WorldWideScience

Sample records for nitrocellulose-bearing missile propellant

  1. Enhanced alkaline hydrolysis and biodegradability studies of nitrocellulose-bearing missile propellant

    Science.gov (United States)

    Sidhoum, Mohammed; Christodoulatos, Christos; Su, Tsan-Liang; Redis, Mercurios

    1995-01-01

    Large amounts of energetic materials which have been accumulated over the years in various manufacturing and military installations must be disposed of in an environmentally sound manner. Historically, the method of choice for destruction of obsolete or aging energetic materials has been open burning or open detonation (OB/OD). This destruction approach has become undesirable due to air pollution problems. Therefore, there is a need for new technologies which will effectively and economically deal with the disposal of energetic materials. Along those lines, we have investigated a chemical/biological process for the safe destruction and disposal of a double base solid rocket propellant (AHH), which was used in several 8 inch projectile systems. The solid propellant is made of nitrocellulose and nitroglycerin as energetic components, two lead salts which act as ballistic modifiers, triacetin as a plasticizer and 2-Nitrodiphenylamine (2-NDPA) as a stabilizer. A process train is being developed to convert the organic components of the propellant to biodegradable products and remove the lead from the process stream. The solid propellant is first hydrolyzed through an enhanced alkaline hydrolysis process step. Following lead removal and neutralization, the digested liquor rich in nitrates and nitrites is found to be easily biodegradable. The digestion rate of the intact ground propellant as well as the release of nitrite and nitrate groups were substantially increased when ultrasound were supplied to the alkaline reaction medium compared to the conventional alkaline hydrolysis. The effects of reaction time, temperature, sodium hydroxide concentration and other relevant parameters on the digestion efficiency and biodegradability have been studied. The present work indicates that the AHH propellant can be disposed of safely with a combination of physiochemical and biological processes.

  2. Pulse Phase Dynamic Thermal Tomography Investigation on the Defects of the Solid-Propellant Missile Engine Cladding Layer

    Science.gov (United States)

    Peng, Wei; Wang, Fei; Liu, Jun-yan; Xiao, Peng; Wang, Yang; Dai, Jing-min

    2018-04-01

    Pulse phase dynamic thermal tomography (PP-DTT) was introduced as a nondestructive inspection technique to detect the defects of the solid-propellant missile engine cladding layer. One-dimensional thermal wave mathematical model stimulated by pulse signal was developed and employed to investigate the thermal wave transmission characteristics. The pulse phase algorithm was used to extract the thermal wave characteristic of thermal radiation. Depth calibration curve was obtained by fuzzy c-means algorithm. Moreover, PP-DTT, a depth-resolved photothermal imaging modality, was employed to enable three-dimensional (3D) visualization of cladding layer defects. The comparison experiment between PP-DTT and classical dynamic thermal tomography was investigated. The results showed that PP-DTT can reconstruct the 3D topography of defects in a high quality.

  3. Development of Advanced Rocket Engine Technology for Precision Guided Missiles

    National Research Council Canada - National Science Library

    Nusca, Michael J; Michaels, R. S

    2004-01-01

    ...) that can power tactical missiles for both current and future combat systems. The use of gel propellants brings the advantages of selectable thrust and the promise of small engine size but also introduces new challenges in combustion control...

  4. Tornado missile simulation and design methodology. Volume 2: model verification and data base updates. Final report

    International Nuclear Information System (INIS)

    Twisdale, L.A.; Dunn, W.L.

    1981-08-01

    A probabilistic methodology has been developed to predict the probabilities of tornado-propelled missiles impacting and damaging nuclear power plant structures. Mathematical models of each event in the tornado missile hazard have been developed and sequenced to form an integrated, time-history simulation methodology. The models are data based where feasible. The data include documented records of tornado occurrence, field observations of missile transport, results of wind tunnel experiments, and missile impact tests. Probabilistic Monte Carlo techniques are used to estimate the risk probabilities. The methodology has been encoded in the TORMIS computer code to facilitate numerical analysis and plant-specific tornado missile probability assessments

  5. Cruise Missile Proliferation

    National Research Council Canada - National Science Library

    Feickert, Andrew

    2005-01-01

    About 75 countries currently possess cruise missiles.1 Many experts predict that anti- ship and land attack cruise missile proliferation will increase in terms of both scope and technological sophistication...

  6. Advanced Missile Signature Center

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Missile Signature Center (AMSC) is a national facility supporting the Missile Defense Agency (MDA) and other DoD programs and customers with analysis,...

  7. Cruise Missile Defense

    National Research Council Canada - National Science Library

    Hichkad, Ravi R; Bolkcom, Christopher

    2004-01-01

    Congress has expressed interest in cruise missile defense for years. Cruise missiles (CMs) are essentially unmanned attack aircraft -- vehicles composed of an airframe, propulsion system, guidance system, and weapons payload...

  8. Cruise Missile Defense

    National Research Council Canada - National Science Library

    Hichkad, Ravi R; Bolkcom, Christopher

    2005-01-01

    Congress has expressed interest in cruise missile defense for years. Cruise missiles (CMs) are essentially unmanned attack aircraft -- vehicles composed of an airframe, propulsion system, guidance system, and weapons payload...

  9. IR sensor design insight from missile-plume prediction models

    Science.gov (United States)

    Rapanotti, John L.; Gilbert, Bruno; Richer, Guy; Stowe, Robert

    2002-08-01

    Modern anti-tank missiles and the requirement of rapid deployment have significantly reduced the use of passive armour in protecting land vehicles. Vehicle survivability is becoming more dependent on sensors, computers and countermeasures to detect and avoid threats. An analysis of missile propellants suggests that missile detection based on plume characteristics alone may be more difficult than anticipated. Currently, the passive detection of missiles depends on signatures with a significant ultraviolet component. This approach is effective in detecting anti-aircraft missiles that rely on powerful motors to pursue high-speed aircraft. The high temperature exhaust from these missiles contains significant levels of carbon dioxide, water and, often, metal oxides such as alumina. The plumes emits strongest in the infrared, 1 to 5micrometers , regions with a significant component of the signature extending into the ultraviolet domain. Many anti-tank missiles do not need the same level of propulsion and radiate significantly less. These low velocity missiles, relying on the destructive force of shaped-charge warhead, are more difficult to detect. There is virtually no ultraviolet component and detection based on UV sensors is impractical. The transition in missile detection from UV to IR is reasonable, based on trends in imaging technology, but from the analysis presented in this paper even IR imagers may have difficulty in detecting missile plumes. This suggests that the emphasis should be placed in the detection of the missile hard body in the longer wavelengths of 8 to 12micrometers . The analysis described in this paper is based on solution of the governing equations of plume physics and chemistry. These models will be used to develop better sensors and threat detection algorithms.

  10. High burn rate solid composite propellants

    Science.gov (United States)

    Manship, Timothy D.

    High burn rate propellants help maintain high levels of thrust without requiring complex, high surface area grain geometries. Utilizing high burn rate propellants allows for simplified grain geometries that not only make production of the grains easier, but the simplified grains tend to have better mechanical strength, which is important in missiles undergoing high-g accelerations. Additionally, high burn rate propellants allow for a higher volumetric loading which reduces the overall missile's size and weight. The purpose of this study is to present methods of achieving a high burn rate propellant and to develop a composite propellant formulation that burns at 1.5 inches per second at 1000 psia. In this study, several means of achieving a high burn rate propellant were presented. In addition, several candidate approaches were evaluated using the Kepner-Tregoe method with hydroxyl terminated polybutadiene (HTPB)-based propellants using burn rate modifiers and dicyclopentadiene (DCPD)-based propellants being selected for further evaluation. Propellants with varying levels of nano-aluminum, nano-iron oxide, FeBTA, and overall solids loading were produced using the HTPB binder and evaluated in order to determine the effect the various ingredients have on the burn rate and to find a formulation that provides the burn rate desired. Experiments were conducted to compare the burn rates of propellants using the binders HTPB and DCPD. The DCPD formulation matched that of the baseline HTPB mix. Finally, GAP-plasticized DCPD gumstock dogbones were attempted to be made for mechanical evaluation. Results from the study show that nano-additives have a substantial effect on propellant burn rate with nano-iron oxide having the largest influence. Of the formulations tested, the highest burn rate was a 84% solids loading mix using nano-aluminum nano-iron oxide, and ammonium perchlorate in a 3:1(20 micron: 200 micron) ratio which achieved a burn rate of 1.2 inches per second at 1000

  11. An Evaluation of Green Propellants for an ICBM Post-Boost Propulsion System

    National Research Council Canada - National Science Library

    Mavris, Dimitri

    2000-01-01

    .... Many low toxicity "green" propellants have been developed which hold the potential of increasing the safety and lowering the operation and support costs of liquid-fueled strategic missile propulsion systems...

  12. The proliferation of ballistic missiles: an aggravating factor of crises

    International Nuclear Information System (INIS)

    Rousset, Valery

    2015-01-01

    After a brief recall of the history of the development of ballistic missiles from World War II, the author discusses the various uses of these missiles, on the one hand by major powers, and on the other hand by other countries like Israel, Pakistan and India, and also Egypt and Iraq. He recalls the uses of these missiles during regional conflicts (Scuds by Iraq) and then discusses the issue of proliferation of ballistic missiles. He notices that most of these weapons are present in the arsenal of major powers under the form of intercontinental missiles, intermediate range weapons or theatre weapons. On the Third World side, proliferation concerns short- and medium-range missiles produced from technology transfers or national programmes. Mobile systems are now present in all conflicts (notably Libya, Syria) and are now based on more advanced technologies for propellers as well as for control and guidance systems. In the last part, the author discusses the perspectives associated with these missiles which are a strong offensive weapon, and are also modernised to carry nuclear warheads or multiple warheads. These evolutions could put the western superiority into question again

  13. Characteristics of tornado generated missiles

    International Nuclear Information System (INIS)

    Bhattacharyya, A.K.; Boritz, R.C.; Niyogi, P.K.

    1975-10-01

    The development of techniques designed to calculate tornado missile velocities is traced. It is shown that there is a need for a consistent method for obtaining missile velocities for a variety of tornado parameters. A consistent method for determination of trajectories and velocities of missiles generated by a tornado is described. The effects of plant layout upon missile impact velocity at a given building are discussed from the point of view of determining the necessary missile barrier characteristics. 19 references

  14. Full-scale tornado-missile impact tests. Interim report

    International Nuclear Information System (INIS)

    Stephenson, A.E.

    1976-04-01

    Seven completed initial tests are described with 4 types of hypothetical tornado-borne missiles (impacting reinforced concrete panels that are typical of walls in nuclear power facilities). The missiles were rocket propelled to velocities currently postulated as being attainable by debris in tornadoes. (1500-pound 35-foot long utility pole; 8-pound 1-inch Grade 60 reinforcing bar; 78-pound 3-inch Schedule 40 pipe; and 743-pound 12-inch Schedule 40 pipe;) The results show that a minimum thickness of 24 inches is sufficient to prevent backface scabbing from normal impacts of currently postulated tornado missiles and that existing power plant walls are adequate for the most severe conditions currently postulated by regulatory agencies. This report gives selected detailed data on the tests completed thus far, including strain, panel velocity, and reaction histories

  15. Ballistic Missile Intercept from UCAV

    Science.gov (United States)

    2011-12-01

    on the DPRK TPD-2 ballistic missile. A 3 degree-of-freedom ( 3DoF ) mathematical model was previously developed and used to simulate the trajectory...Characteristics(estimated) TPD-2 ICBM Data Input to Simulation(From [1]) Figure 3. Reach of TPD-2 Missile A 3DoF ballistic missile

  16. Tornado missile impact study

    International Nuclear Information System (INIS)

    McDonald, J.R.

    1991-01-01

    UCRL-15910 specifies wind and tornado missiles for moderate- and high-hazard DOE facilities. Wall-barrier specimens have been tested at the Tornado Missile Impact Facility at Texas Tech University. The facility has an air-activated tornado missile cannon capable of firing 2x4 timber planks weighing 12 lb at speeds up to 150 mph and 3-in-diameter steel pipes weighing 75 lb at speeds to 7 5 mph. Wall barriers tested to date include reinforced concrete walls from 4-in. to 10-in. thick; 8-in. and 12-in. walls of reinforced concrete masonry units (CMU); two other masonry wall configurations consisting of an 8-in. CMU with a 4-in. clay-brick veneer and a 10-in. composite wall with two wythes of 4-in. clay brick. The impact test series is designed to determine the impact speed that will produce backface spall of each wall barrier. A set of 15 wall sections has been constructed and tested at this time. Preliminary finding suggest that all cells of CMU walls must be grouted to prevent missile penetration. Walls recommended in the workshop on UCRL-15910 provide acceptable protection if cracking can be accepted

  17. Missile defence : An overview

    NARCIS (Netherlands)

    Weimar, P.W.L.

    2012-01-01

    At the present day, an unparalleled number of international actors, be it national governments or non-state groups, have acquired or are seeking to acquire both weapons of mass destruction and the means to deliver them. Those means of delivery can be Ballistic Missiles that can bridge vast – even

  18. Ballistic Missile Propellant Evaluation Test Motor System (Super BATES)

    Science.gov (United States)

    1974-11-25

    ipotcted por HILThe deviT!W ring I;% a,’-+0 f nchdli iron, a pierqetd bla -nk or ring r-1icid forging 4ad testee in like mant-er. .. . ... ." TABLE 9...not t.SO I tfltotlf ý1- Itp o .1 vim *o p.mo m I%0 .’OAs~~o.:I A00-. 404 MkI . sA4 ൪ -IAPat O W4 50W. 010 ALA@ 41-W MAU M.10.38t Win NlorA43 OttO

  19. Acquisition: Acquisition of the Evolved SEASPARROW Missile

    National Research Council Canada - National Science Library

    2002-01-01

    .... The Evolved SEASPARROW Missile, a Navy Acquisition Category II program, is an improved version of the RIM-7P SEASPARROW missile that will intercept high-speed maneuvering, anti-ship cruise missiles...

  20. Perancangan Propeler Self-Propelled Barge

    Directory of Open Access Journals (Sweden)

    Billy Teguh kurniawan

    2013-03-01

    Full Text Available Makalah ini menyampaikan suatu penelitian tentang perancangan propeler yang optimal beserta pemilihan daya mesin yang efisien pada self-propelled barge dengan memperhitungkan besarnya nilai tahanan dari barge tersebut. Dengan penambahan sistem propulsi, diharapkan barge dapat beroperasi dengan lebih efisien dibandingkan saat barge beroperasi menggunakan sistem towing atau ditarik tug boat. Perhitungan tahanan barge dilakukan menggunakan metode Holtrop dan Guldhammer-Harvald sehingga dapat diperhi-tungkan geometri dan jenis propeler yang optimal beserta daya mesin yang efisien untuk barge. Propeler yang dianalisis adalah propeler tipe B-Troost Series, sedangkan variasi yang dilakukan untuk perencanaan propeler pada kajian ini adalah variasi putaran propeler pada rentang antara 310-800 rpm, serta variasi jumlah daun pada rentang tiga, empat, lima, dan enam. Besarnya nilai tahanan self-propelled barge untuk metode Holtrop adalah 105.91 kilonewton, sedangkan hasil per-hitungan dari metode Guldhammer-Harvald didapatkan nilai sebesar 109.14 kilonewton. Tipe propeler yang dipilih setelah dilakukan uji kavitasi adalah tipe Troost Series B4-40, dengan diameter sebesar 2.1 m, efisiensi sebesar 0.421, pitch ratio se-besar 0.591, dengan putaran propeler 400 rpm. Daya mesin yg dibutuhkan barge pada kondisi maksimum (BHPMCR sebesar 1669.5 HP. Dengan mempertimbangkan daya tersebut, maka dipilih mesin jenis Caterpillar tipe Marine 3516B yang mem-punyai daya maksimum sebesar 1285 kilowatt atau 1722.5 horsepower dengan putaran mesin sebesar 1200 rpm

  1. Tornado missile simulation and design methodology. Volume 1: simulation methodology, design applications, and TORMIS computer code. Final report

    International Nuclear Information System (INIS)

    Twisdale, L.A.; Dunn, W.L.

    1981-08-01

    A probabilistic methodology has been developed to predict the probabilities of tornado-propelled missiles impacting and damaging nuclear power plant structures. Mathematical models of each event in the tornado missile hazard have been developed and sequenced to form an integrated, time-history simulation methodology. The models are data based where feasible. The data include documented records of tornado occurrence, field observations of missile transport, results of wind tunnel experiments, and missile impact tests. Probabilistic Monte Carlo techniques are used to estimate the risk probabilities. The methodology has been encoded in the TORMIS computer code to facilitate numerical analysis and plant-specific tornado missile probability assessments. Sensitivity analyses have been performed on both the individual models and the integrated methodology, and risk has been assessed for a hypothetical nuclear power plant design case study

  2. Full-scale impact test data for tornado-missile design of nuclear plants

    International Nuclear Information System (INIS)

    Stephenson, A.E.; Sliter, G.E.

    1977-01-01

    It is standard practice to consider the effects of low-probability impacts of tornado-borne debris (''tornado missiles'' such as utility poles and steel pipes) in the structural design of nuclear power plants in the United States. To provide data that can be used directly in the design procedure, a series of full-scale tornado-missile impact tests was performed. This paper is a brief summary of the results and conclusions from these tests. The tests consisted of reinforced concrete panels impacted by poles, pipes, and rods propelled by a rocket sled. The panels were constructed to current minimum standards and had thicknesses typical of auxiliary buildings of nuclear power plants. A specific objective was the determination of the impact velocities below which the panels do not experience backface scabbing. Another objective was to assess the adequacy of (1) conventional design formulae for penetration and scabbing and (2) conventional design methods for overall structural response. Test missiles and velocities represented those in current design standards. Missiles included utility poles, steel pipes, and steel bars. It is important to interpret the data in this paper in recognition that the test conditions represent conservative assumptions regarding maximum wind speeds, injection of the missile into the wind stream, aerodynamic trajectory, and orientation of missile at impact. Even with the severe assumptions made, the full-scale tests described demonstrate the ability of prototypical nuclear plant walls and roofs to provide adequate protection against postulated tornado-missile impact

  3. Ionospheric effects of the missile destruction on December 9, 2009

    Science.gov (United States)

    Kozlovsky, Alexander; Shalimov, Sergey; Lukianova, Renata

    2014-05-01

    We report on ionosonde and meteor radar observations made in Sodankyla Geophysical Observatory (SGO, 67N, 27E, Finland) on December 9, 2009 during a test launch of the Russian solid propellant military missile. Because of the technical problem the missile was self-destroyed around 07 UT at ionospheric height (170-260 km) over the Kola Peninsula (Russia), at a distance about 500 km to east from the observatory. Products of the explosion, including long-lived ionized aluminum oxides, were spread into the large area and reached the region of SGO meteor radar observations in about 2 hours (around 09 UT). After about 3 hours (around 10 UT) a sporadic E layer presumably composed of the remains was observed close to the zenith of the SGO ionosonde. We present the data and discuss possible mechanisms accounting for both vertical and horizontal transport of the remains. Theoretical estimations suggest that the observed transport could be likely due to thermospheric turbulence.

  4. Fired missile projectiles

    International Nuclear Information System (INIS)

    Williams, K.D.; Gieszl, R.; Keller, P.J.; Drayer, B.P.

    1989-01-01

    This paper reports ferromagnetic properties of fired missile projectiles (bullets, BBs, etc) investigated. Projectile samples were obtained from manufactures, police, and commercial sources. Deflection measurements at the portal of a 1.5-T magnetic field were performed for 47 projectiles. Sixteen bullets were examined in gelatin phantoms for rotation-translation movements as well. Ferromagnetic bullets displayed considerable deflection forces in the presence of the magnetic field and could be rotated to 80 degrees from their previous alignments when introduced perpendicular to the magnetic field in our gelatin phantom experiments. Military bullet calibers appear to pose the greatest ferromagnetic risk. Commercial sporting ammunition is generally nonferromagnetic

  5. Strategic Missile Defense & Nuclear Deterrence

    Science.gov (United States)

    Grego, Laura

    The United States has pursued defenses against nuclear-armed long-range ballistic missiles since at least the 1950s. At the same time, concerns that missile defenses could undermine nuclear deterrence and potentially spark an arms race led the United States and Soviet Union to negotiate limits on these systems. The 1972 Anti-Ballistic Missile Treaty constrained strategic missile defenses for thirty years. After abandoning the treaty in 2002, President George W. Bush began fielding the Ground-based Midcourse Defense (GMD) homeland missile defense system on an extremely aggressive schedule, nominally to respond to threats from North Korea and Iran. Today, nearly fifteen years after its initial deployment, the potential and the limits of this homeland missile defense are apparent. Its test record is poor and it has no demonstrated ability to stop an incoming missile under real-world conditions. No credible strategy is in place to solve the issue of discriminating countermeasures. Insufficient oversight has not only exacerbated the GMD system's problems, but has obscured their full extent, which could encourage politicians and military leaders to make decisions that actually increase the risk of a missile attack against the United States. These are not the only costs. Both Russia and China have repeatedly expressed concerns that U.S. missile defenses adversely affect their own strategic capabilities and interests, particularly taken in light of the substantial US nuclear forces. This in turn affects these countries' nuclear modernization priorities. This talk will provide a technical overview of the US strategic missile defense system, and how it relates to deterrence against non-peer adversaries as well as how it affects deterrence with Russia and China and the long-term prospects for nuclear reductions

  6. 15 CFR 742.5 - Missile technology.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Missile technology. 742.5 Section 742... BASED CONTROLS § 742.5 Missile technology. (a) License requirements. (1) In support of U.S. foreign... establish the existence of a contract. (d) Missile Technology Control Regime. Missile Technology Control...

  7. Tip-modified Propellers

    DEFF Research Database (Denmark)

    Andersen, Poul

    1999-01-01

    The paper deals with tip-modified propellers and the methods which, over a period of two decades, have been applied to develop such propellers. The development is driven by the urge to increase the efficiency of propellers and can be seen as analogous to fitting end plates and winglets to aircraft...... propeller, have efficiency increases of a reasonable magnitude in both open-water and behind-ship conditions....

  8. Monitoring of chemical degradation in propellants using AOTF spectrometer

    Science.gov (United States)

    Feigley, Robert; Jin, Feng; Lorenzo, Jose; Soos, Jolanta; Trivedi, Sudhir

    2004-02-01

    Candidate weapon systems have conservative environmental and service life limits to ensure both performance reliability and ordnance safety. One important element that must be monitored is chemical indicators of propellant degradation. Chemical degradation of energetic compounds in propellants can result in reduced performance and potential instability and auto-ignition in extreme circumstances. The current method for testing for chemical indicators of propellant degradation consists of removing a missile from its sub, disassembling it, and performing HPLC testing. An improvement to the current system is to use near-infrared (NIR) spectral analysis to measure chemical indicators of propellant degradation. An AOTF multi-channel spectrometer with reflectance probes can simultaneously scan different areas of a propellant. A study has shown clear spectral differences in samples of M1MP propellant with two different concentrations of the chemical diphenyl amine (DPA). DPA is very similar to many important chemical indicators of propellant degradation. The spectral differences provide the basis for correlating spectral data to DPA concentration using a multivariate regression technique.

  9. SILVER ZINC MISSILE POWER SUPPLY.

    Science.gov (United States)

    Phase IIb, Task I of the Missile Power Supply which consists of development, fabrication and test of an 8500 watt battery-converter breadboard power ...001 are reported and analyzed. The progress of the work on the Missile Power Supply DC to DC converter breadboard is reported.... supply , was continued during the quarter ending September 30, 1967. The basic parameters used in the design of the 95 volt battery breadboard are

  10. Echoes That Never Were: American Mobile Intercontinental Ballistic Missiles, 1956-1983

    Science.gov (United States)

    2006-05-11

    couplers, brake lines, and wheel sets. 30 The study committee recognized that the biggest problems facing air force engineers were missile alignment and...fuel consumption regenerative turboprop power plants" propelled the plane, and to extend its airborne endurance, it had air-to-air refueling capability...provided survivability through mobility, concealment, and deception. BSD proposed a large grid -like network of 350 pools, each separated by 3,000 feet

  11. Hull-Propeller Interaction and Its Effect on Propeller Cavitation

    DEFF Research Database (Denmark)

    Regener, Pelle Bo

    computational effort. The boundary element method for propeller analysis includes a partially nonlinear cavitation model, which is able to predict partial sheet cavitation and supercavitation. The cavitation behaviour of the conventional propeller and the Kappel propeller from the earlier simulations...

  12. Hyper Velocity Missiles For Defence

    Directory of Open Access Journals (Sweden)

    Faqir Minhas

    2005-10-01

    Full Text Available The paper reviews the history of technical development in the field of hypervelocity missiles. It highlights the fact that the development of anti-ballistic systems in USA, Russia, France, UK, Sweden, and Israel is moving toward the final deployment stage; that USA and Israel are trying to sell PAC 2 and Arrow 2 to India; and that India’s Agni and Prithvi missiles have improved their accuracy, with assistance from Russia. Consequently, the paper proposes enhanced effort for development in Pakistan of a basic hypersonic tactical missile, with 300 KM range, 500 KG payload, and multi-rolecapability. The author argues that a system, developed within the country, at the existing or upgraded facilities, will not violate MTCR restrictions, and would greatly enhance the country’s defense capability. Furthermore, it would provide high technology jobs toPakistani citizens. The paper reinforces the idea by suggesting that evolution in the field of aviation and electronics favors the development of ballistic, cruise and guided missile technologies; and that flight time of short and intermediate range missiles is so short that its interception is virtually impossible.

  13. Increased Range/Mini-Cruise Missile

    National Research Council Canada - National Science Library

    2006-01-01

    Technical Directions Inc. (TDI), Ortonville, Michigan, was asked by the U.S. Army and the U.S. Air Force to improve the efficiency of their J-45 missile engine for the NLOS-LS LAM Loitering Attack Missile...

  14. Cavitation simulation on marine propellers

    DEFF Research Database (Denmark)

    Shin, Keun Woo

    Cavitation on marine propellers causes thrust breakdown, noise, vibration and erosion. The increasing demand for high-efficiency propellers makes it difficult to avoid the occurrence of cavitation. Currently, practical analysis of propeller cavitation depends on cavitation tunnel test, empirical...

  15. Mobile propeller dynamometer validation

    Science.gov (United States)

    Morris, Mason Wade

    With growing interest in UAVs and OSU's interest in propeller performance and manufacturing, evaluating UAV propeller and propulsion system performance has become essential. In attempts to evaluate these propellers a mobile propeller dynamometer has been designed, built, and tested. The mobile dyno has been designed to be cost effective through the ability to load it into the back of a test vehicle to create simulated forward flight characteristics. This allows much larger propellers to be dynamically tested without the use of large and expensive wind tunnels. While evaluating the accuracy of the dyno, several improvements had to be made to get accurate results. The decisions made to design and improve the mobile propeller dyno will be discussed along with attempts to validate the dyno by comparing its results against known sources. Another large part of assuring the accuracy of the mobile dyno is determining if the test vehicle will influence the flow going into the propellers being tested. The flow into the propeller needs to be as smooth and uniform as possible. This is determined by characterizing the boundary layer and accelerated flow over the vehicle. This evaluation was accomplished with extensive vehicle aerodynamic measurements with the use of full-scale tests using a pitot-rake and the actual test vehicle. Additional tests were conducted in Oklahoma State University's low speed wind tunnel with a 1/8-scale model using qualitative flow visualization with smoke. Continuing research on the mobile dyno will be discussed, along with other potential uses for the dyno.

  16. Trident II (D-5) Sea Launched Ballistic Missile UGM 133A (Trident II Missile)

    Science.gov (United States)

    2015-12-01

    TRIDENT II (D5) Sea-Launched Ballistic Missile UGM 133A (TRIDENT II (D5) missile) developed an improved Submarine Launched Ballistic Missile with...The TRIDENT II (D5) missile’s increased payload allows the deterrent mission to be achieved with fewer submarines . Trident II Missile December 2015...needed for the cable builds, which extended the overall time required for build/test, and b) unplanned work was required during the Burn-In Console

  17. Embedded Systems - Missile Detection/Interception

    Directory of Open Access Journals (Sweden)

    Luis Cintron

    2010-01-01

    Full Text Available Missile defense systems are often related to major military resources aimed at shielding a specific region from incoming attacks. They are intended to detect, track, intercept, and destruct incoming enemy missiles. These systems vary in cost, efficiency, dependability, and technology. In present times, the possession of these types of systems is associated with large capacity military countries. Demonstrated here are the mathematical techniques behind missile systems which calculate trajectories of incoming missiles and potential intercept positions after initial missile detection. This procedure involved the use of vector-valued functions, systems of equations, and knowledge of projectile motion concepts.

  18. Tornado-borne missile speeds. Final report

    International Nuclear Information System (INIS)

    Simiu, E.; Cordes, M.

    1976-04-01

    An investigation of the question of tornado-borne missile speeds was carried out, with a view to identify pertinent areas of uncertainty and to estimate credible tornado-borne missile speeds - within the limitations inherent in the present state of the art. The investigation consists of two parts: (1) a study in which a rational model for the missile motion is proposed, and numerical experiments are carried out corresponding to various assumptions on the initial conditions of the missile motion, the structure of the tornado flow, and the aerodynamic properties of the missile; (2) a theoretical and experimental study of tornado-borne missile aerodynamics, conducted by Colorado State Univ. (CSU) to be covered in a separate report by CSU. In the present report, the factors affecting missile motion and their influence upon such motion are examined

  19. Historical development of worldwide guided missiles

    Science.gov (United States)

    Spearman, M. L.

    1983-01-01

    The development of missiles from early history to present time is put in perspective. The influence of World War II in accelerating the development of guided missiles, particularly through German scientists, is discussed. The dispersion of German scientists to other countries and the coupling of their work with native talent to develop guide missiles is traced. Particular emphasis is placed on the evolution of the missile in the U.S. and the U.S.S.R. Since the Soviets possess what is probably the world's most complete array of dedicated missile system types, their known inventory is reviewed. Some philosophical observations of missile design trends and missile purposes are made as related to the interests of various countries.

  20. Generation of missiles by tornadoes

    International Nuclear Information System (INIS)

    1974-11-01

    Available data on tornado wind velocities and wind distribution are incorporated into a mathematical model of the tornado wind field. The mathematical model is then used to predict the time-history of motion of a potential missile in a tornado wind field. (U.S.)

  1. PARAMETER DESIGN PROPELLER KAPAL

    Directory of Open Access Journals (Sweden)

    Muhammad Ridwan

    2012-04-01

    Full Text Available   Designer propeller kapal harus mempertimbangkan berbagai parameter untuk menghasilkan bentuk, type dan ukuran propeller yang memiliki nilai  efektifitas dan effisiensi propulsi tinggi. Propulsi kapal merupakan faktor yang mendominasi  operasional kapal, karena pemakaian bahan bakar untuk operasional propulsi kapal merupakan 42% dari total cost operasional kapal dan merupakan added value yang akan diperoleh oleh perusahaan pelayaran. Pertimbangan parameter desain propeller argonomis dapat mendukung tujuan di atas sehingga dapat menurunkan pemakaian bahan bakar hingga 20 % saat kapal dioperaionalkan.

  2. Performance optimization of marine propellers

    Directory of Open Access Journals (Sweden)

    Chang-Sup Lee

    2010-12-01

    In this paper, a design method for increasing performance of the marine propellers including the WCT propeller is suggested. It is described to maximize the performance of the propeller by adjusting expanded areas of the propeller blade. Results show that efficiency can be increased up to over 2% through the suggested design method.

  3. Autonomous Propellant Loading Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The AES Autonomous Propellant Loading (APL) project consists of three activities. The first is to develop software that will automatically control loading of...

  4. Modeling Propellant Tank Dynamics

    Data.gov (United States)

    National Aeronautics and Space Administration — The main objective of my work will be to develop accurate models of self-pressurizing propellant tanks for use in designing hybrid rockets. The first key goal is to...

  5. Issues in national missile defense

    Energy Technology Data Exchange (ETDEWEB)

    Canavan, G.H.

    1998-12-01

    Strategic missiles and weapons are proliferating rapidly; thus, the US and its Allies are likely to face both capable bilateral threats and multilateral configurations with complex coalitions for which defenses could be essential for stability. Current hit-to-kill interceptor and radar and infrared detection, track, and discrimination technology should suffice for limited threats, but it is necessary to meet those threats in time while maintaining growth potential for the more sophisticated threats likely to follow. National Missile Defense faces a confusing array of threats, programs, and alternatives, but the technologies in development are clearly an appropriate first step towards any of them. They are likely to succeed in the near term; the challenge is to retain flexibility to provide needed options in the mid and long terms.

  6. Ionospheric effects of the missile destruction on 9 December 2009

    Science.gov (United States)

    Kozlovsky, Alexander; Shalimov, Sergey; Lukianova, Renata; Lester, Mark

    2014-05-01

    We report on ionosonde and meteor radar observations made in Sodankylä Geophysical Observatory (SGO, 67°22'N, 26°38'E, Finland) on 9 December 2009, during a test launch of the Russian solid propellant military missile. Due to a technical problem, the missile was self-destroyed around 07 UT at an ionospheric height (near 200 km altitude) over the Kola Peninsula (Russia), at a distance about 500 km to east from the observatory. Products of the explosion were spread into a large area and reached the region of SGO meteor radar observations in about 2 h (around 09 UT). After about 3 h (around 10 UT), a sporadic E layer presumably composed of the remains including long-lived metallic (aluminum and its oxides) ions, was observed near the zenith of the SGO ionosonde. We discuss possible mechanisms accounting for transport of the remains. (1) Since the event occurred during a long-lasting period of extremely low solar and magnetic activity, the ionospheric electric field was unlikely to play a substantial role in the transport of the remains and sporadic E layer formation. (2) The horizontal transport of the remains cannot be explained by the neutral winds based on empirical models. (3) Theoretical estimations suggest that the observed transport could be due to thermospheric turbulence.

  7. Acceleration effects on missile aerodynamics

    CSIR Research Space (South Africa)

    Gledhill, Irvy MA

    2010-09-01

    Full Text Available on the typical length scale L of the aerodynamic object under study: aeroelastic deflections [4][5], control surface deflections [6], dynamic wedges in wind tunnels [7], and the release of stores from aircraft [8] 2. calculation of dynamic derivatives using c... of the program required for absolute velocities were also found to be minor. Validation test cases have included a spinning plate, constant velocity airfoil, and oscillating airfoil [1]. Test case: rapidly accelerating missile We consider a simple...

  8. Development Feasibility of Missile Datcom

    Science.gov (United States)

    1981-10-01

    NORMAL-FORCE-CURVE SLOPE, X=0 165 88 CORRELATION OF NORMAL-FORCE-CURVE SLOPE AT SUPERSONIC SPEEDS FOR GOTHIC AND OGEE PLANFORMS 166 89 METHODS FOR...FIN CROSS-FLOW DRAG 167 90 PREDICTION OF NONLINEAR LIFT OF DOUBLE-DELTA PLANFORMS AT SUBSONIC SPEEDS 169 91 CORRELATION OF LIFT CURVES OF GOTHIC ...methods are available in the literature for missile configurations, there is no collection of these techniques in a form suitable for efficient

  9. Countering Air and Missile Threats

    Science.gov (United States)

    2012-03-23

    special instructions VID visual identification VR visual route Legend NOTES: 1. Update IDs at any level in the ID matrix; IDBO or POO considerations...nations. Such weapons provide an offensive capability and, when mated with a WMD, may give a nation the ability to deter a potential adversary by...the final stages of preparing the weapon for operations is mating the warhead to the missile body. This may be a training event so it can be

  10. Soviet debate on missile defense

    Energy Technology Data Exchange (ETDEWEB)

    Parrott, B.

    1987-04-01

    Although the Strategic Defense Initiative (SDI) is meant to cope with the danger of a Soviet nuclear attack, the recent US debate over SDI has paid surprisingly little attention to Soviet views of ballistic missile defense. Despite the existence of a substantial body of pertinent scholarship, the debate has failed to take adequate account of major changes in Soviet ballistic missile defense policy since the mid-1960s. It has also neglected the links between current Soviet military policy and broader Soviet political and economic choices. The Soviets regard SDI not as a novel undertaking to reduce the risks of nuclear war but as an extension of the geopolitical competition between the superpowers. This competition has been dominated in the 1980s, in the Soviet view, by sharply increased US assertiveness and the decline of detente. Viewing SDI as a manifestation of these general trends, Soviet decision makers find the prospect of an unregulated race in ballistic missile defenses and military space technologies deeply unsettling. The deterioration of superpower relations has raised serious doubts in Moscow about the wisdom of Soviet external policy during the 1970s and has provoked sharp internal differences over policy toward the US. Already highly suspicious of the Reagan administration, the elite is united by a general conviction that SDI is an American gambit that may ultimately undercut past Soviet strategic gains and pose a grave new threat to Soviet security. 14 references.

  11. Options for Deploying Missile Defenses in Europe

    Science.gov (United States)

    2009-02-01

    efforts at missile defense (such as the 1960s- era Nike -Zeus program) were aimed at countering the vast Soviet missile arsenal. Recent efforts are...on unclassified performance parameters for the various radars and interceptors and assumed that the systems would work “as advertised .” (A...develop defenses against ballistic missiles. Early U.S. efforts (such as the 1960s-era Nike -Zeus program) were aimed at countering the Soviet Union’s

  12. Missile Electro-Optical Countermeasures Simulation Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory comprises several hardware-in-the-loop missile flight simulations designed specifically to evaluate the effectiveness of electro-optical air defense...

  13. Propeller TAP flap

    DEFF Research Database (Denmark)

    Thomsen, Jørn Bo; Bille, Camilla; Wamberg, Peter

    2013-01-01

    The aim of this study was to examine if a propeller thoracodorsal artery perforator (TAP) flap can be used for breast reconstruction. Fifteen women were reconstructed using a propeller TAP flap, an implant, and an ADM. Preoperative colour Doppler ultrasonography was used for patient selection...... to identify the dominant perforator in all cases. A total of 16 TAP flaps were performed; 12 flaps were based on one perforator and four were based on two. A permanent silicone implant was used in 14 cases and an expander implant in two. Minor complications were registered in three patients. Two cases had...... major complications needing additional surgery. One flap was lost due to a vascular problem. Breast reconstruction can be performed by a propeller TAP flap without cutting the descending branch of the thoracodorsal vessels. However, the authors would recommend that a small cuff of muscle is left around...

  14. Disposal of Liquid Propellants

    Science.gov (United States)

    1990-03-13

    SYNTHESIS OF LIQUID PROPELLANT Hydroxylammonium nitrate (HAN), prepared via the electrolysis of nitric acid, is commercially available as a high-purity...stack gases, and brine solution from the wet scrubber (82). 5 Applicability/Limitation Most types of solid, liquid, and gaseous organic wastes or

  15. Hydrodynamics of Ship Propellers

    DEFF Research Database (Denmark)

    Breslin, John P.; Andersen, Poul

    of an intermittently cavitating propeller in a wake and the pressures and forces it exerts on the shaft and on the ship hull is examined. A final chapter discusses the optimization of efficiency of compound propulsors. The authors have taken care to clearly describe physical concepts and mathematical steps. Appendices...

  16. Low toxicity rocket propellants

    NARCIS (Netherlands)

    Wink, J.

    2014-01-01

    Hydrazine (N2H4) and its hypergolic mate nitrogen tetroxide (N2O4) are used on virtually all spacecraft and on a large number of launch vehicles. In recent years however, there has been an effort in identifying and developing alternatives to replace hydrazine as a rocket propellant.

  17. The Cooperative Ballistic Missile Defence Game

    NARCIS (Netherlands)

    Evers, L.; Barros, A.I.; Monsuur, H.

    2013-01-01

    The increasing proliferation of ballistic missiles and weapons of mass destruction poses new risks worldwide. For a threatened nation and given the characteristics of this threat a layered ballistic missile defence system strategy appears to be the preferred solution. However, such a strategy

  18. Principles of Guided Missiles and Nuclear Weapons.

    Science.gov (United States)

    Naval Personnel Program Support Activity, Washington, DC.

    Fundamentals of missile and nuclear weapons systems are presented in this book which is primarily prepared as the second text of a three-volume series for students of the Navy Reserve Officers' Training Corps and the Officer Candidate School. Following an introduction to guided missiles and nuclear physics, basic principles and theories are…

  19. Have Adversary Missiles Become a Revolution in Military Affairs?

    Science.gov (United States)

    2014-10-01

    SI LE FO RC ES Figure. Trends in missiles and missile defense. The global gap between our mis- sile defense and our adversaries’ missile capabilities...Antiballistic Missiles,” Kuang Chiao Ch- ing, 16 August 1998, 54–61. 29. Toshi Yoshihara and James R. Holmes, Red Star over the Pacific: China’s Rise

  20. Air Drag Effects on the Missile Trajectories

    Directory of Open Access Journals (Sweden)

    F. A. Abd El-Salam

    2011-01-01

    Full Text Available The equations of motion of a missile under the air drag effects are constructed. The modified TD88 is surveyed. Using Lagrange's planetary equations in Gauss form, the perturbations, due to the air drag in the orbital elements, are computed between the eccentric anomalies of the burn out and the reentry points [Ebo,2π−Ebo], respectively. The range equation is expressed as an infinite series in terms of the eccentricity e and the eccentric anomaly E. The different errors in the missile-free range due to the drag perturbations in the missile trajectory are obtained.

  1. The Full Costs of Ballistic Missile Defense

    National Research Council Canada - National Science Library

    Arrow, Kenneth

    2003-01-01

    ... and, therefore, are expensive. The Bush administration's interest in building a comprehensive, or "layered," missile defense system could lead to extraordinary defense budget costs over the next twenty to thirty years...

  2. De Nederlandse missile defence capaciteit: Strategisch onmisbaar

    NARCIS (Netherlands)

    Weimar, P.W.L.

    2013-01-01

    Surface based air & missile defence behelst enerzijds de verdediging tegen conventionele luchtdreigingen, zoals vliegtuigen, helikopters en onbemande vliegtuigen (luchtverdediging). Aan de andere kant houdt het de verdediging tegen ballistische raketten en kruisraketten in (raketverdediging). De

  3. Deploying Missile Defense: Major Operational Challenges

    National Research Council Canada - National Science Library

    Bunn, M

    2004-01-01

    By October 2004, the United States will have begun initial deployment of a missile defense capability albeit a modest, limited, and not completely proven one to defend the homeland against a limited...

  4. Tornado missile simulation and risk analysis

    International Nuclear Information System (INIS)

    Twisdale, L.A.; Dunn, W.L.; Chu, J.

    1978-01-01

    Mathematical models of the contributing events to the tornado missile hazard at nuclear power plants have been developed in which the major sources of uncertainty have been considered in a probabilistic framework. These models have been structured into a sequential event formalism which permits the treatment of both single and multiple missile generation events. A simulation computer code utilizing these models has been developed to obtain estimates of tornado missile event likelihoods. Two case studies have been analyzed; the results indicate that the probability of a single missile from the sampling population impacting any of the plant's targets is less then about 10 -7 per reactor-year. Additional work is needed for verification and sensitivity study

  5. Missile non-proliferation: an alternative approach

    International Nuclear Information System (INIS)

    Delory, Stephane

    2011-01-01

    In this report, the author first proposes an overview of the notion of missile prohibition. He notices that the association between weapons of mass destruction and missiles is a prelude to the legitimacy of missile control, notably within the framework of the Missile Technology Control Regime or MTCR. He also comments the notion of total ban. In a second part, the author analyses and discusses the limitations of the control of technology diffusion. He discusses the role of the MTCR, comments the evolution of this regime with the taking of China and Russia into consideration, the impacts of national implementations of export regimes on the MTCR, and economic aspects of control implementation. In the next part, the author addresses other kinds of limitations, i.e. those related with capacity evolutions of proliferating States. The last part addresses the evolution towards a new definition of approach to missile non-proliferation, notably in terms of perception of missile roles and of technology transfer controls

  6. Reinforced concrete behaviour due to missile impact

    International Nuclear Information System (INIS)

    Alderson, M.A.H.G.; Bartley, R.; O'Brien, T.P.

    1977-01-01

    The assessment of the safety of nuclear reactors has necessitated the study of the effect of missiles on reinforced concrete structures. A programme of experimental work has been initiated within the United Kingdom to resolve the problem of design for the shear stresses produced by the impact loading. The basic scale of the experiments has been chosen to be 1/25th and both hard and soft missiles have been employed. The missiles are launched by a compressed air gun towards a vertical, circular, reinforced concrete target, high speed cine photography and deflection gauges being employed to record the missile behaviour and response of the target. Hard missiles have initially been plane circular discs and soft missiles have been developed to simulate the scaled load/time characteristic of a MRCA impacting at a velocity of 215 m/s. Targets of different overall thickness and varying amounts of reinforcement have been tested. A theoretical analysis of the impact phenomena has also been carried out using computer programs based on finite difference methods (Dynamic Relaxation and PISCES 2DL). The paper outlines the experimental work performed and discusses the analytical assessment by comparison with the test results. (Auth.)

  7. Propellant combustion at low pressures

    Energy Technology Data Exchange (ETDEWEB)

    Schoyer, H.F.R.; Korting, P.A.O.G.

    1986-03-01

    The combustion characteristics of a family of composite propellants have been investigated at low (i.e., subatmospheric) pressures and three different temperatures. Although a de Vieille-type burning rate law appeared to be applicable, the burning rate exponent and coefficient vary strongly with the initial temperatures. Indications are that this is primarily due to the presence of nitroguanidine and oxalate. Combustion efficiency proved to be poor. At low pressures, all propellants are susceptible to irregular burning: above 50 kPa oscillatory combustion was hardly observed. All propellants exhibit distinct preferred frequencies for oscillatory combustion. These frequencies, being much lower than the acoustic frequency of the test system, are associated with the combustion characteristics of the propellants. They depend strongly on the combustion pressure and the initial propellant temperature.

  8. Cryogenic Propellant Storage and Transfer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Cryogenic Propellant Storage and Transfer project will demonstrate the capability to safely and efficiently store, transfer and measure cryogenic propellants,...

  9. Impact load time histories for viscoelastic missiles

    International Nuclear Information System (INIS)

    Stoykovich, M.

    1977-01-01

    Generation of the impact load time history at the contact point between a viscoelastic missile and its targets is presented. In the past, in the case of aircraft striking containment shell structure, the impact load history was determined on the basis of actual measurements by subjecting a rigid wall to aircraft crash. The effects of elastic deformation of the target upon the impact load time history is formulated in this paper. The missile is idealized by a linear mass-spring-dashpot combination using viscoelastic models. These models can readily be processed taking into account the elastic as well as inelastic deformations of the missiles. The target is assumed to be either linearly elastic or rigid. In the case of the linearly elastic target, the normal mode theory is used to express the time-dependent displacements of the target which is simulated by lumped masses, elastic properties and dashpots in discrete parts. In the case of Maxwell viscoelastic model, the time-dependent displacements of the missile and the target are given in terms of the unknown impact load time history. This leads to an integral equation which may be solved by Laplace transformation. The normal mode theory is provided. Examples are given for bricks with viscoelastic materials as missiles against a rigid target. (Auth.)

  10. Probability and containment of turbine missiles

    International Nuclear Information System (INIS)

    Yeh, G.C.K.

    1976-01-01

    With the trend toward ever larger power generating plants with large high-speed turbines, an important plant design consideration is the potential for and consequences of mechanical failure of turbine rotors. Such rotor failure could result in high-velocity disc fragments (turbine missiles) perforating the turbine casing and jeopardizing vital plant systems. The designer must first estimate the probability of any turbine missile damaging any safety-related plant component for his turbine and his plant arrangement. If the probability is not low enough to be acceptable to the regulatory agency, he must design a shield to contain the postulated turbine missiles. Alternatively, the shield could be designed to retard (to reduce the velocity of) the missiles such that they would not damage any vital plant system. In this paper, some of the presently available references that can be used to evaluate the probability, containment and retardation of turbine missiles are reviewed; various alternative methods are compared; and subjects for future research are recommended. (Auth.)

  11. Acquisition: Acquisition of Targets at the Missile Defense Agency

    National Research Council Canada - National Science Library

    Ugone, Mary L; Meling, John E; James, Harold C; Haynes, Christine L; Heller, Brad M; Pomietto, Kenneth M; Bobbio, Jaime; Chang, Bill; Pugh, Jacqueline

    2005-01-01

    Who Should Read This Report and Why? Missile Defense Agency program managers who are responsible for the acquisition and management of targets used to test the Ballistic Missile Defense System should be interested in this report...

  12. Information Management Principles Applied to the Ballistic Missile Defense System

    National Research Council Canada - National Science Library

    Koehler, John M

    2007-01-01

    .... Similarly several military systems with the single mission of missile defense have evolved in service stovepipes, and are now being integrated into a national and global missile defense architecture...

  13. North Korean Ballistic Missile Threat to the United States

    National Research Council Canada - National Science Library

    Hildreth, Steven A

    2007-01-01

    ... so. The Administration will ask the 110th Congress to fund a National Missile Defense (NMD) site in Europe, which some analysts argue is needed because of the threat of North Korean ballistic missiles to Europe...

  14. The probability of a tornado missile hitting a target

    International Nuclear Information System (INIS)

    Goodman, J.; Koch, J.E.

    1983-01-01

    It is shown that tornado missile transportation is a diffusion Markovian process. Therefore, the Green's function method is applied for the estimation of the probability of hitting a unit target area. This propability is expressed through a joint density of tornado intensity and path area, a probability of tornado missile injection and a tornado missile height distribution. (orig.)

  15. 75 FR 43156 - Federal Advisory Committee; Missile Defense Advisory Committee

    Science.gov (United States)

    2010-07-23

    ... Office of the Secretary Federal Advisory Committee; Missile Defense Advisory Committee AGENCY: Missile... Advisory Committee Act of 1972 (5 U.S.C., Appendix, as amended) and the Government in the Sunshine Act of... Missile Defense Advisory Committee will meet on August 4 and 5, 2010, in Washington, DC. DATES: The...

  16. Rocket and Missile Container Engineering Guide

    Science.gov (United States)

    1982-01-01

    complex equations which may, for the sake of expe- diency, be circumvented. To satisfy the intent of this handbook, it will suffice merely to be aware of...tabulates dm given h and Gm. 1-11 RATE OFTRAVEL To attain a required level of protection (G,.- factor), it has been shown that the item to be pro- tected...706-298 This page intentionally left blank. - 2-2 MISSILE OR ROCKET PROFILE SHILLELAGH • REDEYE LAUNCHER (CONTAINS .. MISSILE) M41A2 M41A3

  17. Application of theory to propeller design

    Science.gov (United States)

    Cox, G. G.; Morgan, W. B.

    1974-01-01

    The various theories concerning propeller design are discussed. The use of digital computers to obtain specific blade shapes to meet appropriate flow conditions is emphasized. The development of lifting-line and lifting surface configurations is analyzed. Ship propulsive performance and basic propeller design considerations are investigated. The characteristics of supercavitating propellers are compared with those of subcavitating propellers.

  18. Cryogenic Propellant Storage and Transfer

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Flight Demonstration development has been canceled in favor of a ground test bed development for of passive/active cryogenic propellant storage, transfer, and...

  19. Aircraft Propeller Hub Repair

    Energy Technology Data Exchange (ETDEWEB)

    Muth, Thomas R [ORNL; Peter, William H [ORNL

    2015-02-13

    The team performed a literature review, conducted residual stress measurements, performed failure analysis, and demonstrated a solid state additive manufacturing repair technique on samples removed from a scrapped propeller hub. The team evaluated multiple options for hub repair that included existing metal buildup technologies that the Federal Aviation Administration (FAA) has already embraced, such as cold spray, high velocity oxy-fuel deposition (HVOF), and plasma spray. In addition the team helped Piedmont Propulsion Systems, LLC (PPS) evaluate three potential solutions that could be deployed at different stages in the life cycle of aluminum alloy hubs, in addition to the conventional spray coating method for repair. For new hubs, a machining practice to prevent fretting with the steel drive shaft was recommended. For hubs that were refurbished with some material remaining above the minimal material condition (MMC), a silver interface applied by an electromagnetic pulse additive manufacturing method was recommended. For hubs that were at or below the MMC, a solid state additive manufacturing technique using ultrasonic welding (UW) of thin layers of 7075 aluminum to the hub interface was recommended. A cladding demonstration using the UW technique achieved mechanical bonding of the layers showing promise as a viable repair method.

  20. Area Ballistic Missile Defense Coordinator and the Airborne Laser: Creating Ballistic Missile Defense Unity of Effort

    National Research Council Canada - National Science Library

    Oms, Pedro

    2003-01-01

    Theater Ballistic Missile Defense (TBMD) is a challenging mission area for any Theater Combatant or Joint Task Force Commander, and one he must focus on to mitigate the strategic effects this "terror" weapon can impart...

  1. An analysis of Common Missile and TOW 2B using the Janus combat simulation

    OpenAIRE

    Kruse, Rachel A.

    2002-01-01

    Approved for public release; distribution is unlimited. The US Army is currently developing a new close combat missile system, Common Missile, to replace the aging Tubelaunched, Optically-tracked, Wire-guided (TOW 2B) and HELLFIRE missile systems. The Common Missile will have a greater range and improved target acquisition capability over the current missile systems. The purpose of this thesis is to compare the performance of the Common Missile and the TOW 2B missile in a simulated ground ...

  2. Minimum variation guidance laws for interceptor missiles

    NARCIS (Netherlands)

    Weiss, M.; Shima, T.

    2014-01-01

    This paper introduces a new approach to guidance law design using linear quadratic optimal control theory, minimizing throughout the engagement the variation of the control input as well as the integral control effort. The guidance law is derived for arbitrary order missile dynamics and target

  3. Sustainability Of The 21M Missile Maintainer

    Science.gov (United States)

    2016-02-16

    PROFESSIONAL STUDIES PAPER: SUSTAINABILITY OF THE 21M MISSILE MAINTAINER LIEUTENANT COLONEL DAVID S. MILLER AIR...of the health and sustainability of the ICBM maintenance officer career field will reveal conclusions and recommendations that could assist the...maintenance career field as healthy and sustainable , and ready to flourish. However, the evidence presented in this paper will show otherwise. To

  4. X-Ray Fluorescence Analysis of Composite Propellants for Army Missile Systems

    Science.gov (United States)

    1977-06-03

    intensity measurements were made by a fixed count technique, and pulse height discrimination was used to increase the peak-to-background ratios for PBAA...Pulse height analysis was used to reduce background and increase the piak-to-background ratios for aluminum and sulfur determinations. Pulse height ... discrimination was less effective for sulfur K measure- Q men:s, however, because the chlorine K fluorescence from the sodium r .- TABLE 2

  5. Spray and Combustion of Gelled Hypergolic Propellants for Future Rocket and Missile Engines

    Science.gov (United States)

    2014-08-13

    lubrication that occurs when two opposing bearing surfaces are completely separated by a fluid film. The term “gas film lubrication” is used here to...stored for months at a time before being used in the fleet. This state of so-called hibernation proves to be unrealistic for cryogens and therefore

  6. Aspects of Propeller Developements for a Submarine

    DEFF Research Database (Denmark)

    Andersen, Poul; kappel, Jens Julius; Spangenberg, Eugen

    2009-01-01

    Design and development of propellers for submarines are in some ways different from propellers for surface vessels. The most important demand is low acoustic signature that has priority over propeller efficiency, and the submarine propeller must be optimized with respect to acoustics rather than...... efficiency. Moreover the operating conditions of a submarine propeller are quite different. These aspects are discussed as well as the weighing of the various propeller parameters against the design objectives. The noise generated by the propeller can be characterized as thrust noise due to the inhomogeneous...... wake field of the submarine, trailing-edge noise and noise caused by turbulence in the inflow. The items discussed are demonstrated in a case study where a propeller of the Kappel type was developed. Three stages of the development are presented, including a design of an 8-bladed propeller where...

  7. Experimental Performance of a Novel Trochoidal Propeller

    Science.gov (United States)

    Roesler, Bernard; Epps, Brenden

    2015-11-01

    In the quest for energy efficiency in marine transportation, a promising marine propulsor concept is the trochoidal propeller. We have designed and tested a novel trochoidal propeller using a sinusoidal blade pitch function. The main results presented are measurements of thrust and torque, as well as the calculated efficiency, for a range of advance coefficients. The experimental data show narrow 95% confidence bounds, demonstrating high accuracy and repeatability in the experimental methods. We compare our sinusoidal-pitch trochoidal propeller with prior cross-flow propellers, as well as a representative screw propeller. While the efficiency of our propeller exceeds that of the cycloidal-pitch trochoidal propeller, it is slightly lower than the efficiencies of the other propellers considered. We also present a theoretical model that can be used to further explore and optimize such trochoidal propellers, leading to new avenues for improvements in marine propulsion systems.

  8. Marine propellers: the latest topics.

    Science.gov (United States)

    Kubo, H

    1996-02-01

    The impeller of the axial flow blood pump in an artificial heart is essentially based on the same principle as a marine propeller. Impellers designed for artificial hearts and marine propellers have a number of points in common. Decreased cavitation and relieved fluctuation load are only representative of them. As for a distinct concept of pressure distribution, the inverse method could be very useful. Skew may led to a more mild and natural character in the blood. Highly skewed blades and super elastic blades have the potential to decrease the burden on the entire circulatory system. This paper will address the main points and latest issues in propeller design concluding with a discussion of the implications of these issues for blood pump impellers.

  9. Thrust Deduction in Contrarotating Propellers

    Science.gov (United States)

    1974-11-01

    reduced by unbalancing the propelling thrust with smaller thrust carried on the forward propeller. UNCLASSIFIED SECURITY CLASIFICATION OF THIS...Webb lnst/Waird 1 154 W. Morgan 1 WHOI Ocean Engr 1 1644 R. Cumming 1 WPI Alden Hydr Lab 1 1552 J. McCarthy 1 SNAME 1 156 J. Hadler 1 Bethlehem Steel ...New York 30 5614 Report Distribution 1 Bethlehem Steel Sparrows 1 5641I Library 1 Bolt Beranek and Newman 1 5642 Library, Annapolis 1 Eastern Res Group 32

  10. The Anti-Ballistic Missile Treaty

    International Nuclear Information System (INIS)

    Platt, A.

    1991-01-01

    This paper reports that in late May 1972 former President Richard M. Nixon went to Moscow and signed, among other documents, a Treaty to Limit Anti-Ballistic Missile (ABM) Systems. Under this agreement, both the United States and the Soviet Union made a commitment not to build nationwide ABM defenses against the other's intercontinental and submarine-launched ballistic missiles. They agreed to limit ABM deployments to a maximum of two sites, with no more than 100 launchers per site. Thirteen of the treaty's sixteen articles are intended to prevent any deviation from this. In addition, a joint Standing Consultative Commission to monitor compliance was created. National technical means --- sophisticated monitoring devices on land, sea, and in space --- were to be the primary instruments used to monitor compliance with the treaty. The ABM Treaty was signed in conjunction with an Interim Agreement to Limit Strategic Offensive Arms

  11. Ballistic Missile Defense: New Plans, Old Challenges

    Directory of Open Access Journals (Sweden)

    Elizabeth Zolotukhina

    2010-01-01

    Full Text Available On September 17, 2009—the 70th anniversary of the Soviet invasion of Poland in 1939 that marked the beginning of World War II—the Obama Administration announced its intention to shelve plans for the U.S. Ballistic Missile Defense (BMD that had been developed under former President George W. Bush. Pointing to a new intelligence assessment, President Obama argued that his predecessor's plan to deploy an X-band radar station outside of Prague, Czech Republic, and 10 two-stage interceptor missiles in Poland would not adequately protect America and its European allies from the Iranian threat and reiterated his opposition to utilizing unproven technology in any European BMD architecture.

  12. Probabilistic assessment of tornado-borne missile speeds. Final report

    International Nuclear Information System (INIS)

    Simiu, E.; Cordes, M.R.

    1980-09-01

    A procedure was developed for estimating speeds with which postulated missiles hit any given set of targets in a nuclear power plant or similar installation. Hit speeds corresponding to probabilities of occurrence of .0000001 were calculated for a given nuclear power plant under various assumptions concerning the magnitude of the force opposing missile take-off, direction of tornado axis of translation, number and location of missiles, and size of target area. The results of the calculations are shown to depend upon the parameters: CDA/m, where CD = drag coefficient, A = projected area, m = mass of missiles, and the ratio, k, between the minimum aerodynamic force required to cause missile take-off, and the weight of the missile

  13. Generic Surface-to-Air Missile Model.

    Science.gov (United States)

    1979-10-01

    types of aircraft sensors are considered: radar, launch and missile approach detectors. Their limits are also defined by geometric shapes within the...E FOIZC OPLP- IZELE’A% Q CLAST D 6 I AQ3 f v r RATE Commeme I Lj%-vljtK EVA- CoMMMLF 51 ok) MA Lsu- A vwwov GV A Vc-k I m4uE A FIGURE 3-22 erVAD 3

  14. Nonlinear Control Theory for Missile Autopilot Design.

    Science.gov (United States)

    1987-04-24

    tan 2.9) a -q W "pc Sientific Systems FcoS -Fs n + (p cos6 + q sind) tana coso (2.10) where V is the velocity: V = (u2 + v 2 + w2 ) 1 1 2 The terms...1984), "How Autopilot Requirements Constrain the Aerodynamic Design of Homing Missiles", Proc. American Contr. Conf., San Diego, CA, pp 71b-73U. I .N

  15. Large Propellant Tank Cryo-Cooler (LPTC)

    Data.gov (United States)

    National Aeronautics and Space Administration — In rocket test and launch facilities, cryogenic propellants stored in tanks boils off due to heat leakage, with the following impacts:Ø   Waste, propellants boil off...

  16. Quadcopter thrust optimization with ducted-propeller

    Directory of Open Access Journals (Sweden)

    Kuantama Endrowednes

    2017-01-01

    Full Text Available In relation to quadcopter body frame model, propeller can be categorized into propeller with ducted and without ducted. This study present differences between those two using CFD (Computational Fluid Dynamics method. Both categories utilize two blade-propeller with diameter of 406 (mm. Propeller rotation generates acceleration per time unit on the volume of air. Based on the behavior of generated air velocity, ducted propeller can be modeled into three versions. The generated thrust and performance on each model were calculated to determine the best model. The use of ducted propeller increases the total weight of quadcopter and also total thrust. The influence of this modeling were analyzed in detail with variation of angular velocity propeller from 1000 (rpm to 9000 (rpm. Besides the distance between propeller tip and ducted barrier, the size of ducted is also an important part in thrust optimization and total weight minimization of quadcopter.

  17. Cryogenic Propellant Storage and Handling Efficiency Improvement

    Data.gov (United States)

    National Aeronautics and Space Administration — Stennis Space Center (SSC) is NASA’s top annual consumer of cryogenic propellants. Improvements in ground propellant system operations at SSC require having the...

  18. Mars Integrated Propellant Production System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Integrated Mars In-Situ Propellant Production System (IMISPPS) is an end-to-end system that will produce rocket propellant on Mars from CO2 in the Martian...

  19. Mars Integrated Propellant Production System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Integrated Mars In-Situ Propellant Production System (IMISPPS) is an end-to-end system that will produce rocket propellant on Mars from CO2 in the Martian...

  20. Battlefield Dominance and Missile Defense in the 21st Century

    National Research Council Canada - National Science Library

    Kaminski, Paul

    1996-01-01

    This document discusses various aspects of missile defense systems like the Patriot, Avenger, and the supporting Battlefield Management Command Control, Communications, Computer, and Intelligence (BMC4I...

  1. Veiled Normalization: The Implications of Japanese Missile Defense

    National Research Council Canada - National Science Library

    Clarke, Timothy L

    2008-01-01

    Japan's development of a missile defense system has been accompanied by the acquisition of potentially offensive military assets, an increased command and control capability, significant restructuring...

  2. 2015 Assessment of the Ballistic Missile Defense System (BMDS)

    Science.gov (United States)

    2016-04-01

    variants.4 Aegis BMD 4.0: Flight testing of the Aegis BMD 4.0 system with Standard Missile -3 (SM-3) Block IB guided missiles has demonstrated that...range threshold IRBM threats in the midcourse phase of flight using SM-3 Block IB guided missiles .5 Flight testing in FY15 included a demonstration of...flight using SM-3 Block IB guided missiles .9 Midcourse engagements were made both organically (using the system’s own AN/SPY-1 radar) and with the

  3. Laser beam riding artillery missiles guidance device is designed

    Science.gov (United States)

    Yan, Mingliang; Huo, Zhicheng; Chen, Wei

    2014-09-01

    Laser driving gun missile guidance type beam of laser information field formed by any link failure or reduced stability will directly lead to ballistic or miss out of control, and based on this, this paper designed the driving beam of laser guided missile guidance beam type forming device modulation and zoom mechanism, in order to make the missile can recognize its position in the laser beam, laser beam gun missile, by means of spatial encoding of the laser beam laser beam into information after forming device, a surface to achieve the purpose of precision guidance.

  4. THE PROPELLER AND THE FROG

    International Nuclear Information System (INIS)

    Pan, Margaret; Chiang, Eugene

    2010-01-01

    'Propellers' in planetary rings are disturbances in ring material excited by moonlets that open only partial gaps. We describe a new type of co-orbital resonance that can explain the observed non-Keplerian motions of propellers. The resonance is between the moonlet underlying the propeller and co-orbiting ring particles downstream of the moonlet where the gap closes. The moonlet librates within the gap about an equilibrium point established by co-orbiting material and stabilized by the Coriolis force. In the limit of small libration amplitude, the libration period scales linearly with the gap azimuthal width and inversely as the square root of the co-orbital mass. The new resonance recalls but is distinct from conventional horseshoe and tadpole orbits; we call it the 'frog' resonance, after the relevant term in equine hoof anatomy. For a ring surface density and gap geometry appropriate for the propeller Bleriot in Saturn's A ring, our theory predicts a libration period of ∼4 years, similar to the ∼3.7 year period over which Bleriot's orbital longitude is observed to vary. These librations should be subtracted from the longitude data before any inferences about moonlet migration are made.

  5. Propelling arboriculture into the future

    Science.gov (United States)

    E. Gregory McPherson

    2011-01-01

    Research is the engine that propels arboriculture and urban forestry into the future. New knowledge, technologies, and tools provide arborists with improved tree care practices that result in healthier urban forests. The ISA Science and Research Committee (SRC) is composed of 13 professionals and researchers who are dedicated to elevating the importance of research...

  6. Explosive laser light initiation of propellants

    Science.gov (United States)

    Piltch, M.S.

    1993-05-18

    A improved initiator for artillery shell using an explosively generated laser light to uniformly initiate the propellent. A small quantity of a high explosive, when detonated, creates a high pressure and temperature, causing the surrounding noble gas to fluoresce. This fluorescence is directed into a lasing material, which lases, and directs laser light into a cavity in the propellant, uniformly initiating the propellant.

  7. Innovative boron nitride-doped propellants

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2016-04-01

    Full Text Available The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P. Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  8. Liquid Bismuth Propellant Flow Sensor

    Science.gov (United States)

    Polzin, Kurt A.; Stanojev, B. J.; Korman, V.

    2007-01-01

    Quantifying the propellant mass flow rate in liquid bismuth-fed electric propulsion systems has two challenging facets. First, the flow sensors must be capable of providing a resolvable measurement at propellant mass flow rates on the order of 10 mg/see with and uncertainty of less that 5%. The second challenge has to do with the fact that the materials from which the flow sensors are fabricated must be capable of resisting any of the corrosive effects associated with the high-temperature propellant. The measurement itself is necessary in order to properly assess the performance (thrust efficiency, Isp) of thruster systems in the laboratory environment. The hotspot sensor[I] has been designed to provide the bismuth propellant mass flow rate measurement. In the hotspot sensor, a pulse of thermal energy (derived from a current pulse and associated joule heating) is applied near the inlet of the sensor. The flow is "tagged" with a thermal feature that is convected downstream by the flowing liquid metal. Downstream, a temperature measurement is performed to detect a "ripple" in the local temperature associated with the passing "hotspot" in the propellant. By measuring the time between the upstream generation and downstream detection of the thermal feature, the flow speed can be calculated using a "time of flight" analysis. In addition, the system can be calibrated by measuring the accumulated mass exiting the system as a-function of time and correlating this with the time it takes the hotspot to convect through the sensor. The primary advantage of this technique is that it doesn't depend on an absolute measurement of temperature but, instead, relies on the observation of thermal features. This makes the technique insensitive to other externally generated thermal fluctuations. In this paper, we describe experiments performed using the hotspot flow sensor aimed at quantifying the resolution of the sensor technology. Propellant is expelled onto an electronic scale to

  9. Drag and Torque on Locked Screw Propeller

    Directory of Open Access Journals (Sweden)

    Tomasz Tabaczek

    2014-09-01

    Full Text Available Few data on drag and torque on locked propeller towed in water are available in literature. Those data refer to propellers of specific geometry (number of blades, blade area, pitch and skew of blades. The estimation of drag and torque of an arbitrary propeller considered in analysis of ship resistance or propulsion is laborious. The authors collected and reviewed test data available in the literature. Based on collected data there were developed the empirical formulae for estimation of hydrodynamic drag and torque acting on locked screw propeller. Supplementary CFD computations were carried out in order to prove the applicability of the formulae to modern moderately skewed screw propellers.

  10. Trident II (D-5) Sea-Launched Ballistic Missile UGM 133A (Trident II Missile)

    Science.gov (United States)

    2013-12-01

    unfavorable net change in the schedule variance is due to stopping Interferometric Fiber Optic Gyro assembly operations as a result of a technical problem...with oxygen depletion in the fill gas causing a frequency response problem with an optoelectrical gyro part. Trident II Missile December 2013 SAR

  11. Mind-Sets and Missiles: A First Hand Account of the Cuban Missile Crisis

    Science.gov (United States)

    2009-09-01

    and had practiced moving the missiles to the erectors . At a January 1989 conference of American and Soviet leaders in Moscow, Soviet General Dmitri...4-3/7/63” folder, President’s Office Files, Special Correspondence, Box 31, JFKL. President’s Foreign Intelligence Advisory Board, March 11, 1963

  12. Protecting Commercial Aviation Against the Shoulder-Fired Missile Threat

    Science.gov (United States)

    2005-01-01

    Protecting Commercial Aviation Against the Shoulder-Fired Missile in the economy, such as fewer stays at hotels and decreased business travel . Aircraft...Protecting Commercial Aviation Against the Shoulder-Fired Missile Table A.2 (continued) Business Travel Airline Time cost: $34.50 Cost per mile: $0.134

  13. Civilian casualties of Iraqi ballistic missile attack to

    Directory of Open Access Journals (Sweden)

    Khaji Ali

    2012-06-01

    Full Text Available 【Abstract】Objective: To determine the pattern of causalities of Iraqi ballistic missile attacks on Tehran, the capital of Iran, during Iraq-Iran war. Methods: Data were extracted from the Army Staff Headquarters based on daily reports of Iranian army units during the war. Results: During 52 days, Tehran was stroked by 118 Al-Hussein missiles (a modified version of Scud missile. Eighty-six missiles landed in populated areas. During Iraqi missile attacks, 422 civilians died and 1 579 injured (4.9 deaths and 18.3 injuries per missile. During 52 days, 8.1 of the civilians died and 30.4 injured daily. Of the cases that died, 101 persons (24% were excluded due to the lack of information. Among the remainders, 179 (55.8% were male and 142 (44.2% were female. The mean age of the victims was 25.3 years±19.9 years. Our results show that the high accuracy of modified Scud missiles landed in crowded ar-eas is the major cause of high mortality in Tehran. The pres-ence of suitable warning system and shelters could reduce civilian casualties. Conclusion: The awareness and readiness of civilian defense forces, rescue services and all medical facilities for dealing with mass casualties caused by ballistic missile at-tacks are necessary. Key words: Mortality; War; Mass casualty incidents; Wounds and injuries

  14. Aerodynamic heating of ballistic missile including the effects of gravity

    Indian Academy of Sciences (India)

    http://www.ias.ac.in/article/fulltext/sadh/025/05/0463-0473. Keywords. Aerodynamic heating; ballistic missile; gravity; flat-earth. Abstract. The aerodynamic heating of a ballistic missile due to only convection is analysed taking into consideration the effects of gravity. The amount of heat transferred to the wetted area and to the ...

  15. Aerodynamic performances of cruise missile flying above local terrain

    Science.gov (United States)

    Ahmad, A.; Saad, M. R.; Che Idris, A.; Rahman, M. R. A.; Sujipto, S.

    2016-10-01

    Cruise missile can be classified as a smart bomb and also Unmanned Aerial Vehicle (UAV) due to its ability to move and manoeuvre by itself without a pilot. Cruise missile flies in constant velocity in cruising stage. Malaysia is one of the consumers of cruise missiles that are imported from other nations, which can have distinct geographic factors including their local terrains compared to Malaysia. Some of the aerodynamic performances of missile such as drag and lift coefficients can be affected by the local geographic conditions in Malaysia, which is different from the origin nation. Therefore, a detailed study must be done to get aerodynamic performance of cruise missiles that operate in Malaysia. The effect of aerodynamic angles such as angle of attack and side slip can be used to investigate the aerodynamic performances of cruise missile. Hence, subsonic wind tunnel testings were conducted to obtain the aerodynamic performances of the missile at various angle of attack and sideslip angles. Smoke visualization was also performed to visualize the behaviour of flow separation. The optimum angle of attack found was at α=21° and side slip, β=10° for optimum pitching and yawing motion of cruise missile.

  16. Replica scaling studies of hard missile impacts on reinforced concrete

    International Nuclear Information System (INIS)

    Barr, P.; Carter, P.G.; Howe, W.D.; Neilson, A.J.

    1982-01-01

    Missile and target combinations at three different liners scales have been used in an experimental assessment of the applicability of replica scaling to the dynamic behaviour of reinforced concrete structures impacted by rigid missiles. Experimental results are presented for models with relative linear scales of 1, 0.37 and 0.12. (orig.) [de

  17. Self-propelled Leidenfrost droplets.

    Science.gov (United States)

    Linke, H; Alemán, B J; Melling, L D; Taormina, M J; Francis, M J; Dow-Hygelund, C C; Narayanan, V; Taylor, R P; Stout, A

    2006-04-21

    We report that liquids perform self-propelled motion when they are placed in contact with hot surfaces with asymmetric (ratchetlike) topology. The pumping effect is observed when the liquid is in the Leidenfrost regime (the film-boiling regime), for many liquids and over a wide temperature range. We propose that liquid motion is driven by a viscous force exerted by vapor flow between the solid and the liquid.

  18. SILVER-ZINC MISSILE POWER SUPPLY.

    Science.gov (United States)

    system to meet the Power Supply requirements has been initiated. Paper designs for two types of unit cells to be used in the ’all battery’ approach to the... Power Supply were prepared. Initial screening tests on 0.2 Ampere-hour unit cells were performed. Additional cells are being fabricated to verify the...Work defining the requirements for a solid state DC to DC converter to be used in conjunction with a Silver-Zinc battery in the Missile Power Supply has been drawn up. (Author)

  19. Defense Strategy of Aircraft Confronted with IR Guided Missile

    Directory of Open Access Journals (Sweden)

    Hesong Huang

    2017-01-01

    Full Text Available Surface-type infrared (IR decoy can simulate the IR characteristics of the target aircraft, which is one of the most effective equipment to confront IR guided missile. In the air combat, the IR guided missile poses a serious threat to the aircraft when it comes from the front of target aircraft. In this paper, firstly, the model of aircraft and surface-type IR decoy is established. To ensure their authenticity, the aircraft maneuver and radiation models based on real data of flight and exhaust system radiation in the state of different heights and different speeds are established. Secondly, the most effective avoidance maneuver is simulated when the missile comes from the front of the target aircraft. Lastly, combining maneuver with decoys, the best defense strategy is analysed when the missile comes from the front of aircraft. The result of simulation, which is authentic, is propitious to avoid the missile and improve the survivability of aircraft.

  20. Guidance Optimization for Tactical Homing Missiles and Air Defense Systems

    Directory of Open Access Journals (Sweden)

    Yunes Sh. ALQUDSI

    2018-03-01

    Full Text Available The aim of this paper is to develop a functional approach to optimize the engagement effectiveness of the tactical homing missiles and air defense systems by utilizing the differential geometric concepts. In this paper the engagement geometry of the interceptor and the target is developed and expressed in differential geometric terms in order to demonstrate the possibilities of the impact triangles and specify the earliest interception based on the direct intercept geometry. Optimizing the missile heading angle and suitable missile velocity against the target velocity is then examined to achieve minimum missile latax, minimum time-to-go (time-to-hit and minimum appropriate missile velocity that is guaranteed a quick and precise interception for the given target. The study terminates with different scenarios of engagement optimization with two-dimensional simulation to demonstrate the applicability of the DG approach and to show its properties.

  1. The science, technology, and politics of ballistic missile defense

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, Philip E. [Center for Arms Control and Non-Proliferation, Washington, DC (United States)

    2014-05-09

    America's missile defense systems are deployed at home and abroad. This includes the Groundbased Missile Defense (GMD) system in Alaska and California, the Phased Adaptive Approach in Europe (EPAA), and regional systems in the Middle East and Asia. Unfortunately these systems lack workable architectures, and many of the required elements either don't work or are missing. Major review and reconsideration is needed of all elements of these systems. GMD performance in tests has gotten worse with time, when it ought to be getting better. A lack of political support is not to blame as the DoD spends about $10 billion per year, and proposes to add about $5 billion over the next five years. Russia objects to the EPAA as a threat to its ICBM forces, and to the extensive deployment of U.S. military forces in countries such as Poland, the Czech Republic and Romania, once part of the Soviet Union. Going forward the U.S. should keep working with Russia whose cooperation will be key to diplomatic gains in the Middle East and elsewhere. Meanwhile, America's missile defenses face an enduring set of issues, especially target discrimination in the face of attacks designed to overwhelm the defenses, stage separation debris, chaff, decoys, and stealth. Dealing with target discrimination while also replacing, upgrading, or adding to the many elements of U.S. missiles defenses presents daunting budget priorities. A new look at the threat is warranted, and whether the U.S. needs to consider every nation that possesses even short-range missiles a threat to America. The proliferation of missiles of all sizes around the world is a growing problem, but expecting U.S. missile defenses to deal with all those missiles everywhere is unrealistic, and U.S. missile defenses, effective or not, are justifying more and more offensive missiles.

  2. The science, technology, and politics of ballistic missile defense

    International Nuclear Information System (INIS)

    Coyle, Philip E.

    2014-01-01

    America's missile defense systems are deployed at home and abroad. This includes the Groundbased Missile Defense (GMD) system in Alaska and California, the Phased Adaptive Approach in Europe (EPAA), and regional systems in the Middle East and Asia. Unfortunately these systems lack workable architectures, and many of the required elements either don't work or are missing. Major review and reconsideration is needed of all elements of these systems. GMD performance in tests has gotten worse with time, when it ought to be getting better. A lack of political support is not to blame as the DoD spends about $10 billion per year, and proposes to add about $5 billion over the next five years. Russia objects to the EPAA as a threat to its ICBM forces, and to the extensive deployment of U.S. military forces in countries such as Poland, the Czech Republic and Romania, once part of the Soviet Union. Going forward the U.S. should keep working with Russia whose cooperation will be key to diplomatic gains in the Middle East and elsewhere. Meanwhile, America's missile defenses face an enduring set of issues, especially target discrimination in the face of attacks designed to overwhelm the defenses, stage separation debris, chaff, decoys, and stealth. Dealing with target discrimination while also replacing, upgrading, or adding to the many elements of U.S. missiles defenses presents daunting budget priorities. A new look at the threat is warranted, and whether the U.S. needs to consider every nation that possesses even short-range missiles a threat to America. The proliferation of missiles of all sizes around the world is a growing problem, but expecting U.S. missile defenses to deal with all those missiles everywhere is unrealistic, and U.S. missile defenses, effective or not, are justifying more and more offensive missiles

  3. Modelling cavitating flow around underwater missiles

    Directory of Open Access Journals (Sweden)

    Fabien Petitpas

    2011-12-01

    Full Text Available The diffuse interface model of Saurel et al. (2008 is used for the computation of compressible cavitating flows around underwater missiles. Such systems use gas injection and natural cavitation to reduce drag effects. Consequently material interfaces appear separating liquid and gas. These interfaces may have a really complex dynamics such that only a few formulations are able to predict their evolution. Contrarily to front tracking or interface reconstruction method the interfaces are computed as diffused numerical zones, that are captured in a routinely manner, as is done usually with gas dynamics solvers for shocks and contact discontinuity. With the present approach, a single set of partial differential equations is solved everywhere, with a single numerical scheme. This leads to very efficient solvers. The algorithm derived in Saurel et al. (2009 is used to compute cavitation pockets around solid bodies. It is first validated against experiments done in cavitation tunnel at CNU. Then it is used to compute flows around high speed underwater systems (Shkval-like missile. Performance data are then computed showing method ability to predict forces acting on the system.

  4. Explosive laser light initiation of propellants

    Energy Technology Data Exchange (ETDEWEB)

    Piltch, M.S.

    1992-12-31

    This invention is comprised of an improved initiator for artillery shell using an explosively generated laser light to uniformly initiate the propellent. A small quantity of a high explosive, when detonated, creates a high pressure and temperature, causing the surrounding noble gas to fluoresce. This fluorescence is directed into a lasing material, which lases, and directs laser light into a cavity in the propellant, uniformly initiating the propellant.

  5. Innovation in Aerodynamic Design Features of Soviet Missiles

    Science.gov (United States)

    Spearman, M. Leroy

    2006-01-01

    Wind tunnel investigations of some tactical and strategic missile systems developed by the former Soviet Union have been included in the basic missile research programs of the NACA/NASA. Studies of the Soviet missiles sometimes revealed innovative design features that resulted in unusual or unexpected aerodynamic characteristics. In some cases these characteristics have been such that the measured performance of the missile exceeds what might have been predicted. In other cases some unusual design features have been found that would alleviate what might otherwise have been a serious aerodynamic problem. In some designs, what has appeared to be a lack of refinement has proven to be a matter of expediency. It is a purpose of this paper to describe some examples of unusual design features of some Soviet missiles and to illustrate the effectiveness of the design features on the aerodynamic behavior of the missile. The paper draws on the experience of the author who for over 60 years was involved in the aerodynamic wind tunnel testing of aircraft and missiles with the NACA/NASA.

  6. Missiles caused by severe pressurized-water reactor accidients

    International Nuclear Information System (INIS)

    Krieg, R.

    1995-01-01

    For future pressurized-water reactors, which should be designed against core-meltdown accidents, missiles generated inside the containment present a severe problem for its integrity. The masses and geometries of the missiles, as well as their velocities, may vary to a great extent. Therefore a reliable proof of the containment integrity is very difficult. In this article the potential sources of missiles are discussed, and the conclusion was reached that the generation of heavy missiles must be prevented. Steam explosions must not damage the reactor vessel head. Thus fragments of the head cannot become missiles that endanger the containment shell. Furthermore, during a melt-through failure of the reactor vessel under high pressure, the resulting forces must not catapult the whole vessel against the containment shell. Only missiles caused by hydrogen explosions may be tolerable, but shielding structures that protect the containment shell may be required. Further investigations are necessary. Finally, measures are described showing that the generation of heavy missiles can indeed be prevented. Investigations are currently being carried out that will confirm the strength of the reactor vessel head. In addition, a device for retaining the fragments of a failing reactor vessel is discussed

  7. Time-to-impact estimation in passive missile warning systems

    Science.gov (United States)

    Şahıngıl, Mehmet Cihan

    2017-05-01

    A missile warning system can detect the incoming missile threat(s) and automatically cue the other Electronic Attack (EA) systems in the suit, such as Directed Infrared Counter Measure (DIRCM) system and/or Counter Measure Dispensing System (CMDS). Most missile warning systems are currently based on passive sensor technology operating in either Solar Blind Ultraviolet (SBUV) or Midwave Infrared (MWIR) bands on which there is an intensive emission from the exhaust plume of the threatening missile. Although passive missile warning systems have some clear advantages over pulse-Doppler radar (PDR) based active missile warning systems, they show poorer performance in terms of time-to-impact (TTI) estimation which is critical for optimizing the countermeasures and also "passive kill assessment". In this paper, we consider this problem, namely, TTI estimation from passive measurements and present a TTI estimation scheme which can be used in passive missile warning systems. Our problem formulation is based on Extended Kalman Filter (EKF). The algorithm uses the area parameter of the threat plume which is derived from the used image frame.

  8. Prevention of heavy missiles during severe PWR accidents

    International Nuclear Information System (INIS)

    Krieg, R.

    1994-01-01

    For future pressurized water reactors, which should be designed against core melt down accidents, missiles generated inside the containment present a severe problem for its integrity. The masses and geometries of the missiles as well as their velocities may vary to a great extend. Therefore, a reliable proof of the containment integrity is very difficult. To overcome this problem the potential sources of missiles are discussed. In section 5 it is concluded that the generation of heavy missiles must be prevented. Steam explosions must not damage the reactor vessel head. Thus fragments of the head cannot become missiles endangering the containment shell. Furthermore, during a melt-through failure of the reactor vessel under high pressure the resulting forces must not catapult the whole vessel against the containment shell. Only missiles caused by hydrogen explosions might be tolerable, but shielding structures which protect the containment shell might be required. Here further investigations are necessary. Finally, measures are described showing that the generation of heavy missiles can indeed be prevented. In section 6 investigations are explained which will confirm the strength of the reactor vessel head. In section 7 a device is discussed keeping the fragments of a failing reactor vessel at its place. (author). 12 refs., 8 figs

  9. High Seed Compressor for Propellant Densification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Propellant densification systems particularly for H2 require compression systems developing very large amounts of head. Development of this head requires multiple...

  10. Propeller Test Facilities Â

    Data.gov (United States)

    Federal Laboratory Consortium — Description: Three electrically driven whirl test stands are used to determine propeller (or other rotating device) performance at various rotational speeds. These...

  11. Microbes Eating Rocket Propellant Hypergols (MERPHs)

    Data.gov (United States)

    National Aeronautics and Space Administration — Microbes will be attempted on proprietary green propellants. Evaluation and selection of optimal microbial media will be determined. Alteration of microbial...

  12. Nonsteady Combustion Mechanisms of Advanced Solid Propellants

    National Research Council Canada - National Science Library

    Branch, Melvyn

    1997-01-01

    .... The individual tasks which we are studying will pursue solid propellant decomposition under unsteady conditions, nonsteady aspects of gas phase flame structure measurements, numerical modeling...

  13. Numerical simulation of tornado-borne missile impact

    International Nuclear Information System (INIS)

    Tu, D.K.; Murray, R.C.

    1977-01-01

    The feasibility of using a finite element procedure to examine the impact phenomenon of a tornado-borne missile impinging on a reinforced concrete barrier was assessed. The major emphasis of this study was to simulate the impact of a nondeformable missile. Several series of simulations were run, using an 8-in.-dia steel slug as the impacting missile. The numerical results were then compared with experimental field tests and empirical formulas. The work is in support of tornado design practices for fuel reprocessing and fuel fabrication plants

  14. Protective properties of a missile enclosure against electromagnetic influences

    Directory of Open Access Journals (Sweden)

    S. Fisahn

    2007-06-01

    Full Text Available In order to predict the immunity of a generic missile (GENEC, not only the electronic system but also the enclosure has to be taken into consideration. While a completely closed metallic missile enclosure shows a high electric shielding effectiveness, it is decreased substantially by apertures which could not be avoided by different reasons. The shielding effectiveness of the generic missile could be investigated by means of a hollow cylinder equipped with different apertures. Numerical simulations and measurements of this hollow cylinder will be carried out and analyzed.

  15. 75 FR 34390 - Airworthiness Directives; McCauley Propeller Systems Five-Blade Propeller Assemblies

    Science.gov (United States)

    2010-06-17

    ...-since-new (TSN). This proposed AD results from a report of a crack in a propeller hub. We are proposing... a propeller assembly removed from a Jetstream 41 airplane. The cracked hub has 7,807 hours TSN. The life limit of the hub is 18,000 hours TSN. The crack was found on the rear of the hub, on the propeller...

  16. SSME propellant path leak detection

    Science.gov (United States)

    Crawford, Roger; Shohadaee, Ahmad Ali; Powers, W. T.

    1995-01-01

    The primary objective of this phase of the investigation is the experimental validation of techniques for detecting and analyzing propellant path external leaks which have a high probability of occurring on the SSME. The selection of candidate detection methods requires a good analytic model for leak plumes which would develop from external leaks and an understanding of radiation transfer through the leak plume. One advanced propellant path leak detection technique is obtained by using state-of-art technology of infrared (IR) thermal imaging systems combined with computer, digital image processing and expert systems for the engine protection. The feasibility of the IR leak plume detection will be evaluated on subscale simulated laboratory plumes to determine sensitivity, signal to noise, and general suitability for the application. The theoretical analysis was undertaken with the objective of developing and testing simple, easy-to-use models to predict the amount of radiation coming from a radiation source, background plate (BP), which can be absorbed, emitted and scattered by the gas leaks.

  17. Reinforced concrete behavior due to missile impact

    International Nuclear Information System (INIS)

    Alderson, M.A.H.G.; Bartley, R.; O'Brien, T.P.

    1977-01-01

    The assessment of the safety of nuclear reactors has necessitated the study of the effect of missiles on reinforced concrete containment structures. Two simple theoretical calculational methods have been developed to provide basic information. The first is based on a crude energy balance approach in which that part of the kinetic energy of the missile which is transferred into the containment structure, is absorbed only as bending strain energy. To determine the energy transferred into the structure it is assumed that during the loading the target does not respond. The energy input to the structure is thus equal to the kinetic energy it will possess immediately the impulse has been removed. The boundary of the responding zone is defined by the distance travelled by the shear stress wave during the time in which the impact force increases to the load at which the shear capacity reaches the ultimate shear resistance. The second method is based on the equation of motion for an equivalent one-degree-of-freedom system assuming that only the peak value of deflection is important and that damping can be ignored. The spring stiffness of the equivalent system has been based upon the stiffness of the actual disc configuration responding in the flexural mode only. The boundaries of the disc have been defined by using the elastic plate formulae and equating those positive and negative moments which will produce a specified yield line pattern which may be inferred from plastic plate formulae. The equation of motion is solved to indicate how the quantity of reinforcement included in the structure may modify the peak deflection. By limiting the ductility ratio of the reinforcement to some prescribed level it is possible to indicate the quantity of reinforcement w

  18. Missiles for Asia The Need for Operational Analysis of U.S. Theater Ballistic Missiles in the Pacific

    Science.gov (United States)

    2016-01-01

    C O R P O R A T I O N Missiles for Asia ? The Need for Operational Analysis of U.S. Theater Ballistic Missiles in the Pacific Jacob L. Heim • The...Europe and East Asia ? One argument that has been advanced is that leaving the INF Treaty would free the United States to develop and deploy con...cruise missiles, and perhaps for this reason, there have not been any vocal calls for the United States to consider fielding GLCMs in Asia . One could

  19. KAPPEL Propeller. Development of a Marine Propeller with Non-planar Lifting Surfaces

    DEFF Research Database (Denmark)

    Kappel, J.; Andersen, Poul

    2002-01-01

    with higher efficiency and lower levels of noise and vibration excitation compared to conventional propellers designed for the same task. Conventional and KAPPEL propellers have been compared for a medium sized container ship and a product tanker. In total nine of these unconventional and two conventional...... propellers have been designed and models of all propellers have been examined with respect to cavitation and efficiency in the open water and behind conditions. Casting procedures, measurement procedures and stress analysis methods for the unconventional geometry of the KAPPEL propeller have been developed...

  20. Multivariable Autopilot Design and Implementation for Tactical Missiles

    National Research Council Canada - National Science Library

    Kramer, Friedrich

    1998-01-01

    A tactical skid to turn missile autopilot is designed and implemented using a two step design process that results in an optimal output feedback with a fixed, low order dynamic compensator for reduced...

  1. The Aerodynamic Influence of a Helicopter on a Jettisoned Missile

    National Research Council Canada - National Science Library

    Vaughn, Jr, Milton E

    2008-01-01

    ...) methodology Titled Euler Tunnel Analysis (ETA). Initially, comparison of CFD computations with wind tunnel measurements for the isolated missile are used to anchor the computations in reality and provide an evaluation benchmark...

  2. NATO Pallet with Javelin Missiles, MIL-STD-1660 Tests

    National Research Council Canada - National Science Library

    2004-01-01

    The U.S. Army Defense Ammunition Center (DAC), Validation Engineering Division (SJMAC-DEV) conducted tests in accordance with MIL-STD-1660, "Design Criteria for Ammunition Unit Loads" on the NATO pallet with Javelin missiles...

  3. Analysis of Nonlinear Missile Guidance Systems Through Linear Adjoint Method

    Directory of Open Access Journals (Sweden)

    Khaled Gamal Eltohamy

    2015-12-01

    Full Text Available In this paper, a linear simulation algorithm, the adjoint method, is modified and employed as an efficient tool for analyzing the contributions of system parameters to the miss - distance of a nonlinear time-varying missile guidance system model. As an example for the application of the linear adjoint method, the effect of missile flight time on the miss - distance is studied. Since the missile model is highly nonlinear and a time-varying linearized model is required to apply the adjoint method, a new technique that utilizes the time-reversed linearized coefficients of the missile as a replacement for the time-varying describing functions is applied and proven to be successful. It is found that, when compared with Monte Carlo generated results, simulation results of this linear adjoint technique provide acceptable accuracy and can be produced with much less effort.

  4. Operation TEAPOT: Distribution and Density of Missiles from Nuclear Explosions

    National Research Council Canada - National Science Library

    Bowen, I

    1956-01-01

    A new experimental procedure was used in the open shot of Operation Teapot to study various properties of secondary missiles produced in houses, shelters, and open areas at distances of 1470 to 10,500...

  5. Design and Manufacturing Process for a Ballistic Missile

    Directory of Open Access Journals (Sweden)

    Zaharia Sebastian Marian

    2016-12-01

    Full Text Available Designing a ballistic missile flight depends on the mission and the stress to which the missile is subject. Missile’s requests are determined by: the organization of components; flight regime type, engine configuration and aerodynamic performance of the rocket flight. In this paper has been developed a ballistic missile with a smooth fuselage type, 10 control surfaces, 8 directional surfaces for cornering execution, 2 for maneuvers of execution to change the angle of incidence and 4 stabilizers direction. Through the technology of gluing and clamping of the shell and the use of titanium components, mass of ballistic missile presented a significant decrease in weight and a structure with high strength.

  6. Anti-Ship Missile Defense and the Free Electron Laser

    National Research Council Canada - National Science Library

    Herbert, Paul

    1998-01-01

    In order to improve ship self-defense against sea-skimming missiles, several concepts, such as the free electron laser, high-power microwaves, and the Phalanx gun system are reviewed and evaluated in this thesis...

  7. Green plasticizers for multibase gun propellants (Lecture)

    NARCIS (Netherlands)

    Schoolderman, C.; Driel, C.A. van; Zebregs, M.

    2007-01-01

    TNO Defence, Security and Safety has a long history of research on gun propellants. Areas investigated are formulating (new ingredients, optimization), manufacturing, charge design and lifetime assessment [1,2,3,4,5]. In conventional propellants inert plasticizers are used to alter performance,

  8. Shipborne Laser Beam Weapon System for Defence against Cruise Missiles

    OpenAIRE

    J.P. Dudeja; G.S. Kalsey

    2000-01-01

    Sea-skim~ing cruise missiles pose the greatest threat to a surface ship in the present-day war scenario. The convenitional close-in-weapon-systems (CIWSs) are becoming less reliable against these new challenges requiring extremely fast reaction time. Naval Forces see a high energy laser as a feasible andjeffective directed energy weapon against sea-skimming antiship cruise missiles becauseof its .ability to deliver destructive energy at the speed of light on to a distant target. The paper com...

  9. 1997 Report to the Congress on Ballistic Missile Defense.

    Science.gov (United States)

    1997-10-01

    and ADCP completed operational testing and evaluation at White Sands Missile Range, New Mexico . A successful TMD demonstration was conducted as part of...Satellite (RAMOS) program. The Russian Space Industrial Company, NPO Cometa , under the auspices of Rosvoorzhenie, the Russians Arms Import/Export...Val flight test program will be conducted at White Sands Missile Range (WSMR), New Mexico . The flight test schedule consists of flight and system

  10. Adaptive Missile Flight Control for Complex Aerodynamic Phenomena

    Science.gov (United States)

    2017-08-09

    ARL-TR-8085 ● AUG 2017 US Army Research Laboratory Adaptive Missile Flight Control for Complex Aerodynamic Phenomena by Frank...Adaptive Missile Flight Control for Complex Aerodynamic Phenomena by Frank Fresconi and Jubaraj Sahu Weapons and Materials Research Directorate...currently valid OMB control number . PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) August 2017 2. REPORT TYPE

  11. Hyperheat: a thermal signature model for super- and hypersonic missiles

    Science.gov (United States)

    van Binsbergen, S. A.; van Zelderen, B.; Veraar, R. G.; Bouquet, F.; Halswijk, W. H. C.; Schleijpen, H. M. A.

    2017-10-01

    In performance prediction of IR sensor systems for missile detection, apart from the sensor specifications, target signatures are essential variables. Very often, for velocities up to Mach 2-2.5, a simple model based on the aerodynamic heating of a perfect gas was used to calculate the temperatures of missile targets. This typically results in an overestimate of the target temperature with correspondingly large infrared signatures and detection ranges. Especially for even higher velocities, this approach is no longer accurate. Alternatives like CFD calculations typically require more complex sets of inputs and significantly more computing power. The MATLAB code Hyperheat was developed to calculate the time-resolved skin temperature of axisymmetric high speed missiles during flight, taking into account the behaviour of non-perfect gas and proper heat transfer to the missile surface. Allowing for variations in parameters like missile shape, altitude, atmospheric profile, angle of attack, flight duration and super- and hypersonic velocities up to Mach 30 enables more accurate calculations of the actual target temperature. The model calculates a map of the skin temperature of the missile, which is updated over the flight time of the missile. The sets of skin temperature maps are calculated within minutes, even for >100 km trajectories, and can be easily converted in thermal infrared signatures for further processing. This paper discusses the approach taken in Hyperheat. Then, the thermal signature of a set of typical missile threats is calculated using both the simple aerodynamic heating model and the Hyperheat code. The respective infrared signatures are compared, as well as the difference in the corresponding calculated detection ranges.

  12. Structure of Partially Premixed Flames and Advanced Solid Propellants

    National Research Council Canada - National Science Library

    Branch, Melvyn

    1998-01-01

    The combustion of solid rocket propellants of advanced energetic materials involves a complex process of decomposition and condensed phase reactions in the solid propellant, gaseous flame reactions...

  13. A Study of Flame Physics and Solid Propellant Rocket Physics

    National Research Council Canada - National Science Library

    Buckmaster, John

    2007-01-01

    ..., the combustion of heterogeneous propellants containing aluminum, the use of a genetic algorithm to optimally define false-kinetics parameters in propellant combustion modeling, the calculation of fluctuations...

  14. Propelling medical humanities in China.

    Science.gov (United States)

    Tang, Wei

    2017-05-23

    Advances in the study of the medical humanities and medical humanities education have been made over the past few decades. Many influential journals have published articles examining the role of medical humanities and medical humanities education, the development and evaluation of medical humanities, and the design of a curriculum for medical humanities education in Western countries. However, most articles related to medical humanities in China were published in Chinese, moreover, researchers have worked in relative isolation and published in disparate journals, so their work has not been systematically presented to and evaluated by international readers. The six companion articles featured in this issue describe the current status and challenge of medical humanities and medical humanities education in China in the hope of providing international readers with a novel and meaningful glimpse into medical humanities in China. This Journal is calling for greater publication of research on medical humanities and medical humanities education to propel medical humanities in China.

  15. Runtime and Pressurization Analyses of Propellant Tanks

    Science.gov (United States)

    Field, Robert E.; Ryan, Harry M.; Ahuja, Vineet; Hosangadi, Ashvin; Lee, Chung P.

    2007-01-01

    Multi-element unstructured CFD has been utilized at NASA SSC to carry out analyses of propellant tank systems in different modes of operation. The three regimes of interest at SSC include (a) tank chill down (b) tank pressurization and (c) runtime propellant draw-down and purge. While tank chill down is an important event that is best addressed with long time-scale heat transfer calculations, CFD can play a critical role in the tank pressurization and runtime modes of operation. In these situations, problems with contamination of the propellant by inclusion of the pressurant gas from the ullage causes a deterioration of the quality of the propellant delivered to the test article. CFD can be used to help quantify the mixing and propellant degradation. During tank pressurization under some circumstances, rapid mixing of relatively warm pressurant gas with cryogenic propellant can lead to rapid densification of the gas and loss of pressure in the tank. This phenomenon can cause serious problems during testing because of the resulting decrease in propellant flow rate. With proper physical models implemented, CFD can model the coupling between the propellant and pressurant including heat transfer and phase change effects and accurately capture the complex physics in the evolving flowfields. This holds the promise of allowing the specification of operational conditions and procedures that could minimize the undesirable mixing and heat transfer inherent in propellant tank operation. It should be noted that traditional CFD modeling is inadequate for such simulations because the fluids in the tank are in a range of different sub-critical and supercritical states and elaborate phase change and mixing rules have to be developed to accurately model the interaction between the ullage gas and the propellant. We show a typical run-time simulation of a spherical propellant tank, containing RP-1 in this case, being pressurized with room-temperature nitrogen at 540 R. Nitrogen

  16. New Delivery Systems and Propellants

    Directory of Open Access Journals (Sweden)

    Myrna Dolovich

    1999-01-01

    Full Text Available The removal of chlorofluorocarbon (CFC propellants from industrial and household products has been agreed to by over 165 countires of which more than 135 are developing countries. The timetable for this process is outlined in the Montreal Protocol on Substances that Deplete the Ozone Layer document and in several subsequent amendments. Pressured metered dose inhalers (pMDIs for medical use have been granted temporary exemptions until replacement formulations, providing the same medication via the same route, and with the same efficacy and safety profiles, are approved for human use. Hydrofluoroalkanes (HFAs are the alternative propellants for CFCs-12 and -114. Their potential for damage to the ozone layer is nonexistent, and while they are greenhouse gases, their global warming potential is a fraction (one-tenth of that of CFCs. Replacement formulations for almost all inhalant respiratory medications have been or are being produced and tested; in Canada, it is anticipated that the transition to these HFA or CFC-free pMDIs will be complete by the year 2005. Initially, an HFA pMDI was to be equivalent to the CFC pMDI being replaced, in terms of aerosol properties and effective clinical dose. However, this will not necessarily be the situation, particularly for some corticosteroid products. Currently, only one CFC-free formulation is available in Canada – Airomir, a HFA salbutamol pMDI. This paper discusses the in vitro aerosol characteristics, in vivo deposition and clinical data for several HFA pMDIs for which there are data available in the literature. Alternative delivery systems to the pMDI, namely, dry powder inhalers and nebulizers, are briefly reviewed.

  17. Mars Ascent Vehicle-Propellant Aging

    Science.gov (United States)

    Dankanich, John; Rousseau, Jeremy; Williams, Jacob

    2015-01-01

    This project is to develop and test a new propellant formulation specifically for the Mars Ascent Vehicle (MAV) for the robotic Mars Sample Return mission. The project was initiated under the Planetary Sciences Division In-Space Propulsion Technology (ISPT) program and is continuing under the Mars Exploration Program. The two-stage, solid motor-based MAV has been the leading MAV solution for more than a decade. Additional studies show promise for alternative technologies including hybrid and bipropellant options, but the solid motor design has significant propellant density advantages well suited for physical constraints imposed while using the SkyCrane descent stage. The solid motor concept has lower specific impulse (Isp) than alternatives, but if the first stage and payload remain sufficiently small, the two-stage solid MAV represents a potential low risk approach to meet the mission needs. As the need date for the MAV slips, opportunities exist to advance technology with high on-ramp potential. The baseline propellant for the MAV is currently the carboxyl terminated polybutadiene (CTPB) based formulation TP-H-3062 due to its advantageous low temperature mechanical properties and flight heritage. However, the flight heritage is limited and outside the environments, the MAV must endure. The ISPT program competed a propellant formulation project with industry and selected ATK to develop a new propellant formulation specifically for the MAV application. Working with ATK, a large number of propellant formulations were assessed to either increase performance of a CTPB propellant or improve the low temperature mechanical properties of a hydroxyl terminated polybutadiene (HTPB) propellant. Both propellants demonstrated potential to increase performance over heritage options, but an HTPB propellant formulation, TP-H-3544, was selected for production and testing. The test plan includes propellant aging first at high vacuum conditions, representative of the Mars transit

  18. Missileer: The Dawn, Decline, and Reinvigoration of America’s Intercontinental Ballistic Missile Operators

    Science.gov (United States)

    2017-06-01

    year long! Thanks to my wife for knowing when I needed to go on a run, or taking the kids to Florida so I could focus on writing—you taught me one...weapons often left out of books on strategy. Unlike the pilot and the astronaut, figures that have been idolized as American heroes, missileers...from David N. Spires’ book , On Alert, which states on p. 50 of his history that, “on 1 September 1959 SAC Commander-in-Chief General Power announced

  19. Energy coefficients for a propeller series

    DEFF Research Database (Denmark)

    Olsen, Anders Smærup

    2004-01-01

    The efficiency for a propeller is calculated by energy coefficients. These coefficients are related to four types of losses, i.e. the axial, the rotational, the frictional, and the finite blade number loss, and one gain, i.e. the axial gain. The energy coefficients are derived by use...... of the potential theory with the propeller modelled as an actuator disk. The efficiency based on the energy coefficients is calculated for a propeller series. The results show a good agreement between the efficiency based on the energy coefficients and the efficiency obtained by a vortex-lattice method....

  20. Shuttle APS propellant thermal conditioner study

    Science.gov (United States)

    Pearson, W. E.

    1971-01-01

    A study program was performed to allow selection of thermal conditioner assemblies for superheating O2 and H2 at supercritical pressures. The application was the auxiliary propulsion system (APS) for the space shuttle vehicle. The O2/H2 APS propellant feed system included propellant conditioners, of which the thermal conditioner assemblies were a part. Cryogens, pumped to pressures above critical, were directed to the thermal conditioner assembly included: (1) a gas generator assembly with ignition system and bipropellant valves, which burned superheated O2 and H2 at rich conditions; (2) a heat exchanger assembly for thermal conditioning of the cryogenic propellant; and (3) a dump nozzle for heat exchanger exhaust.

  1. China's nuclear arsenal and missile defence

    International Nuclear Information System (INIS)

    Rappai, M.V.

    2002-01-01

    Over the last few years, major focus of the nuclear debate has been turned towards the United States' proposal to erect a National Missile Defence (NMD) shield for itself. Of the existing nuclear weapon powers, China has been the most vociferous critic of this proposal. As and when this shield does become a reality, China will be the first to lose credibility as a deterrent against USA's existing nuclear arsenal. Therefore taking countermeasures against such a proposal is quite natural. China's approach towards non-proliferation mechanisms is steeped in realpolitik and its ability to manoeuvre them in its favour as a P5 and N5 power. Further, the Chinese leadership have been clear about the capabilities and limitations of nuclear weapons and treated them as diplomatic and political tools. The underlying aim is to preserve China's status as a dominant player in the international system while checkmating other possible challengers. Such a pragmatic approach is of far-reaching significance to all nations, especially those that possess nuclear weapons themselves. It will also be in India's long-term strategic interest to assess and take necessary corrective measures in its national security strategy, and make the composition of Indian nuclear strategy meet the desired goal. (author)

  2. Nano Icy Moons Propellant Harvester

    Science.gov (United States)

    VanWoerkom, Michael (Principal Investigator)

    2017-01-01

    As one of just a few bodies identified in the solar system with a liquid ocean, Europa has become a top priority in the search for life outside of Earth. However, cost estimates for exploring Europa have been prohibitively expensive, with estimates of a NASA Flagship class orbiter and lander approaching $5 billion. ExoTerra's NIMPH offers an affordable solution that can not only land, but return a sample from the surface to Earth. NIMPH combines solar electric propulsion (SEP) technologies being developed for the asteroid redirect mission and microsatellite electronics to reduce the cost of a full sample return mission below $500 million. A key to achieving this order-of-magnitude cost reduction is minimizing the initial mass of the system. The cost of any mission is directly proportional to its mass. By keeping the mission within the constraints of an Atlas V 551 launch vehicle versus an SLS, we can significantly reduce launch costs. To achieve this we reduce the landed mass of the sample return lander, which is the largest multiplier of mission mass, and shrink propellant mass through high efficiency SEP and gravity assists. The NIMPH projects first step in reducing landed mass focuses on development of a micro-In Situ Resource Utilization (micro-ISRU) system. ISRU allows us to minimize landed mass of a sample return mission by converting local ice into propellants. The project reduces the ISRU system to a CubeSat-scale package that weighs just 1.74 kg and consumes just 242 W of power. We estimate that use of this ISRU vs. an identical micro-lander without ISRU reduces fuel mass by 45 kg. As the dry mass of the lander grows for larger missions, these savings scale exponentially. Taking full advantage of the micro-ISRU system requires the development of a micro-liquid oxygen-liquid hydrogen engine. The micro-liquid oxygen-liquid hydrogen engine is tailored for the mission by scaling it to match the scale of the micro-lander and the low gravity of the target moon

  3. 14 CFR 35.23 - Propeller control system.

    Science.gov (United States)

    2010-01-01

    ... propeller effect under the intended operating conditions. (4) The failure or corruption of data or signals... corruption of airplane-supplied data does not result in hazardous propeller effects. (e) The propeller... effect. (2) Failures or malfunctions directly affecting the propeller control system in a typical...

  4. Mars Propellant Production with Ionic Liquids

    Data.gov (United States)

    National Aeronautics and Space Administration — This project seeks to develop a single vessel for carbon dioxide (CO2) capture and electrolysis for in situ Mars propellant production by eliminating several steps...

  5. Propellant-powered actuator for gas generators

    Science.gov (United States)

    Makowski, M. J.

    1972-01-01

    Hydrazine operated monopropellant generators are used for spacecraft rocket engines and propellant pressurization systems. Measured work output of monopropellant actuators compares favorably with output of squib-type actuators.

  6. In-Space Manufacture of Storable Propellants

    Data.gov (United States)

    National Aeronautics and Space Administration — Many deep-space, missions, especially those that return material or crews to near-Earth space, are severely limited by the need to carry propellants and heat shields...

  7. Mechanism of Combustion of Heterogeneous Solid Propellants

    National Research Council Canada - National Science Library

    Price, E

    1998-01-01

    ... (and compare results with those of AP oxidizer and Ap/hydrocarbon binder propellants). 4. Develop a realistic qualitative model of the combustion process that would identify the requirements for formulation of realistic analytical models.

  8. High Speed Compressor for Subcooling Propellants Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The most promising propellant subcooling systems for LH2 require compression systems that involve development of significant head. The inlet pressure for these...

  9. Alternate Propellant Thermal Rocket, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Alternate Propellant Thermal Rocket (APTR) is a novel concept for propulsion of space exploration or orbit transfer vehicles. APTR propulsion is provided by...

  10. Some typical solid propellant rocket motors

    NARCIS (Netherlands)

    Zandbergen, B.T.C.

    2013-01-01

    Typical Solid Propellant Rocket Motors (shortly referred to as Solid Rocket Motors; SRM's) are described with the purpose to form a database, which allows for comparative analysis and applications in practical SRM engineering.

  11. High Speed Compressor for Subcooling Propellants Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Propellant densification systems for LH2 require compression systems that develop significant head. In the past this has required multiple stages of compressors...

  12. Development and implementation of a propeller test capability for GL-10 "Greased Lightning" propeller design

    Science.gov (United States)

    Duvall, Brian Edward

    Interest in small unmanned aerial vehicles has increased dramatically in recent years. Hybrid vehicles which allow forward flight as a fixed wing aircraft and a true vertical landing capability have always had applications. Management of the available energy and noise associated with electric propeller propulsion systems presents many challenges. NASA Langley has developed the Greased Lightning 10 (GL-10) vertical takeoff, unmanned aerial vehicle with ten individual motors and propellers. All are used for propulsion during takeoff and contribute to acoustic noise pollution which is an identified nuisance to the surrounding users. A propeller test capability was developed to gain an understanding of how the noise can be reduced while meeting minimum thrust requirements. The designed propeller test stand allowed for various commercially available propellers to be tested for potential direct replacement of the current GL-10 propellers and also supported testing of a newly designed propeller provided by the Georgia Institute of Technology. Results from the test program provided insight as to which factors affect the noise as well as performance characteristics. The outcome of the research effort showed that the current GL-10 propeller still represents the best choice of all the candidate propellers tested.

  13. Small scale motor tests of ADN/GAP based propellants

    OpenAIRE

    Gettwert, Volker; Fischer, Sebastian

    2015-01-01

    Different ADN/GAP based propellants were evaluated as a potential replacement of the smoky AP based composite propellant and low signature double base propellants. The paper focuses on burning tests of propellants in a combustion chamber. The experimental results of an ADN/GAP, ADN/FOX12/GAP and Al/ADN/GAP propellant were compared with a standard Al/AP/HTPB propellant. In all cases the obtained experimental gravimetric specific impulse of the ADN/GAP based propellants were higher compared to ...

  14. Liquid Missile Fuels as Means of Chemical Terrorist Attack

    International Nuclear Information System (INIS)

    Superina, V.; Orehovec, Z.

    2007-01-01

    Modern world is faced with numerous terrorist attacks whose goals, methods and means of the conduct are various. It seems that we have entered the era when terrorism, one's own little terrorism, is the easiest and the most painless way of achieving a goal. That is why that such a situation has contributed to the necessity for strengthening individual and collective protection and safety, import and export control, control of the production and illegal sale of the potential means for delivering terrorist act. It has also contributed to the necessity for devising means of the delivery. For more than 10 years, a series of congresses on CB MTS Industry has pointed at chemicals and chemical industry as potential means and targets of terrorism. The specialization and experience of different authors in the field of the missile technology and missile fuels, especially those of Eastern origin, and the threat that was the reality of the war conflicts in 1990s was the reason for making a scientific and expert analysis of the liquid missile fuels as means of terrorism. There are not many experts in the field of NBC protection who are familiar with the toxicity and reaction of liquid missile fuels still lying discarded and unprotected in abandoned barracks all over Europe and Asia. The purpose of this paper is to draw public attention to possible different abuses of liquid missile fuels for a terrorist purpose, as well as to possible consequences and prevention measures against such abuses. (author)

  15. Extending U.S. Theater Missile Defense to Northeast Asia: Ramifications for Regional Security

    National Research Council Canada - National Science Library

    Attenweiler, Steven

    2001-01-01

    The absence of a formidable U.S. and allied Theater Missile Defense (TMD) capability in the East Asian region has encouraged a build-up in offensive missile capability on the part of the People's Republic of China (PRC...

  16. What Should Be the United States Policy towards Ballistic Missile Defense for Northeast Asia?

    National Research Council Canada - National Science Library

    Delgado, Roberto L

    2005-01-01

    .... The threat of ballistic missiles from Northeast Asia is especially high. China and North Korea are seen as the top threats in the region when it comes to the delivery of WMD through ballistic missiles...

  17. Active Noise Control in Propeller Aircraft

    OpenAIRE

    Johansson, Sven; Claesson, Ingvar

    2001-01-01

    A noisy environment dominated by low frequency noise can often be improved through the use of active noise control. This situation arises naturally in propeller aircraft where the propellers induce periodic low frequency noise inside the cabin. The cabin noise is typically rather high, and the passenger flight comfort could be improved considerably if this level were significantly reduced. This paper addresses same design aspects for multiple-reference active noise control systems based on th...

  18. Water Contaminant Mitigation in Ionic Liquid Propellant

    Science.gov (United States)

    Conroy, David; Ziemer, John

    2009-01-01

    Appropriate system and operational requirements are needed in order to ensure mission success without unnecessary cost. Purity requirements applied to thruster propellants may flow down to materials and operations as well as the propellant preparation itself. Colloid electrospray thrusters function by applying a large potential to a room temperature liquid propellant (such as an ionic liquid), inducing formation of a Taylor cone. Ions and droplets are ejected from the Taylor cone and accelerated through a strong electric field. Electrospray thrusters are highly efficient, precise, scaleable, and demonstrate low thrust noise. Ionic liquid propellants have excellent properties for use as electrospray propellants, but can be hampered by impurities, owing to their solvent capabilities. Of foremost concern is the water content, which can result from exposure to atmosphere. Even hydrophobic ionic liquids have been shown to absorb water from the air. In order to mitigate the risks of bubble formation in feed systems caused by water content of the ionic liquid propellant, physical properties of the ionic liquid EMI-Im are analyzed. The effects of surface tension, material wetting, physisorption, and geometric details of the flow manifold and electrospray emitters are explored. Results are compared to laboratory test data.

  19. HMX based enhanced energy LOVA gun propellant.

    Science.gov (United States)

    Sanghavi, R R; Kamale, P J; Shaikh, M A R; Shelar, S D; Kumar, K Sunil; Singh, Amarjit

    2007-05-08

    Efforts to develop gun propellants with low vulnerability have recently been focused on enhancing the energy with a further improvement in its sensitivity characteristics. These propellants not only prevent catastrophic disasters due to unplanned initiation of currently used gun propellants (based on nitrate esters) but also realize enhanced energy levels to increase the muzzle velocity of the projectiles. Now, in order to replace nitroglycerine, which is highly sensitive to friction and impact, nitramines meet the requirements as they offer superior energy due to positive heat of formation, typical stoichiometry with higher decomposition temperatures and also owing to negative oxygen balance are less sensitive than stoichiometrically balanced NG. RDX has been widely reported for use in LOVA propellant. In this paper we have made an effort to present the work on scantily reported nitramine HMX based LOVA gun propellant while incorporating energetic plasticizer glycidyl azide polymer to enhance the energy level. HMX is known to be thermally stable at higher temperature than RDX and also proved to be less vulnerable to small scale shaped charge jet attack as its decomposition temperature is 270 degrees C. HMX also offers improved impulse due to its superior heat of formation (+17 kcal/mol) as compared to RDX (+14 kcal/mol). It has also been reported that a break point will not appear until 35,000 psi for propellant comprising of 5 microm HMX. Since no work has been reported in open literature regarding replacement of RDX by HMX, the present studies were carried out.

  20. Aerodynamic shape optimization of guided missile based on wind tunnel testing and computational fluid dynamics simulation

    OpenAIRE

    Ocokoljić Goran J.; Rašuo Boško P.; Bengin Aleksandar Č.

    2017-01-01

    This paper presents modification of the existing guided missile which was done by replacing the existing front part with the new five, while the rear part of the missile with rocket motor and missile thrust vector control system remains the same. The shape of all improved front parts is completely different from the original one. Modification was performed based on required aerodynamic coefficients for the existing guided missile. The preliminary aerodynamic configurations of the improved mis...

  1. Designing Small Propellers for Optimum Efficiency and Low Noise Footprint

    Science.gov (United States)

    2015-06-26

    successful model, it is recommended that the structure is sufficient to alleviate any torsion or bending of the propeller blade, a rapid prototype...investigate propeller design based on combined blade and momentum theory. It allows the design and analysis of propellers both on and off the design...performance of propeller-motor combinations . QMIL is a companion propeller design program. The aerodynamic models used in QPROP account for induced

  2. Lateral control strategy for a hypersonic cruise missile

    Directory of Open Access Journals (Sweden)

    Yonghua Fan

    2017-04-01

    Full Text Available Hypersonic cruise missile always adopts the configuration of waverider body with the restraint of scramjet. As a result, the lateral motion exhibits serious coupling, and the controller design of the lateral lateral system cannot be conducted separately for yaw channel and roll channel. A multiple input and multiple output optimal control method with integrators is presented to design the lateral combined control system for hypersonic cruise missile. A hypersonic cruise missile lateral model is linearized as a multiple input and multiple output plant, which is coupled by kinematics and fin deflection between yaw and roll. In lateral combined controller, the integrators are augmented, respectively, into the loop of roll angle and lateral overload to ensure that the commands are tracked with zero steady-state error. Through simulation, the proposed controller demonstrates good performance in tracking the command of roll angle and lateral overload.

  3. Flexible missile autopilot design studies with PC-MATLAB/386

    Science.gov (United States)

    Ruth, Michael J.

    1989-01-01

    Development of a responsive, high-bandwidth missile autopilot for airframes which have structural modes of unusually low frequency presents a challenging design task. Such systems are viable candidates for modern, state-space control design methods. The PC-MATLAB interactive software package provides an environment well-suited to the development of candidate linear control laws for flexible missile autopilots. The strengths of MATLAB include: (1) exceptionally high speed (MATLAB's version for 80386-based PC's offers benchmarks approaching minicomputer and mainframe performance); (2) ability to handle large design models of several hundred degrees of freedom, if necessary; and (3) broad extensibility through user-defined functions. To characterize MATLAB capabilities, a simplified design example is presented. This involves interactive definition of an observer-based state-space compensator for a flexible missile autopilot design task. MATLAB capabilities and limitations, in the context of this design task, are then summarized.

  4. Missile placement analysis based on improved SURF feature matching algorithm

    Science.gov (United States)

    Yang, Kaida; Zhao, Wenjie; Li, Dejun; Gong, Xiran; Sheng, Qian

    2015-03-01

    The precious battle damage assessment by use of video images to analysis missile placement is a new study area. The article proposed an improved speeded up robust features algorithm named restricted speeded up robust features, which combined the combat application of TV-command-guided missiles and the characteristics of video image. Its restrictions mainly reflected in two aspects, one is to restrict extraction area of feature point; the second is to restrict the number of feature points. The process of missile placement analysis based on video image was designed and a video splicing process and random sample consensus purification were achieved. The RSURF algorithm is proved that has good realtime performance on the basis of guarantee the accuracy.

  5. 76 FR 63541 - Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants

    Science.gov (United States)

    2011-10-13

    ... Hurricane Missiles for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide... regulatory guide, (RG) 1.221, ``Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants... missiles that a nuclear power plant should be designed to withstand to prevent undue risk to the health and...

  6. Missile impacts as sources of seismic energy on the moon

    Science.gov (United States)

    Latham, G.V.; McDonald, W.G.; Moore, H.J.

    1970-01-01

    Seismic signals recorded from impacts of missiles at the White Sands Missile Range are radically different from the signal recorded from the Apollo 12 lunar module impact. This implies that lunar structure to depths of at least 10 to 20 kilometers is quite different from the typical structure of the earth's crust. Results obtained from this study can be used to predict seismic wave amplitudes from future man-made lunar impacts. Seismic energy and crater dimensions from impacts are compared with measurements from chemical explosions.

  7. Annual water-resources review, White Sands Missile Range: 1971

    Science.gov (United States)

    Cruz, R.R.

    1972-01-01

    This report presents water-resource information that was collected at White Sands Missile Range during 1971 and early 1972 by personnel of the U.S. Geological Survey, Water Resources Division. Data on ground-water pumpage and resulting water-level fluctuation, chemical quality, percipitation, and surface-water runoff are summarized in the report. The data were obtained as a result of the continuing water-resources basic-data collection program sponsored by the Facilities Engineering Directorate, White Sands Missile Range.

  8. Defense Strategy of Aircraft Confronted with IR Guided Missile

    OpenAIRE

    Huang, Hesong; Tong, Zhongxiang; Li, Taorui; Jia, Lintong; Li, Shenbo

    2017-01-01

    Surface-type infrared (IR) decoy can simulate the IR characteristics of the target aircraft, which is one of the most effective equipment to confront IR guided missile. In the air combat, the IR guided missile poses a serious threat to the aircraft when it comes from the front of target aircraft. In this paper, firstly, the model of aircraft and surface-type IR decoy is established. To ensure their authenticity, the aircraft maneuver and radiation models based on real data of flight and exhau...

  9. Propeller and inflow vortex interaction : vortex response and impact on the propeller performance

    NARCIS (Netherlands)

    Yang, Y.; Zhou, T; Sciacchitano, A.; Veldhuis, L.L.M.; Eitelberg, G.

    2016-01-01

    The aerodynamic operating conditions of a propeller can include complex situations where vorticity from sources upstream can enter the propeller plane. In general, when the vorticity enters in a concentrated form of a vortex, the interaction between the vortex and blade is referred to as

  10. 75 FR 51656 - Airworthiness Directives; Dowty Propellers R408/6-123-F/17 Model Propellers

    Science.gov (United States)

    2010-08-23

    ... between a propeller de-ice bus bar and the backplate assembly can cause failure of the bus bar and a consequent intermittent short circuit. Such a short circuit can cause a dual AC generator shutdown that... a propeller de-ice bus bar and the backplate assembly can cause failure of the bus bar and a...

  11. Thermal Vacuum Test Correlation of a Zero Propellant Load Case Thermal Capacitance Propellant Gauging Analytical Model

    Science.gov (United States)

    Mckim, Stephen A.

    2016-01-01

    This thesis describes the development and correlation of a thermal model that forms the foundation of a thermal capacitance spacecraft propellant load estimator. Specific details of creating the thermal model for the diaphragm propellant tank used on NASA's Magnetospheric Multiscale spacecraft using ANSYS and the correlation process implemented are presented. The thermal model was correlated to within plus or minus 3 degrees Celsius of the thermal vacuum test data, and was determined sufficient to make future propellant predictions on MMS. The model was also found to be relatively sensitive to uncertainties in applied heat flux and mass knowledge of the tank. More work is needed to improve temperature predictions in the upper hemisphere of the propellant tank where predictions were found to be 2 to 2.5 C lower than the test data. A road map for applying the model to predict propellant loads on the actual MMS spacecraft toward its end of life in 2017-2018 is also presented.

  12. A Detailed Historical Review of Propellant Management Devices for Low Gravity Propellant Acquisition

    Science.gov (United States)

    Hartwig, Jason W.

    2016-01-01

    This paper presents a comprehensive background and historical review of Propellant Management Devices (PMDs) used throughout spaceflight history. The purpose of a PMD is to separate liquid and gas phases within a propellant tank and to transfer vapor-free propellant from a storage tank to a transfer line en route to either an engine or receiver depot tank, in any gravitational or thermal environment. The design concept, basic flow physics, and principle of operation are presented for each type of PMD. The three primary capillary driven PMD types of vanes, sponges, and screen channel liquid acquisition devices are compared and contrasted. For each PMD type, a detailed review of previous applications using storable propellants is given, which include space experiments as well as space missions and vehicles. Examples of previous cryogenic propellant management are also presented.

  13. In-Space Propellant Production Using Water

    Science.gov (United States)

    Notardonato, William; Johnson, Wesley; Swanger, Adam; McQuade, William

    2012-01-01

    A new era of space exploration is being planned. Manned exploration architectures under consideration require the long term storage of cryogenic propellants in space, and larger science mission directorate payloads can be delivered using cryogenic propulsion stages. Several architecture studies have shown that in-space cryogenic propulsion depots offer benefits including lower launch costs, smaller launch vehicles, and enhanced mission flexibility. NASA is currently planning a Cryogenic Propellant Storage and Transfer (CPST) technology demonstration mission that will use existing technology to demonstrate long duration storage, acquisition, mass gauging, and transfer of liquid hydrogen in low Earth orbit. This mission will demonstrate key technologies, but the CPST architecture is not designed for optimal mission operations for a true propellant depot. This paper will consider cryogenic propellant depots that are designed for operability. The operability principles considered are reusability, commonality, designing for the unique environment of space, and use of active control systems, both thermal and fluid. After considering these operability principles, a proposed depot architecture will be presented that uses water launch and on orbit electrolysis and liquefaction. This could serve as the first true space factory. Critical technologies needed for this depot architecture, including on orbit electrolysis, zero-g liquefaction and storage, rendezvous and docking, and propellant transfer, will be discussed and a developmental path forward will be presented. Finally, use of the depot to support the NASA Science Mission Directorate exploration goals will be presented.

  14. Advances in LO2 Propellant Conditioning

    Science.gov (United States)

    Mehta, Gopal; Orth, Michael; Stone, William; Perry, Gretchen; Holt, Kimberly; Suter, John

    1994-01-01

    This paper describes the cryogenic testing and analysis that has recently been completed as part of a multi-year effort to develop a new, more robust and operable LO2 propellant conditioning system. Phase 1 of the program consisted of feasibility demonstrations ot four novel propellant conditioning concepts. A no-bleed, passive propellant conditioning option was shown for the first time to successfully provide desired propellant inlet conditions. The benefits of passive conditioning are reduced operations costs, decreased hardware costs, enhanced operability and increased reliability on future expendable launch vehicles In Phase 2 of the test program, effects of major design parameters were studied and design correlation for future vehicle design were developed. Simultaneously, analytical models were developed and validated. Over 100 tests were conducted with a full-scale feedline using LN2 as the test fluid. A circulation pump provided a range of pressure and flow conditions. The test results showed that the passive propellant conditioning system is insensitive to variations in many of the parameters. The test program provides the validation necessary to incorporate the passive conditioning system into the baseline of future vehicles. Modeling of these systems using computational fluid dynamics seems highly promising.

  15. An analysis of the common missile and TOW 2B on the Stryker anti-tank guided missile platform, using the Janus simulation

    OpenAIRE

    Peterson, Samuel L.

    2002-01-01

    Approved for public release; distribution in unlimited. The U.S. Army is beginning to field the first of six Stryker Brigade Combat Teams (SBCTs) and equip the organic Anti-Tank (AT) Company of the Brigade with the LAV III Anti-Tank Guided Missile (ATGM) Platform and the Tube-Launched, Optically-Tracked, Wire-Guided 2B (TOW 2B) missile system. A developmental effort is currently underway to replace the aging TOW 2B and Hellfire missile systems with a common missile that meets both ground...

  16. Development of a Marine Propeller With Nonplanar Lifting Surfaces

    DEFF Research Database (Denmark)

    Andersen, Poul; Friesch, Jürgen; Kappel, Jens J.

    2005-01-01

    with higher efficiency and lower levels of noise and vibration excitation compared to conventional state-of-the-art propellers designed for the same task. Conventional and KAPPEL propellers have been compared for a medium-sized containership and a product tanker. In total, nine KAPPEL propellers and two...... conventional propellers have been designed, and models of all propellers have been examined with respect to cavitation and efficiency in the open-water and behind conditions. Casting procedures, measurement procedures, and stress analysis methods for the unconventional geometry of the KAPPEL propeller have...

  17. Missile Defense: Opportunity Exists to Strengthen Acquisitions by Reducing Concurrency

    Science.gov (United States)

    2012-04-01

    unexpected energetic event in the third-stage rocket motor and failed to intercept a short-range ballistic missile target. Following the flight test...Phone Connect with GAO To Report Fraud , Waste, and Abuse in Federal Programs Congressional Relations Public Affairs Please Print on Recycled Paper.

  18. Missiles and aircraft (part 2) | Meyer | Scientia Militaria: South African ...

    African Journals Online (AJOL)

    Scientia Militaria: South African Journal of Military Studies. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 9, No 1 (1979) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Missiles and aircraft (part 2).

  19. Missiles and aircraft (Part 3) | Meyer | Scientia Militaria: South ...

    African Journals Online (AJOL)

    Scientia Militaria: South African Journal of Military Studies. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 9, No 3 (1979) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Missiles and aircraft (Part 3).

  20. Missiles and aircraft - Part 4 | Meyer | Scientia Militaria: South African ...

    African Journals Online (AJOL)

    Scientia Militaria: South African Journal of Military Studies. Journal Home · ABOUT · Advanced Search · Current Issue · Archives · Journal Home > Vol 9, No 4 (1979) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Missiles and aircraft - Part 4. C Meyer. Abstract.

  1. Missiles and aircraft (Part 1) | Meyer | Scientia Militaria: South ...

    African Journals Online (AJOL)

    Scientia Militaria: South African Journal of Military Studies. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 8, No 4 (1978) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Missiles and aircraft (Part 1).

  2. Aerodynamic heating of ballistic missile including the effects of gravity

    Indian Academy of Sciences (India)

    The aerodynamic heating of a ballistic missile due to only convection is analysed taking into consideration the effects of gravity. The amount of heat transferred to the wetted area and to the nose region has been separately determined, unlike A Miele's treatise without consideration of gravity. The peak heating ratesto the ...

  3. Aerodynamic heating of ballistic missile including the effects of gravity

    Indian Academy of Sciences (India)

    Abstract. The aerodynamic heating of a ballistic missile due to only convection is analysed taking into consideration the effects of gravity. The amount of heat transferred to the wetted area and to the nose region has been separately determined, unlike A Miele's treatise without consideration of gravity. The peak heating rates ...

  4. A robust approach to the missile defence location problem

    NARCIS (Netherlands)

    Bloemen, A.A.F.; Evers, L.; Barros, A.I.; Monsuur, H.; Wagelmans, A.P.M.

    2011-01-01

    This paper proposes a model for determining a robust defence strategy against ballistic missile threat. Our approach takes into account a variety of possible future scenarios and different forms of robustness criteria, including the well-known absolute robustness criterion. We consider two problem

  5. 22 CFR 121.16 - Missile Technology Control Regime Annex.

    Science.gov (United States)

    2010-04-01

    ... systems in Item 1, as follows: (a) Composite structures, laminates, and manufactures thereof, including... provided in Note (1) below for those designed for missiles with a range under 300 km or manned aircraft...) Item 3(a) engines may be exported as part of a manned aircraft or in quantities appropriate for...

  6. Aerodynamic heating of ballistic missile including the effects of gravity

    Indian Academy of Sciences (India)

    R D Neumann and J R Hayes (Summerfield 1986) carried out a sort of aerodynamic heating analysis for high velocity missiles by applying the knowledge of both inviscid and viscous flow fields over the vehicle, as the heating rate at any point of the vehicle is a function of many test-specific properties such as fluid flow field ...

  7. Ballistic Missile Defense Final Programmatic Environmental Impact Statement

    Science.gov (United States)

    1994-10-01

    or informal conasultation with the U.S. Fiah and aoaroro daring the antelope fawaiog peeied wad yearloag for desert bighorn Wildlife= ceee oaceening... catalogued , thereby making missiles easier to identify and shortening response time. F.4.3 ELEMENT DESCRIPTION The SBS element would consist of a

  8. Fifty Years On: The Cuban Missile Crisis Revisited and Reinterpreted

    OpenAIRE

    White, Mark

    2012-01-01

    On the 50th anniversary of the Cuban missile crisis Mark White re-examines the most dangerous episode in the history of the Cold War. Utilising declassified materials, he provides a fresh interpretation of the roles play by John Kennedy’s team of advisers. In particular, the contributions made by Robert McNamara and Robert Kennedy are re-evaluated.

  9. 77 FR 51970 - Renewal of Missile Defense Advisory Committee

    Science.gov (United States)

    2012-08-28

    ..., Technology, and Logistics and the Director, Missile Defense Agency (MDA), independent advice and... be appointed for term of service ranging from one-to-two years. Unless authorized by the Secretary of Defense, no member may serve more than two consecutive terms of service. This same term of service...

  10. Electrostatic Discharge testing of propellants and primers

    Energy Technology Data Exchange (ETDEWEB)

    Berry, R.B.

    1994-02-01

    This report presents the results of testing of selected propellants and primers to Electrostatic Discharge (ESD) characteristic of the human body. It describes the tests and the fixturing built to accommodate loose material (propellants) and the packed energetic material of the primer. The results indicate that all powders passed and some primers, especially the electric primers, failed to pass established requirements which delineate insensitive energetic components. This report details the testing of components and materials to four ESD environments (Standard ESD, Severe ESD, Modified Standard ESD, and Modified Severe ESD). The purpose of this study was to collect data based on the customer requirements as defined in the Sandia Environmental Safety & Health (ES&H) Manual, Chapter 9, and to define static sensitive and insensitive propellants and primers.

  11. Elliptical field-of-view PROPELLER imaging.

    Science.gov (United States)

    Devaraj, Ajit; Pipe, James G

    2009-09-01

    Traditionally two-dimensional scans are designed to support an isotropic field-of-view (iFOV). When imaging elongated objects, significant savings in scan time can potentially be achieved by supporting an elliptical field-of-view (eFOV). This work presents an empirical closed-form solution to adapt the PROPELLER trajectory for an eFOV. The proposed solution is built on the geometry of the PROPELLER trajectory permitting the scan prescription and data reconstruction to remain largely similar to standard PROPELLER. The achieved FOV is experimentally validated by the point spread function (PSF) of a phantom scan. The details of potential savings in scan time and the signal-to-noise ratio (SNR) performance in comparison to iFOV scans for both phantom and in-vivo images are also described.

  12. The behavior of reinforced concrete barriers subjected to the impact of tornado generated deformable missiles

    International Nuclear Information System (INIS)

    McMahon, P.M.; Meyers, B.L.; Buchert, K.P.

    1977-01-01

    The paper presents a general model for the evaluation of local effects damage including, penetration and backface spalling, of reinforced concrete barriers subjected to the impact of deformable tornado generated missiles. The model is based on an approximte force time history which assumes: 1) the initial penetration of the missile occurs without significant deformation of the missile if the strength of the missile is greater than that of the barrier. This portion of the time history is represented by a linear and finite rise time; 2) wrinkling or collapse of the missile occurs when the critical stress of the missile is exceeded. This portion of the time histroy is represented by a constant force-time relationship, although a decreaseing force might be more accurate; 3) while the missile is penetrating and wrinkling both elastic and plastic stress waves are developed in the missile, and compressive and shear stress waves are generated in he target. When the shear waves reach the backface of the slab, doagonal cracks initiating at the end of the penetrating missile are formed. These cracks propagate to the backface reinforcing where splitting cracks are formed. Finally, yield hinge lines form in the plane of reinforcing; 4) repenetration of the missile occurs after the wrinkling has caused a change in missile cross section. This repenetration results from moving the failure cone described in three above, and is also represented by the costant force time history. Using the assumptions, relationships for the penetration depth of the missile the wrinkling length of the missile, the critical missile stress, the time history of the impact and the spalling of the target are developed. (Auth.)

  13. Design and simulation on the morphing composite propeller (Conference Presentation)

    Science.gov (United States)

    Chen, Fanlong; Li, Qinyu; Liu, Liwu; Lan, Xin; Liu, Yanju; Leng, Jinsong

    2017-04-01

    As one of the most crucial part of the unmanned underwater vehicle (UUV), the composite propeller plays an important role on the UUV's performance. As the composite propeller behaves excellent properties in hydroelastic facet and acoustic suppression, it attracts increasing attentions all over the globe. This paper goes a step further based on this idea, and comes up with a novel concept of "morphing composite propeller" (MCP) to improve the performance of the conventional composite propeller (CCP) to anticipate the improved propeller can perform better to propel the UUV. Based on the new concept, a novel MCP is designed. Each blade of the propeller is assembled with an active rotatable flap (ARF) to change the blade's local camber with flap rotation. Then the transmission mechanism (TM) has been designed and housed in the propeller blade to push the ARF. With the ARF rotating, the UUV can be propelled by different thrusts under certain rotation velocities of the propeller. Based on the design, the Fluent is exploited to analyze the fluid dynamics around the propeller. Finally, based on the design and hydrodynamic analysis, the structural response for the novel morphing composite propeller is calculated. The propeller blade is simplified and layered with composite materials. And the structure response of an MCP is obtained with various rotation angle under the hydrodynamic pressure. This simulation can instruct the design and fabrication techniques of the MCP.

  14. Spectroscopy of Propellant-Related Flames

    Science.gov (United States)

    1990-06-01

    data. For propellant HMX1, the absorption data of Vanderhoff [12], the CARS data of Stufflebeam [13], and the CN LIF profile [4,5] can be compared...CARS experiments at 23 atm, Stufflebeam measured the concentration of N2, CO, H2 and temperature in an HMX1 propellant flame at distances about 1 mm...Parr, Hanson-Parr PLIF CN, NH, OH, NO, 10 NO2, T Stufflebeam CARS N2, CO, H2, T 13 Vanderhoff Absorption CN, NH, OH, T 12 Edwards LIF CN, NH, OH, T 4

  15. 42nd Annual Armament Systems: Gun and Missile Systems

    Science.gov (United States)

    2007-04-26

    Propellant condition/degradation • Karl Fischer – Moisture content of propellant and primer mix • Differential Scanning Microscopy – Degradation in primer...PURPOSE (cont’d) • Investigate the impact of compromised seals on 20mm ammunition performance • Determine if performance impacts could potentially...until seals were compromised (75- 80%), as determined through vacuum/water leak tests. • Rounds completing each phase of cycling were inspected for

  16. Innovative Swirl Injector for LOX and Hydrocarbon Propellants, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Gases trapped in the propellant feed lines of space-based rocket engines due to cryogenic propellant boil-off or pressurant ingestion can result in poor combustion...

  17. Innovative Swirl Injector for LOX and Hydrocarbon Propellants Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Gases trapped in the propellant feed lines of space-based rocket engines due to cryogenic propellant boil-off or pressurant ingestion can result in poor combustion...

  18. Advanced insulation Materials for Cryogenic Propellant Storage Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Materials Technology, Inc (AMTI) responds to the Topic X9 entitled "Propulsion and Propellant Storage" under subtopic X9.01, "Long Term Cryogenic Propellant...

  19. Propellant Gelation for Green In-Space Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Concerns in recent years about the toxicity and safe handling of the storable class of propellants have led to efforts in greener monopropellants and bi-propellants....

  20. Propellant Technologies: A Persuasive Wave of Future Propulsion Benefits

    Science.gov (United States)

    Palaszewski, Bryan; Ianovski, Leonid S.; Carrick, Patrick

    1997-01-01

    Rocket propellant and propulsion technology improvements can be used to reduce the development time and operational costs of new space vehicle programs. Advanced propellant technologies can make the space vehicles safer, more operable, and higher performing. Five technology areas are described: Monopropellants, Alternative Hydrocarbons, Gelled Hydrogen, Metallized Gelled Propellants, and High Energy Density Materials. These propellants' benefits for future vehicles are outlined using mission study results and the technologies are briefly discussed.

  1. A Submarine Electric Propulsion System with Large Hub Propeller

    Science.gov (United States)

    1983-05-01

    thrust coefficient n propeller rotational speed, revolutions per unit time Nb number of blades Pa ambient pressure SPv vapor pressure PI propeller pitch...propeller was better than that of the conventional propeller. The superior -46- S .. -. *.w• ".1[- propulsor cavitation performance indicated that the...presented here for a are unrealistically high since they assume a vapor pressure, Pv, of zero which for seawater at 59 0 F, ideally should be 2.50

  2. 14 CFR 35.2 - Propeller configuration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller configuration. 35.2 Section 35.2 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... components, including references to the relevant drawings and software design data, that define the type...

  3. Design Procedure of 4-Bladed Propeller

    African Journals Online (AJOL)

    PROF. O. E. OSUAGWU

    2013-09-01

    Sep 1, 2013 ... ... by converting rotational motion into thrust. A pressure difference is produced between the forward and the rear surfaces of the air foil-shaped blade, and a fluid (such as air or water) is accelerated behind the blade. Propeller dynamics can be modeled by both Bernoulli's principle and. Newton's third law.

  4. Atmospheric surveillance self-propelling device

    International Nuclear Information System (INIS)

    Cartoux, Gerard.

    1980-11-01

    The atmospheric surveillance self-propelling device of the Saclay Nuclear Research Center can, by its conception (autonomy, rapid put into service, multiplicity of sampling and measurements), be used for all kind of measuring campains: pollution radioactive or not, routine or accidental situation, technical and logistic support and as a coordination or investigation vehicle [fr

  5. Design Procedure of 4-Bladed Propeller

    African Journals Online (AJOL)

    PROF. O. E. OSUAGWU

    2013-09-01

    Sep 1, 2013 ... Diameter – The diameter of the imaginary cycle scribed by the blade ... Blade root – Fillet area. The region of transition from .... Propeller diameter. To estimate the weight of all blades and the polar moment of inertia of a blade, the approximate formula given by [8] was adopted. 3. 982.1. ,. YR. B. W. Weight.

  6. The Threat from European Missile Defence System to Russian National Security

    Directory of Open Access Journals (Sweden)

    Alexey I. Podberezkin

    2014-01-01

    Full Text Available The article analyses the political and military aspects of progress in the dialogue between Russia and the U.S./NATO on cooperation in missile defense; investigates the past experiences and current state of cooperation between Russia and the Alliance on missile defense issues; examines the technical features of American missile defence systems today; finds a solution to question whether or not the European Missile Defence Program actually threatens Russia's nuclear deterrent and strategic stability in general; identifies both potential benefits and possible losses for Russia stemming from the development of cooperation with the United States and NATO in countering ballistic missile threats, or from refusal to have such cooperation. Evidently, the initiative of creation of a missile defense in Europe surely belongs to the USA. Washington has enormous technological, financial, economic, military and institutional capabilities in the field of a missile defense, exceeding by far other NATO member-states. In February 2010, the President of the United States B. Obama adopted a project "European Phased Adaptive Approach" (EPAA as an alternative to G. Bush's global strategic missile defense plan. The first two stages of the Phased Adaptive Approach are focused on creating a system capable of intercepting small, medium and intermediate-range ballistic missiles. The possibility of intercepting long-range missiles is postponed to the third (2018 and forth phases (2020. Moscow finds especially troublesome the third and the fourth phases of Washington's project of creating a European segment of the global antiballistic missile system, considering prospective capabilities of the U.S. interceptor missiles 61 and the envisioned areas of their deployment. The U.S. counter-evidence is that phase four interceptors do not exist yet. Russia insists on getting the political and legal guarantees from the U.S. and NATO that their missile defense systems will not slash

  7. A Portable Burn Pan for the Disposal of Excess Propellants

    Science.gov (United States)

    2015-11-01

    seconds from the charges becoming engaged to burnout . The surrounding grass was ignited by the radiant heat of the burn, an indication of the high...2) Opened propellant charges burning A.5) Propellant charges fully engaged A.6) Start of burn out Field Manual: CRREL Portable Propellant

  8. Main Factors Affecting Blade Failure of Marine Propeller(2nd Report:Resonance between Vibrations of Propeller Shaft and Blade)

    OpenAIRE

    川添, 強; 松尾, 信太郎; 錦戸, 真吾

    1994-01-01

    The first report showed the difficulty to consider the small material defects and the low fluctuating stress by the hydrodynamic force as the main factors of the propeller blade failure. For the purpose of the elucidation of resonance between vibrations of the propeller shaft and the propeller blade, this paper presents the measurements and calculations of the flexural natural frequency of the full scale propeller blade in .air and in water, the vibratory stress due to the resonance and the l...

  9. 75 FR 18774 - Airworthiness Directives; McCauley Propeller Systems Model 4HFR34C653/L106FA Propellers

    Science.gov (United States)

    2010-04-13

    ... done. (f) For propeller hubs with 6,000 or more operating hours time- since-new (TSN) on the effective... 6,000 operating hours TSN on the effective date of this AD, perform the procedures in paragraphs (h) through (k) of this AD before the propeller hub reaches 6,100 operating hours TSN. Onetime Propeller Hub...

  10. 75 FR 39801 - Airworthiness Directives; McCauley Propeller Systems Model 4HFR34C653/L106FA Propellers

    Science.gov (United States)

    2010-07-13

    ... done. (f) For propeller hubs with 6,000 or more operating hours time- since-new (TSN) on the effective... operating hours TSN on the effective date of this AD, perform the procedures in paragraphs (h) through (k) of this AD before the propeller hub reaches 6,100 operating hours TSN. Onetime Propeller Hub...

  11. Effect of aerodynamic heating on infrared guided missiles

    Science.gov (United States)

    Milthorpe, J. F.; Lynn, P. J. P.

    Many guided weapons, particularly air-to-air missiles, employ infra-red homing devices to locate targets. Infra-red (IR) seekers receive the electromagnetic radiation from hot emitters, such as aircraft, using wavelengths that are typically between 3 mm and 14 mm. For a target to be detected, there must be a significant contrast, either in strength or in wavelength, between the heat emitted by the target and the background, which is usually the sky. While early IR missiles detected the hot exhaust of the engine, modern weapons can detect the radiation from lower temperature parts of the aircraft such as the skin, which enables the weapon to attack an aircraft from in front.

  12. Novel applications of femtosecond laser in missile countermeasures

    Science.gov (United States)

    Marquis, E.; Pocholle, J. P.

    2005-11-01

    Femtosecond lasers have been widely used in laboratories for years and are now suitable for industrial applications and new military ones. Due to their very short pulse duration, they have the capability to generate intense electric fields and plasmas in targeted materials. We present here a novel scheme of missile counter-measure that is using such an intense laser source to disrupt the operation of IR guidance systems. Classical lasers for missile defense are based on thermal effects on the target whereas photons are used as the kill vehicle [1,2]. In femtosecond countermeasure, the average power is quite low, but the very intense field creates ionization effects than can damage sensitive optics and also plasma that can be used as active decoys against IR homing electronics. As the recent systems are compact and portable, an airport protection scheme is proposed to eliminate manpads threats in the vicinity of a civilian airport.

  13. Laser-initiated ordnance for air-to-air missiles

    Science.gov (United States)

    Sumpter, David R.

    1993-01-01

    McDonnell Douglas Missile Systems Company (MDMSC) has developed a laser ignition subsystem (LIS) for air-to-air missile applications. The MDMSC subsystem is designed to activate batteries, unlock fins, and sequence propulsion system events. The subsystem includes Pyro Zirconium Pump (PZP) lasers, mechanical Safe & Arm, fiber-optic distribution system, and optically activated pyrotechnic devices (initiators, detonators, and thermal batteries). The LIS design has incorporated testability features for the laser modules, drive electronics, fiber-optics, and pyrotechnics. Several of the LIS have been fabricated and have supported thermal battery testing, integral rocket ramjet testing, and have been integrated into integral rocket ramjet flight test vehicles as part of the flight control subsystem.

  14. THE WHITE SANDS MISSILE RANGE PULSED REACTOR FACILITY, MAY 1963

    Energy Technology Data Exchange (ETDEWEB)

    Long, Robert L.; Boor, R.A.; Cole, W.M.; Elder, G.E.

    1963-05-15

    A brief statement of the mission of the White Sands Missile Range Nuclear Effects Laboratory is given. The new Nuclear Effects Laboratory Facility is described. This facility consists of two buildings-a laboratory and a reactor building. The White Sands Missile Range bare critical assembly, designated as the MoLLY-G, is described. The MoLLY-G, an unreflected, unmoderated right circular cylinder of uranium-molybdenum alloy designed for pulsed operation, will have a maximum burst capability of approximately 2 x 10/sup 17/ fissions with a burst width of 50 microseconds. The reactor construction and operating procedures are described. As designed, the MoLLY-G will provide an intense source of pulsed neutron and gamma radiation for a great variety of experimental and test arrangements. (auth)

  15. Multi-Mode Electric Actuator Dynamic Modelling for Missile Fin Control

    Directory of Open Access Journals (Sweden)

    Bhimashankar Gurav

    2017-06-01

    Full Text Available Linear first/second order fin direct current (DC actuator model approximations for missile applications are currently limited to angular position and angular velocity state variables. Furthermore, existing literature with detailed DC motor models is decoupled from the application of interest: tail controller missile lateral acceleration (LATAX performance. This paper aims to integrate a generic DC fin actuator model with dual-mode feedforward and feedback control for tail-controlled missiles in conjunction with the autopilot system design. Moreover, the characteristics of the actuator torque information in relation to the aerodynamic fin loading for given missile trim velocities are also provided. The novelty of this paper is the integration of the missile LATAX autopilot states and actuator states including the motor torque, position and angular velocity. The advantage of such an approach is the parametric analysis and suitability of the fin actuator in relation to the missile lateral acceleration dynamic behaviour.

  16. Application of Pontryagin’s Minimum Principle in Optimum Time of Missile Manoeuvring

    Directory of Open Access Journals (Sweden)

    Sari Cahyaningtias

    2016-11-01

    Full Text Available Missile is a guided weapon and designed to protect outermost island from a thread of other country. It, commonly, is used as self defense. This research presented surface-to-surface missile in final dive manoeuvre for fixed target. Furthermore, it was proposed manoeuvring based on unmanned aerial vehicle (UAV, autopilot system, which needs accuration and minimum both time and thrust of missile while attacking object. This paper introduced pontryagin’s Minimum Principle, which is useable to solve the problem. The numerical solution showed that trajectory of the missile is split it up in three sub-intervals; flight, climbing, and diving. The numerical simulation showed that the missile must climb in order to satisfy the final dive condition and the optimum time of a missile depend on initial condition of the altitude and the terminal velocity

  17. Ogive Nose Hard Missile Penetrating Concrete Slab Numerical Simulation Approach

    OpenAIRE

    Bux, Qadir; Rahman, Ismail Abdul; Zaidi, Ahmad Mujahid Ahmad

    2011-01-01

    Great demand exists for more efficient design to protect delicate and serious structures such as nuclear plants, Power plants, Weapon Industries, weapons storage places, water retaining structures, & etc, against impact of kinetic missiles generated both accidentally and deliberately such as dynamic loading, incident occurs in nuclear plants, terrorist attack, Natural disasters like tsunami and etc., in various impact and blast scenarios for both civilian and military activities. In many ...

  18. Composite steel panels for tornado missile barrier walls. Topical report

    International Nuclear Information System (INIS)

    1975-10-01

    A composite steel panel wall system is defined as a wall system with concrete fill sandwiched between two steel layers such that no concrete surface is exposed on the interior or the exterior wall surface. Three full scale missile tests were conducted on two specific composite wall systems. The results of the full scale tests were in good agreement with the finalized theory. The theory is presented, and the acceptance of the theory for design calculations is discussed

  19. MISSILE DATCOM User’s Manual - 2011 Revision

    Science.gov (United States)

    2011-03-01

    Underwood (U.S. Army Aviation & Missile Research, Development and Engineering Center) William B. Blake (AFRL/ RBCA ) 5d. PROJECT NUMBER A07T 5e. TASK...Control Design and Analysis Branch (AFRL/ RBCA ) Control Sciences Division Air Force Research Laboratory Air Vehicles Directorate WPAFB, OH 45433-7542...OH 45433-7542 Air Force Materiel Command United States Air Force AFRL/ RBCA 11. SPONSORING/MONITORING AGENCY REPORT NUMBER(S) AFRL-RB

  20. Missile Defense Acquisition: Failure Is Not An Option

    Science.gov (United States)

    2016-01-26

    Seattle Pacific University, Seattle Washington. LTC Lloyd’s military education includes the Air Defense Officer Basic and Advance Courses, Army...Missile Defense Acquisition: Failure is Not an Option 8 capabilities. Retired Marine General James Mattis’ renowned quote rings true, “The enemy...facilities, and fire control and communications nodes based in Alaska and California.21USNORTHCOM personnel operate MDA’s battle command, control, and

  1. Maintenance cost control at the Pacific Missile Test Center.

    OpenAIRE

    Jenson, Richard J.

    1980-01-01

    Approved for public release; distribution is unlimited The Pacific Missile Test Center (PMTC) is the Navy's largest Major Range and Test Facility Base, with an investment of over one billion dollars. The majority of this investment is in range test equipment and facilities including radar, telemetry, communication and command/ control systems. Concern is growing over the "excessively obsolete condition of PMTC technical equipment." Improvement of factors concerned with...

  2. Analyzing and designing object-oriented missile simulations with concurrency

    Science.gov (United States)

    Randorf, Jeffrey Allen

    2000-11-01

    A software object model for the six degree-of-freedom missile modeling domain is presented. As a precursor, a domain analysis of the missile modeling domain was started, based on the Feature-Oriented Domain Analysis (FODA) technique described by the Software Engineering Institute (SEI). It was subsequently determined the FODA methodology is functionally equivalent to the Object Modeling Technique. The analysis used legacy software documentation and code from the ENDOSIM, KDEC, and TFrames 6-DOF modeling tools, including other technical literature. The SEI Object Connection Architecture (OCA) was the template for designing the object model. Three variants of the OCA were considered---a reference structure, a recursive structure, and a reference structure with augmentation for flight vehicle modeling. The reference OCA design option was chosen for maintaining simplicity while not compromising the expressive power of the OMT model. The missile architecture was then analyzed for potential areas of concurrent computing. It was shown how protected objects could be used for data passing between OCA object managers, allowing concurrent access without changing the OCA reference design intent or structure. The implementation language was the 1995 release of Ada. OCA software components were shown how to be expressed as Ada child packages. While acceleration of several low level and other high operations level are possible on proper hardware, there was a 33% degradation of 4th order Runge-Kutta integrator performance of two simultaneous ordinary differential equations using Ada tasking on a single processor machine. The Defense Department's High Level Architecture was introduced and explained in context with the OCA. It was shown the HLA and OCA were not mutually exclusive architectures, but complimentary. HLA was shown as an interoperability solution, with the OCA as an architectural vehicle for software reuse. Further directions for implementing a 6-DOF missile modeling

  3. Sino-Japanese relations and ballistic missile defence

    OpenAIRE

    Hughes, Christopher W.

    2001-01-01

    Since December 1998, the Japanese government has formally committed itself to undertake cooperative technological research with the US into Ballistic Missile Defence (BMD). Japanese government policy-makers stress that the BMD project remains at present purely at the research stage, and that separate government decisions will be necessary before any progression towards the stages of development, production and deployment. Nevertheless, even at the research phase it is clear that both Japanese...

  4. A Potent Vector: Assessing Chinese Cruise Missile Developments

    Science.gov (United States)

    2014-01-01

    Termit (NATO designation: SS-N-2A Styx) antiship missiles, models, and technical data to China beginning in 1959. Moscow was to assist Beijing with...performance, the PLAN has begun to expand its training and has become more diverse and realistic in re- cent years with increasing focus on cruise...these routines in diverse ways over many years and the command and control architecture needed to deal with complex combined- arms operations

  5. Resonant Inductive Power Transfer for Noncontact Launcher-Missile Interface

    Science.gov (United States)

    2016-08-01

    stored on the capacitor. The capacitor then discharges through the inductive coil, which creates a magnetic field. Meanwhile, the capacitor charges ...TECHNICAL REPORT RDMR-WD-16-37 RESONANT INDUCTIVE POWER TRANSFER FOR NONCONTACT LAUNCHER-MISSILE INTERFACE Martin S...AGENCY USE ONLY 2. REPORT DATE August 2016 3. REPORT TYPE AND DATES COVERED Final 4. TITLE AND SUBTITLE Resonant Inductive Power Transfer

  6. Space Transportation Infrastructure Supported By Propellant Depots

    Science.gov (United States)

    Smitherman, David; Woodcock, Gordon

    2011-01-01

    A space transportation infrastructure is described that utilizes propellant depots to support all foreseeable missions in the Earth-Moon vicinity and deep space out to Mars. The infrastructure utilizes current expendable launch vehicles such as the Delta IV Heavy, Atlas V, and Falcon 9, for all crew, cargo, and propellant launches to orbit. Propellant launches are made to a Low-Earth-Orbit (LEO) Depot and an Earth-Moon Lagrange Point 1 (L1) Depot to support new reusable in-space transportation vehicles. The LEO Depot supports missions to Geosynchronous Earth Orbit (GEO) for satellite servicing, and to L1 for L1 Depot missions. The L1 Depot supports Lunar, Earth-Sun L2 (ESL2), Asteroid, and Mars missions. A Mars Orbital Depot is also described to support ongoing Mars missions. New concepts for vehicle designs are presented that can be launched on current 5-meter diameter expendable launch vehicles. These new reusable vehicle concepts include a LEO Depot, L1 Depot, and Mars Orbital Depot based on International Space Station (ISS) heritage hardware. The high-energy depots at L1 and Mars orbit are compatible with, but do not require, electric propulsion tug use for propellant and/or cargo delivery. New reusable in-space crew transportation vehicles include a Crew Transfer Vehicle (CTV) for crew transportation between the LEO Depot and the L1 Depot, a new reusable Lunar Lander for crew transportation between the L1 Depot and the lunar surface, and a Deep Space Habitat (DSH) to support crew missions from the L1 Depot to ESL2, Asteroid, and Mars destinations. A 6 meter diameter Mars lander concept is presented that can be launched without a fairing based on the Delta IV heavy Payload Planners Guide, which indicates feasibility of a 6.5 meter fairing. This lander would evolve to re-usable operations when propellant production is established on Mars. Figure 1 provides a summary of the possible missions this infrastructure can support. Summary mission profiles are presented

  7. The art and science of missile defense sensor design

    Science.gov (United States)

    McComas, Brian K.

    2014-06-01

    A Missile Defense Sensor is a complex optical system, which sits idle for long periods of time, must work with little or no on-­board calibration, be used to find and discriminate targets, and guide the kinetic warhead to the target within minutes of launch. A short overview of the Missile Defense problem will be discussed here, as well as, the top-level performance drivers, like Noise Equivalent Irradiance (NEI), Acquisition Range, and Dynamic Range. These top-level parameters influence the choice of optical system, mechanical system, focal plane array (FPA), Read Out Integrated Circuit (ROIC), and cryogenic system. This paper will not only discuss the physics behind the performance of the sensor, but it will also discuss the "art" of optimizing the performance of the sensor given the top level performance parameters. Balancing the sensor sub-­systems is key to the sensor's performance in these highly stressful missions. Top-­level performance requirements impact the choice of lower level hardware and requirements. The flow down of requirements to the lower level hardware will be discussed. This flow down directly impacts the FPA, where careful selection of the detector is required. The flow down also influences the ROIC and cooling requirements. The key physics behind the detector and cryogenic system interactions will be discussed, along with the balancing of subsystem performance. Finally, the overall system balance and optimization will be discussed in the context of missile defense sensors and expected performance of the overall kinetic warhead.

  8. Consolidation of ATC (Air Training Command) and TAC (Tactical Air Forces) Missile Maintenance Officer Courses

    Science.gov (United States)

    1984-03-01

    INTRODUCTION AND OVERVIEW The purpose of this research paper is to answer the ques - tion "Should entry level missile maintenance officer courses conducted...Management Organization GLCM (HQ TAC/ SMOG ), informally proposed combining missile main- tenance courses in the summer-fall timeframe of 1981. Colonel...facilitate discussion and decision making. Chapter Two outlines the procedure the paper will use to answer the ques - - tion "Should we combine missile

  9. Back to the Future: Integrated Air and Missile Defense in the Pacific

    Science.gov (United States)

    2015-02-01

    MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION /AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14...mis- sion, that service researched missile systems like the Nike -Zeus to de- fend against USSR ICBMs.11 Eventually, the Army fielded several ver- sions...of the Nike weapons system, along with the Hawk and Stinger missiles, to combat theater ballistic missiles and air-breathing threats. The colossal

  10. A Numerical Method for Blast Shock Wave Analysis of Missile Launch from Aircraft

    Directory of Open Access Journals (Sweden)

    Sebastian Heimbs

    2015-01-01

    Full Text Available An efficient empirical approach was developed to accurately represent the blast shock wave loading resulting from the launch of a missile from a military aircraft to be used in numerical analyses. Based on experimental test series of missile launches in laboratory environment and from a helicopter, equations were derived to predict the time- and position-dependent overpressure. The method was finally applied and validated in a structural analysis of a helicopter tail boom under missile launch shock wave loading.

  11. The Development of the US National Missile Defense and its Impact on the International Security

    Directory of Open Access Journals (Sweden)

    J. Yu. Parshkova

    2015-01-01

    Full Text Available The article reflects the US officials' point of view on the development of its national missile defense. The major threat to international security is the proliferation of ballistic missiles and weapons of mass destruction. The United States and the former Soviet Union made huge efforts to reduce and limit offensive arms. However, presently the proliferation of ballistic missiles spreads all over the world, especially in the Middle East, because of the ballistic missile technology falling into the hands of hostile non-state groups. Missile defenses can provide a permanent presence in a region and discourage adversaries from believing they can use ballistic missiles to coerce or intimidate the U.S. or its allies. With the possible attack regional missile defense systems will be promptly mobilized to enhance an effective deterrent. The ultimate goal of such large-scale missile defense deployment is to convince the adversaries that the use of ballistic missiles is useless in military terms and that any attack on the United States and its allies is doomed to failure. The United States has missile defense cooperative programs with a number of allies, including United Kingdom, Japan, Australia, Israel, Denmark, Germany, Netherlands, Czech Republic, Poland, Italy and many others. The Missile Defense Agency also actively participates in NATO activities to maximize opportunities to develop an integrated NATO ballistic missile defense capability. The initiative of the development of US BMD naturally belongs to the United States. That country has enormous technological, financial, economic, military and institutional capabilities, exceeding by far those of the other NATO members combined.

  12. Potential hazard to secondary containment from HCDA-generated missiles and sodium fires

    International Nuclear Information System (INIS)

    Romander, C.M.

    1979-02-01

    The potential hazard of HCDA-generated missiles is analyzed, and the current status of the potential hazards of sodium fires is summarized. Simple analyses are performed to determine lower bounds on the HCDA energetics required to generate missiles that could reach the secondary containment structure of a 1000-MWe LMFBR. The potential missiles considered include the vessel head, components mounted on the head, and conrol rods

  13. Application of a Complex Lead Compensator for a Laser Guided Missile

    Science.gov (United States)

    Akhila, M. R.; Gopika, S.; Abraham, R. J.

    2013-01-01

    This paper discusses the application of a lead compensator with complex pole and complex zero for a missile. It is compared with a lead compensator with real pole and real zero. A typical laser guided missile control system is considered for the performance comparison of both the compensators. Simulation studies carried out with MATLAB brings out the scope of using complex compensator in missile guided systems.

  14. Application of Pontryagin’s Minimum Principle in Optimum Time of Missile Manoeuvring

    OpenAIRE

    Sari Cahyaningtias; Subchan Subchan

    2016-01-01

    Missile is a guided weapon and designed to protect outermost island from a thread of other country. It, commonly, is used as self defense. This research presented surface-to-surface missile in final dive manoeuvre for fixed target. Furthermore, it was proposed manoeuvring based on unmanned aerial vehicle (UAV), autopilot system, which needs accuration and minimum both time and thrust of missile while attacking object. This paper introduced pontryagin’s Minimum Principle, which is useable to s...

  15. Non-cavitating propeller noise modeling and inversion

    Science.gov (United States)

    Kim, Dongho; Lee, Keunhwa; Seong, Woojae

    2014-12-01

    Marine propeller is the dominant exciter of the hull surface above it causing high level of noise and vibration in the ship structure. Recent successful developments have led to non-cavitating propeller designs and thus present focus is the non-cavitating characteristics of propeller such as hydrodynamic noise and its induced hull excitation. In this paper, analytic source model of propeller non-cavitating noise, described by longitudinal quadrupoles and dipoles, is suggested based on the propeller hydrodynamics. To find the source unknown parameters, the multi-parameter inversion technique is adopted using the pressure data obtained from the model scale experiment and pressure field replicas calculated by boundary element method. The inversion results show that the proposed source model is appropriate in modeling non-cavitating propeller noise. The result of this study can be utilized in the prediction of propeller non-cavitating noise and hull excitation at various stages in design and analysis.

  16. Flowfield and Radiation Analysis of Missile Exhaust Plumes Using a Turbulent-Chemistry Interaction Model

    National Research Council Canada - National Science Library

    Calhoon, W. H; Kenzakowski, D. C

    2000-01-01

    ... components and missile defense systems. Current engineering level models neglect turbulent-chemistry interactions and typically underpredict the intensity of plume afterburning and afterburning burnout...

  17. Assessment of Turbulence-Chemistry Interactions in Missile Exhaust Plume Signature Analysis

    National Research Council Canada - National Science Library

    Calhoon, W

    2002-01-01

    ... components and missile defense systems. Current engineering level models neglect turbulence chemistry interactions and typically underpredict the intensity of plume afterburning and afterburning burnout...

  18. Missile Defense: Assessment of DODs Reports on Status of Efforts and Options for Improving Homeland Missile Defense

    Science.gov (United States)

    2016-02-17

    fielding ground station assets and a fleet of over 30 GMD interceptors; upgrading, redesigning, refurbishing, and retrofitting the system; and...CE-II Block I, to fix known issues, address 3GAO, Missile Defense: DOD’s Report Provides Limited...Progress in Achieving Acquisition Goals and Improving Accountability , GAO-14-351 (Washington, D.C.: Apr. 1, 2014). 4GAO-15-345. Page 4

  19. On shear rheology of gel propellants

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Shai; Peretz, Arie [RAFAEL, MANOR Propulsion and Explosive Systems Division, Haifa (Israel); Natan, Benveniste [Faculty of Aerospace Engineering, Technion - Israel Institute of Technology, Haifa (Israel)

    2007-04-15

    Selected fuel, oxidizer and simulant gels were prepared and rheologically characterized using a rotational rheometer. For fuel gelation both organic and inorganic gellants were utilized, whereas oxidizers and simulants were gelled with addition of silica and polysaccharides, respectively. The generalized Herschel-Bulkley constitutive model was found to most adequately represent the gels studied. Hydrazine-based fuels, gelled with polysaccharides, were characterized as shear-thinning pseudoplastic fluids with low shear yield stress, whereas inhibited red-fuming nitric acid (IRFNA) and hydrogen peroxide oxidizers, gelled with silica, were characterized as yield thixotropic fluids with significant shear yield stress. Creep tests were conducted on two rheological types of gels with different gellant content and the results were fitted by Burgers-Kelvin viscoelastic constitutive model. The effect of temperature on the rheological properties of gel propellant simulants was also investigated. A general rheological classification of gel propellants and simulants is proposed. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  20. Bistable (latching) solenoid actuated propellant isolation valve

    Science.gov (United States)

    Wichmann, H.; Deboi, H. H.

    1979-01-01

    The design, fabrication, assembly and test of a development configuration bistable (latching) solenoid actuated propellant isolation valve suitable for the control hydrazine and liquid fluorine to an 800 pound thrust rocket engine is described. The valve features a balanced poppet, utilizing metal bellows, a hard poppet/seat interface and a flexure support system for the internal moving components. This support system eliminates sliding surfaces, thereby rendering the valve free of self generated particles.

  1. Unsteady Processes in Solid Propellant Combustion,

    Science.gov (United States)

    1977-05-01

    0—AflO ~5a INSTITUTO NACIONAL DE TECNICA AEROESPACIAL MADRID (SPAIN) F/S 21/9.2UNSTEADY PROCESSES IN SOLID PROPELLANT COMBUSTION . (U) MAY...PRO C E SS E S IN SOLID P R O P E L L A N T C O M B U S T I O N H A. Crespo and M. Kindelán Instituto Nacional de Técnica Aeroespacial Madrid , Spain j

  2. Atomic hydrogen as a launch vehicle propellant

    Science.gov (United States)

    Palaszewski, Bryan A.

    1990-01-01

    An analysis of several atomic hydrogen launch vehicles was conducted. A discussion of the facilities and the technologies that would be needed for these vehicles is also presented. The Gross Liftoff Weights (GLOW) for two systems were estimated; their specific impulses (I sub sp) were 750 and 1500 lb(sub f)/s/lb(sub m). The atomic hydrogen launch vehicles were also compared to the currently planned Advanced Launch System design concepts. Very significant GLOW reductions of 52 to 58 percent are possible over the Advanced Launch System designs. Applying atomic hydrogen propellants to upper stages was also considered. Very high I(sub sp) (greater than 750 lb(sub f)/s/lb(sub m)) is needed to enable a mass savings over advanced oxygen/hydrogen propulsion. Associated with the potential benefits of high I(sub sp) atomic hydrogen are several challenging problems. Very high magnetic fields are required to maintain the atomic hydrogen in a solid hydrogen matrix. The magnetic field strength was estimated to be 30 kilogauss (3 Tesla). Also the storage temperature of the propellant is 4 K. This very low temperature will require a large refrigeration facility for the launch vehicle. The design considerations for a very high recombination rate for the propellant are also discussed. A recombination rate of 210 cm/s is predicted for atomic hydrogen. This high recombination rate can produce very high acceleration for the launch vehicle. Unique insulation or segmentation to inhibit the propellant may be needed to reduce its recombination rate.

  3. Bioconversion of Nitramine Propellant Wastewaters - Triaminoguanidine Nitrate

    Science.gov (United States)

    1985-01-01

    o d i m sulfide for sneerobiasis. Batch and continuous cultures were inoculated with organisar from activated sludge (Marlborough Easterly Sewage ...Treatmtnt Plant, Marlborough, IU) anaerobic sludge digest (Nut Island Sewage T r e a b n t Plant. Boston. MA) and garden roil. One aL sampler of... BIOCONVERSION OF NITRAMINE PROPELLANT WASTEWATERS = TRIAMINOGUANIDINE 0 a NITRATE 80 BY DAVID L KAPLAN AND ARTHUR M. KAPLAN JANUARY 1985

  4. Cryogenic Propellant Feed System Analytical Tool Development

    Science.gov (United States)

    Lusby, Brian S.; Miranda, Bruno M.; Collins, Jacob A.

    2011-01-01

    The Propulsion Systems Branch at NASA s Lyndon B. Johnson Space Center (JSC) has developed a parametric analytical tool to address the need to rapidly predict heat leak into propellant distribution lines based on insulation type, installation technique, line supports, penetrations, and instrumentation. The Propellant Feed System Analytical Tool (PFSAT) will also determine the optimum orifice diameter for an optional thermodynamic vent system (TVS) to counteract heat leak into the feed line and ensure temperature constraints at the end of the feed line are met. PFSAT was developed primarily using Fortran 90 code because of its number crunching power and the capability to directly access real fluid property subroutines in the Reference Fluid Thermodynamic and Transport Properties (REFPROP) Database developed by NIST. A Microsoft Excel front end user interface was implemented to provide convenient portability of PFSAT among a wide variety of potential users and its ability to utilize a user-friendly graphical user interface (GUI) developed in Visual Basic for Applications (VBA). The focus of PFSAT is on-orbit reaction control systems and orbital maneuvering systems, but it may be used to predict heat leak into ground-based transfer lines as well. PFSAT is expected to be used for rapid initial design of cryogenic propellant distribution lines and thermodynamic vent systems. Once validated, PFSAT will support concept trades for a variety of cryogenic fluid transfer systems on spacecraft, including planetary landers, transfer vehicles, and propellant depots, as well as surface-based transfer systems. The details of the development of PFSAT, its user interface, and the program structure will be presented.

  5. Simulating marine propellers with vortex particle method

    Science.gov (United States)

    Wang, Youjiang; Abdel-Maksoud, Moustafa; Song, Baowei

    2017-01-01

    The vortex particle method is applied to compute the open water characteristics of marine propellers. It is based on the large-eddy simulation technique, and the Smagorinsky-Lilly sub-grid scale model is implemented for the eddy viscosity. The vortex particle method is combined with the boundary element method, in the sense that the body is modelled with boundary elements and the slipstream is modelled with vortex particles. Rotational periodic boundaries are adopted, which leads to a cylindrical sector domain for the slipstream. The particle redistribution scheme and the fast multipole method are modified to consider the rotational periodic boundaries. Open water characteristics of three propellers with different skew angles are calculated with the proposed method. The results are compared with the ones obtained with boundary element method and experiments. It is found that the proposed method predicts the open water characteristics more accurately than the boundary element method, especially for high loading condition and high skew propeller. The influence of the Smagorinsky constant is also studied, which shows the results have a low sensitivity to it.

  6. Simulating the Composite Propellant Manufacturing Process

    Science.gov (United States)

    Williamson, Suzanne; Love, Gregory

    2000-01-01

    There is a strategic interest in understanding how the propellant manufacturing process contributes to military capabilities outside the United States. The paper will discuss how system dynamics (SD) has been applied to rapidly assess the capabilities and vulnerabilities of a specific composite propellant production complex. These facilities produce a commonly used solid propellant with military applications. The authors will explain how an SD model can be configured to match a specific production facility followed by a series of scenarios designed to analyze operational vulnerabilities. By using the simulation model to rapidly analyze operational risks, the analyst gains a better understanding of production complexities. There are several benefits of developing SD models to simulate chemical production. SD is an effective tool for characterizing complex problems, especially the production process where the cascading effect of outages quickly taxes common understanding. By programming expert knowledge into an SD application, these tools are transformed into a knowledge management resource that facilitates rapid learning without requiring years of experience in production operations. It also permits the analyst to rapidly respond to crisis situations and other time-sensitive missions. Most importantly, the quantitative understanding gained from applying the SD model lends itself to strategic analysis and planning.

  7. Experimental Study of Open Water Non-Series Marine Propeller Performance

    OpenAIRE

    M. A. Elghorab; A. Abou El-Azm Aly; A. S. Elwetedy; M. A. Kotb

    2013-01-01

    Later marine propeller is the main component of ship propulsion system. For a non-series propeller, it is difficult to indicate the open water marine propeller performance without an experimental study to measure the marine propeller parameters. In the present study, the open water performance of a non-series marine propeller has been carried out experimentally. The geometrical aspects of a commercial non-series marine propeller have been measured for a propeller blade ar...

  8. 33 CFR 334.1390 - Pacific Ocean at Barking Sands, Island of Kauai, Hawaii; missile range facility.

    Science.gov (United States)

    2010-07-01

    ..., Island of Kauai, Hawaii; missile range facility. 334.1390 Section 334.1390 Navigation and Navigable... REGULATIONS § 334.1390 Pacific Ocean at Barking Sands, Island of Kauai, Hawaii; missile range facility. (a... Area, Barking Sands, Kauai, Hawaii. ...

  9. 33 CFR 334.1440 - Pacific Ocean at Kwajalein Atoll, Marshall Islands; missile testing area.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean at Kwajalein Atoll, Marshall Islands; missile testing area. 334.1440 Section 334.1440 Navigation and Navigable Waters CORPS OF....1440 Pacific Ocean at Kwajalein Atoll, Marshall Islands; missile testing area. (a) The warning area...

  10. 78 FR 42430 - Revisions to the Export Administration Regulations Based on the 2012 Missile Technology Control...

    Science.gov (United States)

    2013-07-16

    ... Administration Regulations (EAR) to reflect changes to the Missile Technology Control Regime (MTCR) Annex that.... 130104008-3008-01] RIN 0694-AF81 Revisions to the Export Administration Regulations Based on the 2012 Missile Technology Control Regime Plenary Agreements AGENCY: Bureau of Industry and Security, Commerce...

  11. 75 FR 20520 - Revisions to the Export Administration Regulations Based on the 2009 Missile Technology Control...

    Science.gov (United States)

    2010-04-20

    ... Administration Regulations (EAR) to reflect changes to the Missile Technology Control Regime (MTCR) Annex that.... 0912031426-0047-01] RIN 0694-AE79 Revisions to the Export Administration Regulations Based on the 2009 Missile Technology Control Regime Plenary Agreements AGENCY: Bureau of Industry and Security, Commerce...

  12. A laws of war review of contemporary land-based missile defence ...

    African Journals Online (AJOL)

    Automated precise guided missile defence has been around for some years, and is a modern-day mechanism used frequently since 2011 to defend against rocket attacks penetrating national airspace. Israel's automated Iron Dome Missile Defence System has intercepted over 1 000 rockets during two recent military ...

  13. Integrity assessment of nuclear containment vessel steels due to missile impact load

    International Nuclear Information System (INIS)

    Miyamoto, H.

    1984-01-01

    The impact behavior of the steel plate of BWR containment vessels against missiles, that are caused by the postulated catastrophic failure of components with a high kinematic energy has been investigated. The research started in 1977 and was completed in 1979 by a project team of the Technical Research Association for Integrity of Structures at Elevated Service Temperatures, sponsored by three Electric Power Companies (Tokyo, Chubu, and Chugoku). Although the probability of the occurrence of missiles inside and outside of containment vessels is extremely low, the following items are required to maintain the integrity of containment vessels. (1) The probability of the occurrence of missiles. (2) The weight and energy of the missiles. (3) The impact behavior of containment vessel steel plate against postulated missiles. In connection with the above item (3), an actual-scale missile test was conducted. In addition, a computation analysis was performed to confirm the impact behavior against the missiles, in order to search for wide applicability to the various kinds of postulated missiles. This research has finally aimed at obtaining a new empirical formula which carries out the assessment of the integrity of containment vessels. (orig.)

  14. High Frontier, The Journal for Space & Missile Professionals. Volume 5, Number 2

    Science.gov (United States)

    2009-02-01

    rence is seen among animals (e.g., a dog baring its teeth). The stories of Adam and Eve and Pandora’s Box —as well as pa- rental behavior—are good...ballistic missile (SRBM) that can easily reach the node with minimal indica- tion and warning. The terrorist cell has stolen a missile- erector - launcher

  15. THE DEVELOPMENT OF AUTOMATION MANAGEMENT TOOLS BY THE DIVISIONS OF TACTICAL MISSILE DEFENSE

    Directory of Open Access Journals (Sweden)

    O. V. Voronin

    2017-01-01

    Full Text Available The article summarizes the basic directions of automation for planning and management of combat by the divisions of tactical missile defense. The article focuses on the problem of the automated choice of rational option for combat order and fire control carried out by the divisions of tactical missile defense during operation.

  16. Measurement of Multiple Blade Rate Unsteady Propeller Forces

    Science.gov (United States)

    1990-05-01

    with PUF -2 prediction ...................................... 33 17. Total velocity measurement positions using LDV .................... 34 18...CRAW F OrIC TAB Q Propeller torque JU.tSw riced .,) Qn Amplitude of nth harmonic of torque By R Propeller tip radius Ot Itt:ic A.tdt 4Vt,.*, Cc#eS r...unsteady lifting surface theory code PUF -2, 3 and were compared with measured data. PUF -2 calculations were performed for both Propellers 4132 and

  17. Combustion of Solid Propellants (La Combustion des Propergols Solides)

    Science.gov (United States)

    1991-07-01

    Programme Abrege Lhistoire des propergols solides a connu un bouleversement profond avec la d~eouve:te pal Paul Vieille et Nobel, t la fin du dix...material Here again, double base and composite is not homogeneous, the flame front is not propellant behaviour will be analysed and plane. The web thickness... web in the aft regions) the propellant will all) propellants, there is a minimum cross- burn out unevenly, leading to a long pres- flow velocity below

  18. Tip Vortex Index (TVI) Technique for Inboard Propeller Noise Estimation

    OpenAIRE

    Sezen, Savaş; Dogrul, Ali; Bal, Şakir

    2018-01-01

    Cavitating marine propeller is one of the most dominant noise sources inmarine vessels.  The aim of this study isto examine the cavitating propeller noise induced by tip vortices for twinscrew passenger vessels. To determine the noise level inboard, tip vortex index(TVI) technique has been used. This technique is an approximate method based onnumerical and experimental data. In this study, it is aimed to predict theunderwater noise of a marine propeller by applying TVI technique for ...

  19. Computer aided design and development of mixed-propeller pumps

    International Nuclear Information System (INIS)

    Bhaoyal, B.C.

    1994-01-01

    This paper deals with the design principle of mixed propeller hydraulic aided by CADD software developed by author for generation of the hydraulic profile of the mixed propeller and diffuser geometry. The design methodology for plotting the vane profile of mixed propeller pump has been discussed in detail with special reference to conformal transformation in cylindrical as well as conical plane. (author). 10 refs., 11 figs

  20. 15 CFR 744.3 - Restrictions on Certain Rocket Systems (including ballistic missile systems and space launch...

    Science.gov (United States)

    2010-01-01

    ... Vehicles (including cruise missile systems, target drones and reconnaissance drones) End-Uses. 744.3... missile systems, target drones and reconnaissance drones) End-Uses. (a) General prohibition. In addition...: END-USER AND END-USE BASED § 744.3 Restrictions on Certain Rocket Systems (including ballistic missile...

  1. 77 FR 64564 - Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles

    Science.gov (United States)

    2012-10-22

    ...-Basis Hurricane and Hurricane Missiles AGENCY: Nuclear Regulatory Commission. ACTION: Proposed interim...-ISG-024, ``Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles....221, ``Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants.'' DATES: Submit...

  2. Reserve lithium-thionyl chloride battery for missile applications

    Science.gov (United States)

    Planchat, J. P.; Descroix, J. P.; Sarre, G.

    A comparative performance study has been conducted for silver-zinc, thionyl chloride, and thermal batteries designed for such missile applications as ICBM guidance system power supplies. Attention is given to each of the three candidates' conformity to requirements concerning mechanical configuration, electrochemical design, electrolyte reservoir, external case, and gas generator. The silver-zinc and Li-SOCl2 candidates employ similar cell configurations and yield comparable performance. The thermal battery is found to be incapable of meeting battery case temperature-related requirements.

  3. The Eastern Space and Missile Center - Jonathan Dickinson Instrumentation Facility

    Science.gov (United States)

    Beckner, H. E.; Clark, S. R.; Bonner, J. R.; Thomas, C. G.

    The Jonathan Dickinson Instrumentation Facility (JDIF) is an instrumentation station at the Eastern Test Range designed to provide space diversity tracking of all launches from the Eastern Space and Missile Center or Kennedy Space Center. The JDIF includes tracking radar, telemetry, command/control systems, timing, and communication systems and the Navy's Flight Test Support System in one integrated building. Since virtually all of the instrumentation at JDIF is critical to the success of launches, a concept was established to make it possible to run the Eastern Test Range site during mission support from a bank of diesel generators, and to use commercial power for normal day-to-day operations.

  4. The U.S. Navy and the Cuban Missile Crisis

    Science.gov (United States)

    1990-05-22

    Wall Street’s fears by denying that he was a communist and declaring his respect for private property. Not everyone saw Castro as a nuevo amigo, however...Commander Thomas Cosgrove , the Oxford’s captain, had prepared his ship for trouble. If the Cubans tried to stop and board her, he could call upon the ready...removal of the missiles under the auspices of a UN observer team. The Soviet UN ambassador repeatedly denied the American charges, however. 39 That same

  5. Renewable Energy Opportunities at White Sands Missile Range, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Chvala, William D.; Solana, Amy E.; States, Jennifer C.; Warwick, William M.; Weimar, Mark R.; Dixon, Douglas R.

    2008-09-01

    The document provides an overview of renewable resource potential at White Sands Missile Range (WSMR) based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 DoD Renewable Energy Assessment. This effort focuses on grid-connected generation of electricity from renewable energy sources and also ground source heat pumps (GSHPs) for heating and cooling buildings, as directed by IMCOM.

  6. Tornado missile risk analysis. Topical report No. 1

    International Nuclear Information System (INIS)

    Dunn, W.L.; Lew, S.T.; Davis, R.L.; Hsu, J.C.; McConnell, B.S.

    1976-01-01

    Literature reviews, preliminary models, methodology descriptions, and general progress appraisal corresponding to the first 12 weeks of the research and approximately 14% of the budget expenditures are presented. Consequently, much of the methodology discussed in the various tasks is tentative and dependent upon further investigation as noted. The objective of this project is to develop a probabilistic formalism for characterizing the effects of the tornado generated missiles on the plant safety. The state-of-the-art nnd the R/D efforts needed to accomplish the stated objective are summarized

  7. CFD and FEM Model of an Underwater Vehicle Propeller

    Directory of Open Access Journals (Sweden)

    Chruściel Tadeusz

    2014-10-01

    Full Text Available Within the framework of the project for design and optimization of the Remotely Operated Vehicle (ROV, research on its propulsion has been carried out. Te entire project was supported by CFD and FEM calculations taking into account the characteristics of the underwater vehicle. One of the tasks was to optimize the semi-open duct for horizontal propellers, which provided propulsion and controllability in horizontal plane. In order to create a measurable model of this task it was necessary to analyze numerical methodology of propeller design, along with the structure of a propellers with nozzles and contra-rotating propellers. It was confronted with theoretical solutions which included running of the analyzed propeller near an underwater vehicle. Also preliminary qualitative analyses of a simplified system with contra-rotating propellers and a semi-open duct were carried out. Te obtained results enabled to make a decision about the ROVs duct form. Te rapid prototyping SLS (Selective Laser Sintering method was used to fabricate a physical model of the propeller. As a consequence of this, it was necessary to verify the FEM model of the propeller, which based on the load obtained from the CFD model. Te article contains characteristics of the examined ROV, a theoretical basis of propeller design for the analyzed cases, and the results of CFD and FEM simulations.

  8. Study on unsteady hydrodynamic performance of propeller in waves

    Science.gov (United States)

    Zhao, Qingxin; Guo, Chunyu; Su, Yumin; Liu, Tian; Meng, Xiangyin

    2017-09-01

    The speed of a ship sailing in waves always slows down due to the decrease in efficiency of the propeller. So it is necessary and essential to analyze the unsteady hydrodynamic performance of propeller in waves. This paper is based on the numerical simulation and experimental research of hydrodynamics performance when the propeller is under wave conditions. Open-water propeller performance in calm water is calculated by commercial codes and the results are compared to experimental values to evaluate the accuracy of the numerical simulation method. The first-order Volume of Fluid (VOF) wave method in STAR CCM+ is utilized to simulate the three-dimensional numerical wave. According to the above prerequisite, the numerical calculation of hydrodynamic performance of the propeller under wave conditions is conducted, and the results reveal that both thrust and torque of the propeller under wave conditions reveal intense unsteady behavior. With the periodic variation of waves, ventilation, and even an effluent phenomenon appears on the propeller. Calculation results indicate, when ventilation or effluent appears, the numerical calculation model can capture the dynamic characteristics of the propeller accurately, thus providing a significant theory foundation for further studying the hydrodynamic performance of a propeller in waves.

  9. High Impulse Nanoparticulate-Based Gel Propellants, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed Small Business Innovative Research (SBIR) Phase I addresses the development of advanced gel propellants and determination of their suitability for...

  10. Evaluation of Raytek infrared pyrometer for continuous propellant temperature measurement

    Science.gov (United States)

    Dykstra, Mark D.

    1990-01-01

    The primary purpose of this evaluation was to determine if the Raytek IR pyrometer that was installed in the 600 gallon propellant mixers could be used to provide a continuous, accurate, reliable measurement of the propellant temperature during mixing. The Raytek infrared sensor is not recommended to be used for controlling propellant temperature nor for inspection buy-off. The first part of the evaluation was to determine the accuracy of the sensor in measuring the propellant temperature. The second part was to determine the reliability of the air purge design in preventing contamination of the IR window.

  11. Thermal Vacuum Test Correlation of A Zero Propellant Load Case Thermal Capacitance Propellant Gauging Analytics Model

    Science.gov (United States)

    McKim, Stephen A.

    2016-01-01

    This thesis describes the development and test data validation of the thermal model that is the foundation of a thermal capacitance spacecraft propellant load estimator. Specific details of creating the thermal model for the diaphragm propellant tank used on NASA's Magnetospheric Multiscale spacecraft using ANSYS and the correlation process implemented to validate the model are presented. The thermal model was correlated to within plus or minus 3 degrees Centigrade of the thermal vacuum test data, and was found to be relatively insensitive to uncertainties in applied heat flux and mass knowledge of the tank. More work is needed, however, to refine the thermal model to further improve temperature predictions in the upper hemisphere of the propellant tank. Temperatures predictions in this portion were found to be 2-2.5 degrees Centigrade lower than the test data. A road map to apply the model to predict propellant loads on the actual MMS spacecraft toward its end of life in 2017-2018 is also presented.

  12. 75 FR 7934 - Airworthiness Directives; McCauley Propeller Systems 1A103/TCM Series Propellers

    Science.gov (United States)

    2010-02-23

    ... with more than 1,500 operating hours time- since-new (TSN) or unknown operating hours TSN on the... TSN on the effective date of this AD, upon reaching 1,500 operating hours TSN or within the next 50... January 28, 2008, do the following: (1) For propellers with more than 1,500 operating hours TSN on the...

  13. Green Propellant Landing Demonstration at U.S. Range

    Science.gov (United States)

    Mulkey, Henry W.; Miller, Joseph T.; Bacha, Caitlin E.

    2016-01-01

    The Green Propellant Loading Demonstration (GPLD) was conducted December 2015 at Wallops Flight Facility (WFF), leveraging work performed over recent years to bring lower toxicity hydrazine replacement green propellants to flight missions. The objective of this collaboration between NASA Goddard Space Flight Center (GSFC), WFF, the Swedish National Space Board (SNSB), and Ecological Advanced Propulsion Systems (ECAPS) was to successfully accept LMP-103S propellant at a U.S. Range, store the propellant, and perform a simulated flight vehicle propellant loading. NASA GSFC Propulsion (Code 597) managed all aspects of the operation, handling logistics, preparing the procedures, and implementing the demonstration. In addition to the partnership described above, Moog Inc. developed an LMP-103S propellant-compatible titanium rolling diaphragm flight development tank and loaned it to GSFC to act as the GPLD flight vessel. The flight development tank offered the GPLD an additional level of flight-like propellant handling process and procedures. Moog Inc. also provided a compatible latching isolation valve for remote propellant expulsion. The GPLD operation, in concert with Moog Inc. executed a flight development tank expulsion efficiency performance test using LMP-103S propellant. As part of the demonstration work, GSFC and WFF documented Range safety analyses and practices including all elements of shipping, storage, handling, operations, decontamination, and disposal. LMP-103S has not been previously handled at a U.S. Launch Range. Requisite for this activity was an LMP-103S Risk Analysis Report and Ground Safety Plan. GSFC and WFF safety offices jointly developed safety documentation for application into the GPLD operation. The GPLD along with the GSFC Propulsion historical hydrazine loading experiences offer direct comparison between handling green propellant versus safety intensive, highly toxic hydrazine propellant. These described motives initiated the GPLD operation

  14. Green Propellant Loading Demonstration at U.S. Range

    Science.gov (United States)

    Mulkey, Henry W.; Miller, Joseph T.; Bacha, Caitlin E.

    2016-01-01

    The Green Propellant Loading Demonstration (GPLD) was conducted December 2015 at Wallops Flight Facility (WFF), leveraging work performed over recent years to bring lower toxicity hydrazine replacement green propellants to flight missions. The objective of this collaboration between NASA Goddard Space Flight Center (GSFC), WFF, the Swedish National Space Board (SNSB), and Ecological Advanced Propulsion Systems (ECAPS) was to successfully accept LMP-103S propellant at a U.S. Range, store the propellant, and perform a simulated flight vehicle propellant loading. NASA GSFC Propulsion (Code 597) managed all aspects of the operation, handling logistics, preparing the procedures, and implementing the demonstration. In addition to the partnership described above, Moog Inc. developed an LMP-103S propellant-compatible titanium rolling diaphragm flight development tank and loaned it to GSFC to act as the GPLD flight vessel. The flight development tank offered the GPLD an additional level of flight-like propellant handling process and procedures. Moog Inc. also provided a compatible latching isolation valve for remote propellant expulsion. The GPLD operation, in concert with Moog Inc. executed a flight development tank expulsion efficiency performance test using LMP-103S propellant. As part of the demonstration work, GSFC and WFF documented Range safety analyses and practices including all elements of shipping, storage, handling, operations, decontamination, and disposal. LMP-103S has not been previously handled at a U.S. Launch Range. Requisite for this activity was an LMP-103S Risk Analysis Report and Ground Safety Plan. GSFC and WFF safety offices jointly developed safety documentation for application into the GPLD operation. The GPLD along with the GSFC Propulsion historical hydrazine loading experiences offer direct comparison between handling green propellant versus safety intensive, highly toxic hydrazine propellant. These described motives initiated the GPLD operation

  15. Estimation filters for missile tracking with airborne laser

    Science.gov (United States)

    Clemons, T. M., III; Chang, K. C.

    2006-05-01

    This paper examines the use of various estimation filters on the highly non-linear problem of tracking a ballistic missile during boost phase from a moving airborne platform. The aircraft receives passive bearing data from an IR sensor and range data from a laser rangefinder. The aircraft is assumed to have a laser weapon system that requires highly accurate bearing information in order to keep the laser on target from a distance of 100-200 km. The tracking problem is made more difficult due to the changing acceleration of the missile, especially during stage drop-off and ignition. The Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), 'bootstrap' Particle Filter (PF), and the Gaussian Sum Particle Filter (GSPF) are explored using different values for sensor accuracy in bearing and range, and various degrees of uncertainty of the target and platform dynamic. Scenarios were created using Satellite Toolkit © for trajectories from a Southeast Asia launch with associated sensor observations. MATLAB © code modified from the ReBEL Toolkit © was used to run the EKF, UKF, PF, and GSPF sensor track filters. Mean Square Error results are given for tracking during the period when the target is in view of the radar and IR sensors. This paper provides insight into the accuracy requirements of the sensors and the suitability of the given estimators.

  16. Physics based performance model of a UV missile seeker

    Science.gov (United States)

    James, I.

    2017-10-01

    Electro-optically (EO) guided surface to air missiles (SAM) have developed to use Ultraviolet (UV) wavebands supplementary to the more common Infrared (IR) wavebands. Missiles such as the US Stinger have been around for some time, these have been joined recently by Chinese FN-16 and Russian SA-29 (Verba) and there is a much higher potential proliferation risk. The purpose of this paper is to introduce a first-principles, physics based, model of a typical seeker arrangement. The model is constructed from various calculations that aim to characterise the physical effects that will affect the performance of the system. Data has been gathered from a number of sources to provide realism to the variables within the model. It will be demonstrated that many of the variables have the power to dramatically alter the performance of the system as a whole. Further, data will be shown to illustrate the expected performance of a typical UV detector within a SAM in detection range against a variety of target sizes. The trend for the detection range against aircraft size and skin reflectivity will be shown to be non-linear, this should have been expected owing to the exponential decay of a signal through atmosphere. Future work will validate the performance of the model against real world performance data for cameras (when this is available) to ensure that it is operates within acceptable errors.

  17. Mars Propellant Liquefaction Modeling in Thermal Desktop

    Science.gov (United States)

    Desai, Pooja; Hauser, Dan; Sutherlin, Steven

    2017-01-01

    NASAs current Mars architectures are assuming the production and storage of 23 tons of liquid oxygen on the surface of Mars over a duration of 500+ days. In order to do this in a mass efficient manner, an energy efficient refrigeration system will be required. Based on previous analysis NASA has decided to do all liquefaction in the propulsion vehicle storage tanks. In order to allow for transient Martian environmental effects, a propellant liquefaction and storage system for a Mars Ascent Vehicle (MAV) was modeled using Thermal Desktop. The model consisted of a propellant tank containing a broad area cooling loop heat exchanger integrated with a reverse turbo Brayton cryocooler. Cryocooler sizing and performance modeling was conducted using MAV diurnal heat loads and radiator rejection temperatures predicted from a previous thermal model of the MAV. A system was also sized and modeled using an alternative heat rejection system that relies on a forced convection heat exchanger. Cryocooler mass, input power, and heat rejection for both systems were estimated and compared against sizing based on non-transient sizing estimates.

  18. TEMPERATURE PROFILES IN A PROPELLANT TANK

    Science.gov (United States)

    Danilowicz, R. L.

    1994-01-01

    A computer program has been developed which analyzes by means of mathematical models the temperature profiles in the contents of a filled propellant tank. In designing space vehicles using cryogenic liquid propellants, it is necessary to know how heat transferred from the tank walls and heat absorbed internally affect the temperature distribution with the tank contents. The mathematical flow model is based on results from small-scale experiments. The results showed that when a subcooled fluid is subject to both nonuniform internal heating and wall heating, two distinct temperature regions are developed. In the lower region, the fluid is thoroughly mixed and maintains a uniform temperature profile. In the upper region, a stratified layer develops, and a temperature gradient is formed from the accumulation of warm fluid from the boundary layer along the tank walls; it also indicated that the temperature profiles in the stratified layer exhibited similarity. This concept was developed primarily for internal heating caused by nuclear radiation. However, the theory and computer program are applicable for any form of internal or bulk heating. This program is written in FORTRAN IV for batch execution and has been implemented on the IBM 7094. This program was developed in 1970.

  19. Blade Section Lift Coefficients for Propellers at Extreme Off-Design Conditions

    National Research Council Canada - National Science Library

    Shen, Young

    1997-01-01

    The Propeller Force Module (PFM) code developed by Analytical Methods Inc. (AMI) for calculating propeller side forces during maneuvering simulation studies requires inputs of propeller blade sectional lift, drag, and moment data...

  20. 76 FR 74749 - Critical Parts for Airplane Propellers

    Science.gov (United States)

    2011-12-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION... propellers. This action would define what a propeller critical part is, require the identification of... electronically. ] Mail: Send comments to Docket Operations, M-30; U.S. Department of Transportation (DOT), 1200...

  1. Design Procedure of 4-Bladed Propeller | Ishiodu | West African ...

    African Journals Online (AJOL)

    Marine propellers, although submerged in water aft of the ship, form an integral part of a ship and play a vital role in ship propulsion. Much has been said and published on the development of the marine propeller from the time of antiquity to the present age, but there is more to be done. Therefore, this paper focuses on the ...

  2. Current state of the art of HNF based composite propellants

    NARCIS (Netherlands)

    Ciucci, A.; Frota, O.; Welland, W.H.M.; Heijden, A.E.D.M. van der; Leeming, B.; Bellerby, J.M.; Brotzu, A.

    2004-01-01

    The main activities currently performed for the development of HNF-based propellants are presented. The objectives and approach adopted are described. The results obtained on the HNF decomposition mechanism and on the re- and co-crystallisation of HNF with potential propellant ingredients are

  3. Propeller flaps for lower-limb trauma | Rogers | South African ...

    African Journals Online (AJOL)

    The propeller flap has become a versatile and important component in our reconstructive algorithm following complex lower limb trauma. First described by Hyakusoku in 1991, it has since been adapted and modified by Hallock and Teo. This article outlines our experience specifically with perforator pedicled propeller flaps ...

  4. Self-propelled oil droplets consuming "fuel" surfactant

    DEFF Research Database (Denmark)

    Toyota, Taro; Maru, Naoto; Hanczyc, Martin M

    2009-01-01

    A micrometer-sized oil droplet of 4-octylaniline containing 5 mol % of an amphiphilic catalyst exhibited a self-propelled motion, producing tiny oil droplets, in an aqueous dispersion of an amphiphilic precursor of 4-octylaniline. The tiny droplets on the surface of the self-propelled droplet wer...

  5. 14 CFR 35.21 - Variable and reversible pitch propellers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Variable and reversible pitch propellers. 35.21 Section 35.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS Design and Construction § 35.21 Variable and...

  6. Prediction of propeller-induced hull-pressure fluctuations

    NARCIS (Netherlands)

    Van Wijngaarden, H.C.J.

    2011-01-01

    The cavitating propeller often forms the primary source of noise and vibration on board ships. The propeller induces hydroacoustic pressure fluctuations due to the passing blades and, more importantly, the dynamic activity of cavities in the propeller’s immediate vicinity. The accurate prediction of

  7. Aerodynamic shape optimization of guided missile based on wind tunnel testing and computational fluid dynamics simulation

    Directory of Open Access Journals (Sweden)

    Ocokoljić Goran J.

    2017-01-01

    Full Text Available This paper presents modification of the existing guided missile which was done by replacing the existing front part with the new five, while the rear part of the missile with rocket motor and missile thrust vector control system remains the same. The shape of all improved front parts is completely different from the original one. Modification was performed based on required aerodynamic coefficients for the existing guided missile. The preliminary aerodynamic configurations of the improved missile front parts were designed based on theoretical and computational fluid dynamics simulations. All aerodynamic configurations were tested in the T-35 wind tunnel at the Military Technical Institute in order to determine the final geometry of the new front parts. The 3-D Reynolds averaged Navier-Stokes numerical simulations were carried out to predict the aerodynamic loads of the missile based on the finite volume method. Experimental results of the axial force, normal force, and pitching moment coefficients are presented. The computational results of the aerodynamic loads of a guided missile model are also given, and agreed well with.

  8. EFD and CFD Characterization of a CLT Propeller

    Directory of Open Access Journals (Sweden)

    Daniele Bertetta

    2012-01-01

    Full Text Available In the present paper an experimental and numerical analysis of an unconventional CLT propeller is carried out. Two different numerical approaches, a potential panel method and an RANSE solver, are employed. Cavitation tunnel experiments are carried out in order to measure, as usual, thrust, torque, and cavity extension for different propeller working points. Moreover, LDV measurements are performed to have a deep insight into the complex wake behind the propeller and to analyze the dynamics of generated tip vortexes. The numerical/experimental analysis and comparison of results highlight the peculiarities of this kind of propellers, the possibility to increase efficiency and reduce cavitation risk, in order to exploit the design approaches already well proven for conventional propellers also in the case of these unconventional geometries.

  9. Optimum design of B-series marine propellers

    Directory of Open Access Journals (Sweden)

    M.M. Gaafary

    2011-03-01

    Full Text Available The choice of an optimum marine propeller is one of the most important problems in naval architecture. This problem can be handled using the propeller series diagrams or regression polynomials. This paper introduces a procedure to find out the optimum characteristics of B-series marine propellers. The propeller design process is performed as a single objective function subjected to constraints imposed by cavitation, material strength and required propeller thrust. Although optimization software of commercial type can be adopted to solve the problem, the computer program that has been specially developed for this task may be more useful for its flexibility and possibility to be incorporated, as a subroutine, with the complex ship design process.

  10. Propellant development for the Advanced Solid Rocket Motor

    Science.gov (United States)

    Landers, L. C.; Stanley, C. B.; Ricks, D. W.

    1991-01-01

    The properties of a propellant developed for the NASA Advanced Solid Rocket Motor (ASRM) are described in terms of its composition, performance, and compliance to NASA specifications. The class 1.3 HTPB/AP/A1 propellant employs an ester plasticizer and the content of ballistic solids is set at 88 percent. Ammonia evolution is prevented by the utilization of a neutral bonding agent which allows continuous mixing. The propellant also comprises a bimodal AP blend with one ground fraction, ground AP of at least 20 microns, and ferric oxide to control the burning rate. The propellant's characteristics are discussed in terms of tradeoffs in AP particle size and the types of Al powder, bonding agent, and HTPB polymer. The size and shape of the ballistic solids affect the processability, ballistic properties, and structural properties of the propellant. The revised baseline composition is based on maximizing the robustness of in-process viscosity, structural integrity, and burning-rate tailoring range.

  11. Analysis of the development of missile-borne IR imaging detecting technologies

    Science.gov (United States)

    Fan, Jinxiang; Wang, Feng

    2017-10-01

    Today's infrared imaging guiding missiles are facing many challenges. With the development of targets' stealth, new-style IR countermeasures and penetrating technologies as well as the complexity of the operational environments, infrared imaging guiding missiles must meet the higher requirements of efficient target detection, capability of anti-interference and anti-jamming and the operational adaptability in complex, dynamic operating environments. Missileborne infrared imaging detecting systems are constrained by practical considerations like cost, size, weight and power (SWaP), and lifecycle requirements. Future-generation infrared imaging guiding missiles need to be resilient to changing operating environments and capable of doing more with fewer resources. Advanced IR imaging detecting and information exploring technologies are the key technologies that affect the future direction of IR imaging guidance missiles. Infrared imaging detecting and information exploring technologies research will support the development of more robust and efficient missile-borne infrared imaging detecting systems. Novelty IR imaging technologies, such as Infrared adaptive spectral imaging, are the key to effectively detect, recognize and track target under the complicated operating and countermeasures environments. Innovative information exploring techniques for the information of target, background and countermeasures provided by the detection system is the base for missile to recognize target and counter interference, jamming and countermeasure. Modular hardware and software development is the enabler for implementing multi-purpose, multi-function solutions. Uncooled IRFPA detectors and High-operating temperature IRFPA detectors as well as commercial-off-the-shelf (COTS) technology will support the implementing of low-cost infrared imaging guiding missiles. In this paper, the current status and features of missile-borne IR imaging detecting technologies are summarized. The key

  12. Solid State MEMS Thrusters Using Electrically Controlled Extinguishable Solid Propellant, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ET Materials, LLC developed the first ever electrically controlled extinguishable solid propellant (ECESP). The original propellant developed under Air Force SBIR...

  13. Image based measurement techniques for aircraft propeller flow diagnostics : Propeller slipstream investigations at high-lift conditions and thrust reverse

    NARCIS (Netherlands)

    Roosenboom, E.W.M.

    2011-01-01

    The aim of the thesis is to measure the propeller slipstream properties (velocity and vorticity) and to assess the unsteady and instantaneous behavior of the propeller flow field at high disk loadings, zero thrust and thrust reverse using the image based measurement techniques. Along with its

  14. The IR missile (spin-scan and con-scan seekers) countermeasures

    OpenAIRE

    Chang, Ting Li

    1994-01-01

    In the combat scenario where the infrared missile is an almost continuous threat during the operation, fighter aircraft are currently quite susceptible to being killed in attacks by infrared missiles. Theoretical analysis applied to an encounter simulation seems to indicate that it is possible to use the infrared Active Jammer and the expendable decoy (flare) to defeat the infrared missile (spin-scan and con-scan seekers). The theoretical analysis of a simplified case of a spin-scan and con-s...

  15. Numerical simulation of tornado-borne missile impact on reinforced concrete targets

    International Nuclear Information System (INIS)

    Tu, D.K.; Larder, R.

    1979-02-01

    This study is a continuation of the Lawrence Livermore Laboratory (LLL) effort to evaluate the applicability of using the finite element procedure to numerically simulate the impact of tornado-borne missiles on reinforced concrete targets. The objective of this study is to assess the back-face scab threshold of a reinforced concrete target impacted by deformable and nondeformable missiles. Several simulations were run using slug and pipe-type impacting missiles. The numerical results were compared with full-scale experimental field tests

  16. Relativistic Spacecraft Propelled by Directed Energy

    Science.gov (United States)

    Kulkarni, Neeraj; Lubin, Philip; Zhang, Qicheng

    2018-04-01

    Achieving relativistic flight to enable extrasolar exploration is one of the dreams of humanity and the long-term goal of our NASA Starlight program. We derive a relativistic solution for the motion of a spacecraft propelled by radiation pressure from a directed energy (DE) system. Depending on the system parameters, low-mass spacecraft can achieve relativistic speeds, thus enabling interstellar exploration. The diffraction of the DE system plays an important role and limits the maximum speed of the spacecraft. We consider “photon recycling” as a possible method to achieving higher speeds. We also discuss recent claims that our previous work on this topic is incorrect and show that these claims arise from an improper treatment of causality.

  17. Closed-cycle liquid propellant rocket engines

    Science.gov (United States)

    Kuznetsov, N. D.

    1993-06-01

    The paper presents experience gained by SSSPE TRUD in development of NK-33, NK-43, NK-39, and NK-31 liquid propellant rocket engines, which are reusable, closed-cycle type, working on liquid oxygen and kerosene. Results are presented showing the engine structure efficiency, configuration rationality, and optimal thrust values which provide the following specific parameters: specific vacuum impulses in the range 331-353 s (for NK-33 and NK-31 engines, respectively) and specific weight of about 8 kg/tf (NK-33 and NK-43 engines). The problems which occurred during engine development and the study of the main components of these engines are discussed. The important technical data, materials, methodology, and bench development data are presented for the gas generator, turbopump assembly, combustion chamber and full-scale engines.

  18. WOW: light print, light propel, light point

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Bañas, Andrew Rafael; Aabo, Thomas

    2012-01-01

    We are presenting so-called Wave-guided Optical Waveguides (WOWs) fabricated by two-photon polymerization and capable of being optically manipulated into any arbitrary orientation. By integrating optical waveguides into the structures we have created freestanding waveguides which can be positioned...... anywhere in a sample at any orientation using real-time 3D optical micromanipulation with six degrees of freedom. One of the key aspects of our demonstrated WOWs is the change in direction of in-coupled light and the marked increase in numerical aperture of the out-coupled light. Hence, each light...... propelled WOW can tap from a relatively broad incident beam and generate a much more tightly confined light at its tip. The presentation contains both numerical simulations related to the propagation of light through a WOW and preliminary experimental demonstrations on our BioPhotonics Workstation...

  19. Space shuttle aps propellant thermal conditioner study

    Science.gov (United States)

    Fulton, D. L.

    1973-01-01

    An analytical and experimental effort was completed to evaluate a baffle type thermal conditioner for superheating O2 and H2 at supercritical pressures. The thermal conditioner consisted of a heat exchanger and an integral reactor (gas generator) operating on O2/H2 propellants. Primary emphasis was placed on the hydrogen conditioner with some effort on the oxygen conditioner and a study completed of alternate concepts for use in conditioning oxygen. A hydrogen conditioner was hot fire tested under a range of conditions to establish ignition, heat exchange and response parameters. A parallel technology task was completed to further evaluate the integral reactor and heat exchanger with the side mounted electrical spark igniter.

  20. NUMERICAL STUDY ON THE WAKE EVOLUTION OF CONTRA-ROTATING PROPELLER IN PROPELLER OPEN WATER AND SELF-PROPULSION CONDITIONS

    Directory of Open Access Journals (Sweden)

    Kwang-Jun Paik

    2017-01-01

    Full Text Available In this study, the wake characteristics of a contra-rotating propeller (CRP were investigated using a numerical simulation. The numerical simulation was carried out with a Reynolds averaged Navier−Stokes equations solver. The numerical simulations were performed on CRPs in both propeller open water and self-propulsion conditions to investigate their wake evolution characteristics. To study the effect of the rudder on the wake in the self-propulsion condition, the numerical simulations with and without a rudder were compared. The evolution of the CRP wake was analysed through velocity and vorticity contours on one transverse plane between the forward and aft propellers and two transverse planes located downstream of the CRP. The variations of thrust and torque of the forward and aft propellers during one revolution of the CRP were compared to investigate the interaction between forward and aft propellers and the effect of a rudder.

  1. A new mucosal propeller flap (deep lingual artery axial propeller): the renaissance of lingual flaps.

    Science.gov (United States)

    Cordova, Adriana; Toia, Francesca; D'Arpa, Salvatore; Giunta, Gabriele; Moschella, Francesco

    2015-03-01

    Lingual flaps provide ideal mucosal coverage for intraoral defects but traditionally require two surgical stages. The authors present an axial mucosal propeller flap for single-stage intraoral reconstruction. The flap includes the mucosa of the lateral side of the tongue, islanded on the deep lingual vessels. Between 2011 and 2013, 23 patients underwent intraoral mucosal reconstruction with a deep lingual artery axial propeller flap after cancer resection in the cheek (n = 16), floor of the mouth (n = 2), retromolar trigone (n = 2), hard palate (n = 2), and soft palate (n = 1). Mean defect size was 19.5 cm. Preoperative and postoperative intraoral function was evaluated with the Functional Intraoral Glasgow Scale. The authors always achieved one-stage reconstruction with primary donor-site closure. The only complications were an infection treated conservatively and a late oronasal fistula caused by radiotherapy. All patients resumed an oral diet after 1 week and none required surgical revision. Mean 12-month postoperative Functional Intraoral Glasgow Scale score was better than the preoperative score (13.5 versus 12.8). The deep lingual artery axial propeller flap combines the advantages of the traditional lingual flap (i.e., reliable axial vascularization and like-with-like reconstruction) with those of a propeller flap (i.e., one-stage transfer of like tissue and extreme mobility) and has wider indications than a conventional lingual flap. The technique is fast and has low morbidity and good functional results, and the authors recommend it as a first-choice technique to reconstruct moderate to large intraoral defects. Therapeutic, IV.

  2. Crusader solid propellant best technical approach

    Energy Technology Data Exchange (ETDEWEB)

    Graves, V. [Oak Ridge National Lab., TN (United States); Bader, G. [Fire Support Armament Center, Picatinny Arsenal, NJ (United States); Dolecki, M. [Tank-Automotive Research, Development, and Engineering Center, Picatinny, NJ (United States); Krupski, S. [Benet Weapons Lab., Watervliet Arsenal, NY (United States); Zangrando, R. [Close Combat Armament Center, Picatinny Arsenal, NJ (United States)

    1995-12-01

    The goal of the Solid Propellant Resupply Team is to develop Crusader system concepts capable of automatically handling 155mm projectiles and Modular Artillery Charges (MACs) based on system requirements. The system encompasses all aspects of handling from initial input into a resupply vehicle (RSV) to the final loading into the breech of the self-propelled howitzer (SPH). The team, comprised of persons from military and other government organizations, developed concepts for the overall vehicles as well as their interior handling components. An intermediate review was conducted on those components, and revised concepts were completed in May 1995. A concept evaluation was conducted on the finalized concepts, from both a systems level and a component level. The team`s Best Technical Approach (BTA) concept was selected from that evaluation. Both vehicles in the BTA have a front-engine configuration with the crew situated behind the engine-low in the vehicles. The SPH concept utilizes an automated reload port at the rear of the vehicle, centered high. The RSV transfer boom will dock with this port to allow automated ammunition transfer. The SPH rearm system utilizes fully redundant dual loaders. Active magazines are used for both projectiles and MACs. The SPH also uses a nonconventional tilted ring turret configuration to maximize the available interior volume in the vehicle. This configuration can be rearmed at any elevation angle but only at 0{degree} azimuth. The RSV configuration is similar to that of the SPH. The RSV utilizes passive storage racks with a pick-and-place manipulator for handling the projectiles and active magazines for the MACs. A telescoping transfer boom extends out the front of the vehicle over the crew and engine.

  3. Electrochemically powered self-propelled electrophoretic nanosubmarines

    Science.gov (United States)

    Pumera, Martin

    2010-09-01

    In the past few years, we have witnessed rapid developments in the realization of the old nanotechnology dream, autonomous nanosubmarines. These nanomachines are self-powered, taking energy from their environment by electrocatalytic conversion of chemicals present in the solution, self-propelled by flux of the electrons within the submarine and the hydronium ions on the surface of the nanosub, powering it in the direction opposite to that of the flux of the hydronium. These nanosubmarines are responsive to external fields, able to follow complex magnetic patterns, navigate themselves in complex microfluidic channels, follow chemical gradients, carry cargo, and communicate with each other. This minireview focuses on a discussion of the fundamentals of the electrophoretic mechanism underlying the propulsion of this sort of nanosub, as well as a demonstration of the proof-of-concept capabilities of nanosubmarines.In the past few years, we have witnessed rapid developments in the realization of the old nanotechnology dream, autonomous nanosubmarines. These nanomachines are self-powered, taking energy from their environment by electrocatalytic conversion of chemicals present in the solution, self-propelled by flux of the electrons within the submarine and the hydronium ions on the surface of the nanosub, powering it in the direction opposite to that of the flux of the hydronium. These nanosubmarines are responsive to external fields, able to follow complex magnetic patterns, navigate themselves in complex microfluidic channels, follow chemical gradients, carry cargo, and communicate with each other. This minireview focuses on a discussion of the fundamentals of the electrophoretic mechanism underlying the propulsion of this sort of nanosub, as well as a demonstration of the proof-of-concept capabilities of nanosubmarines. In memory of Karel Zeman, Czech animator, who encouraged thousands of young people into science and technology, on the occasion of the 100th

  4. THUNDERBALL -- A power-beaming architecture for missile defense

    Energy Technology Data Exchange (ETDEWEB)

    Bell, J.P.; Ponikvar, D.R. [W.J. Schafer Associates, Inc., Arlington, VA (United States)

    1994-12-31

    W.J. Schafer Associates has proposed an architecture for a laser system capable of not only beaming power from a ground site to space, but also capable of intercepting theater missiles during their boost phase for defense of ground troops in regional conflicts. The system comprises a ship-based multi-megawatt laser and beam control system, a relay mirror package mounted on a high altitude, long endurance, unmanned lighter-than-air vehicle, and a sensor package, mounted on the balloon, which directs the laser beam to the target and can also provide an early commitment of ground based kinetic energy interceptors. A system concept is presented, as well as an assessment of system effectiveness.

  5. Research on Multichannel Test Device of Missile Fuze

    Directory of Open Access Journals (Sweden)

    Guoyong Zhen

    2014-05-01

    Full Text Available This paper introduces the design of multichannel acquisition circuit based on FPGA which samples and records the Doppler signals, ignition signal and the working condition of fuze security enforcement agencies of missile fuze in real-time in the test of high speed dynamic intersection. Furthermore, for the problem of increasing number of sample channel which causes the complexity of the multiplexer control, a general programmable channel switching method is proposed based on FPGA. In the method, FPGA is the control core, and using the internal ROM resource effectively simplifies the complexity of channel switch in the multichannel acquisition system. This paper analyzes the acquisition system design, and describes the design of hardware circuit and analog switch address coding in detail. The test result shows that the acquisition circuit meets the design requirements with high sampling precision and application value.

  6. Tornado missiles protections taken at the Ikata NPP of SEPCO

    International Nuclear Information System (INIS)

    Ikeda, Kazutoyo; Takagi, Toshimitsu; Inoue, Haruhisa; Yoshida, Hisao; Moriuchi, Takehiro

    2014-01-01

    On July 8, 2013, the new regulatory requirements for commercial power reactors got in force. Based on a concept of 'Defense-in-depth', essential importance was placed on the third and fourth layers of defense and prevention of simultaneous loss of all safety functions due to common causes. In this regards, the previous assumptions on the impact of earthquakes, tsunamis and other external events such as volcanic eruptions, tornadoes and forest fires were re-evaluated, and countermeasures for nuclear safety against these external events were decided to be enhanced. For tornado, Nuclear Regulation Authority promulgated the 'Assessment Guide for Tornado Effect on Nuclear Power Plants' to evaluate the effect of tornadoes. This paper will introduce the outline of evaluation cases of tornado effect, and tornado missiles protections taken at the Ikata Unit 3 Nuclear Power Plant (for actual case studies). (author)

  7. A Game-Theoretic History of the Cuban Missile Crisis

    Directory of Open Access Journals (Sweden)

    Frank C. Zagare

    2014-01-01

    Full Text Available This study surveys and evaluates previous attempts to use game theory to explain the strategic dynamic of the Cuban missile crisis, including, but not limited to, explanations developed in the style of Thomas Schelling, Nigel Howard and Steven Brams. All of the explanations were judged to be either incomplete or deficient in some way. Schelling’s explanation is both empirically and theoretically inconsistent with the consensus interpretation of the crisis; Howard’s with the contemporary understanding of rational strategic behavior; and Brams’ with the full sweep of the events that define the crisis. The broad outlines of a more general explanation that addresses all of the foundational questions associated with the crisis within the confines of a single, integrated, game-theoretic model with incomplete information are laid out.

  8. Simulation Study on Missile Penetration Based on LS - DYNA

    Science.gov (United States)

    Tang, Jue; Sun, Xinli

    2017-12-01

    Penetrating the shell armor is an effective means of destroying hard targets with multiple layers of protection. The penetration process is a high-speed impact dynamics research category, involving high pressure, high temperature, high speed and internal material damage, including plugging, penetration, spalling, caving, splashing and other complex forms, therefore, Analysis is one of the difficulties in the study of impact dynamics. In this paper, the Lagrang algorithm and the SPH algorithm are used to analyze the penetrating steel plate, and the penetration model of the rocket penetrating the steel plate, the failure mode of the steel plate and the missile and the advantages and disadvantages of Lagrang algorithm and SPH algorithm in the simulation of high-speed collision problem are analyzed and compared, which provides a reference for the study of simulation collision problem.

  9. A review of research in low earth orbit propellant collection

    Science.gov (United States)

    Singh, Lake A.; Walker, Mitchell L. R.

    2015-05-01

    This comprehensive review examines the efforts of previous researchers to develop concepts for propellant-collecting spacecraft, estimate the performance of these systems, and understand the physics involved. Rocket propulsion requires the spacecraft to expend two fundamental quantities: energy and propellant mass. A growing number of spacecraft collect the energy they need to execute propulsive maneuvers in-situ with solar panels. In contrast, every spacecraft using rocket propulsion has carried all of the propellant mass needed for the mission from the ground, which limits the range and mission capabilities. Numerous researchers have explored the concept of collecting propellant mass while in space. These concepts have varied in scale and complexity from chemical ramjets to fusion-driven interstellar vessels. Research into propellant-collecting concepts occurred in distinct eras. During the Cold War, concepts tended to be large, complex, and nuclear powered. After the Cold War, concepts transitioned to solar power sources and more effort has been devoted to detailed analysis of specific components of the propellant-collecting architecture. By detailing the major contributions and limitations of previous work, this review concisely presents the state-of-the-art and outlines five areas for continued research. These areas include air-compatible cathode technology, techniques to improve propellant utilization on atmospheric species, in-space compressor and liquefaction technology, improved hypersonic and hyperthermal free molecular flow inlet designs, and improved understanding of how design parameters affect system performance.

  10. Calibration data for improved correction of UVW propeller anemometers

    Science.gov (United States)

    Connell, J. R.; Morris, V. R.

    1991-10-01

    Wind turbine test programs sponsored by the US DOE in the late 1980s called for measurement of three-dimensional turbulent wind with an accuracy not previously required. The Pacific Northwest Laboratory identified the need for more complete, more highly resolved, and more accurate calibrations to provide the new level of measurement capability. The UVW propeller anemometer, became the object of a unique calibration effort at a large wind tunnel at Colorado State University. A UVW anemometer, with all three propellers active, was installed in the wind tunnel on a digitally stepped two-axis rotary platform placed just below the tunnel floor. The azimuth and elevation of the anemometer in a steady wind at each of a selected set of speeds was stepped through a complete test program using a digital computer as controller and a digital data acquisition system to sample and filter the data. Tests were run using polypropylene and carbon fiber propellers. In addition, the effects of attaching 'shaft extensions' to the polypropylene propellers were measured. Calibrations for the polypropylene four-blade propeller provide an improved level of detail and repeatability. The UVW propeller anemometer is quite accurate at all wind angles and speeds to be experienced in wind energy studies, including winds blowing at right angles to the axis of rotation of a propeller. The new correction factors derived from these data eliminate previous difficulties in accuracy and speed of data reduction from voltages to wind speed components. Calibration data for a carbon fiber thermoplastic propeller are presented with resolution similar to that for the polypropylene propellers.

  11. Discovery Of B Ring Propellers In Cassini UVIS, And ISS

    Science.gov (United States)

    Sremcevic, Miodrag; Stewart, G. R.; Albers, N.; Esposito, L. W.

    2012-10-01

    We present evidence for the existence of propellers in Saturn's B ring by combining data from Cassini Ultraviolet Imaging Spectrograph (UVIS) and Imaging Science Subsystem (ISS) experiments. We identify two propeller populations: (1) tens of degrees wide propellers in the dense B ring core, and (2) smaller, more A ring like, propellers populating the inner B ring. The prototype of the first population is an object observed at 18 different epochs between 2005 and 2010. The ubiquitous propeller "S" shape is seen both in UVIS occultations as an optical depth depletion and in ISS as a 40 degrees wide bright stripe in unlit geometries and dark in lit geometries. Combining the available Cassini data we infer that the object is a partial gap embedded in the high optical depth region of the B ring. The gap moves at orbital speed consistent with its radial location. From the radial separation of the propeller wings we estimate that the embedded body, which causes the propeller structure, is about 1.5km in size located at a=112,921km. The UVIS occultations indicate an asymmetric propeller "S" shape. Since the object is located at an edge between high and relatively low optical depth, this asymmetry is most likely a consequence of the strong surface mass density gradient. We estimate that there are possibly dozen up to 100 other propeller objects in Saturn's B ring. The location of the discovered body, at an edge of a dense ringlet within the B ring, suggests a novel mechanism for the up to now illusive B ring irregular large-scale structure of alternating high and low optical depth ringlets. We propose that this B ring irregular structure may have its cause in the presence of many embedded bodies that shepherd the individual B ring ringlets.

  12. Enhanced propellant performance via environmentally friendly curable surface coating

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2017-06-01

    Full Text Available Surface coating of granular propellants is widely used in a multiplicity of propellants for small, medium and large caliber ammunition. All small caliber ball propellants exhibit burning progressivity due to application of effective deterrent coatings. Large perforated propellant grains have also begun utilizing plasticizing and impregnated deterrent coatings with the purpose of increasing charge weights for greater energy and velocity for the projectile. The deterrent coating and impregnation process utilizes volatile organic compounds (VOCs and hazardous air pollutants (HAPs which results in propellants that need to be forced air dried which impacts air quality. Propellants undergo temperature fluctuations during their life. Diffusion coefficients vary exponentially with variations in temperature. A small temperature increase can induce a faster migration, even over a short period of time, which can lead to large deviations in the concentration. This large concentration change in the ammunition becomes a safety or performance liability. The presence of both polymeric deterrents and nitroglycerin(NG in the nitrocellulose matrix and organic solvents leads to higher diffusion rates. This results in continued emissions of VOCs and HAPs. Conventional polymers tend to partition within the propellant matrix. In other words, localized mixing can occur between the polymer and underlying propellant. This is due to solvent induced softening of the polymer vehicle over the propellant grain. In effect this creates a path where migration can occur. Since nitrate esters, like NG, are relatively small, it can exude to the surface and create a highly unstable and dangerous situation for the warfighter. Curable polymers do not suffer from this partitioning due to “melting” because no VOC solvents are present. They remain surface coated. The small scale characterization testing, such as closed bomb testing, small scale sensitivity, thermal stability, and

  13. A low cost maritime control aircraft-ship-weapons system. [antiship missile defense

    Science.gov (United States)

    Fluk, H.

    1981-01-01

    It is pointed out that the long-range antiship standoff missile is emerging as the foremost threat on the seas. Delivered by high speed bombers, surface ships, and submarines, a missile attack can be mounted against selected targets from any point on the compass. An investigation is conducted regarding the configuration of a system which could most efficiently identify and destroy standoff threats before they launch their weapons. It is found that by using ships for carrying and launching missiles, and employing aircraft with a powerful radar only for search and missile directing operations, aircraft cost and weight can be greatly reduced. The employment of V/STOL aircraft in preference to other types of aircraft makes it possible to use ships of smaller size for carrying the aircraft. However, in order to obtain an all-weather operational capability for the system, ships are selected which are still big enough to display the required stability in heavy seas.

  14. Computational Fluid Dynamic (CFD) Analysis of a Generic Missile With Grid Fins

    National Research Council Canada - National Science Library

    DeSpirito, James

    2000-01-01

    This report presents the results of a study demonstrating an approach for using viscous computational fluid dynamic simulations to calculate the flow field and aerodynamic coefficients for a missile with grid fin...

  15. China and Proliferation of Weapons of Mass Destruction and Missiles: Policy Issues

    National Research Council Canada - National Science Library

    Kan, Shirley A

    2004-01-01

    ...) in the proliferation of weapons of mass destruction (WMD) and the missiles that could deliver them. Recipients of China's technology include Pakistan and countries that the State Department says support terrorism, such as Iran, North Korea, and Libya...

  16. China and Proliferation of Weapons of Mass Destruction and Missiles: Policy Issues

    National Research Council Canada - National Science Library

    Kan, Shirley A

    2003-01-01

    ...) in the proliferation of weapons of mass destruction (WMD) and missiles that could deliver them. Recipients of China's technology include Pakistan and countries that the State Department says support terrorism, such as Iran, North Korea, and Libya...

  17. China's Proliferation of Weapons of Mass Destruction and Missiles: Current Policy Issues

    National Research Council Canada - National Science Library

    Kan, Shirley A

    2001-01-01

    ...) in the proliferation of weapons of mass destruction (WMD) and missiles that could deliver them. Recipients of China s technology include Pakistan and countries that the State Department says support terrorism, like Iran, North Korea, Libya, and Syria...

  18. Ballistic Missile Defense: National Security and the High Frontier of Space.

    Science.gov (United States)

    Adragna, Steven P.

    1985-01-01

    Ballistic missile defense is discussed, and the rationale behind the proposal to place defensive weapons in space is examined. Strategic defense is a national security, political, and moral imperative. (RM)

  19. Estimated Costs and Technical Characteristics of Selected National Missile Defense Systems

    National Research Council Canada - National Science Library

    Johnson, Celeste; Hall, Raymond

    2002-01-01

    ...) a constellation of space-based lasers. Note that the cost estimates CBO has prepared for individual systems should not be added together to yield an estimate of the total potential costs of national missile...

  20. Small Business Innovation Research Program at the Ballistic Missile Defense Organization

    National Research Council Canada - National Science Library

    1995-01-01

    The audit objective was to determine whether the Ballistic Missile Defense Organization complied with legislation and DoD policy covering commercial potential requirements for Phase 1 of the SBIR program...

  1. Investigation of acceleration effects on missile aerodynamics using computational fluid dynamics

    CSIR Research Space (South Africa)

    Gledhill, Irvy MA

    2009-01-01

    Full Text Available missiles with generic configurations. It is shown that acceleration affects wave drag significantly. Also, it is shown that strake-generated vortices move significantly in turns. These results clearly show the necessity of including the acceleration effects...

  2. The Cult of Deterrence: A Moral and Strategic Critique of the Anti-Ballistic Missile Treaty

    National Research Council Canada - National Science Library

    Pringle, Cameron

    1997-01-01

    .... Analysis of the Just War Criteria and the utilitarian justifications of deterrence present a moral obligation to pursue the alternative strategy of missile defense as a means of defending the United States...

  3. US-Led Cooperative Theater Missile Defense in Northeast Asia challenges and Issues

    National Research Council Canada - National Science Library

    Kiriah, Rex

    2000-01-01

    .... After maintaining four days of silence, North Korean officials stated that the Western labeled MRBM flight test was not the test firing of a ballistic missile but was a three-stage rocket launch...

  4. Numerical Simulation of Transient Jet Interaction on a Generic Supersonic Missile with Fins

    National Research Council Canada - National Science Library

    Ebrahimi, Houshang

    1998-01-01

    ... of the highly turbulent flow field produced by a pulsed, lateral jet control thruster and the interaction of this jet with the supersonic free stream and missile boundary layer were completed for different...

  5. Local damage to reinforced concrete structures caused by impact of aircraft engine missiles. Pt. 1

    International Nuclear Information System (INIS)

    Sugano, T.; Tsubota, H.; Kasai, Y.; Koshika, N.; Ohnuma, H.; Von Riesemann, W.A.; Bickel, D.C.; Parks, M.B.

    1993-01-01

    Structural damage induced by an aircraft crashing into a reinforced concrete structure includes local damage caused by the deformable engines, and global damage caused by the entire aircraft. Local damage to the target may consist of spalling of concrete from its front face together with missile penetration into it, scabbing of concrete from its rear face, and perforation of missile through it. Until now, local damage to concrete structures has been mainly evaluated by rigid missile impact tests. Past research work regarding local damage caused by impact of deformable missiles has been limited. This paper presents the results of a series of impact tests of small-, intermediate-, and full-scale engine models into reinforced concrete panels. The purpose of the tests was to determine the local damage to a reinforced concrete structure caused by the impact of a deformable aircraft engine. (orig.)

  6. Study on the Mission, Roles, and Structure of the Missile Defense Agency (MDA)

    National Research Council Canada - National Science Library

    Welch, Larry D; Briggs, David L; Bleach, R. D; Canavan, G. H; Clark-Sestak, S. L; Constantine, R. W; Cook, C. W; Fries, M. S; Frost, D. E; Graham, D. R; Keane, D. J; Kramer, S. D; Major, P. L; Primmerman, C. A; Ruddy, J. M; Schneiter, G. R; Seng, J. M; Stein, R. M; Weiner, S. D; Williams, J. D

    2008-01-01

    ...) was tasked by the Department of Defense to carry out an independent study to examine and make recommendations with respect to the long-term missions, roles, and structure of the Missile Defense Agency (MDA...

  7. EKF-based fault detection for guided missiles flight control system

    Science.gov (United States)

    Feng, Gang; Yang, Zhiyong; Liu, Yongjin

    2017-03-01

    The guided missiles flight control system is essential for guidance accuracy and kill probability. It is complicated and fragile. Since actuator faults and sensor faults could seriously affect the security and reliability of the system, fault detection for missiles flight control system is of great significance. This paper deals with the problem of fault detection for the closed-loop nonlinear model of the guided missiles flight control system in the presence of disturbance. First, set up the fault model of flight control system, and then design the residual generation based on the extended Kalman filter (EKF) for the Eulerian-discrete fault model. After that, the Chi-square test was selected for the residual evaluation and the fault detention task for guided missiles closed-loop system was accomplished. Finally, simulation results are provided to illustrate the effectiveness of the approach proposed in the case of elevator fault separately.

  8. Evaluation and Selection of Technology Concepts for a Hypersonic High Speed Standoff Missile

    National Research Council Canada - National Science Library

    Roth, Bryce

    1999-01-01

    This paper describes the application of a method for technology concept selection to the design of a hypersonic high-speed standoff missile capable of achieving pin-point strike of long-range targets...

  9. Transition of Army Missile Acquisition Programs from Program Management Offices to Commodity Commands

    National Research Council Canada - National Science Library

    Brannin, Patricia

    1997-01-01

    ... management offices to commodity commands. The primary audit objective was to assess whether program management offices were transferring adequate funds and other resources to Military Department commodity commands for missile acquisition...

  10. Advanced helium regulator for a fluorine propellant system

    Science.gov (United States)

    Wichmann, H.; Yankura, G.

    1976-01-01

    The space storable propulsion module is an advanced high performance (375 seconds Isp minimum) planetary spacecraft propulsion system with a mission life of 5-10 years. The propellants used are liquid fluorine and amine fuel. This application requires high pressure regulator accuracy to optimize propellant depletion characteristics. An advanced regulator concept was prepared which is compatible with both fuel and oxidizer and which features design concepts such as redundant bellows, all-metallic/ceramic construction, friction-free guidance of moving parts and gas damping. Computer simulation of the propulsion module performance over two mission profiles indicated satisfactory minimization of those propellant residual requirements imposed by regulator performance variables.

  11. Air propellers and their environmental problems on ACV's

    Science.gov (United States)

    Soley, D. H.

    The development of ACV blade protection against erosion, both on the propeller blade faces and leading edge, is considered. Polyurethane spray coating is now the standard protection applied to all Dowty Rotol propellers, with thicknesses from 0.015-0.020 on aircraft, and up to 0.080 on the ACV. The bolt-on guard reduced leading edge replacement time by 50 percent, and makes possible replacement in all weather conditions. Typical damage and repairs to ACV blades are discussed, and the propeller installation on the LCAC craft being built for the U.S. Navy is addressed.

  12. A Portable Burn Pan for the Disposal of Excess Propellants

    Science.gov (United States)

    2015-11-01

    combustible mass of the charges, less than 0.001% of the energetics in the burn pan ash, energetics concentration of less than 0.5% in the residual ash, and...slider (within the pan), the remaining propellant grains as well as those from several other opened bags were piled over the slider onto unopened bags...Total DNT mass in the M1 propellant used for the tests was 40.7 kg. Lead carbonate, at 1% of the propellant mass, is the only non- combustible component

  13. A Three-Pronged Strategy to Solve the Problem of Long-Range Missile Proliferation

    Science.gov (United States)

    1994-06-01

    costly to be worth while." 111. Ballistic Missile Defense Organization, Advanced Planning Briefing for Industry (The Ritz - Carlton , Tysons Corner, VA...Ballistic Missile Defense Organization. Advanced Planning Briefing for Industry. The Ritz - Carlton , Tysons Corner, VA, Meeting #494, 1-2 March 1994...threat of global war. But history did not end with that victory and neither did threats to the United States, its people and its interests

  14. Missile Captive Carry Monitoring and Helicopter Identification Using a Capacitive Microelectromechanical Systems Accelerometer

    Energy Technology Data Exchange (ETDEWEB)

    Hatchell, Brian K.; Mauss, Fredrick J.; Amaya, Ivan A.; Skorpik, James R.; Silvers, Kurt L.; Marotta, Steve

    2012-03-27

    Military missiles are exposed to many sources of mechanical vibration that can affect system reliability, safety, and mission effectiveness. The U. S. Army Aviation and Missile Research Development and Engineering Center (AMRDEC) has been developing missile health monitoring systems to assess and improve reliability, reduce life cycle costs, and increase system readiness. One of the most significant exposures to vibration occurs when the missile is being carried by a helicopter or other aviation platform, which is a condition known as captive carry. Recording the duration of captive carry exposure during the missile’s service life can enable the implementation of predictive maintenance and resource management programs. Since the vibration imparted by each class of helicopter varies in frequency and amplitude, tracking the vibration exposure from each helicopter separately can help quantify the severity and harmonic content of the exposure. Under the direction of AMRDEC staff, engineers at the Pacific Northwest National Laboratory have developed a Captive Carry Health Monitor (CCHM) for the Hellfire II missile. The CCHM is an embedded usage monitoring device installed on the outer skin of the Hellfire II missile to record the cumulative hours the host missile has been in captive carry mode. To classify the vibration by class of helicopter, the CCHM analyzes the amplitude and frequency content of the vibration with the Goertzel algorithm to detect the presence of distinctive rotor harmonics. Cumulative usage data are accessible in theater from an external display; monthly usage histograms are accessible through an internal download connector. This paper provides an overview of the CCHM electrical and package design, describes field testing and data analysis techniques used to monitor captive carry identify and the class of helicopter, and discusses the potential application of missile health and usage data for real-time reliability analysis and fleet management.

  15. Seeing 2020: America’s New Vision for Integrated Air and Missile Defense

    Science.gov (United States)

    2015-01-01

    MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION /AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14...siles. Examples included the Nike Zeus and Nike -X anti-ballistic missiles (ABMs), which used nuclear warheads to destroy incoming missiles (a practice...the Soviets also explored) in their terminal phase of flight. Yet despite some successful tests, the Nike programs were never fully implemented

  16. An overview of the political-military implications of missile proliferation

    International Nuclear Information System (INIS)

    Mahnken, T.

    1990-01-01

    The proliferation of advanced military technology, and of ballistic missiles in particular, should be viewed as a phenomenon with potential strategic ramifications for both the U.S. and its allies. This paper examines these ramifications on three levels: military, politico-military, and geostratigic. Four broad policy approaches can be taken singly or in combination to deal with the ballistic missile threat. They are: arms control, deterrence, preemption, and defense

  17. Operational Art Considerations for Army Air and Missile Defense: Lessons from the October War

    Science.gov (United States)

    2003-05-22

    operational art cognitive foundation. It combines the theory of operational art with a case study analysis of the 1973 Arab Israeli War and an...current joint and service doctrine forms the basis of these criteria. A case study of the 1973 Arab -Israeli War provides specific historical air and...missile operational art lessons. Current joint and service air and missile defense doctrine is evaluated using lessons from the 1973 Arab -Israeli War

  18. Navy Aegis Ballistic Missile Defense (BMD) Program: Background and Issues for Congress

    Science.gov (United States)

    2016-10-25

    procuring the missiles.... 97 Rob Taylor, “U.S. and Australia to Cooperate on Asian Missile-Defense...scheduled to grow from 33 at the end of FY2016 to 49 at the end of FY2021. The figure for FY2020 may include up to four BMD-capable Aegis cruisers in...building, or are planning to build Aegis-equipped ships include Japan, South Korea, Australia , Spain, and Norway.2 Aegis BMD System3 Aegis ships

  19. Defending the Homeland Path of Missile Defense Development full of Ups and Downs

    Science.gov (United States)

    2007-01-01

    confrontation. The fi rst anti-ballistic missile system to emerge from the technological and political turmoil was the Nike -Zeus system. Elements of...such systems. The summer of 2006 was fraught with high-level political tension, as North Korea advertised their plan to test a long- range ballistic...warhead by direct impact versus detonation. The Army began to address national missile defense in the 1950’s with the NIKE -ZEUS project. The Zeus

  20. Safety catching device for pipes in missile shielding cylinders of nuclear power plants

    International Nuclear Information System (INIS)

    Hering, S.; Doll, B.

    1976-01-01

    The safety catching device consists of a steel wire passed in U-shape around the pipe to be caught and supported by two anchor ties embedded in the concrete of the missile shielding cylinder. This flexible catching device is to cause the energy released in case of a pipe rupture to be absorbed and no dangerous bending shesses to be transferred to the walls of the missile shielding cylinder. (UWI) [de

  1. Arms Control and Missile Defense: Explaining Success and Failure in U.S.-Russian Cooperation

    Science.gov (United States)

    2013-09-01

    Security Service) GLCM Ground-Launched Cruise Missile GLONASS Global’naya Navigatsionnaya Sputnikovaya Sistema , or Global Navigation Satellite System...planned deployment of U.S. missile defense systems to Europe. The Figure 1 diagram offers a visual representation for what has been expressed above and...Global’naya Navigatsionnaya Sputnikovaya Sistema , or Global Navigation Satellite System).”111 Based on his review of events in Georgia, Vladimir

  2. Analysis and compilation of missile aerodynamic data. Volume 1: Data presentation and analysis

    Science.gov (United States)

    Nichols, J. O.

    1977-01-01

    Most of the aerodynamic configurations considered are suitable for highly maneuverable air-to-air or surface-to-air missiles; however, data for a few air-to-surface, cruise missiles, and one projectile configuration are also presented. The Mach number range of the data is from about 0.2 to 4.63; however, data for most configurations cover only a portion of this range.

  3. Sheet thickness required for protection against the impact of a missile generated by a tornado

    International Nuclear Information System (INIS)

    Prats, F.; Fernandez, M. C.

    2010-01-01

    The tornado generated missiles are classified in three categories: piece of pipe, car and a solid sphere. These missiles can impact class structures outer areas of the plant, possibly causing damage. Specifically, can pierce tanks located within reach class and losing the required integrity of these structures. Therefore, in this paper we review the issue of the required thickness to ensure that no loss of integrity of the tanks. The paper focuses on the evaluation of the required thickness of steel sheets.

  4. Small Business Innovation Research Program at the Ballistic Missile Defense Organization

    Science.gov (United States)

    1995-03-21

    8217 ,;;::i’:’.w..:.v,:.’..’,;?.:.:. t OFFICE OF THE INSPECTOR GENERAL SMALL BUSINESS INNOVATION RESEARCH PROGRAM AT THE BALLISTIC...Ballistic Missile Defense Organization Small Business Innovation Research Accession Number: 3526 Publication Date: Mar 21, 1995 Title: Small... Business Innovation Research Program at the Ballistic Missile Defense Organization Corporate Author Or Publisher: DoD, Office of the Inspector General

  5. Small Business Administration Section 8 (A) Support Services Contracts at the Ballistic Missile Defense Organization.

    Science.gov (United States)

    1994-12-30

    W.V.W.W/.*.’ OFFICE OF THE INSPECTOR GENERAL SMALL BUSINESS ADMINISTRATION SECTION 8(A) SUPPORT SERVICES CONTRACTS AT THE BALLISTIC MISSILE...ORGANIZATION DIRECTOR, DEFENSE LOGISTICS AGENCY SUBJECT: Audit Report on Small Business Administration Section 8(a) Support Services Contracts at the...Project No. 2CH-5031.01) SMALL BUSINESS ADMINISTRATION SECTION 8(A) SUPPORT SERVICES CONTRACTS AT THE BALLISTIC MISSILE DEFENSE ORGANIZATION

  6. EVALUATION OF THE JET DAMPING EFFECT ON FLIGHT DYNAMICS OF A HOMING GUIDED MISSILE

    OpenAIRE

    Kowaleczko, Grzegorz

    2017-01-01

    The paper presents evaluation of the jet damping effect on spatial motion of a homing guided missile with variable mass. The mathematical model of motion including effects generated by the burning fuel are presented – changes of mass characteristics as well as the jet damping effect are taken into account. Both the influences of inertia forces/moments and changes of the position of mass center are calculated. The damping effect generating additional forces and moments acting on the missile is...

  7. Application of genetic algorithm in target image processing of TV guided missile

    Directory of Open Access Journals (Sweden)

    He Jing Feng

    2016-01-01

    Full Text Available Target image processing requirements of the TV guided missile is high, and the speed is fast, and the quality of target image segmentation is high.In this paper, an improved genetic algorithm based on genetic algorithm is introduced, which is used in the image segmentation of the TV guided missile, and the processing effect is good and the calculation speed is fast.Simulation results show that the algorithm is effective.

  8. Effects of towed-decoys against an anti-air missile with a monopulse seeker

    OpenAIRE

    Yeh, Jia-Hsin

    1995-01-01

    This thesis evaluates the protection provided by towed decoys deployed by an aircraft during an engagement against an anti-air missile equipped with a monopulse seeker. The research emphasizes the use of passive decoys. Many of the operational parameters required before the deployment of towed-decoy are investigated, including the strength of reflection, the tether length, the direction of release, under different missile incoming directions. This thesis evaluated two reflection cases. One is...

  9. Cooperative Monitoring Center Occasional Paper/9: De-Alerting Strategic Ballistic Missiles

    Energy Technology Data Exchange (ETDEWEB)

    Connell, Leonard W.; Edenburn, Michael W.; Fraley, Stanley K.; Trost, Lawrence C.

    1999-03-01

    This paper presents a framework for evaluating the technical merits of strategic ballistic missile de-alerting measures, and it uses the framework to evaluate a variety of possible measures for silo-based, land-mobile, and submarine-based missiles. De-alerting measures are defined for the purpose of this paper as reversible actions taken to increase the time or effort required to launch a strategic ballistic missile. The paper does not assess the desirability of pursuing a de-alerting program. Such an assessment is highly context dependent. The paper postulates that if de-alerting is desirable and is used as an arms control mechanism, de-alerting measures should satisfy specific cirteria relating to force security, practicality, effectiveness, significant delay, and verifiability. Silo-launched missiles lend themselves most readily to de-alerting verification, because communications necessary for monitoring do not increase the vulnerabilty of the weapons by a significant amount. Land-mobile missile de-alerting measures would be more challenging to verify, because monitoring measures that disclose the launcher's location would potentially increase their vulnerability. Submarine-launched missile de-alerting measures would be extremely challlenging if not impossible to monitor without increasing the submarine's vulnerability.

  10. Comparison of gimbal approaches to decrease drag force and radar cross sectional area in missile application

    Science.gov (United States)

    Sakarya, Doǧan Uǧur

    2017-05-01

    Drag force effect is an important aspect of range performance in missile applications especially for long flight time. However, old fashioned gimbal approaches force to increase missile diameter. This increase has negative aspect of rising in both drag force and radar cross sectional area. A new gimbal approach was proposed recently. It uses a beam steering optical arrangement. Therefore, it needs less volume envelope for same field of regard and same optomechanical assembly than the old fashioned gimbal approaches. In addition to longer range performance achieved with same fuel in the new gimbal approach, this method provides smaller cross sectional area which can be more invisible in enemies' radar. In this paper, the two gimbal approaches - the old fashioned one and the new one- are compared in order to decrease drag force and radar cross sectional area in missile application. In this study; missile parameters are assumed to generate gimbal and optical design parameters. Optical design is performed according to these missile criteria. Two gimbal configurations are designed with respect to modeled missile parameters. Also analyzes are performed to show decreased drag force and radar cross sectional area in the new approach for comparison.

  11. Ionospheric disturbances induced by a missile launched from North Korea on 12 December 2012

    Science.gov (United States)

    Kakinami, Yoshihiro; Yamamoto, Masayuki; Chen, Chia-Hung; Watanabe, Shigeto; Lin, Charles; Liu, Jenn-Yanq; Habu, Hiroto

    2013-08-01

    disturbances caused by a missile launched from North Korea on 12 December 2012 were investigated by using the GPS total electron content (TEC). The spatial characteristic of the front edge of V-shaped disturbances produced by missiles and rockets was first determined. Considering the launch direction and the height of estimated ionospheric points at which GPS radio signal pierces the ionosphere, the missile passed through the ionosphere at heights of 391, 425, and 435 km at 0056:30, 0057:00, and 0057:30 UT, respectively. The observed velocities of the missile were 2.8 and 3.2 km/s at that time, which was estimated from the traveling speed of the front edge of V-shaped disturbances. Westward and eastward V-shaped disturbances propagated at 1.8-2.6 km/s. The phase velocities of the westward and eastward V-shaped disturbances were much faster than the speed of acoustic waves reported in previous studies, suggesting that sources other than acoustic waves may have played an important role. Furthermore, the plasma density depletion that is often observed following missile and rocket launches was not found. This suggests that the depletion resulting from the missile's exhaust was not strong enough to be observed in the TEC distribution in the topside ionosphere.

  12. Atmospheric Processing Module for Mars Propellant Production

    Science.gov (United States)

    Muscatello, Anthony C.

    2014-01-01

    The multi-NASA center Mars Atmosphere and Regolith COllectorPrOcessor for Lander Operations (MARCO POLO) project was established to build and demonstrate a methaneoxygen propellant production system in a Mars analog environment. Work at the Kennedy Space Center (KSC) Applied Chemistry Laboratory is focused on the Atmospheric Processing Module (APM). The purpose of the APM is to freeze carbon dioxide from a simulated Martian atmosphere containing the minor components nitrogen, argon, carbon monoxide, and water vapor at Martian pressures (8 torr) by using dual cryocoolers with alternating cycles of freezing and sublimation. The resulting pressurized CO(sub 2) is fed to a methanation subsystem where it is catalytically combined with hydrogen in a Sabatier reactor supplied by the Johnson Space Center (JSC) to make methane and water vapor. We first used a simplified once-through setup and later employed a H(sub 2)CO(sub 2) recycling system to improve process efficiency. This presentation and paper will cover (1) the design and selection of major hardware items, such as the cryocoolers, pumps, tanks, chillers, and membrane separators, (2) the determination of the optimal cold head design and flow rates needed to meet the collection requirement of 88 g CO(sub 2) hr for 14 hr, (3) the testing of the CO(sub 2) freezer subsystem, and (4) the integration and testing of the two subsystems to verify the desired production rate of 31.7 g CH(sub 4) hr and 71.3 g H(sub 2)O hr along with verification of their purity. The resulting 2.22 kg of CH(sub 2)O(sub 2) propellant per 14 hr day (including O(sub 2) from electrolysis of water recovered from regolith, which also supplies the H(sub 2) for methanation) is of the scale needed for a Mars Sample Return mission. In addition, the significance of the project to NASAs new Mars exploration plans will be discussed.

  13. Mathematical Model-Based Temperature Preparation of Liquid-Propellant Components Cooled by Liquid Nitrogen in the Heat Exchanger with a Coolant

    Directory of Open Access Journals (Sweden)

    S. K. Pavlov

    2014-01-01

    Full Text Available Before fuelling the tanks of missiles, boosters, and spacecraft with liquid-propellant components (LPC their temperature preparation is needed. The missile-system ground equipment performs this operation during prelaunch processing of space-purpose missiles (SPM. Usually, the fuel cooling is necessary to increase its density and provide heat compensation during prelaunch operation of SPM. The fuel temperature control systems (FTCS using different principles of operation and types of coolants are applied for fuel cooling.To determine parameters of LPC cooling process through the fuel heat exchange in the heat exchanger with coolant, which is cooled by liquid nitrogen upon contact heat exchange in the coolant reservoir, a mathematical model of this process and a design technique are necessary. Both allow us to determine design parameters of the cooling system and the required liquid nitrogen reserve to cool LPC to the appropriate temperature.The article presents an overview of foreign and domestic publications on cooling processes research and implementation using cryogenic products such as liquid nitrogen. The article draws a conclusion that it is necessary to determine the parameters of LPC cooling process through the fuel heat exchange in the heat exchanger with coolant, which is liquid nitrogen-cooled upon contact heat exchange in the coolant reservoir allowing to define rational propellant cooling conditions to the specified temperature.The mathematical model describes the set task on the assumption that a heat exchange between the LPC and the coolant in the heat exchanger and with the environment through the walls of tanks and pipelines of circulation loops is quasi-stationary.The obtained curves allow us to calculate temperature changes of LPC and coolant, cooling time and liquid nitrogen consumption, depending on the process parameters such as a flow rate of liquid nitrogen, initial coolant temperature, pump characteristics, thermal

  14. Propellant and Terrestrial Fuel Production from Atmospheric Carbon Dioxide Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Build and test in a relevant environment a Mars propellant production plant of an appropriate scale for an initial demonstration on Mars. It will produce sufficient...

  15. Propellant Preparation Laboratory Complex (Area1-21)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: Area 1-21 is an explosion resistant complex of nine cells built into the side of a granite ridge. Three solid propellant cutting cells are housed in the...

  16. Gelled Propellants for Reduced Temperature Operation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is responsive to NASA 2004 SBIR objectives (under Topic X6.05) seeking gelled propellant formulations "for long-duration missions involving low-power...

  17. Self-Propelled Hovercraft Based on Cold Leidenfrost Phenomenon

    Science.gov (United States)

    Shi, Meng; Ji, Xing; Feng, Shangsheng; Yang, Qingzhen; Lu, Tian Jian; Xu, Feng

    2016-06-01

    The Leidenfrost phenomenon of liquid droplets levitating and dancing when placed upon a hot plate due to propulsion of evaporative vapor has been extended to many self-propelled circumstances. However, such self-propelled Leidenfrost devices commonly need a high temperature for evaporation and a structured solid substrate for directional movements. Here we observed a “cold Leidenfrost phenomenon” when placing a dry ice device on the surface of room temperature water, based on which we developed a controllable self-propelled dry ice hovercraft. Due to the sublimated vapor, the hovercraft could float on water and move in a programmable manner through designed structures. As demonstrations, we showed that the hovercraft could be used as a cargo ship or a petroleum contamination collector without consuming external power. This phenomenon enables a novel way to utilize programmable self-propelled devices on top of room temperature water, holding great potential for applications in energy, chemical engineering and biology.

  18. Gun barrel erosion - Comparison of conventional and LOVA gun propellants

    NARCIS (Netherlands)

    Hordijk, A.C.; Leurs, O.

    2006-01-01

    The research department Energetic Materials within TNO Defence, Security and Safety is involved in the development and (safety and insensitive munitions) testing of conventional (nitro cellulose based) and thermoplastic elastomer (TPE) based gun propellants. Recently our testing capabilities have

  19. Dynamical Model of Rocket Propellant Loading with Liquid Hydrogen

    Data.gov (United States)

    National Aeronautics and Space Administration — A dynamical model describing the multi-stage process of rocket propellant loading has been developed. It accounts for both the nominal and faulty regimes of...

  20. Propellant Flow Actuated Piezoelectric Rocket Engine Igniter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Spark ignition of a bi-propellant rocket engine is a classic, proven, and generally reliable process. However, timing can be critical, and the control logic,...

  1. Propellant Flow Actuated Piezoelectric Rocket Engine Igniter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Under a Phase 1 effort, IES successfully developed and demonstrated a spark ignition concept where propellant flow drives a very simple fluid mechanical oscillator...

  2. Model-based Diagnostics for Propellant Loading Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — The loading of spacecraft propellants is a complex, risky operation. Therefore, diagnostic solutions are neces- sary to quickly identify when a fault occurs, so that...

  3. Advances in Hypergolic Propellants: Ignition, Hydrazine, and Hydrogen Peroxide Research

    Directory of Open Access Journals (Sweden)

    Stephen M. Davis

    2014-01-01

    Full Text Available A review of the literature pertaining to hypergolic fuel systems, particularly using hydrazine or its derivatives and hydrogen peroxide, has been conducted. It has been shown that a large effort has been made towards minimizing the risks involved with the use of a toxic propellant such as the hydrazine. Substitution of hydrazines for nontoxic propellant formulations such as the use of high purity hydrogen peroxide with various types of fuels is one of the major areas of study for future hypergolic propellants. A series of criteria for future hypergolic propellants has been recommended, including low toxicity, wide temperature range applicability, short ignition delay, high specific impulse or density specific impulse, and storability at room temperature.

  4. Combustion of four composite propellants at subatmospheric pressures

    Energy Technology Data Exchange (ETDEWEB)

    Schoyer, H.F.R.; Korting, P.A.O.G.

    1983-08-01

    The combustion behavior of 4 composite propellants was investigated in the pressure region between 20 and 140 kPa and at temperature of -40, 25 and 50 C. The experimental technique is based upon a cigarette burning rocket motor connected to a vacuum system. All four propellants display a De Vieille burning rate law. The burning rate is strongly affected by composition, pressure, and temperature. Combustion instability predominantly occurs at pressures below 50 kPa. Frequency spectra, pressure amplitudes versus mean pressure, and frequency versus mean pressure were determined for all 12 cases. The propellant response function was estimated. From all propellants, ICT 201 seems to be the least susceptible to oscillatory combustion.

  5. Numerical Prediction of Hydromechanical Behaviour of Controllable Pitch Propeller

    Directory of Open Access Journals (Sweden)

    Saman Tarbiat

    2014-01-01

    Full Text Available The research described in this paper was carried out to predict hydrodynamic and frictional forces of controllable pitch propeller (CPP that bring about fretting problems in a blade bearing. The governing equations are Reynolds-averaged Navier-Stokes (RANS and are solved by OpenFOAM solver for hydrodynamic forces behind the ship’s wake. Frictional forces are calculated by practical mechanical formulae. Different advance velocities with constant rotational speed for blades are used to achieve hydrodynamic coefficients in open water and the wake behind the propeller. Results are compared at four different pitches. Detailed numerical results of 3D modelling of the propeller, hydrodynamic characteristics, and probability of the fretting motion in the propeller are presented. Results show that the probability of the fretting movement is related to the pitch.

  6. An Additively Manufactured Torch Igniter for Liquid Propellants

    Data.gov (United States)

    National Aeronautics and Space Administration — Consistent and reliable rocket engine ignition has yet to be proven through an additively manufactured torch igniter for liquid propellants. The coupling of additive...

  7. Advanced Insulation Materials for Cryogenic Propellant Storage Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Materials Technology, Inc responds to the NASA solicitation Topic X9 entitled "Propulsion and Propellant Storage" under subtopic X9-01, "Long Term Cryogenic...

  8. Feasibility Study on Cutting HTPB Propellants with Abrasive Water Jet

    Science.gov (United States)

    Jiang, Dayong; Bai, Yun

    2018-01-01

    Abrasive water jet is used to carry out the experiment research on cutting HTPB propellants with three components, which will provide technical support for the engineering treatment of waste rocket motor. Based on the reliability theory and related scientific research results, the safety and efficiency of cutting sensitive HTPB propellants by abrasive water jet were experimentally studied. The results show that the safety reliability is not less than 99.52% at 90% confidence level, so the safety is adequately ensured. The cooling and anti-friction effect of high-speed water jet is the decisive factor to suppress the detonation of HTPB propellant. Compared with pure water jet, cutting efficiency was increased by 5% - 87%. The study shows that abrasive water jets meet the practical use for cutting HTPB propellants.

  9. A new method for aerodynamic test of high altitude propellers

    Directory of Open Access Journals (Sweden)

    Xiying Gong

    Full Text Available A ground test system is designed for aerodynamic performance tests of high altitude propellers. The system is consisted of stable power supply, servo motors, two-component balance constructed by tension-compression sensors, ultrasonic anemometer, data acquisition module. It is loaded on a truck to simulate propellers’ wind-tunnel test for different wind velocities at low density circumstance. The graphical programming language LABVIEW for developing virtual instrument is used to realize the test system control and data acquisition. Aerodynamic performance test of a propeller with 6.8 m diameter was completed by using this system. The results verify the feasibility of the ground test method. Keywords: High altitude propeller, Ground test, Virtual instrument control system

  10. LNG systems for natural gas propelled ships

    Science.gov (United States)

    Chorowski, M.; Duda, P.; Polinski, J.; Skrzypacz, J.

    2015-12-01

    In order to reduce the atmospheric pollution generated by ships, the International Marine Organization has established Emission Controlled Areas. In these areas, nitrogen oxides, sulphur oxides and particulates emission is strongly controlled. From the beginning of 2015, the ECA covers waters 200 nautical miles from the coast of the US and Canada, the US Caribbean Sea area, the Baltic Sea, the North Sea and the English Channel. From the beginning of 2020, strong emission restrictions will also be in force outside the ECA. This requires newly constructed ships to be either equipped with exhaust gas cleaning devices or propelled with emission free fuels. In comparison to low sulphur Marine Diesel and Marine Gas Oil, LNG is a competitive fuel, both from a technical and economical point of view. LNG can be stored in vacuum insulated tanks fulfilling the difficult requirements of marine regulations. LNG must be vaporized and pressurized to the pressure which is compatible with the engine requirements (usually a few bar). The boil-off must be controlled to avoid the occasional gas release to the atmosphere. This paper presents an LNG system designed and commissioned for a Baltic Sea ferry. The specific technical features and exploitation parameters of the system will be presented. The impact of strict marine regulations on the system's thermo-mechanical construction and its performance will be discussed. The review of possible flow-schemes of LNG marine systems will be presented with respect to the system's cost, maintenance, and reliability.

  11. WOW: light print, light propel, light point

    Science.gov (United States)

    Glückstad, Jesper; Bañas, Andrew; Aabo, Thomas; Palima, Darwin

    2012-10-01

    We are presenting so-called Wave-guided Optical Waveguides (WOWs) fabricated by two-photon polymerization and capable of being optically manipulated into any arbitrary orientation. By integrating optical waveguides into the structures we have created freestanding waveguides which can be positioned anywhere in a sample at any orientation using real-time 3D optical micromanipulation with six degrees of freedom. One of the key aspects of our demonstrated WOWs is the change in direction of in-coupled light and the marked increase in numerical aperture of the out-coupled light. Hence, each light propelled WOW can tap from a relatively broad incident beam and generate a much more tightly confined light at its tip. The presentation contains both numerical simulations related to the propagation of light through a WOW and preliminary experimental demonstrations on our BioPhotonics Workstation. In a broader context, this research shows that optically trapped micro-fabricated structures can potentially help bridge the diffraction barrier. This structure-mediated paradigm may be carried forward to open new possibilities for exploiting beams from far-field optics down to the sub-wavelength domain.

  12. Self-Propelled Hovercraft Based on Cold Leidenfrost Phenomenon

    OpenAIRE

    Meng Shi; Xing Ji; Shangsheng Feng; Qingzhen Yang; Tian Jian Lu; Feng Xu

    2016-01-01

    The Leidenfrost phenomenon of liquid droplets levitating and dancing when placed upon a hot plate due to propulsion of evaporative vapor has been extended to many self-propelled circumstances. However, such self-propelled Leidenfrost devices commonly need a high temperature for evaporation and a structured solid substrate for directional movements. Here we observed a ?cold Leidenfrost phenomenon? when placing a dry ice device on the surface of room temperature water, based on which we develop...

  13. Viscous-Inviscid Coupling Methods for Advanced Marine Propeller Applications

    OpenAIRE

    Greve, Martin; Wöckner-Kluwe, Katja; Abdel-Maksoud, Moustafa; Rung, Thomas

    2012-01-01

    The paper reports the development of coupling strategies between an inviscid direct panel method and a viscous RANS method and their application to complex propeller ows. The work is motivated by the prohibitive computational cost associated to unsteady viscous flow simulations using geometrically resolved propellers to analyse the dynamics of ships in seaways. The present effort aims to combine the advantages of the two baseline methods in order to reduce the numerical effort without comprom...

  14. Technology for gelled liquid cryogenic propellants - Metallized hydrogen/aluminum

    Science.gov (United States)

    Starkovich, John; Palaszewski, Bryan

    1993-01-01

    The theoretical basis for solid-loaded or densified liquid hydrogen propellants for advanced space applications is outlined. Metallized propellants make it possible to increase the safety of propulsion systems as well as the payloads of future vehicles. Nanogellant formulated liquid hydrogen gels and other fuel gels are characterized by excellent settling stability, low yield point, and a high shear thinning index which makes them attractive for propulsion applications.

  15. Outlook on marine propeller noise and cavitation modelling

    OpenAIRE

    Lidtke, Artur Konrad; Turnock, Stephen R.; Humphrey, Victor F.

    2014-01-01

    Two computational studies are presented in this paper. First, the Potsdam Propeller Test Case which is used to demonstrate the capabilities of mass transfer cavitation models, more precisely the model by Sauer and Schnerr, in tackling the problem of marine propeller cavitation. It is shown that the extents of the predicted cavitation regions agree well with the experiment but suffer from the fact that the tip vortices and the associated low pressure regions are under resolved when URANS is ut...

  16. Use of acoustic analogy for marine propeller noise characterisation

    OpenAIRE

    Lidtke, Artur Konrad; Turnock, Stephen; Humphrey, Victor

    2015-01-01

    Being able to predict shipborne noise is of significant importance to international maritime community. Porous Ffowcs-Williams Hawkings acoustic analogy is used with cavitation model by Sauer & Schnerr in order to predict the noise signature of the Potsdam Propeller operating in open water. The radiation pattern is shown to be predominantly affected by a dipole source, in addition to less prominent sources at the propeller plane and in the wake. It is shown that the predicted sound pressu...

  17. A fractional calculus perspective of distributed propeller design

    Science.gov (United States)

    Tenreiro Machado, J.; Galhano, Alexandra M.

    2018-02-01

    A new generation of aircraft with distributed propellers leads to operational performances superior to those exhibited by standard designs. Computational simulations and experimental tests show a reduction of fuel consumption and noise. This paper proposes an analogy between aerodynamics and electrical circuits. The model reveals properties similar to those of fractional-order systems and gives a deeper insight into the dynamics of multi-propeller coupling.

  18. PIV-based load determination in aircraft propellers

    OpenAIRE

    Ragni, D.

    2012-01-01

    The thesis describes the application of particle image velocimetry (PIV) to study the aerodynamic loads of airfoils and aircraft propellers. The experimental work focuses on the development of a measurement procedure to infer the pressure of the flow field from the velocity distribution obtained by PIV velocimetry. The technique offers important advantages in aircraft propellers, since the loads can be locally inspected without the need to install pressure sensors and momentum balances in rot...

  19. 75 FR 67613 - Airworthiness Directives; McCauley Propeller Systems Five-Blade Propeller Assemblies

    Science.gov (United States)

    2010-11-03

    ... propeller hubs from service before they exceed 6,000 hours time-since-new (TSN). This AD was prompted by a..., C5JFR36C1102/L114GCA-0, B5JFR36C1103/114HCA-0, or C5JFR36C1104/L114HCA-0, if the hub exceeds 6,000 hours TSN on.../L114GCA-0, B5JFR36C1103/114HCA-0, or C5JFR36C1104/L114HCA-0, if the hub has fewer than 6,000 hours TSN...

  20. Modeling of the propellant filling-up of solid fuel engine; Modelisation du remplissage en propergol de moteur a propulsion solide

    Energy Technology Data Exchange (ETDEWEB)

    Breil, J.

    2001-07-01

    This work proposes a numerical modeling of the propellant filling up of a solid propulsion engine allowing to take into consideration several fluids. The resolution of the two-phase Navier-Stokes equations is performed with a method based on the augmented Lagrangian and corrected by a vectorial projection method. The interface transport is ensured by a volume interface follow-up on fixed mesh: the VOF CIAM method. The methodology is validated first on an experimental mockup representative of the complex geometries encountered in the missile industry. The results obtained with a mockup filled up with several fluids have permitted to validate the model for bigger loadings. The segregation of the particulates present in the propellant is taken into account by the model of Phillips. The model is then validated for the flow inside a channel charged with particulates. The advantage of numerical simulation are illustrated with the study of the filling-up of Ariane V rocket boosters during a situation of failure. (J.S.)

  1. The Impact of Missile Threats on the Reliability of U.S. Overseas Bases: A Framework for Analysis

    Science.gov (United States)

    2005-01-01

    including long-range bombers and cruise missiles. The current Air Force concept for achieving this type of capability is the Global Strike Task Force ( GSTF ... GSTF is centered on early insertion of B-2 bombers equipped with conventional bombs, supported by F-22 escorts and advanced ISR to identify enemy...conventional cruise missiles. Plans to re- christen these ballistic missile submarines as SSGNs are underway, and may complement the GSTF program well

  2. Effects of superhydrophobic surface on the propeller wake

    Science.gov (United States)

    Choi, Hongseok; Lee, Jungjin; Park, Hyungmin

    2017-11-01

    This study investigates the change in propeller wake when the superhydrophobic surface is applied on the propeller blade. The propeller rotates in a quiescent water tank, facing its bottom, with a rotational Reynolds number of 96000. To measure the three-dimensional flow fields, we use stereo PIV and a water prism is installed at the camera-side tank wall. Two cameras are tilted 30 degrees from the normal axis of the tank wall, satisfying schiempflug condition. Superhydrophobic surface is made by coating hydrophobic nanoparticles on the propeller blade. Measurements are done on two vertical planes (at the center of propeller hub and the blade tip), and are ensemble averaged being classified by blade phase of 0 and 90 degrees. Velocity fluctuation, turbulent kinetic energy, and vorticity are evaluated. With superhydrophobic surface, it is found that the turbulence level is significantly (20 - 30 %) reduced with a small penalty (less than 5%) in the streamwise momentum (i.e., thrust) generation. This is because the cone shaped propeller wake gets narrower and organized vortex structures are broken with the superhydrophobic surfaces. More detailed flow analysis will be given. Supported by NRF (NRF-2016R1C1B2012775, NRF-2016M2B2A9A02945068) programs of Korea government.

  3. Studies of pellet acceleration with arc discharge heated propellants

    International Nuclear Information System (INIS)

    Schuresko, D.D.

    1985-01-01

    An arc discharge has been utilized to heat gaseous propellants in a pneumatic pellet gun. A cylindrical arc chamber is interposed between the propellant inlet valve and the gun breech and fitted with a ceramic insert for generating swirl in the incoming gas stream. The arc is initiated after the propellant valve opens and the breech pressure starts to rise; a typical discharge lasts 300 microseconds with peak currents u to 2 kA at arc voltages ranging from 100 to 400 V. The system is instrumented with piezoelectric pressure transducers at the propellant valve outlet, gun breech, and gun muzzle. The gun has been operated with 4 mm diameter polyurethane foam pellets (density = 0.14 g/cm 3 ), a 40 cm-long barrel, and various gas propellants at pressures exceeding 70 bar. At I/sub arc/ = 1 kA, V/sub arc/ = 200 V, with helium propellant, the arc produces a 2 to 3 fold prompt increase in P/sub breech/ and a delayed increase in P/sub muzzle/; the pellets exit the gun from 0.5 to 1.0 ms earlier than with the gas alone at 40% higher speeds. Comparisons with the so-called ideal gun theory and with full one-dimensional hydrodynamic calculations of the pellet acceleration will be presented

  4. Numerical study of hub taper angle on podded propeller performance

    International Nuclear Information System (INIS)

    Islam, M.F.; Veitch, B.; Bose, N.; Liu, P.

    2005-01-01

    Presently, the majority of podded propulsion systems are of the pulling type, because this type provides better hydrodynamic efficiency than the pushing type. There are several possible explanations for the better overall performance of a puller type podded propulsor. One is related to the difference in hub shape. Puller and pusher propellers have opposite hub taper angles, hence different hub and blade root shape. These differences cause changes in the flow condition and possibly influence the overall performance. The current study focuses on the variation in performance of pusher and puller propellers with the same blade sections, but different hub taper angles. A hyperboloidal low order source doublet steady/unsteady time domain panel method code was modified and used to evaluate effects of hub taper angle on the open water propulsive performance of some fixed pitch screw propellers used in podded propulsion systems. The modified code was first validated against measurements of two model propellers in terms of average propulsive performance and good agreement was found. Major findings include significant effects of hub taper angle on propulsive performance of tapered hub propellers and noticeable effects of hub taper angle on sectional pressure distributions of tapered hub propeller blades. (author)

  5. Stereospecific Winding of Polycyclic Aromatic Hydrocarbons into Trinacria Propellers.

    Science.gov (United States)

    Mosca, Dario; Stopin, Antoine; Wouters, Johan; Demitri, Nicola; Bonifazi, Davide

    2017-11-02

    The stereospecific trimerization of enantiomerically pure binaphthols with hexakis(bromomethyl)benzene gives access in one step to enantiomerically pure molecular propellers, in which three binaphthyl rings are held together with dioxecine rings. X-ray diffraction analysis revealed that three out the six naphthyl moieties are folded in a (EF) 3 -type arrangement held by three intramolecular C-H⋅⋅⋅π interactions. This slips outward the three remaining naphthyl rings in a blade-like fashion, just like in three-folded propeller components. This peculiar conformation shows striking similarity to the mythological Sicilian symbol of Trinacria, from which the name "trinacria propeller" derives. The propeller conformation is also preserved in chlorinated solutions, as displayed by the presence of a peak at 4.7 ppm typical of an aromatic proton resonance engaged in a C-H⋅⋅⋅π interaction. The denaturation of the propeller-like conformation is obtained at high temperature, corresponding to activation energy for the ring inversion of ca. 18.2 kcal mol -1 . Notably, halide-functionalized molecular propellers exposing I-atoms at the leading and trailing edges could be prepared stereo- and regiospecifically by choosing the relevant iodo-bearing BINOL derivative. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. 4. Analysis of Three Dimensional Flow around Marine Propeller by Direct Formulation of Boundary Element Method

    OpenAIRE

    Zhi-Hao, LING; Yasuo, SASAKI; Michio, TAKAHASHI; Nippon Kaiji Kyokai; Nippon Kaiji Kyokai; Nippon Kaiji Kyokai

    1987-01-01

    In recent years, the fatigue fracture at the blade's root of propeller of motorcar carriers and refrigerated cargo carriers has become an important problem awaiting to be solved. Further the use of the highly skewed propeller for the reduction of ship vibration and noise leads to the strength problem of propeller. On the other hand, the demand for greater energy saving, lower propeller exciting forces and noise is growing more and more in the design of marine propeller. With such technical ba...

  7. Analysis of Three-Dimensional Flow around Marine Propeller by Direct Formulation of Boundary Element Method

    OpenAIRE

    Zhi-Hao, Ling; Yasuo, Sasaki; Michio, Takahashi; Research Institute; Research Institute; Research Institute

    1988-01-01

    In recent years, the fatigue fracture at the blade's root of propeller of motorcar carriers and refrigerated cargo carriers has become an important problem awaiting to be solved. Further the use of the highly skewed propeller for the reduction of ship vibration and noise leads to the strength problem of propeller. On the other hand, the demand for greater energy saving, lower propeller exciting forces and noise is growing more and more in the design of marine propeller. With such technical ba...

  8. Experimental studies on local damage of reinforced concrete structures by the impact of deformable missiles-Part 1

    International Nuclear Information System (INIS)

    Muto, K.; Tachikawa, H.; Sugano, T.; Tsubota, H.; Kobayshi, H.; Kasai, Y.; Koshika, N.; Tsujimoto, T.

    1989-01-01

    Structural damage induced by an accidental aircraft crash into a reinforced concrete structure includes local damage caused by the engine, the rigid portion of the aircraft, and the global elasto-plastic structural response caused by the entire aircraft. Local damage consists of spalling of concrete from the front face of the target together with missile penetration into the target, scabbing of concrete from the rear face of the target and perforation of the missile through the target. The engine is a soft missile that deforms during impact. An experimental research program has been planned and executed to establish a rational evaluation method of the local damage by the deformable engine missiles

  9. Regional Joint-Integrated Air and Missile Defense (RF-IAMD): An Operational Level Integrated Air and Missile Defense (IAMD) Command and Control (C2) Organization

    Science.gov (United States)

    2015-05-15

    Accessed April 26, 2015, http://www.state.gov/t/ avc /rls/2014/226073.html 24 Pacific Air Forces, PACAF establishes Pacific IAMD Center, Accessed April...U.S. Department of State. Gulf Cooperation Council and Ballistic Missile Defense. Accessed April 26, 2015. http://www.state.gov/t/ avc /rls/2014

  10. ANALISA PENGARUH ALIRAN FLUIDA YANG DITIMBULKAN OLEH GERAKAN PUTARAN PROPELLER PADA KAPAL IKAN TERHADAP TEKANAN PROPELLER DENGAN PENDEKATAN CFD

    Directory of Open Access Journals (Sweden)

    Samuel Samuel

    2012-04-01

    Full Text Available Dalam operasinya dilaut, suatu kapal harus memiliki kemampuan untuk mempertahankan kecepatan dinas (Vs seperti yang direncanakan. Hal ini mempunyai arti bahwa, kapal haruslah mempunyai rancangan sistem propulsi yang dapat mengatasi keseluruhan gaya-gaya hambat yang terjadi agar memenuhi standar kecepatan dinasnya. Penelitian untuk meningkatkan daya dorong propeller dari tahun ketahun terus dilakukan dengan meningkatakan efisiensi propeller. Tapi dari sisi lain usaha untuk meneliti dimana konsentrasi tegangan yang diakibatkan daya dorong propeller masih kurang dilakukan Untuk tugas akhir ini analisa yang dilakukan adalah untuk mengetahui distribusi tekanan pada propeller dan juga maximum stress yang terjadi pada propeller. Proses pembuatan model geometri dibantu dengan menggunakan software CAD dan analisanya dilakukan dengan mengunakan pendekatan CFD (Computational Fluid Dynamic sebagai sarana visualisasi.Analisa dilakukan dengan memvariasikan putaran propeller pada 100, 200, 300, 400, 500 rpm. Berdasarkan hasil perhitungan dan hasil running software CFD yang telah dilakukan didapatkan  hasil perbedaan tekanan dimana pada tiap putarannya semakin meningkat. Tekanan paling besar terjadi pada putaran 500 rpm yaiutu sebesar 28169,72 N. Dengan menggunakan software MSC NASTRAN didapatkan nilai maksimum strees sebesar 13,1 N/mm2 akan tetapi material ini masih dalam batas aman karena hasil perhitungan safety factor material bahan  didapat nilai 33,87.

  11. China and ballistic missile defense: 1955 to 2002 and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Brad, Roberts

    2004-07-01

    China's opposition to U.S. ballistic missile defense was forcefully articulated officially and unofficially between 1991 and 2001. Vociferous opposition gave way to near silence following U.S. ABM Treaty withdrawal, raising a question about precisely whether and how China will respond to future U.S. deployments in both the political and military-operational realms. To gauge likely future responses, it is useful to put the experience of the 1991-2001 period into historical context. China's attitudes toward BMD have passed through a series of distinct phases since the beginning of the nuclear era, as China has been concerned alternately with the problems of strategic defense by both the Soviet Union and United States (and others) around its periphery. Throughout this era it has also pursued its own strategic defense capabilities. There are important elements of continuity in China's attitudes concerns about the viability of its own force and about strategic stability. These suggest the likelihood of significant responses to U.S. BMD even in the absence of sharp rhetoric. (author)

  12. China and ballistic missile defense: 1955 to 2002 and beyond

    International Nuclear Information System (INIS)

    Brad, Roberts

    2004-01-01

    China's opposition to U.S. ballistic missile defense was forcefully articulated officially and unofficially between 1991 and 2001. Vociferous opposition gave way to near silence following U.S. ABM Treaty withdrawal, raising a question about precisely whether and how China will respond to future U.S. deployments in both the political and military-operational realms. To gauge likely future responses, it is useful to put the experience of the 1991-2001 period into historical context. China's attitudes toward BMD have passed through a series of distinct phases since the beginning of the nuclear era, as China has been concerned alternately with the problems of strategic defense by both the Soviet Union and United States (and others) around its periphery. Throughout this era it has also pursued its own strategic defense capabilities. There are important elements of continuity in China's attitudes concerns about the viability of its own force and about strategic stability. These suggest the likelihood of significant responses to U.S. BMD even in the absence of sharp rhetoric. (author)

  13. Propelling Exploration to the Moon and Beyond

    Science.gov (United States)

    Cook, Stephen A.

    2009-01-01

    As the Constellation Program enters its fourth year, the Ares Projects have made substantial progress toward sending human explorers beyond Earth orbit. The Ares I crew launch vehicle, which will take six astronauts or cargo to the International Space Station or four astronauts to rendezvous with Ares V for missions to the Moon, is the first human-rated vehicle NASA has developed in over 30 years. Since the Exploration Systems Architecture Study in 2005, the Ares Projects have completed a successful system requirements review, system definition review, and preliminary design review for the Ares I crew launch vehicle. The Ares I elements are well into development, beginning with the Shuttle-derived, five-segment solid rocket motor that will provide first-stage propulsion. The first stage team has poured its first production simulation article motor and will be pouring and firing the first five-segment development motor in 2009. Large-scale tooling has been installed and tested to produce propellant tanks for the liquid-fuel upper stage at Marshall Space Flight Center (MSFC) in Alabama. The initial upper stage units and main propulsion test article will be manufactured and tested at MSFC before transferring to Michoud Assembly Facility in Louisiana. The upper stage engine team has completed powerpack testing using Apollo J-2 heritage hardware and begun construction of a new altitude test stand at Stennis Space Center in Mississippi. The flight and integrated testing group has designed and built hardware for the Ares I-X test flight scheduled for 2009, as well as begun refurbishing existing infrastructure to support ground testing. Additionally, a base configuration has been selected for the Ares V cargo launch vehicle, which will send the Altair lunar lander and Orion to the Moon. Today, the Ares Projects are well on the way to building America s next generation of exploration-capable launch vehicles.

  14. Performance and slipstream characteristics of small-scale propellers at low Reynolds numbers

    Science.gov (United States)

    Deters, Robert W.

    The low Reynolds number effects of small-scale propellers were investigated. At the Reynolds numbers of interest (below 100,000), a decrease in lift and an increase in drag is common making it difficult to predict propeller performance characteristics. A propeller testing apparatus was built to test small scale propellers in static conditions and in an advancing flow. Twenty-seven off-the-shelf propellers, with diameters ranging from 2.25 in to 9 in, were tested in order to determine the general effects of low Reynolds numbers on small propellers. From these tests, increasing the Reynolds number for a propeller increases its efficiency by either increasing the thrust produced or decreasing the power. By doubling the Reynolds number of a propeller, it is not uncommon to increase the efficiency by more the 10%. Using off-the-shelf propellers limits the geometry available and finding propellers of the same geometry but of different scale is very difficult. To solve this problem, four propellers were design and built using a 3D printer. Two of the propellers were simple rectangular twisted blades of different chords. Another propeller was modeled after a full-scale propeller. The fourth propeller was created using inverse design to minimize power loss. Each propeller was built in a 5-in and 9-in diameter version in order to test a larger range of Reynolds numbers. A separate propeller blade and hub system was created to allow each propeller to be tested with different pitch angles and to test each propeller in a 2-, 3-, and 4-blade version. From the performance results of the 3D printed propellers, it was shown that propellers of different scale, but tested at the same Reynolds number, had about the same performance results. Finally, the slipstreams of different propellers were measured using a 7-hole probe. Propeller slipstreams can have a large effect on the aerodynamics of lifting surfaces downstream of the propeller. Small UAVs and MAVs flying in close proximity

  15. Characterization of Hall effect thruster propellant distributors with flame visualization

    Science.gov (United States)

    Langendorf, S.; Walker, M. L. R.

    2013-01-01

    A novel method for the characterization and qualification of Hall effect thruster propellant distributors is presented. A quantitative measurement of the azimuthal number density uniformity, a metric which impacts propellant utilization, is obtained from photographs of a premixed flame anchored on the exit plane of the propellant distributor. The technique is demonstrated for three propellant distributors using a propane-air mixture at reservoir pressure of 40 psi (gauge) (377 kPa) exhausting to atmosphere, with volumetric flow rates ranging from 15-145 cfh (7.2-68 l/min) with equivalence ratios from 1.2 to 2.1. The visualization is compared with in-vacuum pressure measurements 1 mm downstream of the distributor exit plane (chamber pressure held below 2.7 × 10-5 Torr-Xe at all flow rates). Both methods indicate a non-uniformity in line with the propellant inlet, supporting the validity of the technique of flow visualization with flame luminosity for propellant distributor characterization. The technique is applied to a propellant distributor with a manufacturing defect in a known location and is able to identify the defect and characterize its impact. The technique is also applied to a distributor with numerous small orifices at the exit plane and is able to resolve the resulting non-uniformity. Luminosity data are collected with a spatial resolution of 48.2-76.1 μm (pixel width). The azimuthal uniformity is characterized in the form of standard deviation of azimuthal luminosities, normalized by the mean azimuthal luminosity. The distributors investigated achieve standard deviations of 0.346 ± 0.0212, 0.108 ± 0.0178, and 0.708 ± 0.0230 mean-normalized luminosity units respectively, where a value of 0 corresponds to perfect uniformity and a value of 1 represents a standard deviation equivalent to the mean.

  16. An evaluation method for tornado missile strike probability with stochastic correction

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, Yuzuru; Murakami, Takahiro; Hirakuchi, Hiromaru; Sugimoto, Soichiro; Hattori, Yasuo [Nuclear Risk Research Center (External Natural Event Research Team), Central Research Institute of Electric Power Industry, Abiko (Japan)

    2017-03-15

    An efficient evaluation method for the probability of a tornado missile strike without using the Monte Carlo method is proposed in this paper. A major part of the proposed probability evaluation is based on numerical results computed using an in-house code, Tornado-borne missile analysis code, which enables us to evaluate the liftoff and flight behaviors of unconstrained objects on the ground driven by a tornado. Using the Tornado-borne missile analysis code, we can obtain a stochastic correlation between local wind speed and flight distance of each object, and this stochastic correlation is used to evaluate the conditional strike probability, QV(r), of a missile located at position r, where the local wind speed is V. In contrast, the annual exceedance probability of local wind speed, which can be computed using a tornado hazard analysis code, is used to derive the probability density function, p(V). Then, we finally obtain the annual probability of tornado missile strike on a structure with the convolutional integration of product of QV(r) and p(V) over V. The evaluation method is applied to a simple problem to qualitatively confirm the validity, and to quantitatively verify the results for two extreme cases in which an object is located just in the vicinity of or far away from the structure.

  17. An evaluation method for tornado missile strike probability with stochastic correction

    International Nuclear Information System (INIS)

    Eguchi, Yuzuru; Murakami, Takahiro; Hirakuchi, Hiromaru; Sugimoto, Soichiro; Hattori, Yasuo

    2017-01-01

    An efficient evaluation method for the probability of a tornado missile strike without using the Monte Carlo method is proposed in this paper. A major part of the proposed probability evaluation is based on numerical results computed using an in-house code, Tornado-borne missile analysis code, which enables us to evaluate the liftoff and flight behaviors of unconstrained objects on the ground driven by a tornado. Using the Tornado-borne missile analysis code, we can obtain a stochastic correlation between local wind speed and flight distance of each object, and this stochastic correlation is used to evaluate the conditional strike probability, QV(r), of a missile located at position r, where the local wind speed is V. In contrast, the annual exceedance probability of local wind speed, which can be computed using a tornado hazard analysis code, is used to derive the probability density function, p(V). Then, we finally obtain the annual probability of tornado missile strike on a structure with the convolutional integration of product of QV(r) and p(V) over V. The evaluation method is applied to a simple problem to qualitatively confirm the validity, and to quantitatively verify the results for two extreme cases in which an object is located just in the vicinity of or far away from the structure

  18. Comparison of different lateral acceleration autopilots for a surface-to-surface missile

    Directory of Open Access Journals (Sweden)

    Danilo V. Ćuk

    2011-07-01

    Full Text Available This paper presents a comparison of three lateral acceleration autopilots for a surface-to-surface missile: three-loop conventional acceleration autopilot, and gamma-dot and three-loop acceleration autopilot based upon the inverse-dynamic control. The surface-to-surface missile motion is described by nonlinear differential equations whose parameters change rapidly over a very wide range due to variable velocity and altitude. The requirement for the accurate controlling of the missile in such an environment represents a challenge for the autopilot designer. The brief review of the calculation of the autopilot gains is given using the concept of the 'point' stability for the linear time-varying system with 'frozen' dynamic coefficients. The method of the inverse-dynamic control is presented in the next section for two types of the autopilots: gamma-dot and acceleration autopilot. Both of them require the design of the estimators for the variables used as inputs to the control law. Finally, six-degree-of-freedom simulation results of the missile response to the demanded command on the typical ballistic trajectory are presented. The comparison of three autopilots considers the steady state errors and the sensitivity of the response to the highly variable environment. It was shown that the inverse-dynamic control can be very effective in the controlling of the surface-to-surface missile.

  19. Unsteady Aerodynamic Investigation of the Propeller-Wing Interaction for a Rocket Launched Unmanned Air Vehicle

    Directory of Open Access Journals (Sweden)

    G. Q. Zhang

    2013-01-01

    Full Text Available The aerodynamic characteristics of propeller-wing interaction for the rocket launched UAV have been investigated numerically by means of sliding mesh technology. The corresponding forces and moments have been collected for axial wing placements ranging from 0.056 to 0.5D and varied rotating speeds. The slipstream generated by the rotating propeller has little effects on the lift characteristics of the whole UAV. The drag can be seen to remain unchanged as the wing's location moves progressively closer to the propeller until 0.056D away from the propeller, where a nearly 20% increase occurred sharply. The propeller position has a negligible effect on the overall thrust and torque of the propeller. The efficiency affected by the installation angle of the propeller blade has also been analyzed. Based on the pressure cloud and streamlines, the vortices generated by propeller, propeller-wing interaction, and wing tip have also been captured and analyzed.

  20. Numerical simulation of unsteady propeller/rudder interaction

    Directory of Open Access Journals (Sweden)

    Lei He

    2017-11-01

    Full Text Available A numerical approach based on a potential flow method is developed to simulate the unsteady interaction between propeller and rudder. In this approach, a panel method is used to solve the flow around the rudder and a vortex lattice method is used to solve the flow around the propeller, respectively. An iterative procedure is adopted to solve the interaction between propeller and rudder. The effects of one component on the other are evaluated by using induced velocities due to the other component at every time step. A fully unsteady wake alignment algorithm is implemented into the vortex lattice method to simulate the unsteady propeller flow. The Rosenhead-Moore core model is employed during the wake alignment procedure to avoid the singularities and instability. The Lamb-Oseen vortex model is adopted in the present method to decay the vortex strength around the rudder and to eliminate unrealistically high induced velocity. The present methods are applied to predict the performance of a cavitating horn-type rudder in the presence of a 6-bladed propeller. The predicted cavity patterns compare well with those observed from the experiments.

  1. Rheokinetic Analysis of Hydroxy Terminated Polybutadiene Based Solid Propellant Slurry

    Directory of Open Access Journals (Sweden)

    Abhay K Mahanta

    2010-01-01

    Full Text Available The cure kinetics of propellant slurry based on hydroxy-terminated polybutadiene (HTPB and toluene diisocyanate (TDI polyurethane reaction has been studied by viscosity build up method. The viscosity (ɳ–time (t plots conform to the exponential function ɳ = aebt, where a & b are empirical constants. The rate constants (k for viscosity build up at various shear rate (rpm, evaluated from the slope of dɳ/dt versus ɳ plots at different temperatures, were found to vary from 0.0032 to 0.0052 min-1. It was observed that the increasing shear rate did not have significant effect on the reaction rate constants for viscosity build up of the propellant slurry. The activation energy (Eɳ, calculated from the Arrhenius plots, was found to be 13.17±1.78 kJ mole-1, whereas the activation enthalpy (∆Hɳ* and entropy (∆Sɳ* of the propellant slurry, calculated from Eyring relationship, were found to be 10.48±1.78 kJ mole-1 and –258.51± 5.38 J mole-1K-1, respectively. The reaction quenching temperature of the propellant slurry was found to be -9 ° C, based upon the experimental data. This opens up an avenue for a “freeze-and-store”, then “warm-up and cast”, mode of manufacturing of very large solid rocket propellant grains.

  2. Propellant-Flow-Actuated Rocket Engine Igniter

    Science.gov (United States)

    Wollen, Mark

    2013-01-01

    A rocket engine igniter has been created that uses a pneumatically driven hammer that, by specialized geometry, is induced into an oscillatory state that can be used to either repeatedly impact a piezoelectric crystal with sufficient force to generate a spark capable of initiating combustion, or can be used with any other system capable of generating a spark from direct oscillatory motion. This innovation uses the energy of flowing gaseous propellant, which by means of pressure differentials and kinetic motion, causes a hammer object to oscillate. The concept works by mass flows being induced through orifices on both sides of a cylindrical tube with one or more vent paths. As the mass flow enters the chamber, the pressure differential is caused because the hammer object is supplied with flow on one side and the other side is opened with access to the vent path. The object then crosses the vent opening and begins to slow because the pressure differential across the ball reverses due to the geometry in the tube. Eventually, the object stops because of the increasing pressure differential on the object until all of the kinetic energy has been transferred to the gas via compression. This is the point where the object reverses direction because of the pressure differential. This behavior excites a piezoelectric crystal via direct impact from the hammer object. The hammer strikes a piezoelectric crystal, then reverses direction, and the resultant high voltage created from the crystal is transferred via an electrode to a spark gap in the ignition zone, thereby providing a spark to ignite the engine. Magnets, or other retention methods, might be employed to favorably position the hammer object prior to start, but are not necessary to maintain the oscillatory behavior. Various manifestations of the igniter have been developed and tested to improve device efficiency, and some improved designs are capable of operation at gas flow rates of a fraction of a gram per second (0

  3. 33 CFR 334.210 - Chesapeake Bay, in vicinity of Tangier Island; naval guided missiles test operations area.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Chesapeake Bay, in vicinity of Tangier Island; naval guided missiles test operations area. 334.210 Section 334.210 Navigation and... RESTRICTED AREA REGULATIONS § 334.210 Chesapeake Bay, in vicinity of Tangier Island; naval guided missiles...

  4. 78 FR 31614 - Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles

    Science.gov (United States)

    2013-05-24

    ...-Basis Hurricane and Hurricane Missiles AGENCY: Nuclear Regulatory Commission. ACTION: Interim staff... regarding the application of Regulatory Guide (RG) 1.221, ``Design-Basis Hurricane and Hurricane Missiles... NRC-2012-0247 when contacting the NRC about the availability of information regarding this document...

  5. Flyer impact experiment to study vulnerability and reactivity of gun propellant formulations

    International Nuclear Information System (INIS)

    Bouma, R H B; Boluijt, A G; Verbeek, H J

    2009-01-01

    A flyer impact experiment to study the vulnerability of propellant formulations is designed. The shock wave conditions of the impacting flyer are related to the energy transfer from a single detonating propellant grain as found by numerical simulation. A propellant will react due to the imposed shock from the impacting flyer. The reactivity of the propellant formulation is quantified by the volume of the dent created in an aluminium witness block. This flyer impact experiment simulates the propellant grain-to-grain sympathetic reaction in a shaped charge attack on a gun propellant bed

  6. Flyer impact experiment to study vulnerability and reactivity of gun propellant formulations

    Science.gov (United States)

    Bouma, R. H. B.; Boluijt, A. G.; Verbeek, H. J.

    2009-09-01

    A flyer impact experiment to study the vulnerability of propellant formulations is designed. The shock wave conditions of the impacting flyer are related to the energy transfer from a single detonating propellant grain as found by numerical simulation. A propellant will react due to the imposed shock from the impacting flyer. The reactivity of the propellant formulation is quantified by the volume of the dent created in an aluminium witness block. This flyer impact experiment simulates the propellant grain-to-grain sympathetic reaction in a shaped charge attack on a gun propellant bed.

  7. Measurement of noise and its correlation to performance and geometry of small aircraft propellers

    Directory of Open Access Journals (Sweden)

    Štorch Vít

    2016-01-01

    Full Text Available A set of small model and UAV propellers is measured both in terms of aerodynamic performance and acoustic noise under static conditions. Apart from obvious correlation of noise to tip speed and propeller diameter the influence of blade pitch, blade pitch distribution, efficiency and shape of the blade is sought. Using the measured performance data a computational model for calculation of aerodynamic noise of propellers will be validated. The range of selected propellers include both propellers designed for nearly static conditions and propellers that are running at highly offdesign conditions, which allows to investigate i.e. the effect of blade stall on both noise level and performance results.

  8. Measurement of noise and its correlation to performance and geometry of small aircraft propellers

    Science.gov (United States)

    Štorch, Vít; Nožička, Jiří; Brada, Martin; Gemperle, Jiří; Suchý, Jakub

    2016-03-01

    A set of small model and UAV propellers is measured both in terms of aerodynamic performance and acoustic noise under static conditions. Apart from obvious correlation of noise to tip speed and propeller diameter the influence of blade pitch, blade pitch distribution, efficiency and shape of the blade is sought. Using the measured performance data a computational model for calculation of aerodynamic noise of propellers will be validated. The range of selected propellers include both propellers designed for nearly static conditions and propellers that are running at highly offdesign conditions, which allows to investigate i.e. the effect of blade stall on both noise level and performance results.

  9. Guidance Law and Neural Control for Hypersonic Missile to Track Targets

    Directory of Open Access Journals (Sweden)

    Wenxing Fu

    2016-01-01

    Full Text Available Hypersonic technology plays an important role in prompt global strike. Because the flight dynamics of a hypersonic vehicle is nonlinear, uncertain, and highly coupled, the controller design is challenging, especially to design its guidance and control law during the attack of a maneuvering target. In this paper, the sliding mode control (SMC method is used to develop the guidance law from which the desired flight path angle is derived. With the desired information as control command, the adaptive neural control in discrete time is investigated ingeniously for the longitudinal dynamics of the hypersonic missile. The proposed guidance and control laws are validated by simulation of a hypersonic missile against a maneuvering target. It is demonstrated that the scheme has good robustness and high accuracy to attack a maneuvering target in the presence of external disturbance and missile model uncertainty.

  10. Protection against internally generated missiles and their secondary effects in nuclear power plants

    International Nuclear Information System (INIS)

    1980-01-01

    This safety guide forms part of the IAEA's programme, referred to as the NUSS programme (Nuclear Safety Standards). It is not so much intended as a handbook for designs as an aid in the assessment of a reactor design. The paper contains the general philosophy and general design requirements for protection against internally generated missiles and their primary and secondary effects. The various types of missile sources which should be considered are discussed, and an attempt is made to summarize key considerations where practice is sufficiently consistent. Secondary effects and an example of a simple procedure for making a comprehensive assessment of the protection against such effects are discussed as soon as a number of techniques which can be used to provide missile protection

  11. Joint High Speed Sealift (JHSS) Baseline Shaft & Strut (BSS) Model 5653-3: Series 2, Propeller Disk LDV Wake Survey; and Series 3, Stock Propeller Powering and Stern Flap Evaluation Experiments

    National Research Council Canada - National Science Library

    Cusanelli, Dominic S; Chesnakas, Christopher J

    2007-01-01

    ...) and Stock Propeller Powering and Stern Flap Evaluation tests (Series 3. In order to assist in the design of a propeller for the BSS hull, the nominal wakes in the inboard and outboard starboard propeller planes were measured using LDV...

  12. PENGARUH CHILLER PENDINGIN PADA KEKERASAN PRODUK COR PROPELER ALUMUNIUM

    Directory of Open Access Journals (Sweden)

    Hera Setiawan

    2014-11-01

    Full Text Available ABSTRAK Penelitian ini merupakan pengembangkan proses pembekuan searah (unidirectional solidifications sehingga dihasilkan struktur columnar dendrite pada pengecoran alumunium propeler kapal nelayan untuk meningkatkan sifat mekanis material. Pengecoran dilakukan dengan pasir cetak (sand casting dan proses peleburan logam dilakukan pada dapur crusible dengan bahan bakar minyak. Teknik pengecoran dilakukan dengan pendinginan logam cor dengan chiller pendingin yang dialiri air dengan dorongan pompa. Pengujian spectrometer digunakan untuk mengetahui komposisi kimia material alumunium. Pengujian kekerasan digunakan metode Rockwell dengan indentor bola baja diameter 1/16 inchi dengan beban mayor 100 kg (HRB. Hasil penelitian ini menunjukkan bahwa teknik pembekuan searah dengan chiller pendingin dapat meningkatkan kekerasan material alumunium propeler sebesar 3,99% dari 60,5 HRB menjadi 62,9 HRB. Kata kunci: alumunium, propeler, chiller, kekerasan, pembekuan searah.

  13. Wind tunnel tests of stratospheric airship counter rotating propellers

    Directory of Open Access Journals (Sweden)

    Yaxi Chen

    2015-01-01

    Full Text Available Aerodynamic performance of the high-altitude propeller, especially the counter rotation effects, is experimentally studied. Influences of different configurations on a stratospheric airship, included 2-blade counter-rotating propeller (CRP, dual 2-blade single rotation propellers (SRPs and 4-blade SRP, are also indicated. This research indicates that the effect of counter rotation can greatly improve the efficiency. It shows that the CRP configuration results in a higher efficiency than the dual 2-blade SRPs configuration or 4-blade SRP configuration under the same advance ratio, and the CRP configuration also gains the highest efficiency whether under the situation of providing the same trust or absorbing the same power. It concludes that, for a stratospheric airship, the CRP configuration is better than the multiple SRPs configuration or a multi-blade SRP one.

  14. Rocket Solid Propellant Alternative Based on Ammonium Dinitramide

    Directory of Open Access Journals (Sweden)

    Grigore CICAN

    2017-03-01

    Full Text Available Due to the continuous run for a green environment the current article proposes a new type of solid propellant based on the fairly new synthesized oxidizer, ammonium dinitramide (ADN. Apart of having a higher specific impulse than the worldwide renowned oxidizer, ammonium perchlorate, ADN has the advantage, of leaving behind only nitrogen, oxygen and water after decomposing at high temperatures and therefore totally avoiding the formation of hydrogen chloride fumes. Based on the oxidizer to fuel ratios of the current formulations of the major rocket solid booster (e.g. Space Shuttle’s SRB, Ariane 5’s SRB which comprises mass variations of ammonium perchlorate oxidizer (70-75%, atomized aluminum powder (10-18% and polybutadiene binder (12-20% a new solid propellant was formulated. As previously stated, the new propellant formula and its variations use ADN as oxidizer and erythritol tetranitrate as fuel, keeping the same polybutadiene as binder.

  15. Key considerations in infrared simulations of the missile-aircraft engagement

    CSIR Research Space (South Africa)

    Willers, MS

    2012-09-01

    Full Text Available of these details are investigated in Section 6. The tactical missile system used against aircraft includes several subsystems: airframe, flight control, fuze, propulsion, telemetry, data link, warhead and seeker.4 The seeker of an imaging IR missile provides... steering commands to the flight control system to intercept the target aircraft. The seeker comprises (1) the dome to protect the seeker from aerodynamic forces and the weather; (2) an optical system to focus the incident scene flux onto the detector; (3) a...

  16. Safety catching device for pipe lines in missile shielding cylinders of nuclear power plants

    International Nuclear Information System (INIS)

    Hering, S.; Doll, B.

    1975-01-01

    The safety catching device for pipes in the missile shielding cylinders consists of a flexible steel cable surrounding the pipe in a distance in U-shape. The arrester cable - which works as a spring and is freely movable in all directions - is attached to the cylinder wall. For this, the ends of the cable are primarily fastened to anchor boxes which are then inserted in a stay tube with the same axis as the cable ends. The anchor boxes are fastened to the outer wall of the missile shielding cylinder by anchor bolts and holding plates. (DG/AK) [de

  17. Integrated CLOS and PN Guidance for Increased Effectiveness of Surface to Air Missiles

    Directory of Open Access Journals (Sweden)

    Binte Fatima Tuz ZAHRA

    2017-06-01

    Full Text Available In this paper, a novel approach has been presented to integrate command to line-of-sight (CLOS guidance and proportional navigation (PN guidance in order to reduce miss distance and to increase the effectiveness of surface to air missiles. Initially a comparison of command to line-of-sight guidance and proportional navigation has been presented. Miss distance, variation of angle-of-attack, normal and lateral accelerations and error of missile flight path from direct line-of-sight have been used as noteworthy criteria for comparison of the two guidance laws. Following this comparison a new approach has been proposed for determining the most suitable guidance gains in order to minimize miss distance and improve accuracy of the missile in delivering the warhead, while using CLOS guidance. This proposed technique is based on constrained nonlinear minimization to optimize the guidance gains. CLOS guidance has a further limitation of significant increase in normal and lateral acceleration demands during the terminal phase of missile flight. Furthermore, at large elevation angles, the required angle-of-attack during the terminal phase increases beyond design specifications. Subsequently, a missile with optical sensors only and following just the CLOS guidance has less likelihood to hit high speed targets beyond 45º in elevation plane. A novel approach has thus been proposed to overcome such limitations of CLOS-only guidance for surface to air missiles. In this approach, an integrated guidance algorithm has been proposed whereby the initial guidance law during rocket motor burnout phase remains CLOS, whereas immediately after this phase, the guidance law is automatically switched to PN guidance. This integrated approach has not only resulted in slight increase in range of the missile but also has significantly improved its likelihood to hit targets beyond 30 degrees in elevation plane, thus successfully overcoming various limitations of CLOS

  18. A Systems Approach to Finding Cost-Effective Alternatives to European Ballistic Missile Defense

    Science.gov (United States)

    2013-09-01

    has holes in its ability to cover the entire region as required. What are the existing approaches to ballistic missile defense in Europe? 4. What Are...however, this report focuses on ballistic missiles which use stellar or inertial guidance systems which are not subject to electromagnetic...location as the Baseline system (35.6° N, 32.5° E) while the other was placed north of Turkey in the Black Sea (41.5° N, 38.1° E). Each Aegis ship was

  19. Reliability Evaluation for the Surface to Air Missile Weapon Based on Cloud Model

    Directory of Open Access Journals (Sweden)

    Deng Jianjun

    2015-01-01

    Full Text Available The fuzziness and randomness is integrated by using digital characteristics, such as Expected value, Entropy and Hyper entropy. The cloud model adapted to reliability evaluation is put forward based on the concept of the surface to air missile weapon. The cloud scale of the qualitative evaluation is constructed, and the quantitative variable and the qualitative variable in the system reliability evaluation are corresponded. The practical calculation result shows that it is more effective to analyze the reliability of the surface to air missile weapon by this way. The practical calculation result also reflects the model expressed by cloud theory is more consistent with the human thinking style of uncertainty.

  20. Local damage to reinforced concrete structures caused by impact of aircraft engine missiles. Pt. 2

    International Nuclear Information System (INIS)

    Sugano, T.; Tsubota, H.; Kasai, Y.; Koshika, N.; Itoh, C.; Shirai, K.; Von Riesemann, W.A.; Bickel, D.C.; Parks, M.B.

    1993-01-01

    Three sets of impact tests, small-, intermediate-, and full-scale tests, have been executed to determine local damage to reinforced concrete structures caused by the impact of aircraft engine missiles. The results of the test program showed that (1) the use of the similarity law is appropriate, (2) suitable empirical formulas exist for predicting the local damage caused by rigid missiles, (3) reduction factors may be used for evaluating the reduction in local damage due to the deformability of the engines, (4) the reinforcement ratio has no effect on local damage, and (5) the test results could be adequately predicted using nonlinear response analysis. (orig.)

  1. Reversible self-propelled Leidenfrost droplets on ratchet surfaces

    Science.gov (United States)

    Jia, Zhi-hai; Chen, Meng-yao; Zhu, Hai-tao

    2017-02-01

    We investigate the self-propelled motion of the Leidenfrost droplets on hot surfaces with ratchet like topology. It is found that on hot ratchet surfaces with the certain geometry parameters, the droplets move in the direction towards the steep side of the teeth; as the surface temperature rises, droplets are observed to self propel to the right-angle side direction. Furthermore, there exists a temperature threshold to trigger the motion, at which the droplets do not move in either direction but stay at the stagnation state. A physical model is proposed to analyze the observation in this paper.

  2. Linear stability analysis in a solid-propellant rocket motor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.M.; Kang, K.T.; Yoon, J.K. [Agency for Defense Development, Taejon (Korea, Republic of)

    1995-10-01

    Combustion instability in solid-propellant rocket motors depends on the balance between acoustic energy gains and losses of the system. The objective of this paper is to demonstrate the capability of the program which predicts the standard longitudinal stability using acoustic modes based on linear stability analysis and T-burner test results of propellants. Commercial ANSYS 5.0A program can be used to calculate the acoustic characteristic of a rocket motor. The linear stability prediction was compared with the static firing test results of rocket motors. (author). 11 refs., 17 figs.

  3. Utilizing Solar Power Technologies for On-Orbit Propellant Production

    Science.gov (United States)

    Fikes, John C.; Howell, Joe T.; Henley, Mark W.

    2006-01-01

    The cost of access to space beyond low Earth orbit may be reduced if vehicles can refuel in orbit. The cost of access to low Earth orbit may also be reduced by launching oxygen and hydrogen propellants in the form of water. To achieve this reduction in costs of access to low Earth orbit and beyond, a propellant depot is considered that electrolyzes water in orbit, then condenses and stores cryogenic oxygen and hydrogen. Power requirements for such a depot require Solar Power Satellite technologies. A propellant depot utilizing solar power technologies is discussed in this paper. The depot will be deployed in a 400 km circular equatorial orbit. It receives tanks of water launched into a lower orbit from Earth, converts the water to liquid hydrogen and oxygen, and stores up to 500 metric tons of cryogenic propellants. This requires a power system that is comparable to a large Solar Power Satellite capable of several 100 kW of energy. Power is supplied by a pair of solar arrays mounted perpendicular to the orbital plane, which rotates once per orbit to track the Sun. The majority of the power is used to run the electrolysis system. Thermal control is maintained by body-mounted radiators; these also provide some shielding against orbital debris. The propellant stored in the depot can support transportation from low Earth orbit to geostationary Earth orbit, the Moon, LaGrange points, Mars, etc. Emphasis is placed on the Water-Ice to Cryogen propellant production facility. A very high power system is required for cracking (electrolyzing) the water and condensing and refrigerating the resulting oxygen and hydrogen. For a propellant production rate of 500 metric tons (1,100,000 pounds) per year, an average electrical power supply of 100 s of kW is required. To make the most efficient use of space solar power, electrolysis is performed only during the portion of the orbit that the Depot is in sunlight, so roughly twice this power level is needed for operations in sunlight

  4. The Peak of Rocket Production: The Designer of Ballistic Missiles V.F. Utkin (1923-2000)

    Science.gov (United States)

    Prisniakov, V.; Sitnikova, N.

    2002-01-01

    achievements V. Utkin and his pupils are crea- tion unique "mortar" launching of a heavy liquid rocket from shaft, the decision of a complex of prob- lems on maintenance ready for military action (continuous attendance) of liquid rockets in the filled condi-tion for many years, maintenance of stability of rockets at action on them of striking factors of nuclear explosion. With personal participation of academician IAA V. Utkin the following large scien- tific and technical results were received: (a) a military railway rocket complex with intercontinental solid-propellant rocket with starting weight of 105 tons and with 10 warheads; (b) a method of war manage-ment with the help of command rockets; (c) a method of definition of characteristics of means of overcoming of antimissile defense; (d) war intercontinental rockets with the increased accuracy, with the survivability, with the availability for action; (e) a commanding rocket. Design' decisions not ha- ving the analogues in world: (a) managements of flight solid-propellant an intercontinental ballistic missiles by means of a deviating head part; (b) managements solid-propellant rocket by method of inje- ction of gas in supercritical part of nozzle; (c) industrial introduction of the newest materials etc.V. Ut- kin is the active participant of works in the field of the international cooperation in research and deve- lopment of a space. In 1990 V. Utkin hold a high post of the director of ZSNIIMACH which is leading organization of a space-rocket industry of Russia. Under manual V. Utkin the Federal space program of Russia was developed. V. Utkin had huge authority as the chairman of Advice of the Main designers of the USSR. He was the co-chairman combined commission of experts V. Utkin - T. Stafford" on problems of maintenance joint manned flights. He was the chairman of Coordination advice under the program of researches on manned space complexes. V. Utkin dreamed to be the active participant of a new stage of the outer

  5. CFD Study on Effective Wake of Conventional and Tip-modified Propellers

    DEFF Research Database (Denmark)

    Shin, K. W.; Andersen, Poul

    2016-01-01

    -propulsion tests. The effects of different Reynolds number on higher effective wake fraction of tip-modified propellers are investigated by open-water simulations with varying the propeller speed and evaluations of effective wake extracted from self-propulsion simulations on tip-modified and conventional...... propellers. Open-water simulations show that the advance ratio at the design thrust is higher at a higher Reynolds number for both propellers and the advance ratio increase is smaller for the tip-modified propeller, which results in a higher effective wake fraction. Effective wake fractions are evaluated...... by integrating velocity fields at a section 40% of the propeller radius upstream from the propeller plane in self-propulsion simulations. The difference of effective wake fraction from integrating velocity fields between tip-modified and conventional propellers is less than 1%. Based on the open-water simulation...

  6. Flexible Screen Propellant Management Device for Near Term In-Space Demonstration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — While evaluating lunar ascent and descent stage propellant acquisition options in 2008 and 2009 for NASA GRC, IES conceived a novel, flexible screen propellant...

  7. Aerodynamic Design and Analysis of Propellers for Mini-Remotely Piloted Air Vehicles. Volume 2. Ducted Propellers

    Science.gov (United States)

    1978-05-01

    110 28t UT__n M t : X . (.4 u~..4 I 1: H 1 1I 1C . Al 0 -fUS~PD IM’ T! I I t-n!2n I 0 0 00N 0 n 0 r%~ 00 SON lca . LMNn L 0 M Nm 0nL 300 DUCTED...PROPELLERS The existing RPV’s incorporate shrouds to protect the propeller from damage and operating personnel from injury . The shrouds used are not

  8. Impact of Advanced Propeller Technology on Aircraft/Mission Characteristics of Several General Aviation Aircraft

    Science.gov (United States)

    Keiter, I. D.

    1982-01-01

    Studies of several General Aviation aircraft indicated that the application of advanced technologies to General Aviation propellers can reduce fuel consumption in future aircraft by a significant amount. Propeller blade weight reductions achieved through the use of composites, propeller efficiency and noise improvements achieved through the use of advanced concepts and improved propeller analytical design methods result in aircraft with lower operating cost, acquisition cost and gross weight.

  9. CALCULATION OF PROPELLER UAV BASED REYNOLDS NUMBER AND DEGREE OF REDUCTION

    Directory of Open Access Journals (Sweden)

    O. V. Gerasimov

    2014-01-01

    Full Text Available Presented methodology to the design and check calculations of an isolated propeller for mini-UAV based on the vortex theory of Zhukovsky. Results of the calculation of propeller mini-UAVs and their comparison with results matching propeller on a normal chart. Shows the effect of Re, as well as the degree of reduction in the aerodynamic and geometric characteristics of the propeller.

  10. Multishot diffusion-weighted SPLICE PROPELLER MRI of the abdomen.

    Science.gov (United States)

    Deng, Jie; Omary, Reed A; Larson, Andrew C

    2008-05-01

    Multishot FSE (fast spin echo)-based diffusion-weighted (DW)-PROPELLER (periodically rotated overlapping parallel lines with enhanced reconstruction) MRI offers the potential to reduce susceptibility artifacts associated with single-shot DW-EPI (echo-planar imaging) approaches. However, DW-PROPELLER in the abdomen is challenging due to the large field-of-view and respiratory motion during DW preparation. Incoherent signal phase due to motion will violate the Carr-Purcell-Meiboom-Gill (CPMG) conditions, leading to destructive interference between spin echo and stimulated echo signals and consequent signal cancellation. The SPLICE (split-echo acquisition of FSE signals) technique can mitigate non-CPMG artifacts in FSE-based sequences. For SPLICE, spin echo and stimulated echo are separated by using imbalanced readout gradients and extended acquisition window. Two signal families each with coherent phase properties are acquired at different intervals within the readout window. Separate reconstruction of these two signal families can avoid destructive phase interference. Phantom studies were performed to validate signal phase properties with different initial magnetization phases. This study evaluated the feasibility of combining SPLICE and PROPELLER for DW imaging of the abdomen. It is demonstrated that DW-SPLICE-PROPELLER can effectively mitigate non-CPMG artifacts and improve DW image quality and apparent diffusion coefficient (ADC) map homogeneity. (c) 2008 Wiley-Liss, Inc.

  11. Prediction of tip vortex cavitation for ship propellers

    NARCIS (Netherlands)

    Oprea, A.I.

    2013-01-01

    An open propeller is the conventional device providing thrust for ships. Due to its working principles, regions with low pressure are formed on its blades specifically at the leading edge and in the tip region. If this pressure is becoming lower than the vapor pressure, the cavitation phenomenon is

  12. Distal driving of molar by smart distal-propeller appliance

    Directory of Open Access Journals (Sweden)

    U H Vijayashree

    2018-01-01

    Full Text Available In recent years, maxillary molar distalization with noncompliance mechanics has been an increasingly popular method for the resolution of Class II malocclusion. This communication describes one particular molar distalizing appliance, the Smart distal-propeller appliance which is simple, inexpensive, easily fabricated that can be used for unilateral or bilateral molar distalization.

  13. 78 FR 43838 - Airworthiness Directives; Hamilton Sundstrand Corporation Propellers

    Science.gov (United States)

    2013-07-22

    ... strength holding the magnets to the motor housing. The test results did not substantiate the initial... Corporation auxiliary pumps and motors (auxiliary feathering pumps). The proposed action would have required... series propellers using certain Hamilton Sundstrand Corporation auxiliary pumps and motors (auxiliary...

  14. Deflection Measurements on Propeller 5503 in Ahead and Crashback

    Science.gov (United States)

    2016-10-01

    Reynolds Number RPM... Reynolds Number (Rn) 33.67*10-5 33.67*10-5 NSWCCD-80-TR-2016/029 2 Figure 1. Propeller 5503 in LCC test section. Description of Facility...Large Cavitation Channel (LCC) The William B. Morgan Large Cavitation Channel is located in Memphis, Tennessee. It is the world’s largest high-speed

  15. Propeller Flap for Complex Distal Leg Reconstruction: A Versatile ...

    African Journals Online (AJOL)

    Reverse sural artery fasciocutaneous flap has become a workhorse for the reconstruction of distal leg soft tissue defects. When its use is not feasible, perforator‑based propeller flap offers a better, easier, faster, and cheaper alternative to free flap. We present our experience with two men both aged 34 years who sustained ...

  16. 78 FR 4038 - Critical Parts for Airplane Propellers

    Science.gov (United States)

    2013-01-18

    ... because it updates the existing regulations for airplane propellers. I. Overview of Final Rule Part 35.... General Overview of Comments The FAA received three comments. One was from a repair station, Sensenich...,555.60 per respondent which will occur on the effective date of the rule. The total cost for the three...

  17. Wear and Friction in a Controllable Pitch Propeller

    NARCIS (Netherlands)

    Godjevac, M.

    2010-01-01

    The author is a naval architect and this book is his PhD thesis. In this research the author focuses on friction in a controllable pitch propeller (CPP), formation of wear in a CPP system, and their mutual dependence. Instead of going deeply only in tribology aspects, the author tries to get an

  18. Numerical analysis for cavitation flow of marine propeller

    Science.gov (United States)

    Tauviqirrahman, Mohammad; Muchammad, Ismail, Rifky; Jamari, J.

    2015-12-01

    Concerning the environmental issue and the increase of fuel price, optimizing the fuel consumption has been recently an important subject in all industries. In marine industries one of the ways to decrease the energy consumption was by reducing the presence of cavitation on marine propeller blades. This will give a higher propulsive efficiency. This paper provides an investigation into the influence of the cavitation on a hydrodynamic performance around the propeller based on numerical method. Hydrofoil representing the blade form of propeller was of particular of interest. Two types of cavitation model were investigated with respect to the accuracy of the result and the effectiveness of the method. The results include the hydrodynamic characteristics of cavitation phenomenon like lift/drag variation with respect to the cavity extent. It was found that a high accuracy and low computational time is achieved when the cavitation model of Zwart-Gerber-Belamri is used. The interesting outcome of this study is that the results can be used as a good evaluation tool for high marine propeller performance.

  19. PIV-based load determination in aircraft propellers

    NARCIS (Netherlands)

    Ragni, D.

    2012-01-01

    The thesis describes the application of particle image velocimetry (PIV) to study the aerodynamic loads of airfoils and aircraft propellers. The experimental work focuses on the development of a measurement procedure to infer the pressure of the flow field from the velocity distribution obtained by

  20. Dynamic Model for Thrust Generation of Marine Propellers

    DEFF Research Database (Denmark)

    Blanke, Mogens; Lindegaard, Karl-Petter; Fossen, Thor I.

    2000-01-01

    Mathematical models of propeller thrust and torque are traditionally based on steady state thrust and torque characteristics obtained in model basin or cavitation tunnel tests. Experimental results showed that these quasi steady state models do not accurately describe the transient phenomena in a...

  1. Intuitive control of self-propelled microjets with haptic feedback

    NARCIS (Netherlands)

    Pacchierotti, Claudio; Magdanz, V.; Medina-Sanchez, M.; Schmidt, O.G.; Prattichizzo, D.; Misra, Sarthak

    2015-01-01

    Self-propelled microrobots have recently shown promising results in several scenarios at the microscale, such as targeted drug delivery and micromanipulation of cells. However, none of the steering systems available in the literature enable humans to intuitively and effectively control these

  2. Transportation of Nanoscale Cargoes by Myosin Propelled Actin Filaments

    NARCIS (Netherlands)

    Persson, Malin; Gullberg, Maria; Tolf, Conny; Lindberg, A. Michael; Mansson, Alf; Kocer, Armagan

    2013-01-01

    Myosin II propelled actin filaments move ten times faster than kinesin driven microtubules and are thus attractive candidates as cargo-transporting shuttles in motor driven lab-on-a-chip devices. In addition, actomyosin-based transportation of nanoparticles is useful in various fundamental studies.

  3. Weight savings in aerospace vehicles through propellant scavenging

    Science.gov (United States)

    Schneider, Steven J.; Reed, Brian D.

    1988-05-01

    Vehicle payload benefits of scavenging hydrogen and oxygen propellants are addressed. The approach used is to select a vehicle and a mission and then select a scavenging system for detailed weight analysis. The Shuttle 2 vehicle on a Space Station rendezvous mission was chosen for study. The propellant scavenging system scavenges liquid hydrogen and liquid oxygen from the launch propulsion tankage during orbital maneuvers and stores them in well insulated liquid accumulators for use in a cryogenic auxiliary propulsion system. The fraction of auxiliary propulsion propellant which may be scavenged for propulsive purposes is estimated to be 45.1 percent. The auxiliary propulsion subsystem dry mass, including the proposed scavenging system, an additional 20 percent for secondary structure, an additional 5 percent for electrical service, a 10 percent weight growth margin, and 15.4 percent propellant reserves and residuals is estimated to be 6331 kg. This study shows that the fraction of the on-orbit vehicle mass required by the auxiliary propulsion system of this Shuttle 2 vehicle using this technology is estimated to be 12.0 percent compared to 19.9 percent for a vehicle with an earth-storable bipropellant system. This results in a vehicle with the capability of delivering an additional 7820 kg to the Space Station.

  4. Developments on HNF based high performance and green solid propellants

    NARCIS (Netherlands)

    Keizers, H.L.J.; Heijden, A.E.D.M. van der; Vliet, L.D. van; Welland-Veltmans, W.H.M.; Ciucci, A.

    2001-01-01

    Worldwide developments are ongoing to develop new and more energetic composite solid propellant formulations for space transportation and military applications. Since the 90's, the use of HNF as a new high performance oxidiser is being reinvestigated. Within European development programmes,

  5. Ultrasonic investigation of mechanical properties of double base rocket propellants

    NARCIS (Netherlands)

    Schroeff, J.A. van der; Boer, R.S. de

    1976-01-01

    For a series of double base rocket propellants and for poly-methylmethacrylate (PMMA) the longitudinal and transverse sound wave velocities are measured at a frequency of 0.351 MHz in t h e temperature range of −40°C to +60°C. The relations between these acoustic properties and mechanical properties

  6. CFD simulation on Kappel propeller with a hull wake field

    DEFF Research Database (Denmark)

    Shin, Keun Woo; Andersen, Poul; Møller Bering, Rasmus

    2013-01-01

    Marine propellers are designed not for the open-water operation, but for the operation behind a hull due to the inhomogeneous hull wake and thrust deduction. The adaptation for the hull wake is important for the propulsive efficiency and cavitation risk especially on single-screw ships. CFD simul...

  7. A Computational Tool for the Rapid Design and Prototyping of Propellers for Underwater Vehicles

    Science.gov (United States)

    2007-09-01

    printer. The third study reviews the complete process of the design and production of an AUV propeller. Thus, OpenPVL performs a variety of...Butterworth-Heinemann Ltd., 1994. [4] J. E. Kerwin. Hydrofoils and Propellers. Cambridge, MIT CopyTech, 2001. [5] H. Chung, “An Enhanced Propeller

  8. Experimental set-up and results of the process of co-extruded perforated gun propellants

    NARCIS (Netherlands)

    Zebregs, M.; Driel, C.A. van

    2009-01-01

    Enhancement of gun performance can be obtained by increasing the propellant loading density or the energy content of the propellant. Serious consequences of these options are difficulties with regard to ignition and to gun barrel wear. Application of co-layered propellants is a good alternative,

  9. Aerodynamic interaction effects of tip-mounted propellers installed on the horizontal tailplane

    NARCIS (Netherlands)

    van Arnhem, N.; Sinnige, T.; Stokkermans, T.C.A.; Eitelberg, G.; Veldhuis, L.L.M.

    2018-01-01

    This paper addresses the effects of propeller installation on the aerodynamic performance of a tailplane featuring tip-mounted propellers. A model of a low aspect ratio tailplane equipped with an elevator and a tip-mounted propeller was installed in a low-speed wind-tunnel. Measurements were

  10. Analysis of swirl recovery vanes for increased propulsive efficiency in tractor propeller aircraft

    NARCIS (Netherlands)

    Veldhuis, L.L.M.; Stokkermans, T.C.A.; Sinnige, T.; Eitelberg, G.

    2016-01-01

    In this paper we address a preliminary assessment of the performance effects of swirl recovery vanes (SRVs) in a installed and uninstalled tractor propeller arrangement. A numerical analysis was performed on a propeller and a propeller-wing configuration after the SRVs were optimized first in a

  11. On the use of lifting surface theory for moderately and heavily loaded ship propellers

    NARCIS (Netherlands)

    Van Gent, W.

    1977-01-01

    It is usual to subdivide the loading range of a ship propeller, in which it developes a thrust in the direction of advance, into light, moderate and heavy loadings. The division is based on the degree to which the flow is influenced by the action of the propeller. For the heavily loaded propeller no

  12. Supplier's Status for Critical Solid Propellants, Explosive, and Pyrotechnic Ingredients

    Science.gov (United States)

    Sims, B. L.; Painter, C. R.; Nauflett, G. W.; Cramer, R. J.; Mulder, E. J.

    2000-01-01

    In the early 1970's a program was initiated at the Naval Surface Warfare Center/Indian Head Division (NSWC/IHDIV) to address the well-known problems associated with availability and suppliers of critical ingredients. These critical ingredients are necessary for preparation of solid propellants and explosives manufactured by the Navy. The objective of the program was to identify primary and secondary (or back-up) vendor information for these critical ingredients, and to develop suitable alternative materials if an ingredient is unavailable. In 1992 NSWC/IHDIV funded Chemical Propulsion Information Agency (CPIA) under a Technical Area Task (TAT) to expedite the task of creating a database listing critical ingredients used to manufacture Navy propellant and explosives based on known formulation quantities. Under this task CPIA provided employees that were 100 percent dedicated to the task of obtaining critical ingredient suppliers information, selecting the software and designing the interface between the computer program and the database users. TAT objectives included creating the Explosive Ingredients Source Database (EISD) for Propellant, Explosive and Pyrotechnic (PEP) critical elements. The goal was to create a readily accessible database, to provide users a quick-view summary of critical ingredient supplier's information and create a centralized archive that CPIA would update and distribute. EISD funding ended in 1996. At that time, the database entries included 53 formulations and 108 critical used to manufacture Navy propellant and explosives. CPIA turned the database tasking back over to NSWC/IHDIV to maintain and distribute at their discretion. Due to significant interest in propellant/explosives critical ingredients suppliers' status, the Propellant Development and Characterization Subcommittee (PDCS) approached the JANNAF Executive committee (EC) for authorization to continue the critical ingredient database work. In 1999, JANNAF EC approved the PDCS panel

  13. The experimental characterization of particle dynamics in solid composite propellants

    Science.gov (United States)

    Moore, Joseph Elijah

    There are many parameters affecting the size and behavior of aluminum (Al) droplets on and near the burning surface of composite solid propellants. Multiple points of view are studied in the current investigation. The first is in the development of a Statistical Image Correlation Velocimeter (SICV) to analyze the velocity of exhaust particles and gases leaving the burning surface. Many of the analysis techniques used in the validation of the SICV software are then used to conduct further analysis including additional propellants. The next portion of the study looks at the effect of changing two of the formulation parameters in the propellant: the metal fuel content, and the polymer binder composition. Al/Nickel (Ni) clad particles are used as an additive to the conventional Al powder. Titanium-Boron (Ti-B) is also studied as another potential intermetallic additive. The nature of the binder is studied by examining the differences between propellants made with hydroxyl-terminated polybutadiene (HTPB) and dicyclopentadiene (DCPD) binders. Strand burns are conducted in the open atmosphere as well as in a windowed combustion vessel at pressures ranging from atmospheric to 700 psig. The burning surface linear regression rate, as well as size of the agglomerated metal fuel particles leaving the surface is measured using macro- and microscopic high speed imaging followed by video analysis using modeling tools and digital particle sizing algorithms. It is shown that the partial replacement of Al with Al/Ni clad particles decreases the average size of the agglomerated particles and increases the propellant burning rate. An optimum fraction likely exists. It is also shown that ball milling, or mechanical activation, of the Al/Ni particles leads to a further increase in the burning rate of the propellant. This is likely due to a decrease in the ignition temperature of the material after it has undergone mechanical activation. Analysis of binder-specific samples reveals that

  14. Optimal linear-quadratic missile guidance laws with penalty on command variability

    NARCIS (Netherlands)

    Weiss, M.; Shima, T.

    2015-01-01

    This paper proposes a new approach to the derivation of homing guidance laws for interceptor missiles that makes use of linear-quadratic optimal control in a different manner than the traditional approaches. Instead of looking only for the minimization of the miss distance and the integral square of

  15. Synthesis of robust feedback missile control strategies by using LMI techniques

    NARCIS (Netherlands)

    Trottemant, E.J.; Weiss, M.; Vermeulen, A.

    2009-01-01

    Robust programming, and more specific LMI techniques, have proven to be an extremely effective tool for the synthesis of missile guidance laws. The advantage of this model-based approach is that a large class of uncertainties can be taken into account and a robust guidance law is obtained. In this

  16. Space and Missile Defense Acquisitions: Periodic Assessment Needed to Correct Parts Quality Problems in Major Programs

    Science.gov (United States)

    2011-06-01

    the microphysics of magnetic reconnection, energetic particle acceleration, Page 47 GAO-11-404 Space and Missile Defense Acquisitions Appendix...dawnr@gao.gov, (202) 512-4400 U.S. Government Accountability Office, 441 G Street NW, Room 7125 Washington, DC 20548 To Report Fraud , Waste, and

  17. Conventional Prompt Global Strike and Long Range Ballistic Missiles: Background and Issues

    Science.gov (United States)

    2017-02-03

    ballistic missiles or caches of weapons of mass destruction (WMD) might allow the United States to destroy these weapons before an adversary could... coherent force structure. Hence, although the Air Force considered the NPR objective of integrating nuclear and conventional strike forces as a

  18. Analysis of the overall structural behavior due to the impact of deformable missiles

    International Nuclear Information System (INIS)

    Ettouney, M.M.; Radini, R.R.; Hsueh, P.S.

    1979-01-01

    This paper presents a method of analysis to evaluate the overall behavior of reinforced concrete structures subjected to impact from deformable missiles. This method approaches the analysis in a very simple and practical way. The analysis is based on approximating the structure-missile system by a two-degree of freedom model. The two degrees of freedom model represents the missile and the structure, respectively. The hysteretic damping effects are considered implicitly through the nonlinearity of the two springs. Empirical formulas are presented for the evaluation of the dynamic properties of the nonlinear spring representing the concrete structure. The impact is simulated by applying an impulse on the two degrees of freedom system, then by the method of step by step numerical time integration (central difference formula is used) the time histories of the displacements and velocities of both the missile and structure are obtained. The numerical procedure is simple enough to be programmed by a hand or desk calculator which makes the method handy for most engineers and analysis. (orig.)

  19. 78 FR 48503 - Proposed Revision to Missiles Generated by Extreme Winds

    Science.gov (United States)

    2013-08-08

    ..., ``Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants,'' and Interim Staff Guidance DC/COL- ISG-024, ``Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane..., contact the individual(s) listed in the FOR FURTHER INFORMATION CONTACT section of this document. Mail...

  20. Hyperheat: A thermal signature model for super-and hypersonic missiles

    NARCIS (Netherlands)

    Binsbergen, S.A. van; Zelderen, B. van; Veraar, R.G.; Bouquet, F.; Halswijk, W.H.C.; Schleijpen, H.M.A.

    2017-01-01

    In performance prediction of IR sensor systems for missile detection, apart from the sensor specifications, target signatures are essential variables. Very often, for velocities up to Mach 2-2.5, a simple model based on the aerodynamic heating of a perfect gas was used to calculate the temperatures

  1. 75 FR 58365 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Missile Launch...

    Science.gov (United States)

    2010-09-24

    ... thermal imaging cameras, made by FLIR Systems, Inc., would be located to overlook haul out sites up to 6... thermal imaging cameras for nighttime monitoring of pinnipeds before, during, and after each missile... test objectives, e.g., when testing the Airborne Laser system. The noise generated by Navy activities...

  2. Optical flow based guidance system design for semi-strapdown image homing guided missiles

    Directory of Open Access Journals (Sweden)

    Huang Lan

    2016-10-01

    Full Text Available This paper focuses mainly on semi-strapdown image homing guided (SSIHG system design based on optical flow for a six-degree-of-freedom (6-DOF axial-symmetric skid-to-turn missile. Three optical flow algorithms suitable for large displacements are introduced and compared. The influence of different displacements on computational accuracy of the three algorithms is analyzed statistically. The total optical flow of the SSIHG missile is obtained using the Scale Invariant Feature Transform (SIFT algorithm, which is the best among the three for large displacements. After removing the rotational optical flow caused by rotation of the gimbal and missile body from the total optical flow, the remaining translational optical flow is smoothed via Kalman filtering. The circular navigation guidance (CNG law with impact angle constraint is then obtained utilizing the smoothed translational optical flow and position of the target image. Simulations are carried out under both disturbed and undisturbed conditions, and results indicate the proposed guidance strategy for SSIHG missiles can result in a precise target hit with a desired impact angle without the need for the time-to-go parameter.

  3. Casualties from guided missile impact in warships from another point of view.

    Science.gov (United States)

    Ebeling, C F

    1991-06-01

    From Kamikaze to Exocet, by learning from history a tool for casualty calculation in modern naval warfare is available, indicating absolute casualty figures per SS guided missile hit. The figures 35 wounded and 30 killed per hit ought to be used.

  4. Deterrence of ballistic missile systems and their effects on today's air operations

    Science.gov (United States)

    Durak, Hasan

    2015-05-01

    Lately, the effect-based approach has gained importance in executing air operations. Thus, it makes more successful in obtaining the desired results by breaking the enemy's determination in a short time. Air force is the first option to be chosen in order to defuse the strategic targets. However, the problems such as the defense of targets and country, radars, range…etc. becoming serious problems. At this level ballistic missiles emerge as a strategic weapon. Ultimate emerging technologies guided by the INS and GPS can also be embedded with multiple warheads and reinforced with conventional explosive, ballistic missiles are weapons that can destroy targets with precision. They have the advantage of high speed, being easily launched from every platform and not being easily detected by air defense systems contrary to other air platforms. While these are the advantages, there are also disadvantages of the ballistic missiles. The high cost, unavailability of nuclear, biological and chemical weapons, and its limited effect while using conventional explosives against destroying the fortified targets are the disadvantages. The features mentioned above should be considered as limitation to the impact of the ballistic missiles. The aim is to impose the requests on enemies without starting a war with all components and to ensure better implementation of the operation functions during the air operations. In this study, effects of ballistic missiles in the future on air battle theatre will be discussed in the beginning, during the process and at the end phase of air operations within the scope of an effect-based approach.

  5. Structural vibration and acoustic radiation of coupled propeller-shafting and submarine hull system due to propeller forces

    Science.gov (United States)

    Qu, Yegao; Su, Jinpeng; Hua, Hongxing; Meng, Guang

    2017-08-01

    This paper investigates the structural and acoustic responses of a coupled propeller-shafting and submarine pressure hull system under different propeller force excitations. The entire system, which consists of a rigid propeller, a main shaft, two bearings and an orthogonally stiffened pressure hull, is submerged in a heavy fluid. The shaft is elastically connected to the pressure hull by a radial bearing and a thrust bearing. The theoretical model of the structural system is formulated based on a modified variational method, in which the propeller, the main shaft and the bearings are treated as a lumped mass, an elastic beam and spatially distributed spring-damper systems, respectively. The rings and stringers in the pressure hull are modeled as discrete structural elements. The acoustic field generated by the hull is calculated using a spectral Kirchhoff-Helmholtz integral formulation. A strongly coupled structure-acoustic interaction analysis is employed to achieve reasonable solutions for the coupled system. The displacement of the pressure hull and the sound pressure of the fluid are expanded in the form of a double mixed series using Fourier series and Chebyshev orthogonal polynomials, providing a flexible way for the present method to account for the individual contributions of circumferential wave modes to the vibration and acoustic responses of the pressure hull in an analytical manner. The contributions of different circumferential wave modes of the pressure hull to the structural and acoustic responses of the coupled system under axial, transversal and vertical propeller forces are investigated. Computed results are compared with those solutions obtained from the coupled finite element/boundary element method. Effects of the ring and the bearing stiffness on the acoustic responses of the coupled system are discussed.

  6. Missile signal processing common computer architecture for rapid technology upgrade

    Science.gov (United States)

    Rabinkin, Daniel V.; Rutledge, Edward; Monticciolo, Paul

    2004-10-01

    Interceptor missiles process IR images to locate an intended target and guide the interceptor towards it. Signal processing requirements have increased as the sensor bandwidth increases and interceptors operate against more sophisticated targets. A typical interceptor signal processing chain is comprised of two parts. Front-end video processing operates on all pixels of the image and performs such operations as non-uniformity correction (NUC), image stabilization, frame integration and detection. Back-end target processing, which tracks and classifies targets detected in the image, performs such algorithms as Kalman tracking, spectral feature extraction and target discrimination. In the past, video processing was implemented using ASIC components or FPGAs because computation requirements exceeded the throughput of general-purpose processors. Target processing was performed using hybrid architectures that included ASICs, DSPs and general-purpose processors. The resulting systems tended to be function-specific, and required custom software development. They were developed using non-integrated toolsets and test equipment was developed along with the processor platform. The lifespan of a system utilizing the signal processing platform often spans decades, while the specialized nature of processor hardware and software makes it difficult and costly to upgrade. As a result, the signal processing systems often run on outdated technology, algorithms are difficult to update, and system effectiveness is impaired by the inability to rapidly respond to new threats. A new design approach is made possible three developments; Moore's Law - driven improvement in computational throughput; a newly introduced vector computing capability in general purpose processors; and a modern set of open interface software standards. Today's multiprocessor commercial-off-the-shelf (COTS) platforms have sufficient throughput to support interceptor signal processing requirements. This application

  7. Wind field and trajectory models for tornado-propelled objects

    International Nuclear Information System (INIS)

    Anon

    1978-01-01

    This report contains the results of the second phase of a research program which has as its objective the development of a mathematical model to predict the trajectory of tornado-borne objects postulated to be in the vicinity of nuclear power plants. An improved tornado wind field model satisfies the no-slip ground boundary condition of fluid mechanics and includes the functional dependence of eddy viscosity with altitude. Sub-scale wind tunnel data are obtained for all of the missiles currently specified for nuclear plant design. Confirmatory full-scale data are obtained for a 12-inch pipe and automobile. The original six-degree-of-freedom trajectory model is modified to include the improved wind field and increased capability as to body shapes and inertial characteristics that can be handled. The improved trajectory model is used to calculate maximum credible speeds, which for all of the heavy missiles are considerably less than those currently specified for design. Equivalent coefficients for use in three-degree-of-freedom models are developed and the sensitivity of range and speed to various trajectory parameters for the 12-inch diameter pipe is examined

  8. Investigation on the wake evolution of contra-rotating propeller using RANS computation and SPIV measurement

    Directory of Open Access Journals (Sweden)

    Kwang-Jun Paik

    2015-05-01

    Full Text Available The wake characteristics of Contra-Rotating Propeller (CRP were investigated using numerical simulation and flow measurement. The numerical simulation was carried out with a commercial CFD code based on a Reynolds Averaged Navier-Stokes (RANS equations solver, and the flow measurement was performed with Stereoscopic Particle Image Velocimetry (SPIV system. The simulation results were validated through the comparison with the experiment results measured around the leading edge of rudder to investigate the effect of propeller operation under the conditions without propeller, with forward propeller alone, and with both forward and aft propellers. The evolution of CRP wake was analyzed through velocity and vorticity contours on three transverse planes and one longitudinal plane based on CFD results. The trajectories of propeller tip vortex core in the cases with and without aft propeller were also compared, and larger wake contraction with CRP was confirmed.

  9. Performance Analysis Rim Driven Propeller as a Propulsor using Open Water Test

    Directory of Open Access Journals (Sweden)

    Agoes Santoso

    2017-12-01

    Full Text Available The use of duct in propeller is one of the breakthrough in the development of the propeller. Ducting not only claimed to be increasing efficiency of the propeller, but also capable to protect the propeller from impact therefore propeller lifespan is longer. From that idea then RDP is created. RDP propeller blade are designed to be fix at their housing called Rim, in the other word, the driving force came from it’s rim. On current RDP blade used is non-conventional blade. This thesis will discuss about design analysis of Kaplan Propeller Kaplan Ka-70 that modified on it’s thickness distribution. On this thesis data that is varied is motor load. Simulation using Open Water Test. The result, highest value of KT and KQ occur on 30% motor load and highest efficiency is 18,338% achieved on 260 Rpm.

  10. Nonlinear Output Feedback Control of Underwater Vehicle Propellers using Advance Speed Feedback

    DEFF Research Database (Denmark)

    Fossen, T.I.; Blanke, M.

    1999-01-01

    More accurate propeller shaft speed controllers can be designed by using nonlinear control theory. In this paper, an output feedback controller reconstructing the advance speed (speed of water going into the propeller) from vehicle speed measurements is derived. For this purpose a three-state model...... of propeller shaft speed, forward (surge) speed of the vehicle and axial inlet flow of the propeller is applied. A nonlinear observer in combination with an output feedback integral controller are derived by applying Lyapunov stability theory and exponential stability is proven. The output feedback controller...... minimizes thruster losses due to variations in propeller axial inlet flow which is a major problem when applying conventional vehicle-propeller control systems. The proposed controller is simulated for an underwater vehicle equipped with a single propeller. From the simulations it can be concluded...

  11. High-Lift Propeller System Configuration Selection for NASA's SCEPTOR Distributed Electric Propulsion Flight Demonstrator

    Science.gov (United States)

    Patterson, Michael D.; Derlaga, Joseph M.; Borer, Nicholas K.

    2016-01-01

    Although the primary function of propellers is typically to produce thrust, aircraft equipped with distributed electric propulsion (DEP) may utilize propellers whose main purpose is to act as a form of high-lift device. These \\high-lift propellers" can be placed upstream of wing such that, when the higher-velocity ow in the propellers' slipstreams interacts with the wing, the lift is increased. This technique is a main design feature of a new NASA advanced design project called Scalable Convergent Electric Propulsion Technology Operations Research (SCEPTOR). The goal of the SCEPTOR project is design, build, and y a DEP aircraft to demonstrate that such an aircraft can be much more ecient than conventional designs. This paper provides details into the high-lift propeller system con guration selection for the SCEPTOR ight demonstrator. The methods used in the high-lift propeller system conceptual design and the tradeo s considered in selecting the number of propellers are discussed.

  12. Influence of transverse reinforcement on perforation resistance of reinforced concrete slabs under hard missile impact

    Energy Technology Data Exchange (ETDEWEB)

    Orbovic, Nebojsa, E-mail: nebojsa.orbovic@cnsc-ccsn.gc.ca; Sagals, Genadijs; Blahoianu, Andrei

    2015-12-15

    This paper describes the work conducted by the Canadian Nuclear Safety Commission (CNSC) related to the influence of transverse reinforcement on perforation capacity of reinforced concrete (RC) slabs under “hard” missile impact (impact with negligible missile deformations). The paper presents the results of three tests on reinforced concrete slabs conducted at VTT Technical Research Centre (Finland), along with the numerical simulations as well as a discussion of the current code provisions related to impactive loading. Transverse reinforcement is widely used for improving the shear and punching strength of concrete structures. However, the effect of this reinforcement on the perforation resistance under localized missile impact is still unclear. The goal of this paper is to fill the gap in the current literature related to this topic. Based on similar tests designed by the authors with missile velocity below perforation velocity, it was expected that transverse reinforcement would improve the perforation resistance. Three slabs were tested under almost identical conditions with the only difference being the transverse reinforcement. One slab was designed without transverse reinforcement, the second one with the transverse reinforcement in form of conventional stirrups with hooks and the third one with the transverse reinforcement in form of T-headed bars. Although the transverse reinforcement reduced the overall damage of the slabs (the rear face scabbing), the conclusion from the tests is that the transverse reinforcement does not have important influence on perforation capacity of concrete slabs under rigid missile impact. The slab with T-headed bars presented a slight improvement compared to the baseline specimen without transverse reinforcement. The slab with conventional stirrups presented slightly lower perforation capacity (higher residual missile velocity) than the slab without transverse reinforcement. In conclusion, the performed tests show slightly

  13. The Cuban Missile Crisis of 1962: A Case Study of the Tailored Use of Instruments of National Power

    National Research Council Canada - National Science Library

    Charney, Sean S

    2008-01-01

    President Kennedy and the EXCOM were able to achieve foreign policy success during the Cuban Missile Crisis because of their ability to tailor the pertinent IOPs and implement them to reach a desired...

  14. The Nuclear-Armed Tomahawk Cruise Missile: Its Potential Utility on United States and United Kingdom Attack Submarines

    National Research Council Canada - National Science Library

    Reunolds, Guy

    1998-01-01

    In July 1998, Britain published its Strategic Defense Review(SDR). The SDR outlined significant changes for Britain's nuclear weapons program and formalized the policy of sub-strategic deterrence using the Trident missile...

  15. The Evolution of Missile Defense Plan from Bush to Obama. Implications for the National Security of Romania

    Directory of Open Access Journals (Sweden)

    Ruxandra-Laura BOSILCA

    2012-06-01

    Full Text Available In 2011 Romania officially became part of the Obama administration’s missile defense system in Europe which has significantly changed the strategic military relations both in Europe and worldwide. The Bush approach has been revised and progress in several sections has been achieved, both strategically and technically. For Romania, the participation in the missile defence plan, ensures more solid security guarantees, especially in an unpredictable and risk-prone international environment where the U.S. reconsiders its presence in Europe under the pressure of the economic crisis and of a relative decline in power; it has also become a more visible actor – alongside Bulgaria – which were initially excluded by the Bush missile defence plan. This paper’s purpose is to review the main evolutions of the missile defense plan from the Bush to the Obama administration and to outline its implications on the national security of Romania.

  16. Asymmetric Lateral Jet Interaction Studies for a Supersonic Missile: CFD Prediction and Comparison to Force and Moment Measurements

    National Research Council Canada - National Science Library

    Srivastava, B

    1997-01-01

    Computational Fluid Dynamics (CFD) predictions are compared with the wind-tunnel tests for a missile consisting of ogive-nose cylindrical body, four wings and four in-lined tail panels at nominal supersonic Mach Nos...

  17. System Requirements Analysis and Technological Support for the Ballistic Missile Defense System (BMDS) - FY07 Progress Report

    National Research Council Canada - National Science Library

    Auguston, M; Drusinsky, D; Hutchins, R; Knorr, J. B; Michael, J. B; Otani, T; Pace, P. E; Sting, M; Tummala, M; Cook, T

    2007-01-01

    ... the communication requirements of the net-centric Ballistic Missile Defense warfare, and the use of architectural patterns and other software technologies to shape the emergent behavior of the BMDS taking...

  18. Cooperative Monitoring Center Occasional Paper/4: Missile Control in South Asia and the Role of Cooperative Monitoring Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kamal, N.; Sawhney, P.

    1998-10-01

    The succession of nuclear tests by India and Pakistan in May 1998 has changed the nature of their missile rivalry, which is only one of numerous manifestations of their relationship as hardened adversaries, deeply sensitive to each other's existing and evolving defense capabilities. The political context surrounding this costly rivalry remains unmediated by arms control measures or by any nascent prospect of detente. As a parallel development, sensible voices in both countries will continue to talk of building mutual confidence through openness to avert accidents, misjudgments, and misinterpretations. To facilitate a future peace process, this paper offers possible suggestions for stabilization that could be applied to India's and Pakistan's missile situation. Appendices include descriptions of existing missile agreements that have contributed to better relations for other countries as well as a list of the cooperative monitoring technologies available to provide information useful in implementing subcontinent missile regimes.

  19. Liquid oxygen (LO2) propellant conditioning concept testing

    Science.gov (United States)

    Perry, Gretchen L. E.; Orth, Michael S.; Mehta, Gopal K.

    1993-01-01

    Testing of a simplified LO2 propellant conditioning concept for future expendable launch vehicles is discussed. Four different concepts are being investigated: no-bleed, low-bleed, use of a recirculation line, and He bubbling. A full-scale test article, which is a facsimile of a propellant feed duct with an attached section to simulate heat input from an LO2 turbopump, is to be tested at the Cold Flow Facility of the Marshall Space Flight Center West Test Area. Work to date includes: design and fabrication of the test article, design of the test facility and initial fabrication, development of a test matrix and test procedures, initial predictions of test output, and heat leak calibration and heat exchanger tests on the test articles.

  20. Thermal Degradation Studies of A Polyurethane Propellant Binder

    Energy Technology Data Exchange (ETDEWEB)

    Assink, R.A.; Celina, M.; Gillen, K.T.; Graham, A.C.; Minier, L.M.

    1999-06-12

    The thermal oxidative aging of a crosslinked hydroxy-terminated polybutadiene (HTPB)/isophorone diisocyanate (IPDI) based polyurethane rubber, used as a polymeric binder in solid propellant grain, was investigated at temperatures from 25 C to 125 C. The changes in tensile elongation, polymer network properties and chain dynamics, mechanical hardening and density were determined with a range of techniques including modulus profiling, solvent swelling, NMR relaxation and O{sub 2} permeability measurements. We critically evaluated the Arrhenius methodology that is commonly used with a linear extrapolation of high temperature aging data using extensive data superposition and highly sensitive oxygen consumption experiments. The effects of other constituents in the propellant formulation on aging were also investigated. We conclude that crosslinking is the dominant process at higher temperatures and that the degradation involves only limited hardening in the bulk of the material. Significant curvature in the Arrhenius diagram of the oxidation rates was observed. This is similar to results for other rubber materials.