing bacteria have been used to inoculate two genetically distant maize lines (FV252 and FV2), already characterized for their contrasting physiological properties. Using a well-controlled gnotobiotic experimental system that allows inoculation of maize plants with the two diazotrophs in a N-free medium, we demonstrated that both maize lines were efficiently colonized by the two bacterial species. We also showed that in the early stages of plant development, both bacterial strains were able to reduce acetylene, suggesting that they contain functional nitrogenase activity and are able to efficiently fix atmospheric N2 (Fix+). The metabolomic approach allowed the identification of metabolites in the two maize lines that were representative of the N2 fixing plant-bacterial interaction, these included mannitol and to a lesser extend trehalose and isocitrate. Whilst other metabolites such as asparagine, although only exhibiting a small increase in maize roots following bacterial infection, were specific for the two Fix+ bacterial strains, in comparison to their Fix- counterparts. Moreover, a number

  16. Metabolic profiling of two maize (Zea mays L. inbred lines inoculated with the nitrogen fixing plant-interacting bacteria Herbaspirillum seropedicae and Azospirillum brasilense.

    Directory of Open Access Journals (Sweden)

    Liziane Cristina Brusamarello-Santos

    Full Text Available Maize roots can be colonized by free-living atmospheric nitrogen (N2-fixing bacteria (diazotrophs. However, the agronomic potential of non-symbiotic N2-fixation in such an economically important species as maize, has still not been fully exploited. A preliminary approach to improve our understanding of the mechanisms controlling the establishment of such N2-fixing associations has been developed, using two maize inbred lines exhibiting different physiological characteristics. The bacterial-plant interaction has been characterized by means of a metabolomic approach. Two established model strains of Nif+ diazotrophic bacteria, Herbaspirillum seropedicae and Azospirillum brasilense and their Nif- couterparts defficient in nitrogenase activity, were used to evaluate the impact of the bacterial inoculation and of N2 fixation on the root and leaf metabolic profiles. The two N2-fixing bacteria have been used to inoculate two genetically distant maize lines (FV252 and FV2, already characterized for their contrasting physiological properties. Using a well-controlled gnotobiotic experimental system that allows inoculation of maize plants with the two diazotrophs in a N-free medium, we demonstrated that both maize lines were efficiently colonized by the two bacterial species. We also showed that in the early stages of plant development, both bacterial strains were able to reduce acetylene, suggesting that they contain functional nitrogenase activity and are able to efficiently fix atmospheric N2 (Fix+. The metabolomic approach allowed the identification of metabolites in the two maize lines that were representative of the N2 fixing plant-bacterial interaction, these included mannitol and to a lesser extend trehalose and isocitrate. Whilst other metabolites such as asparagine, although only exhibiting a small increase in maize roots following bacterial infection, were specific for the two Fix+ bacterial strains, in comparison to their Fix- counterparts

  17. Metabolic profiling of two maize (Zea mays L.) inbred lines inoculated with the nitrogen fixing plant-interacting bacteria Herbaspirillum seropedicae and Azospirillum brasilense.

    Science.gov (United States)

    Brusamarello-Santos, Liziane Cristina; Gilard, Françoise; Brulé, Lenaïg; Quilleré, Isabelle; Gourion, Benjamin; Ratet, Pascal; Maltempi de Souza, Emanuel; Lea, Peter J; Hirel, Bertrand

    2017-01-01

    Maize roots can be colonized by free-living atmospheric nitrogen (N2)-fixing bacteria (diazotrophs). However, the agronomic potential of non-symbiotic N2-fixation in such an economically important species as maize, has still not been fully exploited. A preliminary approach to improve our understanding of the mechanisms controlling the establishment of such N2-fixing associations has been developed, using two maize inbred lines exhibiting different physiological characteristics. The bacterial-plant interaction has been characterized by means of a metabolomic approach. Two established model strains of Nif+ diazotrophic bacteria, Herbaspirillum seropedicae and Azospirillum brasilense and their Nif- couterparts defficient in nitrogenase activity, were used to evaluate the impact of the bacterial inoculation and of N2 fixation on the root and leaf metabolic profiles. The two N2-fixing bacteria have been used to inoculate two genetically distant maize lines (FV252 and FV2), already characterized for their contrasting physiological properties. Using a well-controlled gnotobiotic experimental system that allows inoculation of maize plants with the two diazotrophs in a N-free medium, we demonstrated that both maize lines were efficiently colonized by the two bacterial species. We also showed that in the early stages of plant development, both bacterial strains were able to reduce acetylene, suggesting that they contain functional nitrogenase activity and are able to efficiently fix atmospheric N2 (Fix+). The metabolomic approach allowed the identification of metabolites in the two maize lines that were representative of the N2 fixing plant-bacterial interaction, these included mannitol and to a lesser extend trehalose and isocitrate. Whilst other metabolites such as asparagine, although only exhibiting a small increase in maize roots following bacterial infection, were specific for the two Fix+ bacterial strains, in comparison to their Fix- counterparts. Moreover, a number

  18. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation RID B-8834-2011

    DEFF Research Database (Denmark)

    Kuypers, MMM; Lavik, G.; Woebken, D.

    2005-01-01

    ) and is commonly attributed to denitrification (reduction of nitrate to N-2 by heterotrophic bacteria). Here, we show that instead, the anammox process (the anaerobic oxidation of ammonium by nitrite to yield N-2) is mainly responsible for nitrogen loss in the OMZ waters of one of the most productive regions......In many oceanic regions, growth of phytoplankton is nitrogen-limited because fixation of N-2 cannot make up for the removal of fixed inorganic nitrogen (NH4+, NO2-, and NO3-) by anaerobic microbial processes. Globally, 30-50% of the total nitrogen loss occurs in oxygen-minimum zones (OMZs...... that anammox bacteria are responsible for massive losses of fixed nitrogen. We have identified and directly linked anammox bacteria to the removal of fixed inorganic nitrogen in the OMZ waters of an open-ocean setting. We hypothesize that anammox could also be responsible for substantial nitrogen loss from...

  19. Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis

    International Nuclear Information System (INIS)

    Abnisa, Faisal; Arami-Niya, Arash; Wan Daud, W.M.A.; Sahu, J.N.; Noor, I.M.

    2013-01-01

    Highlights: • About 14.72% of the total landmass in Malaysia was used for oil palm plantations. • Oil palm tree residues were pyrolyzed to produce bio-oil and bio-char. • The process was performed at a temperature of 500 °C and reaction time of 60 min. • Characterization of the products was performed. - Abstract: Oil palm tree residues are a rich biomass resource in Malaysia, and it is therefore very important that they be utilized for more beneficial purposes, particularly in the context of the development of biofuels. This paper described the possibility of utilizing oil palm tree residues as biofuels by producing bio-oil and bio-char via pyrolysis. The process was performed in a fixed-bed reactor at a temperature of 500 °C, a nitrogen flow rate of 2 L/min and a reaction time of 60 min. The physical and chemical properties of the products, which are important for biofuel testing, were then characterized. The results showed that the yields of the bio-oil and bio-char obtained from different residues varied within the ranges of 16.58–43.50 wt% and 28.63–36.75 wt%, respectively. The variations in the yields resulted from differences in the relative amounts of cellulose, hemicellulose, lignin, volatiles, fixed carbon, and ash in the samples. The energy density of the bio-char was found to be higher than that of the bio-oil. The highest energy density of the bio-char was obtained from a palm leaf sample (23.32 MJ/kg), while that of the bio-oil was obtained from a frond sample (15.41 MJ/kg)

  20. Influence of tree canopy on N{sub 2} fixation by pasture legumes and soil rhizobial abundance in Mediterranean oak woodlands

    Energy Technology Data Exchange (ETDEWEB)

    Carranca, C., E-mail: corina.carranca@iniav.pt [INIAV, Qta Marquês, 2784-505 Oeiras (Portugal); Castro, I.V.; Figueiredo, N. [INIAV, Qta Marquês, 2784-505 Oeiras (Portugal); Redondo, R. [Laboratorio de Isotopos Estables, Universidade Autonoma, Madrid (Spain); Rodrigues, A.R.F. [Centro de Estudos Florestais, ISA/UL, Tapada Ajuda, 1349-017 Lisboa (Portugal); Saraiva, I.; Maricato, R. [INIAV, Qta Marquês, 2784-505 Oeiras (Portugal); Madeira, M.A.V. [Centro de Estudos Florestais, ISA/UL, Tapada Ajuda, 1349-017 Lisboa (Portugal)

    2015-02-15

    Symbiotic N{sub 2} fixation is of primordial significance in sustainable agro-forestry management as it allows reducing the use of mineral N in the production of mixed stands and by protecting the soils from degradation. Thereby, on a 2-year basis, N{sub 2} fixation was evaluated in four oak woodlands under Mediterranean conditions using a split-plot design and three replicates. {sup 15}N technique was used for determination of N{sub 2} fixation rate. Variations in environmental conditions (temperature, rainfall, radiation) by the cork tree canopy as well as the age of stands and pasture management can cause great differences in vegetation growth, legume N{sub 2} fixation, and soil rhizobial abundance. In the present study, non-legumes dominated the swards, in particular beneath the tree canopy, and legumes represented only 42% of total herbage. A 2-fold biomass reduction was observed in the oldest sown pasture in relation to the medium-age sward (6 t DW ha{sup −1} yr{sup −1}). Overall, competition of pasture growth for light was negligible, but soil rhizobial abundance and symbiotic N{sub 2} fixation capacity were highly favored by this environmental factor in the spring and outside the influence of tree canopy. Nitrogen derived from the atmosphere was moderate to high (54–72%) in unsown and sown swards. Inputs of fixed N2 increased from winter to spring due to more favorable climatic conditions (temperature and light intensity) for both rhizobia and vegetation growths. Assuming a constant fixation rate at each seasonal period, N{sub 2} fixation capacity increased from about 0.10 kg N ha{sup −1} per day in the autumn–winter period to 0.15 kg N ha{sup −1} per day in spring. Belowground plant material contributed to 11% of accumulated N in pasture legumes and was not affected by canopy. Size of soil fixing bacteria contributed little to explain pasture legumes N. - Highlights: • Legumes fixation in oak woodlands was quantified in terms of biomass and N

  1. Rate of tree carbon accumulation increases continuously with tree size

    Science.gov (United States)

    Stephenson, N.L.; Das, A.J.; Condit, R.; Russo, S.E.; Baker, P.J.; Beckman, N.G.; Coomes, D.A.; Lines, E.R.; Morris, W.K.; Rüger, N.; Álvarez, E.; Blundo, C.; Bunyavejchewin, S.; Chuyong, G.; Davies, S.J.; Duque, Á.; Ewango, C.N.; Flores, O.; Franklin, J.F.; Grau, H.R.; Hao, Z.; Harmon, M.E.; Hubbell, S.P.; Kenfack, D.; Lin, Y.; Makana, J.-R.; Malizia, A.; Malizia, L.R.; Pabst, R.J.; Pongpattananurak, N.; Su, S.-H.; Sun, I-F.; Tan, S.; Thomas, D.; van Mantgem, P.J.; Wang, X.; Wiser, S.K.; Zavala, M.A.

    2014-01-01

    Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle—particularly net primary productivity and carbon storage - increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree’s total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to understand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.

  2. Biogeochemistry and biodiversity interact to govern N2 fixers (Fabaceae) across Amazon tropical forests

    Science.gov (United States)

    Batterman, Sarah; Hedin, Lars; Lloyd, Jon; Quesada, Beto

    2015-04-01

    Dinitrogen (N2)-fixing trees in the Fabaceae fulfill a central role in tropical rainforests by supplying nitrogen from the atmosphere, yet whether they will support a forest CO2 sink in the future by alleviating nitrogen limitation may depend on whether and how they are controlled by local environmental conditions. Theory predicts that soil nutrients govern the function of N2 fixers, yet there have been no large-scale field-based tests of this idea. Moreover, recent findings indicate that N2-fixing species behave differently in biogeochemical cycles, suggesting that any environmental control may differ by species, and that the diversity of N2-fixing trees may be critical for ensuring tropical forest function. In this talk, we will use the RAINFOR dataset of 108 (~1.0 ha) lowland tropical rainforest plots from across the Amazon Basin to test whether the abundance and diversity of N2-fixing trees are controlled by soil nutrient availability (i.e., increasing with phosphorus and decreasing with nitrogen), or if fixer abundance and diversity simply follow the dynamics of all tree species. We also test an alternative - but not mutually exclusive - hypothesis that the governing factor for fixers is forest disturbance. Results show a surprising lack of control by local nutrients or disturbance on the abundance or diversity of N2 fixers. The dominant driver of fixer diversity was the total number of tree species, with fixers comprising 10% of all species in a forest plot (R2 = 0.75, linear regression). When considering the dominant taxa of N2 fixers (Inga, Swartzia, Tachigali) alone, environmental factors (nitrogen, phosphorus and disturbance) became important and clearly governed their abundance. These taxa, which contain >60% of N2-fixing trees in the data set, appear to have evolved to specialize in different local environmental conditions. The strong biogeochemistry-by-biodiversity interaction observed here points to a need to consider individual species or taxa of N2

  3. Interconnection of nitrogen fixers and iron in the Pacific Ocean: Theory and numerical simulations

    OpenAIRE

    Dutkiewicz, S.; Ward, B. A.; Monteiro, F.; Follows, M. J.

    2012-01-01

    We examine the interplay between iron supply, iron concentrations and phytoplankton communities in the Pacific Ocean. We present a theoretical framework which considers the competition for iron and nitrogen resources between phytoplankton to explain where nitrogen fixing autotrophs (diazotrophs, which require higher iron quotas, and have slower maximum growth) can co-exist with other phytoplankton. The framework also indicates that iron and fixed nitrogen concentrations can be strongly contro...

  4. Effect of nitrogen on cellular production and release of the neurotoxin anatoxin-a in a nitrogen-fixing cyanobacterium

    Directory of Open Access Journals (Sweden)

    Alexis eGagnon

    2012-06-01

    Full Text Available Anatoxin-a (ANTX is a neurotoxin produced by several freshwater cyanobacteria and implicated in lethal poisonings of domesticated animals and wildlife. The factors leading to its production in nature and in culture are not well understood. Resource availability may influence its cellular production as suggested by the carbon-nutrient hypothesis, which links the amount of secondary metabolites produced by plants or microbes to the relative abundance of nutrients. We tested the effects of nitrogen supply on ANTX production and release in a toxic strain of the cyanobacterium Aphanizomenon issatschenkoi (Nostocales. We hypothesized that nitrogen deficiency might constrain the production of ANTX. However, the total concentration and more significantly the cellular content of anatoxin-a peaked (max. 146 µg/L and 1683 µg•g-1 dry weight at intermediate levels of nitrogen supply when N-deficiency was evident based on phycocyanin to chlorophyll a and carbon to nitrogen ratios. The results suggest that the cellular production of anatoxin-a may be stimulated by moderate nutrient stress as described recently for another cyanotoxin (microcystin.

  5. Burkholderia caballeronis sp. nov., a nitrogen fixing species isolated from tomato (Lycopersicon esculentum) with the ability to effectively nodulate Phaseolus vulgaris.

    Science.gov (United States)

    Martínez-Aguilar, Lourdes; Salazar-Salazar, Corelly; Méndez, Rafael Díaz; Caballero-Mellado, Jesús; Hirsch, Ann M; Vásquez-Murrieta, María Soledad; Estrada-de los Santos, Paulina

    2013-12-01

    During a survey of Burkholderia species with potential use in agrobiotechnology, a group of 12 strains was isolated from the rhizosphere and rhizoplane of tomato plants growing in Mexico (Nepantla, Mexico State). A phylogenetic analysis of 16S rRNA gene sequences showed that the strains are related to Burkholderia kururiensis and Burkholderia mimosarum (97.4 and 97.1 %, respectively). However, they induced effective nitrogen-fixing nodules on roots of Phaseolus vulgaris. Based on polyphasic taxonomy, the group of strains represents a novel species for which the name Burkholderia caballeronis sp. nov. is proposed. The type species is TNe-841(T) (= LMG 26416(T) = CIP 110324(T)).

  6. Terrestrial nitrogen cycles: Some unanswered questions

    Science.gov (United States)

    Vitousek, P.

    1984-01-01

    Nitrogen is generally considered to be the element which most often limits the growth of plants in both natural and agricultural ecosystems. It regulates plant growth because photosynthetic rates are strongly dependent on the concentration of nitrogen in leaves, and because relatively large mounts of protein are required for cell division and growth. Yet nitrogen is abundant in the biosphere - the well-mixed pool in the atmosphere is considered inexhaustible compared to biotic demand, and the amount of already fixed organic nitrogen in soils far exceeds annual plant uptake in terrestrial ecosystems. In regions where natural vegetation is not nitrogen limited, continuous cultivation induces nitrogen deficiency. Nitrogen loss from cultivated lands is more rapid than that of other elements, and nitrogen fertilization is generally required to maintain crop yield under any continuous system. The pervasiveness of nitrogen deficiency in many natural and most managed sites is discussed.

  7. New insights into the evolutionary history of biological nitrogen fixation

    Directory of Open Access Journals (Sweden)

    Eric eBoyd

    2013-08-01

    Full Text Available Nitrogenase, which catalyzes the ATP-dependent reduction of dinitrogen (N2 to ammonia (NH3, accounts for roughly half of the bioavailable nitrogen supporting extant life. The fundamental requirement for fixed forms of nitrogen for life on Earth, both at present and in the past, has led to broad and significant interest in the origin and evolution of this fundamental biological process. One key question is whether the limited availability of fixed nitrogen was a factor in life’s origin or whether there were ample sources of fixed nitrogen produced by abiotic processes or delivered through the weathering of bolide impact materials to support this early life. If the latter, the key questions become what were the characteristics of the environment that precipitated the evolution of this oxygen sensitive process, when did this occur, and how was its subsequent evolutionary history impacted by the advent of oxygenic photosynthesis and the rise of oxygen in the Earth’s biosphere. Since the availability of fixed sources of nitrogen capable of supporting early life is difficult to glean from the geologic record, there are limited means to get direct insights into these questions. Indirect insights, however, can be gained by deep phylogenetic studies of nitrogenase structural gene products and additional gene products involved in the biosynthesis of the complex metal-containing prosthetic groups associated with this enzyme complex. Insights gained from such studies, as reviewed herein, challenge traditional models for the evolution of biological nitrogen fixation and provide the basis for the development of new conceptual models that explain the stepwise evolution of this highly complex and life sustaining process.

  8. Stimulation of nitrogen fixation in soddy-podzolic soils with fungi

    Science.gov (United States)

    Kurakov, A. V.; Prokhorov, I. S.; Kostina, N. V.; Makhova, E. G.; Sadykova, V. S.

    2006-09-01

    Stimulation of nitrogen fixation in soddy-podzolic soils is related to the hydrolytic activity of fungi decomposing plant polymers. It was found that the rate of nitrogen fixation upon the simultaneous inoculation of the strains of nitrogen-fixing bacteria Bacillus cereus var. mycoides and the cellulolytic fungus Trichoderma asperellum into a sterile soil enriched with cellulose or Jerusalem artichoke residues is two to four times higher than upon the inoculation of the strains of Bacillus cereus var. mycoides L1 only. The increase in the nitrogen fixation depended on the resistance of the substrates added into the soil to fungal hydrolysis. The biomass of the fungi decomposing plant polymers increased by two-four times. The nitrogen-fixing activity of the soil decreased when the growth of the fungi was inhibited with cycloheximide, which attested to a close correlation between the intensity of the nitrogen fixation and the decomposition of the plant polymers by fungi. The introduction of an antifungal antibiotic, together with starch or with plant residues, significantly (by 60-90%) decreased the rate of nitrogen fixation in the soll.

  9. Influence of tree cover on herbaceous layer development and carbon and water fluxes in a Portuguese cork-oak woodland

    Science.gov (United States)

    Dubbert, Maren; Mosena, Alexander; Piayda, Arndt; Cuntz, Matthias; Correia, Alexandra Cristina; Pereira, Joao Santos; Werner, Christiane

    2014-08-01

    Facilitation and competition between different vegetation layers may have a large impact on small-scale vegetation development. We propose that this should not only influence overall herbaceous layer yield but also species distribution and understory longevity, and hence the ecosystems carbon uptake capacity especially during spring. We analyzed the effects of trees on microclimate and soil properties (water and nitrate content) as well as the development of an herbaceous community layer regarding species composition, aboveground biomass and net water and carbon fluxes in a cork-oak woodland in Portugal, between April and November 2011. The presence of trees caused a significant reduction in photosynthetic active radiation of 35 mol m-2 d-1 and in soil temperature of 5 °C from April to October. At the same time differences in species composition between experimental plots located in open areas and directly below trees could be observed: species composition and abundance of functional groups became increasingly different between locations from mid April onwards. During late spring drought adapted native forbs had significantly higher cover and biomass in the open area while cover and biomass of grasses and nitrogen fixing forbs was highest under the trees. Further, evapotranspiration and net carbon exchange decreased significantly stronger under the tree crowns compared to the open during late spring and the die back of herbaceous plants occurred earlier and faster under trees. This was most likely caused by interspecific competition for water between trees and herbaceous plants, despite the more favorable microclimate conditions under the trees during the onset of summer drought.

  10. Nitrogen storage and distribution and reuse of 15N-urea applied in autumn on different branch leaves of winter Jujube (Zizyphus jujuba Mill. var. inermis Rehd) trees

    International Nuclear Information System (INIS)

    Zhao Dengchao; Jiang Yuanmao; Peng Futian; Zhang Xu; Sui Jing; He Naibo

    2007-01-01

    The effectiveness of foliage spraying with urea to augment the seasonal internal cycling of N in winter Jujube was studied. Different branches leaves of 6-year-old trees were painted with 5% abundance of 15 N-urea solution after fruit harvesting. Results showed that 15 N was detected in all the tree organs during the dormant season. In the following year 15 N was also detected in new growth organs (deciduous spurs, leaves and flowers). The treated branches and adjacent organs were the main sinks of Nitrogen in the dormant season. Ndff% in the treated branches was significantly decreased during dormant season. And a decrease of 59.13% was observed in the new growth branch treated and 60.05% in the perennial branches. Reserved nitrogen was reused for initial growth (leaves and deciduous spurs). 15 N stored in perennial organs also remobilized to sustain new growth of treated branches. It is different from the treated new growth branch, 15 N stored in the treated perennial branches is not only transported for new organs growth, but also for roots growth. (authors)

  11. Soil carbon and nitrogen mineralization under different tillage systems and Permanent Groundcover cultivation between Orange trees

    Directory of Open Access Journals (Sweden)

    Elcio Liborio Balota

    2011-06-01

    Full Text Available The objective of this work was to evaluate the alterations in carbon and nitrogen mineralization due to different soil tillage systems and groundcover species for intercropped orange trees. The experiment was established in an Ultisol soil (Typic Paleudults originated from Caiuá sandstone in northwestern of the state of Paraná, Brazil, in an area previously cultivated with pasture (Brachiaria humidicola. Two soil tillage systems were evaluated: conventional tillage (CT in the entire area and strip tillage (ST with a 2-m width, each with different groundcover vegetation management systems. The citrus cultivar utilized was the 'Pera' orange (Citrus sinensis grafted onto a 'Rangpur' lime rootstock. The soil samples were collected at a 0-15-cm depth after five years of experiment development. Samples were collected from under the tree canopy and from the inter-row space after the following treatments: (1 CT and annual cover crop with the leguminous Calopogonium mucunoides; (2 CT and perennial cover crop with the leguminous peanut Arachis pintoi; (3 CT and evergreen cover crop with Bahiagrass Paspalum notatum; (4 CT and cover crop with spontaneous B. humidicola grass vegetation; and (5 ST and maintenance of the remaining grass (pasture of B. humidicola. The soil tillage systems and different groundcover vegetation influenced the C and N mineralization, both under the tree canopy and in the inter-row space. The cultivation of B. humidicola under strip tillage provided higher potential mineralization than the other treatments in the inter-row space. Strip tillage increased the C and N mineralization compared to conventional tillage. The grass cultivation increased the C and N mineralization when compared to the others treatments cultivated in the inter-row space.

  12. Enhancing biological nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    Danso, S.K.A.; Eskew, D.L. (Joint FAO/IAEA Div. of Isotope and Radiation Applications of Atomic Energy for Food and Agricultural Development, Vienna (Austria))

    1984-06-01

    Several co-ordinated research programmes (CRPs) conducted by the Soil Fertility, Irrigation and Crop Production Section of the Joint FAO/IAEA Division have concentrated on finding the most efficient way of applying nitrogen fertilizers to various crops, using nitrogen-15 (/sup 15/N) as a tracer. The findings of these studies have been adopted in many countries around the world, resulting in savings of nitrogen fertilizers worth many millions of dollars every year. More recently, the Section's CRPs have focused on enhancing the natural process of biological di-nitrogen fixation. The /sup 15/N isotope technique has proven to be very valuable in studies of the legume-Rhizobium symbiosis, allowing many more experiments than before to be done and yielding much new practical information. The Soils Section is now working to extend the use of the technique to other nitrogen-fixing symbioses.

  13. QTL analysis of symbiotic nitrogen fixation in a black bean RIL population

    Science.gov (United States)

    Dry bean (Phaseolus vulgaris L) acquires nitrogen (N) from the atmosphere through symbiotic nitrogen fixation (SNF) but it has a low efficiency to fix nitrogen. The objective of this study is to map the genes controlling nitrogen fixation in common bean. A mapping population consisting of 122 recomb...

  14. Removal of plant nutrients from tree crowns by rain

    Energy Technology Data Exchange (ETDEWEB)

    Tamm, C O

    1951-01-01

    The composition of rain water samples collected beneath trees, as compared with samples from an open field, has been investigated during part of the autumn of 1950. Considerable amounts of calcium, potassium and sodium have been found in water collected beneath trees, together with smaller amounts of nitrogen and phosphorus.

  15. Identifying the rooted species tree from the distribution of unrooted gene trees under the coalescent.

    Science.gov (United States)

    Allman, Elizabeth S; Degnan, James H; Rhodes, John A

    2011-06-01

    Gene trees are evolutionary trees representing the ancestry of genes sampled from multiple populations. Species trees represent populations of individuals-each with many genes-splitting into new populations or species. The coalescent process, which models ancestry of gene copies within populations, is often used to model the probability distribution of gene trees given a fixed species tree. This multispecies coalescent model provides a framework for phylogeneticists to infer species trees from gene trees using maximum likelihood or Bayesian approaches. Because the coalescent models a branching process over time, all trees are typically assumed to be rooted in this setting. Often, however, gene trees inferred by traditional phylogenetic methods are unrooted. We investigate probabilities of unrooted gene trees under the multispecies coalescent model. We show that when there are four species with one gene sampled per species, the distribution of unrooted gene tree topologies identifies the unrooted species tree topology and some, but not all, information in the species tree edges (branch lengths). The location of the root on the species tree is not identifiable in this situation. However, for 5 or more species with one gene sampled per species, we show that the distribution of unrooted gene tree topologies identifies the rooted species tree topology and all its internal branch lengths. The length of any pendant branch leading to a leaf of the species tree is also identifiable for any species from which more than one gene is sampled.

  16. Performance, Digestibility and Nitrogen Balance of West African ...

    African Journals Online (AJOL)

    The effect of dietary inclusions of ground tree leaves (Azadirachta indica, Newbouldia laevis and Spondias mombin) on performance, digestibility and nitrogen balance of West African dwarf goats was studied for a ten week period. Twenty four (24) bucks were (10.8±0.6 kg) distributed into four treatments (tree leaves and a ...

  17. Effects of elevated carbon dioxide and nitrogen addition on foliar stoichiometry of nitrogen and phosphorus of five tree species in subtropical model forest ecosystems

    International Nuclear Information System (INIS)

    Huang Wenjuan; Zhou Guoyi; Liu Juxiu; Zhang Deqiang; Xu Zhihong; Liu Shizhong

    2012-01-01

    The effects of elevated carbon dioxide (CO 2 ) and nitrogen (N) addition on foliar N and phosphorus (P) stoichiometry were investigated in five native tree species (four non-N 2 fixers and one N 2 fixer) in open-top chambers in southern China from 2005 to 2009. The high foliar N:P ratios induced by high foliar N and low foliar P indicate that plants may be more limited by P than by N. The changes in foliar N:P ratios were largely determined by P dynamics rather than N under both elevated CO 2 and N addition. Foliar N:P ratios in the non-N 2 fixers showed some negative responses to elevated CO 2 , while N addition reduced foliar N:P ratios in the N 2 fixer. The results suggest that N addition would facilitate the N 2 fixer rather than the non-N 2 fixers to regulate the stoichiometric balance under elevated CO 2 . - Highlights: ► Five native tree species in southern China were more limited by P than by N. ► Shifts in foliar N:P ratios were driven by P dynamic under the global change. ► N addition lowered foliar N:P ratios in the N 2 fixer under elevated CO 2 . - N addition could facilitate the N 2 fixer rather than the non-N 2 fixers to regulate foliar N and P stoichiometry under elevated CO 2 in subtropical forests.

  18. Nitrogen mineralization across an atmospheric nitrogen deposition gradient in Southern California deserts

    Science.gov (United States)

    L.E. Rao; D.R. Parker; Andrzej Bytnerowicz; E.B. Allen

    2009-01-01

    Dry nitrogen deposition is common in arid ecosystems near urban and agricultural centers, yet its impacts on natural environments are relatively understudied. We examined the effects of N deposition on soil N mineralization across a depositional gradient at Joshua Tree National Park. We hypothesized that N deposition affects N mineralization by promoting...

  19. Paenibacillus sonchi sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sonchus oleraceus.

    Science.gov (United States)

    Hong, Yuan-Yuan; Ma, Yu-Chao; Zhou, Yu-Guang; Gao, Fei; Liu, Hong-Can; Chen, San-Feng

    2009-11-01

    A nitrogen-fixing bacterium, designated strain X19-5(T), was isolated from rhizosphere soil of Sonchus oleraceus. Phylogenetic analysis based on a fragment of the nifH gene and the full-length 16S rRNA gene sequence revealed that strain X19-5(T) was a member of the genus Paenibacillus. Strain X19-5(T) showed the highest 16S rRNA gene sequence similarity (98.8 %) with Paenibacillus graminis RSA19(T) and below 97 % similarity with other recognized members of the genus. The level of DNA-DNA relatedness between strain X19-5(T) and P. graminis RSA19(T) was 45.7 %. The DNA G+C content of strain X19-5(T) was 46.8 mol%. The major fatty acids were anteiso-C(15 : 0), C(16 : 0) and iso-C(16 : 0). On the basis of its phenotypic characteristics and the level of DNA-DNA hybridization, strain X19-5(T) is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus sonchi sp. nov. is proposed. The type strain is X19-5(T) (=CCBAU 83901(T)=LMG 24727(T)).

  20. Molecular characterization of nitrogen-fixing bacteria isolated from brazilian agricultural plants at São Paulo state Caracterização molecular de bactérias fixadoras de nitrogênio isoladas de plantas brasileiras no estado de São Paulo

    Directory of Open Access Journals (Sweden)

    Érica. L. Reinhardt

    2008-09-01

    Full Text Available Fourteen strains of nitrogen-fixing bacteria were isolated from different agricultural plant species, including cassava, maize and sugarcane, using nitrogen-deprived selective isolation conditions. Ability to fix nitrogen was verified by the acetylene reduction assay. All potentially nitrogen-fixing strains tested showed positive hybridization signals with a nifH probe derived from Azospirillum brasilense. The strains were characterized by RAPD, ARDRA and 16S rDNA sequence analysis. RAPD analyses revealed 8 unique genotypes, the remaining 6 strains clustered into 3 RAPD groups, suggesting a clonal origin. ARDRA and 16S rDNA sequence analyses allowed the assignment of 13 strains to known groups of nitrogen-fixing bacteria, including organisms from the genera Azospirillum, Herbaspirillum, Pseudomonas and Enterobacteriaceae. Two strains were classified as Stenotrophomonas ssp. Molecular identification results from 16S rDNA analyses were also corroborated by morphological and biochemical data.Quatorze linhagens de bactérias fixadoras de nitrogênio foram isoladas de diferentes espécies de plantas, incluindo cassava, milho e cana-de-açúcar, usando condições seletivas desprovidas de nitrogênio. A capacidade de fixar nitrogênio foi verificada por ensaio de redução de acetileno. Todas as linhagens fixadoras de nitrogênio testadas apresentaram hibridização positiva com sonda de gene nifH derivada de Azospirillum brasilense. As linhagens foram caracterizadas por RAPD, ARDRA e sequenciamento do gene 16S rDNA. As análises de RAPD revelaram 8 genótipos, as 6 linhagens restantes foram agrupadas em 3 grupos de RAPD, sugerindo uma origem clonal. ARDRA e seqüências de 16S rDNA foram alocadas em 13 grupos conhecidos de bactérias fixadoras de nitrogênio, incluindo organismos dos gêneros Azospirillum, Herbaspirillum, Pseudomonas e Enterobacteriaceae. Duas linhagens foram classificadas como Stenotrophomonas ssp. Os resultados da identifica

  1. Two isotopic methods for estimation of soybean nitrogen fixation

    International Nuclear Information System (INIS)

    Domenach, A.-M.; Chalamet, Alain; Pachiaudi, Christiane

    1979-01-01

    Measurements of rate of nitrogen symbiotic fixation by Soybean were determined by two different methods: variations in the natural abundance of 15 N in plants; use of 'A' value determined from labelled nitrogen applications to the soil. The results from both methods were in good agreement. Rates of fixed nitrogen were similar when using non nodulated Soybean or Ray-Grass as reference [fr

  2. Two isotopic methods for estimation of soybean nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    Domenach, A M; Chalamet, A; Pachiaudi, C [Lyon-1 Univ., 69 - Villeurbanne (France)

    1979-07-16

    Measurements of rate of nitrogen symbiotic fixation by Soybean were determined by two different methods: variations in the natural abundance of /sup 15/N in plants; use of 'A' value determined from labelled nitrogen applications to the soil. The results from both methods were in good agreement. Rates of fixed nitrogen were similar when using non nodulated Soybean or Ray-Grass as reference.

  3. Nitrogen Fixation in Cyanobacteria

    NARCIS (Netherlands)

    Stal, L.J.

    2008-01-01

    Cyanobacteria are oxygenic photosynthetic bacteria that are widespread in marine, freshwater and terrestrial environments and many of them are capable of fixing atmospheric nitrogen. But ironically, nitrogenase, the enzyme that is responsible for the reduction of N2, is extremely sensitive to O2.

  4. The marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of climate change

    NARCIS (Netherlands)

    Voss, M.; Bange, H.W.; Dippner, J.W.; Middelburg, J.J.; Montoya, J.P.; Ward, B.

    2013-01-01

    The ocean’s nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation, assimilation, nitrification, anammox and denitrification. Dinitrogen is the most abundant form of nitrogen in sea water but only accessible by nitrogen-fixing microbes. Denitrification and

  5. Crescimento, nutrição e fixação biológica de nitrogênio em plantios mistos de eucalipto e leguminosas arbóreas Growth, nutrition and biological fixation of nitrogen in mixed-species plantations of eucalypt with leguminous trees

    Directory of Open Access Journals (Sweden)

    Selma Regina de Freitas Coelho

    2007-06-01

    Full Text Available O objetivo deste trabalho foi avaliar o crescimento inicial da parte aérea e do sistema radicular, a nutrição mineral e a fixação biológica de N2 (FBN em plantios consorciados de Eucalyptus grandis e leguminosas arbóreas. O delineamento experimental foi o de blocos ao acaso com três repetições e sete tratamentos por bloco. Nas linhas de plantio, entre as plantas de E. grandis, foram plantadas, intercaladamente, leguminosas arbóreas nativas de matas brasileiras - Peltophorum dubium, Inga sp., Mimosa scabrella, Acacia polyphylla, Mimosa caesalpiniaefolia - e uma leguminosa exótica, Acacia mangium. Realizou-se, também, o plantio puro de E. grandis. Mimosa scabrella e A. mangium foram as leguminosas com maior crescimento. Eucalyptus grandis consorciado com M. scabrella cresceu menos, no entanto foi o povoamento com maior acumulação de biomassa. As densidades de raízes finas (DRF do E. grandis foram 6 a 20 vezes maiores que as DRF das leguminosas na camada superficial do solo (0-10 cm 24 meses após plantio. A DRF de M. scabrella e de M. caesalpiniaefolia foi maior na camada 30-50 cm e menor na camada 10-30 cm. Os valores de delta15N da M. scabrella indicam que 90% do N acumulado em seus tecidos é oriundo da FBN.The objective of this work was to assess interactions between species on the above and belowground growth, nitrogen uptake and biological nitrogen fixation (BNF in mixed stands of Eucalyptus grandis and native leguminous N2-fixing trees. A complete randomized block design was installed with seven treatments and three blocks. Within the lines of the E. grandis seedlings, native leguminous N2-fixing trees - Peltophorum dubium, Inga sp., Mimosa scabrella, Acacia polyphylla, Mimosa caesalpiniaefolia - and one exotic leguminous plant, Acacia mangium, were intercropped. E. grandis was also solely planted. Mimosa scabrella and A. mangium were the legume trees that presented the highest growth. Although E. grandis showed a lower

  6. Complete Genome sequence of Burkholderia phymatum STM815, a broad host range and efficient nitrogen-fixing symbiont of Mimosa species

    Energy Technology Data Exchange (ETDEWEB)

    Moulin, Lionel [UMR, France; Klonowska, Agnieszka [UMR, France; Caroline, Bournaud [UMR, France; Booth, Kristina [University of Massachusetts; Vriezen, Jan A.C. [University of Massachusetts; Melkonian, Remy [UMR, France; James, Euan [James Hutton Institute, Dundee, United Kingdom; Young, Peter W. [University of York, United Kingdom; Bena, Gilles [UMR, France; Hauser, Loren John [ORNL; Land, Miriam L [ORNL; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Copeland, A [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Lizotte-Waniewski, Michelle [University of Massachusetts; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Riley, Monica [Woods Hole Oceanographic Institution (WHOI), Woods Hole

    2014-01-01

    Burkholderia phymatum is a soil bacterium able to develop a nitrogen-fixing symbiosis with species of the legume genus Mimosa, and is frequently found associated specifically with Mimosa pudica. The type strain of the species, STM 815T, was isolated from a root nodule in French Guiana in 2000. The strain is an aerobic, motile, non-spore forming, Gram-negative rod, and is a highly competitive strain for nodulation compared to other Mimosa symbionts, as it also nodulates a broad range of other legume genera and species. The 8,676,562 bp genome is composed of two chromosomes (3,479,187 and 2,697,374 bp), a megaplasmid (1,904,893 bp) and a plasmid hosting the symbiotic functions (595,108 bp).

  7. Recursive algorithms for phylogenetic tree counting.

    Science.gov (United States)

    Gavryushkina, Alexandra; Welch, David; Drummond, Alexei J

    2013-10-28

    In Bayesian phylogenetic inference we are interested in distributions over a space of trees. The number of trees in a tree space is an important characteristic of the space and is useful for specifying prior distributions. When all samples come from the same time point and no prior information available on divergence times, the tree counting problem is easy. However, when fossil evidence is used in the inference to constrain the tree or data are sampled serially, new tree spaces arise and counting the number of trees is more difficult. We describe an algorithm that is polynomial in the number of sampled individuals for counting of resolutions of a constraint tree assuming that the number of constraints is fixed. We generalise this algorithm to counting resolutions of a fully ranked constraint tree. We describe a quadratic algorithm for counting the number of possible fully ranked trees on n sampled individuals. We introduce a new type of tree, called a fully ranked tree with sampled ancestors, and describe a cubic time algorithm for counting the number of such trees on n sampled individuals. These algorithms should be employed for Bayesian Markov chain Monte Carlo inference when fossil data are included or data are serially sampled.

  8. Isolation and Identification of Phosphate Solubilizing and Nitrogen Fixing Bacteria from Soil in Wamena Biological Garden, Jayawijaya, Papua

    Directory of Open Access Journals (Sweden)

    SRI WIDAWATI

    2005-07-01

    Full Text Available A study was undertaken to investigate the occurrence of phosphate solubilizing bacteria (PSB and nitrogen-fixing bacteria (NFB from soil samples of Wamena Biological Garden (WbiG. Eleven soil samples were collected randomly to estimate microbial population which used plate count method. The result showed that the microbial population ranged from 5.0x103-7.5x106 cells of bacteria/gram of soil and 5.0x103-1.5x107 cells of bacteria/gram of soil for PSB and NFB respectively. There were 17 isolates which have been identified till genus and species. The isolated microorganism were identified as PSB i.e. Bacillus sp., B. pantothenticus, B. megatherium, Flavobacterium sp., F. breve, Klebsiella sp., K. aerogenes, Chromobacterium lividum, Enterobacter alvei, E. agglomerans, Pseudomonas sp., Proteus sp. and as NFB i.e. Azotobacter sp., A. chroococcum, A. paspalii, Rhizobium sp., and Azospirillum sp.

  9. Suppression of nighttime sap flux with lower stem photosynthesis in Eucalyptus trees.

    Science.gov (United States)

    Gao, Jianguo; Zhou, Juan; Sun, Zhenwei; Niu, Junfeng; Zhou, Cuiming; Gu, Daxing; Huang, Yuqing; Zhao, Ping

    2016-04-01

    It is widely accepted that substantial nighttime sap flux (J s,n) or transpiration (E) occurs in most plants, but the physiological implications are poorly known. It has been hypothesized that J s,n or E serves to enhance nitrogen uptake or deliver oxygen; however, no clear evidence is currently available. In this study, sap flux (J s) in Eucalyptus grandis × urophylla with apparent stem photosynthesis was measured, including control trees which were covered by aluminum foil (approximately 1/3 of tree height) to block stem photosynthesis. We hypothesized that the nighttime water flux would be suppressed in trees with lower stem photosynthesis. The results showed that the green tissue degraded after 3 months, demonstrating a decrease in stem photosynthesis. The daytime J s decreased by 21.47%, while J s,n decreased by 12.03% in covered trees as compared to that of control, and the difference was statistically significant (P photosynthesis in covered trees. Predawn (ψ pd) of covered trees was marginally higher than that of control while lower at predawn stomatal conductance (g s), indicating a suppressed water flux in covered trees. There was no difference in leaf carbon content and δ(13)C between the two groups, while leaf nitrogen content and δ(15)N were significantly higher in covered trees than that of the control (P < 0.05), indicating that J s,n was not used for nitrogen uptake. These results suggest that J s,n may act as an oxygen pathway since green tissue has a higher respiration or oxygen demand than non-green tissue. Thus, this study demonstrated the physiological implications of J s,n and the possible benefits of nighttime water use or E by the tree.

  10. Soil phosphorus heterogeneity promotes tree species diversity and phylogenetic clustering in a tropical seasonal rainforest.

    Science.gov (United States)

    Xu, Wumei; Ci, Xiuqin; Song, Caiyun; He, Tianhua; Zhang, Wenfu; Li, Qiaoming; Li, Jie

    2016-12-01

    The niche theory predicts that environmental heterogeneity and species diversity are positively correlated in tropical forests, whereas the neutral theory suggests that stochastic processes are more important in determining species diversity. This study sought to investigate the effects of soil nutrient (nitrogen and phosphorus) heterogeneity on tree species diversity in the Xishuangbanna tropical seasonal rainforest in southwestern China. Thirty-nine plots of 400 m 2 (20 × 20 m) were randomly located in the Xishuangbanna tropical seasonal rainforest. Within each plot, soil nutrient (nitrogen and phosphorus) availability and heterogeneity, tree species diversity, and community phylogenetic structure were measured. Soil phosphorus heterogeneity and tree species diversity in each plot were positively correlated, while phosphorus availability and tree species diversity were not. The trees in plots with low soil phosphorus heterogeneity were phylogenetically overdispersed, while the phylogenetic structure of trees within the plots became clustered as heterogeneity increased. Neither nitrogen availability nor its heterogeneity was correlated to tree species diversity or the phylogenetic structure of trees within the plots. The interspecific competition in the forest plots with low soil phosphorus heterogeneity could lead to an overdispersed community. However, as heterogeneity increase, more closely related species may be able to coexist together and lead to a clustered community. Our results indicate that soil phosphorus heterogeneity significantly affects tree diversity in the Xishuangbanna tropical seasonal rainforest, suggesting that deterministic processes are dominant in this tropical forest assembly.

  11. Overlap in nitrogen sources and redistribution of nitrogen between trees and grasses in a semi-arid savanna

    NARCIS (Netherlands)

    Priyadarshini, K.V.R.; Prins, H.H.T.; Bie, de S.; Heitkonig, I.M.A.; Woodborne, S.; Gort, G.; Kirkman, K.; Fry, B.; Kroon, de H.

    2014-01-01

    A key question in savanna ecology is how trees and grasses coexist under N limitation. We used N stable isotopes and N content to study N source partitioning across seasons from trees and associated grasses in a semi-arid savanna. We also used 15N tracer additions to investigate possible

  12. [Regulatory genes of garden pea (Pisum sativum L.) controlling the development of nitrogen-fixing nodules and arbuscular mycorrhiza: a review of basic and applied aspects

    DEFF Research Database (Denmark)

    Borisov, A Iu; Vasil'chikov, A G; Voroshilova, V A

    2007-01-01

    The review sums up the long experience of the authors and other researchers in studying the genetic system of garden pea (Pisum sativum L.), which controls sthe development of nitrogen-fixing symbiosis and arbuscular mycorrhiza. A justified phenotypic classification of pea mutants is presented....... Progress in identifying and cloning symbiotic genes is adequately reflected. The feasibility of using double inoculation as a means of increasing the plant productivity is demonstrated, in which the potential of a tripartite symbiotic system (pea plants-root nodule bacteria-arbuscular mycorrhiza...

  13. Exceedance of critical loads and of critical limits impacts tree nutrition across Europe

    DEFF Research Database (Denmark)

    Waldner, P.; Thimonier, A.; Graf Pannatier, E.

    2015-01-01

    solution tended to be related to less favourable nutritional status. Context Forests have been exposed to elevated atmospheric deposition of acidifying and eutrophying sulphur and nitrogen compounds for decades. Critical loads have been identified, below which damage due to acidification and eutrophication...... are not expected to occur. Aims We explored the relationship between the exceedance of critical loads and inorganic nitrogen concentration, the base cation to aluminium ratio in soil solutions, as well as the nutritional status of trees. Methods We used recent data describing deposition, elemental concentrations....... Conclusion The findings support the hypothesis that elevated nitrogen and sulphur deposition can lead to imbalances in tree nutrition....

  14. Moss-nitrogen input to boreal forest soils

    DEFF Research Database (Denmark)

    Rousk, Kathrin; Jones, Davey; DeLuca, Thomas

    2014-01-01

    Cyanobacteria living epiphytically on mosses in pristine, unpolluted areas fix substantial amounts of atmospheric nitrogen (N) and therefore represent a primary source of N in N-limited boreal forests. However, the fate of this N is unclear, in particular, how the fixed N2 enters the soil and bec...... and that transfer of N to the soil is not facilitated by fungal hyphae....

  15. Amplicon restriction patterns associated with nitrogenase activity of ...

    Indian Academy of Sciences (India)

    2013-10-01

    Oct 1, 2013 ... Nitrogen-fixing actinomycete micro-symbiont Frankia nodulates roots of ... the tree is useful in stabilizing nitrogen-depleted soils. Two species of genus .... labelled plastic bags, brought to the laboratory and stored at. −80°C for ...

  16. Estimation of nitrogen fixation in Saccharum spp. by 15N dilution method

    International Nuclear Information System (INIS)

    Singh, Mohan

    1994-01-01

    The amount of nitrogen fixed by bacteria associated with the roots of Saccharum spontaneum, S. sinense, and S. barberi has been estimated by 15 N-isotope dilution method using Sclerotachya fusca as a non-fixing control. S. spontaneum produced highest shoot dry weight among the species tested but maximum nitrogen was accumulated by S. barberi. Highest dilution in the 15 N-enrichment was observed in S. spontaneum followed by S. sinense and S. barberi in comparison to the control plant of Sclerotchya fusca. S. spontaneum derived 60 per cent followed by S. sinense 54 per cent and S. barberi 35 per cent of their total nitrogen requirement through fixation of nitrogen by diazotrophic bacteria associated with their roots. (author). 11 refs., 2 tabs

  17. Transport and partitioning of CO2 fixed by root nodules of ureide and amide producing legumes

    International Nuclear Information System (INIS)

    Vance, C.P.; Boylan, K.L.M.; Maxwell, C.A.; Heichel, G.H.; Hardman, L.L.

    1985-01-01

    Nodulated and denodulated roots of adzuki bean (Vigna angularis), soybean (Glycine max), and alfalfa (Medicago sativa) were exposed to 14 CO 2 to investigate the contribution of nodule CO 2 fixation to assimilation and transport of fixed nitrogen. The distribution of radioactivity in xylem sap and partitioning of carbon fixed by nodules to the whole plant were measured. Radioactivity in the xylem sap of nodulated soybean and adzuki bean was located primarily (70 to 87%) in the acid fraction while the basic (amino acid) fraction contained 10 to 22%. In contrast radioactivity in the xylem sap of nodulated alfalfa was primarily in amino acids with about 20% in organic acids. Total ureide concentration was 8.1, 4.7, and 0.0 micromoles per milliliter xylem sap for soybean, adzuki bean, and alfalfa, respectively. While the major nitrogen transport products in soybeans and adzuki beans are ureides, this class of metabolites contained less than 20% of the the total radioactivity. When nodules of plants were removed, radioactivity in xylem sap decreased by 90% or more. Pulse-chase experiments indicated that CO 2 fixed by nodules was rapidly transported to shoots and incorporated into acid stable constituents. The data are consistent with a role for nodule CO 2 fixation providing carbon for the assimilation and transport of fixed nitrogen in amide-based legumes. In contrast, CO 2 fixation by nodules of ureide transporting legumes appears to contribute little to assimilation and transport of fixed nitrogen. 19 references, 2 figures, 5 tables

  18. Impacts of ozone on trees and crops

    International Nuclear Information System (INIS)

    Felzer, B.S.; Cronina, T.; Melillo, J.M.; Reilly, J.M.; Xiaodong, Wang

    2007-01-01

    In this review article, we explore how surface-level ozone affects trees and crops with special emphasis on consequences for productivity and carbon sequestration. Vegetation exposure to ozone reduces photosynthesis, growth, and other plant functions. Ozone formation in the atmosphere is a product of NO x , which are also a source of nitrogen deposition. Reduced carbon sequestration of temperate forests resulting from ozone is likely offset by increased carbon sequestration from nitrogen fertilization. However, since fertilized crop-lands are generally not nitrogen-limited, capping ozone-polluting substances in the USA, Europe, and China can reduce future crop yield loss substantially. (authors)

  19. Impacts of atmospheric anthropogenic nitrogen on the open ocean

    NARCIS (Netherlands)

    Duce, R.A.; LaRoche, J.; Altieri, K.; Arrigo, K.R.; Baker, A.R.; Capone, D.G.; Cornell, S.; Dentener, F.; Galloway, J.; Ganeshram, R.S.; Geider, R.J.; Jickells, T.; Kuypers, M.M.; Langlois, R.; Liss, P.S.; Liu, S.; Middelburg, J.J.; Moore, C.M.; Nickovic, S.; Oschlies, A.; Pedersen, T.; Prospero, J.; Schlitzer, R.; Seitzinger, S.; Sorensen, L.L.; Uematsu, M.; Ulloa, O.; Voss, M.; Ward, B.; Zamora, L.

    2008-01-01

    Increasing quantities of atmospheric anthropogenic fixed nitrogen entering the open ocean could account for up to about a third of the ocean's external (nonrecycled) nitrogen supply and up to 3% of the annual new marine biological production, 0.3 petagram of carbon per year. This input could account

  20. An eddy-stimulated hotspot for fixed nitrogen-loss from the Peru oxygen minimum zone

    Science.gov (United States)

    Altabet, M. A.; Ryabenko, E.; Stramma, L.; Wallace, D. W. R.; Frank, M.; Grasse, P.; Lavik, G.

    2012-12-01

    Fixed nitrogen (N) loss to biogenic N2 in intense oceanic O2 minimum zones (OMZ) accounts for a large fraction of the global N sink and is an essential control on the ocean's N-budget. However, major uncertainties exist regarding microbial pathways as well as net impact on the magnitude of N-loss and the ocean's overall N-budget. Here we report the discovery of a N-loss hotspot in the Peru OMZ associated with a coastally trapped mesoscale eddy that is marked by an extreme N-deficit matched by biogenic N2 production, high NO2- levels, and the highest isotope enrichments observed so far in OMZ's for the residual NO3-. High sea surface chlorophyll in seaward flowing streamers provides evidence for offshore eddy transport of highly productive, inshore water. Resulting pulses in the downward flux of particles likely stimulated heterotrophic dissimilatory NO3- reduction and subsequent production of biogenic N2 within the OMZ. A shallower biogenic N2 maximum within the oxycline is likely a feature advected by the eddy streamer from the shelf. Eddy-associated temporal-spatial heterogeneity of N-loss, mediated by a local succession of microbial processes, may explain inconsistencies observed among prior studies. Similar transient enhancements of N-loss likely occur within all other major OMZ's exerting a major influence on global ocean N and N isotope budgets.

  1. Effect of Tree Leaves on Rumen Fermentation, Microbial Count and Blood Urea Nitrogen of West African Dwarf Goats

    Directory of Open Access Journals (Sweden)

    Adelusi, O. O.

    2016-12-01

    Full Text Available This experiment was carried out to assess the effect of Azadirachta indica, Newbouldia laevis and Spondias mombin leaves on rumen fermentation, microbial count and blood urea nitrogen (BUN of West African Dwarf (WAD goats. Sixteen WAD bucks (11.6 ? 0.9 kg in body weight were allocated to 4 treatments: 1 Control and 2 40 g/day of Azadirachta indica, 3 40 g/day of Newbouldia laevis and 4 40 g/day of Spondias mombin leaves arranged in a completely randomised design. The ground leaves were included in concentrate diets served on dry matter basis at 2% of body weight while Panicum maximum was fed ad libitum. The control diet had no tree leaves. Data were collected on chemical composition, rumen fermentation and microbial ecology, and BUN. Saponin was highest (P < 0.05 in S. mombin (8.14% while A. indica and N. laevis had 5.78% and 1.56%, respectively. Rumen ammonia nitrogen was least (P < 0.05 in goats fed A. indica (8.35 mg/dL while the highest (P < 0.05 total volatile fatty acid (TVFA was obtained from goats fed S. mombin with 125.51 mM. Goats fed N. laevis yielded the highest (P < 0.05 acetate with 70.65 mol/100 mol while propionate production was highest (P < 0.05 in the rumen of goats fed S. mombin (27.15 mol/100 mol. Viable bacteria count was lowest (P < 0.05 in rumen of goats fed A. indica (3.95?1012 cfu/ml while the least (P < 0.05 protozoa population was obtained from the rumen of bucks fed S. mombin (4.18?109 cfu/ml. All goats in the treatments containing tree leaves had higher (P < 0.05 and a rapid increase in BUN between 0 and 6 h post feeding when compared with the Control. It is concluded that feeding ground leaves of S. mombin to goats increases rumen total volatile fatty acid and propionate production and reduces the protozoa population.

  2. Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics.

    Science.gov (United States)

    Xu, Chonggang; Fisher, Rosie; Wullschleger, Stan D; Wilson, Cathy J; Cai, Michael; McDowell, Nate G

    2012-01-01

    Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO(2) concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO(2) concentration, temperature, and radiation when evaluated against published data of V(c,max) (maximum carboxylation rate) and J(max) (maximum electron transport rate). A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO(2) concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the vegetation

  3. Toward a Mechanistic Modeling of Nitrogen Limitation on Vegetation Dynamics

    Science.gov (United States)

    Xu, Chonggang; Fisher, Rosie; Wullschleger, Stan D.; Wilson, Cathy J.; Cai, Michael; McDowell, Nate G.

    2012-01-01

    Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO2 concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO2 concentration, temperature, and radiation when evaluated against published data of Vc,max (maximum carboxylation rate) and Jmax (maximum electron transport rate). A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO2 concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the vegetation feedbacks

  4. Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics.

    Directory of Open Access Journals (Sweden)

    Chonggang Xu

    Full Text Available Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO(2 concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO(2 concentration, temperature, and radiation when evaluated against published data of V(c,max (maximum carboxylation rate and J(max (maximum electron transport rate. A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO(2 concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the

  5. Ascorbate oxidase: the unexpected involvement of a 'wasteful enzyme' in the symbioses with nitrogen-fixing bacteria and arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Balestrini, Raffaella; Ott, Thomas; Güther, Mike; Bonfante, Paola; Udvardi, Michael K; De Tullio, Mario C

    2012-10-01

    Ascorbate oxidase (AO, EC 1.10.3.3) catalyzes the oxidation of ascorbate (AsA) to yield water. AO over-expressing plants are prone to ozone and salt stresses, whereas lower expression apparently confers resistance to unfavorable environmental conditions. Previous studies have suggested a role for AO as a regulator of oxygen content in photosynthetic tissues. For the first time we show here that the expression of a Lotus japonicus AO gene is induced in the symbiotic interaction with both nitrogen-fixing bacteria and arbuscular mycorrhizal (AM) fungi. In this framework, high AO expression is viewed as a possible strategy to down-regulate oxygen diffusion in root nodules, and a component of AM symbiosis. A general model of AO function in plants is discussed. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  6. Is the distribution of nitrogen-fixing cyanobacteria in the oceans related to temperature?

    NARCIS (Netherlands)

    Stal, L.J.

    2009-01-01

    Approximately 50% of the global natural fixation of nitrogen occurs in the oceans supporting a considerable part of the new primary production. Virtually all nitrogen fixation in the ocean occurs in the tropics and subtropics where the surface water temperature is 25°C or higher. It is attributed

  7. The use of nuclear techniques in the management of nitrogen fixation by trees to enhance fertility of fragile tropical soils. Results of a co-ordinated research project

    International Nuclear Information System (INIS)

    1998-11-01

    The Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture initiated in 1990 a Co-ordinated Research Project on The Use of Nuclear or Related Techniques in Management of Nitrogen Fixation by Trees for Enhancing Soil Fertility and Soil Conservation in Fragile Tropical Soils. This document contains nine papers referring to the results of the project. A separate abstract was prepared for each paper

  8. (Methyl)ammonium Transport in the Nitrogen-Fixing Bacterium Azospirillum brasilense

    Science.gov (United States)

    Van Dommelen, Anne; Keijers, Veerle; Vanderleyden, Jos; de Zamaroczy, Miklos

    1998-01-01

    An ammonium transporter of Azospirillum brasilense was characterized. In contrast to most previously reported putative prokaryotic NH4+ transporter genes, A. brasilense amtB is not part of an operon with glnB or glnZ which, in A. brasilense, encode nitrogen regulatory proteins PII and PZ, respectively. Sequence analysis predicts the presence of 12 transmembrane domains in the deduced AmtB protein and classifies AmtB as an integral membrane protein. Nitrogen regulates the transcription of the amtB gene in A. brasilense by the Ntr system. amtB is the first gene identified in A. brasilense whose expression is regulated by NtrC. The observation that ammonium uptake is still possible in mutants lacking the AmtB protein suggests the presence of a second NH4+ transport mechanism. Growth of amtB mutants at low ammonium concentrations is reduced compared to that of the wild type. This suggests that AmtB has a role in scavenging ammonium at low concentrations. PMID:9573149

  9. Long-Term Exposure of Agricultural Soil to Veterinary Antibiotics Changes the Population Structure of Symbiotic Nitrogen-Fixing Rhizobacteria Occupying Nodules of Soybeans (Glycine max).

    Science.gov (United States)

    Revellin, Cécile; Hartmann, Alain; Solanas, Sébastien; Topp, Edward

    2018-05-01

    Antibiotics are entrained in agricultural soil through the application of manures from medicated animals. In the present study, a series of small field plots was established in 1999 that receive annual spring applications of a mixture of tylosin, sulfamethazine, and chlortetracycline at concentrations ranging from 0.1 to 10 mg · kg -1 soil. These antibiotics are commonly used in commercial swine production. The field plots were cropped continuously for soybeans, and in 2012, after 14 annual antibiotic applications, the nodules from soybean roots were sampled and the occupying bradyrhizobia were characterized. Nodules and isolates were serotyped, and isolates were distinguished using 16S rRNA gene and 16S to 23S rRNA gene intergenic spacer region sequencing, multilocus sequence typing, and RSα fingerprinting. Treatment with the antibiotic mixture skewed the population of bradyrhizobia dominating the nodule occupancy, with a significantly larger proportion of Bradyrhizobium liaoningense organisms even at the lowest dose of 0.1 mg · kg -1 soil. Likewise, all doses of antibiotics altered the distribution of RSα fingerprint types. Bradyrhizobia were phenotypically evaluated for their sensitivity to the antibiotics, and there was no association between in situ treatment and a decreased sensitivity to the drugs. Overall, long-term exposure to the antibiotic mixture altered the composition of bradyrhizobial populations occupying nitrogen-fixing nodules, apparently through an indirect effect not associated with the sensitivity to the drugs. Further work evaluating agronomic impacts is warranted. IMPORTANCE Antibiotics are entrained in agricultural soil through the application of animal or human waste or by irrigation with reused wastewater. Soybeans obtain nitrogen through symbiotic nitrogen fixation. Here, we evaluated the impact of 14 annual exposures to antibiotics commonly used in swine production on the distribution of bradyrhizobia occupying nitrogen-fixing

  10. Putative N2-fixing heterotrophic bacteria associated with dinoflagellate-Cyanobacteria consortia in the low-nitrogen Indian Ocean

    DEFF Research Database (Denmark)

    Farnelid, H.; Tarangkoon, Woraporn; Hansen, Gert

    2010-01-01

    that the symbionts fix gaseous nitrogen (N2). Individual heterotrophic dinoflagellates containing cyanobacterial symbionts were isolated from the open Indian Ocean and off Western Australia, and characterized using light microscopy, transmission electron microscopy (TEM), and nitrogenase (nifH) gene amplification......, cloning, and sequencing. Cyanobacteria, heterotrophic bacteria and eukaryotic algae were recognized as symbionts of the heterotrophic dinoflagellates. nifH gene sequences were obtained from 23 of 37 (62%) specimens of dinoflagellates (Ornithocercus spp. and Amphisolenia spp.). Interestingly, only 2...... specimens contained cyanobacterial nifH sequences, while 21 specimens contained nifH genes related to heterotrophic bacteria. Of the 137 nifH sequences obtained 68% were most similar to Alpha-, Beta-, and Gammaproteobacteria, 8% clustered with anaerobic bacteria, and 5% were related to second alternative...

  11. Transcriptional Profiling of Nitrogen Fixation in Azotobacter vinelandii▿†

    Science.gov (United States)

    Hamilton, Trinity L.; Ludwig, Marcus; Dixon, Ray; Boyd, Eric S.; Dos Santos, Patricia C.; Setubal, João C.; Bryant, Donald A.; Dean, Dennis R.; Peters, John W.

    2011-01-01

    Most biological nitrogen (N2) fixation results from the activity of a molybdenum-dependent nitrogenase, a complex iron-sulfur enzyme found associated with a diversity of bacteria and some methanogenic archaea. Azotobacter vinelandii, an obligate aerobe, fixes nitrogen via the oxygen-sensitive Mo nitrogenase but is also able to fix nitrogen through the activities of genetically distinct alternative forms of nitrogenase designated the Vnf and Anf systems when Mo is limiting. The Vnf system appears to replace Mo with V, and the Anf system is thought to contain Fe as the only transition metal within the respective active site metallocofactors. Prior genetic analyses suggest that a number of nif-encoded components are involved in the Vnf and Anf systems. Genome-wide transcription profiling of A. vinelandiicultured under nitrogen-fixing conditions under various metal amendments (e.g., Mo or V) revealed the discrete complement of genes associated with each nitrogenase system and the extent of cross talk between the systems. In addition, changes in transcript levels of genes not directly involved in N2fixation provided insight into the integration of central metabolic processes and the oxygen-sensitive process of N2fixation in this obligate aerobe. The results underscored significant differences between Mo-dependent and Mo-independent diazotrophic growth that highlight the significant advantages of diazotrophic growth in the presence of Mo. PMID:21724999

  12. A common genomic framework for a diverse assembly of plasmids in the symbiotic nitrogen fixing bacteria.

    Directory of Open Access Journals (Sweden)

    Lisa C Crossman

    2008-07-01

    Full Text Available This work centres on the genomic comparisons of two closely-related nitrogen-fixing symbiotic bacteria, Rhizobium leguminosarum biovar viciae 3841 and Rhizobium etli CFN42. These strains maintain a stable genomic core that is also common to other rhizobia species plus a very variable and significant accessory component. The chromosomes are highly syntenic, whereas plasmids are related by fewer syntenic blocks and have mosaic structures. The pairs of plasmids p42f-pRL12, p42e-pRL11 and p42b-pRL9 as well large parts of p42c with pRL10 are shown to be similar, whereas the symbiotic plasmids (p42d and pRL10 are structurally unrelated and seem to follow distinct evolutionary paths. Even though purifying selection is acting on the whole genome, the accessory component is evolving more rapidly. This component is constituted largely for proteins for transport of diverse metabolites and elements of external origin. The present analysis allows us to conclude that a heterogeneous and quickly diversifying group of plasmids co-exists in a common genomic framework.

  13. Comparative use of lichens, mosses and tree bark to evaluate nitrogen deposition in Germany

    International Nuclear Information System (INIS)

    Boltersdorf, Stefanie H.; Pesch, Roland; Werner, Willy

    2014-01-01

    To compare three biomonitoring techniques for assessing nitrogen (N) pollution in Germany, 326 lichen, 153 moss and 187 bark samples were collected from 16 sites of the national N deposition monitoring network. The analysed ranges of N content of all investigated biomonitors (0.32%–4.69%) and the detected δ 15 N values (−15.2‰–1.5‰), made it possible to reveal species specific spatial patterns of N concentrations in biota to indicate atmospheric N deposition in Germany. The comparison with measured and modelled N deposition data shows that particularly lichens are able to reflect the local N deposition originating from agriculture. - Highlights: • We investigated N pollution with the help of bioindicators in Germany. • The N load was monitored with lichens, mosses and bark by tissue N content. • Main source of N pollution was revealed by tissue δ 15 N values. • Particularly the N content and δ 15 N in lichens reflected agriculture-related N deposition. - First nationwide comparison of lichens, mosses and tree bark to assess the N deposition in Germany by analysing N content and δ 15 N values

  14. Nutrient cycling and Above- and Below-ground Interactions in a Runoff Agroforestry System Applied with Composted Tree Trimmings

    Science.gov (United States)

    Ilani, Talli; Ephrath, Jhonathan; Silberbush, Moshe; Berliner, Pedro

    2014-05-01

    The primary production in arid zones is limited due to shortage of water and nutrients. Conveying flood water and storing it in plots surrounded by embankments allows their cropping. The efficient exploitation of the stored water can be achieved through an agroforestry system, in which two crops are grown simultaneously: annual crops with a shallow root system and trees with a deeper root system. We posit that the long-term productivity of this system can be maintained by intercropping symbiotic N fixing shrubs with annual crops, and applying the pruned and composted shrub leaves to the soil, thus ensuring an adequate nitrogen level (a limiting factor in drylands) in the soil. To test our hypothesis we carried a two year trial in which fast-growing acacia (A. saligna) trees were the woody component and maize (Zea mays L.) the intercrop. Ten treatments were applied over two maize growth seasons to examine the below- and above-ground effects of tree pruning, compost application and interactions. The addition of compost in the first growth season led to an increase of the soil organic matter reservoir, which was the main N source for the maize during the following growth season. In the second growth season the maize yield was significantly higher in the plots to which compost was applied. Pruning the tree's canopies changed the trees spatial and temporal root development, allowing the annual crop to develop between the trees. The roots of pruned trees intercropped with maize penetrated deeper in the soil. The intercropping of maize within pruned trees and implementing compost resulted in a higher water use efficiency of the water stored in the soil when compared to the not composted and monoculture treatments. The results presented suggest that the approach used in this study can be the basis for achieving sustainable agricultural production under arid conditions.

  15. Isolating silkworm genomic DNA without liquid nitrogen suitable for ...

    African Journals Online (AJOL)

    Genomic DNA was isolated from posterior silk gland of silkworms, Antheraea assama. Absolute alcohol was used as tissue fixing solution instead of grinding in liquid nitrogen, which yielded high molecular weight DNA (>40 kb). Samples yielded similar amount of DNA when fixed in absolute alcohol (400 μmg/g of silk gland ...

  16. Use of 15N methodology to assess biological nitrogen fixation

    International Nuclear Information System (INIS)

    Hardarson, G.

    1990-01-01

    One of the most important characteristics of legumes are their ability in symbiosis with Rhizobium bacteria to fix atmospheric nitrogen for growth. For proper management and a full realization of the benefits of this plant-microbial association, it is necessary to estimate how much nitrogen is fixed under different conditions in the field. It is only after this is known that various factors can be manipulated so as to increase the amount and proportion of N a plant derives from biological fixation. A suitable method for accurately measuring the amount of N crops derive from fixation is therefore an important requirement in any programme aimed at maximizing biological nitrogen fixation. There are several methods available to measure N 2 fixation (Bergersen, 1980) based on (1) increment in N yield and plant growth, (2) nitrogen balance (3) acetylene reduction and (4) the use of isotopes of N. Only isotopic methods will be illustrated here. 20 refs, 2 figs, 9 tabs

  17. Quantification of Atmospheric N2 Fixed by Cowpea, Pigeonpea and ...

    African Journals Online (AJOL)

    at taking advantage of legumes to replenish soil nitrogen (N due to legumes' N2 fixation). Glasshouse pot ... In both cases, maize (Katumani variety) was the non- N2- fixing reference crop. ... Biological N2 fixation is affected by several factors,.

  18. The use of nuclear techniques in the management of nitrogen fixation by trees to enhance fertility of fragile tropical soils. Results of a co-ordinated research project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture initiated in 1990 a Co-ordinated Research Project on The Use of Nuclear or Related Techniques in Management of Nitrogen Fixation by Trees for Enhancing Soil Fertility and Soil Conservation in Fragile Tropical Soils. This document contains nine papers referring to the results of the project. A separate abstract was prepared for each paper Refs, figs, tabs

  19. Short-term fertilizer application alters phenotypic traits of symbiotic nitrogen fixing bacteria.

    Science.gov (United States)

    Simonsen, Anna K; Han, Shery; Rekret, Phil; Rentschler, Christine S; Heath, Katy D; Stinchcombe, John R

    2015-01-01

    Fertilizer application is a common anthropogenic alteration to terrestrial systems. Increased nutrient input can impact soil microbial diversity or function directly through altered soil environments, or indirectly through plant-microbe feedbacks, with potentially important effects on ecologically-important plant-associated mutualists. We investigated the impacts of plant fertilizer, containing all common macro and micronutrients on symbiotic nitrogen-fixing bacteria (rhizobia), a group of bacteria that are important for plant productivity and ecosystem function. We collected rhizobia nodule isolates from natural field soil that was treated with slow-release plant fertilizer over a single growing season and compared phenotypic traits related to free-living growth and host partner quality in these isolates to those of rhizobia from unfertilized soils. Through a series of single inoculation assays in controlled glasshouse conditions, we found that isolates from fertilized field soil provided legume hosts with higher mutualistic benefits. Through growth assays on media containing variable plant fertilizer concentrations, we found that plant fertilizer was generally beneficial for rhizobia growth. Rhizobia isolated from fertilized field soil had higher growth rates in the presence of plant fertilizer compared to isolates from unfertilized field soil, indicating that plant fertilizer application favoured rhizobia isolates with higher abilities to utilize fertilizer for free-living growth. We found a positive correlation between growth responses to fertilizer and mutualism benefits among isolates from fertilized field soil, demonstrating that variable plant fertilizer induces context-dependent genetic correlations, potentially changing the evolutionary trajectory of either trait through increased trait dependencies. Our study shows that short-term application is sufficient to alter the composition of rhizobia isolates in the population or community, either directly

  20. Short-term fertilizer application alters phenotypic traits of symbiotic nitrogen fixing bacteria

    Directory of Open Access Journals (Sweden)

    Anna K. Simonsen

    2015-10-01

    Full Text Available Fertilizer application is a common anthropogenic alteration to terrestrial systems. Increased nutrient input can impact soil microbial diversity or function directly through altered soil environments, or indirectly through plant-microbe feedbacks, with potentially important effects on ecologically-important plant-associated mutualists. We investigated the impacts of plant fertilizer, containing all common macro and micronutrients on symbiotic nitrogen-fixing bacteria (rhizobia, a group of bacteria that are important for plant productivity and ecosystem function. We collected rhizobia nodule isolates from natural field soil that was treated with slow-release plant fertilizer over a single growing season and compared phenotypic traits related to free-living growth and host partner quality in these isolates to those of rhizobia from unfertilized soils. Through a series of single inoculation assays in controlled glasshouse conditions, we found that isolates from fertilized field soil provided legume hosts with higher mutualistic benefits. Through growth assays on media containing variable plant fertilizer concentrations, we found that plant fertilizer was generally beneficial for rhizobia growth. Rhizobia isolated from fertilized field soil had higher growth rates in the presence of plant fertilizer compared to isolates from unfertilized field soil, indicating that plant fertilizer application favoured rhizobia isolates with higher abilities to utilize fertilizer for free-living growth. We found a positive correlation between growth responses to fertilizer and mutualism benefits among isolates from fertilized field soil, demonstrating that variable plant fertilizer induces context-dependent genetic correlations, potentially changing the evolutionary trajectory of either trait through increased trait dependencies. Our study shows that short-term application is sufficient to alter the composition of rhizobia isolates in the population or community

  1. Single Polygon Counting on Cayley Tree of Order 3

    Science.gov (United States)

    Pah, Chin Hee

    2010-07-01

    We showed that one form of generalized Catalan numbers is the solution to the problem of finding different connected component with finite vertices containing a fixed root for the semi-infinite Cayley tree of order 3. We give the formula for the full graph, Cayley tree of order 3 which is derived from the generalized Catalan numbers. Using ratios of Gamma functions, two upper bounds are given for problem defined on semi-infinite Cayley tree of order 3 as well as the full graph.

  2. Merrifield-simmons index and minimum number of independent sets in short trees

    DEFF Research Database (Denmark)

    Frendrup, Allan; Pedersen, Anders Sune; Sapozhenko, Alexander A.

    2013-01-01

    In Ars Comb. 84 (2007), 85-96, Pedersen and Vestergaard posed the problem of determining a lower bound for the number of independent sets in a tree of fixed order and diameter d. Asymptotically, we give here a complete solution for trees of diameter d...

  3. Effect of different biochars on Nitrogen uptake in poplar trees

    Science.gov (United States)

    George, Elizabeth; Tonon, Giustino; Scandellari, Francesca

    2014-05-01

    Influence of biochar on soil nitrogen transformation and plant uptake has been reported. This paper presents preliminary results of plant N uptake in poplars by using 15N isotope tracer approach Two types of biochar were applied to two sets of pots containing only sand and each pot received a pre-rooted poplar cutting. Half of the pots were inoculated with commercial mycorrhizal gel and the other half were left without. It is intended to provide information on how biochar, mycorrhiza and root interaction mediate nitrogen uptake and organ allocation.

  4. New, national bottom-up estimate for tree-based biological nitrogen fixation in the US

    Science.gov (United States)

    Nitrogen is a limiting nutrient in many ecosystems, but is also a chief pollutant from human activity. Quantifying human impacts on the nitrogen cycle and investigating natural ecosystem nitrogen cycling both require an understanding of the magnitude of nitrogen inputs from biolo...

  5. Evolutionarily stable strategy of carbon and nitrogen investments in forest leaves and its application in vegetation dynamic modeling

    Science.gov (United States)

    Weng, E.; Farrior, C.; Dybzinski, R.; Pacala, S. W.

    2015-12-01

    Leaf mass per area (LMA) and leaf lifespan (LL) are two highly correlated plant traits that are key to plant physiological and ecological properties. Usually, low LMA means short LL, high nitrogen (N) content per unit mass, and fast turnover rates of nutrients; high LMA leads to long LL, low N content, and slow turnover rates. Deciduous trees with low LMA and short lifespan leaves have low carbon cost but high nitrogen demand; and evergreen trees, with high LMA and long lifespan leaves, have high carbon cost but low nitrogen demand. These relationships lead to: 1) evergreen trees have higher leaf area index than deciduous trees; 2) evergreen trees' carbon use efficiency is lower than the deciduous trees' because of their thick leaves and therefore high maintenance respiration; 3) the advantage of evergreens trees brought by their extra leaves over deciduous trees diminishes with increase N in ecosystem. These facts determine who will win when trees compete with each other in a N-limited ecosystem. In this study, we formulate a mathematical model according to the relationships between LMA, LL, leaf nitrogen, and leaf building and maintenance cost, where LMA is the fundamental variable determining the other three. We analyze the evolutionarily stable strategies (ESSs) of LMA with this mathematical model by examining the benefits of carbon and nitrogen investments to leaves in ecosystems with different N. The model shows the ESS converges to low LMA at high N and high LMA at low N. At intermediate N, there are two ESSs at low and high ends of LMA, respectively. The ESS also leads to low forest productivity by outcompeting the possible high productive strategies. We design a simulation scheme in an individual-based competition model (LM3-PPA) to simulate forest dynamics as results of the competition between deciduous and evergreen trees in three different biomes, which are temperate deciduous forest, deciduous-evergreen mixed forest, and boreal evergreen forest. The

  6. Impact of traffic on δ15N, δ13C and δ18O of needles and annual tree rings of Norway spruce (Picea abies L.

    Directory of Open Access Journals (Sweden)

    Guerrieri MR

    2006-01-01

    Full Text Available Increase of nitrogen depositions, as oxidized (NOx and reduced (NHx compounds, has important implications on ecosystem nitrogen cycle. NOx comes predominantly from fossil fuel combustion in car engines and industrial processes, while agricultural activities (cattle farming, fertilizations are the main sources for NHx emissions. Such fertilisations could stimulate growth and, therefore, productivity of forests, especially in temperate forests, where nitrogen is a limiting factor. On the other hand an excess of nitrogen can lead to an acidification of the soil and have a negative impact on the microbial fauna and structure of plants. NOx and NHx depositions can be separated with the help of stable isotopes with different 15N-values reported for NOx originating from combustion sources. Consequently it was observed that the nitrogen isotopic composition of the vegetation reflects the isotopic signature of nitrogen sources. Our preliminary results on needles of Norway spruce trees exposed to NOx emissions along a transect perpendicular to a highway close to Faido and Brittnau show a clear isotopic enrichment in 15N in trees growing closer to traffic pollution, indicating an uptake of atmospheric nitrogen by stomatal pathway. Carbon and oxygen isotopic composition measured in tree rings reveals the physiological response in plants. Trees more exposed to air pollution from traffic show an increase in δ13C and δ18O in tree rings, since mid sixties next to Erstfeld. This could mean a higher photosynthetic activity, enhanced by NOx traffic emissions, under low or not changed stomatal conductance. Our results confirm that stable isotopes of carbon, oxygen and nitrogen measured in needles and tree rings represent an important tool to monitor the impact of NOx load on tree physiology.

  7. Buckminsterfullerenes: a non-metal system for nitrogen fixation.

    Science.gov (United States)

    Nishibayashi, Yoshiaki; Saito, Makoto; Uemura, Sakae; Takekuma, Shin-Ichi; Takekuma, Hideko; Yoshida, Zen-Ichi

    2004-03-18

    In all nitrogen-fixation processes known so far--including the industrial Haber-Bosch process, biological fixation by nitrogenase enzymes and previously described homogeneous synthetic systems--the direct transformation of the stable, inert dinitrogen molecule (N2) into ammonia (NH3) relies on the powerful redox properties of metals. Here we show that nitrogen fixation can also be achieved by using a non-metallic buckminsterfullerene (C60) molecule, in the form of a water-soluble C60:gamma-cyclodextrin (1:2) complex, and light under nitrogen at atmospheric pressure. This metal-free system efficiently fixes nitrogen under mild conditions by making use of the redox properties of the fullerene derivative.

  8. Removal of hard COD, nitrogenous compounds and phenols from a ...

    African Journals Online (AJOL)

    The objective of this study was to identify the factors affecting the suspended and fixed biomass in the removal of hard COD, nitrogenous compounds and phenols from a coal gasification wastewater (CGWW) stream using a hybrid fixed-film bioreactor (H-FFBR) process under real-time plant operational conditions and ...

  9. Natural isotopes abundance of sup 1 sup 5 N and sup 1 sup 3 C in leaves of some N sub 2 -fixing and non N sub 2 -fixing trees and shrubs in Syria

    International Nuclear Information System (INIS)

    Kurdali, F.; Al-Shamma'a, M.

    2009-01-01

    Varability in the natural abundance isotopes of sup 1 sup 5 N and sup 1 sup 3 C in leaves of several legume and non-legume plant species grown at different sites of two areas in semi-arid regions of Syria was determined. In the first area (non-saline soil), the sup 1 sup 5 N values of a number of fixing and non-fixing reference plants ranged from -2.09 to +9.46, depending on plant species and studied site. sup 1 sup 5 N in a number of legume species including Acacia cyanopylla (-1.73), Acacia farnesiana (-0.55), Prosopis juliflora (-1.64) and Medicago arborea (+1.6) were close to the atmospheric value pointing to a major contribution of N sub 2 fixing in these species; whereas, those of reference plants were highly positive (between +3.6 and +9.46%). In the actinorhizal tree, Elaeagnus angustifolia, the sup 1 sup 5 N abundance was far lower (-0.46 to -2.1%) strongly suggesting that the plant obtained large proportional contribution from BNF. In contrast, delta sup 1 sup 5 N values in some other legumes and actinorhizal plants were relatively similar to those of reference plants, suggesting that the contribution of fixed N sub 2 is negligible. On the other hand, delta sup 1 sup 3 C% values in leaves of C3 plants were affected by plant species, ranging from a minimum of -28.67% to a maximum of -23%. However, they were the same within each plant species although they were grown at different sites. Moreover, dual stable isotope analysis in leaves of Prosopis juliflora and other non- legumes grown on a salt affected soil (second area) was also conducted. Results showed that salinity did not affect C assimilation in this woody legume since a higher carbon discrimination was obtained indicating that this plant is a salt tolerant species; whereas, N2-fixation was drastically affected (delta sup 1 sup 5 N= +7.03). (Author)

  10. Response of free-living nitrogen-fixing microorganisms to land use change in the Amazon rainforest.

    Science.gov (United States)

    Mirza, Babur S; Potisap, Chotima; Nüsslein, Klaus; Bohannan, Brendan J M; Rodrigues, Jorge L M

    2014-01-01

    The Amazon rainforest, the largest equatorial forest in the world, is being cleared for pasture and agricultural use at alarming rates. Tropical deforestation is known to cause alterations in microbial communities at taxonomic and phylogenetic levels, but it is unclear whether microbial functional groups are altered. We asked whether free-living nitrogen-fixing microorganisms (diazotrophs) respond to deforestation in the Amazon rainforest, using analysis of the marker gene nifH. Clone libraries were generated from soil samples collected from a primary forest, a 5-year-old pasture originally converted from primary forest, and a secondary forest established after pasture abandonment. Although diazotroph richness did not significantly change among the three plots, diazotroph community composition was altered with forest-to-pasture conversion, and phylogenetic similarity was higher among pasture communities than among those in forests. There was also 10-fold increase in nifH gene abundance following conversion from primary forest to pasture. Three environmental factors were associated with the observed changes: soil acidity, total N concentration, and C/N ratio. Our results suggest a partial restoration to initial levels of abundance and community structure of diazotrophs following pasture abandonment, with primary and secondary forests sharing similar communities. We postulate that the response of diazotrophs to land use change is a direct consequence of changes in plant communities, particularly the higher N demand of pasture plant communities for supporting aboveground plant growth.

  11. Co-inoculation of arbusculr mycorrhizae and nitrogen fixing bacteria enhance alfalfa yield under saline conditions

    International Nuclear Information System (INIS)

    Zhu, R.; Tang, F.; Liu, F.; Chen, J.

    2016-01-01

    The study was to investigate the effects of combined inoculation of Glomus mosseae (arbusculr mycorrhizae fungi, AMF) and Sinorhizobium meliloti (nitrogen-fixing bacteria, i.e., an Rhizobium meliloti, RM) on yield, nutrient contents, nodulation and mycorrhizal colonization of different alfalfa cultivars under saline conditions. An experiment was conducted to test the efficacy of AMF and RM inoculation in development of salt tolerance in alfalfa cultivars (Zhaodong, Nongjing and Longmu) under different salinity levels (0, 60, 120 and 180 mM NaCl). We found that under non stress condition, double inoculation of alfalfa with rhizobium and AM increased the alfalfa yield, nodule weight and number, as well as shoot proline contents, the most when plants were double inoculated followed by AM and rhizobium inoculation, respectively. Whereas under salinity condition, double inoculation of alfalfa with rhizobium and AM increased alfalfa yield, mycorrhizal infection, nodule weight and number as well as increased in shoot proline content, the most followed by AM and rhizobium inoculation, respectively. The Results suggest that growth of alfalfa may be improved by combined inoculation of alfalfa with AM and rhizobium under salt and non-stress conditions. Alleviation of alfalfa growth under saline condition was perhaps due to an increase in mycorrhizal infection and nodule weight and number as well as an increased in shoot proline content by dual inoculation. (author)

  12. Temporal changes in tree-ring nitrogen of Pinus thunbergii trees exposed to Black-tailed Gull (Larus crassirostris) breeding colonies

    Energy Technology Data Exchange (ETDEWEB)

    Larry, Lopez C.M., E-mail: larry@iwate-u.ac.jp [United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550 (Japan); Chitoshi, Mizota [Faculty of Agriculture, Iwate University, Morioka 020-8550 (Japan); Toshiro, Yamanaka [Division of Earth Science, Graduate School of Natural Science and Technology, Okayama University, 1-1, Naka 3-Chome, Tsushima, Okayama 700-8530 (Japan); Yoshihiro, Nobori [Faculty of Agriculture, Yamagata University, 1-23 Wakabamachi, Tsuruoka, Yamagata 997-8555 (Japan)

    2010-11-15

    Research highlights: {yields} N concentration and isotope ratio on tree-rings can be an important tool to infer past N soil conditions where trees grow. {yields} Changes in avian population on established or new breeding grounds caused by natural or anthropogenic mechanism could be inferred from the analysis shown in this paper. {yields} The property of trees to retain N concentration and N isotope characteristics is found in Pinus thunbergii. The use of other trees for similar analysis have to be determined because other species (Pinus densiflora, for example) do not have this property. - Abstract: Natural abundances of {sup 15}N/{sup 14}N ratios (commonly designated by {delta}{sup 15}N notation) of annual rings from Pinus thunbergii trees were determined after transplantation from a nursery to breeding colonies of Black-tailed Gull (Larus crassirostris) in Miyagi and Aomori and a control site in Yamagata, in northeastern Japan. Tree-rings were collected in July/August/September, 2009. Transplanting was conducted in the year 2000 in the Miyagi site, whereas there is no information about transplanting data in the Aomori and Yamagata sites. Soils associated with piscivorous (fish eating) avian colonies receive large seasonal input of organic N in the form of feces. The organic N is microbiologically transformed into inorganic N in soils, from which P. thunbergii derives its N. The resulting NH{sub 4}{sup -} and NO{sub 3}{sup -}N are characterized by distinctly heavy {delta}{sup 15}N ratios, due to coupled processes of mineralization, volatilization, nitrification and denitrification of feces. In general, total N concentration along with {delta}{sup 15}N values stored in the annual rings of P. thunbergii increased steadily after transplanting from the nursery to locations under continued avian N input. Tree-ring N content and isotopic ratios provided a reliable record of past annual available soil N caused by changes in the Black-tailed Gull population, and thus can

  13. Regulation of Azorhizobium caulinodans ORS571 nitrogen fixation (NIF/FIX) genes

    NARCIS (Netherlands)

    Stigter, J.

    1994-01-01

    Biological nitrogen fixation is the microbial process by which atmospheric dinitrogen (N 2 ) is reduced to ammonia. In all microbes studied, dinitrogen reduction is catalyzed by a highly conserved enzyme complex, called nitrogenase.

  14. Understanding the contribution of biofilm in an integrated fixed-film-activated sludge system (IFAS) designed for nitrogen removal.

    Science.gov (United States)

    Moretti, P; Choubert, J M; Canler, J P; Petrimaux, O; Buffiere, P; Lessard, P

    2015-01-01

    The objective of this study is to improve knowledge on the integrated fixed-film-activated sludge (IFAS) system designed for nitrogen removal. Biofilm growth and its contribution to nitrification were monitored under various operating conditions in a semi-industrial pilot-scale plant. Nitrification rates were observed in biofilms developed on free-floating media and in activated sludge operated under a low sludge retention time (4 days) and at an ammonia loading rate of 45-70 gNH4-N/kgMLVSS/d. Operational conditions, i.e. oxygen concentration, redox potential, suspended solids concentration, ammonium and nitrates, were monitored continuously in the reactors. High removal efficiencies were observed for carbon and ammonium at high-loading rate. The contribution of biofilm to nitrification was determined as 40-70% of total NOx-N production under the operating conditions tested. Optimal conditions to optimize process compacity were determined. The tested configuration responds especially well to winter and summer nitrification conditions. These results help provide a deeper understanding of how autotrophic biomass evolves through environmental and operational conditions in IFAS systems.

  15. Short-term and long-term effects of tannins on nitrogen mineralisation and litter decomposition in kauri (Agathis australis (D. Don) Lindl.) forests

    NARCIS (Netherlands)

    Verkaik, E.; Jongkind, A.G.; Berendse, F.

    2006-01-01

    Kauri (Agathis australis (D. Don) Lindl.) occurs naturally in the warm temperate forest of northern New Zealand where it grows mixed with angiosperm tree species. Below mature kauri trees thick organic layers develop in which large amounts of nitrogen are accumulated. This nitrogen seems to be

  16. Ecophysiological and foliar nitrogen concentration responses of understorey Acacia spp. and Eucalyptus sp. to prescribed burning.

    Science.gov (United States)

    Ma, Ling; Rao, Xingquan; Lu, Ping; Bai, Shahla Hosseini; Xu, Zhihong; Chen, Xiaoyang; Blumfield, Timothy; Xie, Jun

    2015-07-01

    Eucalyptus spp. is a dominant tree genus in Australia and most Eucalyptus spp. are canopy dominant species. In Australian natural forests, Eucalyptus spp. commonly are associated with understorey legumes which play a crucial role for ecological restoration owing to their nitrogen (N) fixing ability for replenishing the soil N lost after frequent prescribed burning. This study aimed to explore to what extent physiological responses of these species differ 7 and 12 years after last fire. Two most common understorey Acacia spp., Acacia leiocalyx and A. disparrima, as well as one non-leguminous Eucalyptus resinifera, were studied due to their dominance in the forest. Both A. leiocalyx and A. disparrima showed higher carbon (C) assimilation capacity, maximum photosynthetic capacity, and moderate foliar C/N ratio compared with E. resinifera. A. leiocalyx showed various advantages compared to A. disparrima such as higher photosynthetic capacity, adaptation to wider light range and higher foliar total N (TNmass). A. leiocalyx also relied on N2-fixing ability for longer time compared to A. disparrima. The results suggested that the two Acacia spp. were more beneficial to C and N cycles for the post burning ecosystem than the non-N2-fixing species E. resinifera. A. leiocalyx had greater contribution to complementing soil N cycle long after burning compared to A. disparrima.

  17. Micropropagation and Biotechnology in Forestry: Preliminary Results From the Danish Christmas Tree Improvement Programme

    DEFF Research Database (Denmark)

    Kristensen, Michel Mehlby Holst; Find, Jens; Krogstrup, Peter

    2004-01-01

    ; Barbara, 1984). However in vitro propagation technology of forest trees has several potential benefits: Allow mass propagation of trees that are difficult to propagate by conventional means. Provides suitable material, e.g., somatic embryos for cryostorage in liquid nitrogen, permitting year-long field...

  18. Analyzing the contribution of climate change to long-term variations in sediment nitrogen sources for reservoirs/lakes

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Xinghui, E-mail: xiaxh@bnu.edu.cn [School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation/Key Laboratory of Water and Sediment Sciences of Ministry of Education, Beijing 100875 (China); Wu, Qiong; Zhu, Baotong; Zhao, Pujun [School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation/Key Laboratory of Water and Sediment Sciences of Ministry of Education, Beijing 100875 (China); Zhang, Shangwei [Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research — UFZ, Permoserstraße 15, Leipzig 04318 (Germany); Yang, Lingyan [Beijing Municipal Environmental Monitoring Center, Beijing 100048 (China)

    2015-08-01

    We applied a mixing model based on stable isotopic δ{sup 13}C, δ{sup 15}N, and C:N ratios to estimate the contributions of multiple sources to sediment nitrogen. We also developed a conceptual model describing and analyzing the impacts of climate change on nitrogen enrichment. These two models were conducted in Miyun Reservoir to analyze the contribution of climate change to the variations in sediment nitrogen sources based on two {sup 210}Pb and {sup 137}Cs dated sediment cores. The results showed that during the past 50 years, average contributions of soil and fertilizer, submerged macrophytes, N{sub 2}-fixing phytoplankton, and non-N{sub 2}-fixing phytoplankton were 40.7%, 40.3%, 11.8%, and 7.2%, respectively. In addition, total nitrogen (TN) contents in sediment showed significant increasing trends from 1960 to 2010, and sediment nitrogen of both submerged macrophytes and phytoplankton sources exhibited significant increasing trends during the past 50 years. In contrast, soil and fertilizer sources showed a significant decreasing trend from 1990 to 2010. According to the changing trend of N{sub 2}-fixing phytoplankton, changes of temperature and sunshine duration accounted for at least 43% of the trend in the sediment nitrogen enrichment over the past 50 years. Regression analysis of the climatic factors on nitrogen sources showed that the contributions of precipitation, temperature, and sunshine duration to the variations in sediment nitrogen sources ranged from 18.5% to 60.3%. The study demonstrates that the mixing model provides a robust method for calculating the contribution of multiple nitrogen sources in sediment, and this study also suggests that N{sub 2}-fixing phytoplankton could be regarded as an important response factor for assessing the impacts of climate change on nitrogen enrichment. - Highlights: • A mixing model was built to analyze sediment N sources of lakes/reservoirs. • Fertilizer/soil and macrophytes showed decreasing trends during

  19. Analyzing the contribution of climate change to long-term variations in sediment nitrogen sources for reservoirs/lakes

    International Nuclear Information System (INIS)

    Xia, Xinghui; Wu, Qiong; Zhu, Baotong; Zhao, Pujun; Zhang, Shangwei; Yang, Lingyan

    2015-01-01

    We applied a mixing model based on stable isotopic δ 13 C, δ 15 N, and C:N ratios to estimate the contributions of multiple sources to sediment nitrogen. We also developed a conceptual model describing and analyzing the impacts of climate change on nitrogen enrichment. These two models were conducted in Miyun Reservoir to analyze the contribution of climate change to the variations in sediment nitrogen sources based on two 210 Pb and 137 Cs dated sediment cores. The results showed that during the past 50 years, average contributions of soil and fertilizer, submerged macrophytes, N 2 -fixing phytoplankton, and non-N 2 -fixing phytoplankton were 40.7%, 40.3%, 11.8%, and 7.2%, respectively. In addition, total nitrogen (TN) contents in sediment showed significant increasing trends from 1960 to 2010, and sediment nitrogen of both submerged macrophytes and phytoplankton sources exhibited significant increasing trends during the past 50 years. In contrast, soil and fertilizer sources showed a significant decreasing trend from 1990 to 2010. According to the changing trend of N 2 -fixing phytoplankton, changes of temperature and sunshine duration accounted for at least 43% of the trend in the sediment nitrogen enrichment over the past 50 years. Regression analysis of the climatic factors on nitrogen sources showed that the contributions of precipitation, temperature, and sunshine duration to the variations in sediment nitrogen sources ranged from 18.5% to 60.3%. The study demonstrates that the mixing model provides a robust method for calculating the contribution of multiple nitrogen sources in sediment, and this study also suggests that N 2 -fixing phytoplankton could be regarded as an important response factor for assessing the impacts of climate change on nitrogen enrichment. - Highlights: • A mixing model was built to analyze sediment N sources of lakes/reservoirs. • Fertilizer/soil and macrophytes showed decreasing trends during the past two decades.

  20. Long-term drought modifies the fundamental relationships between light exposure, leaf nitrogen content and photosynthetic capacity in leaves of the lychee tree (Litchi chinensis).

    Science.gov (United States)

    Damour, Gaëlle; Vandame, Marc; Urban, Laurent

    2008-09-08

    Drought has dramatic negative effects on plants' growth and crop productivity. Although some of the responses and underlying mechanisms are still poorly understood, there is increasing evidence that drought may have a negative effect on photosynthetic capacity. Biochemical models of leaf photosynthesis coupled with models of radiation transfer have been widely used in ecophysiological studies, and, more recently, in global change modeling. They are based on two fundamental relationships at the scale of the leaf: (i) nitrogen content-light exposure and (ii) photosynthetic capacity-nitrogen content. Although drought is expected to increase in many places across the world, such models are not adapted to drought conditions. More specifically, the effects of drought on the two fundamental relationships are not well documented. The objective of our study was to investigate the effects of a long-term drought imposed slowly on the nitrogen content and photosynthetic capacity of leaves similarly exposed to light, from 3-year-old lychee trees cv. Kwaï Mi. Leaf nitrogen and non-structural carbohydrate concentrations were measured along with gas exchanges and the light-saturated rate of photosynthetic electron transport (J(max)) after a 5.5-month-long period of drought. Leaf nitrogen content on a mass basis remained stable, while the leaf mass-to-area ratio (LMA) increased with increasing water stress. Consequently, the leaf nitrogen content on an area basis (N(a)) increased in a non-linear fashion. The starch content decreased, while the soluble sugar content increased. Stomata closed and net assimilation decreased to zero, while J(max) and the ratio J(max)/N(a) decreased with increasing water stress. The drought-associated decrease in photosynthetic capacity can be attributed to downregulation of photosynthetic electron transport and to reallocation of leaf nitrogen content. It is concluded that modeling photosynthesis in drought conditions will require, first, the modeling

  1. Sweet orange trees grafted on selected rootstocks fertilized with nitrogen, phosphorus and potassium

    OpenAIRE

    Quaggio,José Antônio; Mattos Junior,Dirceu; Cantarella,Heitor; Stuchi,Eduardo Sanches; Sempionato,Otávio Ricardo

    2004-01-01

    The majority of citrus trees in Brazil are grafted on 'Rangpur lime' (Citrus limonia Osb.) rootstock. Despite its good horticultural performance, search for disease tolerant rootstock varieties to improve yield and longevity of citrus groves has increased. The objective of this work was to evaluate yield efficiency of sweet oranges on different rootstocks fertilized with N, P, and potassium. Tree growth was affected by rootstock varieties; trees on 'Swingle' citrumelo [Poncirus trifoliata (L....

  2. Growth and nitrogen dynamics of glycine max inoculated with bradyrhizobium japonicum and exposed to elevated atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Rehman, A.; Hamid, N.; Jawaid, F.

    2010-01-01

    Seeds of Glycine max (soybean) were inoculated with N-fixing bacterium Bradyrhizobium japonicum and grown in growth chamber to investigate interactive effects of atmospheric CO/sub 2/ and plants Nitrogen status on root and shoot length and biomass, nodule formation and Nitrogen concentration. Plants were grown with CO/sub 2/ at 3500 and 1000 ppm with or without Bradyrhizobium japonicum inoculation. Root and shoot length and dry mass of Glycine max increased significantly with CO/sub 2/ enrichment provided with Bradyrhizobium japonicum as compared to deficient Nitrogen fixing bacterium. While ambient and enriched CO/sub 2/ levels resulted in increased Nitrogen concentration of Glycine max shoot and root which is inoculated with N-fixing bacterium. Nodule formation was also enhanced in plants supplied with Bradyrhizobium japonicum as compared to plants which is Bradyrhizobium japonicum deficient at both CO/sub 2/ concentrations. (author)

  3. Soil warming alters nitrogen cycling in a New England forest: implications for ecosystem function and structure.

    Science.gov (United States)

    Butler, S M; Melillo, J M; Johnson, J E; Mohan, J; Steudler, P A; Lux, H; Burrows, E; Smith, R M; Vario, C L; Scott, L; Hill, T D; Aponte, N; Bowles, F

    2012-03-01

    Global climate change is expected to affect terrestrial ecosystems in a variety of ways. Some of the more well-studied effects include the biogeochemical feedbacks to the climate system that can either increase or decrease the atmospheric load of greenhouse gases such as carbon dioxide and nitrous oxide. Less well-studied are the effects of climate change on the linkages between soil and plant processes. Here, we report the effects of soil warming on these linkages observed in a large field manipulation of a deciduous forest in southern New England, USA, where soil was continuously warmed 5°C above ambient for 7 years. Over this period, we have observed significant changes to the nitrogen cycle that have the potential to affect tree species composition in the long term. Since the start of the experiment, we have documented a 45% average annual increase in net nitrogen mineralization and a three-fold increase in nitrification such that in years 5 through 7, 25% of the nitrogen mineralized is then nitrified. The warming-induced increase of available nitrogen resulted in increases in the foliar nitrogen content and the relative growth rate of trees in the warmed area. Acer rubrum (red maple) trees have responded the most after 7 years of warming, with the greatest increases in both foliar nitrogen content and relative growth rates. Our study suggests that considering species-specific responses to increases in nitrogen availability and changes in nitrogen form is important in predicting future forest composition and feedbacks to the climate system.

  4. Effect of water and nitrogen additions on free-living nitrogen fixer populations in desert grass root zones.

    Science.gov (United States)

    Herman, R P; Provencio, K R; Torrez, R J; Seager, G M

    1993-01-01

    In this study we measured changes in population levels of free-living N2-fixing bacteria in the root zones of potted Bouteloua eriopoda and Sporobolus flexuosus plants as well as the photosynthetic indices of the plants in response to added nitrogen, added water, and added water plus nitrogen treatments. In addition, N2 fixer population changes in response to added carbon source and nitrogen were measured in plant-free soil columns. There were significant increases in the numbers of N2 fixers associated with both plant species in the water and the water plus nitrogen treatments. Both treatments increased the photosynthetic index, suggesting that plant exudates were driving N2 fixer population changes. Population increases were greatest in the water plus nitrogen treatments, indicating that added nitrogen was synergistic with added water and suggesting that nitrogen addition spared bacteria the metabolic cost of N2 fixation, allowing greater reproduction. Plant-free column studies demonstrated a synergistic carbon-nitrogen effect when carbon levels were limiting (low malate addition) but not when carbon was abundant (high malate), further supporting this hypothesis. The results of this study indicate the presence of N2 fixer populations which interact with plants and which may play a role in the nitrogen balance of desert grasslands. PMID:8215373

  5. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications

    DEFF Research Database (Denmark)

    Stief, P.

    2013-01-01

    (mainly nitrate and ammonium) and the emission of the greenhouse gas nitrous oxide are evaluated. Published data indicate that ecosystem engineering by sediment-burrowing macrofauna stimulates benthic nitrification and denitrification, which together allows fixed nitrogen removal. However, the release...... enhance nitrous oxide emission from shallow aquatic ecosystems. The beneficial effect of benthic macrofauna on fixed nitrogen removal through coupled nitrification-denitrification can thus be offset by the concurrent release of (i) ammonium that stimulates aquatic primary production and (ii) nitrous oxide...... of ammonium from sediments is enhanced more strongly than the sedimentary uptake of nitrate. Ecosystem engineering by reef-building macrofauna increases nitrogen retention and ammonium concentrations in shallow aquatic ecosystems, but allows organic nitrogen removal through harvesting. Grazing by macrofauna...

  6. Relationships between Community Level Functional Traits of Trees and Seedlings during Secondary Succession in a Tropical Lowland Rainforest.

    Science.gov (United States)

    Lu, XingHui; Zang, RunGuo; Huang, JiHong

    2015-01-01

    Most of the previous studies on functional traits focus exclusively on either seedlings or trees. Little knowledge exists on the relationships between community level functional traits of trees and seedlings during succession. Here, we examine variations of the community-level functional traits for trees and seedlings and their correlations along a secondary successional and environmental gradient in a tropical lowland rainforest after shifting cultivation. The results showed that the dynamic patterns in community level functional traits of seedlings were generally consistent with those of the trees during secondary succession. Compared with seedlings, community level traits for trees were less affected by abiotic factors during secondary succession. Correlations between community level functional traits of trees and seedlings were significant for: leaf dry matter content and leaf nitrogen concentration in the 18-year-old fallow; leaf chlorophyll content in the 30-year-old fallow; specific leaf area, leaf dry matter content and leaf nitrogen concentration in the 60-year-old fallow; and leaf nitrogen concentration in old growth. However, these traits except specific leaf area for the tree and seedling communities were all significantly correlated if all the successional stages were combined. Our results suggest that the correlations between community level functional traits of trees and those of seedlings depend on the actual traits and the successional stages examined. However, if all the four successional stages are combined, then four out of five of the community level functional traits for trees could be well predicted by those of the seedlings in the tropical lowland rain forest.

  7. An eddy-stimulated hotspot for fixed nitrogen-loss from the Peru oxygen minimum zone

    Directory of Open Access Journals (Sweden)

    M. A. Altabet

    2012-12-01

    Full Text Available Fixed nitrogen (N loss to biogenic N2 in intense oceanic O2 minimum zones (OMZ accounts for a large fraction of the global N sink and is an essential control on the ocean's N-budget. However, major uncertainties exist regarding microbial pathways as well as net impact on the magnitude of N-loss and the ocean's overall N-budget. Here we report the discovery of a N-loss hotspot in the Peru OMZ associated with a coastally trapped mesoscale eddy that is marked by an extreme N-deficit matched by biogenic N2 production, high NO2 levels, and the highest isotope enrichments observed so far in OMZ's for the residual NO3. High sea surface chlorophyll in seaward flowing streamers provides evidence for offshore eddy transport of highly productive, inshore water. Resulting pulses in the downward flux of particles likely stimulated heterotrophic dissimilatory NO3 reduction and subsequent production of biogenic N2 within the OMZ. A shallower biogenic N2 maximum within the oxycline is likely a feature advected by the eddy streamer from the shelf. Eddy-associated temporal-spatial heterogeneity of N-loss, mediated by a local succession of microbial processes, may explain inconsistencies observed among prior studies. Similar transient enhancements of N-loss likely occur within all other major OMZ's exerting a major influence on global ocean N and N isotope budgets.

  8. Nitrogen and Martian Habitability: Insights from Five Years of Curiosity Measurements

    Science.gov (United States)

    Stern, J. C.; Sutter, B.; Navarro-Gonzalez, R.; McKay, C.; Ming, D. W.; Mahaffy, P. R.; Archer, D., Jr.; Franz, H. B.; Freissinet, C.; Jackson, W. A.; Conrad, P. G.; Glavin, D. P.; Trainer, M. G.; Malespin, C.; McAdam, A.; Eigenbrode, J. L.; Teinturier, S.; Manning, C.

    2017-12-01

    The detection of "fixed" N on Mars in the form of nitrate by the Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover [1] has major implications for martian habitability. "Follow the nitrogen" has been proposed as a strategy in the search for both extant and extinct life on Mars [e.g., 2]. Nitrogen is so crucial to life on Earth that life developed metabolic pathways to break the triple bond of N2 and "fix" atmospheric nitrogen to more biologically available molecules for use in proteins and informational polymers. Sequestration of nitrate in regolith has long been predicted to contribute to the removal of N from the martian atmosphere [e.g., 3], and our detections confirm that nitrogen fixation was occurring on ancient Mars. Detections of fixed nitrogen, particularly within the context of the habitable environment in Yellowknife Bay characterized by the MSL payload, are an important tool to assess whether life ever could have existed on ancient Mars. We present 5 years of analyses and interpretation of nitrate in solid martian drilled and scooped samples by SAM on MSL. Nitrate abundance reported by SAM in situ measurements ranges from non-detection to 681 ± 304 mg/kg [1,4] in the samples examined to date. The measured abundances are consistent with nitrogen fixation via impact generated thermal shock on ancient Mars and/or dry deposition from photochemistry of thermospheric NO. We review the integration of SAM data with terrestrial Mars analog work in order to better understand the timing of nitrogen fixation and mobility of nitrogen on Mars, and thus its availability to putative biology. In particular, the relationship between nitrate and other soluble salts, such as perchlorate, may help reveal the timing of nitrogen fixation and post-depositional behavior of nitrate on Mars [4]. Finally, we present a comparison of isotopic composition (δ15N) of nitrate with δ15N of atmospheric nitrogen (δ15N ≈ 574‰, [5

  9. Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees.

    Science.gov (United States)

    Stolzer, Maureen; Lai, Han; Xu, Minli; Sathaye, Deepa; Vernot, Benjamin; Durand, Dannie

    2012-09-15

    Gene duplication (D), transfer (T), loss (L) and incomplete lineage sorting (I) are crucial to the evolution of gene families and the emergence of novel functions. The history of these events can be inferred via comparison of gene and species trees, a process called reconciliation, yet current reconciliation algorithms model only a subset of these evolutionary processes. We present an algorithm to reconcile a binary gene tree with a nonbinary species tree under a DTLI parsimony criterion. This is the first reconciliation algorithm to capture all four evolutionary processes driving tree incongruence and the first to reconcile non-binary species trees with a transfer model. Our algorithm infers all optimal solutions and reports complete, temporally feasible event histories, giving the gene and species lineages in which each event occurred. It is fixed-parameter tractable, with polytime complexity when the maximum species outdegree is fixed. Application of our algorithms to prokaryotic and eukaryotic data show that use of an incomplete event model has substantial impact on the events inferred and resulting biological conclusions. Our algorithms have been implemented in Notung, a freely available phylogenetic reconciliation software package, available at http://www.cs.cmu.edu/~durand/Notung. mstolzer@andrew.cmu.edu.

  10. Changes in photosynthesis and leaf characteristics with tree height in five dipterocarp species in a tropical rain forest.

    Science.gov (United States)

    Kenzo, Tanaka; Ichie, Tomoaki; Watanabe, Yoko; Yoneda, Reiji; Ninomiya, Ikuo; Koike, Takayoshi

    2006-07-01

    Variations in leaf photosynthetic, morphological and biochemical properties with increasing plant height from seedlings to emergent trees were investigated in five dipterocarp species in a Malaysian tropical rain forest. Canopy openness increased significantly with tree height. Photosynthetic properties, such as photosynthetic capacity at light saturation, light compensation point, maximum rate of carboxylation and maximum rate of photosynthetic electron transport, all increased significantly with tree height. Leaf morphological and biochemical traits, such as leaf mass per area, palisade layer thickness, nitrogen concentration per unit area, chlorophyll concentration per unit dry mass and chlorophyll to nitrogen ratio, also changed significantly with tree height. Leaf properties had simple and significant relationships with tree height, with few intra- and interspecies differences. Our results therefore suggest that the photosynthetic capacity of dipterocarp trees depends on tree height, and that the trees adapt to the light environment by adjusting their leaf morphological and biochemical properties. These results should aid in developing models that can accurately estimate carbon dioxide flux and biomass production in tropical rain forests.

  11. Belowground Carbon Allocation to Ectomycorrhizal Fungi Links Biogeochemical Cycles of Boron and Nitrogen

    Science.gov (United States)

    Lucas, R. W.; Högberg, P.; Ingri, J. N.

    2011-12-01

    Boron (B) is an essential micronutrient to most trees and represents an important limiting resource in some regions, deficient trees experiencing the loss of apical dominance, altered stem growth, and even tree death in extreme cases. Similar to the acquisition of most soil nutrients, B is likely supplied to host trees by mycorrhizal symbionts in exchange for recently fixed carbohydrates. In this way, belowground allocation of photosynthate, which drives the majority of biological processes belowground, links the biogeochemical cycles of B and nitrogen (N). Using a long-term N addition experiment in a Pinus sylvestris forest that has been ongoing for 41 years, we examined how the availability of inorganic N mediates the response of B isotopes in the tree needles, organic soil, and fungal pools in a boreal forest in northern Sweden. Using archived needle samples collected annually from the current year's needle crop, we observed δ11B to increase from 30.8 (0.5 se) to 41.8 (0.7 se)% in N fertilized plots from 1970 to 1979, a period of increasing B deficiency stress induced by N fertilization; the concentration of B in tree needles during 1979 dropping as low as 3.0 μg g-2. During the same period, B concentrations in tree needles from control plots remained relatively unchanged and δ11B remained at a steady state value of 34.1 (1.0 se)%. Following a distinct, large-scale, pulse labeling event in 1980 in which 2.5 kg ha-1 of isotopically distinct B was applied to all treatment and control plots to alleviate the N-induced B deficiency, concentrations of B in current needles increased immediately in all treatments, the magnitude of the response being dependent upon the N treatment. But unlike other pool dilution studies, δ11B of current tree needles did not return to pre-addition, steady-state levels. Instead, δ11B continued to decrease over time in both N addition and control treatments. This unexpected pattern has not been previously described but can be explained

  12. Thiol-based redox signaling in the nitrogen-fixing symbiosis

    Directory of Open Access Journals (Sweden)

    Pierre eFrendo

    2013-09-01

    Full Text Available In nitrogen poor soils legumes establish a symbiotic interaction with rhizobia that results in the formation of root nodules. These are unique plant organs where bacteria differentiate into bacteroids, which express the nitrogenase enzyme complex that reduces atmospheric N2 to ammonia. Nodule metabolism requires a tight control of the concentrations of reactive oxygen and nitrogen species (RONS so that they can perform useful signaling roles while avoiding nitro-oxidative damage. In nodules a thiol-dependent regulatory network that senses, transmits and responds to redox changes is starting to be elucidated. A combination of enzymatic, immunological, pharmacological and molecular analyses has allowed to conclude that glutathione and its legume-specific homolog, homoglutathione, are abundant in meristematic and infected cells, their spatio-temporally distribution is correlated with the corresponding (homoglutathione synthetase activities, and are crucial for nodule development and function. Glutathione is at high concentrations in the bacteroids and at moderate amounts in the mitochondria, cytosol and nuclei. Less information is available on other components of the network. The expression of multiple isoforms of glutathione peroxidases, peroxiredoxins, thioredoxins, glutaredoxins and NADPH-thioredoxin reductases has been detected in nodule cells using antibodies and proteomics. Peroxiredoxins and thioredoxins are essential to regulate and in some cases to detoxify RONS in nodules. Further research is necessary to clarify the regulation of the expression and activity of thiol redox-active proteins in response to abiotic, biotic and developmental cues, their interactions with downstream targets by disulfide-exchange reactions, and their participation in signaling cascades. The availability of mutants and transgenic lines will be crucial to facilitate systematic investigations into the function of the various proteins in the legume

  13. Tritium cycling in a tree spiked with tritiated water

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.; Luvall, J.C.

    1979-01-01

    Transfer and turnover rates in forests are important to compute the residence time of tritiated water in an area following an accidental release. In this study tritium was injected in the base of 7 year old, loblolly pine (Pinus taeda, L) trees to determine the rate of transfer through the trees and the turnover in the trees independent of the soil. The results indicate the flow rates depend on the rate of water movement through the tree, which is influenced by the microclimate, and exchange of tritium with hydrogen exchange sites in the tree. The initial pulse of tritium appears to move through the tree in about four days. The descending portion of the curve can be described as a two compartment model with half-lives of 1.41 and 21.7 days. There is some evidence that a longer turnover compartment is associated with metabolically fixed tritium

  14. Response of Gliricidia sepium tree to phosphorus application and ...

    African Journals Online (AJOL)

    SERVER

    2008-03-18

    Mar 18, 2008 ... and rhizobial strains in a sub-Saharian sandy soil ... used as reference tree for estimating the nitrogen fixation using the 15N isotope dilution technique. ... sulphuric acid and washed vigorously in sterile water and pre-.

  15. Sweet orange trees grafted on selected rootstocks fertilized with nitrogen, phosphorus and potassium

    Directory of Open Access Journals (Sweden)

    Quaggio José Antônio

    2004-01-01

    Full Text Available The majority of citrus trees in Brazil are grafted on 'Rangpur lime' (Citrus limonia Osb. rootstock. Despite its good horticultural performance, search for disease tolerant rootstock varieties to improve yield and longevity of citrus groves has increased. The objective of this work was to evaluate yield efficiency of sweet oranges on different rootstocks fertilized with N, P, and potassium. Tree growth was affected by rootstock varieties; trees on 'Swingle' citrumelo [Poncirus trifoliata (L. Raf. × C. paradisi Macf.] presented the smallest canopy (13.3 m³ in the fifth year after tree planting compared to those on 'Rangpur lime' and 'Cleopatra' mandarin [C. reshni (Hayata hort. ex Tanaka] grown on the same grove. Although it was observed an overall positive relationship between canopy volume and fruit yield (R² = 0.95**, yield efficiency (kg m-3 was affected by rootstocks, which demonstrated 'Rangpur lime' superiority in relation to Cleopatra. Growth of citrus trees younger than 5-yr-old might be improved by K fertilization rates greater than currently recommended in Brazil, in soils with low K and subjected to nutrient leaching losses.

  16. The role of symbiotic nitrogen fixation in nitrogen availability, competition and plant invasion into the sagebrush steppe

    Science.gov (United States)

    Erin M. Goergen

    2009-01-01

    In the semi-arid sagebrush steppe of the Northeastern Sierra Nevada, resources are both spatially and temporally variable, arguably making resource availability a primary factor determining invasion success. N fixing plant species, primarily native legumes, are often relatively abundant in sagebrush steppe and can contribute to ecosystem nitrogen budgets. ...

  17. Nutritional evaluation of leaves of some salt-tolerant tree species by assessing, in vitro, the ruminal microbial nitrogen and fermentation characteristics utilizing "1"5N tracer and gas production techniques

    International Nuclear Information System (INIS)

    Al-Masri, M.R.

    2014-04-01

    Leaves of some salt-tolerant tree species (Tamarix articulata Vahl., Tamarix aphylla (L) Karst, Acacia ampliceps Maslin, Casuarina equisetifolia L, Parkinsonia aculeate L, Eucaliptus camaldulensis Dahnhard) were evaluated in terms of microbial nitrogen (MN) and biomass (MBM) production after incubation with rumen fluid and 15N-tracer for 96 h in the absence or presence of polyethylene glycol (PEG, 6000). The characteristics of fermentation (initial gas produced from soluble fraction; a, gas production during incubation which produced from insoluble but fermentable fraction; b, potential gas production; a + b, fractional rate of gas production per hour; c) were assessed using an in vitro incubation technique with rumen fluid. Effective degradability (ED), short chain fatty acids (SCFA) and predicted daily intake (Y) were also estimated in leaves of the experimental tree species.The a + b values (mL/g DM) were highest (P<0.05) in A. ampliceps (191), lowest in T. articulate and C. equisetifolia (119), and intermediate in T. aphylla, E. camaldulensis and P. aculeate (158). E. camaldulensis, A. ampliceps and P. aculeate had higher (P<0.05) fractional rate of gas production (0.080/h) than other species (0.061/h). There was a positive correlation between SCFA concentrations and c and a + b values. The ratios of MN and MBM to effective degraded substrate and the values of MN and MBM were significantly higher (P<0.05) in P. aculeate and A. ampliceps compared with other species. Microbial nitrogen and MBM production were positively correlated with a + b, ED and SCFA.The addition of PEG to the plant samples incubated with rumen fluid at a ratio of 2:1 PEG: substrate increased the values of gas production, characteristics of fermentation, MN, MBM, SCFA, ED and Y. The response of leaves of the experimental tree species to PEG treatment in terms of increased gas production varied between species and tended to decline as incubation progressed, with the highest increase during the

  18. The marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of climate change

    OpenAIRE

    Voss, Maren; Bange, Hermann W.; Dippner, Joachim W.; Middelburg, Jack J.; Montoya, Joseph P.; Ward, Bess

    2013-01-01

    The ocean's nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation, assimilation, nitrification, anammox and denitrification. Dinitrogen is the most abundant form of nitrogen in sea water but only accessible by nitrogen-fixing microbes. Denitrification and nitrification are both regulated by oxygen concentrations and potentially produce nitrous oxide (N2O), a climate-relevant atmospheric trace gas. The world's oceans, including the coastal areas and upwelli...

  19. Use of 15N-isotope dilution for quantification of nitrogen fixation in Saccharum SPP

    International Nuclear Information System (INIS)

    Singh, M.; Singh, G.B.; Joshi, B.B.

    1994-01-01

    The objectives of present study were to quantify and compare the amount of nitrogen fixed by diazotrophes associated with roots of Saccharum spontaneum, S. barberi and S. sinense using Sclerotachya fusca as a non-fixing control. 5 refs

  20. Biomass production on saline-alkaline soils

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, A.N.

    1985-01-01

    In a trial of twelve tree species (both nitrogen fixing and non-fixing) for fuel plantations on saline-alkaline soil derived from Gangetic alluvium silty clay, Leucaena leucocephala failed completely after showing rapid growth for six months. Results for other species at age two showed that Prosopis juliflora had the best productivity.

  1. Impacts of afforestation and silviculture on the soil C balance of tropical tree plantations: belowground C allocation, soil CO2 efflux and C accretion (Invited)

    Science.gov (United States)

    Epron, D.; Koutika, L.; Mareschal, L.; Nouvellon, Y.

    2013-12-01

    eucalypt-derived C is recovered in the fine particulate organic matter fraction (0.25-0.05 mm) and the organo-mineral fraction (soil CO2 efflux, thus largely dependent on the nutrients released by the decomposition of organic residues left at harvest, the stabilization of the old soil organic C derived from the savannah may depends on the amount of organic residues left at harvest. A greater C accumulation was observed in the soil when eucalypts were grown in mixture with a nitrogen fixing tree despite similar aboveground litter fall and lower fine root biomass. A slowdown of C turnover related to N enrichment might thus be postulated in nitrogen-poor tropical soils, and mixed-species plantation with nitrogen fixing trees might be an important strategy of reforestation or afforestation to offset C emissions.

  2. Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients

    Science.gov (United States)

    Filipa Cox; Nadia Barsoum; Erik A. Lilleskov; Martin I. Bidartondo

    2010-01-01

    Global environmental change has serious implications for functional biodiversity in temperate and boreal forests. Trees depend on mycorrhizal fungi for nutrient uptake, but predicted increases in nitrogen availability may alter fungal communities. To address a knowledge gap regarding the effects of nitrogen availability on mycorrhizal communities at large scales, we...

  3. Results of isotopic investigations of nitrogen nutrition of apples and cherries

    International Nuclear Information System (INIS)

    Makariev, Z.

    1990-01-01

    Results are reported of 15 N study of absorption and dislocation of nitrogen fertilization in apple and cherry plantations and field trials localized nitrogen fertilization of apple plantations. It is found that there is a good functional relation between the individual roots and all skeletal branches of the crown. The apple- and cherry trees can satisfy their nitrogen needs by a part of their root system and hence the introduction of nitrogen into the whole nutrition area is not absolutely necessary. The localized nitrogen fertilization in every other row or only in the row band of apple plantations increases its biological, economic and ecological efficiency. The method is patented. 2 tabs, 7 figs, 5 refs

  4. Insects as a Nitrogen Source for Plants

    Directory of Open Access Journals (Sweden)

    Michael J. Bidochka

    2013-07-01

    Full Text Available Many plants have evolved adaptations in order to survive in low nitrogen environments. One of the best-known adaptations is that of plant symbiosis with nitrogen-fixing bacteria; this is the major route by which nitrogen is incorporated into plant biomass. A portion of this plant-associated nitrogen is then lost to insects through herbivory, and insects represent a nitrogen reservoir that is generally overlooked in nitrogen cycles. In this review we show three specialized plant adaptations that allow for the recovery of insect nitrogen; that is, plants gaining nitrogen from insects. First, we show specialized adaptations by carnivorous plants in low nitrogen habitats. Insect carnivorous plants such as pitcher plants and sundews (Nepenthaceae/Sarraceniaceae and Drosera respectively are able to obtain substantial amounts of nitrogen from the insects that they capture. Secondly, numerous plants form associations with mycorrhizal fungi that can provide soluble nitrogen from the soil, some of which may be insect-derived nitrogen, obtained from decaying insects or insect frass. Finally, a specialized group of endophytic, insect-pathogenic fungi (EIPF provide host plants with insect-derived nitrogen. These soil-inhabiting fungi form a remarkable symbiosis with certain plant species. They can infect a wide range of insect hosts and also form endophytic associations in which they transfer insect-derived nitrogen to the plant. Root colonizing fungi are found in disparate fungal phylogenetic lineages, indicating possible convergent evolutionary strategies between taxa, evolution potentially driven by access to carbon-containing root exudates.

  5. Effect of the major components of industrial air pollution on nonsymbiotic nitrogen-fixation activity in soil

    Energy Technology Data Exchange (ETDEWEB)

    Islamov, S S; Chunderova, A I

    1976-01-01

    Industrial pollution of atmosphere inhibits the activity of non-symbiotic nitrogen fixation in soils. The inhibiting effect of polluted air can be explained by the presence of carbon monoxide and nitrogen dioxide in it. Sulfur dioxide does not depress the nitrogenase complex of aerobic and anaerobic nitrogen fixing microorganisms.

  6. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications

    Science.gov (United States)

    Stief, P.

    2013-12-01

    Invertebrate animals that live at the bottom of aquatic ecosystems (i.e., benthic macrofauna) are important mediators between nutrients in the water column and microbes in the benthos. The presence of benthic macrofauna stimulates microbial nutrient dynamics through different types of animal-microbe interactions, which potentially affect the trophic status of aquatic ecosystems. This review contrasts three types of animal-microbe interactions in the benthos of aquatic ecosystems: (i) ecosystem engineering, (ii) grazing, and (iii) symbiosis. Their specific contributions to the turnover of fixed nitrogen (mainly nitrate and ammonium) and the emission of the greenhouse gas nitrous oxide are evaluated. Published data indicate that ecosystem engineering by sediment-burrowing macrofauna stimulates benthic nitrification and denitrification, which together allows fixed nitrogen removal. However, the release of ammonium from sediments is enhanced more strongly than the sedimentary uptake of nitrate. Ecosystem engineering by reef-building macrofauna increases nitrogen retention and ammonium concentrations in shallow aquatic ecosystems, but allows organic nitrogen removal through harvesting. Grazing by macrofauna on benthic microbes apparently has small or neutral effects on nitrogen cycling. Animal-microbe symbioses provide abundant and distinct benthic compartments for a multitude of nitrogen-cycle pathways. Recent studies reveal that ecosystem engineering, grazing, and symbioses of benthic macrofauna significantly enhance nitrous oxide emission from shallow aquatic ecosystems. The beneficial effect of benthic macrofauna on fixed nitrogen removal through coupled nitrification-denitrification can thus be offset by the concurrent release of (i) ammonium that stimulates aquatic primary production and (ii) nitrous oxide that contributes to global warming. Overall, benthic macrofauna intensifies the coupling between benthos, pelagial, and atmosphere through enhanced turnover and

  7. Adsorption, translocation and redistribution of nitrogen (15N) in orange trees

    International Nuclear Information System (INIS)

    Fenilli, Tatiele Anete Bergamo; Boaretto, Antonio Enedi Boaretto; Bendassolli, Jose Albertino; Trivelin, Paulo Cesar Ocheuze; Muraoka, Takashi

    2002-01-01

    The objective was to evaluate the absorption of 15 N from nutrient solution by young orange trees and the translocation and the redistribution of the absorbed N. The treatments were constituted by four periods of 15 N labelling (spring, summer, autumn and winter). In the first treatment, the young orange trees received 15 N in the nutrient solution during the spring and five replicates of the plants were picked at the end of the period. The new part, which was developed during the 15 N labelling period, was separated from the other part (old part) in branch and leaf, and also in flower and fruit when they were. The old part was separated in leaf, stem and root. This same procedure was followed in the other treatments. The total N and the isotope ratios 15 N/ 14 N were performed by mass spectrometry. The major part of absorbed N during the spring and summer was translocated to the new part of the orange trees, but in autumn and winter the absorbed N was concentrated in the old plant part. The redistribution of N from of old plant parts was more intensive during the autumn and winter. (author)

  8. A Medicago truncatula tobacco retrotransposon insertion mutant collection with defects in nodule development and symbiotic nitrogen fixation.

    Science.gov (United States)

    Pislariu, Catalina I; Murray, Jeremy D; Wen, JiangQi; Cosson, Viviane; Muni, RajaSekhara Reddy Duvvuru; Wang, Mingyi; Benedito, Vagner A; Andriankaja, Andry; Cheng, Xiaofei; Jerez, Ivone Torres; Mondy, Samuel; Zhang, Shulan; Taylor, Mark E; Tadege, Million; Ratet, Pascal; Mysore, Kirankumar S; Chen, Rujin; Udvardi, Michael K

    2012-08-01

    A Tnt1-insertion mutant population of Medicago truncatula ecotype R108 was screened for defects in nodulation and symbiotic nitrogen fixation. Primary screening of 9,300 mutant lines yielded 317 lines with putative defects in nodule development and/or nitrogen fixation. Of these, 230 lines were rescreened, and 156 lines were confirmed with defective symbiotic nitrogen fixation. Mutants were sorted into six distinct phenotypic categories: 72 nonnodulating mutants (Nod-), 51 mutants with totally ineffective nodules (Nod+ Fix-), 17 mutants with partially ineffective nodules (Nod+ Fix+/-), 27 mutants defective in nodule emergence, elongation, and nitrogen fixation (Nod+/- Fix-), one mutant with delayed and reduced nodulation but effective in nitrogen fixation (dNod+/- Fix+), and 11 supernodulating mutants (Nod++Fix+/-). A total of 2,801 flanking sequence tags were generated from the 156 symbiotic mutant lines. Analysis of flanking sequence tags revealed 14 insertion alleles of the following known symbiotic genes: NODULE INCEPTION (NIN), DOESN'T MAKE INFECTIONS3 (DMI3/CCaMK), ERF REQUIRED FOR NODULATION, and SUPERNUMERARY NODULES (SUNN). In parallel, a polymerase chain reaction-based strategy was used to identify Tnt1 insertions in known symbiotic genes, which revealed 25 additional insertion alleles in the following genes: DMI1, DMI2, DMI3, NIN, NODULATION SIGNALING PATHWAY1 (NSP1), NSP2, SUNN, and SICKLE. Thirty-nine Nod- lines were also screened for arbuscular mycorrhizal symbiosis phenotypes, and 30 mutants exhibited defects in arbuscular mycorrhizal symbiosis. Morphological and developmental features of several new symbiotic mutants are reported. The collection of mutants described here is a source of novel alleles of known symbiotic genes and a resource for cloning novel symbiotic genes via Tnt1 tagging.

  9. Stimulation of Diesel Fuel Biodegradation by Indigenous Nitrogen Fixing Bacterial Consortia.

    Science.gov (United States)

    Piehler; Swistak; Pinckney; Paerl

    1999-07-01

    > Abstract Successful stimulation of N2 fixation and petroleum hydrocarbon degradation in indigenous microbial consortia may decrease exogenous N requirements and reduce environmental impacts of bioremediation following petroleum pollution. This study explored the biodegradation of petroleum pollution by indigenous N2 fixing marine microbial consortia. Particulate organic carbon (POC) in the form of ground, sterile corn-slash (post-harvest leaves and stems) was added to diesel fuel amended coastal water samples to stimulate biodegradation of petroleum hydrocarbons by native microorganisms capable of supplying a portion of their own N. It was hypothesized that addition of POC to petroleum amended water samples from N-limited coastal waters would promote the growth of N2 fixing consortia and enhance biodegradation of petroleum. Manipulative experiments were conducted using samples from coastal waters (marinas and less polluted control site) to determine the effects of POC amendment on biodegradation of petroleum pollution by native microbial consortia. Structure and function of the microbial consortia were determined by measurement of N2 fixation (acetylene reduction), hydrocarbon biodegradation (14C hexadecane mineralization), bacterial biomass (AODC), number of hydrocarbon degrading bacteria (MPN), and bacterial productivity (3H-thymidine incorporation). Throughout this study there was a consistent enhancement of petroleum hydrocarbon degradation in response to the addition of POC. Stimulation of diesel fuel biodegradation following the addition of POC was likely attributable to increases in bacterial N2 fixation, diesel fuel bioavailability, bacterial biomass, and metabolic activity. Toxicity of the bulk phase water did not appear to be a factor affecting biodegradation of diesel fuel following POC addition. These results indicate that the addition of POC to diesel-fuel-polluted systems stimulated indigenous N2 fixing microbial consortia to degrade petroleum

  10. Evaluation of early nodulation and Nitrogen fixation a number of Bradyrhizobium Japonicum strains to increase nitrogen fixation ability of soybean cultivars ars by using the A-value (N-15) method

    International Nuclear Information System (INIS)

    Piervali-Bieranvand, N.; Teimori, S.; Khorasani, A.

    2004-01-01

    To date significant contribution of atmospheric N fixation to soybean nutrition and growth, is approved. Nevertheless several studies have demonstrated that effectiveness of soybean -rhizobium symbiosis is medium compared with other legumes. The time course study of biological nitrogen fixation in soybean under field conditions has been shown that soybean has limited initial fixation and fixes substantially atmospheric nitrogen just during the reproductive periods (R1 until R 5).So there is the possibility of enhancing nitrogen fixation in soybean during vegetation growth. This could be done by improving inoculation methods or breeding for early nodulation. Hence, the present study was conducted to examine the effect of some Bradyrhizobium japonicum strains on early nodulation and biological nitrogen fixation three soybean cultivars by using a-value method. The experiment, was a factorial on randomized complete block design with three replications under proper glass house condition. Treatments were harvesting times(one , two and three weeks after flowering, respectively.)soybean cultivars(Chippewa, M 112 and clay )and Bradyrhizobium japonicum strains(J 1, J 3 and J 43). Ninety-plastic pots were filled with 1.5 kg of a compound of sand and soil(1:3). Rhizobial inoculation was performed by mixing 10 ml of a suspension(Yeast extract Manitol Broth) containing about 9X10 8 cells per ml to the soil of mixing pots were kept weed-free and watered with demineralized water as well as have received every two weeks 5 ml of a solution containing all the necessary nutrients except nitrogen. For measuring biological nitrogen fixation using a-value approach, two solutions of N-15 enriched ammonium sulfate containing 10.16 and %2 N-15 atom excess in amount of 5 and 25 mg N/Kg soil were mixed with soils in each pot containing fixing and reference plants, respectively. A non-nodulation isoline of soybean C v. M 129 for the all cultivars was used as a reference crop. First harvest was

  11. Nitrogen fixation and induction of pseudo-nodules in grass

    International Nuclear Information System (INIS)

    Rasul, G.; Hassan, U.; Mehnaz, S.; Malik, K.A.

    1993-01-01

    The rice grown nitrogen depleted saline sols showed higher values for in-situ ARA. Isolations of N/sub 2/ fixing bacteria were carried out on soil Azotobacter was observed in plant rhizosphere. The 2,4-D (0.5 and 1 ppm) with diazo trophic bacteria induced nodule like structure on the wheat roots. The bacteria were found in nodules in the form of micro colonies or bacterial aggregates which were responsible for nitrogen fixation providing optimum 02 concentrations was incorporations /sup 15/N dilution data indicated that 125-46.5% atmosphere N was incorporated in nitrogen pool of inoculated plants. (author)

  12. Molecular aspects of the nitrogen fixing system in pea root nodules

    International Nuclear Information System (INIS)

    Bisseling, T.

    1980-01-01

    The author considers symbiotic nitrogen fixation of Pisum sativum and Rhizobium leguminosarum. Some general aspects of nodule formation and the regulation of the proteins nitrogenase and leghemoglobin (Lb) have been studied. Synthesis of these proteins was studied by 35 SO 4 labelling of intact pea plants. The sequence of appearance of the proteins was determined with specific radioimmunoassays for each protein. (Auth.)

  13. The influence of woody encroachment on the nitrogen cycle: fixation, storage and gas loss

    Science.gov (United States)

    Soper, F.; Sparks, J. P.

    2015-12-01

    Woody encroachment is a pervasive land cover change throughout the tropics and subtropics. Encroachment is frequently catalyzed by nitrogen (N)-fixing trees and the resulting N inputs potentially alter whole-ecosystem N cycling, accumulation and loss. In the southern US, widespread encroachment by legume Prosopis glandulosa is associated with increased soil total N storage, inorganic N concentrations, and net mineralization and nitrification rates. To better understand the effects of this process on ecosystem N cycling, we investigated patterns of symbiotic N fixation, N accrual and soil N trace gas and N2 emissions during Prosopis encroachment into the southern Rio Grande Plains. Analyses of d15N in foliage, xylem sap and plant-available soil N suggested that N fixation rates increase with tree age and are influenced by abiotic conditions. A model of soil N accrual around individual trees, accounting for atmospheric inputs and gas losses, generates lifetimes N fixation estimates of up to 9 kg for a 100-year-old tree and current rates of 7 kg N ha-1 yr-1. However, these N inputs and increased soil cycling rates do not translate into increased N gas losses. Two years of field measurements of a complete suite of N trace gases (ammonia, nitrous oxide, nitric oxide and other oxidized N compounds) found no difference in flux between upland Prosopis groves and adjacent unencroached grasslands. Total emissions for both land cover types average 0.56-0.65 kg N ha-1 yr-1, comparable to other southern US grasslands. Additional lab experiments suggested that N2 losses are low and that field oxygen conditions are not usually conducive to denitrification. Taken together, results suggest that this ecosystem is currently experiencing a period of net N accrual under ongoing encroachment.

  14. Fate of nitrogenous fertilizers in forest soil

    International Nuclear Information System (INIS)

    Pang, P.C.K.

    1984-01-01

    The fate of the nitrogenous fertilizers through the processes of denitrification, ammonia volatilization, immobilization and uptake by a conifer is determined, with the aid of 15 N-labelled fertizers. The foliage of Douglas-fir was able to absorb gaseous ammonia under optimal conditions. Denitrification and immobilization of fertilizer-N by forest soil were highest with forest floor samples and decreased with depth. Laboratory studies with four-year-old Douglas-fir demostrated that a higher quantity of fertilizer-N was utilized by trees when the nitrogen was supplied as NO 3 - rather than NH 4 + . (M.A.C.) [pt

  15. Soil-N tagging - a method for measurement of biological nitrogen fixation in cereal-legume intercropping system

    International Nuclear Information System (INIS)

    Patra, D.D.; Subbiah, B.V.; Sachdev, M.S.

    1985-01-01

    The quantitative estimates of atmospheric dinitrogen fixed by the legume crop and transferred to the associated cereal in cereal-legume intercropping system of maize-cowpea and wheat-gram using soil and fertilizer nitrogen labelling with 15 N have been reported. The estimates of N-fixation have been compared with the similar data from A-value method. Under field conditions sole cropped cowpea fixed 53.7 per cent of its total N uptake while as intercrop with maize fixed 43.5 per cent. Maize crop got 27.6 per cent of its total N uptake by transference of the nitrogen fixed by the intercropped cowpea. In the wheat-gram intercropping system the corresponding values under greenhouse conditions were 35.0, 44.8 and 20.2 per cent, respectively. (author)

  16. Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests

    Science.gov (United States)

    Linda T.A. Van Diepen; Erik Lilleskov; Kurt S. Pregitzer

    2011-01-01

    Our previous investigation found elevated nitrogen deposition caused declines in abundance of arbuscular mycorrhizal fungi (AMF) associated with forest trees, but little is known about how nitrogen affects the AMF community composition and structure within forest ecosystems. We hypothesized that N deposition would lead to significant changes in the AMF community...

  17. FTAP, Minimal Cut Sets of Arbitrary Fault Trees. FRTPLT, Fault Tree Structure and Logical Gates Plot for Program FTAP. FRTGEN, Fault Trees by Sub-tree Generator from Parent Tree for Program FTAP

    International Nuclear Information System (INIS)

    Willie, Randall R.; Rabien, U.

    1997-01-01

    1 - Description of problem or function: FTAP is a general-purpose program for deriving minimal reliability cut and path set families from the fault tree for a complex system. The program has a number of useful features that make it well-suited to nearly all fault tree applications. An input fault tree may specify the system state as any logical function of subsystem or component state variables or complements of these variables; thus, for instance, 'exclusive-or' type relations may be formed. When fault tree logical relations involve complements of state variables, the analyst may instruct FTAP to produce a family of prime implicants, a generalization of the minimal cut set concept. The program offers the flexibility of several distinct methods of generating cut set families. FTAP can also identify certain subsystems as system modules and provide a collection of minimal cut set families that essentially expresses the system state as a function of these module state variables. Another feature allows a useful subfamily to be obtained when the family of minimal cut sets or prime implicants is too large to be found in its entirety; this subfamily may consist of only those sets not containing more than some fixed number of elements or only those sets 'interesting' to the analyst in some special sense. Finally, the analyst can modify the input fault tree in various ways by declaring state variables identically true or false. 2 - Method of solution: Fault tree methods are based on the observation that the system state, either working or failed, can usually be expressed as a Boolean relation between states of several large, readily identifiable subsystems. The state of each subsystem in turn depends on states of simpler subsystems and components which compose it, so that the state of the system itself is determined by a hierarchy of logical relationships between states of subsystems. A fault tree is a graphical representation of these relationships. 3 - Restrictions on the

  18. Declining plant nitrogen supply and carbon accumulation in ageing primary boreal forest ecosystems

    Science.gov (United States)

    Högberg, Mona N.; Yarwood, Stephanie A.; Trumbore, Susan; Högberg, Peter

    2016-04-01

    Boreal forest soils are commonly characterized by a low plant nitrogen (N) supply. A high tree below-ground allocation of carbon (C) to roots and soil microorganisms in response to the shortage of N may lead to high microbial immobilisation of N, thus aggravating the N limitation. We studied the N supply at a Swedish boreal forest ecosystem chronosequence created by new land rising out of the sea due to iso-static rebound. The youngest soils develop with meadows by the coast, followed by a zone of dinitrogen fixing alder trees, and primary boreal conifer forest on ground up to 560 years old. With increasing ecosystem age, the proportion of microbial C out of the total soil C pool from the youngest to the oldest coniferous ecosystem was constant (c. 1-1.5%), whereas immobilised N (microbial N out of total soil N) increased and approached the levels commonly observed in similar boreal coniferous forests (c. 6-7 %), whereas gross N mineralization declined. Simultaneously, plant foliar N % decreased and the natural abundance of N-15 in the soil increased. More specifically, the difference in N-15 between plant foliage and soil increased, which is related to greater retention of N-15 relative to N-14 by ectomycorrhizal fungi as N is taken up from the soil and some N is transferred to the plant host. In the conifer forest, where these changes were greatest, we found increased fungal biomass in the F- and H-horizons of the mor-layer, in which ectomycorrhizal fungi are known to dominate (the uppermost horizon with litter and moss is dominated by saprotrophic fungi). Hence, we propose that the decreasing N supply to the plants and the subsequent decline in plant production in ageing boreal forests is linked to high tree belowground C allocation to C limited ectomycorrhizal fungi (and other soil microorganisms), a strong sink for available soil N. Data on organic matter C-14 suggested that the largest input of recently fixed plant C occurred in the younger coniferous forest

  19. Nitrogen fixation in Leucaena leucocephala and effects of pruning s on cereal yields

    International Nuclear Information System (INIS)

    Bekunda, M.

    1998-01-01

    Leucaena leucocephala was interplanted with reference tree species, Cassia siamea and Cassia spectabilis, and estimates of percent N derived from N 2 fixation (%Ndfa) were made, by the isotope-dilution method, at 4, 6, 14, 20 and 30 months after transplanting. The %Ndfa values were low and variable throughout the growth period, except after thinning at 14 months when there was a five-fold increase. The two non-fixing reference species outperformed the N 2 -fixing Leucaena in above-ground vegetative production, and provided different fixed-N estimates. Prunings from the L. leucocephala and C. Siamea trees were applied separately to soil as green manure. Maize was planted to test the effects of the Leucaena green manure on soil fertility, and millet was the test crop for the Cassia. Whether surface-applied or incorporated, the prunings significantly improved yields, which were generally similar among rates and methods of application. The proportions of cereal N obtained from prunings ranged from 8 to 33%, with no cereal-yield correlation. The data indicate that multipurpose tree prunings are of potential use to farmers as organic sources of nutrients, even at relatively low application rates, without need for incorporation into the soil. (author)

  20. Many-to-Many Multicast Routing Schemes under a Fixed Topology

    Directory of Open Access Journals (Sweden)

    Wei Ding

    2013-01-01

    Full Text Available Many-to-many multicast routing can be extensively applied in computer or communication networks supporting various continuous multimedia applications. The paper focuses on the case where all users share a common communication channel while each user is both a sender and a receiver of messages in multicasting as well as an end user. In this case, the multicast tree appears as a terminal Steiner tree (TeST. The problem of finding a TeST with a quality-of-service (QoS optimization is frequently NP-hard. However, we discover that it is a good idea to find a many-to-many multicast tree with QoS optimization under a fixed topology. In this paper, we are concerned with three kinds of QoS optimization objectives of multicast tree, that is, the minimum cost, minimum diameter, and maximum reliability. All of three optimization problems are distributed into two types, the centralized and decentralized version. This paper uses the dynamic programming method to devise an exact algorithm, respectively, for the centralized and decentralized versions of each optimization problem.

  1. Hyperspectral Time Series Analysis of Native and Invasive Species in Hawaiian Rainforests

    Directory of Open Access Journals (Sweden)

    Gregory P. Asner

    2012-08-01

    Full Text Available The unique ecosystems of the Hawaiian Islands are progressively being threatened following the introduction of exotic species. Operational implementation of remote sensing for the detection, mapping and monitoring of these biological invasions is currently hampered by a lack of knowledge on the spectral separability between native and invasive species. We used spaceborne imaging spectroscopy to analyze the seasonal dynamics of the canopy hyperspectral reflectance properties of four tree species: (i Metrosideros polymorpha, a keystone native Hawaiian species; (ii Acacia koa, a native Hawaiian nitrogen fixer; (iii the highly invasive Psidium cattleianum; and (iv Morella faya, a highly invasive nitrogen fixer. The species specific separability of the reflectance and derivative-reflectance signatures extracted from an Earth Observing-1 Hyperion time series, composed of 22 cloud-free images spanning a period of four years and was quantitatively evaluated using the Separability Index (SI. The analysis revealed that the Hawaiian native trees were universally unique from the invasive trees in their near-infrared-1 (700–1,250 nm reflectance (0.4 > SI > 1.4. Due to its higher leaf area index, invasive trees generally had a higher near-infrared reflectance. To a lesser extent, it could also be demonstrated that nitrogen-fixing trees were spectrally unique from non-fixing trees. The higher leaf nitrogen content of nitrogen-fixing trees was expressed through slightly increased separabilities in visible and shortwave-infrared reflectance wavebands (SI = 0.4. We also found phenology to be key to spectral separability analysis. As such, it was shown that the spectral separability in the near-infrared-1 reflectance between the native and invasive species groups was more expressed in summer (SI > 0.7 than in winter (SI < 0.7. The lowest separability was observed for March-July (SI < 0.3. This could be explained by the

  2. Legume Shrubs Are More Nitrogen-Homeostatic than Non-legume Shrubs.

    Science.gov (United States)

    Guo, Yanpei; Yang, Xian; Schöb, Christian; Jiang, Youxu; Tang, Zhiyao

    2017-01-01

    Legumes are characterized as keeping stable nutrient supply under nutrient-limited conditions. However, few studies examined the legumes' stoichiometric advantages over other plants across various taxa in natural ecosystems. We explored differences in nitrogen (N) and phosphorus (P) stoichiometry of different tissue types (leaf, stem, and root) between N 2 -fixing legume shrubs and non-N 2 -fixing shrubs from 299 broadleaved deciduous shrubland sites in northern China. After excluding effects of taxonomy and environmental variables, these two functional groups differed considerably in nutrient regulation. N concentrations and N:P ratios were higher in legume shrubs than in non-N 2 -fixing shrubs. N concentrations were positively correlated between the plants and soil for non-N 2 -fixing shrubs, but not for legume shrubs, indicating a stronger stoichiometric homeostasis in legume shrubs than in non-N 2 -fixing shrubs. N concentrations were positively correlated among three tissue types for non-N 2 -fixing shrubs, but not between leaves and non-leaf tissues for legume shrubs, demonstrating that N concentrations were more dependent among tissues for non-N 2 -fixing shrubs than for legume shrubs. N and P concentrations were correlated within all tissues for both functional groups, but the regression slopes were flatter for legume shrubs than non-N 2 -fixing shrubs, implying that legume shrubs were more P limited than non-N 2 -fixing shrubs. These results address significant differences in stoichiometry between legume shrubs and non-N 2 -fixing shrubs, and indicate the influence of symbiotic nitrogen fixation (SNF) on plant stoichiometry. Overall, N 2 -fixing legume shrubs are higher and more stoichiometrically homeostatic in N concentrations. However, due to excess uptake of N, legumes may suffer from potential P limitation. With their N advantage, legume shrubs could be good nurse plants in restoration sites with degraded soil, but their P supply should be taken care

  3. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession

    DEFF Research Database (Denmark)

    Batterman, Sarah A.; Hedin, Lars O.; Van Breugel, Michiel

    2013-01-01

    Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO 2 may be constrained by nitrogen, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N 2), but it is unclear whether this function...... tree species across the entire forest age sequence. These findings show that symbiotic N 2 fixation can have a central role in nitrogen cycling during tropical forest stand development, with potentially important implications for the ability of tropical forests to sequester CO 2....

  4. Explaining biomass growth of tropical canopy trees: the importance of sapwood

    OpenAIRE

    Sande, van der, M.T.; Zuidema, P.A.; Sterck, F.J.

    2015-01-01

    Tropical forests are important in worldwide carbon (C) storage and sequestration. C sequestration of these forests may especially be determined by the growth of canopy trees. However, the factors driving variation in growth among such large individuals remain largely unclear. We evaluate how crown traits [total leaf area, specific leaf area and leaf nitrogen (N) concentration] and stem traits [sapwood area (SA) and sapwood N concentration] measured for individual trees affect absolute biomass...

  5. Reforestation in southern China: revisiting soil N mineralization and nitrification after 8 years restoration

    Science.gov (United States)

    Mo, Qifeng; Li, Zhi'An; Zhu, Weixing; Zou, Bi; Li, Yingwen; Yu, Shiqin; Ding, Yongzhen; Chen, Yao; Li, Xiaobo; Wang, Faming

    2016-01-01

    Nitrogen availability and tree species selection play important roles in reforestation. However, long-term field studies on the effects and mechanisms of tree species composition on N transformation are very limited. Eight years after tree seedlings were planted in a field experiment, we revisited the site and tested how tree species composition affects the dynamics of N mineralization and nitrification. Both tree species composition and season significantly influenced the soil dissolved organic carbon (DOC) and nitrogen (DON). N-fixing Acacia crassicarpa monoculture had the highest DON, and 10-mixed species plantation had the highest DOC. The lowest DOC and DON concentrations were both observed in Eucalyptus urophylla monoculture. The tree species composition also significantly affected net N mineralization rates. The highest rate of net N mineralization was found in A. crassicarpa monoculture, which was over twice than that in Castanopsis hystrix monoculture. The annual net N mineralization rates of 10-mixed and 30-mixed plantations were similar as that of N-fixing monoculture. Since mixed plantations have good performance in increasing soil DOC, DON, N mineralization and plant biodiversity, we recommend that mixed species plantations should be used as a sustainable approach for the restoration of degraded land in southern China.

  6. Management and quantification of nitrogen fixation in Leucaena leucocephala

    International Nuclear Information System (INIS)

    Safo, E.Y.

    1998-01-01

    The effects of pruning and age on N 2 fixation were studied using Leucaena leucocephala isoline K28, with Cassia siamea as the non-N 2 -fixing reference species, at a site of degraded soil fertility typical of much of the farming land in Ghana. The 15 N-dilution method was used to estimate N2 fixation. Cassia siamea consistently produced higher total biomass and total N yields than did L. leucocephala. The mean value for the fraction of N derived from fixation (%Ndfa) was higher for pruned L. leucocephala (36%) than for unpruned trees (18%). There was some underestimation of N 2 fixation as a result of using C. siamea as the reference, and because root N-contents were not determined. Strong, significant linear correlations were observed between foliar and whole-tree (weighted average) percent 15 N atom excess in unpruned L. leucocephala and C. siamea, suggesting that foliar 15 N enrichment can be used to accurately estimate %Ndfa. The results demonstrated that the 15 N-enrichment methodology can provide meaningful estimates of %Ndfa and total N 2 fixed for mixed tree plantations under field conditions, when adequate spacing is provided. (author)

  7. Automatic filling of liquid nitrogen traps auxiliary safety devices of a pumping unit

    International Nuclear Information System (INIS)

    Chatel, S.

    1969-01-01

    The liquid nitrogen traps in our laboratories are generally filled at fixed time intervals, the supply being cut when the liquid flowing through the overflow pipe acts on a lever to which is fixed a small cup fitted with a hole which allows the water of condensation to escape. This system is reliable. After a certain time however, the escape hole blocks up, water accumulates and the lever arm no longer works properly. Furthermore the duration of any cuts in the current, is added to the fixed time intervals, and in this case there can be a lack of liquid nitrogen for several hours after the current has been restored. The device described here avoids these problems. A stainless steel tube containing a copper wire passes into the trap and is immersed in the nitrogen which boils at its tip. A mercury manometer with concentric reservoirs, or an oil manometer, acting on two micro switches through a floater, records the pressure corresponding to the difference in level and controls the filling operation. If there is a lack of nitrogen, a valve can be closed by means of a falling weight, or a diffusion pump can be cut off; one time switch and at least two relays are required. One single relay can be used to control, the supply of several similar traps placed in series [fr

  8. Transcriptome analysis of two recombinant inbred lines of common bean contrasting for symbiotic nitrogen fixation

    Science.gov (United States)

    Common bean (Phaseolus vulgaris L.) is able to fix atmospheric nitrogen (N2) through symbiotic nitrogen fixation (SNF). Effective utilization of existing variability for SNF in common bean for genetic improvement requires an understanding of underlying genes and molecular mechanisms. The utility of ...

  9. Changes in the contents of nitrogen fractions with loosing vital capacity of the Siberian fir Abies sibirica Ledeb. seeds

    Directory of Open Access Journals (Sweden)

    S. G. Prokushkin

    2017-02-01

    Full Text Available Siberian fir seeds often lose their germinating capacity during storage. This results from, among other factors, changing contents of nitrogen compounds in the seeds, especially those of protein fractions. This paper focuses on analyzing changes of these compounds in nonviable seeds of the species depending on ecological and conditions and stand location, as well as on tree growth class (Kraft growth classes I and IV. The contents of the total and protein nitrogen in the nonviable seeds of the trees of growth classes I and IV appeared to vary widely and to depend on stand location and seed location in the tree crown. The maximum contents were in the seeds located in the upper part of the crown. The seeds from the middle and lower crown parts contained much less total and protein nitrogen. The hard-to-solve protein fraction dominated over other protein fraction in the seeds from the upper part of the crowns of the trees of growth classes I and IV. However, this fraction, like prolamines, changed uniformly throughout the crowns, whereas seed glutelin content varied insignificantly among the crown parts. Albumins and globulins showed a uniform crown top-to-bottom decrease. A comparison of viable seed with unviable seeds for contents of the nitrogen forms revealed a marked decrease in the total and protein nitrogen in the latter, especially for the trees of growth class IV. The seeds that lost their germinating capacity exhibited increasingly hard-to-solve protein fraction and drastically decreasing albumins and globulins wherever the seeds were in the crown. Their glutelin and prolamine contents changed inconsiderably.The changes of the quantitative ratio between the protein fractions found by the study cause, along with other physiological and biochemical factors, the loss of viability of Siberian fir seeds during storage.

  10. Nitrogen mass balance in the Brazilian Amazon: an update.

    Science.gov (United States)

    Martinelli, L A; Pinto, A S; Nardoto, G B; Ometto, J P H B; Filoso, S; Coletta, L D; Ravagnani, E C

    2012-08-01

    The main purpose of this study is to perform a nitrogen budget survey for the entire Brazilian Amazon region. The main inputs of nitrogen to the region are biological nitrogen fixation occurring in tropical forests (7.7 Tg.yr(-1)), and biological nitrogen fixation in agricultural lands mainly due to the cultivation of a large area with soybean, which is an important nitrogen-fixing crop (1.68 Tg.yr(-1)). The input due to the use of N fertilizers (0.48 Tg.yr(-1)) is still incipient compared to the other two inputs mentioned above. The major output flux is the riverine flux, equal to 2.80 Tg.yr(-1) and export related to foodstuff, mainly the transport of soybean and beef to other parts of the country. The continuous population growth and high rate of urbanization may pose new threats to the nitrogen cycle of the region through the burning of fossil fuel and dumping of raw domestic sewage in rivers and streams of the region.

  11. Biogeomorphic and pedogenic impact of trees in three soil regions

    Science.gov (United States)

    Pawlik, Łukasz; Šamonil, Pavel

    2017-04-01

    Vegetation is an important factor of soil formation which together with topography, geology, climate and time modulates chemical and physical soil characteristics. Tree/soils/regolith interaction was recognized in recently uprooted trees and relict treethrow mounds and pits. In our present study we focus on effects of individual standing trees in pedogenesis and biogeomorphic processes. Constant pressure of tree root systems, changing hydric and temperature regime, together with rhizospheric microbes and root mycorrhizal associations may cause multiscale alterations to regolith and soils. We hypothesize different soil chemical properties under old tree stumps compared to unaffected control pedon resulted from affected pedogenetical pathways at the analyzed microsites. The present project highlights changes in soil properties under tree stumps in three different soil regions: Haplic Cambisols (Turbacz Reserve, Gorce Mts., Poland, hereafter HC), Entic Podzols (Zofin Reserve, Novohradske Mts., the Czech Republic, hereafter EP), Albic Podzols (Upper Peninsula, Michigan, USA, hereafter AP). These three regions represent different degrees of soil weathering and leaching. Pedons under fir, beech and hemlock stumps, as well as unaffected control pedons were sampled and laboratory analyzed for several chemical properties; active and exchangeable soil reaction, oxidized carbon, total nitrogen, and various forms of Fe, Al, Mn and Si. At the same time we studied age of the sampled tree stumps, as well as age of their death using radiocarbon technique and dendrochronology. While no effects of the soil-trees interactions can be visible on hillslope surface, we found important evidence of biomechanical activities of tree roots (e.g. root channels) and biochemical changes which add to the discussion about biogeomorphic and pedogenic significance of trees and tree roots as drivers of biomechanical weathering and soil processes in the decadal and centennial time scales. Preliminary

  12. Dominance of legume trees alters nutrient relations in mixed species forest restoration plantings within seven years

    Science.gov (United States)

    Ilyas Siddique; Vera Lex Engel; David Lamb; Gabriela B. Nardoto; Jean P.H.B. Ometto; Luiz A. Martinelli; Susanne. Schmidt

    2008-01-01

    Failures in reforestation are often attributed to nutrient limitation for tree growth. We compared tree performance and nitrogen and phosphorus relations in adjacent mixed-species plantings of contrasting composition, established for forest restoration on Ultisol soil, originally covered by tropical semi-deciduous Atlantic Forest in Southeast Brazil. Nutrient relations...

  13. Water and nitrogen management of young and maturing pomegranate trees

    Science.gov (United States)

    Commercial production of pomegranate in California has increased drastically in recent years and the planted area reached 12,148 ha in 2011. A majority of the pomegranate trees are grown in the southern San Joaquin Valley which has a Mediterranean climate with hot dry summers and no rainfall, and ir...

  14. Biological nitrogen (N) fixation - The source of N nutrient to increase yield

    International Nuclear Information System (INIS)

    Heiling, M.; Hardarson, G.

    2006-01-01

    Nitrogen is an essential plant nutrient. It is the nutrient that is most commonly deficient, contributing to reduced agricultural yields throughout the world. Developing countries used more than 85 million metric tones of nitrogenous fertilizer in 2003, worth billions of US dollars. Such fertilizer expenditure can be significantly reduced by incorporating biological nitrogen fixed leguminous crops into a growing rotation. In leguminous crops, a symbiotic relationship between a bacterium called Rhizobium and legumes can provide large amounts of nitrogen to the plant and subsequently to soils where they are grown. In this process the bacteria form nodules on the root system and convert the nitrogen coming from air into molecules that can be absorbed by the plants. Beside their fertilizing properties, legumes are rich in protein and constitute a very important role in the human and animal nutrition. In the Soil Science Unit (SSU) of the FAO/IAEA Agriculture and Biotechnology Laboratory fellows from all over the world receive training in the use of 15 N stable isotope techniques to optimise the nitrogen fixation. Several parameters such as the placement of the nodules on the legume root system, the amount of soil mineral nitrogen and phosphorus fertilizer applied and the temperature have an impact on the amount of nitrogen fixed by the plant. It is therefore important to identify relative importance of these parameters on biological N fixation. The 15 N isotope dilution method is an appropriate technique to test the biological nitrogen fixation in the laboratory first. This useful knowledge can then be communicated to the farmers and can be tested under field conditions

  15. Incorporation of nitrogen from N2 fixation into amino acids of zooplankton

    DEFF Research Database (Denmark)

    Loick-Wilde, Natalie; Dutz, Jörg; Miltner, Anja

    2012-01-01

    quantified the direct incorporation of 15N tracer from N2-fixing N. spumigena (diazotroph nitrogen) and ammonium-utilizing R. salina into the amino acid nitrogen (AA-N) of zooplankton using complementary gas chromatography– combustion–isotope ratio mass spectrometry, gas chromatography–mass spectrometry...... consistently low in E. affinis when exposed to N. spumigena, suggesting that these animals were reluctant to feed on N. spumigena. Essential isoleucine received most of the diazotroph nitrogen in field zooplankton, while nonessential amino acids received most 15N tracer in E. affinis. N. spumigena was clearly...... an important amino acid nitrogen source for Baltic Sea zooplankton...

  16. Biogeochemical hotspots following a simulated tree mortality event of southern pine beetle

    Science.gov (United States)

    Siegert, C. M.; Renninger, H. J.; Karunarathna, S.; Hornslein, N.; Riggins, J. J.; Clay, N. A.; Tang, J. D.; Chaney, B.; Drotar, N.

    2017-12-01

    Disturbances in forest ecosystems can alter functions like productivity, respiration, and nutrient cycling through the creation of biogeochemical hotspots. These events occur sporadically across the landscape, leading to uncertainty in terrestrial biosphere carbon models, which have yet to capture the full complexity of biotic and abiotic factors driving ecological processes in the terrestrial environment. Given the widespread impact of southern pine beetle on forest ecosystems throughout the southeastern United States, it is critical to management and planning activities to understand the role of these disturbances. As such, we hypothesize that bark beetle killed trees create biogeochemical hotspots in the soils surrounding their trunk as they undergo mortality due to (1) increased soil moisture from reductions in plant water uptake and increased stemflow production, (2) enhanced canopy-derived inputs of carbon and nitrogen, and (3) increased microbial activity and root mortality. In 2015, a field experiment to mimic a southern pine beetle attack was established by girdling loblolly pine trees. Subsequent measurements of throughfall and stemflow for water quantity and quality, transpiration, stem respiration, soil respiration, and soil chemistry were used to quantify the extent of spatial and temporal impacts of tree mortality on carbon budgets. Compared to control trees, girdled trees exhibited reduced water uptake within the first 6 months of the study and succumbed to mortality within 18 months. Over two years, the girdled trees generated 33% more stemflow than control trees (7836 vs. 5882 L m-2). Preliminary analysis of carbon and nitrogen concentrations and dissolved organic matter quality are still pending. In the surrounding soils, C:N ratios were greater under control trees (12.8) than under girdled trees (12.1), which was driven by an increase in carbon around control trees (+0.13 mg C mg-1 soil) and not a decrease around girdled trees (-0.01 mg C mg-1

  17. Robust biological nitrogen fixation in a model grass-bacterial association.

    Science.gov (United States)

    Pankievicz, Vânia C S; do Amaral, Fernanda P; Santos, Karina F D N; Agtuca, Beverly; Xu, Youwen; Schueller, Michael J; Arisi, Ana Carolina M; Steffens, Maria B R; de Souza, Emanuel M; Pedrosa, Fábio O; Stacey, Gary; Ferrieri, Richard A

    2015-03-01

    Nitrogen-fixing rhizobacteria can promote plant growth; however, it is controversial whether biological nitrogen fixation (BNF) from associative interaction contributes to growth promotion. The roots of Setaria viridis, a model C4 grass, were effectively colonized by bacterial inoculants resulting in a significant enhancement of growth. Nitrogen-13 tracer studies provided direct evidence for tracer uptake by the host plant and incorporation into protein. Indeed, plants showed robust growth under nitrogen-limiting conditions when inoculated with an ammonium-excreting strain of Azospirillum brasilense. (11)C-labeling experiments showed that patterns in central carbon metabolism and resource allocation exhibited by nitrogen-starved plants were largely reversed by bacterial inoculation, such that they resembled plants grown under nitrogen-sufficient conditions. Adoption of S. viridis as a model should promote research into the mechanisms of associative nitrogen fixation with the ultimate goal of greater adoption of BNF for sustainable crop production. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  18. Possibilities for early diagnostics of graft incompatibility in fruit trees by means of 15N

    International Nuclear Information System (INIS)

    Makariev, Z.; Ivanov, Z.; Koleva, A.; Kukov, Kh.

    1994-01-01

    The classical methods for studying the incompatibility in fruit trees are very prolonged and expensive. Their application starts in nursery, continues in orchard and takes up to 10-12 years. Using the labelled nitrogen method for 3 years we have studied the possibility for early and fast diagnostics of compatibility between graft and rootstock of cherry and apple trees. The studies have been carried out on pot and microfield experiments. The labelled nitrogen is brought into the soil with fertilizer. By evaluating the grade of its transition through the graft zone we make conclusions about the degree of compatibility between the two components. 1 5 N is determined spectrophotometricaly. (author)

  19. Tree species traits influence soil physical, chemical, and biological properties in high elevation forests.

    Directory of Open Access Journals (Sweden)

    Edward Ayres

    Full Text Available BACKGROUND: Previous studies have shown that plants often have species-specific effects on soil properties. In high elevation forests in the Southern Rocky Mountains, North America, areas that are dominated by a single tree species are often adjacent to areas dominated by another tree species. Here, we assessed soil properties beneath adjacent stands of trembling aspen, lodgepole pine, and Engelmann spruce, which are dominant tree species in this region and are distributed widely in North America. We hypothesized that soil properties would differ among stands dominated by different tree species and expected that aspen stands would have higher soil temperatures due to their open structure, which, combined with higher quality litter, would result in increased soil respiration rates, nitrogen availability, and microbial biomass, and differences in soil faunal community composition. METHODOLOGY/PRINCIPAL FINDINGS: We assessed soil physical, chemical, and biological properties at four sites where stands of aspen, pine, and spruce occurred in close proximity to one-another in the San Juan Mountains, Colorado. Leaf litter quality differed among the tree species, with the highest nitrogen (N concentration and lowest lignin:N in aspen litter. Nitrogen concentration was similar in pine and spruce litter, but lignin:N was highest in pine litter. Soil temperature and moisture were highest in aspen stands, which, in combination with higher litter quality, probably contributed to faster soil respiration rates from stands of aspen. Soil carbon and N content, ammonium concentration, and microbial biomass did not differ among tree species, but nitrate concentration was highest in aspen soil and lowest in spruce soil. In addition, soil fungal, bacterial, and nematode community composition and rotifer, collembolan, and mesostigmatid mite abundance differed among the tree species, while the total abundance of nematodes, tardigrades, oribatid mites, and prostigmatid

  20. GROWTH OF NATIVE TREES IN TWO AGROFORESTRY SYSTEMS

    Directory of Open Access Journals (Sweden)

    Maria Luiza Franceschi Nicodemo

    Full Text Available ABSTRACT Agroforestry systems with eucalyptus prevail in Central and Southeast Brazil, and little information is available about systems using native trees. The aim of the present study was to evaluate the development of seven native tree species grown under two agroforestry systems. The experiment was conducted starting in 2007 in 12-hectare area in the municipality of São Carlos, São Paulo state, Brazil. The tree species planted in the two systems (a silvopastoral system and an agrisilvicultural system were: 'capixingui' (Croton floribundus and 'mutambo' (Guazuma ulmifolia (tutors, 'jequitibá-branco' (Cariniana estrellensis, 'canafistula' (Peltophorum dubium and 'ipê felpudo' (Zeyheria tuberculosa (timber trees, and 'angico-branco' (Anadenanthera colubrina and 'pau-jacaré' (Piptadenia gonoacantha (N-fixing trees. Data were collected for 48 months. The results show differences among tree development, which was evaluated as growth in height and diameter, as well as sensitivity to insect and disease damage. The overall results show that the agrisilvicultural system allowed better tree development. The species with best performance in the two systems were capixingui, mutambo and canafístula. Ipê-felpudo and jequitibá-branco showed the worst results. The high variability among individuals of the same species indicates the possibility of high production advances with selective breeding of these species.

  1. On defining a unique phylogenetic tree with homoplastic characters.

    Science.gov (United States)

    Goloboff, Pablo A; Wilkinson, Mark

    2018-05-01

    This paper discusses the problem of whether creating a matrix with all the character state combinations that have a fixed number of steps (or extra steps) on a given tree T, produces the same tree T when analyzed with maximum parsimony or maximum likelihood. Exhaustive enumeration of cases up to 20 taxa for binary characters, and up to 12 taxa for 4-state characters, shows that the same tree is recovered (as unique most likely or most parsimonious tree) as long as the number of extra steps is within 1/4 of the number of taxa. This dependence, 1/4 of the number of taxa, is discussed with a general argumentation, in terms of the spread of the character changes on the tree used to select character state distributions. The present finding allows creating matrices which have as much homoplasy as possible for the most parsimonious or likely tree to be predictable, and examination of these matrices with hill-climbing search algorithms provides additional evidence on the (lack of a) necessary relationship between homoplasy and the ability of search methods to find optimal trees. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Alteration of belowground carbon dynamics by nitrogen addition in southern California mixed conifer forests

    Science.gov (United States)

    N.S. Nowinski; S.E. Trumbore; G. Jimenez; M.E. Fenn

    2009-01-01

    Nitrogen deposition rates in southern California are the highest in North America and have had substantial effects on ecosystem functioning. We document changes in the belowground C cycle near ponderosa pine trees experiencing experimental nitrogen (N) addition (50 and 150 kg N ha−1 a−1 as slow release urea since 1997) at two end‐member...

  3. Nitrogen-fixing and uricolytic bacteria associated with the gut of Dendroctonus rhizophagus and Dendroctonus valens (Curculionidae: Scolytinae).

    Science.gov (United States)

    Morales-Jiménez, Jesús; Vera-Ponce de León, Arturo; García-Domínguez, Aidé; Martínez-Romero, Esperanza; Zúñiga, Gerardo; Hernández-Rodríguez, César

    2013-07-01

    The bark beetles of the genus Dendroctonus feed on phloem that is a nitrogen-limited source. Nitrogen fixation and nitrogen recycling may compensate or alleviate such a limitation, and beetle-associated bacteria capable of such processes were identified. Raoultella terrigena, a diazotrophic bacteria present in the gut of Dendroctonus rhizophagus and D. valens, exhibited high acetylene reduction activity in vitro with different carbon sources, and its nifH and nifD genes were sequenced. Bacteria able to recycle uric acid were Pseudomonas fluorescens DVL3A that used it as carbon and nitrogen source, Serratia proteomaculans 2A CDF and Rahnella aquatilis 6-DR that used uric acid as sole nitrogen source. Also, this is the first report about the uric acid content in whole eggs, larvae, and adults (male and female) samples of the red turpentine beetle (Dendroctonus valens). Our results suggest that the gut bacteria of these bark beetles could contribute to insect N balance.

  4. Legume Shrubs Are More Nitrogen-Homeostatic than Non-legume Shrubs

    OpenAIRE

    Guo, Yanpei; Yang, Xian; Schöb, Christian; Jiang, Youxu; Tang, Zhiyao

    2017-01-01

    Legumes are characterized as keeping stable nutrient supply under nutrient-limited conditions. However, few studies examined the legumes' stoichiometric advantages over other plants across various taxa in natural ecosystems. We explored differences in nitrogen (N) and phosphorus (P) stoichiometry of different tissue types (leaf, stem, and root) between N2-fixing legume shrubs and non-N2-fixing shrubs from 299 broadleaved deciduous shrubland sites in northern China. After excluding effects of ...

  5. Constructal tree-shaped two-phase flow for cooling a surface

    Energy Technology Data Exchange (ETDEWEB)

    Zamfirescu, C.; Bejan, A. [Duke University, Durham, NC (United States). Dept. of Mechanical Engineering and Materials Science

    2003-07-01

    This paper documents the strong relation that exists between the changing architecture of a complex flow system and the maximization of global performance under constraints. The system is a surface with uniform heating per unit area, which is cooled by a network with evaporating two-phase flow. Illustrations are based on the design of the cooling network for a skating rink. The flow structure is optimized as a sequence of building blocks, which starts with the smallest (elemental volume of fixed size), and continues with assemblies of stepwise larger sizes (first construct, second construct, etc.). The optimized flow network is tree shaped. Three features of the elemental volume are optimized: the cross-sectional shape, the elemental tube diameter, and the shape of the elemental area viewed from above. The tree that emerges at larger scales is optimized for minimal amount of header material and fixed pressure drop. The optimal number of constituents in each new (larger) construct decreases as the size and complexity of the construct increase. Constructs of various levels of complexity compete: the paper shows how to select the optimal flow structure subject to fixed size (cooled surface), pressure drop and amount of header material. (author)

  6. A comparative study on phyllosphere nitrogen fixation by newly isolated Corynebacterium sp. & Flavobacterium sp. and their potentialities as biofertilizer.

    Science.gov (United States)

    Giri, S; Pati, B R

    2004-01-01

    A number of nitrogen fixing bacteria has been isolated from forest phyllosphere on the basis of nitrogenase activity. Among them two best isolates are selected and identified as Corynebacterium sp. AN1 & Flavobacterium sp. TK2 able to reduce 88 and 132 n mol of acetylene (10(8)cells(-1)h(-1)) respectively. They were grown in large amount and sprayed on the phyllosphere of maize plants as a substitute for nitrogenous fertilizer. Marked improvements in growth and total nitrogen content of the plant have been observed by the application of these nitrogen-fixing bacteria. An average 30-37% increase in yield was obtained, which is nearer to chemical fertilizer treatment. Comparatively better effect was obtained by application of Flavobacterium sp.

  7. Development of a shortleaf pine individual-tree growth equation using non-linear mixed modeling techniques

    Science.gov (United States)

    Chakra B. Budhathoki; Thomas B. Lynch; James M. Guldin

    2010-01-01

    Nonlinear mixed-modeling methods were used to estimate parameters in an individual-tree basal area growth model for shortleaf pine (Pinus echinata Mill.). Shortleaf pine individual-tree growth data were available from over 200 permanently established 0.2-acre fixed-radius plots located in naturally-occurring even-aged shortleaf pine forests on the...

  8. Studies on the roles of GlnK and GlnB in regulating Klebsiella pneumoniae NifL-dependent nitrogen control.

    NARCIS (Netherlands)

    Arcondeguy, T.; van Heeswijk, W.C.; Merrick, M.

    1999-01-01

    In Klebsiella pneumoniae, nitrogen fixation (nif) genes are regulated in response to fixed nitrogen and oxygen. The activity of the nif-specific transcriptional activator NifA is modulated by NifL, which mediates both oxygen and nitrogen control. The signal transduction protein GlnK is required to

  9. Low temperature delays timing and enhances the cost of nitrogen fixation in the unicellular cyanobacterium Cyanothece

    NARCIS (Netherlands)

    Brauer, V.S.; Stomp, M.; Rosso, C.; van Beusekom, S.A.M.; Emmerich, B.; Stal, L.J.; Huisman, J.

    2013-01-01

    Marine nitrogen-fixing cyanobacteria are largely confined to the tropical and subtropical ocean. It has been argued that their global biogeographical distribution reflects the physiologically feasible temperature range at which they can perform nitrogen fixation. In this study we refine this line of

  10. Effect of Root Pruning and Irrigation Regimes on Yield and Physiology of Pear Trees

    DEFF Research Database (Denmark)

    Wang, Yufei

    Clara Frijs’ is the dominant pear (Pyrus communis L.) cultivar in Denmark. It is vigorous with long annual shoots, and therefore can be difficult to prune. Root pruning has been widely used to control the canopy size of fruit trees including pears. However, root pruned trees are more likely......, it was concluded that root pruning not only decreases water uptake but also nutrient uptake, and both have contributed to the reduced canopy growth. Supplemental irrigation partially improved the tree water status and nitrogen uptake without stimulating additional shoot growth in the root pruned trees....... A combination of root pruning and irrigation could be a promising practice to control tree size and secure a stable fruit yield in pear orchard....

  11. Anaerobic nitrogen turnover by sinking diatom aggregates at varying ambient oxygen levels

    DEFF Research Database (Denmark)

    Stief, Peter; Kamp, Anja; Thamdrup, Bo

    2016-01-01

    nitrate supply. Sinking diatom aggregates can contribute directly to fixed-nitrogen loss in low-oxygen environments in the ocean and vastly expand the ocean volume in which anaerobic nitrogen turnover is possible, despite relatively high ambient oxygen levels. Depending on the extent of intracellular......In the world’s oceans, even relatively low oxygen levels inhibit anaerobic nitrogen cycling by free-living microbes. Sinking organic aggregates, however, might provide oxygen-depleted microbial hotspots in otherwise oxygenated surface waters. Here, we show that sinking diatom aggregates can host...

  12. [Rice endogenous nitrogen fixing and growth promoting bacterium Herbaspirillum seropedicae DX35].

    Science.gov (United States)

    Wang, Xiucheng; Cao, Yanhua; Tang, Xue; Ma, Xiaotong; Gao, Jusheng; Zhang, Xiaoxia

    2014-03-04

    To screen efficient nitrogen fixation endophytes from rice and to analyze their growth-promoting properties. We isolated strains from the roots of rice in the field where it has a rice-rice-green manure rotation system for 30 years. Efficient strains were screened by acetylene reduction assay. Phylogenetic analysis is based on 16S rRNA gene, nifH gene and the composition of fatty acid. In addition, we also detected the ability of indole acetic acid secretion through the Salkowski colorimetric method, measured the production of siderophore through the blue plate assay and detected phosphate solubilization, to analyze the growth-promoting properties. A total of 48 strains were isolated, in which DX35 has the highest nitrogenase activity. It belongs to Herbaspirillum seropedicae after identification. Its nitrogenase activity (181.21 nmol C2H4/(mg protein x h)) was 10 times as much as the reference strain Azotobacter chroococcum ACCC10006. In addition, it also can secrete siderophore and solubilize phosphorus. Strain DX35, belonging to Herbaspirillum seropedicae, is an efficient nitrogen fixation endophytes.

  13. Functional groups show distinct differences in nitrogen cycling during early stand development: implications for forest management

    Science.gov (United States)

    Doug P. Aubrey; David R. Coyle; Mark D. Coleman

    2012-01-01

    Background and aims Nutrient acquisition of forest stands is controlled by soil resource availability and belowground production, but tree species are rarely compared in this regard. Here, we examine ecological and management implications of nitrogen (N) dynamics during early forest stand development in productive commercial tree species with narrow (Populus...

  14. Nitrogen fixation in denitrified marine waters.

    Directory of Open Access Journals (Sweden)

    Camila Fernandez

    Full Text Available Nitrogen fixation is an essential process that biologically transforms atmospheric dinitrogen gas to ammonia, therefore compensating for nitrogen losses occurring via denitrification and anammox. Currently, inputs and losses of nitrogen to the ocean resulting from these processes are thought to be spatially separated: nitrogen fixation takes place primarily in open ocean environments (mainly through diazotrophic cyanobacteria, whereas nitrogen losses occur in oxygen-depleted intermediate waters and sediments (mostly via denitrifying and anammox bacteria. Here we report on rates of nitrogen fixation obtained during two oceanographic cruises in 2005 and 2007 in the eastern tropical South Pacific (ETSP, a region characterized by the presence of coastal upwelling and a major permanent oxygen minimum zone (OMZ. Our results show significant rates of nitrogen fixation in the water column; however, integrated rates from the surface down to 120 m varied by ∼30 fold between cruises (7.5±4.6 versus 190±82.3 µmol m(-2 d(-1. Moreover, rates were measured down to 400 m depth in 2007, indicating that the contribution to the integrated rates of the subsurface oxygen-deficient layer was ∼5 times higher (574±294 µmol m(-2 d(-1 than the oxic euphotic layer (48±68 µmol m(-2 d(-1. Concurrent molecular measurements detected the dinitrogenase reductase gene nifH in surface and subsurface waters. Phylogenetic analysis of the nifH sequences showed the presence of a diverse diazotrophic community at the time of the highest measured nitrogen fixation rates. Our results thus demonstrate the occurrence of nitrogen fixation in nutrient-rich coastal upwelling systems and, importantly, within the underlying OMZ. They also suggest that nitrogen fixation is a widespread process that can sporadically provide a supplementary source of fixed nitrogen in these regions.

  15. Nitrogen Fixation in Denitrified Marine Waters

    Science.gov (United States)

    Fernandez, Camila; Farías, Laura; Ulloa, Osvaldo

    2011-01-01

    Nitrogen fixation is an essential process that biologically transforms atmospheric dinitrogen gas to ammonia, therefore compensating for nitrogen losses occurring via denitrification and anammox. Currently, inputs and losses of nitrogen to the ocean resulting from these processes are thought to be spatially separated: nitrogen fixation takes place primarily in open ocean environments (mainly through diazotrophic cyanobacteria), whereas nitrogen losses occur in oxygen-depleted intermediate waters and sediments (mostly via denitrifying and anammox bacteria). Here we report on rates of nitrogen fixation obtained during two oceanographic cruises in 2005 and 2007 in the eastern tropical South Pacific (ETSP), a region characterized by the presence of coastal upwelling and a major permanent oxygen minimum zone (OMZ). Our results show significant rates of nitrogen fixation in the water column; however, integrated rates from the surface down to 120 m varied by ∼30 fold between cruises (7.5±4.6 versus 190±82.3 µmol m−2 d−1). Moreover, rates were measured down to 400 m depth in 2007, indicating that the contribution to the integrated rates of the subsurface oxygen-deficient layer was ∼5 times higher (574±294 µmol m−2 d−1) than the oxic euphotic layer (48±68 µmol m−2 d−1). Concurrent molecular measurements detected the dinitrogenase reductase gene nifH in surface and subsurface waters. Phylogenetic analysis of the nifH sequences showed the presence of a diverse diazotrophic community at the time of the highest measured nitrogen fixation rates. Our results thus demonstrate the occurrence of nitrogen fixation in nutrient-rich coastal upwelling systems and, importantly, within the underlying OMZ. They also suggest that nitrogen fixation is a widespread process that can sporadically provide a supplementary source of fixed nitrogen in these regions. PMID:21687726

  16. Influence of the compound effect between nitrogen and zinc on the resource of nitrogen of herbage in mixed and pure culture

    International Nuclear Information System (INIS)

    He Zhongjun; Hua Luo

    2002-01-01

    Under pot culture, the influence of compound effect between nitrogen and zinc on the resource of nitrogen of ryegrass in mono-culture and ryegrass/clover in mixture were studied on yellow brown earth which collected from sub-tropic mountain sward of southern China. The result showed as follows: (1) The percentage of nitrogen derived from atmosphere (% Ndfa) was decreased by nitrogen application in early growth stage and suitable amount of nitrogen application increased it in later growth stage. The % Ndfa of white clover in mixture was the highest with 6 mg/kg zinc application in all nitrogen levels. The transfer of fixed nitrogen by white clover to ryegrass was decreased by nitrogen application and increased by low amount of zinc application. (2) The percentage of nitrogen derived from fertilizer (% Ndff) was significantly increased by nitrogen application, of which the treatments with 6-20 mg/kg zinc application was higher than other zinc application treatments on ryegrass in monoculture, and the treatments with 6-20 mg/kg zinc application on white clover/ryegrass in mixture was lower than other zinc treatments at the range from 30 to 90 mg/kg nitrogen application. (3) The percentage of nitrogen derived from soil (% Ndfs) of ryegrass both in pure and in mixture was significantly decreased as the increasing of the levels of nitrogen application, of which ryegrass in mono-culture was not obviously influenced by zinc application, and ryegrass/clover in mixture was decreased by 6-20 mg/kg zinc application under all nitrogen levels

  17. Synthesis and review: Tackling the nitrogen management challenge: from global to local scales

    Science.gov (United States)

    Reis, Stefan; Bekunda, Mateete; Howard, Clare M.; Karanja, Nancy; Winiwarter, Wilfried; Yan, Xiaoyuan; Bleeker, Albert; Sutton, Mark A.

    2016-12-01

    One of the ‘grand challenges’ of this age is the anthropogenic impact exerted on the nitrogen cycle. Issues of concern range from an excess of fixed nitrogen resulting in environmental pressures for some regions, while for other regions insufficient fixed nitrogen affects food security and may lead to health risks. To address these issues, nitrogen needs to be managed in an integrated fashion, at a variety of scales (from global to local). Such management has to be based on a thorough understanding of the sources of reactive nitrogen released into the environment, its deposition and effects. This requires a comprehensive assessment of the key drivers of changes in the nitrogen cycle both spatially, at the field, regional and global scale and over time. In this focus issue, we address the challenges of managing reactive nitrogen in the context of food production and its impacts on human and ecosystem health. In addition, we discuss the scope for and design of management approaches in regions with too much and too little nitrogen. This focus issue includes several contributions from authors who participated at the N2013 conference in Kampala in November 2013, where delegates compiled and agreed upon the ‘Kampala Statement-for-Action on Reactive Nitrogen in Africa and Globally’. These contributions further underline scientifically the claims of the ‘Kampala Statement’, that simultaneously reducing pollution and increasing nitrogen available in the food system, by improved nitrogen management offers win-wins for environment, health and food security in both developing and developed economies. The specific messages conveyed in the Kampala Statement focus on improving nitrogen management (I), including the reduction of nitrogen losses from agriculture, industry, transport and energy sectors, as well as improving waste treatment and informing individuals and institutions (II). Highlighting the need for innovation and increased awareness among stakeholders (III

  18. Method for optical 15N analysis of small amounts of nitrogen gas released from an automatic nitrogen analyzer

    International Nuclear Information System (INIS)

    Arima, Yasuhiro

    1981-01-01

    A method of optical 15 N analysis is proposed for application to small amounts of nitrogen gas released from an automatic nitrogen analyzer (model ANA-1300, Carlo Erba, Milano) subjected to certain set modifications. The ANA-1300 was combined with a vacuum line attached by a molecular sieve 13X column. The nitrogen gas released from the ANA-1300 was introduced with a carrier gas of helium into the molecular sieve column which was pre-evacuated at 10 -4 Torr and cooled with outer liquid nitrogen. After removal of the helium by evacuation, the nitrogen gas fixed on the molecular sieve was released by warming the column, and then, it was sealed into pre-evacuated pyrex glass tubes at 4.5 - 5.0 Torr. In the preparation of discharge tubes, contamination of unlabelled nitrogen occurred from the carrier gas of standard grade helium, and the relative lowering of the 15 N value by it was estimated to be less than 1% when over 700 μg nitrogen was charged on the ANA-1300; when 200 μg nitrogen was charged, it was about 3.5%. However, the effect of the contamination could be corrected for by knowing the amount of contaminant nitrogen. In the analysis of plant materials by the proposed method, the coefficient of variation was less than 2%, and no significant difference was observed between results given by the present method and by the ordinary method in which samples were directly pyrolyzed in the discharge tubes by the Dumas method. The present method revealed about 1.5 μg of cross-contaminated nitrogen and was applicable to more than 200 μg of sample nitrogen. (author)

  19. Potential for nitrogen fixation in fungus-growing termite symbiosis

    DEFF Research Database (Denmark)

    Sapountzis, Panagiotis; de Verges, Jane; Rousk, Kathrin

    2016-01-01

    Termites host a gut microbiota of diverse and essential symbionts that enable specialization on dead plant material; an abundant, but nutritionally imbalanced food source. To supplement the severe shortage of dietary nitrogen (N), some termite species make use of diazotrophic bacteria to fix atmo...

  20. Biochemical changes induced by fungicides in nitrogen fixing Nostoc sp.

    Science.gov (United States)

    Deviram, G V N S; Pant, Gaurav; Prasuna, R Gyana

    2013-01-01

    The present study indicates the effect of fungicides (approved by WHO) and their behavior on nitrogen fixer of rice eco system Nostoc sp. Application of plant protecting chemicals at recommended levels braced up the growth of blue green algae thereby enhancing heterocyst formation and nitrogenase activity. Nostoc sp demoed varying degrees of sensitivity to fungicides. Biomass yield, protein, carbohydrate content reduced after 3pg/mL concentration. Heterocyst damage was observed from 4μg/mL, Proline content increased with increase in fungicide concentration, utmost yellowing of the culture started from 4μg/mL. The decreasing order of the toxicity to Nostoc sp with fungicides was Mancozeb> Ediphenphos> Carbendazim> Hexaconazole.

  1. Does nitrogen and sulfur deposition affect forest productivity?

    Science.gov (United States)

    Brittany A. Johnson; Kathryn B. Piatek; Mary Beth Adams; John R. Brooks

    2010-01-01

    We studied the effects of atmospheric nitrogen and sulfur deposition on forest productivity in a 10-year-old, aggrading forest stand at the Fernow Experimental Forest in Tucker County, WV. Forest productivity was expressed as total aboveground wood biomass, which included stem and branch weight of standing live trees. Ten years after stand regeneration and treatment...

  2. Efficient FPT Algorithms for (Strict) Compatibility of Unrooted Phylogenetic Trees.

    Science.gov (United States)

    Baste, Julien; Paul, Christophe; Sau, Ignasi; Scornavacca, Celine

    2017-04-01

    In phylogenetics, a central problem is to infer the evolutionary relationships between a set of species X; these relationships are often depicted via a phylogenetic tree-a tree having its leaves labeled bijectively by elements of X and without degree-2 nodes-called the "species tree." One common approach for reconstructing a species tree consists in first constructing several phylogenetic trees from primary data (e.g., DNA sequences originating from some species in X), and then constructing a single phylogenetic tree maximizing the "concordance" with the input trees. The obtained tree is our estimation of the species tree and, when the input trees are defined on overlapping-but not identical-sets of labels, is called "supertree." In this paper, we focus on two problems that are central when combining phylogenetic trees into a supertree: the compatibility and the strict compatibility problems for unrooted phylogenetic trees. These problems are strongly related, respectively, to the notions of "containing as a minor" and "containing as a topological minor" in the graph community. Both problems are known to be fixed parameter tractable in the number of input trees k, by using their expressibility in monadic second-order logic and a reduction to graphs of bounded treewidth. Motivated by the fact that the dependency on k of these algorithms is prohibitively large, we give the first explicit dynamic programming algorithms for solving these problems, both running in time [Formula: see text], where n is the total size of the input.

  3. Impact of climate change and ocean acidification on the marine nitrogen cycle

    International Nuclear Information System (INIS)

    Martinez-Rey, Jorge

    2015-01-01

    The marine nitrogen cycle is responsible for two climate feedbacks in the Earth System. Firstly, it modulates the fixed nitrogen pool available for phytoplankton growth and hence it modulates in part the strength of the biological pump, one of the mechanisms contributing to the oceanic uptake of anthropogenic CO 2 . Secondly, the nitrogen cycle produces a powerful greenhouse gas and ozone (O 3 ) depletion agent called nitrous oxide (N 2 O). Future changes of the nitrogen cycle in response to global warming, ocean deoxygenation and ocean acidification are largely unknown. Processes such as N 2 -fixation, nitrification, denitrification and N 2 O production will experience changes under the simultaneous effect of these three stressors. Global ocean biogeochemical models allow us to study such interactions. Using NEMO-PISCES and the CMIP5 model ensemble we project changes in year 2100 under the business-as-usual high CO 2 emissions scenario in global scale N 2 -fixation rates, nitrification rates, N 2 O production and N 2 O sea-to-air fluxes adding CO 2 sensitive functions into the model parameterizations. Second order effects due to the combination of global warming in tandem with ocean acidification on the fixed nitrogen pool, primary productivity and N 2 O radiative forcing feedbacks are also evaluated in this thesis. (author) [fr

  4. Exact Algorithms for Duplication-Transfer-Loss Reconciliation with Non-Binary Gene Trees.

    Science.gov (United States)

    Kordi, Misagh; Bansal, Mukul S

    2017-06-01

    Duplication-Transfer-Loss (DTL) reconciliation is a powerful method for studying gene family evolution in the presence of horizontal gene transfer. DTL reconciliation seeks to reconcile gene trees with species trees by postulating speciation, duplication, transfer, and loss events. Efficient algorithms exist for finding optimal DTL reconciliations when the gene tree is binary. In practice, however, gene trees are often non-binary due to uncertainty in the gene tree topologies, and DTL reconciliation with non-binary gene trees is known to be NP-hard. In this paper, we present the first exact algorithms for DTL reconciliation with non-binary gene trees. Specifically, we (i) show that the DTL reconciliation problem for non-binary gene trees is fixed-parameter tractable in the maximum degree of the gene tree, (ii) present an exponential-time, but in-practice efficient, algorithm to track and enumerate all optimal binary resolutions of a non-binary input gene tree, and (iii) apply our algorithms to a large empirical data set of over 4700 gene trees from 100 species to study the impact of gene tree uncertainty on DTL-reconciliation and to demonstrate the applicability and utility of our algorithms. The new techniques and algorithms introduced in this paper will help biologists avoid incorrect evolutionary inferences caused by gene tree uncertainty.

  5. Design methodology for the physical protection upgrade rule requirements for fixed sites. Technical report

    International Nuclear Information System (INIS)

    Evans, L.J. Jr.; Allen, T.

    1980-06-01

    This Design Methodology document aids the licensee in understanding how the fixed site requirements of the Physical Protection Upgrade Rule affect the design of physical protection systems for fuel processing plants, fuel manufacturing plants, or other fixed site special nuclear material operations involving possession or use of formula quantities of strategic special nuclear material. The document consists of three major elements: Logic Trees, Safeguards Jobs and Component Matrices, and Effectiveness Test Questionnaires. The work is based upon a previous study conducted by Sandia Laboratories for the Nuclear Regulatory Commission

  6. Cyanobacteria in CELSS: Growth strategies for nutritional variation and nitrogen cycling

    Science.gov (United States)

    Fry, I. V.; Packer, L.

    1990-01-01

    Cyanobacteria (blue-green algae) are versatile organisms which are capable of adjusting their cellular levels of carbohydrate, protein, and lipid in response to changes in the environment. Under stress conditions there is an imbalance between nitrogen metabolism and carbohydrate/lipid synthesis. The lesion in nitrogen assimilation is at the level of transport: the stress condition diverts energy from the active accumulation of nitrate to the extrusion of salt, and probably inhibits a cold-labile ATP'ace in the case of cold shock. Both situations affect the bioenergetic status of the cell such that the nitrogenous precursors for protein synthesis are depleted. Dispite the inhibition of protein synthesis and growth, photosynthetic reductant generation is relatively unaffected. The high O2 reductant would normally lead to photo-oxidative damage of cellular components; however, the organism copes by channeling the 'excess' reductant into carbon storage products. The increase in glycogen (28 to 35 percent dry weight increase) and the elongation of lipid fatty acid side chains (2 to 5 percent dry weight increase) at the expense of protein synthesis (25 to 34 percent dry weight decrease) results in carbohydrate, lipid and protein ratios that are closer to those required in the human diet. In addition, the selection of nitrogen fixing mutants which excrete ammonium ions present an opportunity to tailor these micro-organisms to meet the specific need for a sub-system to reverse potential loss of fixed nitrogen material.

  7. Tree height-diameter allometry across the United States.

    Science.gov (United States)

    Hulshof, Catherine M; Swenson, Nathan G; Weiser, Michael D

    2015-03-01

    The relationship between tree height and diameter is fundamental in determining community and ecosystem structure as well as estimates of biomass and carbon storage. Yet our understanding of how tree allometry relates to climate and whole organismal function is limited. We used the Forest Inventory and Analysis National Program database to determine height-diameter allometries of 2,976,937 individuals of 293 tree species across the United States. The shape of the allometric relationship was determined by comparing linear and nonlinear functional forms. Mixed-effects models were used to test for allometric differences due to climate and floristic (between angiosperms and gymnosperms) and functional groups (leaf habit and shade tolerance). Tree allometry significantly differed across the United States largely because of climate. Temperature, and to some extent precipitation, in part explained tree allometric variation. The magnitude of allometric variation due to climate, however, had a phylogenetic signal. Specifically, angiosperm allometry was more sensitive to differences in temperature compared to gymnosperms. Most notably, angiosperm height was more negatively influenced by increasing temperature variability, whereas gymnosperm height was negatively influenced by decreasing precipitation and increasing altitude. There was little evidence to suggest that shade tolerance influenced tree allometry except for very shade-intolerant trees which were taller for any given diameter. Tree allometry is plastic rather than fixed and scaling parameters vary around predicted central tendencies. This allometric variation provides insight into life-history strategies, phylogenetic history, and environmental limitations at biogeographical scales.

  8. Tree height–diameter allometry across the United States

    Science.gov (United States)

    Hulshof, Catherine M; Swenson, Nathan G; Weiser, Michael D

    2015-01-01

    The relationship between tree height and diameter is fundamental in determining community and ecosystem structure as well as estimates of biomass and carbon storage. Yet our understanding of how tree allometry relates to climate and whole organismal function is limited. We used the Forest Inventory and Analysis National Program database to determine height–diameter allometries of 2,976,937 individuals of 293 tree species across the United States. The shape of the allometric relationship was determined by comparing linear and nonlinear functional forms. Mixed-effects models were used to test for allometric differences due to climate and floristic (between angiosperms and gymnosperms) and functional groups (leaf habit and shade tolerance). Tree allometry significantly differed across the United States largely because of climate. Temperature, and to some extent precipitation, in part explained tree allometric variation. The magnitude of allometric variation due to climate, however, had a phylogenetic signal. Specifically, angiosperm allometry was more sensitive to differences in temperature compared to gymnosperms. Most notably, angiosperm height was more negatively influenced by increasing temperature variability, whereas gymnosperm height was negatively influenced by decreasing precipitation and increasing altitude. There was little evidence to suggest that shade tolerance influenced tree allometry except for very shade-intolerant trees which were taller for any given diameter. Tree allometry is plastic rather than fixed and scaling parameters vary around predicted central tendencies. This allometric variation provides insight into life-history strategies, phylogenetic history, and environmental limitations at biogeographical scales. PMID:25859325

  9. Genome sequence of Ensifer arboris strain LMG 14919T; a microsymbiont of the legume Prosopis chilensis growing in Kosti, Sudan

    OpenAIRE

    Reeve, Wayne; Tian, Rui; Bräu, Lambert; Goodwin, Lynne; Munk, Christine; Detter, Chris; Tapia, Roxanne; Han, Cliff; Liolios, Konstantinos; Huntemann, Marcel; Pati, Amrita; Woyke, Tanja; Mavrommatis, Konstantinos; Markowitz, Victor; Ivanova, Natalia

    2013-01-01

    Ensifer arboris LMG 14919T is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of several species of legume trees. LMG 14919T was isolated in 1987 from a nodule recovered from the roots of the tree Prosopis chilensis growing in Kosti, Sudan. LMG 14919T is highly effective at fixing nitrogen with P. chilensis (Chilean mesquite) and Acacia senegal (gum Arabic tree or gum acacia). LMG 14919T does not nodulate the tree Leuce...

  10. Loss of the nodule-specific cysteine rich peptide, NCR169, abolishes symbiotic nitrogen fixation in the Medicago truncatula dnf7 mutant.

    Science.gov (United States)

    Horváth, Beatrix; Domonkos, Ágota; Kereszt, Attila; Szűcs, Attila; Ábrahám, Edit; Ayaydin, Ferhan; Bóka, Károly; Chen, Yuhui; Chen, Rujin; Murray, Jeremy D; Udvardi, Michael K; Kondorosi, Éva; Kaló, Péter

    2015-12-08

    Host compatible rhizobia induce the formation of legume root nodules, symbiotic organs within which intracellular bacteria are present in plant-derived membrane compartments termed symbiosomes. In Medicago truncatula nodules, the Sinorhizobium microsymbionts undergo an irreversible differentiation process leading to the development of elongated polyploid noncultivable nitrogen fixing bacteroids that convert atmospheric dinitrogen into ammonia. This terminal differentiation is directed by the host plant and involves hundreds of nodule specific cysteine-rich peptides (NCRs). Except for certain in vitro activities of cationic peptides, the functional roles of individual NCR peptides in planta are not known. In this study, we demonstrate that the inability of M. truncatula dnf7 mutants to fix nitrogen is due to inactivation of a single NCR peptide, NCR169. In the absence of NCR169, bacterial differentiation was impaired and was associated with early senescence of the symbiotic cells. Introduction of the NCR169 gene into the dnf7-2/NCR169 deletion mutant restored symbiotic nitrogen fixation. Replacement of any of the cysteine residues in the NCR169 peptide with serine rendered it incapable of complementation, demonstrating an absolute requirement for all cysteines in planta. NCR169 was induced in the cell layers in which bacteroid elongation was most pronounced, and high expression persisted throughout the nitrogen-fixing nodule zone. Our results provide evidence for an essential role of NCR169 in the differentiation and persistence of nitrogen fixing bacteroids in M. truncatula.

  11. Next Generation Carbon-Nitrogen Dynamics Model

    Science.gov (United States)

    Xu, C.; Fisher, R. A.; Vrugt, J. A.; Wullschleger, S. D.; McDowell, N. G.

    2012-12-01

    Nitrogen is a key regulator of vegetation dynamics, soil carbon release, and terrestrial carbon cycles. Thus, to assess energy impacts on the global carbon cycle and future climates, it is critical that we have a mechanism-based and data-calibrated nitrogen model that simulates nitrogen limitation upon both above and belowground carbon dynamics. In this study, we developed a next generation nitrogen-carbon dynamic model within the NCAR Community Earth System Model (CESM). This next generation nitrogen-carbon dynamic model utilized 1) a mechanistic model of nitrogen limitation on photosynthesis with nitrogen trade-offs among light absorption, electron transport, carboxylation, respiration and storage; 2) an optimal leaf nitrogen model that links soil nitrogen availability and leaf nitrogen content; and 3) an ecosystem demography (ED) model that simulates the growth and light competition of tree cohorts and is currently coupled to CLM. Our three test cases with changes in CO2 concentration, growing temperature and radiation demonstrate the model's ability to predict the impact of altered environmental conditions on nitrogen allocations. Currently, we are testing the model against different datasets including soil fertilization and Free Air CO2 enrichment (FACE) experiments across different forest types. We expect that our calibrated model will considerably improve our understanding and predictability of vegetation-climate interactions.itrogen allocation model evaluations. The figure shows the scatter plots of predicted and measured Vc,max and Jmax scaled to 25 oC (i.e.,Vc,max25 and Jmax25) at elevated CO2 (570 ppm, test case one), reduced radiation in canopy (0.1-0.9 of the radiation at the top of canopy, test case two) and reduced growing temperature (15oC, test case three). The model is first calibrated using control data under ambient CO2 (370 ppm), radiation at the top of the canopy (621 μmol photon/m2/s), the normal growing temperature (30oC). The fitted model

  12. Seasonal nitrogen budgets of mature citrus trees on a sandy entisol

    NARCIS (Netherlands)

    Morgan, K.; Scholberg, J.M.S.; Obreza, T.; Wheaton, T.

    2012-01-01

    Approximately 30% of Florida citrus is grown on well-drained Entisols with low nutrient-holding capacity, which are prone to high nitrogen (N) leaching losses. However, increasing application frequency of N-fertilizer via multiple fertigations does not increase crop yield, whereas in agronomic

  13. Long-term trends of changes in pine and oak foliar nitrogen metabolism in response to chronic nitrogen amendments at Harvard Forest, MA

    Science.gov (United States)

    Rakesh Minocha; Swathi A. Turlapati; Stephanie Long; William H. McDowell; Subhash C. Minocha

    2015-01-01

    We evaluated the long-term (1995-2008) trends in foliar and sapwood metabolism, soil solution chemistry and tree mortality rates in response to chronic nitrogen (N) additions to pine and hardwood stands at the Harvard Forest Long Term Ecological Research (LTER) site. Common stress-related metabolites like polyamines (PAs), free amino acids (AAs) and inorganic elements...

  14. Breeding food and forge legumes for enhancement of nitrogen fixation: a review

    International Nuclear Information System (INIS)

    Ali, A.; Hussain, S.; Qamar, I.A.; Khan, B.R.

    2000-01-01

    Nitrogen fixation in legume - root nodules requires the functioning of genes present in the Rhizobia that induce nodule-formation. The plant produces the nodules and the energy required for respiration. Genes in both Rhizobium and the plant are responsible for the efficient use of photosynthesis for N/sub 2/ fixation and assimilation of nitrogen. Genes from Rhizobium and legume hosts that are involved in the symbiosis are being identified, isolated and cloned, to facilitate the manipulation of either partner. The amounts of nitrogen fixed by grain-legumes vary appreciably, between and within, species and are also influenced by environment. With few exceptions, most legumes fix insufficient N/sub 2/ to support substantial seed-yields. Deficits between required N and the combined amounts provide by soil and fertilizer help in estimating the improvements in N/sub 2/ fixation which is possible through breeding. Since the symbiosis is a complex process, heritability of traits is weak, and most methods which estimate fixation are destructive, a breeding method that allows selection of replicated families rather than single plants is preferred. (author)

  15. Effect of temperate climate tree species on gross ammonification, gross nitrification and N2O formation

    Science.gov (United States)

    Brüggemann, N.; Rosenkranz, P.; Papen, H.; Butterbach-Bahl, K.

    2003-04-01

    Microbial nitrogen turnover processes in the soil, like ammonification, nitrification and denitrification, play an important role in the formation of nitrous oxide (N2O): (i) ammonification, because it releases nitrogen from organic material in the form of ammonium (NH4+), which in turn can serve as substrate for nitrification; (ii) nitrification itself (i.e. the turnover of NH4+ to nitrate, NO3-), during which nitric oxide (NO) and N2O can be released as by-products at varying ratios; (iii) denitrification, in which NO3- serves as electron acceptor and is converted to molecular nitrogen (N2) via NO and N2O as intermediates, that can also be partially lost to the atmosphere. Temperate forest soils are a substantial source of atmospheric N2O contributing up to 10% to the total atmospheric N2O budget. However, this figure is afflicted with a huge uncertainty due to a number of factors governing the soil N2O formation, consumption, release and uptake, which are not fully understood at present. To one of these factors belongs the influence of the tree species on nitrogen turnover processes in the soil and the formation of N trace gases related with them. The aim of the present work was to analyse this tree species effect for the temperate climate region. For this purpose the effect of five different temperate tree species, having the same age and growing on the same soil in direct vicinity to each other, on gross ammonification and gross nitrification as well as on N2O formation was investigated. The trees (common beech, Fagus sylvatica; pedunculate oak, Quercus robur; Norway spruce, Picea abies; Japanese larch, Larix leptolepis; mountain pine, Pinus mugo) were part of a species trial in Western Jutland, Denmark, established in 1965 on a former sandy heathland. Samples from the soil under these five tree species were taken in spring and in summer 2002, respectively, differentiating between organic layer and mineral soil. The gross rates of ammonification as well of

  16. Repeated measures from FIA data facilitates analysis across spatial scales of tree growth responses to nitrogen deposition from individual trees to whole ecoregions

    Science.gov (United States)

    Charles H. (Hobie) Perry; Kevin J. Horn; R. Quinn Thomas; Linda H. Pardo; Erica A.H. Smithwick; Doug Baldwin; Gregory B. Lawrence; Scott W. Bailey; Sabine Braun; Christopher M. Clark; Mark Fenn; Annika Nordin; Jennifer N. Phelan; Paul G. Schaberg; Sam St. Clair; Richard Warby; Shaun Watmough; Steven S. Perakis

    2015-01-01

    The abundance of temporally and spatially consistent Forest Inventory and Analysis data facilitates hierarchical/multilevel analysis to investigate factors affecting tree growth, scaling from plot-level to continental scales. Herein we use FIA tree and soil inventories in conjunction with various spatial climate and soils data to estimate species-specific responses of...

  17. Growth response of Douglas-fir seedlings to nitrogen fertilization: importance of Rubisco activation state and respiration rates.

    Science.gov (United States)

    Daniel K. Manter; Kathleen L. Kavanagh; Cathy L. Rose

    2005-01-01

    High foliar nitrogen concentration ([N]) is associated with high rates of photosynthesis and thus high tree productivity; however, at excessive [N], tree productivity is reduced. Reports of excessive [N] in the Douglas-fir forests of the Oregon Coast Range prompted this investigation of growth and needle physiological responses to increasing foliar N concentrations in...

  18. Trees and Streets as Drivers of Urban Stormwater Nutrient Pollution.

    Science.gov (United States)

    Janke, Benjamin D; Finlay, Jacques C; Hobbie, Sarah E

    2017-09-05

    Expansion of tree cover is a major management goal in cities because of the substantial benefits provided to people, and potentially to water quality through reduction of stormwater volume by interception. However, few studies have addressed the full range of potential impacts of trees on urban runoff, which includes deposition of nutrient-rich leaf litter onto streets connected to storm drains. We analyzed the influence of trees on stormwater nitrogen and phosphorus export across 19 urban watersheds in Minneapolis-St. Paul, MN, U.S.A., and at the scale of individual streets within one residential watershed. Stormwater nutrient concentrations were highly variable across watersheds and strongly related to tree canopy over streets, especially for phosphorus. Stormwater nutrient loads were primarily related to road density, the dominant control over runoff volume. Street canopy exerted opposing effects on loading, where elevated nutrient concentrations from trees near roads outweighed the weak influence of trees on runoff reduction. These results demonstrate that vegetation near streets contributes substantially to stormwater nutrient pollution, and therefore to eutrophication of urban surface waters. Urban landscape design and management that account for trees as nutrient pollution sources could improve water quality outcomes, while allowing cities to enjoy the myriad benefits of urban forests.

  19. Gasification of biomass chars in steam-nitrogen mixture

    International Nuclear Information System (INIS)

    Haykiri-Acma, H.; Yaman, S.; Kucukbayrak, S.

    2006-01-01

    Some agricultural and waste biomass samples such as sunflower shell, pinecone, rapeseed, cotton refuse and olive refuse were first pyrolyzed in nitrogen, and then, their chars were gasified in a gas mixture of steam and nitrogen. Experiments were performed using the thermogravimetric analysis technique. Pyrolysis of the biomass samples was performed at a heating rate of 20 K/min from ambient to 1273 K in a dynamic nitrogen atmosphere of 40 cm 3 min -1 . The obtained chars were cooled to ambient temperature and then gasified up to 1273 K in a dynamic atmosphere of 40 cm 3 min -1 of a mixture of steam and nitrogen. Derivative thermogravimetric analysis profiles from gasification of the chars were derived, and the mass losses from the chars were interpreted in terms of temperature. It was concluded that gasification characteristics of biomass chars were fairly dependent on the biomass properties such as ash and fixed carbon contents and the constituents present in the ash. Different mechanisms in the three temperature intervals, namely water desorption at lower temperatures, decomposition of hydroxide minerals to oxide minerals and formation of carbon monoxide at medium temperatures and production of hydrogen at high temperatures govern the behavior of the char during the gasification process. The chars from pinecone and sunflower shell could be easily gasified under the mentioned conditions. In order to further raise the conversion yields, long hold times should be applied at high temperatures. However, the chars from rapeseed and olive refuse were not gasified satisfactorily. Low ash content and high fixed carbon content biomass materials are recommended for use in gasification processes when char from pyrolysis at elevated temperatures is used as a feedstock

  20. Assessment of soil nitrogen and phosphorous availability under elevated CO2 and N-fertilization in a short rotation poplar plantation

    NARCIS (Netherlands)

    Lagomarsino, A.; Moscatelli, M.C.; Hoosbeek, M.R.; Angelis, de P.; Grego, S.

    2008-01-01

    Photosynthetic stimulation by elevated [CO2] is largely regulated by nitrogen and phosphorus availability in the soil. During a 6 year Free Air CO2 Enrichment (FACE) experiment with poplar trees in two short rotations, inorganic forms of soil nitrogen, extractable phosphorus, microbial and total