WorldWideScience

Sample records for nitrogen fixation regulatory

  1. Symbiotic Nitrogen Fixation in Legume Nodules: Metabolism and Regulatory Mechanisms

    OpenAIRE

    Saad Sulieman; Lam-Son Phan Tran

    2014-01-01

    The special issue “Symbiotic Nitrogen Fixation in Legume Nodules: Metabolism and Regulatory Mechanisms” aims to investigate the physiological and biochemical advances in the symbiotic process with an emphasis on nodule establishment, development and functioning. The original research articles included in this issue provide important information regarding novel aspects of nodule metabolism and various regulatory pathways, which could have important future implications. This issue also included...

  2. Novel regulatory cascades controlling expression of nitrogen-fixation genes in Geobacter sulfurreducens.

    Science.gov (United States)

    Ueki, Toshiyuki; Lovley, Derek R

    2010-11-01

    Geobacter species often play an important role in bioremediation of environments contaminated with metals or organics and show promise for harvesting electricity from waste organic matter in microbial fuel cells. The ability of Geobacter species to fix atmospheric nitrogen is an important metabolic feature for these applications. We identified novel regulatory cascades controlling nitrogen-fixation gene expression in Geobacter sulfurreducens. Unlike the regulatory mechanisms known in other nitrogen-fixing microorganisms, nitrogen-fixation gene regulation in G. sulfurreducens is controlled by two two-component His-Asp phosphorelay systems. One of these systems appears to be the master regulatory system that activates transcription of the majority of nitrogen-fixation genes and represses a gene encoding glutamate dehydrogenase during nitrogen fixation. The other system whose expression is directly activated by the master regulatory system appears to control by antitermination the expression of a subset of the nitrogen-fixation genes whose transcription is activated by the master regulatory system and whose promoter contains transcription termination signals. This study provides a new paradigm for nitrogen-fixation gene regulation.

  3. Using synthetic biology to distinguish and overcome regulatory and functional barriers related to nitrogen fixation.

    Science.gov (United States)

    Wang, Xia; Yang, Jian-Guo; Chen, Li; Wang, Ji-Long; Cheng, Qi; Dixon, Ray; Wang, Yi-Ping

    2013-01-01

    Biological nitrogen fixation is a complex process requiring multiple genes working in concert. To date, the Klebsiella pneumoniae nif gene cluster, divided into seven operons, is one of the most studied systems. Its nitrogen fixation capacity is subject to complex cascade regulation and physiological limitations. In this report, the entire K. pneumoniae nif gene cluster was reassembled as operon-based BioBrick parts in Escherichia coli. It provided ~100% activity of native K. pneumoniae system. Based on the expression levels of these BioBrick parts, a T7 RNA polymerase-LacI expression system was used to replace the σ(54)-dependent promoters located upstream of nif operons. Expression patterns of nif operons were critical for the maximum activity of the recombinant system. By mimicking these expression levels with variable-strength T7-dependent promoters, ~42% of the nitrogenase activity of the σ(54)-dependent nif system was achieved in E. coli. When the newly constructed T7-dependent nif system was challenged with different genetic and physiological conditions, it bypassed the original complex regulatory circuits, with minor physiological limitations. Therefore, we have successfully replaced the nif regulatory elements with a simple expression system that may provide the first step for further research of introducing nif genes into eukaryotic organelles, which has considerable potentials in agro-biotechnology.

  4. Using synthetic biology to distinguish and overcome regulatory and functional barriers related to nitrogen fixation.

    Directory of Open Access Journals (Sweden)

    Xia Wang

    Full Text Available Biological nitrogen fixation is a complex process requiring multiple genes working in concert. To date, the Klebsiella pneumoniae nif gene cluster, divided into seven operons, is one of the most studied systems. Its nitrogen fixation capacity is subject to complex cascade regulation and physiological limitations. In this report, the entire K. pneumoniae nif gene cluster was reassembled as operon-based BioBrick parts in Escherichia coli. It provided ~100% activity of native K. pneumoniae system. Based on the expression levels of these BioBrick parts, a T7 RNA polymerase-LacI expression system was used to replace the σ(54-dependent promoters located upstream of nif operons. Expression patterns of nif operons were critical for the maximum activity of the recombinant system. By mimicking these expression levels with variable-strength T7-dependent promoters, ~42% of the nitrogenase activity of the σ(54-dependent nif system was achieved in E. coli. When the newly constructed T7-dependent nif system was challenged with different genetic and physiological conditions, it bypassed the original complex regulatory circuits, with minor physiological limitations. Therefore, we have successfully replaced the nif regulatory elements with a simple expression system that may provide the first step for further research of introducing nif genes into eukaryotic organelles, which has considerable potentials in agro-biotechnology.

  5. Using Synthetic Biology to Distinguish and Overcome Regulatory and Functional Barriers Related to Nitrogen Fixation

    OpenAIRE

    Xia Wang; Jian-Guo Yang; Li Chen; Ji-Long Wang; Qi Cheng; Ray Dixon; Yi-Ping Wang

    2013-01-01

    Biological nitrogen fixation is a complex process requiring multiple genes working in concert. To date, the Klebsiella pneumoniae nif gene cluster, divided into seven operons, is one of the most studied systems. Its nitrogen fixation capacity is subject to complex cascade regulation and physiological limitations. In this report, the entire K. pneumoniae nif gene cluster was reassembled as operon-based BioBrick parts in Escherichia coli. It provided ~100% activity of native K. pneumoniae syste...

  6. Purification and binding analysis of the nitrogen fixation regulatory NifA protein from Azospirillum brasilense

    Directory of Open Access Journals (Sweden)

    L.M.P. Passaglia

    1998-11-01

    Full Text Available NifA protein activates transcription of nitrogen fixation operons by the alternative sigma54 holoenzyme form of RNA polymerase. This protein binds to a well-defined upstream activator sequence (UAS located at the -200/-100 position of nif promoters with the consensus motif TGT-N10-ACA. NifA of Azospirillum brasilense was purified in the form of a glutathione-S-transferase (GST-NifA fusion protein and proteolytic release of GST yielded inactive and partially soluble NifA. However, the purified NifA was able to induce the production of specific anti-A. brasilense NifA-antiserum that recognized NifA from A. brasilense but not from K. pneumoniae. Both GST-NifA and NifA expressed from the E. coli tac promoter are able to activate transcription from the nifHDK promoter but only in an A. brasilense background. In order to investigate the mechanism that regulates NifA binding capacity we have used E. coli total protein extracts expressing A. brasilense nifA in mobility shift assays. DNA fragments carrying the two overlapping, wild-type or mutated UAS motifs present in the nifH promoter region revealed a retarded band of related size. These data show that the binding activity present in the C-terminal domain of A. brasilense NifA protein is still functional even in the presence of oxygen.

  7. Purification and binding analysis of the nitrogen fixation regulatory NifA protein from Azospirillum brasilense.

    Science.gov (United States)

    Passaglia, L M; Van Soom, C; Schrank, A; Schrank, I S

    1998-11-01

    NifA protein activates transcription of nitrogen fixation operons by the alternative sigma 54 holoenzyme form of RNA polymerase. This protein binds to a well-defined upstream activator sequence (UAS) located at the -200/-100 position of nif promoters with the consensus motif TGT-N10-ACA. NifA of Azospirillum brasilense was purified in the form of a glutathione-S-transferase (GST)-NifA fusion protein and proteolytic release of GST yielded inactive and partially soluble NifA. However, the purified NifA was able to induce the production of specific anti-A. brasilense NifA-antiserum that recognized NifA from A. brasilense but not from K. pneumoniae. Both GST-NifA and NifA expressed from the E. coli tac promoter are able to activate transcription from the nifHDK promoter but only in an A. brasilense background. In order to investigate the mechanism that regulates NifA binding capacity we have used E. coli total protein extracts expressing A. brasilense nifA in mobility shift assays. DNA fragments carrying the two overlapping, wild-type or mutated UAS motifs present in the nifH promoter region revealed a retarded band of related size. These data show that the binding activity present in the C-terminal domain of A. brasilense NifA protein is still functional even in the presence of oxygen.

  8. Molecular Biology of Nitrogen Fixation

    Science.gov (United States)

    Shanmugam, K. T.; Valentine, Raymond C.

    1975-01-01

    Reports that as a result of our increasing knowledge of the molecular biology of nitrogen fixation it might eventually be possible to increase the biological production of nitrogenous fertilizer from atmospheric nitrogen. (GS)

  9. Eighth international congress on nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

  10. Understanding Nitrogen Fixation

    Energy Technology Data Exchange (ETDEWEB)

    Paul J. Chirik

    2012-05-25

    synthesis of ammonia, NH{sub 3}, from its elements, H{sub 2} and N{sub 2}, via the venerable Haber-Bosch process is one of the most significant technological achievements of the past century. Our research program seeks to discover new transition metal reagents and catalysts to disrupt the strong N {triple_bond} N bond in N{sub 2} and create new, fundamental chemical linkages for the construction of molecules with application as fuels, fertilizers and fine chemicals. With DOE support, our group has discovered a mild method for ammonia synthesis in solution as well as new methods for the construction of nitrogen-carbon bonds directly from N{sub 2}. Ideally these achievements will evolve into more efficient nitrogen fixation schemes that circumvent the high energy demands of industrial ammonia synthesis. Industrially, atmospheric nitrogen enters the synthetic cycle by the well-established Haber-Bosch process whereby N{sub 2} is hydrogenated to ammonia at high temperature and pressure. The commercialization of this reaction represents one of the greatest technological achievements of the 20th century as Haber-Bosch ammonia is responsible for supporting approximately 50% of the world's population and serves as the source of half of the nitrogen in the human body. The extreme reaction conditions required for an economical process have significant energy consequences, consuming 1% of the world's energy supply mostly in the form of pollution-intensive coal. Moreover, industrial H{sub 2} synthesis via the water gas shift reaction and the steam reforming of methane is fossil fuel intensive and produces CO{sub 2} as a byproduct. New synthetic methods that promote this thermodynamically favored transformation ({Delta}G{sup o} = -4.1 kcal/mol) under milder conditions or completely obviate it are therefore desirable. Most nitrogen-containing organic molecules are derived from ammonia (and hence rely on the Haber-Bosch and H{sub 2} synthesis processes) and direct synthesis from

  11. Nitrogen Fixation in Cyanobacteria

    NARCIS (Netherlands)

    Stal, L.J.

    2015-01-01

    Cyanobacteria are oxygenic photosynthetic bacteria that are widespread in marine, freshwater and terrestrial environments, and many of them are capable of fixing atmospheric nitrogen. However, ironically, nitrogenase, the enzyme that is responsible for the reduction of N2, is extremely sensitive to

  12. Nitrogen Fixation in Cyanobacteria

    NARCIS (Netherlands)

    Stal, L.J.

    2015-01-01

    Cyanobacteria are oxygenic photosynthetic bacteria that are widespread in marine, freshwater and terrestrial environments, and many of them are capable of fixing atmospheric nitrogen. However, ironically, nitrogenase, the enzyme that is responsible for the reduction of N2, is extremely sensitive to

  13. Nitrogen fixation by marine cyanobacteria.

    Science.gov (United States)

    Zehr, Jonathan P

    2011-04-01

    Discrepancies between estimates of oceanic N(2) fixation and nitrogen (N) losses through denitrification have focused research on identifying N(2)-fixing cyanobacteria and quantifying cyanobacterial N(2) fixation. Previously unrecognized cultivated and uncultivated unicellular cyanobacteria have been discovered that are widely distributed, and some have very unusual properties. Uncultivated unicellular N(2)-fixing cyanobacteria (UCYN-A) lack major metabolic pathways including the tricarboxylic acid cycle and oxygen-evolving photosystem II. Genomes of the oceanic N(2)-fixing cyanobacteria are highly conserved at the DNA level, and genetic diversity is maintained by genome rearrangements. The major cyanobacterial groups have different physiological and ecological constraints that result in highly variable geographic distributions, with implications for the marine N-cycle budget.

  14. Nitrogen Fixation in Denitrified Marine Waters

    OpenAIRE

    Camila Fernandez; Laura Farías; Osvaldo Ulloa

    2011-01-01

    Nitrogen fixation is an essential process that biologically transforms atmospheric dinitrogen gas to ammonia, therefore compensating for nitrogen losses occurring via denitrification and anammox. Currently, inputs and losses of nitrogen to the ocean resulting from these processes are thought to be spatially separated: nitrogen fixation takes place primarily in open ocean environments (mainly through diazotrophic cyanobacteria), whereas nitrogen losses occur in oxygen-depleted intermediate wat...

  15. Eighth international congress on nitrogen fixation. Final program

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

  16. Nitrogen fixation in trees - 1

    Energy Technology Data Exchange (ETDEWEB)

    Dobereiner, J.; Gauthier, D.L.; Diem, H.G.; Dommergues, Y.R.; Bonetti, R.; Oliveira, L.A.; Magalhaes, F.M.M.; Faria, S.M. de; Franco, A.A.; Menandro, M.S.

    1984-01-01

    Six papers are presented from the symposium. Dobereiner, J.; Nodulation and nitrogen fixation in leguminous trees, 83-90, (15 ref.), reviews studies on Brazilian species. Gauthier, D.L., Diem, H.G., Dommergues, Y.R., Tropical and subtropical actinorhizal plants, 119-136, (Refs. 50), reports on studies on Casuarinaceae. Bonetti, R., Oliveira, L.A., Magalhaes, F.M.M.; Rhizobium populations and occurrence of VA mycorrhizae in plantations of forest trees, 137-142, (Refs. 15), studies Amazonia stands of Cedrelinga catenaeformis, Calophyllum brasiliense, Dipteryx odorata, D. potiphylla, Carapa guianensis, Goupia glabra, Tabebuia serratifolia, Clarisia racemosa, Pithecellobium racemosum, Vouacapoua pallidior, Eperua bijuga, and Diplotropis species. Nodulation was observed in Cedrelinga catenaeformis and V. pallidior. Faria, S.M. de, Franco, A.A., Menandro, M.S., Jesus, R.M. de, Baitello, J.B.; Aguiar, O.T. de, Doebereiner, J; survey of nodulation in leguminous tree species native to southeastern Brazil, 143-153, (Refs. 7), reports on 119 species, with first reports of nodulation in the genera Bowdichia, Poecilanthe, Melanoxylon, Moldenhaurea (Moldenhawera), and Pseudosamanea. Gaiad, S., Carpanezzi, A.A.; Occurrence of Rhizobium in Leguminosae of silvicultural interest for south Brazil, 155-158, (Refs. 2). Nodulation is reported in Mimosa scabrella, Acacia mearnsii, A. longifolia various trinervis, Enterolobium contortisiliquum, and Erythrina falcata. Magalhaes, L.M.S., Blum, W.E.H., Nodulation and growth of Cedrelinga catanaeformis in experimental stands in the Manaus region - Amazonas, 159-164, (Refs. 5). Results indicate that C. catenaeformis can be used in degraded areas of very low soil fertility.

  17. Nitrogen fixation in Red Sea seagrass meadows

    KAUST Repository

    Abdallah, Malak

    2017-05-01

    Seagrasses are key coastal ecosystems, providing many ecosystem services. Seagrasses increase biodiversity as they provide habitat for a large set of organisms. In addition, their structure provides hiding places to avoid predation. Seagrasses can grow in shallow marine coastal areas, but several factors regulate their growth and distribution. Seagrasses can uptake different kinds of organic and inorganic nutrients through their leaves and roots. Nitrogen and phosphorous are the most important nutrients for seagrass growth. Biological nitrogen fixation is the conversion of atmospheric nitrogen into ammonia by diazotrophic bacteria. This process provides a significant source of nitrogen for seagrass growth. The nitrogen fixation is controlled by the nif genes which are found in diazotrophs. The main goal of the project is to measure nitrogen fixation rates on seagrass sediments, in order to compare among various seagrass species from the Red Sea. Moreover, we will compare the fixing rates of the Vegetated areas with the bare sediments. This project will help to ascertain the role of nitrogen fixing bacteria in the development of seagrass meadows.

  18. Nitrogen fixation in the phyllosphere of Gramineae

    NARCIS (Netherlands)

    Bessems, E.P.M.

    1973-01-01

    The investigation was carried out with Zea mays , grown under temperate conditions, and with Tripsacum laxum Nash, grown in the tropics. The conditions for nitrogen fixation were found to be unfavourable in the leachate, obtained by spray irrigation of the aerial plant

  19. Nitrogen fixation and molecular oxygen: comparative genomic reconstruction of transcription regulation in Alphaproteobacteria

    Directory of Open Access Journals (Sweden)

    Olga V Tsoy

    2016-08-01

    Full Text Available Biological nitrogen fixation plays a crucial role in the nitrogen cycle. An ability to fix atmospheric nitrogen, reducing it to ammonium, was described for multiple species of Bacteria and Archaea. Being a complex and sensitive process, nitrogen fixation requires a complicated regulatory system, also, on the level of transcription. The transcriptional regulatory network for nitrogen fixation was extensively studied in several representatives of the class Alphaproteobacteria. This regulatory network includes the activator of nitrogen fixation NifA, working in tandem with the alternative sigma-factor RpoN as well as oxygen-responsive regulatory systems, one-component regulators FnrN/FixK and two-component system FixLJ. Here we used a comparative genomics analysis for in silico study of the transcriptional regulatory network in 50 genomes of Alphaproteobacteria. We extended the known regulons and proposed the scenario for the evolution of the nitrogen fixation transcriptional network. The reconstructed network substantially expands the existing knowledge of transcriptional regulation in nitrogen-fixing microorganisms and can be used for genetic experiments, metabolic reconstruction, and evolutionary analysis.

  20. Symposium on nitrogen fixation in tropical trees

    Energy Technology Data Exchange (ETDEWEB)

    Dobereiner, J.

    1984-01-01

    A special issue containing the proceedings of an international symposium held on 19-24 September 1983 at Rio de Janeiro. Some 35 papers were presented in six sessions: Importance of leguminous trees (2 papers); Occurrence of leguminous trees (5); Nitrogen fixation in trees (12); Utilization of nitrogen fixing trees (7); Nutrition of leguminous trees (5); and Agroforestry systems (4). Recommendations of the symposium are presented on p. 341-344 (Pt, En), and a List of nitrogen fixing trees which should receive immediate attention in Brazil (26 species) is given on p. 345.

  1. Methanotrophy Induces Nitrogen Fixation in Boreal Mosses

    Science.gov (United States)

    Tiirola, M. A.

    2014-12-01

    Many methanotrophic bacterial groups fix nitrogen in laboratory conditions. Furthermore, nitrogen (N) is a limiting nutrient in many environments where methane concentrations are highest. Despite these facts, methane-induced N fixation has previously been overlooked, possibly due to methodological problems. To study the possible link between methanotrophy and diazotrophy in terrestrial and aquatic habitats, we measured the co-occurrence of these two processes in boreal forest, peatland and stream mosses using a stable isotope labeling approach (15 N2 and 13 CH4 double labeling) and sequencing of the nifH gene marker. N fixation associated with forest mosses was dependent on the annual N deposition, whereas methane stimulate N fixation neither in high (>3 kg N ha -1 yr -1) nor low deposition areas, which was in accordance with the nifH gene sequencing showing that forest mosses (Pleurozium schreberi and Hylocomium splendens ) carried mainly cyanobacterial N fixers. On the other extreme, in stream mosses (Fontinalis sp.) methane was actively oxidized throughout the year, whereas N fixation showed seasonal fluctuation. The co-occurrence of the two processes in single cell level was proven by co-localizing both N and methane-carbon fixation with the secondary ion mass spectrometry (SIMS) approach. Methanotrophy and diazotrophy was also studied in peatlands of different primary successional stages in the land-uplift coast of Bothnian Bay, in the Siikajoki chronosequence, where N accumulation rates in peat profiles indicate significant N fixation. Based on experimental evidence it was counted that methane-induced N fixation explained over one-third of the new N input in the younger peatland successional stages, where the highest N fixation rates and highest methane oxidation activities co-occurred in the water-submerged Sphagnum moss vegetation. The linkage between methanotrophic carbon cycling and N fixation may therefore constitute an important mechanism in the rapid

  2. Nitrogen Fixation by Cyclopentadienyltitanium compounds

    NARCIS (Netherlands)

    van der Weij, Frederik Willem

    1977-01-01

    This thesis describes investigations of the mechanism of reduction of dinitrogen by systems consisting of n5-cyclopentadie-nyltitanium complexes and a reducing agent. Analysis of the reduced nitrogen- and titanium-containing products after hydrolysis of the reaction mixtures has been used to derive

  3. Variable Nitrogen Fixation in Wild Populus.

    Directory of Open Access Journals (Sweden)

    Sharon L Doty

    Full Text Available The microbiome of plants is diverse, and like that of animals, is important for overall health and nutrient acquisition. In legumes and actinorhizal plants, a portion of essential nitrogen (N is obtained through symbiosis with nodule-inhabiting, N2-fixing microorganisms. However, a variety of non-nodulating plant species can also thrive in natural, low-N settings. Some of these species may rely on endophytes, microorganisms that live within plants, to fix N2 gas into usable forms. Here we report the first direct evidence of N2 fixation in the early successional wild tree, Populus trichocarpa, a non-leguminous tree, from its native riparian habitat. In order to measure N2 fixation, surface-sterilized cuttings of wild poplar were assayed using both 15N2 incorporation and the commonly used acetylene reduction assay. The 15N label was incorporated at high levels in a subset of cuttings, suggesting a high level of N-fixation. Similarly, acetylene was reduced to ethylene in some samples. The microbiota of the cuttings was highly variable, both in numbers of cultured bacteria and in genetic diversity. Our results indicated that associative N2-fixation occurred within wild poplar and that a non-uniformity in the distribution of endophytic bacteria may explain the variability in N-fixation activity. These results point to the need for molecular studies to decipher the required microbial consortia and conditions for effective endophytic N2-fixation in trees.

  4. Perspectives in Biological Nitrogen Fixation Research

    Institute of Scientific and Technical Information of China (English)

    Qi Cheng

    2008-01-01

    Nitrogen fixation, along with photosynthesis is the basis of all life on earth. Current understanding suggests that no plant fixes its own nitrogen. Some plants (mainly legumes) fix nitrogen via symbiotic anaerobic microorganisms (mainly rhizobia). The nature of biological nitrogen fixation is that the dinitrogenase catalyzes the reaction-splitting triple-bond inert atmospheric nitrogen (N2) into organic ammonia molecule (NH3). All known nitrogenases are found to be prokaryotic,multi.complex and normally oxygen liable. Not surprisingly, the engineering of autonomous nitrogen-fixing plants would be a long-term effort because it requires the assembly of a complex enzyme and provision of anaerobic conditions. However,in the light of evolving protein catalysts, the anaerobic enzyme has almost certainly been replaced in many reactions by the more efficient and irreversible aerobic version that uses O2. On the other hand, nature has shown numerous examples of evolutionary convergence where an enzyme catalyzing a highly specific, O2-requiring reaction has an oxygen-independent counterpart, able to carry out the same reaction under anoxic conditions. In this review, I attempt to take the reader on a simplified journey from conventional nitrogenase complex to a possible simplified version of a yet to be discovered Ilght-utilizing nitrogenase.

  5. Biological Nitrogen Fixation: Perspective and Limitation

    Directory of Open Access Journals (Sweden)

    N D Purwantari

    2008-03-01

    Full Text Available The demand of chemical fertilizer, N in particular will be increasing until 2020. In Indonesia, the demand of fertilizer from 1999 – 2002 increased 37.5 and 12.4% for urea and ammonium sulphate, respectively. At the same time, the price of this fertilizer is also increasing and it can not be afforded by the farmer. Other problem in using chemical fertilizer is damaging to the soil and environment. One of the problem solvings for this condition is to maximize biological nitrogen fixation (BNF. BNF is the fixation of N atmosphere by association between soil bacteria rhizobia and leguminous plant. BNF is sustainable and environmentally friendly in providing nitrogen fertilizer. Therefore, it would reduce the requirement of chemical nitrogen fertilizer for the plant. Gliricidia sepium fixes 170 kg N/ha/12 months, equivalent with 377 kg urea, Sesbania sesban 179 kg N/ha/10 months, equivalent 397 kg with urea, soybean 26 – 57 kg/2 months equivalent with 57 – 126 kg urea. The amount of N2- fixed varies, affected by species, environmental and biological factors. There are some limitations in applying this technology. The effect of N contribution is very slow at the beginning but in the long term, it would be beneficial for plant production and at the same time, maintain condition of physical and chemical of soil, soil microbes and therefore soil fertility.

  6. Nitrogen fixation during an unusual summer Baltic Sea

    DEFF Research Database (Denmark)

    Voss, Maren; Dalsgaard, Tage; Fabian, Jenny

    Nitrogen fixation is a major nitrogen source for the open ocean. Also the land-locked, partly anoxic Baltic Sea receives almost as much nitrogen from nitrogen fixation as it receives from eutrophied rivers. Growth conditions for cyanobacteria are usually very favorable with low N/P ratios after...... variety in nitrogen fixing species than usual was observed. Under these conditions nitrogen fixation rates were studied over a three weeks period throughout the upper water column. Moreover, a methods comparison was performed to test the dissolved dinitrogen gas additions against the bubble addition...

  7. Effect of Phosphorus Fertilizer on Nitrogen Fixation by Some Grain ...

    African Journals Online (AJOL)

    acer

    ABSTRACT: Nitrogen fixation by grain legumes contributes N to tropical soils. But in Sudano –. Sahelian .... at 650C, weighed and analyzed for the N concentrations (Marr ... The increase of whole plant growth and plant nitrogen concentration ...

  8. Regulation of Development and Nitrogen Fixation in Anabaena

    Energy Technology Data Exchange (ETDEWEB)

    James W Golden

    2004-08-05

    The nitrogen-fixing filamentous cyanobacterium Anabaena sp. strain PCC 7120 is being used as a simple model of microbial development and pattern formation in a multicellular prokaryotic organism. Anabaena reduces atmospheric nitrogen to ammonia in highly specialized, terminally differentiated cells called heterocysts. Anabaena is an important model system because of the multicellular growth pattern, the suspected antiquity of heterocyst development, and the contribution of fixed nitrogen to the environment. We are especially interested in understanding the molecular signaling pathways and genetic regulation that control heterocyst development. In the presence of an external source of reduced nitrogen, the differentiation of heterocysts is inhibited. When Anabaena is grown on dinitrogen, a one-dimensional developmental pattern of single heterocysts separated by approximately ten vegetative cells is established to form a multicellular organism composed of two interdependent cell types. The goal of this project is to understand the signaling and regulatory pathways that commit a vegetative cell to terminally differentiate into a nitrogen-fixing heterocyst. Several genes identified by us and by others were chosen as entry points into the regulatory network. Our research, which was initially focused on transcriptional regulation by group 2 sigma factors, was expanded to include group 3 sigma factors and their regulators after the complete Anabaena genome sequence became available. Surprisingly, no individual sigma factor is essential for heterocyst development. We have used the isolation of extragenic suppressors to study genetic interactions between key regulatory genes such as patS, hetR, and hetC in signaling and developmental pathways. We identified a hetR R223W mutation as a bypass suppressor of patS overexpression. Strains containing the hetR R223W allele fail to respond to pattern formation signals and overexpression of this allele results in a lethal phenotype

  9. The novel regulatory ncRNA, NfiS, optimizes nitrogen fixation via base pairing with the nitrogenase gene nifK mRNA in Pseudomonas stutzeri A1501

    Science.gov (United States)

    Zhan, Yuhua; Yan, Yongliang; Deng, Zhiping; Chen, Ming; Lu, Wei; Lu, Chao; Shang, Liguo; Yang, Zhimin; Zhang, Wei; Wang, Wei; Li, Yun; Ke, Qi; Lu, Jiasi; Xu, Yuquan; Zhang, Liwen; Xie, Zhihong; Cheng, Qi; Elmerich, Claudine; Lin, Min

    2016-01-01

    Unlike most Pseudomonas, the root-associated bacterium Pseudomonas stutzeri A1501 fixes nitrogen after the horizontal acquisition of a nitrogen-fixing (nif) island. A genome-wide search for small noncoding RNAs (ncRNAs) in P. stutzeri A1501 identified the novel P. stutzeri-specific ncRNA NfiS in the core genome, whose synthesis was significantly induced under nitrogen fixation or sorbitol stress conditions. The expression of NfiS was RNA chaperone Hfq-dependent and activated by the sigma factor RpoN/global nitrogen activator NtrC/nif-specific activator NifA regulatory cascade. The nfiS-deficient mutant displayed reduced nitrogenase activity, as well as increased sensitivity to multiple stresses, such as osmotic and oxidative stresses. Secondary structure prediction and complementation studies confirmed that a stem-loop structure was essential for NfiS to regulate the nitrogenase gene nifK mRNA synthesis and thus nitrogenase activity. Microscale thermophoresis and physiological analysis showed that NfiS directly pairs with nifK mRNA and ultimately enhances nitrogenase activity by increasing the translation efficiency and the half-life of nifK mRNA. Our data also suggest structural and functional divergence of NfiS evolution in diazotrophic and nondiazotrophic backgrounds. It is proposed that NfiS was recruited by nifK mRNA as a novel regulator to integrate the horizontally acquired nif island into host global networks. PMID:27407147

  10. Nitrogen Fixation and Hydrogen Metabolism in Cyanobacteria

    Science.gov (United States)

    Bothe, Hermann; Schmitz, Oliver; Yates, M. Geoffrey; Newton, William E.

    2010-01-01

    Summary: This review summarizes recent aspects of (di)nitrogen fixation and (di)hydrogen metabolism, with emphasis on cyanobacteria. These organisms possess several types of the enzyme complexes catalyzing N2 fixation and/or H2 formation or oxidation, namely, two Mo nitrogenases, a V nitrogenase, and two hydrogenases. The two cyanobacterial Ni hydrogenases are differentiated as either uptake or bidirectional hydrogenases. The different forms of both the nitrogenases and hydrogenases are encoded by different sets of genes, and their organization on the chromosome can vary from one cyanobacterium to another. Factors regulating the expression of these genes are emerging from recent studies. New ideas on the potential physiological and ecological roles of nitrogenases and hydrogenases are presented. There is a renewed interest in exploiting cyanobacteria in solar energy conversion programs to generate H2 as a source of combustible energy. To enhance the rates of H2 production, the emphasis perhaps needs not to be on more efficient hydrogenases and nitrogenases or on the transfer of foreign enzymes into cyanobacteria. A likely better strategy is to exploit the use of radiant solar energy by the photosynthetic electron transport system to enhance the rates of H2 formation and so improve the chances of utilizing cyanobacteria as a source for the generation of clean energy. PMID:21119016

  11. Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils

    Science.gov (United States)

    Barron, Alexander R.; Wurzburger, Nina; Bellenger, Jean Phillipe; Wright, S. Joseph; Kraepiel, Anne M. L.; Hedin, Lars O.

    2009-01-01

    Nitrogen fixation, the biological conversion of di-nitrogen to plant-available ammonium, is the primary natural input of nitrogen to ecosystems, and influences plant growth and carbon exchange at local to global scales. The role of this process in tropical forests is of particular concern, as these ecosystems harbour abundant nitrogen-fixing organisms and represent one third of terrestrial primary production. Here we show that the micronutrient molybdenum, a cofactor in the nitrogen-fixing enzyme nitrogenase, limits nitrogen fixation by free-living heterotrophic bacteria in soils of lowland Panamanian forests. We measured the fixation response to long-term nutrient manipulations in intact forests, and to short-term manipulations in soil microcosms. Nitrogen fixation increased sharply in treatments of molybdenum alone, in micronutrient treatments that included molybdenum by design and in treatments with commercial phosphorus fertilizer, in which molybdenum was a `hidden' contaminant. Fixation did not respond to additions of phosphorus that were not contaminated by molybdenum. Our findings show that molybdenum alone can limit asymbiotic nitrogen fixation in tropical forests and raise new questions about the role of molybdenum and phosphorus in the tropical nitrogen cycle. We suggest that molybdenum limitation may be common in highly weathered acidic soils, and may constrain the ability of some forests to acquire new nitrogen in response to CO2 fertilization.

  12. The economic impact of future biological nitrogen fixation technologies

    OpenAIRE

    Tauer, Loren W.

    1988-01-01

    The economic impact of some future biological nitrogen fixation technologies are estimated using AGSIM, a dynamic, partial equilibrium, econometric model of the U.S. agricultural sector. Five separate scenarios were modeled: (1) legumes fix more nitrogen, (2) legumes fix more nitrogen with an increase in legumes yields of 10 percent, (3) nitrogen fertilization requirements on all crops are reduced 50 percent with no yield changes, (4) total elimination of nitrogen fertilization and (5) total ...

  13. Biological Nitrogen Fixation In Tropical Dry Forests Of Costa Rica

    Science.gov (United States)

    Gei, M. G.; Powers, J. S.

    2012-12-01

    Evidence suggests that tropical dry forests (TDF) are not nitrogen (N) deficient. This evidence includes: high losses of gaseous nitrogen during the rainy season, high ecosystem soil N stocks and high N concentrations in leaves and litterfall. Its been commonly hypothesized that biological nitrogen fixation is responsible for the high availability of N in tropical soils. However, the magnitude of this flux has rarely if ever been measured in tropical dry forests. Because of the high cost of fixing N and the ubiquity of N fixing legume trees in the TDF, at the individual tree level symbiotic fixation should be a strategy down-regulated by the plant. Our main goal was to determine the rates of and controls over symbiotic N fixation. We hypothesized that legume tree species employ a facultative strategy of nitrogen fixation and that this process responds to changes in light availability, soil moisture and nutrient supply. We tested this hypothesis both on naturally established trees in a forest and under controlled conditions in a shade house by estimating the quantities of N fixed annually using the 15N natural abundance method, counting nodules, and quantifying (field) or manipulating (shade house) the variation in important environmental variables (soil nutrients, soil moisture, and light). We found that in both in our shade house experiment and in the forest, nodulation varied among different legume species. For both settings, the 15N natural abundance approach successfully detected differences in nitrogen fixation among species. The legume species that we studied were able to regulate fixation depending on the environmental conditions. They showed to have different strategies of nitrogen fixation that follow a gradient of facultative to obligate fixation. Our data suggest that there exists a continuum of nitrogen fixation strategies among species. Any efforts to define tropical legume trees as a functional group need to incorporate this variation.

  14. Nitrogen fixation during an unusual summer Baltic Sea

    DEFF Research Database (Denmark)

    Voss, Maren; Dalsgaard, Tage; Fabian, Jenny

    Nitrogen fixation is a major nitrogen source for the open ocean. Also the land-locked, partly anoxic Baltic Sea receives almost as much nitrogen from nitrogen fixation as it receives from eutrophied rivers. Growth conditions for cyanobacteria are usually very favorable with low N/P ratios after...... winter mixing and a strong stratification and high surface temperatures in summer. However, the summer 2012 was quite different with strong winds and cold surface waters. Blooms of cyanobacteria therefore only developed in sheltered regions but not in the central Baltic Proper. Moreover, a greater...

  15. A Mathematic Approach to Nitrogen Fixation Through Earth History

    Science.gov (United States)

    Delgado-Bonal, Alfonso; Martín-Torres, F. Javier

    Nitrogen is essential for life as we know it. According to phylogenetic studies, all organisms capable of fixing nitrogen are prokaryotes, both bacteria and archaea, suggesting that nitrogen fixation and ammonium assimilation were metabolic features of the Last Universal Common Ancestor of all organisms. At present time the amount of biologically fixed nitrogen is around 2 × 1{0}^{13} g/year (Falkowski 1997), an amount much larger than the corresponding to the nitrogen fixed abiotically (between 2. 6 ×109 and 3 × 1{0}^{11} g/year) (Navarro-González et al. 2001). The current amount of nitrogen fixed is much higher than it was on Earth before the Cambrian explosion, where the symbiotic associations with leguminous plants, the major nitrogen fixer currently, did not exist and nitrogen was fixed only by free-living organisms as cyanobacteria. It has been suggested (Navarro-González et al. 2001) that abiotic sources of nitrogen fixation during Early Earth times could have an important role triggering a selection pressure favoring the evolution of nitrogenase and an increase in the nitrogen fixation rate. In this study we present briefly a method to analyze the amount of fixed nitrogen, both biotic and abiotic, through Earth's history.

  16. Actual and potential nitrogen fixation in pea and field bean as affected by combined nitrogen

    NARCIS (Netherlands)

    Mil, van M.

    1981-01-01

    Actual nitrogen fixation of pea and field-bean plants, grown in soil in the open air, was determined as the acetylene reduction of nodulated roots. During the major part of the vegetative growth of these plants, actual nitrogen fixation was equal to the potential maximum nitrogenase activity of the

  17. Changes in North Atlantic nitrogen fixation controlled by ocean circulation.

    Science.gov (United States)

    Straub, Marietta; Sigman, Daniel M; Ren, Haojia; Martínez-García, Alfredo; Meckler, A Nele; Hain, Mathis P; Haug, Gerald H

    2013-09-12

    In the ocean, the chemical forms of nitrogen that are readily available for biological use (known collectively as 'fixed' nitrogen) fuel the global phytoplankton productivity that exports carbon to the deep ocean. Accordingly, variation in the oceanic fixed nitrogen reservoir has been proposed as a cause of glacial-interglacial changes in atmospheric carbon dioxide concentration. Marine nitrogen fixation, which produces most of the ocean's fixed nitrogen, is thought to be affected by multiple factors, including ocean temperature and the availability of iron and phosphorus. Here we reconstruct changes in North Atlantic nitrogen fixation over the past 160,000 years from the shell-bound nitrogen isotope ratio ((15)N/(14)N) of planktonic foraminifera in Caribbean Sea sediments. The observed changes cannot be explained by reconstructed changes in temperature, the supply of (iron-bearing) dust or water column denitrification. We identify a strong, roughly 23,000-year cycle in nitrogen fixation and suggest that it is a response to orbitally driven changes in equatorial Atlantic upwelling, which imports 'excess' phosphorus (phosphorus in stoichiometric excess of fixed nitrogen) into the tropical North Atlantic surface. In addition, we find that nitrogen fixation was reduced during glacial stages 6 and 4, when North Atlantic Deep Water had shoaled to become glacial North Atlantic intermediate water, which isolated the Atlantic thermocline from excess phosphorus-rich mid-depth waters that today enter from the Southern Ocean. Although modern studies have yielded diverse views of the controls on nitrogen fixation, our palaeobiogeochemical data suggest that excess phosphorus is the master variable in the North Atlantic Ocean and indicate that the variations in its supply over the most recent glacial cycle were dominated by the response of regional ocean circulation to the orbital cycles.

  18. Nature's process for nitrogen fixation caught in action

    OpenAIRE

    Trulove, Susan

    2006-01-01

    Nitrogen gas is converted to ammonia fertilizer by a chemical process that involves high temperature and high pressure. Nature does the same thing at ambient temperature and pressure. The process, called nitrogen fixation, is essential to life as it provides nutrients to plant life.

  19. Variability for Biological Nitrogen Fixation Capacity in Beans

    Science.gov (United States)

    As legumes, common beans have the capacity to form a symbiotic relationship with soil bacteria called rhizobia and fix nitrogen from the atmosphere. Common beans however are considered to be poor nitrogen fixers as compared to other legumes. Identification of genetic variability for N fixation capac...

  20. The importance of regulation of nitrogen fixation

    Science.gov (United States)

    Menge, D. N.

    2012-12-01

    I am not a proponent of including more detail in models simply because it makes them more realistic. More complexity increases the difficulty of model interpretation, so it only makes sense to include complexity if its benefit exceeds its costs. Biological nitrogen (N) fixation (BNF) is one process for which I feel the benefits of including greater complexity far outweigh the costs. I don't think that just because I work on BNF; I work on BNF because I think that. BNF, a microbial process carried out by free-living and symbiotic microbes, is the dominant N input to many ecosystems, the primary mechanism by which N deficiency can feed back to N inputs, and a main mechanism by which N surplus can develop. The dynamics of BNF, therefore, have huge implications for the rate of carbon uptake and the extent of CO2 fertilization, as well as N export to waterways and N2O emissions to the atmosphere. Unfortunately, there are serious deficiencies in our understanding of BNF. One main deficiency in our understanding is the extent to which various symbiotic N fixing organisms respond to imbalanced nutrition. Theory suggests that these responses, which I will call "strategies," have fundamental consequences for N fixer niches and ecosystem-level N and C cycling. Organisms that fix N regardless of whether they need it, a strategy that I will call "obligate," occupy post-disturbance niches and rapidly lead to N surplus. On the contrary, organisms that only fix as much N as they need, a "facultative" strategy, can occupy a wider range of successional niches, do not produce surplus N, and respond more rapidly to increased atmospheric CO2. In this talk I will show new results showing that consideration of these strategies could on its own explain the latitudinal distribution of symbiotic N fixing trees in North America. Specifically, the transition in N-fixing tree abundance from ~10% of basal area south of 35° latitude to ~1% of basal area north of 35° latitude that we observe

  1. Interspecies Transfer and Regulation of Pseudomonas stutzeri A1501 Nitrogen Fixation Island in Escherichia coli.

    Science.gov (United States)

    Han, Yunlei; Lu, Na; Chen, Qinghua; Zhan, Yuhua; Liu, Wei; Lu, Wei; Zhu, Baoli; Lin, Min; Yang, Zhirong; Yan, Yongliang

    2015-08-01

    Until now, considerable effort has been made to engineer novel nitrogen-fixing organisms through the transfer of nif genes from various diazotrophs to non-nitrogen fixers; however, regulatory coupling of the heterologous nif genes with the regulatory system of the new host is still not well understood. In this work, a 49 kb nitrogen fixation island from P. stutzeri A1501 was transferred into E. coli using a novel and efficient transformation strategy, and a series of recombinant nitrogen-fixing E. coli strains were obtained. We found that the nitrogenase activity of the recombinant E. coli strain EN-01, similar to the parent strain P. stutzeri A1501, was dependent on external ammonia concentration, oxygen tension, and temperature. We further found that there existed a regulatory coupling between the E. coli general nitrogen regulatory system and the heterologous P. stutzeri nif island in the recombinant E. coli strain. We also provided evidence that the E. coli general nitrogen regulator GlnG protein was involved in the activation of the nif-specific regulator NifA via a direct interaction with the NifA promoter. To the best of our knowledge, this work plays a groundbreaking role in increasing understanding of the regulatory coupling of the heterologous nitrogen fixation system with the regulatory system of the recipient host. Furthermore, it will shed light on the structure and functional integrity of the nif island and will be useful for the construction of novel and more robust nitrogen-fixing organisms through biosynthetic engineering.

  2. Low Carbon Costs of Nitrogen Fixation in Tropical Dry Forests

    Science.gov (United States)

    Gei, M. G.; Powers, J. S.

    2015-12-01

    Legume tree species with the ability to fix nitrogen (N) are highly diverse and widespread across tropical forests but in particular in the dry tropics. Their ecological success in lower latitudes has been called a "paradox": soil N in the tropics is thought to be high, while acquiring N through fixation incurs high energetic costs. However, the long held assumptions that N fixation is limited by photosynthate and that N fixation penalizes plant productivity have rarely been tested, particularly in legume tree species. We show results from three different experiments where we grew eleven species of tropical dry forest legumes. We quantified plant biomass and N fixation using nodulation and the 15N natural isotope abundance (Ndfa or nitrogen derived from fixation). These data show little evidence for costs of N fixation in seedlings grown under different soil fertility, light regimes, and with different microbial communities. Seedling productivity did not incur major costs because of N fixation: indeed, the average slope between Ndfa and biomass was positive (range in slopes: -0.03 to 0.3). Moreover, foliar N, which varied among species, was tightly constrained and not correlated with Ndfa. This finding implies that legume species have a target N that does not change depending on N acquisition strategies. The process of N fixation in tropical legumes may be more carbon efficient than previously thought. This view is more consistent with the hyperabundance of members of this family in tropical ecosystems.

  3. Potential for nitrogen fixation in fungus-growing termite symbioses

    Directory of Open Access Journals (Sweden)

    Panagiotis Sapountzis

    2016-12-01

    Full Text Available Termites host a gut microbiota of diverse and essential symbionts that enable specialization on dead plant material; an abundant, but nutritionally imbalanced food source. To supplement the severe shortage of dietary nitrogen (N, some termite species make use of diazotrophic bacteria to fix atmospheric nitrogen (N2. Fungus-growing termites (subfamily Macrotermitinae host a fungal exosymbiont (genus Termitomyces that provides digestive services and the main food source for the termites. This has been thought to obviate the need for N2-fixation by bacterial symbionts. Here we challenge this notion by performing acetylene reduction assays of live colony material to show that N2 fixation is present in two major genera (Macrotermes and Odontotermes of fungus-growing termites. We compare and discuss fixation rates in relation to those obtained from other termites, and suggest avenues of research that may lead to a better understanding of N2 fixation in fungus-growing and other termites.

  4. Regulation of Development and Nitrogen Fixation in Anabaena

    Energy Technology Data Exchange (ETDEWEB)

    James W. Golden

    2008-10-17

    The regulation of development and cellular differentiation is important for all multicellular organisms. The nitrogen-fixing filamentous cyanobacterium Anabaena (also Nostoc) sp. PCC 7120 (hereafter Anabaena) provides a model of multicellular microbial development and pattern formation. Anabaena reduces N2 to ammonia in specialized terminally differentiated cells called heterocysts. A one-dimensional developmental pattern of single heterocysts regularly spaced along filaments of photosynthetic vegetative cells is established to form a multicellular organism composed of these two interdependent cell types. This multicellular growth pattern, the distinct phylogeny of cyanobacteria, and the suspected antiquity of heterocyst development make this an important model system. Our long-term goal is to understand the regulatory network required for heterocyst development and nitrogen fixation. This project is focused on two key aspects of heterocyst regulation: one, the mechanism by which HetR controls the initiation of differentiation, and two, the cis and trans acting factors required for expression of the nitrogen-fixation (nif) genes. HetR is thought to be a central regulator of heterocyst development but the partners and mechanisms involved in this regulation are unknown. Our recent results indicate that PatS and other signals that regulate heterocyst pattern cannot interact, directly or indirectly, with a R223W mutant of HetR. We plan to use biochemical and genetic approaches to identify proteins that interact with the HetR protein, which will help reveal the mechanisms underlying its regulation of development. Our second goal is to determine how the nif genes are expressed. It is important to understand the mechanisms controlling nif genes since they represent the culmination of the differentiation process and the essence of heterocyst function. The Anabaena genome lacks the genes required for expression of nif genes present in other organisms such as rpoN (sigma 54

  5. Nitrogen fixation, denitrification, and ecosystem nitrogen pools in relation to vegetation development in the Subarctic

    DEFF Research Database (Denmark)

    Sørensen, Pernille Lærkedal; Jonasson, Sven Evert; Michelsen, Anders

    2006-01-01

    measurements of temperature, light, and soil moisture. Nitrogen fixation rate was high with seasonal input estimated at 1.1 g N m2 on frostheaved sorted circles, which was higher than the total plant N content and exceeded estimated annual plant N uptake several-fold but was lower than the microbial N content......Nitrogen (N) fixation, denitrification, and ecosystem pools of nitrogen were measured in three subarctic ecosystem types differing in soil frost-heaving activity and vegetation cover. N2-fixation was measured by the acetylene reduction assay and converted to absolute N ecosystem input by estimates...... of conversion factors between acetylene reduction and 15N incorporation. One aim was to relate nitrogen fluxes and nitrogen pools to the mosaic of ecosystem types of different stability common in areas of soil frost movements. A second aim was to identify abiotic controls on N2-fixation by simultaneous...

  6. Microbial community shifts influence patterns in tropical forest nitrogen fixation.

    Science.gov (United States)

    Reed, Sasha C; Townsend, Alan R; Cleveland, Cory C; Nemergut, Diana R

    2010-10-01

    The role of biodiversity in ecosystem function receives substantial attention, yet despite the diversity and functional relevance of microorganisms, relationships between microbial community structure and ecosystem processes remain largely unknown. We used tropical rain forest fertilization plots to directly compare the relative abundance, composition and diversity of free-living nitrogen (N)-fixer communities to in situ leaf litter N fixation rates. N fixation rates varied greatly within the landscape, and 'hotspots' of high N fixation activity were observed in both control and phosphorus (P)-fertilized plots. Compared with zones of average activity, the N fixation 'hotspots' in unfertilized plots were characterized by marked differences in N-fixer community composition and had substantially higher overall diversity. P additions increased the efficiency of N-fixer communities, resulting in elevated rates of fixation per nifH gene. Furthermore, P fertilization increased N fixation rates and N-fixer abundance, eliminated a highly novel group of N-fixers, and increased N-fixer diversity. Yet the relationships between diversity and function were not simple, and coupling rate measurements to indicators of community structure revealed a biological dynamism not apparent from process measurements alone. Taken together, these data suggest that the rain forest litter layer maintains high N fixation rates and unique N-fixing organisms and that, as observed in plant community ecology, structural shifts in N-fixing communities may partially explain significant differences in system-scale N fixation rates.

  7. Potential for nitrogen fixation in fungus-growing termite symbiosis

    DEFF Research Database (Denmark)

    Sapountzis, Panagiotis; de Verges, Jane; Rousk, Kathrin

    2016-01-01

    Termites host a gut microbiota of diverse and essential symbionts that enable specialization on dead plant material; an abundant, but nutritionally imbalanced food source. To supplement the severe shortage of dietary nitrogen (N), some termite species make use of diazotrophic bacteria to fix...... atmospheric nitrogen (N2). Fungus-growing termites (subfamily Macrotermitinae) host a fungal exosymbiont (genus Termitomyces) that provides digestive services and the main food source for the termites. This has been thought to obviate the need for N2-fixation by bacterial symbionts. Here, we challenge...... this notion by performing acetylene reduction assays of live colony material to show that N2 fixation is present in two major genera (Macrotermes and Odontotermes) of fungus-growing termites. We compare and discuss fixation rates in relation to those obtained from other termites, and suggest avenues...

  8. Estimates of biological nitrogen fixation by Pterocarpus lucens in a ...

    African Journals Online (AJOL)

    TonukariJ

    2002-11-15

    Nov 15, 2002 ... spectrometer (EA-IRMS, PDZ Europe LTD, CW1 6ZA,. UK). Results ... Plant leaf biomass (P) was assessed from diameter at breast height ..... nitrogen fixation using the natural abundance method in a plantation of Casuarina ...

  9. Nitrogen fixation and nitrogenase activity of Azotobacter chroococcum

    NARCIS (Netherlands)

    Brotonegoro, S.

    1974-01-01

    The purpose of the present investigation was to study the effect of some chemical, physical and biological factors on growth, efficiency of nitrogen fixation and nitrogenase activity of Azotobacter chroococcum.From biochemical studies with cell-free preparations of various nitrogenfixing microorgani

  10. Evolution of Photosynthesis and Biospheric Oxygenation Contingent Upon Nitrogen Fixation?

    CERN Document Server

    Grula, J W

    2006-01-01

    How photosynthesis by Precambrian cyanobacteria oxygenated Earth's biosphere remains incompletely understood. Here it is argued that the oxic transition, which took place between approximately 2.3 and 0.5 Gyr ago, required a great proliferation of cyanobacteria, and this in turn depended on their ability to fix nitrogen via the nitrogenase enzyme system. However, the ability to fix nitrogen was not a panacea, and the rate of biospheric oxygenation may still have been affected by nitrogen constraints on cyanobacterial expansion. Evidence is presented for why cyanobacteria probably have a great need for fixed nitrogen than other prokaryotes, underscoring the importance of their ability to fix nitrogen. The connection between nitrogen fixation and the evolution of photosynthesis is demonstrated by the similarities between nitrogenase and enzymes critical for the biosynthesis of (bacterio)chlorophyll. It is hypothesized that biospheric oxygenation would not have occurred if the emergence of cyanobacteria had not ...

  11. In vitro activity of NifL, a signal transduction protein for biological nitrogen fixation.

    OpenAIRE

    Lee, H S; Narberhaus, F; Kustu, S

    1993-01-01

    In the free-living diazotroph Klebsiella pneumoniae, the NifA protein is required for transcription of all nif (nitrogen fixation) operons except the regulatory nifLA operon itself. NifA activates transcription of nif operons by the alternative holoenzyme form of RNA polymerase, sigma 54 holoenzyme. In vivo, NifL is known to antagonize the action of NifA in the presence of molecular oxygen or combined nitrogen. We now demonstrate inhibition by NifL in vitro in both a coupled transcription-tra...

  12. "Cold" Fixation: Reconciliation of Nitrogen Fixation Rates and Diazotroph Assemblages in the Arctic Ocean

    Science.gov (United States)

    Fong, A. A.; Waite, A.; Rost, B.; Richter, K. U.

    2016-02-01

    Measurements of biological nitrogen fixation are typically conducted in oligotrophic subtropical and tropical marine environments where concentrations of fixed inorganic nitrogen are low. To date, only a handful of nitrogen fixation studies have been conducted in high latitude marine environments, but further investigation is needed to resolve the distribution of cold ocean diazotrophic assemblages. Nitrogen fixation rates and nifH gene distributions were measured at seven stations from 5°E to 20°E, north of 81°N in the Arctic Ocean at the onset of summer 2015. Discrete water samples in ice-covered regions were collected from the sea surface to 200 m for 15N2-tracer additions and targeted nifH gene and transcript analyses. Previous work suggests that heterotrophic bacteria dominate diazotrophic communities in the Arctic Ocean. Therefore, additional nifH gene surveys of sinking particles were conducted to test for enrichment on organic matter-rich microenvironments. Together, these measurements aim to reconcile diazotrophic activity with microbial community composition, further elucidating how nitrogen fixers could impact current concepts in polar carbon and nutrient cycling.

  13. Ecosystem feedbacks and nitrogen fixation in boreal forests.

    Science.gov (United States)

    DeLuca, Thomas H; Zackrisson, Olle; Gundale, Michael J; Nilsson, Marie-Charlotte

    2008-05-30

    Biological feedback mechanisms regulate fundamental ecosystem processes and potentially regulate ecosystem productivity. To date, no studies have documented the down-regulation of terrestrial nitrogen (N) fixation via an ecosystem-level feedback mechanism. Herein, we demonstrate such a feedback in boreal forests. Rapid cycling of N in early secondary succession forests yielded greater throughfall N deposition, which in turn decreased N fixation by cyanobacterial associates in feather moss carpets that reside on the forest floor. The forest canopy exerts a tight control on biotic N input at a period of high productivity.

  14. Nitrogen fixation (acetylene reduction) by epiphytes of freshwater macrophytes.

    Science.gov (United States)

    Finke, L R; Seeley, H W

    1978-07-01

    The involvement of epiphytic microorganisms in nitrogen fixation was investigated in a shallow freshwater pond near Ithaca, N.Y. The acetylene reduction technique was used to follow diel and seasonal cycles of nitrogen fixation by epiphytes of Myriophyllum spicatum. Acetylene-reducing activity was maximal between noon and 6 p.m., but substantial levels of activity relative to daytime rates continued through the night. Experiments with the seasonal course of activity showed a gradual decline during the autumn months and no activity in January or February. Activity commenced in May, with an abrupt increase to levels between 0.45 and 0.95 nmol of ethylene formed per mg (dry weight) of plant per h. Through most of the summer months, mean rates of acetylene reduction remained between 0.15 and 0.60 nmol/mg (dry weight) per h. It was calculated from diel and seasonal cycles that, in the pond areas studied, epiphytes were capable of adding from 7.5 to 12.5 mug of N per mg of plant per year to the pond. This amount is significant relative to the total amount of nitrogen incorporated into the plant. Blue-green algae (cyanobacteria), particularly Gloeotrichia, appeared to bear prime responsibility for nitrogen fixation, but photosynthetic bacteria of the genus Rhodopseudomonas were isolated from M. spicatum and shown to support high rates of acetylene reduction.

  15. Biological nitrogen fixation in non-legume plants.

    Science.gov (United States)

    Santi, Carole; Bogusz, Didier; Franche, Claudine

    2013-05-01

    Nitrogen is an essential nutrient in plant growth. The ability of a plant to supply all or part of its requirements from biological nitrogen fixation (BNF) thanks to interactions with endosymbiotic, associative and endophytic symbionts, confers a great competitive advantage over non-nitrogen-fixing plants. Because BNF in legumes is well documented, this review focuses on BNF in non-legume plants. Despite the phylogenic and ecological diversity among diazotrophic bacteria and their hosts, tightly regulated communication is always necessary between the microorganisms and the host plant to achieve a successful interaction. Ongoing research efforts to improve knowledge of the molecular mechanisms underlying these original relationships and some common strategies leading to a successful relationship between the nitrogen-fixing microorganisms and their hosts are presented. Understanding the molecular mechanism of BNF outside the legume-rhizobium symbiosis could have important agronomic implications and enable the use of N-fertilizers to be reduced or even avoided. Indeed, in the short term, improved understanding could lead to more sustainable exploitation of the biodiversity of nitrogen-fixing organisms and, in the longer term, to the transfer of endosymbiotic nitrogen-fixation capacities to major non-legume crops.

  16. Biological nitrogen fixation in non-legume plants

    Science.gov (United States)

    Santi, Carole; Bogusz, Didier; Franche, Claudine

    2013-01-01

    Background Nitrogen is an essential nutrient in plant growth. The ability of a plant to supply all or part of its requirements from biological nitrogen fixation (BNF) thanks to interactions with endosymbiotic, associative and endophytic symbionts, confers a great competitive advantage over non-nitrogen-fixing plants. Scope Because BNF in legumes is well documented, this review focuses on BNF in non-legume plants. Despite the phylogenic and ecological diversity among diazotrophic bacteria and their hosts, tightly regulated communication is always necessary between the microorganisms and the host plant to achieve a successful interaction. Ongoing research efforts to improve knowledge of the molecular mechanisms underlying these original relationships and some common strategies leading to a successful relationship between the nitrogen-fixing microorganisms and their hosts are presented. Conclusions Understanding the molecular mechanism of BNF outside the legume–rhizobium symbiosis could have important agronomic implications and enable the use of N-fertilizers to be reduced or even avoided. Indeed, in the short term, improved understanding could lead to more sustainable exploitation of the biodiversity of nitrogen-fixing organisms and, in the longer term, to the transfer of endosymbiotic nitrogen-fixation capacities to major non-legume crops. PMID:23478942

  17. Genetic regulation of nitrogen fixation in Rhizobium meliloti.

    Science.gov (United States)

    Cebolla, A; Palomares, A J

    1994-12-01

    The soil bacterium Rhizobium meliloti fixes dinitrogen when associated with root nodules formed on its plant host, Medicago sativa (alfalfa). The expression of most of the known genes required for nitrogen fixation (nif and fix genes), including the structural genes for nitrogenase, is induced in response to a decrease in oxygen concentration. Induction of nif and fix gene expression by low oxygen is physiologically relevant because a low-oxygen environment is maintained in root nodules to prevent inactivation of the highly oxygen-sensitive nitrogenase enzyme. The genes responsible for sensing and transducing the low oxygen signal, fixL and fixJ, encode proteins (FixL and FixJ, respectively) that are homologous to a large family of bacterial proteins involved in signal transduction, the two component regulatory system proteins. The two components consist of a sensor protein, to which FixL is homologous, and a response regulator protein, to which FixJ is homologous. The sensor protein respond to an activating signal by autophosphorylating and then transferring the phosphate to its cognate response regulator protein. The phosphorylated response regulator, which is often a transcriptional activator, is then able to activate its target. A cascade model of nif and fix gene regulation in R. meliloti has been proposed, whereby FixL acts as an oxygen sensor as the initial event in the cascade and transmits this information to FixJ. FixJ, which possesses a putative helix-turn-helix DNA-binding motif, then activates transcription of the nifA and fixK genes. The nifA and fixK gene products, are transcriptional activators of at least 14 other nif and fix genes.

  18. Global transcriptional analysis of nitrogen fixation and ammonium repression in root-associated Pseudomonas stutzeri A1501

    Directory of Open Access Journals (Sweden)

    Lu Wei

    2010-01-01

    Full Text Available Abstract Background Biological nitrogen fixation is highly controlled at the transcriptional level by regulatory networks that respond to the availability of fixed nitrogen. In many diazotrophs, addition of excess ammonium in the growth medium results in immediate repression of nif gene transcription. Although the regulatory cascades that control the transcription of the nif genes in proteobacteria have been well investigated, there are limited data on the kinetics of ammonium-dependent repression of nitrogen fixation. Results Here we report a global transcriptional profiling analysis of nitrogen fixation and ammonium repression in Pseudomonas stutzeri A1501, a root-associated and nitrogen-fixing bacterium. A total of 166 genes, including those coding for the global nitrogen regulation (Ntr and Nif-specific regulatory proteins, were upregulated under nitrogen fixation conditions but rapidly downregulated as early as 10 min after ammonium shock. Among these nitrogen fixation-inducible genes, 95 have orthologs in each of Azoarcus sp. BH72 and Azotobacter vinelandii AvoP. In particular, a 49-kb expression island containing nif and other associated genes was markedly downregulated by ammonium shock. Further functional characterization of pnfA, a new NifA-σ54-dependent gene chromosomally linked to nifHDK, is reported. This gene encodes a protein product with an amino acid sequence similar to that of five hypothetical proteins found only in diazotrophic strains. No noticeable differences in the transcription of nifHDK were detected between the wild type strain and pnfA mutant. However, the mutant strain exhibited a significant decrease in nitrogenase activity under microaerobic conditions and lost its ability to use nitrate as a terminal electron acceptor for the support of nitrogen fixation under anaerobic conditions. Conclusions Based on our results, we conclude that transcriptional regulation of nif gene expression in A1501 is mediated by the nif

  19. Nitrogen fixation in eukaryotes – New models for symbiosis

    Directory of Open Access Journals (Sweden)

    Lockhart Peter

    2007-04-01

    Full Text Available Abstract Background Nitrogen, a component of many bio-molecules, is essential for growth and development of all organisms. Most nitrogen exists in the atmosphere, and utilisation of this source is important as a means of avoiding nitrogen starvation. However, the ability to fix atmospheric nitrogen via the nitrogenase enzyme complex is restricted to some bacteria. Eukaryotic organisms are only able to obtain fixed nitrogen through their symbiotic interactions with nitrogen-fixing prokaryotes. These symbioses involve a variety of host organisms, including animals, plants, fungi and protists. Results We have compared the morphological, physiological and molecular characteristics of nitrogen fixing symbiotic associations of bacteria and their diverse hosts. Special features of the interaction, e.g. vertical transmission of symbionts, grade of dependency of partners and physiological modifications have been considered in terms of extent of co-evolution and adaptation. Our findings are that, despite many adaptations enabling a beneficial partnership, most symbioses for molecular nitrogen fixation involve facultative interactions. However, some interactions, among them endosymbioses between cyanobacteria and diatoms, show characteristics that reveal a more obligate status of co-evolution. Conclusion Our review emphasises that molecular nitrogen fixation, a driving force for interactions and co-evolution of different species, is a widespread phenomenon involving many different organisms and ecosystems. The diverse grades of symbioses, ranging from loose associations to highly specific intracellular interactions, might themselves reflect the range of potential evolutionary fates for symbiotic partnerships. These include the extreme evolutionary modifications and adaptations that have accompanied the formation of organelles in eukaryotic cells: plastids and mitochondria. However, age and extensive adaptation of plastids and mitochondria complicate the

  20. Identification and characterization of the Rhizobium meliloti ntrC gene: R. meliloti has separate regulatory pathways for activation of nitrogen fixation genes in free-living and symbiotic cells.

    OpenAIRE

    Szeto, W W; Nixon, B T; Ronson, C W; Ausubel, F M

    1987-01-01

    We show here that Rhizobium meliloti, the nitrogen-fixing endosymbiont of alfalfa (Medicago sativa), has a regulatory gene that is structurally homologous to previously characterized ntrC genes in enteric bacteria. DNA sequence analysis showed that R. meliloti ntrC is homologous to previously sequenced ntrC genes from Klebsiella pneumoniae and Bradyrhizobium sp. (Parasponia) and that an ntrB-like gene is situated directly upstream from R. meliloti ntrC. Similar to its counterparts in K. pneum...

  1. Solar Water Splitting and Nitrogen Fixation with Layered Bismuth Oxyhalides.

    Science.gov (United States)

    Li, Jie; Li, Hao; Zhan, Guangming; Zhang, Lizhi

    2017-01-17

    Hydrogen and ammonia are the chemical molecules that are vital to Earth's energy, environmental, and biological processes. Hydrogen with renewable, carbon-free, and high combustion-enthalpy hallmarks lays the foundation of next-generation energy source, while ammonia furnishes the building blocks of fertilizers and proteins to sustain the lives of plants and organisms. Such merits fascinate worldwide scientists in developing viable strategies to produce hydrogen and ammonia. Currently, at the forefronts of hydrogen and ammonia syntheses are solar water splitting and nitrogen fixation, because they go beyond the high temperature and pressure requirements of methane stream reforming and Haber-Bosch reaction, respectively, as the commercialized hydrogen and ammonia production routes, and inherit the natural photosynthesis virtues that are green and sustainable and operate at room temperature and atmospheric pressure. The key to propelling such photochemical reactions lies in searching photocatalysts that enable water splitting into hydrogen and nitrogen fixation to make ammonia efficiently. Although the past 40 years have witnessed significant breakthroughs using the most widely studied TiO2, SrTiO3, (Ga1-xZnx)(N1-xOx), CdS, and g-C3N4 for solar chemical synthesis, two crucial yet still unsolved issues challenge their further progress toward robust solar water splitting and nitrogen fixation, including the inefficient steering of electron transportation from the bulk to the surface and the difficulty of activating the N≡N triple bond of N2. This Account details our endeavors that leverage layered bismuth oxyhalides as photocatalysts for efficient solar water splitting and nitrogen fixation, with a focus on addressing the above two problems. We first demonstrate that the layered structures of bismuth oxyhalides can stimulate an internal electric field (IEF) that is capable of efficiently separating electrons and holes after their formation and of precisely channeling

  2. Screening Prosopis (mesquite) germplasm for biomass production and nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    Felker, P.; Cannell, G.H.; Clark, P.R.; Osborn, J.F.

    1980-01-01

    The nitrogen-fixing trees of the genus Prosopis (mesquite or algaroba) are well adapted to the semi-arid and often saline regions of the world. These trees may produce firewood or pods for livestock food, they may stabilize sand dunes and they may enrich the soil by production of leaf litter supported by nitrogen fixation. A collection of nearly 500 Prosopis accessions representing North and South American and African germplasm has been established. Seventy of these accessions representing 14 taxa are being grown under field conditions where a 30-fold range in biomass productivity among accessions has been estimated. In a greehouse experiment, 13 Prosopis taxa grew on nitrogen-free medium nodulated, and had a 10-fold difference in nitrogen fixation (acetylene reduction). When Prosopis is propagated by seed the resulting trees are extremely variable in growth rate and presence or absence of thorns. Propagation of 6 Prosopis taxa by stem cuttings has been achieved with low success (1 to 10%) in field-grown plants and with higher success (50 to 100%) with young actively growing greenhouse plants.

  3. Fixating on metals: New insights into the role of metals in nodulation and symbiotic nitrogen fixation

    Directory of Open Access Journals (Sweden)

    Manuel eGonzález-Guerrero

    2014-02-01

    Full Text Available Symbiotic nitrogen fixation is one of the most promising and immediate alternatives to the overuse of polluting nitrogen fertilizers for improving plant nutrition. At the core of this process are a number of metalloproteins that catalyze and provide energy for the conversion of atmospheric nitrogen to ammonia, eliminate free radicals produced by this process, and create the microaerobic conditions required by these reactions. In legumes, metal cofactors are provided to endosymbiotic rhizobia within root nodule cortical cells. However, low metal bioavailability is prevalent in most soils types, resulting in widespread plant metal deficiency and decreased nitrogen fixation capabilities. As a result, renewed efforts have been undertaken to identify the mechanisms governing metal delivery from soil to the rhizobia, and to determine how metals are used in the nodule and how they are recycled once the nodule is no longer functional. This effort is being aided by improved legume molecular biology tools (genome projects, mutant collections, and transformation methods, in addition to state-of-the-art metal visualization systems.

  4. Factors influencing dark nitrogen fixation in a blue-green alga.

    Science.gov (United States)

    Fay, P

    1976-03-01

    Nitrogen-fixing activity declines first rapidly and then more gradually when Anabaenopsis circularis is transferred from light into dark conditions. The rate and duration of dark acetylene reduction (nitrogen fixation) depend upon conditions prevailing during the preceding light period. Factors (such as light intensity, CO2 concentration, and supply of glucose), which in the light affect photosynthesis and the accumulation of reserve carbon, have a profound effect on dark nitrogen fixation. Glucose greatly promotes nitrogen fixation in the light and supports prolonged nitrogenase activity in the dark. The results suggest that heterotrophic nitrogen fixation by blue-green algae in the field may be important both under light and dark conditions.

  5. Local versus basin-scale limitation of marine nitrogen fixation.

    Science.gov (United States)

    Weber, Thomas; Deutsch, Curtis

    2014-06-17

    Nitrogen (N) fixation by diazotrophic plankton is the primary source of this crucial nutrient to the ocean, but the factors limiting its rate and distribution are controversial. According to one view, the ecological niche of diazotrophs is primarily controlled by the ocean through internally generated N deficits that suppress the growth of their competitors. A second view posits an overriding limit from the atmosphere, which restricts diazotrophs to regions where dust deposition satisfies their high iron (Fe) requirement, thus separating N sources from sinks at a global scale. Here we use multiple geochemical signatures of N2 fixation to show that the Fe limitation of diazotrophs is strong enough to modulate the regional distribution of N2 fixation within ocean basins--particularly the Fe-poor Pacific--but not strong enough to influence its partition between basins, which is instead governed by rates of N loss. This scale-dependent limitation of N2 fixation reconciles local observations of Fe stress in diazotroph communities with an inferred spatial coupling of N sources and sinks. Within this regime of intermediate Fe control, the oceanic N reservoir would respond only weakly to enhanced dust fluxes during glacial climates, but strongly to the reduced fluxes hypothesized under anthropogenic climate warming.

  6. Marine oscillatoria (Trichodesmium): explanation for aerobic nitrogen fixation without heterocysts.

    Science.gov (United States)

    Carpenter, E J; Price, C C

    1976-03-26

    Nitrogen fixation in marine Oscillatoria appears to be associated with differentiated cells located in the center of the colony. These central cells exhibit reduced pigmentation relative to peripherally located cells and do not incorporate 14CO2 in photosynthesis. Central cells apparently do not produce O2 which would deactivate nitrogenase. When central cells are exposed to O2 via disruption of the colonies, N2 fixation (acetylene reduction) decreases sharply even though individual trichomes remain intact. Disruption of colonies in the absence of O2 does not cause reduced nitrogenase activity. In the sea, turbulence from wave action apparently separates trichomes allowing O2 to enter thus decreasing nitrogenase activity. These observations explain how Oscillatoria is able to fix N2 without heterocysts in an aerobic environment and why it blooms virtually always occur in calm seas.

  7. The cyanobacterial nitrogen fixation paradox in natural waters

    Science.gov (United States)

    Paerl, Hans

    2017-01-01

    Nitrogen fixation, the enzymatic conversion of atmospheric N (N 2) to ammonia (NH 3), is a microbially mediated process by which “new” N is supplied to N-deficient water bodies. Certain bloom-forming cyanobacterial species are capable of conducting N 2 fixation; hence, they are able to circumvent N limitation in these waters. However, this anaerobic process is highly sensitive to oxygen, and since cyanobacteria produce oxygen in photosynthesis, they are faced with a paradoxical situation, where one critically important (for supporting growth) biochemical process is inhibited by another. N 2-fixing cyanobacterial taxa have developed an array of biochemical, morphological, and ecological adaptations to minimize the “oxygen problem”; however, none of these allows N 2 fixation to function at a high enough efficiency so that it can supply N needs at the ecosystem scale, where N losses via denitrification, burial, and advection often exceed the inputs of “new” N by N 2 fixation. As a result, most marine and freshwater ecosystems exhibit chronic N limitation of primary production. Under conditions of perpetual N limitation, external inputs of N from human sources (agricultural, urban, and industrial) play a central role in determining ecosystem fertility and, in the case of N overenrichment, excessive primary production or eutrophication. This points to the importance of controlling external N inputs (in addition to traditional phosphorus controls) as a means of ensuring acceptable water quality and safe water supplies. Nitrogen fixation, the enzymatic conversion of atmospheric N 2 to ammonia (NH 3) is a  microbially-mediated process by which “new” nitrogen is supplied to N-deficient water bodies.  Certain bloom-forming cyanobacterial species are capable of conducting N 2 fixation; hence they are able to circumvent nitrogen limitation in these waters. However, this anaerobic process is highly sensitive to oxygen, and since cyanobacteria produce oxygen in

  8. The effects of acid rain on nitrogen fixation in Western Washington coniferous forests

    Science.gov (United States)

    Robert Denison; Bruce Caldwell; Bernard Bormann; Lindell Eldred; Cynthia Swanberg; Steven Anderson

    1976-01-01

    We investigated both the current status of nitrogen fixation in Western Washington forests, and the potential effects of acid rain on this vital process. Even the low concentrations of sulfur dioxide presently found in the Northwest are thought to have an adverse effect on nitrogen fixation by limiting the distribution of the epiphytic nitrogen-fixing lichen, ...

  9. Nitrogen fixation on early Mars and other terrestrial planets: experimental demonstration of abiotic fixation reactions to nitrite and nitrate.

    Science.gov (United States)

    Summers, David P; Khare, Bishun

    2007-04-01

    Understanding the abiotic fixation of nitrogen is critical to understanding planetary evolution and the potential origin of life on terrestrial planets. Nitrogen, an essential biochemical element, is certainly necessary for life as we know it to arise. The loss of atmospheric nitrogen can result in an incapacity to sustain liquid water and impact planetary habitability and hydrological processes that shape the surface. However, our current understanding of how such fixation may occur is almost entirely theoretical. This work experimentally examines the chemistry, in both gas and aqueous phases, that would occur from the formation of NO and CO by the shock heating of a model carbon dioxide/nitrogen atmosphere such as is currently thought to exist on early terrestrial planets. The results show that two pathways exist for the abiotic fixation of nitrogen from the atmosphere into the crust: one via HNO and another via NO(2). Fixation via HNO, which requires liquid water, could represent fixation on a planet with liquid water (and hence would also be a source of nitrogen for the origin of life). The pathway via NO(2) does not require liquid water and shows that fixation could occur even when liquid water has been lost from a planet's surface (for example, continuing to remove nitrogen through NO(2) reaction with ice, adsorbed water, etc.).

  10. Glutamine synthetase stabilizes the binding of GlnR to nitrogen fixation gene operators.

    Science.gov (United States)

    Fernandes, Gabriela de C; Hauf, Ksenia; Sant'Anna, Fernando H; Forchhammer, Karl; Passaglia, Luciane M P

    2017-03-01

    Biological nitrogen fixation (BNF) is a high energy demanding process carried out by diazotrophic microorganisms that supply combined nitrogen to the biosphere. The genes related to BNF are strictly regulated, but these mechanisms are poorly understood in gram-positive bacteria. The transcription factor GlnR was proposed to regulate nitrogen fixation-related genes based on Paenibacillus comparative genomics. In order to validate this proposal, we investigated BNF regulatory sequences in Paenibacillus riograndensis SBR5(T) genome. We identified GlnR-binding sites flanking σ(A) -binding sites upstream from BNF-related genes. GlnR binding to these sites was demonstrated by surface plasmon resonance spectroscopy. GlnR-DNA affinity is greatly enhanced when GlnR is in complex with feedback-inhibited (glutamine-occupied) glutamine synthetase (GS). GlnR-GS complex formation is also modulated by ATP and AMP. Thereby, gene repression exerted by the GlnR-GS complex is coupled with nitrogen (glutamine levels) and energetic status (ATP and AMP). Finally, we propose a DNA-looping model based on multiple operator sites that represents a strong and strict regulation for these genes. © 2017 Federation of European Biochemical Societies.

  11. Nitrogen cycling in summer active perennial grass systems in South Australia: Non-symbiotic nitrogen fixation

    NARCIS (Netherlands)

    Gupta, V.V.S.R.; Kroker, S.J.; Hicks, M.; Davoren, W.; Descheemaeker, K.K.E.; Llewellyn, R.

    2014-01-01

    Non-symbiotic nitrogen (N2) fixation by diazotrophic bacteria is a potential source for biological N inputs in non-leguminous crops and pastures. Perennial grasses generally add larger quantities of above- and belowground plant residues to soil, and so can support higher levels of soil biological

  12. Redox regulation of differentiation in symbiotic nitrogen fixation.

    Science.gov (United States)

    Ribeiro, Carolina Werner; Alloing, Geneviève; Mandon, Karine; Frendo, Pierre

    2015-08-01

    Nitrogen-fixing symbiosis between Rhizobium bacteria and legumes leads to the formation of a new organ, the root nodule. The development of the nodule requires the differentiation of plant root cells to welcome the endosymbiotic bacterial partner. This development includes the formation of an efficient vascular tissue which allows metabolic exchanges between the root and the nodule, the formation of a barrier to oxygen diffusion necessary for the bacterial nitrogenase activity and the enlargement of cells in the infection zone to support the large bacterial population. Inside the plant cell, the bacteria differentiate into bacteroids which are able to reduce atmospheric nitrogen to ammonia needed for plant growth in exchange for carbon sources. Nodule functioning requires a tight regulation of the development of plant cells and bacteria. Nodule functioning requires a tight regulation of the development of plant cells and bacteria. The importance of redox control in nodule development and N-fixation is discussed in this review. The involvement of reactive oxygen and nitrogen species and the importance of the antioxidant defense are analyzed. Plant differentiation and bacterial differentiation are controlled by reactive oxygen and nitrogen species, enzymes involved in the antioxidant defense and antioxidant compounds. The establishment and functioning of nitrogen-fixing symbiosis involve a redox control important for both the plant-bacteria crosstalk and the consideration of environmental parameters. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. The contribution of nitrogen fixation by cyanobacteria to particulate organic nitrogen in a constructed wetland

    Science.gov (United States)

    Zhang, X.; PAN, X.; MA, M.; Li, W.; Cui, L.

    2016-12-01

    N-fixing cyanobacteria can create extra nitrogen for aquatic ecosystems. Previous studies reported inconsistence patterns of the contribution of biological nitrogen fixation to the nitrogen pools in aquatic ecosystems. However, there were few studies concerning the effect of fixed nitrogen by cyanobacteria on the nitrogen removal efficiency in constructed wetlands. This study was performed at the Beijing Wildlife Rescue and Rehabilitation Centre, where a constructed lake for the habitation of waterfowls and a constructed wetland for purifying sewage from the lake are located. The composition of phytoplankton communities, the concentrations of particulate organic nitrogen (PON) and nitrogen fixation rates (Rn) in the constructed lake and the constructed wetland were compared throughout a growing season. We counted the densities of genus Anabaena and Microcystis cells, and explored their relationships with PON and Rn in water. The proportions of PON from various sources, including the ambient N2, waterfowl faeces, wetland sediments and the nitrates, were calculated by the natural abundance of 15N with the IsoSource software. The result revealed that the constructed lake was alternately dominated by Anabaena and Microcystis throughout the growing season, and the Rn was positively correlated with PON and the cell density of Anabaena (P constructed lake and wetland respectively during the growing season. The proportions of PON from N2 increased to more than 80% when the Rn reached the highest in September. The result demonstrated that the nitrogen fixed by Anabaena might be utilized by non-N-fixing Microcystis which formed water blooms in summer. Therefore, the decline of the removal efficiency of PON in the constructed wetland in summer might indirectly result from the nitrogen fixation, since the proliferated algal were difficult to sediment in surface flow wetlands.

  14. Variation in moss-associated nitrogen fixation in boreal forest stands.

    Science.gov (United States)

    Markham, John H

    2009-08-01

    Traditionally it has been thought that most boreal forest communities lack a significant input of biologically fixed nitrogen. Recent discoveries of nitrogen fixation by cyanobacteria associated with mosses have resulted in a re-evaluation of this view. While it is recognized that rates of nitrogen fixation in mosses can be highly variable, there is little understanding as to why this occurs. I monitored nitrogen fixation, using acetylene reduction, in wet lowland and dry upland boreal forest communities, in central Canada, over a growing season. At the peak of nitrogen fixation in mid summer, Sphagnum capillifolium had an 11 times higher rate of fixation than Pleurozium schreberi. Variation in canopy openness and precipitation had no effect on rates of fixation over the growing season. In P. schreberi fixation rates did not vary between sites. Temperature had a positive effect on fixation rates in both S. capillifolium and P. schreberi, but the effect was 4 times more pronounced in S. capillifolium. Seasonal rates of nitrogen fixation were estimated at 193 mg N m(-2) for S. capillifolium and 23 mg N m(-2) for P. schreberi. With moderate increases in climate warming, predicted increases in nitrogen fixation in S. capillifolium are sufficient to raise its decomposition rate. Increased temperatures may therefore act synergistically to change boreal systems from a sink to a source of carbon.

  15. New insights into the evolutionary history of biological nitrogen fixation

    Directory of Open Access Journals (Sweden)

    Eric eBoyd

    2013-08-01

    Full Text Available Nitrogenase, which catalyzes the ATP-dependent reduction of dinitrogen (N2 to ammonia (NH3, accounts for roughly half of the bioavailable nitrogen supporting extant life. The fundamental requirement for fixed forms of nitrogen for life on Earth, both at present and in the past, has led to broad and significant interest in the origin and evolution of this fundamental biological process. One key question is whether the limited availability of fixed nitrogen was a factor in life’s origin or whether there were ample sources of fixed nitrogen produced by abiotic processes or delivered through the weathering of bolide impact materials to support this early life. If the latter, the key questions become what were the characteristics of the environment that precipitated the evolution of this oxygen sensitive process, when did this occur, and how was its subsequent evolutionary history impacted by the advent of oxygenic photosynthesis and the rise of oxygen in the Earth’s biosphere. Since the availability of fixed sources of nitrogen capable of supporting early life is difficult to glean from the geologic record, there are limited means to get direct insights into these questions. Indirect insights, however, can be gained by deep phylogenetic studies of nitrogenase structural gene products and additional gene products involved in the biosynthesis of the complex metal-containing prosthetic groups associated with this enzyme complex. Insights gained from such studies, as reviewed herein, challenge traditional models for the evolution of biological nitrogen fixation and provide the basis for the development of new conceptual models that explain the stepwise evolution of this highly complex and life sustaining process.

  16. Symbiotic nitrogen fixation in black locust (Robinia pseudoacacia L.)seedlings from four seed sources

    Institute of Scientific and Technical Information of China (English)

    Alireza Moshki; Norbert P. Lamersdoff

    2011-01-01

    We conducted a greenhouse experiment to investigate the role of seed source in growth and symbiotic nitrogen fixation of black locust (Robinia pseudoacacia L).Seeds from different sources were planted in the same environmental conditions and inoculated with a suspension of mixed Rhizobium.We used the modified 15N isotope dilution method to estimate biological nitrogen fixation of Robinia trees.Different Robinia seed sources differed significantly in terms of tissue dry weight (50.6-80.1 g),total N (1.31-2.16 g) and proportion of nitrogen derived from the atmosphere ( 0-51%).A higher nitrogen fixation rate of Robinia trees was associated with higher dry weight.Moreover,the leaves of Robinia proved to adequately represent the nitrogen fixation capacity of entire plants.Our results confirmed that assessment of seed sources is a useful way to improve the nitrogen fixation capacity and therefore the growth rate of Robinia.

  17. Nitrogen fixation in boreal peatlands: the effects of increased N deposition on N2-fixation

    Science.gov (United States)

    Popma, J. M.; Wieder, R.; Lamers, L.; Vile, M. A.

    2013-12-01

    Boreal peatlands are of great importance to global carbon and nitrogen cycling. While covering only 3-4 % of the terrestrial surface, they account for 25-30 % of the world's soil C and 9-15 % of the world's soil N. In Western Canada atmospheric dry deposition rates are extremely low: approximately 1 kg N ha-1 yr-1. Though these systems have been functioning as net sinks over the past 11,000 years, natural and anthropogenic disturbances might compromise the historical balance of C and N. Biological N2-fixation has recently been shown to represent a very significant input of N into these systems, contributing to 62% of total N in Western Canada. Interactions between N deposition and biological N2-fixation are as yet, unknown, but the impact of elevated deposition of N-compounds from increased industrial expansion of oil sands mining to peatlands, is concerning. Given that nitrogenase, the enzyme responsible for catalyzing N2-fixation, is energetically costly when active, enhanced inputs of atmospheric N deposition could be a major determinant for enzyme activity and rates of biological N input to these bogs. Understanding interactions between N deposition and N2 fixation in boreal peatlands can aid in predicting the consequences of increased N deposition and setting critical loads. We conducted a field-fertilization experiment in a poor fen in Alberta, Canada, to determine the effects of enhanced N deposition on a dominant fen species Sphagnum angustifolium. The experiment consisted of seven N treatments: Control, 0, 5, 10, 15, 20 and 25 kg N ha-1 y1, n=3. N2-fixation was measured during summer 2012 and 2013 using the acetylene reduction assay (ARA). ARA rates were converted to rates of N2-fixation by calibrating ARA with paired 15N2-incubations. In both 2012 and 2013, with increasing N deposition from 0 kg N ha-1 yr-1 to 25 kg N ha-1 yr-1, rates of N2 fixation decreased, with highest rates in the 0 kg N ha-1 yr-1 treatment mosses (54.2 × 1.40; 48.58 × 7.12 kg N ha

  18. Low water column nitrogen fixation in the Mediterranean Sea: basin-wide experimental evidence.

    NARCIS (Netherlands)

    Agawin, N.S.R.; Tovar-Sanchez, A.; Stal, L.J.; Alvarez, M.; Agustí, S.; Duarte, C.M.

    2011-01-01

    The abundance and nitrogen fixation rates of Trichodesmium sp. integrated down to the deep chlorophyll maximum as well as nitrogen fixation rates in size-fractionated discrete surface water samples were measured across the Mediterranean Sea. The abundance of Trichodesmium sp. was generally low (<50

  19. Low water column nitrogen fixation in the Mediterranean Sea: basin-wide experimental evidence

    NARCIS (Netherlands)

    Agawin, N.S.R.; Tovar-Sanchez, A.; Stal, L.J.; Alvarez, M.; Agusti, S.; Duarte, C.M.

    2011-01-01

    The abundance and nitrogen fixation rates of Trichodesmium sp. integrated down to the deep chlorophyll maximum as well as nitrogen fixation rates in size-fractionated discrete surface water samples were measured across the Mediterranean Sea. The abundance of Trichodesmium sp. was generally low (20°C

  20. Effect of butachlor on growth and nitrogen fixation by Anabaena sphaerica.

    Science.gov (United States)

    Suseela, M R

    2001-07-01

    Present study was carried out to examine the effect of Butachlor on growth and nitrogen fixation by Anabaena sphaerica. The increased concentration of the pesticide did not have any adverse effect on the alga. Rather it accelerated the algal contribution in terms of biomass and nitrogen fixation.

  1. Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes

    Directory of Open Access Journals (Sweden)

    Dos Santos Patricia C

    2012-05-01

    Full Text Available Abstract Background The metabolic capacity for nitrogen fixation is known to be present in several prokaryotic species scattered across taxonomic groups. Experimental detection of nitrogen fixation in microbes requires species-specific conditions, making it difficult to obtain a comprehensive census of this trait. The recent and rapid increase in the availability of microbial genome sequences affords novel opportunities to re-examine the occurrence and distribution of nitrogen fixation genes. The current practice for computational prediction of nitrogen fixation is to use the presence of the nifH and/or nifD genes. Results Based on a careful comparison of the repertoire of nitrogen fixation genes in known diazotroph species we propose a new criterion for computational prediction of nitrogen fixation: the presence of a minimum set of six genes coding for structural and biosynthetic components, namely NifHDK and NifENB. Using this criterion, we conducted a comprehensive search in fully sequenced genomes and identified 149 diazotrophic species, including 82 known diazotrophs and 67 species not known to fix nitrogen. The taxonomic distribution of nitrogen fixation in Archaea was limited to the Euryarchaeota phylum; within the Bacteria domain we predict that nitrogen fixation occurs in 13 different phyla. Of these, seven phyla had not hitherto been known to contain species capable of nitrogen fixation. Our analyses also identified protein sequences that are similar to nitrogenase in organisms that do not meet the minimum-gene-set criteria. The existence of nitrogenase-like proteins lacking conserved co-factor ligands in both diazotrophs and non-diazotrophs suggests their potential for performing other, as yet unidentified, metabolic functions. Conclusions Our predictions expand the known phylogenetic diversity of nitrogen fixation, and suggest that this trait may be much more common in nature than it is currently thought. The diverse phylogenetic

  2. Biological Nitrogen Fixation in Two Tropical Forests: Ecosystem-Level Patterns and Effects of Nitrogen Fertilization

    OpenAIRE

    Cusack, Daniela F.; Silver, Whendee; McDowell, William H.

    2009-01-01

    Humid tropical forests are often characterized by large nitrogen (N) pools, and are known to have large potential N losses. Although rarely measured, tropical forests likely maintain considerable biological N fixation (BNF) to balance N losses. We estimated inputs of N via BNF by free-living microbes for two tropical forests in Puerto Rico, and assessed the response to increased N availability using an on-going N fertilization experiment. Nitrogenase activity was measured across forest strata...

  3. Nutrient constraints on terrestrial carbon fixation: The role of nitrogen.

    Science.gov (United States)

    Coskun, Devrim; Britto, Dev T; Kronzucker, Herbert J

    2016-09-20

    Carbon dioxide (CO2) concentrations in the earth's atmosphere are projected to rise from current levels near 400ppm to over 700ppm by the end of the 21st century. Projections over this time frame must take into account the increases in total net primary production (NPP) expected from terrestrial plants, which result from elevated CO2 (eCO2) and have the potential to mitigate the impact of anthropogenic CO2 emissions. However, a growing body of evidence indicates that limitations in soil nutrients, particularly nitrogen (N), the soil nutrient most limiting to plant growth, may greatly constrain future carbon fixation. Here, we review recent studies about the relationships between soil N supply, plant N nutrition, and carbon fixation in higher plants under eCO2, highlighting key discoveries made in the field, particularly from free-air CO2 enrichment (FACE) technology, and relate these findings to physiological and ecological mechanisms. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. The transcriptional activator NrpA is crucial for inducing nitrogen fixation in Methanosarcina mazei Gö1 under nitrogen-limited conditions.

    Science.gov (United States)

    Weidenbach, Katrin; Ehlers, Claudia; Schmitz, Ruth A

    2014-08-01

    With the aim of unraveling their potential involvement in the regulation of nitrogen metabolism in Methanosarcina mazei strain Gö1, we characterized five genes that are differentially transcribed in response to changing nitrogen availability and encoding putative transcriptional regulators. Study of the respective mutant strains under nitrogen-limited conditions revealed a growth delay for M. mazei MM0444::pac and MM1708::pac, and strongly reduced diazotrophic growth for MM0872::pac, whereas the absence of MM2441 or MM2525 did not affect growth behaviour. Transcriptome analyses further demonstrated that only MM1708 - encoding a CxxCG zinc finger protein - plays a regulatory role in nitrogen metabolism, most likely by specifically enhancing transcription of the N2 fixation (nif) operon under nitrogen-limited conditions. In agreement with this, a palindromic binding motif was predicted in silico in the nifH promoter region, nine nucleotides upstream of the BRE box, and confirmed to bind purified maltose-binding protein-MM1708 by electromobility shift assays. As MM1708 itself is under the control of the global nitrogen repressor NrpR, this adds a secondary level to the transcriptional regulation of the nif genes, and is most likely crucial for maximal nif induction under nitrogen-limited conditions. This is in accordance with the finding that protein expression of NifH is highly reduced in the absence of MM1708 under nitrogen-limited conditions. On the basis of our findings, we hypothesize that, in M. mazei, nitrogen fixation is controlled by a hierarchical network of two transcriptional regulators, the global nitrogen repressor NrpR, and the newly identified activator NrpA (MM1708), thereby providing tight control of N2 fixation.

  5. Symbiotic Nitrogen Fixation and the Challenges to Its Extension to Nonlegumes

    Science.gov (United States)

    Mus, Florence; Crook, Matthew B.; Garcia, Kevin; Garcia Costas, Amaya; Geddes, Barney A.; Kouri, Evangelia D.; Paramasivan, Ponraj; Ryu, Min-Hyung; Oldroyd, Giles E. D.; Poole, Philip S.; Udvardi, Michael K.; Voigt, Christopher A.

    2016-01-01

    Access to fixed or available forms of nitrogen limits the productivity of crop plants and thus food production. Nitrogenous fertilizer production currently represents a significant expense for the efficient growth of various crops in the developed world. There are significant potential gains to be had from reducing dependence on nitrogenous fertilizers in agriculture in the developed world and in developing countries, and there is significant interest in research on biological nitrogen fixation and prospects for increasing its importance in an agricultural setting. Biological nitrogen fixation is the conversion of atmospheric N2 to NH3, a form that can be used by plants. However, the process is restricted to bacteria and archaea and does not occur in eukaryotes. Symbiotic nitrogen fixation is part of a mutualistic relationship in which plants provide a niche and fixed carbon to bacteria in exchange for fixed nitrogen. This process is restricted mainly to legumes in agricultural systems, and there is considerable interest in exploring whether similar symbioses can be developed in nonlegumes, which produce the bulk of human food. We are at a juncture at which the fundamental understanding of biological nitrogen fixation has matured to a level that we can think about engineering symbiotic relationships using synthetic biology approaches. This minireview highlights the fundamental advances in our understanding of biological nitrogen fixation in the context of a blueprint for expanding symbiotic nitrogen fixation to a greater diversity of crop plants through synthetic biology. PMID:27084023

  6. Role of boron nutrient in nodules growth and nitrogen fixation rates in soybean genotypes under water stress conditions

    Science.gov (United States)

    Although boron has a stimulatory effect on nodule growth and nitrogen fixation, mechanisms of how boron affects nodules growth and nitrogen fixation, especially under water stress, are still unknown. The stimulatory effect of boron (B) on nodules and nitrogen fixation (NF) is influenced by biotic (s...

  7. Nitrogen fixation rates associated with the invasive macroalgae Sargassum horneri around Catalina Island, CA

    Science.gov (United States)

    DeLiberto, A.

    2016-02-01

    Nitrogen fixation is an important process which allows organisms access to biologically unavailable dinitrogen gas. Bacteria, known as diazotrophs use the enzyme nitrogenase to convert N2 to NH3. These bacteria, including certain species of heterotrophic bacteria and cyanobacteria, can be symbiotically associated with marine macroalgae, facilitating nutrient cycling in oligotrophic regions. As many species within the genera Sargassum are associated with nitrogen fixation, this study hypothesized that nitrogenase activity would be associated with the benthic invasive Sargassum horneri on Catalina Island. In the past decade, Sargassum horneri, an invasive from Japan, has spread throughout the waters around Catalina Island. Using the acetylene reduction procedure using flame ionization detection, initial nitrogenase activity of S. horneri sampled from Indian Rock was observed. Nitrogen fixation rates increased with decomposition, particularly in dark/anaerobic treatments, suggesting the presence of heterotrophic bacteria. In addition, acetate additions greatly increase nitrogen fixation rates, once again indicating heterotrophic nitrogen fixing bacteria.

  8. Moss-specific changes in nitrogen fixation following two decades of warming, shading, and fertilizer addition

    DEFF Research Database (Denmark)

    Sørensen, Pernille Lærkedal; Lett, Signe; Michelsen, Anders

    2012-01-01

    is the main source of new nitrogen to arctic ecosystems. In order to gain information on future nitrogen fixation rates in a changing climate, we studied the effects of two decades of warming with passive greenhouses, shading with sackcloth, and fertilization with NPK fertilizer on nitrogen fixation rates....... To expand the knowledge on species-specific responses, we measured nitrogen fixation associated with two moss species: Hylocomium splendens and Aulacomnium turgidum. Our expectations of decreased nitrogen fixation rates in the fertilizer and shading treatments were met. However, contrary to our expectation...... temperature increase induced by the warming treatment was low and insignificant as vegetation height and total vascular plant cover of the warmed plots increased, and moss cover decreased. Hence, truly long-term studies lasting more than two decades provide insights on changes in key biogeochemical processes...

  9. Symbiotic nitrogen fixation in an arid ecosystem measured by sup 15 N natural abundance

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.V. (Univ. of New Mexico, Albuquerque (USA))

    1990-05-01

    Plants dependent on nitrogen fixation have an {sup 15}N abundance similar to the atmosphere, while non-nitrogen fixing plants usually are enriched in {sup 15}N and are similar to soil nitrogen values. The natural abundance of {sup 15}N in leaf tissues and soils was determined to evaluate symbiotic nitrogen fixation by several legumes and actinorhizal species in the Sevilleta Long-term Ecological Research area in central New Mexico. Comparison of {delta}{sup 15}N values for the legume Prosopis glandulosa (mesquite) to adjacent Atriplex canascens (fourwing saltbush) indicated that P. glandulosa obtained 66% of its nitrogen by fixation. The legume Hoffmanseggia jamesii was found to be utilizing soil nitrogen. The {delta}{sup 15}N values for the actinorhizal plants, Elaeagnus angustifolia and Cercocarpus montanus, while below values for soil nitrogen, did not differ from associated non-fixing plants.

  10. OxyR-regulated catalase activity is critical for oxidative stress resistance, nodulation and nitrogen fixation in Azorhizobium caulinodans.

    Science.gov (United States)

    Zhao, Yue; Nickels, Logan M; Wang, Hui; Ling, Jun; Zhong, Zengtao; Zhu, Jun

    2016-07-01

    The legume-rhizobial interaction results in the formation of symbiotic nodules in which rhizobia fix nitrogen. During the process of symbiosis, reactive oxygen species (ROS) are generated. Thus, the response of rhizobia to ROS is important for successful nodulation and nitrogen fixation. In this study, we investigated how Azorhizobium caulinodans, a rhizobium that forms both root and stem nodules on its host plant, regulates ROS resistance. We found that in-frame deletions of a gene encoding the putative catalase-peroxidase katG or a gene encoding a LysR-family regulatory protein, oxyR, exhibited increased sensitivity to H2O2 We then showed that OxyR positively regulated katG expression in an H2O2-independent fashion. Furthermore, we found that deletion of katG or oxyR led to significant reduction in the number of stem nodules and decrease of nitrogen fixation capacities in symbiosis. Our results revealed that KatG and OxyR are not only critical for antioxidant defense in vitro, but also important for nodule formation and nitrogen fixation during interaction with plant hosts. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Can we trust current estimates for biological nitrogen fixation?

    Science.gov (United States)

    Bellenger, Jean-Philippe; Kraepiel, Anne

    2016-04-01

    Biological nitrogen fixation (BNF) consists on the reduction of atmospheric dinitrogen (N2) into bioavailable ammonium. This reaction accounts for up to 97% of nitrogen (N) input in unmanaged terrestrial ecosystems. Closing the N budget is a long standing challenge in many ecosystems. Recent studies have highlighted that current methods used to assess BNF are affected by critical biases. These findings challenge our confidence in many N budgets and call for a profound reconsideration of our methodological approaches. Beside these methodological issues, our ability to properly assess BNF might be further altered as a result of a misconception regarding the importance of BNF enzymatic diversity in nature. BNF is catalyzed by the enzyme nitrogenase (Nase) for which three isoforms have been identified so far; the molybdenum (Mo), vanadium (V) and iron-only (Fe) isoforms. Currently BNF is mostly considered to primarily depend on the Mo isoform. The contribution of the alternative Nases (V and Fe isoforms) to BNF in natural habitats has been mostly overlooked. However, recent findings have challenged this traditional view of the Nases hierarchy (Mo isoform predominance) with deep implications for BNF assessment in the field. Here, I will present an overview of recent findings, provided by various research groups, challenging current methods used to assess BNF. I will also present a summary of recent studies highlighting the importance of alternative Nases in nature. I will finally illustrate how altering our view on the Mo-Nase predominance can deeply affect our confidence in current BNF estimates. I will conclude by presenting new methodological approaches that will contribute to significantly improve our ability to understand and estimate BNF in the field by improving our capacity to access BNF spatio-temporal variability and enzymatic diversity.

  12. Responses of soil nitrogen fixation to Spartina alterniflora invasion and nitrogen addition in a Chinese salt marsh

    Science.gov (United States)

    Huang, Jingxin; Xu, Xiao; Wang, Min; Nie, Ming; Qiu, Shiyun; Wang, Qing; Quan, Zhexue; Xiao, Ming; Li, Bo

    2016-01-01

    Biological nitrogen fixation (BNF) is the major natural process of nitrogen (N) input to ecosystems. To understand how plant invasion and N enrichment affect BNF, we compared soil N-fixation rates and N-fixing microbes (NFM) of an invasive Spartina alterniflora community and a native Phragmites australis community in the Yangtze River estuary, with and without N addition. Our results indicated that plant invasion relative to N enrichment had a greater influence on BNF. At each N level, the S. alterniflora community had a higher soil N-fixation rate but a lower diversity of the nifH gene in comparison with the native community. The S. alterniflora community with N addition had the highest soil N-fixation rate and the nifH gene abundance across all treatments. Our results suggest that S. alterniflora invasion can increase soil N fixation in the high N-loading estuarine ecosystem, and thus may further mediate soil N availability. PMID:26869197

  13. Nitrogen Fixation Aligns with nifH Abundance and Expression in Two Coral Trophic Functional Groups

    KAUST Repository

    Pogoreutz, Claudia

    2017-06-28

    Microbial nitrogen fixation (diazotrophy) is a functional trait widely associated with tropical reef-building (scleractinian) corals. While the integral role of nitrogen fixation in coral nutrient dynamics is recognized, its ecological significance across different coral functional groups remains yet to be evaluated. Here we set out to compare molecular and physiological patterns of diazotrophy (i.e., nifH gene abundance and expression as well as nitrogen fixation rates) in two coral families with contrasting trophic strategies: highly heterotrophic, free-living members of the family Fungiidae (Pleuractis granulosa, Ctenactis echinata), and mostly autotrophic coral holobionts with low heterotrophic capacity (Pocilloporidae: Pocillopora verrucosa, Stylophora pistillata). The Fungiidae exhibited low diazotroph abundance (based on nifH gene copy numbers) and activity (based on nifH gene expression and the absence of detectable nitrogen fixation rates). In contrast, the mostly autotrophic Pocilloporidae exhibited nifH gene copy numbers and gene expression two orders of magnitude higher than in the Fungiidae, which coincided with detectable nitrogen fixation activity. Based on these data, we suggest that nitrogen fixation compensates for the low heterotrophic nitrogen uptake in autotrophic corals. Consequently, the ecological importance of diazotrophy in coral holobionts may be determined by the trophic functional group of the host.

  14. Impact of Crab Bioturbation on Nitrogen-Fixation Rates in Red Sea Mangrove Sediment

    KAUST Repository

    Qashqari, Maryam S.

    2017-05-01

    Mangrove plants are a productive ecosystem that provide several benefits for marine organisms and industry. They are considered to be a food source and habitat for many organisms. However, mangrove growth is limited by nutrient availability. According to some recent studies, the dwarfism of the mangrove plants is due to the limitation of nitrogen in the environment. Biological nitrogen fixation is the process by which atmospheric nitrogen is fixed into ammonium. Then, this fixed nitrogen can be uptaken by plants. Hence, biological nitrogen fixation increases the input of nitrogen in the mangrove ecosystem. In this project, we focus on measuring the rates of nitrogen fixation on Red Sea mangrove (Avicennia marina) located at Thuwal, Saudi Arabia. The nitrogen fixation rates are calculated by the acetylene reduction assay. The experimental setup will allow us to analyze the effect of crab bioturbation on nitrogen fixing rates. This study will help to better understand the nitrogen dynamics in mangrove ecosystems in Saudi Arabia. Furthermore, this study points out the importance of the sediment microbial community in mangrove trees development. Finally, the role of nitrogen fixing bacteria should be taken in account for future restoration activities.

  15. Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching

    KAUST Repository

    Pogoreutz, Claudia

    2017-04-21

    The disruption of the coral-algae symbiosis (coral bleaching) due to rising sea surface temperatures has become an unprecedented global threat to coral reefs. Despite decades of research, our ability to manage mass bleaching events remains hampered by an incomplete mechanistic understanding of the processes involved. In this study, we induced a coral bleaching phenotype in the absence of heat and light stress by adding sugars. The sugar addition resulted in coral symbiotic breakdown accompanied by a fourfold increase of coral-associated microbial nitrogen fixation. Concomitantly, increased N:P ratios by the coral host and algal symbionts suggest excess availability of nitrogen and a disruption of the nitrogen limitation within the coral holobiont. As nitrogen fixation is similarly stimulated in ocean warming scenarios, here we propose a refined coral bleaching model integrating the cascading effects of stimulated microbial nitrogen fixation. This model highlights the putative role of nitrogen-fixing microbes in coral holobiont functioning and breakdown.

  16. Molybdenum and phosphorus interact to constrain asymbiotic nitrogen fixation in tropical forests.

    Directory of Open Access Journals (Sweden)

    Nina Wurzburger

    Full Text Available Biological di-nitrogen fixation (N(2 is the dominant natural source of new nitrogen to land ecosystems. Phosphorus (P is thought to limit N(2 fixation in many tropical soils, yet both molybdenum (Mo and P are crucial for the nitrogenase reaction (which catalyzes N(2 conversion to ammonia and cell growth. We have limited understanding of how and when fixation is constrained by these nutrients in nature. Here we show in tropical forests of lowland Panama that the limiting element on asymbiotic N(2 fixation shifts along a broad landscape gradient in soil P, where Mo limits fixation in P-rich soils while Mo and P co-limit in P-poor soils. In no circumstance did P alone limit fixation. We provide and experimentally test a mechanism that explains how Mo and P can interact to constrain asymbiotic N(2 fixation. Fixation is uniformly favored in surface organic soil horizons--a niche characterized by exceedingly low levels of available Mo relative to P. We show that soil organic matter acts to reduce molybdate over phosphate bioavailability, which, in turn, promotes Mo limitation in sites where P is sufficient. Our findings show that asymbiotic N(2 fixation is constrained by the relative availability and dynamics of Mo and P in soils. This conceptual framework can explain shifts in limitation status across broad landscape gradients in soil fertility and implies that fixation depends on Mo and P in ways that are more complex than previously thought.

  17. Molybdenum and phosphorus interact to constrain asymbiotic nitrogen fixation in tropical forests.

    Science.gov (United States)

    Wurzburger, Nina; Bellenger, Jean Philippe; Kraepiel, Anne M L; Hedin, Lars O

    2012-01-01

    Biological di-nitrogen fixation (N(2)) is the dominant natural source of new nitrogen to land ecosystems. Phosphorus (P) is thought to limit N(2) fixation in many tropical soils, yet both molybdenum (Mo) and P are crucial for the nitrogenase reaction (which catalyzes N(2) conversion to ammonia) and cell growth. We have limited understanding of how and when fixation is constrained by these nutrients in nature. Here we show in tropical forests of lowland Panama that the limiting element on asymbiotic N(2) fixation shifts along a broad landscape gradient in soil P, where Mo limits fixation in P-rich soils while Mo and P co-limit in P-poor soils. In no circumstance did P alone limit fixation. We provide and experimentally test a mechanism that explains how Mo and P can interact to constrain asymbiotic N(2) fixation. Fixation is uniformly favored in surface organic soil horizons--a niche characterized by exceedingly low levels of available Mo relative to P. We show that soil organic matter acts to reduce molybdate over phosphate bioavailability, which, in turn, promotes Mo limitation in sites where P is sufficient. Our findings show that asymbiotic N(2) fixation is constrained by the relative availability and dynamics of Mo and P in soils. This conceptual framework can explain shifts in limitation status across broad landscape gradients in soil fertility and implies that fixation depends on Mo and P in ways that are more complex than previously thought.

  18. Genetic Improvement of Biological Nitrogen Fixation in Common Bean Genotypes (Phaseolus vulgaris L.

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Golparvar

    2012-06-01

    Full Text Available Fifty common bean genotypes were cultivated in two separately field trials at the research station of Islamic Azad University, Khorasgan Branch during 2008-2009. The experimental design was randomized complete block. Bean seeds were inoculated by Rhizobium legominosarum biovar Phaseoli isolate L-109 in one of the experiments before sowing. The dose of Rhizobium for seed inoculation was 7 miligrams of bacteria for 1 kilogram of seed. The second experiment was control. The second experiment was analyzed in the same way as the first except for biological nitrogen fixation. The results showed definite positive and significant correlation in percentage of nitrogen fixation with some other been characters. Step-wise regression designated that total nitrogen percentage in shoot, number of nodules per plant and biomass yield accounted for 93.8% of variation expect for nitrogen fixation percent. Path analysis indicated that total nitrogen percentage in shoot, number of nodules per plant and biomass yield have direct and positive effect on nitrogen fixation index. Hence, total nitrogen percentage in shoot, number of nodules per plant and biomass yield are promising indirect selection criteria for genetic improvement of nitrogen fixation capability in common bean genotypes.

  19. Probing the evolution of biological nitrogen fixation by examining phylogenetic relationships of nitrogen fixation genes related by gene duplication

    Science.gov (United States)

    Peters, J.; Boyd, E. S.; Hamilton, T.

    2011-12-01

    Mounting evidence indicates the presence of a near complete biological nitrogen cycle in redox stratified oceans during the late Archean to early Proterozoic (~2.5 to 2.0 Ga). It has been suggested that the iron (Fe)-only or vanadium (V)-dependent alternative forms of nitrogenase rather than molybdenum (Mo)-dependent form was responsible for dinitrogen (N2) fixation during this time because oceans were depleted in Mo and rich in Fe. However, the only extant nitrogen fixing organisms that harbor alternative nitrogenases also harbor a Mo-dependent nitrogenase. Furthermore, our recent global gene expression analysis revealed that the alternative enzymes rely on genes encoding biosynthetic machinery to assemble active enzymes that are associated with the Mo-dependent nitrogenase. In our recent work we conducted an in-depth phylogenetic analysis of the proteins required for molybdenum (Mo)-nitrogenase that arose from gene fusion and duplication, expanding on previous analyses of single gene loci and multiple gene loci. The results of this analysis are highly suggestive that Mo-nitrogenase is unlikely to have been associated with the last universal common ancestor (LUCA). Rather, the oldest extant organisms harboring Mo-nitrogenase can be traced to hydrogenotrophic methanogens with acquisition in the bacterial domain via lateral gene transfer involving an anaerobic member of the Firmicutes. An origin and ensuing proliferation of Mo-nitrogenase under anoxic conditions would likely have occurred in an environment where anaerobic methanogens and Firmicutes coexisted and where Mo was at least episodically available, such as in a redox stratified Proterozoic ocean basin. In more recent work we have examined the hypothesis that the alternative forms predate the Mo-dependent nitrogenase by examining the phylogenetic relationships of the genetically distinct structural proteins of the Fe-only, V-, and Mo-nitrogenase that are required for activity. As a result, a clear and

  20. Biological nitrogen fixation is not a major contributor to the nitrogen demand of a commercially growth South African sugarcane cultivar

    NARCIS (Netherlands)

    Hoefsloot, G.; Termorshuizen, A.J.; Watt, D.A.; Cramer, M.D.

    2005-01-01

    It has previously been reported that endophytic diazotrophic bacteria contribute significantly to the nitrogen budgets of some graminaceous species. In this study the contribution of biological nitrogen fixation to the N-budget of a South African sugarcane cultivar was evaluated using 15N natural ab

  1. Stimulation of nitrogen fixation in soddy-podzolic soils with fungi

    Science.gov (United States)

    Kurakov, A. V.; Prokhorov, I. S.; Kostina, N. V.; Makhova, E. G.; Sadykova, V. S.

    2006-09-01

    Stimulation of nitrogen fixation in soddy-podzolic soils is related to the hydrolytic activity of fungi decomposing plant polymers. It was found that the rate of nitrogen fixation upon the simultaneous inoculation of the strains of nitrogen-fixing bacteria Bacillus cereus var. mycoides and the cellulolytic fungus Trichoderma asperellum into a sterile soil enriched with cellulose or Jerusalem artichoke residues is two to four times higher than upon the inoculation of the strains of Bacillus cereus var. mycoides L1 only. The increase in the nitrogen fixation depended on the resistance of the substrates added into the soil to fungal hydrolysis. The biomass of the fungi decomposing plant polymers increased by two-four times. The nitrogen-fixing activity of the soil decreased when the growth of the fungi was inhibited with cycloheximide, which attested to a close correlation between the intensity of the nitrogen fixation and the decomposition of the plant polymers by fungi. The introduction of an antifungal antibiotic, together with starch or with plant residues, significantly (by 60-90%) decreased the rate of nitrogen fixation in the soll.

  2. Robust biological nitrogen fixation in a model grass-bacterial association.

    Science.gov (United States)

    Pankievicz, Vânia C S; do Amaral, Fernanda P; Santos, Karina F D N; Agtuca, Beverly; Xu, Youwen; Schueller, Michael J; Arisi, Ana Carolina M; Steffens, Maria B R; de Souza, Emanuel M; Pedrosa, Fábio O; Stacey, Gary; Ferrieri, Richard A

    2015-03-01

    Nitrogen-fixing rhizobacteria can promote plant growth; however, it is controversial whether biological nitrogen fixation (BNF) from associative interaction contributes to growth promotion. The roots of Setaria viridis, a model C4 grass, were effectively colonized by bacterial inoculants resulting in a significant enhancement of growth. Nitrogen-13 tracer studies provided direct evidence for tracer uptake by the host plant and incorporation into protein. Indeed, plants showed robust growth under nitrogen-limiting conditions when inoculated with an ammonium-excreting strain of Azospirillum brasilense. (11)C-labeling experiments showed that patterns in central carbon metabolism and resource allocation exhibited by nitrogen-starved plants were largely reversed by bacterial inoculation, such that they resembled plants grown under nitrogen-sufficient conditions. Adoption of S. viridis as a model should promote research into the mechanisms of associative nitrogen fixation with the ultimate goal of greater adoption of BNF for sustainable crop production.

  3. Biological nitrogen fixation by lucerne (Medicago sativa L.) in acid soils.

    NARCIS (Netherlands)

    Pijnenborg, J.W.M.

    1990-01-01

    Growth of lucerne( Medicago sativa L.) is poor in soils with values of pH-H2O below 6. This is often due to nitrogen deficiency, resulting from a hampered performance of the symbiosis withRhizobium meliloti. This thesis deals with the factors affecting biological nitrogen fixat

  4. Low temperature delays timing and enhances the cost of nitrogen fixation in the unicellular cyanobacterium

    NARCIS (Netherlands)

    Brauer, V.S.; Stomp, M.; Rosso, C.; van Beusekom, S.A.M.; Emmerich, B.; Stal, L.; Huisman, J.

    2013-01-01

    Marine nitrogen-fixing cyanobacteria are largely confined to the tropical and subtropical ocean. It has been argued that their global biogeographical distribution reflects the physiologically feasible temperature range at which they can perform nitrogen fixation. In this study we refine this line of

  5. Low temperature delays timing and enhances the cost of nitrogen fixation in the unicellular cyanobacterium Cyanothece

    NARCIS (Netherlands)

    Brauer, Verena S.; Stomp, Maayke; Rosso, Camillo; van Beusekom, Sebastiaan A. M.; Emmerich, Barbara; Stal, Lucas J.; Huisman, Jef

    2013-01-01

    Marine nitrogen-fixing cyanobacteria are largely confined to the tropical and subtropical ocean. It has been argued that their global biogeographical distribution reflects the physiologically feasible temperature range at which they can perform nitrogen fixation. In this study we refine this line of

  6. Low temperature delays timing and enhances the cost of nitrogen fixation in the unicellular cyanobacterium Cyanothece

    NARCIS (Netherlands)

    Brauer, Verena S.; Stomp, Maayke; Rosso, Camillo; van Beusekom, Sebastiaan A. M.; Emmerich, Barbara; Stal, Lucas J.; Huisman, Jef

    2013-01-01

    Marine nitrogen-fixing cyanobacteria are largely confined to the tropical and subtropical ocean. It has been argued that their global biogeographical distribution reflects the physiologically feasible temperature range at which they can perform nitrogen fixation. In this study we refine this line of

  7. Transcriptome analysis of two recombinant inbred lines of common bean contrasting for symbiotic nitrogen fixation

    Science.gov (United States)

    Common bean (Phaseolus vulgaris L.) is able to fix atmospheric nitrogen (N2) through symbiotic nitrogen fixation (SNF). Effective utilization of existing variability for SNF in common bean for genetic improvement requires an understanding of underlying genes and molecular mechanisms. The utility of ...

  8. Molybdenum supply and biological fixation of nitrogen by two Brazilian common bean cultivars

    Directory of Open Access Journals (Sweden)

    Alinne da Silva

    Full Text Available ABSTRACT The common bean has been considered to have low biological nitrogen fixation capacity; however, this process can be made more effective with molybdenum (Mo supplementation. The objective of this study was to evaluate the influence of Mo rates on the growth and biological nitrogen fixation by two Brazilian common bean cultivars using the 15N isotope dilution technique. The experiment was performed in 2014 in a completely randomized design arranged in a 5 x 3 factorial scheme, corresponding to 5 rates of Mo (control, 40, 80, 120 and 240 g ha-1, the common bean cultivars Aporé, Ouro Negro and NORH-54 (a non-nodulating common bean cultivar, and three replicates. The application of Mo and the inoculation with rhizobia strains contributed to improving nitrogen fixation and grain weight. The cultivar Ouro Negro showed a higher number and weight of nodules and a higher amount of nitrogen derived from the atmosphere than the cultivar Aporé. The biological nitrogen fixation of Aporé was more dependent on the application of Mo. These results indicated that inoculation with Rhizobium strains and Mo supply effectively contributed to biological nitrogen fixation and improving grain production.

  9. Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion

    Science.gov (United States)

    Jeon, In-Yup; Choi, Hyun-Jung; Ju, Myung Jong; Choi, In Taek; Lim, Kimin; Ko, Jaejung; Kim, Hwan Kyu; Kim, Jae Cheon; Lee, Jae-Joon; Shin, Dongbin; Jung, Sun-Min; Seo, Jeong-Min; Kim, Min-Jung; Park, Noejung; Dai, Liming; Baek, Jong-Beom

    2013-07-01

    Nitrogen fixation is essential for the synthesis of many important chemicals (e.g., fertilizers, explosives) and basic building blocks for all forms of life (e.g., nucleotides for DNA and RNA, amino acids for proteins). However, direct nitrogen fixation is challenging as nitrogen (N2) does not easily react with other chemicals. By dry ball-milling graphite with N2, we have discovered a simple, but versatile, scalable and eco-friendly, approach to direct fixation of N2 at the edges of graphene nanoplatelets (GnPs). The mechanochemical cracking of graphitic C-C bonds generated active carbon species that react directly with N2 to form five- and six-membered aromatic rings at the broken edges, leading to solution-processable edge-nitrogenated graphene nanoplatelets (NGnPs) with superb catalytic performance in both dye-sensitized solar cells and fuel cells to replace conventional Pt-based catalysts for energy conversion.

  10. Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion.

    Science.gov (United States)

    Jeon, In-Yup; Choi, Hyun-Jung; Ju, Myung Jong; Choi, In Taek; Lim, Kimin; Ko, Jaejung; Kim, Hwan Kyu; Kim, Jae Cheon; Lee, Jae-Joon; Shin, Dongbin; Jung, Sun-Min; Seo, Jeong-Min; Kim, Min-Jung; Park, Noejung; Dai, Liming; Baek, Jong-Beom

    2013-01-01

    Nitrogen fixation is essential for the synthesis of many important chemicals (e.g., fertilizers, explosives) and basic building blocks for all forms of life (e.g., nucleotides for DNA and RNA, amino acids for proteins). However, direct nitrogen fixation is challenging as nitrogen (N₂) does not easily react with other chemicals. By dry ball-milling graphite with N₂, we have discovered a simple, but versatile, scalable and eco-friendly, approach to direct fixation of N₂ at the edges of graphene nanoplatelets (GnPs). The mechanochemical cracking of graphitic C--C bonds generated active carbon species that react directly with N₂ to form five- and six-membered aromatic rings at the broken edges, leading to solution-processable edge-nitrogenated graphene nanoplatelets (NGnPs) with superb catalytic performance in both dye-sensitized solar cells and fuel cells to replace conventional Pt-based catalysts for energy conversion.

  11. Regulation of symbiotic nitrogen fixation in root nodules of alfalfa (Medicago sativa) infected with Rhizobium meliloti.

    Science.gov (United States)

    Kamberger, W

    1977-10-24

    Symbiotic nitrogen fixation of Rhizobium meliloti bacteroids in Medicago sativa root nodules was suppressed by several inorganic nitrogen sources. Amino acids like glutamine, glutamic acid and aspartic acid, which can serve as sole nitrogen sources for the unnodulated plant did not influence nitrogenase activity of effective nodules, even at high concetrations. Ammonia and nitrate suppressed symbiotic nitrogen fixation in vivo only at concentrations much higher than those needed for suppression of nitrogenase activity in free living nitrogen fixing bacteria. The kinetics of suppression were slow compared with that of free living nitrogen fixing bacteria. On the other hand, nitrite, which acts as a direct inhibitor of nitrogenase, suppressed very quickly and at low concentrations. Glutamic acid and glutamine enhanced the effect of ammonia dramatically, while the suppression by nitrate was enhanced only slightly.

  12. Simultaneous measurement of denitrification and nitrogen fixation using isotope pairing with membrane inlet mass spectrometry analysis.

    Science.gov (United States)

    An, S; Gardner, W S; Kana, T

    2001-03-01

    A method for estimating denitrification and nitrogen fixation simultaneously in coastal sediments was developed. An isotope-pairing technique was applied to dissolved gas measurements with a membrane inlet mass spectrometer (MIMS). The relative fluxes of three N(2) gas species ((28)N(2), (29)N(2), and (30)N(2)) were monitored during incubation experiments after the addition of (15)NO(3)(-). Formulas were developed to estimate the production (denitrification) and consumption (N(2) fixation) of N(2) gas from the fluxes of the different isotopic forms of N(2). Proportions of the three isotopic forms produced from (15)NO(3)(-) and (14)NO(3)(-) agreed with expectations in a sediment slurry incubation experiment designed to optimize conditions for denitrification. Nitrogen fixation rates from an algal mat measured with intact sediment cores ranged from 32 to 390 microg-atoms of N m(-2) h(-1). They were enhanced by light and organic matter enrichment. In this environment of high nitrogen fixation, low N(2) production rates due to denitrification could be separated from high N(2) consumption rates due to nitrogen fixation. Denitrification and nitrogen fixation rates were estimated in April 2000 on sediments from a Texas sea grass bed (Laguna Madre). Denitrification rates (average, 20 microg-atoms of N m(-2) h(-1)) were lower than nitrogen fixation rates (average, 60 microg-atoms of N m(-2) h(-1)). The developed method benefits from simple and accurate dissolved-gas measurement by the MIMS system. By adding the N(2) isotope capability, it was possible to do isotope-pairing experiments with the MIMS system.

  13. Potential for Nitrogen Fixation in the Fungus-Growing Termite Symbiosis.

    Science.gov (United States)

    Sapountzis, Panagiotis; de Verges, Jane; Rousk, Kathrin; Cilliers, Magdeleen; Vorster, Barend J; Poulsen, Michael

    2016-01-01

    Termites host a gut microbiota of diverse and essential symbionts that enable specialization on dead plant material; an abundant, but nutritionally imbalanced food source. To supplement the severe shortage of dietary nitrogen (N), some termite species make use of diazotrophic bacteria to fix atmospheric nitrogen (N2). Fungus-growing termites (subfamily Macrotermitinae) host a fungal exosymbiont (genus Termitomyces) that provides digestive services and the main food source for the termites. This has been thought to obviate the need for N2-fixation by bacterial symbionts. Here, we challenge this notion by performing acetylene reduction assays of live colony material to show that N2 fixation is present in two major genera (Macrotermes and Odontotermes) of fungus-growing termites. We compare and discuss fixation rates in relation to those obtained from other termites, and suggest avenues of research that may lead to a better understanding of N2 fixation in fungus-growing and other termites.

  14. Long-term warming and litter addition affects nitrogen fixation in a subarctic heath

    DEFF Research Database (Denmark)

    Sørensen, Pernille Lærkedal; Michelsen, Anders

    2011-01-01

    Nitrogen (N) availability is the main constraint on primary production in most Arctic ecosystems, with microbial fixation of atmospheric N as the primary source of N input. However, there are only few reports on N fixation rates in relation to climate change in the Arctic. In order to investigate...... the effects of anticipated global climate change on N fixation rates in a subarctic moist heath, a field experiment was carried out in Northern Sweden. Warming was induced by plastic tents, and in order to simulate the effects of future increased tree cover, birch litter was added each fall for 9 years before...... observed either no change or occasionally even a decrease in N fixation after warming. Both measured on whole-ecosystem level and on the two moss species separately, litter addition increased N fixation rates. The results suggest that warming will lead to a general increased ecosystem N input, but also...

  15. Present status and development on biological nitrogen fixation research in China

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This presentation introduces the advances in biological nitrogen fixation research abroad, in particular, describes the great progress and achievements on its research in China as follows: collection of rhizobial resources and establishment of the largest database of Rhizobium in China, correction and development of Rhizobium taxonomy in international; discovery of a couple of nif genes, identification and unification of linkage among the nif gene operons of Klebsiella pneumoniae, finding of regulative mechanism of positive regulation nif gene and its sensitivity to oxygen, temperature; finding of the activity of nodulation gene nodD3 product in Sinorhizobium meliloti which is not controlled by flavonoid produced from its host alfalfa; finding of the association between expression of genes coding the products for carbon utilization and nitrogen metabolism and their regulations; chemical synthesis of nodulation factor of Sinorhizobium meliloti; constructions of engineered nitrogen fixers and utilization in practice based on the research of gene expression and regulation; chemical simulation of the structure and function of nitrogenase and bringing forward the model of nitrogenase active center for the first time in international and synthesis of model compounds which were paid attention by colleagues abroad. Finally, the development of nitrogen fixation research in China in future has been put forward, suggesting that the nif gene regulation and its role in providing crops with nitrogen element, signal transduction and molecular interactions between Rhizobium and legume, coupling between carbon and nitrogen metabolisms, nitrogen fixation and photosynthesis, and functional genomics of nitrogen-fixing nodule symbiosis, etc., would be actively worked on.

  16. Enzymology of biological nitrogen fixation. Final report, May 1, 1987--April 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    Biological nitrogen fixation is of central importance in the earth`s nitrogen economy. Fixation of nitrogen is accomplished by a variety of microorganisms, all of them procaryotic. Some operate independently and some function symbiotically or associatively with photosynthesizing plants. Biological nitrogen fixation is accomplished via the reaction: N{sub 2} + 8H{sup +} + 8e{sup {minus}} {yields} 2NH{sub 3} + H{sub 2}. This reaction requires a minimum of 16 ATP under ideal laboratory conditions, so it is obvious that the energy demand of the reaction is very high. When certain nitrogen-fixing organisms are supplied fixed nitrogen (e.g., ammonium) the organisms use the fixed nitrogen and turn off their nitrogenase system, thus conserving energy. When the fixed nitrogen is exhausted, the organism reactivates its nitrogenase. The system is turned off by dinitrogenase reductase ADP-ribosyl transferase (DRAT) and turned back on by dinitrogenase reductase-activating glycohydrolase (DRAG). The authors have investigated the details of how DRAT and DRAG are formed, how they function, and the genetics of their formation and operation.

  17. Nitrogen fixation by cyanobacteria stimulates production in Baltic food webs.

    Science.gov (United States)

    Karlson, Agnes M L; Duberg, Jon; Motwani, Nisha H; Hogfors, Hedvig; Klawonn, Isabell; Ploug, Helle; Barthel Svedén, Jennie; Garbaras, Andrius; Sundelin, Brita; Hajdu, Susanna; Larsson, Ulf; Elmgren, Ragnar; Gorokhova, Elena

    2015-06-01

    Filamentous, nitrogen-fixing cyanobacteria form extensive summer blooms in the Baltic Sea. Their ability to fix dissolved N2 allows cyanobacteria to circumvent the general summer nitrogen limitation, while also generating a supply of novel bioavailable nitrogen for the food web. However, the fate of the nitrogen fixed by cyanobacteria remains unresolved, as does its importance for secondary production in the Baltic Sea. Here, we synthesize recent experimental and field studies providing strong empirical evidence that cyanobacterial nitrogen is efficiently assimilated and transferred in Baltic food webs via two major pathways: directly by grazing on fresh or decaying cyanobacteria and indirectly through the uptake by other phytoplankton and microbes of bioavailable nitrogen exuded from cyanobacterial cells. This information is an essential step toward guiding nutrient management to minimize noxious blooms without overly reducing secondary production, and ultimately most probably fish production in the Baltic Sea.

  18. Engineering Pseudomonas protegens Pf-5 for Nitrogen Fixation and its Application to Improve Plant Growth under Nitrogen-Deficient Conditions

    Science.gov (United States)

    Setten, Lorena; Soto, Gabriela; Mozzicafreddo, Matteo; Fox, Ana Romina; Lisi, Christian; Cuccioloni, Massimiliano; Angeletti, Mauro; Pagano, Elba; Díaz-Paleo, Antonio; Ayub, Nicolás Daniel

    2013-01-01

    Nitrogen is the second most critical factor for crop production after water. In this study, the beneficial rhizobacterium Pseudomonas protegens Pf-5 was genetically modified to fix nitrogen using the genes encoding the nitrogenase of Pseudomonas stutzeri A1501 via the X940 cosmid. Pf-5 X940 was able to grow in L medium without nitrogen, displayed high nitrogenase activity and released significant quantities of ammonium to the medium. Pf-5 X940 also showed constitutive expression and enzymatic activity of nitrogenase in ammonium medium or in nitrogen-free medium, suggesting a constitutive nitrogen fixation. Similar to Pseudomonas protegens Pf-5, Pseudomonas putida, Pseudomonas veronii and Pseudomonas taetrolens but not Pseudomonas balearica and Pseudomonas stutzeri transformed with cosmid X940 showed constitutive nitrogenase activity and high ammonium production, suggesting that this phenotype depends on the genome context and that this technology to obtain nitrogen-fixing bacteria is not restricted to Pf-5. Interestingly, inoculation of Arabidopsis, alfalfa, tall fescue and maize with Pf-5 X940 increased the ammonium concentration in soil and plant productivity under nitrogen-deficient conditions. In conclusion, these results open the way to the production of effective recombinant inoculants for nitrogen fixation on a wide range of crops. PMID:23675499

  19. Engineering Pseudomonas protegens Pf-5 for nitrogen fixation and its application to improve plant growth under nitrogen-deficient conditions.

    Science.gov (United States)

    Setten, Lorena; Soto, Gabriela; Mozzicafreddo, Matteo; Fox, Ana Romina; Lisi, Christian; Cuccioloni, Massimiliano; Angeletti, Mauro; Pagano, Elba; Díaz-Paleo, Antonio; Ayub, Nicolás Daniel

    2013-01-01

    Nitrogen is the second most critical factor for crop production after water. In this study, the beneficial rhizobacterium Pseudomonas protegens Pf-5 was genetically modified to fix nitrogen using the genes encoding the nitrogenase of Pseudomonas stutzeri A1501 via the X940 cosmid. Pf-5 X940 was able to grow in L medium without nitrogen, displayed high nitrogenase activity and released significant quantities of ammonium to the medium. Pf-5 X940 also showed constitutive expression and enzymatic activity of nitrogenase in ammonium medium or in nitrogen-free medium, suggesting a constitutive nitrogen fixation. Similar to Pseudomonas protegens Pf-5, Pseudomonas putida, Pseudomonas veronii and Pseudomonas taetrolens but not Pseudomonas balearica and Pseudomonas stutzeri transformed with cosmid X940 showed constitutive nitrogenase activity and high ammonium production, suggesting that this phenotype depends on the genome context and that this technology to obtain nitrogen-fixing bacteria is not restricted to Pf-5. Interestingly, inoculation of Arabidopsis, alfalfa, tall fescue and maize with Pf-5 X940 increased the ammonium concentration in soil and plant productivity under nitrogen-deficient conditions. In conclusion, these results open the way to the production of effective recombinant inoculants for nitrogen fixation on a wide range of crops.

  20. Engineering Pseudomonas protegens Pf-5 for nitrogen fixation and its application to improve plant growth under nitrogen-deficient conditions.

    Directory of Open Access Journals (Sweden)

    Lorena Setten

    Full Text Available Nitrogen is the second most critical factor for crop production after water. In this study, the beneficial rhizobacterium Pseudomonas protegens Pf-5 was genetically modified to fix nitrogen using the genes encoding the nitrogenase of Pseudomonas stutzeri A1501 via the X940 cosmid. Pf-5 X940 was able to grow in L medium without nitrogen, displayed high nitrogenase activity and released significant quantities of ammonium to the medium. Pf-5 X940 also showed constitutive expression and enzymatic activity of nitrogenase in ammonium medium or in nitrogen-free medium, suggesting a constitutive nitrogen fixation. Similar to Pseudomonas protegens Pf-5, Pseudomonas putida, Pseudomonas veronii and Pseudomonas taetrolens but not Pseudomonas balearica and Pseudomonas stutzeri transformed with cosmid X940 showed constitutive nitrogenase activity and high ammonium production, suggesting that this phenotype depends on the genome context and that this technology to obtain nitrogen-fixing bacteria is not restricted to Pf-5. Interestingly, inoculation of Arabidopsis, alfalfa, tall fescue and maize with Pf-5 X940 increased the ammonium concentration in soil and plant productivity under nitrogen-deficient conditions. In conclusion, these results open the way to the production of effective recombinant inoculants for nitrogen fixation on a wide range of crops.

  1. Nitrogen fixation in Clear Lake, California. 4. Diel studies on Aphanizomenon and Anabaena blooms

    Energy Technology Data Exchange (ETDEWEB)

    Horne, A.J.

    1979-01-01

    Day and night measurements of N/sub 2/ fixation (as acetylene reduction) were made during spring blooms of Aphanizomenon flos-aquae and two autumn blooms of Anabaena spp. From 9 to 23% of the 24-h fixation occurred between 1100 and 1300 hours. Nitrogen fixation in spring showed complex, physically shallow but optically deep and mobile subsurface peaks of nitrogenase activity, which were totally unrelated to Aphanizomenon biomass but may have been due to diel changes in light penetrating the relatively clear water. Nocturnal fixation was uniformly distributed with depth and accounted for 1/5 to 1/3 of daylight fixation. In more turbid autumn waters, the pattern of N/sub 2/ fixation for Anabaena blooms was simpler, with a surface (or near-surface) peak decreasing with depth. Nocturnal fixation was more uniformly distributed with depth. The difference in fixation patterns between the two species is attributable to the interactions of oxygen with the nitrogenase enzyme system. The diel changes in nitrogenase activity suggest a need to establish whether the precursors of nitrogenase accumulate in an oxygen-stable form.

  2. Improvement in nitrogen fixation capacity could be part of the domestication process in soybean.

    Science.gov (United States)

    Muñoz, N; Qi, X; Li, M-W; Xie, M; Gao, Y; Cheung, M-Y; Wong, F-L; Lam, H-M

    2016-08-01

    Biological nitrogen fixation (BNF) in soybeans is a complex process involving the interplay between the plant host and the symbiotic rhizobia. As nitrogen supply has a crucial role in growth and development, higher nitrogen fixation capacity would be important to achieve bigger plants and larger seeds, which were important selection criteria during plant domestication by humans. To test this hypothesis, we monitored the nitrogen fixation-related performance in 31 cultivated and 17 wild soybeans after inoculation with the slow-growing Bradyrhizobium diazoefficiens sp. nov. USDA110 and the fast-growing Sinorhizobium (Ensifer) fredii CCBAU45436. Our results showed that, in general, cultivated soybeans gave better performance in BNF. Electron microscopic studies indicated that there was an exceptionally high accumulation of poly-β-hydroxybutyrate bodies in bacteroids in the nodules of all wild soybeans tested, suggesting that the C/N balance in wild soybeans may not be optimized for nitrogen fixation. Furthermore, we identified new quantitative trait loci (QTLs) for total ureides and total nodule fresh weight by employing a recombinant inbred population composed of descendants from a cross between a cultivated and a wild parent. Using nucleotide diversity (θπ), divergence index (Fst) and distribution of fixed single-nucleotide polymorphisms as parameters, we found that some regions in the total ureides QTL on chromosome 17 and the total nodule fresh weight QTL on chromosome 12 exhibited very low diversity among cultivated soybeans, suggesting that these were traits specially selected during the domestication and breeding process.

  3. Nitrogen fixation (acetylene reduction) by annual winter legumes on a coal surface mine

    Energy Technology Data Exchange (ETDEWEB)

    Gabrielson, F.C.

    1982-01-01

    The winter annuals, crimson clover, rose clover, subterranean clover and hairy vetch, were evaluated for their ability to fix nitrogen on coal surface mine substrates by measuring their ability to reduce acetylene to ethylene. The effects of fertilizer, Abruzzi ryegrass, Kentucky 31 fescue grass and a phytotoxic plant Chenopodium album on nitrogen fixation was also assessed. Crimson clover was recommended as the best legume to use on topsoil and shale in the South. Hairy vetch gave good results on shale and subterranean clover did well on topsoil. The use of these species for revegetation is discussed. Overall, no correlation between substrate pH and ethylene levels was found and effects of substrate depended upon the legume species. Super phosphate fertilizer supported less nitrogen fixation than 13-13-13. Abruzzi ryegrass in some unknown way inhibited plant density and nitrogen fixation by legumes but not by free living substrate micro-organisms. Shale from under dead Chenopodium plants in both field and greenhouse experiments did not inhibit nitrogen fixation. 11 references, 7 tables.

  4. Nitrogen fixation (Acetylene Reduction) by annual winter legumes on a coal surface mine

    Energy Technology Data Exchange (ETDEWEB)

    Gabrielson, F.C.

    1982-01-01

    The winter annuals, crimson clover, rose clover, subterranean clover and hairy vetch, were evaluated for nitrogen fixing capacity on coal surface mine substrates by measuring their ability to reduce acetylene to ethylene. The effects of fertilizer, Abruzzi rye, Kentucky 31 fescue grass and a phytotoxic plant Chenopodium album on nitrogen fixation were also assessed. Crimson clover was recommended as the best legume to use on topsoil and shale in the south. Hairy vetch gave good results on shale and subterranean clover did well on topsoil. The use of these species for revegetation is discussed. Overall, no correlation between substrate pH and ethylene levels was found and effects of substrate depended upon the legume species. Super phosphate fertilizer supported less nitrogen fixation than 13-13-13. Abruzzi rye in some unknown way inhibited plant density and nitrogen fixation by legumes but not by free living substrate micro-organisms. Shale from under dead Chenopodium plants in both field and greehouse experiments did not inhibit nitrogen fixation. 7 tables.

  5. Quantitative trait locus analysis of symbiotic nitrogen fixation activity in the model legume Lotus japonicus.

    Science.gov (United States)

    Tominaga, Akiyoshi; Gondo, Takahiro; Akashi, Ryo; Zheng, Shao-Hui; Arima, Susumu; Suzuki, Akihiro

    2012-05-01

    Many legumes form nitrogen-fixing root nodules. An elevation of nitrogen fixation in such legumes would have significant implications for plant growth and biomass production in agriculture. To identify the genetic basis for the regulation of nitrogen fixation, quantitative trait locus (QTL) analysis was conducted with recombinant inbred lines derived from the cross Miyakojima MG-20 × Gifu B-129 in the model legume Lotus japonicus. This population was inoculated with Mesorhizobium loti MAFF303099 and grown for 14 days in pods containing vermiculite. Phenotypic data were collected for acetylene reduction activity (ARA) per plant (ARA/P), ARA per nodule weight (ARA/NW), ARA per nodule number (ARA/NN), NN per plant, NW per plant, stem length (SL), SL without inoculation (SLbac-), shoot dry weight without inoculation (SWbac-), root length without inoculation (RLbac-), and root dry weight (RWbac-), and finally 34 QTLs were identified. ARA/P, ARA/NN, NW, and SL showed strong correlations and QTL co-localization, suggesting that several plant characteristics important for symbiotic nitrogen fixation are controlled by the same locus. QTLs for ARA/P, ARA/NN, NW, and SL, co-localized around marker TM0832 on chromosome 4, were also co-localized with previously reported QTLs for seed mass. This is the first report of QTL analysis for symbiotic nitrogen fixation activity traits.

  6. Methane-Stimulated Benthic Marine Nitrogen Fixation at Deep-Sea Methane Seeps

    Science.gov (United States)

    Dekas, A. E.; Orphan, V.

    2011-12-01

    Biological nitrogen fixation (the conversion of N2 to NH3) is a critical process in the oceans, counteracting the production of N2 gas by dissimilatory bacterial metabolisms and providing a source of bioavailable nitrogen to many nitrogen-limited ecosystems. Although current measurements of N2 production and consumption in the oceans indicate that the nitrogen cycle is not balanced, recent findings on the limits of nitrogen fixation suggest that the perceived imbalance is an artifact of an incomplete assessment of marine diazotrophy. One currently poorly studied and potentially underappreciated habitat for diazotrophic organisms is the sediments of the deep-sea. In the present study we investigate the distribution and magnitude of benthic marine diazotrophy at several active deep-sea methane seeps (Mound 12, Costa Rica; Eel River Basin, CA, USA; Hydrate Ridge, OR, USA; and Monterey Canyon, CA, USA). Using 15N2 and 15NH4 sediment incubation experiments followed by single-cell (FISH-NanoSIMS) and bulk isotopic analysis (EA-IRMS), we observed total protein synthesis (15N uptake from 15NH4) and nitrogen fixation (15N update from 15N2). The highest rates of nitrogen fixation observed in the methane seep sediment incubation experiments were over an order of magnitude greater than those previously published from non-seep deep-sea sediments (Hartwig and Stanley, Deep-Sea Research, 1978, 25:411-417). However, methane seep diazotrophy appears to be highly spatially variable, with sediments exhibiting no nitrogen fixation originating only centimeters away from sediments actively incorporating 15N from 15N2. The greatest spatial variability in diazotrophy was observed with depth in the sediment, and corresponded to steep gradients in sulfate and methane. The maximum rates of nitrogen fixation were observed within the methane-sulfate transition zone, where organisms mediating the anaerobic oxidation of methane are typically in high abundance. Additionally, incubation

  7. Transcriptomic Analysis of Sinorhizobium meliloti and Medicago truncatula Symbiosis Using Nitrogen Fixation-Deficient Nodules.

    Science.gov (United States)

    Lang, Claus; Long, Sharon R

    2015-08-01

    The bacterium Sinorhizobium meliloti interacts symbiotically with legume plant hosts such as Medicago truncatula to form nitrogen-fixing root nodules. During symbiosis, plant and bacterial cells differentiate in a coordinated manner, resulting in specialized plant cells that contain nitrogen-fixing bacteroids. Both plant and bacterial genes are required at each developmental stage of symbiosis. We analyzed gene expression in nodules formed by wild-type bacteria on six plant mutants with defects in nitrogen fixation. We observed differential expression of 482 S. meliloti genes with functions in cell envelope homeostasis, cell division, stress response, energy metabolism, and nitrogen fixation. We simultaneously analyzed gene expression in M. truncatula and observed differential regulation of host processes that may trigger bacteroid differentiation and control bacterial infection. Our analyses of developmentally arrested plant mutants indicate that plants use distinct means to control bacterial infection during early and late symbiotic stages.

  8. Selection and breeding of corn to enhance associative bacterial nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    Ela, S.W.; Anderson, M.A.; Brill, W.J.

    1980-01-01

    We have increased, through screening and breeding, the ability of corn (maize, Zea mays L.) to support bacterial nitrogen fixation in or on corn roots. Isotopic N fixed from /sup 15/N/sub 2/ was found on the roots. Even though the nitrogen-fixing association depends on germ plasm from tropical corn, the activity can be bred into corn currently used in midwestern United States agriculture.

  9. Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus

    DEFF Research Database (Denmark)

    Colebatch, Gillian; Desbrosses, Guilhem; Ott, Thomas;

    2004-01-01

    Research on legume nodule metabolism has contributed greatly to our knowledge of primary carbon and nitrogen metabolism in plants in general, and in symbiotic nitrogen fixation in particular. However, most previous studies focused on one or a few genes/enzymes involved in selected metabolic...... coupled to mass spectrometry revealed a distinct metabolic phenotype for nodules that reflected the global changes in metabolism inferred from transcriptome analysis. Udgivelsesdato: 2004-Aug...

  10. Functional ecology of free-living nitrogen fixation: A contemporary perspective

    Science.gov (United States)

    Reed, Sasha C.; Cleveland, Cory C.; Townsend, Alan R.

    2011-01-01

    Nitrogen (N) availability is thought to frequently limit terrestrial ecosystem processes, and explicit consideration of N biogeochemistry, including biological N2 fixation, is central to understanding ecosystem responses to environmental change. Yet, the importance of free-living N2 fixation—a process that occurs on a wide variety of substrates, is nearly ubiquitous in terrestrial ecosystems, and may often represent the dominant pathway for acquiring newly available N—is often underappreciated. Here, we draw from studies that investigate free-living N2 fixation from functional, physiological, genetic, and ecological perspectives. We show that recent research and analytical advances have generated a wealth of new information that provides novel insight into the ecology of N2 fixation as well as raises new questions and priorities for future work. These priorities include a need to better integrate free-living N2 fixation into conceptual and analytical evaluations of the N cycle's role in a variety of global change scenarios.

  11. Identification of a cis-acting element in nitrogen fixation genes recognized by CnfR in the nonheterocystous nitrogen-fixing cyanobacterium Leptolyngbya boryana.

    Science.gov (United States)

    Tsujimoto, Ryoma; Kamiya, Narumi; Fujita, Yuichi

    2016-08-01

    The filamentous cyanobacterium Leptolyngbya boryana has the ability to fix nitrogen without any heterocysts under microoxic conditions. Previously, we identified the cnfR gene for a master transcriptional activator for nitrogen fixation (nif) genes in a 50-kb gene cluster containing nif and nif-related genes in L. boryana. We showed that CnfR activates the transcription of nif genes in response to low oxygen conditions, which allows the oxygen-vulnerable enzyme nitrogenase to function. However, the regulatory mechanism that underlies regulation by CnfR remains unknown. In this study, we identified a conserved cis-acting element that is recognized by CnfR. We established a reporter system in the non-diazotrophic cyanobacterium Synechocystis sp. PCC 6803 using luciferase genes (luxAB). Reporter analysis was performed with a series of truncated and modified upstream regulatory regions of nifB and nifP. The cis-element can be divided into nine motifs I-IX, and it is located 76 bp upstream of the transcriptional start sites of nifB and nifP. Six motifs of them are essential for transcriptional activation by CnfR. This cis-acting element is conserved in the upstream regions of nif genes in all diazotrophic cyanobacteria, including Anabaena and Cyanothece, thereby suggesting that the transcriptional regulation by CnfR is widespread in nitrogen-fixing cyanobacteria.

  12. Regulation of Azorhizobium caulinodans ORS571 nitrogen fixation (nif/fix) genes.

    NARCIS (Netherlands)

    Stigter, J.

    1994-01-01

    Biological nitrogen fixation is the microbial process by which atmospheric dinitrogen (N 2 ) is reduced to ammonia. In all microbes studied, dinitrogen reduction is catalyzed by a highly conserved enzyme complex, called nitrogenase. The nitrogenase subunits and func

  13. Biochar application rate affects biological nitrogen fixation in red clover conditional on potassium availability

    NARCIS (Netherlands)

    Mia, S.; van Groeningen, J.W.; Van de Voorde, T.F.J.; Oram, N.J.; Bezemer, T.M.; Mommer, L.; Jeffery, S.

    2014-01-01

    Increased biological nitrogen fixation (BNF) by legumes has been reported following biochar application to soils, but the mechanisms behind this phenomenon remain poorly elucidated. We investigated the effects of different biochar application rates on BNF in red clover (Trifolium pratense L.). Red

  14. Regulation of Azorhizobium caulinodans ORS571 nitrogen fixation (NIF/FIX) genes

    NARCIS (Netherlands)

    Stigter, J.

    1994-01-01

    Biological nitrogen fixation is the microbial process by which atmospheric dinitrogen (N 2 ) is reduced to ammonia. In all microbes studied, dinitrogen reduction is catalyzed by a highly conserved enzyme complex, called nitrogenase.

  15. Biochar application rate affects biological nitrogen fixation in red clover conditional on potassium availability

    NARCIS (Netherlands)

    Mia, S.; van Groeningen, J.W.; Van de Voorde, T.F.J.; Oram, N.J.; Bezemer, T.M.; Mommer, L.; Jeffery, S.

    2014-01-01

    Increased biological nitrogen fixation (BNF) by legumes has been reported following biochar application to soils, but the mechanisms behind this phenomenon remain poorly elucidated. We investigated the effects of different biochar application rates on BNF in red clover (Trifolium pratense L.). Red c

  16. Assessment of free-living nitrogen fixing microorganisms for commercial nitrogen fixation. [economic analysis of ammonia production

    Science.gov (United States)

    Stokes, B. O.; Wallace, C. J.

    1978-01-01

    Ammonia production by Klebsiella pneumoniae is not economical with present strains and improving nitrogen fixation to its theoretical limits in this organism is not sufficient to achieve economic viability. Because the value of both the hydrogen produced by this organism and the methane value of the carbon source required greatly exceed the value of the ammonia formed, ammonia (fixed nitrogen) should be considered the by-product. The production of hydrogen by KLEBSIELLA or other anaerobic nitrogen fixers should receive additional study, because the activity of nitrogenase offers a significant improvement in hydrogen production. The production of fixed nitrogen in the form of cell mass by Azotobacter is also uneconomical and the methane value of the carbon substrate exceeds the value of the nitrogen fixed. Parametric studies indicate that as efficiencies approach the theoretical limits the economics may become competitive. The use of nif-derepressed microorganisms, particularly blue-green algae, may have significant potential for in situ fertilization in the environment.

  17. The interactive effects of temperature and light on biological nitrogen fixation in boreal forests.

    Science.gov (United States)

    Gundale, Michael J; Nilsson, Madeleine; Bansal, Sheel; Jäderlund, Anders

    2012-04-01

    Plant productivity is predicted to increase in northern latitudes as a result of climate warming; however, this may depend on whether biological nitrogen (N)-fixation also increases. We evaluated how the variation in temperature and light affects N-fixation by two boreal feather mosses, Pleurozium schreberi and Hylocomium splendens, which are the primary source of N-fixation in most boreal environments. We measured N-fixation rates 2 and 4 wk after exposure to a factorial combination of environments of normal, intermediate and high temperature (16.3, 22.0 and 30.3°C) and light (148.0, 295.7 and 517.3 μmol m(-2) s(-1)). Our results showed that P. schreberi achieved higher N-fixation rates relative to H. splendens in response to warming treatments, but that the highest warming treatment eventually caused N-fixation to decline for both species. Light strongly interacted with warming treatments, having positive effects at low or intermediate temperatures and damaging effects at high temperatures. These results suggest that climate warming may increase N-fixation in boreal forests, but that increased shading by the forest canopy or the occurrence of extreme temperature events could limit increases. They also suggest that P. schreberi may become a larger source of N in boreal forests relative to H. splendens as climate warming progresses. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  18. Pyruvate is synthesized by two pathways in pea bacteroids with different efficiencies for nitrogen fixation.

    Science.gov (United States)

    Mulley, Geraldine; Lopez-Gomez, Miguel; Zhang, Ye; Terpolilli, Jason; Prell, Jurgen; Finan, Turlough; Poole, Philip

    2010-10-01

    Nitrogen fixation in legume bacteroids is energized by the metabolism of dicarboxylic acids, which requires their oxidation to both oxaloacetate and pyruvate. In alfalfa bacteroids, production of pyruvate requires NAD+ malic enzyme (Dme) but not NADP+ malic enzyme (Tme). However, we show that Rhizobium leguminosarum has two pathways for pyruvate formation from dicarboxylates catalyzed by Dme and by the combined activities of phosphoenolpyruvate (PEP) carboxykinase (PckA) and pyruvate kinase (PykA). Both pathways enable N2 fixation, but the PckA/PykA pathway supports N2 fixation at only 60% of that for Dme. Double mutants of dme and pckA/pykA did not fix N2. Furthermore, dme pykA double mutants did not grow on dicarboxylates, showing that they are the only pathways for the production of pyruvate from dicarboxylates normally expressed. PckA is not expressed in alfalfa bacteroids, resulting in an obligate requirement for Dme for pyruvate formation and N2 fixation. When PckA was expressed from a constitutive nptII promoter in alfalfa dme bacteroids, acetylene was reduced at 30% of the wild-type rate, although this level was insufficient to prevent nitrogen starvation. Dme has N-terminal, malic enzyme (Me), and C-terminal phosphotransacetylase (Pta) domains. Deleting the Pta domain increased the peak acetylene reduction rate in 4-week-old pea plants to 140 to 150% of the wild-type rate, and this was accompanied by increased nodule mass. Plants infected with Pta deletion mutants did not have increased dry weight, demonstrating that there is not a sustained change in nitrogen fixation throughout growth. This indicates a complex relationship between pyruvate synthesis in bacteroids, nitrogen fixation, and plant growth.

  19. Nitrogen Fixation into HNO3 and HNO2 by Pulsed High Voltage Discharge

    Institute of Scientific and Technical Information of China (English)

    BIAN Wenjuan; YIN Xiangli

    2007-01-01

    Plasma processing induced by discharge offers a unique way to activate nitrogen molecules. Direct nitrogen fixation into water can be realized through this approach. In this study, air or pure nitrogen gas was used as the major nitrogen source bubbled into the discharge reactor. When a discharge occurred, nitrogen was dissociated to active species to take part in the aqueous chemical process. HNO3 and HNO2 were produced. The nitrogen fixation process was influenced distinctly by the presence of hydroxyl radicals. During a discharge of 21 min, HNO3 was the main product and occupied 95% of the total nitrogen content in water. Its concentration was 1.36 × 10-3 mol/L-1 with bubbling air and was 1.53 × 10-3 mol L-1 with bubbling nitrogen, while the yield was 2.32 × 10-3 mol J-1S-1 and 2.06 × 1(T-8 mol J-1S-1, respectively.

  20. Abiotic nitrogen fixation on terrestrial planets: reduction of NO to ammonia by FeS.

    Science.gov (United States)

    Summers, David P; Basa, Ranor C B; Khare, Bishun; Rodoni, David

    2012-02-01

    Understanding the abiotic fixation of nitrogen and how such fixation can be a supply of prebiotic nitrogen is critical for understanding both the planetary evolution of, and the potential origin of life on, terrestrial planets. As nitrogen is a biochemically essential element, sources of biochemically accessible nitrogen, especially reduced nitrogen, are critical to prebiotic chemistry and the origin of life. Loss of atmospheric nitrogen can result in loss of the ability to sustain liquid water on a planetary surface, which would impact planetary habitability and hydrological processes that shape the surface. It is known that NO can be photochemically converted through a chain of reactions to form nitrate and nitrite, which can be subsequently reduced to ammonia. Here, we show that NO can also be directly reduced, by FeS, to ammonia. In addition to removing nitrogen from the atmosphere, this reaction is particularly important as a source of reduced nitrogen on an early terrestrial planet. By converting NO directly to ammonia in a single step, ammonia is formed with a higher product yield (~50%) than would be possible through the formation of nitrate/nitrite and subsequent conversion to ammonia. In conjunction with the reduction of NO, there is also a catalytic disproportionation at the mineral surface that converts NO to NO₂ and N₂O. The NO₂ is then converted to ammonia, while the N₂O is released back in the gas phase, which provides an abiotic source of nitrous oxide.

  1. The effect of nutrients on carbon and nitrogen fixation by the UCYN-A-haptophyte symbiosis.

    Science.gov (United States)

    Krupke, Andreas; Mohr, Wiebke; LaRoche, Julie; Fuchs, Bernhard M; Amann, Rudolf I; Kuypers, Marcel M M

    2015-07-01

    Symbiotic relationships between phytoplankton and N2-fixing microorganisms play a crucial role in marine ecosystems. The abundant and widespread unicellular cyanobacteria group A (UCYN-A) has recently been found to live symbiotically with a haptophyte. Here, we investigated the effect of nitrogen (N), phosphorus (P), iron (Fe) and Saharan dust additions on nitrogen (N2) fixation and primary production by the UCYN-A-haptophyte association in the subtropical eastern North Atlantic Ocean using nifH expression analysis and stable isotope incubations combined with single-cell measurements. N2 fixation by UCYN-A was stimulated by the addition of Fe and Saharan dust, although this was not reflected in the nifH expression. CO2 fixation by the haptophyte was stimulated by the addition of ammonium nitrate as well as Fe and Saharan dust. Intriguingly, the single-cell analysis using nanometer scale secondary ion mass spectrometry indicates that the increased CO2 fixation by the haptophyte in treatments without added fixed N is likely an indirect result of the positive effect of Fe and/or P on UCYN-A N2 fixation and the transfer of N2-derived N to the haptophyte. Our results reveal a direct linkage between the marine carbon and nitrogen cycles that is fuelled by the atmospheric deposition of dust. The comparison of single-cell rates suggests a tight coupling of nitrogen and carbon transfer that stays balanced even under changing nutrient regimes. However, it appears that the transfer of carbon from the haptophyte to UCYN-A requires a transfer of nitrogen from UCYN-A. This tight coupling indicates an obligate symbiosis of this globally important diazotrophic association.

  2. A Minimal Nitrogen Fixation Gene Cluster from Paenibacillus sp. WLY78 Enables Expression of Active Nitrogenase in Escherichia coli

    OpenAIRE

    Liying Wang; Lihong Zhang; Zhanzhi Liu; Dehua Zhao; Xiaomeng Liu; Bo Zhang; Jianbo Xie; Yuanyuan Hong; Pengfei Li; Sanfeng Chen; Ray Dixon; Jilun Li

    2013-01-01

    Most biological nitrogen fixation is catalyzed by molybdenum-dependent nitrogenase, an enzyme complex comprising two component proteins that contains three different metalloclusters. Diazotrophs contain a common core of nitrogen fixation nif genes that encode the structural subunits of the enzyme and components required to synthesize the metalloclusters. However, the complement of nif genes required to enable diazotrophic growth varies significantly amongst nitrogen fixing bacteria and archae...

  3. The ecology of nitrogen fixation in cynobacterial mats

    NARCIS (Netherlands)

    Stal, L.J.; Severin, I.; Bolhuis, H.; Hallenbeck, P.C.

    2010-01-01

    All cyanobacterial mats that have been investigated have been proven to be diazotrophic, i.e., use atmospheric dinitrogen (N2) as the source of nitrogen. Many cyanobacteria possess the capacity to fix N2 and different species have evolved various ways to cope with the sensitivity of nitrogenase towa

  4. The ecology of nitrogen fixation in cyanobacterial mats

    NARCIS (Netherlands)

    Stal, L.J.; Severin, I.; Bolhuis, H.; Hallenbeck, P.C.

    2010-01-01

    All cyanobacterial mats that have been investigated have been proven to be diazotrophic, i.e., use atmospheric dinitrogen (N2) as the source of nitrogen. Many cyanobacteria possess the capacity to fix N2 and different species have evolved various ways to cope with the sensitivity of nitrogenase towa

  5. Nitrogen fixation rates in the eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Ahmed, A.; Gauns, M.; Kurian, S.; Bardhan, P.; Pratihary, A.K.; Naik, H.; Shenoy, D.M.; Naqvi, S.W.A.

    regions. The highest rates (1739 mol N m-2 d-1; 0�10 m) coincided with the growth phase of Trichodesmium and led to low ?15N (<2�) of particulate organic matter. At stations not experiencing Trichodesmium bloom nitrogen...

  6. Nitrogen fixation in biological soil crusts from southeast Utah, USA

    Science.gov (United States)

    Belnap, J.

    2002-01-01

    Biological soil crusts can be the dominant source of N for arid land ecosystems. We measured potential N fixation rates biweekly for 2 years, using three types of soil crusts: (1) crusts whose directly counted cells were >98% Microcoleus vaginatus (light crusts); (2) crusts dominated by M. vaginatus, but with 20% or more of the directly counted cells represented by Nostoc commune and Scytonema myochrous (dark crusts); and (3) the soil lichen Collema sp. At all observation times, Collema had higher nitrogenase activity (NA) than dark crusts, which had higher NA than light crusts, indicating that species composition is critical when estimating N inputs. In addition, all three types of crusts generally responded in a similar fashion to climate conditions. Without precipitation within a week of collection, no NA was recorded, regardless of other conditions being favorable. Low (26??C) temperatures precluded NA, even if soils were moist. If rain or snow melt had occurred 3 or less days before collection, NA levels were highly correlated with daily average temperatures of the previous 3 days (r2=0.93 for Collema crusts; r2=0.86 for dark crusts and r2=0.83 for light crusts) for temperatures between 1??C and 26??C. If a precipitation event followed a long dry period, NA levels were lower than if collection followed a time when soils were wet for extended periods (e.g., winter). Using a combination of data from a recording weather datalogger, time-domain reflectometry, manual dry-down curves, and N fixation rates at different temperatures, annual N input from the different crust types was estimated. Annual N input from dark crusts found at relatively undisturbed sites was estimated at 9 kg ha-1 year-1. With 20% cover of the N-fixing soil lichen Collema, inputs are estimated at 13 kg ha-1 year-1. N input from light crusts, generally indicating soil surface disturbance, was estimated at 1.4 kg ha-1 year-1. The rates in light crusts are expected to be highly variable, as

  7. Quantifying nitrogen-fixation in feather moss carpets of boreal forests.

    Science.gov (United States)

    DeLuca, Thomas H; Zackrisson, Olle; Nilsson, Marie-Charlotte; Sellstedt, Anita

    2002-10-31

    Biological nitrogen (N) fixation is the primary source of N within natural ecosystems, yet the origin of boreal forest N has remained elusive. The boreal forests of Eurasia and North America lack any significant, widespread symbiotic N-fixing plants. With the exception of scattered stands of alder in early primary successional forests, N-fixation in boreal forests is considered to be extremely limited. Nitrogen-fixation in northern European boreal forests has been estimated at only 0.5 kg N ha(-1) yr(-1); however, organic N is accumulated in these ecosystems at a rate of 3 kg N ha(-1) yr(-1) (ref. 8). Our limited understanding of the origin of boreal N is unacceptable given the extent of the boreal forest region, but predictable given our imperfect knowledge of N-fixation. Herein we report on a N-fixing symbiosis between a cyanobacterium (Nostoc sp.) and the ubiquitous feather moss, Pleurozium schreberi (Bird) Mitt. that alone fixes between 1.5 and 2.0 kg N ha(-1) yr(-1) in mid- to late-successional forests of northern Scandinavia and Finland. Previous efforts have probably underestimated N-fixation potential in boreal forests.

  8. Increasing subtropical North Pacific Ocean nitrogen fixation since the Little Ice Age

    Science.gov (United States)

    Sherwood, Owen A.; Guilderson, Thomas P.; Batista, Fabian C.; Schiff, John T.; McCarthy, Matthew D.

    2014-01-01

    The North Pacific subtropical gyre (NPSG) plays a major part in the export of carbon and other nutrients to the deep ocean. Primary production in the NPSG has increased in recent decades despite a reduction in nutrient supply to surface waters. It is thought that this apparent paradox can be explained by a shift in plankton community structure from mostly eukaryotes to mostly nitrogen-fixing prokaryotes. It remains uncertain, however, whether the plankton community domain shift can be linked to cyclical climate variability or a long-term global warming trend. Here we analyse records of bulk and amino-acid-specific 15N/14N isotopic ratios (δ15N) preserved in the skeletons of long-lived deep-sea proteinaceous corals collected from the Hawaiian archipelago; these isotopic records serve as a proxy for the source of nitrogen-supported export production through time. We find that the recent increase in nitrogen fixation is the continuation of a much larger, centennial-scale trend. After a millennium of relatively minor fluctuation, δ15N decreases between 1850 and the present. The total shift in δ15N of -2 per mil over this period is comparable to the total change in global mean sedimentary δ15N across the Pleistocene-Holocene transition, but it is happening an order of magnitude faster. We use a steady-state model and find that the isotopic mass balance between nitrate and nitrogen fixation implies a 17 to 27 per cent increase in nitrogen fixation over this time period. A comparison with independent records suggests that the increase in nitrogen fixation might be linked to Northern Hemisphere climate change since the end of the Little Ice Age.

  9. Nitrogen fixation in a non-heterocystous cyanobacterial mat from a mountain river

    Science.gov (United States)

    Berrendero, Esther; Valiente, Eduardo Fernández; Perona, Elvira; Gómez, Claudia L.; Loza, Virginia; Muñoz-Martín, M. Ángeles; Mateo, Pilar

    2016-08-01

    In situ nitrogen fixation was investigated in a cyanobacterial mat growing on the bed of rocks of the Muga River, Spain. The filamentous non-heterocystous cyanobacterium Schizothrix dominated the mat, showing nitrogenase activity in the light at similar rates to those found in nearby heterocystous Rivularia colonies. N2 fixation in the light was significantly increased by an inhibitor of PSII and oxygen evolution, DCMU (3-[3,4-dichlorophenyl]-1,1-dimethylurea), and anaerobic conditions. However, no nitrogenase activity was found in the dark. Addition of fructose as a respiratory substrate induced nitrogenase activity in samples incubated under aerobic conditions in the dark but not in anaerobic conditions. Microelectrode oxygen profiles showed internal microaerobic microzones where nitrogen fixation might concentrate. Analyses of the 16S rRNA gene revealed only the presence of sequences belonging to filamentous non-heterocystous cyanobacteria. nifH gene diversity showed that the major phylotypes also belonged to this group. One of the three strains isolated from the Schizothrix mat was capable of fixing N2 and growing in the absence of combined N. This was consistent with the nifH gene analysis. These results suggest a relevant contribution of non-heterocystous cyanobacteria to nitrogen fixation in these mats.

  10. Chasing after Non-cyanobacterial Nitrogen Fixation in Marine Pelagic Environments

    Directory of Open Access Journals (Sweden)

    Pia H. Moisander

    2017-09-01

    Full Text Available Traditionally, cyanobacterial activity in oceanic photic layers was considered responsible for the marine pelagic dinitrogen (N2 fixation. Other potentially N2-fixing bacteria and archaea have also been detected in the pelagic water column, however, the activity and importance of these non-cyanobacterial diazotrophs (NCDs remain poorly constrained. In this perspective we summarize the N2 fixation rates from recently published studies on photic and aphotic layers that have been attributed to NCD activity via parallel molecular measurements, and discuss the status, challenges, and data gaps in estimating non-cyanobacterial N2 fixation NCNF in the ocean. Rates attributed to NCNF have generally been near the detection limit thus far (<1 nmol N L−1 d−1. Yet, if considering the large volume of the dark ocean, even low rates of NCNF could make a significant contribution to the new nitrogen input to the ocean. The synthesis here shows that nifH transcription data for NCDs have been reported in only a few studies where N2 fixation rates were detected in the absence of diazotrophic cyanobacteria. In addition, high apparent diversity and regional variability in the NCDs complicate investigations of these communities. Future studies should focus on further investigating impacts of environmental drivers including oxygen, dissolved organic matter, and dissolved inorganic nitrogen on NCNF. Describing the ecology of NCDs and accurately measuring NCNF rates, are critical for a future evaluation of the contribution of NCNF to the marine nitrogen budget.

  11. Nitrogen fixation in a non-heterocystous cyanobacterial mat from a mountain river

    Science.gov (United States)

    Berrendero, Esther; Valiente, Eduardo Fernández; Perona, Elvira; Gómez, Claudia L.; Loza, Virginia; Muñoz-Martín, M. Ángeles; Mateo, Pilar

    2016-01-01

    In situ nitrogen fixation was investigated in a cyanobacterial mat growing on the bed of rocks of the Muga River, Spain. The filamentous non-heterocystous cyanobacterium Schizothrix dominated the mat, showing nitrogenase activity in the light at similar rates to those found in nearby heterocystous Rivularia colonies. N2 fixation in the light was significantly increased by an inhibitor of PSII and oxygen evolution, DCMU (3-[3,4-dichlorophenyl]-1,1-dimethylurea), and anaerobic conditions. However, no nitrogenase activity was found in the dark. Addition of fructose as a respiratory substrate induced nitrogenase activity in samples incubated under aerobic conditions in the dark but not in anaerobic conditions. Microelectrode oxygen profiles showed internal microaerobic microzones where nitrogen fixation might concentrate. Analyses of the 16S rRNA gene revealed only the presence of sequences belonging to filamentous non-heterocystous cyanobacteria. nifH gene diversity showed that the major phylotypes also belonged to this group. One of the three strains isolated from the Schizothrix mat was capable of fixing N2 and growing in the absence of combined N. This was consistent with the nifH gene analysis. These results suggest a relevant contribution of non-heterocystous cyanobacteria to nitrogen fixation in these mats. PMID:27476439

  12. ENUMERATION OF MICROBES AND GAS PRODUCTION DURING DENITRIFICATION AND NITROGEN FIXATION PROCESSES IN SOIL

    Directory of Open Access Journals (Sweden)

    A. E. Ghaly

    2012-01-01

    Full Text Available Dry plant material contains 2-4% nitrogen, making it an essential nutrient for all plants. The nitrogen cycle regulates the pathways which transform nitrogen from a relatively inert dinitrogen gas to forms of organic nitrogen such as proteins and nucleic acids. Denitrification and nitrogen fixation are the two most important processes that remove and add nitrogen to the soil, respectively. The aim of the study was to gain information on the denitrification and nitrogen fixing activities in soil and sediment employing the acetylene technique and assuring the gas chromatography analysis by total plate count and most probably number. The results indicated that acetylene (0.1 atm inhibited N2O reduction and caused stoichiometric accumulation of N2O during the conversion of NO3- to N2. N2O was an obligatory intermediate in the sequence of steps between N2O- and N2. The appearance of CO2 and accumulation of N2O would be suitable criteria for the presence of denitrifiers in appropriately enriched media and the acetylene reduction test is a suitable assay for nitrogen fixing activity. There was an obligatory requirement for organic carbon as a carbon and energy source for denitrification and nitrogen fixation to take place. The results showed that acetylglucosamine can be used as a carbon and energy source for denitrification but not as a nitrogen source (C:N ratio of 5:1. NH4+ has no effect on denitrification activity but it inhibited the nitrogenase activity. The presence of air in the gas phase affects both the denitrification and nitrogen fixing activity while adding H2O encouraged anaerobic conditions.

  13. The role of nitrogen fixation in cyanobacterial bloom toxicity in a temperate, eutrophic lake.

    Directory of Open Access Journals (Sweden)

    Lucas J Beversdorf

    Full Text Available Toxic cyanobacterial blooms threaten freshwaters worldwide but have proven difficult to predict because the mechanisms of bloom formation and toxin production are unknown, especially on weekly time scales. Water quality management continues to focus on aggregated metrics, such as chlorophyll and total nutrients, which may not be sufficient to explain complex community changes and functions such as toxin production. For example, nitrogen (N speciation and cycling play an important role, on daily time scales, in shaping cyanobacterial communities because declining N has been shown to select for N fixers. In addition, subsequent N pulses from N(2 fixation may stimulate and sustain toxic cyanobacterial growth. Herein, we describe how rapid early summer declines in N followed by bursts of N fixation have shaped cyanobacterial communities in a eutrophic lake (Lake Mendota, Wisconsin, USA, possibly driving toxic Microcystis blooms throughout the growing season. On weekly time scales in 2010 and 2011, we monitored the cyanobacterial community in a eutrophic lake using the phycocyanin intergenic spacer (PC-IGS region to determine population dynamics. In parallel, we measured microcystin concentrations, N(2 fixation rates, and potential environmental drivers that contribute to structuring the community. In both years, cyanobacterial community change was strongly correlated with dissolved inorganic nitrogen (DIN concentrations, and Aphanizomenon and Microcystis alternated dominance throughout the pre-toxic, toxic, and post-toxic phases of the lake. Microcystin concentrations increased a few days after the first significant N(2 fixation rates were observed. Then, following large early summer N(2 fixation events, Microcystis increased and became most abundant. Maximum microcystin concentrations coincided with Microcystis dominance. In both years, DIN concentrations dropped again in late summer, and N(2 fixation rates and Aphanizomenon abundance increased

  14. Nitrogen fixation in sediments along a depth transect through the Peruvian oxygen minimum zone

    OpenAIRE

    Gier, Jessica; Sommer, Stefan; Carolin R Löscher; Dale, Andrew W.; Schmitz, Ruth A.; Treude, Tina

    2016-01-01

    The potential coupling of nitrogen (N2) fixation and sulfate reduction (SR) was explored in sediments of the Peruvian oxygen minimum zone (OMZ). Sediment samples were retrieved by a multiple corer at six stations along a depth transect (70–1025 m water depth) at 12° S, covering anoxic and hypoxic bottom water conditions. Benthic N2 fixation, determined by the acetylene reduction assay, was detected at all sites, with highest rates between 70 and 253 m and lower rates at grea...

  15. The role of nitrogen fixation in neotropical dry forests: insights from ecosystem modeling and field data

    Science.gov (United States)

    Trierweiler, A.; Xu, X.; Gei, M. G.; Powers, J. S.; Medvigy, D.

    2016-12-01

    Tropical dry forests (TDFs) have immense functional diversity and face multiple resource constraints (both water and nutrients). Legumes are abundant and exhibit a wide diversity of N2-fixing strategies in TDFs. The abundance and diversity of legumes and their interaction with N2-fixing bacteria may strongly control the coupled carbon-nitrogen cycle in the biome and influence whether TDFs will be particularly vulnerable or uniquely adapted to projected global change. However, the importance of N2-fixation in TDFs and the carbon cost of acquiring N through symbiotic relationships are not fully understood. Here, we use models along with field measurements to examine the role of legumes, nitrogen fixation, and plant-symbiont nutrient exchanges in TDFs. We use a new version of the Ecosystem Demography (ED2) model that has been recently parameterized for TDFs. The new version incorporates plant-mycorrhizae interactions and multiple resource constraints (carbon, nitrogen, phosphorus, and water). We represent legumes and other functional groups found in TDFs with a range of resource acquisition strategies. In the model, plants then can dynamically adjust their carbon allocation and nutrient acquisition strategies (e.g. N2-fixing bacteria and mycorrhizal fungi) according to the nutrient limitation status. We test (i) the model's performance against a nutrient gradient of field sites in Costa Rica and (ii) the model's sensitivity to the carbon cost to acquire N through fixation and mycorrhizal relationships. We also report on simulated tree community responses to ongoing field nutrient fertilization experiments. We found that the inclusion of the N2-fixation legume plant functional traits were critical to reproducing community dynamics of Costa Rican field TDF sites and have a large impact on forest biomass. Simulated ecosystem fixation rates matched the magnitude and temporal patterns of field measured fixation. Our results show that symbiotic nitrogen fixation plays an

  16. Tree species control rates of free-living nitrogen fixation in a tropical rain forest.

    Science.gov (United States)

    Reed, Sasha C; Cleveland, Cory C; Townsend, Alan R

    2008-10-01

    Tropical rain forests represent some of the most diverse ecosystems on earth, yet mechanistic links between tree species identity and ecosystem function in these forests remains poorly understood. Here, using free-living nitrogen (N) fixation as a model, we explore the idea that interspecies variation in canopy nutrient concentrations may drive significant local-scale variation in biogeochemical processes. Biological N fixation is the largest "natural" source of newly available N to terrestrial ecosystems, and estimates suggest the highest such inputs occur in tropical ecosystems. While patterns of and controls over N fixation in these systems remain poorly known, the data we do have suggest that chemical differences among tree species canopies could affect free-living N fixation rates. In a diverse lowland rain forest in Costa Rica, we established a series of vertical, canopy-to-soil profiles for six common canopy tree species, and we measured free-living N fixation rates and multiple aspects of chemistry of live canopy leaves, senesced canopy leaves, bulk leaf litter, and soil for eight individuals of each tree species. Free-living N fixation rates varied significantly among tree species for all four components, and independent of species identity, rates of N fixation ranged by orders of magnitude along the vertical profile. Our data suggest that variations in phosphorus (P) concentration drove a significant fraction of the observed species-specific variation in free-living N fixation rates within each layer of the vertical profile. Furthermore, our data suggest significant links between canopy and forest floor nutrient concentrations; canopy P was correlated with bulk leaf litter P below individual tree crowns. Thus, canopy chemistry may affect a suite of ecosystem processes not only within the canopy itself, but at and beneath the forest floor as well.

  17. Nitrogen fixation in sediments along a depth transect through the Peruvian oxygen minimum zone

    Science.gov (United States)

    Gier, J.; Sommer, S.; Löscher, C. R.; Dale, A. W.; Schmitz, R. A.; Treude, T.

    2015-09-01

    Benthic nitrogen (N2) fixation and sulfate reduction (SR) were investigated in the Peruvian oxygen minimum zone (OMZ). Sediment samples, retrieved by a multiple corer were taken at six stations (70-1025 m) along a depth transect at 12° S, covering anoxic and hypoxic bottom water conditions. Benthic N2 fixation was detected at all sites, with high rates measured in OMZ mid-waters between the 70 and 253 m and lowest N2 fixation rates below 253 m down to 1025 m water depth. SR rates were decreasing with increasing water depth, with highest rates at the shallow site. Benthic N2 fixation depth profiles largely overlapped with SR depth profiles, suggesting that both processes are coupled. The potential of N2 fixation by SR bacteria was verified by the molecular analysis of nifH genes. Detected nifH sequences clustered with SR bacteria that have been demonstrated to fix N2 in other benthic environments. Depth-integrated rates of N2 fixation and SR showed no direct correlation along the 12° S transect, suggesting that the benthic diazotrophs in the Peruvian OMZ are being controlled by additional various environmental factors. The organic matter availability and the presence of sulfide appear to be major drivers for benthic diazotrophy. It was further found that N2 fixation was not inhibited by high ammonium concentrations. N2 fixation rates in OMZ sediments were similar to rates measured in other organic-rich sediments. Overall, this work improves our knowledge on N sources in marine sediments and contributes to a better understanding of N cycling in OMZ sediments.

  18. Project in determination of crystal structure of nitrogen fixation proteins from azospirilum brasiliense and herbaspirilum seropedicae by synchrotron x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Valma M.; Leggs, Luciana A.; Delboni, Luis F.; Chubatsu, LedaS.; Souza, Emanuel M.; Machado, Hidevaldo B.; Yates, Geoffrey M.; Pedrosa, Fabio O. [Parana Univ., Curitiba, PR (Brazil). Dept. de Bioquimica

    1996-12-31

    Full text. Biological nitrogen fixation is essential for maintaining the nitrogen cycle on earth and of high importance for Brazilian agriculture. The nitrogenase enzyme system, which provides the biochemical machinery for nitrogen fixation, consists of two component metalloproteins, the molybdenumiron (Mo Fe) protein and the iron (Fe) protein. Nitrogen fixation is a very energy-intensive process, requiring around 16 moles of ATP for each mol of N{sub 2} fixed (reduced). As a consequence, synthesis and activity of nitrogenase is tighty regulated at two levels: general and specific. The general level regulation is mediated by the ntr (nitrogen regulation) system. Two gene products are involved: the ntrB gene product (NtrB) is responsible for the activation of the ntrC gene product (NtrC) by phosphorylating a conserved Asp54, which activates the expression of the nifA gene. The nif specific control system is mediated by the NifA protein, which binds to a DNA specific sequence (UAS, Upstream Activator Sequence) and activates nif promoter transcriptions by RNA polymerase-{sup {alpha}54}, following ATP hydrolysis. The aim of this project is to solve the crystal structure of dinitrogenase reductase (iron protein) and dinitrogenase (molybdenum-iron protein) from Azospirilim brasiliense and the regulatory proteins NifA from Herbaspirillum seropedicae and NtrC Azospirillum brasiliense. The three dimensional structure of the proteins involved in this project will allow a better understanding of the mechanism of biological nitrogen fixation. To this end, the data collection will probably be done at the LNLS facilities which will be available in the near future. (author)

  19. Photosynthate partitioning and nitrogen fixation of alfalfa and birdsfoot trefoil. [Lotus corniculatus L. ; Medicago sativa L

    Energy Technology Data Exchange (ETDEWEB)

    Shieh, W.J.

    1985-01-01

    Nodule mass and number are usually correlated with rates of nitrogen fixation in legumes. Birdsfoot trefoil (Lotus corniculatus L.) with more than twice the nodule number and mass, however, fixes far less nitrogen than alfalfa (Medicago sativa L.) at the same age. In this research, photosynthesis and photosynthate partitioning and utilization in relation to nitrogen fixation of alfalfa and birdsfoot trefoil were examined in order to determine their relationship to nitrogen fixation potential. Photosynthate to nodules was studied using /sup 14/CO/sub 2/ labeling techniques. Partitioning patterns were altered by shading and dark depletion treatments. Efficiency of photosynthate utilization was examined by determining turnover of /sup 14/C photosynthate in nodule metabolites and by studying rates of cyanide-resistant and cyanide-sensitive O/sub 2/ uptake. Alfalfa nodule activity was greater than trefoil expressed on a hole pot or nodule dry weight basis. Both shading and dark treatments significantly reduced nodule activity as estimated by the acetylene reduction assay. Shoots of both species were found to be the dominant sinks for photosynthate. Percentage /sup 14/C recovered in alfalfa roots was more than twice that of trefoil at 1,2,3,4 and 24 h after labeling. Greater relative specific radioactivity (RSA) in nodules of both species suggests that they were stronger sinks for current photosynthate than roots.

  20. Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr

    Science.gov (United States)

    Stüeken, Eva E.; Buick, Roger; Guy, Bradley M.; Koehler, Matthew C.

    2015-04-01

    Nitrogen is an essential nutrient for all organisms that must have been available since the origin of life. Abiotic processes including hydrothermal reduction, photochemical reactions, or lightning discharge could have converted atmospheric N2 into assimilable NH4+, HCN, or NOx species, collectively termed fixed nitrogen. But these sources may have been small on the early Earth, severely limiting the size of the primordial biosphere. The evolution of the nitrogen-fixing enzyme nitrogenase, which reduces atmospheric N2 to organic NH4+, thus represented a major breakthrough in the radiation of life, but its timing is uncertain. Here we present nitrogen isotope ratios with a mean of 0.0 +/- 1.2‰ from marine and fluvial sedimentary rocks of prehnite-pumpellyite to greenschist metamorphic grade between 3.2 and 2.75 billion years ago. These data cannot readily be explained by abiotic processes and therefore suggest biological nitrogen fixation, most probably using molybdenum-based nitrogenase as opposed to other variants that impart significant negative fractionations. Our data place a minimum age constraint of 3.2 billion years on the origin of biological nitrogen fixation and suggest that molybdenum was bioavailable in the mid-Archaean ocean long before the Great Oxidation Event.

  1. Nitrogen fixation in lichens is important for improved rock weathering

    Indian Academy of Sciences (India)

    Gamini Seneviratne; I K Indrasena

    2006-12-01

    It is known that cyanobacteria in cyanolichens fix nitrogen for their nutrition. However, specific uses of the fixed nitrogen have not been examined. The present study shows experimentally that a mutualistic interaction between a heterotrophic N2 fixer and lichen fungi in the presence of a carbon source can contribute to enhanced release of organic acids, leading to improved solubilization of the mineral substrate. Three lichen fungi were isolated from Xanthoparmelia mexicana, a foliose lichen, and they were cultured separately or with a heterotrophic N2 fixer in nutrient broth media in the presence of a mineral substrate. Cells of the N2-fixing bacteria attached to the mycelial mats of all fungi, forming biofilms. All biofilms showed higher solubilizations of the substrate than cultures of their fungi alone. This finding has bearing on the significance of the origin and existence of N2-fixing activity in the evolution of lichen symbiosis. Further, our results may explain why there are N2-fixing photobionts even in the presence of non-fixing photobionts (green algae) in some remarkable lichens such as Placopsis gelida. Our study sheds doubt on the idea that the establishment of terrestrial eukaryotes was possible only through the association between a fungus and a phototroph.

  2. Climatic and Grazing Controls on Biological Soil Crust Nitrogen Fixation in Semi-arid Ecosystems

    Science.gov (United States)

    Schwabedissen, S. G.; Reed, S.; Lohse, K. A.; Magnuson, T. S.

    2014-12-01

    Nitrogen, next to water, is believed to be the main limiting resource in arid and semi-arid ecosystems. Biological soil crusts (biocrusts) -a surface community of mosses, lichens and cyanobacteria-have been found to be the main influx of "new" nitrogen (N) into many dryland ecosystems. Controls on biocrust N fixation rates include climate (temperature and moisture), phosphorus availability, and disturbance factors such as trampling, yet a systematic examination of climatic and disturbance controls on biocrusts communities is lacking. Biocrust samples were collected along an elevation gradient in the Reynolds Creek Experimental Watershed near Murphy, Idaho. Four sites were selected from a sagebrush steppe ecosystem with precipitation ranging from ≤250mm/yr to ≥1100mm/yr. Each site included 5 grazed plots and one historic exclosure plot that has been free from grazing for more than 40 years. Five samples each were collected from under plants and from interplant spaces from the grazed plots and exclosures and analyzed for potential N fixation using an acetylene reduction assay. We hypothesized that N fixation rates would be the highest in the exclosures of the two middle sites along the elevation gradient, due to the lack of disturbance and optimal temperature and moisture, respectively. As predicted, results showed higher rates of potential N fixation in exclosures than non-exclosures at a mid-elevation 8.4 ± 3.1 kg N/ha/yr in the exclosures compared to 1.8 ± 1.5 kg N/ha/yr indicating that grazing may reduce N fixation activity. Interestingly, rates were 2-5 times lower under plant canopies compared to interplant spaces at all but the highest elevation site. Findings from our study suggest that biocrust N fixation may be a dominant input of N into theses dryland systems and, in line with our hypotheses, that climate, location within the landscape, and disturbance may interact to regulate the rates of this fundamental ecosystem process.

  3. Is there a link between free-living nitrogen fixation rates and nitrogen mineralization rates?

    Science.gov (United States)

    Smercina, D.; Tiemann, L. K.; Friesen, M.; Evans, S. E.; West, W.

    2016-12-01

    Plant accessible nitrogen (N) is controlled by the rates of N fixation (N-fix) and N mineralization (N-min), yet the relationship between these two processes is relatively unexplored. In particular, we know relatively little about the rates of free-living N-fix, thought to be supported mainly by plant root exudates. Furthermore, there is no consensus on the link between N-fix and N-min rates in terrestrial soil systems. To address this knowledge gap, we are using a three-pronged approach, including a meta-analysis, a greenhouse study and field experiments. Following an extensive literature search, we found 12 papers that simultaneously reported N-fix and N-min rates. Surprisingly, these data indicated a positive relationship between N-fix and N-min rates; however, the scarcity of data limits our ability to draw any strong conclusions. We have explored the relationship between N-fix and N-min in a controlled greenhouse experiment using switchgrass (Panicum virgatum) because recent evidence suggests switchgrass may support free-living N-fix when N limited. Indeed, in our study, switchgrass and soils exposed to N limiting conditions experienced no adverse effects, namely no differences in plant growth or tissue chemistry (C:N), or soil enzyme activities compared to non-N limiting conditions. Soils used in this study are from marginal lands, low in soil organic matter and N, so it is likely N deficits are compensated for via N-fix. Analysis of 15N2 -fix and gross N-min rates, determined via 15N pool dilution, will elucidate this source of N. Finally, our field experiment encompasses six marginal land sites across MI and WI, part of the Great Lakes Bioenergy Research Center. In 2016, we measured N-fix and N-min rates in switchgrass monoculture plots at all six sites once, at the peak of growing season, and bi-weekly, from April to September, at two MI field sites. Data collected to date from two MI sites show no difference in N-min rates in N fertilized versus

  4. Bedrock nitrogen inputs support litter nitrogen fixation and temperate forest ecosystem fertility

    Science.gov (United States)

    Dynarski, K. A.; Mitchell, S. A.; Morford, S.; Houlton, B. Z.

    2015-12-01

    Nitrogen (N) is one of the most frequently limiting nutrients to terrestrial ecosystem productivity worldwide. As atmospheric carbon dioxide concentrations continue to rise, progressive N limitation is expected to constrain the ability of terrestrial ecosystems to store additional C, making an understanding of N inputs to terrestrial ecosystems increasingly important. In temperate forests, rock reservoirs and biological N fixation (BNF) represent two significant, but poorly characterized, inputs of bioavailable N. Recent research has demonstrated that bedrock can provide a substantial amount of ecosystem-available N in moderate-to-high relief areas with N-rich sedimentary bedrock. In these same ecosystems, asymbiotic BNF performed by heterotrophic microbes in plant litter can provide an additional N input of up to ~2 kg N ha-1 yr-1. Here, we tested the hypothesis that rock N inputs support increased litter BNF via enhanced ecosystem N fertility. We measured rates of BNF along with rock, soil, foliage, and litter chemistry across sites varying substantially in rock N concentrations (from 32 to 800 ppm N). The sites are dominated by Douglas fir and share similar climates and landscape positions (eroding slopes), yet display marked increases in foliar and soil N content as a function of rock N concentrations (foliar: R2=0.18, p<0.001, soil: R2=0.50, p=0.001). We found a significant positive correlation between rock N content and litter BNF rates (R2=0.11, p=0.0035), with rates of BNF at sites with greater than 400 ppm N in bedrock more than double rates of BNF at sites with lower than 400 ppm N in bedrock (p<0.001). These patterns could not be explained by increases in other rock-derived nutrients such as phosphorus or molybdenum, as neither of these known BNF controls increased over the rock N gradient. We found declining foliar lignin:N ratios with increased rock N, suggesting that rock N inputs can increase litter quality, supporting greater microbial activity

  5. High potential of nitrogen fixation in pristine, ombrotrophic bogs in Southern Patagonia

    Science.gov (United States)

    Knorr, Klaus-Holger; Horn, Marcus A.; Bahamonde Aguilar, Nelson A.; Borken, Werner

    2015-04-01

    Nitrogen (N) input in pristine peatlands occurs via natural input of inorganic N through atmospheric deposition or biological dinitrogen (N2) fixation. However, N2 fixation is to date mostly attributed to bacteria and algae associated to Sphagnum and its contribution to plant productivity and peat buildup has been often underestimated in previous studies. Based on net N storage, exceptionally low N deposition, and high abundance of vascular plants at pristine peatlands in Southern Patagonia, we hypothesized that there must be a high potential of non-symbiotic N2 fixation not limited to the occurrence of Sphagnum. To this end, we chose two ombrotrophic bogs with spots that are dominated either by Sphagnum or by vascular, cushion-forming plants and sampled peat from different depths for incubation with 15N2 to determine N2 fixation potentials. Moreover, we analyzed 15N2 fixation by a nodule-forming, endemic conifer inhabiting the peatlands. Results from 15N2 uptake were compared to the conventional approach to study N2 fixation by the acetylene reduction assay (ARA). Using 15N2 as a tracer, high non-symbiotic N2 fixation rates of 0.3-1.4 μmol N g-1 d-1 were found down to 50 cm under micro-oxic conditions (2 vol.%) in samples from both plots either covered by Sphagnum magellanicum or by vascular cushion plants. Peat N concentrations suggested a higher potential of non-symbiotic N2 fixation under cushion plants, likely because of the availability of easily decomposable organic compounds as substrates and oxic conditions in the rhizosphere. In the Sphagnum plots, high N2 fixation below 10 cm depth would rather reflect a potential fixation that may switch on during periods of low water levels when oxygen penetrates deeper into the peat. 15N natural abundance of live Sphagnum from 0-10 cm pointed to N uptake solely from atmospheric deposition and non-symbiotic N2 fixation. 15N signatures of peat from the cushion plant plots indicated additional N supply from N

  6. In Situ Denitrification and Biological Nitrogen Fixation Under Enhanced Atmospheric Reactive Nitrogen Deposition in UK Peatlands

    Science.gov (United States)

    Ullah, Sami; Saiz Val, Ernesto; Sgouridis, Fotis; Peichl, Matthias; Nilsson, Mats

    2017-04-01

    Dinitrogen (N2) and nitrous oxide (N2O) losses due to denitrification and biological N2 fixation (BNF) are the most uncertain components of the nitrogen (N) cycle in peatlands under enhanced atmospheric reactive nitrogen (Nr) deposition. This uncertainty hampers our ability to assess the contribution of denitrification to the removal of biologically fixed and/or atmospherically deposited Nr in peatlands. This uncertainty emanates from the difficulty in measuring in situ soil N2 and N2O production and consumption in peatlands. In situ denitrification and its contribution to total N2O flux was measured monthly between April 2013 and October 2014 in peatlands in two UK catchments. An adapted 15N-Gas Flux method1 with low level addition of 15N tracer (0.03 ± 0.005 kg 15N ha-1) was used to measure denitrification and its contribution to net N2O production (DN2O/TN2O). BNF was measured in situ through incubation of selected sphagnum species under 15N2 gas tracer. Denitrification2 varied temporally and averaged 8 kg N-N2 ha-1 y-1. The contribution of denitrification was about 48% to total N2O flux3 of 0.05 kg N ha-1 y-1. Soil moisture, temperature, ecosystem respiration, pH and mineral N content mainly regulated the flux of N2 and N2O. Preliminary results showed suppression of BNF, which was 1.8 to 7 times lower in peatland mosses exposed to ˜15 to 20 kg N ha-1 y-1 Nr deposition in the UK than in peatland mosses in northern Sweden with background Nr deposition. Overall, the contribution of denitrification to Nr removal in the selected peatlands was ˜50% of the annual Nr deposition rates, making these ecosystems vulnerable to chronic N saturation. These results point to a need for a more comprehensive annual BNF measurement to more accurately account for total Nr input into peatlands and its atmospheric loss due to denitrification. References Sgouridis F, Stott A & Ullah S, 2016. Application of the 15N-Gas Flux method for measuring in situ N2 and N2O fluxes due to

  7. Ecology of nitrogen fixation in soils and rhizospheres. Pt. 5

    Energy Technology Data Exchange (ETDEWEB)

    Werner, D.; Stripf, R.; Abramowski, R.; Fiedler, U.

    1980-12-01

    The effects of reduced oxygen concentration on root growth and activities of enzymes of N-metabolism of wheat (Triticum aestivum var. Kolibri) have been studied, for low O/sub 2/ tensions are required for N/sub 2/ fixation by microaerophilic bacteria (e.g. Azospirillum) associated with root systems of grasses. In hydrocultures with oxygen concentrations in the range of 0.2 to 1 mg O/sub 2/ x 1/sup -1/ compared to aerated cultures (8-9 mg O/sub 2/ x 1/sup -1/) root growth was reduced from 10 mg fresh weight x day/sup -1/ x plant/sup -1/ to one tenth 15 to 30 d after sowing. Specific activity of NADH and NADPH dependent glutamate dehydrogenase (E.C. 1.4.1.2 and 1.4.1.4) is reduced by 50% in the cultures with low oxygen concentrations 20 to 30 days after sowing, whereas specific activity of aspartate aminotransferase (E.C. 2.6.1.1) and alanine amino transferase (E.C. 2.6.1.2) is enhanced by a factor of two to three. Specific activity of glutamine synthetase is almost unaffected. Specific activity of glutamate dehydrogenase is lowest in the root tips, medium in young root hair zone and highest in the old root hair zone, glutamine synthetase activity is reverse in the three zones with differences by a factor of 3-5; aspartate aminotransferase is similarly active in the three zones. Nitrate concentration used (100 ..mu..M) for cultivation of the wheat plants was tested with Azospirillum brasilense in pure culture on agar surfaces exposed to air at the same pH (5.8), used for cultivation of the wheat plants. Activiy after a 14 day period (peak activity 70 mmol C/sub 2/H/sub 4/ x mg protein/sup -1/ x h/sup -1/) was not affected, however 1 mM and 5 mM nitrate added reduced the total activity to 50% and 10% respectively.

  8. Nitrogen fixation and nitrogenase (nifH) expression in tropical waters of the eastern North Atlantic

    OpenAIRE

    A Turk, Kendra; Rees, Andrew P; Jonathan P Zehr; Pereira, Nicole; Swift, Paul; Shelley, Rachel; Lohan, Maeve; Woodward, E. Malcolm S.; Gilbert, Jack

    2011-01-01

    Expression of nifH in 28 surface water samples collected during fall 2007 from six stations in the vicinity of the Cape Verde Islands (north-east Atlantic) was examined using reverse transcription-polymerase chain reaction (RT-PCR)-based clone libraries and quantitative RT-PCR (RT-qPCR) analysis of seven diazotrophic phylotypes. Biological nitrogen fixation (BNF) rates and nutrient concentrations were determined for these stations, which were selected based on a range in surface chlorophyll c...

  9. Ocean acidification impacts on nitrogen fixation in the coastal western Mediterranean Sea

    OpenAIRE

    Rees, AP; Turk-Kubo, KA; Al-Moosawi, L; Alliouane, S.; F. Gazeau; Hogan, ME; Zehr, JP

    2016-01-01

    The effects of ocean acidification on nitrogen (N2) fixation rates and on the community composition of N2-fixing microbes (diazotrophs) were examined in coastal waters of the North-Western Mediterranean Sea. Nine experimental mesocosm enclosures of ∼50 m3 each were deployed for 20 days during June-July 2012 in the Bay of Calvi, Corsica, France. Three control mesocosms were maintained under ambient conditions of carbonate chemistry. The remainder were manipulated with CO2 saturated seawater to...

  10. Spatial and seasonal variations of Cyanobacteria and their nitrogen fixation rates in Sanya Bay, South China Sea

    Directory of Open Access Journals (Sweden)

    Junde Dong

    2008-06-01

    Full Text Available The nitrogen fixation rates of planktonic and intertidal benthic cyanobacteria were investigated in Sanya Bay from 2003 to 2005. Trichodesmium thiebautii was the dominant species of planktonic cyanobacteria during our study. Significant seasonal and spatial variations in Trichodesmium spp. abundance were observed (P<0.01. The highest Trichodesmium concentrations occurred during intermonsoon periods and in the outer region of Sanya Bay (Outer Bay stations. At fixed station S03 the abundance of T. thiebautii ranged from 1.14×103 to 2060×103 trichomes m–2, with an annual mean of 273×103 trichomes m–2. The average nitrogen fixation rate per colony of T. thiebautii was 0.27 nmol N h-1 colony-1 and it did not show any obvious seasonal variations. Nitrogen fixation by planktonic cyanobacteria was highest in the Outer Bay stations, where the estimated amount of new nitrogen introduced by Trichodesmium contributed 0.03 to 1.63% of the total primary production and up to 11.64% of the new production. Statistical results showed that significant seasonal and spatial variations of nitrogen fixation rates were found among the intertidal communities. The main benthic nitrogen-fixing cyanobacteria were identified as members of the genera Anabaena, Calothrix, Lyngbya, Nostoc and Oscillatoria. The highest nitrogen fixation rate was found in microbial mats and the lowest in reefs and rocky sediments. All the benthic communities studied presented their highest nitrogen fixation activity in summer, with an average nitrogen fixation rate of 33.31 µmol N h-1 m-2, whereas the lowest nitrogen activity was detected in winter, with an average nitrogen fixation rate of 5.66 µmol N h-1 m-2. A Pearson correlation analysis indicated that the nitrogen fixation rate of three types of intertidal communities was significantly positively correlated to seawater temperature (P<0.05, whereas only the nitrogen fixation rate of the reefs and rock communities was significantly

  11. Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development

    DEFF Research Database (Denmark)

    Ott, Thomas; van Dongen, Joost T; Günther, Catrin

    2005-01-01

    fixation (SNF). In legumes, SNF occurs in specialized organs, called nodules, which contain millions of nitrogen-fixing rhizobia, called bacteroids. The induction of nodule-specific plant genes, including those encoding symbiotic leghemoglobins (Lb), accompanies nodule development. Leghemoglobins...

  12. EnviroAtlas - Cultivated biological nitrogen fixation in agricultural lands by 12-digit HUC in the Conterminous United States, 2006

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset contains data on the mean cultivated biological nitrogen fixation (C-BNF) in cultivated crop and hay/pasture lands per 12-digit Hydrologic...

  13. Nodule and Leaf Nitrate Reductases and Nitrogen Fixation in Medicago sativa L. under Water Stress.

    Science.gov (United States)

    Aparicio-Tejo, P; Sánchez-Díaz, M

    1982-02-01

    The effect of water stress on patterns of nitrate reductase activity in the leaves and nodules and on nitrogen fixation were investigated in Medicago sativa L. plants watered 1 week before drought with or without NO(3) (-). Nitrogen fixation was decreased by water stress and also inhibited strongly by the presence of NO(3) (-). During drought, leaf nitrate reductase activity (NRA) decreased significantly particularly in plants watered with NO(3) (-), while with rewatering, leaf NRA recovery was quite important especially in the NO(3) (-)-watered plants. As water stress progressed, the nodular NRA increased both in plants watered with NO(3) (-) and in those without NO(3) (-) contrary to the behavior of the leaves. Beyond -15.10(5) pascal, nodular NRA began to decrease in plants watered with NO(3) (-). This phenomenon was not observed in nodules of plants given water only.Upon rewatering, it was observed that in plants watered with NO(3) (-) the nodular NRA increased again, while in plants watered but not given NO(3) (-), such activity began to decrease. Nitrogen fixation increased only in plants without NO(3) (-).

  14. Global terrestrial carbon and nitrogen cycling insensitive to estimates of biological N fixation

    Science.gov (United States)

    Steinkamp, J.; Weber, B.; Werner, C.; Hickler, T.

    2015-12-01

    Dinitrogen (N2) is the most abundant molecule in the atmosphere and incorporated in other molecules an essential nutrient for life on earth. However, only few natural processes can initiate a reaction of N2. These natural processes are fire, lightning and biological nitrogen fixation (BNF) with BNF being the largest source. In the course of the last century humans have outperformed the natural processes of nitrogen fixation by the production of fertilizer. Industrial and other human emission of reactive nitrogen, as well as fire and lightning lead to a deposition of 63 Tg (N) per year. This is twice the amount of BNF estimated by the default setup of the dynamic global vegetation model LPJ-GUESS (30 Tg), which is a conservative approach. We use different methods and parameterizations for BNF in LPJ-GUESS: 1.) varying total annual amount; 2.) annual evenly distributed and daily calculated fixation rates; 3.) an improved dataset of BNF by cryptogamic covers (free-living N-fixers). With this setup BNF is ranging from 30 Tg to 60 Tg. We assess the impact of BNF on carbon storage and grand primary production (GPP) of the natural vegetation. These results are compared to and evaluated against available independent datasets. We do not see major differences in the productivity and carbon stocks with these BNF estimates, suggesting that natural vegetation is insensitive to BNF on a global scale and the vegetation can compensate for the different nitrogen availabilities. Current deposition of nitrogen compounds and internal cycling through mineralization and uptake is sufficient for natural vegetation productivity. However, due to the coarse model grid and spatial heterogeneity in the real world this conclusion does not exclude the existence of habitats constrained by BNF.

  15. Phosphate availability and the ultimate control of new nitrogen input by nitrogen fixation in the tropical Pacific Ocean

    Directory of Open Access Journals (Sweden)

    T. Moutin

    2007-07-01

    Full Text Available Due to the low atmospheric input of phosphate into the open ocean, it is one of the key nutrients that could ultimately control primary production and carbon export into the deep ocean. The observed trend over the last 20 years, has shown a decrease in the dissolved inorganic phosphate (DIP pool in the North Pacific gyre, which has been correlated to the increase in di-nitrogen (N2 fixation rates. Following a NW-SE transect, in the Southeast Pacific during the early austral summer (BIOSOPE cruise, we present data on DIP, dissolved organic phosphate (DOP, and particulate phosphate (PP pools and DIP turnover times (TDIP along with N2 fixation rates. We observed a decrease in DIP concentration from the edges to the centre of the gyre. Nevertheless the DIP concentrations remained above 100 nmol L−1 and TDIP were more than a month in the centre of the gyre: DIP availability remained largely above the level required for phosphate limitation. This contrasts with recent observations in the western Pacific Ocean at the same latitude (DIAPALIS cruises where lower DIP concentrations (<20 nmol L−1 and TDIP<50 h were measured during the summer season. During the BIOSOPE cruise, N2 fixation rates were higher within the cold water upwelling near the Chilean coast. This observation contrasts with recently obtained model output for N2 fixation distribution in the South Pacific area and emphasises the importance of studying the main factors controlling this process. The South Pacific gyre can be considered a High P Low Chlorophyll (HPLC oligotrophic area, which could potentially support high N2 fixation rates, and possibly carbon dioxide sequestration, if the primary ecophysiological controls, temperature and/or iron availability, were alleviated.

  16. Understanding the Red Sea nutrient cycle - a first look into nitrogen fixation in the Red Sea

    Science.gov (United States)

    Mohamed, Roslinda; Arrieta, Jesus; Alam, Intikhab; Duarte, Carlos

    2016-04-01

    The Red Sea is an elongated and semi-enclosed system bordered by Africa and Saudi Arabia. Positioned in an arid, tropical zone, the system receives high solar irradiance and heat flux, extensive evaporation, low rainfall and therefore high salinity. These harsh environmental conditions has set the Red Sea to be one of the fastest warming and saltiest ecosystem in the world. Although nutrients are known to be at very low concentrations, the ultimately limiting nutrient in the system is still undefined. Therefore, like most other oligotrophic systems, we regard the Red Sea as being nitrogen-limited and we foresee nitrogen fixation as the most probable bottleneck in the Red Sea nitrogen budget. On the basis of metagenomes from pelagic microbial communities along the Red Sea, we looked into the distribution of nitrogenase, an enzyme involved in nitrogen fixation, in this system and provide a first insight into the microbial community that is involved in the process. The implications of this study will not only help improve our understanding of the Red Sea nutrient regime, but may also hint on future ocean responses to rising climates.

  17. The importance of nodule CO2 fixation for the efficiency of symbiotic nitrogen fixation in pea at vegetative growth and during pod formation.

    Science.gov (United States)

    Fischinger, Stephanie Anastasia; Schulze, Joachim

    2010-05-01

    Nodule CO2 fixation is of pivotal importance for N2 fixation. The process provides malate for bacteroids and oxaloacetate for nitrogen assimilation. The hypothesis of the present paper was that grain legume nodules would adapt to higher plant N demand and more restricted carbon availability at pod formation through increased nodule CO2 fixation and a more efficient N2 fixation. Growth, N2 fixation, and nodule composition during vegetative growth and at pod formation were studied in pea plants (Pisum sativum L.). In parallel experiments, 15N2 and 13CO2 uptake, as well as nodule hydrogen and CO2 release, was measured. Plants at pod formation showed higher growth rates and N2 fixation per plant when compared with vegetative growth. The specific activity of active nodules was about 25% higher at pod formation. The higher nodule activity was accompanied by higher amino acid concentration in nodules and xylem sap with a higher share of asparagine. Nodule 13CO2 fixation was increased at pod formation, both per plant and per 15N2 fixed unit. However, malate concentration in nodules was only 40% of that during vegetative growth and succinate was no longer detectable. The data indicate that increased N2 fixation at pod formation is connected with strongly increased nodule CO2 fixation. While the sugar concentration in nodules at pod formation was not altered, the concentration of organic acids, namely malate and succinate, was significantly lower. It is concluded that strategies to improve the capability of nodules to fix CO2 and form organic acids might prolong intensive N2 fixation into the later stages of pod formation and pod filling in grain legumes.

  18. BMAA Inhibits Nitrogen Fixation in the Cyanobacterium Nostoc sp. PCC 7120

    Science.gov (United States)

    Berntzon, Lotta; Erasmie, Sven; Celepli, Narin; Eriksson, Johan; Rasmussen, Ulla; Bergman, Birgitta

    2013-01-01

    Cyanobacteria produce a range of secondary metabolites, one being the neurotoxic non-protein amino acid β-N-methylamino-L-alanine (BMAA), proposed to be a causative agent of human neurodegeneration. As for most cyanotoxins, the function of BMAA in cyanobacteria is unknown. Here, we examined the effects of BMAA on the physiology of the filamentous nitrogen-fixing cyanobacterium Nostoc sp. PCC 7120. Our data show that exogenously applied BMAA rapidly inhibits nitrogenase activity (acetylene reduction assay), even at micromolar concentrations, and that the inhibition was considerably more severe than that induced by combined nitrogen sources and most other amino acids. BMAA also caused growth arrest and massive cellular glycogen accumulation, as observed by electron microscopy. With nitrogen fixation being a process highly sensitive to oxygen species we propose that the BMAA effects found here may be related to the production of reactive oxygen species, as reported for other organisms. PMID:23966039

  19. Effect of dissolved oxygen on nitrogen fixation by A. vinelandii. II. Ionically adsorbed cells.

    Science.gov (United States)

    Diluccio, R C; Kirwan, D J

    1984-01-01

    Continuous culture studies of Azotobacter vinelandii cells immobilized by ionic adsorption to Cellex E anion exchange resin were conducted under oxygen-limited conditions for comparison to free-cell cultures. Immobilization had little effect upon the specific respiration and sucrose consumption rates as compared to free cells. However, maxima in specific nitrogen fixation rate and nitrogenase activity as a function of dissolved oxygen occurred at a C(O(2) ) value of approximately 0.005 mM as opposed to 0.02 mM for free cells. Further, in contrast to free-cell culture, most of the fixed nitrogen appeared in the medium rather than within intact cells. There were strong indications that reproduction of bound cells often resulted in cell lysis accounting for the fixed nitrogen content in solution.

  20. BMAA Inhibits Nitrogen Fixation in the Cyanobacterium Nostoc sp. PCC 7120

    Directory of Open Access Journals (Sweden)

    Birgitta Bergman

    2013-08-01

    Full Text Available Cyanobacteria produce a range of secondary metabolites, one being the neurotoxic non-protein amino acid β-N-methylamino-L-alanine (BMAA, proposed to be a causative agent of human neurodegeneration. As for most cyanotoxins, the function of BMAA in cyanobacteria is unknown. Here, we examined the effects of BMAA on the physiology of the filamentous nitrogen-fixing cyanobacterium Nostoc sp. PCC 7120. Our data show that exogenously applied BMAA rapidly inhibits nitrogenase activity (acetylene reduction assay, even at micromolar concentrations, and that the inhibition was considerably more severe than that induced by combined nitrogen sources and most other amino acids. BMAA also caused growth arrest and massive cellular glycogen accumulation, as observed by electron microscopy. With nitrogen fixation being a process highly sensitive to oxygen species we propose that the BMAA effects found here may be related to the production of reactive oxygen species, as reported for other organisms.

  1. Molybdenum and phosphorus limitation of moss-associated nitrogen fixation in boreal ecosystems.

    Science.gov (United States)

    Rousk, Kathrin; Degboe, Jefferson; Michelsen, Anders; Bradley, Robert; Bellenger, Jean-Philippe

    2017-04-01

    Biological nitrogen fixation (BNF) performed by moss-associated cyanobacteria is one of the main sources of new nitrogen (N) input in pristine, high-latitude ecosystems. Yet, the nutrients that limit BNF remain elusive. Here, we tested whether this important ecosystem function is limited by the availability of molybdenum (Mo), phosphorus (P), or both. BNF in dominant mosses was measured with the acetylene reduction assay (ARA) at different time intervals following Mo and P additions, in both laboratory microcosms with mosses from a boreal spruce forest and field plots in subarctic tundra. We further used a (15) N2 tracer technique to assess the ARA to N2 fixation conversion ratios at our subarctic site. BNF was up to four-fold higher shortly after the addition of Mo, in both the laboratory and field experiments. A similar positive response to Mo was found in moss colonizing cyanobacterial biomass. As the growing season progressed, nitrogenase activity became progressively more P limited. The ARA : (15) N2 ratios increased with increasing Mo additions. These findings show that N2 fixation activity as well as cyanobacterial biomass in dominant feather mosses from boreal forests and subarctic tundra are limited by Mo availability.

  2. Quantifying the effect of fire disturbance on free-living nitrogen fixation in tropical ecosystems

    Science.gov (United States)

    De Oliveira Bomfim, B.; Silva, L. C. R.; Marimon-Junior, B. H.; Marimon, B.; Horwath, W. R.; Neves, L.

    2015-12-01

    Tropical forests and savannas are among the most important biomes on Earth, supporting more than half of all plant and animal species on the planet. Despite growing interest in biogeochemical processes that affect tropical forest dynamics, many, including biological nitrogen fixation (BNF), are still poorly understood. Free-living N-fixers are thought to play a key role in tropical ecosystems, alleviating N and P limitation, supporting above and below ground biomass production, as well as carbon storage in plants and soil, but this influence has yet to be quantified. Of particular interest, the spatial distribution and identity of free-living BNF under disturbance regimes that commonly lead to the conversion of forests to savannas is currently unknown. To address this critical gap in knowledge, we measured free-living BNF quantifying rates of N fixation under contrasting fire regimes in the Amazon-Cerrado transition of central Brazil. Samples were collected in 4 ha of floodable forests affected by fire and 1 ha of unburned (seasonally flooded) forest located at the Araguaia State Park, Mato Grosso State, Brazil. Free-living N-fixation rates were measured by both 15N2 (98 atom% 15N) and acethylene reduction assay (ARA). Samples were incubated in the field and left in the dark at room temperature for 12 hours. In the next few weeks we will quantify N fixation rates that will be presented in the upcoming AGU meeting.

  3. Symbiotic nitrogen fixation by a nifA deletion mutant of Rhizobium meliloti: the role of an unusual ntrC allele.

    OpenAIRE

    Labes, M; RASTOGI, V; Watson, R.; Finan, T M

    1993-01-01

    In the N2-fixing alfalfa symbiont Rhizobium meliloti, the three sigma 54 (NTRA)-dependent positively acting regulatory proteins NIFA, NTRC, and DCTD are required for activation of promoters involved in N2 fixation (pnifHDKE and pfixABCX), nitrogen assimilation (pglnII), and C4-dicarboxylate transport (pdctA), respectively. Here, we describe an allele of ntrC which results in the constitutive activation of the above NTRC-, NIFA-, and DCTD-regulated promoters. The expression and activation of w...

  4. Symbiotic nitrogen fixation by a nifA deletion mutant of Rhizobium meliloti: the role of an unusual ntrC allele.

    OpenAIRE

    Labes, M; Rastogi, V; Watson, R.; Finan, T M

    1993-01-01

    In the N2-fixing alfalfa symbiont Rhizobium meliloti, the three sigma 54 (NTRA)-dependent positively acting regulatory proteins NIFA, NTRC, and DCTD are required for activation of promoters involved in N2 fixation (pnifHDKE and pfixABCX), nitrogen assimilation (pglnII), and C4-dicarboxylate transport (pdctA), respectively. Here, we describe an allele of ntrC which results in the constitutive activation of the above NTRC-, NIFA-, and DCTD-regulated promoters. The expression and activation of w...

  5. Effect of combined nitrogen on symbiotic nitrogen fixation in pea plants

    NARCIS (Netherlands)

    Houwaard, F.

    1979-01-01

    The nitrogen-fixing activity of the symbiotic system of Pisum sativum with Rhizobium leguminosarum is adversely affected by combined nitrogen. Both ammonium chloride and potassium nitrate, when added to the roots, lower the nitrogenase activity (acetylene-reduction) of intact pea plants. During a 3-

  6. Biological nitrogen fixation by alternative nitrogenases in boreal cyanolichens: importance of molybdenum availability and implications for current biological nitrogen fixation estimates.

    Science.gov (United States)

    Darnajoux, Romain; Zhang, Xinning; McRose, Darcy L; Miadlikowska, Jolanta; Lutzoni, François; Kraepiel, Anne M L; Bellenger, Jean-Philippe

    2017-01-01

    Cryptogamic species and their associated cyanobacteria have attracted the attention of biogeochemists because of their critical roles in the nitrogen cycle through symbiotic and asymbiotic biological fixation of nitrogen (BNF). BNF is mediated by the nitrogenase enzyme, which, in its most common form, requires molybdenum at its active site. Molybdenum has been reported as a limiting nutrient for BNF in many ecosystems, including tropical and temperate forests. Recent studies have suggested that alternative nitrogenases, which use vanadium or iron in place of molybdenum at their active site, might play a more prominent role in natural ecosystems than previously recognized. Here, we studied the occurrence of vanadium, the role of molybdenum availability on vanadium acquisition and the contribution of alternative nitrogenases to BNF in the ubiquitous cyanolichen Peltigera aphthosa s.l. We confirmed the use of the alternative vanadium-based nitrogenase in the Nostoc cyanobiont of these lichens and its substantial contribution to BNF in this organism. We also showed that the acquisition of vanadium is strongly regulated by the abundance of molybdenum. These findings show that alternative nitrogenase can no longer be neglected in natural ecosystems, particularly in molybdenum-limited habitats.

  7. Nitrogen Fixation by Gliding Arc Plasma: Better Insight by Chemical Kinetics Modelling.

    Science.gov (United States)

    Wang, Weizong; Patil, Bhaskar; Heijkers, Stjin; Hessel, Volker; Bogaerts, Annemie

    2017-05-22

    The conversion of atmospheric nitrogen into valuable compounds, that is, so-called nitrogen fixation, is gaining increased interest, owing to the essential role in the nitrogen cycle of the biosphere. Plasma technology, and more specifically gliding arc plasma, has great potential in this area, but little is known about the underlying mechanisms. Therefore, we developed a detailed chemical kinetics model for a pulsed-power gliding-arc reactor operating at atmospheric pressure for nitrogen oxide synthesis. Experiments are performed to validate the model and reasonable agreement is reached between the calculated and measured NO and NO2 yields and the corresponding energy efficiency for NOx formation for different N2 /O2 ratios, indicating that the model can provide a realistic picture of the plasma chemistry. Therefore, we can use the model to investigate the reaction pathways for the formation and loss of NOx . The results indicate that vibrational excitation of N2 in the gliding arc contributes significantly to activating the N2 molecules, and leads to an energy efficient way of NOx production, compared to the thermal process. Based on the underlying chemistry, the model allows us to propose solutions on how to further improve the NOx formation by gliding arc technology. Although the energy efficiency of the gliding-arc-based nitrogen fixation process at the present stage is not comparable to the world-scale Haber-Bosch process, we believe our study helps us to come up with more realistic scenarios of entering a cutting-edge innovation in new business cases for the decentralised production of fertilisers for agriculture, in which low-temperature plasma technology might play an important role. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. In silico insights into the symbiotic nitrogen fixation in Sinorhizobium meliloti via metabolic reconstruction.

    Directory of Open Access Journals (Sweden)

    Hansheng Zhao

    Full Text Available BACKGROUND: Sinorhizobium meliloti is a soil bacterium, known for its capability to establish symbiotic nitrogen fixation (SNF with leguminous plants such as alfalfa. S. meliloti 1021 is the most extensively studied strain to understand the mechanism of SNF and further to study the legume-microbe interaction. In order to provide insight into the metabolic characteristics underlying the SNF mechanism of S. meliloti 1021, there is an increasing demand to reconstruct a metabolic network for the stage of SNF in S. meliloti 1021. RESULTS: Through an iterative reconstruction process, a metabolic network during the stage of SNF in S. meliloti 1021 was presented, named as iHZ565, which accounts for 565 genes, 503 internal reactions, and 522 metabolites. Subjected to a novelly defined objective function, the in silico predicted flux distribution was highly consistent with the in vivo evidences reported previously, which proves the robustness of the model. Based on the model, refinement of genome annotation of S. meliloti 1021 was performed and 15 genes were re-annotated properly. There were 19.8% (112 of the 565 metabolic genes included in iHZ565 predicted to be essential for efficient SNF in bacteroids under the in silico microaerobic and nutrient sharing condition. CONCLUSIONS: As the first metabolic network during the stage of SNF in S. meliloti 1021, the manually curated model iHZ565 provides an overview of the major metabolic properties of the SNF bioprocess in S. meliloti 1021. The predicted SNF-required essential genes will facilitate understanding of the key functions in SNF and help identify key genes and design experiments for further validation. The model iHZ565 can be used as a knowledge-based framework for better understanding the symbiotic relationship between rhizobia and legumes, ultimately, uncovering the mechanism of nitrogen fixation in bacteroids and providing new strategies to efficiently improve biological nitrogen fixation.

  9. Introduction of the Escherichia coli gdhA gene into Rhizobium phaseoli: effect on nitrogen fixation.

    Science.gov (United States)

    Bravo, A; Becerril, B; Mora, J

    1988-01-01

    Rhizobium phaseoli lacks glutamate dehydrogenase (GDH) and assimilates ammonium by the glutamine synthetase-glutamate synthase pathway. A strain of R. phaseoli harboring the Escherichia coli GDH structural gene (gdhA) was constructed. GDH activity was expressed in R. phaseoli in the free-living state and in symbiosis. Nodules with bacteroids that expressed GDH activity had severe impairment of nitrogen fixation. Also, R. phaseoli cells that lost GDH activity and assimilated ammonium by the glutamine synthetase-glutamate synthase pathway preferentially nodulated Phaseolus vulgaris. PMID:2892830

  10. Soybean seed treatment with nickel improves biological nitrogen fixation and urease activity

    Directory of Open Access Journals (Sweden)

    José eLavres Junior

    2016-05-01

    Full Text Available Nickel (Ni is an essential micronutrient required for plants’ metabolism due to its role as a structural component of urease and hydrogenase, which in turn perform nitrogen (N metabolism in many legume species. Seed treatment with cobalt, molybdenum and Bradyrhizobium strains has been widely practiced to improve crops. Additionally, seed treatment together with Ni fertilization of soybean might improve the efficiency of biological nitrogen fixation (BNF, boosting grain dry matter yield and N content. The objective of this study was to evaluate the effect of soybean seed treatment with Ni rates (0, 45, 90,135, 180, 360 and 540 mg kg-1 on biological nitrogen fixation (BNF, directly by the 15N natural abundance method (δ15N‰ and by measurement of urease [E.C. 3.5.1.5] activity, as well as indirectly by nitrogenase (N-ase activity [E.C. 1.18.6.1]. Soybean plants (cultivar BMX Potência RR were grown in a sandy soil up to the R7 developmental stage (grain maturity, at which point the nutrient content in the leaves, chlorophyll content, urease and N-ase activities, Ni and N content in the grains, nodulation (at R1 - flowering stage, as well as the contribution of biological nitrogen fixation (δ15N ‰, were evaluated. The proportion of N derived from N2 fixation varied from 77 to 99% using the natural 15N abundance method and non-nodulating Panicum miliaceum and Phalaris canariensis as references. A Ni rate of 45 mg kg-1 increased BNF by 12% compared to the control. The increased N uptake in the grains was closely correlated with chlorophyll content in the leaves, urease and N-ase activities, as well as with nodulation. Grain dry matter yield and aerial part dry matter yield increased, respectively, by 84% and 51% in relation to the control plants at 45 mg kg-1 Ni via seed treatment. Despite, Ni concentration was increased with Ni-seed treatment, Ni rates higher than 135 mg kg-1 promoted negative effects on plant growth and yield. In these

  11. Nitrogen fixation by Klebsiella pneumoniae is inhibited by certain multicopy hybrid nif plasmids.

    Science.gov (United States)

    Riedel, G E; Brown, S E; Ausubel, F M

    1983-01-01

    In our studies of nif gene regulation, we have observed that certain hybrid nif plasmids drastically inhibit the expression of the chromosomal nif genes of Klebsiella pneumonia. Wild-type (Nif+) K. pneumoniae strains that acquire certain hybrid nif plasmids also acquire the Nif- phenotype; these strains lose 90 to 99% of all detectable nitrogen fixation activity and grow poorly (or not at all) on solid media with N2 as the sole nitrogen source. We describe experiments which defined this inhibition of the Nif+ phenotype by hybrid nif plasmids and identify and characterize four nif DNA regions associated with this inhibition. We show that plasmids carrying these nif regions could recombine with, but not complement, nif chromosomal mutations. Our results suggest that inhibition of the Nif+ phenotype will provide a useful bioassay for some of the factors that mediate nif gene expression.

  12. Carbon allocation, nodulation, and biological nitrogen fixation of black locust (Robinia pseudoacacia L. under soil water limitation

    Directory of Open Access Journals (Sweden)

    Dario Mantovani

    2015-12-01

    Full Text Available The pioneer tree black locust (Robinia pseudoacacia L. is a drought-resistant tree and, in symbiosis with Rhizobium, able to fix dinitrogen from the atmosphere. It is, therefore, an interesting species for marginal lands where soil amelioration is sought in addition to economic gain. However, the interaction between soil water availability, carbon allocation and nitrogen fixation is important for a successful establishment of trees on marginal lands and has not yet been investigated for black locust. Twoyear-old trees were grown under various soil water conditions and drought cycles. The stable isotopic composition of C (δ 13C and N (δ 15N of the leaves was used to identify i the effective drought condition of the treatments and ii the portion N accrued from the atmosphere by the biological nitrogen fixation. Drought-stressed plants significantly reduced their total aboveground biomass production, which was linearly linked to tree transpiration. The shoot:root ratio values changed from 2.2 for the drought-stressed to 4.3 for the well-watered plants. Our investigation shows that drought stress increases the nodule biomass of black locust in order to maintain biological nitrogen fixation and to counteract the lower soil nitrogen availability. The biological nitrogen fixation of drought-stressed trees could be maintained at relatively higher values compared to the well-watered trees. The average leaf nitrogen content varied between 2.8% and 3.0% and was not influenced by the drought stress. Carbon fixation, carbon allocation, and biological nitrogen fixation are to some extent balanced at low irrigation and allow Robinia to cope with long-term water constraints. The combination of black locust’s ecophysiological and morphological plasticity make it interesting as a biomass source for bioenergy and timber production, even in nutrient-limited and drought-affected areas of Europe.

  13. Database of diazotrophs in global ocean: abundances, biomass and nitrogen fixation rates

    Directory of Open Access Journals (Sweden)

    Y.-W. Luo

    2012-02-01

    Full Text Available Marine N2 fixing microorganisms, termed diazotrophs, are a key functional group in marine pelagic ecosystems. The biological fixation of dinitrogen (N2 to bioavailable nitrogen provides an important new source of nitrogen for pelagic marine ecosystems and influences primary productivity and organic matter export to the deep ocean. As one of a series of efforts to collect biomass and rates specific to different phytoplankton functional groups, we have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling about 12 000 direct field measurements of cyanobacterial diazotroph abundances (based on microscopic cell counts or qPCR assays targeting the nifH genes and N2 fixation rates. Biomass conversion factors are estimated based on cell sizes to convert abundance data to diazotrophic biomass. The database is limited spatially, lacking large regions of the ocean especially in the Indian Ocean. The data are approximately log-normal distributed, and large variances exist in most sub-databases with non-zero values differing 5 to 8 orders of magnitude. Lower mean N2 fixation rate was found in the North Atlantic Ocean than the Pacific Ocean. Reporting the geometric mean and the range of one geometric standard error below and above the geometric mean, the pelagic N2 fixation rate in the global ocean is estimated to be 62 (53–73 Tg N yr−1 and the pelagic diazotrophic biomass in the global ocean is estimated to be 4.7 (2.3–9.6 Tg C from cell counts and to 89 (40–200 Tg C from nifH-based abundances. Uncertainties related to biomass conversion factors can change the estimate of geometric mean pelagic diazotrophic biomass in the global ocean by about ±70%. This evolving database can be used to study spatial and temporal distributions and variations of marine N2 fixation, to validate geochemical estimates and to parameterize

  14. Distribution and evolution of nitrogen fixation genes in the phylum Bacteroidetes.

    Science.gov (United States)

    Inoue, Jun-ichi; Oshima, Kenshiro; Suda, Wataru; Sakamoto, Mitsuo; Iino, Takao; Noda, Satoko; Hongoh, Yuichi; Hattori, Masahira; Ohkuma, Moriya

    2015-01-01

    Diazotrophs had not previously been identified among bacterial species in the phylum Bacteroidetes until the rapid expansion of bacterial genome sequences, which revealed the presence of nitrogen fixation (nif) genes in this phylum. We herein determined the draft genome sequences of Bacteroides graminisolvens JCM 15093(T) and Geofilum rubicundum JCM 15548(T). In addition to these and previously reported 'Candidatus Azobacteroides pseudotrichonymphae' and Paludibacter propionicigenes, an extensive survey of the genome sequences of diverse Bacteroidetes members revealed the presence of a set of nif genes (nifHDKENB) in strains of Dysgonomonas gadei, Dysgonomonas capnocytophagoides, Saccharicrinis fermentans, and Alkaliflexus imshenetskii. These eight species belonged to and were distributed sporadically within the order Bacteroidales. Acetylene reduction activity was detected in the five species examined, strongly suggesting their diazotrophic nature. Phylogenetic analyses showed monophyletic clustering of the six Nif protein sequences in the eight Bacteroidales species, implying that nitrogen fixation is ancestral to Bacteroidales and has been retained in these species, but lost in many other lineages. The identification of nif genes in Bacteroidales facilitates the prediction of the organismal origins of related sequences directly obtained from various environments.

  15. Iron deficiency increases growth and nitrogen-fixation rates of phosphorus-deficient marine cyanobacteria.

    Science.gov (United States)

    Garcia, Nathan S; Fu, Feixue; Sedwick, Peter N; Hutchins, David A

    2015-01-01

    Marine dinitrogen (N2)-fixing cyanobacteria have large impacts on global biogeochemistry as they fix carbon dioxide (CO2) and fertilize oligotrophic ocean waters with new nitrogen. Iron (Fe) and phosphorus (P) are the two most important limiting nutrients for marine biological N2 fixation, and their availabilities vary between major ocean basins and regions. A long-standing question concerns the ability of two globally dominant N2-fixing cyanobacteria, unicellular Crocosphaera and filamentous Trichodesmium, to maintain relatively high N2-fixation rates in these regimes where both Fe and P are typically scarce. We show that under P-deficient conditions, cultures of these two cyanobacteria are able to grow and fix N2 faster when Fe deficient than when Fe replete. In addition, growth affinities relative to P increase while minimum concentrations of P that support growth decrease at low Fe concentrations. In Crocosphaera, this effect is accompanied by a reduction in cell sizes and elemental quotas. Relatively high growth rates of these two biogeochemically critical cyanobacteria in low-P, low-Fe environments such as those that characterize much of the oligotrophic ocean challenge the common assumption that low Fe levels can have only negative effects on marine primary producers. The closely interdependent influence of Fe and P on N2-fixing cyanobacteria suggests that even subtle shifts in their supply ratio in the past, present and future oceans could have large consequences for global carbon and nitrogen cycles.

  16. Systems biology of bacterial nitrogen fixation: High-throughput technology and its integrative description with constraint-based modeling

    Directory of Open Access Journals (Sweden)

    Resendis-Antonio Osbaldo

    2011-07-01

    Full Text Available Abstract Background Bacterial nitrogen fixation is the biological process by which atmospheric nitrogen is uptaken by bacteroids located in plant root nodules and converted into ammonium through the enzymatic activity of nitrogenase. In practice, this biological process serves as a natural form of fertilization and its optimization has significant implications in sustainable agricultural programs. Currently, the advent of high-throughput technology supplies with valuable data that contribute to understanding the metabolic activity during bacterial nitrogen fixation. This undertaking is not trivial, and the development of computational methods useful in accomplishing an integrative, descriptive and predictive framework is a crucial issue to decoding the principles that regulated the metabolic activity of this biological process. Results In this work we present a systems biology description of the metabolic activity in bacterial nitrogen fixation. This was accomplished by an integrative analysis involving high-throughput data and constraint-based modeling to characterize the metabolic activity in Rhizobium etli bacteroids located at the root nodules of Phaseolus vulgaris (bean plant. Proteome and transcriptome technologies led us to identify 415 proteins and 689 up-regulated genes that orchestrate this biological process. Taking into account these data, we: 1 extended the metabolic reconstruction reported for R. etli; 2 simulated the metabolic activity during symbiotic nitrogen fixation; and 3 evaluated the in silico results in terms of bacteria phenotype. Notably, constraint-based modeling simulated nitrogen fixation activity in such a way that 76.83% of the enzymes and 69.48% of the genes were experimentally justified. Finally, to further assess the predictive scope of the computational model, gene deletion analysis was carried out on nine metabolic enzymes. Our model concluded that an altered metabolic activity on these enzymes induced

  17. Aerosol Deposition of Molybdenum: A Control on Nitrogen-Fixation and Tropical Forest Function

    Science.gov (United States)

    Wong, M.; Howarth, R. W.; Marino, R. M.; Mahowald, N. M.; Williams, E. R.

    2015-12-01

    Nitrogen fixation, the primary source of new nitrogen (N) to tropical forests, is exclusively catalyzed by the nitrogenase enzyme, which almost always requires molybdenum (Mo). Increasing evidence in recent years suggests that Mo availability may be low in highly weathered soils and can constrain N-fixation rates. Mo is generally either present in a highly soluble form (MoO42-) that is susceptible to leaching or tightly bound in minerals unavailable for biological uptake. To address how Mo is retained in highly weathered tropical systems to support N-fixation, atmospheric transport through dust and sea-salt aerosol spray were examined. Using a global atmospheric transport model computed from modeled meteorological fields, extrapolated dust and sea-salt aerosol Mo sources were used to calculate global distribution of Mo deposition. Dust deposition occurs across the entirety of some tropical forests, particularly the world's largest tropical forest in the Amazon Basin. The model indicates that the Amazon Basin receives substantial inputs of dust, especially the entire northern Amazon Basin, while the southern half receives less. Most of the dust reaching the Amazon originates from the Sahara Desert, and about half of this dust originates from one part of the Sahara, the Bodélé Depression. Mo in dust from the Bodélé Depression was measured with an average concentration of 1.14 ± 0.05 μg/g, similar to the crustal abundance. The model predicts Mo inputs from sea-salt aerosols in coastal regions up to 0.002 mg m-2yr-1. Significant sea-salt deposition occurs up to 300 km inland. Mo from fossil fuel combustion and biomass burning were also evaluated to determine the potential influence of anthropogenic emissions on releasing Mo into the environment.

  18. The influence of rate and time of nitrate supply on nitrogen fixation and yield in pea (Pisum sativum L.)

    DEFF Research Database (Denmark)

    Jensen, Erik Steen

    1986-01-01

    pea, by the lowest rate of nitrate at this application time. The pea very efficiently took up and assimilated the nitrate N supplied. The average fertilizer N recovery was 82%. The later the N was supplied the more efficiently it was recovered. When nitrate was supplied at the flat pod growth stage 88......The influence of nitrate N supply on dry matter production, N content and symbiotic nitrogen fixation in soil-grown pea (Pisum sativum L.) was studied in a pot experiment by means of15N fertilizer dilution. In pea receiving no fertilizer N symbiotic nitrogen fixation, soil and seed-borne N...... contributed with 82, 13 and 5% of total plant N, respectively. The supply of low rates of nitrate fertilizer at sowing (“starter N”) increased the vegetative dry matter production, but not the seed yield significantly. Nitrogen fixation was not significantly decreased by the lower rates of nitrate but higher...

  19. Multivariate analysis and determination of the best indirect selection criteria to genetic improvement the biological nitrogen fixation ability in common bean genotypes (Phaseolus vulgaris L.

    Directory of Open Access Journals (Sweden)

    Golparvar Reza Ahmad

    2012-01-01

    Full Text Available In order to determine the best indirect selection criteria for genetic improvement of biological nitrogen fixation, sixty four common bean genotypes were cultivated in two randomized complete block design. Genotypes were inoculated with bacteria Rhizobium legominosarum biovar Phaseoli isolate L-109 only in one of the experiments. The second experiment was considered as check for the first. Correlation analysis showed positive and highly significant correlation of majority of the traits with percent of nitrogen fixation. Step-wise regression designated that traits percent of total nitrogen of shoot, number of nodule per plant and biological yield accounted for 92.3 percent of variation exist in percent of nitrogen fixation. Path analysis indicated that these traits have direct and positive effect on percent of nitrogen fixation. Hence, these traits are promising indirect selection criteria for genetic improvement of nitrogen fixation capability in common bean genotypes especially in early generations.

  20. Soybean nodulation and symbiotic nitrogen fixation in response to soil compaction and mulching

    Science.gov (United States)

    Siczek, A.; Lipiec, J.

    2009-04-01

    Symbiotic nitrogen fixation by legume crops such as soybean plays a key role in supplying nitrogen for agricultural systems. In symbiotic associations with Bradyrhizobium japonicum soybean can fix up to 200 kg N ha-1 yr-1. This reduces the need for expensive and often environmentally harmful because of leaching nitrogen fertilization. However both soybean nodulation and nitrogen fixation are sensitive to soil conditions. One of the critical soil constraints is soil compaction. Increasing use of heavy equipment and intensive cropping in modern agriculture leads to excessive soil compaction. Compaction often is found as a result of field operations that have to be performed in a very short period of time and when soils are wet and more susceptible to compaction. This results in unfavourable water content, temperature, aeration, pore size distribution, strength for plant growth and microbial activity. The surface mulching can alleviate the adverse effect of the environmental factors on soil by decreasing fluctuation of soil temperature, increasing moisture by controlling evaporation from the soil surface, decreasing bulk density, preventing soil crusting. The effect of mulch on soil conditions largely depends on soil compaction and weather conditions during growing season. The positive effect of the straw mulch on soil moisture has been seen under seasons with insufficient rainfalls. However thicker layers of mulch can act as diffusion barrier, especially when the mulch is wet. Additionally, low soil temperature prevalent during early spring under mulch can impede development of nodule, nodule size and delay onset of nodulation. The aim of this study was to determine the effect of the straw mulch on nodulation and nitrogen fixation of soybean in variously compacted soil. The experimental field was 192 m2and was divided into three parts composed of 6 micro-plots with area 7 m2. Three degrees of soil compaction obtained in each field part through tractor passes were

  1. Crystal structure of nitrogen regulatory protein IIANtr from Neisseria meningitidis

    Directory of Open Access Journals (Sweden)

    Stammers David K

    2005-08-01

    Full Text Available Abstract Background The NMB0736 gene of Neisseria meningitidis serogroup B strain MC58 encodes the putative nitrogen regulatory protein, IIANtr (abbreviated to NM-IIANtr. The homologous protein present in Escherichia coli is implicated in the control of nitrogen assimilation. As part of a structural proteomics approach to the study of pathogenic Neisseria spp., we have selected this protein for structure determination by X-ray crystallography. Results The NM-IIANtr was over-expressed in E. coli and was shown to be partially mono-phosphorylated, as assessed by mass spectrometry of the purified protein. Crystals of un-phosphorylated protein were obtained and diffraction data collected to 2.5 Å resolution. The structure of NM-IIANtr was solved by molecular replacement using the coordinates of the E. coli nitrogen regulatory protein IIAntr [PDB: 1A6J] as the starting model. The overall fold of the Neisseria enzyme shows a high degree of similarity to the IIANtr from E. coli, and the position of the phosphoryl acceptor histidine residue (H67 is conserved. The orientation of an adjacent arginine residue (R69 suggests that it may also be involved in coordinating the phosphate group. Comparison of the structure with that of E. coli IIAmtl complexed with HPr [PDB: 1J6T] indicates that NM-IIANtr binds in a similar way to the HPr-like enzyme in Neisseria. Conclusion The structure of NM-IIANtr confirms its assignment as a homologue of the IIANtr proteins found in a range of other Gram-negative bacteria. We conclude that the NM- IIANtr protein functions as part of a phosphorylation cascade which, in contrast to E. coli, shares the upstream phosphotransfer protein with the sugar uptake phosphoenolpyruvate:sugar phosphotransferase system (PTS, but in common with E. coli has a distinct downstream effector mechanism.

  2. Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates

    Directory of Open Access Journals (Sweden)

    Y.-W. Luo

    2012-08-01

    Full Text Available Marine N2 fixing microorganisms, termed diazotrophs, are a key functional group in marine pelagic ecosystems. The biological fixation of dinitrogen (N2 to bioavailable nitrogen provides an important new source of nitrogen for pelagic marine ecosystems and influences primary productivity and organic matter export to the deep ocean. As one of a series of efforts to collect biomass and rates specific to different phytoplankton functional groups, we have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling about 12 000 direct field measurements of cyanobacterial diazotroph abundances (based on microscopic cell counts or qPCR assays targeting the nifH genes and N2 fixation rates. Biomass conversion factors are estimated based on cell sizes to convert abundance data to diazotrophic biomass. The database is limited spatially, lacking large regions of the ocean especially in the Indian Ocean. The data are approximately log-normal distributed, and large variances exist in most sub-databases with non-zero values differing 5 to 8 orders of magnitude. Reporting the geometric mean and the range of one geometric standard error below and above the geometric mean, the pelagic N2 fixation rate in the global ocean is estimated to be 62 (52–73 Tg N yr−1 and the pelagic diazotrophic biomass in the global ocean is estimated to be 2.1 (1.4–3.1 Tg C from cell counts and to 89 (43–150 Tg C from nifH-based abundances. Reporting the arithmetic mean and one standard error instead, these three global estimates are 140 ± 9.2 Tg N yr−1, 18 ± 1.8 Tg C and 590 ± 70 Tg C, respectively. Uncertainties related to biomass conversion factors can change the estimate of geometric mean pelagic diazotrophic biomass in the global ocean by about ±70%. It was recently established that the most commonly applied method used to measure N2

  3. Direct and indirect costs of dinitrogen fixation in Crocosphaera watsonii WH8501 and possible implications for the nitrogen cycle

    Directory of Open Access Journals (Sweden)

    Tobias eGroßkopf

    2012-07-01

    Full Text Available The recent detection of heterotrophic nitrogen (N2 fixation in deep waters of the southern Californian and Peruvian OMZ questions our current understanding of marine N2 fixation as a process confined to oligotrophic surface waters of the oceans. In experiments with Crocosphaera watsonii WH8501, a marine unicellular diazotrophic (N2-fixing cyanobacterium, we demonstrated that the presence of high nitrate concentrations (up to 800 µM had no inhibitory effect on growth and N2 fixation over a period of two weeks. In contrast, the environmental oxygen concentration significantly influenced rates of N2 fixation and respiration, as well as carbon and nitrogen cellular content of C. watsonii over a 24 hour period. Cells grown under lowered oxygen atmosphere (5% had a higher nitrogenase activity and respired less carbon during the dark cycle than under normal oxygen atmosphere (20%. Respiratory oxygen drawdown during the dark period could be fully explained (104% by energetic needs due to basal metabolism and N2 fixation at low oxygen, while at normal oxygen these two processes could only account for 40% of the measured respiration rate. Our results revealed that under normal oxygen concentration most of the energetic costs during N2 fixation (~60% are not derived from the process of N2 fixation per se but rather from the indirect costs incurred for the removal of intracellular oxygen or by the reversal of oxidative damage (e.g. nitrogenase de novo synthesis. Theoretical calculations suggest a slight energetic advantage of N2 fixation relative to assimilatory nitrate uptake for heterotrophic and phototrophic growth, when oxygen supply is in balance with the oxygen requirement for cellular respiration (i.e. energy generation for basal metabolism and N2 fixation. Taken together our results imply the existence of a niche for diazotrophic organisms inside oxygen minimum zones, which are predicted to further expand in the future ocean.

  4. sRNA154 a newly identified regulator of nitrogen fixation in Methanosarcina mazei strain Gö1.

    Science.gov (United States)

    Prasse, Daniela; Förstner, Konrad U; Jäger, Dominik; Backofen, Rolf; Schmitz, Ruth A

    2017-03-15

    Trans-encoded sRNA154 is exclusively expressed under nitrogen (N)-deficiency in Methanosarcina mazei strain Gö1. The sRNA154 deletion strain showed a significant decrease in growth under N-limitation, pointing toward a regulatory role of sRNA154 in N-metabolism. Aiming to elucidate its regulatory function we characterized sRNA154 by means of biochemical and genetic approaches. 24 homologs of sRNA154 were identified in recently reported draft genomes of Methanosarcina strains, demonstrating high conservation in sequence and predicted secondary structure with two highly conserved single stranded loops. Transcriptome studies of sRNA154 deletion mutants by an RNA-seq approach uncovered nifH- and nrpA-mRNA, encoding the α-subunit of nitrogenase and the transcriptional activator of the nitrogen fixation (nif)-operon, as potential targets besides other components of the N-metabolism. Furthermore, results obtained from stability, complementation and western blot analysis, as well as in silico target predictions combined with electrophoretic mobility shift-assays, argue for a stabilizing effect of sRNA154 on the polycistronic nif-mRNA and nrpA-mRNA by binding with both loops. Further identified N-related targets were studied, which demonstrates that translation initiation of glnA2-mRNA, encoding glutamine synthetase2, appears to be affected by sRNA154 masking the ribosome binding site, whereas glnA1-mRNA appears to be stabilized by sRNA154. Overall, we propose that sRNA154 has a crucial regulatory role in N-metabolism in M. mazei by stabilizing the polycistronic mRNA encoding nitrogenase and glnA1-mRNA, as well as allowing a feed forward regulation of nif-gene expression by stabilizing nrpA-mRNA. Consequently, sRNA154 represents the first archaeal sRNA, for which a positive posttranscriptional regulation is demonstrated as well as inhibition of translation initiation.

  5. The integral membrane protein SEN1 is required for symbiotic nitrogen fixation in Lotus japonicus nodules.

    Science.gov (United States)

    Hakoyama, Tsuneo; Niimi, Kaori; Yamamoto, Takeshi; Isobe, Sawa; Sato, Shusei; Nakamura, Yasukazu; Tabata, Satoshi; Kumagai, Hirotaka; Umehara, Yosuke; Brossuleit, Katja; Petersen, Thomas R; Sandal, Niels; Stougaard, Jens; Udvardi, Michael K; Tamaoki, Masanori; Kawaguchi, Masayoshi; Kouchi, Hiroshi; Suganuma, Norio

    2012-01-01

    Legume plants establish a symbiotic association with bacteria called rhizobia, resulting in the formation of nitrogen-fixing root nodules. A Lotus japonicus symbiotic mutant, sen1, forms nodules that are infected by rhizobia but that do not fix nitrogen. Here, we report molecular identification of the causal gene, SEN1, by map-based cloning. The SEN1 gene encodes an integral membrane protein homologous to Glycine max nodulin-21, and also to CCC1, a vacuolar iron/manganese transporter of Saccharomyces cerevisiae, and VIT1, a vacuolar iron transporter of Arabidopsis thaliana. Expression of the SEN1 gene was detected exclusively in nodule-infected cells and increased during nodule development. Nif gene expression as well as the presence of nitrogenase proteins was detected in rhizobia from sen1 nodules, although the levels of expression were low compared with those from wild-type nodules. Microscopic observations revealed that symbiosome and/or bacteroid differentiation are impaired in the sen1 nodules even at a very early stage of nodule development. Phylogenetic analysis indicated that SEN1 belongs to a protein clade specific to legumes. These results indicate that SEN1 is essential for nitrogen fixation activity and symbiosome/bacteroid differentiation in legume nodules.

  6. Biological nitrogen fixation and nutrient release from litter of the guachapele leguminous tree under pure and mixed plantation with eucalyptus.

    OpenAIRE

    Fabiano de Carvalho Balieiro; Bruno José Rodrigues Alves; Marcos Gervásio Pereira; Sérgio Miana de Faria; Avílio Antônio Franco; Campello,Eduardo F.C.

    2008-01-01

    Pseudosamanea guachapele (guachapele), a nitrogen fixing leguminous tree, is an alternative for mixed forest plantations in the tropics. As little information is available for guachapele (Mimosoideae) in mixed plantation with eucalyptus considering the Brazilian edaphoclimatic conditions, an experiment was carried out to evaluate the contribution of biological nitrogen fixation to guachapele and leaf litter decomposition rates and nutrient release of eucalyptus and guachapele residues (pure a...

  7. Spatially robust estimates of biological nitrogen (N) fixation imply substantial human alteration of the tropical N cycle

    OpenAIRE

    Sullivan, Benjamin W.; Smith, W. Kolby; Alan R. Townsend; Nasto, Megan K.; Sasha C. Reed; Chazdon, Robin L; Cleveland, Cory C

    2014-01-01

    Biological nitrogen fixation (BNF) is the largest natural source of new nitrogen (N) to terrestrial ecosystems. Tropical forest ecosystems are a putative global hotspot of BNF, but direct, spatially explicit measurements in the biome are virtually nonexistent. Nonetheless, robust estimates of tropical forest BNF are critical for understanding how these important ecosystems may respond to global change and assessing human perturbations to the N cycle. Here, we introduce a spatial sampling meth...

  8. The influence of woody encroachment on the nitrogen cycle: fixation, storage and gas loss

    Science.gov (United States)

    Soper, F.; Sparks, J. P.

    2015-12-01

    Woody encroachment is a pervasive land cover change throughout the tropics and subtropics. Encroachment is frequently catalyzed by nitrogen (N)-fixing trees and the resulting N inputs potentially alter whole-ecosystem N cycling, accumulation and loss. In the southern US, widespread encroachment by legume Prosopis glandulosa is associated with increased soil total N storage, inorganic N concentrations, and net mineralization and nitrification rates. To better understand the effects of this process on ecosystem N cycling, we investigated patterns of symbiotic N fixation, N accrual and soil N trace gas and N2 emissions during Prosopis encroachment into the southern Rio Grande Plains. Analyses of d15N in foliage, xylem sap and plant-available soil N suggested that N fixation rates increase with tree age and are influenced by abiotic conditions. A model of soil N accrual around individual trees, accounting for atmospheric inputs and gas losses, generates lifetimes N fixation estimates of up to 9 kg for a 100-year-old tree and current rates of 7 kg N ha-1 yr-1. However, these N inputs and increased soil cycling rates do not translate into increased N gas losses. Two years of field measurements of a complete suite of N trace gases (ammonia, nitrous oxide, nitric oxide and other oxidized N compounds) found no difference in flux between upland Prosopis groves and adjacent unencroached grasslands. Total emissions for both land cover types average 0.56-0.65 kg N ha-1 yr-1, comparable to other southern US grasslands. Additional lab experiments suggested that N2 losses are low and that field oxygen conditions are not usually conducive to denitrification. Taken together, results suggest that this ecosystem is currently experiencing a period of net N accrual under ongoing encroachment.

  9. Seasonally dependent iron limitation of nitrogen fixation in tropical forests of karst landscapes

    Science.gov (United States)

    Winbourne, J. B.; Brewer, S.; Houlton, B. Z.

    2015-12-01

    Limestone tropical forests in karst topography are one of the most poorly studied ecosystems on Earth, and has been substantially cleared by human activities throughout much of Central America. This ecosystem is noted for its high level of plant productivity, biomass, endemism and biological diversity compared to nearby neighboring tropical forests on volcanic rock substrates (Brewer et al. 2002). A question remains as to how limestone tropical forests are able to maintain the high nutrient demands of plant photosynthesis and tree biomass growth. Here, we demonstrate that rates of nitrogen (N) fixation are higher in limestone versus volcanic soil substrates, with direct evidence for the emergence of seasonally dependent iron limitation of N fixation in limestone tropical forest. N fixation rates showed a three-fold increase in response to iron additions, especially during the wet season when N demands of the forest trees are highest. In contrast, adjacent forests growing on the more classical acidic volcanic soils showed no response to iron or other nutrient additions. Biologically available pools of iron were exceedingly low in the limestone forest site, consistent with the complexation of iron under high pH conditions. Biological acquisition of iron, as measured by the concentration of iron chelating compounds (i.e. siderophores), provided additional evidence for iron limitation of microbial processes in limestone tropical forests, where concentrations were six times higher than those at the volcanic site. Our results suggest that the functioning of limestone tropical forest is strongly regulated by interactions between iron, soil pH, and N cycling.

  10. Partner choice in nitrogen-fixation mutualisms of legumes and rhizobia.

    Science.gov (United States)

    Simms, Ellen L; Taylor, D Lee

    2002-04-01

    Mutualistic interactions are widespread and obligatory for many organisms, yet their evolutionary persistence in the face of cheating is theoretically puzzling. Nutrient-acquisition symbioses between plants and soil microbes are critically important to plant evolution and ecosystem function, yet we know almost nothing about the evolutionary dynamics and mechanisms of persistence of these ancient mutualisms. Partner-choice and partner-fidelity are mechanisms for dealing with cheaters, and can theoretically allow mutualisms to persist despite cheaters.Many models of cooperative behavior assume pairwise interactions, while most plant-microbe nutrient-acquisition symbioses involve a single plant interacting with numerous microbes. Market models, in contrast, are well suited to mutualisms in which single plants attempt to conduct mutually beneficial resource exchange with multiple individuals. Market models assume that one partner chooses to trade with a subset of individuals selected from a market of potential partners. Hence, determining whether partner-choice occurs in plant-microbe mutualisms is critical to understanding the evolutionary persistence and dynamics of these symbioses. The nitrogen-fixation/carbon-fixation mutualism between leguminous plants and rhizobial bacteria is widespread, ancient, and important for ecosystem function and human nutrition. It also involves single plants interacting simultaneously with several to many bacterial partners, including ineffective ("cheating") strains. We review the existing literature and find that this mutualism displays several elements of partner-choice, and may match the requirements of the market paradigm. We conclude by identifying profitable questions for future research.

  11. Effect of AMmonium Fixation on Estimation of Soil Microbial Biomass Nitrogen

    Institute of Scientific and Technical Information of China (English)

    YINSHI-XUE; FENGKE; 等

    1994-01-01

    The effect of ammonium fixation on the estimation of soil microbial biomass N was studied by the standard fumigation-incubation(FI) and fumigation-extraction (FE) methods,NO3-N content of fumigated soil changed little during incubation,while the fixed NH4+ in soils capable of fixing NH4+ increased with the increase of K2SO4-extractable NH4-N.one day fumigation increased both extractable NH4+ and fixed NH4+,However,prolonged fumigation gave no further increase.One day fumigation caused significant loss of NO3-N,while prolonged fumigation caused no further loss.For soils tested,the net increases of fixed NH4+ in fumigated soil equaled to 0-94% of NH4-N flush measured by the FI metod,and 1-74% of extractable N measured by the FE method.depending on different soils.It is concluded that the ammonium fixation was one of the processes taking place in soils during fumigation as well as incubation ofter fumigation and should not be neglected in the estimation of microbial biomass nitrogen by either FI or FE method.

  12. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems

    Science.gov (United States)

    Vitousek, Peter M.; Menge, Duncan N.L.; Reed, Sasha C.; Cleveland, Cory C.

    2013-01-01

    New techniques have identified a wide range of organisms with the capacity to carry out biological nitrogen fixation (BNF)—greatly expanding our appreciation of the diversity and ubiquity of N fixers—but our understanding of the rates and controls of BNF at ecosystem and global scales has not advanced at the same pace. Nevertheless, determining rates and controls of BNF is crucial to placing anthropogenic changes to the N cycle in context, and to understanding, predicting and managing many aspects of global environmental change. Here, we estimate terrestrial BNF for a pre-industrial world by combining information on N fluxes with 15N relative abundance data for terrestrial ecosystems. Our estimate is that pre-industrial N fixation was 58 (range of 40–100) Tg N fixed yr−1; adding conservative assumptions for geological N reduces our best estimate to 44 Tg N yr−1. This approach yields substantially lower estimates than most recent calculations; it suggests that the magnitude of human alternation of the N cycle is substantially larger than has been assumed.

  13. Evidence for foliar endophytic nitrogen fixation in a widely distributed subalpine conifer.

    Science.gov (United States)

    Moyes, Andrew B; Kueppers, Lara M; Pett-Ridge, Jennifer; Carper, Dana L; Vandehey, Nick; O'Neil, James; Frank, A Carolin

    2016-04-01

    Coniferous forest nitrogen (N) budgets indicate unknown sources of N. A consistent association between limber pine (Pinus flexilis) and potential N2 -fixing acetic acid bacteria (AAB) indicates that native foliar endophytes may supply subalpine forests with N. To assess whether the P. flexilis-AAB association is consistent across years, we re-sampled P. flexilis twigs at Niwot Ridge, CO and characterized needle endophyte communities via 16S rRNA Illumina sequencing. To investigate whether endophytes have access to foliar N2 , we incubated twigs with (13) N2 -enriched air and imaged radioisotope distribution in needles, the first experiment of its kind using (13) N. We used the acetylene reduction assay to test for nitrogenase activity within P. flexilis twigs four times from June to September. We found evidence for N2 fixation in P. flexilis foliage. N2 diffused readily into needles and nitrogenase activity was positive across sampling dates. We estimate that this association could provide 6.8-13.6 μg N m(-2)  d(-1) to P. flexilis stands. AAB dominated the P. flexilis needle endophyte community. We propose that foliar endophytes represent a low-cost, evolutionarily stable N2 -fixing strategy for long-lived conifers. This novel source of biological N2 fixation has fundamental implications for understanding forest N budgets.

  14. Mixed, short rotation culture of red alder and black cottonwood: growth, coppicing, nitrogen fixation, and allelopathy

    Energy Technology Data Exchange (ETDEWEB)

    Heilman, P.; Stettler, R.F.

    1985-01-01

    Alnus rubra seedlings were grown in a 1:1 mixture at a spacing of 1.2 x 1.2 m with 28 Populus clones (25 clones pf P. trichocarpa, 2 of P. deltoides x P. trichocarpa, and one P. deltoides x P. nigra) in a study established in W. Washington in March 1979. Trees were harvested at 4 yr old. At harvest, average heights were: pure Populus, 10.2 m; Populus in the mixed stand 11.0 m; and alder 8.4 m. Most Populus sprouted satisfactorily after harvest (6.6 shoots/plant when pure, 7.6 shoots/plant in the mixture), but alder sprouted poorly (3.6 shoots/plant). Above-ground biomass at harvest was 15.9 t/ha p.a. for the mixture and 16.7 t/ha p.a. for pure Populus, although the mixture had been more productive at 2 yr. Nitrogenase activity (nitrogen fixation as measured by acetylene reduction) of alder declines in the 4th season; competition was the most important factor influencing this decline. Soil N content had no effect on fixation. A pot study showed that ground Populus leaf and litter material inhibited the growth of red alder seedlings, although soil collected from Populus plots had no effect. Results indicated that allelopathy is probably a minor factor under field conditions, at most, and that growing mixed stands may, on balance, be beneficial. 20 references.

  15. Biomass production, symbiotic nitrogen fixation and inorganic N use in dual tri-component annual intercrops

    DEFF Research Database (Denmark)

    Andersen, M.K.; Hauggaard-Nielsen, H.; Ambus, P.

    2005-01-01

    an initial competitive advantage, an advantage that in the two dual intercrops was strengthened by the addition of N. Apparently the competitive superiority of barley was less strong in the tri-component intercrop, indicating that the impact of the dominant may, through improved growth of both rape and pea......The interspecific complementary and competitive interactions between pea (Pisum sativum L.), barley (Hordeum vulgare L.) and oilseed rape (Brassica napus L.), grown as dual and tri-component intercrops were assessed in a field study in Denmark. Total biomass production and N use at two levels of N......, have been diminished through indirect facilitation. Interspecific competition had a promoting effect on the percent of nitrogen derived from N(2) fixation of pea, and most so at the low N fertilisation level. Results indicate that the benefits achieved from the association of a legume and nonlegume...

  16. Approaches for enhancement of N₂ fixation efficiency of chickpea (Cicer arietinum L.) under limiting nitrogen conditions.

    Science.gov (United States)

    Esfahani, Maryam Nasr; Sulieman, Saad; Schulze, Joachim; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo; Tran, Lam-Son

    2014-04-01

    Chickpea (Cicer arietinum) is an important pulse crop in many countries in the world. The symbioses between chickpea and Mesorhizobia, which fix N₂ inside the root nodules, are of particular importance for chickpea's productivity. With the aim of enhancing symbiotic efficiency in chickpea, we compared the symbiotic efficiency of C-15, Ch-191 and CP-36 strains of Mesorhizobium ciceri in association with the local elite chickpea cultivar 'Bivanij' as well as studied the mechanism underlying the improvement of N₂ fixation efficiency. Our data revealed that C-15 strain manifested the most efficient N₂ fixation in comparison with Ch-191 or CP-36. This finding was supported by higher plant productivity and expression levels of the nifHDK genes in C-15 nodules. Nodule specific activity was significantly higher in C-15 combination, partially as a result of higher electron allocation to N₂ versus H⁺. Interestingly, a striking difference in nodule carbon and nitrogen composition was observed. Sucrose cleavage enzymes displayed comparatively lower activity in nodules established by either Ch-191 or CP-36. Organic acid formation, particularly that of malate, was remarkably higher in nodules induced by C-15 strain. As a result, the best symbiotic efficiency observed with C-15-induced nodules was reflected in a higher concentration of the total and several major amino metabolites, namely asparagine, glutamine, glutamate and aspartate. Collectively, our findings demonstrated that the improved efficiency in chickpea symbiotic system, established with C-15, was associated with the enhanced capacity of organic acid formation and the activities of the key enzymes connected to the nodule carbon and nitrogen metabolism. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Regional constraints to biological nitrogen fixation in post-fire forest communities.

    Science.gov (United States)

    Yelenik, Stephanie; Perakis, Steven; Hibbs, David

    2013-03-01

    Biological nitrogen fixation (BNF) is a key ecological process that can restore nitrogen (N) lost in wildfire and shape the pace and pattern of post-fire forest recovery. To date, there is limited information on how climate and soil fertility interact to influence different pathways of BNF in early forest succession. We studied asymbiotic (forest floor and soil) and symbiotic (the shrub Ceanothus integerrimus) BNF rates across six sites in the Klamath National Forest, California, USA. We used combined gradient and experimental phosphorus (P) fertilization studies to explore cross-site variation in BNF rates and then related these rates to abiotic and biotic variables. We estimate that our measured BNF rates 22 years after wildfire (6.1-12.1 kg N x ha(-1) x yr(-1)) are unlikely to fully replace wildfire N losses. We found that asymbiotic BNF is P limited, although this is not the case for symbiotic BNF in Ceanothus. In contrast, Ceanothus BNF is largely driven by competition from other vegetation: in high-productivity sites with high potential evapotranspiration (Et), shrub biomass is suppressed as tree biomass increases. Because shrub biomass governed cross-site variation in Ceanothus BNF, this competitive interaction led to lower BNF in sites with high productivity and Et. Overall, these results suggest that the effects of nutrients play a larger role in driving asymbiotic than symbiotic fixation across our post-fire sites. However, because symbiotic BNF is 8-90x greater than asymbiotic BNF, it is interspecific plant competition that governs overall BNF inputs in these forests.

  18. Regional constraints to biological nitrogen fixation in post-fire forest communities

    Science.gov (United States)

    Yelenik, Stephanie; Perakis, Steven S.; Hibbs, David

    2013-01-01

    Biological nitrogen fixation (BNF) is a key ecological process that can restore nitrogen (N) lost in wildfire and shape the pace and pattern of post-fire forest recovery. To date, there is limited information on how climate and soil fertility interact to influence different pathways of BNF in early forest succession. We studied asymbiotic (forest floor and soil) and symbiotic (the shrub Ceanothus integerrimus) BNF rates across six sites in the Klamath National Forest, California, USA. We used combined gradient and experimental phosphorus (P) fertilization studies to explore cross-site variation in BNF rates and then related these rates to abiotic and biotic variables. We estimate that our measured BNF rates 22 years after wildfire (6.1–12.1 kg N·ha-1·yr-1) are unlikely to fully replace wildfire N losses. We found that asymbiotic BNF is P limited, although this is not the case for symbiotic BNF in Ceanothus. In contrast, Ceanothus BNF is largely driven by competition from other vegetation: in high-productivity sites with high potential evapotranspiration (Et), shrub biomass is suppressed as tree biomass increases. Because shrub biomass governed cross-site variation in Ceanothus BNF, this competitive interaction led to lower BNF in sites with high productivity and Et. Overall, these results suggest that the effects of nutrients play a larger role in driving asymbiotic than symbiotic fixation across our post-fire sites. However, because symbiotic BNF is 8–90x greater than asymbiotic BNF, it is interspecific plant competition that governs overall BNF inputs in these forests.

  19. Nitrogen fixation (Acetylene reduction) in the sediments of the pluss-see : with special attention to the role of sedimentation

    NARCIS (Netherlands)

    Blauw, T.S.

    1987-01-01

    Sediments of productive lakes are usually rich in organic matter and, except for a thin surficial layer, anaerobic. These conditions seem to be favourable for heterotrophic nitrogen fixation. However, these sediments also contain relatively high ammonium concentrations. Ammonium represses

  20. Comparison of two Cellulomonas strains and their interaction with Azospirillum brasilense in degradation of wheat straw and associated nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    Halsall, D.M.; Gibson, A.H.

    1986-04-01

    A mutant strain of Cellulomonas sp. CS1-17 was compared with Cellulomonas gelida 2480 as the cellulolytic component of a mixed culture which was responsible for the breakdown of wheat straw to support asymbiotic nitrogen fixation by Azospirillum brasilense Sp7 (ATCC 29145). Cellulomonas sp. strain CS1-17 was more efficient than was C. gelida in cellulose breakdown at lower oxygen concentrations and, in mixed culture with A. brasilense, it supported higher nitrogenase activity(C/sub 2/H/sub 2/ reduction) and nitrogen fixation with straw as the carbon source. Based on gravimetric determinations of straw breakdown and total N determinations, the efficiency of nitrogen fixation was 72 and 63 mg of N per g of straw utilized for the mixtures containing Cellulomonas sp. and C. gelida, respectively. Both Cellulomonas spp. and Azospirillum spp. exhibited a wide range of pH tolerance. When introduced into sterilized soil, the Cellulomonas sp.-Azospirillum brasilense association was more effective in nitrogen fixation at a pH of 7.0 than at the native soil pH (5.6). This was also true of the indigenous diazotrophic microflora of this soil. The potential implications of this work to the field situation are discussed. 16 references.

  1. Transcriptional Analysis of an Ammonium-Excreting strain of Azotobacter vinelandii Deregulated for Nitrogen Fixation.

    Science.gov (United States)

    Barney, Brett M; Plunkett, Mary H; Natarajan, Velmurugan; Mus, Florence; Knutson, Carolann M; Peters, John W

    2017-08-11

    Biological nitrogen fixation is accomplished by a diverse group of organisms known as diazotrophs, and requires the function of the complex metalloenzyme nitrogenase. Nitrogenase and many of the accessory proteins required for proper cofactor biosynthesis and incorporation into the enzyme have been characterized, but a complete picture of the reaction mechanism and key cellular changes that accompany biological nitrogen fixation remain to be fully elucidated. Studies have revealed that specific disruptions to the anti-activator encoding gene nifL result in the deregulation of the nif transcriptional activator NifA in the nitrogen-fixing bacterium Azotobacter vinelandii, triggering the production of extracellular ammonium levels approaching 30 mM during the stationary phase of growth. In this work, we have characterized the global patterns of gene expression of this high-ammonium releasing phenotype. The findings reported here indicated that cultures of this high-ammonium accumulating strain may be experiencing metal limitation when grown using standard Burk's medium, which could be amended by increasing molybdenum levels to further increase ammonium yield. In addition, elevated levels of nitrogenase gene transcription are not accompanied by a corresponding dramatic increase in hydrogenase gene transcription, or hydrogen uptake rates. Of the three potential electron donor systems for nitrogenase, only the rnf1 gene cluster showed a transcriptional correlation to the increased yield of ammonium. Our results also highlight several additional genes which may play a role in supporting elevated ammonium production in this aerobic nitrogen-fixing model bacterium.Importance: The transcriptional differences found during stationary-phase ammonium accumulation show a strong contrast between the deregulated (nifL disrupted) and wild-type strain, and to what was previously reported for the wild-type strain during exponential phase growth conditions. These results demonstrate

  2. Identification of nitrogenous organic species in Titan aerosols analogs: Nitrogen fixation routes in early atmospheres

    Science.gov (United States)

    He, Chao; Smith, Mark A.

    2013-09-01

    Titan, an icy world surrounded by auburn organic haze, is considered as one of the best targets for studying abiotic planetary organic chemistry. In spite of a great many efforts being made, the chemistry in Titan’s atmosphere and its resulting chemical structures are still not fully understood. In our previous work, we have investigated the structure of Titan aerosols analogs (tholin) by NMR and identified hexamethylenetetramine as a dominant small molecule in Titan tholin. Here we report a more complete and definitive structural investigation of the small molecule inventory in Titan tholin. We identified several nitrogenous organic molecules including cyanamide, guanidine, 2-cyanoguanidine, melamine, N‧-cyanoformamidine and 1,2,4-triazole in Titan tholin by using NMR and GC-MS and standard sample comparison. The structural characteristics of these molecules suggest a possible formation pathway from the reaction of HCN and NH3, both of which are known to exist in appreciable density in the atmosphere and were tentatively detected by the Huygens probe.

  3. A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia coli.

    Science.gov (United States)

    Wang, Liying; Zhang, Lihong; Liu, Zhanzhi; Liu, Zhangzhi; Zhao, Dehua; Liu, Xiaomeng; Zhang, Bo; Xie, Jianbo; Hong, Yuanyuan; Li, Pengfei; Chen, Sanfeng; Dixon, Ray; Li, Jilun

    2013-01-01

    Most biological nitrogen fixation is catalyzed by molybdenum-dependent nitrogenase, an enzyme complex comprising two component proteins that contains three different metalloclusters. Diazotrophs contain a common core of nitrogen fixation nif genes that encode the structural subunits of the enzyme and components required to synthesize the metalloclusters. However, the complement of nif genes required to enable diazotrophic growth varies significantly amongst nitrogen fixing bacteria and archaea. In this study, we identified a minimal nif gene cluster consisting of nine nif genes in the genome of Paenibacillus sp. WLY78, a gram-positive, facultative anaerobe isolated from the rhizosphere of bamboo. We demonstrate that the nif genes in this organism are organized as an operon comprising nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV and that the nif cluster is under the control of a σ(70) (σ(A))-dependent promoter located upstream of nifB. To investigate genetic requirements for diazotrophy, we transferred the Paenibacillus nif cluster to Escherichia coli. The minimal nif gene cluster enables synthesis of catalytically active nitrogenase in this host, when expressed either from the native nifB promoter or from the T7 promoter. Deletion analysis indicates that in addition to the core nif genes, hesA plays an important role in nitrogen fixation and is responsive to the availability of molybdenum. Whereas nif transcription in Paenibacillus is regulated in response to nitrogen availability and by the external oxygen concentration, transcription from the nifB promoter is constitutive in E. coli, indicating that negative regulation of nif transcription is bypassed in the heterologous host. This study demonstrates the potential for engineering nitrogen fixation in a non-nitrogen fixing organism with a minimum set of nine nif genes.

  4. A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Liying Wang

    Full Text Available Most biological nitrogen fixation is catalyzed by molybdenum-dependent nitrogenase, an enzyme complex comprising two component proteins that contains three different metalloclusters. Diazotrophs contain a common core of nitrogen fixation nif genes that encode the structural subunits of the enzyme and components required to synthesize the metalloclusters. However, the complement of nif genes required to enable diazotrophic growth varies significantly amongst nitrogen fixing bacteria and archaea. In this study, we identified a minimal nif gene cluster consisting of nine nif genes in the genome of Paenibacillus sp. WLY78, a gram-positive, facultative anaerobe isolated from the rhizosphere of bamboo. We demonstrate that the nif genes in this organism are organized as an operon comprising nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV and that the nif cluster is under the control of a σ(70 (σ(A-dependent promoter located upstream of nifB. To investigate genetic requirements for diazotrophy, we transferred the Paenibacillus nif cluster to Escherichia coli. The minimal nif gene cluster enables synthesis of catalytically active nitrogenase in this host, when expressed either from the native nifB promoter or from the T7 promoter. Deletion analysis indicates that in addition to the core nif genes, hesA plays an important role in nitrogen fixation and is responsive to the availability of molybdenum. Whereas nif transcription in Paenibacillus is regulated in response to nitrogen availability and by the external oxygen concentration, transcription from the nifB promoter is constitutive in E. coli, indicating that negative regulation of nif transcription is bypassed in the heterologous host. This study demonstrates the potential for engineering nitrogen fixation in a non-nitrogen fixing organism with a minimum set of nine nif genes.

  5. A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Liying Wang

    Full Text Available Most biological nitrogen fixation is catalyzed by molybdenum-dependent nitrogenase, an enzyme complex comprising two component proteins that contains three different metalloclusters. Diazotrophs contain a common core of nitrogen fixation nif genes that encode the structural subunits of the enzyme and components required to synthesize the metalloclusters. However, the complement of nif genes required to enable diazotrophic growth varies significantly amongst nitrogen fixing bacteria and archaea. In this study, we identified a minimal nif gene cluster consisting of nine nif genes in the genome of Paenibacillus sp. WLY78, a gram-positive, facultative anaerobe isolated from the rhizosphere of bamboo. We demonstrate that the nif genes in this organism are organized as an operon comprising nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV and that the nif cluster is under the control of a σ(70 (σ(A-dependent promoter located upstream of nifB. To investigate genetic requirements for diazotrophy, we transferred the Paenibacillus nif cluster to Escherichia coli. The minimal nif gene cluster enables synthesis of catalytically active nitrogenase in this host, when expressed either from the native nifB promoter or from the T7 promoter. Deletion analysis indicates that in addition to the core nif genes, hesA plays an important role in nitrogen fixation and is responsive to the availability of molybdenum. Whereas nif transcription in Paenibacillus is regulated in response to nitrogen availability and by the external oxygen concentration, transcription from the nifB promoter is constitutive in E. coli, indicating that negative regulation of nif transcription is bypassed in the heterologous host. This study demonstrates the potential for engineering nitrogen fixation in a non-nitrogen fixing organism with a minimum set of nine nif genes.

  6. A Minimal Nitrogen Fixation Gene Cluster from Paenibacillus sp. WLY78 Enables Expression of Active Nitrogenase in Escherichia coli

    Science.gov (United States)

    Zhao, Dehua; Liu, Xiaomeng; Zhang, Bo; Xie, Jianbo; Hong, Yuanyuan; Li, Pengfei; Chen, Sanfeng; Dixon, Ray; Li, Jilun

    2013-01-01

    Most biological nitrogen fixation is catalyzed by molybdenum-dependent nitrogenase, an enzyme complex comprising two component proteins that contains three different metalloclusters. Diazotrophs contain a common core of nitrogen fixation nif genes that encode the structural subunits of the enzyme and components required to synthesize the metalloclusters. However, the complement of nif genes required to enable diazotrophic growth varies significantly amongst nitrogen fixing bacteria and archaea. In this study, we identified a minimal nif gene cluster consisting of nine nif genes in the genome of Paenibacillus sp. WLY78, a gram-positive, facultative anaerobe isolated from the rhizosphere of bamboo. We demonstrate that the nif genes in this organism are organized as an operon comprising nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV and that the nif cluster is under the control of a σ70 (σA)-dependent promoter located upstream of nifB. To investigate genetic requirements for diazotrophy, we transferred the Paenibacillus nif cluster to Escherichia coli. The minimal nif gene cluster enables synthesis of catalytically active nitrogenase in this host, when expressed either from the native nifB promoter or from the T7 promoter. Deletion analysis indicates that in addition to the core nif genes, hesA plays an important role in nitrogen fixation and is responsive to the availability of molybdenum. Whereas nif transcription in Paenibacillus is regulated in response to nitrogen availability and by the external oxygen concentration, transcription from the nifB promoter is constitutive in E. coli, indicating that negative regulation of nif transcription is bypassed in the heterologous host. This study demonstrates the potential for engineering nitrogen fixation in a non-nitrogen fixing organism with a minimum set of nine nif genes. PMID:24146630

  7. Projections of Biofuel Growth Patterns Reveal the Potential Importance of Nitrogen Fixation for Miscanthus Productivity

    Science.gov (United States)

    Davis, S. C.; Parton, W. J.; Dohleman, F. G.; Gottel, N. R.; Smith, C. M.; Kent, A. D.; Delucia, E. H.

    2008-12-01

    Demand for liquid biofuels is increasing because of the disparity between fuel demand and supply. Relative to grain crops, the more intensive harvest required for second generation liquid biofuel production leads to the removal of significantly more carbon and nitrogen from the soil. These elements are conventionally litter products of crops that are returned to the soil and can accumulate over time. This loss of organic matter represents a management challenge because the energy cost associated with fertilizers or external sources of organic matter reduce the net energy value of the biofuel crops. Plants that have exceptional strategies for exploiting nutrients may be the most viable options for sustainable biofuel yields because of low management and energy cost. Miscanthus x giganteus has high N retranslocation rates, maintains high photosynthetic rates over a large temperature range, exploits a longer-than-average growing season, and yields at least twice the biomass of other candidate biofuel grass crops (i.e. switchgrass). We employed the DAYCENT model to project potential productivity of Miscanthus, corn, switchgrass, and mixed prairie communities based on our current knowledge of these species. Ecosystem process descriptions that have been validated for many crop species did not accurately predict Miscanthus yields and lead to new hypotheses about unknown N cycling mechanisms for this species. We tested the hypothesis that Miscanthus hosts N-fixing bacteria in several ways. First, we used enrichment culture and molecular methods to detect N-fixing bacteria in Miscanthus. Then, we demonstrated the plant-growth promoting effect of diazotrophs isolated from Miscanthus rhizomes on a model grass. And finally, we applied 15N2 to the soil and rooting zone of field grown Miscanthus plants to determine if atmospheric N2 was incorporated into plant tissue, a process that requires N-fixation. These experiments are the first tests of N-fixation in Miscanthus x

  8. History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience.

    Science.gov (United States)

    Baldani, José I; Baldani, Vera L D

    2005-09-01

    This review covers the history on Biological Nitrogen Fixation (BNF) in Graminaceous plants grown in Brazil, and describes research progress made over the last 40 years, most of which was coordinated by Johanna Döbereiner. One notable accomplishment during this period was the discovery of several nitrogen-fixing bacteria such as the rhizospheric (Beijerinckia fluminensis and Azotobacter paspali), associative (Azospirillum lipoferum, A. brasilense, A. amazonense) and the endophytic (Herbaspirillum seropedicae, H. rubrisubalbicans, Gluconacetobacter diazotrophicus, Burkholderia brasilensis and B. tropica). The role of these diazotrophs in association with grasses, mainly with cereal plants, has been studied and a lot of progress has been achieved in the ecological, physiological, biochemical, and genetic aspects. The mechanisms of colonization and infection of the plant tissues are better understood, and the BNF contribution to the soil/plant system has been determined. Inoculation studies with diazotrophs showed that endophytic bacteria have a much higher BNF contribution potential than associative diazotrophs. In addition, it was found that the plant genotype influences the plant/bacteria association. Recent data suggest that more studies should be conducted on the endophytic association to strengthen the BNF potential. The ongoing genome sequencing programs: RIOGENE (Gluconacetobacter diazotrophicus) and GENOPAR (Herbaspirillum seropedicae) reflect the commitment to the BNF study in Brazil and should allow the country to continue in the forefront of research related to the BNF process in Graminaceous plants.

  9. Effect of Arsenic on Nodulation and Nitrogen Fixation of Blackgram (Vigna mungo).

    Science.gov (United States)

    Mandal, Santi M; Gouri, Samiran S; De, Debasis; Das, Bidus K; Mondal, Keshab C; Pati, Bikas R

    2011-01-01

    Rhizobium-legume symbiotic interaction is an efficient model system for soil remediation and reclamation. We earlier isolated an arsenic (As) (2.8 mM arsenate) tolerant and symbiotically effective Rhizobium strain, VMA301 from Vigna mungo and in this study we further characterized its efficacy for arsenic removal from the soil and its nitrogen fixation capacity. Although nodule formation is delayed in plants with As-treated composite when the inoculum was prepared without arsenic in culture medium, whereas it attains the significant number of nodules compare to plant grown in As-free soil when the inoculum was prepared with arsenic supplemented medium. Arsenic accumulation was higher in roots than root nodules. Nitrogenase activity is reduced to almost 2 fold in plants with As-treated soil but not abolished. These results suggest that this strain, VMA301, has been able to establish an effective symbiotic interaction in V. mungo in As-contaminated soil and can perform dual role of arsenic bioremediation as well as soil nitrogen improvement.

  10. Azide resistance in Rhizobium ciceri linked with superior symbiotic nitrogen fixation.

    Science.gov (United States)

    Bhaskar, V Vijay

    2004-12-01

    Isolated azide resistant (AzR) native R. ciceri strain 18-7 was resistant to sodium azide at 10 microg/ml. To find if nif-reiteration is responsible for azide resistance and linked to superior symbiotic nitrogen fixation, transposon (Tn5) induced azide sensitive mutants were generated. Using 4 kb nif-reiterated Sinorhizobium meliloti DNA, a clone C4 that complemented azide sensitivity was isolated by DNA hybridization from genomic library of chickpea Rhizobium strain Rcd301. EcoRI restriction mapping revealed the presence of 7 recognition sites with a total insert size of 19.17 kb. Restriction analysis of C4 clone and nif-reiterated DNA (pRK 290.7) with EcoRI and XhoI revealed similar banding pattern. Wild type strain 18-7, mutant M126 and complemented mutant M126(C4) were characterized for symbiotic properties (viz., acetylene reduction assay, total nitrogen content, nodule number and fresh and dry weight of the infected plants) and explanta nitrogenase activity. Our results suggested that azide resistance, nif-reiteration, and superior symbiotic effectiveness were interlinked with no correlation between ex-planta nitrogenase activity and azide resistance in R. ciceri.

  11. Iron controls over di-nitrogen fixation in karst tropical forest.

    Science.gov (United States)

    Winbourne, Joy B; Brewer, Steven W; Houlton, Benjamin Z

    2017-03-01

    Limestone tropical forests represent a meaningful fraction of the land area in Central America (25%) and Southeast Asia (40%). These ecosystems are marked by high biological diversity, CO2 uptake capacity, and high pH soils, the latter making them fundamentally different from the majority of lowland tropical forest areas in the Amazon and Congo basins. Here, we examine the role of bedrock geology in determining biological nitrogen fixation (BNF) rates in volcanic (low pH) vs. limestone (high pH) tropical forests located in the Maya Mountains of Belize. We experimentally test how BNF in the leaf-litter responds to nitrogen, phosphorus, molybdenum, and iron additions across different parent materials. We find evidence for iron limitation of BNF rates in limestone forests during the wet but not dry season (response ratio 3.2 ± 0.2; P = 0.03). In contrast, BNF in low pH volcanic forest soil was stimulated by the trace-metal molybdenum during the dry season. The parent-material induced patterns of limitation track changes in siderophore activity and iron bioavailability among parent materials. These findings point to a new role for iron in regulating BNF in karst tropical soils, consistent with observations for other high pH systems such as the open ocean and calcareous agricultural ecosystems.

  12. Submerged culture of Magne-tospirillum gryphiswaldense under N2-fixing condition and regulation of activity of nitrogen fixation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A submerged culture technique for Magnetospirillum gryphiswaldense under the nitrogen-fixing condition (microaerobic and N-limited) was set up. In N-limited medium with Na-lactate as a sole carbon source, the optical density (A600 nm) and activity of nitrogen fixation of cells were 1.3 and 217 nmol of ethylene produced per hour per A600nm respectively within 21 h by three times of feeds. The pH and temperature were controlled at 7.2 and 30℃ respectively, and the oxygen concentration was controlled by sparging with N2 containing 0.4%-0.8% of O2. The activity of nitrogen fixation of cells was obviously inhibited by oxygen and ammonium. It indicated that the posttranslational regulation of nitrogenase existed in M. gryphiswaldense.

  13. Biological nitrogen fixation and biomass accumulation within poplar clones as a result of inoculations with diazotrophic endophyte consortia.

    Science.gov (United States)

    Knoth, Jenny L; Kim, Soo-Hyung; Ettl, Gregory J; Doty, Sharon L

    2014-01-01

    Sustainable production of biomass for bioenergy relies on low-input crop production. Inoculation of bioenergy crops with plant growth-promoting endophytes has the potential to reduce fertilizer inputs through the enhancement of biological nitrogen fixation (BNF). Endophytes isolated from native poplar growing in nutrient-poor conditions were selected for a series of glasshouse and field trials designed to test the overall hypothesis that naturally occurring diazotrophic endophytes impart growth promotion of the host plants. Endophyte inoculations contributed to increased biomass over uninoculated control plants. This growth promotion was more pronounced with multi-strain consortia than with single-strain inocula. Biological nitrogen fixation was estimated through (15)N isotope dilution to be 65% nitrogen derived from air (Ndfa). Phenotypic plasticity in biomass allocation and branch production observed as a result of endophyte inoculations may be useful in bioenergy crop breeding and engineering programs.

  14. Nitrogen fixation in different biogeochemical niches along a 120 000-year chronosequence in New Zealand.

    Science.gov (United States)

    Menge, Duncan N L; Hedin, Lars O

    2009-08-01

    Biological nitrogen fixation (BNF) is the major nitrogen (N) input in many terrestrial ecosystems, yet we know little about the mechanisms and feedbacks that control this process in natural ecosystems. We here examine BNF in four taxonomically and ecologically different groups over the course of forest ecosystem development. At nine sites along the Franz Josef soil chronosequence (South Westland, New Zealand) that range in age from 7 to 120000 yr old, we quantified BNF from the symbiotic plant Coriaria arborea, cyanolichens (primarily Pseudocyphellaria spp.), bryophytes (many species), and heterotrophic bacteria in leaf litter. We specifically examined whether these groups could act as "nitrostats" at the ecosystem level, turning BNF on when N is scarce (early in primary succession) and off when N is plentiful (later in succession and retrogression). Coriaria was abundant and actively fixing (approximately 11 kg N x ha(-1) x yr(-1)) in the youngest and most N-poor site (7 yr old), consistent with nitrostat dynamics. Coriaria maintained high BNF rates independent of soil N availability, however, until it was excluded from the community after a single generation. We infer that Coriaria is an obligate N fixer and that the nitrostat feedback is mechanistically governed by species replacement at the community level, rather than down-regulation of BNF at the physiological scale. Biological nitrogen fixation inputs from lichens (means of 0-2 kg N x ha(-1) x yr(-1)), bryophytes (0.7-10 kg N x ha(-1) x yr(-1)), and litter (1-2 kg N x ha(-1) x yr(-1)) were driven primarily by changes in density, which peaked at intermediate-aged sites (and increased with soil N availability) for both lichens and bryophytes, and grew monotonically with soil age (but did not change with soil N) for litter. This non-nitrostatic link between soil N availability and lichen/bryophyte BNF likely stems from increased tree biomass in more fertile sites, which increases epiphytic moisture conditions

  15. Agro-Process Intensification through Synthetic Rhizosphere Media for Nitrogen Fixation and Yield Enhancement in Plants

    Directory of Open Access Journals (Sweden)

    G. Akay

    2012-01-01

    Full Text Available Problem statement: In order to combat global warming and the emerging Food, Energy and Water shortages (FEWs, several approaches have been adopted, including genetic engineering and farming practices. Biomass based energy technology will further stress food and water resources and hence novel holistic approaches to FEWs should be designed. Approach: A novel technique (Agro-Process Intensification, A-PI which simultaneously addresses FEWs in general and food production in particular was described. The technique was based on the enhancement of multiple interactions between plant roots, water, nutrients and bacteria using soil additives in the form of micro-bioreactors which allow plant root growth through them thus generating a micro-environment acting as a Synthetic Rhizo Sphere (SRS. The SRS-media was a nano-structured micro-porous crosslinked, elastic, ionic and highly hydrophilic polymer, facilitating the efficient use of water and nutrients as well as nitrogen fixation in legumes. Results: SRS media, with or without bacteria, was prepared, characterized and used in greenhouse experiments. Grass, for which the enhancement was well above 200% under water stress, was used to evaluate the mechanism of A-PI. The pea plant was used to demonstrate the intensification achievable by biologically active micro-bioreactors in which nitrogen fixing bacteria, Rhizobia, were supported within the SRS-media. Biologically active SRS-media enhanced the plant root infection by nitrogen fixing bacteria and increased both crop yield (ca. 70% and mineral content. Conclusion/Recommendations: A-PI is achieved principally through the elimination of the random nature of the root/water/nutrient/microorganism interactions. The association of SRS-media with plant roots provides a unique and efficient delivery technique for water and nutrients while protecting beneficial bacteria within the SRS for infection enhancement. Focus on the understanding of the molecular

  16. Evolutionary dynamics of nitrogen fixation in the legume-rhizobia symbiosis.

    Science.gov (United States)

    Fujita, Hironori; Aoki, Seishiro; Kawaguchi, Masayoshi

    2014-01-01

    The stabilization of host-symbiont mutualism against the emergence of parasitic individuals is pivotal to the evolution of cooperation. One of the most famous symbioses occurs between legumes and their colonizing rhizobia, in which rhizobia extract nutrients (or benefits) from legume plants while supplying them with nitrogen resources produced by nitrogen fixation (or costs). Natural environments, however, are widely populated by ineffective rhizobia that extract benefits without paying costs and thus proliferate more efficiently than nitrogen-fixing cooperators. How and why this mutualism becomes stabilized and evolutionarily persists has been extensively discussed. To better understand the evolutionary dynamics of this symbiosis system, we construct a simple model based on the continuous snowdrift game with multiple interacting players. We investigate the model using adaptive dynamics and numerical simulations. We find that symbiotic evolution depends on the cost-benefit balance, and that cheaters widely emerge when the cost and benefit are similar in strength. In this scenario, the persistence of the symbiotic system is compatible with the presence of cheaters. This result suggests that the symbiotic relationship is robust to the emergence of cheaters, and may explain the prevalence of cheating rhizobia in nature. In addition, various stabilizing mechanisms, such as partner fidelity feedback, partner choice, and host sanction, can reinforce the symbiotic relationship by affecting the fitness of symbionts in various ways. This result suggests that the symbiotic relationship is cooperatively stabilized by various mechanisms. In addition, mixed nodule populations are thought to encourage cheater emergence, but our model predicts that, in certain situations, cheaters can disappear from such populations. These findings provide a theoretical basis of the evolutionary dynamics of legume-rhizobia symbioses, which is extendable to other single-host, multiple

  17. Data-based assessment of environmental controls on global marine nitrogen fixation

    Directory of Open Access Journals (Sweden)

    Y.-W. Luo

    2013-04-01

    Full Text Available There are a number of hypotheses for the environmental controls on marine nitrogen fixation (NF. Most of these hypotheses have not been assessed against direct measurements on the global scale. In this study, we use ~ 500 depth-integrated field measurements of NF covering the Pacific and Atlantic Oceans to test whether the spatial variance of these measurements can be explained by the commonly hypothesized environmental controls, including measurement-based surface solar radiation, mixed layer depth, sea surface temperature, surface nitrate and phosphate concentrations, surface excess phosphate (P*, atmospheric dust deposition and surface wind speed, as well as minimum dissolved oxygen in upper 500 m to identify possible subsurface denitrification zones. By conducting simple linear regression and stepwise multiple linear regression (MLR analyses, solar radiation and/or sea surface temperature as well as subsurface dissolved oxygen are identified as the predictors explaining the most spatial variance in the observed NF data, while dust deposition and wind speed do not appear to influence the spatial patterns of NF on global scale. Our study suggests that marine NF is coupled to regional loss of fixed nitrogen induced by subsurface low oxygen concentration, with its magnitude constrained by solar radiation or temperature. By applying the MLR-derived equation, we estimate the global-integrated NF at 71 (error range 49–104 Tg N yr−1 in the open ocean, acknowledging that it could be substantially higher as the 15N2-assimilation method used by most of the field samples underestimates NF. Our conclusion suggests that marine NF will increase in the future if subsurface nitrogen-losses increase as a consequence of developing deoxygenation with the global warming, a projection that will be modulated by other factors such as warming, elevated carbon dioxide, and changes in macro- and micro-nutrient distributions. More field NF samples in the

  18. Compartmentalized microbial composition, oxygen gradients and nitrogen fixation in the gut of Odontotaenius disjunctus

    Science.gov (United States)

    Ceja-Navarro, Javier A; Nguyen, Nhu H; Karaoz, Ulas; Gross, Stephanie R; Herman, Donald J; Andersen, Gary L; Bruns, Thomas D; Pett-Ridge, Jennifer; Blackwell, Meredith; Brodie, Eoin L

    2014-01-01

    Coarse woody debris is an important biomass pool in forest ecosystems that numerous groups of insects have evolved to take advantage of. These insects are ecologically important and represent useful natural analogs for biomass to biofuel conversion. Using a range of molecular approaches combined with microelectrode measurements of oxygen, we have characterized the gut microbiome and physiology of Odontotaenius disjunctus, a wood-feeding beetle native to the eastern United States. We hypothesized that morphological and physiological differences among gut regions would correspond to distinct microbial populations and activities. In fact, significantly different communities were found in the foregut (FG), midgut (MG)/posterior hindgut (PHG) and anterior hindgut (AHG), with Actinobacteria and Rhizobiales being more abundant toward the FG and PHG. Conversely, fermentative bacteria such as Bacteroidetes and Clostridia were more abundant in the AHG, and also the sole region where methanogenic Archaea were detected. Although each gut region possessed an anaerobic core, micron-scale profiling identified radial gradients in oxygen concentration in all regions. Nitrogen fixation was confirmed by 15N2 incorporation, and nitrogenase gene (nifH) expression was greatest in the AHG. Phylogenetic analysis of nifH identified the most abundant transcript as related to Ni–Fe nitrogenase of a Bacteroidetes species, Paludibacter propionicigenes. Overall, we demonstrate not only a compartmentalized microbiome in this beetle digestive tract but also sharp oxygen gradients that may permit aerobic and anaerobic metabolism to occur within the same regions in close proximity. We provide evidence for the microbial fixation of N2 that is important for this beetle to subsist on woody biomass. PMID:23985746

  19. Biological Nitrogen Fixation by Legumes and N Uptake by Coffee Plants

    Directory of Open Access Journals (Sweden)

    Eduardo de Sá Mendonça

    Full Text Available ABSTRACT Green manures are an alternative for substituting or supplementing mineral nitrogen fertilizers. The aim of this study was to quantify biological N fixation (BNF and the N contribution derived from BNF (N-BNF to N levels in leaves of coffee intercropped with legumes grown on four family farms located in the mountainous region of the Atlantic Forest Biome in the state of Minas Gerais, Brazil. The following green manures were evaluated: pinto peanuts (Arachis pintoi, calopo (Calopogonium mucunoides, crotalaria (Crotalaria spectabilis, Brazilian stylo (Stylosanthes guianensis, pigeon pea (Cajanus cajan, lablab beans (Dolichos lablab, and velvet beans (Stizolobium deeringianum, and spontaneous plants. The experimental design was randomized blocks with a 4 × 8 factorial arrangement (four agricultural properties and eight green manures, and four replications. One hundred grams of fresh matter of each green manure plant were dried in an oven to obtain the dry matter. We then performed chemical and biochemical characterizations and determined the levels of 15N and 14N, which were used to quantify BNF through the 15N (δ15N natural abundance technique. The legumes C. mucunoides, S. guianensis, C. cajan, and D. lablab had the highest rates of BNF, at 46.1, 45.9, 44.4, and 42.9 %, respectively. C. cajan was the legume that contributed the largest amount of N (44.42 kg ha-1 via BNF.C. cajan, C. spectabilis, and C. mucunoides transferred 55.8, 48.8, and 48.1 %, respectively, of the N from biological fixation to the coffee plants. The use of legumes intercropped with coffee plants is important in supplying N, as well as in transferring N derived from BNF to nutrition of the coffee plants.

  20. Nitrogen modulation of legume root architecture signaling pathways involves phytohormones and small regulatory molecules.

    Science.gov (United States)

    Mohd-Radzman, Nadiatul A; Djordjevic, Michael A; Imin, Nijat

    2013-10-01

    Nitrogen, particularly nitrate is an important yield determinant for crops. However, current agricultural practice with excessive fertilizer usage has detrimental effects on the environment. Therefore, legumes have been suggested as a sustainable alternative for replenishing soil nitrogen. Legumes can uniquely form nitrogen-fixing nodules through symbiotic interaction with specialized soil bacteria. Legumes possess a highly plastic root system which modulates its architecture according to the nitrogen availability in the soil. Understanding how legumes regulate root development in response to nitrogen availability is an important step to improving root architecture. The nitrogen-mediated root development pathway starts with sensing soil nitrogen level followed by subsequent signal transduction pathways involving phytohormones, microRNAs and regulatory peptides that collectively modulate the growth and shape of the root system. This review focuses on the current understanding of nitrogen-mediated legume root architecture including local and systemic regulations by different N-sources and the modulations by phytohormones and small regulatory molecules.

  1. The efficiency of nitrogen fixation of the model legume Medicago truncatula (Jemalong A17) is low compared to Medicago sativa.

    Science.gov (United States)

    Sulieman, Saad; Schulze, Joachim

    2010-06-15

    Medicago truncatula (Gaertn.) (barrel medic) serves as a model legume in plant biology. Numerous studies have addressed molecular aspects of the biology of M. truncatula, while comparatively little is known about the efficiency of N(2) fixation at the whole plant level. The objective of the present study was to compare the efficiency of N(2) fixation of M. truncatula to the genetically closely related Medicago sativa (L.) (alfalfa). The relative growth of both species relying exclusively on N(2) fixation versus nitrate nutrition, H(2) evolution, nitrogen assimilation, the concentration of amino acids and organic acids in nodules, and (15)N(2) uptake and distribution were studied. M. truncatula showed much lower efficiency of N(2) fixation. Nodule-specific activity was several-fold lower when compared to M. sativa, partially as a result of a lower electron allocation to N(2) versus H(+). M. truncatula or M. sativa plants grown solely on N(2) fixation as a nitrogen source reached about 30% or 80% of growth, respectively, when compared to plants supplied with sufficient nitrate. Moreover, M. truncatula had low %N in shoots and a lower allocation of (15)N to shoots during 1h (15)N(2) labeling period. Amino acid concentration was about 20% higher in M. sativa nodules, largely as a result of more asparagine, while the organic acid concentration was about double in M. sativa, coinciding with a six-fold higher concentration of malate. Total soluble protein in nodules was about three times lower in M. truncatula and the pattern of enzyme activity in that fraction was strongly different. Sucrose cleaving enzymes displayed higher activity in M. truncatula nodules, while the activity of phosphoenolpyruvate carboxylase (PEPC) was much lower. It is concluded that the low efficiency of the M. truncatula symbiotic system is related to a low capacity of organic acid formation and limited nitrogen export from nodules.

  2. Comparative sequence analysis of nitrogen fixation-related genes in six legumes

    Directory of Open Access Journals (Sweden)

    Dong Hyun eKim

    2013-08-01

    Full Text Available Legumes play an important role as food and forage crops in international agriculture especially in developing countries. Legumes have a unique biological process called nitrogen fixation (NF by which they convert atmospheric nitrogen to ammonia. Although legume genomes have undergone polyploidization, duplication and divergence, NF-related genes, because of their essential functional role for legumes, might have remained conserved. To understand the relationship of divergence and evolutionary processes in legumes, this study analyzes orthologs and paralogs for selected 20 NF-related genes by using comparative genomic approaches in six legumes i.e. Medicago truncatula (Mt, Cicer arietinum, Lotus japonicus, Cajanus cajan (Cc, Phaseolus vulgaris (Pv and Glycine max (Gm. Subsequently, sequence distances, numbers of synonymous substitutions per synonymous site (Ks and nonsynonymous substitutions per nonsynonymous site (Ka between orthologs and paralogs were calculated and compared across legumes. These analyses suggest the closest relationship between Gm and Cc and the farthest distance between Mt and Pv in 6 legumes. Ks proportional plots clearly showed ancient genome duplication in all legumes, whole genome duplication event in Gm and also speciation pattern in different legumes. This study also reported some interesting observations e.g. no peak at Ks 0.4 in Gm-Gm, location of two independent genes next to each other in Mt and low Ks values for outparalogs for three genes as compared to other 12 genes. In summary, this study underlines the importance of NF-related genes and provides important insights in genome organization and evolutionary aspects of six legume species analyzed.

  3. The interactive effects of temperature and moisture on nitrogen fixation in two temperate-arctic mosses

    DEFF Research Database (Denmark)

    Rousk, Kathrin; Pedersen, Pia Agerlund; Dyrnum, Kristine

    2017-01-01

    temperatures occurred. Our results suggest that the contemporary and not the historical climate govern the response of moss-associated N2 fixation to changes in the abiotic environment. Thus, climate change will have substantial impacts on N2 fixation in dominant mosses in temperate, subarctic and arctic...... fixation in mosses under controlled conditions have rarely been investigated separately, rendering the interactive effects of the two climatic factors on N2 fixation unknown. Here, we tested the interactive effects of temperature and moisture on N2 fixation in the two most dominant moss species...

  4. Influence of arbuscular mycorrhizae on biomass production and nitrogen fixation of berseem clover plants subjected to water stress.

    Science.gov (United States)

    Saia, Sergio; Amato, Gaetano; Frenda, Alfonso Salvatore; Giambalvo, Dario; Ruisi, Paolo

    2014-01-01

    Several studies, performed mainly in pots, have shown that arbuscular mycorrhizal symbiosis can mitigate the negative effects of water stress on plant growth. No information is available about the effects of arbuscular mycorrhizal symbiosis on berseem clover growth and nitrogen (N) fixation under conditions of water shortage. A field experiment was conducted in a hilly area of inner Sicily, Italy, to determine whether symbiosis with AM fungi can mitigate the detrimental effects of drought stress (which in the Mediterranean often occurs during the late period of the growing season) on forage yield and symbiotic N2 fixation of berseem clover. Soil was either left under water stress (i.e., rain-fed conditions) or the crop was well-watered. Mycorrhization treatments consisted of inoculation of berseem clover seeds with arbuscular mycorrhizal spores or suppression of arbuscular mycorrhizal symbiosis by means of fungicide treatments. Nitrogen biological fixation was assessed using the 15N-isotope dilution technique. Arbuscular mycorrhizal symbiosis was able to mitigate the negative effect of water stress on berseem clover grown in a typical semiarid Mediterranean environment. In fact, under water stress conditions, arbuscular mycorrhizal symbiosis resulted in increases in total biomass, N content, and N fixation, whereas no effect of crop mycorrhization was observed in the well-watered treatment.

  5. Influence of arbuscular mycorrhizae on biomass production and nitrogen fixation of berseem clover plants subjected to water stress.

    Directory of Open Access Journals (Sweden)

    Sergio Saia

    Full Text Available Several studies, performed mainly in pots, have shown that arbuscular mycorrhizal symbiosis can mitigate the negative effects of water stress on plant growth. No information is available about the effects of arbuscular mycorrhizal symbiosis on berseem clover growth and nitrogen (N fixation under conditions of water shortage. A field experiment was conducted in a hilly area of inner Sicily, Italy, to determine whether symbiosis with AM fungi can mitigate the detrimental effects of drought stress (which in the Mediterranean often occurs during the late period of the growing season on forage yield and symbiotic N2 fixation of berseem clover. Soil was either left under water stress (i.e., rain-fed conditions or the crop was well-watered. Mycorrhization treatments consisted of inoculation of berseem clover seeds with arbuscular mycorrhizal spores or suppression of arbuscular mycorrhizal symbiosis by means of fungicide treatments. Nitrogen biological fixation was assessed using the 15N-isotope dilution technique. Arbuscular mycorrhizal symbiosis was able to mitigate the negative effect of water stress on berseem clover grown in a typical semiarid Mediterranean environment. In fact, under water stress conditions, arbuscular mycorrhizal symbiosis resulted in increases in total biomass, N content, and N fixation, whereas no effect of crop mycorrhization was observed in the well-watered treatment.

  6. Nitrogen fixation in microbial mat and stromatolite communities from Cuatro Cienegas, Mexico.

    Science.gov (United States)

    Falcón, L I; Cerritos, R; Eguiarte, L E; Souza, V

    2007-08-01

    Nitrogen fixation (nitrogenase activity, NA) of a microbial mat and a living stromatolite from Cuatro Cienegas, Mexico, was examined over spring, summer, and winter of 2004. The goal of the study was to characterize the diazotrophic community through molecular analysis of the nifH gene and using inhibitors of sulfate reduction and oxygenic and anoxygenic photosynthesis. We also evaluated the role of ultraviolet radiation on the diazotrophic activity of the microbial communities. Both microbial communities showed patterns of NA with maximum rates during the day that decreased significantly with 3-3,4-dichlorophenyl-1',1'-dimethylurea, suggesting the potential importance of heterocystous cyanobacteria. There is also evidence of NA by sulfur-reducing bacteria in both microbial communities suggested by the negative effect exerted by the addition of sodium molybdate. Elimination of infrared and ultraviolet radiation had no effect on NA. Both microbial communities had nifH sequences that related to group I, including cyanobacteria and purple sulfur and nonsulfur bacteria, as well as group II nitrogenases, including sulfur reducing and green sulfur bacteria.

  7. Carbon allocation, nodulation, and biological nitrogen fixation of black locust (Robinia pseudoacacia L.) under soil water limitation

    OpenAIRE

    Dario Mantovani; Maik Veste; Katja Boldt-Burisch; Simone Fritsch; Laurie Anne Koning; Dirk Freese

    2015-01-01

    The pioneer tree black locust (Robinia pseudoacacia L.) is a drought-resistant tree and, in symbiosis with Rhizobium, able to fix dinitrogen from the atmosphere. It is, therefore, an interesting species for marginal lands where soil amelioration is sought in addition to economic gain. However, the interaction between soil water availability, carbon allocation and nitrogen fixation is important for a successful establishment of trees on marginal lands and has not yet been investigated for blac...

  8. Using indirect methods to constrain symbiotic nitrogen fixation rates: a case study from an Amazonian rain forest

    OpenAIRE

    Cleveland, Cory C; Houlton, Benjamin Z.; Neill, Christopher; Sasha C. Reed; Alan R. Townsend; Wang, Yingping

    2010-01-01

    Human activities have profoundly altered the global nitrogen (N) cycle. Increases in anthropogenic N have had multiple effects on the atmosphere, on terrestrial, freshwater and marine ecosystems, and even on human health. Unfortunately, methodological limitations challenge our ability to directly measure natural N inputs via biological N fixation (BNF)—the largest natural source of new N to ecosystems. This confounds efforts to quantify the extent of anthropogenic perturbation to the N cycle....

  9. Agrobacterium rhizogenes transformed soybean roots differ in their nodulation and nitrogen fixation response to genistein and salt stress.

    Science.gov (United States)

    Dolatabadian, Aria; Modarres Sanavy, Seyed Ali Mohammad; Ghanati, Faezeh; Gresshoff, Peter M

    2013-07-01

    We evaluated response differences of normal and transformed (so-called 'hairy') roots of soybean (Glycine max L. (Merr.), cv L17) to the Nod-factor inducing isoflavone genistein and salinity by quantifying growth, nodulation, nitrogen fixation and biochemical changes. Composite soybean plants were generated using Agrobacterium rhizogenes-mediated transformation of non-nodulating mutant nod139 (GmNFR5α minus) with complementing A. rhizogenes K599 carrying the wild-type GmNFR5α gene under control of the constitutive CaMV 35S promoter. We used genetic complementation for nodulation ability as only nodulated roots were scored. After hairy root emergence, primary roots were removed and composite plants were inoculated with Bradyrhizobium japonicum (strain CB1809) pre-induced with 10 μM genistein and watered with NaCl (0, 25, 50 and 100 mM). There were significant differences between hairy roots and natural roots in their responses to salt stress and genistein application. In addition, there were noticeable nodulation and nitrogen fixation differences. Composite plants had better growth, more root volume and chlorophyll as well as more nodules and higher nitrogenase activity (acetylene reduction) compared with natural roots. Decreased lipid peroxidation, proline accumulation and catalase/peroxidase activities were found in 'hairy' roots under salinity stress. Genistein significantly increased nodulation and nitrogen fixation and improved roots and shoot growth. Although genistein alleviated lipid peroxidation under salinity stress, it had no significant effect on the activity of antioxidant enzymes. In general, composite plants were more competitive in growth, nodulation and nitrogen fixation than normal non-transgenic even under salinity stress conditions.

  10. EnviroAtlas - Biological nitrogen fixation in natural/semi-natural ecosystems by 12-digit HUC for the Conterminous United States, 2006

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset contains data on the mean biological nitrogen fixation in natural/semi-natural ecosystems per 12-digit Hydrologic Unit (HUC) in 2006....

  11. Antioxidant pathways are up-regulated during biological nitrogen fixation to prevent ROS-induced nitrogenase inhibition in Gluconacetobacter diazotrophicus.

    Science.gov (United States)

    Alquéres, Sylvia M C; Oliveira, Jose Henrique M; Nogueira, Eduardo M; Guedes, Helma V; Oliveira, Pedro L; Câmara, Fernando; Baldani, Jose I; Martins, Orlando B

    2010-10-01

    Gluconacetobacter diazotrophicus, an endophyte isolated from sugarcane, is a strict aerobe that fixates N(2). This process is catalyzed by nitrogenase and requires copious amounts of ATP. Nitrogenase activity is extremely sensitive to inhibition by oxygen and reactive oxygen species (ROS). However, the elevated oxidative metabolic rates required to sustain biological nitrogen fixation (BNF) may favor an increased production of ROS. Here, we explored this paradox and observed that ROS levels are, in fact, decreased in nitrogen-fixing cells due to the up-regulation of transcript levels of six ROS-detoxifying genes. A cluster analyses based on common expression patterns revealed the existence of a stable cluster with 99.8% similarity made up of the genes encoding the α-subunit of nitrogenase Mo-Fe protein (nifD), superoxide dismutase (sodA) and catalase type E (katE). Finally, nitrogenase activity was inhibited in a dose-dependent manner by paraquat, a redox cycler that increases cellular ROS levels. Our data revealed that ROS can strongly inhibit nitrogenase activity, and G. diazotrophicus alters its redox metabolism during BNF by increasing antioxidant transcript levels resulting in a lower ROS generation. We suggest that careful controlled ROS production during this critical phase is an adaptive mechanism to allow nitrogen fixation.

  12. Applying reversible mutations of nodulation and nitrogen-fixation genes to study social cheating in Rhizobium etli-legume interaction.

    Science.gov (United States)

    Ling, Jun; Zheng, Huiming; Katzianer, David S; Wang, Hui; Zhong, Zengtao; Zhu, Jun

    2013-01-01

    Mutualisms are common in nature, though these symbioses can be quite permeable to cheaters in situations where one individual parasitizes the other by discontinuing cooperation yet still exploits the benefits of the partnership. In the Rhizobium-legume system, there are two separate contexts, namely nodulation and nitrogen fixation processes, by which resident Rhizobium individuals can benefit by cheating. Here, we constructed reversible and irreversible mutations in key nodulation and nitrogen-fixation pathways of Rhizobium etli and compared their interaction with plant hosts Phaseolus vulgaris to that of wild type. We show that R. etli reversible mutants deficient in nodulation factor production are capable of intra-specific cheating, wherein mutants exploit other Rhizobium individuals capable of producing these factors. Similarly, we show that R. etli mutants are also capable of cheating inter-specifically, colonizing the host legume yet contributing nothing to the partnership in terms of nitrogen fixation. Our findings indicate that cheating is possible in both of these frameworks, seemingly without damaging the stability of the mutualism itself. These results may potentially help explain observations suggesting that legume plants are commonly infected by multiple bacterial lineages during the nodulation process.

  13. Persistence of biological nitrogen fixation in high latitude grass-clover grasslands under different management practices

    Science.gov (United States)

    Tzanakakis, Vasileios; Sturite, Ievina; Dörsch, Peter

    2016-04-01

    Biological nitrogen fixation (BNF) can substantially contribute to N supply in permanent grasslands, improving N yield and forage quality, while reducing inorganic N inputs. Among the factors critical to the performance of BNF in grass-legume mixtures are selected grass and legume species, proportion of legumes, the soil-climatic conditions, in particular winter conditions, and management practices (e.g. fertilization and compaction). In high latitude grasslands, low temperatures can reduce the performance of BNF by hampering the legumés growth and by suppressing N2 fixation. Estimation of BNF in field experiments is not straightforward. Different methods have been developed providing different results. In the present study, we evaluated the performance of BNF, in a newly established field experiment in North Norway over four years. The grassland consisted of white clover (Trifolium repens L.) and red clover (Trifolium pretense L.) sawn in three proportions (0, 15 and 30% in total) together with timothy (Pheum pretense L.) and meadow fescue (Festuca pratensis L.). Three levels of compaction were applied each year (no tractor, light tractor, heavy tractor) together with two different N rates (110 kg N/ha as cattle slurry or 170 kg N/ha as cattle slurry and inorganic N fertilizer). We applied two different methods, the 15N natural abundance and the difference method, to estimate BNF in the first harvest of each year. Overall, the difference method overestimated BNF relative to the 15N natural abundance method. BNF in the first harvest was compared to winter survival of red and white clover plants, which decreased with increasing age of the grassland. However, winter conditions did not seem to affect the grassland's ability to fix N in spring. The fraction of N derived from the atmosphere (NdfA) in white and red clover was close to 100% in each spring, indicating no suppression of BNF. BNF increased the total N yield of the grasslands by up to 75%, mainly due to high

  14. A novel endo-hydrogenase activity recycles hydrogen produced by nitrogen fixation.

    Directory of Open Access Journals (Sweden)

    Gordon Ng

    Full Text Available BACKGROUND: Nitrogen (N(2 fixation also yields hydrogen (H(2 at 1:1 stoichiometric amounts. In aerobic diazotrophic (able to grow on N(2 as sole N-source bacteria, orthodox respiratory hupSL-encoded hydrogenase activity, associated with the cell membrane but facing the periplasm (exo-hydrogenase, has nevertheless been presumed responsible for recycling such endogenous hydrogen. METHODS AND FINDINGS: As shown here, for Azorhizobium caulinodans diazotrophic cultures open to the atmosphere, exo-hydrogenase activity is of no consequence to hydrogen recycling. In a bioinformatic analysis, a novel seven-gene A. caulinodans hyq cluster encoding an integral-membrane, group-4, Ni,Fe-hydrogenase with homology to respiratory complex I (NADH: quinone dehydrogenase was identified. By analogy, Hyq hydrogenase is also integral to the cell membrane, but its active site faces the cytoplasm (endo-hydrogenase. An A. caulinodans in-frame hyq operon deletion mutant, constructed by "crossover PCR", showed markedly decreased growth rates in diazotrophic cultures; normal growth was restored with added ammonium--as expected of an H(2-recycling mutant phenotype. Using A. caulinodans hyq merodiploid strains expressing beta-glucuronidase as promoter-reporter, the hyq operon proved strongly and specifically induced in diazotrophic culture; as well, hyq operon induction required the NIFA transcriptional activator. Therefore, the hyq operon is constituent of the nif regulon. CONCLUSIONS: Representative of aerobic N(2-fixing and H(2-recycling alpha-proteobacteria, A. caulinodans possesses two respiratory Ni,Fe-hydrogenases: HupSL exo-hydrogenase activity drives exogenous H(2 respiration, and Hyq endo-hydrogenase activity recycles endogenous H(2, specifically that produced by N(2 fixation. To benefit human civilization, H(2 has generated considerable interest as potential renewable energy source as its makings are ubiquitous and its combustion yields no greenhouse gases. As

  15. Nitrogen fixation in sediments along a depth transect through the Eastern Boundary Upwelling Systems off Peru and Mauritania

    Science.gov (United States)

    Gier, J.; Sommer, S.; Löscher, C. R.; Dale, A.; Schmitz, R. A.; Treude, T.

    2015-12-01

    The distribution of benthic nitrogen (N2) fixation and its relevance for N cycling in the Eastern Boundary Upwelling Systems (EBUS) are still unknown. Recent studies confirm that benthic N2 fixation can be coupled to sulfate reduction (SR) and that several species of sulfate reducing bacteria have the genetic ability to fix N due to the presence of the gene encoding for the nitrogenase enzyme. We investigated benthic N2 fixation and SR in the Peruvian oxygen minimum zone at 12°S and in the Mauritanian upwelling system at 18°N along a depth transect. Sediments were retrieved by a multicorer and a benthic lander at six stations in both regions. Benthic N2 fixation occurred throughout the sediment in both EBUS. Off Peru the highest integrated (0-20 cm) N2 fixation rate of 0.4 mmol N/m2/d was measured inside the core of the OMZ at 253 m water depth. Off Mauritania the highest integrated (0-20 cm) N2 fixation rate of 0.15 mmol N/m2/d was measured at 90 m, coinciding with a low bottom water oxygen concentration (30 μM). N2 fixation depth profiles often overlapped with SR activity. Moreover, sequencing data yielded insights into the composition and diversity of the nifH gene pool in EBUS sediments. Interestingly, detected sequences in both EBUS clustered with SR bacteria, such as Desulfovibrio vulgaris and several of the novel detected clades belonged to uncultured diazotrophs. Our results suggest that N2 fixation and SR were coupled to a large extent in both regions. However, potential environmental factors controlling benthic diazotrophs in the EBUS appear to be the availability of sulfide and organic matter. Additionally, no inhibition of N2 fixation at high ammonium concentrations was found, which highlights gaps in our knowledge regards the interaction between ammonium availability and diazotrophy. Our results contribute to a better understanding of N cycling in EBUS sediments and sources of fixed N.

  16. High cell-specific rates of nitrogen and carbon fixation by the cyanobacterium Aphanizomenon sp. at low temperatures in the Baltic Sea.

    Science.gov (United States)

    Svedén, Jennie B; Adam, Birgit; Walve, Jakob; Nahar, Nurun; Musat, Niculina; Lavik, Gaute; Whitehouse, Martin J; Kuypers, Marcel M M; Ploug, Helle

    2015-12-01

    Aphanizomenon is a widespread genus of nitrogen (N2)-fixing cyanobacteria in lakes and estuaries, accounting for a large fraction of the summer N2-fixation in the Baltic Sea. However, information about its cell-specific carbon (C)- and N2-fixation rates in the early growth season has not previously been reported. We combined various methods to study N2-fixation, photosynthesis and respiration in field-sampled Baltic Sea Aphanizomenon sp. during early summer at 10°C. Stable isotope incubations at in situ light intensities during 24 h combined with cell-specific secondary ion mass spectrometry showed an average net N2-fixation rate of 55 fmol N cell(-1) day(-1). Dark net N2-fixation rates over a course of 12 h were 20% of those measured in light. C-fixation, but not N2-fixation, was inhibited by high ambient light intensities during daytime. Consequently, the C:N fixation ratio varied substantially over the diel cycle. C- and N2-fixation rates were comparable to those reported for Aphanizomenon sp. in August at 19°C, using the same methods. High respiration rates (23% of gross photosynthesis) were measured with (14)C-incubations and O2-microsensors, and presumably reflect the energy needed for high N2-fixation rates. Hence, Aphanizomenon sp. is an important contributor to N2-fixation at low in situ temperatures in the early growth season.

  17. Origin and Evolution of Nitrogen Fixation Genes on Symbiosis Islands and Plasmid in Bradyrhizobium

    Science.gov (United States)

    Okubo, Takashi; Piromyou, Pongdet; Tittabutr, Panlada; Teaumroong, Neung; Minamisawa, Kiwamu

    2016-01-01

    The nitrogen fixation (nif) genes of nodule-forming Bradyrhizobium strains are generally located on symbiosis islands or symbiosis plasmids, suggesting that these genes have been transferred laterally. The nif genes of rhizobial and non-rhizobial Bradyrhizobium strains were compared in order to infer the evolutionary histories of nif genes. Based on all codon positions, the phylogenetic tree of concatenated nifD and nifK sequences showed that nifDK on symbiosis islands formed a different clade from nifDK on non-symbiotic loci (located outside of symbiosis islands and plasmids) with elongated branches; however, these genes were located in close proximity, when only the 1st and 2nd codon positions were analyzed. The guanine (G) and cytosine (C) content of the 3rd codon position of nifDK on symbiosis islands was lower than that on non-symbiotic loci. These results suggest that nif genes on symbiosis islands were derived from the non-symbiotic loci of Bradyrhizobium or closely related strains and have evolved toward a lower GC content with a higher substitution rate than the ancestral state. Meanwhile, nifDK on symbiosis plasmids clustered with nifDK on non-symbiotic loci in the tree representing all codon positions, and the GC content of symbiotic and non-symbiotic loci were similar. These results suggest that nif genes on symbiosis plasmids were derived from the non-symbiotic loci of Bradyrhizobium and have evolved with a similar evolutionary pattern and rate as the ancestral state. PMID:27431195

  18. Efficient inactivation of symbiotic nitrogen fixation related genes in Lotus japonicus using CRISPR-Cas9

    Directory of Open Access Journals (Sweden)

    Longxiang Wang

    2016-08-01

    Full Text Available The targeted genome editing technique, CRISPR/Cas9 system, has been widely used to modify genes of interest in a predictable and precise manner. In this study, we describe the CRISPR/Cas9-mediated efficient editing of representative SNF (symbiotic nitrogen fixation related genes in the model legume Lotus japonicus via Agrobacterium-mediated stable or hairy root transformation. We first predicted nine endogenous U6 genes in Lotus and then demonstrated the efficacy of the LjU6-1 gene promoter in driving expression of single guide RNAs (sgRNAs by using a split yellow fluorescence protein (YFP reporter system to restore the fluorescence in Arabidopsis protoplasts. Next, we chose a customized sgRNA targeting SYMRK (symbiosis receptor kinase loci and achieved ~35% mutagenic efficiency in 20 T0 transgenic plants, two of them containing biallelic homozygous mutations with a 2-bp deletion near the PAM region. We further designed two sgRNAs targeting three homologous leghemoglobin loci (LjLb1, LjLb2, LjLb3 for testing the possibility of generating multi-gene knockouts. 20 out of 70 hairy root transgenic plants exhibited white nodules, with at least two LjLbs disrupted in each plant. Compared with the constitutively active CaMV 35S promoter, the nodule-specific LjLb2 promoter was also effective in gene editing in nodules by hairy root transformation. Triple mutant knockout of LjLbs was also obtained by stable transformation using two sgRNAs. Collectively, these studies demonstrate that the CRISPR/Cas9 system should greatly facilitate functional analyses of SNF related genes in Lotus japonicus.

  19. Impact of the ahas transgene for herbicides resistance on biological nitrogen fixation and yield of soybean.

    Science.gov (United States)

    Hungria, Mariangela; Nakatani, André Shigueyoshi; Souza, Rosinei Aparecida; Sei, Fernando Bonafé; de Oliveira Chueire, Ligia Maria; Arias, Carlos Arrabal

    2015-02-01

    Studies on the effects of transgenes in soybean [Glycine max (L.) Merr.] and the associated use of specific herbicides on biological nitrogen fixation (BNF) are still few, although it is important to ensure minimal impacts on benefits provided by the root-nodule symbiosis. Cultivance CV127 transgenic soybean is a cultivar containing the ahas gene, which confers resistance to herbicides of the imidazolinone group. The aim of this study was to assess the effects of the ahas transgene and of imidazolinone herbicide on BNF parameters and soybean yield. A large-scale set of field experiments was conducted, for three cropping seasons, at nine sites in Brazil, with a total of 20 trials. The experiment was designed as a completely randomized block with four replicates and the following treatments: (T1) near isogenic transgenic soybean (Cultivance CV127) + herbicide of the imidazolinone group (imazapyr); (T2) near isogenic transgenic soybean + conventional herbicides; and (T3) parental conventional soybean (Conquista) + conventional herbicides; in addition, two commercial cultivars were included, Monsoy 8001 (M-SOY 8001) (T4), and Coodetec 217 (CD 217) (T5). At the R2 growth stage, plants were collected and BNF parameters evaluated. In general, there were no effects on BNF parameters due to the transgenic trait or associated with the specific herbicide. Similarly, at the final harvest, no grain-yield effects were detected related to the ahas gene or to the specific herbicide. However, clear effects on BNF and grain yield were attributed to location and cropping season.

  20. Origin and Evolution of Nitrogen Fixation Genes on Symbiosis Islands and Plasmid in Bradyrhizobium.

    Science.gov (United States)

    Okubo, Takashi; Piromyou, Pongdet; Tittabutr, Panlada; Teaumroong, Neung; Minamisawa, Kiwamu

    2016-09-29

    The nitrogen fixation (nif) genes of nodule-forming Bradyrhizobium strains are generally located on symbiosis islands or symbiosis plasmids, suggesting that these genes have been transferred laterally. The nif genes of rhizobial and non-rhizobial Bradyrhizobium strains were compared in order to infer the evolutionary histories of nif genes. Based on all codon positions, the phylogenetic tree of concatenated nifD and nifK sequences showed that nifDK on symbiosis islands formed a different clade from nifDK on non-symbiotic loci (located outside of symbiosis islands and plasmids) with elongated branches; however, these genes were located in close proximity, when only the 1st and 2nd codon positions were analyzed. The guanine (G) and cytosine (C) content of the 3rd codon position of nifDK on symbiosis islands was lower than that on non-symbiotic loci. These results suggest that nif genes on symbiosis islands were derived from the non-symbiotic loci of Bradyrhizobium or closely related strains and have evolved toward a lower GC content with a higher substitution rate than the ancestral state. Meanwhile, nifDK on symbiosis plasmids clustered with nifDK on non-symbiotic loci in the tree representing all codon positions, and the GC content of symbiotic and non-symbiotic loci were similar. These results suggest that nif genes on symbiosis plasmids were derived from the non-symbiotic loci of Bradyrhizobium and have evolved with a similar evolutionary pattern and rate as the ancestral state.

  1. Efficient Inactivation of Symbiotic Nitrogen Fixation Related Genes in Lotus japonicus Using CRISPR-Cas9

    Science.gov (United States)

    Wang, Longxiang; Wang, Longlong; Tan, Qian; Fan, Qiuling; Zhu, Hui; Hong, Zonglie; Zhang, Zhongming; Duanmu, Deqiang

    2016-01-01

    The targeted genome editing technique, CRISPR/Cas9 system, has been widely used to modify genes of interest in a predictable and precise manner. In this study, we describe the CRISPR/Cas9-mediated efficient editing of representative SNF (symbiotic nitrogen fixation) related genes in the model legume Lotus japonicus via Agrobacterium-mediated stable or hairy root transformation. We first predicted nine endogenous U6 genes in Lotus and then demonstrated the efficacy of the LjU6-1 gene promoter in driving expression of single guide RNAs (sgRNAs) by using a split yellow fluorescence protein (YFP) reporter system to restore the fluorescence in Arabidopsis protoplasts. Next, we chose a customized sgRNA targeting SYMRK (symbiosis receptor-like kinase) loci and achieved ~35% mutagenic efficiency in 20 T0 transgenic plants, two of them containing biallelic homozygous mutations with a 2-bp deletion near the PAM region. We further designed two sgRNAs targeting three homologous leghemoglobin loci (LjLb1, LjLb2, LjLb3) for testing the possibility of generating multi-gene knockouts. 20 out of 70 hairy root transgenic plants exhibited white nodules, with at least two LjLbs disrupted in each plant. Compared with the constitutively active CaMV 35S promoter, the nodule-specific LjLb2 promoter was also effective in gene editing in nodules by hairy root transformation. Triple mutant knockout of LjLbs was also obtained by stable transformation using two sgRNAs. Collectively, these studies demonstrate that the CRISPR/Cas9 system should greatly facilitate functional analyses of SNF related genes in Lotus japonicus. PMID:27630657

  2. Elevated Atmospheric CO2 and Warming Stimulates Growth and Nitrogen Fixation in a Common Forest Floor Cyanobacterium under Axenic Conditions

    Directory of Open Access Journals (Sweden)

    Zoë Lindo

    2017-03-01

    Full Text Available The predominant input of available nitrogen (N in boreal forest ecosystems originates from moss-associated cyanobacteria, which fix unavailable atmospheric N2, contribute to the soil N pool, and thereby support forest productivity. Alongside climate warming, increases in atmospheric CO2 concentrations are expected in Canada’s boreal region over the next century, yet little is known about the combined effects of these factors on N fixation by forest floor cyanobacteria. Here we assess changes in N fixation in a common forest floor, moss-associated cyanobacterium, Nostoc punctiforme Hariot, under elevated CO2 conditions over 30 days and warming combined with elevated CO2 over 90 days. We measured rates of growth and changes in the number of specialized N2 fixing heterocyst cells, as well as the overall N fixing activity of the cultures. Elevated CO2 stimulated growth and N fixation overall, but this result was influenced by the growth stage of the cyanobacteria, which in turn was influenced by our temperature treatments. Taken together, climate change factors of warming and elevated CO2 are expected to stimulate N2 fixation by moss-associated cyanobacteria in boreal forest systems.

  3. EFFECT OF MOISTURE LEVELS ON THE GROWTH, NODULATION AND NITROGEN FIXATION IN Dalbergia sissoo BY Azospirillum brasilense AND Acaulospora laevis

    Directory of Open Access Journals (Sweden)

    Gaurav Bhushan

    2014-08-01

    Full Text Available In present study, influence of single and combined inoculation of Azospirillum brasilense and Acaulospora laevis on the growth, nodulation and N2 fixation in Dalbergia sissoo was tested at various moisture levels under pot culture conditions. Combined inoculation of A.brasilense and A.laevis was found best in raising maximum growth, nodulation, nitrogen fixation and percentage of AM colonization in roots. These characters were considerably influenced with the increasing moisture stress from -0.3MPa to -1.5MPa. Furthermore, the values of all the above mentioned parameters show decrement with the increasing of moisture stress. Plants with dual inoculation performed better than single inoculated plants. Observation of the present study counted a protective role played by AM in providing resistance to D.sissoo against injurious effects of moisture stress.

  4. Identification of three genes encoding P(II)-like proteins in Gluconacetobacter diazotrophicus: studies of their role(s) in the control of nitrogen fixation.

    Science.gov (United States)

    Perlova, Olena; Ureta, Alejandro; Nordlund, Stefan; Meletzus, Dietmar

    2003-10-01

    In our studies on the regulation of nitrogen metabolism in Gluconacetobacter diazotrophicus, an endophytic diazotroph of sugarcane, three glnB-like genes were identified and their role(s) in the control of nitrogen fixation was studied. Sequence analysis revealed that one P(II) protein-encoding gene, glnB, was adjacent to a glnA gene (encoding glutamine synthetase) and that two other P(II) protein-encoding genes, identified as glnK1 and glnK2, were located upstream of amtB1 and amtB2, respectively, genes which in other organisms encode ammonium (or methylammonium) transporters. Single and double mutants and a triple mutant with respect to the three P(II) protein-encoding genes were constructed, and the effects of the mutations on nitrogenase expression and activity in the presence of either ammonium starvation or ammonium sufficiency were studied. Based on the results presented here, it is suggested that none of the three P(II) homologs is required for nif gene expression, that the GlnK2 protein acts primarily as an inhibitor of nif gene expression, and that GlnB and GlnK1 control the expression of nif genes in response to ammonium availability, both directly and by relieving the inhibition by GlnK2. This model includes novel regulatory features of P(II) proteins.

  5. Growth and Nitrogen Fixation in Silicon and/or Potassium Fed Chickpeas Grown under Drought and Well Watered Conditions

    Directory of Open Access Journals (Sweden)

    Fawaz Kurdali

    2013-08-01

    Full Text Available A pot experiment was conducted to study the effects of silicon (Si and/or potassium (K on plant growth, nitrogen uptake and N2-fixation in water stressed (FC1 and well watered (FC2 chickpea plants using 15N and 13C isotopes. Three fertilizer rates of Si (Si50, Si100 and Si200 and one fertilizer rate of K were used. For most of the growth parameters, it was found that Si either alone or in combination with K was more effective to alleviate water stress than K alone. Increasing soil water level from FC1 to FC2 often had a positive impact on values of almost all studied parameters. The Si100K+ (FC1 and Si50K+ (FC2 treatments gave high enough amounts of N2-fixation, higher dry matter production and greater nitrogen yield. The percent increments of total N2-fixed in the above mentioned treatments were 51 and 47% over their controls, respectively. On the other hand, increasing leave’s dry matter in response to the solely added Si (Si50K- and Si100K- is associated with lower Δ13C under both watering regimes. This may indicate that Si fertilization had a beneficial effect on water use efficiency (WUE. Hence, Δ13C could be an adequate indicator of WUE in response to the exogenous supply of silicon to chickpea plants. Our results highlight that Si is not only involved in amelioration of growth and in maintaining of water status but it can be also considered an important element for the symbiotic performance of chickpea plants. It can be concluded that the synergistic effect of silicon and potassium fertilization with adequate irrigation improves growth and nitrogen fixation in chickpea plants.

  6. The Effects of Fire on Soil Molybdenum and Phosphorus and Their Potential Role in Nitrogen Fixation in the Southeastern Amazon

    Science.gov (United States)

    Wong, M.; Howarth, R. W.; Marino, R. M.; Neill, C.; Brando, P. M.

    2016-12-01

    Deforestation and increasing drought intensity will increase the susceptibility of forests to fire over large areas of the Amazon. During burning, mineral and organic nitrogen (N) are lost, but the N cycle typically recovers after decades of forest regrowth. Tropical forests are assumed to be N-rich, sustained by high rates of N-fixation, but there are few empirical measurements of N-fixation from the Amazon Basin. In addition, we do not know how micronutrient requirements of N-fixation, such as phosphorus (P) and molybdenum (Mo) respond to fire. While P is a well-documented control on N-fixation in tropical forests, experimental Mo additions have shown that low concentrations of Mo can also limit N-fixation. At Tanguro Ranch in the southeastern Amazon, a large-scale, long-term experiment compares a control forest with forest that was burned twice three years apart in 2004 and 2007. The experimental area consists of adjacent 50-ha plots. We measured surface soil Mo, P, and extractable inorganic N (NH4+ and NO3-) to test the hypotheses that: (1) based on previous modeling of aerosol deposition, Mo and P concentrations in soils are low may constrain N-fixation, and (2) fire increases Mo, P, and inorganic N concentrations. Mo and P concentrations in the control plots were low (0.15 ± 0.02 mg Mo/kg and 156 ± 13 mg P/kg) and up to ten-fold lower for Mo and three-fold lower for P than previously reported for some tropical forests outside of the Amazon. Mo and NO3- (0.26 ± 0.10 mg NO3-/kg dry soil) in the control plot were significantly different (p < 0.05) than in the burned plot (0.23 ± 0.02 mg Mo/kg and 1.79 ± 0.29 mg NO3/kg dry soil). P and NH4 were not significantly different in the burned plots (p < 0.05). Mo released from burning may be potentially more important than P from burning to support N-fixation and N cycling in recovering forests.

  7. History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience

    Directory of Open Access Journals (Sweden)

    José I. Baldani

    2005-09-01

    Full Text Available This review covers the history on Biological Nitrogen Fixation (BNF in Graminaceous plants grown in Brazil, and describes research progress made over the last 40 years, most of whichwas coordinated by Johanna Döbereiner. One notable accomplishment during this period was the discovery of several nitrogen-fixing bacteria such as the rhizospheric (Beijerinckia fluminensis and Azotobacter paspali, associative (Azospirillum lipoferum, A. brasilense, A. amazonense and the endophytic (Herbaspirillum seropedicae, H. rubrisubalbicans, Gluconacetobacter diazotrophicus, Burkholderia brasilensis and B. tropica. The role of these diazotrophs in association with grasses, mainly with cereal plants, has been studied and a lot of progress has been achieved in the ecological, physiological, biochemical, and genetic aspects. The mechanisms of colonization and infection of the plant tissues are better understood, and the BNF contribution to the soil/plant system has been determined. Inoculation studies with diazotrophs showed that endophytic bacteria have a much higher BNF contribution potential than associative diazotrophs. In addition, it was found that the plant genotype influences the plant/bacteria association. Recent data suggest that more studies should be conducted on the endophytic association to strengthen the BNF potential. The ongoing genome sequencing programs: RIOGENE (Gluconacetobacter diazotrophicus and GENOPAR (Herbaspirillum seropedicae reflect the commitment to the BNF study in Brazil and should allow the country to continue in the forefront of research related to the BNF process in Graminaceous plants.A presente revisão aborda a história da Fixação Biológica de Nitrogênio (FBN em Gramíneas no Brasil, procurando mostrar a evolução da pesquisa na área iniciada a mais de 40 anos sob a liderança da pesquisadora Johanna Döbereiner. Um aspecto marcante deste período foi a descoberta de diversas bactérias fixadoras de nitrogênio atmosf

  8. Dinitrogen fixation and dissolved organic nitrogen fueled primary production and particulate export during the VAHINE mesocosm experiment (New Caledonia lagoon)

    Science.gov (United States)

    Berthelot, H.; Moutin, T.; L'Helguen, S.; Leblanc, K.; Hélias, S.; Grosso, O.; Leblond, N.; Charrière, B.; Bonnet, S.

    2015-07-01

    In the oligotrophic ocean characterized by nitrate (NO3-) depletion in surface waters, dinitrogen (N2) fixation and dissolved organic nitrogen (DON) can represent significant nitrogen (N) sources for the ecosystem. In this study, we deployed large in situ mesocosms in New Caledonia in order to investigate (1) the contribution of N2 fixation and DON use to primary production (PP) and particle export and (2) the fate of the freshly produced particulate organic N (PON), i.e., whether it is preferentially accumulated and recycled in the water column or exported out of the system. The mesocosms were fertilized with phosphate (PO43-) in order to prevent phosphorus (P) limitation and promote N2 fixation. The diazotrophic community was dominated by diatom-diazotroph associations (DDAs) during the first part of the experiment for 10 days (P1) followed by the unicellular N2-fixing cyanobacteria UCYN-C for the last 9 days (P2) of the experiment. N2 fixation rates averaged 9.8 ± 4.0 and 27.7 ± 8.6 nmol L-1 d-1 during P1 and P2, respectively. NO3- concentrations ( 0.05) during P1 (9.0 ± 3.3 %) and P2 (12.6 ± 6.1 %). However, the e ratio that quantifies the efficiency of a system to export particulate organic carbon (POCexport) compared to PP (e ratio = POCexport/PP) was significantly higher (p efficient at promoting C export than the production sustained by DDAs. During P1, PON was stable and the total amount of N provided by N2 fixation (0.10 ± 0.02 μmol L-1) was not significantly different (p > 0.05) from the total amount of PON exported (0.10 ± 0.04 μmol L-1), suggesting a rapid and probably direct export of the recently fixed N2 by the DDAs. During P2, both PON concentrations and PON export increased in the mesocosms by a factor 1.5-2. Unlike in P1, this PON production was not totally explained by the new N provided by N2 fixation. The use of DON, whose concentrations decreased significantly (p < 0.05) from 5.3 ± 0.5 μmol L-1 to 4.4 ± 0.5 μmol L-1, appeared to

  9. Estimation of biological nitrogen fixation by black locust in short-rotation forests using natural 15N abundance method

    Science.gov (United States)

    Veste, M.; Böhm, C.; Quinckenstein, A.; Freese, D.

    2012-04-01

    The importance of short rotation forests and agroforestry systems for woody biomass production for bioenergy will increase in Central Europe within the next decades. In this context, black locust (Robinia pseudoacacia) has a high growth potential especially at marginal, drought-susceptible sites such as occur in Brandenburg State (Eastern Germany). As a pioneer tree species black locust grows under a wide range of site conditions. The native range of black locust in Northern America is classified by a humid to sub-humid climate with a mean annual precipitation of 1020 to 1830 mm. In Central and Eastern Europe, this species is cultivated in a more continental climate with an annual precipitation often below 600 mm. Therefore, black locust is known to be relatively drought tolerant compared to other temperate, deciduous tree species. Because of its N2-fixation ability black locust plays generally an important role for the improvement of soil fertility. This effect is of particular interest at marginal sites in the post-mining landscapes. In order to estimate the N2-fixation potential of black locust at marginal sites leaf samples were taken from black locust trees in short rotation plantations planted between 1995 and 2007 in post-mining sites south of Cottbus (Brandenburg, NE Germany). The variation of the natural 15N abundance was measured to evaluate the biological nitrogen fixation. The nitrogen derived from the atmosphere can be calculated using a two-pool model from the quotient of the natural 15N abundances of the N2-fixing plant and the plant available soil N. Because representatively determining the plant available soil N is difficult, a non-N2-fixing reference plant growing at the same site with a similar root system and temporal N uptake pattern to the N2-fixing plant is often used. In our case we used red oak (Quercus rubra) as a reference. The average nitrogen content in the leaves of black locust ranged from 3.1% (C/N 14.8) in 15 years old trees to 3

  10. Impact of in Situ Isolated Bacterial Strains on Nitrogen Fixation in Alfalfa

    OpenAIRE

    Carmen Dragomir; Rodica Schipor; Neculai Dragomir; Nicoleta Moraru; Claudiu Ghiocel; Darius Văcariu

    2013-01-01

    Symbiosis relationships among legumes and nitrogen fixing bacteria play a crucial role in agriculture since they provide the opportunity of converting atmospheric molecular nitrogen into an ammonia form of nitrogen that the plants can use in protein formation. To enhance this process we have selected nitrogen fixing bacterial strains commercialised under different forms depending on the cultivation technologies in legume species. In our research, we have pointed out the efficacy of in situ is...

  11. Diazotrophy in the Deep: An analysis of the distribution, magnitude, geochemical controls, and biological mediators of deep-sea benthic nitrogen fixation

    Science.gov (United States)

    Dekas, Anne Elizabeth

    Biological nitrogen fixation (the conversion of N2 to NH3) is a critical process in the oceans, counteracting the production of N2 gas by dissimilatory bacterial metabolisms and providing a source of bioavailable nitrogen to many nitrogen-limited ecosystems. One currently poorly studied and potentially underappreciated habitat for diazotrophic organisms is the sediments of the deep-sea. Although nitrogen fixation was once thought to be negligible in non-photosynthetically driven benthic ecosystems, the present study demonstrates the occurrence and expression of a diversity of nifH genes (those necessary for nitrogen fixation), as well as a widespread ability to fix nitrogen at high rates in these locations. The following research explores the distribution, magnitude, geochemical controls, and biological mediators of nitrogen fixation at several deep-sea sediment habitats, including active methane seeps (Mound 12, Costa Rica; Eel River Basin, CA, USA; Hydrate Ridge, OR, USA; and Monterey Canyon, CA, USA), whale-fall sites (Monterey Canyon, CA), and background deep-sea sediment (off-site Mound 12 Costa Rica, off-site Hydrate Ridge, OR, USA; and Monterey Canyon, CA, USA). The first of the five chapters describes the FISH-NanoSIMS method, which we optimized for the analysis of closely associated microbial symbionts in marine sediments. The second describes an investigation of methane seep sediment from the Eel River Basin, where we recovered nifH sequences from extracted DNA, and used FISH-NanoSIMS to identify methanotrophic archaea (ANME-2) as diazotrophs, when associated with functional sulfate-reducing bacterial symbionts. The third and fourth chapters focus on the distribution and diversity of active diazotrophs (respectively) in methane seep sediment from Mound 12, Costa Rica, using a combination of 15N-labeling experiments, FISH-NanoSIMS, and RNA and DNA analysis. The fifth chapter expands the scope of the investigation by targeting diverse samples from methane

  12. Multifaceted Investigation of Metabolites During Nitrogen Fixation in Medicago via High Resolution MALDI-MS Imaging and ESI-MS

    Science.gov (United States)

    Gemperline, Erin; Jayaraman, Dhileepkumar; Maeda, Junko; Ané, Jean-Michel; Li, Lingjun

    2015-01-01

    Legumes have developed the unique ability to establish a symbiotic relationship with soil bacteria known as rhizobia. This interaction results in the formation of root nodules in which rhizobia thrive and reduce atmospheric dinitrogen into plant-usable ammonium through biological nitrogen fixation (BNF). Owing to the availability of genetic information for both of the symbiotic partners, the Medicago truncatula- Sinorhizobium meliloti association is an excellent model for examining the BNF process. Although metabolites are important in this symbiotic association, few studies have investigated the array of metabolites that influence this process. Of these studies, most target only a few specific metabolites, the roles of which are either well known or are part of a well-characterized metabolic pathway. Here, we used a multifaceted mass spectrometric (MS) approach to detect and identify the key metabolites that are present during BNF using the Medicago truncatula- Sinorhizobium meliloti association as the model system. High mass accuracy and high resolution matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) Orbitrap instruments were used in this study and provide complementary results for more in-depth characterization of the nitrogen-fixation process. We used well-characterized plant and bacterial mutants to highlight differences between the metabolites that are present in functional versus nonfunctional nodules. Our study highlights the benefits of using a combination of mass spectrometric techniques to detect differences in metabolite composition and the distributions of these metabolites in plant biology.

  13. The daily integral of nitrogen fixation by planktonic cyanobacteria in the Baltic Sea

    NARCIS (Netherlands)

    Stal, L.J.; Walsby, A.E.

    1998-01-01

    Measurements were made of the rates of nitrogenase activity (acetylene reduction) by cyanobacteria collected from the Baltic Sea at 2-h intervals, over a period of 24 h, and incubated under natural light. By relating the chlorophyll- specific rate of N-2 fixation (P-N) to the mean photon irradiance

  14. The role of phosphorus in nitrogen fixation by young pea plants (Pisum sativum)

    DEFF Research Database (Denmark)

    Jakobsen, Iver

    1985-01-01

    The influence of P on N2 fixation and dry matter production of young pea (P. sativum L. cv. Bodil) plants grown in a soil-sand mixture was investigated in growth cabinet experiments. Nodule dry weight, specific C2H2 reduction and P concentration in shoots responded to P addition before any growth...

  15. Influence of the poly-3-hydroxybutyrate (PHB) granule-associated proteins (PhaP1 and PhaP2) on PHB accumulation and symbiotic nitrogen fixation in Sinorhizobium meliloti Rm1021.

    Science.gov (United States)

    Wang, Chunxia; Sheng, Xiaoyan; Equi, Raymie C; Trainer, Maria A; Charles, Trevor C; Sobral, Bruno W S

    2007-12-01

    Sinorhizobium meliloti cells store excess carbon as intracellular poly-3-hydroxybutyrate (PHB) granules that assist survival under fluctuating nutritional conditions. PHB granule-associated proteins (phasins) are proposed to regulate PHB synthesis and granule formation. Although the enzymology and genetics of PHB metabolism in S. meliloti have been well characterized, phasins have not yet been described for this organism. Comparison of the protein profiles of the wild type and a PHB synthesis mutant revealed two major proteins absent from the mutant. These were identified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) as being encoded by the SMc00777 (phaP1) and SMc02111 (phaP2) genes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins associated with PHB granules followed by MALDI-TOF confirmed that PhaP1 and PhaP2 were the two major phasins. Double mutants were defective in PHB production, while single mutants still produced PHB, and unlike PHB synthesis mutants that have reduced exopolysaccharide, the double mutants had higher exopolysaccharide levels. Medicago truncatula plants inoculated with the double mutant exhibited reduced shoot dry weight (SDW), although there was no corresponding reduction in nitrogen fixation activity. Whether the phasins are involved in a metabolic regulatory response or whether the reduced SDW is due to a reduction in assimilation of fixed nitrogen rather than a reduction in nitrogen fixation activity remains to be established.

  16. Incorporation of nitrogen from N2 fixation into amino acids of zooplankton

    DEFF Research Database (Denmark)

    Loick-Wilde, Natalie; Dutz, Jörg; Miltner, Anja;

    2012-01-01

    quantified the direct incorporation of 15N tracer from N2-fixing N. spumigena (diazotroph nitrogen) and ammonium-utilizing R. salina into the amino acid nitrogen (AA-N) of zooplankton using complementary gas chromatography– combustion–isotope ratio mass spectrometry, gas chromatography–mass spectrometry...... consistently low in E. affinis when exposed to N. spumigena, suggesting that these animals were reluctant to feed on N. spumigena. Essential isoleucine received most of the diazotroph nitrogen in field zooplankton, while nonessential amino acids received most 15N tracer in E. affinis. N. spumigena was clearly...... an important amino acid nitrogen source for Baltic Sea zooplankton...

  17. Pinus flexilis and Piceae engelmannii share a simple and consistent needle endophyte microbiota with a potential role in nitrogen fixation.

    Directory of Open Access Journals (Sweden)

    Alyssa Ann Carrell

    2014-07-01

    Full Text Available Conifers predominantly occur on soils or in climates that are suboptimal for plant growth. This is generally attributed to symbioses with mycorrhizal fungi and to conifer adaptations, but recent experiments suggest that aboveground endophytic bacteria in conifers fix nitrogen (N and affect host shoot tissue growth. Because most bacteria cannot be grown in the laboratory very little is known about conifer-endophyte associations in the wild. Pinus flexilis (limber pine and Picea engelmannii (Engelmann spruce growing in a subalpine, nutrient-limited environment are potential candidates for hosting endophytes with roles in N2 fixation and abiotic stress tolerance. We used 16S rRNA pyrosequencing to ask whether these conifers host a core of bacterial species that are consistently associated with conifer individuals and therefore potential mutualists. We found that while overall the endophyte communities clustered according to host species, both conifers were consistently dominated by the same phylotype, which made up 19-53% and 14-39% of the sequences in P. flexilis and P. engelmannii respectively. This phylotype is related to Gluconacetobacter diazotrophicus and other N2 fixing acetic acid bacterial endophytes. The pattern observed for the P. flexilis and P. engelmannii needle microbiota—a small number of major species that are consistently associated with the host across individuals and species—is unprecedented for an endophyte community, and suggests a specialized beneficial endophyte function. One possibility is endophytic N fixation, which could help explain how conifers can grow in severely nitrogen-limited soil, and why some forest ecosystems accumulate more N than can be accounted for by known nitrogen input pathways.

  18. Pinus flexilis and Picea engelmannii share a simple and consistent needle endophyte microbiota with a potential role in nitrogen fixation.

    Science.gov (United States)

    Carrell, Alyssa A; Frank, Anna C

    2014-01-01

    Conifers predominantly occur on soils or in climates that are suboptimal for plant growth. This is generally attributed to symbioses with mycorrhizal fungi and to conifer adaptations, but recent experiments suggest that aboveground endophytic bacteria in conifers fix nitrogen (N) and affect host shoot tissue growth. Because most bacteria cannot be grown in the laboratory very little is known about conifer-endophyte associations in the wild. Pinus flexilis (limber pine) and Picea engelmannii (Engelmann spruce) growing in a subalpine, nutrient-limited environment are potential candidates for hosting endophytes with roles in N2 fixation and abiotic stress tolerance. We used 16S rRNA pyrosequencing to ask whether these conifers host a core of bacterial species that are consistently associated with conifer individuals and therefore potential mutualists. We found that while overall the endophyte communities clustered according to host species, both conifers were consistently dominated by the same phylotype, which made up 19-53% and 14-39% of the sequences in P. flexilis and P. engelmannii, respectively. This phylotype is related to Gluconacetobacter diazotrophicus and other N2 fixing acetic acid bacterial endophytes. The pattern observed for the P. flexilis and P. engelmannii needle microbiota-a small number of major species that are consistently associated with the host across individuals and species-is unprecedented for an endophyte community, and suggests a specialized beneficial endophyte function. One possibility is endophytic N fixation, which could help explain how conifers can grow in severely nitrogen-limited soil, and why some forest ecosystems accumulate more N than can be accounted for by known nitrogen input pathways.

  19. Glucose- and nitrogen sensing and regulatory mechanisms in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Rødkaer, Steven V; Færgeman, Nils J.

    2014-01-01

    Pro- and eukaryotic cells are constantly challenged by varying concentrations of nutrients in their environment. Perceiving and adapting to such changes are therefore crucial for cellular viability. Thus, numerous specialized cellular receptors continuously sense and react to the availability of ...... been recognized as a powerful model system to study fundamental biochemical processes. In the present review, we highlight central signaling pathways and molecular circuits conferring nitrogen- and glucose sensing in S. cerevisiae.......Pro- and eukaryotic cells are constantly challenged by varying concentrations of nutrients in their environment. Perceiving and adapting to such changes are therefore crucial for cellular viability. Thus, numerous specialized cellular receptors continuously sense and react to the availability...

  20. Novel labeling technique illustrates transfer of 15N2 from Sphagnum moss to vascular plants via diazotrophic nitrogen fixation

    Science.gov (United States)

    Thorp, N. R.; Vile, M. A.; Wieder, R.

    2013-12-01

    We used 15N2 gas to trace nitrogen (N) from biological N2-fixation to vascular plant uptake in an Alberta bog in order to determine if neighboring bog plants acquire recently fixed N from diazotrophs associating with Sphagnum mosses. Recent evidence indicates high rates of N2-fixation in Sphagnum mosses of Alberta bogs (Vile et al. 2013). Our previous work has shown that mosses can assimilate fixed N from associated diazotrophs as evidenced by the high N content of mosses despite minimal inputs from atmospheric deposition, retranslocation, and N mineralization. Therefore, the potential exists for vascular plants to obtain N from ';leaky' tissues of live mosses, however, this phenomenon has not been tested previously. Here we document the potential for relatively rapid transfer to vascular plants of N fixed by Sphagnum moss-associated diazotrophs. We utilized the novel approach of incubating mosses in 15N2 to allow the process of diazotrophic N2-fixation to mechanistically provide the 15N label, which is subsequently transferred to Sphagnum mosses. The potential for vascular bog natives to tap this N was assessed by planting the vascular plants in the labeled moss. Sphagnum mosses (upper 3 cm of live plants) were incubated in the presence of 98 atom % 15N2 gas for 48 hours. Two vascular plants common to Alberta bogs; Picea mariana and Vaccinium oxycoccus were then placed in the labeled mosses, where the mosses served as the substrate. Tissue samples from these plants were collected at three time points during the incubation; prior to 15N2 exposure (to determine natural abundance 15N), and at one and two months after 15N2 exposure. Roots and leaves were separated and run separately on a mass spectrometer to determine 15N concentrations. Sphagnum moss capitula obtained N from N2-fixation (δ15N of -2.43 × 0.40, 122.76 × 23.78, 224.92 × 68.37, 143.74 × 54.38 prior to, immediately after, and at 1 and 2 months after exposure to 15N2, respectively). Nitrogen was

  1. Phenotypic plasticity and its genetic regulation for yield, nitrogen fixation and δ13C in chickpea crops under varying water regimes.

    Science.gov (United States)

    Sadras, Victor O; Lake, Lachlan; Li, Yongle; Farquharson, Elizabeth A; Sutton, Tim

    2016-07-01

    We measured yield components, nitrogen fixation, soil nitrogen uptake and carbon isotope composition (δ(13)C) in a collection of chickpea genotypes grown in environments where water availability was the main source of yield variation. We aimed to quantify the phenotypic plasticity of these traits using variance ratios, and to explore their genetic basis using FST genome scan. Fifty-five genes in three genomic regions were found to be under selection for plasticity of yield; 54 genes in four genomic regions for the plasticity of seeds per m(2); 48 genes in four genomic regions for the plasticity of δ(13)C; 54 genes in two genomic regions for plasticity of flowering time; 48 genes in five genomic regions for plasticity of nitrogen fixation and 49 genes in three genomic regions for plasticity of nitrogen uptake from soil. Plasticity of yield was related to plasticity of nitrogen uptake from soil, and unrelated to plasticity of nitrogen fixation, highlighting the need for closer attention to nitrogen uptake in legumes. Whereas the theoretical link between δ(13)C and transpiration efficiency is strong, the actual link with yield is erratic due to trade-offs and scaling issues. Genes associated with plasticity of δ(13)C were identified that may help to untangle the δ(13)C-yield relationship. Combining a plasticity perspective to deal with complex G×E interactions with FST genome scan may help understand and improve both crop adaptation to stress and yield potential.

  2. Nitrogen fixation by Rhizobium leguminosarum PRE; a genetical and biochemical approach.

    NARCIS (Netherlands)

    Klein Lankhorst, R.

    1989-01-01

    Nitrogen fix ation by Rhizobium and Bradyrhizobium bacteria in symbiosis with their leguminous host plants forms an attractive alternative for the industrial production of nitrogenous fertilizers, both from an economic as well as an enviromnental point of view, and is the topic of many scientific re

  3. BIOLOGICAL NITROGEN FIXATION AND NUTRIENT RELEASE FROM LITTER OF THE GUACHAPELE LEGUMINOUS TREE UNDER PURE AND MIXED PLANTATION WITH EUCALYPTUS

    Directory of Open Access Journals (Sweden)

    Fabiano de Carvalho Balieiro

    2008-09-01

    Full Text Available Pseudosamanea guachapele (guachapele, a nitrogen fixing leguminous tree, is an alternative for mixed forest plantations in the tropics. As little information is available for guachapele (Mimosoideae in mixed plantation with eucalyptus considering the Brazilian edaphoclimatic conditions, an experiment was carried out to evaluate the contribution of biological nitrogen fixation to guachapele and leaf litter decomposition rates and nutrient release of eucalyptus and guachapele residues (pure and mixed. The percentage of nitrogen derived from atmospheric N2 (% Ndfa was estimated by comparing the natural 15N abundance (15N, ‰ in guachapele tissues with that of Eucalyptus grandis, a non-nitrogen fixing species, both with seven years after planting. Decomposition constants (k and litter half-lives (t1/2 were estimated by fitting a single exponential model to litter bag data. The estimation of %Ndfa for guachapele in pure stand fell within a narrower range (17-36 % in relation to mixed conditions (35-60 %. Nitrogen concentration in leaf litter was positively related to the decomposition rate, decreasing from pure guachapele to pure eucalyptus. Half-lives (t1/2 were significantly different (p < 0.05 among residues with 148, 185 and 218 days, for guachapele leaves, mixture of both species and for pure eucalyptus, respectively. Nutrient release rates followed the same sequence of t1/2 due to the initial residues quality (mainly N. It was observed that a fast release of N, K and Mg occurred from the residues tested, mainly for guachapele and mixed stand. These results indicate that guachapele could benefit the mixed system from the N addition and a faster decomposition rate of a richer litter.

  4. Yield and nitrogen fixation potential from white lupine grown in rainfed Mediterranean environments

    Directory of Open Access Journals (Sweden)

    Leonardo Sulas

    2016-08-01

    Full Text Available ABSTRACT There is renewed interest in white lupine (Lupinus albus L., which is appreciated for its high protein content, full range of essential amino acids and as N source to rainfed cropping systems. Unfortunately, information on its N2 fixation ability is limited. This study aimed to: (i quantify the N2 fixation ability of white lupine crop at the plot field scale in three different environments of Sardinia (Italy under Mediterranean climate; (ii determine the allocation of the plant-fixed N into different organs; and (iii establish the relationship between fixed N and DM within plant organs. In a 2-year experiment, N2 fixation was estimated using the 15N isotopic dilution method. The productive performances and ability of white lupine to fix N2 widely differed in the three environments; peak values exceeded 300 kg ha−1 of fixed N. There were significant differences in the quantity of fixed N found in each plant organ at physiological maturity with 5, 20, 19 and 57 % of fixed N partitioned to roots, shoots, pod valves and grain, respectively. After grain harvesting, the net N balance ranged from negative values to 160 kg N ha−1. The relationship between fixed N and DM yield indicated 60, 34, 8 and 6 kg of fixed N per t of grain, pod valves, shoots and root, respectively, showing that fixed N preferentially accumulated in seeds at physiological maturity. Due to its high potential for N2 fixation and N benefit, white lupine represents a valuable crop option under rainfed Mediterranean conditions.

  5. Nitrogen fixation by Elaeagnus angustifolia in the reclamation of degraded croplands of Central Asia.

    Science.gov (United States)

    Khamzina, Asia; Lamers, John P A; Vlek, Paul L G

    2009-06-01

    Extensive degradation of irrigated croplands, due to increasing soil salinity and depletion of soil nutrient stocks, is a major problem in Central Asia (CA), one of the largest irrigated areas in the world. To assess the potential for improving the productive capacity of degraded lands by afforestation, we examined N(2) fixation of Elaeagnus angustifolia L. in mixed plantations with non-fixing Populus euphratica Oliv. and Ulmus pumila L. Fixation of N(2) was quantified by the (15)N natural abundance technique based on both foliar and whole-plant sampling during five consecutive growing seasons. Despite elevated root-zone soil salinity (6-10 dS m(-1)) and deficiency in plant-available P (4-15 mg kg(-1)), N(2) fixation (%Ndfa) increased from an initial value of 20% to almost 100% over 5 years. Within each growing season, %Ndfa steadily increased and peaked in the fall. Annual N(2) fixation, determined using foliar delta(15)N, initially averaged 0.02 Mg ha(-1), peaked at 0.5 Mg ha(-1) during the next 2 years and thereafter stabilized at 0.3 Mg ha(-1). Estimates based on whole-plant delta(15)N were angustifolia plots than in P. euphratica and U. pumila plots. Increases in the concentrations of organic C (19%), total N (21%) and plant-available P (74%) in the soil were significant irrespective of tree species. This improvement in soil fertility is further evidence that afforestation with mixed-species plantations can be a sustainable land use option for the degraded irrigated croplands in CA.

  6. Estimation of phenotypic variability in symbiotic nitrogen fixation ability of common bean under drought stress using 15N natural abundance in grain

    OpenAIRE

    Polania, Jose; Poschenrieder, Charlotte; Rao, Idupulapati; Beebe, Stephen

    2016-01-01

    Common bean (Phaseolus vulgaris L.) is the most important food legume, cultivated by small farmers and is usually exposed to unfavorable conditions with minimum use of inputs. Drought and low soil fertility, especially phosphorus and nitrogen (N) deficiencies, are major limitations to bean yield in smallholder systems. Beans can derive part of their required N from the atmosphere through symbiotic nitrogen fixation (SNF). Drought stress severely limits SNF ability of plants. The main objectiv...

  7. Discrimination against 15N among recombinant inbred lines of Phaseolus vulgaris L. contrasting in phosphorus use efficiency for nitrogen fixation.

    Science.gov (United States)

    Lazali, Mohamed; Bargaz, Adnane; Carlsson, Georg; Ounane, Sidi Mohamed; Drevon, Jean Jacques

    2014-02-15

    Although isotopic discrimination processes during nitrogen (N) transformations influence the outcome of (15)N based quantification of N2 fixation in legumes, little attention has been given to the effects of genotypic variability and environmental constraints such as phosphorus (P) deficiency, on discrimination against (15)N during N2 fixation. In this study, six Phaseolus vulgaris recombinant inbred lines (RILs), i.e. RILs 115, 104, 34 (P deficiency tolerant) and 147, 83, 70 (P deficiency sensitive), were inoculated with Rhizobium tropici CIAT899, and hydroaeroponically grown with P-sufficient (250 μmol P plant(-1) week(-1)) versus P-deficient (75 μmol P plant(-1) week(-1)) supply. Two harvests were done at 15 (before nodule functioning) and 42 (flowering stage) days after transplanting. Nodulation, plant biomass, P and N contents, and the ratios of (15)N over total N content ((15)N/Nt) for shoots, roots and nodules were determined. The results showed lower (15)N/Nt in shoots than in roots, both being much lower than in nodules. P deficiency caused a larger decrease in (15)N/Nt in shoots (-0.18%) than in nodules (-0.11%) for all of the genotypes, and the decrease in shoots was greatest for RILs 34 (-0.33%) and 104 (-0.25%). Nodule (15)N/Nt was significantly related to both the quantity of N2 fixed (R(2)=0.96***) and the P content of nodules (R(2)=0.66*). We conclude that the discrimination against (15)N in the legume N2-fixing symbiosis of common bean with R. tropici CIAT899 is affected by P nutrition and plant genotype, and that the (15)N/Nt in nodules may be used to screen for genotypic variation in P use efficiency for N2 fixation. Copyright © 2013 Elsevier GmbH. All rights reserved.

  8. Microgravity Effects on the Early Events of Biological Nitrogen Fixation in Medicago Truncatula: Results from the SyNRGE Experiment

    Science.gov (United States)

    Stutte, Gary W.; Roberts, Michael S.

    2013-02-01

    SyNRGE (Symbiotic Nodulation in a Reduced Gravity Environment) was a sortie mission on STS-135 in the Biological Research in Canisters (BRIC) hardware to study the effect of μg on a plant-microbe symbiosis resulting in biological nitrogen fixation. Medicago truncatula, a model species for the legume family, was inoculated with its bacterial symbiont, Sinorhizobium meliloti, to observe early biomolecular events associated with infection and nodulation in Petri Dish Fixation Units (PDFU’s). Two sets of experiments were conducted in orbit and in 24-hour delayed ground controls. Experiments were designed to determine if S. meliloti would infect M. truncatula and initiate biomolecular changes associated with nodule formation and if the μg environment altered the host plant and/or bacteria to induce nodule formation upon return to 1g. Initial analysis results demonstrate that the legumes and bacteria cultivated in μg have potential to develop a symbiotic interaction, but suggest that μg alters their ability to form nodules upon return to 1g. (Research supported by NASA ESMD/ Advance Capabilities Division grant NNX10AR09A)

  9. Studies Regarding the Colonization Capacity of Soils with Permanent Nitrogen Fixating Bacteria, Located on Different Altitudinal Levels

    Directory of Open Access Journals (Sweden)

    Carmen Dragomir

    2012-05-01

    Full Text Available The determination of the colonization capacity with permanent nitrogen fixating bacteria has been achieved indirectly through the method of using soil extracts, taken from the rhizosphere of leguminous species existing in the 4 types of permanent grasslands, located on different altitudinal levels (90m, 330m, 900m, 1800m. Treatments with soil extracts taken have been made at three species of legumes (Lotus corniculatus, Trifolium repens, Trifolium pratense, seeded on a sown perlite layer and grown in the growth chamber. Between the total amount of nodosities formed and the altitude of grasslands there is a negative correlation. At treatments with extracts taken from grasslands situated between 90-330m, there has been observed the highest number of nodosities formed on roots of tested leguminous species.

  10. A thioredoxin of Sinorhizobium meliloti CE52G is required for melanin production and symbiotic nitrogen fixation.

    Science.gov (United States)

    Castro-Sowinski, Susana; Matan, Ofra; Bonafede, Paula; Okon, Yaacov

    2007-08-01

    A miniTn5-induced mutant of a melanin-producing strain of Sinorhizobium meliloti (CE52G) that does not produce melanin was mapped to a gene identified as a probable thioredoxin gene. It was proved that the thiol-reducing activity of the mutant was affected. Addition to the growth medium of substrates that induce the production of melanin (L-tyrosine, guaiacol, orcinol) increased the thioredoxin-like (trxL) mRNA level in the wild-type strain. The mutant strain was affected in the response to paraquat-induced oxidative stress, symbiotic nitrogen fixation, and both laccase and tyrosinase activities. The importance of thioredoxin in melanin production in bacteria, through the regulation of laccase or tyrosinase activities, or both, by the redox state of structural or catalytic SH groups, is discussed.

  11. Remarkable catalytic activity of dinitrogen-bridged dimolybdenum complexes bearing NHC-based PCP-pincer ligands toward nitrogen fixation

    Science.gov (United States)

    Eizawa, Aya; Arashiba, Kazuya; Tanaka, Hiromasa; Kuriyama, Shogo; Matsuo, Yuki; Nakajima, Kazunari; Yoshizawa, Kazunari; Nishibayashi, Yoshiaki

    2017-04-01

    Intensive efforts for the transformation of dinitrogen using transition metal-dinitrogen complexes as catalysts under mild reaction conditions have been made. However, limited systems have succeeded in the catalytic formation of ammonia. Here we show that newly designed and prepared dinitrogen-bridged dimolybdenum complexes bearing N-heterocyclic carbene- and phosphine-based PCP-pincer ligands [{Mo(N2)2(PCP)}2(μ-N2)] (1) work as so far the most effective catalysts towards the formation of ammonia from dinitrogen under ambient reaction conditions, where up to 230 equiv. of ammonia are produced based on the catalyst. DFT calculations on 1 reveal that the PCP-pincer ligand serves as not only a strong σ-donor but also a π-acceptor. These electronic properties are responsible for a solid connection between the molybdenum centre and the pincer ligand, leading to the enhanced catalytic activity for nitrogen fixation.

  12. Cellulose decomposition and associated nitrogen fixation by mixed cultures of Cellulomonas gelida and Azospirillum species or Bacillus macerans

    Energy Technology Data Exchange (ETDEWEB)

    Halsall, D.M.; Gibson, A.H.

    1985-10-01

    Mixed cultures of Cellulomonas gelida plus Azospirillum lipoferum or Azospirillum brasilense and C. gelida plus Bacillus macerans were shown to degrade cellulose and straw and to utilize the energy-yielding products to fix atmospheric nitrogen. This cooperative process was followed over 30 days in sand-based cultures in which the breakdown of 20% of the cellulose and 28 to 30% of the straw resulted in the fixation of 12 to 14.6 mg of N per g of cellulose and 17 to 19 mg of N per g of straw consumed. Cellulomonas species have certain advantages over aerobic cellulose-degrading fungi in being able to degrade cellulose at oxygen concentrations as low as 1% O/sub 2/ (vol/vol) which would allow a close association between cellulose-degrading and microaerobic diazotrophic microorganisms. Cultures inoculated with initially different proportions of A. brasilense and C. gelida all reached a stable ratio of approximately 1 Azospirillum/3 Cellulomonas cells.

  13. EnviroAtlas - Cultivated biological nitrogen fixation in agricultural lands by 12-digit HUC in the Conterminous United States, 2006

    Science.gov (United States)

    This EnviroAtlas dataset contains data on the mean cultivated biological nitrogen fixation (C-BNF) in cultivated crop and hay/pasture lands per 12-digit Hydrologic Unit (HUC) in 2006. Nitrogen (N) inputs from the cultivation of legumes, which possess a symbiotic relationship with N-fixing bacteria, were calculated with a recently developed model relating county-level yields of various leguminous crops with BNF rates. We accessed county-level data on annual crop yields for soybeans (Glycine max L.), alfalfa (Medicago sativa L.), peanuts (Arachis hypogaea L.), various dry beans (Phaseolus, Cicer, and Lens spp.), and dry peas (Pisum spp.) for 2006 from the USDA Census of Agriculture (http://www.agcensus.usda.gov/index.php). We estimated the yield of the non-alfalfa leguminous component of hay as 32% of the yield of total non-alfalfa hay (http://www.agcensus.usda.gov/index.php). Annual rates of C-BNF by crop type were calculated using a model that relates yield to C-BNF. We assume yield data reflect differences in soil properties, water availability, temperature, and other local and regional factors that can influence root nodulation and rate of N fixation. We distributed county-specific, C-BNF rates to cultivated crop and hay/pasture lands delineated in the 2006 National Land Cover Database (30 x 30 m pixels) within the corresponding county. C-BNF data described here represent an average input to a typical agricultural land type within a county, i.e., they are not

  14. Growth and nitrogen fixation of legumes at increased salinity under field conditions: implications for the use of green manures in saline environments

    NARCIS (Netherlands)

    Bruning, B.; van Logtestijn, R.; Broekman, R.; de Vos, A.; Parra Gonzàlez, A.; Rozema, J.

    2015-01-01

    The use of legumes as green manure can potentially increase crop productivity in saline environmentsand thus contribute to the sustainability of agricultural systems. Here, we present results from a field experimentconducted in the Netherlands that addressed the efficiency of nitrogen (N) fixation b

  15. Metabolic adaptation, a specialized leaf organ structure and vascular responses to diurnal N2 fixation by nostoc azollae sustain the astonishing productivity of azolla ferns without nitrogen fertilizer

    NARCIS (Netherlands)

    Brouwer, Paul; Bräutigam, Andrea; Buijs, Valerie A.; Tazelaar, Anne O.E.; van der Werf, Adrie; Schlüter, Urte; Reichart, Gert-Jan|info:eu-repo/dai/nl/165599081; Bolger, Anthony; Usadel, Björn; Weber, Andreas P.M.; Schluepmann, Henriette|info:eu-repo/dai/nl/304827819

    2017-01-01

    Sustainable agriculture demands reduced input of man-made nitrogen (N) fertilizer, yet N2 fixation limits the productivity of crops with heterotrophic diazotrophic bacterial symbionts. We investigated floating ferns from the genus Azolla that host phototrophic diazotrophic Nostoc azollae in leaf

  16. Plant Growth-Promoting Rhizobacteria Inoculation to Enhance Vegetative Growth, Nitrogen Fixation and Nitrogen Remobilisation of Maize under Greenhouse Conditions.

    Directory of Open Access Journals (Sweden)

    Khing Boon Kuan

    Full Text Available Plant growth-promoting rhizobacteria (PGPR may provide a biological alternative to fix atmospheric N2 and delay N remobilisation in maize plant to increase crop yield, based on an understanding that plant-N remobilisation is directly correlated to its plant senescence. Thus, four PGPR strains were selected from a series of bacterial strains isolated from maize roots at two locations in Malaysia. The PGPR strains were screened in vitro for their biochemical plant growth-promoting (PGP abilities and plant growth promotion assays. These strains were identified as Klebsiella sp. Br1, Klebsiella pneumoniae Fr1, Bacillus pumilus S1r1 and Acinetobacter sp. S3r2 and a reference strain used was Bacillus subtilis UPMB10. All the PGPR strains were tested positive for N2 fixation, phosphate solubilisation and auxin production by in vitro tests. In a greenhouse experiment with reduced fertiliser-N input (a third of recommended fertiliser-N rate, the N2 fixation abilities of PGPR in association with maize were determined by 15N isotope dilution technique at two harvests, namely, prior to anthesis (D50 and ear harvest (D65. The results indicated that dry biomass of top, root and ear, total N content and bacterial colonisations in non-rhizosphere, rhizosphere and endosphere of maize roots were influenced by PGPR inoculation. In particular, the plants inoculated with B. pumilus S1r1 generally outperformed those with the other treatments. They produced the highest N2 fixing capacity of 30.5% (262 mg N2 fixed plant-1 and 25.5% (304 mg N2 fixed plant-1 of the total N requirement of maize top at D50 and D65, respectively. N remobilisation and plant senescence in maize were delayed by PGPR inoculation, which is an indicative of greater grain production. This is indicated by significant interactions between PGPR strains and time of harvests for parameters on N uptake and at. % 15Ne of tassel. The phenomenon is also supported by the lower N content in tassels of maize

  17. Plant Growth-Promoting Rhizobacteria Inoculation to Enhance Vegetative Growth, Nitrogen Fixation and Nitrogen Remobilisation of Maize under Greenhouse Conditions.

    Science.gov (United States)

    Kuan, Khing Boon; Othman, Radziah; Abdul Rahim, Khairuddin; Shamsuddin, Zulkifli H

    2016-01-01

    Plant growth-promoting rhizobacteria (PGPR) may provide a biological alternative to fix atmospheric N2 and delay N remobilisation in maize plant to increase crop yield, based on an understanding that plant-N remobilisation is directly correlated to its plant senescence. Thus, four PGPR strains were selected from a series of bacterial strains isolated from maize roots at two locations in Malaysia. The PGPR strains were screened in vitro for their biochemical plant growth-promoting (PGP) abilities and plant growth promotion assays. These strains were identified as Klebsiella sp. Br1, Klebsiella pneumoniae Fr1, Bacillus pumilus S1r1 and Acinetobacter sp. S3r2 and a reference strain used was Bacillus subtilis UPMB10. All the PGPR strains were tested positive for N2 fixation, phosphate solubilisation and auxin production by in vitro tests. In a greenhouse experiment with reduced fertiliser-N input (a third of recommended fertiliser-N rate), the N2 fixation abilities of PGPR in association with maize were determined by 15N isotope dilution technique at two harvests, namely, prior to anthesis (D50) and ear harvest (D65). The results indicated that dry biomass of top, root and ear, total N content and bacterial colonisations in non-rhizosphere, rhizosphere and endosphere of maize roots were influenced by PGPR inoculation. In particular, the plants inoculated with B. pumilus S1r1 generally outperformed those with the other treatments. They produced the highest N2 fixing capacity of 30.5% (262 mg N2 fixed plant-1) and 25.5% (304 mg N2 fixed plant-1) of the total N requirement of maize top at D50 and D65, respectively. N remobilisation and plant senescence in maize were delayed by PGPR inoculation, which is an indicative of greater grain production. This is indicated by significant interactions between PGPR strains and time of harvests for parameters on N uptake and at. % 15Ne of tassel. The phenomenon is also supported by the lower N content in tassels of maize treated with

  18. A phosphate transport system is required for symbiotic nitrogen fixation by Rhizobium meliloti.

    OpenAIRE

    Bardin, S.; Dan, S.; Osteras, M.; Finan, T M

    1996-01-01

    The bacterium Rhizobium meliloti forms N2-fixing root nodules on alfalfa plants. The ndvF locus, located on the 1,700-kb pEXO megaplasmid of R. meliloti, is required for nodule invasion and N2 fixation. Here we report that ndvF contains four genes, phoCDET, which encode an ABC-type transport system for the uptake of Pi into the bacteria. The PhoC and PhoD proteins are homologous to the Escherichia coli phosphonate transport proteins PhnC and PhnD. The PhoT and PhoE proteins are homologous to ...

  19. Effectiveness of ascorbate and ascorbate peroxidase in promoting nitrogen fixation in model systems.

    Science.gov (United States)

    Ross, E J; Kramer, S B; Dalton, D A

    1999-12-01

    Ascorbate and ascorbate peroxidase are important antioxidants that are abundant in N2-fixing legume root nodules. Antioxidants are especially critical in root nodules because leghemoglobin, which is present at high concentrations in nodules, is prone to autoxidation and production of activated oxygen species such as O2.- and H2O2. The merits of ascorbate and ascorbate peroxidase for maintaining conditions favorable for N2 fixation were examined in two model systems containing oxygen-binding proteins (purified myoglobin or leghemoglobin) and N2-fixing microorganisms (free-living Azorhizobium or bacteroids of Bradyrhizobium japonicum) in sealed vials. The inclusion of ascorbate alone to these systems led to enhanced oxygenation of hemeproteins, as well as to increases in nitrogenase (acetylene reduction) activity. The inclusion of both ascorbate and ascorbate peroxidase resulted in even greater positive responses, including increases of up to 4.5-fold in nitrogenase activity. In contrast, superoxide dismutase did not provide beneficial antioxidant action and catalase alone provided only very marginal benefit. Optimal concentrations were 2 mM for ascorbate and 200 micrograms/ml for ascorbate peroxidase. These concentrations are similar to those found in intact soybean nodules. These results support the conclusion that ascorbate and ascorbate peroxidase are beneficial for maintaining conditions favorable for N2 fixation in nodules.

  20. Nodulation and nitrogen fixation by Mimosa spp. in the Cerrado and Caatinga biomes of Brazil.

    Science.gov (United States)

    dos Reis, Fábio Bueno; Simon, Marcelo F; Gross, Eduardo; Boddey, Robert M; Elliott, Geoffrey N; Neto, Nicolau E; Loureiro, M de Fatima; de Queiroz, Luciano P; Scotti, Maria Rita; Chen, Wen-Ming; Norén, Agneta; Rubio, Maria C; de Faria, Sergio M; Bontemps, Cyril; Goi, Silvia R; Young, J Peter W; Sprent, Janet I; James, Euan K

    2010-06-01

    *An extensive survey of nodulation in the legume genus Mimosa was undertaken in two major biomes in Brazil, the Cerrado and the Caatinga, in both of which there are high degrees of endemicity of the genus. *Nodules were collected from 67 of the 70 Mimosa spp. found. Thirteen of the species were newly reported as nodulating. Nodules were examined by light and electron microscopy, and all except for M. gatesiae had a structure typical of effective Mimosa nodules. The endosymbiotic bacteria in nodules from all of the Mimosa spp. were identified as Burkholderia via immunolabelling with an antibody against Burkholderia phymatum STM815. *Twenty of the 23 Mimosa nodules tested were shown to contain nitrogenase by immunolabelling with an antibody to the nitrogenase Fe- (nifH) protein, and using the delta(15)N ((15)N natural abundance) technique, contributions by biological N(2) fixation of up to 60% of total plant N were calculated for Caatinga Mimosa spp. *It is concluded that nodulation in Mimosa is a generic character, and that the preferred symbionts of Brazilian species are Burkholderia. This is the first study to demonstrate N(2) fixation by beta-rhizobial symbioses in the field.

  1. The Effect of NaCl on growth, N2 fixation (acetylene reduction), and percentage total nitrogen in Leucaena leucocephala (Leguminosae) var. K-8.

    Science.gov (United States)

    Anthraper, Annie; Dubois, John D

    2003-05-01

    Leucaena leucocephala var. K-8 is a fast-growing, tropical leguminous tree that has multiple economic uses. This study was conducted to evaluate the effect(s) of varying NaCl concentrations on growth, N(2) fixation, and percentage of total tissue nitrogen in different organs in L. leucocephala. Seeds were germinated and grown for 10 wk with a nitrogen-free fertilizer applied every 2 wk. At 10 wk, plants were treated for either 0, 7, 14, 21, or 28 wk with either deionized water (control), 0.00625 mol/L, 0.0125 mol/L, 0.025 mol/L, 0.05 mol/L, or 0.1 mol/L NaCl in addition to the fertilizer every 2 wk. Growth was measured as plant height, nodule number and mass, and dry tissue mass. N(2) fixation was measured by the acetylene reduction assay. Percentage of tissue nitrogen was determined using Kjeldahl analysis. In younger plants (7-wk treatment), major fluctuations in NaCl tolerance were observed in the different plant organs. As plants matured (14- and 21-wk treatment) NaCl concentrations of 0.025 mol/L and higher caused the greatest reduction in growth and tissue nitrogen. We conclude that NaCl concentrations of 0.025 mol/L and greater caused a major decrease in growth, N(2) fixation, and percentage of tissue nitrogen in L. leucocephala plants that were less than 1 yr old.

  2. The genome of Rhizobiales bacteria in predatory ants reveals urease gene functions but no genes for nitrogen fixation

    Science.gov (United States)

    Neuvonen, Minna-Maria; Tamarit, Daniel; Näslund, Kristina; Liebig, Juergen; Feldhaar, Heike; Moran, Nancy A.; Guy, Lionel; Andersson, Siv G. E.

    2016-01-01

    Gut-associated microbiota of ants include Rhizobiales bacteria with affiliation to the genus Bartonella. These bacteria may enable the ants to fix atmospheric nitrogen, but no genomes have been sequenced yet to test the hypothesis. Sequence reads from a member of the Rhizobiales were identified in the data collected in a genome project of the ant Harpegnathos saltator. We present an analysis of the closed 1.86 Mb genome of the ant-associated bacterium, for which we suggest the species name Candidatus Tokpelaia hoelldoblerii. A phylogenetic analysis reveals a relationship to Bartonella and Brucella, which infect mammals. Novel gene acquisitions include a gene for a putative extracellular protein of more than 6,000 amino acids secreted by the type I secretion system, which may be involved in attachment to the gut epithelium. No genes for nitrogen fixation could be identified, but genes for a multi-subunit urease protein complex are present in the genome. The urease genes are also present in Brucella, which has a fecal-oral transmission pathway, but not in Bartonella, which use blood-borne transmission pathways. We hypothesize that the gain and loss of the urease function is related to transmission strategies and lifestyle changes in the host-associated members of the Rhizobiales. PMID:27976703

  3. Multiplicity of Sulfate and Molybdate Transporters and Their Role in Nitrogen Fixation in Rhizobium leguminosarum bv. viciae Rlv3841.

    Science.gov (United States)

    Cheng, Guojun; Karunakaran, Ramakrishnan; East, Alison K; Poole, Philip S

    2016-02-01

    Rhizobium leguminosarum Rlv3841 contains at least three sulfate transporters, i.e., SulABCD, SulP1 and SulP2, and a single molybdate transporter, ModABC. SulABCD is a high-affinity transporter whose mutation prevented growth on a limiting sulfate concentration, while SulP1 and SulP2 appear to be low-affinity sulfate transporters. ModABC is the sole high-affinity molybdate transport system and is essential for growth with NO3(-) as a nitrogen source on limiting levels of molybdate (molybdate, a quadruple mutant with all four transporters inactivated, had the longest lag phase on NO3(-), suggesting these systems all make some contribution to molybdate transport. Growth of Rlv3841 on limiting levels of sulfate increased sulB, sulP1, modB, and sulP2 expression 313.3-, 114.7-, 6.2-, and 4.0-fold, respectively, while molybdate starvation increased only modB expression (three- to 7.5-fold). When grown in high-sulfate but not low-sulfate medium, pea plants inoculated with LMB695 (modB) reduced acetylene at only 14% of the wild-type rate, and this was not further reduced in the quadruple mutant. Overall, while modB is crucial to nitrogen fixation at limiting molybdate levels in the presence of sulfate, there is an unidentified molybdate transporter also capable of sulfate transport.

  4. Spatially robust estimates of biological nitrogen (N) fixation imply substantial human alteration of the tropical N cycle

    Science.gov (United States)

    Sullivan, Benjamin W.; Smith, William K.; Townsend, Alan R.; Nasto, Megan K.; Reed, Sasha C.; Chazdon, Robin L.; Cleveland, Cory C.

    2014-01-01

    Biological nitrogen fixation (BNF) is the largest natural source of exogenous nitrogen (N) to unmanaged ecosystems and also the primary baseline against which anthropogenic changes to the N cycle are measured. Rates of BNF in tropical rainforest are thought to be among the highest on Earth, but they are notoriously difficult to quantify and are based on little empirical data. We adapted a sampling strategy from community ecology to generate spatial estimates of symbiotic and free-living BNF in secondary and primary forest sites that span a typical range of tropical forest legume abundance. Although total BNF was higher in secondary than primary forest, overall rates were roughly five times lower than previous estimates for the tropical forest biome. We found strong correlations between symbiotic BNF and legume abundance, but we also show that spatially free-living BNF often exceeds symbiotic inputs. Our results suggest that BNF in tropical forest has been overestimated, and our data are consistent with a recent top-down estimate of global BNF that implied but did not measure low tropical BNF rates. Finally, comparing tropical BNF within the historical area of tropical rainforest with current anthropogenic N inputs indicates that humans have already at least doubled reactive N inputs to the tropical forest biome, a far greater change than previously thought. Because N inputs are increasing faster in the tropics than anywhere on Earth, both the proportion and the effects of human N enrichment are likely to grow in the future.

  5. CO2-adapted legumes ameliorate but do not prevent the negative effect of elevated CO2 on nitrogen fixation

    Science.gov (United States)

    Newton, P.; Bowatte, S.; Lieffering, M.; Li, F.

    2015-12-01

    The response of biological nitrogen fixation (BNF) to climate and elevated CO2 (eCO2) is a key uncertainty in modelling C cycle projections. In addition, as BNF provides 50% of the nitrogen (N) input to agricultural production and as ecosystem responses to eCO2 are strongly influenced by N availability then the eCO2 impact on BNF is central to modelling legume-based system responses to climate change. Greater photoassimilate production under eCO2 should lead to enhanced BNF and this response is a feature of ecosystem models thus providing the N inputs necessary to provide continuing stimulation of NPP. FACE experiments provide a 'realistic' environment for eCO2 studies; however, even if run for multiple years, they still may not capture adaptation to eCO2 particularly in ecosystems dominated by perennial species. We tested the effect of eCO2 on BNF and the potential importance of adaption by growing legumes that had been exposed to high or ambient CO2 concentrations at a natural CO2 spring in a long-running (16 year) FACE experiment on grassland. BNF was significantly lower under eCO2 but the reduction was less marked where plants had originated in a high CO2 environment. An ecosystem model run with reduced BNF proved a better fit to the experimental data for the FACE experiment than where BNF was enhanced or unchanged under eCO2.

  6. Spatially robust estimates of biological nitrogen (N) fixation imply substantial human alteration of the tropical N cycle.

    Science.gov (United States)

    Sullivan, Benjamin W; Smith, W Kolby; Townsend, Alan R; Nasto, Megan K; Reed, Sasha C; Chazdon, Robin L; Cleveland, Cory C

    2014-06-03

    Biological nitrogen fixation (BNF) is the largest natural source of exogenous nitrogen (N) to unmanaged ecosystems and also the primary baseline against which anthropogenic changes to the N cycle are measured. Rates of BNF in tropical rainforest are thought to be among the highest on Earth, but they are notoriously difficult to quantify and are based on little empirical data. We adapted a sampling strategy from community ecology to generate spatial estimates of symbiotic and free-living BNF in secondary and primary forest sites that span a typical range of tropical forest legume abundance. Although total BNF was higher in secondary than primary forest, overall rates were roughly five times lower than previous estimates for the tropical forest biome. We found strong correlations between symbiotic BNF and legume abundance, but we also show that spatially free-living BNF often exceeds symbiotic inputs. Our results suggest that BNF in tropical forest has been overestimated, and our data are consistent with a recent top-down estimate of global BNF that implied but did not measure low tropical BNF rates. Finally, comparing tropical BNF within the historical area of tropical rainforest with current anthropogenic N inputs indicates that humans have already at least doubled reactive N inputs to the tropical forest biome, a far greater change than previously thought. Because N inputs are increasing faster in the tropics than anywhere on Earth, both the proportion and the effects of human N enrichment are likely to grow in the future.

  7. Prospective application of Leucaena leucocephala for phytoextraction of Cd and Zn and nitrogen fixation in metal polluted soils.

    Science.gov (United States)

    Saraswat, Shweta; Rai, J P N

    2011-03-01

    The study deals with phytoextraction of Zn and Cd by Leucaena leucocephala grown on effluent fed and low nitrogen soils collected from S1, S2, and S3 sites, representing decreasing metal content with increasing distance from the effluent drain. Plant nitrogen fixation potential and soil micro-biochemical attributes against metal stress were also assessed. Increasing soil metal content and plant growth enhanced metal accumulation. Relatively greater amount of Zn than Cd was accumulated by L. leucocephala, which exceeded in roots with that of other parts. Remediation factor for Cd was maximum (3.6%) in S2 grown plant. Nodule numbers, their biomass, nitrogenase activity, and leghaemoglobin content were maximum in plants grown in S3 and minimum in S1 soil having maximum metals. Maximum soil organic C, total N, C(mic), and N(mic), respiration rate, ATP content, and enzymatic activities in response to phytoremediation was recorded in S3 followed by S2 and S1. Phytoremediation for a year enhanced extractable Zn and Cd by 36% and 45%, and their total removal by 20% and 30%, respectively from S2, which suggests the possible application of L. leucocephala for the remediation of metal contaminated sites and their fertility restoration by improving microbial functionalities and N-pool.

  8. Effect of Rhizobium sp. BARIRGm901 inoculation on nodulation, nitrogen fixation and yield of soybean (Glycine max) genotypes in gray terrace soil.

    Science.gov (United States)

    Alam, Faridul; Bhuiyan, M A H; Alam, Sadia Sabrina; Waghmode, Tatoba R; Kim, Pil Joo; Lee, Yong Bok

    2015-01-01

    Soybean plants require high amounts of nitrogen, which are mainly obtained from biological nitrogen fixation. A field experiment was conducted by soybean (Glycine max) genotypes, growing two varieties (Shohag and BARI Soybean6) and two advanced lines (MTD10 and BGM02026) of soybean with or without Rhizobium sp. BARIRGm901 inoculation. Soybean plants of all genotypes inoculated with Rhizobium sp. BARIRGm901 produced greater nodule numbers, nodule weight, shoot and root biomass, and plant height than non-inoculated plants. Similarly, inoculated plants showed enhanced activity of nitrogenase (NA) enzyme, contributing to higher nitrogen fixation and assimilation, compared to non-inoculated soybean plants in both years. Plants inoculated with Rhizobium sp. BARIRGm901 also showed higher pod, stover, and seed yield than non-inoculated plants. Therefore, Rhizobium sp. BARIRGm901 established an effective symbiotic relationship with a range of soybean genotypes and thus increased the nodulation, growth, and yield of soybean grown in gray terrace soils in Bangladesh.

  9. The Effects of Salinity and Sodicity upon Nodulation and Nitrogen Fixation in Chickpea

    NARCIS (Netherlands)

    Rao, D.L.N.; Giller, K.E.; Yeo, A.R.; Flowers, T.J.

    2002-01-01

    Production of grain legumes is severely reduced in salt-affected soils because their ability to form and maintain nitrogen-fixing nodules is impaired by both salinity and sodicity (alkalinity). Genotypes of chickpea, Cicer arietinum, with high nodulation capacity under stress were identified by

  10. Symbiotic Nitrogen Fixation in the Fungus Gardens of Leaf-Cutter Ants

    Science.gov (United States)

    Bacteria-mediated acquisition of atmospheric dinitrogen by plants serves as a critical nitrogen source in terrestrial ecosystems, and through its key role in agriculture, this phenomenon has shaped the development of human civilizations. Here we show that, paralleling human agriculture, cultivation ...

  11. Potential for Nitrogen Fixation and Nitrification in the Granite-Hosted Subsurface at Henderson Mine, CO

    OpenAIRE

    Swanner, Elizabeth D.; Templeton, Alexis S.

    2011-01-01

    The existence of life in the deep terrestrial subsurface is established, yet few studies have investigated the origin of nitrogen that supports deep life. Previously, 16S rRNA gene surveys cataloged a diverse microbial community in subsurface fluids draining from boreholes 3000 feet deep at Henderson Mine, CO, USA (Sahl et al., 2008). The prior characterization of the fluid chemistry and microbial community forms the basis for the further investigation here of the source of NH4 +. The reporte...

  12. Effect of organic fertiliser residues from rice production on nitrogen fixation of soya (Glycine max L. Merrill, Chiang Mai 60 variety

    Directory of Open Access Journals (Sweden)

    Nattida Luangmaka

    2013-09-01

    Full Text Available A field study was undertaken on the residual effect of organic fertilisers applied to the preceding rice cropping on nitrogen fixation of soya in a rice-soya cropping system. The experiment was conducted on a farmer’s lowland paddy in Mae Rim district, Chiang Mai province, Thailand. Organic fertiliser treatments assigned were: 1 control (no fertiliser, 2 animal manure of cattle (AM, 3 compost (CP, 4 azolla (AZ, 5 AM + CP, 6 AM + AZ, 7 CP + AZ and 8 AM + CP + AZ. Soya seeds were planted without rhizobial inoculation in December 2011, four months after the application of organic fertilisers. Nodule weight, total shoot nitrogen accumulation and relative ureide index at various growth stages were recorded as the indices of nitrogen fixation. Results of the study demonstrate that the residues from the application the organic fertilisers of narrow C/N ratios during the land preparation for rice cropping four months before soya cultivation promoted nitrogen fixation by native rhizobia.

  13. Bulk vs. amino acid stable N isotope estimations of metabolic status and contributions of nitrogen fixation to size-fractionated zooplankton biomass in the subtropical N Atlantic

    Science.gov (United States)

    Mompeán, Carmen; Bode, Antonio; Gier, Elizabeth; McCarthy, Matthew D.

    2016-08-01

    A comparative analysis of natural abundance of stable N isotopes (δ15N) in individual amino acids and bulk organic matter of size-fractionated plankton revealed the differential impact of nitrogen fixation through the food web in a transect across the subtropical North Atlantic. All δ15N measurements showed low values in the central region, followed by the western zone, while maximum δ15N values were found in the eastern zone. These results were consistent with the prevalence of nitrogen fixation in the central and western zones, and the influence of the west Africa upwelling in the eastern zone. Use of compound-specific amino acid isotope data (CSI-AA) revealed relatively low variability in the impact of diazotrophic nitrogen within the different plankton size fractions, while δ15N of bulk organic matter showed high variability with size. Explicit CSI-AA trophic position estimates showed a small increase with mean plankton size class and varied in a relatively narrow range 1.8-2.5), with the lowest values in the central zone. High correlations between bulk plankton δ15N and individual amino acids (in particular Phe and Thr), as well as reconstructed total protein δ15N values, suggest a set of new relationships that may be important to tracing direct plankton contributions to nitrogen recycling in the ocean, including detrital organic nitrogen pools. Overall, these new results represent the most detailed investigation of CSI-AA data in plankton size classes to date, and indicated a greater importance of diazotrophic N than suggested by concurrent measurements of bulk δ15N, abundance of large nitrogen fixing organisms or nitrogen fixation rates.

  14. Biological Nitrogen Fixation in Sugarcane and Nitrogen Transfer from Sugarcane to Cassava in the Intercropping System%甘蔗/木薯间作系统中氮素的固定与转移

    Institute of Scientific and Technical Information of China (English)

    周晓舟; 李杨瑞; 杨丽涛

    2012-01-01

    为探讨甘蔗/木薯间作系统中甘蔗的固氮量变化及氮素向术薯的转移情况.利用15N同位素稀释法进行田间示踪试验.结果表明:单作下甘蔗的固氮百分率为29.50%,固氮量为11.31gm2.间作下甘蔗的总固氮百分率为36.43%,它包括供甘蔗自身生长需要的固氮百分率29.90%和转移到木薯的固氮百分率6.53%;间作下甘蔗的固氮量为17.82g/m2,其中82.07%用于自身生长需要,17.93%转移给木薯利用.间作木薯的总氮量中21.42%来自甘蔗固氮.此结果表明在单作和间作下甘蔗固氮对自身贡献的大小基本一致.甘蔗/木薯间作对甘蔗固氮有促进作用,但促进部分转移给木薯利用.%The biological nitrogen fixation in sugarcane and the fixed nitrogen transfer from sugarcane to cassava in an intercropping system were investigated. 15N isotope dilution technique was used in this experiment The experimental results showed that the nitrogen fixation rate and the nitrogen fixation amout was 29.50%, 11.31 g/m2 respectively under sole sugarcane planting. In the sugarcane-cassava intercropping system, the nitrogen fixation rate was 36.43%, including 29.90% in sugarcane for its growth utilization and 6.53% in cassava transferred from sugarcane; and the nitrogen fixation amount was 17.82 g/m2, in which 82.07% for sugarcane growth and 17.93% for utilization in cassava. It is concluded that sugarcane plants received the same amount of nitrogen from biological fixation in both sole planting and intercropping systems, but it could fix more nitrogen and transfer to cassava in the sugarcane-cassava intercropping system.

  15. Growth, nodulation and nitrogen fixation of cowpea in soils amended with composted tannery sludge

    Directory of Open Access Journals (Sweden)

    Joseany Andrade Santos

    2011-12-01

    Full Text Available Tannery wastes generation is increasing every year and a suitable method for tannery sludge management is necessary in order to decrease this environmental problem. The composting is recognized as a suitable method for sludge recycling.. The effect of tannery sludge compost (TSC rates on growth, nodulation and N fixation of cowpea was investigated. Sandy and clayey soils were amended with TSC at rates of 0, 7.5, 15, 30, and 60 t ha-1. The shoot dry weight of cowpea plants 45 days after emergence (DAE was greater in the TSC-amended than in the unamended soil. In the sandy soil, nodule dry weight increased with TSC application 45 DAE. In the clayey soil, 45 DAE, nodule dry weight decreased with TSC amendment levels greater than 7.5 t ha-1 compared to the unamended control. The application of TSC increased N accumulation in the cowpea plants. The results suggest that cowpea responds differently to TSC depending on the amendment rate and initial soil type.

  16. Isolation and application of effective nitrogen fixation rhizobial strains on low-phosphorus acid soils in South China

    Institute of Scientific and Technical Information of China (English)

    CHENG FengXian; CAO GuiQin; WANG XiuRong; ZHAO Jing; YAN XiaoLong; LIAO Hong

    2009-01-01

    Soybean (Glycine max L.) is a very important food and oil crop in China. Legume-rhizobium symbiotic nitrogen (N) fixation is an important biological character and also the base of improving soil fertility of soybean. However, soybean production and development is severely limited in tropical and subtropical areas in China due to a lack of effective rhizobial inoculants adapting to low-phosphorus (P) acid soils. In the present study, 12 soybean rhizobial strains were isolated and purified from the nodules of two soybean genotypes contrasting in P efficiency, which were grown on different Iow-P acid soils with different soybean cultivation histories. Results from 16S rDNA sequence analysis showed that these 12 rhizobial strains belonged to the genus of Bradyrhizobium, which had higher nitrogenase activities compared to the control strain, Bradyrhizboium japonicum USDA110. A field experiment was carried out by applying rhizobial inoculants, a mixture of three rhizobial strains that showed the highest ni-trogenase activity, on a typical Iow-P acid soil in South China. The results showed that, without inocu-lation, no nodules were formed in the three soybean genotypes tested; with inoculation, the nodulation rates in all were 100%. Inoculation with rhizobial inocuiants not only made many nodules formed, but also increased soybean shoot biomass and yield, and improved nitrogen (N) and P nutrient status. Among which, shoot dry weight, N and P content of a soybean genotype, Huachun 3, inoculated with rhizobium were increased 154.3%, 152.4% and 163.2% compared to that without inoculation, respec-tively. We concluded that: (i) The effective indigenous rhizobial strains isolated in this study from soybeans on Iow-P acid soils in South China have the characters of broad host range, high nodulation efficiency, efficient N fixation, great low pH and low P tolerance. (ii) Soil environment and host types are the key factors to screen the effective rhizobial strains. Considering

  17. Ecosystem nitrogen fixation throughout the snow-free period in subarctic tundra: effects of willow and birch litter addition and warming.

    Science.gov (United States)

    Rousk, Kathrin; Michelsen, Anders

    2017-04-01

    Nitrogen (N) fixation in moss-associated cyanobacteria is one of the main sources of available N for N-limited ecosystems such as subarctic tundra. Yet, N2 fixation in mosses is strongly influenced by soil moisture and temperature. Thus, temporal scaling up of low-frequency in situ measurements to several weeks, months or even the entire growing season without taking into account changes in abiotic conditions cannot capture the variation in moss-associated N2 fixation. We therefore aimed to estimate moss-associated N2 fixation throughout the snow-free period in subarctic tundra in field experiments simulating climate change: willow (Salix myrsinifolia) and birch (Betula pubescens spp. tortuosa) litter addition, and warming. To achieve this, we established relationships between measured in situ N2 fixation rates and soil moisture and soil temperature and used high-resolution measurements of soil moisture and soil temperature (hourly from May to October) to model N2 fixation. The modelled N2 fixation rates were highest in the warmed (2.8 ± 0.3 kg N ha(-1) ) and birch litter addition plots (2.8 ± 0.2 kg N ha(-1) ), and lowest in the plots receiving willow litter (1.6 ± 0.2 kg N ha(-1) ). The control plots had intermediate rates (2.2 ± 0.2 kg N ha(-1) ). Further, N2 fixation was highest during the summer in the warmed plots, but was lowest in the litter addition plots during the same period. The temperature and moisture dependence of N2 fixation was different between the climate change treatments, indicating a shift in the N2 fixer community. Our findings, using a combined empirical and modelling approach, suggest that a longer snow-free period and increased temperatures in a future climate will likely lead to higher N2 fixation rates in mosses. Yet, the consequences of increased litter fall on moss-associated N2 fixation due to shrub expansion in the Arctic will depend on the shrub species' litter traits.

  18. Interactions between Nitrogen Fixation and Methane Cycling in Northern Minnesota Peat Bogs

    Science.gov (United States)

    Warren, M. J.; Gaby, J. C.; Lin, X.; Morton, P. L.; Kostka, J. E.; Glass, J. B.

    2014-12-01

    Peatlands cover only 3% of the Earth's surface, yet store a third of soil carbon. Increasing global temperatures have the potential to change peatlands from a net sink to a net source of atmospheric carbon. N is a limiting nutrient in oligotrophic Sphagnum-dominated peatlands and biological N2 fixation likely supplies a significant but unknown fraction of N inputs. Moreover, environmental controls on diazotrophic community composition in N-limited peatlands are poorly constrained. Thus, improved understanding of feedbacks between the CH4 and N cycles is critical for predicting future changes to CH4 flux from peat bogs. We coupled measurements of N2 fixation activity measured by the acetylene (C2H2) reduction assay (ARA) with molecular analyses of expression and diversity of nifH genes encoding the molybdenum (Mo)-containing nitrogenase from two peat bogs in the Marcell Experimental Forest, Minnesota, USA. The top 10 cm of peat was sampled from the high CH4 flux S1 bog and the low CH4 flux Zim bog in April and June 2014. Despite similar N concentrations in the top 10 cm of both bogs (0.5-1.0 μM NO2-+NO3- and 2-3 μM NH4+), the S1 bog displayed variable ARA activity (1-100 nmol C2H4 h-1 g-1) whereas the Zim bog had consistently low ARA activity (<1 nmol C2H4 h-1 g-1). Highest ARA activity was measured in June from S1 bog hollows with higher moisture content incubated without O2 in the light (20-100 nmol C2H4 h-1 g-1). Dissolved Fe (1-25 μM) was higher in hollow vs. hummock samples, and at S1 vs. Zim bog, while dissolved V (4-14 nM) was consistently higher than Mo (1-4 nM), suggesting that alternative V or Fe-containing nitrogenases might be present in these bogs. In contrast, Cu, an essential micronutrient for aerobic methanotrophs, was higher in hummocks (25-48 nM) than hollows (6-17 nM). The facultative methanotroph Methylocella was the dominant diazotroph in the S1 bog based on high throughput next generation sequencing of nifH cDNA amplicons. Given previous

  19. Nitrogen-Dependent Carbon Fixation by Picoplankton In Culture and in the Mississippi River

    Energy Technology Data Exchange (ETDEWEB)

    Aubrey Smith; Marguerite W. Coomes; Thomas E. Smith

    2005-04-30

    The pepc gene, which encodes phosphoenolpyruvate carboxylase (PEPC), of the marine cyanobacterium Synechococcus PCC 7002, was isolated and sequenced. PEPC is an anaplerotic enzyme, but it may also contribute to overall CO2 fixation through β-carboxylation reactions. A consensus sequence generated by aligning the pepc genes of Anabaena variabilis, Anacystis nidulans and Synechocystis PCC 6803 was used to design two sets of primers that were used to amplify segments of Synechococcus PCC 7002 pepc. In order to isolate the gene, the sequence of the PCR product was used to search for the pepc nucleotide sequence from the publicly available genome of Synechococcus PCC 7002. At the time, the genome for this organism had not been completed although sequences of a significant number of its fragments are available in public databases. Thus, the major challenge was to find the pepc gene among those fragments and to complete gaps as necessary. Even though the search did not yield the complete gene, PCR primers were designed to amplify a DNA fragment using a high fidelity thermostable DNA polymerase. An open reading frame (ORF) consisting of 2988 base pairs coding for 995 amino acids was found in the 3066 bp PCR product. The pepc gene had a GC content of 52% and the deduced protein had a calculated molecular mass of 114,049 Da. The amino acid sequence was closely related to that of PEPC from other cyanobacteria, exhibiting 59-61% identity. The sequence differed significantly from plant and E. coli PEPC with only 30% homology. However, comparing the Synechococcus PCC 7002 sequence to the recently resolved E. coli PEPC revealed that most of the essential domains and amino acids involved in PEPC activity were shared by both proteins. The recombinant Synechococcus PCC 7002 PEPC was expressed in E. coli.

  20. Characterization of a Mesorhizobium loti alpha-type carbonic anhydrase and its role in symbiotic nitrogen fixation.

    Science.gov (United States)

    Kalloniati, Chrysanthi; Tsikou, Daniela; Lampiri, Vasiliki; Fotelli, Mariangela N; Rennenberg, Heinz; Chatzipavlidis, Iordanis; Fasseas, Costas; Katinakis, Panagiotis; Flemetakis, Emmanouil

    2009-04-01

    Carbonic anhydrase (CA) (EC 4.2.1.1) is a widespread enzyme catalyzing the reversible hydration of CO(2) to bicarbonate, a reaction that participates in many biochemical and physiological processes. Mesorhizobium loti, the microsymbiont of the model legume Lotus japonicus, possesses on the symbiosis island a gene (msi040) encoding an alpha-type CA homologue, annotated as CAA1. In the present work, the CAA1 open reading frame from M. loti strain R7A was cloned, expressed, and biochemically characterized, and it was proven to be an active alpha-CA. The biochemical and physiological roles of the CAA1 gene in free-living and symbiotic rhizobia were examined by using an M. loti R7A disruption mutant strain. Our analysis revealed that CAA1 is expressed in both nitrogen-fixing bacteroids and free-living bacteria during growth in batch cultures, where gene expression was induced by increased medium pH. L. japonicus plants inoculated with the CAA1 mutant strain showed no differences in top-plant traits and nutritional status but consistently formed a higher number of nodules exhibiting higher fresh weight, N content, nitrogenase activity, and delta(13)C abundance. Based on these results, we propose that although CAA1 is not essential for nodule development and symbiotic nitrogen fixation, it may participate in an auxiliary mechanism that buffers the bacteroid periplasm, creating an environment favorable for NH(3) protonation, thus facilitating its diffusion and transport to the plant. In addition, changes in the nodule delta(13)C abundance suggest the recycling of at least part of the HCO(3)(-) produced by CAA1.

  1. Protein turnover and plant RNA and phosphorus requirements in relation to nitrogen fixation.

    Science.gov (United States)

    Raven, John A

    2012-06-01

    Phosphorus (P) is the proximate (immediate) limiting element for primary productivity in some habitats, and is generally the ultimate limiting element for primary productivity. Although RNA can account for over half of the non-storage P in photosynthetic organisms, some primary producers have more ribosomes than the minimum needed for the observed rate of net protein synthesis; some of this RNA may be needed for protein turnover. Two cases of protein turnover which can occur at a much faster rate than the bulk protein turnover are those of photodamaged photosystem II and O(2)-damaged nitrogenase. While RNA involved in photosystem II repair accounts for less than 1% of the non-storage P in photosynthetic organisms, a maximum, of 12% of non-storage P could occur in RNA associated with replacement of damaged nitrogenase and/or O(2) damage avoidance mechanism in diazotrophic (N(2) fixing) organisms. There is a general trend in published data towards lower P use efficiency (g dry matter gain per day per mol P in the organism) for photosynthetic diazotrophic organisms growing under P limitation with N(2) as their nitrogen source, rather than with NH(4)(+), urea or NO(3)(-). Additional work is needed to examine the generality of a statistically verified decrease in P use efficiency for diazotrophic growth relative to growth on other nitrogen sources and, if this is confirmed, further investigation of the mechanism is needed. The outcome of such work would be important for relating the global distribution of diazotrophy to P availability. There are no known P acquisition mechanisms specific to diazotrophs. Phosphorus (P) is the proximate (immediate) limiting element for primary productivity in some habitats, and is generally the ultimate limiting element for primary productivity. Although RNA can account for over half of the non-storage P in photosynthetic organisms, some primary producers have more ribosomes than the minimum needed for the observed rate of net protein

  2. Radiation application for upgrading of bioresources - Development of antifungal and-or nitrogen fixative microbes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Sung; Kim, Soo Ki; Lee, Sung Ho; Lee, Jung Suk [Paichai University, Taejon (Korea)

    1999-04-01

    (1) In this study, the antifungal bacterial eight strains were isolated from various environment located in Chung-cheong area, Korea. These isolates were identified the genera Bacillus sp, Pseudomonas sp. through morphological, physiological and biochemical analysis. Especially, strain KL2143, 2367 were identified as Bacillus subtilis (KL2143/KL2367) and strain KL2326, KL2314 identified as Pseudomonas aurantiaca have never been reported internationally. Considering antifungal(AF) spectrum of strain KL2143 show the broad range of AF activity on a number of pathogenic fungi. Therefore, strain KL2143 was selected with the strong candidate of antifungal bacteria on every purpose and usage related with our research goal. (2) Optimal conditions for the production of antifungal material were analyzed under various environmental conditions (carbon source, nitrogen source, phosphate concentration, pH, temperature, amino acids, vitamins). Growth rates were different according to carbon and nitrogen source, antifungal material production yield were not different, however. Product of antifungal material according to phosphate is proportional to concentration; the higher in high concentration and the low in lower concentration. And productivity of antifungal material is was generally high in the range 30 - 37 deg C at pH7 and in case of adding vitamin B12, lysine and aginine to medium it was enhanced. (3) Moreover, bio-degradability upon agricultural substance and organic substances by AF bacteria was strikingly effective. (4) AF stains were screened and selected from this research can be used in the microbial biocides as well as multifunctional bio-controllers in order to remove plant pathogenic fungi and to clarify the polluted environment. Due to their excellent degradation capability for agricultural and/or organic substances, they also can be used to improve soil quality, to ferment compost and to clean up the environment. (5) Establishment of a new technology for the

  3. The impact of simulated chronic nitrogen deposition on the biomass and N₂-fixation activity of two boreal feather moss-cyanobacteria associations.

    Science.gov (United States)

    Gundale, Michael J; Bach, Lisbet H; Nordin, Annika

    2013-01-01

    Bryophytes achieve substantial biomass and play several key functional roles in boreal forests that can influence how carbon (C) and nitrogen (N) cycling respond to atmospheric deposition of reactive nitrogen (Nr). They associate with cyanobacteria that fix atmospheric N₂, and downregulation of this process may offset anthropogenic Nr inputs to boreal systems. Bryophytes also promote soil C accumulation by thermally insulating soils, and changes in their biomass influence soil C dynamics. Using a unique large-scale (0.1 ha forested plots), long-term experiment (16 years) in northern Sweden where we simulated anthropogenic Nr deposition, we measured the biomass and N₂-fixation response of two bryophyte species, the feather mosses Hylocomium splendens and Pleurozium schreberi. Our data show that the biomass declined for both species; however, N₂-fixation rates per unit mass and per unit area declined only for H. splendens. The low and high treatments resulted in a 29% and 54% reduction in total feather moss biomass, and a 58% and 97% reduction in total N₂-fixation rate per unit area, respectively. These results help to quantify the sensitivity of feather moss biomass and N₂ fixation to chronic Nr deposition, which is relevant for modelling ecosystem C and N balances in boreal ecosystems.

  4. Effects of inorganic fertilizers on biological nitrogen fixation and seedling growth of some agroforestry trees in Bangladesh

    Institute of Scientific and Technical Information of China (English)

    Mohammad Belal Uddin; Mohammed Abu Sayed Arfin Khan; Sharif Ahmed Mukul; Mohammed Kamal Hossain

    2008-01-01

    The effects of different inorganic fertilizers (Urea and Triple Super Phosphate (TSP)) on seedling growth and nodulation capabilities of four agroforestry tree species (Albizia chinensis,A.saman,Acacia nilotica and Sesbania sesban) were compared.The nodulation of these seedlings were treated with different fertilizer treatments (at the rate of urea 40 kg(hm-2,urea 80 kg(hm-2,TSP 40 kg(hm-2,TSP 80 kg(hm-2,(urea+TSP) 40 kg(hm-2-and (urea+TSP) 80 kg(hm-2) after one month of seed germination.The results revealed that the seedling growth was enhanced significantly with moderate fertilizer treatment.In some cases,the higher levels of fertilizers reduced the seedling growth.The study also revealed that the nodulation in nodule number and size was significantly inhibited by the application of N fertilizer (Urea),while it was increased significantly with the application of P fertilizer (TSP).This study improved our understanding and provided insights that would be useful to the farmers in their efforts to amend the soil with inorganic fertilizers in order to enhance plant growth and biological nitrogen fixation.

  5. Effects of copper on production of periphyton, nitrogen fixation and processing of leaf litter in a Sierra Nevada, California, stream

    Energy Technology Data Exchange (ETDEWEB)

    Leland, H.V.; Carter, J.L.

    1985-04-01

    The production of periphyton, nitrogen fixation and processing of leaf litter were examined in an oligotrophic Sierra Nevada stream and the responses of these processes to copper (2.5, 5 and 10..mu..g l/sup -1/ Cu/sub T/ (total filterable copper); approximately 12, 25 and 50 ng l/sup -1/ Cu/sup 2 +/) were determined. The specific rate of photosynthesis (mg C mg chlorophyll a/sup -1/ h/sup -1/) of mature periphyton communities declined at all test concentrations of copper, but the rate for periphyton on newly-colonized surfaces did not change. The species composition of benthic algae shifted during exposure to an assemblage more tolerant of copper. Achnanthes minutissima and Fragilaria crotonensis were the primary replacement species on newly-colonized surfaces. The nitrogenase activity of blue-green algae was low, with controls ranging from 2.4 to 12 mnol C/sub 2/H/sub 2/ m/sup -2/ h/sup -1/. Nitrogenase activity was inhibited during the initial weeks of exposure by 5 and 10 ..mu..g l/sup -1/ Cu/sub T/. However, after 9 months of exposure, control and copper-treated sections did not differ. The rate of processing of leaf litter, estimated by microbial respiration and nutrient quality of litter of resident riparian woodland taxa, was inhibited at all test concentrations of copper.

  6. The Azospirillum brasilense rpoN gene is involved in nitrogen fixation, nitrate assimilation, ammonium uptake, and flagellar biosynthesis.

    Science.gov (United States)

    Milcamps, A; Van Dommelen, A; Stigter, J; Vanderleyden, J; de Bruijn, F J

    1996-05-01

    The rpoN (ntrA) gene (encoding sigma 54) of Azospirillum brasilense Sp7 was isolated by using conserved rpoN primers and the polymerase chain reaction, and its nucleotide sequence was determined. The deduced amino acid sequence of the RpoN protein was found to share a high degree of homology with other members of the sigma 54 family. Two additional open reading frames were found in the Azospirillum brasilense rpoN region, with significant similarity to equivalent regions surrounding the rpoN locus in other bacteria. An rpoN mutant of Azospirillum brasilense Sp7 was constructed by gene replacement and found to be defective in nitrogen fixation, nitrate assimilation, and ammonium uptake. Lack of ammonium uptake was also found in previously isolated Azospirillum brasilense ntrB and ntrC mutants, further supporting the role of the ntr system in this process. In addition, the rpoN mutant was found to be nonmotile, suggesting a role of RpoN in Azospirillum brasilense flagellar biosynthesis.

  7. Activation of Rhizobium tibeticum with flavonoids enhances nodulation, nitrogen fixation, and growth of fenugreek (Trigonella foenum-graecum L.) grown in cobalt-polluted soil.

    Science.gov (United States)

    Abd-Alla, Mohamed Hemida; Bagy, Magdy Khalil; El-enany, Abdel-Wahab El-sadek; Bashandy, Shymaa Ryhan

    2014-02-01

    The goal of this study was to investigate the response of activation of Rhizobium tibeticum with mixture of hesperetin and apigenin to improve growth, nodulation, and nitrogen fixation of fenugreek grown under cobalt (Co) stress. The current study showed that high concentrations of Co-induced noxious effects on rhizobial growth, nod gene expression, nodulation, phenylalanine ammonia-lyase (PAL) and glutamine synthetase (GS) activities, total flavonoid content, and nitrogen fixation. Addition of a mixture of hesperetin and apigenin to growth medium supplemented with different concentrations of Co significantly increased bacterial growth. PAL activity of roots grown hydroponically at 100 mg kg(-1) Co and inoculated with induced R. tibeticum was significantly increased compared with plants receiving uninduced R. tibeticum. Total flavonoid content of root exudates of plants inoculated with activated R. tibeticum was significantly increased compared with inoculated plants with unactivated R. tibeticum or uninoculated plants at variant Co dosages. Application of 50 mg kg(-1) Co significantly increased nodulation, GS, nitrogenase activity, and biomass of plants inoculated with either or uninduced R. tibeticum. The total number and fresh mass of nodules, nitrogenase activity, and biomass of plants inoculated with induced cells grown in soil treated with 100 and 200 mg kg(-1) Co were significantly increased compared with plants inoculated with uninduced cells. Induced R. tibeticum with flavonoids significantly alleviates the adverse effect of Co on nod gene expression and therefore enhances nitrogen fixation. Induction of R. tibeticum with compatible flavonoids could be of practical importance in augmenting growth and nitrogen fixation of fenugreek grown in a Co-contaminated agroecosystem.

  8. Comparative Shotgun Proteomic Analysis of Wastewater-Cultured Microalgae: Nitrogen Sensing and Carbon Fixation for Growth and Nutrient Removal in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Patel, Anil K; Huang, Eric L; Low-Décarie, Etienne; Lefsrud, Mark G

    2015-08-07

    Chlamydomonas reinhardtii was batch-cultured for 12 days under continuous illumination to investigate nitrogen uptake and metabolic responses to wastewater processing. Our approach compared two conditions: (1) artificial wastewater containing nitrate and ammonia and (2) nutrient-sufficient control containing nitrate as sole form of nitrogen. Treatments did not differ in final biomass; however, comparison of group proteomes revealed significant differences. Label-free shotgun proteomic analysis identified 2358 proteins, of which 92 were significantly differentially abundant. Wastewater cells showed higher relative abundances of photosynthetic antenna proteins, enzymes related to carbon fixation, and biosynthesis of amino acids and secondary metabolites. Control cells showed higher abundances of enzymes and proteins related to nitrogen metabolism and assimilation, synthesis and utilization of starch, amino acid recycling, evidence of oxidative stress, and little lipid biosynthesis. This study of the eukaryotic microalgal proteome response to nitrogen source, availability, and switching highlights tightly controlled pathways essential to the maintenance of culture health and productivity in concert with light absorption and carbon assimilation. Enriched pathways in artificial wastewater, notably, photosynthetic carbon fixation and biosynthesis of plant hormones, and those in nitrate only control, most notably, nitrogen, amino acid, and starch metabolism, represent potential targets for genetic improvement requiring targeted elucidation.

  9. Novel European free-living, non-diazotrophic Bradyrhizobium isolates from contrasting soils that lack nodulation and nitrogen fixation genes – a genome comparison

    Science.gov (United States)

    Jones, Frances Patricia; Clark, Ian M.; King, Robert; Shaw, Liz J.; Woodward, Martin J.; Hirsch, Penny R.

    2016-05-01

    The slow-growing genus Bradyrhizobium is biologically important in soils, with different representatives found to perform a range of biochemical functions including photosynthesis, induction of root nodules and symbiotic nitrogen fixation and denitrification. Consequently, the role of the genus in soil ecology and biogeochemical transformations is of agricultural and environmental significance. Some isolates of Bradyrhizobium have been shown to be non-symbiotic and do not possess the ability to form nodules. Here we present the genome and gene annotations of two such free-living Bradyrhizobium isolates, named G22 and BF49, from soils with differing long-term management regimes (grassland and bare fallow respectively) in addition to carbon metabolism analysis. These Bradyrhizobium isolates are the first to be isolated and sequenced from European soil and are the first free-living Bradyrhizobium isolates, lacking both nodulation and nitrogen fixation genes, to have their genomes sequenced and assembled from cultured samples. The G22 and BF49 genomes are distinctly different with respect to size and number of genes; the grassland isolate also contains a plasmid. There are also a number of functional differences between these isolates and other published genomes, suggesting that this ubiquitous genus is extremely heterogeneous and has roles within the community not including symbiotic nitrogen fixation.

  10. Nitrogen fixation associated with development and localization of mixed populations of Cellulomonas species and Azospirillium brasilense grown on cellulose or wheat straw

    Energy Technology Data Exchange (ETDEWEB)

    Halsall, D.M.; Goodchild, D.J.

    1986-04-01

    Mixed cultures of Cellulomonas sp. and Azospirillum brasilense were grown with straw or cellulose as the carbon source under conditions favoring the fixation of atmospheric nitrogen. Rapid increases in cell numbers, up to 10/sup 9/ cells per g of substrate, were evident after 4 and 5 days of incubation at 30 degrees C for cellulose and straw, respectively. Nitrogen fixation (detected by acetylene reduction measured on parallel cultures) commenced after 2 and 4 days of incubation for straw and cellulose, respectively, and continued for the duration of the experiment. Pure cultures of Cellulomonas sp. showed an increase in cell numbers, but CO/sub 2/ production was low, and acetylene reduction was not detected on either cellulose or straw. Pure cultures of A. brasilense on cellulose showed an inital increase in cell numbers (10/sup 7/ cells per g of substrate) over 4 days, followed by a decline presumably caused by the exhaustion of available carbon substrate. On straw, A. brasilense increased to 10/sup 9/ cells per g of substrate over 5 days and then declined slowly; this growth was accompanied by acetylene reduction. Scanning electron micrographs of straw incubated with a mixture under the above conditions for 8 days showed cells of both species in close proximity to each other. Evidence was furnished that the close spatial relatioship of cells from the two species facilitated the mutally beneficial association between them and thus increased the efficiency with which the products of straw breakdown were used for nitrogen fixation. 17 references.

  11. Soil factors exhibit greater influence than bacterial inoculation on alfalfa growth and nitrogen fixation.

    Science.gov (United States)

    Neumann, Ute; Kosier, Bob; Jahnke, Joachim; Priefer, Ursula B; Al-Halbouni, Djamila

    2011-09-01

    In order to study the effects of soil factors and bacterial inoculation on alfalfa (Medicago sativa), plants were inoculated with Ensifer meliloti L33 and Azospirillum brasilense Sp7 in pot experiments using two different soils separately as well as in a mixture. One soil was contaminated with chemical waste products; the other was an arable soil. Soil factors, including the availability of macro- and micronutrients as well as carbon and nitrogen contents, were found to exhibit a much greater influence on the growth of alfalfa than any of the inoculations. In contaminated soil, the shoot and root growth of alfalfa was decreased and nodules were diminished and ineffective. Bacterial inoculations did not significantly improve this hostile growth environment. However, in a mixture (44% arable, 22% contaminated soil, 34% vermiculite), growth conditions for alfalfa were improved so that shoot dry weight and nodule numbers increased up to 100- and 20-fold, respectively, compared with the contaminated soil. For the strain L33, its persistence in the rhizosphere was correlated to the presence of its host plant, but its dynamics were influenced by competition with indigenous rhizobia. The strain Sp7, once provided with a suitable soil, was not dependent on the plant's rhizosphere, but it enhanced the performance of L33 and native rhizobia.

  12. Prebiotic Nitrogen Fixation by FeS Reduction of Nitrite Under Acidic Conditions

    Science.gov (United States)

    Summers, David P.; Mead, Susan C. (Technical Monitor)

    1999-01-01

    Theories for the origin of life require the availability of reduced nitrogen for the formation of such species as amino acid and nucleic acids. In a strongly reducing atmosphere, compounds essential to the chemical evolution of life, such as amino acids, can form by reactions between HCN, NH3, and carbonyl compounds produced in spark discharges. However, under non-reducing atmospheres, electric discharges produced NO rather than HCN or NH3. This raises the questions of; how ammonia can be formed under a neutral atmosphere, and what conditions are needed such formation to occur? On possibility is the conversion of NO into nitric and nitrous acids (through HNO) and rained into the oceans. The reduction of nitrite by aqueous Fe(II) (6 Fe(+2) + 7 H(+) + NO2(-) yields 6 Fe(III) + 2 H2O + NH3) such as was present on the early Earth could then have produced ammonia. However, this reaction does not proceed at pHs less than 7.3. An alternative is reduction by other forms of Fe(II), such as FeS. We will present results that show that FeS can reduce nitrite to ammonia at pHs as low as pH 5 under a variety of conditions.

  13. Diversity and nitrogen fixation efficiency of rhizobia isolated from nodules of Centrolobium paraense

    Directory of Open Access Journals (Sweden)

    Alexandre Cardoso Baraúna

    2014-04-01

    Full Text Available The objective of this work was to isolate and characterize rhizobia from nodules of Centrolobium paraense and to evaluate their symbiotic efficiency. Soil samples collected from four sites of the Roraima Cerrado, Brazil, were used to cultivate C. paraense in order to obtain nodules. Isolates (178 were obtained from 334 nodules after cultivation on medium 79. Twenty-five isolates belonging to six morphological groups were authenticated using Vigna unguiculata and they were characterized by 16S rRNA. Isolates identified as Bradyrhizobium were further characterized using rpoB gene sequencing. A greenhouse experiment was carried out with C. paraense to test the 18 authenticated isolates. Approximately 90% of the isolates grew slowly in medium 79. The 16S rRNA analysis showed that 14 authenticated isolates belong to the genus Bradyrhizobium, and rpoB indicated they constitute different groups compared to previously described species. Only four of the 11 fast-growing isolates nodulated V. unguiculata, two of which belong to Rhizobium, and two to Pleomorphomonas, which was not previously reported as a nodulating genus. The Bradyrhizobium isolates ERR 326, ERR 399, and ERR 435 had the highest symbiotic efficiency on C. paraense and showed a contribution similar to the nitrogen treatment. Centrolobium paraense is able to nodulate with different rhizobium species, some of which have not yet been described.

  14. Soil animals and nitrogen mineralization under sand-fixation plantations in Zhanggutai region, China

    Institute of Scientific and Technical Information of China (English)

    CHEN Fu-sheng; ZENG De-hui; HU Xiao-fei; CHEN Guang-sheng; YU Zhan-yuan

    2007-01-01

    The effects of soil animals on soil nitrogen (N) mineralization and its availability were studied by investigating soil animal groups and their amounts of macro-faunas sorted by hand, and middle and microfaunas distinguished with Tullgren and Baermann methods under three Pinus sylvestris var. mongolica Litv. plantations in Zhanggutai sandy land, China. In addition, soil N mineralization rate was also measured with PVC closed-top tube in situ incubation method. The soil animals collected during growing season belonged to 13 orders, 5groups, 4 phyla, whose average density was 86 249.17 individuals.m-2. There were significant differences in soil animal species, densities,diversities and evenness among three plantations. Permanent grazing resulted in decrease of soil animal species and diversity. The average ammonification, nitrification and mineralization rates were 0.48 g·m-2·a-1, 3.68 g·m-2·a-1 and 4.16 g·m-2·a-1, respectively. The ammonification rate in near-mature forest was higher than that in middle-age forests, while the order of nitrification and net mineralization rates was: middle-age forest without grazing < middle-age forest with grazing < near-mature forest with grazing (P<0.05). Soil N mineralization rate increased with soil animal amounts, but no significant relationship with diversity. The contribution of soil animals to N mineralization was different for different ecosystems due to influences of complex factors including grazing,soil characteristics, the quality and amount of litter on N mineralization.

  15. Radiation application for upgrading of bioresources - Development of antifungal and/or nitrogen fixative microbes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Sung; Ko, Dong Kyu; Han, Gab Jin [Paichai University, Taejon (Korea)

    2000-04-01

    (1) In this study, the antifungal bacteria six strains were isolated from various environment located in Chung-cheong area, Korea. These isolates were identified the genera Bacillus sp, Pseudomonas sp. through morphological, physiological and biochemical analysis. Strains KL3362 and KL3397 were identified as Pseudomonas aurantiaca and Alcaligenes faecalis, respectively. Considering antifungal(AF) spectrum, strain KL3303, 3334, and 3341 show the broad range, KL3362 and KL3397 the narrow range of AF activity on a number of pathogenic fungi. Therefore, strains KL3341 and KL3362 were selected as the strong candidate of antifungal bacteria on every purpose and usage related with our research goal. (2) KL3341 producing-antifungal substances were consisted of five different kinds of low molecular weight polypeptides (3) Optimal conditions for the production of antifungal substances were analyzed under various environmental conditions. Growth rates were different according to carbon and nitrogen source, antifungal substance production yields were not different, however. Product of antifungal substances according t phosphate is proportional to the concentration. And productivity of antifungal substances was generally high in the range 30 {approx} 37 deg. C at pH 7. In case of adding vitamin B1 or lysine to medium, the antifungal activity was enhanced. (4) Mutants with enhanced antifungal activities were constructed by radiation of {gamma}-ray. (5) AF strains were screened and selected from this research can be used in the microbial biocides as well as multifunctional bio-controllers in order to remove plant pathogenic fungi and to clarify the polluted environment. Due to their excellent degradation capability for agricultural and/or organic substances, they also can be used to improve soil quality, to ferment compost and to clean up the environment. 35 refs., 17 figs., 15 tabs. (Author)

  16. Salicylic acid improves the salinity tolerance of Medicago sativa in symbiosis with Sinorhizobium meliloti by preventing nitrogen fixation inhibition.

    Science.gov (United States)

    Palma, F; López-Gómez, M; Tejera, N A; Lluch, C

    2013-07-01

    In this work we have investigated the contribution of pretreatment with 0.1 and 0.5mM salicylic acid (SA) to the protection against salt stress in root nodules of Medicago sativa in symbiosis with Sinorhizobium meliloti. SA alleviated the inhibition induced by salinity in the plant growth and photosynthetic capacity of M. sativa-S. meliloti symbiosis. In addition, SA prevented the inhibition of the nitrogen fixation capacity under salt stress since nodule biomass was not affected by salinity in SA pretreated plants. Antioxidant enzymes peroxidase (POX), superoxide dismutase (SOD), ascorbate peroxidase (APX), dehidroascorbate reductase (DHAR) and glutathione reductase (GR), key in the main pathway that scavenges H2O2 in plants, were induced by SA pretreatments which suggest that SA may participate in the redox balance in root nodules under salt stress. Catalase activity (CAT) was inhibited around 40% by SA which could be behind the increase of H2O2 detected in nodules of plants pretreated with SA. The accumulation of polyamines (PAs) synthesized in response to salinity was prevented by SA which together with the induction of 1-aminocyclopropane-l-carboxylic acid (ACC) content suggest the prevalence of the ethylene signaling pathway induced by SA in detriment of the synthesis of PAs. In conclusion, SA alleviated the negative effect of salt stress in the M. sativa-S. meliloti symbiosis through the increased level of nodule biomass and the induction of the nodular antioxidant metabolism under salt stress. The H2O2 accumulation and the PAs inhibition induced by SA in nodules of M. sativa suggest that SA activates a hypersensitive response dependent on ethylene.

  17. Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica.

    Science.gov (United States)

    Fürnkranz, Michael; Wanek, Wolfgang; Richter, Andreas; Abell, Guy; Rasche, Frank; Sessitsch, Angela

    2008-05-01

    Leaf surfaces (phyllospheres) have been shown to provide appropriate conditions for colonization by microorganisms including diazotrophic bacteria that are able to fix atmospheric nitrogen (N(2)). In this study, we determined leaf-associated N(2) fixation of a range of rainforest plants in Costa Rica, under different environmental conditions, by tracing biomass N incorporation from (15)N(2). N(2)-fixing bacterial communities of the plant species Carludovica drudei, Grias cauliflora and Costus laevis were investigated in more detail by analysis of the nifH gene and leaf-associated bacteria were identified by 16S rRNA gene analysis. N(2) fixation rates varied among plant species, their growth sites (different microclimatic conditions) and light exposure. Leaf-associated diazotrophic bacterial communities detected on C. drudei and C. laevis were mainly composed of cyanobacteria (Nostoc spp.), whereas on the leaves of G. cauliflora gamma-proteobacteria were dominant in addition to cyanobacteria. The complexity of diazotrophic communities on leaves was not correlated with N(2) fixation activity. 16S rRNA gene sequence analysis suggested the presence of complex microbial communities in association with leaves, however, cyanobacteria showed only low abundance. Our findings suggest that cyanobacteria as well as gamma-proteobacteria associated with leaf-colonizing epiphytes may provide significant nitrogen input into this rainforest ecosystem.

  18. Associative nitrogen fixation, C4 photosynthesis, and the evolution of spittlebugs (Hemiptera: Cercopidae) as major pests of neotropical sugarcane and forage grasses.

    Science.gov (United States)

    Thompson, V

    2004-06-01

    Neotropical grass-feeding spittlebugs of several genera are important pests of pasture grasses from the southeastern USA to northern Argentina, and of sugarcane from southern Mexico to southern Brazil, causing estimated reductions of up to 70% in yield and estimated monetary losses of 840-2100 million US dollars annually. With few exceptions, the species badly damaged by these spittlebugs are introduced C4 grasses that exhibit associative nitrogen fixation. This study synthesizes evidence that the pest status of many tropical and subtropical grass-feeding spittlebugs is linked to associative N-fixation in their C4 hosts. Recognition that associative N-fixation is a major factor in spittlebug host preferences should deepen understanding of spittlebug agricultural ecology and facilitate efforts to combat spittlebug pests. In particular, spittlebugs should be susceptible to manipulation of xylem transport solutes. However, reduction of nitrate fertilizer rates, increase in ammonium fertilizer rates, or enhancement of associative N-fixation as a consequence of genetic engineering could make hosts more susceptible to spittlebug attack. Because of their predilection for C4 grasses, spittlebugs present a clear counterexample to the hypothesis that herbivores prefer C3 plants to C4 plants. Finally, it appears that declines in atmospheric carbon dioxide levels during recent geological history promoted the proliferation of C4 grasses. This, compounded by human agricultural activities, has driven an ecological and evolutionary radiation of grass-feeding spittlebugs that presents continuing opportunities for the evolution of spittlebug pests.

  19. Nitrogen fixation in the Southern Ocean: a case of study of the Fe-fertilized Kerguelen region (KEOPS II cruise

    Directory of Open Access Journals (Sweden)

    M. L. González

    2014-12-01

    Full Text Available N2 fixation rates were measured during the KEOPS2 cruise in the HNLC area of Southern Ocean and in naturally iron-fertilized waters (Kerguelen Island 49.25° S, 69.58° E using the 15N isotopic technique. We detected N2 fixation within the mixed layer at all stations, from the surface to 140 m depth. The data shows high variability with rates ranging between 0.42 and 20.11 nmol N L−1 d−1. The highest rates were concentrated in the euphotic layer and maximum values were obtained north of polar front (station F-L, which coincide with a positive N* ([NO3]–16[PO4], high chlorophyll concentration and dissolved iron. N2 fixation rates were also obtained in stations with moderate (A3-2; E-4W and also low (R-2 iron levels as well as Chl a, suggesting that beside the microbial biomass, its composition/structure is a driving factor controlling N2 fixation activities. Molecular analysis showed a diazotrophic community dominated by heterotrophic bacterioplankton. Size fractioned experiments indicated that most of N2 fixating activities came from 2 fixation is occurring in the Southern Ocean, at rates exceeding previous reports for high latitudes. Our findings suggest an indirect role of dFe in the regulation of N2 fixation through the enhancement of regenerated primary production and the availability of phytoplankton-derived dissolved organic matter, which in turn may stimulate heterotrophic bacterioplankton.

  20. Assessing the effects of iron enrichment across holobiont compartments reveals reduced microbial nitrogen fixation in the Red Sea coral Pocillopora verrucosa

    KAUST Repository

    Radecker, Nils

    2017-07-31

    The productivity of coral reefs in oligotrophic tropical waters is sustained by an efficient uptake and recycling of nutrients. In reef-building corals, the engineers of these ecosystems, this nutrient recycling is facilitated by a constant exchange of nutrients between the animal host and endosymbiotic photosynthetic dinoflagellates (zooxanthellae), bacteria, and other microbes. Due to the complex interactions in this so-called coral holobiont, it has proven difficult to understand the environmental limitations of productivity in corals. Among others, the micronutrient iron has been proposed to limit primary productivity due to its essential role in photosynthesis and bacterial processes. Here, we tested the effect of iron enrichment on the physiology of the coral Pocillopora verrucosa from the central Red Sea during a 12-day experiment. Contrary to previous reports, we did not see an increase in zooxanthellae population density or gross photosynthesis. Conversely, respiration rates were significantly increased, and microbial nitrogen fixation was significantly decreased. Taken together, our data suggest that iron is not a limiting factor of primary productivity in Red Sea corals. Rather, increased metabolic demands in response to iron enrichment, as evidenced by increased respiration rates, may reduce carbon (i.e., energy) availability in the coral holobiont, resulting in reduced microbial nitrogen fixation. This decrease in nitrogen supply in turn may exacerbate the limitation of other nutrients, creating a negative feedback loop. Thereby, our results highlight that the effects of iron enrichment appear to be strongly dependent on local environmental conditions and ultimately may depend on the availability of other nutrients.

  1. Influence of elevated CO2 concentrations on cell division and nitrogen fixation rates in the bloom-forming cyanobacterium Nodularia spumigena

    Directory of Open Access Journals (Sweden)

    U. Riebesell

    2009-04-01

    Full Text Available The surface ocean currently absorbs about one-fourth of the CO2 emitted to the atmosphere from human activities. As this CO2 dissolves in seawater, it reacts with seawater to form carbonic acid, increasing ocean acidity and shifting the partitioning of inorganic carbon species towards increased CO2 at the expense of CO32− concentrations. While the decrease in [CO32−] and/or increase in [H+] has been found to adversely affect many calcifying organisms, some photosynthetic organisms appear to benefit from increasing [CO2]. Among these is the cyanobacterium Trichodesmium, a predominant diazotroph (nitrogen-fixing in large parts of the oligotrophic oceans, which responded with increased carbon and nitrogen fixation at elevated pCO2. With the mechanism underlying this CO2 stimulation still unknown, the question arises whether this is a common response of diazotrophic cyanobacteria. In this study we therefore investigate the physiological response of Nodularia spumigena, a heterocystous bloom-forming diazotroph of the Baltic Sea, to CO2-induced changes in seawater carbonate chemistry. N. spumigena reacted to seawater acidification/carbonation with reduced cell division rates and nitrogen fixation rates, accompanied by significant changes in carbon and phosphorus quota and elemental composition of the formed biomass. Possible explanations for the contrasting physiological responses of Nodularia compared to Trichodesmium may be found in the different ecological strategies of non-heterocystous (Trichodesmium and heterocystous (Nodularia cyanobacteria.

  2. Influence of elevated CO2 concentrations on cell division and nitrogen fixation rates in the bloom-forming cyanobacterium Nodularia spumigena

    Directory of Open Access Journals (Sweden)

    U. Riebesell

    2009-09-01

    Full Text Available The surface ocean absorbs large quantities of the CO2 emitted to the atmosphere from human activities. As this CO2 dissolves in seawater, it reacts to form carbonic acid. While this phenomenon, called ocean acidification, has been found to adversely affect many calcifying organisms, some photosynthetic organisms appear to benefit from increasing [CO2]. Among these is the cyanobacterium Trichodesmium, a predominant diazotroph (nitrogen-fixing in large parts of the oligotrophic oceans, which responded with increased carbon and nitrogen fixation at elevated pCO2. With the mechanism underlying this CO2 stimulation still unknown, the question arises whether this is a common response of diazotrophic cyanobacteria. In this study we therefore investigate the physiological response of Nodularia spumigena, a heterocystous bloom-forming diazotroph of the Baltic Sea, to CO2-induced changes in seawater carbonate chemistry. N. spumigena reacted to seawater acidification/carbonation with reduced cell division rates and nitrogen fixation rates, accompanied by significant changes in carbon and phosphorus quota and elemental composition of the formed biomass. Possible explanations for the contrasting physiological responses of Nodularia compared to Trichodesmium may be found in the different ecological strategies of non-heterocystous (Trichodesmium and heterocystous (Nodularia cyanobacteria.

  3. The evolutionary events necessary for the emergence of symbiotic nitrogen fixation in legumes may involve a loss of nitrate responsiveness of the NIN transcription factor.

    Science.gov (United States)

    Suzuki, Wataru; Konishi, Mineko; Yanagisawa, Shuichi

    2013-10-01

    NODULE INCEPTION (NIN) is a key regulator of the symbiotic nitrogen fixation pathway in legumes including Lotus japonicus. NIN-like proteins (NLPs), which are presumably present in all land plants, were recently identified as key transcription factors in nitrate signaling and responses in Arabidopsis thaliana, a non-leguminous plant. Here we show that both NIN and NLP1 of L. japonicus (LjNLP1) can bind to the nitrate-responsive cis-element (NRE) and promote transcription from an NRE-containing promoter as did the NLPs of A. thaliana (AtNLPs). However, differing from LjNLP1 and the AtNLPs that are activated by nitrate signaling through their N-terminal regions, the N-terminal region of NIN did not respond to nitrate. Thus, in the course of the evolution of NIN into a transcription factor that functions in nodulation in legumes, some mutations might arise that converted it to a nitrate-insensitive transcription factor. Because nodule formation is induced under nitrogen-deficient conditions, we speculate that the loss of the nitrate-responsiveness of NIN may be one of the evolutionary events necessary for the emergence of symbiotic nitrogen fixation in legumes.

  4. Comparative Nitrogen Fixation

    African Journals Online (AJOL)

    B. D. K. Ahiabor*, M. Fosu, I. Tibo and I. Sumaila

    mycorrhiza formation in cowpea and its high N2-fixing potential resulted in a high ... content of these soils is to grow legume crops sole in a rotation system and ..... the staff of the Soil Chemistry Laboratory of the CSIR-Savanna Agricultural ...

  5. A comparative nitrogen balance and productivity analysis of legume and non-legume supported cropping systems: the potential role of biological nitrogen fixation

    Directory of Open Access Journals (Sweden)

    Pietro P M Iannetta

    2016-11-01

    Full Text Available The potential of biological nitrogen fixation (BNF to provide sufficient N for production have encouraged re-appraisal of cropping systems that deploy legumes. It has been argued that legume-derived N can maintain productivity as an alternative to the application of mineral fertiliser, although few studies have systematically evaluated the effect of optimising the balance between legumes and non N-fixing crops to optimise production. In addition, the shortage, or even absence in some regions, of measurements of BNF in crops and forages severely limits the ability to design and evaluate new, legume–based agroecosystems. To provide an indication of the magnitude of BNF in European agriculture, a soil-surface N-balance approach was applied to historical data from 8 experimental cropping systems that compared legume and non-legume crop types (e.g. grains, forages and intercrops across pedoclimatic regions of Europe. Mean BNF for different legume types ranged from 32-115 kg ha-1 annually. Output in terms of total biomass (grain, forage, etc. was 30% greater in non-legumes, which used N to produce dry matter more efficiently than legumes, whereas output of N was greater from legumes. When examined over the crop sequence, the contribution of BNF to the N-balance increased to reach a maximum when the legume fraction was around 0.5 (legume crops were present in half the years. BNF was lower when the legume fraction increased to 0.6-0.8, not because of any feature of the legume, but because the cropping systems in this range were dominated by mixtures of legume and non-legume forages to which inorganic N as fertiliser was normally applied. Forage (e.g. grass and clover, as opposed to grain crops in this range maintained high outputs of biomass and N. In conclusion, BNF through grain and forage legumes have the potential to generate major benefit in terms of reducing or dispensing with the need for mineral N without loss of total output.

  6. A Comparative Nitrogen Balance and Productivity Analysis of Legume and Non-legume Supported Cropping Systems: The Potential Role of Biological Nitrogen Fixation

    Science.gov (United States)

    Iannetta, Pietro P. M.; Young, Mark; Bachinger, Johann; Bergkvist, Göran; Doltra, Jordi; Lopez-Bellido, Rafael J.; Monti, Michele; Pappa, Valentini A.; Reckling, Moritz; Topp, Cairistiona F. E.; Walker, Robin L.; Rees, Robert M.; Watson, Christine A.; James, Euan K.; Squire, Geoffrey R.; Begg, Graham S.

    2016-01-01

    The potential of biological nitrogen fixation (BNF) to provide sufficient N for production has encouraged re-appraisal of cropping systems that deploy legumes. It has been argued that legume-derived N can maintain productivity as an alternative to the application of mineral fertilizer, although few studies have systematically evaluated the effect of optimizing the balance between legumes and non N-fixing crops to optimize production. In addition, the shortage, or even absence in some regions, of measurements of BNF in crops and forages severely limits the ability to design and evaluate new legume–based agroecosystems. To provide an indication of the magnitude of BNF in European agriculture, a soil-surface N-balance approach was applied to historical data from 8 experimental cropping systems that compared legume and non-legume crop types (e.g., grains, forages and intercrops) across pedoclimatic regions of Europe. Mean BNF for different legume types ranged from 32 to 115 kg ha−1 annually. Output in terms of total biomass (grain, forage, etc.) was 30% greater in non-legumes, which used N to produce dry matter more efficiently than legumes, whereas output of N was greater from legumes. When examined over the crop sequence, the contribution of BNF to the N-balance increased to reach a maximum when the legume fraction was around 0.5 (legume crops were present in half the years). BNF was lower when the legume fraction increased to 0.6–0.8, not because of any feature of the legume, but because the cropping systems in this range were dominated by mixtures of legume and non-legume forages to which inorganic N as fertilizer was normally applied. Forage (e.g., grass and clover), as opposed to grain crops in this range maintained high outputs of biomass and N. In conclusion, BNF through grain and forage legumes has the potential to generate major benefit in terms of reducing or dispensing with the need for mineral N without loss of total output. PMID:27917178

  7. Yeast Two-Hybrid Studies on Interaction of Proteins Involved in Regulation of Nitrogen Fixation in the Phototrophic Bacterium Rhodobacter capsulatus

    OpenAIRE

    Pawlowski, Alice; Riedel, Kai-Uwe; Klipp, Werner; Dreiskemper, Petra; Groß, Silke; Bierhoff, Holger; Drepper, Thomas; Masepohl, Bernd

    2003-01-01

    Rhodobacter capsulatus contains two PII-like proteins, GlnB and GlnK, which play central roles in controlling the synthesis and activity of nitrogenase in response to ammonium availability. Here we used the yeast two-hybrid system to probe interactions between these PII-like proteins and proteins known to be involved in regulating nitrogen fixation. Analysis of defined protein pairs demonstrated the following interactions: GlnB-NtrB, GlnB-NifA1, GlnB-NifA2, GlnB-DraT, GlnK-NifA1, GlnK-NifA2, ...

  8. Transcriptional profiling of nitrogen fixation and the role of NifA in the diazotrophic endophyte Azoarcus sp. strain BH72.

    Directory of Open Access Journals (Sweden)

    Abhijit Sarkar

    Full Text Available BACKGROUND: The model endophyte Azoarcus sp. strain BH72 is known to contribute fixed nitrogen to its host Kallar grass and also expresses nitrogenase genes endophytically in rice seedlings. Availability of nitrogen is a signal regulating the transcription of nitrogenase genes. Therefore, we analysed global transcription in response to differences in the nitrogen source. METHODOLOGY/PRINCIPAL FINDINGS: A DNA microarray, comprising 70-mer oligonucleotides representing 3989 open reading frames of the genome of strain BH72, was used for transcriptome studies. Transcription profiles of cells grown microaerobically on N2 versus ammonium were compared. Expression of 7.2% of the genes was significantly up-regulated, and 5.8% down-regulated upon N2 fixation, respectively. A parallel genome-wide prediction of σ(54-type promoter elements mapped to the upstream region of 38 sequences of which 36 were modulated under the N2 response. In addition to modulation of genes related to N2 fixation, the expressions of gene clusters that might be related to plant-microbe interaction and of several transcription factors were significantly enhanced. While comparing under N2-fixation conditions the transcriptome of wild type with a nifLA(- insertion mutant, NifA being the essential transcriptional activator for nif genes, 24.5% of the genome was found to be affected in expression. A genome-wide prediction of 29 NifA binding sequences matched to 25 of the target genes whose expression was differential during microarray analysis, some of which were putatively negatively regulated by NifA. For selected genes, differential expression was corroborated by real time RT-PCR studies. CONCLUSION/SIGNIFICANCE: Our data suggest that life under conditions of nitrogen fixation is an important part of the lifestyle of strain BH72 in roots, as a wide range of genes far beyond the nif regulon is modulated. Moreover, the NifA regulon in strain BH72 appears to encompass a wider range of

  9. Comparative genomic analysis of N2-fixing and non-N2-fixing Paenibacillus spp.: organization, evolution and expression of the nitrogen fixation genes.

    Directory of Open Access Journals (Sweden)

    Jian-Bo Xie

    2014-03-01

    Full Text Available We provide here a comparative genome analysis of 31 strains within the genus Paenibacillus including 11 new genomic sequences of N2-fixing strains. The heterogeneity of the 31 genomes (15 N2-fixing and 16 non-N2-fixing Paenibacillus strains was reflected in the large size of the shell genome, which makes up approximately 65.2% of the genes in pan genome. Large numbers of transposable elements might be related to the heterogeneity. We discovered that a minimal and compact nif cluster comprising nine genes nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV encoding Mo-nitrogenase is conserved in the 15 N2-fixing strains. The nif cluster is under control of a σ(70-depedent promoter and possesses a GlnR/TnrA-binding site in the promoter. Suf system encoding [Fe-S] cluster is highly conserved in N2-fixing and non-N2-fixing strains. Furthermore, we demonstrate that the nif cluster enabled Escherichia coli JM109 to fix nitrogen. Phylogeny of the concatenated NifHDK sequences indicates that Paenibacillus and Frankia are sister groups. Phylogeny of the concatenated 275 single-copy core genes suggests that the ancestral Paenibacillus did not fix nitrogen. The N2-fixing Paenibacillus strains were generated by acquiring the nif cluster via horizontal gene transfer (HGT from a source related to Frankia. During the history of evolution, the nif cluster was lost, producing some non-N2-fixing strains, and vnf encoding V-nitrogenase or anf encoding Fe-nitrogenase was acquired, causing further diversification of some strains. In addition, some N2-fixing strains have additional nif and nif-like genes which may result from gene duplications. The evolution of nitrogen fixation in Paenibacillus involves a mix of gain, loss, HGT and duplication of nif/anf/vnf genes. This study not only reveals the organization and distribution of nitrogen fixation genes in Paenibacillus, but also provides insight into the complex evolutionary history of nitrogen fixation.

  10. Comparative genomic analysis of N2-fixing and non-N2-fixing Paenibacillus spp.: organization, evolution and expression of the nitrogen fixation genes.

    Science.gov (United States)

    Xie, Jian-Bo; Du, Zhenglin; Bai, Lanqing; Tian, Changfu; Zhang, Yunzhi; Xie, Jiu-Yan; Wang, Tianshu; Liu, Xiaomeng; Chen, Xi; Cheng, Qi; Chen, Sanfeng; Li, Jilun

    2014-03-01

    We provide here a comparative genome analysis of 31 strains within the genus Paenibacillus including 11 new genomic sequences of N2-fixing strains. The heterogeneity of the 31 genomes (15 N2-fixing and 16 non-N2-fixing Paenibacillus strains) was reflected in the large size of the shell genome, which makes up approximately 65.2% of the genes in pan genome. Large numbers of transposable elements might be related to the heterogeneity. We discovered that a minimal and compact nif cluster comprising nine genes nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV encoding Mo-nitrogenase is conserved in the 15 N2-fixing strains. The nif cluster is under control of a σ(70)-depedent promoter and possesses a GlnR/TnrA-binding site in the promoter. Suf system encoding [Fe-S] cluster is highly conserved in N2-fixing and non-N2-fixing strains. Furthermore, we demonstrate that the nif cluster enabled Escherichia coli JM109 to fix nitrogen. Phylogeny of the concatenated NifHDK sequences indicates that Paenibacillus and Frankia are sister groups. Phylogeny of the concatenated 275 single-copy core genes suggests that the ancestral Paenibacillus did not fix nitrogen. The N2-fixing Paenibacillus strains were generated by acquiring the nif cluster via horizontal gene transfer (HGT) from a source related to Frankia. During the history of evolution, the nif cluster was lost, producing some non-N2-fixing strains, and vnf encoding V-nitrogenase or anf encoding Fe-nitrogenase was acquired, causing further diversification of some strains. In addition, some N2-fixing strains have additional nif and nif-like genes which may result from gene duplications. The evolution of nitrogen fixation in Paenibacillus involves a mix of gain, loss, HGT and duplication of nif/anf/vnf genes. This study not only reveals the organization and distribution of nitrogen fixation genes in Paenibacillus, but also provides insight into the complex evolutionary history of nitrogen fixation.

  11. Comparative genomic analysis of N2-fixing and non-N2-fixing Paenibacillus spp.: organization, evolution and expression of the nitrogen fixation genes.

    Directory of Open Access Journals (Sweden)

    Jian-Bo Xie

    2014-03-01

    Full Text Available We provide here a comparative genome analysis of 31 strains within the genus Paenibacillus including 11 new genomic sequences of N2-fixing strains. The heterogeneity of the 31 genomes (15 N2-fixing and 16 non-N2-fixing Paenibacillus strains was reflected in the large size of the shell genome, which makes up approximately 65.2% of the genes in pan genome. Large numbers of transposable elements might be related to the heterogeneity. We discovered that a minimal and compact nif cluster comprising nine genes nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV encoding Mo-nitrogenase is conserved in the 15 N2-fixing strains. The nif cluster is under control of a σ(70-depedent promoter and possesses a GlnR/TnrA-binding site in the promoter. Suf system encoding [Fe-S] cluster is highly conserved in N2-fixing and non-N2-fixing strains. Furthermore, we demonstrate that the nif cluster enabled Escherichia coli JM109 to fix nitrogen. Phylogeny of the concatenated NifHDK sequences indicates that Paenibacillus and Frankia are sister groups. Phylogeny of the concatenated 275 single-copy core genes suggests that the ancestral Paenibacillus did not fix nitrogen. The N2-fixing Paenibacillus strains were generated by acquiring the nif cluster via horizontal gene transfer (HGT from a source related to Frankia. During the history of evolution, the nif cluster was lost, producing some non-N2-fixing strains, and vnf encoding V-nitrogenase or anf encoding Fe-nitrogenase was acquired, causing further diversification of some strains. In addition, some N2-fixing strains have additional nif and nif-like genes which may result from gene duplications. The evolution of nitrogen fixation in Paenibacillus involves a mix of gain, loss, HGT and duplication of nif/anf/vnf genes. This study not only reveals the organization and distribution of nitrogen fixation genes in Paenibacillus, but also provides insight into the complex evolutionary history of nitrogen fixation.

  12. 固氮基因的分子进化分析%An Analysis of Molecular Evolution of Nitrogen Fixation Genes

    Institute of Scientific and Technical Information of China (English)

    王前; 陈海魁; 王俊丽

    2013-01-01

    The nitrogen fixation gene sequences of nitrogen-fixing plants and microorganisms were obtained from the GenBank database to construct phylogenetic trees by neighbor joining method (microorganisms included 15 sequences,such as AE006469,and plants included 22 sequences,such as AF013594),which worked on the different nitrogen-fixing genes in the same nitrogen-fixing microorganism,the same kind of nitrogen fixation gene in many kinds of nitrogen-fixing microorganisms and plants.The results showed that:in the evolutionary tree of the nitrogen fixation genes of Sinorhizobium meliloti 1021,lpsL and exoA gene were clustered into a branch,nodD,nifH and fixA gene were clustered into a branch,whether the same law existed in other nitrogenfixing organisms or not,it needs further study because of lack of data;the evolutionary tree of nifH genes of nitrogen-fixing microorganisms was divided into four branches,various rhizobia were clustered into a branch,Frankia strains were clustered into a branch,Klebsiella pneumoniae and Trichormus Azollae were clustered into one branch only ; the phylogenetic tree of enod40 genes of nitrogen-fixing plants was divided into Fabaceae,Solanaceae,Poaceae,Casuarinaceae,which was basically consistent with the classification of APGⅢ.From the phylogenetic trees,as a whole,this study understands the nitrogen-fixing genes in the evolutionary history of the nitrogen-fixing genes in the nitrogen-fixing microorganisms and plants,which provides a theoretical evidence for the research on the nitrogen fixation genes of nitrogen-fixing plants and microorganisms and a reference for the application of the nitrogen fixation genes applying them in agriculture and other fields.%从GenBank数据库获取固氮微生物和固氮植物的固氮基因序列(固氮微生物包括AE006469等15条序列,固氮植物AF013594等22条序列),利用邻接法从同一固氮微生物的固氮基因、同种固氮基因在不同固氮微生物和不同固氮植物3个方面

  13. Effect of Microgravity on Early Events of Biological Nitrogen Fixation in Medicago Truncatula: Initial Results from the SyNRGE Experiment

    Science.gov (United States)

    Stutte, Gary W.; Roberts, Michael S.

    2011-01-01

    SyNRGE (Symbiotic Nodulation in a Reduced Gravity Environment) was a sortie mission on STS-135 in the Biological Research in Canisters (BRIC) hardware to study the effect of microgravity on a plant-microbe symbiosis resulting in biological nitrogen fixation. Medicago truncatula, a model species of the legume family, was inoculated with its bacterial symbiont, Sinorhizobium meliloti, to observe early events associated with infection and nodulation in Petri Dish Fixation Units (PDFUs). Two sets of experiments were conducted in orbit and in 24-hour delayed ground controls. Experiment one was designed to determine if S. meliloti infect M. truncatula and initiate physiological changes associated with nodule formation. Roots of five-day-old M. truncatula cultivar Jemalong A17 (Enodll::gus) were inoculated 24 hr before launch with either S. meliloti strain 1021 or strain ABS7 and integrated into BRIC-PDFU hardware placed in a 4 C Cold Bag for launch on Atlantis. Inoculated plants and uninoculated controls were maintained in the dark at ambient temperature in the middeck of STS-135 for 11 days before fixation in RNAlater(tM) by crew activation of the PDFU. Experiment two was designed to determine if microgravity altered the process of bacterial infection and host plant nodule formation. Seeds of two M. truncatula cultivar Jemalong A17 lines, the Enodll::gus used in experiment 1, and SUNN, a super-nodulating mutant of A17, were germinated on orbit for 11 days in the middeck cabin and returned to Earth alive inside of BRIC-PDFU's at 4 C. S. meliloti strains 1021 and ABS7 were cultivated separately in broth culture on orbit and also returned to Earth alive. After landing, flight- and groundgrown plants and bacteria were transferred from BRIC-PDFU's into Nunc(tm) 4-well plates for reciprocity crosses. Rates of plant growth and nodule development on Buffered Nodulation Medium (lacking nitrogen) were measured for 14 days. Preliminary analysis' of Experiment 1 confirms that

  14. Two ATP phosphoribosyltransferase isozymes of Geobacter sulfurreducens contribute to growth in the presence or absence of histidine and under nitrogen fixation conditions.

    Science.gov (United States)

    Aklujkar, Muktak

    2011-07-01

    Bacteria of the Geobacter clade possess two distinct ATP phosphoribosyltransferases encoded by hisG(L) and hisG(S)+hisZ to catalyze the first reaction of histidine biosynthesis. This very unusual redundancy was investigated by mutational analysis. The hisG(L), hisG(S), and hisZ genes of Geobacter sulfurreducens were deleted, effects on growth and histidine biosynthesis gene expression were evaluated, and deficiencies were complemented with plasmid-borne genes. Both hisG(L) and hisG(S)+hisZ encode functional ATP phosphoribosyltransferases. However, deletion of hisG(L) resulted in no growth defect, whereas deletion of hisG(S) delayed growth when histidine was not provided. Both deletions increased hisZ transcript abundance, and both ΔhisG(S) and ΔhisZ mutations increased hisG(L) transcript abundance. Growth with HisG(L) alone (due to deletion of either hisG(S) or hisZ) was better under nitrogen fixation conditions than when ammonium was provided. Deletion of hisZ caused growth defects under all conditions tested, with or without exogenous sources of histidine, with different patterns of histidine biosynthesis gene expression under each condition. Taken together, the data indicate that G. sulfurreducens depends primarily on the HisG(S)Z isozyme as an ATP phosphoribosyltransferase in histidine biosynthesis, and for other functions when histidine is available; however, HisG(L) also functions as ATP phosphoribosyltransferase, particularly during nitrogen fixation.

  15. Characterization of the nifA regulatory gene of Rhizobium leguminosarum PRE.

    NARCIS (Netherlands)

    Roelvink, P.W.

    1989-01-01

    This thesis describes the characterization of the nif A regulatory gene of the pea endosymbiont Rhizobiumleguminosarum PRE.Chapter I gives a general overview on the regulation of nitrogen fixation in diazotrophs, with special focus on the regulatory NifA pr

  16. Regulatory circuit for responses of nitrogen catabolic gene expression to the GLN3 and DAL80 proteins and nitrogen catabolite repression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Daugherty, J R; Rai, R; el Berry, H M; Cooper, T G

    1993-01-01

    We demonstrate that expression of the UGA1, CAN1, GAP1, PUT1, PUT2, PUT4, and DAL4 genes is sensitive to nitrogen catabolite repression. The expression of all these genes, with the exception of UGA1 and PUT2, also required a functional GLN3 protein. In addition, GLN3 protein was required for expression of the DAL1, DAL2, DAL7, GDH1, and GDH2 genes. The UGA1, CAN1, GAP1, and DAL4 genes markedly increased their expression when the DAL80 locus, encoding a negative regulatory element, was disrupted. Expression of the GDH1, PUT1, PUT2, and PUT4 genes also responded to DAL80 disruption, but much more modestly. Expression of GLN1 and GDH2 exhibited parallel responses to the provision of asparagine and glutamine as nitrogen sources but did not follow the regulatory responses noted above for the nitrogen catabolic genes such as DAL5. Steady-state mRNA levels of both genes did not significantly decrease when glutamine was provided as nitrogen source but were lowered by the provision of asparagine. They also did not respond to disruption of DAL80.

  17. Influence of pH on growth and nitrogen fixation in bacterial strains isolated from altitudinal vegetation zones of Parâng Mountains (Romania

    Directory of Open Access Journals (Sweden)

    Rahela CARPA

    2010-05-01

    Full Text Available The aim of present paper was to study the influence of different pH values on activity of nitrogen fixing strains isolated from five altitudinal vegetation zones of Parâng Massif (Central Romania. The effect of varying the pH on growth and development of Azotobacter strains as well as on the products of molecular nitrogen fixation was surveyed. The strains were cultivated on media with mannitol or sucrose at 35ºC and continuous shaking at 150 rpm. The pH value for optimal growth of the Azotobacter strains isolated from mountain soils is around neutral pH and cell growth diminished at a slightly alkaline (pH=8 and an acid pH (pH=4. The molecular nitrogen fixation capacity by strains coming from mountain soils at the chosen pH values was determined indirectly, by extracellular proteins formation and ammonia secretion in culture media. The maximum value ofextracellular proteins was obtained at the strains coming from the flood plain at pH 8 (21.452 mg/l. The extracellular proteins concentration on the studied media followed parallel and close lines which had a growing trend untill the end of the studied interval.The ammonia secretion at each mountain zone was different on the two culture media taken into consideration. The level of the ammonia secretion attained a maximum of 6.02 mg/l at the strains from the beech zone at pH 8, on sucrose medium.

  18. Fate of Nitrogen on California Dairies as Measured by Regulatory Reporting

    Science.gov (United States)

    Parsons, T.; Lee, E.; Harter, T.

    2016-12-01

    California is the largest dairy producer in the Unites States, generating over 20% of U.S. milk and cheese. Many California dairy herds live in concentrated animal feeding operations (CAFOs) in the Central Valley. Surrounding these CAFOs, dairies also manage a significant amount of forage land where animal waste is recycled. Through expansion and more efficient production, the milk and manure output of the Central Valley dairies increased nearly exponentially for five decades, until animal numbers levelled off in the 2000s. Due to this expansion, specifically in the Central Valley, the dairy industry poses significant concerns in regard to nitrate contamination and salinization of groundwater. In 2007, new regulations were placed upon the California dairy industry, pertaining to nonpoint source emissions to groundwater. We have digitized and are currently analyzing these annual dairy reports submitted by individual operators to the regulatory agency (Regional Water Boards) to assess the fate of nutrients on dairies in the Central Valley. We are able to assess data completeness and consistency, annual trends over the first eight years of the program, and evaluate the reporting program. Our analysis can be used to determine potential groundwater nitrate impacts based on field nitrogen mass balance. Preliminary results indicate that increased regulation and efforts made by dairy operations have decreased the presence of excess nutrients on dairy lands, although improvements need to be made to the reporting process in order to further this progress.

  19. Associative nitrogen fixation in nodules of the conifer Lepidothamnus fonkii (Podocarpaceae) inhabiting ombrotrophic bogs in southern Patagonia

    OpenAIRE

    Werner Borken; Horn, Marcus A.; Stefan Geimer; Nelson A. Bahamonde Aguilar; Klaus-Holger Knorr

    2016-01-01

    Biological N2 fixation (BNF) in the rhizosphere of Podocarpaceae is currently attributed to unspecific diazotrophs with negligible impact on N acquisition. Here, we report specific and high associative BNF in dead cells of root nodules of Lepidothamnus fonkii distributed in ombrotrophic peatlands of Patagonia. BNF of nodulated roots, intact plants of L. fonkii and rhizospheric peat was assessed by 15N2 and acetylene reduction. Diazotrophs were identified by electron microscopy, analysis of ni...

  20. High rate of N2 fixation by East Siberian cryophilic soil bacteria as determined by measuring acetylene reduction in nitrogen-poor medium solidified with gellan gum.

    Science.gov (United States)

    Hara, Shintaro; Hashidoko, Yasuyuki; Desyatkin, Roman V; Hatano, Ryusuke; Tahara, Satoshi

    2009-05-01

    For evaluating N(2) fixation of diazotrophic bacteria, nitrogen-poor liquid media supplemented with at least 0.5% sugar and 0.2% agar are widely used for acetylene reduction assays. In such a soft gel medium, however, many N(2)-fixing soil bacteria generally show only trace acetylene reduction activity. Here, we report that use of a N(2) fixation medium solidified with gellan gum instead of agar promoted growth of some gellan-preferring soil bacteria. In a soft gel medium solidified with 0.3% gellan gum under appropriate culture conditions, bacterial microbiota from boreal forest bed soils and some free-living N(2)-fixing soil bacteria isolated from the microbiota exhibited 10- to 200-fold-higher acetylene reduction than those cultured in 0.2% agar medium. To determine the N(2) fixation-activating mechanism of gellan gum medium, qualitative differences in the colony-forming bacterial components from tested soil microbiota were investigated in plate cultures solidified with either agar or gellan gum for use with modified Winogradsky's medium. On 1.5% agar plates, apparently cryophilic bacterial microbiota showed strictly distinguishable microbiota according to the depth of soil in samples from an eastern Siberian Taiga forest bed. Some pure cultures of proteobacteria, such as Pseudomonas fluorescens and Burkholderia xenovorans, showed remarkable acetylene reduction. On plates solidified with 1.0% gellan gum, some soil bacteria, including Luteibacter sp., Janthinobacterium sp., Paenibacillus sp., and Arthrobacter sp., uniquely grew that had not grown in the presence of the same inoculants on agar plates. In contrast, Pseudomonas spp. and Burkholderia spp. were apparent only as minor colonies on the gellan gum plates. Moreover, only gellan gum plates allowed some bacteria, particularly those isolated from the shallow organic soil layer, to actively swarm. In consequence, gellan gum is a useful gel matrix to bring out growth potential capabilities of many soil

  1. A comparative study on phyllosphere nitrogen fixation by newly isolated Corynebacterium sp. & Flavobacterium sp. and their potentialities as biofertilizer.

    Science.gov (United States)

    Giri, S; Pati, B R

    2004-01-01

    A number of nitrogen fixing bacteria has been isolated from forest phyllosphere on the basis of nitrogenase activity. Among them two best isolates are selected and identified as Corynebacterium sp. AN1 & Flavobacterium sp. TK2 able to reduce 88 and 132 n mol of acetylene (10(8)cells(-1)h(-1)) respectively. They were grown in large amount and sprayed on the phyllosphere of maize plants as a substitute for nitrogenous fertilizer. Marked improvements in growth and total nitrogen content of the plant have been observed by the application of these nitrogen-fixing bacteria. An average 30-37% increase in yield was obtained, which is nearer to chemical fertilizer treatment. Comparatively better effect was obtained by application of Flavobacterium sp.

  2. Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms.

    OpenAIRE

    Soltis, D. E.; Soltis, P S; Morgan, D. R.; Swensen, S M; Mullin, B C; Dowd, J M; Martin, P. G.

    1995-01-01

    Of the approximately 380 families of angiosperms, representatives of only 10 are known to form symbiotic associations with nitrogen-fixing bacteria in root nodules. The morphologically based classification schemes proposed by taxonomists suggest that many of these 10 families of plants are only distantly related, engendering the hypothesis that the capacity to fix nitrogen evolved independently several, if not many, times. This has in turn influenced attitudes toward the likelihood of transfe...

  3. Photosynthetic Determinants of Growth in Maize Plants: Effects of Nitrogen Nutrition on Growth, Carbon Fixation and Photochemical Features

    OpenAIRE

    S. C., Huber; Tatsuo, SUGIYAMA; R.S, Alberte; Department of Agriculture, Agricultural Research Service; Department of Agricultural Chemistry, Faculty of Agriculture, Tohoku University; Department of Molecular Genetics and Cell Biology, The University of Chicago

    1989-01-01

    Maize (Zea mays L.) plants were grown in a greenhouse with different levels of nitrate-N (2 to 20 millimolar). Nitrogen nutrition had dramatic effects on plant growth and photosynthetic characteristics of mature leaves. Increasing nitrogen resulted in greater biomass production, shoot/root ratios, and rates of leaf expansion during the day. The elongating zone of high-N plants had higher activities (per gram fresh weight) of sucrose synthase and neutral invertase than low-N plants, suggesting...

  4. Formation and maintenance of high-nitrate, low pH layers in the eastern Indian Ocean and the role of nitrogen fixation

    Directory of Open Access Journals (Sweden)

    A. M. Waite

    2013-08-01

    Full Text Available We investigated the biogeochemistry of low dissolved oxygen high-nitrate (LDOHN layers forming against the backdrop of several interleaving regional water masses in the eastern Indian Ocean, off northwest Australia adjacent to Ningaloo Reef. These water masses, including the forming Leeuwin Current, have been shown directly to impact the ecological function of Ningaloo Reef and other iconic coastal habitats downstream. Our results indicate that LDOHN layers are formed from multiple subduction events of the Eastern Gyral Current beneath the Leeuwin Current (LC; the LC originates from both the Indonesian Throughflow and tropical Indian Ocean. Density differences of up to 0.025 kg m−3 between the Eastern Gyral Current and the Leeuwin Current produce sharp gradients that can trap high concentrations of particles (measured as low transmission along the density interfaces. The oxidation of the trapped particulate matter results in local depletion of dissolved oxygen and regeneration of dissolved nitrate (nitrification. We document an associated increase in total dissolved carbon dioxide, which lowers the seawater pH by 0.04 units. Based on isotopic measurements (δ15N and δ18O of dissolved nitrate, we determine that ~ 40–100% of the nitrate found in LDOHN layers is likely to originate from nitrogen fixation, and that, regionally, the importance of N-fixation in contributing to LDOHN layers is likely to be highest at the surface and offshore.

  5. Discovery of Evolutionary Divergence of Biological Nitrogen Fixation and Photosynthesis: Fine Tuning of Biogenesis of the NifH and the ChlL by a Peptidyl-Prolyl Cis/Trans Isomerase

    OpenAIRE

    Nara Gavini; Sinny Delacroix; Kelvin Harris Jr.; Lakshmi Pulakat

    2011-01-01

    Problem statement: Despite the structural and functional similarities between the nitrogenase that performs biological nitrogen fixation reaction and the Dark Protochlorphyllide Oxidoreductase (DPOR) that performs chlorophyll-biosynthesis, attempts to substitute nitrogenase-components with DPOR-components have hitherto failed. This investigation was undertaken to test if Chlamydomonas reinhardtii protochlorophyllide (Pchlide) reductase (ChlL) that shares some structural similarity with Nitrog...

  6. Discovery of Evolutionary Divergence of Biological Nitrogen Fixation and Photosynthesis: Fine Tuning of Biogenesis of the NifH and the ChlL by a Peptidyl-Prolyl Cis/Trans Isomerase

    OpenAIRE

    Nara Gavini; Sinny Delacroix; Kelvin Harris Jr.; Lakshmi Pulakat

    2011-01-01

    Problem statement: Despite the structural and functional similarities between the nitrogenase that performs biological nitrogen fixation reaction and the Dark Protochlorphyllide Oxidoreductase (DPOR) that performs chlorophyll-biosynthesis, attempts to substitute nitrogenase-components with DPOR-components have hitherto failed. This investigation was undertaken to test if Chlamydomonas reinhardtii protochlorophyllide (Pchlide) reductase (ChlL) that shares some structural similarity with Nitrog...

  7. Influence of heterogeneous ammonium availability on bacterial community structure and the expression of nitrogen fixation and ammonium transporter genes during in situ bioremediation of uranium-contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Mouser, P.J.; N' Guessan, A.L.; Elifantz, H.; Holmes, D.E.; Williams, K.H.; Wilkins, M.J.; Long, P.E.; Lovley, D.R.

    2009-04-01

    The impact of ammonium availability on microbial community structure and the physiological status and activity of Geobacter species during in situ bioremediation of uranium-contaminated groundwater was evaluated. Ammonium concentrations varied by as much as two orders of magnitude (<4 to 400 {micro}M) across the study site. Analysis of 16S rRNA gene sequences suggested that ammonium influenced the composition of the microbial community prior to acetate addition with Rhodoferax species predominating over Geobacter species at the site with the highest ammonium, and Dechloromonas species dominating at sites with lowest ammonium. However, once acetate was added, and dissimilatory metal reduction was stimulated, Geobacter species became the predominant organisms at all locations. Rates of U(VI) reduction appeared to be more related to the concentration of acetate that was delivered to each location rather than the amount of ammonium available in the groundwater. In situ mRNA transcript abundance of the nitrogen fixation gene, nifD, and the ammonium importer gene, amtB, in Geobacter species indicated that ammonium was the primary source of nitrogen during in situ uranium reduction, and that the abundance of amtB transcripts was inversely correlated to ammonium levels across all sites examined. These results suggest that nifD and amtB expression by subsurface Geobacter species are closely regulated in response to ammonium availability to ensure an adequate supply of nitrogen while conserving cell resources. Thus, quantifying nifD and amtB expression appears to be a useful approach for monitoring the nitrogen-related physiological status of Geobacter species in subsurface environments during bioremediation. This study also emphasizes the need for more detailed analysis of geochemical/physiological interactions at the field scale, in order to adequately model subsurface microbial processes.

  8. A new Open Top Chamber designed to test in situ effects of climatic and atmospheric changes on nitrogen fixation in boreal forest floor mosses

    Science.gov (United States)

    Bringuier, Charline; Bradley, Robert; Bellenger, Jean-Philippe; Morin, Hubert; Lindo, Zoë

    2014-05-01

    Biological nitrogen fixation (BNF) by cyanobacteria dwelling in forest floor moss layers is an important determinant of boreal black spruce forest productivity. Recent studies have suggested that these BNF rates may increase with increasing atmospheric CO2 and increasing temperature, as predicted by current weather models. This potential increase in BNF may be offset, however, by increasing atmospheric deposition of nitrogen, or by increasing demands for phosphorus (i.e. driving nodular ATP content) and for micronutrients such as Mo, Va and Fe (i.e. co-factors of nitrogenase enzyme). In order to study the relative and interactive effects of these factors controlling in situ BNF rates in boreal forest floor moss layers, a new Open Top Chamber (OTC) was developed in summer of 2013. The chambers measure 1.60 cm dia. × 60 cm height, and are equipped with an automated CO2 delivery system designed to maintain atmospheric daytime CO2 concentrations at 800 ppm, as well as buried heating coils that increase soil temperature by 4 ° C for 3 weeks in springtime. These 2 experimental factors are crossed in a full factorial (2 × 2) design that is replicated in 4 complete blocks. Each of the 16 OTCs is divided into 4 compartments, each of which are assigned 1 of 4 sub-plot factors. These include chronic additions of either atmospheric nitrogen, phosphorus, micronutrients or a non-amended control. Staring in summer 2014, a series of measurements will be made to assess the effects of treatments on BNF rates, cyanobacterial colonization and soil nitrogen cycling. Our poster will describe in detail the design and operation of the OTCs, as well as their construction and maintenance costs.

  9. Regulatory circuit for responses of nitrogen catabolic gene expression to the GLN3 and DAL80 proteins and nitrogen catabolite repression in Saccharomyces cerevisiae.

    OpenAIRE

    Daugherty, J R; Rai, R; el Berry, H M; Cooper, T. G.

    1993-01-01

    We demonstrate that expression of the UGA1, CAN1, GAP1, PUT1, PUT2, PUT4, and DAL4 genes is sensitive to nitrogen catabolite repression. The expression of all these genes, with the exception of UGA1 and PUT2, also required a functional GLN3 protein. In addition, GLN3 protein was required for expression of the DAL1, DAL2, DAL7, GDH1, and GDH2 genes. The UGA1, CAN1, GAP1, and DAL4 genes markedly increased their expression when the DAL80 locus, encoding a negative regulatory element, was disrupt...

  10. Effects of Boron Nutrition and Water Stress on Nitrogen Fixation, Seed δ 15N and δ 13C Dynamics, and Seed Composition in Soybean Cultivars Differing in Maturities

    Science.gov (United States)

    Bellaloui, Nacer; Mengistu, Alemu

    2015-01-01

    Therefore, the objective of the current research was to investigate the effects of foliar B nutrition on seed protein, oil, fatty acids, and sugars under water stress conditions. A repeated greenhouse experiment was conducted using different maturity group (MG) cultivars. Plants were well-watered with no foliar B (W − B), well-watered with foliar B (W + B), water-stressed with no foliar B (WS − B), and water-stressed with foliar B (WS + B). Foliar B was applied at rate of 0.45 kg·ha−1 and was applied twice at flowering and at seed-fill stages. The results showed that seed protein, sucrose, fructose, and glucose were higher in W + B treatment than in W − B, WS + B, and WS − B. The increase in protein in W + B resulted in lower seed oil, and the increase of oleic in WS − B or WS + B resulted in lower linolenic acid. Foliar B resulted in higher nitrogen fixation and water stress resulted in seed δ 15N and δ 13C alteration. Increased stachyose indicated possible physiological and metabolic changes in carbon and nitrogen pathways and their sources under water stress. This research is beneficial to growers for fertilizer management and seed quality and to breeders to use 15N/14N and 13C/12C ratios and stachyose to select for drought tolerance soybean. PMID:25667936

  11. Effects of Boron Nutrition and Water Stress on Nitrogen Fixation, Seed δ15N and δ13C Dynamics, and Seed Composition in Soybean Cultivars Differing in Maturities

    Directory of Open Access Journals (Sweden)

    Nacer Bellaloui

    2015-01-01

    Full Text Available Therefore, the objective of the current research was to investigate the effects of foliar B nutrition on seed protein, oil, fatty acids, and sugars under water stress conditions. A repeated greenhouse experiment was conducted using different maturity group (MG cultivars. Plants were well-watered with no foliar B (W − B, well-watered with foliar B (W + B, water-stressed with no foliar B (WS − B, and water-stressed with foliar B (WS + B. Foliar B was applied at rate of 0.45 kg·ha−1 and was applied twice at flowering and at seed-fill stages. The results showed that seed protein, sucrose, fructose, and glucose were higher in W + B treatment than in W − B, WS + B, and WS − B. The increase in protein in W + B resulted in lower seed oil, and the increase of oleic in WS − B or WS + B resulted in lower linolenic acid. Foliar B resulted in higher nitrogen fixation and water stress resulted in seed δ15N and δ13C alteration. Increased stachyose indicated possible physiological and metabolic changes in carbon and nitrogen pathways and their sources under water stress. This research is beneficial to growers for fertilizer management and seed quality and to breeders to use 15N/14N and 13C/12C ratios and stachyose to select for drought tolerance soybean.

  12. Identification of associative nitrogen fixation bacteria in rhizosphere of Camellia oleifera%油茶根际高效联合固氮菌的初步鉴定

    Institute of Scientific and Technical Information of China (English)

    蔡苗; 彭方仁; 陈隆升; 陈永忠

    2011-01-01

    A strain of the associative nitrogen fixation bacteria N7-3 with the highest nitrogen-fixing efficiency was isolated and screened from the rhizosphere of different Camellia oleifera forests and it was identified by morphological, physiological characteristics and biolog microbes identification system. The results showed that the strain was gram-negative coccus and non-endospore and motorial. Its colonies were white, rounded, convex, tidy edge with luster. The homologous between N7 -3 and Azomonas spp. was 95% , and the main biochemical and physiological characteristics of N7-3 were similar to that of Azomonas spp.%从不同林分的油荼根系分离筛选出1株固氮效能最高的联合固氮菌N7-3,通过对该菌株的形态特征、生理生化特性以及Biolog微生物鉴定系统进行鉴定,结果表明:该菌株是革兰氏阴性菌,椭球菌,不产芽孢,能运动,菌落白色、圆形,凸起,边缘整齐,有光泽.经Biolog系统鉴定,该菌株是Azomonas spp.的可能性为95%,其主要生理生化特征也与Azomonas相符.

  13. Nitrogen fixation by U.S. and Middle Eastern chickpeas with commercial and wild Middle Eastern inocula

    Science.gov (United States)

    Chickpeas (Cicer arietinum L.) are native to the Middle East (ME), and must be inoculated with symbiotic bacteria in order to fix nitrogen (N) in North American soils. Commercial inocula for chickpea contain several strains of the known N-fixing symbiont Mesorhizobium ciceri. It is not known whethe...

  14. Structural characterization of the protein cce_0567 from Cyanothece 51142, a metalloprotein associated with nitrogen fixation in the DUF683 family

    Energy Technology Data Exchange (ETDEWEB)

    Buchko, Garry W.; Robinson, Howard; Addlagatta, Anthony

    2009-03-11

    The genome of many cyanobacacteria contain the sequence for a small protein (<100 amino acids) with a commom "domain of unknown function" grouped into the DUF683 protein family. While the biological function of DUF683 is still not known, their genomic location within nitrogen fixation clusters suggests that DUF683 proteins may play a role in the process. The diurnal cyanobacterium Cyanothece sp. PCC 51142 contains a gene for a protein that fall into the DUF683 family, cce_0567 (78 aa, 9.0 kDa). In an effort to elucidate the biochemical role DUF683 proteins may play in nitrogen fixation, we have determined the first crystal structure for a protein in this family, cce_0567, to 1.84 Å resolution. Cce_0567 crystallized in space group P21 with two protein molecules and one Ni2+ cation per asymmetric unit. The protein is composed of two α-helices from residues P11 to G41 (α1) and L49-E74 (α2) with the second α-helix containing a short 310-helix (Y46 - N48). A four-residue linker (L42 - D45) between the helices allows them to form an anti-parallel bundle that cross over each other towards their termini. In solution it is likely that two molecules of cce_0567 form a rod-like dimer by the stacking interactions of ~1/2 of the protein. Histidine-36 is highly conserved in all known DUF683 proteins and the N2 nitrogen of the H36 side chain of each molecule in the dimer coordinate with Ni2+ in the crystal structure. The divalent cation Ni2+ was titrated into 15N-labelled cce_0567 and chemical shift perturbations were observed only in the 1H-15N HSQC spectra for residues at, or near, the site of Ni2+ binding observed in the crystal structure. There was no evidence for an increase in the size of cce_0567 upon binding Ni2+, even in large molar excess of Ni2+, indicating that a metal was not required for dimer formation. Circular dichroism spectroscopy indicated that cce_0567 was extremely robust, with a melting temperature of ~62ºC that was reversible.

  15. Structural characterization of the protein cce_0567 from Cyanothece 51142, a metalloprotein associated with nitrogen fixation in the DUF683 family.

    Science.gov (United States)

    Buchko, Garry W; Robinson, Howard; Addlagatta, Anthony

    2009-04-01

    The genomes of many cyanobacteria contain the sequence for a small protein with a common "Domain of Unknown Function" grouped into the DUF683 protein family. While the biological function of DUF683 is still not known, their genomic location within nitrogen fixation clusters suggests that DUF683 proteins may play a role in the process. The diurnal cyanobacterium Cyanothece sp. PCC 51142 contains a gene for a protein that falls into the DUF683 family, cce_0567 (78 aa, 9.0 kDa). In an effort to elucidate the biochemical role DUF683 proteins may play in nitrogen fixation, we have determined the first crystal structure for a protein in this family, cce_0567, to 1.84 A resolution. Cce_0567 crystallized in space group P2(1) with two protein molecules and one Ni(2+) cation per asymmetric unit. The protein is composed of two alpha-helices, residues P11 to G41 (alpha1) and L49-E74 (alpha2), with the second alpha-helix containing a short 3(10)-helix (Y46-N48). A four-residue linker (L42-D45) between the helices allows them to form an anti-parallel bundle and cross over each other towards their termini. In solution it is likely that two molecules of cce_0567 form a rod-like dimer by the stacking interactions of approximately 1/2 of the protein. Histidine-36 is highly conserved in all known DUF683 proteins and the N2 nitrogen of the H36 side chain of each molecule in the dimer is coordinated with Ni(2+) in the crystal structure. The divalent cation Ni(2+) was titrated into (15)N-labeled cce_0567 and chemical shift perturbations were observed only in the (1)H-(15)N HSQC spectra for residues at, or near, the site of Ni(2+) binding observed in the crystal structure. There was no evidence for an increase in the size of cce_0567 upon binding Ni(2+), even in large molar excess of Ni(2+), indicating that a metal was not required for dimer formation. Circular dichroism spectroscopy indicated that cce_0567 was extremely robust, with a melting temperature of approximately 62 degrees C

  16. Structural Characterization of the Protein cce_0567 from Cyanothece 51142, a Metalloprotein Associated with Nitrogen Fixation in the DUF683 Family

    Energy Technology Data Exchange (ETDEWEB)

    Buchko, G.; Robinson, H; Addlagatta, A

    2009-01-01

    The genomes of many cyanobacteria contain the sequence for a small protein with a common 'Domain of Unknown Function' grouped into the DUF683 protein family. While the biological function of DUF683 is still not known, their genomic location within nitrogen fixation clusters suggests that DUF683 proteins may play a role in the process. The diurnal cyanobacterium Cyanothece sp. PCC 51142 contains a gene for a protein that falls into the DUF683 family, cce 0567 (78 aa, 9.0 kDa). In an effort to elucidate the biochemical role DUF683 proteins may play in nitrogen fixation, we have determined the first crystal structure for a protein in this family, cce 0567, to 1.84 A resolution. Cce 0567 crystallized in space group P2(1) with two protein molecules and one Ni(2+) cation per asymmetric unit. The protein is composed of two alpha-helices, residues P11 to G41 (alpha1) and L49-E74 (alpha2), with the second alpha-helix containing a short 3(10)-helix (Y46-N48). A four-residue linker (L42-D45) between the helices allows them to form an anti-parallel bundle and cross over each other towards their termini. In solution it is likely that two molecules of cce 0567 form a rod-like dimer by the stacking interactions of approximately 1/2 of the protein. Histidine-36 is highly conserved in all known DUF683 proteins and the N2 nitrogen of the H36 side chain of each molecule in the dimer is coordinated with Ni(2+) in the crystal structure. The divalent cation Ni(2+) was titrated into (15)N-labeled cce 0567 and chemical shift perturbations were observed only in the (1)H-(15)N HSQC spectra for residues at, or near, the site of Ni(2+) binding observed in the crystal structure. There was no evidence for an increase in the size of cce 0567 upon binding Ni(2+), even in large molar excess of Ni(2+), indicating that a metal was not required for dimer formation. Circular dichroism spectroscopy indicated that cce 0567 was extremely robust, with a melting temperature of approximately 62

  17. Using 15N isotopic dilution method to quantify the biological nitrogen fixation in sugarcane%15N同位素稀释法评估甘蔗的生物固氮量

    Institute of Scientific and Technical Information of China (English)

    周晓舟; 李杨瑞; 杨丽涛

    2012-01-01

    The quantification of biological nitrogen fixation in sugarcane was investigated with 15N isotope dilution technique in greenhouse bucket culture test,using cassava as reference plant. The experimental results showed that Ndfa accounted for 11. 3514%,and the nitrogen fixation rate was 0. 9269 g/bucket for whole growth duration of sugarcane. Ndfa and the nitrogen fixation amount in different organs of the plant showed leaf>stalk>root. Ndfa in leaf accounted for 13. 2668%,a little higher than that in the whole plant,but the difference was not significant. The percentage of nitrogen from air,fertilizer and soil occupying the total nitrogen of the plant was 11. 3514% ,7. 6857% and 80. 9629%, respectively. The nitrogen use efficiency of sugarcane was 58. 7583%. It was concluded that all organs of sugarcane could fix nitrogen through biological nitrogen fixation,and leaves could be used to estimate the amount of biological nitrogen fixation in place of whole plant of sugarcane.%为评估甘蔗生物固氮量,采用15N同位素稀释法,以木薯为参比植物,进行温室桶栽试验.结果表明:甘蔗全生育期植株固氮11.3514% Ndfa,固氮量每桶0.9269 g.甘蔗根、茎、叶的固氮百分率和固氮量大小依序为叶>茎>根.叶的固氮百分率(13.2668% Ndfa)略高于植株,但两者差异不显著.甘蔗植株全氮量中来自空气氮(生物固氮)、肥料氮和土壤氮的比例分别为11.3514%、7.6857%、80.9629%.甘蔗的氮肥利用率为58.7583%.甘蔗根、茎、叶各部位均有固氮现象,生产上可以用叶代替植株来评估甘蔗的生物固氮量.

  18. Deduced products of C4-dicarboxylate transport regulatory genes of Rhizobium leguminosarum are homologous to nitrogen regulatory gene products.

    OpenAIRE

    Ronson, C W; Astwood, P M; Nixon, B T; Ausubel, F M

    1987-01-01

    We have sequenced two genes dctB and dctD required for the activation of the C4-dicarboxylate transport structural gene dctA in free-living Rhizobium leguminosarum. The hydropathic profile of the dctB gene product (DctB) suggested that its N-terminal region may be located in the periplasm and its C-terminal region in the cytoplasm. The C-terminal region of DctB was strongly conserved with similar regions of the products of several regulatory genes that may act as environmental sensors, includ...

  19. Deduced products of C4-dicarboxylate transport regulatory genes of Rhizobium leguminosarum are homologous to nitrogen regulatory gene products.

    OpenAIRE

    Ronson, C W; Astwood, P M; Nixon, B T; Ausubel, F M

    1987-01-01

    We have sequenced two genes dctB and dctD required for the activation of the C4-dicarboxylate transport structural gene dctA in free-living Rhizobium leguminosarum. The hydropathic profile of the dctB gene product (DctB) suggested that its N-terminal region may be located in the periplasm and its C-terminal region in the cytoplasm. The C-terminal region of DctB was strongly conserved with similar regions of the products of several regulatory genes that may act as environmental sensors, includ...

  20. [INFLUENCE OF AZOSPIRILLUM BRASILENSE 10/1 ON ASSOCIATIVE NITROGEN FIXATION AND INTRAVARIETAL POLYMORPHISM OF SPRING TRITICALE].

    Science.gov (United States)

    Patika, V P; Nadkernichna, O V; Shahovnina, O O

    2015-01-01

    It is shown, that the perspective Ukrainian sorts of spring triticale characterizes by considerable polymorphism by associative N2-fixing ability in root zone of plants. Application of active strain Azospirillum brasilense 10/1 promotes the decline of variability of this sign within the limits of sort, increase potential nitrogen activity is on the average in 3,2-4,7 times and also distributing normalizations in the selections of the inoculated plants.

  1. Nitrogen

    Science.gov (United States)

    Apodaca, Lori E.

    2013-01-01

    The article presents an overview of the nitrogen chemical market as of July 2013, including the production of ammonia compounds. Industrial uses for ammonia include fertilizers, explosives, and plastics. Other topics include industrial capacity of U.S. ammonia producers CF Industries Holdings Inc., Koch Nitrogen Co., PCS Nitrogen, Inc., and Agrium Inc., the impact of natural gas prices on the nitrogen industry, and demand for corn crops for ethanol production.

  2. Dependence of Wheat and Rice Respiration on Tissue Nitrogen and the Corresponding Net Carbon Fixation Efficiency Under Different Rates of Nitrogen Application

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To quantitatively address the role of tissue N in crop respiration under various agricultural practices,and to consequently evaluate the impact of synthetic fertilizer N application on biomass production and respiration, and hence net carbon fixation efficiency (Encf), pot and field experiments were carried out for an annual rotation of a rice-wheat cropping system from 2001 to 2003. The treatments of the pot experiments included fertilizer N application, sowing date and planting density. Different rates of N application were tested in the field experiments. Static opaque chambers were used for sampling the gas. The respiration as CO2 emission was detected by a gas chromatograph. A successive biomass clipping method was employed to determine the crop autotrophic respiration coefficient (Ra). Results from the pot experiments revealed a linear relationship between Ra and tissue N content as Ra = 4.74N-1.45 (R2= 0.85, P<0.001). Measurements and calculations from the field experiments indicated that fertilizer N application promoted not only biomass production but also increased the respiration of crops. A further investigation showed that the increase of carbon loss in terms of respiration owing to fertilizer N application exceeded that of net carbon gain in terms of aboveground biomass when fertilizer N was applied over a certain rate. Consequently, the Encf declined as the N application rate increased.

  3. Quantifying biological nitrogen fixation of different catch crops, and residual effects of roots and tops on nitrogen uptake in barley using in-situ 15N labelling

    DEFF Research Database (Denmark)

    Li, Xiaoxi; Sørensen, Peter; Li, F C

    2015-01-01

    Contributions of legume-based catch crops (LBCCs) to succeeding cereals may be significant. We quantified biological N fixation (BNF) and residual N effects of contrasting CC tops and roots. Methods BNF of three LBCCs (red clover, winter vetch, perennial ryegrass-red clover mixture) was quantified...... in microplots by 15N labelling. Their residual effects on spring barley were tested against two non-LBCCs (perennial ryegrass, fodder radish) after spring incorporation of CC tops or roots in monoliths. Total N accumulated in LBCCs was 153–226 kg N ha−1, of which 62–66 % was derived from BNF in tops and 31......–46 % in macro-roots (0–18 cm soil). Macro-roots represented 31–50 % of total plant N. LBCCs showed similar capacity for soil N extraction as non-LBCCs. After incorporation of LBCC residues, the dry matter and N yields of spring barley were comparable to the effect of 50 kg N fertilisation ha−1, whereas no extra...

  4. Identification and mapping of nitrogen fixation genes of Rhodobacter capsulatus: duplication of a nifA-nifB region.

    OpenAIRE

    Klipp, W; Masepohl, B; Pühler, A.

    1988-01-01

    Rhodobacter capsulatus mutants unable to fix nitrogen were isolated by random transposon Tn5 mutagenesis. The Tn5 insertion sites of 30 Nif- mutants were mapped within three unlinked chromosomal regions designated A, B, and C. The majority of Tn5 insertions (21 mutants) map within nif region A, characterized by two ClaI fragments of 2.5 and 25 kilobases (kb). The 17-kb ClaI fragment of nif region B contains six nif::Tn5 insertions, and the three remaining mutations are located on a 32-kb ClaI...

  5. The nitrogen-fixation island insertion site is conserved in diazotrophic Pseudomonas stutzeri and Pseudomonas sp. isolated from distal and close geographical regions.

    Directory of Open Access Journals (Sweden)

    Anastasia Venieraki

    Full Text Available The presence of nitrogen fixers within the genus Pseudomonas has been established and so far most isolated strains are phylogenetically affiliated to Pseudomonas stutzeri. A gene ortholog neighborhood analysis of the nitrogen fixation island (NFI in four diazotrophic P. stutzeri strains and Pseudomonas azotifigens revealed that all are flanked by genes coding for cobalamin synthase (cobS and glutathione peroxidise (gshP. The putative NFIs lack all the features characterizing a mobilizable genomic island. Nevertheless, bioinformatic analysis P. stutzeri DSM 4166 NFI demonstrated the presence of short inverted and/or direct repeats within both flanking regions. The other P. stutzeri strains carry only one set of repeats. The genetic diversity of eleven diazotrophic Pseudomonas isolates was also investigated. Multilocus sequence typing grouped nine isolates along with P. stutzeri and two isolates are grouped in a separate clade. A Rep-PCR fingerprinting analysis grouped the eleven isolates into four distinct genotypes. We also provided evidence that the putative NFI in our diazotrophic Pseudomonas isolates is flanked by cobS and gshP genes. Furthermore, we demonstrated that the putative NFI of Pseudomonas sp. Gr65 is flanked by inverted repeats identical to those found in P. stutzeri DSM 4166 and while the other P. stutzeri isolates harbor the repeats located in the intergenic region between cobS and glutaredoxin genes as in the case of P. stutzeri A1501. Taken together these data suggest that all putative NFIs of diazotrophic Pseudomonas isolates are anchored in an intergenic region between cobS and gshP genes and their flanking regions are designated by distinct repeats patterns. Moreover, the presence of almost identical NFIs in diazotrophic Pseudomonas strains isolated from distal geographical locations around the world suggested that this horizontal gene transfer event may have taken place early in the evolution.

  6. Overexpression of BetS, a Sinorhizobium meliloti high-affinity betaine transporter, in bacteroids from Medicago sativa nodules sustains nitrogen fixation during early salt stress adaptation.

    Science.gov (United States)

    Boscari, Alexandre; Van de Sype, Ghislaine; Le Rudulier, Daniel; Mandon, Karine

    2006-08-01

    Sinorhizobium meliloti possesses several betaine transporters to cope with salt stress, and BetS represents a crucial high-affinity glycine and proline betaine uptake system involved in the rapid acquisition of betaines by cells subjected to osmotic upshock. Using a transcriptional lacZ (beta-galactosidase) fusion, we showed that betS is expressed during the establishment of the symbiosis and in mature nitrogen-fixing nodules. However, neither Nod nor Fix phenotypes were impaired in a betS mutant. BetS is functional in isolated bacteroids, and its activity is strongly activated by high osmolarity. In bacteroids from a betS mutant, glycine betaine and proline betaine uptake was reduced by 85 to 65%, indicating that BetS is a major component of the overall betaine uptake activity in bacteroids in response to osmotic stress. Upon betS overexpression (strain UNA349) in free-living cells, glycine betaine transport was 2.3-fold higher than in the wild-type strain. Interestingly, the accumulation of proline betaine, the endogenous betaine synthesized by alfalfa plants, was 41% higher in UNA349 bacteroids from alfalfa plants subjected to 1 week of salinization (0.3 M NaCl) than in wild-type bacteroids. In parallel, a much better maintenance of nitrogen fixation activity was observed in 7-day-salinized plants nodulated with the overexpressing strain than in wild-type nodulated plants. Taken altogether, these results are consistent with the major role of BetS as an emergency system involved in the rapid uptake of betaines in isolated and in planta osmotically stressed bacteroids of S. meliloti.

  7. The nitrogen-fixation island insertion site is conserved in diazotrophic Pseudomonas stutzeri and Pseudomonas sp. isolated from distal and close geographical regions.

    Science.gov (United States)

    Venieraki, Anastasia; Dimou, Maria; Vezyri, Eleni; Vamvakas, Alexandros; Katinaki, Pagona-Artemis; Chatzipavlidis, Iordanis; Tampakaki, Anastasia; Katinakis, Panagiotis

    2014-01-01

    The presence of nitrogen fixers within the genus Pseudomonas has been established and so far most isolated strains are phylogenetically affiliated to Pseudomonas stutzeri. A gene ortholog neighborhood analysis of the nitrogen fixation island (NFI) in four diazotrophic P. stutzeri strains and Pseudomonas azotifigens revealed that all are flanked by genes coding for cobalamin synthase (cobS) and glutathione peroxidise (gshP). The putative NFIs lack all the features characterizing a mobilizable genomic island. Nevertheless, bioinformatic analysis P. stutzeri DSM 4166 NFI demonstrated the presence of short inverted and/or direct repeats within both flanking regions. The other P. stutzeri strains carry only one set of repeats. The genetic diversity of eleven diazotrophic Pseudomonas isolates was also investigated. Multilocus sequence typing grouped nine isolates along with P. stutzeri and two isolates are grouped in a separate clade. A Rep-PCR fingerprinting analysis grouped the eleven isolates into four distinct genotypes. We also provided evidence that the putative NFI in our diazotrophic Pseudomonas isolates is flanked by cobS and gshP genes. Furthermore, we demonstrated that the putative NFI of Pseudomonas sp. Gr65 is flanked by inverted repeats identical to those found in P. stutzeri DSM 4166 and while the other P. stutzeri isolates harbor the repeats located in the intergenic region between cobS and glutaredoxin genes as in the case of P. stutzeri A1501. Taken together these data suggest that all putative NFIs of diazotrophic Pseudomonas isolates are anchored in an intergenic region between cobS and gshP genes and their flanking regions are designated by distinct repeats patterns. Moreover, the presence of almost identical NFIs in diazotrophic Pseudomonas strains isolated from distal geographical locations around the world suggested that this horizontal gene transfer event may have taken place early in the evolution.

  8. Analysis on influencing factors of carbon and nitrogen fixation rates in sludge hydrothermal carbonization%污泥水热炭化中碳氮固定率的影响因素分析

    Institute of Scientific and Technical Information of China (English)

    王定美; 袁浩然; 王跃强; 余震; 周顺桂

    2014-01-01

    Carbon and nitrogen emissions during sewage sludge treatment are important sources of greenhouse gases and environmental pollutants. The fixation degrees of carbon and nitrogen have been an issue deserving significant attention and consideration when choosing a treatment process for sewage sludge. Hydrothermal carbonization (HTC) is an emerging technology to treat wet biomasses aimed at producing biochar materials. Studies have demonstrated that HTC of wet biomasses including sewage sludge results in the formation of biochar in a relatively cheap and sustainable way. However, the data necessary to understand how multiple processing conditions influence carbon and nitrogen fixed in sludge biochar from HTC are currently lacking. In the present study, the influences of hydrothermal temperature (150-250℃), solid content (5%-15%), and reaction time (2-6 h) on the fixations of carbon and nitrogen in sludge biochar were investigated using a 3-level, 3-factor Box-Behnken experimental design. The results showed that the relationships between the carbon and nitrogen fixation and tested factors can be quantitatively described by multivariate quadratic equations with R2 of 0.9925 and 0.9903, respectively. Carbon and nitrogen fixation rates of 36.6%-52.9%, and 20.4%-42.5%, respectively were obtained under the tested hydrothermal carbonization conditions. Both the maximum carbon and nitrogen fixation rates were achieved at a hydrothermal temperature of 150℃, solid content of 10%, and reaction time of 2 h. The carbon fixation rate was negatively correlated with hydrothermal temperature and reaction time, but positively correlated with solid content. The significant effects (p<0.05) of hydrothermal temperature, solid content, and reaction time on carbon fixation rate were in a decreasing order. Yet, the nitrogen fixation rate was only significantly (p<0.05) and negatively related to hydrothermal temperature. The interaction between hydrothermal temperature and solid content

  9. Occurrence of benthic microbial nitrogen fixation coupled to sulfate reduction in the seasonally hypoxic Eckernförde Bay, Baltic Sea

    Directory of Open Access Journals (Sweden)

    V. J. Bertics

    2012-06-01

    Full Text Available Despite the worldwide occurrence of marine hypoxic regions, benthic nitrogen (N cycling within these areas is poorly understood and it is generally assumed that these areas represent zones of intense fixed N loss from the marine system. Sulfate reduction can be an important process for organic matter degradation in sediments beneath hypoxic waters and many sulfate-reducing bacteria (SRB have the genetic potential to fix molecular N (N2. Therefore, SRB may supply fixed N to these systems, countering some of the N lost via microbial processes such as denitrification and anaerobic ammonium oxidation. The objective of this study was to evaluate if N2-fixation, possibly by SRB, plays a role in N cycling within the seasonally hypoxic sediments from Eckernförde Bay, Baltic Sea. Monthly samplings were performed over the course of one year to measure N2-fixation and sulfate reduction rates, to determine the seasonal variations in bioturbation (bioirrigation activity and important benthic geochemical profiles, such as sulfur and N compounds, and to monitor changes in water column temperature and oxygen concentrations. Additionally, at several time points, rates of benthic denitrification were also measured and the active N-fixing community was examined via molecular tools. Integrated rates of N2-fixation and sulfate reduction showed a similar seasonality pattern, with highest rates occurring in August (approx. 22 and 880 nmol cm−3 d−1 of N and SO42−, respectively and October (approx. 22 and 1300 nmol cm−3 d−1 of N and SO42−, respectively, and lowest rates occurring in February (approx. 8 and 32 nmol cm−3 d−1 of N and SO42−, respectively. These rate changes were positively correlated with bottom water temperatures and previous reported plankton bloom activities

  10. The involvement of the nif-associated ferredoxin-like genes fdxA and fdxN of Herbaspirillum seropedicae in nitrogen fixation.

    Science.gov (United States)

    Souza, André L F; Invitti, Adriana L; Rego, Fabiane G M; Monteiro, Rose A; Klassen, Giseli; Souza, Emanuel M; Chubatsu, Leda S; Pedrosa, Fábio O; Rigo, Liu U

    2010-02-01

    The pathway of electron transport to nitrogenase in the endophytic beta-Proteobacterium Herbaspirillum seropedicae has not been characterized. We have generated mutants in two nif-associated genes encoding putative ferredoxins, fdxA and fdxN. The fdxA gene is part of the operon nifHDKENXorf1orf2fdxAnifQmodABC and is transcribed from the nifH promoter, as revealed by lacZ gene fusion. The fdxN gene is probably cotranscribed with the nifB gene. Mutational analysis suggests that the FdxA protein is essential for maximum nitrogenase activity, since the nitrogenase activity of the fdxA mutant strain was reduced to about 30% of that of the wild-type strain. In addition, the fdxA mutation had no effect on the nitrogenase switch-off in response to ammonium. Nitrogenase activity of a mutant strain lacking the fdxN gene was completely abolished. This phenotype was reverted by complementation with fdxN expressed under lacZ promoter control. The results suggest that the products of both the fdxA and fdxN genes are probably involved in electron transfer during nitrogen fixation.

  11. Elucidating the Potential of Native Rhizobial Isolates to Improve Biological Nitrogen Fixation and Growth of Common Bean and Soybean in Smallholder Farming Systems of Kenya

    Directory of Open Access Journals (Sweden)

    Ernest Wandera Ouma

    2016-01-01

    Full Text Available Identification of effective indigenous rhizobia isolates would lead to development of efficient and affordable rhizobia inoculants. These can promote nitrogen fixation in smallholder farming systems of Kenya. To realize this purpose, two experiments were conducted under greenhouse conditions using two common bean cultivars; Mwezi moja (bush type and Mwitemania (climbing type along with soybean cultivar SB 8. In the first experiment, the common bean cultivars were treated with rhizobia inoculants including a consortium of native isolates, commercial isolate (CIAT 899, a mixture of native isolates and CIAT 899, and a control with no inoculation. After 30 days, the crop was assessed for nodulation, shoot and root dry weights, and morphological features. In the second experiment, soybean was inoculated with a consortium of native isolates, commercial inoculant (USDA 110, and a mixture of commercial and native isolates. Remarkably, the native isolates significantly (p<0.001 increased nodulation and shoot dry weight across the two common bean varieties compared to the commercial inoculant, CIAT 899. Mixing of the native rhizobia species and commercial inoculant did not show any further increase in nodulation and shoot performance in both crops. Further field studies will ascertain the effectiveness and efficiency of the tested indigenous isolates.

  12. The presence of nodules on legume root systems can alter phenotypic plasticity in response to internal nitrogen independent of nitrogen fixation.

    Science.gov (United States)

    Goh, Chooi-Hua; Nicotra, Adrienne B; Mathesius, Ulrike

    2016-04-01

    All higher plants show developmental plasticity in response to the availability of nitrogen (N) in the soil. In legumes, N starvation causes the formation of root nodules, where symbiotic rhizobacteria fix atmospheric N2 for the host in exchange for fixed carbon (C) from the shoot. Here, we tested whether plastic responses to internal [N] of legumes are altered by their symbionts. Glasshouse experiments compared root phenotypes of three legumes, Medicago truncatula, Medicago sativa and Trifolium subterraneum, inoculated with their compatible symbiont partners and grown under four nitrate levels. In addition, six strains of rhizobia, differing in their ability to fix N2 in M. truncatula, were compared to test if plastic responses to internal [N] were dependent on the rhizobia or N2 -fixing capability of the nodules. We found that the presence of rhizobia affected phenotypic plasticity of the legumes to internal [N], particularly in root length and root mass ratio (RMR), in a plant species-dependent way. While root length responses of M. truncatula to internal [N] were dependent on the ability of rhizobial symbionts to fix N2 , RMR response to internal [N] was dependent only on initiation of nodules, irrespective of N2 -fixing ability of the rhizobia strains.

  13. Occurrence of benthic microbial nitrogen fixation coupled to sulfate reduction in the seasonally hypoxic Eckernförde Bay, Baltic Sea

    Directory of Open Access Journals (Sweden)

    V. J. Bertics

    2013-03-01

    Full Text Available Despite the worldwide occurrence of marine hypoxic regions, benthic nitrogen (N cycling within these areas is poorly understood and it is generally assumed that these areas represent zones of intense fixed N loss from the marine system. Sulfate reduction can be an important process for organic matter degradation in sediments beneath hypoxic waters and many sulfate-reducing bacteria (SRB have the genetic potential to fix molecular N (N2. Therefore, SRB may supply fixed N to these systems, countering some of the N lost via microbial processes, such as denitrification and anaerobic ammonium oxidation. The objective of this study was to evaluate if N2 fixation, possibly by SRB, plays a role in N cycling within the seasonally hypoxic sediments from the Eckernförde Bay, Baltic Sea. Monthly samplings were performed over the course of one year to measure nitrogenase activity (NA and sulfate reduction rates, to determine the seasonal variations in bioturbation (bioirrigation activity and important benthic geochemical profiles, such as sulfur and N compounds, and to monitor changes in water column temperature and oxygen concentrations. Additionally, at several time points, the active N-fixing community was examined via molecular tools. Integrated rates of N2 fixation (approximated from NA and sulfate reduction showed a similar seasonality pattern, with highest rates occurring in August (approx. 22 and 880 nmol cm−3 d−1 of N and SO42−, respectively and October (approx. 22 and 1300 nmol cm−3 d−1 of N and SO42− respectively, and lowest rates occurring in February (approx. 8 and 32 nmol cm−3 d−1 of N and SO42−, respectively. These rate changes were positively correlated with bottom water temperatures and previous reported plankton bloom activities, and negatively correlated with bottom water oxygen concentrations. Other variables that also appeared to play a role in rate determination were bioturbation, bubble irrigation and winter storm

  14. Phylogeny of nodulation and nitrogen-fixation genes in Bradyrhizobium: supporting evidence for the theory of monophyletic origin, and spread and maintenance by both horizontal and vertical transfer.

    Science.gov (United States)

    Menna, Pâmela; Hungria, Mariangela

    2011-12-01

    Bacteria belonging to the genus Bradyrhizobium are capable of establishing symbiotic relationships with a broad range of plants belonging to the three subfamilies of the family Leguminosae (=Fabaceae), with the formation of specialized structures on the roots called nodules, where fixation of atmospheric nitrogen takes place. Symbiosis is under the control of finely tuned expression of common and host-specific nodulation genes and also of genes related to the assembly and activity of the nitrogenase, which, in Bradyrhizobium strains investigated so far, are clustered in a symbiotic island. Information about the diversity of these genes is essential to improve our current poor understanding of their origin, spread and maintenance and, in this study, we provide information on 40 Bradyrhizobium strains, mostly of tropical origin. For the nodulation trait, common (nodA), Bradyrhizobium-specific (nodY/K) and host-specific (nodZ) nodulation genes were studied, whereas for fixation ability, the diversity of nifH was investigated. In general, clustering of strains in all nod and nifH trees was similar and the Bradyrhizobium group could be clearly separated from other rhizobial genera. However, the congruence of nod and nif genes with ribosomal and housekeeping genes was low. nodA and nodY/K were not detected in three strains by amplification or hybridization with probes using Bradyrhizobium japonicum and Bradyrhizobium elkanii type strains, indicating the high diversity of these genes or that strains other than photosynthetic Bradyrhizobium must have alternative mechanisms to initiate the process of nodulation. For a large group of strains, the high diversity of nod genes (with an emphasis on nodZ), the low relationship between nod genes and the host legume, and some evidence of horizontal gene transfer might indicate strategies to increase host range. On the other hand, in a group of five symbionts of Acacia mearnsii, the high congruence between nod and ribosomal

  15. Bacteriohopanepolyols record stratification, nitrogen fixation and other biogeochemical perturbations in Holocene sediments of the central Baltic Sea

    Directory of Open Access Journals (Sweden)

    M. Blumenberg

    2013-04-01

    Full Text Available The Baltic Sea, one of the world's largest brackish-marine basins, established after deglaciation of Scandinavia about 17 000 to 15 000 yr ago. In the changeable history of the Baltic Sea, the initial freshwater system was connected to the North Sea about 8000 yr ago and the modern brackish-marine setting (Littorina Sea was established. Today, a relatively stable stratification has developed in the water column of the deep basins due to salinity differences. Stratification is only occasionally interrupted by mixing events, and it controls nutrient availability and growth of specifically adapted microorganisms and algae. We studied bacteriohopanepolyols (BHPs, lipids of specific bacterial groups, in a sediment core from the central Baltic Sea (Gotland Deep and found considerable differences between the distinct stages of the Baltic Sea's history. Some individual BHP structures indicate contributions from as yet unknown redoxcline-specific bacteria (bacteriohopanetetrol isomer, methanotrophic bacteria (35-aminobacteriohopanetetrol, cyanobacteria (bacteriohopanetetrol cyclitol ether isomer and from soil bacteria (adenosylhopane through allochthonous input after the Littorina transgression, whereas the origin of other BHPs in the core has still to be identified. Notably high BHP abundances were observed in the deposits of the brackish-marine Littorina phase, particularly in laminated sediment layers. Because these sediments record periods of stable water column stratification, bacteria specifically adapted to these conditions may account for the high portions of BHPs. An additional and/or accompanying source may be nitrogen-fixing (cyanobacteria, which is indicated by a positive correlation of BHP abundances with Corg and δ15N.

  16. Bacteriohopanepolyols record stratification, nitrogen fixation and other biogeochemical perturbations in Holocene sediments of the Central Baltic Sea

    Directory of Open Access Journals (Sweden)

    M. Blumenberg

    2012-12-01

    Full Text Available The Baltic Sea, one of the world's largest brackish-marine basins, established after deglaciation of Scandinavia about 17 000 to 15 000 yr ago. In the changeable history of the Baltic Sea, the initial freshwater system was connected to the North Sea about 8000 yr ago and the modern brackish-marine setting (Littorina Sea was established. Today, a relatively stable stratification developed in the water column of the deep basins due to salinity differences. Stratification is only occasionally interrupted by mixing events, and controls nutrient availability and growth of specifically adapted microorganisms and algae. We studied bacteriohopanepolyols (BHPs, lipids of specific bacterial groups, in a sediment core from the Central Baltic Sea (Gotland Deep and found considerable differences between the distinct stages of the Baltic Sea's history. Individual BHP structures indicate contributions from as yet unknown redoxcline-specific bacteria (bacteriohopanetetrol isomer, methanotrophic bacteria (35-aminobacteriohopanetetrol, cyanobacteria (bacteriohopanetetrol cyclitol ether isomer and, through allochthonous input after the Littorina transgression, from soil bacteria (adenosylhopane, whereas the origin of other BHPs in the core has still to be identified. Notably high BHP abundances were observed in the deposits of the brackish-marine Littorina phase, particularly in laminated sediment layers. Because these sediments record periods of stable water column stratification, bacteria specifically adapted to these conditions may account for the high portions of BHPs. An additional and/or accompanying source may be nitrogen-fixing (cyanobacteria, which is indicated by a good correlation of BHP abundances with Corg and δ15N.

  17. Bacteriohopanepolyols record stratification, nitrogen fixation and other biogeochemical perturbations in Holocene sediments of the central Baltic Sea

    Science.gov (United States)

    Blumenberg, M.; Berndmeyer, C.; Moros, M.; Muschalla, M.; Schmale, O.; Thiel, V.

    2013-04-01

    The Baltic Sea, one of the world's largest brackish-marine basins, established after deglaciation of Scandinavia about 17 000 to 15 000 yr ago. In the changeable history of the Baltic Sea, the initial freshwater system was connected to the North Sea about 8000 yr ago and the modern brackish-marine setting (Littorina Sea) was established. Today, a relatively stable stratification has developed in the water column of the deep basins due to salinity differences. Stratification is only occasionally interrupted by mixing events, and it controls nutrient availability and growth of specifically adapted microorganisms and algae. We studied bacteriohopanepolyols (BHPs), lipids of specific bacterial groups, in a sediment core from the central Baltic Sea (Gotland Deep) and found considerable differences between the distinct stages of the Baltic Sea's history. Some individual BHP structures indicate contributions from as yet unknown redoxcline-specific bacteria (bacteriohopanetetrol isomer), methanotrophic bacteria (35-aminobacteriohopanetetrol), cyanobacteria (bacteriohopanetetrol cyclitol ether isomer) and from soil bacteria (adenosylhopane) through allochthonous input after the Littorina transgression, whereas the origin of other BHPs in the core has still to be identified. Notably high BHP abundances were observed in the deposits of the brackish-marine Littorina phase, particularly in laminated sediment layers. Because these sediments record periods of stable water column stratification, bacteria specifically adapted to these conditions may account for the high portions of BHPs. An additional and/or accompanying source may be nitrogen-fixing (cyano)bacteria, which is indicated by a positive correlation of BHP abundances with Corg and δ15N.

  18. Management of nitrogen inputs on farm within the EU regulatory framework

    NARCIS (Netherlands)

    Berge, ten H.F.M.; Dijk, van W.

    2009-01-01

    Nitrogen (N) use in EU countries is regulated by so-called Action Programmes (APs) set by member states in response to the EU Nitrates Directive (ND). APs apply specifically to 'Nitrate Vulnerable Zones' (NVZs) within countries. More generally, the ND asks countries to define a Code of Good Agricult

  19. Integration of general amino acid control and target of rapamycin (TOR) regulatory pathways in nitrogen assimilation in yeast.

    Science.gov (United States)

    Staschke, Kirk A; Dey, Souvik; Zaborske, John M; Palam, Lakshmi Reddy; McClintick, Jeanette N; Pan, Tao; Edenberg, Howard J; Wek, Ronald C

    2010-05-28

    Two important nutrient-sensing and regulatory pathways, the general amino acid control (GAAC) and the target of rapamycin (TOR), participate in the control of yeast growth and metabolism during changes in nutrient availability. Amino acid starvation activates the GAAC through Gcn2p phosphorylation of translation factor eIF2 and preferential translation of GCN4, a transcription activator. TOR senses nitrogen availability and regulates transcription factors such as Gln3p. We used microarray analyses to address the integration of the GAAC and TOR pathways in directing the yeast transcriptome during amino acid starvation and rapamycin treatment. We found that GAAC is a major effector of the TOR pathway, with Gcn4p and Gln3p each inducing a similar number of genes during rapamycin treatment. Although Gcn4p activates a common core of 57 genes, the GAAC directs significant variations in the transcriptome during different stresses. In addition to inducing amino acid biosynthetic genes, Gcn4p in conjunction with Gln3p activates genes required for the assimilation of secondary nitrogen sources such as gamma-aminobutyric acid (GABA). Gcn2p activation upon shifting to secondary nitrogen sources is suggested to occur by means of a dual mechanism. First, Gcn2p is induced by the release of TOR repression through a mechanism involving Sit4p protein phosphatase. Second, this eIF2 kinase is activated by select uncharged tRNAs, which were shown to accumulate during the shift to the GABA medium. This study highlights the mechanisms by which the GAAC and TOR pathways are integrated to recognize changing nitrogen availability and direct the transcriptome for optimal growth adaptation.

  20. Nitrogen fixation (nif) genes of the cyanobacterium Anabaena species strain PCC 7120. The nifB-fdxN-nifS-nifU operon.

    Science.gov (United States)

    Mulligan, M E; Haselkorn, R

    1989-11-15

    A second nitrogen fixation (nif) operon in the cyanobacterium (blue-green alga) Anabaena (Nostoc) sp. strain PCC 7120 has been identified and sequenced. It is located just upstream of the nifHDK operon and consists of four genes in the order nifB, fdxN, nifS, and nifU. The three nif genes were identified on the basis of their similarity with the corresponding genes from other diazotrophs. The fourth gene, fdxN, codes for a bacterial type ferredoxin (Mulligan, M. E., Buikema, W. J., and Haselkorn, R. (1988) J. Bacteriol. 167, 4406-4410). The four genes are probably transcribed as a single operon, but are expressed at a lower level than the nifHDK operon, and only after a developmentally induced DNA rearrangement occurs that excises a 55-kilobase pair element from within the fdxN gene (Golden, J. W., Mulligan, M. E., and Haselkorn, R. (1987) Nature 327, 526-529; Golden, J. W., Carrasco, C. D., Mulligan, M. E., Schneider, G. J., and Haselkorn, R. (1988) J. Bacteriol. 170, 5034-5041). The promoter for the nifB operon was located by primer extension. Comparison of the nifB 5'-flanking sequence with the nifH 5'-flanking sequence did not reveal any consensus base pairs that would define a nif promoter for Anabaena. The operon contains two instances of 7-base pair directly repeated sequences: seven copies of the repeated sequence are found between the nifB and fdxN genes and six copies are found between the nifS and nifU genes. The function of these repeats is unknown.

  1. Diversity of Plasmid Profiles and Conservation of Symbiotic Nitrogen Fixation Genes in Newly Isolated Rhizobium Strains Nodulating Sulla (Hedysarum coronarium L.).

    Science.gov (United States)

    Mozo, T; Cabrera, E; Ruiz-Argüeso, T

    1988-05-01

    Forty-five Rhizobium strains nodulating sulla (Hedysarum coronarium L.), isolated from plants grown in different sites in Menorca Island and southern Spain, were examined for plasmid content and the location and organization of nif (nitrogen fixation) and nod (nodulation) sequences. A great diversity in both number and size of the plasmids was observed in this native population of strains, which could be distributed among 19 different groups according to their plasmid profiles. No correlation was found between plasmid profile and geographical origin of the strains. In each strain a single plasmid ranging from 187 to 349 megadaltons hybridized to Rhizobium meliloti nifHD and nodD DNA, and in three strains the spontaneous loss of this plasmid resulted in the loss of the nodulation capacity. In addition to the symbiotic plasmid, 18 different cryptic plasmids were identified. A characteristic cryptic plasmid of >1,000 megadaltons was present in all strains. Total DNA hybridization experiments, with nifHD and portions of nodC and nodD genes (coding for common nodulation functions) from R. meliloti as probes, demonstrated that both the sequence and organization of nif and common nod genes were highly conserved within rhizobia nodulating sulla. Evidence for reiteration of nodD sequences and for linkage of nodC to at least one copy of nodD was obtained for all the strains examined. From these results we conclude that Rhizobium strains nodulating sulla are a homogeneous group of symbiotic bacteria that are closely related to the classical fast-growing group of rhizobia.

  2. Differential growth costs and nitrogen fixation in Cytisus multiflorus (L'Hér.) Sweet and Cytisus scoparius (L.) Link are mediated by sources of inorganic N.

    Science.gov (United States)

    Pérez-Fernández, M A; Calvo-Magro, E; Rodríguez-Sánchez, J; Valentine, A

    2017-09-01

    Shrubby legumes in Mediterranean-type ecosystems face strong nutrient limitations that worsen in summer, when water is absent. Nitrogen-fixing legumes are likely to be able to switch between soil N and atmospheric N (N2 ) sources to adjust the C costs of N acquisition in different seasons. We investigated the utilisation of different inorganic N sources by two indigenous shrubby legumes (Cytisus multiflorus and Cytisus scoparius). Plant performance in terms of photosynthesis and biomass production was also analysed. Plants were cultivated in sterile river sand supplied with Hoagland nutrient solution, grown in N-free nutrient solution and inoculated with effective rhizobial strains from nodules of adult plants of the same species. A second treatment consisted of plants given 500 μm NH4 NO3 added into the nutrient solution. In a third treatment, plants were watered with another source of N (500 μm NH4 NO3 ) as well as being inoculated with effective rhizobial strains. The application of NH4 NO3 to the legumes resulted in a larger increase in plant dry matter. Carbon construction costs were higher in plants supplied with mineral and symbiotic N sources and always higher in the endemic C. multiflorus. Differences in photosynthesis rates were only observed between species, regardless of the N source. Non-fertilised inoculated plants had more effective root nodules and a clear dependence on N2 fixation. We propose that the ability of C. scoparius to change N source makes it a plastic species, which would account for its broader distribution in nature. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. Symbiotic nitrogen fixation and yield of Pachyrhizus Erosus (L) urban cultivars and Pachyrhizus Ahipa (WEDD) parodi landraces as affected by flower pruning

    DEFF Research Database (Denmark)

    Castellanos, J.Z.; Zapata, F.; Badillo, V.;

    1997-01-01

    of flower pruning on the yield of tuberous roots, the capacity of N-2 fixation and net N balance. In the first experiment two landraces of P. ahipa and three cultivars of P. erosus were grown with or without flower pruning. The difference method was used to estimate N-2 fixation using maize and sorghum...

  4. Nitrogen: It Always Needs a Fix

    Science.gov (United States)

    Williams, Kathryn R.

    2005-02-01

    The fixation of nitrogen was a popular topic in early issues of the Journal of Chemical Education . This column, From Past Issues, briefly summarizes articles on the nonbiological methods for nitrogen fixation.

  5. Enzymology of biological nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    Burris, R.H.

    1992-01-01

    Two genes involved in the regulation of nitrogenase activity, draT and draG, were cloned and found to be contiguous on the Azospirillum brasilense chromosome. The nifH gene, encoding dinitrogenase reductase, is near to draT with an intervening gap of 1.9 kb. The organization of these genes in Azospirillum lipoferum and Rhodosprillum rubrum is similar, but nifH and draT are separated by only 400 bp in the organisms. A. brasilense draTG is very similar to draTG in R. rubrum with 91.8% similarity and 85.3% identity at the amino acid level. Apparently A. brasilense uses the normal ATG initiation codon for draT, and draG. The genes for A. brasilense were able to restore function to appropriate mutants of R. rubrum. The heterologous expression of A. brasilense draTG in R. rubrum was not fully normal, as it responded more slowly to darkness and more quickly to ammonia than wild type cells. Our mutational analysis of the draTG region of A. brasilense confirms the function of these genes in the regulation of nitrogenase activity, but it also revealed minor but demonstrable differences in the control systems of R. rubrum and A. brasilense.

  6. Structural basis for regulation of rhizobial nodulation and symbiosis gene expression by the regulatory NolR

    Science.gov (United States)

    The symbiosis between rhizobial microbes and host plants involves the coordinated expression of multiple genes, which leads to nodule formation and nitrogen fixation. As part of the transcriptional machinery for nodulation and symbiosis across a range of Rhizobium, NolR serves as a global regulatory...

  7. Comparative genomic analysis of carbon and nitrogen assimilation mechanisms in three indigenous bioleaching bacteria: predictions and validations

    Directory of Open Access Journals (Sweden)

    Ehrenfeld Nicole

    2008-12-01

    Full Text Available Abstract Background Carbon and nitrogen fixation are essential pathways for autotrophic bacteria living in extreme environments. These bacteria can use carbon dioxide directly from the air as their sole carbon source and can use different sources of nitrogen such as ammonia, nitrate, nitrite, or even nitrogen from the air. To have a better understanding of how these processes occur and to determine how we can make them more efficient, a comparative genomic analysis of three bioleaching bacteria isolated from mine sites in Chile was performed. This study demonstrated that there are important differences in the carbon dioxide and nitrogen fixation mechanisms among bioleaching bacteria that coexist in mining environments. Results In this study, we probed that both Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans incorporate CO2 via the Calvin-Benson-Bassham cycle; however, the former bacterium has two copies of the Rubisco type I gene whereas the latter has only one copy. In contrast, we demonstrated that Leptospirillum ferriphilum utilizes the reductive tricarboxylic acid cycle for carbon fixation. Although all the species analyzed in our study can incorporate ammonia by an ammonia transporter, we demonstrated that Acidithiobacillus thiooxidans could also assimilate nitrate and nitrite but only Acidithiobacillus ferrooxidans could fix nitrogen directly from the air. Conclusion The current study utilized genomic and molecular evidence to verify carbon and nitrogen fixation mechanisms for three bioleaching bacteria and provided an analysis of the potential regulatory pathways and functional networks that control carbon and nitrogen fixation in these microorganisms.

  8. Transcriptome analysis reveals regulatory networks underlying differential susceptibility to Botrytis cinerea in response to nitrogen availability in Solanum lycopersicum.

    Directory of Open Access Journals (Sweden)

    Andrea eVega

    2015-11-01

    Full Text Available Nitrogen (N is one of the main limiting nutrients for plant growth and crop yield. It is well documented that changes in nitrate availability, the main N source found in agricultural soils, influences a myriad of developmental programs and processes including the plant defense response. Indeed, many agronomical reports indicate that the plant N nutritional status influences their ability to respond effectively when challenged by different pathogens. However, the molecular mechanisms involved in N-modulation of plant susceptibility to pathogens are poorly characterized. In this work, we show that Solanum lycopersicum defense response to the necrotrophic fungus Botrytis cinerea is affected by plant N availability, with higher susceptibility in nitrate-limiting conditions. Global gene expression responses of tomato against B. cinerea under contrasting nitrate conditions reveals that plant primary metabolism is affected by the fungal infection regardless of N regimes. This result suggests that differential susceptibility to pathogen attack under contrasting N conditions is not only explained by a metabolic alteration. We used a systems biology approach to identify the transcriptional regulatory network implicated in plant response to the fungus infection under contrasting nitrate conditions. Interestingly, hub genes in this network are known key transcription factors involved in ethylene and jasmonic acid signaling. This result positions these hormones as key integrators of nitrate and defense against B. cinerea in tomato plants. Our results provide insights into potential crosstalk mechanisms between necrotrophic defense response and N status in plants.

  9. Dynamics of N2 fixation and fate of diazotroph-derived nitrogen in a low-nutrient, low-chlorophyll ecosystem: results from the VAHINE mesocosm experiment (New Caledonia)

    Science.gov (United States)

    Bonnet, Sophie; Berthelot, Hugo; Turk-Kubo, Kendra; Fawcett, Sarah; Rahav, Eyal; L'Helguen, Stéphane; Berman-Frank, Ilana

    2016-05-01

    N2 fixation rates were measured daily in large (˜ 50 m3) mesocosms deployed in the tropical southwest Pacific coastal ocean (New Caledonia) to investigate the temporal variability in N2 fixation rates in relation with environmental parameters and study the fate of diazotroph-derived nitrogen (DDN) in a low-nutrient, low-chlorophyll ecosystem. The mesocosms were fertilized with ˜ 0.8 µM dissolved inorganic phosphorus (DIP) to stimulate diazotrophy. Bulk N2 fixation rates were replicable between the three mesocosms, averaged 18.5 ± 1.1 nmol N L-1 d-1 over the 23 days, and increased by a factor of 2 during the second half of the experiment (days 15 to 23) to reach 27.3 ± 1.0 nmol N L-1 d-1. These later rates measured after the DIP fertilization are higher than the upper range reported for the global ocean. During the 23 days of the experiment, N2 fixation rates were positively correlated with seawater temperature, primary production, bacterial production, standing stocks of particulate organic carbon (POC), nitrogen (PON) and phosphorus (POP), and alkaline phosphatase activity, and negatively correlated with DIP concentrations, DIP turnover time, nitrate, and dissolved organic nitrogen and phosphorus concentrations. The fate of DDN was investigated during a bloom of the unicellular diazotroph UCYN-C that occurred during the second half of the experiment. Quantification of diazotrophs in the sediment traps indicates that ˜ 10 % of UCYN-C from the water column was exported daily to the traps, representing as much as 22.4 ± 5.5 % of the total POC exported at the height of the UCYN-C bloom. This export was mainly due to the aggregation of small (5.7 ± 0.8 µm) UCYN-C cells into large (100-500 µm) aggregates. During the same time period, a DDN transfer experiment based on high-resolution nanometer-scale secondary ion mass spectrometry (nanoSIMS) coupled with 15N2 isotopic labeling revealed that 16 ± 6 % of the DDN was released to the dissolved pool and 21 ± 4

  10. Nitrogen-fixation Potential of Nodules in Four Types of Nitrogen-fixation Plants and Their Influencing Factors in Dry-hot Valley%干热河谷4种固氮植物根瘤固氮潜力及其影响因素

    Institute of Scientific and Technical Information of China (English)

    唐国勇; 李昆; 孙永玉; 张春华

    2012-01-01

    In addition to water, Nitrogen ( N) is often the key limiting factor for biological activity in Dry-hot Valleys, Biological N-fixation by nitrogen-fixation plants is of important source of N for vegetations in those areas. The nitrogenase activities (NAs) of nodules in Acacia auriliformis A. Cunn, Leucaena leucacephala (Lara. ) de Wit, Cajanus cajan ( L). Millspangh and Albiza kalkora Prain plantations were determined at the Dry red soils and Verti-sol spots at four different sampling times in a Dry-hot Valley with the acetylene reduction assay. The results showed that the NAs of nodules in L. leucacephala (16, 25 μmol·g -1·h-1 ) and A. auriliformis ( 15. 85μmol·g-1·h-1) were significantly higher than those in A. kalkora (9,60 μmol·g-1·h-1) and C. cajan (9.42 μmol·g-1h-1 )·The NAs of nodules in rainy season were significantly higher than those in dry season, and approximated 2. 3 times that in dry season. The NAs of nodules at the Dry red soils spots were 1.3 -1.6 times higher than those at the Vertisol spots. The research revealed besides plant type, the NAs of nodules were primarily affected by soil type, season and soil water content, but less affected by soil temperature.%氮是除水分之外影响干热河谷生物活性的关键因子,豆科植物生物固氮是该地区氮素的重要来源之一.采用乙炔还原法测定了干热河谷不同季节燥红土和变性土林地中大叶相思、新银合欢、木豆和山合欢根瘤固氮酶活性(NAs).结果表明:新银合欢(16.25 μmol · g-1·h-1)和大叶相思(15.85 μmol·g-1·h-1)根瘤NAs显著(P<0.001)高于山合欢(9.60 μmol·g-1·h-1)和木豆(9.42 μmol·g-1·h-1).雨季根瘤NAs显著高于旱季,约为旱季的2.3倍.燥红土样地上植物根瘤NAs是变性土样地的1.3~1.6倍.研究揭示:除植被类型外,干热河谷植物根瘤NAs主要受土壤类型、季节和土壤含水量的影响,而受土壤温度的影响较小.

  11. Discovery of Evolutionary Divergence of Biological Nitrogen Fixation and Photosynthesis: Fine Tuning of Biogenesis of the NifH and the ChlL by a Peptidyl-Prolyl Cis/Trans Isomerase

    Directory of Open Access Journals (Sweden)

    Nara Gavini

    2011-01-01

    Full Text Available Problem statement: Despite the structural and functional similarities between the nitrogenase that performs biological nitrogen fixation reaction and the Dark Protochlorphyllide Oxidoreductase (DPOR that performs chlorophyll-biosynthesis, attempts to substitute nitrogenase-components with DPOR-components have hitherto failed. This investigation was undertaken to test if Chlamydomonas reinhardtii protochlorophyllide (Pchlide reductase (ChlL that shares some structural similarity with Nitrogenase Reductase (NifH could complement the functions of NifH in biological nitrogen fixation of Azotobacter vinelandii. Approach: Genetic complementation studies were performed to test if the chlL gene and its mutants cloned under transcriptional control of nifH promoter (nifHp in a broad-host range low copy plasmid pBG1380 could render a Nif+ phenotype to NifH-deficient A. vinelandii strains. Results: Expression of ChlL could render Nif+ phenotype to NifH-deficient A. vinelandii only in the absence of NifM, a nif-specific PPIase essential for biogenesis of NifH. The ChlL mutants Cys95Thr and Cys129Thr were unable to substitute for NifH. Thus, the conserved cysteine ligands of [4Fe-4S] cluster in ChlL are essential for successful substitution of NifH by ChlL. Since C-termini of NifH and ChlL demonstrated the least similarity and Pro258, a substrate for the PPIase activity of NifM, is located in the C-terminus of NifH, we posited that replacing the C-terminus of NifH with that of ChlL would render NifM-independence to NifH. The NifH-ChlL chimera could support the growth of NifH- and NifM-deficient A. vinelandii in nitrogen limiting conditions implying that it has acquired NifM-independence. Conclusion/Recommendations: Collectively, these observations suggest that NifM, an evolutionarily conserved nif-specific PPIase, could have contributed to the functional divergence of biological nitrogen fixation and photosynthesis during evolution by virtue of its ability to

  12. NITROGÊNIO E POTÁSSIO NA FIXAÇÃO SIMBIÓTICA DE N2 POR SOJA CULTIVADA NO INVERNO NITROGEN AND POTASSIUM IN THE BIOLOGICAL N2 FIXATION BY WINTER SOYBEAN

    Directory of Open Access Journals (Sweden)

    Maria do Carmo de Salvo Soares Novo

    1999-01-01

    Full Text Available O efeito do nitrogênio e do potássio sobre a nodulação, fixação simbiótica do nitrogênio, teor de N nos grãos e produtividade de soja, foi avaliado no inverno em experimentos conduzidos nas Estações Experimentais de Mococa, Ribeirão Preto e Votuporanga, do Instituto Agronômico de Campinas, SP, em solos podzólico vermelho-escuro, latossolo roxo e latossolo vermelho-escuro, respectivamente. Doses de nitrogênio na forma de uréia (0, 50 e 100 kg.ha-1 de N, de potássio na forma de cloreto de potássio (0, 30 e 60 kg.ha-1 de K2O e cultivares de soja (IAC-8 e IAC-14, foram arranjados em fatorial e dispostos no campo, em blocos ao acaso, com três repetições. As sementes foram tratadas com inoculante comercial turfoso na dose de 8 g.kg-1 de semente. No florescimento, plantas foram amostradas para avaliações da nodulação e da atividade da nitrogenase. No final do ciclo, avaliou-se a produtividade e o teor de N dos grãos. Os resultados mostraram que apenas a inoculação não forneceu nitrogênio nas quantidades exigidas para maximizar a produtividade da soja. A adubação nitrogenada prejudicou a nodulação e a fixação simbiótica do nitrogênio mas aumentou a produtividade e o teor de N dos grãos de soja nas três localidades. A adubação potássica não prejudicou a nodulação, a fixação simbiótica do nitrogênio e o teor de N dos grãos. A cultivar IAC-14 apresentou nodulação e produtividade de grãos maiores quando foi adicionado potássio.The objective of these experiments was to study the effect of nitrogen and potassium fertilizations on the response to nodulation, nitrogen fixation, nitrogen seed content and yield of two soybean cultivars planted during the winter season. They were installed on the following soils: Eutric Lixisol (Mococa and Rhodic Ferralsol (Ribeirão Preto and Votuporanga, SP, Brazil. The treatments consisted of three rates of nitrogen (0, 50 and 100 kg.ha-1 of N as urea, three of potassium (0

  13. A reduced fraction of plant N derived from atmospheric N (%Ndfa) and reduced rhizobial nifH gene numbers indicate a lower capacity for nitrogen fixation in nodules of white clover exposed to long-term CO2 enrichment

    Science.gov (United States)

    Watanabe, T.; Bowatte, S.; Newton, P. C. D.

    2013-12-01

    Using the δ15N natural abundance method, we found that the fraction of nitrogen derived from atmospheric N (%Ndfa) in field-grown white clover (Trifolium repens L.) plants was significantly lower (72.0% vs. 89.8%, p = 0.047 in a grassland exposed to elevated CO2 for 13 yr using free air carbon dioxide enrichment (FACE). Twelve months later we conducted an experiment to investigate the reasons behind the reduced N fixation. We took cuttings from white clover plants growing in the FACE and established individual plants in a glasshouse using soil from the appropriate ambient or elevated CO2 treatments. The established plants were then transplanted back into their "rings of origin" and sampled over a 6-week period. We used molecular ecological analyses targeting nifH genes and transcripts of rhizobia in symbiosis with white clover (Trifolium repens L.) to understand the potential mechanisms. Shoot biomass was significantly lower in eCO2, but there was no difference in nodule number or mass per plant. The numbers of nifH genes and gene transcripts per nodule were significantly reduced under eCO2, but the ratio of gene to transcript number and the strains of rhizobia present were the same in both treatments. We conclude that the capacity for biological nitrogen fixation was reduced by eCO2 in white clover and was related to the reduced rhizobia numbers in nodules. We discuss the finding of reduced gene number in relation to factors controlling bacteroid DNA amount, which may imply an influence of nitrogen as well as phosphorus.

  14. NITROGEN FIXATION OF BIOLOGICAL SOIL CRUSTS ON COPPER MINING TAILINGS AND ITS INFLUENCE FACTORS%铜尾矿生物结皮的生物固氮及其影响因素研究

    Institute of Scientific and Technical Information of China (English)

    宋勇生; 龚亚龙; 廖斌; 刘蔚秋

    2011-01-01

    The dumping site for copper mining tailings at Yangshanchong at Tongling city ( Anhui Province) has been deserted for 20-years. The area is characterized by extremely high concentrations of heavy metals, poverty of nutrients, easy acidification and severe desertification. Biological soil crusts ( BSCs) , extensively existing on tailings is a major early stage of the ecological succession of the tailing ecosystem. The method of in situ acetylene reduction was applied to explore characteristics of biological nitrogen-fixation of algae, algae-moss and moss crusts on tailings. It was found that biological crusts significantly increased total nitrogen and lower Cu content in the tailings, and the nitrogen-fixing capability of the crusts varied sharply from type to type. Among the three types, the algae-moss type of crust was the highest in N2 fixation rates, ranging between 1. 32 -8.78 kg hm ~ a , and followed by the algae type and the moss type, ranging between 4. 36 ~ 30. 39 kg hm-2a-1 and between 0 ~16. 34 kg hm -2 a-1, respectively, and followed a decreasing order of algae-moss, moss, and algae BSCs. N2 fixation capacity of the BSCs varied with the season, too showing a decrease order of summer, spring, fall and winter. Besides, a negative line relationship was observed of the capacity with soil bulk density, NO3--N, and total Cu concentration and a positive one with pH, NH4+-N, and water soluble organic carbon. On the whole, BSCs significantly enhanced total nitrogen content, and decrease total Cu concentration in tailings. The anomalous wet conditions experienced during the year of the study may have increased the temporal availability of soil mineral N and decreased N fixation rates. However, the presence of N fixation activity in all crusts analyzed their ability to survive at high Cu concentration, which may contribute to ecosystem resilience and recovery in areas under severe heavy metal stress.%在铜尾矿生态系统自然恢复过程中,生物结皮广

  15. Thousand Year Archives of the Bulk and Compound-Specific δ15N of Export Production From the North Pacific Subtropical Gyre Indicate Increasing Nitrogen Fixation Over the Past 150 Years

    Science.gov (United States)

    Sherwood, O.; Batista, F. C.; Brown, J. T.; Guilderson, T. P.; McCarthy, M.

    2012-12-01

    Stable nitrogen isotopic analysis of amino acids (δ15N-AA) preserved in proteins has emerged as a powerful new tool to explore trophic levels and nutrient cycling in nature. To date, little has been done to explore δ15N-AA in paleo-studies of the marine nitrogen cycle. We analysed the bulk and AA-specific δ15N in the long-lived, deep-sea, proteinaceous coral Gerardia. By feeding on sinking particulate organic matter, proteinaceous corals integrate the biogeochemical signature of recently exported production within discrete skeletal growth layers. Sub-decadal resolution time-series records spanning the time period 1000 AD to present were generated from specimens of Gerardia collected from the main Hawaiian Islands, Cross Seamount, and French Frigate Shoals in the North Pacific Subtropical Gyre (NPSG). Records of bulk δ15N from the three different locations, geographically separated by up to 1000 km, showed remarkably similar long term trends. Bulk δ15N remained relatively stable from ~1000-1850 years AD, and then decreased by a total of 2 ‰ from ~1850 AD to the present. The δ15N-AA of the "trophic" group of amino acids indicated no significant changes in trophic level or microbial re-synthesis of export production over this time period. The δ15N of "source" amino acids was significantly correlated with corresponding values of bulk δ15N, with the δ15N of phenylalanine decreasing from 4.2 to 2.1‰. The latter value is similar to recent measurements of subsurface nitrate δ15N near Hawaii, suggesting that the δ15N of phenylalanine may be used to quantitatively track changes in the isotopic signature of nitrate at the base of the food web. Using a simple isotopic mass balance between upwelled nitrate and nitrogen fixation we calculate a 30% increase in nitrogen fixation in the NPSG since ~1850. These results provide invaluable long-term context for recent observations, and highlight profound changes in the marine biogeochemical cycling of nitrogen over the

  16. 麦积树木园豆科树木共生固氮特性的研究%A study on the characteristics related to symbiotic nitrogen fixation of introduced legume trees in Maiji Arbortum

    Institute of Scientific and Technical Information of China (English)

    王卫卫

    2001-01-01

    The nodulation and nitrogen fixation of 34 species belonging to19 genura of legumes have been studied in Maiji Arbortum, in which 12 genura, 21 species were introduced and acclimatized legume-trees. Among of them 9 species have not been reported yet in literature. 28 samples of nodules were detected with the method of acetylene reduction. There are only 25% of legume root nodules whose acetylene reduction activity is over 1 μmol/g.h. The highest of acetylene reduction activity in introduced trees is only 3.15 μmol/g.h.24 strains isolated were tested infecting in 8 species.91.6% strains of tested rhizobia can nodulate with host plants. The nodulation and symbiotic nitrogen fixation of introduced legume trees were discussed.%调查了甘肃天水麦积树木园引种驯化和部分土著豆科植物18属34种的结瘤固氮情况,同时以8种寄主植物对24株根瘤菌进行了回接鉴定。结果表明:引种豆科树木与土壤中自然存在的根瘤菌已建立了共生关系,但其共生固氮的效率极差;麦积树木园近年来引种驯化豆科树木生长不良,可能与豆科植物与根瘤菌没有建立有效的共生体系有关。

  17. The Overproduction of Indole-3-Acetic Acid (IAA) in Endophytes Upregulates Nitrogen Fixation in Both Bacterial Cultures and Inoculated Rice Plants.

    Science.gov (United States)

    Defez, Roberto; Andreozzi, Anna; Bianco, Carmen

    2017-02-14

    Endophytic bacteria from roots and leaves of rice plants were isolated and identified in order to select the diazotrophs and improve their nitrogen-fixing abilities. The nitrogen-fixing endophytes were identified by PCR amplification of the nifH gene fragment. For this purpose, two isolates, Enterobacter cloacae RCA25 and Klebsiella variicola RCA26, and two model bacteria (Herbaspirillum seropedicae z67 and Sinorhizobium fredii NGR234) were transformed to increase the biosynthesis of the main plant auxin indole-3-acetic acid (IAA). A significant increase in the production of IAA was observed for all strains. When the expression of nifH gene and the activity of the nitrogenase enzyme were analyzed in liquid cultures, we found that they were positively affected in the IAA-overproducing endophytes as compared to the wild-type ones. Rice plants inoculated with these modified strains showed a significant upregulation of the nitrogenase activity when plants infected with the wild-type strains were used as reference. Similar results were obtained too with common bean plants infected with the S. fredii NGR234 strain. These findings suggest that IAA overproduction improves nitrogen-fixing apparatus of endophytic bacteria both in liquid cultures and in inoculated host plants. The present study highlights new perspectives to enhance nitrogen-fixing ability in non-legume crops. These strains could be used as bioinoculants to improve the growth and the yield of agricultural crops, offering an alternative to the use of chemical nitrogen fertilizers.

  18. Nitrogen Fixation (C(2)H(2) Reduction) by Broad Bean (Vicia faba L.) Nodules and Bacteroids under Water-Restricted Conditions.

    Science.gov (United States)

    Guerin, V; Trinchant, J C; Rigaud, J

    1990-03-01

    Water potentials of leaves and nodules of broad bean (Vicia faba L.) cultivated on a sandy mixture were linearly and highly (r(2) = 0.99) correlated throughout a water deprivation of plants. A decrease of 0.2 megapascal of the nodule water potential (Psi(nod)) induced an immediate 25% inhibition of the highest level of acetylene reduction of broad bean nodules attached to roots. This activity continued to be depressed when water stress increased, but the effect was less pronounced. Partial recovery of optimal C(2)H(2) reduction capacity of mildly water stressed nodules (Psi(nod) = -1.2 megapascals) was possible by increasing the external O(2) partial pressure up to 60 kilopascals. The dense packing of the cortical cells of nodules may be responsible for the limitation of O(2) diffusion to the central tissue. Bacteroids isolated from broad bean nodules exhibited higher N(2) fixation activity with glucose than with succinate as an energy-yielding substrate. Bacteroids from stressed nodules appeared more sensitive to O(2), and their optimal activity declined with increasing nodule water deprivation. This effect could be partly due to decreased bacteroid respiration capacity with water stress. Water stress was also responsible for a decrease of the cytosolic protein content of the nodule and more specifically of leghemoglobin. The alteration of the bacteroid environment appears to contribute to the decline in N(2) fixation under water restricted conditions.

  19. Effect of Rhizobia Application on Number of Soil Ammonifying Bacteria, Nitrifying Bacteria, Nitrogen Fixation Bacteria and Soil Nitrogen Fertility%施用根瘤菌对土壤微生物氮素类群数量及土壤氮素的影响

    Institute of Scientific and Technical Information of China (English)

    孟庆英

    2012-01-01

    In order to investigate the effect of rhizobia application on dynamic change of rhizosphere soil microoganisms and soil nitrogen content in different growth stages of soybean, the number of ammonifying bacteria, nitrifying bacteria,nitrogen fixation bacteria of soil and available nitrogen, total nitrogen were determined at seedling stage,flowering stage, bearing pod stage and mature stage of soybean. The results showed that the number of ammonifying bacteria, nitrifying bacteria, nitrogen fixation bacteria of soil of rhizobia application treatment was different from and CK,but rhizobia could effectively increase the number of soil microoganisms. The rhizobia treatment had higher available nitrogen content of soil than CK at all growth stages of soybean except for mature stage. The total nitrogen content of soil was increased by rhizobia on the whole stages of soybean.%为研究施用根瘤茵条件下,大豆不同生育时期土壤微生物数量及土壤氮素含量动态变化,于大豆苗期、花期、结荚期、成熟期分别对大豆根际土壤氧化细菌、硝化细菌、自身固氮茼数量及土壤碱解氮、全氮含量进行测定。结果表明:施用根瘤茼处理与对照相比,在大豆的不同生育时期土壤氨化细菌、硝化细菌、自身固氮茵数量上存在差异,但在大豆的整个生育期根瘤菌有效增加了微生物氮素类群数量。除成熟期土壤中碱解氮含量根瘤菌处理低于对照,各时期土壤中碱解氮含量根瘤菌处理均高于对照,施用根瘤菌在大豆整个生育期增加了土壤全氮的含量。

  20. Spittlebugs in the genus Sphenorhina (Hemiptera:Cercopidae) associated with weedy composite host plants (Asteraceae) that may represent unusual cases of nitrogen fixation%与特殊固氮模式草本菊科寄主植物有关的Sphenorhina属沫蝉(半翅目:沫蝉科)

    Institute of Scientific and Technical Information of China (English)

    Vinton THOMPSON

    2013-01-01

    观察了沫蝉科Sphenorhina属与固氮植物有关的热带木本菊科植物Crassocephalum cerpidioides 和Chromolaena ordorata的3种沫蝉.沫蝉可能作为菊科一些固氮植物的间接指示物,该科的固氮作用尚未得到很好研究.%Three species of the spittlebug genus Sphenorhina (Hemiptera:Cercopidae) have been observed in association with Crassocephalum crepidioides and Chromolaena ordorata,weedy tropical species in the family Asteraceae that have been implicated as nitrogen-fixing plants.The spittlebugs may be serving as indirect indicators of nitrogen fixation in some species of Asteraceae,a group in which nitrogen fixation has not been well established.

  1. Simple approach for the preparation of 15-15N2-enriched water for nitrogen fixation assessments: Evaluation, application and recommendations

    Directory of Open Access Journals (Sweden)

    Isabell eKlawonn

    2015-08-01

    Full Text Available Recent findings revealed that the commonly used 15N2 tracer assay for the determination of dinitrogen (N2 fixation can underestimate the activity of aquatic N2-fixing organisms. Therefore, a modification to the method using pre-prepared 15-15N2-enriched water was proposed. Here, we present a rigorous assessment and outline a simple procedure for the preparation of 15-15N2-enriched water. We recommend to fill sterile-filtered water into serum bottles and to add 15-15N2 gas to the water in amounts exceeding the standard N2 solubility, followed by vigorous agitation (vortex mixing ≥5 min. Optionally, water can be degassed at low-pressure (≥950 mbar for ten minutes prior to the 15-15N2 gas addition to indirectly facilitate the 15-15N2 dissolution. This preparation of 15-15N2-enriched water can be done within one hour using standard laboratory equipment. The final 15N-atom% excess was 5% after replacing 2–5% of the incubation volume with 15-15N2-enriched water. Notably, the addition of 15-15N2-enriched water can alter levels of trace elements in the incubation water due to the contact of 15-15N2-enriched water with glass, plastic and rubber ware during its preparation. In our tests, levels of trace elements (Fe, P, Mn, Mo, Cu, Zn increased by up to 0.1 nmol L-1 in the final incubation volume, which may bias rate measurements in regions where N2 fixation is limited by trace elements. For these regions, we tested an alternative way to enrich water with 15-15N2. The 15-15N2 was injected as a bubble directly to the incubation water, followed by gentle shaking. Immediately thereafter, the bubble was replaced with water to stop the 15-15N2 equilibration. This method achieved a 15N-atom excess of 6.6±1.7% when adding 2 mL 15-15N2 per liter of incubation water. The herein presented methodological tests offer guidelines for the 15N2 tracer assay and thus, are crucial to circumvent methodological draw-backs for future N2 fixation assessments.

  2. Molecular Regulation of Photosynthetic Carbon Dioxide Fixation in Nonsulfur Purple Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Tabita, Fred Robert [The Ohio State Univ., Columbus, OH (United States)

    2015-12-01

    The overall objective of this project is to determine the mechanism by which a transcriptional activator protein affects CO2 fixation (cbb) gene expression in nonsulfur purple photosynthetic bacteria, with special emphasis to Rhodobacter sphaeroides and with comparison to Rhodopseudomonas palustris. These studies culminated in several publications which indicated that additional regulators interact with the master regulator CbbR in both R. sphaeroides and R. palustris. In addition, the interactive control of the carbon and nitrogen assimilatory pathways was studied and unique regulatory signals were discovered.

  3. Inferring the evolutionary history of Mo-dependent nitrogen fixation from phylogenetic studies of nifK and nifDK.

    Science.gov (United States)

    Hartmann, Linda S; Barnum, Susan R

    2010-07-01

    The ability to fix nitrogen is widely, but sporadically distributed among the Bacteria and Archaea suggesting either a vertically inherited, ancient function with widespread loss across genera or an adaptive feature transferred laterally between co-inhabitants of nitrogen-poor environments. As previous phylogenetic studies of nifH and nifD have not completely resolved the evolutionary history of nitrogenase, sixty nifD, nifK, and combined nifDK genes were analyzed using Bayesian, maximum likelihood, and parsimony algorithms to determine whether the individual and combined datasets could provide additional information. The results show congruence between the 16S and nifDK phylogenies at the phyla level and generally support vertical descent with loss. However, statistically significant differences between tree topographies suggest a complex evolutionary history with the underlying pattern of vertical descent obscured by recurring lateral transfer events and different patterns of evolution between the genes. Results support inheritance from the Last Common ancestor or an ancient lateral transfer of the nif genes between Bacteria and Archaea, ongoing gene transfer between cohabitants of similar biogeographic regions, acquisition of nitrogen-fixing capability via symbiosis islands, possible xenologous displacement of one gene in the operon, and possible retention of ancestral genes in heterocystous cyanobacteria. Analyses support the monophyly of the Cyanobacteria, alphabetagamma-Proteobacteria, and Actinobacteria (Frankia) and provide strong support for the placement of Frankia nif genes at the base of combined the Cyanobacteria/Proteobacteria clades.

  4. 几种丛生竹根际联合固氮研究%Study on Associated Nitrogen Fixation of Sev eral Sympodial Bamboo Species

    Institute of Scientific and Technical Information of China (English)

    顾小平; 吴晓丽; 汪阳东

    2001-01-01

    对几种丛生竹种麻竹、吊丝球竹、青皮竹、粉丹竹、马甲竹、绿竹等进行根系固氮能力调查 测定,用直接法测定(干根样品)前5个种竹种的根系最高固氮酶活性分别为20.50、24.81、 10. 83、7.49、2.46nmol(C2H4).g-1.h-1,用富集培养法测定(鲜根 样品) 前5个种竹种的根系平均固氮酶活性分别为275、431、169、188、79nmol(C2H4).g -1.h-1。不同生境和不同季节丛生竹根系固氮能力的调查显示,充足的水分供 应 、较高的温度及适当施用有机肥有利于竹子固氮。对几种丛生竹种根际不同部位固氮菌数调 查测定显示,根际固氮菌数最多的竹种是吊丝球竹,在根际不同部位固氮菌数由非根际土 →根际土→根表→根内依次急剧递增,越往内部根际效应越明显。用2#、12#、14 #、7#菌及混合菌液对麻竹组培苗进行接种显示,接种固氮菌可提高苗木成活率和植株 含氮量,14#、7#菌和混合菌接种可显著提高麻竹组培苗生物量。%Root nitrogen fixing activities of several s ympodial bamboo species, namely Dendrocalamus latiflorus, Dendrocalamopsis beecheyana, Bambus a textilis, Bambusa chungii, Bambusa tulda, Dendrocalamopsis oldhami were investiga ted and tested. It is shown that using direct testing methods the root nitrogen fixing a ctivity of first five bamboo species above mentioned can reach to 20.50, 24.81, 10.83, 7.49, 2.46 nmol(C2H4)*g-1*h-1 respectively, when usin g e nrichment culture methods the roots nitrogen fixing activity of first five bambo o species can reach 275, 431, 169, 188, 79 nmol(C2H4)*g-1*h- 1 respectively. The root nitrogen fixing activity of bamboo species grown in di ffe rent environments and different seasons were investigated and tested. It is show n that sufficient water supply, suitable high temperature and applying organic f ertilizer can moderately promote root nitrogen fixing activity. When counting t h e amount

  5. Expanding the Cyanobacterial Nitrogen Regulatory Network: The GntR-Like Regulator PlmA Interacts with the PII-PipX Complex

    Science.gov (United States)

    Labella, Jose I.; Obrebska, Anna; Espinosa, Javier; Salinas, Paloma; Forcada-Nadal, Alicia; Tremiño, Lorena; Rubio, Vicente; Contreras, Asunción

    2016-01-01

    Cyanobacteria, phototrophic organisms that perform oxygenic photosynthesis, perceive nitrogen status by sensing 2-oxoglutarate levels. PII, a widespread signaling protein, senses and transduces nitrogen and energy status to target proteins, regulating metabolism and gene expression. In cyanobacteria, under conditions of low 2-oxoglutarate, PII forms complexes with the enzyme N-acetyl glutamate kinase, increasing arginine biosynthesis, and with PII-interacting protein X (PipX), making PipX unavailable for binding and co-activation of the nitrogen regulator NtcA. Both the PII-PipX complex structure and in vivo functional data suggested that this complex, as such, could have regulatory functions in addition to PipX sequestration. To investigate this possibility we performed yeast three-hybrid screening of genomic libraries from Synechococcus elongatus PCC7942, searching for proteins interacting simultaneously with PII and PipX. The only prey clone found in the search expressed PlmA, a member of the GntR family of transcriptional regulators proven here by gel filtration to be homodimeric. Interactions analyses further confirmed the simultaneous requirement of PII and PipX, and showed that the PlmA contacts involve PipX elements exposed in the PII-PipX complex, specifically the C-terminal helices and one residue of the tudor-like body. In contrast, PII appears not to interact directly with PlmA, possibly being needed indirectly, to induce an extended conformation of the C-terminal helices of PipX and for modulating the surface polarity at the PII-PipX boundary, two elements that appear crucial for PlmA binding. Attempts to inactive plmA confirmed that this gene is essential in S. elongatus. Western blot assays revealed that S. elongatus PlmA, irrespective of the nitrogen regime, is a relatively abundant transcriptional regulator, suggesting the existence of a large PlmA regulon. In silico studies showed that PlmA is universally and exclusively found in cyanobacteria

  6. Expanding the cyanobacterial nitrogen regulatory network: The GntR-like regulator PlmA interacts with the PII-PipX complex

    Directory of Open Access Journals (Sweden)

    Jose Ignacio Labella

    2016-10-01

    Full Text Available Cyanobacteria, phototrophic organisms that perform oxygenic photosynthesis, perceive nitrogen status by sensing 2-oxoglutarate levels. PII, a widespread signaling protein, senses and transduces nitrogen and energy status to target proteins, regulating metabolism and gene expression. In cyanobacteria, under conditions of low 2-oxoglutarate, PII forms complexes with the enzyme N-acetyl glutamate kinase, increasing arginine biosynthesis, and with PII-interacting protein X (PipX, making PipX unavailable for binding and co-activation of the nitrogen regulator NtcA. Both the PII-PipX complex structure and in vivo functional data suggested that this complex, as such, could have regulatory functions in addition to PipX sequestration. To investigate this possibility we performed yeast three-hybrid screening of genomic libraries from Synechococcus elongatus PCC7942, searching for proteins interacting simultaneously with PII and PipX. The only prey clone found in the search expressed PlmA, a member of the GntR family of transcriptional regulators proven here by gel filtration to be homodimeric. Interactions analyses further confirmed the simultaneous requirement of PII and PipX, and showed that the PlmA contacts involve PipX elements exposed in the PII-PipX complex, specifically the C-terminal helices and one residue of the tudor-like body. In contrast, PII appears not to interact directly with PlmA, possibly being needed indirectly, to induce an extended conformation of the C-terminal helices of PipX and for modulating the surface polarity at the PII-PipX boundary, two elements that appear crucial for PlmA binding. Attempts to inactive plmA confirmed that this gene is essential in S. elongatus. Western blot assays revealed that S. elongatus PlmA, irrespective of the nitrogen regime, is a relatively abundant transcriptional regulator, suggesting the existence of a large PlmA regulon. In silico studies showed that PlmA is universally and exclusively found

  7. Fixação do nitrogênio do ar pelas bactérias que vivem em simbiose com as raízes da centrosema Fixation of the atmospheric nitrogen by bacteria which live symbiotically on centrosema

    Directory of Open Access Journals (Sweden)

    J. Casado Montojos

    1963-01-01

    Full Text Available Continuando a série de trabalhos sôbre a quantidade de nitrogênio atmosférico fixada por bactérias que vivem em simbiose com raízes de leguminosas, são relatados os resultados encontrados em centrosema (Centrosema pubescens Benth. Foram utilizados vasos de Mitscherlich, com terra-roxa-misturada. A colheita das plantas foi efetuada por ocasião do florescimento. A parte aérea foi pesada para cálculo da quantidade de massa verde produzida, e, em seguida, juntamente com as raízes, sêca a 60°C até pêso constante. Determinaram-se os teores de nitrogênio na parte aérea e subterrânea das plantas, assim como da terra dos vasos. Os resultados mostraram elevada capacidade de fixação simbiótica de nitrogênio pela centrosema correspondente a cêrca de 204 quilogramas de nitrogênio por hectare.Following a series of research work with the purpose of verifying the amount of atmospheric nitrogen fixed by symbiotic bacteria, the authors report in this paper the results on their research with the leguminous plant Centrosema pubescens Benth. This experiment was conducted in Mitscherlich pots containing terra-roxa-misturada obtained from a 20 cm deep layer of soil taken from the Central Experiment Station "Theodureto de Camargo", in Campinas. The plants were cut in the blooming period, as this is the proper season for turning over green manure crops. The aerial portion of the plants was weighed so as to determine the total production of green matter and then it was dried together with the roots at 60°C. Thus, nitrogen of the total plant was determined and the same analysis was done at the end of the experiment for the soil removed from the pots. According to the results of this experiment, it was found that 204 kilograms of nitrogen per hectare were fixed, showing therefore that centrosema has a high capacity of symbiotic nitrogen fixation.

  8. Catalytic Proton Coupled Electron Transfer from Metal Hydrides to Titanocene Amides, Hydrazides and Imides: Determination of Thermodynamic Parameters Relevant to Nitrogen Fixation.

    Science.gov (United States)

    Pappas, Iraklis; Chirik, Paul J

    2016-10-03

    The hydrogenolysis of titanium-nitrogen bonds in a series of bis(cyclopentadienyl) titanium amides, hydrazides and imides by proton coupled electron transfer (PCET) is described. Twelve different N-H bond dissociation free energies (BDFEs) among the various nitrogen-containing ligands were measured or calculated, and effects of metal oxidation state and N-ligand substituent were determined. Two metal hydride complexes, (η(5)-C5Me5)(py-Ph)Rh-H (py-Ph = 2-pyridylphenyl, [Rh]-H) and (η(5)-C5R5)(CO)3Cr-H ([Cr](R)-H, R= H, Me) were evaluated for formal H atom transfer reactivity and were selected due to their relatively weak M-H bond strengths yet ability to activate and cleave molecular hydrogen. Despite comparable M-H BDFEs, disparate reactivity between the two compounds was observed and was traced to the vastly different acidities of the M-H bonds and overall redox potentials of the molecules. With [Rh]-H, catalytic syntheses of ammonia, silylamine and N,N-dimethylhydrazine have been accomplished from the corresponding titanium(IV) complex using H2 as the stoichiometric H atom source. The data presented in this study provides the thermochemical foundation for the synthesis of NH3 by proton coupled electron transfer at a well-defined transition metal center.

  9. Effect of Matching Astragalus sinicus L . with Rhizobium on Nodule Formation and Nitrogen Fixation%不同紫云英品种与根瘤菌匹配对结瘤固氮的影响

    Institute of Scientific and Technical Information of China (English)

    钟少杰; 林诚; 李文霞; 林新坚

    2014-01-01

    研究不同紫云英品种与根瘤菌匹配后对紫云英的结瘤固氮影响。结果表明:M 10根瘤菌种可分别显著提高8410441、闽紫6号、弋江籽的固氮酶活性、紫云英根瘤数、紫云英根瘤鲜重;ZL H2根瘤菌显著提高8410441紫云英地上部鲜重,ZK7根瘤菌提高闽紫1号紫云英全氮含量。从总固氮量来看, M10、XZ、ZLH2、ZK7、M3根瘤菌分别对提高闽紫6号、8324411、8410441、余江大叶、弋江籽品种的总固氮量效果最佳,其中以ZL H2对8410441的总固氮量最高。固氮酶活性与根瘤数呈极显著负相关,根瘤数与根瘤重呈极显著正相关,产量、全氮含量与总固氮量呈极显著正相关。通过多指标综合评价发现, ZL H2对闽紫6号、8410441的促生效果较好;M10对8324411和弋江籽的促生效果较好;ZK7对余江大叶的促生效果较好。%The research aimed on the effect of matching between varieties of Astragalus sinicus and strains of Rhizobium on forming root nodule of milk vetch .The results showed that :rhizobium M10 enhanced nitrogenase activity significantly in variety 8410441 ,Minzi 6 and Yijiang ,increased the number of root nodules and their fresh weight .Rhizobium ZLH2 increased fresh weight of plants for variety 8410441 remarkably and rhizobium ZK7 increased total nitrogen content of variety Minzi 1. The strains M10 ,XZ ,ZLH2 ,ZK7 and M3 exhibited improving effect in nitrogen fixation for varieties Minzi 6 ,8324411 ,8410441 ,Yujiang Daye ,and Yijiang ,respectively , especially in the best effect of ZLH2 .The nitrogenase activity of the azotobacter was negative correlation with the number of root nodules but increaseing nodule weight significantly ,while total fixation amount of nitrogen was correlative positively with milk vetch yield and nitrogen content .Over all ,strain ZLH2 was optimal in enhancing the growth of Minzi 6 and 8410441 ,strain M10 was good to 8324411 and Yijiang ,and strain ZK7 was to

  10. Nitrogen- and irradiance-dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and oligotrophic marine systems

    Science.gov (United States)

    Babin, Marcel; Morel, André; Claustre, Hervé; Bricaud, Annick; Kolber, Zbigniew; Falkowski, Paul G.

    1996-08-01

    Natural variability of the maximum quantum yield of carbon fixation ( φC max), as determined from the initial slope of the photosynthesis-irradiance curve and from light absorption measurements, was studied at three sites in the northeast tropical Atlantic representing typical eutrophic, mesotrophic and oligotrophic regimes. At the eutrophic and mesotrophic sites, where the mixed layer extended deeper than the euphotic layer, all photosynthetic parameters were nearly constant with depth, and φC max averaged between 0.05 and 0.03 molC (mol quanta absorbed) -1, respectively. At the oligotrophic site, a deep chlorophyll maximum (DCM) existed and φC max varied from ca 0.005 in the upper nutrient-depleted mixed layer to 0.063 below the DCM in stratified waters. firstly, φC max was found roughly to covary with nitrate concentration between sites and with depth at the oligotrophic site, and secondly, it was found to decrease with increasing relative concentrations of non-photosynthetic pigments. The extent of φC max variations directly related to nitrate concentration was inferred from variations in the fraction of functional PS2 reaction centers ( f), measured using fast repetition rate fluorometry. Covariations between f and nitrate concentration indicate that the latter factor may be responsible for a 2-fold variation in φC max. Moreover, partitioning light absorption between photosynthetic and non-photosynthetic pigments suggests that the variable contribution of the non-photosynthetic absorption may explain a 3-fold variation in φC max, as indicated by variations in the effective absorption cross-section of photosystem 2 ( σPS2). Results confirm the role of nitrate in φC max variation, and emphasize those of light and vertical mixing.

  11. Effects of different nitrogen levels on nitrogen fixation and seed production of alfalfa inoculated with rhizobia%不同施氮水平下接种根瘤菌对苜蓿固氮效能及种子生产的影响

    Institute of Scientific and Technical Information of China (English)

    马霞; 王丽丽; 李卫军; 宋江平; 何媛; 罗明

    2013-01-01

    设置田间小区试验和沙培试验,采用15N自然丰度法测定不同施氮水平下、不同方式接种根瘤菌对紫花苜蓿固氮效能、生长和种子产量的影响.结果表明,在50 kg/hm2低施氮量下,接种根瘤菌能增加苜蓿的根瘤数量和根瘤重量,苜蓿固氮率、固氮量均达到了最高,分别为(77.8±0.508)%和(452.51±2.568) kg/hm2.接种根瘤菌有效促进了苜蓿的生长,提高了地上部干物质积累,增加了有效分枝数、荚果数及种子产量,种子产量增幅平均达(59.7±0.118)%,显著高于不接种、不施氮和其他施氮处理.而施氮量超过50 kg/hm2,则会抑制根瘤菌结瘤,引起苜蓿固氮率、固氮量下降.随着施氮量增加,根瘤菌促进苜蓿植株生长的效应明显减弱,造成生物量和荚果数减少,种子增产幅度降低.比较秋播拌种和春季返青追施2种不同的根瘤菌接种方式,以秋播拌种根瘤菌结合施氮量50 kg/hm2时的增产最为显著.秋播拌种根瘤菌的生物固氮百分率和固氮量与苜蓿种子产量呈显著正相关.%Field plot and sand pot experiments were carried out to study the effects of four different nitrogen fertilizer levels (0, 50, 100, 150 kg/ha) and two ways of inoculating rhizobia (soaking seeds with rhizobia in autumn and furrow inoculating rhizobia in spring) on the nitrogen fixation ability, growth characteristics and seed yield of alfalfa by using a 15N natural abundance method. The field experiments were located at the grassland ecological research station in Hutubi County of Xinjiang Agricultural University during the growing seasons 2009 to 2010. The nodule numbers and nodule fresh weight were significantly improved by inoculating rhi-zobial strain ACCC17544, and attained the maximum percentage and amount of nitrogen fixation (77. 8 ± 0. 508) % and (452. 51 ± 2. 568) kg/ha respectively under the lower level of 50 kg/ha nitrogen application. Also, inoculating rhizobia promoted growth

  12. In-situ Monitoring of Plant-microbe Communication to Understand the Influence of Soil Properties on Symbiotic Biological Nitrogen Fixation

    Science.gov (United States)

    Webster, T.; Del Valle, I.; Cheng, H. Y.; Silberg, J. J.; Masiello, C. A.; Lehmann, J.

    2016-12-01

    Plant-microbe signaling is important for many symbiotic and pathogenic interactions. While this signaling often occurs in soils, very little research has evaluated the role that the soil mineral and organic matter matrix plays in plant-microbe communication. One hurdle to these studies is the lack of simple tools for evaluating how soil mineral phases and organic matter influence the availability of plant-produced flavonoids that initiate the symbiosis between nitrogen-fixing bacteria and legumes. Because of their range of hydrophobic and electrostatic properties, flavonoids represent an informative class of signaling molecules. In this presentation, we will describe studies examining the bioavailable concentrations of flavonoids in soils using traditional techniques, such as high-pressure liquid chromatography and fluorescent microbial biosensors. Additionally, we will describe our progress developing a Rhizobium leguminosarum reporter that can be deployed into soils to report on flavonoid levels. This new microbial reporter is designed so that Rhizobium only generates a volatile gas signal when it encounters a defined concentration of flavonoids. By monitoring the output of this biosensor using gas chromatography-mass spectrometry during real time during soil incubations, we are working to establish the impact of soil organic matter, pH, and mineral phases on the reception of these signaling molecules. We expect that the findings from these studies will be useful for recommending soil management strategies that can enhance the communication between legumes and nitrogen fixing bacteria. This research highlights the importance of studying the role of soil as a mediator of plant-microbe communication.

  13. Biological fixation and nitrogen transfer by three legume species in mango and soursop organic orchards;Fixacao biologica e transferencia de nitrogenio por leguminosas em pomar organico de mangueira e gravioleira

    Energy Technology Data Exchange (ETDEWEB)

    Paulino, Gleicia Miranda; Barroso, Deborah Guerra, E-mail: gleiciamiranda@yahoo.com.b, E-mail: deborah@uenf.b [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, RJ (Brazil). Dept. de Fitotecnia; Alves, Bruno Jose Rodrigues; Urquiaga, Segundo; Espindola, Jose Antonio Azevedo, E-mail: bruno@cnpab.embrapa.b, E-mail: urquiaga@cnpab.embrapa.b, E-mail: jose@cnpab.embrapa.b [EMBRAPA Agrobiologia, Seropedica, RJ (Brazil)

    2009-12-15

    The objective of this work was to evaluate the biological nitrogen fixation (BNF) and the N transfer derived from BNF of the legume species - Gliricidia sepium (gliricidia), Crotalaria juncea (sunnhemp) and Cajanus cajan (pigeon pea) - for an intercropped organic orchard with mango and soursop, through the {sup 15}N natural abundance method. The following inter cropping systems were evaluated: mango and soursop with gliricidia; mango and soursop with sunnhemp; mango and soursop with pigeon pea; and mango and soursop as control. Gliricidia showed the highest BNF potential (80%) , followed by sunnhemp (64.5%) and pigeon pea (45%). After two sunnhemp prunes, 149.5 kg ha{sup -1} of N per year were supplied, with 96.5 kg derived from BNF. After three annual prunes, gliricidia supplied 56.4 and 80.3 kg ha{sup -1} of N per year, with 45 and 64 kg derived from BNF, in two consecutive years. The quantity of N supplied to the system was higher than the mango and soursop requirements. Variations in the natural abundance of {sup 15}N were found only in soursop leaves. Gliricidia and sunnhemp were prominent in N transfer, with approximately 22.5 and 40% respectively. Green manuring using gliricidia permits fractioning of the N supply, which is an advantage in N obtention by the fruit trees (author)

  14. Homology of pyridoxal-5'-phosphate-dependent aminotransferases with the cobC (cobalamin synthesis), nifS (nitrogen fixation), pabC (p-aminobenzoate synthesis) and malY (abolishing endogenous induction of the maltose system) gene products.

    Science.gov (United States)

    Mehta, P K; Christen, P

    1993-01-15

    Bacterial deletion mutants have indicated that the gene products of cobC, nifS, pabC and malY participate in important metabolic pathways, i.e. cobalamin synthesis, nitrogen fixation, synthesis of p-aminobenzoate and the regulation of the maltose system, respectively. However, the proteins themselves and their specific functions have not yet been identified. In the course of our studies on the evolutionary relationships among aminotransferases, we have found that the above gene products are homologous to aminotransferases. Profile analysis [Gribskov, M., Lüthy, R. & Eisenberg, D. (1990) Methods Enzymol. 183, 146-159] based on the amino acid sequences of certain subgroups of aminotransferases as probes attributed significant Z scores in the range 5-20 SD to the deduced amino acid sequences of the above gene products as included in the protein data base. Reciprocal profile analyses confirmed the homologies. All known aminotransferases are pyridoxal-5'-phosphate-dependent enzymes and catalyze the reversible transfer of amino groups from amino acids to oxo acids. The sequence homologies suggest that the above gene products are aminotransferases or other closely related pyridoxal-5'-phosphate-dependent enzymes probably catalyzing transformations of amino acids involving cleavage of a bond at C alpha.

  15. Denitrification and N2 fixation in the Pacific Ocean

    Science.gov (United States)

    Deutsch, Curtis; Gruber, Nicolas; Key, Robert M.; Sarmiento, Jorge L.; Ganachaud, Alexandre

    2001-06-01

    We establish the fixed nitrogen budget of the Pacific Ocean based on nutrient fields from the recently completed World Ocean Circulation Experiment (WOCE). The budget includes denitrification in the water column and sediments, nitrogen fixation, atmospheric and riverine inputs, and nitrogen divergence due to the large-scale circulation. A water column denitrification rate of 48±5 Tg N yr -1 is calculated for the Eastern Tropical Pacific using N* [Gruber and Sarmiento, 1997] and water mass age tracers. On the basis of rates in the literature, we estimate sedimentary denitrification to remove an additional 15±3 Tg N yr-1. We then calculate the total nitrogen divergence due to the large scale circulation through the basin, composed of flows through a zonal transect at 32°S, and through the Indonesian and Bering straits. Adding atmospheric deposition and riverine fluxes results in a net divergence of nitrogen from the basin of -4±12 Tg N yr-1. Pacific nitrogen fixation can be extracted as a residual component of the total budget, assuming steady state. We find that nitrogen fixation would have to contribute 59±14 Tg N yr-1 in order to balance the Pacific nitrogen budget. This result is consistent with the tentative global extrapolations of Gruber and Sarmiento [1997], based on nitrogen fixation rates estimated for the North Atlantic. Our estimated mean areal fixation rate is within the range of direct and geochemical rate estimates from a single location near Hawaii [Karl et al., 1997]. Pacific nitrogen fixation occurs primarily in the western part of the subtropical gyres where elevated N* signals are found. These regions are also supplied with significant amounts of iron via atmospheric dust deposition, lending qualitative support to the hypothesis that nitrogen fixation is regulated in part by iron suppy.

  16. Latarjet Fixation

    Science.gov (United States)

    Alvi, Hasham M.; Monroe, Emily J.; Muriuki, Muturi; Verma, Rajat N.; Marra, Guido; Saltzman, Matthew D.

    2016-01-01

    Background: Attritional bone loss in patients with recurrent anterior instability has successfully been treated with a bone block procedure such as the Latarjet. It has not been previously demonstrated whether cortical or cancellous screws are superior when used for this procedure. Purpose: To assess the strength of stainless steel cortical screws versus stainless steel cannulated cancellous screws in the Latarjet procedure. Study Design: Controlled laboratory study. Methods: Ten fresh-frozen matched-pair shoulder specimens were randomized into 2 separate fixation groups: (1) 3.5-mm stainless steel cortical screws and (2) 4.0-mm stainless steel partially threaded cannulated cancellous screws. Shoulder specimens were dissected free of all soft tissue and a 25% glenoid defect was created. The coracoid process was osteomized, placed at the site of the glenoid defect, and fixed in place with 2 parallel screws. Results: All 10 specimens failed by screw cutout. Nine of 10 specimens failed by progressive displacement with an increased number of cycles. One specimen in the 4.0-mm screw group failed by catastrophic failure on initiation of the testing protocol. The 3.5-mm screws had a mean of 274 cycles (SD, ±171 cycles; range, 10-443 cycles) to failure. The 4.0-mm screws had a mean of 135 cycles (SD, ±141 cycles; range, 0-284 cycles) to failure. There was no statistically significant difference between the 2 types of screws for cycles required to cause failure (P = .144). Conclusion: There was no statistically significant difference in energy or cycles to failure when comparing the stainless steel cortical screws versus partially threaded cannulated cancellous screws. Clinical Relevance: Latarjet may be performed using cortical or cancellous screws without a clear advantage of either option. PMID:27158630

  17. Nitrogenated compounds' biofiltration under alternative bacterium fixation substrates Biofiltración de compuestos nitrogenados bajo medios de fijación bacteriana alternativos

    Directory of Open Access Journals (Sweden)

    Carlos Carroza

    2012-09-01

    Full Text Available This study compares the behavior of nitrification (NH4+, NO2- and NO3-, and performance, in terms of the surface TAN conversion rate (STR, volumetric TAN conversion rate (VTR and removal percentage of TAN (PTR among three fixation media of nitrifying bacteria (two alternatives (S1, S2 and one commercial (Co. The experiment was performed in two tests of 42 days each. Three isolated biofiltration systems were built for the experience, to which were added media colonized by bacteria as a "seed" to start the process of nitrification. Ammonium chloride (NH4Cl was attached as source of ammonium in reconditioned freshwater, also gradually adding inorganic carbon (HCO3- to maintain moderate water hardness. The average results for both tests indicate that the substrates S1 and S2 show a statistically similar behavior to the substrate Co (P > 0.05 during the first 33 days (until steady state. For the second test in terms of performance, STR values were 0.40, 0.39, 0.39 g TAN m-2 d-1 recorded for S2 and Co respectively; in terms of PRN, values were 92(3 9־/ and 93% for S1, S2 and Co, respectively. Regarding VTR, values of 72.31, 114.94, and 39.02 g TAN m-3 d-1 were recorded for S2 and Co respectively. Statistical analysis provided that for STR and PRN, no significant differences, were found. But for VTR, statistically significant differences between means were evaluated, registering for the S2 media the highest value of VTR.Se compara el comportamiento del proceso de nitrificación (NH4+, NO2- y NO3-, y el rendimiento, en términos de la tasa superficial de conversión de NAT, tasa volumétrica de conversión de NAT y porcentaje de remoción de NAT (PRN entre tres medios de fijación de bacterias nitrificantes, dos alternativos (S1, S2 y uno comercial (Co. La experiencia se realizó en dos pruebas de 42 días cada una. Se construyeron tres sistemas aislados para la experiencia, a los cuales se adicionaron medios colonizados por bacterias a modo de

  18. Kinetics of Nif gene expression in a nitrogen-fixing bacterium.

    Science.gov (United States)

    Poza-Carrión, César; Jiménez-Vicente, Emilio; Navarro-Rodríguez, Mónica; Echavarri-Erasun, Carlos; Rubio, Luis M

    2014-02-01

    Nitrogen fixation is a tightly regulated trait. Switching from N2 fixation-repressing conditions to the N2-fixing state is carefully controlled in diazotrophic bacteria mainly because of the high energy demand that it imposes. By using quantitative real-time PCR and quantitative immunoblotting, we show here how nitrogen fixation (nif) gene expression develops in Azotobacter vinelandii upon derepression. Transient expression of the transcriptional activator-encoding gene, nifA, was followed by subsequent, longer-duration waves of expression of the nitrogenase biosynthetic and structural genes. Importantly, expression timing, expression levels, and NifA dependence varied greatly among the nif operons. Moreover, the exact concentrations of Nif proteins and their changes over time were determined for the first time. Nif protein concentrations were exquisitely balanced, with FeMo cofactor biosynthetic proteins accumulating at levels 50- to 100-fold lower than those of the structural proteins. Mutants lacking nitrogenase structural genes or impaired in FeMo cofactor biosynthesis showed overenhanced responses to derepression that were proportional to the degree of nitrogenase activity impairment, consistent with the existence of at least two negative-feedback regulatory mechanisms. The first such mechanism responded to the levels of fixed nitrogen, whereas the second mechanism appeared to respond to the levels of the mature NifDK component. Altogether, these findings provide a framework to engineer N2 fixation in nondiazotrophs.

  19. Dinitrogen fixation in aphotic oxygenated marine environments

    Directory of Open Access Journals (Sweden)

    Eyal eRahav

    2013-08-01

    Full Text Available We measured N2 fixation rates from oceanic zones that have traditionally been ignored as sources of biological N2 fixation; the aphotic, fully oxygenated, nitrate (NO3--rich, waters of the oligotrophic Levantine Basin (LB and the Gulf of Aqaba (GA. N2 fixation rates measured from pelagic aphotic waters to depths up to 720 m, during the mixed and stratified periods, ranged from 0.01 nmol N L-1 d-1 to 0.38 nmol N L-1 d-1. N2 fixation rates correlated significantly with bacterial productivity and heterotrophic diazotrophs were identified from aphotic as well as photic depths. Dissolved free amino acid amendments to whole water from the GA enhanced bacterial productivity by 2to 3.5 and N2 fixation rates by ~ 2 fold in samples collected from aphotic depths while in amendments to water from photic depths bacterial productivity increased 2 to 6 fold while N2 fixation rates increased by a factor of 2 to 4 illustrating that both BP an heterotrophic N2 fixation are carbon limited. Experimental manipulations of aphotic waters from the LB demonstrated a significant positive correlation between transparent exopolymeric particles (TEP concentration and N2 fixation rates. This suggests that sinking organic material and high carbon (C: nitrogen (N micro-environments (such as TEP-based aggregates or marine snow could support high heterotrophic N2 fixation rates in oxygenated surface waters and in the aphotic zones. Indeed, our calculations show that aphotic N2 fixation accounted for 37 to 75 % of the total daily integrated N2 fixation rates at both locations in the Mediterranean and Red Seas with rates equal or greater to those measured from the photic layers. Moreover, our results indicate that that while N2 fixation may be limited in the surface waters, aphotic, pelagic N2 fixation may contribute significantly to new N inputs in other oligotrophic basins, yet it is currently not included in regional or global N budgets.

  20. Nitrogen on Mars: Insights from Curiosity

    Science.gov (United States)

    Stern, J. C.; Sutter, B.; Jackson, W. A.; Navarro-Gonzalez, Rafael; McKay, Chrisopher P.; Ming, W.; Archer, P. Douglas; Glavin, D. P.; Fairen, A. G.; Mahaffy, Paul R.

    2017-01-01

    Recent detection of nitrate on Mars indicates that nitrogen fixation processes occurred in early martian history. Data collected by the Sample Analysis at Mars (SAM) instrument on the Curiosity Rover can be integrated with Mars analog work in order to better understand the fixation and mobility of nitrogen on Mars, and thus its availability to putative biology. In particular, the relationship between nitrate and other soluble salts may help reveal the timing of nitrogen fixation and post-depositional behavior of nitrate on Mars. In addition, in situ measurements of nitrogen abundance and isotopic composition may be used to model atmospheric conditions on early Mars.

  1. Efficiency of nitrogen fertilizers for rice

    OpenAIRE

    Roger, Pierre-Armand; I. F. Grant; Reddy, P. M.; Watanabe, I.

    1987-01-01

    The photosynthetic biomass that develops in the floodwater of wetland rice fields affects nitrogen dynamics in the ecosystem. This review summarizes available data on the nature, productivity, and composition of the photosynthetic aquatic biomass, and its major activities regarding the nitrogen cycle, i.e., nitrogen fixation by free living blue-green algae and #Azolla$, nitrogen trapping, nitrogen accumulation at the soil surface, its effect on nitrogen losses by ammonia volatilization, nitro...

  2. Fixação do nitrogênio em alfafa nodulada sob supressão e ressuprimento de fósforo Nitrogen fixation in alfalfa nodulated under phosphorus supression and resupply

    Directory of Open Access Journals (Sweden)

    Fernando Teixeira Gomes

    2002-12-01

    Full Text Available Estudaram-se os efeitos da supressão e do ressuprimento de fósforo (Pi sobre a fixação biológica do nitrogênio atmosférico (N2 em plantas de alfafa cv. Flórida 77 inoculadas com Sinorhizobium meliloti, em diferentes estádios do desenvolvimento vegetativo (V3 e V4 e reprodutivo (R6 e R8. O ensaio foi conduzido em casa de vegetação e as plantas cultivadas em solução nutritiva. O período de supressão de Pi por dez dias reduziu os teores de Pi nas folhas e nos nódulos em todos os estádios do desenvolvimento, enquanto nas raízes essa redução somente foi observada nos estádios vegetativos. Após o ressuprimento de Pi à solução nutritiva por igual período, dez dias, foi observada a recuperação nos teores de Pi nos estádios R6 e R8 para folhas, V3 e V4 para raízes e V3 para os nódulos. A supressão de Pi alterou o processo de fixação do N2, estimado pela concentração de aminoácidos totais nas folhas e nas raízes. Os teores de aminoácidos nas folhas e nas raízes foram significativamente menores nas plantas sob supressão de Pi, em relação aos das plantas do tratamento controle. Após o ressuprimento os teores de aminoácidos totais nas raízes, em todos os estádios do desenvolvimento, alcançaram valores similares àqueles das plantas do tratamento controle, enquanto nas folhas isso só ocorreu nos estádios vegetativos. A supressão de Pi não influenciou a proporção de aminoácidos livres na seiva do xilema.Phosphorus (Pi suppression and resupply effects were studied on nitrogen biological fixation (N2 in alfalfa cv. Florida 77 inoculated with Sinorhizobium meliloti in different vegetative (V3 and V4 and reproductive (R6 and R8 stages. The experiment was carried in greenhouse and the plants cultivated in nutritive solution. The inorganic phosphorus (Pi ten days suppression period decreased Pi levels in leaves and nodules in all growth stages, whereas in the roots this decrease was observed only in the

  3. Bioelectrocatalyzed Nitrogen Fixation under Standard Conditions

    Science.gov (United States)

    2016-11-07

    FEMS Microbiology Letters. 1984, 10, 299- 302. 3. Kumar, Ashok; Tabita, Robert F.; Van Baalen, Chase. High endogenous nitrogenase activity in...115-120. 16. Haaker, H.; Klugkist, J. The bioenergetics of electron transport in nitrogenase. FEMS Microbiology Reviews. 46 (1987) 57-71

  4. Aerobic nitrogen fixation in Azotobacter vinelandii

    NARCIS (Netherlands)

    Haaker, H.B.C.M.

    1977-01-01

    I ELECTRON DONATION TO NITROGENASE

    Paper I shows that the hypothesis, that a high ratio of (NADH + NADPH) / (NAD + + NADP + ) is the source of reducing power for nitrogenase in intact A.vinelandii, is invalid. On the

  5. Enzymology of biological nitrogen fixation. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Burris, R.H.

    1992-05-01

    Two genes involved in the regulation of nitrogenase activity, draT and draG, were cloned and found to be contiguous on the Azospirillum brasilense chromosome. The nifH gene, encoding dinitrogenase reductase, is near to draT with an intervening gap of 1.9 kb. The organization of these genes in Azospirillum lipoferum and Rhodosprillum rubrum is similar, but nifH and draT are separated by only 400 bp in the organisms. A. brasilense draTG is very similar to draTG in R. rubrum with 91.8% similarity and 85.3% identity at the amino acid level. Apparently A. brasilense uses the normal ATG initiation codon for draT, and draG. The genes for A. brasilense were able to restore function to appropriate mutants of R. rubrum. The heterologous expression of A. brasilense draTG in R. rubrum was not fully normal, as it responded more slowly to darkness and more quickly to ammonia than wild type cells. Our mutational analysis of the draTG region of A. brasilense confirms the function of these genes in the regulation of nitrogenase activity, but it also revealed minor but demonstrable differences in the control systems of R. rubrum and A. brasilense.

  6. Fixação biológica de nitrogênio em cultivares de feijão-caupi recomendadas para o Estado de Roraima Biological nitrogen fixation in cowpea cultivars recommended for Roraima state, Brazil

    Directory of Open Access Journals (Sweden)

    Shirlany Ribeiro de Melo

    2009-09-01

    Full Text Available O objetivo deste trabalho foi avaliar a fixação biológica de nitrogênio (FBN em cinco cultivares de feijão-caupi: BR 17 Gurguéia, BRS Guariba, BRS Mazagão, UFRR Grão Verde e Pretinho Precoce 1. Em 2007, foram conduzidos um experimento em casa de vegetação e outro em campo, em esquema fatorial com cinco cultivares de feijão-caupi e quatro fontes de nitrogênio: adubação com ureia (50 kg ha-1 de N, inoculação com a estirpe de Bradyrhizobium BR 3262 ou BR 3267 e um controle absoluto. Aos 35 dias após a emergência das plantas, foram avaliados número e massa de nódulos secos, massa de matéria seca e N total da parte aérea, eficiência nodular em casa de vegetação e rendimento de grãos na colheita em campo. Em casa de vegetação, foi observada alta nodulação e eficiência nodular para ambas as estirpes em todas as cultivares. Em campo, a nodulação e o N total foram menores para todas as cultivares, comparativamente à casa de vegetação, o que indica interferência de fatores edafoclimáticos na FBN. Ocorreu aumento no rendimento de grãos em todas as cultivares em decorrência da inoculação, especialmente com a estirpe BR 3262.The objective of this work was to evaluate the biological nitrogen fixation (BNF in five cowpea cultivars: BR 17 Gurguéia, BRS Guariba, BRS Mazagão, UFRR Grão Verde and Pretinho Precoce 1. In 2007, one greenhouse and one field experiment were performed using a factorial design with five cowpea cultivars and four nitrogen sources: urea fertilization (50 kg ha-1 of N, inoculation with BR 3262 or BR 3267 Bradyrhizobium strains, and absolute control. Thirty-five days after plant emergency, the number and dry weight of nodules, the dry matter weight and the total N of the shoots, the nodule efficiency in greenhouse plants and the grain yield for the field experiment plants were evaluated. In the greenhouse, high nodulation and nodule efficiency were observed for both strains in all cultivars. In

  7. Photographic fixative poisoning

    Science.gov (United States)

    Photographic developer poisoning; Hydroquinone poisoning; Quinone poisoning; Sulfite poisoning ... Quinones Sodium thiosulfate Sodium sulfite/bisulfite Boric acid Photographic fixative can also break down (decompose) to form ...

  8. Changes in Nitrogen Status of Soybean Under Influence of Symbiotically Fixed and Bound Nitrogen

    OpenAIRE

    GADIMOV, A.G.; SAFARALIEV, P.M.

    1999-01-01

    The contribution of different nitrogen sources (nitrate 15 N-NO 3 and symbiotic N-N 2 ) to the nitrogen status of soybean in ontogenesis was studied. Nitrate was assimilated effectively during the vegetative growth, whereas later on the nitrogen-fixation by root nodules became the basic source of nitrogen. The applying of a low dose of nitrate (22.2 mg N/plant) increased the total nitrogen content in the plant and did not depress the nitrogen fixation. Distribution of the symbiotic and nitrat...

  9. Symbiosis revisited: phosphorus and acid buffering stimulate N2 fixation but not Sphagnum growth

    Science.gov (United States)

    van den Elzen, Eva; Kox, Martine A. R.; Harpenslager, Sarah F.; Hensgens, Geert; Fritz, Christian; Jetten, Mike S. M.; Ettwig, Katharina F.; Lamers, Leon P. M.

    2017-03-01

    In pristine Sphagnum-dominated peatlands, (di)nitrogen (N2) fixing (diazotrophic) microbial communities associated with Sphagnum mosses contribute substantially to the total nitrogen input, increasing carbon sequestration. The rates of symbiotic nitrogen fixation reported for Sphagnum peatlands, are, however, highly variable, and experimental work on regulating factors that can mechanistically explain this variation is largely lacking. For two common fen species (Sphagnum palustre and S. squarrosum) from a high nitrogen deposition area (25 kg N ha-1 yr-1), we found that diazotrophic activity (as measured by 15 - 15N2 labeling) was still present at a rate of 40 nmol N gDW-1 h-1. This was surprising, given that nitrogen fixation is a costly process. We tested the effects of phosphorus availability and buffering capacity by bicarbonate-rich water, mimicking a field situation in fens with stronger groundwater or surface water influence, as potential regulators of nitrogen fixation rates and Sphagnum performance. We expected that the addition of phosphorus, being a limiting nutrient, would stimulate both diazotrophic activity and Sphagnum growth. We indeed found that nitrogen fixation rates were doubled. Plant performance, in contrast, did not increase. Raised bicarbonate levels also enhanced nitrogen fixation, but had a strong negative impact on Sphagnum performance. These results explain the higher nitrogen fixation rates reported for minerotrophic and more nutrient-rich peatlands. In addition, nitrogen fixation was found to strongly depend on light, with rates 10 times higher in light conditions suggesting high reliance on phototrophic organisms for carbon. The contrasting effects of phosphorus and bicarbonate on Sphagnum spp. and their diazotrophic communities reveal strong differences in the optimal niche for both partners with respect to conditions and resources. This suggests a trade-off for the symbiosis of nitrogen fixing microorganisms with their Sphagnum

  10. Further analysis of nitrogen fixation (nif) genes in Azotobacter chroococcum: identification and expression in Klebsiella pneumoniae of nifS, nifV, nifM, and nifB genes and localization of nifE/N-, nifU-, nifA- and fixABC-like genes.

    Science.gov (United States)

    Evans, D; Jones, R; Woodley, P; Robson, R

    1988-04-01

    The results presented extend previous investigations on the genetics of nitrogen fixation in Azotobacter chroococcum and indicate that nif- and fix-like DNA is located in at least five different regions of the genome. Region I contains functional copies of nifS,V and M, as well as nifH, D and K, all of which complemented mutants of Klebsiella pneumoniae. In addition, nifE- and/or nifN-like and nifU-like DNA is located in this region. The organization of the nif cluster in region I closely resembles that of K. pneumoniae. though spread over 22 kb as compared with 14 kb. Region II contains a functional nifB gene, which complemented a K. pneumoniae nifB mutant, and seems to be adjacent to ap nifA-like gene. Region III harbours nifH*, encoding a second nitrogenase Fe-protein. Region IV contains a reiteration of nifE- on and/or nifN-like sequences, and DNA homologous to Rhizobium meliloti fixABC is present in region V. The apparent complexity of nifDNA in A. chroococcum is probably related to the two systems for N2-fixation pr present in this organism.

  11. Hydroponic Growth and the Nondestructive Assay for Dinitrogen Fixation 1

    Science.gov (United States)

    Imsande, John; Ralston, Edward J.

    1981-01-01

    Hydroponic growth medium must be well buffered if it is to support sustained plant growth. Although 1.0 millimolar phosphate is commonly used as a buffer for hydroponic growth media, at that concentration it is generally toxic to a soybean plant that derives its nitrogen solely from dinitrogen fixation. On the other hand, we show that 1.0 to 2.0 millimolar 2-(N-morpholino)ethanesulfonic acid, pKa 6.1, has excellent buffering capacity, and it neither interferes with nor contributes nutritionally to soybean plant growth. Furthermore, it neither impedes nodulation nor the assay of dinitrogen fixation. Hence, soybean plants grown hydroponically on a medium supplemented with 1.0 to 2.0 millimolar 2-(N-morpholino)ethanesulfonic acid and 0.1 millimolar phosphate achieve an excellent rate of growth and, in the absence of added fixed nitrogen, attain a very high rate of dinitrogen fixation. Combining the concept of hydroponic growth and the sensitive acetylene reduction technique, we have devised a simple, rapid, reproducible assay procedure whereby the rate of dinitrogen fixation by individual plants can be measured throughout the lifetime of those plants. The rate of dinitrogen fixation as measured by the nondestructive acetylene reduction procedure is shown to be approximately equal to the rate of total plant nitrogen accumulation as measured by Kjeldahl analysis. Because of the simplicity of the procedure, one investigator can readily assay 50 plants individually per day. PMID:16662112

  12. Nitrogen fixation and growth response of Alnus rubra amended with low and high metal content biosolids Crescimento e fixação de nitrogênio por Alnus rubra cultivado sob fertilização com biosólidos com altos e baixos teores de metais

    Directory of Open Access Journals (Sweden)

    Linda S. Gaulke

    2006-08-01

    Full Text Available Forest application of biosolids offers a potential environmentally friendly alternative to landfilling. This two-year investigation was designed to analyze the effects of elevated soil metal concentration resulting from the land application of biosolids on the symbiotic, nitrogen (N fixing relationship between Alnus rubra Bong. (red alder and Frankia. High metal biosolids and a modern-day composted biosolid applied at high loading rates of 250, 500, and 1000 Mg ha-1, were used to represent a worst-case scenario for metal contamination. The high metal biosolids were obtained before the current regulations were formulated and had been lagooned prior to use in this study. Total cadmium (Cd, lead (Pb and zinc (Zn in the high metal biosolids were 45, 958, and 2623 mg kg-1 respectively. These metal concentrations are above current regulatory limits in the US. The compost was made using biosolids that are currently produced and had Cd, Pb and Zn of 0.8, 20 and 160 mg kg-1 respectively. Trees were harvested and analyzed for rate of N fixation (as measured by acetylene reduction activity, biomass, and foliar metals. Soils were analyzed for available N, total carbon and N, pH and total Cd, Pb and Zn. Rates of N fixation were not affected by soil amendment. In year 2, shoot biomass of trees grown in both the compost and high metal amendments were higher than the control. Shoot biomass increased with increasing amount of compost amendments, but decreased with increasing amount of high metal amendments. There was no relationship between soil metal concentration and plant biomass. Foliar Cd and Pb were below detection for all trees and foliar Zn increased with increasing amount of both compost and high metal amendment, with concentrations of 249 mg kg-1 for trees grown in the compost amendment and 279 mg kg-1 for the high metal amendment. The results from this study indicate that the growth of A. rubra benefited from both types of biosolids used in the study

  13. Microbial nitrogen cycling on the Greenland Ice Sheet

    Directory of Open Access Journals (Sweden)

    J. Telling

    2012-07-01

    Full Text Available Nitrogen inputs and microbial nitrogen cycling were investigated along a 79 km transect into the Greenland Ice Sheet (GrIS during the main ablation season in summer 2010. The depletion of dissolved nitrate and production of ammonium (relative to icemelt in cryoconite holes on Leverett Glacier, within 7.5 km of the ice sheet margin, suggested microbial uptake and ammonification respectively. Positive in situ acetylene assays indicated nitrogen fixation both in a debris-rich 100 m marginal zone and up to 5.7 km upslope on Leverett Glacier (with rates up to 16.3 μmoles C2H4 m−2 day−1. No positive acetylene assays were detected > 5.7 km into the ablation zone of the ice sheet. Potential nitrogen fixation only occurred when concentrations of dissolved and sediment-bound inorganic nitrogen were undetectable. Estimates of nitrogen fluxes onto the transect suggest that nitrogen fixation is likely of minor importance to the overall nitrogen budget of Leverett Glacier and of negligible importance to the nitrogen budget on the main ice sheet itself. Nitrogen fixation is however potentially important as a source of nitrogen to microbial communities in the debris-rich marginal zone close to the terminus of the glacier, where nitrogen fixation may aid the colonization of subglacial and moraine-derived debris.

  14. N-2 fixation by non-heterocystous cyanobacteria

    NARCIS (Netherlands)

    Bergman, B.; Gallon, J.R.; Rai, A.N.; Stal, L.J.

    1997-01-01

    Many, though not all, non-heterocystous cyanobacteria can fix N-2. However, very few strains can fix N-2 aerobically. Nevertheless, these organisms may make a substantial contribution to the global nitrogen cycle. In this general review, N-2 fixation by laboratory cultures and natural populations of

  15. N-2 fixation by non-heterocystous cyanobacteria

    NARCIS (Netherlands)

    Bergman, B.; Gallon, J.R.; Rai, A.N.; Stal, L.J.

    1997-01-01

    Many, though not all, non-heterocystous cyanobacteria can fix N-2. However, very few strains can fix N-2 aerobically. Nevertheless, these organisms may make a substantial contribution to the global nitrogen cycle. In this general review, N-2 fixation by laboratory cultures and natural populations of

  16. Nitrogen fixation in seedlings of sabia and leucena grown in the caatinga soils under different vegetation covers; Fixacao de nitrogenio em mudas de sabia e leucena cultivadas em solos da caatinga sob diferentes coberturas vegetais

    Energy Technology Data Exchange (ETDEWEB)

    Santana, Augusto Cesar de Arruda; Nascimento, Luciana Remigio Santos; Silva, Arthur Jorge da; Freitas, Ana Dolores Santiago de, E-mail: augusto.arruda26@yahoo.com.br, E-mail: lucaremigio@yahoo.com.br, E-mail: arthur.floresta.jorge@gmail.com, E-mail: ana.freitas@depa.ufrpe.br [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Departamento de Agronomia

    2013-07-01

    The aim of this study was to evaluate the efficiency differences of populations forming bacteria in legume nodules (BNL) in areas under different vegetation cover in semi-arid Pernambuco state, Brazil, using the methodology of the natural abundance of {sup 15}N to estimate the amount of N fixed symbiotically. The highest levels of nitrogen was found in plants of leucena, and the sabia had levels that did not differ from reference species. The analysis by the technique of 15N showed that in all areas the leucena and the sabia showed signs of 15N different of the average signal of the control plants. The largest nitrogen accumulation was observed for leucena in the Caatinga and Capoeira. The sabia got greater accumulation of N from the Caatinga. The areas of Capoeira and Caatinga has showed the native populations of rhizobia with greater ability to fix nitrogen for the leucena.

  17. 华北地区几种冬闲覆盖作物碳氮蓄积及其对土壤理化性质的影响%Carbon-nitrogen fixation and effects on the physical and chemical properties in winter cover crop in north China

    Institute of Scientific and Technical Information of China (English)

    赵秋; 高贤彪; 宁晓光; 曹卫东

    2011-01-01

    充分利用华北地区冬季空闲耕地及光热资源,以冬闲耕地为对照,研究二月兰(Orychophragmus violaceus)、毛苕(Vicia uillosa Roth.)、黑麦草(Secale cereale L.)、草木樨(Melilotus officinalis)、紫花苜蓿(Medicago satiua L.)5种不同冬闲覆盖作物地上部、地下部以及总碳、氮的蓄积量及其对土壤理化性质的影响.结果表明:5种覆盖作物总干物质质量在4.6~8.82t·hm-2之间,是冬闲田干物质质量的1.6~3.1倍.5种覆盖作物全碳蓄积量在1.80~3.14 t·hm-2之间,是冬闲田碳蓄积量的1.9~3.3倍.与对照相比,各覆盖处理均明显提高氮素蓄积,尤以苜蓿最佳,达到了202.8 kg·hm-2,差异显著.试验选择5种肥覆盖均可提高土壤有机质质量分数(0.90~2.86 g·kg);黑麦草覆盖可明显降低土壤容重(0.08 g·cm3);毛苕和苜蓿栽培均可显著降低土壤pH,但同时土壤盐分有所增加;二月兰和黑麦草栽培在提高土壤水分含量方面表现最好.%In this paper, using idle farmland and light and beat resources in winter in North China, compared winter idle land, effect of five cover crops planted in China's north region as winter cover crops on carbon-nitrogen fixation and effects on the physical and chemical properties. Results showed that dry matter yield of five crops were 4.6-8.82 t·hm-2, respectively, which was significantly higher than that of a fallow field. Carbon fixation of five crops were 1.80-3.14 t·hm-2, Compared with fallow, planting winter cover crops increased Carbon fixation. Compared with fallow, planting winter cover crops increased nitrogen fixation, the better crop was alfalfa, its yield was 202.8 kg·hm-2, respectively. The treatments of five cover crops got significantly higher organic matter contents.Ryegrass cover can significantly reduce soil bulk density; vetch and alfalfa cultivation could significantly reduce soil pH, but increased soil salt; Orychophragmus Violaeeus and ryegrass have shown to

  18. Nitric oxide: a multifaceted regulator of the nitrogen-fixing symbiosis.

    Science.gov (United States)

    Hichri, Imène; Boscari, Alexandre; Castella, Claude; Rovere, Martina; Puppo, Alain; Brouquisse, Renaud

    2015-05-01

    The specific interaction between legumes and Rhizobium-type bacteria leads to the establishment of a symbiotic relationship characterized by the formation of new differentiated organs named nodules, which provide a niche for bacterial nitrogen (N2) fixation. In the nodules, bacteria differentiate into bacteroids with the ability to fix atmospheric N2 via nitrogenase activity. As nitrogenase is strongly inhibited by oxygen, N2 fixation is made possible by the microaerophilic conditions prevailing in the nodules. Increasing evidence has shown the presence of NO during symbiosis, from early interaction steps between the plant and the bacterial partners to N2-fixing and senescence steps in mature nodules. Both the plant and the bacterial partners participate in NO synthesis. NO was found to be required for the optimal establishment of the symbiotic interaction. Transcriptomic analysis at an early stage of the symbiosis showed that NO is potentially involved in the repression of plant defence reactions, favouring the establishment of the plant-microbe interaction. In mature nodules, NO was shown to inhibit N2 fixation, but it was also demonstrated to have a regulatory role in nitrogen metabolism, to play a beneficial metabolic function for the maintenance of the energy status under hypoxic conditions, and to trigger nodule senescence. The present review provides an overview of NO sources and multifaceted effects from the early steps of the interaction to the senescence of the nodule, and presents several approaches which appear to be particularly promising in deciphering the roles of NO in N2-fixing symbioses.

  19. Uptake rate of nitrogen from soil and fertilizer, and N derived from symbiotic fixation in cowpea (Vigna unguiculata (L.) Walp.) and common bean (Phaseolus vulgaris L.) determined using the {sup 15}N isotope; Marcha de absorcao do nitrogenio do solo, do fertilizante e da fixacao simbiotica em feijao-caupi (Vigna unguiculata (L.) Walp.) e feijao-comum (Phaseolus vulgaris L.) determinada com uso de {sup 15}N

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Marciano de Medeiros Pereira; Muraoka, Takashi; Silva, Edson Cabral da [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba SP (Brazil)], e-mail: marcianobrito@hotmail.com, e-mail: muraoka@cena.usp.br, e-mail: ecsilva@cena.usp.br

    2009-07-15

    Common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata (L.) Walp.) are among the main sources of plant protein for a large part of the world population, mainly that of low income, and nitrogen is the main constituent of these proteins. The objectives of this study were to evaluate, through the {sup 15}N-dilution technique and using rice and non-nodulating soybean as control plants, the relative contributions of nitrogen sources (symbiotically fixed N, soil native N and fertilizer N) on the growth of common bean and cowpea and to compare the isotopic technique (ID) with the difference methods (DM) for the evaluation of symbiotic N{sub 2} fixation. The study was carried out in a greenhouse of the Center for Nuclear Energy in Agriculture - CENA/USP, Sao Paulo State, Brazil, using 5 kg pots with a Typic Haplustox (Dystrophic Red-Yellow Latosol). The experiment was arranged in completely randomized blocks, with 16 treatments and three replications, in an 8 x 2 factorial design. The treatments were eight sampling times: 7, 24, 31, 38, 47, 58, 68 and 78 days after sowing (DAS) and two crops: common bean and cowpea. An N rate of 10 mg kg{sup -1} soil was used, as urea, enriched with an excess of 10 % of {sup 15}N atoms. Symbiotic N fixation supplied the bean and cowpea plants with the greatest amount of accumulated N, followed, in decreasing order, by soil and fertilizer. The highest rate of N symbiotic fixation was observed at the pre-flowering growth stage of the bean and cowpea plants. After the initial growth stage, 24 DAS, rice and non nodulating soybean were appropriate control plants to evaluate symbiotic N fixation. There was a good agreement between ID and DM, except in the initial growth stage of the crops. (author)

  20. Cycling of grain legume residue nitrogen

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1995-01-01

    Symbiotic nitrogen fixation by legumes is the main input of nitrogen in ecological agriculture. The cycling of N-15-labelled mature pea (Pisum sativum L.) residues was studied during three years in small field plots and lysimeters. The residual organic labelled N declined rapidly during the initial...... management methods in order to conserve grain legume residue N sources within the soil-plant system....

  1. Anaerobic Nitrogen Fixers on Mars

    Science.gov (United States)

    Lewis, B. G.

    2000-07-01

    The conversion of atmospheric nitrogen gas to the protein of living systems is an amazing process of nature. The first step in the process is biological nitrogen fixation, the transformation of N2 to NH3. The phenomenon is crucial for feeding the billions of our species on Earth. On Mars, the same process may allow us to discover how life can adapt to a hostile environment, and render it habitable. Hostile environments also exist on Earth. For example, nothing grows in coal refuse piles due to the oxidation of pyrite and marcasite to sulfuric acid. Yet, when the acidity is neutralized, alfalfa and soybean plants develop root nodules typical of symbiotic nitrogen fixation with Rhizobium species possibly living in the pyritic material. When split open, these nodules exhibited the pinkish color of leghemoglobin, a protein in the nodule protecting the active nitrogen-fixing enzyme nitrogenase against the toxic effects of oxygen. Although we have not yet obtained direct evidence of nitrogenase activity in these nodules (reduction of acetylene to ethylene, for example), these findings suggested the possibility that nitrogen fixation was taking place in this hostile, non-soil material. This immediately raises the possibility that freeliving anaerobic bacteria which fix atmospheric nitrogen on Earth, could do the same on Mars.

  2. Posterior transodontoid fixation: A new fixation (Kotil technique

    Directory of Open Access Journals (Sweden)

    Kadir Kotil

    2011-01-01

    Full Text Available Anterior odontoid screw fixation or posterior C1-2 fusion techniques are routinely used in the treatment of Type II odontoid fractures, but these techniques may be inadequate in some types of odontoid fractures. In this new technique (Kotil technique, through a posterior bilateral approach, transarticular screw fixation was performed at the non-dominant vertebral artery (VA side and posterior transodontoid fixation technique was performed at the dominant VA side. C1-2 complex fusion was aimed with unilateral transarticular fixation and odontoid fixation with posterior transodontoid screw fixation. Cervical spinal computed tomography (CT of a 40-year-old male patient involved in a motor vehicle accident revealed an anteriorly dislocated Type II oblique dens fracture, not reducible by closed traction. Before the operation, the patient was found to have a dominant right VA with Doppler ultrasound. He was operated through a posterior approach. At first, transarticular screw fixation was performed at the non-dominant (left side, and then fixation of the odontoid fracture was achieved by directing the contralateral screw (supplemental screw medially and toward the apex. Cancellous autograft was scattered for fusion without the need for structural bone graft or wiring. Postoperative cervical spinal CT of the patient revealed that stabilization was maintained with transarticular screw fixation and reduction and fixation of the odontoid process was achieved completely by posterior transodontoid screw fixation. The patient is at the sixth month of follow-up and complete fusion has developed. With this new surgical technique, C1-2 fusion is maintained with transarticular screw fixation and odontoid process is fixed by concomitant contralateral posterior transodontoid screw (supplemental screw fixation; thus, this technique both stabilizes the C1-2 complex and fixes the odontoid process and the corpus in atypical odontoid fractures, appearing as an