WorldWideScience

Sample records for nitride wide bandgap

  1. Wide-bandgap III-Nitride based Second Harmonic Generation

    Science.gov (United States)

    2014-10-02

    Jun-2014 Approved for Public Release; Distribution Unlimited Final Report: Wide-bandgap III - Nitride based Second Harmonic Generation The views...Report: Wide-bandgap III - Nitride based Second Harmonic Generation Report Title It was demonstrated that GaN, AlGaN and AlN lateral polar structures can...research have been socialized to the III - Nitride Optoelectronics Center of Excellence (ARL SEDD) and to the 2013 ARO Staff Research Symposium and at

  2. Method and apparatus for use of III-nitride wide bandgap semiconductors in optical communications

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Rongqing (Lenexa, KS); Jiang,Hong-Xing (Manhattan, KS); Lin, Jing-Yu (Manhattan, KS)

    2008-03-18

    The present disclosure relates to the use of III-nitride wide bandgap semiconductor materials for optical communications. In one embodiment, an optical device includes an optical waveguide device fabricated using a III-nitride semiconductor material. The III-nitride semiconductor material provides for an electrically controllable refractive index. The optical waveguide device provides for high speed optical communications in an infrared wavelength region. In one embodiment, an optical amplifier is provided using optical coatings at the facet ends of a waveguide formed of erbium-doped III-nitride semiconductor materials.

  3. Optical investigations on the wide bandgap semiconductors diamond and aluminum nitride

    Energy Technology Data Exchange (ETDEWEB)

    Teofilov, Nikolai

    2007-07-01

    In the context of this thesis, new results about optical defects and intrinsic properties of diamond, AlN and AlGaN alloys have been obtained. The main experimental techniques used were low temperature cathodoluminescence and photoluminescence spectroscopy. First, different aspects of intentional and background doping of diamond were discussed. Thus, the most commonly observed green luminescence emission from boron doped HPHT diamonds has been studied by means of temperature dependent CL in a wide temperature range from 10 K to 450 K. One further subject, addressing deep defect nitrogen related luminescence was a study of nitrogen addition in combustion flame grown CVD diamond layers. Two further topics concern intrinsic excitations in diamond, free excitons and electron-hole drops. Several important parameters like the critical density, the critical temperature, and the low-temperature density inside the drops were evaluated. The ground state density of the electron-hole condensate in diamond is about {approx} 42 times larger than that in Si, and the critical temperature takes very high values in the range of 165K.. 173K. Cathodoluminescence investigations on epitaxial wurtzite AlN layers grown on sapphire, SiC, and Si substrates, have shown that although the material is generally of good optical quality, deep level luminescence are still dominating the spectra. Relatively sharp near-band-edge transitions have been observed in all three samples that exhibit significantly reduced line widths for the AlN/sapphire and the AlN/SiC samples. Much broader emission lines in the near band-gap region have been observed for the first time from the AlN sample grown on Si (111) substrate. Temperature dependent CL measurements and numerical line decompositions reveal complicated substructures in the excitonic lines. The temperature dependence of the energy positions and broadening parameters of the transition have been studied and compared with the other materials. Epitaxial Al

  4. Wide-Bandgap Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chinthavali, M.S.

    2005-11-22

    With the increase in demand for more efficient, higher-power, and higher-temperature operation of power converters, design engineers face the challenge of increasing the efficiency and power density of converters [1, 2]. Development in power semiconductors is vital for achieving the design goals set by the industry. Silicon (Si) power devices have reached their theoretical limits in terms of higher-temperature and higher-power operation by virtue of the physical properties of the material. To overcome these limitations, research has focused on wide-bandgap materials such as silicon carbide (SiC), gallium nitride (GaN), and diamond because of their superior material advantages such as large bandgap, high thermal conductivity, and high critical breakdown field strength. Diamond is the ultimate material for power devices because of its greater than tenfold improvement in electrical properties compared with silicon; however, it is more suited for higher-voltage (grid level) higher-power applications based on the intrinsic properties of the material [3]. GaN and SiC power devices have similar performance improvements over Si power devices. GaN performs only slightly better than SiC. Both SiC and GaN have processing issues that need to be resolved before they can seriously challenge Si power devices; however, SiC is at a more technically advanced stage than GaN. SiC is considered to be the best transition material for future power devices before high-power diamond device technology matures. Since SiC power devices have lower losses than Si devices, SiC-based power converters are more efficient. With the high-temperature operation capability of SiC, thermal management requirements are reduced; therefore, a smaller heat sink would be sufficient. In addition, since SiC power devices can be switched at higher frequencies, smaller passive components are required in power converters. Smaller heat sinks and passive components result in higher-power-density power converters

  5. Wide Bandgap Extrinsic Photoconductive Switches

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, James S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-07-03

    Semi-insulating Gallium Nitride, 4H and 6H Silicon Carbide are attractive materials for compact, high voltage, extrinsic, photoconductive switches due to their wide bandgap, high dark resistance, high critical electric field strength and high electron saturation velocity. These wide bandgap semiconductors are made semi-insulating by the addition of vanadium (4H and 6HSiC) and iron (2H-GaN) impurities that form deep acceptors. These deep acceptors trap electrons donated from shallow donor impurities. The electrons can be optically excited from these deep acceptor levels into the conduction band to transition the wide bandgap semiconductor materials from a semi-insulating to a conducting state. Extrinsic photoconductive switches with opposing electrodes have been constructed using vanadium compensated 6H-SiC and iron compensated 2H-GaN. These extrinsic photoconductive switches were tested at high voltage and high power to determine if they could be successfully used as the closing switch in compact medical accelerators.

  6. Review of wide band-gap semiconductors technology

    Directory of Open Access Journals (Sweden)

    Jin Haiwei

    2016-01-01

    Full Text Available Silicon carbide (SiC and gallium nitride (GaN are typical representative of the wide band-gap semiconductor material, which is also known as third-generation semiconductor materials. Compared with the conventional semiconductor silicon (Si or gallium arsenide (GaAs, wide band-gap semiconductor has the wide band gap, high saturated drift velocity, high critical breakdown field and other advantages; it is a highly desirable semiconductor material applied under the case of high-power, high-temperature, high-frequency, anti-radiation environment. These advantages of wide band-gap devices make them a hot spot of semiconductor technology research in various countries. This article describes the research agenda of United States and European in this area, focusing on the recent developments of the wide band-gap technology in the US and Europe, summed up the facing challenge of the wide band-gap technology.

  7. Chemical and Bandgap Engineering in Monolayer Hexagonal Boron Nitride

    Science.gov (United States)

    Ba, Kun; Jiang, Wei; Cheng, Jingxin; Bao, Jingxian; Xuan, Ningning; Sun, Yangye; Liu, Bing; Xie, Aozhen; Wu, Shiwei; Sun, Zhengzong

    2017-04-01

    Monolayer hexagonal boron nitride (h-BN) possesses a wide bandgap of ~6 eV. Trimming down the bandgap is technically attractive, yet poses remarkable challenges in chemistry. One strategy is to topological reform the h-BN’s hexagonal structure, which involves defects or grain boundaries (GBs) engineering in the basal plane. The other way is to invite foreign atoms, such as carbon, to forge bizarre hybrid structures like hetero-junctions or semiconducting h-BNC materials. Here we successfully developed a general chemical method to synthesize these different h-BN derivatives, showcasing how the chemical structure can be manipulated with or without a graphene precursor, and the bandgap be tuned to ~2 eV, only one third of the pristine one’s.

  8. Wide Bandgap Extrinsic Photoconductive Switches

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, James S. [State Univ. of New York (SUNY), Plattsburgh, NY (United States); Univ. of California, Davis, CA (United States)

    2012-01-20

    Photoconductive semiconductor switches (PCSS) have been investigated since the late 1970s. Some devices have been developed that withstand tens of kilovolts and others that switch hundreds of amperes. However, no single device has been developed that can reliably withstand both high voltage and switch high current. Yet, photoconductive switches still hold the promise of reliable high voltage and high current operation with subnanosecond risetimes. Particularly since good quality, bulk, single crystal, wide bandgap semiconductor materials have recently become available. In this chapter we will review the basic operation of PCSS devices, status of PCSS devices and properties of the wide bandgap semiconductors 4H-SiC, 6H-SiC and 2H-GaN.

  9. Recent ROB developments on wide bandgap based UV sensors

    Science.gov (United States)

    Giordanengo, B.; Ben Moussa, A.; Hochedez, J.-F.; Soltani, A.; de Moor, P.; Minoglou, K.; Malinowski, P.; Duboz, J.-Y.; Chong, Y. M.; Zou, Y. S.; Zhang, W. J.; Lee, S. T.; Dahal, R.; Li, J.; Lin, J. Y.; Jiang, H. X.

    The next ESA spatial mission planned to study the Sun, Solar Orbiter (SO), necessitates very innovative EUV detectors. The commonly used silicon detectors suffer important limitations mainly in terms of UV robustness and dark current level. An alternative comes from diamond or III-nitride materials. In these materials, the radiation hardness, solar blindness and dark current are improved due to their wide bandgap. This paper presents the new developments on wide bandgap materials at the Royal Observatory of Belgium (ROB). We present also the LYRA instrument, the BOLD project, and the EUI instrument suite.

  10. Wide Bandgap Nanostructured Space Photovoltaics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Firefly, in collaboration with Rochester Institute of Technology, proposes an STTR program for the development of a wide-bandgap GaP-based space solar cell capable...

  11. Comparison of Wide-Bandgap Semiconductors for Power Electronics Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ozpineci, B.

    2004-01-02

    Recent developmental advances have allowed silicon (Si) semiconductor technology to approach the theoretical limits of the Si material; however, power device requirements for many applications are at a point that the present Si-based power devices cannot handle. The requirements include higher blocking voltages, switching frequencies, efficiency, and reliability. To overcome these limitations, new semiconductor materials for power device applications are needed. For high power requirements, wide-bandgap semiconductors like silicon carbide (SiC), gallium nitride (GaN), and diamond, with their superior electrical properties, are likely candidates to replace Si in the near future. This report compares wide-bandgap semiconductors with respect to their promise and applicability for power applications and predicts the future of power device semiconductor materials.

  12. Petahertz optical drive with wide-bandgap semiconductor

    Science.gov (United States)

    Mashiko, Hiroki; Oguri, Katsuya; Yamaguchi, Tomohiko; Suda, Akira; Gotoh, Hideki

    2016-08-01

    High-speed photonic and electronic devices at present rely on radiofrequency electric fields to control the physical properties of a semiconductor, which limits their operating speed to terahertz frequencies (1012 Hz ref. ). Using the electric field from intense light pulses, however, could extend the operating frequency into the petahertz regime (1015 Hz ref. ). Here we demonstrate optical driving at a petahertz frequency in the wide-bandgap semiconductor gallium nitride. Few-cycle near-infrared pulses are shown to induce electric interband polarization though a multiphoton process. Dipole oscillations with a periodicity of 860 as are revealed in the gallium nitride electron and hole system by using the quantum interference between the two transitions from the valence and conduction band states, which are probed by an extremely short isolated attosecond pulse with a coherent broadband spectrum. In principle, this shows that the conductivity of the semiconductor can be manipulated on attosecond timescales, which corresponds to instantaneous light-induced switching from insulator to conductor. The resultant dipole frequency reaches 1.16 PHz, showing the potential for future high-speed signal processing technologies based on wide-bandgap semiconductors.

  13. Wide bandgap matrix switcher, amplifier and oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Sampayan, Stephen

    2016-08-16

    An electronic device comprising an optical gate, an electrical input an electrical output and a wide bandgap material positioned between the electrical input and the electrical output to control an amount of current flowing between the electrical input and the electrical output in response to a stimulus received at the optical gate can be used in wideband telecommunication applications in transmission of multi-channel signals.

  14. Ultrafast spectroscopy of wide bandgap semiconductor nanostructures

    OpenAIRE

    2015-01-01

    Group III-nitrides have been considered a promising choice for the realization of optoelectronic devices since 1970. Since the first demonstration of the high-brightness blue light-emitting diodes (LEDs) by Shuji Nakamura and coworkers, the fabrication of highly efficient white LEDs has passed successful developments. A serious physical issue still remained, which prevents their use for high power and highly efficient LEDs: the drop of external quantum efficiency (EQE) of III-nitride LEDs whe...

  15. Thermal modeling of wide bandgap materials for power MOSFETs

    Science.gov (United States)

    Manandhar, Mahesh B.; Matin, Mohammad A.

    2016-09-01

    This paper investigates the thermal performance of different wide bandgap (WBG) materials for their applicability as semiconductor material in power electronic devices. In particular, Silicon Carbide (SiC) and Gallium Nitride (GaN) are modeled for this purpose. These WBG materials have been known to show superior intrinsic material properties as compared to Silicon (Si), such as higher carrier mobility, lower electrical and thermal resistance. These unique properties have allowed for them to be used in power devices that can operate at higher voltages, temperatures and switching speeds with higher efficiencies. Digital prototyping of power devices have facilitated inexpensive and flexible methods for faster device development. The commercial simulation software COMSOL Multiphysics was used to simulate a 2-D model of MOSFETs of these WBG materials to observe their thermal performance under different voltage and current operating conditions. COMSOL is a simulation software that can be used to simulate temperature changes due to Joule heating in the case of power MOSFETs. COMSOL uses Finite Element/Volume Analysis methods to solve for variables in complex geometries where multiple material properties and physics are involved. The Semiconductor and Heat Transfer with Solids modules of COMSOL were used to study the thermal performance of the MOSFETs in steady state conditions. The results of the simulations for each of the two WBG materials were compared with that of Silicon to determine relative stability and merit of each material.

  16. High temperature performance of Wide Bandgap Semiconductors Devices for High Power Applications

    OpenAIRE

    2010-01-01

    Wide bandgap III-Nitride semiconductor materials possess superior properties as compared to silicon and other IIIV compound materials. GaN has recently attracted a lot of interest for applications in high power electronics capable of operation at elevated temperatures. Modeling of the drift region properties of GaN Schottky rectifiers and power MOSFET to achieve breakdown voltages ranging from 200 to 5kV is presented. 1kV and 3kV Schottky rectifiers are simulated and the characteristics of th...

  17. Advances in wide bandgap SiC for optoelectronics

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Argyraki, Aikaterini

    2014-01-01

    Silicon carbide (SiC) has played a key role in power electronics thanks to its unique physical properties like wide bandgap, high breakdown field, etc. During the past decade, SiC is also becoming more and more active in optoelectronics thanks to the progress in materials growth and nanofabrication...

  18. Fringe structures and tunable bandgap width of 2D boron nitride nanosheets

    Directory of Open Access Journals (Sweden)

    Peter Feng

    2014-07-01

    Full Text Available We report studies of the surface fringe structures and tunable bandgap width of atomic-thin boron nitride nanosheets (BNNSs. BNNSs are synthesized by using digitally controlled pulse deposition techniques. The nanoscale morphologies of BNNSs are characterized by using scanning electron microscope (SEM, and transmission electron microscopy (TEM. In general, the BNNSs appear microscopically flat in the case of low temperature synthesis, whereas at high temperature conditions, it yields various curved structures. Experimental data reveal the evolutions of fringe structures. Functionalization of the BNNSs is completed with hydrogen plasma beam source in order to efficiently control bandgap width. The characterizations are based on Raman scattering spectroscopy, X-ray diffraction (XRD, and FTIR transmittance spectra. Red shifts of spectral lines are clearly visible after the functionalization, indicating the bandgap width of the BNNSs has been changed. However, simple treatments with hydrogen gas do not affect the bandgap width of the BNNSs.

  19. Experimental observation of optical bandgaps for surface electromagnetic waves in a periodically corrugated one-dimensional silicon nitride photonic crystal.

    Science.gov (United States)

    Descrovi, Emiliano; Giorgis, Fabrizio; Dominici, Lorenzo; Michelotti, Francesco

    2008-02-01

    Dispersion curves of surface electromagnetic waves (SEWs) in 1D silicon nitride photonic crystals having periodic surface corrugations are considered. We experimentally demonstrate that a bandgap for SEWs can be obtained by fabricating a polymeric grating on the multilayered structure. Close to the boundary of the first Brillouin zone connected to the grating, we observe the splitting of the SEW dispersion curve into two separate branches and identify two regions of very low group velocity. The proper design of the structure allows the two folded branches to lie beyond the light line in a wide spectral range, thus doubling the density of modes available for SEWs and avoiding light scattering.

  20. Stabilized Wide Bandgap Perovskite Solar Cells by Tin Substitution.

    Science.gov (United States)

    Yang, Zhibin; Rajagopal, Adharsh; Jo, Sae Byeok; Chueh, Chu-Chen; Williams, Spencer; Huang, Chun-Chih; Katahara, John K; Hillhouse, Hugh W; Jen, Alex K-Y

    2016-12-14

    Wide bandgap MAPb(I1-yBry)3 perovskites show promising potential for application in tandem solar cells. However, unstable photovoltaic performance caused by phase segregation has been observed under illumination when y is above 0.2. Herein, we successfully demonstrate stabilization of the I/Br phase by partially replacing Pb(2+) with Sn(2+) and verify this stabilization with X-ray diffractometry and transient absorption spectroscopy. The resulting MAPb0.75Sn0.25(I1-yBry)3 perovskite solar cells show stable photovoltaic performance under continuous illumination. Among these cells, the one based on MAPb0.75Sn0.25(I0.4Br0.6)3 perovskite shows the highest efficiency of 12.59% with a bandgap of 1.73 eV, which make it a promising wide bandgap candidate for application in tandem solar cells. The engineering of internal bonding environment by partial Sn substitution is believed to be the main reason for making MAPb0.75Sn0.25(I1-yBry)3 perovskite less vulnerable to phase segregation during the photostriction under illumination. Therefore, this study establishes composition engineering of the metal site as a promising strategy to impart phase stability in hybrid perovskites under illumination.

  1. Quantum Cavity Optomechanics with Phononic Bandgap Shielded Silicon Nitride Membranes

    DEFF Research Database (Denmark)

    Nielsen, William Hvidtfelt Padkær

    pressure, andthe achievement of strong correlations between light at mechanics, manifested asponderomotive squeezing. e next step invariably seems to be the incorporationof cavity optomechanical systems in more complex constellations, in some sensemimicking what has already been achieved with atoms.......In this work, we report on the progress of bringing a cavity optomechanicalsystem “up to speed” for the later integration into a hybrid atomic-opticalmechanicalentanglement experiment. The optomechanical system in considerationconsists of a highly stressed stoichiometric silicon-nitride membrane placedbetween...

  2. The ideal chip is not enough: Issues retarding the success of wide band-gap devices

    Science.gov (United States)

    Kaminski, Nando

    2017-04-01

    Semiconductor chips made from the wide band-gap (WBG) materials silicon carbide (SiC) or gallium nitride (GaN) are already approaching the theoretical limits given by the respective materials. Unfortunately, their advantages over silicon devices cannot be fully exploited due to limitations imposed by the device packaging or the circuitry around the semiconductors. Stray inductances slow down the switching speed and increase losses, packaging materials limit the maximum temperature and the maximum useful temperature swing, and passives limit the maximum switching frequency. All these issues have to be solved or at least minimised to make WBG attractive for a wider range of applications and, consequently, to profit from the economy of scale.

  3. On the Integration of Wide Band-gap Semiconductors in Single Phase Boost PFC Converters

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos

    of high frequency operation in optoelectronics applications. On the other hand, Schottky SiC power diodes were introduced in 2001 as an alternative to eliminate reverse recovery issues in Si rectifiers. Wide band-gap semiconductors offer an increased electrical field strength and electron mobility...... diodes, or the introduction of silicon carbide (SiC) diodes, provided large steps in miniaturization and efficiency improvement of switched mode power converters. Gallium nitride (GaN) and SiC semiconductor devices have already been around for some years. The first one proliferated due to the necessity...... compared to Si semiconductors. Moreover, both semiconductor materials are particularly interesting for high temperature operation. These characteristics makes integration of SiC and GaN devices as the next logical step to further increase efficiency and power density in SMPS. This work is part of the Ph...

  4. Fast Robust Gate-Drivers with Easy Adjustable Voltage Ranges for Driving Normally-On Wide-Bandgap Power Transistors

    OpenAIRE

    Jacqmaer, Pieter; Everts, Jordi; Gelagaev, Ratmir; Tant, Peter; Driesen, Johan

    2010-01-01

    Wide-bandgap (WBG) semiconductors, such as gallium nitride (GaN), are more and more being used in switching power devices. An AlGaN/GaN/AlGaN Double Heterojunction Field Effect transistor (DHFET) was developed in previous work and needed to be tested. The used test circuit was a buck converter. This type of converter, in addition with the normally-on switching behaviour of the GaN-based transistors, requires dedicated gate drive circuitry, resulting in the development of three types of gate-d...

  5. High-Temperature, Wirebondless, Ultracompact Wide Bandgap Power Semiconductor Modules

    Science.gov (United States)

    Elmes, John

    2015-01-01

    Silicon carbide (SiC) and other wide bandgap semiconductors offer great promise of high power rating, high operating temperature, simple thermal management, and ultrahigh power density for both space and commercial power electronic systems. However, this great potential is seriously limited by the lack of reliable high-temperature device packaging technology. This Phase II project developed an ultracompact hybrid power module packaging technology based on the use of double lead frames and direct lead frame-to-chip transient liquid phase (TLP) bonding that allows device operation up to 450 degC. The new power module will have a very small form factor with 3-5X reduction in size and weight from the prior art, and it will be capable of operating from 450 degC to -125 degC. This technology will have a profound impact on power electronics and energy conversion technologies and help to conserve energy and the environment as well as reduce the nation's dependence on fossil fuels.

  6. High Power Wide Bandgap Engineered MMW MMIC Transceiver Project

    Data.gov (United States)

    National Aeronautics and Space Administration — During this phase I SBIR effort unique proven lattice and bandgap engineering techniques will be utilized to epitaxially grow InAlAs / InGaAs on GaN substrate for...

  7. Wide bandgap III-nitride nanomembranes for optoelectronic applications.

    Science.gov (United States)

    Park, Sung Hyun; Yuan, Ge; Chen, Danti; Xiong, Kanglin; Song, Jie; Leung, Benjamin; Han, Jung

    2014-08-13

    Single crystalline nanomembranes (NMs) represent a new embodiment of semiconductors having a two-dimensional flexural character with comparable crystalline perfection and optoelectronic efficacy. In this Letter, we demonstrate the preparation of GaN NMs with a freestanding thickness between 90 to 300 nm. Large-area (>5 × 5 mm(2)) GaN NMs can be routinely obtained using a procedure of conductivity-selective electrochemical etching. GaN NM is atomically flat and possesses an optical quality similar to that from bulk GaN. A light-emitting optical heterostructure NM consisting of p-GaN/InGaN quantum wells/GaN is prepared by epitaxy, undercutting etching, and layer transfer. Bright blue light emission from this heterostructure validates the concept of NM-based optoelectronics and points to potentials in flexible applications and heterogeneous integration.

  8. Bandgap engineered graphene and hexagonal boron nitride for resonant tunnelling diode

    Indian Academy of Sciences (India)

    PENCHALAIAH PALLA; GOPI RAJA UPPU; ANITA S ETHIRAJ; J P RAINA

    2016-10-01

    In this article a double-barrier resonant tunnelling diode (DBRTD) has been modelled by taking advantage of single-layer hexagonal lattice of graphene and hexagonal boron nitride (h-BN). The DBRTD performance and operation are explored by means of a self-consistent solution inside the non-equilibrium Green’s function formalism on an effective mass-Hamiltonian. Both p- and n-type DBRTDs exhibit a negative differential resistance effect, which entails the resonant tunnelling through the hole and electron bound states in the graphene quantum well, respectively. The peak-to-valley ratio of approximately 8 (3) for p-type (n-type) DBRTD with quantum well of 5.1 nm (4.3 nm) at a barrier width of 1.3 nm was achieved for zero bandgap graphene at room temperature.

  9. SSPA's Using Reduced Conduction Angle Techniques on Wide-Bandgap Devices for Ultra High Efficiency Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A novel approach is proposed for very efficient, very reliable, low weight, wide-bandgap medium power SSPAs for Space applications operating at 400 MHz and 8GHz.

  10. Wide bandgap GaN-based semiconductors for spintronics

    Energy Technology Data Exchange (ETDEWEB)

    Pearton, S J [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States); Abernathy, C R [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States); Thaler, G T [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States); Frazier, R M [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States); Norton, D P [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States); Ren, F [Department of Chemical Engineering, University of Florida, Gainesville, FL 32611 (United States); Park, Y D [CSCMR and School of Physics, Seoul National University, Seoul 151-747 (Korea, Republic of); Zavada, J M [US Army Research Office, Research Triangle Park, NC 27709 (United States); Buyanova, I A [Department of Physics and Measurement Technology, Linkoeping University, S-581 83 Linkoeping (Sweden); Chen, W M [Department of Physics and Measurement Technology, Linkoeping University, S-581 83 Linkoeping (Sweden); Hebard, A F [Department of Physics, University of Florida, Gainesville, FL 32611 (United States)

    2004-02-25

    Recent results on achieving ferromagnetism in transition-metal-doped GaN, AlN and related materials are discussed. The field of semiconductor spintronics seeks to exploit the spin of charge carriers in new generations of transistors, lasers and integrated magnetic sensors. There is strong potential for new classes of ultra-low-power, high speed memory, logic and photonic devices based on spintronics. The utility of such devices depends on the availability of materials with practical magnetic ordering temperatures and most theories predict that the Curie temperature will be a strong function of bandgap. We discuss the current state-of-the-art in producing room temperature ferromagnetism in GaN-based materials, the origins of the magnetism and its potential applications. (topical review)

  11. Electromagnetically induced transparency and wide-band wavelength conversion in silicon nitride microdisk optomechanical resonators

    CERN Document Server

    Liu, Yuxiang; Aksyuk, Vladimir; Srinivasan, Kartik

    2013-01-01

    We demonstrate optomechanically-mediated electromagnetically-induced transparency and wavelength conversion in silicon nitride (Si3N4) microdisk resonators. Fabricated devices support whispering gallery optical modes with a quality factor (Q) of 10^6, and radial breathing mechanical modes with a Q=10^4 and a resonance frequency of 625 MHz, so that the system is in the resolved sideband regime. Placing a strong optical control field on the red (blue) detuned sideband of the optical mode produces coherent interference with a resonant probe beam, inducing a transparency (absorption) window for the probe. This is observed for multiple optical modes of the device, all of which couple to the same mechanical mode, and which can be widely separated in wavelength due to the large bandgap of Si3N4. These properties are exploited to demonstrate frequency upconversion and downconversion of optical signals between the 1300 nm and 980 nm bands.

  12. Wide bandgap n-type and p-type semiconductor porous junction devices as photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yuan-Pai; Horng, Sheng-Fu [Institute of Electronics Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Chao, Yu-Chiang; Meng, Hsin-Fei [Institute of Physics, National Chiao Tung University, Hsinchu 300, Taiwan (China); Zan, Hsiao-Wen, E-mail: yuchiangchao@gmail.com, E-mail: meng@mail.nctu.edu.tw [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 300, Taiwan (China)

    2011-10-12

    In junction absorber photovoltaics doped wide bandgap n-type and p-type semiconductors form a porous interpenetrating junction structure with a layer of low bandgap absorber at the interface. The doping concentration is high enough such that the junction depletion width is smaller than the pore size. The highly conductive neutral region then has a dentrite shape with fingers reaching the absorber to effectively collect the photo-carriers swept out by the junction electric field. With doping of 10{sup 19} cm{sup -3} corresponding to a depletion width of 25 nm, pore size of 32 nm, absorber thickness close to exciton diffusion length of 17 nm, absorber bandgap of 1.4 eV and carrier mobility over 10{sup -5} cm{sup 2} V{sup -1} s{sup -1}, numerical calculation shows the power conversion efficiency is as high as 19.4%. It rises to 23% for a triplet exciton absorber.

  13. Novel Approaches to Wide Bandgap CuInSe2 Based Absorbers

    Energy Technology Data Exchange (ETDEWEB)

    William N. Shafarman

    2011-04-28

    This project targeted the development of high performance wide bandgap solar cells based on thin film alloys of CuInSe2 to relax constraints on module design and enable tandem solar cell structures. This addressed goals of the Solar Energy Technologies Program for Next Generation PV to develop technology needed for higher thin film module efficiency as a means to reduce costs. Specific objectives of the research project were: 1) to develop the processes and materials required to improve the performance of wide bandgap thin film solar cells based on alloys of CuInSe2, and 2) to provide the fundamental science and engineering basis for the material, electronic, and device properties required to effectively apply these processes and materials to commercial manufacture. CuInSe2-based photovoltaics have established the highest efficiencies of the thin film materials at both the cell and module scales and are actively being scaled up to commercialization. In the highest efficiency cells and modules, the optical bandgap, a function of the CuInSe2-based alloy composition, is relatively low compared to the optimum match to the solar spectrum. Wider bandgap alloys of CuInSe2 produce higher cell voltages which can improve module performance and enable the development of tandem solar cells to boost the overall efficiency. A focus for the project was alloying with silver to form (AgCu)(InGa)Se2 pentenary thin films deposited by elemental co-evaporation which gives the broadest range of control of composition and material properties. This alloy has a lower melting temperature than Ag-free, Cu-based chalcopyrite compounds, which may enable films to be formed with lower defect densities and the (AgCu)(InGa)Se2 films give improved material properties and better device performance with increasing bandgap. A comprehensive characterization of optical, structural, and electronic properties of (AgCu)(InGa)Se2 was completed over the complete compositional range 0 ≤ Ga/(In+Ga) ≤ 1 and

  14. Modeling and experimental verification of an ultra-wide bandgap in 3D phononic crystal

    Science.gov (United States)

    D'Alessandro, L.; Belloni, E.; Ardito, R.; Corigliano, A.; Braghin, F.

    2016-11-01

    This paper reports a comprehensive modeling and experimental characterization of a three-dimensional phononic crystal composed of a single material, endowed with an ultra-wide complete bandgap. The phononic band structure shows a gap-mid gap ratio of 132% that is by far the greatest full 3D bandgap in literature for any kind of phononic crystals. A prototype of the finite crystal structure has been manufactured in polyamide by means of additive manufacturing technology and tested to assess the transmission spectrum of the crystal. The transmission spectrum has been numerically calculated taking into account a frequency-dependent elastic modulus and a Rayleigh model for damping. The measured and numerical transmission spectra are in good agreement and present up to 75 dB of attenuation for a three-layer crystal.

  15. High-Temperature, Wirebondless, Ultra-Compact Wide Bandgap Power Semiconductor Modules for Space Power Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Silicon carbide (SiC) and other wide band-gap semiconductors offer great promise of high power rating, high operating temperature, simple thermal management, and...

  16. Point defect reduction in wide bandgap semiconductors by defect quasi Fermi level control

    Science.gov (United States)

    Reddy, P.; Hoffmann, M. P.; Kaess, F.; Bryan, Z.; Bryan, I.; Bobea, M.; Klump, A.; Tweedie, J.; Kirste, R.; Mita, S.; Gerhold, M.; Collazo, R.; Sitar, Z.

    2016-11-01

    A theoretical framework for a general approach to reduce point defect density in materials via control of defect quasi Fermi level (dQFL) is presented. The control of dQFL is achieved via excess minority carrier generation. General guidelines for controlling dQFL that lead to a significant reduction in compensating point defects in any doped material is proposed. The framework introduces and incorporates the effects of various factors that control the efficacy of the defect reduction process such as defect level, defect formation energy, bandgap, and excess minority carrier density. Modified formation energy diagrams are proposed, which illustrate the effect of the quasi Fermi level control on the defect formation energies. These formation energy diagrams provide powerful tools to determine the feasibility and requirements to produce the desired reduction in specified point defects. An experimental study of the effect of excess minority carriers on point defect incorporation in GaN and AlGaN shows an excellent quantitative agreement with the theoretical predictions. Illumination at energies larger than the bandgap is employed as a means to generate excess minority carriers. The case studies with CN in Si doped GaN, H and VN in Mg doped GaN and VM-2ON in Si doped Al0.65Ga0.35N revealed a significant reduction in impurities in agreement with the proposed theory. Since compensating point defects control the material performance (this is particularly challenging in wide and ultra wide bandgap materials), dQFL control is a highly promising technique with wide scope and may be utilized to improve the properties of various materials systems and performance of devices based upon them.

  17. The ultraviolet radiation detectors based on wide-bandgap Schottky barrier structures

    CERN Document Server

    Blank, T V; Konstantinov, O V

    2002-01-01

    Recently, much attention has been given to measure and control ultraviolet radiation (UVR) from the Sun and artificial sources. We present photodetectors based on different wide-bandgap surface-barrier structures, which exhibit linear photocurrent-radiant flux characteristics in the range 10 sup - sup 2 -10 sup 3 W/m sup 2 and can register different types of UVR. The use of light filter UFS-6 with GaP photodetector results in a spectral photosensitivity range corresponding to the Sun UV radiation if observed on Earth. The spectral sensitivity range of the photodetectors based on 4H-SiC is near the spectrum of relative effectiveness of various wavelengths in bactericidal UVR. The photosensitivity of the surface-barrier photodetectors based on wide-bandgap semiconductors exhibits the essential decline in the short-wavelength UVR region (5-6 eV), which is the region of intrinsic absorption of the semiconductor. We propose a hot exciton model, according to which the hot excitons can form in the process of the pho...

  18. A generation/recombination model assisted with two trap centers in wide band-gap semiconductors

    Science.gov (United States)

    Yamaguchi, Ken; Kuwabara, Takuhito; Uda, Tsuyoshi

    2013-03-01

    A generation/recombination (GR) model assisted with two trap centers has been proposed for studying reverse current on pn junctions in wide band-gap semiconductors. A level (Et1) has been assumed to be located near the bottom of the conduction band and the other (Et2) to be near the top of the valence band. The GR model has been developed by assuming (1) a high-electric field; F, (2) a short distance; d, between trap centers, (3) reduction in an energy-difference; Δeff = |Et1 - Et2| - eFd, and (4) hopping or tunneling conductions between trap centers with the same energy-level (Δeff ≈ 0). The GR rate has been modeled by trap levels, capture cross-sections, trap densities, and transition rate between trap centers. The GR rate, about 1010 greater than that estimated from the single-level model, has been predicted on pn junctions in a material with band-gap of 3.1 eV. Device simulations using the proposed GR model have been demonstrated for SiC diodes with and without a guard ring. A reasonable range for reverse current at room temperature has been simulated and stable convergence has been obtained in a numerical scheme for analyzing diodes with an electrically floating region.

  19. Matching Charge Extraction Contact for Wide-Bandgap Perovskite Solar Cells.

    Science.gov (United States)

    Lin, Yuze; Chen, Bo; Zhao, Fuwen; Zheng, Xiaopeng; Deng, Yehao; Shao, Yuchuan; Fang, Yanjun; Bai, Yang; Wang, Chunru; Huang, Jinsong

    2017-07-01

    Efficient wide-bandgap (WBG) perovskite solar cells are needed to boost the efficiency of silicon solar cells to beyond Schottky-Queisser limit, but they suffer from a larger open circuit voltage (VOC ) deficit than narrower bandgap ones. Here, it is shown that one major limitation of VOC in WBG perovskite solar cells comes from the nonmatched energy levels of charge transport layers. Indene-C60 bisadduct (ICBA) with higher-lying lowest-unoccupied-molecular-orbital is needed for WBG perovskite solar cells, while its energy-disorder needs to be minimized before a larger VOC can be observed. A simple method is applied to reduce the energy disorder by isolating isomer ICBA-tran3 from the as-synthesized ICBA-mixture. WBG perovskite solar cells with ICBA-tran3 show enhanced VOC by 60 mV, reduced VOC deficit of 0.5 V, and then a record stabilized power conversion efficiency of 18.5%. This work points out the importance of matching the charge transport layers in perovskite solar cells when the perovskites have a different composition and energy levels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. III-N Wide Bandgap Deep-Ultraviolet Lasers and Photodetectors

    KAUST Repository

    Detchprohm, T.

    2016-11-05

    The III-N wide-bandgap alloys in the AlInGaN system have many important and unique electrical and optical properties which have been exploited to develop deep-ultraviolet (DUV) optical devices operating at wavelengths < 300 nm, including light-emitting diodes, optically pumped lasers, and photodetectors. In this chapter, we review some aspects of the development and current state of the art of these DUV materials and devices. We describe the growth of III-N materials in the UV region by metalorganic chemical vapor deposition as well as the properties of epitaxial layers and heterostructure devices. In addition, we discuss the simulation and design of DUV laser diodes, the processing of III-N optical devices, and the description of the current state of the art of DUV lasers and photodetectors.

  1. Characterizing Surfaces of the Wide Bandgap Semiconductor Ilmenite with Scanning Probe Microcopies

    Science.gov (United States)

    Wilkins, R.; Powell, Kirk St. A.

    1997-01-01

    Ilmenite (FeTiO3) is a wide bandgap semiconductor with an energy gap of about 2.5eV. Initial radiation studies indicate that ilmenite has properties suited for radiation tolerant applications, as well as a variety of other electronic applications. Two scanning probe microscopy methods have been used to characterize the surface of samples taken from Czochralski grown single crystals. The two methods, atomic force microscopy (AFM) and scanning tunneling microscopy (STM), are based on different physical principles and therefore provide different information about the samples. AFM provides a direct, three-dimensional image of the surface of the samples, while STM give a convolution of topographic and electronic properties of the surface. We will discuss the differences between the methods and present preliminary data of each method for ilmenite samples.

  2. System and method of modulating electrical signals using photoconductive wide bandgap semiconductors as variable resistors

    Science.gov (United States)

    Harris, John Richardson; Caporaso, George J; Sampayan, Stephen E

    2013-10-22

    A system and method for producing modulated electrical signals. The system uses a variable resistor having a photoconductive wide bandgap semiconductor material construction whose conduction response to changes in amplitude of incident radiation is substantially linear throughout a non-saturation region to enable operation in non-avalanche mode. The system also includes a modulated radiation source, such as a modulated laser, for producing amplitude-modulated radiation with which to direct upon the variable resistor and modulate its conduction response. A voltage source and an output port, are both operably connected to the variable resistor so that an electrical signal may be produced at the output port by way of the variable resistor, either generated by activation of the variable resistor or propagating through the variable resistor. In this manner, the electrical signal is modulated by the variable resistor so as to have a waveform substantially similar to the amplitude-modulated radiation.

  3. Growth of Bulk Wide Bandgap Semiconductor Crystals and Their Potential Applications

    Science.gov (United States)

    Chen, Kuo-Tong; Shi, Detang; Morgan, S. H.; Collins, W. Eugene; Burger, Arnold

    1997-01-01

    Developments in bulk crystal growth research for electro-optical devices in the Center for Photonic Materials and Devices since its establishment have been reviewed. Purification processes and single crystal growth systems employing physical vapor transport and Bridgman methods were assembled and used to produce high purity and superior quality wide bandgap materials such as heavy metal halides and II-VI compound semiconductors. Comprehensive material characterization techniques have been employed to reveal the optical, electrical and thermodynamic properties of crystals, and the results were used to establish improved material processing procedures. Postgrowth treatments such as passivation, oxidation, chemical etching and metal contacting during the X-ray and gamma-ray device fabrication process have also been investigated and low noise threshold with improved energy resolution has been achieved.

  4. Advanced Materials for High Temperature, High Performance, Wide Bandgap Power Modules

    Science.gov (United States)

    O'Neal, Chad B.; McGee, Brad; McPherson, Brice; Stabach, Jennifer; Lollar, Richard; Liederbach, Ross; Passmore, Brandon

    2016-01-01

    Advanced packaging materials must be utilized to take full advantage of the benefits of the superior electrical and thermal properties of wide bandgap power devices in the development of next generation power electronics systems. In this manuscript, the use of advanced materials for key packaging processes and components in multi-chip power modules will be discussed. For example, to date, there has been significant development in silver sintering paste as a high temperature die attach material replacement for conventional solder-based attach due to the improved thermal and mechanical characteristics as well as lower processing temperatures. In order to evaluate the bond quality and performance of this material, shear strength, thermal characteristics, and void quality for a number of silver sintering paste materials were analyzed as a die attach alternative to solder. In addition, as high voltage wide bandgap devices shift from engineering samples to commercial components, passivation materials become key in preventing premature breakdown in power modules. High temperature, high dielectric strength potting materials were investigated to be used to encapsulate and passivate components internal to a power module. The breakdown voltage up to 30 kV and corresponding leakage current for these materials as a function of temperature is also presented. Lastly, high temperature plastic housing materials are important for not only discrete devices but also for power modules. As the operational temperature of the device and/or ambient temperature increases, the mechanical strength and dielectric properties are dramatically reduced. Therefore, the electrical characteristics such as breakdown voltage and leakage current as a function of temperature for housing materials are presented.

  5. High-Performance Nonfullerene Polymer Solar Cells based on Imide-Functionalized Wide-Bandgap Polymers.

    Science.gov (United States)

    Fan, Baobing; Zhang, Kai; Jiang, Xiao-Fang; Ying, Lei; Huang, Fei; Cao, Yong

    2017-06-01

    High-performance nonfullerene polymer solar cells (PSCs) are developed by integrating the nonfullerene electron-accepting material 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophne) (ITIC) with a wide-bandgap electron-donating polymer PTzBI or PTzBI-DT, which consists of an imide functionalized benzotriazole (TzBI) building block. Detailed investigations reveal that the extension of conjugation can affect the optical and electronic properties, molecular aggregation properties, charge separation in the bulk-heterojunction films, and thus the overall photovoltaic performances. Single-junction PSCs based on PTzBI:ITIC and PTzBI-DT:ITIC exhibit remarkable power conversion efficiencies (PCEs) of 10.24% and 9.43%, respectively. To our knowledge, these PCEs are the highest efficiency values obtained based on electron-donating conjugated polymers consisting of imide-functionalized electron-withdrawing building blocks. Of particular interest is that the resulting device based on PTzBI exhibits remarkable PCE of 7% with the thickness of active layer of 300 nm, which is among the highest values of nonfullerene PSCs utilizing thick photoactive layer. Additionally, the device based on PTzBI:ITIC exhibits prominent stability, for which the PCE remains as 9.34% after thermal annealing at 130 °C for 120 min. These findings demonstrate the great promise of using this series of wide-bandgap conjugated polymers as electron-donating materials for high-performance nonfullerene solar cells toward high-throughput roll-to-roll processing technology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Pressure-induced phase transition and bandgap collapse in the wide-bandgap semiconductor InTaO4

    CERN Document Server

    Errandonea, D; Garg, A B; Botella, P; Martinez-Garcia, D; Pellicer-Porres, J; Rodriguez-Hernandez, P; Munoz, A; Cuenca-Gotor, V; Sans, J A

    2016-01-01

    A pressure-induced phase transition, associated with an increase of the coordination number of In and Ta, is detected beyond 13 GPa in InTaO4 by combining synchrotron x-ray diffraction and Raman measurements in a diamond anvil cell with ab-initio calculations. High-pressure optical-absorption measurements were also carried out. The high-pressure phase has a monoclinic structure which shares the same space group with the low-pressure phase (P2/c). The structure of the high-pressure phase can be considered as a slight distortion of an orthorhombic structure described by space group Pcna. The phase transition occurs together with a unit-cell volume collapse and an electronic bandgap collapse observed by experiments and calculations. Additionally, a band crossing is found to occur in the low-pressure phase near 7 GPa. The pressure dependence of all the Raman-active modes is reported for both phases as well as the pressure dependence of unit-cell parameters and the equations of state. Calculations also provide inf...

  7. Electron field emission from wide bandgap semiconductors under intervalley carrier redistribution

    Science.gov (United States)

    Litovchenko, V.; Grygoriev, A.; Evtukh, A.; Yilmazoglu, O.; Hartnagel, H. L.; Pavlidis, D.

    2009-11-01

    Electron field emission phenomena from semiconductors (and, in particular, wide band gap materials) are analyzed theoretically for the general case, i.e., by taking into consideration aspects that have not been considered earlier such as two (or more) valleys of the energy band structure, nondegenerated statistics for the free electrons, heating of conduction band electrons, intervalley carrier redistribution under applied electrical fields, size quantization of electron band spectra, and change in the field emission characteristics. Comparisons with experiments performed on the highly structured (micro- and nano) surfaces of the GaN wide bandgap semiconductor have been made. The influence of the above factors on the current-voltage Fowler-Nordheim characteristics was demonstrated by theory and experiment. From theoretical and experimental results the intervalley energy difference (ΔE) for GaN quantum-sized cathodes was estimated to be 0.8 eV, which is considerably less than that predicted for bulk semiconductor (ΔE =1.2-1.5 eV). Furthermore the field emission currents were several orders higher than for bulk material. This is in good agreement with the prediction of the proposed theoretical model.

  8. Prospects of IMPATT devices based on wide bandgap semiconductors as potential terahertz sources

    Science.gov (United States)

    Acharyya, Aritra; Banerjee, J. P.

    2014-01-01

    In this paper the potentiality of impact avalanche transit time (IMPATT) devices based on different semiconductor materials such as GaAs, Si, InP, 4H-SiC and Wurtzite-GaN (Wz-GaN) has been explored for operation at terahertz frequencies. Drift-diffusion model is used to design double-drift region (DDR) IMPATTs based on different materials at millimeter-wave (mm-wave) and terahertz (THz) frequencies. The performance limitations of these devices are studied from the avalanche response times at different mm-wave and THz frequencies. Results show that the upper cut-off frequency limits of GaAs and Si DDR IMPATTs are 220 GHz and 0.5 THz, respectively, whereas the same for InP and 4H-SiC DDR IMPATTs is 1.0 THz. Wz-GaN DDR IMPATTs are found to be excellent candidate for generation of RF power at THz frequencies of the order of 5.0 THz with appreciable DC to RF conversion efficiency. Further, it is observed that up to 1.0 THz, 4H-SiC DDR IMPATTs excel Wz-GaN DDR IMPATTs as regards their RF power outputs. Thus, the wide bandgap semiconductors such as Wz-GaN and 4H-SiC are highly suitable materials for DDR IMPATTs at both mm-wave and THz frequency ranges.

  9. Understanding defect related luminescence processes in wide bandgap materials using low temperature multi-spectroscopic techniques

    DEFF Research Database (Denmark)

    Prasad, Amit Kumar

    ; it is, therefore, not likely to suffer from same problems as the IRSL signal. The IRPL signal, increases with dose and can be probed non-destructively (especially at low temperatures). Preliminary dating investigations suggest that this signal does not suffer from anomalous fading. There are two...... Quaternary climate changes, landscape development and human evolution and dispersal. Optical properties of feldspar originate from a) a wide band gap (∼ 7.7 eV, b) crystal defects (impurity atoms and distortions) that create localized energy states within the bandgap, and c) the low-mobility band tail states, which...... dosimetric trap to holes located elsewhere in the lattice, which is affected by sensitivity changes leading to several uncertainties in the dose measurement. In contrast, it is shown here that the IRPL signal arises from intra-defect excitation and subsequent radiative emission within the IR dosimetric trap...

  10. Sustained hole inversion layer in a wide-bandgap metal-oxide semiconductor with enhanced tunnel current.

    Science.gov (United States)

    Shoute, Gem; Afshar, Amir; Muneshwar, Triratna; Cadien, Kenneth; Barlage, Douglas

    2016-02-04

    Wide-bandgap, metal-oxide thin-film transistors have been limited to low-power, n-type electronic applications because of the unipolar nature of these devices. Variations from the n-type field-effect transistor architecture have not been widely investigated as a result of the lack of available p-type wide-bandgap inorganic semiconductors. Here, we present a wide-bandgap metal-oxide n-type semiconductor that is able to sustain a strong p-type inversion layer using a high-dielectric-constant barrier dielectric when sourced with a heterogeneous p-type material. A demonstration of the utility of the inversion layer was also investigated and utilized as the controlling element in a unique tunnelling junction transistor. The resulting electrical performance of this prototype device exhibited among the highest reported current, power and transconductance densities. Further utilization of the p-type inversion layer is critical to unlocking the previously unexplored capability of metal-oxide thin-film transistors, such applications with next-generation display switches, sensors, radio frequency circuits and power converters.

  11. Sustained hole inversion layer in a wide-bandgap metal-oxide semiconductor with enhanced tunnel current

    Science.gov (United States)

    Shoute, Gem; Afshar, Amir; Muneshwar, Triratna; Cadien, Kenneth; Barlage, Douglas

    2016-02-01

    Wide-bandgap, metal-oxide thin-film transistors have been limited to low-power, n-type electronic applications because of the unipolar nature of these devices. Variations from the n-type field-effect transistor architecture have not been widely investigated as a result of the lack of available p-type wide-bandgap inorganic semiconductors. Here, we present a wide-bandgap metal-oxide n-type semiconductor that is able to sustain a strong p-type inversion layer using a high-dielectric-constant barrier dielectric when sourced with a heterogeneous p-type material. A demonstration of the utility of the inversion layer was also investigated and utilized as the controlling element in a unique tunnelling junction transistor. The resulting electrical performance of this prototype device exhibited among the highest reported current, power and transconductance densities. Further utilization of the p-type inversion layer is critical to unlocking the previously unexplored capability of metal-oxide thin-film transistors, such applications with next-generation display switches, sensors, radio frequency circuits and power converters.

  12. Fast, Large-Area, Wide-Bandgap UV Photodetector for Cherenkov Light Detection

    Science.gov (United States)

    Wrbanek, John D.; Wrbanek, Susan Y.

    2013-01-01

    Due to limited resources available for power and space for payloads, miniaturizing and integrating instrumentation is a high priority for addressing the challenges of manned and unmanned deep space missions to high Earth orbit (HEO), near Earth objects (NEOs), Lunar and Martian orbits and surfaces, and outer planetary systems, as well as improvements to high-altitude aircraft safety. New, robust, and compact detectors allow future instrumentation packages more options in satisfying specific mission goals. A solid-state ultraviolet (UV) detector was developed with a theoretical fast response time and large detection area intended for application to Cherenkov detectors. The detector is based on the wide-bandgap semiconductor zinc oxide (ZnO), which in a bridge circuit can detect small, fast pulses of UV light like those required for Cherenkov detectors. The goal is to replace the role of photomultiplier tubes in Cherenkov detectors with these solid-state devices, saving on size, weight, and required power. For improving detection geometry, a spherical detector to measure high atomic number and energy (HZE) ions from any direction has been patented as part of a larger space radiation detector system. The detector will require the development of solid-state UV photodetectors fast enough (2 ns response time or better) to detect the shockwave of Cherenkov light emitted as the ions pass through a quartz, sapphire, or acrylic ball. The detector must be small enough to fit in the detector system structure, but have an active area large enough to capture enough Cherenkov light from the sphere. The detector is fabricated on bulk single-crystal undoped ZnO. Inter - digitated finger electrodes and contact pads are patterned via photolithography, and formed by sputtered metal of silver, platinum, or other high-conductivity metal.

  13. Alternative approaches of SiC & related wide bandgap materials in light emitting & solar cell applications

    Science.gov (United States)

    Wellmann, Peter; Syväjärvi, Mikael; Ou, Haiyan

    2014-03-01

    understanding the device performance. In relation to these, the surface pre-treatment and deposition technique can influence the reliability and electric field durability of the system, and relate to interface and near interface regions between the dielectric and semiconductor which can host electronic defects which change the surface potential, reduces mobility and enhance the recombination of charge carriers. At the end, materials for energy savings are critically needed. At the symposium ''Alternative approaches of SiC and related wide bandgap materials in light emitting and solar cell applications'', held at the E-MRS 2013 Spring meeting, 27-31 May, 2013 Strasbourg, France, a variety of concepts were presented. In this publication, a selection is presented that represents a range of issues from materials to reliability processing to system approaches. Acknowledgements: Technical support during preparation of the symposium program and proceedings by Saskia Schimmel is greatly acknowledged.

  14. Wide-Band Spatially Tunable Photonic Bandgap in Visible Spectral Range and Laser based on a Polymer Stabilized Blue Phase

    OpenAIRE

    2016-01-01

    This work successfully develops a largely-gradient-pitched polymer-stabilized blue phase (PSBP) photonic bandgap (PBG) device with a wide-band spatial tunability in nearly entire visible region within a wide blue phase (BP) temperature range including room temperature. The device is fabricated based on the reverse diffusion of two injected BP-monomer mixtures with a low and a high chiral concentrations and afterwards through UV-curing. This gradient-pitched PSBP can show a rainbow-like reflec...

  15. On the Integration of Wide Band-gap Semiconductors in Single Phase Boost PFC Converters

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos

    diodes, or the introduction of silicon carbide (SiC) diodes, provided large steps in miniaturization and efficiency improvement of switched mode power converters. Gallium nitride (GaN) and SiC semiconductor devices have already been around for some years. The first one proliferated due to the necessity...

  16. Nanosecond laser-induced periodic surface structures on wide band-gap semiconductors

    Science.gov (United States)

    Sanz, Mikel; Rebollar, Esther; Ganeev, Rashid A.; Castillejo, Marta

    2013-08-01

    In this work we report on fabrication of laser-induced periodic surface structures (LIPSS) on different semiconductors with bandgap energies in the range of 1.3-3.3 eV and melting temperatures from 1100 to 2700 °C. In particular, InP, GaAs, GaP and SiC were irradiated in air with nanosecond pulses using a linearly polarized laser beam at 266 nm (6 ns pulse width). The nanostructures, inspected by atomic force microscopy, are produced upon multiple pulse irradiation at fluences near the ablation threshold. LIPSS are perpendicular to the laser polarization direction and their period is of the order of the irradiation wavelength. It was observed that the accumulative effect of both fluence and number of pulses needed for LIPSS formation increased with the material bandgap energy. These results, together with estimations of surface temperature increase, are discussed with reference to the semiconductor electrical, optical and thermal properties.

  17. Nanosecond laser-induced periodic surface structures on wide band-gap semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, Mikel, E-mail: mikel.sanz@iqfr.csic.es [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Rebollar, Esther [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Ganeev, Rashid A. [Voronezh State University, Voronezh 394006 (Russian Federation); Castillejo, Marta [Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain)

    2013-08-01

    In this work we report on fabrication of laser-induced periodic surface structures (LIPSS) on different semiconductors with bandgap energies in the range of 1.3–3.3 eV and melting temperatures from 1100 to 2700 °C. In particular, InP, GaAs, GaP and SiC were irradiated in air with nanosecond pulses using a linearly polarized laser beam at 266 nm (6 ns pulse width). The nanostructures, inspected by atomic force microscopy, are produced upon multiple pulse irradiation at fluences near the ablation threshold. LIPSS are perpendicular to the laser polarization direction and their period is of the order of the irradiation wavelength. It was observed that the accumulative effect of both fluence and number of pulses needed for LIPSS formation increased with the material bandgap energy. These results, together with estimations of surface temperature increase, are discussed with reference to the semiconductor electrical, optical and thermal properties.

  18. Wide bandgap mesoporous hematite nanowire bundles as a sensitive and rapid response ethanol sensor

    Science.gov (United States)

    Li, Danping; Zhang, Beibei; Xu, Jingcai; Han, Yanbing; Jin, Hongxiao; Jin, Dingfeng; Peng, Xiaoling; Ge, Hongliang; Wang, Xinqing

    2016-05-01

    In this study, α-Fe2O3 nanowires were synthesized using mesoporous SBA-15 silica as the hard templates with the nanocasting method, and then mesoporous α-Fe2O3 nanowire bundles (NWBs) were separated from the well-dispersed α-Fe2O3 nanowires (NWs) by the centrifugation technique. Both samples were characterized by x-ray diffraction, transmission electron microscopy (TEM), nitrogen adsorption/desorption isotherm and UV-vis spectra. All results indicated that the α-Fe2O3 NWBs with mesoporous structure presented a higher BET surface area (95 m2 g-1) and wider bandgap (2.08 eV) than those of α-Fe2O3 NWs (32 m2 g-1 and 1.91 eV). The bandgap of α-Fe2O3 NWBs was in accordance with the bulk α-Fe2O3, while the BET surface area was much higher. The results from the gas-sensing measurement revealed that the α-Fe2O3 NWBs based gas sensor exhibited a high sensitivity of 21.7, fast response-recovery of 7.5 s and 1 s, and good selectivity to ethanol at 340 °C. The sensitivity (21.7) for ethanol of α-Fe2O3 NWBs was much better than that of the α-Fe2O3 NWs (12.2), which should be attributed to the higher BET surface area and wider bandgap of α-Fe2O3 NWBs.

  19. Structural, optical, and electronic studies of wide-bandgap lead halide perovskites

    KAUST Repository

    Comin, Riccardo

    2015-01-01

    © The Royal Society of Chemistry 2015. We investigate the family of mixed Br/Cl organolead halide perovskites which enable light emission in the blue-violet region of the visible spectrum. We report the structural, optical and electronic properties of this air-stable family of perovskites, demonstrating full bandgap tunability in the 400-550 nm range and enhanced exciton strength upon Cl substitution. We complement this study by tracking the evolution of the band levels across the gap, thereby providing a foundational framework for future optoelectronic applications of these materials.

  20. Wide bandgap BaSnO3 films with room temperature conductivity exceeding 104 S cm-1

    Science.gov (United States)

    Prakash, Abhinav; Xu, Peng; Faghaninia, Alireza; Shukla, Sudhanshu; Ager, Joel W.; Lo, Cynthia S.; Jalan, Bharat

    2017-05-01

    Wide bandgap perovskite oxides with high room temperature conductivities and structural compatibility with a diverse family of organic/inorganic perovskite materials are of significant interest as transparent conductors and as active components in power electronics. Such materials must also possess high room temperature mobility to minimize power consumption and to enable high-frequency applications. Here, we report n-type BaSnO3 films grown using hybrid molecular beam epitaxy with room temperature conductivity exceeding 104 S cm-1. Significantly, these films show room temperature mobilities up to 120 cm2 V-1 s-1 even at carrier concentrations above 3 × 1020 cm-3 together with a wide bandgap (3 eV). We examine the mobility-limiting scattering mechanisms by calculating temperature-dependent mobility, and Seebeck coefficient using the Boltzmann transport framework and ab-initio calculations. These results place perovskite oxide semiconductors for the first time on par with the highly successful III-N system, thereby bringing all-transparent, high-power oxide electronics operating at room temperature a step closer to reality.

  1. Sensing Performance Study of SiC, a Wide Bandgap Semiconductor Material Platform for Surface Plasmon Resonance Sensor

    Directory of Open Access Journals (Sweden)

    Wei Du

    2015-01-01

    Full Text Available The sensing properties of a surface plasmon resonance (SPR based waveguide sensor on a wide bandgap semiconductor, silicon carbide (SiC, were studied. Compared to other waveguide sensors, the large bandgap energy of SiC material allows the sensor to operate in the visible and near infrared wavelength range, while the SPR effect by a thin gold film is expected to improve the sensitivity. The confinement factor of the sensor at various wavelengths of the incident light and refractive index of the analyte were investigated using an effective index method. Since the change of analyte type and concentration is reflected by the change of refractive index, the sensing performance can be evaluated by the shift of resonant wavelength from the confinement factor spectrum at different refractive index. The results show that the shift of resonant wavelength demonstrates linear characteristics. A sensitivity of 1928 nm/RIU (refractive index unit shift could be obtained from the refractive index of 1.338~1.348 which attracts research interests because most biological analytes are in this range.

  2. A wide bandgap silicon carbide (SiC) gate driver for high-temperature and high-voltage applications

    Energy Technology Data Exchange (ETDEWEB)

    Lamichhane, Ranjan [University of Arkansas; Ericson, Milton Nance [ORNL; Frank, Steven Shane [ORNL; BRITTONJr., CHARLES L. [Oak Ridge National Laboratory (ORNL); Marlino, Laura D [ORNL; Mantooth, Alan [University of Arkansas; Francis, Matt [APEI, Inc.; Shepherd, Dr. Paul [University of Arkansas; Glover, Dr. Michael [University of Arkansas; Podar, Mircea [ORNL; Perez, M [University of Arkansas; Mcnutt, Tyler [APEI, Inc.; Whitaker, Mr. Bret [APEI, Inc.; Cole, Mr. Zach [APEI, Inc.

    2014-01-01

    Limitations of silicon (Si) based power electronic devices can be overcome with Silicon Carbide (SiC) because of its remarkable material properties. SiC is a wide bandgap semiconductor material with larger bandgap, lower leakage currents, higher breakdown electric field, and higher thermal conductivity, which promotes higher switching frequencies for high power applications, higher temperature operation, and results in higher power density devices relative to Si [1]. The proposed work is focused on design of a SiC gate driver to drive a SiC power MOSFET, on a Cree SiC process, with rise/fall times (less than 100 ns) suitable for 500 kHz to 1 MHz switching frequency applications. A process optimized gate driver topology design which is significantly different from generic Si circuit design is proposed. The ultimate goal of the project is to integrate this gate driver into a Toyota Prius plug-in hybrid electric vehicle (PHEV) charger module. The application of this high frequency charger will result in lighter, smaller, cheaper, and a more efficient power electronics system.

  3. Ultra-wide bandgap beta-Ga2O3 for deep-UV solar blind photodetectors(Conference Presentation)

    Science.gov (United States)

    Rafique, Subrina; Han, Lu; Zhao, Hongping

    2017-03-01

    Deep-ultraviolet (DUV) photodetectors based on wide bandgap (WB) semiconductor materials have attracted strong interest because of their broad applications in military surveillance, fire detection and ozone hole monitoring. Monoclinic β-Ga2O3 with ultra-wide bandgap of 4.9 eV is a promising candidate for such application because of its high optical transparency in UV and visible wavelength region, and excellent thermal and chemical stability at elevated temperatures. Synthesis of high qualityβ-Ga2O3 thin films is still at its early stage and knowledge on the origins of defects in this material is lacking. The conventional epitaxy methods used to grow β-Ga2O3 thin films such as molecular beam epitaxy (MBE) and metal organic chemical vapor deposition (MOCVD) still face great challenges such as limited growth rate and relatively high defects levels. In this work, we present the growth of β-Ga2O3 thin films on c-plane (0001) sapphire substrate by our recently developed low pressure chemical vapor deposition (LPCVD) method. The β-Ga2O3 thin films synthesized using high purity metallic gallium and oxygen as the source precursors and argon as carrier gas show controllable N-type doping and high carrier mobility. Metal-semiconductor-metal (MSM) photodetectors (PDs) were fabricated on the as-grown β-Ga2O3 thin films. Au/Ti thin films deposited by e-beam evaporation served as the contact metals. Optimization of the thin film growth conditions and the effects of thermal annealing on the performance of the PDs were investigated. The responsivity of devices under 250 nm UV light irradiation as well as dark light will be characterized and compared.

  4. High Efficiency Three-phase Power Factor Correction Rectifier using Wide Band-Gap Devices

    DEFF Research Database (Denmark)

    Kouchaki, Alireza

    Improving the conversion efficiency of power factor correction (PFC) rectifiers has become compelling due to their wide applications such as adjustable speed drives, uninterruptible power supplies (UPS), and battery chargers for electric vehicles (EVs). The attention to PFCs has increased even more...... since grid regulations have become stricter in terms of injected harmonic and power quality. Therefore, improving the efficiency and the power quality of PFCs are the main objectives of this PhD work. New wide band gap (WBG) power switches have better switching characteristics in comparison with silicon...... power devices. Therefore, the PFC switching frequency using WBG devices can potentially be increased. This advantage helps the reactive components to be reduced in size. However, it also brings challenges such as identifying a proper material for inductive components that has lower loss and layout...

  5. High Efficiency Three-phase Power Factor Correction Rectifier using Wide Band-Gap Devices

    OpenAIRE

    2016-01-01

    Improving the conversion efficiency of power factor correction (PFC) rectifiers has become compelling due to their wide applications such as adjustable speed drives, uninterruptible power supplies (UPS), and battery chargers for electric vehicles (EVs). The attention to PFCs has increased even more since grid regulations have become stricter in terms of injected harmonic and power quality. Therefore, improving the efficiency and the power quality of PFCs are the main objectives of this PhD wo...

  6. Development of a Wide Bandgap Cell for Thin Film Tandem Solar Cells: Final Technical Report, 6 November 2003 - 5 January 2007

    Energy Technology Data Exchange (ETDEWEB)

    Shafarman, W.; McCandless, B.

    2008-08-01

    The objective of this research program was to develop approaches for a transparent wide-bandgap cell to be used in a thin-film tandem polycrystalline solar cell that can ultimately attain 25% efficiency. Specific goals included the research and development of Cu(InGa)(SeS)2 and Cd1-xZnxTe alloys with a bandgap from 1.5 to 1.8 eV, demonstrating the potential of a 15% cell efficiency with a transparent contact, and supporting the High Performance PV Program. This Final Report presents results that emphasize the 3rd phase of the program.

  7. Wide Band-Gap Semiconductors. 1991 Materials Research Society Symposium Proceedings

    Science.gov (United States)

    1992-09-01

    Fisica . TU aivc ida (sit,~le AvSeiro, 3800) Aveiroi. PO()RT’UGCAL. A13IST H ACT WideI-’-I aild gap II-V\\I sui’liicoildi c tars haive dlirect lanclgaps... Fisica , Politacnico -C. so Duca degli Abruzzi 24, 10129 lorino (Italy) Elettrorava S.p.A., 10040 Savonera loririi (Italy) Amorphous and...Rustagi, Phys. Rev. B 35, 4098 (1987). 4. Y. Kayanuma, Phys. Rev. B 38, 9797 (1988). 5. M.V. Rama Krishna and R.A. Friesner, Phys. Rev. Lett. 67, 629

  8. Photoluminescence efficiency in wide-band-gap iii-nitride semiconductors and their heterostructures

    OpenAIRE

    Jurkevičius, Jonas

    2016-01-01

    This doctoral thesis presents a study of photoluminescence efficiency in wide-band-gap III-nitride semiconductors. The work is aimed at investigation of efficiency-limiting processes and causes of efficiency droop in AlGaN epilayers and multiple quantum wells. Also, light emission in BGaN epilayers, which are prospective in view of lattice matching in AlGaN-based heterostructures, is investigated. Three mechanisms are revealed to be important for the droop in AlGaN and the dependence of their...

  9. High Efficiency Three-phase Power Factor Correction Rectifier using Wide Band-Gap Devices

    DEFF Research Database (Denmark)

    Kouchaki, Alireza

    2016-01-01

    Improving the conversion efficiency of power factor correction (PFC) rectifiers has become compelling due to their wide applications such as adjustable speed drives, uninterruptible power supplies (UPS), and battery chargers for electric vehicles (EVs). The attention to PFCs has increased even more...... power devices. Therefore, the PFC switching frequency using WBG devices can potentially be increased. This advantage helps the reactive components to be reduced in size. However, it also brings challenges such as identifying a proper material for inductive components that has lower loss and layout....... Therefore, current controllers are also important to be investigated in this project. In this PhD research work, a comprehensive design of a two-level three-phase PFC rectifier using silicon-carbide (SiC) switches to achieve high efficiency is presented. The work is divided into two main parts: 1) Optimum...

  10. Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects

    Science.gov (United States)

    Otrokov, M. M.; Menshchikova, T. V.; Vergniory, M. G.; Rusinov, I. P.; Vyazovskaya, A. Yu; Koroteev, Yu M.; Bihlmayer, G.; Ernst, A.; Echenique, P. M.; Arnau, A.; Chulkov, E. V.

    2017-06-01

    An interplay of spin-orbit coupling and intrinsic magnetism is known to give rise to the quantum anomalous Hall and topological magnetoelectric effects under certain conditions. Their realization could open access to low power consumption electronics as well as many fundamental phenomena like image magnetic monopoles, Majorana fermions and others. Unfortunately, being realized very recently, these effects are only accessible at extremely low temperatures and the lack of appropriate materials that would enable the temperature increase is a most severe challenge. Here, we propose a novel material platform with unique combination of properties making it perfectly suitable for the realization of both effects at elevated temperatures. The key element of the computational material design is an extension of a topological insulator (TI) surface by a thin film of ferromagnetic insulator, which is both structurally and compositionally compatible with the TI. Following this proposal we suggest a variety of specific systems and discuss their numerous advantages, in particular wide band gaps with the Fermi level located in the gap.

  11. Research Progress on Hydrothermal Growth of Wide Bandgap ZnO Single Crystal%水热法生长宽禁带氧化锌单晶研究进展

    Institute of Scientific and Technical Information of China (English)

    王金亮; 任孟德; 左艳彬; 何小玲; 张昌龙

    2015-01-01

    This article lists the development history and application prospect of the third generation of semiconductor material-wide bandgap zinc oxide single crystal,and sum-marizes the structural performance,application direction and preparation technique of ZnO.The article also introduces the distinct advantages of wide bandgap zinc oxide single crystal compared to gallium nitride which are as follow:more powerful exciton binding energy (60 mev),lower lasing threshold,very likely to achieve ultraviolet laser of high efficiency and low threshold under indoor temperature.Compared to the very successful gallium nitride,the cost of the raw material for ZnO is extremely low and it is environ-mental friendly and easy for synthesis.For the moment,the difficult and hot issues of the research on ZnO semiconductor material focus on the research and development of p-type doping materials and devices.Excellent physical properties of zinc oxide have made it a new generation of mainstream broadband gap semiconductor materials.Growth of zinc oxide single crystal of large size and high crystallization quality has a great significance for both of basic research and practical application.The method and techical advantage of hy-drothermal synthesis of wide bandgap zinc oxide single crystal have been specially intro-duced in this article which demonstrates our latest research development of hydrothermal synthesis of wide bandgap zinc oxide single crystal.%罗列了第三代半导体材料宽禁带氧化锌材料的发展历史与应用前景,总结了 ZnO 的结构性能、应用方向和制备方法,介绍了宽禁带氧化锌半导体晶体相对于氮化镓材料具有的显著优势:即具有更大的激子结合能(60meV),更低的激射阀值,有望实现室温下高效低阈值的紫外激光。氧化锌相比已获得巨大成功的氮化镓来说其原材料成本极低,环境友好,合成技术门槛低。目前氧化锌半导体材料的研

  12. Influence of grain boundary modification on limited performance of wide bandgap Cu(In,Ga)Se2 solar cells

    Science.gov (United States)

    Raghuwanshi, M.; Cadel, E.; Pareige, P.; Duguay, S.; Couzinie-Devy, F.; Arzel, L.; Barreau, N.

    2014-07-01

    The reason why so-called wide-bandgap CuIn1-xGaxSe2 (CIGSe with x > 0.4) based solar cells show hindered performance compared with theoretical expectations is still a matter of debate. In the present Letter, atom probe tomography studies of CuIn1-xGaxSe2 polycrystalline thin films with x varying from 0 to 1 are reported. These investigations confirm that the grain boundaries (GBs) of low gallium containing (x CIGSe layers are Cu-depleted compared with grains interior (GI). In contrast, it is observed that the GBs of widest band gap CIGSe films (x > 0.8) are Cu-enriched compared with GI. For intermediate gallium contents (0.4 < x < 0.8), both types of GBs are detected. This threshold value of 0.4 surprisingly coincides with solar cells output voltage deviation from theoretical expectations, which suggests modifications of GBs properties could participate in the loss of photovoltaic performance.

  13. Influence of grain boundary modification on limited performance of wide bandgap Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Raghuwanshi, M., E-mail: mohit.raghuwanshi@etu.univ-rouen.fr; Cadel, E.; Pareige, P.; Duguay, S. [Groupe de Physique des Materiaux (GPM), UMR 6634 CNRS, Université et INSA de Rouen, Avenue de l' Universite BP 12, 76801 Saint Etienne du Rouvray (France); Couzinie-Devy, F.; Arzel, L.; Barreau, N. [Institut des Materiaux Jean Rouxel (IMN), UMR 6502 CNRS, Université de Nantes, 2 rue de la Houssiniere BP 32229, 44322 Nantes cedex 3 (France)

    2014-07-07

    The reason why so-called wide-bandgap CuIn{sub 1−x}Ga{sub x}Se{sub 2} (CIGSe with x > 0.4) based solar cells show hindered performance compared with theoretical expectations is still a matter of debate. In the present Letter, atom probe tomography studies of CuIn{sub 1−x}Ga{sub x}Se{sub 2} polycrystalline thin films with x varying from 0 to 1 are reported. These investigations confirm that the grain boundaries (GBs) of low gallium containing (x < 0.4) CIGSe layers are Cu-depleted compared with grains interior (GI). In contrast, it is observed that the GBs of widest band gap CIGSe films (x > 0.8) are Cu-enriched compared with GI. For intermediate gallium contents (0.4 < x < 0.8), both types of GBs are detected. This threshold value of 0.4 surprisingly coincides with solar cells output voltage deviation from theoretical expectations, which suggests modifications of GBs properties could participate in the loss of photovoltaic performance.

  14. Screening of inorganic wide-bandgap p-type semiconductors for high performance hole transport layers in organic photovoltaic devices

    Science.gov (United States)

    Ginley, David; Zakutayev, Andriy; Garcia, Andreas; Widjonarko, Nicodemus; Ndione, Paul; Sigdel, Ajaya; Parilla, Phillip; Olson, Dana; Perkins, John; Berry, Joseph

    2011-03-01

    We will report on the development of novel inorganic hole transport layers (HTL) for organic photovoltaics (OPV). All the studied materials belong to the general class of wide-bandgap p-type oxide semiconductors. Potential candidates suitable for HTL applications include SnO, NiO, Cu2O (and related CuAlO2, CuCrO2, SrCu2O4 etc) and Co3O4 (and related ZnCo2O4, NiCo2O4, MgCo2O4 etc.). Materials have been optimized by high-throughput combinatorial approaches. The thin films were deposited by RF sputtering and pulsed laser deposition at ambient and elevated temperatures. Performance of the inorganic HTLs and that of the reference organic PEDOT:PSS HTL were compared by measuring the power conversion efficiencies and spectral responses of the P3HT/PCBM- and PCDTBT/PCBM-based OPV devices. Preliminary results indicate that Co3O4-based HTLs have performance comparable to that of our previously reported NiOs and PEDOT:PSS HTLs, leading to a power conversion efficiency of about 4 percent. The effect of composition and work function of the ternary materials on their performance in OPV devices is under investigation.

  15. Simulation Evidence of Hexagonal-to-Tetragonal ZnSe Structure Transition: A Monolayer Material with a Wide-Range Tunable Direct Bandgap.

    Science.gov (United States)

    Li, Lei; Li, Pengfei; Lu, Ning; Dai, Jun; Zeng, Xiao Cheng

    2015-12-01

    2D material with tunable direct bandgap in the intermediate region (i.e., ≈2-3 eV) is key to the achievement of high efficiency in visible-light optical devices. Herein, a simulation evidence of structure transition of monolayer ZnSe from the experimental pseudohexagonal structure to the tetragonal structure (t-ZnSe) under lateral pressure is shown, suggesting a possible fabrication route to achieve the t-ZnSe monolayer. The as-produced t-ZnSe monolayer exhibits highly tunable bandgap under the biaxial strains, allowing strain engineering of t-ZnSe's bandgap over a wide range of 2-3 eV. Importantly, even under the biaxial strain up to 7%, the t-ZnSe monolayer still keeps its direct-gap property in the desirable range of 2.40-3.17 eV (corresponding to wavelength of green light to ultraviolet). The wide-range tunability of direct bandgap appears to be a unique property of the t-ZnSe monolayer, suggesting its potential application as a light-emitting 2D material in red-green-blue light emission diodes or as complementary light-absorption material in the blue-yellow region for multijunction solar cells. The straddling of the band edge of the t-ZnSe monolayer over the redox potential of water splitting reaction also points to its plausible application for visible-light-driven water splitting.

  16. Type-II InP quantum dots in wide-bandgap InGaP host for intermediate-band solar cells

    Science.gov (United States)

    Tayagaki, Takeshi; Sugaya, Takeyoshi

    2016-04-01

    We demonstrate type-II quantum dots (QDs) with long carrier lifetimes in a wide-bandgap host as a promising candidate for intermediate-band solar cells. Type-II InP QDs are fabricated in a wide-bandgap InGaP host using molecular beam epitaxy. Time-resolved photoluminescence measurements reveal an extremely long carrier lifetime (i.e., greater than 30 ns). In addition, from temperature-dependent PL spectra, we find that the type-II InP QDs form a negligible valence band offset and conduction band offset of ΔEc ≈ 0.35 eV in the InGaP host. Such a type-II confinement potential for InP/InGaP QDs has a significant advantage for realizing efficient two-step photon absorption and suppressed carrier capture in QDs via Auger relaxation.

  17. Mechanical Deformation of Sintered Porous Ag Die Attach at High Temperature and Its Size Effect for Wide-Bandgap Power Device Design

    Science.gov (United States)

    Chen, Chuantong; Nagao, Shijo; Zhang, Hao; Jiu, Jinting; Sugahara, Tohru; Suganuma, Katsuaki; Iwashige, Tomohito; Sugiura, Kazuhiko; Tsuruta, Kazuhiro

    2016-12-01

    The mechanical properties of sintered Ag paste with microporous structure have been investigated by tensile and shear tests, focusing on the temperature-dependent plastic deformation at various temperatures from 25°C to 300°C, corresponding to the target operating temperature range of emerging wide-bandgap semiconductor devices. Specimens were prepared by sintering hybrid Ag paste consisting of microflake and submicron spherical Ag particles, simulating a typical bonding process for power semiconductor die attach. Mechanical tests revealed that the unique microstructure caused a brittle-to-ductile transition at temperature of around 160°C, remarkably lower than that of bulk Ag. The obtained Young's modulus and shear modulus values indicate obvious softening with increasing temperature, together with a remarkable decrease in Poisson's ratio. These plastic behaviors at elevated temperature can be explained based on Coble creep in the microporous network structure. Fracture surfaces after tensile and shear tests indicated unique features on scanning electron microscopy, reflecting the variation in the ductile behavior with the test temperature. Furthermore, these temperature-dependent mechanical parameters were employed in three-dimensional finite-element analysis of the thermomechanical stress distribution in wide-bandgap semiconductor module structures including Ag paste die attach of different sizes. Detailed thermal stress analysis enabled precise evaluation of the packaging design for wide-bandgap semiconductor modules for use in high-temperature applications.

  18. Mechanical Deformation of Sintered Porous Ag Die Attach at High Temperature and Its Size Effect for Wide-Bandgap Power Device Design

    Science.gov (United States)

    Chen, Chuantong; Nagao, Shijo; Zhang, Hao; Jiu, Jinting; Sugahara, Tohru; Suganuma, Katsuaki; Iwashige, Tomohito; Sugiura, Kazuhiko; Tsuruta, Kazuhiro

    2017-03-01

    The mechanical properties of sintered Ag paste with microporous structure have been investigated by tensile and shear tests, focusing on the temperature-dependent plastic deformation at various temperatures from 25°C to 300°C, corresponding to the target operating temperature range of emerging wide-bandgap semiconductor devices. Specimens were prepared by sintering hybrid Ag paste consisting of microflake and submicron spherical Ag particles, simulating a typical bonding process for power semiconductor die attach. Mechanical tests revealed that the unique microstructure caused a brittle-to-ductile transition at temperature of around 160°C, remarkably lower than that of bulk Ag. The obtained Young's modulus and shear modulus values indicate obvious softening with increasing temperature, together with a remarkable decrease in Poisson's ratio. These plastic behaviors at elevated temperature can be explained based on Coble creep in the microporous network structure. Fracture surfaces after tensile and shear tests indicated unique features on scanning electron microscopy, reflecting the variation in the ductile behavior with the test temperature. Furthermore, these temperature-dependent mechanical parameters were employed in three-dimensional finite-element analysis of the thermomechanical stress distribution in wide-bandgap semiconductor module structures including Ag paste die attach of different sizes. Detailed thermal stress analysis enabled precise evaluation of the packaging design for wide-bandgap semiconductor modules for use in high-temperature applications.

  19. Development of wide-band gap indium gallium nitride solar cells for high-efficiency photovoltaics

    Science.gov (United States)

    Jani, Omkar K.

    Main objective of the present work is to develop wide-band gap InGaN solar cells in the 2.4--2.9 eV range that can be an integral component of photovoltaic devices to achieve efficiencies greater than 50%. The III-nitride semiconductor material system, which consists of InN, GaN, AlN and their alloys, offers a substantial potential in developing ultra-high efficiency photovoltaics mainly due to its wide range of direct-band gap, and other electronic, optical and mechanical properties. However, this novel InGaN material system poses challenges from theoretical, as well as technological standpoints, which are further extended into the performance of InGaN devices. In the present work, these challenges are identified and overcome individually to build basic design blocks, and later, optimized comprehensively to develop high-performance InGaN solar cells. One of the major challenges from the theoretical aspect arises due to unavailability of a suitable modeling program for InGaN solar cells. As spontaneous and piezoelectric polarization can substantially influence transport of carriers in the III-nitrides, these phenomena are studied and incorporated at a source-code level in the PC1D simulation program to accurately model InGaN solar cells. On the technological front, InGaN with indium compositions up to 30% (2.5 eV band gap) are developed for photovoltaic applications by controlling defects and phase separation using metal-organic chemical vapor deposition. InGaN with band gap of 2.5 eV is also successfully doped to achieve acceptor carrier concentration of 1018 cm-3. A robust fabrication scheme for III-nitride solar cells is established to increase reliability and yield; various schemes including interdigitated grid contact and current spreading contacts are developed to yield low-resistance Ohmic contacts for InGaN solar cells. Preliminary solar cells are developed using a standard design to optimize the InGaN material, where the band gap of InGaN is progressively

  20. Low Temperature Locally-Controlled Growth of Wide Bandgap Nitride and Diamond Films via Plasmon Resonance-Excited Kinetic Processes

    Science.gov (United States)

    2015-06-18

    Lois Sierra MS 211-15 California Institute of Technology Pasadena, CA 91125...rate   of   1Hz,   which   we   previously   reported   to   result   in   a   mixed   composition   of   GaN/Ga2O3...Figure  5b.       We  note  that  XPS  characterization  only  probes  the  elemental   composition  of  the

  1. Novel molecular host materials based on carbazole/PO hybrids with wide bandgap via unique linkages for solution-processed blue phosphorescent OLEDs

    Science.gov (United States)

    Ye, Hua; Zhou, Kaifeng; Wu, Hongyu; Chen, Kai; Xie, Gaozhan; Hu, Jingang; Yan, Guobing; Ma, Songhua; Su, Shi-Jian; Cao, Yong

    2016-10-01

    A series of novel molecules with wide bandgap based on electron-withdrawing diphenyl phosphine oxide units and electron-donating carbazolyl moieties through insulated unique linkages of flexible chains terminated by oxygen or sulfur atoms as solution-processable host materials were successfully synthesized for the first time, and their thermal, photophysical, and electrochemical properties were studied thoroughly. These materials possess high triplet energy levels (ET, 2.76-2.77 eV) due to the introduction of alkyl chain to interrupt the conjugation between electron-donor and electron-acceptor. Such high ET could effectively curb the energy from phosphorescent emitter transfer to the host molecules and thus assuring the emission of devices was all from the blue phosphorescent emitter iridium (III) bis [(4,6-difluorophenyl)-pyridinate-N,C2‧]picolinate (FIrpic). Among them, the solution-processed device based on CBCR6OPO without extra vacuum thermal-deposited hole-blocking layer and electron-transporting layer showed the highest maximum current efficiency (CEmax) of 4.16 cd/A. Moreover, the device presented small efficiency roll-off with current efficiency (CE) of 4.05 cd/A at high brightness up to 100 cd/m2. Our work suggests the potential applications of the solution-processable materials with wide bandgap in full-color flat-panel displays and organic lighting.

  2. Growth of Wide-Bandgap Nanocrystalline Silicon Carbide Films by HWCVD: Influence of Filament Temperature on Structural and Optoelectronic Properties

    Science.gov (United States)

    Jha, Himanshu S.; Yadav, Asha; Singh, Mukesh; Kumar, Shailendra; Agarwal, Pratima

    2015-03-01

    Silicon carbide (SiC) thin films have been deposited using a hot-wire chemical vapor deposition technique on quartz substrates with a mixture of silane, methane, and hydrogen gases as precursors at a reasonably high deposition rate of approximately 15 nm/min to 50 nm/min. The influence of the filament temperature ( T F) on the structural, optical, and electrical properties of the SiC film has been investigated using x-ray diffraction, Raman scattering, Fourier-transform infrared spectroscopy, x-ray photoelectron spectroscopy, ultraviolet-visible-near infrared transmission spectroscopy, and dark conductivity ( σ d) studies. Films deposited at low T F (1800°C to 1900°C) are amorphous in nature with high density of Si-Si bonds, whereas high- T F (≥2000°C) films are nanocrystalline embedded in an amorphous SiC matrix with higher concentration of Si-C bonds and negligible concentration of Si-Si bonds. The bandgap ( E g) varies from 2.5 eV to 3.1 eV and σ d (50°C) from ˜10-9 Ω-1 cm-1 to 10-1 Ω-1 cm-1 as T F is increased from 1900°C to 2200°C. This increase in E g and σ d is due to microstructural changes and unintentional oxygen doping of the films.

  3. Wide Band-Gap 3,4-Difluorothiophene-Based Polymer with 7% Solar Cell Efficiency: an Alternative to P3HT

    KAUST Repository

    Wolf, Jannic Sebastian

    2015-05-27

    We report on a wide band-gap polymer donor composed of benzo[1,2-b:4,5-b\\']dithiophene (BDT) and 3,4-difluorothiophene ([2F]T) units (Eopt ~2.1 eV), and show that the fluorinated analog PBDT[2F]T performs significantly better than its non-fluorinated counterpart PBDT[2H]T in BHJ solar cells with PC71BM. While control P3HT- and PBDT[2H]T-based devices yield PCEs of ca. 4% and 3% (Max.) respectively, PBDT[2F]T-based devices reach PCEs of ca. 7%, combining a large Voc of ca. 0.9 V and short-circuit current values (ca. 10.7 mA/cm2) comparable to those of the best P3HT-based control devices.

  4. Wide-bandgap nonlinear crystal LiGaSsub>2sub> for femtosecond mid-infrared spectroscopy with chirped-pulse upconversion.

    Science.gov (United States)

    Nakamura, Ryosuke; Inagaki, Yoshizumi; Hata, Hidefumi; Hamada, Norio; Umemura, Nobuhiro; Kamimura, Tomosumi

    2016-11-20

    Femtosecond time-resolved mid-infrared (MIR) spectroscopy based on chirped-pulse upconversion is a promising method for observing molecular vibrational dynamics. A quantitative study on nonlinear media for upconversion is still essential for wide applications, particularly at the frequencies below 2000  cm-1. We evaluate wide-bandgap nonlinear crystals of Li-containing ternary chalcogenides based on their performance as the upconversion medium for femtosecond MIR spectroscopy. The upconversion efficiency is measured as a function of the MIR pulse frequency and the chirped pulse energy. LiGaSsub>2sub> is found to be an efficient crystal for the upconversion of MIR pulses in a wide frequency range of 1100-2700  cm-1, especially below 2000  cm-1. By using LiGaSsub>2sub> as an efficient upconversion crystal, we develop a MIR pump-probe spectroscopy system with a spectral resolution of 2.5  cm-1, a time resolution of 0.2 ps, and a probe window of 120  cm-1. Vibrational relaxation dynamics of CO stretching modes of Mnsub>2sub>(CO)sub>10sub> in cyclohexane and bovine serum albumin in Dsub>2sub>O are demonstrated with a high signal-to-noise ratio.

  5. Two-dimensional gallium nitride realized via graphene encapsulation

    Science.gov (United States)

    Al Balushi, Zakaria Y.; Wang, Ke; Ghosh, Ram Krishna; Vilá, Rafael A.; Eichfeld, Sarah M.; Caldwell, Joshua D.; Qin, Xiaoye; Lin, Yu-Chuan; Desario, Paul A.; Stone, Greg; Subramanian, Shruti; Paul, Dennis F.; Wallace, Robert M.; Datta, Suman; Redwing, Joan M.; Robinson, Joshua A.

    2016-11-01

    The spectrum of two-dimensional (2D) and layered materials `beyond graphene’ offers a remarkable platform to study new phenomena in condensed matter physics. Among these materials, layered hexagonal boron nitride (hBN), with its wide bandgap energy (~5.0-6.0 eV), has clearly established that 2D nitrides are key to advancing 2D devices. A gap, however, remains between the theoretical prediction of 2D nitrides `beyond hBN’ and experimental realization of such structures. Here we demonstrate the synthesis of 2D gallium nitride (GaN) via a migration-enhanced encapsulated growth (MEEG) technique utilizing epitaxial graphene. We theoretically predict and experimentally validate that the atomic structure of 2D GaN grown via MEEG is notably different from reported theory. Moreover, we establish that graphene plays a critical role in stabilizing the direct-bandgap (nearly 5.0 eV), 2D buckled structure. Our results provide a foundation for discovery and stabilization of 2D nitrides that are difficult to prepare via traditional synthesis.

  6. Analysis of doping concentration and composition in wide bandgap AlGaN:Si by wavelength dispersive x-ray spectroscopy

    Science.gov (United States)

    Kusch, Gunnar; Mehnke, Frank; Enslin, Johannes; Edwards, Paul R.; Wernicke, Tim; Kneissl, Michael; Martin, Robert W.

    2017-03-01

    Detailed knowledge of the dopant concentration and composition of wide band gap Al x Ga{}1-x{{N}} layers is of crucial importance for the fabrication of ultra violet light emitting diodes. This paper demonstrates the capabilities of wavelength dispersive x-ray (WDX) spectroscopy in accurately determining these parameters and compares the results with those from high resolution x-ray diffraction (HR-XRD) and secondary ion mass spectrometry (SIMS). WDX spectroscopy has been carried out on different silicon-doped wide bandgap Al x Ga{}1-x{{N}} samples (x between 0.80 and 1). This study found a linear increase in the Si concentration with the SiH4/group-III ratio, measuring Si concentrations between 3× {10}18 cm‑3 and 2.8× {10}19 cm‑3, while no direct correlation between the AlN composition and the Si incorporation ratio was found. Comparison between the composition obtained by WDX and by HR-XRD showed very good agreement in the range investigated, while comparison of the donor concentration between WDX and SIMS found only partial agreement, which we attribute to a number of effects.

  7. Edge and substrate-induced bandgap in zigzag graphene nanoribbons on the hexagonal nitride boron 8-ZGNR/h-BN(0001

    Directory of Open Access Journals (Sweden)

    V. V. Ilyasov

    2013-09-01

    Full Text Available The results of DFT (GGA-PBEsol and DFT(PBE-D2 study of the band structure of zigzag graphene nanoribbons on hexagonal nitride boron 8-ZGNR/h-BN(0001 are presented, suitable as potential base for new materials for spintronics. It offers a study of regularities in the changes of the valence band electron structure and the induction of the energy gap in the series 8-ZGNR → 8-ZGNR/h-BN(0001 → graphene/h-BN(0001. The peculiarities of the spin state at the Fermi level, the roles of the edge effect and the effect of substrate in formation of the band gap in 8-ZGNR/h-BN(0001 system are discussed. Our calculations shown that vdW-correction plays an important role in the adsorption of GNR on h-BN and results in reduction of the interplanar distances in equilibrium systems ZGNRs/h-BN(0001. As a result of the structural changes we have obtained new values of the energy gap in the 8-ZGNR-AF and 8-ZGNR-AF/h-BN(0001 systems. The paper demonstrates appearance of 600 meV energy gap in the 8-ZGNR/h-BN(0001 interface. The contributions of nanoribbon edges and the substrate in formation of the gap have been differentiated for the first time. The estimations of local magnetic moments on carbon atoms are made. Shown that in case of ferromagnetic ordering substrate presense causes insignificant splitting of the bands. The splitting reached only (14-28 meV. Since the electronic states of a suspended GNR in point (k=π are degenerate near the Fermi level, we can assume that the above splitting in 8-ZGNR/h-BN(0001 is only determined by the contribution of the h-BN(0001 substrate.

  8. Wide wavelength range tunable one-dimensional silicon nitride nano-grating guided mode resonance filter based on azimuthal rotation

    Science.gov (United States)

    Yukino, Ryoji; Sahoo, Pankaj K.; Sharma, Jaiyam; Takamura, Tsukasa; Joseph, Joby; Sandhu, Adarsh

    2017-01-01

    We describe wavelength tuning in a one dimensional (1D) silicon nitride nano-grating guided mode resonance (GMR) structure under conical mounting configuration of the device. When the GMR structure is rotated about the axis perpendicular to the surface of the device (azimuthal rotation) for light incident at oblique angles, the conditions for resonance are different than for conventional GMR structures under classical mounting. These resonance conditions enable tuning of the GMR peak position over a wide range of wavelengths. We experimental demonstrate tuning over a range of 375 nm between 500 nm˜875 nm. We present a theoretical model to explain the resonance conditions observed in our experiments and predict the peak positions with show excellent agreement with experiments. Our method for tuning wavelengths is simpler and more efficient than conventional procedures that employ variations in the design parameters of structures or conical mounting of two-dimensional (2D) GMR structures and enables a single 1D GMR device to function as a high efficiency wavelength filter over a wide range of wavelengths. We expect tunable filters based on this technique to be applicable in a wide range of fields including astronomy and biomedical imaging.

  9. Wide wavelength range tunable one-dimensional silicon nitride nano-grating guided mode resonance filter based on azimuthal rotation

    Directory of Open Access Journals (Sweden)

    Ryoji Yukino

    2017-01-01

    Full Text Available We describe wavelength tuning in a one dimensional (1D silicon nitride nano-grating guided mode resonance (GMR structure under conical mounting configuration of the device. When the GMR structure is rotated about the axis perpendicular to the surface of the device (azimuthal rotation for light incident at oblique angles, the conditions for resonance are different than for conventional GMR structures under classical mounting. These resonance conditions enable tuning of the GMR peak position over a wide range of wavelengths. We experimental demonstrate tuning over a range of 375 nm between 500 nm˜875 nm. We present a theoretical model to explain the resonance conditions observed in our experiments and predict the peak positions with show excellent agreement with experiments. Our method for tuning wavelengths is simpler and more efficient than conventional procedures that employ variations in the design parameters of structures or conical mounting of two-dimensional (2D GMR structures and enables a single 1D GMR device to function as a high efficiency wavelength filter over a wide range of wavelengths. We expect tunable filters based on this technique to be applicable in a wide range of fields including astronomy and biomedical imaging.

  10. Graded bandgap perovskite solar cells

    Science.gov (United States)

    Ergen, Onur; Gilbert, S. Matt; Pham, Thang; Turner, Sally J.; Tan, Mark Tian Zhi; Worsley, Marcus A.; Zettl, Alex

    2017-05-01

    Organic-inorganic halide perovskite materials have emerged as attractive alternatives to conventional solar cell building blocks. Their high light absorption coefficients and long diffusion lengths suggest high power conversion efficiencies, and indeed perovskite-based single bandgap and tandem solar cell designs have yielded impressive performances. One approach to further enhance solar spectrum utilization is the graded bandgap, but this has not been previously achieved for perovskites. In this study, we demonstrate graded bandgap perovskite solar cells with steady-state conversion efficiencies averaging 18.4%, with a best of 21.7%, all without reflective coatings. An analysis of the experimental data yields high fill factors of ~75% and high short-circuit current densities up to 42.1 mA cm-2. The cells are based on an architecture of two perovskite layers (CH3NH3SnI3 and CH3NH3PbI3-xBrx), incorporating GaN, monolayer hexagonal boron nitride, and graphene aerogel.

  11. High-Performance Polymer Solar Cells Based on a Wide-Bandgap Polymer Containing Pyrrolo[3,4-f]benzotriazole-5,7-dione with a Power Conversion Efficiency of 8.63.

    Science.gov (United States)

    Lan, Liuyuan; Chen, Zhiming; Hu, Qin; Ying, Lei; Zhu, Rui; Liu, Feng; Russell, Thomas P; Huang, Fei; Cao, Yong

    2016-09-01

    A novel donor-acceptor type conjugated polymer based on a building block of 4,8-di(thien-2-yl)-6-octyl-2-octyl-5H-pyrrolo[3,4-f]benzotriazole-5,7(6H)-dione (TZBI) as the acceptor unit and 4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo-[1,2-b:4,5-b']dithiophene as the donor unit, named as PTZBIBDT, is developed and used as an electron-donating material in bulk-heterojunction polymer solar cells. The resulting copolymer exhibits a wide bandgap of 1.81 eV along with relatively deep highest occupied molecular orbital energy level of -5.34 eV. Based on the optimized processing conditions, including thermal annealing, and the use of a water/alcohol cathode interlayer, the single-junction polymer solar cell based on PTZBIBDT:PC71BM ([6,6]-phenyl-C71-butyric acid methyl ester) blend film affords a power conversion efficiency of 8.63% with an open-circuit voltage of 0.87 V, a short circuit current of 13.50 mA cm(-2), and a fill factor of 73.95%, which is among the highest values reported for wide-bandgap polymers-based single-junction organic solar cells. The morphology studies on the PTZBIBDT:PC71BM blend film indicate that a fibrillar network can be formed and the extent of phase separation can be mani-pulated by thermal annealing. These results indicate that the TZBI unit is a very promising building block for the synthesis of wide-bandgap polymers for high-performance single-junction and tandem (or multijunction) organic solar cells.

  12. Transparent polycrystalline cubic silicon nitride

    Science.gov (United States)

    Nishiyama, Norimasa; Ishikawa, Ryo; Ohfuji, Hiroaki; Marquardt, Hauke; Kurnosov, Alexander; Taniguchi, Takashi; Kim, Byung-Nam; Yoshida, Hidehiro; Masuno, Atsunobu; Bednarcik, Jozef; Kulik, Eleonora; Ikuhara, Yuichi; Wakai, Fumihiro; Irifune, Tetsuo

    2017-01-01

    Glasses and single crystals have traditionally been used as optical windows. Recently, there has been a high demand for harder and tougher optical windows that are able to endure severe conditions. Transparent polycrystalline ceramics can fulfill this demand because of their superior mechanical properties. It is known that polycrystalline ceramics with a spinel structure in compositions of MgAl2O4 and aluminum oxynitride (γ-AlON) show high optical transparency. Here we report the synthesis of the hardest transparent spinel ceramic, i.e. polycrystalline cubic silicon nitride (c-Si3N4). This material shows an intrinsic optical transparency over a wide range of wavelengths below its band-gap energy (258 nm) and is categorized as one of the third hardest materials next to diamond and cubic boron nitride (cBN). Since the high temperature metastability of c-Si3N4 in air is superior to those of diamond and cBN, the transparent c-Si3N4 ceramic can potentially be used as a window under extremely severe conditions. PMID:28303948

  13. Materials Research Society Symposium Proceedings on Diamond, SiC and Nitride Wide Bandgap Semiconductors Held at San Francisco, California on 4-8 April 1994. Volume 339.

    Science.gov (United States)

    1994-04-08

    363 D. Prasad Beesabathina, K. Fekade, K. Wongchotigul, M.G. Spencer, and L. Salamanca -Riba *NUCLEATION AND STEP...demonstrated MESFET and HEMT devices based on the AlxGal-XN material system [2]. Recent Monte Carlo simulations predict high values for peak velocity...resolved dynamic Monte Carlo simulations for diamond growth. The process of diamond growth was modeled 19 as a Markovian sequence of collisions between gas

  14. Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Stegmaier, M.; Ebert, J.; Pernice, W. H. P., E-mail: wolfram.pernice@kit.edu [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76133 Karlsruhe (Germany); Meckbach, J. M.; Ilin, K.; Siegel, M. [Institute of Micro- und Nanoelectronic Systems, Karlsruhe Institute of Technology, 76187 Karlsruhe (Germany)

    2014-03-03

    Aluminum nitride (AlN) has recently emerged as a promising material for integrated photonics due to a large bandgap and attractive optical properties. Exploiting the wideband transparency, we demonstrate waveguiding in AlN-on-Insulator circuits from near-infrared to ultraviolet wavelengths using nanophotonic components with dimensions down to 40 nm. By measuring the propagation loss over a wide spectral range, we conclude that both scattering and absorption of AlN-intrinsic defects contribute to strong attenuation at short wavelengths, thus providing guidelines for future improvements in thin-film deposition and circuit fabrication.

  15. High-Q aluminum nitride photonic crystal nanobeam cavities

    CERN Document Server

    Pernice, W H P; Schuck, C; Tang, H X

    2012-01-01

    We demonstrate high optical quality factors in aluminum nitride (AlN) photonic crystal nanobeam cavities. Suspended AlN photonic crystal nanobeams are fabricated in sputter-deposited AlN-on-insulator substrates using a self-protecting release process. Employing one-dimensional photonic crystal cavities coupled to integrated optical circuits we measure quality factors up to 146,000. By varying the waveguide-cavity coupling gap, extinction ratios in excess of 15 dB are obtained. Our results open the door for integrated photonic bandgap structures made from a low loss, wide-transparency, nonlinear optical material system.

  16. Quantum emission from hexagonal boron nitride monolayers

    Science.gov (United States)

    Tran, Toan Trong; Bray, Kerem; Ford, Michael J.; Toth, Milos; Aharonovich, Igor

    2016-01-01

    Artificial atomic systems in solids are widely considered the leading physical system for a variety of quantum technologies, including quantum communications, computing and metrology. To date, however, room-temperature quantum emitters have only been observed in wide-bandgap semiconductors such as diamond and silicon carbide, nanocrystal quantum dots, and most recently in carbon nanotubes. Single-photon emission from two-dimensional materials has been reported, but only at cryogenic temperatures. Here, we demonstrate room-temperature, polarized and ultrabright single-photon emission from a colour centre in two-dimensional hexagonal boron nitride. Density functional theory calculations indicate that vacancy-related defects are a probable source of the emission. Our results demonstrate the unprecedented potential of van der Waals crystals for large-scale nanophotonics and quantum information processing.

  17. Wide wavelength range tunable one-dimensional silicon nitride nano-grating guided mode resonance filter based on azimuthal rotation

    OpenAIRE

    Ryoji Yukino; Pankaj K. Sahoo; Jaiyam Sharma; Tsukasa Takamura; Joby Joseph; Adarsh Sandhu

    2017-01-01

    We describe wavelength tuning in a one dimensional (1D) silicon nitride nano-grating guided mode resonance (GMR) structure under conical mounting configuration of the device. When the GMR structure is rotated about the axis perpendicular to the surface of the device (azimuthal rotation) for light incident at oblique angles, the conditions for resonance are different than for conventional GMR structures under classical mounting. These resonance conditions enable tuning of the GMR peak position...

  18. Porous-core honeycomb bandgap THz fiber

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Rasmussen, Henrik K.; Jepsen, Peter Uhd

    2011-01-01

    In this Letter we propose a novel (to our knowledge) porous-core honeycomb bandgap design. The holes of the porous core are the same size as the holes in the surrounding cladding, thereby giving the proposed fiber important manufacturing benefits. The fiber is shown to have a 0:35-THz......-wide fundamental bandgap centered at 1:05 THz. The calculated minimum loss of the fiber is 0:25 dB=cm....

  19. Vertical III-nitride thin-film power diode

    Energy Technology Data Exchange (ETDEWEB)

    Wierer, Jr., Jonathan; Fischer, Arthur J.; Allerman, Andrew A.

    2017-03-14

    A vertical III-nitride thin-film power diode can hold off high voltages (kV's) when operated under reverse bias. The III-nitride device layers can be grown on a wider bandgap template layer and growth substrate, which can be removed by laser lift-off of the epitaxial device layers grown thereon.

  20. Vertical III-nitride thin-film power diode

    Science.gov (United States)

    Wierer, Jr., Jonathan; Fischer, Arthur J.; Allerman, Andrew A.

    2017-03-14

    A vertical III-nitride thin-film power diode can hold off high voltages (kV's) when operated under reverse bias. The III-nitride device layers can be grown on a wider bandgap template layer and growth substrate, which can be removed by laser lift-off of the epitaxial device layers grown thereon.

  1. Single gallium nitride nanowire lasers.

    Science.gov (United States)

    Johnson, Justin C; Choi, Heon-Jin; Knutsen, Kelly P; Schaller, Richard D; Yang, Peidong; Saykally, Richard J

    2002-10-01

    There is much current interest in the optical properties of semiconductor nanowires, because the cylindrical geometry and strong two-dimensional confinement of electrons, holes and photons make them particularly attractive as potential building blocks for nanoscale electronics and optoelectronic devices, including lasersand nonlinear optical frequency converters. Gallium nitride (GaN) is a wide-bandgap semiconductor of much practical interest, because it is widely used in electrically pumped ultraviolet-blue light-emitting diodes, lasers and photodetectors. Recent progress in microfabrication techniques has allowed stimulated emission to be observed from a variety of GaN microstructures and films. Here we report the observation of ultraviolet-blue laser action in single monocrystalline GaN nanowires, using both near-field and far-field optical microscopy to characterize the waveguide mode structure and spectral properties of the radiation at room temperature. The optical microscope images reveal radiation patterns that correlate with axial Fabry-Perot modes (Q approximately 10(3)) observed in the laser spectrum, which result from the cylindrical cavity geometry of the monocrystalline nanowires. A redshift that is strongly dependent on pump power (45 meV microJ x cm(-2)) supports the idea that the electron-hole plasma mechanism is primarily responsible for the gain at room temperature. This study is a considerable advance towards the realization of electron-injected, nanowire-based ultraviolet-blue coherent light sources.

  2. Photonic bandgap fiber bundle spectrometer

    CERN Document Server

    Hang, Qu; Syed, Imran; Guo, Ning; Skorobogatiy, Maksim

    2010-01-01

    We experimentally demonstrate an all-fiber spectrometer consisting of a photonic bandgap fiber bundle and a black and white CCD camera. Photonic crystal fibers used in this work are the large solid core all-plastic Bragg fibers designed for operation in the visible spectral range and featuring bandgaps of 60nm - 180nm-wide. 100 Bragg fibers were chosen to have complimentary and partially overlapping bandgaps covering a 400nm-840nm spectral range. The fiber bundle used in our work is equivalent in its function to a set of 100 optical filters densely packed in the area of ~1cm2. Black and white CCD camera is then used to capture spectrally "binned" image of the incoming light at the output facet of a fiber bundle. To reconstruct the test spectrum from a single CCD image we developed an algorithm based on pseudo-inversion of the spectrometer transmission matrix. We then study resolution limit of this spectroscopic system by testing its performance using spectrally narrow test peaks (FWHM 5nm-25nm) centered at va...

  3. Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Barkou, Stig Eigil; Broeng, Jes; Bjarklev, Anders Overgaard

    1999-01-01

    Photonic bandgap fibers are describes using a new Kagomé cladding structure. These fibers may potentially guide light in low-index regions. Such fibers offer new dispersion properties, and large design flexibility.......Photonic bandgap fibers are describes using a new Kagomé cladding structure. These fibers may potentially guide light in low-index regions. Such fibers offer new dispersion properties, and large design flexibility....

  4. Energy Bandgap and Edge States in an Epitaxially Grown Graphene/h-BN Heterostructure.

    Science.gov (United States)

    Hwang, Beomyong; Hwang, Jeongwoon; Yoon, Jong Keon; Lim, Sungjun; Kim, Sungmin; Lee, Minjun; Kwon, Jeong Hoon; Baek, Hongwoo; Sung, Dongchul; Kim, Gunn; Hong, Suklyun; Ihm, Jisoon; Stroscio, Joseph A; Kuk, Young

    2016-08-09

    Securing a semiconducting bandgap is essential for applying graphene layers in switching devices. Theoretical studies have suggested a created bulk bandgap in a graphene layer by introducing an asymmetry between the A and B sub-lattice sites. A recent transport measurement demonstrated the presence of a bandgap in a graphene layer where the asymmetry was introduced by placing a graphene layer on a hexagonal boron nitride (h-BN) substrate. Similar bandgap has been observed in graphene layers on metal substrates by local probe measurements; however, this phenomenon has not been observed in graphene layers on a near-insulating substrate. Here, we present bulk bandgap-like features in a graphene layer epitaxially grown on an h-BN substrate using scanning tunneling spectroscopy. We observed edge states at zigzag edges, edge resonances at armchair edges, and bandgap-like features in the bulk.

  5. Energy Bandgap and Edge States in an Epitaxially Grown Graphene/h-BN Heterostructure

    Science.gov (United States)

    Hwang, Beomyong; Hwang, Jeongwoon; Yoon, Jong Keon; Lim, Sungjun; Kim, Sungmin; Lee, Minjun; Kwon, Jeong Hoon; Baek, Hongwoo; Sung, Dongchul; Kim, Gunn; Hong, Suklyun; Ihm, Jisoon; Stroscio, Joseph A.; Kuk, Young

    2016-08-01

    Securing a semiconducting bandgap is essential for applying graphene layers in switching devices. Theoretical studies have suggested a created bulk bandgap in a graphene layer by introducing an asymmetry between the A and B sub-lattice sites. A recent transport measurement demonstrated the presence of a bandgap in a graphene layer where the asymmetry was introduced by placing a graphene layer on a hexagonal boron nitride (h-BN) substrate. Similar bandgap has been observed in graphene layers on metal substrates by local probe measurements; however, this phenomenon has not been observed in graphene layers on a near-insulating substrate. Here, we present bulk bandgap-like features in a graphene layer epitaxially grown on an h-BN substrate using scanning tunneling spectroscopy. We observed edge states at zigzag edges, edge resonances at armchair edges, and bandgap-like features in the bulk.

  6. Epitaxially-grown Gallium Nitride on Gallium Oxide substrate for photon pair generation in visible and telecomm wavelengths

    KAUST Repository

    Awan, Kashif M.

    2016-08-11

    Gallium Nitride (GaN), along with other III-Nitrides, is attractive for optoelectronic and electronic applications due to its wide direct energy bandgap, as well as high thermal stability. GaN is transparent over a wide wavelength range from infra-red to the visible band, which makes it suitable for lasers and LEDs. It is also expected to be a suitable candidate for integrated nonlinear photonic circuits for a wide range of applications from all-optical signal processing to quantum computing and on-chip wavelength conversion. Despite its abundant use in commercial devices, there is still need for suitable substrate materials to reduce high densities of threading dislocations (TDs) and other structural defects like stacking faults, and grain boundaries. All these defects degrade the optical quality of the epi-grown GaN layer as they act as non-radiative recombination centers.

  7. III-Nitride nanowire optoelectronics

    Science.gov (United States)

    Zhao, Songrui; Nguyen, Hieu P. T.; Kibria, Md. G.; Mi, Zetian

    2015-11-01

    Group-III nitride nanowire structures, including GaN, InN, AlN and their alloys, have been intensively studied in the past decade. Unique to this material system is that its energy bandgap can be tuned from the deep ultraviolet (~6.2 eV for AlN) to the near infrared (~0.65 eV for InN). In this article, we provide an overview on the recent progress made in III-nitride nanowire optoelectronic devices, including light emitting diodes, lasers, photodetectors, single photon sources, intraband devices, solar cells, and artificial photosynthesis. The present challenges and future prospects of III-nitride nanowire optoelectronic devices are also discussed.

  8. ABi2 (IO3 )2 F5 (A=K, Rb, and Cs): A Combination of Halide and Oxide Anionic Units To Create a Large Second-Harmonic Generation Response with a Wide Bandgap.

    Science.gov (United States)

    Liu, Hongming; Wu, Qi; Jiang, Xingxing; Lin, Zheshuai; Meng, Xianggao; Chen, Xingguo; Qin, Jingui

    2017-08-01

    A family of nonlinear optical materials that contain the halide, oxide, and oxyhalide polar units simultaneously in a single structure, namely ABi2 (IO3 )2 F5 (A=K (1), Rb (2), and Cs (3)), have been designed and synthesized. They crystallize in the same polar space group (P21 ) with a two-dimensional double-layered framework constructed by [BiF5 ](2-) and [BiO2 F4 ](5-) units connected to each other by four F atoms, in which two [IO3 ](-) groups are linked to [BiO2 F4 ](5-) unit on the same side. A hanging Bi-F bond of [BiF5 ](2-) unit is located on the other side via ionic interaction with the layer-inserted alkali metal ions to form three-dimensional structure. The well-ordered alignments of these polar units lead to a very strong second-harmonic generation response of 12 (1), 9.5 (2), and 7.5 (3) times larger than that of potassium dihydrogen phosphate under 1064 nm laser radiation. All of them exhibited a wide energy bandgap over 3.75 eV, suggesting that they will have a high laser damage threshold. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Rational Design of High-Performance Wide-Bandgap (≈2 eV) Polymer Semiconductors as Electron Donors in Organic Photovoltaics Exhibiting High Open Circuit Voltages (≈1 V).

    Science.gov (United States)

    Chochos, Christos L; Katsouras, Athanasios; Gasparini, Nicola; Koulogiannis, Chrysanthos; Ameri, Tayebeh; Brabec, Christoph J; Avgeropoulos, Apostolos

    2017-01-01

    Systematic optimization of the chemical structure of wide-bandgap (≈2.0 eV) "donor-acceptor" copolymers consisting of indacenodithiophene or indacenodithieno[3,2-b]thiophene as the electron-rich unit and thieno[3,4-c]pyrrole-4,6-dione as the electron-deficient moiety in terms of alkyl side chain engineering and distance of the electron-rich and electron-deficient monomers within the repeat unit of the polymer chain results in high-performance electron donor materials for organic photovoltaics. Specifically, preliminary results demonstrate extremely high open circuit voltages (V oc s) of ≈1.0 V, reasonable short circuit current density (J sc ) of around 11 mA cm(-2) , and moderate fill factors resulting in efficiencies close to 6%. All the devices are fabricated in an inverted architecture with the photoactive layer processed by doctor blade equipment, showing the compatibility with roll-to-roll large-scale manufacturing processes. From the correlation of the chemical structure-optoelectronic properties-photovoltaic performance, a rational guide toward further optimization of the chemical structure in this family of copolymers, has been achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ion Implantation of Wide Bandgap Semiconductors.

    Science.gov (United States)

    1978-05-01

    u s i n g nomina l l v • S’~ xi lane in UHP argon and r o u g h ly eq u i va l e n t system cond it ions. We probably obtained a h o t t i t ’ of...dilute silane that is more c o nce n t rat e d han t he nomina l 1 .5Z reques ted . Both Auger ana l vs is and Rut her f o rd b ackscu t t er ing

  11. Interface Properties of Wide Bandgap Semiconductor Structures

    Science.gov (United States)

    1993-06-01

    different ONR and other on- going programs) and is under the direction of Dr. R. J. Nemanich. Previously, the NCSU ISSS consisted of separate systems with...stop before going through all of the oxide. 14. Use HF to remove the remaining oxide. 15. Grow thin oxide (A) on trenched wafers for passivation...J. Jacko and S. J. W. Price, Can. J. Chem. 42, 1198 (1964). 17. N. Kobayashi, T. Makimoto and Y. Horikoshi, Jpn. I. of Appl. Phys. 24, L962 (1985

  12. Contact and Bandgap Engineering in Two Dimensional Crystal

    Science.gov (United States)

    Chu, Tao

    At the heart of semiconductor research, bandgap is one of the key parameters for materials and determine their applications in modern technologies. For traditional bulk semiconductors, the bandgap is determined by the chemical composition and specific arrangement of the crystal lattices, and usually invariant during the device operation. Nevertheless, it is highly desirable for many optoelectronic and electronic applications to have materials with continuously tunable bandgap available. In the past decade, 2D layered materials including graphene and transition metal dichalcogenides (TMDs) have sparked interest in the scientific community, owing to their unique material properties and tremendous potential in various applications. Among many newly discovered properties that are non-existent in bulk materials, the strong in-plane bonding and weak van der Waals inter-planar interaction in these 2D layered structures leads to a widely tunable bandgap by electric field. This provides an extra knob to engineer the fundamental material properties and open a new design space for novel device operation. This thesis focuses on this field controlled dynamic bandgap and can be divided into three parts: (1) bilayer graphene is the first known 2D crystal with a bandgap can be continuously tuned by electric field. However, the electrical transport bandgaps is much smaller than both theoretical predictions and extracted bandgaps from optical measurements. In the first part of the thesis, the limiting factors of preventing achieving a large transport bandgap in bilayer graphene are investigated and different strategies to achieve a large transport bandgap are discussed, including the vertically scaling of gate oxide and patterning channel into ribbon structure. With a record large transport bandgap of ~200meV, a dual-gated semiconducting bilayer graphene P/N junction with extremely scaled gap of 20nm in-between is fabricated. A tunable local maxima feature, associated with 1D v

  13. Charge carrier transport properties in layer structured hexagonal boron nitride

    Directory of Open Access Journals (Sweden)

    T. C. Doan

    2014-10-01

    Full Text Available Due to its large in-plane thermal conductivity, high temperature and chemical stability, large energy band gap (˜ 6.4 eV, hexagonal boron nitride (hBN has emerged as an important material for applications in deep ultraviolet photonic devices. Among the members of the III-nitride material system, hBN is the least studied and understood. The study of the electrical transport properties of hBN is of utmost importance with a view to realizing practical device applications. Wafer-scale hBN epilayers have been successfully synthesized by metal organic chemical deposition and their electrical transport properties have been probed by variable temperature Hall effect measurements. The results demonstrate that undoped hBN is a semiconductor exhibiting weak p-type at high temperatures (> 700 °K. The measured acceptor energy level is about 0.68 eV above the valence band. In contrast to the electrical transport properties of traditional III-nitride wide bandgap semiconductors, the temperature dependence of the hole mobility in hBN can be described by the form of μ ∝ (T/T0−α with α = 3.02, satisfying the two-dimensional (2D carrier transport limit dominated by the polar optical phonon scattering. This behavior is a direct consequence of the fact that hBN is a layer structured material. The optical phonon energy deduced from the temperature dependence of the hole mobility is ħω = 192 meV (or 1546 cm-1, which is consistent with values previously obtained using other techniques. The present results extend our understanding of the charge carrier transport properties beyond the traditional III-nitride semiconductors.

  14. The new Polish nitriding and nitriding like processes in the modern technology

    Energy Technology Data Exchange (ETDEWEB)

    Has, Z.; Kula, P. [Technical Univ. of Lodz (Poland)

    1995-12-31

    Modern technological methods for making nitrided layers and low-friction combined layers have been described. The possibilities of structures and properties forming were analyzed as well as the area and examples of application were considered. Nitrided layers are applied in high loaded frictional couples, widely. They can be formed on steel or cast iron machine parts by the classic gas nitriding process or by modern numerous nitriding technologies.

  15. Nitride quantum light sources

    Science.gov (United States)

    Zhu, T.; Oliver, R. A.

    2016-02-01

    Prototype nitride quantum light sources, particularly single-photon emitters, have been successfully demonstrated, despite the challenges inherent in this complex materials system. The large band offsets available between different nitride alloys have allowed device operation at easily accessible temperatures. A wide range of approaches has been explored: not only self-assembled quantum dot growth but also lithographic methods for site-controlled nanostructure formation. All these approaches face common challenges, particularly strong background signals which contaminate the single-photon stream and excessive spectral diffusion of the quantum dot emission wavelength. If these challenges can be successfully overcome, then ongoing rapid progress in the conventional III-V semiconductors provides a roadmap for future progress in the nitrides.

  16. Tunnel-injection quantum dot deep-ultraviolet light-emitting diodes with polarization-induced doping in III-nitride heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Jai, E-mail: jverma@nd.edu; Islam, S. M.; Protasenko, Vladimir; Kumar Kandaswamy, Prem; Xing, Huili; Jena, Debdeep [Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2014-01-13

    Efficient semiconductor optical emitters in the deep-ultraviolet spectral window are encountering some of the most deep rooted problems of semiconductor physics. In III-Nitride heterostructures, obtaining short-wavelength photon emission requires the use of wide bandgap high Al composition AlGaN active regions. High conductivity electron (n-) and hole (p-) injection layers of even higher bandgaps are necessary for electrical carrier injection. This approach requires the activation of very deep dopants in very wide bandgap semiconductors, which is a difficult task. In this work, an approach is proposed and experimentally demonstrated to counter the challenges. The active region of the heterostructure light emitting diode uses ultrasmall epitaxially grown GaN quantum dots. Remarkably, the optical emission energy from GaN is pushed from 365 nm (3.4 eV, the bulk bandgap) to below 240 nm (>5.2 eV) because of extreme quantum confinement in the dots. This is possible because of the peculiar bandstructure and band alignments in the GaN/AlN system. This active region design crucially enables two further innovations for efficient carrier injection: Tunnel injection of carriers and polarization-induced p-type doping. The combination of these three advances results in major boosts in electroluminescence in deep-ultraviolet light emitting diodes and lays the groundwork for electrically pumped short-wavelength lasers.

  17. Progress in Group Ⅲ nitride semiconductor electronic devices

    Institute of Scientific and Technical Information of China (English)

    Hao Yue; Zhang Jinfeng; Shen Bo; Liu Xinyu

    2012-01-01

    Recently there has been a rapid domestic development in group Ⅲ nitride semiconductor electronic materials and devices.This paper reviews the important progress in GaN-based wide bandgap microelectronic materials and devices in the Key Program of the National Natural Science Foundation of China,which focuses on the research of the fundamental physical mechanisms of group Ⅲ nitride semiconductor electronic materials and devices with the aim to enhance the crystal quality and electric performance of GaN-based electronic materials,develop new GaN heterostructures,and eventually achieve high performance GaN microwave power devices.Some remarkable progresses achieved in the program will be introduced,including those in GaN high electron mobility transistors (HEMTs) and metal-oxide-semiconductor high electron mobility transistors (MOSHEMTs) with novel high-k gate insulators,and material growth,defect analysis and material properties of InAlN/GaN heterostructures and HEMT fabrication,and quantum transport and spintronic properties ofGaN-based heterostructures,and highelectric-field electron transport properties of GaN material and GaN Gunn devices used in terahertz sources.

  18. Mechanochemical route to the synthesis of nanostructured Aluminium nitride

    Science.gov (United States)

    Rounaghi, S. A.; Eshghi, H.; Scudino, S.; Vyalikh, A.; Vanpoucke, D. E. P.; Gruner, W.; Oswald, S.; Kiani Rashid, A. R.; Samadi Khoshkhoo, M.; Scheler, U.; Eckert, J.

    2016-09-01

    Hexagonal Aluminium nitride (h-AlN) is an important wide-bandgap semiconductor material which is conventionally fabricated by high temperature carbothermal reduction of alumina under toxic ammonia atmosphere. Here we report a simple, low cost and potentially scalable mechanochemical procedure for the green synthesis of nanostructured h-AlN from a powder mixture of Aluminium and melamine precursors. A combination of experimental and theoretical techniques has been employed to provide comprehensive mechanistic insights on the reactivity of melamine, solid state metal-organic interactions and the structural transformation of Al to h-AlN under non-equilibrium ball milling conditions. The results reveal that melamine is adsorbed through the amine groups on the Aluminium surface due to the long-range van der Waals forces. The high energy provided by milling leads to the deammoniation of melamine at the initial stages followed by the polymerization and formation of a carbon nitride network, by the decomposition of the amine groups and, finally, by the subsequent diffusion of nitrogen into the Aluminium structure to form h-AlN.

  19. Mechanochemical route to the synthesis of nanostructured Aluminium nitride.

    Science.gov (United States)

    Rounaghi, S A; Eshghi, H; Scudino, S; Vyalikh, A; Vanpoucke, D E P; Gruner, W; Oswald, S; Kiani Rashid, A R; Samadi Khoshkhoo, M; Scheler, U; Eckert, J

    2016-09-21

    Hexagonal Aluminium nitride (h-AlN) is an important wide-bandgap semiconductor material which is conventionally fabricated by high temperature carbothermal reduction of alumina under toxic ammonia atmosphere. Here we report a simple, low cost and potentially scalable mechanochemical procedure for the green synthesis of nanostructured h-AlN from a powder mixture of Aluminium and melamine precursors. A combination of experimental and theoretical techniques has been employed to provide comprehensive mechanistic insights on the reactivity of melamine, solid state metal-organic interactions and the structural transformation of Al to h-AlN under non-equilibrium ball milling conditions. The results reveal that melamine is adsorbed through the amine groups on the Aluminium surface due to the long-range van der Waals forces. The high energy provided by milling leads to the deammoniation of melamine at the initial stages followed by the polymerization and formation of a carbon nitride network, by the decomposition of the amine groups and, finally, by the subsequent diffusion of nitrogen into the Aluminium structure to form h-AlN.

  20. Engineering and localization of quantum emitters in large hexagonal boron nitride layers

    CERN Document Server

    Choi, Sumin; ElBadawi, Christopher; Lobo, Charlene; Wang, Xuewen; Juodkazis, Saulius; Seniutinas, Gediminas; Toth, Milos; Aharonovich, Igor

    2016-01-01

    Hexagonal boron nitride (hBN) is a wide bandgap van der Waals material that has recently emerged as promising platform for quantum photonics experiments. In this work we study the formation and localization of narrowband quantum emitters in large flakes (up to tens of microns wide) of hBN. The emitters can be activated in as-grown hBN by electron irradiation or high temperature annealing, and the emitter formation probability can be increased by ion implantation or focused laser irradiation of the as-grown material. Interestingly, we show that the emitters are always localized at edges of the flakes, unlike most luminescent point defects in 3D materials. Our results constitute an important step on the road map of deploying hBN in nanophotonics applications.

  1. Quantum Cavity Optomechanics with Phononic Bandgap Shielded Silicon Nitride Membranes

    DEFF Research Database (Denmark)

    Nielsen, William Hvidtfelt Padkær

    Cavity optomechanics, a field which has matured tremendously over the last decade,has conclusively reached the quantum regime. Noteworthy experimentalachievements include cooling of the vibrational motion of macroscopic objects tothe quantum ground state, the observation of shot noise of radiation...... two highly reflective mirrors, all of which are embedded in a helium flowcryostat. In order to reach truly quantum territory, severe shielding of the membranefrom the environment is required, as well as meticulous concern for auxiliarysources of noise, both from the laser and mirrors used.The purpose...... of this thesis is to document the development of the experimentfrom its initial stages to its final quantum enabled incarnation, as well as to providethe necessary theoretical machinery to interpret the experimental results. A strongemphasis is placed on the unique challenges posed by our unique monolithic...

  2. Low-bandgap, monolithic, multi-bandgap, optoelectronic devices

    Science.gov (United States)

    Wanlass, Mark W.; Carapella, Jeffrey J.

    2014-07-08

    Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.

  3. Low-bandgap, monolithic, multi-bandgap, optoelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Wanlass, Mark W.; Carapella, Jeffrey J.

    2016-01-05

    Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.

  4. Low-bandgap, monolithic, multi-bandgap, optoelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Wanlass, Mark W.; Carapella, Jeffrey J.

    2014-07-08

    Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.

  5. Low-bandgap, monolithic, multi-bandgap, optoelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Wanlass, Mark W.; Carapella, Jeffrey J.

    2016-03-22

    Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.

  6. Ab initio design of nanostructures for solar energy conversion: a case study on silicon nitride nanowire.

    Science.gov (United States)

    Pan, Hui

    2014-01-01

    Design of novel materials for efficient solar energy conversion is critical to the development of green energy technology. In this work, we present a first-principles study on the design of nanostructures for solar energy harvesting on the basis of the density functional theory. We show that the indirect band structure of bulk silicon nitride is transferred to direct bandgap in nanowire. We find that intermediate bands can be created by doping, leading to enhancement of sunlight absorption. We further show that codoping not only reduces the bandgap and introduces intermediate bands but also enhances the solubility of dopants in silicon nitride nanowires due to reduced formation energy of substitution. Importantly, the codoped nanowire is ferromagnetic, leading to the improvement of carrier mobility. The silicon nitride nanowires with direct bandgap, intermediate bands, and ferromagnetism may be applicable to solar energy harvesting.

  7. A Unified Understanding of the Thickness-Dependent Bandgap Transition in Hexagonal Two-Dimensional Semiconductors.

    Science.gov (United States)

    Kang, Joongoo; Zhang, Lijun; Wei, Su-Huai

    2016-02-18

    Many important layered semiconductors, such as hexagonal boron nitride (hBN) and transition-metal dichalcogenides (TMDs), are derived from a hexagonal lattice. A single layer of such hexagonal semiconductors generally has a direct bandgap at the high-symmetry point K, whereas it becomes an indirect, optically inactive semiconductor as the number of layers increases to two or more. Here, taking hBN and MoS2 as examples, we reveal the microscopic origin of the direct-to-indirect bandgap transition of hexagonal layered materials. Our symmetry analysis and first-principles calculations show that the bandgap transition arises from the lack of the interlayer orbital couplings for the band-edge states at K, which are inherently weak because of the crystal symmetries of hexagonal layered materials. Therefore, it is necessary to judiciously break the underlying crystal symmetries to design more optically active, multilayered semiconductors from hBN or TMDs.

  8. Real-time oxide evolution of copper protected by graphene and boron nitride barriers

    Science.gov (United States)

    Galbiati, M.; Stoot, A. C.; MacKenzie, D. M. A.; Bøggild, P.; Camilli, L.

    2017-01-01

    Applying protective or barrier layers to isolate a target item from the environment is a common approach to prevent or delay its degradation. The impermeability of two-dimensional materials such as graphene and hexagonal boron nitride (hBN) has generated a great deal of interest in corrosion and material science. Owing to their different electronic properties (graphene is a semimetal, whereas hBN is a wide-bandgap insulator), their protection behaviour is distinctly different. Here we investigate the performance of graphene and hBN as barrier coatings applied on copper substrates through a real-time study in two different oxidative conditions. Our findings show that the evolution of the copper oxidation is remarkably different for the two coating materials.

  9. Performace of Dilute Nitride Triple Junction Space Solar Cell Grown by MBE

    Directory of Open Access Journals (Sweden)

    Aho Arto

    2017-01-01

    Full Text Available Dilute nitride arsenide antimonide compounds offer widely tailorable band-gaps, ranging from 0.8 eV to 1.4 eV, for the development of lattice-matched multijunction solar cells with three or more junctions. Here we report on the performance of GaInP/GaAs/GaInNAsSb solar cell grown by molecular beam epitaxy. An efficiency of 27% under AM0 conditions is demonstrated. In addition, the cell was measured at different temperatures. The short circuit current density exhibited a temperature coefficient of 0.006 mA/cm2/°C while the corresponding slope for the open circuit voltage was −6.8 mV/°C. Further efficiency improvement, up to 32%, is projected by better current balancing and structural optimization.

  10. Real-time oxide evolution of copper protected by graphene and boron nitride barriers

    DEFF Research Database (Denmark)

    Galbiati, Miriam; Stoot, Adam Carsten; Mackenzie, David

    2017-01-01

    Applying protective or barrier layers to isolate a target item from the environment is a common approach to prevent or delay its degradation. The impermeability of two-dimensional materials such as graphene and hexagonal boron nitride (hBN) has generated a great deal of interest in corrosion...... and material science. Owing to their different electronic properties (graphene is a semimetal, whereas hBN is a wide-bandgap insulator), their protection behaviour is distinctly different. Here we investigate the performance of graphene and hBN as barrier coatings applied on copper substrates through a real......-time study in two different oxidative conditions. Our findings show that the evolution of the copper oxidation is remarkably different for the two coating materials....

  11. Scalable manufacturing of boron nitride nanotubes and their assemblies: a review

    Science.gov (United States)

    Kim, Keun Su; Jong Kim, Myung; Park, Cheol; Fay, Catharine C.; Chu, Sang-Hyon; Kingston, Christopher T.; Simard, Benoit

    2017-01-01

    Boron nitride nanotubes (BNNTs) are wide bandgap semiconducting materials with a quasiparticle energy gap larger than 6.0 eV. Since their first synthesis in 1995, there have been considerable attempts to develop novel BNNT-based applications in semiconductor science and technology. Inspired by carbon nanotube synthesis methods, many BNNT synthesis methods have been developed so far; however, it has been very challenging to produce BNNTs at a large scale with the structural quality high enough for exploring practical applications. Very recently there has been significant progress in the scalable manufacturing of high-quality BNNTs. In this article, we will review those particular breakthroughs and discuss their impact on semiconductor industries. Freestanding BNNT assemblies such as transparent thin films, yarns or buckypapers are highly advantageous in the development of novel BNNT-based semiconductor devices. The latest achievements in their manufacturing processes will be also presented along with their potential applications.

  12. Densely Aligned Graphene Nanoribbon Arrays and Bandgap Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Su, Justin [Stanford Univ., CA (United States); Chen, Changxin [Stanford Univ., CA (United States); Gong, Ming [Stanford Univ., CA (United States); Kenney, Michael [Stanford Univ., CA (United States)

    2017-01-04

    Graphene has attracted great interest for future electronics due to its high mobility and high thermal conductivity. However, a two-dimensional graphene sheet behaves like a metal, lacking a bandgap needed for the key devices components such as field effect transistors (FETs) in digital electronics. It has been shown that, partly due to quantum confinement, graphene nanoribbons (GNRs) with ~2 nm width can open up sufficient bandgaps and evolve into semiconductors to exhibit high on/off ratios useful for FETs. However, a challenging problem has been that, such ultra-narrow GNRs (~2 nm) are difficult to fabricate, especially for GNRs with smooth edges throughout the ribbon length. Despite high on/off ratios, these GNRs show very low mobility and low on-state conductance due to dominant scattering effects by imperfections and disorders at the edges. Wider GNRs (>5 nm) show higher mobility, higher conductance but smaller bandgaps and low on/off ratios undesirable for FET applications. It is highly desirable to open up bandgaps in graphene or increase the bandgaps in wide GNRs to afford graphene based semiconductors for high performance (high on-state current and high on/off ratio) electronics. Large scale ordering and dense packing of such GNRs in parallel are also needed for device integration but have also been challenging thus far. It has been shown theoretically that uniaxial strains can be applied to a GNR to engineer its bandgap. The underlying physics is that under uniaxial strain, the Dirac point moves due to stretched C-C bonds, leading to an increase in the bandgap of armchair GNRs by up to 50% of its original bandgap (i.e. bandgap at zero strain). For zigzag GNRs, due to the existence of the edge states, changes of bandgap are smaller under uniaxial strain and can be increased by ~30%. This work proposes a novel approach to the fabrication of densely aligned graphene nanoribbons with highly smooth edges afforded by anisotropic etching and uniaxial strain for

  13. Polarization properties of photonic bandgap fibers

    DEFF Research Database (Denmark)

    Broeng, Jes; Libori, Stig E. Barkou; Bjarklev, Anders Overgaard

    2000-01-01

    We present the first analysis of polarization properties of photonic bandgap fibers. Strong birefringence may be obtained for modest non-uniformities in and around the core region, suggesting the use of photonic bandgap fibers as polarization maintaining components.......We present the first analysis of polarization properties of photonic bandgap fibers. Strong birefringence may be obtained for modest non-uniformities in and around the core region, suggesting the use of photonic bandgap fibers as polarization maintaining components....

  14. Crystalline boron nitride aerogels

    Science.gov (United States)

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta

    2017-04-04

    This disclosure provides methods and materials related to boron nitride aerogels. In one aspect, a material comprises an aerogel comprising boron nitride. The boron nitride has an ordered crystalline structure. The ordered crystalline structure may include atomic layers of hexagonal boron nitride lying on top of one another, with atoms contained in a first layer being superimposed on atoms contained in a second layer.

  15. Crystalline boron nitride aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta

    2017-04-04

    This disclosure provides methods and materials related to boron nitride aerogels. In one aspect, a material comprises an aerogel comprising boron nitride. The boron nitride has an ordered crystalline structure. The ordered crystalline structure may include atomic layers of hexagonal boron nitride lying on top of one another, with atoms contained in a first layer being superimposed on atoms contained in a second layer.

  16. Electronic and chemical structure of an organic light emitter embedded in an inorganic wide-bandgap semiconductor: Photoelectron spectroscopy of layered and composite structures of Ir(BPA) and ZnSe

    Science.gov (United States)

    Dimamay, Mariel; Mayer, Thomas; Hadziioannou, Georges; Jaegermann, Wolfram

    2015-05-01

    Luminescent organic phases embedded in conductive inorganic matrices are proposed for hybrid organic-inorganic light-emitting diodes. In this configuration, the organic dye acts as the radiative recombination site for charge carriers injected into the inorganic matrix. Our investigation is aimed at finding a material combination where the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the organic dye are situated in between the valence and conduction bands of the inorganic matrix in order to promote electron and hole transfer from the matrix to the dye. Bilayer and composite thin films of zinc selenide (ZnSe) and a red iridium complex (Ir(BPA)) organic light emitter were prepared in situ via UHV thermal evaporation technique. The electronic and atomic structures were studied applying X-ray and ultraviolet photoelectron spectroscopies. The measured energy band alignments for the ZnSe/Ir(BPA) bilayer and ZnSe+Ir(BPA) composite reveal that the HOMO and LUMO of the organic dye are positioned in the ZnSe bandgap. For the initial steps of ZnSe deposition on a dye film to form Ir(BPA)/ZnSe bilayers, zinc atoms intercalate into the dye film leaving behind an excess of selenium at the interface that partly reacts with dye molecules. Photoelectron spectroscopy of the composites shows the same species suggesting a similar mechanism. This mechanism leads to composite films with increased content of amorphous phases in the inorganic matrix, thereby affecting its conductivity, as well as to the presence of nonradiative recombination sites provided by the intercalated Zn atoms.

  17. Electronic and chemical structure of an organic light emitter embedded in an inorganic wide-bandgap semiconductor: Photoelectron spectroscopy of layered and composite structures of Ir(BPA) and ZnSe

    Energy Technology Data Exchange (ETDEWEB)

    Dimamay, Mariel [Institute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt (Germany); Laboratoire de Chimie des Polymères Organiques, CNRS, Université de Bordeaux, UMR 5629-16 Avenue Pey-Berland, 33607 Pessac (France); Mayer, Thomas; Jaegermann, Wolfram [Institute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt (Germany); Hadziioannou, Georges [Laboratoire de Chimie des Polymères Organiques, CNRS, Université de Bordeaux, UMR 5629-16 Avenue Pey-Berland, 33607 Pessac (France)

    2015-05-07

    Luminescent organic phases embedded in conductive inorganic matrices are proposed for hybrid organic-inorganic light-emitting diodes. In this configuration, the organic dye acts as the radiative recombination site for charge carriers injected into the inorganic matrix. Our investigation is aimed at finding a material combination where the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the organic dye are situated in between the valence and conduction bands of the inorganic matrix in order to promote electron and hole transfer from the matrix to the dye. Bilayer and composite thin films of zinc selenide (ZnSe) and a red iridium complex (Ir(BPA)) organic light emitter were prepared in situ via UHV thermal evaporation technique. The electronic and atomic structures were studied applying X-ray and ultraviolet photoelectron spectroscopies. The measured energy band alignments for the ZnSe/Ir(BPA) bilayer and ZnSe+Ir(BPA) composite reveal that the HOMO and LUMO of the organic dye are positioned in the ZnSe bandgap. For the initial steps of ZnSe deposition on a dye film to form Ir(BPA)/ZnSe bilayers, zinc atoms intercalate into the dye film leaving behind an excess of selenium at the interface that partly reacts with dye molecules. Photoelectron spectroscopy of the composites shows the same species suggesting a similar mechanism. This mechanism leads to composite films with increased content of amorphous phases in the inorganic matrix, thereby affecting its conductivity, as well as to the presence of nonradiative recombination sites provided by the intercalated Zn atoms.

  18. Boron nitride composites

    Energy Technology Data Exchange (ETDEWEB)

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2017-02-21

    According to one embodiment, a composite product includes: a matrix material including hexagonal boron nitride and one or more borate binders; and a plurality of cubic boron nitride particles dispersed in the matrix material. According to another embodiment, a composite product includes: a matrix material including hexagonal boron nitride and amorphous boron nitride; and a plurality of cubic boron nitride particles dispersed in the matrix material.

  19. Plasma nitriding of steels

    CERN Document Server

    Aghajani, Hossein

    2017-01-01

    This book focuses on the effect of plasma nitriding on the properties of steels. Parameters of different grades of steels are considered, such as structural and constructional steels, stainless steels and tools steels. The reader will find within the text an introduction to nitriding treatment, the basis of plasma and its roll in nitriding. The authors also address the advantages and disadvantages of plasma nitriding in comparison with other nitriding methods. .

  20. Environmental Screening Effects in 2D Materials: Renormalization of the Bandgap, Electronic Structure, and Optical Spectra of Few-Layer Black Phosphorus.

    Science.gov (United States)

    Qiu, Diana Y; da Jornada, Felipe H; Louie, Steven G

    2017-08-09

    Few-layer black phosphorus has recently emerged as a promising 2D semiconductor, notable for its widely tunable bandgap, highly anisotropic properties, and theoretically predicted large exciton binding energies. To avoid degradation, it has become common practice to encapsulate black phosphorus devices. It is generally assumed that this encapsulation does not qualitatively affect their optical properties. Here, we show that the contrary is true. We have performed ab initio GW and GW plus Bethe-Salpeter equation (GW-BSE) calculations to determine the quasiparticle (QP) band structure and optical spectrum of one-layer (1L) through four-layer (4L) black phosphorus, with and without encapsulation between hexagonal boron nitride and sapphire. We show that black phosphorus is exceptionally sensitive to environmental screening. Encapsulation reduces the exciton binding energy in 1L by as much as 70% and completely eliminates the presence of a bound exciton in the 4L structure. The reduction in the exciton binding energies is offset by a similarly large renormalization of the QP bandgap so that the optical gap remains nearly unchanged, but the nature of the excited states and the qualitative features of the absorption spectrum change dramatically.

  1. Gallium nitride electronics

    Science.gov (United States)

    Rajan, Siddharth; Jena, Debdeep

    2013-07-01

    In the past two decades, there has been increasing research and industrial activity in the area of gallium nitride (GaN) electronics, stimulated first by the successful demonstration of GaN LEDs. While the promise of wide band gap semiconductors for power electronics was recognized many years before this by one of the contributors to this issue (J Baliga), the success in the area of LEDs acted as a catalyst. It set the field of GaN electronics in motion, and today the technology is improving the performance of several applications including RF cell phone base stations and military radar. GaN could also play a very important role in reducing worldwide energy consumption by enabling high efficiency compact power converters operating at high voltages and lower frequencies. While GaN electronics is a rapidly evolving area with active research worldwide, this special issue provides an opportunity to capture some of the great advances that have been made in the last 15 years. The issue begins with a section on epitaxy and processing, followed by an overview of high-frequency HEMTs, which have been the most commercially successful application of III-nitride electronics to date. This is followed by review and research articles on power-switching transistors, which are currently of great interest to the III-nitride community. A section of this issue is devoted to the reliability of III-nitride devices, an area that is of increasing significance as the research focus has moved from not just high performance but also production-worthiness and long-term usage of these devices. Finally, a group of papers on new and relatively less studied ideas for III-nitride electronics, such as interband tunneling, heterojunction bipolar transistors, and high-temperature electronics is included. These areas point to new areas of research and technological innovation going beyond the state of the art into the future. We hope that the breadth and quality of articles in this issue will make it

  2. Photonic Bandgaps in Photonic Molecules

    Science.gov (United States)

    Smith, David D.; Chang, Hongrok; Gates, Amanda L.; Fuller, Kirk A.; Gregory, Don A.; Witherow, William K.; Paley, Mark S.; Frazier, Donald O.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    This talk will focus on photonic bandgaps that arise due to nearly free photon and tight-binding effects in coupled microparticle and ring-resonator systems. The Mie formulation for homogeneous spheres is generalized to handle core/shell systems and multiple concentric layers in a manner that exploits an analogy with stratified planar systems, thereby allowing concentric multi-layered structures to be treated as photonic bandgap (PBG) materials. Representative results from a Mie code employing this analogy demonstrate that photonic bands arising from nearly free photon effects are easily observed in the backscattering, asymmetry parameter, and albedo for periodic quarter-wave concentric layers, though are not readily apparent in extinction spectra. Rather, the periodicity simply alters the scattering profile, enhancing the ratio of backscattering to forward scattering inside the bandgap, in direct analogy with planar quarter-wave multilayers. PBGs arising from tight-binding may also be observed when the layers (or rings) are designed such that the coupling between them is weak. We demonstrate that for a structure consisting of N coupled micro-resonators, the morphology dependent resonances split into N higher-Q modes, in direct analogy with other types of oscillators, and that this splitting ultimately results in PBGs which can lead to enhanced nonlinear optical effects.

  3. Methods for forming group III-arsenide-nitride semiconductor materials

    Science.gov (United States)

    Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)

    2002-01-01

    Methods are disclosed for forming Group III-arsenide-nitride semiconductor materials. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.

  4. Novel 1-D Sandwich Photonic Bandgap Structure

    Institute of Scientific and Technical Information of China (English)

    庞云波; 高葆新

    2004-01-01

    A sandwich photonic bandgap (PBG) structure is a novel PBG structure whose periodic lattice is buried in the middle of a substrate. Neither drilling nor suspending the substrate is required, and the integrity of the ground plane is maintained. This paper presents several modification techniques for sandwich PBG structure fabrication. The forbidden gap can be improved by adopting the chirping technique, applying the tapering technique, enlarging the periodic elements, adjusting the location of the periodic lattice in the substrate, and using different dielectric media H-shape elements. A finite difference time domain method is applied to analyze the structures. Deep and wide stopbands can be obtained using the modified sandwich structures. Experimental measurement results agree well with the theoretical analysis.

  5. Electrical and optical properties of indium nitride and indium-rich nitrides prepared by molecular beam epitaxy for opto-electronics applications

    Science.gov (United States)

    Lu, Hai

    Great interest in III-nitride semiconductors has been driven by the significant technological importance of this material system. GaN and its alloy have been used in the fabrication of a range of electronic and photonic devices. Blue light emitting diode and laser diode with InGaN as the active layer have been commercialized for several years. Due to such technological importance, considerable research efforts have been made to understand the fundamental properties of III-N semiconductors. However, unlike the intensively studied GaN, InGaN and other nitride compounds, InN, which is also an important component of the III-N system, remains the least studied nitride material. This is mainly due to the difficulty in preparation of high-quality InN epilayers. Two of the main difficulties are the lack of suitable substrate material and the low dissociation temperature of InN. As a result, many fundamental parameters of InN were adopted from some very early reports based on polycrystalline InN films produced by RF sputtering method. Those reports are seemingly good but have never been repeated. This thesis reports epitaxial growth of InN and In-rich nitrides by molecular beam epitaxy. The optimum growth conditions of InN were investigated, which results in the best electrical properties of InN film reported in recent years. For the first time, non-degenerate InN film was produced and the surface charge accumulation of InN films was identified. Detailed and original structural characterizations were carried out. By collaborating with outside labs, many fundamentals properties of InN were measured or rediscovered. One of the main accomplishments in the study is the discovery of the narrow fundamental bandgap of InN, which is around 0.7 eV instead of the widely accepted 1.9 eV. This significant result provides new research guidance for the scientific community. By further preparing In-rich nitrides, the bowing parameters of InGaN and InAIN were first accurately measured. For

  6. Bright Room-Temperature Single Photon Emission from Defects in Gallium Nitride

    CERN Document Server

    Berhane, Amanuel M; Bodrog, Zoltán; Fiedler, Saskia; Schröder, Tim; Triviño, Noelia Vico; Palacios, Tomás; Gali, Adam; Toth, Milos; Englund, Dirk; Aharonovich, Igor

    2016-01-01

    Single photon emitters play a central role in many photonic quantum technologies. A promising class of single photon emitters consists of atomic color centers in wide-bandgap crystals, such as diamond silicon carbide and hexagonal boron nitride. However, it is currently not possible to grow these materials as sub-micron thick films on low-refractive index substrates, which is necessary for mature photonic integrated circuit technologies. Hence, there is great interest in identifying quantum emitters in technologically mature semiconductors that are compatible with suitable heteroepitaxies. Here, we demonstrate robust single photon emitters based on defects in gallium nitride (GaN), the most established and well understood semiconductor that can emit light over the entire visible spectrum. We show that the emitters have excellent photophysical properties including a brightness in excess of 500x10^3 counts/s. We further show that the emitters can be found in a variety of GaN wafers, thus offering reliable and s...

  7. III-Nitride high temperature single-photon sources

    Science.gov (United States)

    Bhattacharya, Pallab; Deshpande, Saniya; Frost, Thomas; Hazari, Arnab

    2015-03-01

    Nitride based GaN and InGaN quantum dots are excellent single-photon emitters at high temperature owing to their wide bandgap and large exciton binding energy [1-5]. In this work, two different molecular beam epitaxy (MBE) grown nanostructures have been investigated for single-photon emission: InGaN/GaN disk-in-nanowire and InGaN/GaN self-organized quantum dot. Single-photon emission under both optical and electrical excitation has been observed from a single InGaN quantum contained in a GaN nanowire p-n junction. We demonstrate electrically driven single-photon emission, with a g (2)(0) = 0.35, from a single InGaN quantum dot emitting in the green spectral range (λ=520 nm) up to 125 K. Additionally, a self-organized InGaN/GaN single quantum dot diode was grown and fabricated. Emission from a single quantum dot (λ=620 nm) shows single-photon emission with g(2)(0) = 0.29 at room temperature. On-demand single-photon emission by electrical pumping of the quantum dot at an excitation repetition rate of 200 MHz was demonstrated.

  8. Group III-nitride based hetero and quantum structures

    Science.gov (United States)

    Monemar, B.; Pozina, G.

    2000-11-01

    The present paper attempts an overview of a presently very active research field: the III-nitrides and their interesting possibilities for a range of device applications employing heterostructures and low-dimensional quantum structures. The family of materials containing AlN, GaN, InN and the alloys between them span a range of direct bandgaps between 6.2 and 1.9 eV, with very large band offsets in type I heterojunctions, which is very favourable for a number of interesting device concepts. A very important feature of these materials is the dominant influence of strong polarisation fields (spontaneous as well as piezo-electric) on the physical properties of multilayer structures, as well as on devices. Exciton binding energies are large, and excitonic effects are therefore important at room temperature. Many alloy systems, in particular InGaN, have a high miscibility gap, leading to a strong tendency for phase separation and consequently to many novel physical properties which yet have to be explored in detail. Localization effects for carriers and excitons are very important in quantum structures based on these alloys. Devices based on III-N heterostructures cover a wide range, from optical devices (violet lasers, LEDs covering a range from UV to red, white LEDs, photodetectors, UV cameras) to high-frequency power devices, both unipolar transistors (AlGaN/GaN HEMTs) and bipolar HBTs.

  9. Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot.

    Science.gov (United States)

    Holmes, Mark J; Choi, Kihyun; Kako, Satoshi; Arita, Munetaka; Arakawa, Yasuhiko

    2014-02-12

    We demonstrate triggered single photon emission at room temperature from a site-controlled III-nitride quantum dot embedded in a nanowire. Moreover, we reveal a remarkable temperature insensitivity of the single photon statistics, and a g((2))[0] value at 300 K of just 0.13. The combination of using high-quality, small, site-controlled quantum dots with a wide-bandgap material system is crucial for providing both sufficient exciton confinement and an emission spectrum with minimal contamination in order to enable room temperature operation. Arrays of such single photon emitters will be useful for room-temperature quantum information processing applications such as on-chip quantum communication.

  10. Machine learning bandgaps of double perovskites

    National Research Council Canada - National Science Library

    Pilania, G; Mannodi-Kanakkithodi, A; Uberuaga, B P; Ramprasad, R; Gubernatis, J E; Lookman, T

    2016-01-01

    .... While quantum mechanical computations for high-fidelity bandgaps are enormously computation-time intensive and thus impractical in high throughput studies, informatics-based statistical learning...

  11. Growth and characterization of III-nitrides materials system for photonic and electronic devices by metalorganic chemical vapor deposition

    Science.gov (United States)

    Yoo, Dongwon

    A wide variety of group III-Nitride-based photonic and electronic devices have opened a new era in the field of semiconductor research in the past ten years. The direct and large bandgap nature, intrinsic high carrier mobility, and the capability of forming heterostructures allow them to dominate photonic and electronic device market such as light emitters, photodiodes, or high-speed/high-power electronic devices. Avalanche photodiodes (APDs) based on group III-Nitrides materials are of interest due to potential capabilities for low dark current densities, high sensitivities and high optical gains in the ultraviolet (UV) spectral region. Wide-bandgap GaN-based APDs are excellent candidates for short-wavelength photodetectors because they have the capability for cut-off wavelengths in the UV spectral region (lambda operate in the solar-blind spectral regime of lambda 10,000 and 50, respectively. The large stable optical gains are attributed to the improved crystalline quality of epitaxial layers grown on low dislocation density bulk substrates. GaN p-i-n rectifiers have brought much research interest due to its superior physical properties. The AIN-free full-vertical GaN p-i-n rectifiers on n-type 6H-SiC substrates by employing a conducting AIGaN:Si buffer layer provides the advantages of the reduction of sidewall damage from plasma etching and lower forward resistance due to the reduction of current crowding at the bottom n-type layer. The AlGaN:Si nucleation layer was proven to provide excellent electrical properties while also acting as a good buffer role for subsequent GaN growth. The reverse breakdown voltage for a relatively thin 2.5 mum-thick i-region was found to be over -400V.

  12. Investigation into nitrided spur gears

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S.; Coban, A.; Nickel, J.; Sunar, M.; Sami, M.; Abdul Aleem, B.J. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia)

    1996-12-01

    The cold forging method has been widely used in industry to produce machine parts. In general, gears are produced by shaping or hobbing. One of the shaping techniques is precision forging, which has several advantages over hobbing. In the present study, cold forging of spur gears from Ti-6Al-4V material is introduced. To improve the surface properties of the resulting gears, plasma nitriding was carried out. Nuclear reaction analysis was carried out to obtain the nitrogen concentration, while the micro-PIXE technique was used to determine the elemental distribution in the matrix after forging and nitriding processes. Scanning electron microscopy and x-ray powder diffraction were used to investigate the metallurgical changes and formation of nitride components in the surface region. Microhardness and friction tests were carried out to measure the hardness depth profile and friction coefficient at the surface. Finally, scoring failure tests were conducted to determine the rotational speed at which the gears failed. Three distinct regions were obtained in the nitride region, and at the initial stages of the scoring tests, failure in surface roughness was observed in the vicinity of the tip of the gear tooth. This occurred at a particular rotational speed and work input.

  13. Investigation into nitrided spur gears

    Science.gov (United States)

    Yilbas, B. S.; Coban, A.; Nickel, J.; Sunar, M.; Sami, M.; Aleem, B. J. Abdul

    1996-12-01

    The cold forging method has been widely used in industry to produce machine parts. In general, gears are produced by shaping or hobbing. One of the shaping techniques is precision forging, which has several advantages over hobbing. In the present study, cold forging of spur gears from Ti-6A1-4V material is introduced. To improve the surface properties of the resulting gears, plasma nitriding was carried out. Nuclear reaction analysis was carried out to obtain the nitrogen concentration, while the micro-PIXE technique was used to determine the elemental distribution in the matrix after forging and nitriding processes. Scanning electron microscopy and x-ray powder diffraction were used to investigate the metallurgical changes and formation of nitride components in the surface region. Microhardness and friction tests were carried out to measure the hardness depth profile and friction coefficient at the surface. Finally, scoring failure tests were conducted to determine the rotational speed at which the gears failed. Three distinct regions were obtained in the nitride region, and at the initial stages of the scoring tests, failure in surface roughness was observed in the vicinity of the tip of the gear tooth. This occurred at a particular rotational speed and work input.

  14. Experimental evidence of high-frequency complete elastic bandgap in pillar-based phononic slabs

    Energy Technology Data Exchange (ETDEWEB)

    Pourabolghasem, Reza; Mohammadi, Saeed; Eftekhar, Ali A.; Adibi, Ali [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Khelif, Abdelkrim [Institut FEMTO-ST, Université de Franche-Comté, CNRS, 32 Avenue de l' Observatoire, 25044 Besançon Cedex (France)

    2014-12-08

    We present strong experimental evidence for the existence of a complete phononic bandgap, for Lamb waves, in the high frequency regime (i.e., 800 MHz) for a pillar-based phononic crystal (PnC) membrane with a triangular lattice of gold pillars on top. The membrane is composed of an aluminum nitride film stacked on thin molybdenum and silicon layers. Experimental characterization shows a large attenuation of at least 20 dB in the three major crystallographic directions of the PnC lattice in the frequency range of 760 MHz–820 MHz, which is in agreement with our finite element simulations of the PnC bandgap. The results of experiments are analyzed and the physics behind the attenuation in different spectral windows is explained methodically by assessing the type of Bloch modes and the in-plane symmetry of the displacement profile.

  15. Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis.

    Science.gov (United States)

    Hinuma, Yoyo; Hatakeyama, Taisuke; Kumagai, Yu; Burton, Lee A; Sato, Hikaru; Muraba, Yoshinori; Iimura, Soshi; Hiramatsu, Hidenori; Tanaka, Isao; Hosono, Hideo; Oba, Fumiyasu

    2016-06-21

    Nitride semiconductors are attractive because they can be environmentally benign, comprised of abundant elements and possess favourable electronic properties. However, those currently commercialized are mostly limited to gallium nitride and its alloys, despite the rich composition space of nitrides. Here we report the screening of ternary zinc nitride semiconductors using first-principles calculations of electronic structure, stability and dopability. This approach identifies as-yet-unreported CaZn2N2 that has earth-abundant components, smaller carrier effective masses than gallium nitride and a tunable direct bandgap suited for light emission and harvesting. High-pressure synthesis realizes this phase, verifying the predicted crystal structure and band-edge red photoluminescence. In total, we propose 21 promising systems, including Ca2ZnN2, Ba2ZnN2 and Zn2PN3, which have not been reported as semiconductors previously. Given the variety in bandgaps of the identified compounds, the present study expands the potential suitability of nitride semiconductors for a broader range of electronic, optoelectronic and photovoltaic applications.

  16. Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis

    Science.gov (United States)

    Hinuma, Yoyo; Hatakeyama, Taisuke; Kumagai, Yu; Burton, Lee A.; Sato, Hikaru; Muraba, Yoshinori; Iimura, Soshi; Hiramatsu, Hidenori; Tanaka, Isao; Hosono, Hideo; Oba, Fumiyasu

    2016-01-01

    Nitride semiconductors are attractive because they can be environmentally benign, comprised of abundant elements and possess favourable electronic properties. However, those currently commercialized are mostly limited to gallium nitride and its alloys, despite the rich composition space of nitrides. Here we report the screening of ternary zinc nitride semiconductors using first-principles calculations of electronic structure, stability and dopability. This approach identifies as-yet-unreported CaZn2N2 that has earth-abundant components, smaller carrier effective masses than gallium nitride and a tunable direct bandgap suited for light emission and harvesting. High-pressure synthesis realizes this phase, verifying the predicted crystal structure and band-edge red photoluminescence. In total, we propose 21 promising systems, including Ca2ZnN2, Ba2ZnN2 and Zn2PN3, which have not been reported as semiconductors previously. Given the variety in bandgaps of the identified compounds, the present study expands the potential suitability of nitride semiconductors for a broader range of electronic, optoelectronic and photovoltaic applications. PMID:27325228

  17. Composition and bandgap-graded semiconductor alloy nanowires.

    Science.gov (United States)

    Zhuang, Xiujuan; Ning, C Z; Pan, Anlian

    2012-01-03

    Semiconductor alloy nanowires with spatially graded compositions (and bandgaps) provide a new material platform for many new multifunctional optoelectronic devices, such as broadly tunable lasers, multispectral photodetectors, broad-band light emitting diodes (LEDs) and high-efficiency solar cells. In this review, we will summarize the recent progress on composition graded semiconductor alloy nanowires with bandgaps graded in a wide range. Depending on different growth methods and material systems, two typical nanowire composition grading approaches will be presented in detail, including composition graded alloy nanowires along a single substrate and those along single nanowires. Furthermore, selected examples of applications of these composition graded semiconductor nanowires will be presented and discussed, including tunable nanolasers, multi-terminal on-nanowire photodetectors, full-spectrum solar cells, and white-light LEDs. Finally, we will make some concluding remarks with future perspectives including opportunities and challenges in this research area.

  18. Design techniques for superposition of acoustic bandgaps using fractal geometries

    CERN Document Server

    Castiñeira-Ibáñez, S; Sánchez-Pérez, J V; Garcia-Raffi, L M

    2010-01-01

    Research into properties of heterogeneous artificial materials, consisting of arrangements of rigid scatterers embedded in a medium with different elastic properties, has been intense throughout last two decades. The capability to prevent the transmission of waves in predetermined bands of frequencies -called bandgaps- becomes one of the most interesting properties of these systems, and leads to the possibility of designing devices to control wave propagation. The underlying physical mechanism is destructive Bragg interference. Here we show a technique that enables the creation of a wide bandgap in these materials, based on fractal geometries. We have focused our work in the acoustic case where these materials are called Phononic/Sonic Crystals (SC) but, the technique could be applied any types of crystals and wave types in ranges of frequencies where the physics of the process is linear.

  19. Microresonator and associated method for producing and controlling photonic signals with a photonic bandgap delay apparatus

    Science.gov (United States)

    Fork, Richard Lynn (Inventor); Jones, Darryl Keith (Inventor); Keys, Andrew Scott (Inventor)

    2000-01-01

    By applying a photonic signal to a microresonator that includes a photonic bandgap delay apparatus having a photonic band edge transmission resonance at the frequency of the photonic signal, the microresonator imparts a predetermined delay to the photonic signal. The photonic bandgap delay apparatus also preferably has a photonic band edge transmission resonance bandwidth which is at least as wide as the bandwidth of the photonic signal such that a uniform delay is imparted over the entire bandwidth of the photonic signal. The microresonator also includes a microresonator cavity, typically defined by a pair of switchable mirrors, within which the photonic bandgap delay apparatus is disposed. By requiring the photonic signal to oscillate within the microresonator cavity so as to pass through the photonic bandgap delay apparatus several times, the microresonator can controllably impart an adjustable delay to the photonic signal.

  20. Functional carbon nitride materials — design strategies for electrochemical devices

    Science.gov (United States)

    Kessler, Fabian K.; Zheng, Yun; Schwarz, Dana; Merschjann, Christoph; Schnick, Wolfgang; Wang, Xinchen; Bojdys, Michael J.

    2017-06-01

    In the past decade, research in the field of artificial photosynthesis has shifted from simple, inorganic semiconductors to more abundant, polymeric materials. For example, polymeric carbon nitrides have emerged as promising materials for metal-free semiconductors and metal-free photocatalysts. Polymeric carbon nitride (melon) and related carbon nitride materials are desirable alternatives to industrially used catalysts because they are easily synthesized from abundant and inexpensive starting materials. Furthermore, these materials are chemically benign because they do not contain heavy metal ions, thereby facilitating handling and disposal. In this Review, we discuss the building blocks of carbon nitride materials and examine how strategies in synthesis, templating and post-processing translate from the molecular level to macroscopic properties, such as optical and electronic bandgap. Applications of carbon nitride materials in bulk heterojunctions, laser-patterned memory devices and energy storage devices indicate that photocatalytic overall water splitting on an industrial scale may be realized in the near future and reveal a new avenue of 'post-silicon electronics'.

  1. Implementation of Strategies to Improve the Reliability of III-Nitride Photodetectors towards the Realization of Visible and Solar-Blind Imaging Arrays

    Science.gov (United States)

    Bulmer, John J.

    Ultraviolet (UV) radiation detectors are being heavily researched for applications in non-line-of-sight (NLOS) communication systems, flame monitoring, biological detection, and astronomical studies. These applications are currently being met by the use of Si-based photomultiplier tubes (PMTs), which are bulky, fragile, expensive and require the use of external filters to achieve true visible-blind and solar-blind operation. GaN and AlxGa1-xN avalanche photodiodes have been of great interest as a replacement for PMT technology. III-Nitride materials are radiation hard and have a wide, tunable bandgap that allows devices to operate in both visible and solar-blind regimes without the use of external filters. The high price and relative unavailability of bulk substrates demands heteroepitaxy of III-Nitride films on lattice-mismatched substrates, which leads to large dark current and premature breakdown in GaN and AlGaN avalanche photodiodes. While significant advances have been made towards the development of III-Nitride UV photodetectors using a variety of device designs, GaN-based avalanche photodiodes typically demonstrate poor device performance, low yield, and breakdown that results in permanent device damage. To address these challenges, a novel implantation technique was used to achieve edge termination and electric field redistribution at the contact edges in GaN and AlGaN p-i-n photodiode structures to enhance reliability. This process was successful at significantly reducing the levels of dark current over two orders of magnitude and resulted in improved device reliability. Further improvement in reliability of III-Nitride devices was also proposed and explored by a technique for isolation of electrically conductive structural defects. The large number of dislocations induced by the lattice and thermal mismatch with the substrate are known to be leakage current pathways and non-radiative recombination centers in III-Nitride films. This process selectively

  2. Bandgap Engineering in High-Efficiency Multijunction Concentrator Cells

    Energy Technology Data Exchange (ETDEWEB)

    King, R. R.; Sherif, R. A.; Kinsey, G. S.; Kurtz, S.; Fetzer, C. M.; Edmondson, K. M.; Law, D. C.; Cotal, H. L.; Krut, D. D.; Ermer, J. H.; Karam, N. H.

    2005-08-01

    This paper discusses semiconductor device research paths under investigation with the aim of reaching the milestone efficiency of 40%. A cost analysis shows that achieving very high cell efficiencies is crucial for the realization of cost-effective photovoltaics, because of the strongly leveraging effect of efficiency on module packaging and balance-of systems costs. Lattice-matched (LM) GaInP/ GaInAs/ Ge 3-junction cells have achieved the highest independently confirmed efficiency at 175 suns, 25?C, of 37.3% under the standard AM1.5D, low-AOD terrestrial spectrum. Lattice-mismatched, or metamorphic (MM), materials offer still higher potential efficiencies, if the crystal quality can be maintained. Theoretical efficiencies well over 50% are possible for a MM GaInP/ 1.17-eV GaInAs/ Ge 3-junction cell limited by radiative recombination at 500 suns. The bandgap - open circuit voltage offset, (Eg/q) - Voc, is used as a valuable theoretical and experimental tool to characterize multijunction cells with subcell bandgaps ranging from 0.7 to 2.1 eV. Experimental results are presented for prototype 6-junction cells employing an active {approx}1.1-eV dilute nitride GaInNAs subcell, with active-area efficiency greater than 23% and over 5.3 V open-circuit voltage under the 1-sun AM0 space spectrum. Such cell designs have theoretical efficiencies under the terrestrial spectrum at 500 suns concentration exceeding 55% efficiency, even for lattice-matched designs.

  3. Continuous photocatalytic fuel production over wide-bandgap metal oxides

    OpenAIRE

    Bazzo, Antonio

    2014-01-01

    La fotosíntesis artificial ha sido propuesta como una de las posibles soluciones a los problemas energéticos y de materias primas de origen químico para hacer frente, de forma anticipada, al agotamiento de los combustibles fósiles en un futuro cercano. Esta tesis doctoral trata el estudio de catalizadores prometedores y el diseño de reactores para realzar la eficiencia de reacción y entender el origen de la actividad fotocatalítica. Un sistema de reacción en flujo continuo fue diseñado y cons...

  4. Wide-Bandgap Semiconductor Devices for Automotive Applications

    Science.gov (United States)

    Sugimoto, M.; Ueda, H.; Uesugi, T.; Kachi, T.

    2007-06-01

    In this paper, we discuss requirements of power devices for automotive applications, especially hybrid vehicles and the development of GaN power devices at Toyota. We fabricated AlGaN/GaN HEMTs and measured their characteristics. The maximum breakdown voltage was over 600V. The drain current with a gate width of 31mm was over 8A. A thermograph image of the HEMT under high current operation shows the AlGaN/GaN HEMT operated at more than 300°C. And we confirmed the operation of a vertical GaN device. All the results of the GaN HEMTs are really promising to realize high performance and small size inverters for future automobiles.

  5. Wide Bandgap Semiconductor Nanorod and Thin Film Gas Sensors

    Science.gov (United States)

    Wang, Hung-Ta; Gila, Brent P.; Lin, Jenshan; Pearton, Stepehn J.

    2006-01-01

    In this review we discuss the advances in use of GaN and ZnO-based solid-state sensors for gas sensing applications. AlGaN/GaN high electron mobility transistors (HEMTs) show a strong dependence of source/drain current on the piezoelectric polarization -induced two dimensional electron gas (2DEG). Furthermore, spontaneous and piezoelectric polarization induced surface and interface charges can be used to develop very sensitive but robust sensors for the detection of gases. Pt-gated GaN Schottky diodes and Sc2O3/AlGaN/GaN metal-oxide semiconductor diodes also show large change in forward currents upon exposure to H2 containing ambients. Of particular interest are methods for detecting ethylene (C2H4), which offers problems because of its strong double bonds and hence the difficulty in dissociating it at modest temperatures. ZnO nanorods offer large surface area, are bio-safe and offer excellent gas sensing characteristics.

  6. Wide Bandgap Semiconductor Nanowires for Electronic, Photonic and Sensing Devices

    Science.gov (United States)

    2012-01-05

    exciton emission at 3.24 eV. Also, the ZnO nanorods can be integrated with AlGaN/ GaN HEMT sensors by incorporating the nano-rods on the HEMT gate sensing...area, the total sensing area increases significantly. The conventional AlGaN/ GaN HEMT detects the ambient changes through the “gate sensing area...glucose interaction to the AlGaN/ GaN HEMT . With such low detection limit, it is possible to dilute ɘ.1 micro-liter of EBC in 100-200 micro-liter

  7. Characterization of Plasma Etch Processes for Wide Bandgap Semiconductors

    Science.gov (United States)

    2005-09-07

    resubmission suspense date of is recommended. Attached is Principal Contracting Officer (PCO) letter to the Business Office and PI detailing reasons for nonacceptance and establishing a resubmittal date. DON SILVERSMITH Program Manager

  8. Front-end ASIC for pixilated wide bandgap detectors

    Science.gov (United States)

    Vernon, Emerson; de Geronimo, Gianluigi; Fried, Jack; Herman, Cedric; Zhang, Feng; He, Zhong

    2009-08-01

    A CMOS application specific integrated circuit (ASIC) was developed for 3D Position Sensitive Detectors (PSD). The preamplifiers were optimized for pixellated Cadmium-Zinc-Telluride (CZT) Mercuric-Iodide (HgI2) and Thallium Bromide (TlBr) sensors. The ASIC responds to an ionizing event in the sensor by measuring both amplitude and timing in the pertinent anode and cathode channels. Each channel is sensitive to events and transients of positive or negative polarity and performs low-noise charge amplification, high-order shaping, peak and timing detection along with analog storage and multiplexing. Three methodologies are implemented to perform timing measurement in the cathode channel. Multiple sparse modes are available for the readout of channel data. The ASIC integrates 130 channels in an area of 12 x 9 mm2 and dissipates ~330 mW. With a CZT detector connected and biased, an electronic resolution of ~200 e- rms for charges up to 100 fC was measured. Spectral data from the University of Michigan revealed a cumulative single-pixel resolution of ~0.55 % FWHM at 662 KeV.

  9. Actively doped solid core Photonic Bandgap Fiber

    DEFF Research Database (Denmark)

    Broeng, Jes; Olausson, Christina Bjarnal Thulin; Lyngsøe, Jens Kristian;

    2010-01-01

    Solid photonic bandgap fibers offer distributed spectral filtering with extraordinary high suppression. This opens new possibilities of artificially tailoring the gain spectrum of fibers. We present record-performance of such fibers and outline their future applications....

  10. Methods of forming boron nitride

    Science.gov (United States)

    Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J; Crandall, David L

    2015-03-03

    A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boron nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.

  11. Methods of forming boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J; Crandall, David L

    2015-03-03

    A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boron nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.

  12. Epitaxial growth of III-V nitrides and phase separation and ordering in indium gallium nitride alloys

    Science.gov (United States)

    Doppalapudi, Dharanipal

    The family of III-V nitrides are wide band-gap semiconductors with a broad range of opto-electronic applications in LEDs, laser diodes, UV detectors as well as high temperature/high frequency devices. Due to the lack of good quality native substrates, GaN is grown on foreign substrates that have a lattice and thermal mismatch with GaN. This results in a material with a high density of defects, which in turn adversely affects the opto-electronic properties of the epilayer. In this study, GaN films were epitaxially grown on various substrates (C-plane sapphire, A-plane sapphire, SiC and ZnO) by molecular beam epitaxy. Additionally, GaN homoepitaxy onto laterally overgrown thick GaN substrates was investigated. It was demonstrated that the polarity of the GaN film plays a major role in determining the properties of the films. The growth parameters were optimized to eliminate inversion domain boundaries, which result in domains of opposite polarity in the GaN lattice. For growth on A-plane sapphire, it was found that substrate nitridation and low temperature buffer deposition are critical in order to obtain good epitaxial growth, in spite of the relatively small mismatch between the film and substrate. A crystallographic model was developed to explain this observation. By optimizing growth parameters, GaN films with excellent structural, transport, optical and device properties were grown. The second part of this research involves growth of ternary alloys and superlattice structures, which are essential in the fabrication of many devices. It was found that the InN-GaN pseudo-binary system is not homogeneous over the entire composition range. Due to the mismatch between the tetrahedral radii of GaN and InN, InGaN alloys exhibited phase separation and long-range atomic ordering. Investigations of InxGa1-xN films grown over a wide range of compositions by XRD and TEM showed that the predominant strain relieving mechanism was phase separation in films with x > 0.2, and

  13. Optical bandgap of single- and multi-layered amorphous germanium ultra-thin films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pei; Zaslavsky, Alexander [Department of Physics and School of Engineering, Brown University, 182-184 Hope St., Providence, Rhode Island 02912 (United States); Longo, Paolo [Gatan, Inc., 5794 W Las Positas Blvd., Pleasanton, California 94588 (United States); Pacifici, Domenico, E-mail: Domenico-Pacifici@brown.edu [School of Engineering, Brown University, 184 Hope St., Providence, Rhode Island 02912 (United States)

    2016-01-07

    Accurate optical methods are required to determine the energy bandgap of amorphous semiconductors and elucidate the role of quantum confinement in nanometer-scale, ultra-thin absorbing layers. Here, we provide a critical comparison between well-established methods that are generally employed to determine the optical bandgap of thin-film amorphous semiconductors, starting from normal-incidence reflectance and transmittance measurements. First, we demonstrate that a more accurate estimate of the optical bandgap can be achieved by using a multiple-reflection interference model. We show that this model generates more reliable results compared to the widely accepted single-pass absorption method. Second, we compare two most representative methods (Tauc and Cody plots) that are extensively used to determine the optical bandgap of thin-film amorphous semiconductors starting from the extracted absorption coefficient. Analysis of the experimental absorption data acquired for ultra-thin amorphous germanium (a-Ge) layers demonstrates that the Cody model is able to provide a less ambiguous energy bandgap value. Finally, we apply our proposed method to experimentally determine the optical bandgap of a-Ge/SiO{sub 2} superlattices with single and multiple a-Ge layers down to 2 nm thickness.

  14. Optical bandgap of single- and multi-layered amorphous germanium ultra-thin films

    Science.gov (United States)

    Liu, Pei; Longo, Paolo; Zaslavsky, Alexander; Pacifici, Domenico

    2016-01-01

    Accurate optical methods are required to determine the energy bandgap of amorphous semiconductors and elucidate the role of quantum confinement in nanometer-scale, ultra-thin absorbing layers. Here, we provide a critical comparison between well-established methods that are generally employed to determine the optical bandgap of thin-film amorphous semiconductors, starting from normal-incidence reflectance and transmittance measurements. First, we demonstrate that a more accurate estimate of the optical bandgap can be achieved by using a multiple-reflection interference model. We show that this model generates more reliable results compared to the widely accepted single-pass absorption method. Second, we compare two most representative methods (Tauc and Cody plots) that are extensively used to determine the optical bandgap of thin-film amorphous semiconductors starting from the extracted absorption coefficient. Analysis of the experimental absorption data acquired for ultra-thin amorphous germanium (a-Ge) layers demonstrates that the Cody model is able to provide a less ambiguous energy bandgap value. Finally, we apply our proposed method to experimentally determine the optical bandgap of a-Ge/SiO2 superlattices with single and multiple a-Ge layers down to 2 nm thickness.

  15. Optical processes in dilute nitrides Semiconductors; Alloys

    CERN Document Server

    Potter, R J

    2003-01-01

    This thesis is concerned with the narrow bandgap semiconductor alloys known as dilute nitrides. The initial part of this project was concerned with characterisation of chemical beam epitaxy (CBE) grown samples so that growth techniques could be refined. Early samples show evidence of structural/compositional disorder resulting from the large miscibility gap induced by nitrogen. Non-equilibrium growth was employed to overcome this, eventually resulting in improved material. In the second part of this project, steady-state and time-resolved photoluminescence, along with photomodulated reflectance were employed to investigate the optical properties of molecular beam epitaxy (MBE) grown GalnNAs, GaNAs and InGaAs quantum wells (QWs). Low temperature results show evidence of carrier localization, which was interpreted in terms of structural/compositional fluctuations induced by the nitrogen incorporation. Poor photoluminescence efficiency and rapid decay of emission kinetics indicate the presence of strong non-radi...

  16. Performance enhancement of the P3HT/PCBM solar cells through NIR sensitization using a small-bandgap polymer

    Energy Technology Data Exchange (ETDEWEB)

    Ameri, Tayebeh; Min, Jie; Li, Ning; Machui, Florian; Baran, Derya [Institute Materials for Electronics and Energy Technology (I-MEET), Department of Materials Science and Engineering, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen (Germany); Forster, Michael; Schottler, Kristina J.; Dolfen, Daniel; Scherf, Ullrich [FB C - Mathematik and Naturwissenschaften, Fachgebiet Makromolekulare Chemie and Institut fuer Polymertechnologie, Bergische Universitaet Wuppertal (Germany); Brabec, Christoph J. [Institute Materials for Electronics and Energy Technology (I-MEET), Department of Materials Science and Engineering, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen (Germany); Bavarian Center for Applied Energy Research (ZAE Bayern), Erlangen (Germany)

    2012-10-15

    A smart strategy to significantly improve the energy conversion efficiency of the wide-bandgap polymer P3HT blended in PCBM is demonstrated through NIR sensitization with a low-bandgap polymer. An efficiency of over 4% is achieved by adding 30-40% of the low bandgap polymer Si-PCPDTBT to the binary P3HT:PCBM blend, corresponding to an efficiency improvement of 25% compared to the P3HT:PCBM reference binary blend. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Melon: A carbon-nitride analog to graphene

    Science.gov (United States)

    Therrien, Joel; Li, Yancen; Schmidt, Daniel

    2012-02-01

    Although graphene remains the premier 2-D material, many others have been shown to exist. A close analog to graphene would be a two-dimensional sheet composed of carbon and nitrogen, known as melon. Bulk melon, also known as graphitic carbon-nitride, has been successfully synthesized and shown to be an organic semiconductor with a band-gap around 2.7 eV. We report on the successful synthesis of single layer and few layer melon. The physical and electrical characteristics of this close cousin to graphene will be presented along with the synthesis method.

  18. Design of nitride semiconductors for solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Zakutayev, Andriy

    2016-01-01

    Nitride semiconductors are a promising class of materials for solar energy conversion applications, such as photovoltaic and photoelectrochemical cells. Nitrides can have better solar absorption and electrical transport properties than the more widely studied oxides, as well as the potential for better scalability than other pnictides or chalcogenides. In addition, nitrides are also relatively unexplored compared to other chemistries, so they provide a great opportunity for new materials discovery. This paper reviews the recent advances in the design of novel semiconducting nitrides for solar energy conversion technologies. Both binary and multinary nitrides are discussed, with a range of metal chemistries (Cu3N, ZnSnN2, Sn3N4, etc.) and crystal structures (delafossite, perovskite, spinel, etc.), including a brief overview of wurtzite III-N materials and devices. The current scientific challenges and promising future directions in the field are also highlighted.

  19. Microfabricated bulk wave acoustic bandgap device

    Science.gov (United States)

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol

    2010-06-08

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  20. Gallium nitride optoelectronic devices

    Science.gov (United States)

    Chu, T. L.; Chu, S. S.

    1972-01-01

    The growth of bulk gallium nitride crystals was achieved by the ammonolysis of gallium monochloride. Gallium nitride single crystals up to 2.5 x 0.5 cm in size were produced. The crystals are suitable as substrates for the epitaxial growth of gallium nitride. The epitaxial growth of gallium nitride on sapphire substrates with main faces of (0001) and (1T02) orientations was achieved by the ammonolysis of gallium monochloride in a gas flow system. The grown layers had electron concentrations in the range of 1 to 3 x 10 to the 19th power/cu cm and Hall mobilities in the range of 50 to 100 sq cm/v/sec at room temperature.

  1. Selecting Semiconducting Single-Walled Carbon Nanotubes with Narrow Bandgap Naphthalene Diimide-Based Polymers

    NARCIS (Netherlands)

    Salazar-Rios, Jorge Mario; Gomulya, Widianta; Derenskyi, Vladimir; Yang, Jie; Bisri, Satria Zulkarnaen; Chen, Zhihua; Facchetti, Antonio; Loi, Maria Antonietta

    2015-01-01

    Noncovalent functionalization of carbon nanotubes by wrapping them using pi-conjugated polymers is one of the most promising techniques to sort, separate, and purify semiconducting nanotube species for applications in optoelectronic devices. However, wide energy bandgap polymers commonly used in thi

  2. Boron Nitride Nanotubes

    Science.gov (United States)

    Smith, Michael W. (Inventor); Jordan, Kevin (Inventor); Park, Cheol (Inventor)

    2012-01-01

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  3. Boron nitride composites

    Science.gov (United States)

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2016-02-16

    According to one embodiment, a composite product includes hexagonal boron nitride (hBN), and a plurality of cubic boron nitride (cBN) particles, wherein the plurality of cBN particles are dispersed in a matrix of the hBN. According to another embodiment, a composite product includes a plurality of cBN particles, and one or more borate-containing binders.

  4. Boron nitride composites

    Energy Technology Data Exchange (ETDEWEB)

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2016-02-16

    According to one embodiment, a composite product includes hexagonal boron nitride (hBN), and a plurality of cubic boron nitride (cBN) particles, wherein the plurality of cBN particles are dispersed in a matrix of the hBN. According to another embodiment, a composite product includes a plurality of cBN particles, and one or more borate-containing binders.

  5. A Super Performance Bandgap Voltage Reference with Adjustable Output for DC-DC Converter

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper presents a super performance bandgap voltage reference for DC-DC converter with adjustable output. It generates a wide range of voltage reference ranging from sub- 1V to 1.221 7 V and has a low temperature coefficient of 2.3 × 10 - 5/K over the temperature variation using the current feedback and resistive subdivision. In addition, the power supply rejection ration of the proposed bandgap voltage reference is 78 dB. When supply voltage varies from 2.5 V to 6 V, output VREF is 1.221 685 ± 0.055 mV.

  6. Methods for forming group III-V arsenide-nitride semiconductor materials

    Science.gov (United States)

    Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)

    2000-01-01

    Methods are disclosed for forming Group III--arsenide-nitride semiconductor materials. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.

  7. Electric gating induced bandgaps and enhanced Seebeck effect in zigzag bilayer graphene ribbons

    Science.gov (United States)

    Vu, Thanh-Tra; Tran, Van-Truong

    2016-08-01

    We theoretically investigate the effect of a transverse electric field generated by side gates and a vertical electric field generated by top/back gates on energy bands and transport properties of zigzag bilayer graphene ribbons (Bernal stacking). Using atomistic tight binding calculations and Green’s function formalism we demonstrate that a bandgap is opened when either field is applied and even enlarged under simultaneous influence of the two fields. Interestingly, although vertical electric fields are widely used to control the bandgap in bilayer graphene, here we show that transverse fields exhibit a more positive effect in terms of modulating a larger range of bandgap and retaining good electrical conductance. The Seebeck effect is also demonstrated to be enhanced strongly—by about 13 times for a zigzag bilayer graphene ribbon with 16 chain lines. These results may motivate new designs of devices made of bilayer graphene ribbons using electric gates.

  8. Fabrication and characterization of porous-core honeycomb bandgap THz fibers

    DEFF Research Database (Denmark)

    Bao, Hualong; Nielsen, Kristian; Rasmussen, Henrik K.

    We have fabricated a porous-core honeycomb fiber in the cyclic olefin copolymer (COC) Topas® by drill-draw technology [1]. A cross-sectional image of the fabricated fiber is shown in the left Panel of Fig. 1. Simulation of the electromagnetic properties of the fiber shows two wide bandgaps within...... the cladding modes from the fiber. The propagation loss is measured in a cut-back experiment. The fundamental bandgap at 0.75-1.05 THz is found to have losses lower than 1.5 dB/cm, whereas the loss is below 1.0 dB/cm in the reduced bandgap 0.78-1.02 THz, as shown in Fig. 1(g)....

  9. Self-collimated waveguide bends and partial bandgap reflection of photonic crystals with parallelogram lattice.

    Science.gov (United States)

    Gao, Dingshan; Zhou, Zhiping; Citrin, David S

    2008-03-01

    The photonic crystal structure with parallelogram lattice, capable of bending a self-collimated wave with free angles and partial bandgap reflection, is presented. The equifrequency contours show that the direction of the collimation wave can be turned by tuning the angle between the two basic vectors of the lattice. Acute, right, and obtuse angles of collimating waveguide bends have been realized by arc lattices of parallelogram photonic crystals. Moreover, partial bandgap reflection of the parallelogram lattice photonic crystals is validated from the equifrequency contours and the projected band structures. A waveguide taper based on this partial bandgap reflection is also designed and proved to have above 85% transmittance over a very wide operating bandwidth of 180 nm.

  10. Nitrogen Availability Of Nitriding Atmosphere In Controlled Gas Nitriding Processes

    Directory of Open Access Journals (Sweden)

    Michalski J.

    2015-06-01

    Full Text Available Parameters which characterize the nitriding atmosphere in the gas nitriding process of steel are: the nitriding potential KN, ammonia dissociation rate α and nitrogen availabilitymN2. The article discusses the possibilities of utilization of the nitriding atmosphere’s nitrogen availability in the design of gas nitriding processes of alloyed steels in atmospheres derived from raw ammonia, raw ammonia diluted with pre-dissociated ammonia, with nitrogen, as well as with both nitrogen and pre-dissociated ammonia. The nitriding processes were accomplished in four series. The parameters selected in the particular processes were: process temperature (T, time (t, value of nitriding potential (KN, corresponding to known dissociation rate of the ammonia which dissociates during the nitriding process (α. Variable parameters were: nitrogen availability (mN2, composition of the ingoing atmosphere and flow rate of the ingoing atmosphere (FIn.

  11. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics--a Comparative Study with Gallium Nitride.

    Science.gov (United States)

    Wu, Xufei; Lee, Jonghoon; Varshney, Vikas; Wohlwend, Jennifer L; Roy, Ajit K; Luo, Tengfei

    2016-03-01

    Wurtzite Zinc-Oxide (w-ZnO) is a wide bandgap semiconductor that holds promise in power electronics applications, where heat dissipation is of critical importance. However, large discrepancies exist in the literature on the thermal conductivity of w-ZnO. In this paper, we determine the thermal conductivity of w-ZnO using first-principles lattice dynamics and compare it to that of wurtzite Gallium-Nitride (w-GaN)--another important wide bandgap semiconductor with the same crystal structure and similar atomic masses as w-ZnO. However, the thermal conductivity values show large differences (400 W/mK of w-GaN vs. 50 W/mK of w-ZnO at room temperature). It is found that the much lower thermal conductivity of ZnO originates from the smaller phonon group velocities, larger three-phonon scattering phase space and larger anharmonicity. Compared to w-GaN, w-ZnO has a smaller frequency gap in phonon dispersion, which is responsible for the stronger anharmonic phonon scattering, and the weaker interatomic bonds in w-ZnO leads to smaller phonon group velocities. The thermal conductivity of w-ZnO also shows strong size effect with nano-sized grains or structures. The results from this work help identify the cause of large discrepancies in w-ZnO thermal conductivity and will provide in-depth understanding of phonon dynamics for the design of w-ZnO-based electronics.

  12. Modeling of realistic cladding structures for photonic bandgap fibers

    DEFF Research Database (Denmark)

    Mortensen, Niels Asger; Nielsen, Martin Dybendal

    2004-01-01

    . For the fundamental bandgap we find that the bandgap edges (the intersections with the air line) shift toward shorter wavelengths when the air-filling fraction f is increased. The bandgap also broadens, and the relative bandwidth increases exponentially with f2. Compared with recent experiments [Nature 424, 657 (2003...

  13. Optical waveguide loss minimized into gallium nitride based structures grown by metal organic vapor phase epitaxy

    Science.gov (United States)

    Stolz, A.; Cho, E.; Dogheche, E.; Androussi, Y.; Troadec, D.; Pavlidis, D.; Decoster, D.

    2011-04-01

    The waveguide properties are reported for wide bandgap gallium nitride (GaN) structures grown by metal organic vapor phase epitaxy on sapphire using a AlN/GaN short period-superlattice (SPS) buffer layer system. A detailed optical characterization of GaN structures has been performed using the prism coupling technique in order to evaluate its properties and, in particular, the refractive index dispersion and the propagation loss. In order to identify the structural defects in the samples, we performed transmission electron microscopy analysis. The results suggest that AlN/GaN SPS plays a role in acting as a barrier to the propagation of threading dislocations in the active GaN epilayer; above this defective region, the dislocations density is remarkably reduced. The waveguide losses were reduced to a value around 0.65dB/cm at 1.55 μm, corresponding to the best value reported so far for a GaN-based waveguide.

  14. Dry etching techniques for active devices based on hexagonal boron nitride epilayers

    Energy Technology Data Exchange (ETDEWEB)

    Grenadier, Samuel; Li, Jing; Lin, Jingyu; Jiang, Hongxing [Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2013-11-15

    Hexagonal boron nitride (hBN) has emerged as a fundamentally and technologically important material system owing to its unique physical properties including layered structure, wide energy bandgap, large optical absorption, and neutron capture cross section. As for any materials under development, it is necessary to establish device processing techniques to realize active devices based on hBN. The authors report on the advancements in dry etching techniques for active devices based on hBN epilayers via inductively coupled plasma (ICP). The effect of ICP radio frequency (RF) power on the etch rate and vertical side wall profile was studied. The etching depth and angle with respect to the surface were measured using atomic force microscopy showing that an etching rate ∼1.25 μm/min and etching angles >80° were obtained. Profilometer data and scanning electron microscope images confirmed these results. This work demonstrates that SF{sub 6} is very suitable for etching hBN epilayers in RF plasma environments and can serve as a guide for future hBN device processing.

  15. Basic Equations for the Modeling of Gallium Nitride (gan) High Electron Mobility Transistors (hemts)

    Science.gov (United States)

    Freeman, Jon C.

    2003-01-01

    Gallium nitride (GaN) is a most promising wide band-gap semiconductor for use in high-power microwave devices. It has functioned at 320 C, and higher values are well within theoretical limits. By combining four devices, 20 W has been developed at X-band. GaN High Electron Mobility Transistors (HEMTs) are unique in that the two-dimensional electron gas (2DEG) is supported not by intentional doping, but instead by polarization charge developed at the interface between the bulk GaN region and the AlGaN epitaxial layer. The polarization charge is composed of two parts: spontaneous and piezoelectric. This behavior is unlike other semiconductors, and for that reason, no commercially available modeling software exists. The theme of this document is to develop a self-consistent approach to developing the pertinent equations to be solved. A Space Act Agreement, "Effects in AlGaN/GaN HEMT Semiconductors" with Silvaco Data Systems to implement this approach into their existing software for III-V semiconductors, is in place (summer of 2002).

  16. Design and analysis of vertical-channel gallium nitride (GaN) junctionless nanowire transistors (JNT).

    Science.gov (United States)

    Seo, Jae Hwa; Yoon, Young Jun; Lee, Hwan Gi; Yoo, Gwan Min; Jo, Young-Woo; Son, Dong-Hyeok; Lee, Jung-Hee; Cho, Eou-Sik; Cho, Seongjae; Kang, In Man

    2014-11-01

    Vertical-channel gallium nitride (GaN) junctionless nanowire transistor (JNT) has been designed and characterized by technology computer-aided design (TCAD) simulations. Various characteristics such as wide bandgap, strong polariztion field, and high electron velocity make GaN one of the attractive materials in advanced electronics in recent times. Nanowire-structured GaN can be applicable to various transistors for enhanced electrical performances by its geometrical feature. In this paper, we analyze the direct-current (DC) characteristics depending on various channel doping concentrations (N(ch)) and nanowire radii (R(NW)). Furthermore, the radio-frequency (RF) characteristics under optimized conditions are extracted by small-signal equivalent circuit modeling. For the optimally designed vertical GaN JNT demonstrated on-state current (I(on)) of 345 μA/μm and off-state current (I(off)) of 3.7 x 10(-18) A/μm with a threshold voltage (V(t)) of 0.22 V, and subthreshold swing (S) of 68 mV/dec. Besides, f(T) and f(max) under different operating conditions (gate voltage, V(GS)) have been obtained.

  17. Wide Area Thermal Processing of Light Emitting Materials

    Energy Technology Data Exchange (ETDEWEB)

    Duty, Chad E [ORNL; Joshi, Pooran C [ORNL; Jellison Jr, Gerald Earle [ORNL; Angelini, Joseph Attilio [ORNL; Sabau, Adrian S [ORNL

    2011-10-01

    Laboratory laser materials synthesis of wide bandgap materials has been successfully used to create white light emitting materials (LEMs). This technology development has progressed to the exploration on design and construction of apparatus for wide area doping and phase transformation of wide bandgap material substrates. The objective of this proposal is to develop concepts for wide area doping and phase transformation based on AppliCote Associates, LLC laser technology and ORNL high density pulsed plasma arc technology.

  18. Metal Nitrides for Plasmonic Applications

    DEFF Research Database (Denmark)

    Naik, Gururaj V.; Schroeder, Jeremy; Guler, Urcan;

    2012-01-01

    Metal nitrides as alternatives to metals such as gold could offer many advantages when used as plasmonic material. We show that transition metal nitrides can replace metals providing equally good optical performance for many plasmonic applications.......Metal nitrides as alternatives to metals such as gold could offer many advantages when used as plasmonic material. We show that transition metal nitrides can replace metals providing equally good optical performance for many plasmonic applications....

  19. Graded bandgap semiconduc-tor thin film photoelectrodes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A graded bandgap oxide semiconductor thin film electrode was designed in order to obtain a photoelectrochemically stable photoelectrode, with wide absorption range. The graded bandgap Ti1-xVxO2 film electrode was prepared by heating the stacked layers of V/Ti in varying ratios, which were coated on the substrate by the sol-gel method using the starting solution with various V/Ti ratios. XPS result showed that the composition gradient was achieved for the film. The Ti1-xVxO2 film electrode was found to be photoelectrochemically stable. Its photovoltage was about 360 mV. Obvious visible light photoresponse was observed for the Ti1-xVxO2 film electrode. Compared with the pure TiO2 electrode, the photocurrent onset potential of the Ti1-xVxO2 film electrode was shifted positively, probably because the accumulation of vanadium at the electrode sur-face causes the recombination of the electrons and holes, and the lowest level of the conduction band of Ti1-xVxO2 is lower than that of TiO2. Impedance analysis showed that the donor density of the Ti1-xVxO2 film electrode was higher than that of TiO2 film electrode.

  20. Research on Abrasives in the Chemical Mechanical Polishing Process for Silicon Nitride Balls

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Silicon nitride (Si 3N 4) has been the main material for balls in ceramic ball bearings, for its lower density, high strength, high hardness, fine thermal stability and anticorrosive, and is widely used in various fields, such as high speed and high temperature areojet engines, precision machine tools and chemical engineer machines. Silicon nitride ceramics is a kind of brittle and hard material that is difficult to machining. In the traditional finishing process of silicon nitride balls, balls are lapped...

  1. III-V aresenide-nitride semiconductor materials and devices

    Science.gov (United States)

    Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)

    1997-01-01

    III-V arsenide-nitride semiconductor crystals, methods for producing such crystals and devices employing such crystals. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.

  2. Advances in photonic bandgap fiber functionality

    DEFF Research Database (Denmark)

    Lyngsøe, Jens Kristian

    In order to take advantage of the many intriguing optical properties of photonic bandgap fibers, there are some technological challenges that have to be addressed. Among other things this includes transmission loss and the fibers ability to maintain field polarization. The work presented...... in this thesis addresses these two fundamental properties in both hollow core photonic crystal fibers and solid photonic bandgap fibers. Transmission loss in hollow core photonic crystal fibers is dominated by light scattering at the silica surfaces inside the fiber. In the current work it has been...... experimentally demonstrated that the minimum loss wavelength is located in the spectral region around 2000 nm, where the transmission loss in these fibers is significantly lower than in conventional solid silica fibers. Additionally it has been shown that transmission loss can be lowered roughly 40...

  3. Liquid Crystal photonic Bandgap Fiber Devices

    DEFF Research Database (Denmark)

    Wei, Lei

    In this Ph.D. thesis, an experimental investigation of liquid crystal photonic bandgap (LCPBG) fiber devices and applications is presented. Photonic crystal fibers (PCFs) consist of a cladding microstructure with periodic index variations and a core defined by a defect of the structure....... The presence of liquid crystals (LCs) in the air-holes of the PCF transforms the fiber from a total internal reflection (TIR) guiding type into a photonic bandgap (PBG) guiding type. The light is confined to the silica core by coherent scattering from the LC-filled air-holes and the transmission spectrum...... of each LCPBG fiber. Finally, the applications for LCPBG fiber devices based on the on-chip platform design have been demonstrated in realizing microwave true-time delay and creating an electrically tunable fiber laser. Referatet mailes...

  4. Liquid Crystal photonic Bandgap Fiber Devices

    DEFF Research Database (Denmark)

    Wei, Lei

    In this Ph.D. thesis, an experimental investigation of liquid crystal photonic bandgap (LCPBG) fiber devices and applications is presented. Photonic crystal fibers (PCFs) consist of a cladding microstructure with periodic index variations and a core defined by a defect of the structure....... The presence of liquid crystals (LCs) in the air-holes of the PCF transforms the fiber from a total internal reflection (TIR) guiding type into a photonic bandgap (PBG) guiding type. The light is confined to the silica core by coherent scattering from the LC-filled air-holes and the transmission spectrum...... of each LCPBG fiber. Finally, the applications for LCPBG fiber devices based on the on-chip platform design have been demonstrated in realizing microwave true-time delay and creating an electrically tunable fiber laser. Referatet mailes...

  5. Two-dimensional Kagome photonic bandgap waveguide

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou;

    2000-01-01

    The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....

  6. Novel Photonic Bandgap Structure and Its Application in Amplifier

    Institute of Scientific and Technical Information of China (English)

    PANGYunbo; GAOBaoxin

    2003-01-01

    A novel compact photonic bandgap (PBG)structural element, which is etched in the ground plane of the microstrip line, is proposed in this paper. A forbid-den gap, which is about 200MHz wide, is measured at the center frequency of 8.6GHz. The measured results agree with finite difference time domain (FDTD) simulations. A harmonic-suppression amplifier is fabricated by utilizing this novel structural element. The suppression of the sec-ond order harmonic has been enhanced about 17dB when compared with a reference amplifier. Since no filters are needed and the structural element is etched in the ground plane, the whole circuit is compact.

  7. A new photonic bandgap cover for a patch antenna with a photonic bandgap substrate

    Institute of Scientific and Technical Information of China (English)

    林青春; 朱方明; 何赛灵

    2004-01-01

    A new photonic bandgap (PBG) cover for a patch antenna with a photonic bandgap substrate is introduced. The plane wave expansion method and the FDTD method were used to calculate such an antenna system. Numerical results for the input return loss, radiation pattern, surface wave, and the directivity of the antennas are presented. A comparison between the conventional patch antenna and the new PBG antenna is given. It is shown that the new PBG cover is very efficient for improving the radiation directivity. The physical reasons for the improvement are also given.

  8. Theory study on the bandgap of antimonide-based multi-element alloys

    Science.gov (United States)

    An, Ning; Liu, Cheng-Zhi; Fan, Cun-Bo; Dong, Xue; Song, Qing-Li

    2017-05-01

    In order to meet the design requirements of the high-performance antimonide-based optoelectronic devices, the spin-orbit splitting correction method for bandgaps of Sb-based multi-element alloys is proposed. Based on the analysis of band structure, a correction factor is introduced in the InxGa1-xAsySb1-y bandgaps calculation with taking into account the spin-orbit coupling sufficiently. In addition, the InxGa1-xAsySb1-y films with different compositions are grown on GaSb substrates by molecular beam epitaxy (MBE), and the corresponding bandgaps are obtained by photoluminescence (PL) to test the accuracy and reliability of this new method. The results show that the calculated values agree fairly well with the experimental results. To further verify this new method, the bandgaps of a series of experimental samples reported before are calculated. The error rate analysis reveals that the α of spin-orbit splitting correction method is decreased to 2%, almost one order of magnitude smaller than the common method. It means this new method can calculate the antimonide multi-element more accurately and has the merit of wide applicability. This work can give a reasonable interpretation for the reported results and beneficial to tailor the antimonides properties and optoelectronic devices.

  9. Bandgap tuning and spectroscopy analysis of In x Ga (1-x) N thin films grown by RF sputtering method

    Science.gov (United States)

    Jakkala, Pratheesh; Kordesch, Martin E.

    2017-01-01

    In this study, we present a simple and novel method for optical bandgap tuning of indium gallium nitride (InGaN) thin films by controlling the growth conditions in magnetron RF sputtering. Thin films with different indium (In) atomic compositions, x = 0.02 to 0.57 are deposited on high temperature aluminosilicate glass and silicon (111) substrates. Substrate temperature is varied from 35 °C to 450 °C. The gas mixture for sputtering is inert argon (Ar) and reactive nitrogen (N2). Total pressure of sputtering gas mixture is kept constant at 12 mTorr but partial pressures of Ar and N2 are varied. Ar partial pressure to total pressure ratio is varied from 0 to 0.75. Optical bandgap values from 1.4 eV to 3.15 eV, absorption coefficient values of ˜104 cm-1 to ˜7 × 105 cm-1 and critical film thickness values of 0.04 μm to 4 μm are measured. UV-visible spectroscopy method and Tauc plots are used. Bandgap tuning with Ar partial pressure ratio and substrate temperature is presented.

  10. INVESTIGATION ON EMI EFFECTS IN BANDGAP VOLTAGE REFERENCES

    OpenAIRE

    Fiori, Franco; Crovetti S., Paolo

    2002-01-01

    International audience; In this paper the susceptibility of integrated bandgap voltage references to Electromagnetic Interference (EMI) is investigated by on-chip measurements carried out on Kuijk and Tsividis bandgap circuits. These measurements highlight the offset in the reference voltage induced by continuous wave (CW) EMI and the complete failures which may be experienced by bandgap circuits. The role of the susceptibility of the startup circuit and of the operational amplifier which are...

  11. Polarizing 50micrometers Core Yb-Doped Photonic Bandgap Fiber

    Science.gov (United States)

    2015-02-08

    properly. Recent reports demonstrate that the birefringence in photonic bandgap fibers (PBFs) can provide single-polarization operation by shifting the...add ref]. Here, we demonstrate a 50µm core Yb-doped polarizing photonic bandgap fiber (PBF) for single-polarization operation 1. REPORT DATE (DD-MM...19-08-2015 Approved for public release; distribution is unlimited. Polarizing 50µm core Yb-doped photonic bandgap fiber The views, opinions and/or

  12. Atomic-layer deposition of silicon nitride

    CERN Document Server

    Yokoyama, S; Ooba, K

    1999-01-01

    Atomic-layer deposition (ALD) of silicon nitride has been investigated by means of plasma ALD in which a NH sub 3 plasma is used, catalytic ALD in which NH sub 3 is dissociated by thermal catalytic reaction on a W filament, and temperature-controlled ALD in which only a thermal reaction on the substrate is employed. The NH sub 3 and the silicon source gases (SiH sub 2 Cl sub 2 or SiCl sub 4) were alternately supplied. For all these methods, the film thickness per cycle was saturated at a certain value for a wide range of deposition conditions. In the catalytic ALD, the selective deposition of silicon nitride on hydrogen-terminated Si was achieved, but, it was limited to only a thin (2SiO (evaporative).

  13. Intermediate Bandgap Solar Cells From Nanostructured Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Black, Marcie [Bandgap Engineering, Lincoln, MA (United States)

    2014-10-30

    This project aimed to demonstrate increased electronic coupling in silicon nanostructures relative to bulk silicon for the purpose of making high efficiency intermediate bandgap solar cells using silicon. To this end, we formed nanowires with controlled crystallographic orientation, small diameter, <111> sidewall faceting, and passivated surfaces to modify the electronic band structure in silicon by breaking down the symmetry of the crystal lattice. We grew and tested these silicon nanowires with <110>-growth axes, which is an orientation that should produce the coupling enhancement.

  14. Air-guiding Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Hansen, Theis Peter

    2005-01-01

    Photonic bandgap fibers that guide light in an air core have attracted much interest since their first demonstration in 1999. The prospect of low-loss guiding of light in air has importance for a multitude of applications, such as data transmission, gas sensors, dispersion compensation and guiding...... of high-power pulses. The low overlap between light and glass affects both the loss and nonlinear properties of the fiber. At the same time, the strong overlap between light and air provides a mean for creating convenient gas-filled devices with extremely long interaction lengths. In this project...

  15. Large Bandgap Semiconductors for Solar Water Splitting

    DEFF Research Database (Denmark)

    Malizia, Mauro

    water splitting devices having tandem design. The increase of the photovoltage produced by GaP under illumination was the main goal of this work. GaP has a bandgap of 2.25 eV and could in theory produce a photovoltage of approximately 1.7 V. Instead, the photovoltage produced by the semiconductor...... density generated by GaP was increased by more than 60% by electrochemical etching of the surface. The etching process produces a rough microstructured surface that increases the optical path length of the incident photons and the collection of photogenerated electrons.Furthermore, the synthesis of BiVO4...

  16. Analysis of plasma nitrided steels

    Science.gov (United States)

    Salik, J.; Ferrante, J.; Honecy, F.; Hoffman, R., Jr.

    1987-01-01

    The analysis of plasma nitrided steels can be divided to two main categories - structural and chemical. Structural analysis can provide information not only on the hardening mechanisms but also on the fundamental processes involved. Chemical analysis can be used to study the kinetics for the nitriding process and its mechanisms. In this paper preliminary results obtained by several techniques of both categories are presented and the applicability of those techniques to the analysis of plasma-nitrided steels is discussed.

  17. Porous Boron Nitride with Tunable Pore Size.

    Science.gov (United States)

    Dai, Jun; Wu, Xiaojun; Yang, Jinlong; Zeng, Xiao Cheng

    2014-01-16

    On the basis of a global structural search and first-principles calculations, we predict two types of porous boron-nitride (BN) networks that can be built up with zigzag BN nanoribbons (BNNRs). The BNNRs are either directly connected with puckered B (N) atoms at the edge (type I) or connected with sp(3)-bonded BN chains (type II). Besides mechanical stability, these materials are predicted to be thermally stable at 1000 K. The porous BN materials entail large surface areas, ranging from 2800 to 4800 m(2)/g. In particular, type-II BN material with relatively large pores is highly favorable for hydrogen storage because the computed hydrogen adsorption energy (-0.18 eV) is very close to the optimal adsorption energy (-0.15 eV) suggested for reversible hydrogen storage at room temperature. Moreover, the type-II materials are semiconductors with width-dependent direct bandgaps, rendering the type-II BN materials promising not only for hydrogen storage but also for optoelectronic and photonic applications.

  18. Polymeric photocatalysts based on graphitic carbon nitride.

    Science.gov (United States)

    Cao, Shaowen; Low, Jingxiang; Yu, Jiaguo; Jaroniec, Mietek

    2015-04-01

    Semiconductor-based photocatalysis is considered to be an attractive way for solving the worldwide energy shortage and environmental pollution issues. Since the pioneering work in 2009 on graphitic carbon nitride (g-C3N4) for visible-light photocatalytic water splitting, g-C3N4 -based photocatalysis has become a very hot research topic. This review summarizes the recent progress regarding the design and preparation of g-C3N4 -based photocatalysts, including the fabrication and nanostructure design of pristine g-C3N4 , bandgap engineering through atomic-level doping and molecular-level modification, and the preparation of g-C3N4 -based semiconductor composites. Also, the photo-catalytic applications of g-C3N4 -based photocatalysts in the fields of water splitting, CO2 reduction, pollutant degradation, organic syntheses, and bacterial disinfection are reviewed, with emphasis on photocatalysis promoted by carbon materials, non-noble-metal cocatalysts, and Z-scheme heterojunctions. Finally, the concluding remarks are presented and some perspectives regarding the future development of g-C3N4 -based photocatalysts are highlighted.

  19. Fatigue modelling for gas nitriding

    Directory of Open Access Journals (Sweden)

    H. Weil

    2016-10-01

    Full Text Available The present study aims to develop an algorithm able to predict the fatigue lifetime of nitrided steels. Linear multi-axial fatigue criteria are used to take into account the gradients of mechanical properties provided by the nitriding process. Simulations on rotating bending fatigue specimens are made in order to test the nitrided surfaces. The fatigue model is applied to the cyclic loading of a gear from a simulation using the finite element software Ansys. Results show the positive contributions of nitriding on the fatigue strength

  20. Evidence of type-II band alignment in III-nitride semiconductors: experimental and theoretical investigation for In 0.17 Al 0.83 N/GaN heterostructures.

    Science.gov (United States)

    Wang, Jiaming; Xu, Fujun; Zhang, Xia; An, Wei; Li, Xin-Zheng; Song, Jie; Ge, Weikun; Tian, Guangshan; Lu, Jing; Wang, Xinqiang; Tang, Ning; Yang, Zhijian; Li, Wei; Wang, Weiying; Jin, Peng; Chen, Yonghai; Shen, Bo

    2014-10-06

    Type-II band alignment structure is coveted in the design of photovoltaic devices and detectors, since it is beneficial for the transport of photogenerated carriers. Regrettably, for group-III-nitride wide bandgap semiconductors, all existing devices are limited to type-I heterostructures, owing to the unavailable of type-II ones. This seriously restricts the designing flexibility for optoelectronic devices and consequently the relevant performance of this material system. Here we show a brandnew type-II band alignment of the lattice-matched In 0.17 Al 0.83 N/GaN heterostructure from the perspective of both experimental observations and first-principle theoretical calculations. The band discontinuity is dominated by the conduction band offset ΔEC, with a small contribution from the valence band offset ΔEV which equals 0.1 eV (with E(AlInN(VBM) being above E(GaN)(VBM)). Our work may open up new prospects to realize high-performance III-Nitrides optoelectronic devices based on type-II energy band engineering.

  1. Titanium Nitride Cermets

    Science.gov (United States)

    1952-07-01

    C ermets 7 Effect of Amount of Metal on Strength of TiN-Ni-Cr....26 Cerme ts S Effect of Amount of Metal on Strength of TiN-Co-Cr....27 Cermets 9...Figures 7 and 8. Titanium Nitride-Nickel-Chromium Cerme ts From Figure 7, it can be seen that 2900OF was the better firing temperature. The 20% metal

  2. Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide

    DEFF Research Database (Denmark)

    Guler, Urcan; Zemlyanov, Dmitry; Kim, Jongbum

    2017-01-01

    Plasmonic titanium nitride nanostructures are obtained via nitridation of titanium dioxide. Nanoparticles acquired a cubic shape with sharper edges following the rock-salt crystalline structure of TiN. Lattice constant of the resulting TiN nanoparticles matched well with the tabulated data. Energ...

  3. Gas sensing using air-guiding photonic bandgap fibers

    DEFF Research Database (Denmark)

    Ritar, Tuomo; Tuominen, J.; Ludvigsen, Hanne

    2004-01-01

    We demonstrate the high sensitivity of gas sensing using a novel air-guiding photonic bandgap fiber. The bandgap fiber is spliced to a standard single-mode fiber at the input end for easy coupling and filled with gas through the other end placed in a vacuum chamber. The technique is applied...

  4. Electrically tunable liquid crystal photonic bandgap fiber laser

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei;

    2010-01-01

    We demonstrate electrical tunability of a fiber laser by using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an al...

  5. Thermal conductance of graphene/hexagonal boron nitride heterostructures

    Science.gov (United States)

    Lu, Simon; McGaughey, Alan J. H.

    2017-03-01

    The lattice-based scattering boundary method is applied to compute the phonon mode-resolved transmission coefficients and thermal conductances of in-plane heterostructures built from graphene and hexagonal boron nitride (hBN). The thermal conductance of all structures is dominated by acoustic phonon modes near the Brillouin zone center that have high group velocity, population, and transmission coefficient. Out-of-plane modes make their most significant contributions at low frequencies, whereas in-plane modes contribute across the frequency spectrum. Finite-length superlattice junctions between graphene and hBN leads have a lower thermal conductance than comparable junctions between two graphene leads due to lack of transmission in the hBN phonon bandgap. The thermal conductances of bilayer systems differ by less than 10% from their single-layer counterparts on a per area basis, in contrast to the strong thermal conductivity reduction when moving from single- to multi-layer graphene.

  6. Fusion bonding of silicon nitride surfaces

    DEFF Research Database (Denmark)

    Reck, Kasper; Østergaard, Christian; Thomsen, Erik Vilain

    2011-01-01

    While silicon nitride surfaces are widely used in many micro electrical mechanical system devices, e.g. for chemical passivation, electrical isolation or environmental protection, studies on fusion bonding of two silicon nitride surfaces (Si3N4–Si3N4 bonding) are very few and highly application...... specific. Often fusion bonding of silicon nitride surfaces to silicon or silicon dioxide to silicon surfaces is preferred, though Si3N4–Si3N4 bonding is indeed possible and practical for many devices as will be shown in this paper. We present an overview of existing knowledge on Si3N4–Si3N4 bonding and new...... results on bonding of thin and thick Si3N4 layers. The new results include high temperature bonding without any pretreatment, along with improved bonding ability achieved by thermal oxidation and chemical pretreatment. The bonded wafers include both unprocessed and processed wafers with a total silicon...

  7. Platinum nitride with fluorite structure

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Rong; Zhang, Xiao-Feng

    2005-01-31

    The mechanical stability of platinum nitride has been studied using first-principles calculations. By calculating the single-crystal elastic constants, we show that platinum nitride can be stabilized in the fluorite structure, in which the nitrogen atoms occupy all the tetrahedral interstitial sites of the metal lattice. The stability is attributed to the pseudogap effect from analysis of the electronic structure.

  8. Optical characterization of gallium nitride

    NARCIS (Netherlands)

    Kirilyuk, Victoria

    2002-01-01

    Group III-nitrides have been considered a promising system for semiconductor devices since a few decades, first for blue- and UV-light emitting diodes, later also for high-frequency/high-power applications. Due to the lack of native substrates, heteroepitaxially grown III-nitride layers are usually

  9. Electrochemical nitridation of metal surfaces

    Science.gov (United States)

    Wang, Heli; Turner, John A.

    2015-06-30

    Electrochemical nitridation of metals and the produced metals are disclosed. An exemplary method of electrochemical nitridation of metals comprises providing an electrochemical solution at low temperature. The method also comprises providing a three-electrode potentiostat system. The method also comprises stabilizing the three-electrode potentiostat system at open circuit potential. The method also comprises applying a cathodic potential to a metal.

  10. Ultra-sensitive pressure dependence of bandgap of rutile-GeO{sub 2} revealed by many body perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, Atanu; Singh, Abhishek K. [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India); Jain, Manish [Department of Physics, Indian Institute of Science, Bangalore 560012 (India)

    2015-08-14

    The reported values of bandgap of rutile GeO{sub 2} calculated by the standard density functional theory within local-density approximation (LDA)/generalized gradient approximation (GGA) show a wide variation (∼2 eV), whose origin remains unresolved. Here, we investigate the reasons for this variation by studying the electronic structure of rutile-GeO{sub 2} using many-body perturbation theory within the GW framework. The bandgap as well as valence bandwidth at Γ-point of rutile phase shows a strong dependence on volume change, which is independent of bandgap underestimation problem of LDA/GGA. This strong dependence originates from a change in hybridization among O-p and Ge-(s and p) orbitals. Furthermore, the parabolic nature of first conduction band along X-Γ-M direction changes towards a linear dispersion with volume expansion.

  11. Ultraviolet laser quantum well intermixing based prototyping of bandgap tuned heterostructures for the fabrication of superluminescent diodes

    Science.gov (United States)

    Beal, Romain; Moumanis, Khalid; Aimez, Vincent; Dubowski, Jan J.

    2016-04-01

    The ultraviolet laser induced quantum well intermixing process has been investigated for prototyping of multiple bandgap quantum well (QW) wafers designed for the fabrication of superluminescent diodes (SLDs). The process takes advantage of a krypton fluoride excimer laser (λ=248 nm) that by irradiating an InP layer capping GaInAs/GaInAsP QW heterostructure leads to the modification of its surface chemical composition and formation of point defects. A subsequent rapid thermal annealing step results in the selective area intermixing of the investigated heterostructures achieving a high quality bandgap tuned material for the fabrication of broad spectrum SLDs. The devices made from a 3-bandgap material are characterized by ~100 nm wide emission spectra with relatively flat profiles and emission exceeding 1 mW.

  12. Liquid Crystals and Photonic Bandgap Fiber Components

    DEFF Research Database (Denmark)

    Weirich, Johannes; Wei, Lei; Scolari, Lara

    Liquid Crystal(LC)filled Photonic Crystal Fibers(PCFs) represent a promising platform for the design and the fabrication of tunable all-in fiber devices. Tunability is achieved by varying the refractive index of the LC thermally, optically or electrically. In this contribution we present important...... parts of the LC theory as well as an application of a LC infiltrated PCF subject to an external electrostatic field. The fiber is placed between two electrodes and the voltage is increased step by step leading to the reorientation of the LC in the fiber capillaries. This mechanism can be used to produce...... a swichable polarizer, and an on chip LC photonic bandgap fiber polarimeter is presented, which admits strong attenuation of one polarization direction while the other one is nearly unaffected....

  13. Quantum electrodynamics near a photonic bandgap

    Science.gov (United States)

    Liu, Yanbing; Houck, Andrew A.

    2017-01-01

    Photonic crystals are a powerful tool for the manipulation of optical dispersion and density of states, and have thus been used in applications from photon generation to quantum sensing with nitrogen vacancy centres and atoms. The unique control provided by these media makes them a beautiful, if unexplored, playground for strong-coupling quantum electrodynamics, where a single, highly nonlinear emitter hybridizes with the band structure of the crystal. Here we demonstrate that such a hybridization can create localized cavity modes that live within the photonic bandgap, whose localization and spectral properties we explore in detail. We then demonstrate that the coloured vacuum of the photonic crystal can be employed for efficient dissipative state preparation. This work opens exciting prospects for engineering long-range spin models in the circuit quantum electrodynamics architecture, as well as new opportunities for dissipative quantum state engineering.

  14. Bandgap engineering of GaN nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Bang-Ming; Yan, Hui [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Wang, Ru-Zhi, E-mail: wrz@bjut.edu.cn, E-mail: yamcy@csrc.ac.cn [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Beijing Computational Science Research Center, Beijing, 100094 (China); Yam, Chi-Yung, E-mail: wrz@bjut.edu.cn, E-mail: yamcy@csrc.ac.cn [Beijing Computational Science Research Center, Beijing, 100094 (China); Xu, Li-Chun [College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Lau, Woon-Ming [Beijing Computational Science Research Center, Beijing, 100094 (China); Chengdu Green Energy and Green Manufacturing Technology R& D Center, Chengdu, Sichuan, 610207 (China)

    2016-05-15

    Bandgap engineering has been a powerful technique for manipulating the electronic and optical properties of semiconductors. In this work, a systematic investigation of the electronic properties of [0001] GaN nanowires was carried out using the density functional based tight-binding method (DFTB). We studied the effects of geometric structure and uniaxial strain on the electronic properties of GaN nanowires with diameters ranging from 0.8 to 10 nm. Our results show that the band gap of GaN nanowires depends linearly on both the surface to volume ratio (S/V) and tensile strain. The band gap of GaN nanowires increases linearly with S/V, while it decreases linearly with increasing tensile strain. These linear relationships provide an effect way in designing GaN nanowires for their applications in novel nano-devices.

  15. Jacquard-woven photonic bandgap fiber displays

    CERN Document Server

    Sayed, Imran; Skorobogatiy, Maksim

    2010-01-01

    We present an overview of photonic textile displays woven on a Jacquard loom, using newly discovered polymer photonic bandgap fibers that have the ability to change color and appearance when illuminated with ambient or transmitted light. The photonic fiber can be thin (smaller than 300 microns in diameter) and highly flexible, which makes it possible to weave in the weft on a computerized Jacquard loom and develop intricate double weave structures together with a secondary weft yarn. We demonstrate how photonic crystal fibers enable a variety of color and structural patterns on the textile, and how dynamic imagery can be created by balancing the ambient and emitted radiation. Finally, a possible application in security ware for low visibility conditions is described as an example.

  16. Photovoltaic efficiency of an indirect bandgap material

    Science.gov (United States)

    Tomasik, Michelle; Mangan, Niall; Grossman, Jeffrey

    2015-03-01

    Photovoltaic materials with direct band gap transitions absorb light more readily than those with indirect gaps, allowing for thinner devices. However, direct bands also suffer faster rates of radiative recombination than indirect bandgap materials. Some novel photovoltaic absorber materials, such as tin sulfide, have both direct and indirect gaps. Such materials raise the question of whether the multiple energy states benefit or harm device efficiency. We develop a model for current in a device with direct and indirect band gaps using detailed balance, similar to the Shockley-Quiesser model for direct band photovoltaics. We explore the effects of the following on device performance: transition probability of carriers between the direct and indirect state, and relative transport rate in each band.

  17. Bandgap energy tuning of electrochemically grown ZnO thin films by thickness and electrodeposition potential

    Energy Technology Data Exchange (ETDEWEB)

    Marotti, R.E.; Guerra, D.N.; Machado, G.; Dalchiele, E.A. [Instituto de Fisica, Facultad de Ingenieria, Universidad de la Republica, Julio Herrera y Reissig 565, C.C. 30, Montevideo 11000 (Uruguay); Bello, C. [Unidad Central de Instrumentacion Cientifica UCIC, Facultad de Ciencias, Universidad de la Republica, Igua 4225, C.C. 10773, Montevideo 11400 (Uruguay)

    2004-05-01

    ZnO thin films were electrochemically deposited onto opaque and transparent substrates (copper and ITO). The electrolyte consisted of a 0.1M Zn(NO{sub 3}){sub 2} solution with the initial pH adjusted to 6.0, different electrodeposition potentials from E=-700 to -1200mV (saturated calomel electrode, SCE). The resulting samples have the structural, chemical and morphological properties of hexagonal ZnO, with thickness varying from less than 1{mu}m to almost 30{mu}m. The bandgap energy varies inversely with film thickness, ranging from less than 3.1 to 3.4eV. The bandgap also depends on the electrodeposition potential. This result allows to adjust the desired absorption edge within a 30nm wide region in the UV.

  18. III-Nitride Blue Laser Diode with Photoelectrochemically Etched Current Aperture

    Science.gov (United States)

    Megalini, Ludovico

    distance. In this dissertation it is presented the first nitride blue edge emitting LD with a photoelectrochemical etched current aperture (CA-LD) into the device active region. Photoelectrochemical etching (PECE) has emerged as a powerful wet etching technique for III-nitride compounds. Beyond the advantages of wet etching technique, PECE offers bandgap selectivity, which is particularly desirable because it allows more freedom in designing new and advanced devices with higher performances. In the first part of this thesis a review of PECE is presented, and it is shown how it can be used to achieve a selective and controllable deep undercut of the active region of LEDs and LDs, in particular the selective PECE of MQW active region of (10-10) m-plane and (20-2-1) plane structures is reported. In the second part of this thesis, the fabrication flow process of the CA-LD is described. The performance of these devices is compared with that of shallow etched ridge LDs with a nominally identical epitaxial structure and active region width and it is experimentally shown that the CA-LD design has superior performance. CW operation of a (20-2-1) CA-LD with a 1.5 microm wide active region is demonstrated. Finally, in the third and last part of this thesis, the CA-LD performance is discussed in more details, in particular, an analysis of optical scattering losses caused by the rough edges of the remnant PEC etched active region is presented.

  19. Ab initio calculations of yttrium nitride: structural and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Zerroug, S.; Ali Sahraoui, F. [Universite Ferhat Abbas, Laboratoire d' Optoelectronique et Composants, Departement de Physique, Setif (Algeria); Bouarissa, N. [King Khalid University, Department of Physics, Faculty of Science, P.O. Box 9004, Abha (Saudi Arabia)

    2009-11-15

    Using first principles total energy calculations within the full-potential linearized augmented plane wave method, we have studied the structural and electronic properties of yttrium nitride (YN) in the three phases, namely wurtzite, caesium chloride and rocksalt structures. The calculations are performed at zero and under hydrostatic pressure. In agreement with previous findings, it is found that the favored phase for YN is the rocksalt-like structure. We predict that at zero pressure YN in the rocksalt structure is a semiconductor with an indirect bandgap of 0.8 eV. A phase transition from a rocksalt to a caesium chloride structure is found to occur at {proportional_to}134 GPa. Besides, a transition from an indirect ({gamma}-X) bandgap semiconductor to a direct (X-X) one is predicted at pressure of {proportional_to}84 GPa. For the electron effective mass of rocksalt YN, these are the first results, to our knowledge. The information derived from the present study may be useful for the use of YN as an active layer in electronic devices such as diodes and transistors. (orig.)

  20. Functionalized boron nitride nanotubes

    Science.gov (United States)

    Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K

    2014-04-22

    A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.

  1. Effects of Aqueous Vapour Consistence in Nitriding Furnace on the Quality of the Sintered Nitride

    Institute of Scientific and Technical Information of China (English)

    WANGZijiang

    1998-01-01

    If the aqueous vapour consistence is too high(>0.7%),it is very disadvantageous to the sintered products in the nitriding furnace,when silcon nitride bonded silicon carbide products are synthesized by nitridation of silicon.

  2. Communication: Water on hexagonal boron nitride from diffusion Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamdani, Yasmine S.; Ma, Ming; Michaelides, Angelos, E-mail: angelos.michaelides@ucl.ac.uk [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Alfè, Dario [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT (United Kingdom); Lilienfeld, O. Anatole von [Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel (Switzerland); Argonne Leadership Computing Facility, Argonne National Laboratories, 9700 S. Cass Avenue Argonne, Lemont, Illinois 60439 (United States)

    2015-05-14

    Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of −84 ± 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT.

  3. Homoepitaxial n-core: p-shell gallium nitride nanowires: HVPE overgrowth on MBE nanowires.

    Science.gov (United States)

    Sanders, Aric; Blanchard, Paul; Bertness, Kris; Brubaker, Matthew; Dodson, Christopher; Harvey, Todd; Herrero, Andrew; Rourke, Devin; Schlager, John; Sanford, Norman; Chiaramonti, Ann N; Davydov, Albert; Motayed, Abhishek; Tsvetkov, Denis

    2011-11-18

    We present the homoepitaxial growth of p-type, magnesium doped gallium nitride shells by use of halide vapor phase epitaxy (HVPE) on n-type gallium nitride nanowires grown by plasma-assisted molecular beam epitaxy (MBE). Scanning electron microscopy shows clear dopant contrast between the core and shell of the nanowire. The growth of magnesium doped nanowire shells shows little or no effect on the lattice parameters of the underlying nanowires, as measured by x-ray diffraction (XRD). Photoluminescence measurements of the nanowires show the appearance of sub-bandgap features in the blue and the ultraviolet, indicating the presence of acceptors. Finally, electrical measurements confirm the presence of electrically active holes in the nanowires.

  4. Nitride Semiconductors Handbook on Materials and Devices

    CERN Document Server

    Ruterana, Pierre; Neugebauer, Jörg

    2003-01-01

    Semiconductor components based on silicon have been used in a wide range of applications for some time now. These elemental semiconductors are now well researched and technologically well developed. In the meantime the focus has switched to a new group of materials: ceramic semiconductors based on nitrides are currently the subject of research due to their optical and electronic characteristics. They open up new industrial possibilities in the field of photosensors, as light sources or as electronic components. This collection of review articles provides a systematic and in-depth overview of t

  5. Design of Metastable Tin Titanium Nitride Semiconductor Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bikowski, Andre [National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States; Siol, Sebastian [National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States; Gu, Jing [National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States; Holder, Aaron [National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States; Mangum, John S. [Colorado School of Mines, 1500; Gorman, Brian [Colorado School of Mines, 1500; Tumas, William [National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States; Lany, Stephan [National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States; Zakutayev, Andriy [National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States

    2017-07-21

    We report on design of optoelectronic properties in previously unreported metastable tin titanium nitride alloys with spinel crystal structure. Theoretical calculations predict that Ti alloying in metastable Sn3N4 compound should improve hole effective mass by up to 1 order of magnitude, while other optical bandgaps remains in the 1-2 eV range up to x ~ 0.35 Ti composition. Experimental synthesis of these metastable alloys is predicted to be challenging due to high required nitrogen chemical potential (uN = +1.0 eV) but proven to be possible using combinatorial cosputtering from metal targets in the presence of nitrogen plasma. Characterization experiments confirm that thin films of such (Sn1-xTix)3N4 alloys can be synthesized up to x = 0.45 composition, with suitable optical band gaps (1.5-2.0 eV), moderate electron densities (1017 to 1018 cm-3), and improved photogenerated hole transport (by 5x). Overall, this study shows that it is possible to design the metastable nitride materials with properties suitable for potential use in solar energy conversion applications.

  6. Crystallographic alignment of high-density gallium nitride nanowire arrays.

    Science.gov (United States)

    Kuykendall, Tevye; Pauzauskie, Peter J; Zhang, Yanfeng; Goldberger, Joshua; Sirbuly, Donald; Denlinger, Jonathan; Yang, Peidong

    2004-08-01

    Single-crystalline, one-dimensional semiconductor nanostructures are considered to be one of the critical building blocks for nanoscale optoelectronics. Elucidation of the vapour-liquid-solid growth mechanism has already enabled precise control over nanowire position and size, yet to date, no reports have demonstrated the ability to choose from different crystallographic growth directions of a nanowire array. Control over the nanowire growth direction is extremely desirable, in that anisotropic parameters such as thermal and electrical conductivity, index of refraction, piezoelectric polarization, and bandgap may be used to tune the physical properties of nanowires made from a given material. Here we demonstrate the use of metal-organic chemical vapour deposition (MOCVD) and appropriate substrate selection to control the crystallographic growth directions of high-density arrays of gallium nitride nanowires with distinct geometric and physical properties. Epitaxial growth of wurtzite gallium nitride on (100) gamma-LiAlO(2) and (111) MgO single-crystal substrates resulted in the selective growth of nanowires in the orthogonal [1\\[Evec]0] and [001] directions, exhibiting triangular and hexagonal cross-sections and drastically different optical emission. The MOCVD process is entirely compatible with the current GaN thin-film technology, which would lead to easy scale-up and device integration.

  7. Electrically tunable liquid crystal photonic bandgap fiber laser

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei

    2010-01-01

    We demonstrate electrical tunability of a fiber laser by using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an all......-spliced laser cavity based on a liquid crystal photonic bandgap fiber mounted on a silicon assembly, a pump/signal combiner with single-mode signal feed-through and an ytterbium-doped photonic crystal fiber. The laser cavity produces a single-mode output and is tuned in the range 1040-1065nm by applying...

  8. Optimum design of band-gap beam structures

    DEFF Research Database (Denmark)

    Olhoff, Niels; Niu, Bin; Cheng, Gengdong

    2012-01-01

    -sectional area. To study the band-gap for travelling waves, a repeated inner segment of the optimized beams is analyzed using Floquet theory and the waveguide finite element (WFE) method. Finally, the frequency response is computed for the optimized beams when these are subjected to an external time......The design of band-gap structures receives increasing attention for many applications in mitigation of undesirable vibration and noise emission levels. A band-gap structure usually consists of a periodic distribution of elastic materials or segments, where the propagation of waves is impeded...

  9. Low-Temperature Nitriding of Pure Titanium by using Hollow Cathode RF-DC Plasma

    Science.gov (United States)

    Windajanti, J. M.; S, D. J. Djoko H.; Abdurrouf

    2017-05-01

    Pure titanium is widely used for the structures and mechanical parts due to its high strength, low density, and high corrosion resistance. Unfortunately, titanium products suffer from low hardness and low wear resistance. Titanium’s surface can be modified by nitriding process to overcome such problems, which is commonly conducted at high temperature. Here, we report the low-temperature plasma nitriding process, where pure titanium was utilized by high-density RF-DC plasma combined with hollow cathode device. To this end, a pure titanium plate was set inside a hollow tube placed on the cathode plate. After heating to 450 °C, a pre-sputtering process was conducted for 1 hour to remove the oxide layer and activate the surface for nitriding. Plasma nitriding using N2/H2 gasses was performed in 4 and 8 hours with the RF voltage of 250 V, DC bias of -500 to -600 V, and gas pressure of 75 to 30 Pa. To study the nitriding mechanism as well as the role of hollow cathode, the nitrided specimen was characterized by SEM, EDX, XRD, and micro-hardness equipment. The TiN compound was obtained with the diffusion zone of nitrogen until 5 μm thickness for 4 hours nitriding process, and 8 μm for 8 hours process. The average hardness also increased from 300 HV in the untreated specimen to 624 HV and 792 HV for 4 and 8 hours nitriding, respectively.

  10. Study of the Active Screen Plasma Nitriding

    Institute of Scientific and Technical Information of China (English)

    Zhao Cheng; C. X. Li; H. Dong; T. Bell

    2004-01-01

    Active screen plasma nitriding (ASPN) is a novel nitriding process, which overcomes many of the practical problems associated with the conventional DC plasma nitriding (DCPN). Experimental results showed that the metallurgical characteristics and hardening effect of 722M24 steel nitrided by ASPN at both floating potential and anodic (zero) potential were similar to those nitrided by DCPN. XRD and high-resolution SEM analysis indicated that iron nitride particles with sizes in sub-micron scale were deposited on the specimen surface in AS plasma nitriding. These indicate that the neutral iron nitride particles, which are sputtered from the active screen and transferred through plasma to specimen surface, are considered to be the dominant nitrogen carder in ASPN. The OES results show that NH could not be a critical species in plasma nitriding.

  11. Optical and Micro-Structural Characterization of MBE Grown Indium Gallium Nitride Polar Quantum Dots

    KAUST Repository

    El Afandy, Rami

    2011-07-07

    Gallium nitride and related materials have ushered in scientific and technological breakthrough for lighting, mass data storage and high power electronic applications. These III-nitride materials have found their niche in blue light emitting diodes and blue laser diodes. Despite the current development, there are still technological problems that still impede the performance of such devices. Three-dimensional nanostructures are proposed to improve the electrical and thermal properties of III-nitride optical devices. This thesis consolidates the characterization results and unveils the unique physical properties of polar indium gallium nitride quantum dots grown by molecular beam epitaxy technique. In this thesis, a theoretical overview of the physical, structural and optical properties of polar III-nitrides quantum dots will be presented. Particular emphasis will be given to properties that distinguish truncated-pyramidal III-nitride quantum dots from other III-V semiconductor based quantum dots. The optical properties of indium gallium nitride quantum dots are mainly dominated by large polarization fields, as well as quantum confinement effects. Hence, the experimental investigations for such quantum dots require performing bandgap calculations taking into account the internal strain fields, polarization fields and confinement effects. The experiments conducted in this investigation involved the transmission electron microscopy and x-ray diffraction as well as photoluminescence spectroscopy. The analysis of the temperature dependence and excitation power dependence of the PL spectra sheds light on the carrier dynamics within the quantum dots, and its underlying wetting layer. A further analysis shows that indium gallium nitride quantum dots through three-dimensional confinements are able to prevent the electronic carriers from getting thermalized into defects which grants III-nitrides quantum dot based light emitting diodes superior thermally induced optical

  12. Band-gap tunable dielectric elastomer filter for low frequency noise

    Science.gov (United States)

    Jia, Kun; Wang, Mian; Lu, Tongqing; Zhang, Jinhua; Wang, Tiejun

    2016-05-01

    In the last decades, diverse materials and technologies for sound insulation have been widely applied in engineering. However, suppressing the noise radiation at low frequency still remains a challenge. In this work, a novel membrane-type smart filter, consisting of a pre-stretched dielectric elastomer membrane with two compliant electrodes coated on the both sides, is presented to control the low frequency noise. Since the stiffness of membrane dominates its acoustic properties, sound transmission band-gap of the membrane filter can be tuned by adjusting the voltage applied to the membrane. The impedance tube experiments have been carried out to measure the sound transmission loss (STL) of the filters with different electrodes, membrane thickness and pre-stretch conditions. The experimental results show that the center frequency of sound transmission band-gap mainly depends on the stress in the dielectric elastomer, and a large band-gap shift (more than 60 Hz) can be achieved by tuning the voltage applied to the 85 mm diameter VHB4910 specimen with pre-stretch {λ }0=3. Based on the experimental results and the assumption that applied electric field is independent of the membrane behavior, 3D finite element analysis has also been conducted to calculate the membrane stress variation. The sound filter proposed herein may provide a promising facility to control low frequency noise source with tonal characteristics.

  13. Compound semiconductor alloys: From atomic-scale structure to bandgap bowing

    Energy Technology Data Exchange (ETDEWEB)

    Schnohr, C. S., E-mail: c.schnohr@uni-jena.de [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena (Germany)

    2015-09-15

    Compound semiconductor alloys such as In{sub x}Ga{sub 1−x}As, GaAs{sub x}P{sub 1−x}, or CuIn{sub x}Ga{sub 1−x}Se{sub 2} are increasingly employed in numerous electronic, optoelectronic, and photonic devices due to the possibility of tuning their properties over a wide parameter range simply by adjusting the alloy composition. Interestingly, the material properties are also determined by the atomic-scale structure of the alloys on the subnanometer scale. These local atomic arrangements exhibit a striking deviation from the average crystallographic structure featuring different element-specific bond lengths, pronounced bond angle relaxation and severe atomic displacements. The latter, in particular, have a strong influence on the bandgap energy and give rise to a significant contribution to the experimentally observed bandgap bowing. This article therefore reviews experimental and theoretical studies of the atomic-scale structure of III-V and II-VI zincblende alloys and I-III-VI{sub 2} chalcopyrite alloys and explains the characteristic findings in terms of bond length and bond angle relaxation. Different approaches to describe and predict the bandgap bowing are presented and the correlation with local structural parameters is discussed in detail. The article further highlights both similarities and differences between the cubic zincblende alloys and the more complex chalcopyrite alloys and demonstrates that similar effects can also be expected for other tetrahedrally coordinated semiconductors of the adamantine structural family.

  14. Synthesis of ternary metal nitride nanoparticles using mesoporous carbon nitride as reactive template.

    Science.gov (United States)

    Fischer, Anna; Müller, Jens Oliver; Antonietti, Markus; Thomas, Arne

    2008-12-23

    Mesoporous graphitic carbon nitride was used as both a nanoreactor and a reactant for the synthesis of ternary metal nitride nanoparticles. By infiltration of a mixture of two metal precursors into mesoporous carbon nitride, the pores act first as a nanoconfinement, generating amorphous mixed oxide nanoparticles. During heating and decomposition, the carbon nitride second acts as reactant or, more precisely, as a nitrogen source, which converts the preformed mixed oxide nanoparticles into the corresponding nitride (reactive templating). Using this approach, ternary metal nitride particles with diameters smaller 10 nm composed of aluminum gallium nitride (Al-Ga-N) and titanium vanadium nitride (Ti-V-N) were synthesized. Due to the confinement effect of the carbon nitride matrix, the composition of the resulting metal nitride can be easily adjusted by changing the concentration of the preceding precursor solution. Thus, ternary metal nitride nanoparticles with continuously adjustable metal composition can be produced.

  15. Optimum design of band-gap beam structures

    DEFF Research Database (Denmark)

    Olhoff, Niels; Niu, Bin; Cheng, Gengdong

    2012-01-01

    -sectional area. To study the band-gap for travelling waves, a repeated inner segment of the optimized beams is analyzed using Floquet theory and the waveguide finite element (WFE) method. Finally, the frequency response is computed for the optimized beams when these are subjected to an external time......The design of band-gap structures receives increasing attention for many applications in mitigation of undesirable vibration and noise emission levels. A band-gap structure usually consists of a periodic distribution of elastic materials or segments, where the propagation of waves is impeded...... or significantly suppressed for a range of external excitation frequencies. Maximization of the band-gap is therefore an obvious objective for optimum design. This problem is sometimes formulated by optimizing a parameterized design model which assumes multiple periodicity in the design. However, it is shown...

  16. Design of Bandgap Reference in Switching Power Supply

    Institute of Scientific and Technical Information of China (English)

    XU Li; NIU Ping-juan; FU Xian-song; DING Ke; PENG Xiao-lei

    2009-01-01

    A bandgap voltage reference is designed to meet the requirements of low power loss,low temperature coefficient and high power source rejection ratio(PSRR) in the intergrated circuit.Based on the analysis of conventional bandgap reference circuit,and combined with the integral performance of IC,the specific design index of the bandgap reference is put forward.In the meantime,the circuit and the layout are designed with Chartered 0.35 μm dual gate CMOS process.The simulation result shows that the coefficient is less than 30ppm/℃ with the temperature from -50℃ to 150℃. The bandgap reference has the characteristics of low power and high PSRR.

  17. Bandgap Restructuring of the Layered Semiconductor Gallium Telluride in Air.

    Science.gov (United States)

    Fonseca, Jose J; Tongay, Sefaattin; Topsakal, Mehmet; Chew, Annabel R; Lin, Alan J; Ko, Changhyun; Luce, Alexander V; Salleo, Alberto; Wu, Junqiao; Dubon, Oscar D

    2016-08-01

    A giant bandgap reduction in layered GaTe is demonstrated. Chemisorption of oxygen to the Te-terminated surfaces produces significant restructuring of the conduction band resulting in a bandgap below 0.8 eV, compared to 1.65 eV for pristine GaTe. Localized partial recovery of the pristine gap is achieved by thermal annealing, demonstrating that reversible band engineering in layered semiconductors is accessible through their surfaces.

  18. Large-area single-mode photonic bandgap vcsels

    DEFF Research Database (Denmark)

    Birkedal, Dan; Gregersen, N.; Bischoff, S.;

    2003-01-01

    We demonstrate that the photonic bandgap effect can be used to control the modes of large area vertical cavity surface emitting lasers. We obtain more than 20 dB side mode suppression ratios in a 10-micron area device.......We demonstrate that the photonic bandgap effect can be used to control the modes of large area vertical cavity surface emitting lasers. We obtain more than 20 dB side mode suppression ratios in a 10-micron area device....

  19. Degenerate four wave mixing in solid core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Rasmussen, Per Dalgaard; Lægsgaard, Jesper; Bang, Ole

    2008-01-01

    Degenerate four wave mixing in solid core photonic bandgap fibers is studied theoretically. We demonstrate the possibility of generating parametric gain across bandgaps, and propose a specific design suited for degenerate four wave mixing when pumping at 532nmm. the possibility of tuning the effi...... the efficency of the parametric gain by varying the temperature is also considered. The sults are verified by numerical simultations of pulse propagation....

  20. Transmission properties of hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Falk, Charlotte Ijeoma; Hald, Jan; Petersen, Jan C.

    2010-01-01

    Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers.......Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers....

  1. Bandgap calculations and trends of organometal halide perovskites

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; García Lastra, Juan Maria; Thygesen, Kristian Sommer

    2014-01-01

    of Cs, CH3NH3, and HC(NH2)2 as A-cation, Sn and Pb as B-ion, and a combination of Cl, Br, and I as anions. The calculated gaps span over a region from 0.5 to 5.0 eV. In addition, the trends over bandgaps have been investigated: the bandgap increases with an increase of the electronegativities...

  2. Boron nitride converted carbon fiber

    Science.gov (United States)

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  3. Hemocompatibility of titanium nitride.

    Science.gov (United States)

    Dion, I; Baquey, C; Candelon, B; Monties, J R

    1992-10-01

    The left ventricular assist device is based on the principle of the Maillard-Wenkel rotative pump. The materials which make up the pump must present particular mechanical, tribological, thermal and chemical properties. Titanium nitride (TiN) because of its surface properties and graphite because of its bulk characteristics have been chosen. The present study evaluated the in vitro hemocompatibility of TiN coating deposited by the chemical vapor deposition process. Protein adsorption, platelet retention and hemolysis tests have been carried out. In spite of some disparities, the TiN behavior towards albumin and fibrinogen is interesting, compared with the one of a reference medical grade elastomer. The platelet retention test gives similar results as those achieved with the same elastomer. The hemolysis percentage is near to zero. TiN shows interesting characteristics, as far as mechanical and tribological problems are concerned, and presents very encouraging blood tolerability properties.

  4. On the Suppression Band and Bandgap of Planar Electromagnetic Bandgap Structures

    Directory of Open Access Journals (Sweden)

    Baharak Mohajer-Iravani

    2014-01-01

    Full Text Available Electromagnetic bandgap structures are considered a viable solution for the problem of switching noise in printed circuit boards and packages. Less attention, however, has been given to whether or not the introduction of EBGs affects the EMI potential of the circuit to couple unwanted energy to neighboring layers or interconnects. In this paper, we show that the bandgap of EBG structures, as generated using the Brillouin diagram, does not necessarily correspond to the suppression bandwidth typically generated using S-parameters. We show that the reactive near fields radiating from openings within the EBG layers can be substantial and are present in the entire frequency band including propagating and nonpropagating mode regions. These fields decay fast with distance; however, they can couple significant energy to adjacent layers and to signal lines. The findings are validated using full-wave three-dimensional numerical simulation. Based on this work, design guidelines for EBG structures can be drawn to insure not only suppression of switching noise but also minimization of EMI and insuring signal integrity.

  5. The role of plasma chemistry on functional silicon nitride film properties deposited at low-temperature by mixing two frequency powers using PECVD.

    Science.gov (United States)

    Sahu, B B; Yin, Y Y; Tsutsumi, T; Hori, M; Han, Jeon G

    2016-05-14

    Control of the plasma densities and energies of the principal plasma species is crucial to induce modification of the plasma reactivity, chemistry, and film properties. This work presents a systematic and integrated approach to the low-temperature deposition of hydrogenated amorphous silicon nitride films looking into optimization and control of the plasma processes. Radiofrequency (RF) and ultrahigh frequency (UHF) power are combined to enhance significantly the nitrogen plasma and atomic-radical density to enforce their effect on film properties. This study presents an extensive investigation of the influence of combining radiofrequency (RF) and ultrahigh frequency (UHF) power as a power ratio (PR = RF : UHF), ranging from 4 : 0 to 0 : 4, on the compositional, structural, and optical properties of the synthesized films. The data reveal that DF power with a characteristic bi-Maxwellian electron energy distribution function (EEDF) is effectively useful for enhancing the ionization and dissociation of neutrals, which in turn helps in enabling high rate deposition with better film properties than that of SF operations. Utilizing DF PECVD, a wide-bandgap of ∼3.5 eV with strong photoluminescence features can be achieved only by using a high-density plasma and high nitrogen atom density at room temperature. The present work also proposes the suitability of the DF PECVD approach for industrial applications.

  6. Low bandgap semiconducting polymers for polymeric photovoltaics.

    Science.gov (United States)

    Liu, Chang; Wang, Kai; Gong, Xiong; Heeger, Alan J

    2016-08-22

    In order to develop high performance polymer solar cells (PSCs), full exploitation of the sun-irradiation from ultraviolet (UV) to near infrared (NIR) is one of the key factors to ensure high photocurrents and thus high efficiency. In this review, five of the effective design rules for approaching LBG semiconducting polymers with high molar absorptivity, suitable energy levels, high charge carrier mobility and high solubility in organic solvents are overviewed. These design stratagems include fused heterocycles for facilitating π-electron flowing along the polymer backbone, groups/atoms bridging adjacent rings for maintaining a high planarity, introduction of electron-withdrawing units for lowering the bandgap (Eg), donor-acceptor (D-A) copolymerization for narrowing Eg and 2-dimensional conjugation for broadened absorption and enhanced hole mobility. It has been demonstrated that LBG semiconducting polymers based on electron-donor units combined with strong electron-withdrawing units possess excellent electronic and optic properties, emerging as excellent candidates for efficient PSCs. While for ultrasensitive photodetectors (PDs), which have intensive applications in both scientific and industrial sectors, sensing from the UV to the NIR region is of critical importance. For polymer PDs, Eg as low as 0.8 eV has been obtained through a rational design stratagem, covering a broad wavelength range from the UV to the NIR region (1450 nm). However, the response time of the polymer PDs are severely limited by the hole mobility of LBG semiconducting polymers, which is significantly lower than those of the inorganic materials. Thus, further advancing the hole mobility of LBG semiconducting polymers is of equal importance as broadening the spectral response for approaching uncooled ultrasensitive broadband polymer PDs in the future study.

  7. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry.

    Science.gov (United States)

    Wang, Yong; Wang, Xinchen; Antonietti, Markus

    2012-01-02

    Polymeric graphitic carbon nitride materials (for simplicity: g-C(3)N(4)) have attracted much attention in recent years because of their similarity to graphene. They are composed of C, N, and some minor H content only. In contrast to graphenes, g-C(3)N(4) is a medium-bandgap semiconductor and in that role an effective photocatalyst and chemical catalyst for a broad variety of reactions. In this Review, we describe the "polymer chemistry" of this structure, how band positions and bandgap can be varied by doping and copolymerization, and how the organic solid can be textured to make it an effective heterogenous catalyst. g-C(3)N(4) and its modifications have a high thermal and chemical stability and can catalyze a number of "dream reactions", such as photochemical splitting of water, mild and selective oxidation reactions, and--as a coactive catalytic support--superactive hydrogenation reactions. As carbon nitride is metal-free as such, it also tolerates functional groups and is therefore suited for multipurpose applications in biomass conversion and sustainable chemistry.

  8. Leachability of nitrided ilmenite in hydrochloric acid

    CSIR Research Space (South Africa)

    Swanepoel, JJ

    2010-10-01

    Full Text Available Titanium nitride in upgraded nitrided ilmenite (bulk of iron removed) can selectively be chlorinated to produce titanium tetrachloride. Except for iron, most other components present during this low temperature (ca. 200 °C) chlorination reaction...

  9. Plasmonic titanium nitride nanostructures for perfect absorbers

    DEFF Research Database (Denmark)

    Guler, Urcan; Li, Wen-Wei; Kinsey, Nathaniel

    2013-01-01

    We propose a metamaterial based perfect absorber in the visible region, and investigate the performance of titanium nitride as an alternative plasmonic material. Numerical and experimental results reveal that titanium nitride performs better than gold as a plasmonic absorbing material...

  10. Quaternary alloy semiconductor nanobelts with bandgap spanning the entire visible spectrum.

    Science.gov (United States)

    Pan, Anlian; Liu, Ruibin; Sun, Minghua; Ning, Cun-Zheng

    2009-07-15

    We used an improved cothermal evaporation route for the first time to achieve quaternary semiconductor nanostructured alloys, using an example of Zn(x)Cd(1-x)S(y)Se(1-y) nanobelts. The PL (bandgap) of these as-grown nanostructured alloys can be continuously tunable across the entire visible spectrum through experimentally controlling their compositions. Such widely controlled alloy nanostructures via composition/light emission provide a new material platform for applications in wavelength-tunable lasers, multicolor detectors, full-spectrum solar cells, LEDs, and color displays.

  11. DESIGN OF A CMOS BANDGAP REFERENCE WITH LOWTEMPERATURE COEFFICIENT AND HIGH POWER SUPPLY REJECTION PERFORMANCE

    OpenAIRE

    Abhisek Dey; Tarun Kanti Bhattacharyya

    2011-01-01

    A high precision temperature compensated CMOS bandgap reference is presented. The proposed circuit employs current-mode architecture that improves the temperature stability of the output reference voltage as well as the power supply rejection when compared to the conventional voltage-mode band gap reference.Using only first order compensation the new architecture can generate an output reference voltage of 550 mV with a peak-to-peak variation of 400μV over a wide temperature range from -25oC ...

  12. Defects induced luminescence and tuning of bandgap energy narrowing in ZnO nanoparticles doped with Li ions

    KAUST Repository

    Awan, Saif Ullah

    2014-08-28

    Microstructural and optical properties of Zn1-yLiyO (0.00 ≤y ≤0.10) nanoparticles are investigated. Li incorporation leads to substantial changes in the structural characterization. From micro-structural analysis, no secondary phases or clustering of Li was detected. Elemental maps confirmed homogeneous distribution of Li in ZnO. Sharp UV peak due to the recombination of free exciton and defects based luminescence broad visible band was observed. The transition from the conduction band to Zinc vacancy defect level in photoluminescence spectra is found at 518±2.5nm. The yellow luminescence was observed and attributed to Li related defects in doped samples. With increasing Li doping, a decrease in energy bandgap was observed in the range 3.26±0.014 to 3.17±0.018eV. The bandgap narrowing behavior is explained in terms of the band tailing effect due to structural disorder, carrier-impurities, carrier-carrier, and carrier-phonon interactions. Tuning of the bandgap energy in this class of wide bandgap semiconductor is very important for room temperature spintronics applications and optical devices. © 2014 AIP Publishing LLC.

  13. Cathodic Cage Plasma Nitriding: An Innovative Technique

    OpenAIRE

    Sousa,R.R.M.; de Araújo, F. O.; J. A. P. da Costa; Brandim,A.S.; R. A. de Brito; C. Alves

    2012-01-01

    Cylindrical samples of AISI 1020, AISI 316, and AISI 420 steels, with different heights, were simultaneously treated by a new technique of ionic nitriding, entitled cathodic cage plasma nitriding (CCPN), in order to evaluate the efficiency of this technique to produce nitrided layers with better properties compared with those obtained using conventional ionic nitriding technique. This method is able to eliminate the edge effect in the samples, promoting a better uniformity of temperature, and...

  14. Boron Nitride Nanotubes for Spintronics

    Directory of Open Access Journals (Sweden)

    Kamal B. Dhungana

    2014-09-01

    Full Text Available With the end of Moore’s law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT, which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  15. Boron nitride nanotubes for spintronics.

    Science.gov (United States)

    Dhungana, Kamal B; Pati, Ranjit

    2014-09-22

    With the end of Moore's law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR) effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT), which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  16. Ultrahard nanotwinned cubic boron nitride.

    Science.gov (United States)

    Tian, Yongjun; Xu, Bo; Yu, Dongli; Ma, Yanming; Wang, Yanbin; Jiang, Yingbing; Hu, Wentao; Tang, Chengchun; Gao, Yufei; Luo, Kun; Zhao, Zhisheng; Wang, Li-Min; Wen, Bin; He, Julong; Liu, Zhongyuan

    2013-01-17

    Cubic boron nitride (cBN) is a well known superhard material that has a wide range of industrial applications. Nanostructuring of cBN is an effective way to improve its hardness by virtue of the Hall-Petch effect--the tendency for hardness to increase with decreasing grain size. Polycrystalline cBN materials are often synthesized by using the martensitic transformation of a graphite-like BN precursor, in which high pressures and temperatures lead to puckering of the BN layers. Such approaches have led to synthetic polycrystalline cBN having grain sizes as small as ∼14 nm (refs 1, 2, 4, 5). Here we report the formation of cBN with a nanostructure dominated by fine twin domains of average thickness ∼3.8 nm. This nanotwinned cBN was synthesized from specially prepared BN precursor nanoparticles possessing onion-like nested structures with intrinsically puckered BN layers and numerous stacking faults. The resulting nanotwinned cBN bulk samples are optically transparent with a striking combination of physical properties: an extremely high Vickers hardness (exceeding 100 GPa, the optimal hardness of synthetic diamond), a high oxidization temperature (∼1,294 °C) and a large fracture toughness (>12 MPa m(1/2), well beyond the toughness of commercial cemented tungsten carbide, ∼10 MPa m(1/2)). We show that hardening of cBN is continuous with decreasing twin thickness down to the smallest sizes investigated, contrasting with the expected reverse Hall-Petch effect below a critical grain size or the twin thickness of ∼10-15 nm found in metals and alloys.

  17. Structure, Mechanics and Synthesis of Nanoscale Carbon and Boron Nitride

    Science.gov (United States)

    Rinaldo, Steven G.

    This thesis is divided into two parts. In Part I, we examine the properties of thin sheets of carbon and boron nitride. We begin with an introduction to the theory of elastic sheets, where the stretching and bending modes are considered in detail. The coupling between stretching and bending modes is thought to play a crucial role in the thermodynamic stability of atomically-thin 2D sheets such as graphene. In Chapter 2, we begin by looking at the fabrication of suspended, atomically thin sheets of graphene. We then study their mechanical resonances which are read via an optical transduction technique. The frequency of the resonators was found to depend on their temperature, as was their quality factor. We conclude by offering some interpretations of the data in terms of the stretching and bending modes of graphene. In Chapter 3, we look briefly at the fabrication of thin sheets of carbon and boron nitride nanotubes. We examine the structure of the sheets using transmission and scanning electron microscopy (TEM and SEM, respectively). We then show a technique by which one can make sheets suspended over a trench with adjustable supports. Finally, DC measurements of the resistivity of the sheets in the temperature range 600 -- 1400 C are presented. In Chapter 4, we study the folding of few-layer graphene oxide, graphene and boron nitride into 3D aerogel monoliths. The properties of graphene oxide are first considered, after which the structure of graphene and boron nitride aerogels is examined using TEM and SEM. Some models for their structure are proposed. In Part II, we look at synthesis techniques for boron nitride (BN). In Chapter 5, we study the conversion of carbon structures of boron nitride via the application of carbothermal reduction of boron oxide followed by nitridation. We apply the conversion to a wide variety of morphologies, including aerogels, carbon fibers and nanotubes, and highly oriented pyrolytic graphite. In the latter chapters, we look at the

  18. EDITORIAL: Non-polar and semipolar nitride semiconductors Non-polar and semipolar nitride semiconductors

    Science.gov (United States)

    Han, Jung; Kneissl, Michael

    2012-02-01

    Throughout the history of group-III-nitride materials and devices, scientific breakthroughs and technological advances have gone hand-in-hand. In the late 1980s and early 1990s, the discovery of the nucleation of smooth (0001) GaN films on c-plane sapphire and the activation of p-dopants in GaN led very quickly to the realization of high-brightness blue and green LEDs, followed by the first demonstration of GaN-based violet laser diodes in the mid 1990s. Today, blue InGaN LEDs boast record external quantum efficiencies exceeding 80% and the emission wavelength of the InGaN-based laser diode has been pushed into the green spectral range. Although these tremenduous advances have already spurred multi-billion dollar industries, there are still a number of scientific questions and technological issues that are unanswered. One key challenge is related to the polar nature of the III-nitride wurtzite crystal. Until a decade ago all research activities had almost exclusively concentrated on (0001)-oriented polar GaN layers and heterostructures. Although the device characteristics seem excellent, the strong polarization fields at GaN heterointerfaces can lead to a significant deterioration of the device performance. Triggered by the first demonstration non-polar GaN quantum wells grown on LiAlO2 by Waltereit and colleagues in 2000, impressive advances in the area of non-polar and semipolar nitride semiconductors and devices have been achieved. Today, a large variety of heterostructures free of polarization fields and exhibiting exceptional electronic and optical properties have been demonstrated, and the fundamental understanding of polar, semipolar and non-polar nitrides has made significant leaps forward. The contributions in this Semiconductor Science and Technology special issue on non-polar and semipolar nitride semiconductors provide an impressive and up-to-date cross-section of all areas of research and device physics in this field. The articles cover a wide range of

  19. High-Efficiency Solar Cells Using Photonic-Bandgap Materials

    Science.gov (United States)

    Dowling, Jonathan; Lee, Hwang

    2005-01-01

    Solar photovoltaic cells would be designed to exploit photonic-bandgap (PBG) materials to enhance their energy-conversion efficiencies, according to a proposal. Whereas the energy-conversion efficiencies of currently available solar cells are typically less than 30 percent, it has been estimated that the energy-conversion efficiencies of the proposed cells could be about 50 percent or possibly even greater. The primary source of inefficiency of a currently available solar cell is the mismatch between the narrow wavelength band associated with the semiconductor energy gap (the bandgap) and the broad wavelength band of solar radiation. This mismatch results in loss of power from both (1) long-wavelength photons, defined here as photons that do not have enough energy to excite electron-hole pairs across the bandgap, and (2) short-wavelength photons, defined here as photons that excite electron- hole pairs with energies much above the bandgap. It follows that a large increase in efficiency could be obtained if a large portion of the incident solar energy could be funneled into a narrow wavelength band corresponding to the bandgap. In the proposed approach, such funneling would be effected by use of PBG materials as intermediaries between the Sun and photovoltaic cells.

  20. Theoretical Compton profile of diamond, boron nitride and carbon nitride

    Science.gov (United States)

    Aguiar, Julio C.; Quevedo, Carlos R.; Gomez, José M.; Di Rocco, Héctor O.

    2017-09-01

    In the present study, we used the generalized gradient approximation method to determine the electron wave functions and theoretical Compton profiles of the following super-hard materials: diamond, boron nitride (h-BN), and carbon nitride in its two known phases: βC3N4 and gC3N4 . In the case of diamond and h-BN, we compared our theoretical results with available experimental data. In addition, we used the Compton profile results to determine cohesive energies and found acceptable agreement with previous experiments.

  1. Mathematical Modelling of Nitride Layer Growth of Low Temperature Gas and Plasma Nitriding of AISI 316L

    Directory of Open Access Journals (Sweden)

    Triwiyanto A.

    2014-07-01

    Full Text Available This paper present mathematical model which developed to predict the nitrided layer thickness (case depth of gas nitrided and plasma nitrided austenitic stainless steel according to Fick’s first law for pure iron by adapting and manipulating the Hosseini’s model to fit the diffusion mechanism where nitrided structure formed by nitrided AISI 316L austenitic stainless steel. The mathematical model later tested against various actual gas nitriding and plasma nitriding experimental results with varying nitriding temperature and nitriding duration to see whether the model managed to successfully predict the nitrided layer thickness. This model predicted the coexistence of ε-Fe2-3N and γ΄-Fe4N under the present nitriding process parameters. After the validation process, it is proven that the mathematical model managed to predict the nitrided layer growth of the gas nitrided and plasma nitrided of AISI 316L SS up to high degree of accuracy.

  2. Bandgap Tunability in Sb-Alloyed BiVO₄ Quaternary Oxides as Visible Light Absorbers for Solar Fuel Applications.

    Science.gov (United States)

    Loiudice, Anna; Ma, Jie; Drisdell, Walter S; Mattox, Tracy M; Cooper, Jason K; Thao, Timothy; Giannini, Cinzia; Yano, Junko; Wang, Lin-Wang; Sharp, Ian D; Buonsanti, Raffaella

    2015-11-01

    The challenge of fine compositional tuning and microstructure control in complex oxides is overcome by developing a general two-step synthetic approach. Antimony-alloyed bismuth vanadate, which is identified as a novel light absorber for solar fuel applications, is prepared in a wide compositional range. The bandgap of this quaternary oxide linearly decreases with the Sb content, in agreement with first-principles calculations.

  3. Spatial Inhomogeneity of Luminescence in III-Nitride Compounds

    Directory of Open Access Journals (Sweden)

    Gintautas TAMULAITIS

    2011-11-01

    Full Text Available The band gap of III-nitride semiconductors cover a wide range from 0.77 eV (band gap of InN to 6.2 eV (AlN. Thus, light-emitting diodes emitting from infrared to deep into ultraviolet can be fabricated using ternary III-nitrides InGaN, AlGaN, and AlInN with appropriate composition. However, growing the compounds with any desirable composition often encounters substantial difficulties due to phase separation, structural quality of the epilayers, impurities and extended defects, etc. The spatial inhomogeneity of emission properties in III-nitride epilayers and quantum well structures provides an informative insight into carrier migration, localization, and recombination and is important for development of light-emitting devices. In this paper, we introduce the techniques for luminescence study with spatial resolution (microphotoluminescence, confocal microscopy, scanning near field optical microscopy and cathodoluminescence, discuss material properties leading to emission inhomogeneity and review results on spatial distribution of photoluminescence and cathodoluminescence in InGaN and AlGaN, which are the most important ternary III-nitride compounds for application in light-emitting devices.http://dx.doi.org/10.5755/j01.ms.17.4.768

  4. Advances and directions of ion nitriding/carburizing

    Science.gov (United States)

    Spalvins, Talivaldis

    1989-01-01

    Ion nitriding and carburizing are plasma activated thermodynamic processes for the production of case hardened surface layers not only for ferrous materials, but also for an increasing number of nonferrous metals. When the treatment variables are properly controlled, the use of nitrogenous or carbonaceous glow discharge medium offers great flexibility in tailoring surface/near-surface properties independently of the bulk properties. The ion nitriding process has reached a high level of maturity and has gained wide industrial acceptance, while the more recently introduced ion carburizing process is rapidly gaining industrial acceptance. The current status of plasma mass transfer mechanisms into the surface regarding the formation of compound and diffusion layers in ion nitriding and carbon build-up ion carburizing is reviewed. In addition, the recent developments in design and construction of advanced equipment for obtaining optimized and controlled case/core properties is summarized. Also, new developments and trends such as duplex plasma treatments and alternatives to dc diode nitriding are highlighted.

  5. Low temperature silicon nitride waveguides for multilayer platforms

    Science.gov (United States)

    Domínguez Bucio, T.; Tarazona, A.; Khokhar, A. Z.; Mashanovich, G. Z.; Gardes, F. Y.

    2016-05-01

    Several 3D multilayer silicon photonics platforms have been proposed to provide densely integrated structures for complex integrated circuits. Amongst these platforms, great interest has been given to the inclusion of silicon nitride layers to achieve low propagation losses due to their capacity of providing tight optical confinement with low scattering losses in a wide spectral range. However, none of the proposed platforms have demonstrated the integration of active devices. The problem is that typically low loss silicon nitride layers have been fabricated with LPCVD which involves high processing temperatures (<1000 ºC) that affect metallisation and doping processes that are sensitive to temperatures above 400ºC. As a result, we have investigated ammonia-free PECVD and HWCVD processes to obtain high quality silicon nitride films with reduced hydrogen content at low temperatures. Several deposition recipes were defined through a design of experiments methodology in which different combinations of deposition parameters were tested to optimise the quality and the losses of the deposited layers. The physical, chemical and optical properties of the deposited materials were characterised using different techniques including ellipsometry, SEM, FTIR, AFM and the waveguide loss cut-back method. Silicon nitride layers with hydrogen content between 10-20%, losses below 10dB/cm and high material quality were obtained with the ammonia-free recipe. Similarly, it was demonstrated that HWCVD has the potential to fabricate waveguides with low losses due to its capacity of yielding hydrogen contents <10% and roughness <1.5nm.

  6. Bandgap renormalization in single-wall carbon nanotubes.

    Science.gov (United States)

    Zhu, Chunhui; Liu, Yujie; Xu, Jieying; Nie, Zhonghui; Li, Yao; Xu, Yongbing; Zhang, Rong; Wang, Fengqiu

    2017-09-11

    Single-wall carbon nanotubes (SWNTs) have been extensively explored as an ultrafast nonlinear optical material. However, due to the numerous electronic and morphological arrangements, a simple and self-contained physical model that can unambiguously account for the rich photocarrier dynamics in SWNTs is still absent. Here, by performing broadband degenerate and non-degenerate pump-probe experiments on SWNTs of different chiralities and morphologies, we reveal strong evidences for the existence of bandgap renormalization in SWNTs. In particularly, it is found that the broadband transient response of SWNTs can be well explained by the combined effects of Pauli blocking and bandgap renormalization, and the distinct dynamics is further influenced by the different sensitivity of degenerate and non-degenerate measurements to these two concurrent effects. Furthermore, we attribute optical-phonon bath thermalization as an underlying mechanism for the observed bandgap renormalization. Our findings provide new guidelines for interpreting the broadband optical response of carbon nanotubes.

  7. Computer simulation and modeling of graded bandgap CuInSe{sub 2}/CdS based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Dhingra, A.; Rothwarf, A. [Drexel Univ., Philadelphia, PA (United States). Dept. of Electrical and Computer Engineering

    1996-04-01

    This paper proposes the use of graded bandgap absorber material, to improve the low open-circuit voltage (V{sub oc}) seen in CuInSe{sub 2}/CdS solar cells, without sacrificing the short-circuit current density (J{sub sc}). It also proposes a p-i-n model for the CuInSe{sub 2}/CdS solar cell, where the intrinsic region is the graded bandgap CIS. Reflecting surfaces are provided at the p-i and n-i interfaces to trap the light in the narrow intrinsic region for maximum generation of electron and hole pairs (EHP`s). This optical confinement results in a 25--40% increase in the number of photons absorbed. An extensive numerical simulator was developed, which provides a 1-D self-consistent solution for Poisson`s equation and the two continuity equations for electrons and holes. This simulator was used to generate J-V curves to delineate the effect of different grading profiles on cell performance. The effects of a uniform bandgap, normal grading, reverse grading, and a low bandgap notch have been considered. Having established the inherent advantages to these grading profiles an optimal doubly graded structure is proposed. Replacing the thick CdS (2.42ev) layer assumed in the simulations with a wide gap semiconductor such as ZnO (3.35ev) increases all current densities by about 5 mA/cm{sup 2}, and increases the optimal calculated efficiency from 17.9% to roughly 21% for a doubly graded structure with a thickness of 1 {micro}m and bandgaps ranging from 1.3 eV to 1.5 eV.

  8. Urbach's tail in III-nitrides under an electric field

    OpenAIRE

    Rodrigues, CG; Vasconcellos, AR; Luzzi, R.; Freire, VN

    2001-01-01

    We consider electron-hole recombination in wide-gap strong-polar semiconductors of the III-nitride family under high electric fields. The calculated low-energy side of the luminescense spectrum displays the so-called Urbach's tail, which is characterized as resulting from the presence of sidebands in the form of replicas of the main band, corresponding to recombination with accompanying emission of one, two, etc., LO phonons. The influence of the nonequilibrium macroscopic state of hot carrie...

  9. Synthesis of boron nitride nanotubes and their applications

    OpenAIRE

    Saban Kalay; Zehra Yilmaz; Ozlem Sen; Melis Emanet; Emine Kazanc; Mustafa Çulha

    2015-01-01

    Boron nitride nanotubes (BNNTs) have been increasingly investigated for use in a wide range of applications due to their unique physicochemical properties including high hydrophobicity, heat and electrical insulation, resistance to oxidation, and hydrogen storage capacity. They are also valued for their possible medical and biomedical applications including drug delivery, use in biomaterials, and neutron capture therapy. In this review, BNNT synthesis methods and the surface modification stra...

  10. Sub-bandgap absorption in polymer-fullerene solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Presselt, Martin; Herrmann, Felix; Seeland, Marco; Baerenklau, Maik; Roesch, Roland; Shokhovets, Sviatoslav; Hopp, Harald; Gobsch, Gerhard [Experimental Physics I, Institute of Physics and Institute of Micro- und Nanotechnologies, Ilmenau University of Technology, Ilmenau (Germany); Beenken, Wichard J.D.; Runge, Erich [Theoretical Physics I, Institute of Physics, Ilmenau University of Technology, Ilmenau (Germany)

    2011-07-01

    We present external quantum efficiency (EQE) studies of P3HT:PCBM based bulk heterojunction polymer solar cells with improved intensity resolution in the sub-bandgap (SBG) region, i.e. the energy range below the optical bandgaps of the pristine materials. Varying the P3HT:PCBM blending ratio, we find that in addition to a Gaussian profile an exponential tail is needed for a quantitative description of the SBG EQE spectra. To gain insights into the origin of the single contributions, absorption and emission spectra covering several decades of intensity and SBG EQE signals are discussed in detail.

  11. Ultrasensitive twin-core photonic bandgap fiber refractive index sensor

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Town, Graham; Bang, Ole

    2009-01-01

    We propose a microfluidic refractive index sensor based on new polymer twin-core photonic bandgap fiber (PBGF). The sensor can achieve ultrahigh detection limit, i.e. >1.4times10-7RIU refractive index unit (RIU), by measuring the coupling wavelength shift.......We propose a microfluidic refractive index sensor based on new polymer twin-core photonic bandgap fiber (PBGF). The sensor can achieve ultrahigh detection limit, i.e. >1.4times10-7RIU refractive index unit (RIU), by measuring the coupling wavelength shift....

  12. The density matrix method in photonic bandgap and antiferromagnetic materials

    Science.gov (United States)

    Barrie, Scott B.

    In this thesis, a theory for dispersive polaritonic bandgap (DPBG) and photonic bandgap (PBG) materials is developed. An ensemble of multi-level nanoparticles, such as non-interacting two-, three- and four-level atoms doped in DPBG and PBG materials is considered. The optical properties of these materials such as spontaneous emission, line broadening, fluorescence and narrowing of the natural linewidth have been studied using the density matrix method. Numerical simulations for these properties have been performed for the DPBG materials SiC and InAs, and for a PBG material with a 20 percent gap-to-midgap ratio. When a three-level nanoparticle is doped into a DPBG material, it is predicted that one or two bound states exist when one or both resonance energies, respectively, lie in the bandgap. It is shown when a resonance energy lies below the bandgap, its spectral density peak weakens and broadens as the resonance energy increases to the lower band edge. For the first time it is predicted that when a nanoparticle's resonance energy lies above the bandgap, its spectral density peak weakens and broadens as the resonance energy increases. A relation is also found between spectral structure and gap-to-midgap ratios. The dressed states of a two-level atom doped into a DPBG material under the influence of an intense monochromatic laser field are examined. The splitting of the dressed state energies is calculated, and it is predicted that the splitting depends on the polariton density of states and the Rabi frequency of laser field. The fluoresence is also examined, and for the first time two distinct control processes are found for the transition from one peak to three peaks. It was previously known that the Rabi frequency controlled the Stark effect, but this thesis predicts that the local of the peak with respect to the optical bandgap can cause a transition from one to three peaks even with a weak Rabi frequency. The transient linewidth narrowing of PBG crystal

  13. Compact electrically controlled broadband liquid crystal photonic bandgap fiber polarizer

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2009-01-01

    An electrically controlled liquid crystal photonic-bandgap fiber polarizer is experimentally demonstrated. A maximum 21.3dB electrically tunable polarization extinction ratio is achieved with 45° rotatable transmission axis as well as switched on and off in 1300nm–1600nm.......An electrically controlled liquid crystal photonic-bandgap fiber polarizer is experimentally demonstrated. A maximum 21.3dB electrically tunable polarization extinction ratio is achieved with 45° rotatable transmission axis as well as switched on and off in 1300nm–1600nm....

  14. Boron Nitride Nanoribbons from Exfoliation of Boron Nitride Nanotubes

    Science.gov (United States)

    Hung, Ching-Cheh; Hurst, Janet; Santiago, Diana

    2017-01-01

    Two types of boron nitride nanotubes (BNNTs) were exfoliated into boron nitride nanoribbons (BNNR), which were identified using transmission electron microscopy: (1) commercial BNNTs with thin tube walls and small diameters. Tube unzipping was indicated by a large decrease of the sample's surface area and volume for pores less than 2 nm in diameter. (2) BNNTs with large diameters and thick walls synthesized at NASA Glenn Research Center. Here, tube unraveling was indicated by a large increase in external surface area and pore volume. For both, the exfoliation process was similar to the previous reported method to exfoliate commercial hexagonal boron nitride (hBN): Mixtures of BNNT, FeCl3, and NaF (or KF) were sequentially treated in 250 to 350 C nitrogen for intercalation, 500 to 750 C air for exfoliation, and finally HCl for purification. Property changes of the nanosized boron nitride throughout this process were also similar to the previously observed changes of commercial hBN during the exfoliation process: Both crystal structure (x-ray diffraction data) and chemical properties (Fourier-transform infrared spectroscopy data) of the original reactant changed after intercalation and exfoliation, but most (not all) of these changes revert back to those of the reactant once the final, purified products are obtained.

  15. Non-linear processes in thin titanium nitride transmission lines for parametric amplification

    Science.gov (United States)

    Vissers, Michael; Gao, Jiansong; Chaudhuri, Suptarshi; Bockstiegel, Clint; Sandberg, Martin; Pappas, David P.

    2013-03-01

    Nitride superconductors, such as titanium nitride and niobium titanium nitride, are a non-linear, low dissipation medium at microwave frequencies. The lossless nonlinearity may be probed and utilized. Important applications include generation of higher harmonics, e.g. 3f, and a microwave version of the optical paramagnetic amplifier, i.e. the degenerate-pump case of four-photon mixing (FPM). An amplifier based on these principles should allow for very wide bandwidth, low noise (quantum limited) and high dynamic range devices. These measurements are performed via a single layer, 3 meter long TiN spiral and measured at temperatures below 100 mK. Initial results of the design, fabrication, testing, and impedance optimization of a titanium nitride based parametric amplifier are presented.

  16. Advanced processing of gallium nitride for novel electronic devices

    Science.gov (United States)

    Cao, Xian-An

    2000-10-01

    The 1990s have brought commercial viability of GaN-based photonic devices and startling progress of GaN-based field effect transistors. However, continued research is required to explore the full potential offered by the III-V nitride system, especially for microelectronic applications and power switches. Further improvement of fabrication procedures is one of high priorities of current research. A host of processing challenges are presented by GaN and related materials because of their wide-bandgap nature and chemical stability. A complete understanding in the critical areas such as ion implantation doping and isolation, rapid thermal annealing, metal contact, and dry etching process, is necessary to improve the routine device reproducibility, and should directly lead to optimization of device performance. This dissertation has focused on understanding and optimization of several key aspects of GaN device processing. A novel rapid thermal processing up to 1500°C, in conjunction with AlN encapsulation, has been developed. The activation processes of implanted Si or Group VI donors, and common acceptors in GaN by using this ultrahigh temperature annealing, along with its effects on surface degradation, dopant redistribution and damage removal have been examined. 1400°C has proven to be the optimum temperature to achieve high activation efficiency and to repair the ion-induced lattice defects. Ion implantation was also employed to create high resistivity GaN. Damage-related isolation with sheet resistances of 1012 O/□ in n-GaN and 1010 O/□ in p-GaN has been achieved by implant of O and transition metal elements. Effects of surface cleanliness on characteristics of GaN Schottky contacts have been investigated, and the reduction in barrier height was correlated with removing the native oxide that forms an insulating layer on the conventionally-cleaned surface. W alloys have been deposited on Si-implanted samples and Mg-doped epilayers to achieve ohmic contacts

  17. Homogeneous dispersion of gallium nitride nanoparticles in a boron nitride matrix by nitridation with urea.

    Science.gov (United States)

    Kusunose, Takafumi; Sekino, Tohru; Ando, Yoichi

    2010-07-01

    A Gallium Nitride (GaN) dispersed boron nitride (BN) nanocomposite powder was synthesized by heating a mixture of gallium nitrate, boric acid, and urea in a hydrogen atmosphere. Before heat treatment, crystalline phases of urea, boric acid, and gallium nitrate were recognized, but an amorphous material was produced by heat treatment at 400 degrees C, and then was transformed into GaN and turbostratic BN (t-BN) by further heat treatment at 800 degrees C. TEM obsevations of this composite powder revealed that single nanosized GaN particles were homogeneously dispersed in a BN matrix. Homogeneous dispersion of GaN nanoparticles was thought to be attained by simultaneously nitriding gallium nitrate and boric acid to GaN and BN with urea.

  18. Thermal stability and electrical properties of copper nitride with In or Ti

    Science.gov (United States)

    Du, Yun; Gao, Lei; Li, Chao-Rong; Ji, Ai-Ling

    2013-06-01

    Thin films of ternary compounds CuxInyN and CuxTiyN were grown by magnetron sputtering to improve the thermal stability of Cu3N, a material that decomposes below 300 °C, and thus promises many interesting applications in direct-writing. The effect of In or Ti incorporation in altering the structure and physical properties of copper nitride was evaluated by characterizing the film structure, surface morphology, and temperature dependence of electrical resistivity. More Ti than In can be accommodated by copper nitride without completely deteriorating the Cu3N lattice. A small amount of In or Ti can improve the crystallinity, and consequently the surface morphology. While the decomposition temperature is rarely influenced by In, the Ti-doped sample, Cu59.31Ti2.64N38.05, shows an X-ray diffraction pattern dominated by characteristic Cu3N peaks, even after annealing at 500 °C. Both In and Ti reduce the bandgap of the original Cu3N phase, resulting in a smaller electrical resistivity at room temperature. The samples with more Ti content manifest metal-semiconductor transition when cooled from room temperature down to 50 K. These results can be useful in improving the applicability of copper—nitride-based thin films.

  19. Native point defects in indium nitride and indium-rich indium gallium nitride alloys

    Science.gov (United States)

    Li, Sonny Xiao-Zhe

    The recent discovery of the narrow bandgap of InN of 0.7 eV has attracted strong scientific interests on the fundamental properties and possible applications of InN and its ternary alloys. The first part of this thesis was inspired by the proposal of using InxGa1-x N alloy to build high efficiency solar cell for space applications. To test the irradiation hardness of InN and InxGa 1-xN, we have irradiated numerous samples with energetic particles (1-2 MeV electrons, protons, and 4He+ particles). InN and InxGa1-xN displayed superior radiation hardness over current multi-junction solar cell materials such as GaAs and GaInP in terms of electronic and optical properties. Free electron concentrations in InN and In-rich InxGa 1-xN increased with irradiation dose but saturated at a sufficiently high damage dose. According to the amphoteric defect model, the doping effect and the electron concentration saturation originates from irradiation-induced native donors and Fermi level pinning at the Fermi level stabilization energy (EFS). The EFS, an average energy of all localized native defects, dictates the electronic properties (donor or acceptor) of the native point defects. The electron concentration saturation and Fermi level pinning lead to profound changes in the optical properties. Absorption spectra shift to higher energy due to the conduction band-filling effect (Burstein-Moss shift). Photoluminescence (PL) signals broadened and shifted to higher energy as the k-conservation rule collapsed with irradiation damage. The PL intensity of increased slightly with higher carrier concentration before it became quenched by the irradiation-induced carrier traps. Capacitance-voltage (CV) measurements show that the pinning of the surface Fermi energy at EFS is also responsible for the surface electron accumulation effect in InN and In-rich In xGa1-xN alloys. The second part of this thesis focuses on the hydrostatic pressure dependence of group III-nitride alloys. The hydrostatic

  20. Effect of Dielectric Constant Contrast and Filling Factor to Photonic Bandgap

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The effect of dielectric constant contrast and the filling factor to the photonic bandgap in a 2-D square lattice photonic crystal is discussed. The location, width and number of photonic bandgap can be modulated.

  1. Shape optimization of solid-air porous phononic crystal slabs with widest full 3D bandgap for in-plane acoustic waves

    Science.gov (United States)

    D'Alessandro, Luca; Bahr, Bichoy; Daniel, Luca; Weinstein, Dana; Ardito, Raffaele

    2017-09-01

    The use of Phononic Crystals (PnCs) as smart materials in structures and microstructures is growing due to their tunable dynamical properties and to the wide range of possible applications. PnCs are periodic structures that exhibit elastic wave scattering for a certain band of frequencies (called bandgap), depending on the geometric and material properties of the fundamental unit cell of the crystal. PnCs slabs can be represented by plane-extruded structures composed of a single material with periodic perforations. Such a configuration is very interesting, especially in Micro Electro-Mechanical Systems industry, due to the easy fabrication procedure. A lot of topologies can be found in the literature for PnCs with square-symmetric unit cell that exhibit complete 2D bandgaps; however, due to the application demand, it is desirable to find the best topologies in order to guarantee full bandgaps referred to in-plane wave propagation in the complete 3D structure. In this work, by means of a novel and fast implementation of the Bidirectional Evolutionary Structural Optimization technique, shape optimization is conducted on the hole shape obtaining several topologies, also with non-square-symmetric unit cell, endowed with complete 3D full bandgaps for in-plane waves. Model order reduction technique is adopted to reduce the computational time in the wave dispersion analysis. The 3D features of the PnC unit cell endowed with the widest full bandgap are then completely analyzed, paying attention to engineering design issues.

  2. High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm

    DEFF Research Database (Denmark)

    Shirakawa, A; Maruyama, H; Ueda, K

    2009-01-01

    Ytterbium-doped solid-core photonic bandgap fiber amplifiers operating at the long-wavelength edge of the ytterbium gain band are reported. The low-loss bandgap transmission window is formed in the very low gain region, whilst outside the bandgap, large attenuation inhibits the exponential growth...... knowledge, these are the highest output powers generating from active photonic bandgap fibers, as well as from ytterbium-doped fiber lasers at these wavelengths. (C) 2009 Optical Society of America...

  3. Optically controlled photonic bandgap structures for microstrip circuits

    CERN Document Server

    Cadman, D A

    2003-01-01

    This thesis is concerned with the optical control of microwave photonic bandgap circuits using high resistivity silicon. Photoconducting processes that occur within silicon are investigated. The influence of excess carrier density on carrier mobility and lifetime is examined. In addition, electron-hole pair recombination mechanisms (Shockley-Read-Hall, Auger, radiative and surface) are investigated. The microwave properties of silicon are examined, in particular the variation of silicon reflectivity with excess carrier density. Filtering properties of microstrip photonic bandgap structures and how they may be controlled optically are studied. A proof-of-concept microstrip photonic bandgap structure with optical control is designed, simulated and measured. With no optical illumination incident upon the silicon, the microstrip photonic bandgap structure's filtering properties are well-defined; a 3dB stopband width of 2.6GHz, a 6dB bandwidth of 2GHz and stopband depth of -11.6dB at the centre frequency of 9.9GHz...

  4. AlN Bandgap Temperature Dependence from its Optical Properties

    Science.gov (United States)

    2008-06-07

    AlN bandgap temperature dependence from its optical properties E. Silveira a,, J.A. Freitas b, S.B. Schujman c, L.J. Schowalter c a Depto. de Fisica ...range. The energy gap in semiconductors in general changes due to contributions from the electron–phonon interaction and due to the lattice thermal

  5. Photonic bandgap narrowing in conical hollow core Bragg fibers

    Energy Technology Data Exchange (ETDEWEB)

    Ozturk, Fahri Emre; Yildirim, Adem; Kanik, Mehmet [UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Bayindir, Mehmet, E-mail: bayindir@nano.org.tr [UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Department of Physics, Bilkent University, 06800 Ankara (Turkey)

    2014-08-18

    We report the photonic bandgap engineering of Bragg fibers by controlling the thickness profile of the fiber during the thermal drawing. Conical hollow core Bragg fibers were produced by thermal drawing under a rapidly alternating load, which was applied by introducing steep changes to the fiber drawing speed. In conventional cylindrical Bragg fibers, light is guided by omnidirectional reflections from interior dielectric mirrors with a single quarter wave stack period. In conical fibers, the diameter reduction introduced a gradient of the quarter wave stack period along the length of the fiber. Therefore, the light guided within the fiber encountered slightly smaller dielectric layer thicknesses at each reflection, resulting in a progressive blueshift of the reflectance spectrum. As the reflectance spectrum shifts, longer wavelengths of the initial bandgap cease to be omnidirectionally reflected and exit through the cladding, which narrows the photonic bandgap. A narrow transmission bandwidth is particularly desirable in hollow waveguide mid-infrared sensing schemes, where broadband light is coupled to the fiber and the analyte vapor is introduced into the hollow core to measure infrared absorption. We carried out sensing simulations using the absorption spectrum of isopropyl alcohol vapor to demonstrate the importance of narrow bandgap fibers in chemical sensing applications.

  6. Spontaneous emission and nonlinear effects in photonic bandgap materials

    Science.gov (United States)

    Fogel, Ishella S.; Bendickson, Jon M.; Tocci, Michael D.; Bloemer, Mark J.; Scalora, Michael; Bowden, Charles M.; Dowling, Jonathan P.

    1998-03-01

    We summarize and review our theoretical and experimental work on spontaneous emission and nonlinear effects in one-dimensional, photonic bandgap (PBG) structures. We present a new result: a method for calculating the normal-mode solutions - and hence the spontaneous emission of embedded emitters - in an arbitrary, linear, lossless, one-dimensional, PBG structure.

  7. Mode Division Multiplexing Exploring Hollow-Core Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Xu, Jing; Lyngso, Jens Kristian; Leick, Lasse

    2013-01-01

    We review our recent exploratory investigations on mode division multiplexing using hollow-core photonic bandgap fibers (HC-PBGFs). Compared with traditional multimode fibers, HC-PBGFs have several attractive features such as ultra-low nonlinearities, low-loss transmission window around 2 µm etc....

  8. Liquid Crystal Photonic bandgap Fibers: Modeling and Devices

    DEFF Research Database (Denmark)

    Weirich, Johannes

    In this PhD thesis an experimental and numerical investigation of liquid crystal infiltrated photonic bandgap fibers (LCPBGs) is presented. A simulation scheme for modeling LCPBG devices including electrical tunability is presented. New experimental techniques, boundary coating and the applicatio...

  9. Analysis of photonic band-gap structures in stratified medium

    DEFF Research Database (Denmark)

    Tong, Ming-Sze; Yinchao, Chen; Lu, Yilong;

    2005-01-01

    Purpose - To demonstrate the flexibility and advantages of a non-uniform pseudo-spectral time domain (nu-PSTD) method through studies of the wave propagation characteristics on photonic band-gap (PBG) structures in stratified medium Design/methodology/approach - A nu-PSTD method is proposed...

  10. Design for maximum band-gaps in beam structures

    DEFF Research Database (Denmark)

    Olhoff, Niels; Niu, Bin; Cheng, Gengdong

    2012-01-01

    This paper aims to extend earlier optimum design results for transversely vibrating Bernoulli-Euler beams by determining new optimum band-gap beam structures for (i) different combinations of classical boundary conditions, (ii) much larger values of the orders n and n-1 of adjacent upper and lowe...

  11. Photonic bandgap structures for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Boltasseva, Alexandra; Søndergaard, Thomas

    2005-01-01

    -size thickness variations result in the pronounced band gap effect, and obtain very good agreement between measured and simulated (transmission and reflection) spectra. This effect is exploited to realize a compact wavelength add-drop filter with the bandwidth of -20 nm centered at 1550 nm. The possibilities...... of achieving a full bandgap (in the surface plane) for LR-SPPs are also discussed....

  12. Automating Energy Bandgap Measurements in Semiconductors Using LabVIEW

    Science.gov (United States)

    Garg, Amit; Sharma, Reena; Dhingra, Vishal

    2010-01-01

    In this paper, we report the development of an automated system for energy bandgap and resistivity measurement of a semiconductor sample using Four-Probe method for use in the undergraduate laboratory of Physics and Electronics students. The automated data acquisition and analysis system has been developed using National Instruments USB-6008 DAQ…

  13. Bandgap Opening in Graphene Induced by Patterned Hydrogen Adsorption

    DEFF Research Database (Denmark)

    Balog, Richard; Jørgensen, Bjarke; Nilsson, Louis

    2010-01-01

    fermions, and graphene shows ballistic charge transport, turning it into an ideal material for circuit fabrication. However, graphene lacks a bandgap around the Fermi level, which is the defining concept for semiconductor materials and essential for controlling the conductivity by electronic means. Theory...

  14. Design of photonic bandgap fibers by topology optimization

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Sigmund, Ole; Feurer, Thomas

    2010-01-01

    A method based on topology optimization is presented to design the cross section of hollow-core photonic bandgap fibers for minimizing energy loss by material absorption. The optical problem is modeled by the timeharmonic wave equation and solved with the finite element program Comsol Multiphysics...

  15. Electrically controllable liquid crystal photonic bandgap fiber with dual-frequency control

    DEFF Research Database (Denmark)

    Scolari, Lara; Alkeskjold, Thomas Tanggaard; Riishede, Jesper

    2005-01-01

    We present an electrically tunable liquid crystal photonic bandgap fiber device based on a dual frequency liquid crystal with pre-tilted molecules that allows the bandgaps to be continuously tuned. The frequency dependent behavior of the liquid crystal enables active shifting of the bandgaps toward...

  16. Very Small Bandgap π-Conjugated Polymers with Extended Thienoquinoids.

    Science.gov (United States)

    Kawabata, Kohsuke; Saito, Masahiko; Osaka, Itaru; Takimiya, Kazuo

    2016-06-22

    The introduction of quinoidal character to π-conjugated polymers is one of the effective approaches to reducing the bandgap. Here we synthesized new π-conjugated polymers (PBTD4T and PBDTD4T) incorporating thienoquinoids 2,2'-bithiophene-5,5'-dione (BTD) and benzo[1,2-b:4,5-b']dithiophene-2,6-dione (BDTD) as strong electron-deficient (acceptor) units. PBTD4T showed a deep LUMO energy level of -3.77 eV and a small bandgap of 1.28 eV, which are similar to those of the analog using thieno[3,2-b]thiophene-2,5-dione (TTD) (PTTD4T). PBDTD4T had a much deeper LUMO energy level of -4.04 eV and a significantly smaller bandgap of 0.88 eV compared to those of the other two polymers. Interestingly, PBDTD4T showed high transparency in the visible region. The very small bandgap of PBDTD4T can be rationalized by the enhanced contribution of the resonance backbone structure in which the p-benzoquinodimethane skeleton in the BDTD unit plays a crucial role. PBTD4T and PBDTD4T exhibited ambipolar charge transport with more balanced mobilities between the hole and the electron than PTTD4T. We believe that the very small bandgap, i.e., the high near-infrared activity, as well as the well-balanced ambipolar property of the π-conjugated polymers based on these units would be of particular interest in the fabrication of next-generation organic devices.

  17. Optimal design of tunable phononic bandgap plates under equibiaxial stretch

    Science.gov (United States)

    Hedayatrasa, Saeid; Abhary, Kazem; Uddin, M. S.; Guest, James K.

    2016-05-01

    Design and application of phononic crystal (PhCr) acoustic metamaterials has been a topic with tremendous growth of interest in the last decade due to their promising capabilities to manipulate acoustic and elastodynamic waves. Phononic controllability of waves through a particular PhCr is limited only to the spectrums located within its fixed bandgap frequency. Hence the ability to tune a PhCr is desired to add functionality over its variable bandgap frequency or for switchability. Deformation induced bandgap tunability of elastomeric PhCr solids and plates with prescribed topology have been studied by other researchers. Principally the internal stress state and distorted geometry of a deformed phononic crystal plate (PhP) changes its effective stiffness and leads to deformation induced tunability of resultant modal band structure. Thus the microstructural topology of a PhP can be altered so that specific tunability features are met through prescribed deformation. In the present study novel tunable PhPs of this kind with optimized bandgap efficiency-tunability of guided waves are computationally explored and evaluated. Low loss transmission of guided waves throughout thin walled structures makes them ideal for fabrication of low loss ultrasound devices and structural health monitoring purposes. Various tunability targets are defined to enhance or degrade complete bandgaps of plate waves through macroscopic tensile deformation. Elastomeric hyperelastic material is considered which enables recoverable micromechanical deformation under tuning finite stretch. Phononic tunability through stable deformation of phononic lattice is specifically required and so any topology showing buckling instability under assumed deformation is disregarded. Nondominated sorting genetic algorithm (GA) NSGA-II is adopted for evolutionary multiobjective topology optimization of hypothesized tunable PhP with square symmetric unit-cell and relevant topologies are analyzed through finite

  18. Indium gallium nitride multijunction solar cell simulation using silvaco atlas

    OpenAIRE

    Garcia, Baldomero

    2007-01-01

    This thesis investigates the potential use of wurtzite Indium Gallium Nitride as photovoltaic material. Silvaco Atlas was used to simulate a quad-junction solar cell. Each of the junctions was made up of Indium Gallium Nitride. The band gap of each junction was dependent on the composition percentage of Indium Nitride and Gallium Nitride within Indium Gallium Nitride. The findings of this research show that Indium Gallium Nitride is a promising semiconductor for solar cell use. United...

  19. Structural materialization of stainless steel molds and dies by the low temperature high density plasma nitriding

    Directory of Open Access Journals (Sweden)

    Aizawa Tatsuhiko

    2015-01-01

    Full Text Available Various kinds of stainless steels have been widely utilized as a mold substrate material for injection molding and as a die for mold-stamping and direct stamping processes. Since they suffered from high temperature transients and thermal cycles in practice, they must be surface-treated by dry and wet coatings, or, by plasma nitriding. Martensitic stainless steel mold was first wet plated by the nickel phosphate (NiP, which was unstable at the high temperature stamping condition; and, was easy to crystalize or to fracture by itself. This issue of nuisance significantly lowered the productivity in fabrication of optical elements at present. In the present paper, the stainless steel mold was surface-treated by the low-temperature plasma nitriding. The nitrided layer by this surface modification had higher nitrogen solute content than 4 mass%; the maximum solid-solubility of nitrogen is usually 0.1 mass% in the equilibrium phase diagram. Owing to this solid-solution with high nitrogen concentration, the nitrided layer had high hardness of 1400 Hv within its thickness of 40 μm without any formation of nitrides after 14.4 ks plasma nitriding at 693 K. This nitrogen solid-solution treated stainless steel had thermal resistivity even at the mold-stamping conditions up to 900 K.

  20. Synthesis of crumpled nanosheets of polymeric carbon nitride from melamine cyanurate

    Energy Technology Data Exchange (ETDEWEB)

    Dante, Roberto C., E-mail: rcdante@yahoo.com [Laboratorio de Materiales Avanzados (Advanced Materials Laboratory) ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia (Spain); Martín-Ramos, Pablo [Laboratorio de Materiales Avanzados (Advanced Materials Laboratory) ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia (Spain); Sánchez-Arévalo, F.M.; Huerta, L.; Bizarro, M. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo. Postal 70-360, Cd. Universitaria, Mexico, D.F. 04510 (Mexico); Navas-Gracia, Luis M.; Martín-Gil, Jesús [Laboratorio de Materiales Avanzados (Advanced Materials Laboratory) ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia (Spain)

    2013-05-01

    Polymeric carbon nitride was synthesized by pyrolysis in nitrogen flux at different temperatures between 450 and 700 °C using melamine cyanurate as a reagent and sulfuric acid as a catalyst. The obtained carbon nitride consisted of curled nanosheets (650 °C), and globular particles (700 °C) with formula C₆N₇NHNH₂. The reaction yield of the catalyzed reaction was around the 15% for the sample treated at 700 °C, in a tapped crucible. The optical band gap of the polymer obtained at 700 °C is around 2.9 eV. The gap to the Fermi level is around 2 eV, considerably above the half of the band gap (due to electrons trapped in the gap), indicating that the polymer is probably a n-type semiconductor. - Graphical abstract: Transition from amorphous to crystalline carbon nitride, which is composed of globular particles and is a n-type wide band semiconductor. Highlights: • We synthetized carbon nitride using melamine cyanurate. • The reaction of carbon nitride formation is catalyzed by sulfuric acid. • The carbon nitride obtained at 700 °C is composed of globular particles. • The material obtained at 700 °C is a n-type semiconductor.

  1. Effects of Nitride on the Tribological Properties of the Low Carbon Alloy Steel

    Directory of Open Access Journals (Sweden)

    Yuh-Ping Chang

    2013-01-01

    Full Text Available The technology of composite heat treatment is used popularly for low friction and wear resistance of drive elements. A large number of papers about the heat treatment technology had been proposed. Especially, the nitride treatment has been used widely for the purpose of wear resistance and low friction in the industry. Therefore, the self-developed vertical ball/disk friction tester with the measurement system was used to study the effects of nitride on the tribological properties of the low carbon alloy steel—SCM415— in this study. The experiments were conducted under dry and severe wear conditions. The variations of friction coefficient and surface magnetization were simultaneously recorded during dynamic friction process. After each test, the microstructures of the wear particles were observed and analyzed under a SEM, and the depth of wear track is measured by means of a surface tester. According to the experimental results, the wear resistance of the specimens with carburizing-nitride is significantly larger than the case of nitride-carburizing. Moreover, the surface magnetization was especially larger for the case of nitride-carburizing. As a result, the wear particles always stay in the interfaces and the wear mechanism becomes complex. Therefore, it is necessary to put nitride after carburizing for the composite heat treatments.

  2. III-nitride based light emitting diodes and applications

    CERN Document Server

    Han, Jung; Amano, Hiroshi; Morkoç, Hadis

    2017-01-01

    The revised edition of this important book presents updated and expanded coverage of light emitting diodes (LEDs) based on heteroepitaxial GaN on Si substrates, and includes new chapters on tunnel junction LEDs, green/yellow LEDs, and ultraviolet LEDs. Over the last two decades, significant progress has been made in the growth, doping and processing technologies of III-nitride based semiconductors, leading to considerable expectations for nitride semiconductors across a wide range of applications. LEDs are already used in traffic signals, signage lighting, and automotive applications, with the ultimate goal of the global replacement of traditional incandescent and fluorescent lamps, thus reducing energy consumption and cutting down on carbon-dioxide emission. However, some critical issues must be addressed to allow the further improvements required for the large-scale realization of solid-state lighting, and this book aims to provide the readers with details of some contemporary issues on which the performanc...

  3. Phase identification of iron nitrides and iron oxy-nitrides with Mossbauer spectroscopy

    NARCIS (Netherlands)

    Borsa, DM; Boerma, DO

    2003-01-01

    The Mossbauer spectroscopy of all known Fe nitrides is the topic of this paper. Most of the data were accumulated during a study of the growth of the various Fe nitride phases using molecular beam epitaxy of Fe in the presence of a flux of atomic N, or by post-nitriding freshly grown Fe layers also

  4. Composite Reinforcement using Boron Nitride Nanotubes

    Science.gov (United States)

    2014-05-09

    Final 3. DATES COVERED (From - To) 11-Mar-2013 to 10-Mar-2014 4. TITLE AND SUBTITLE Composite Reinforcement using Boron Nitride Nanotubes...AVAILABILITY STATEMENT Approved for public release. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Boron nitride nanotubes have been proposed as a...and titanium (Ti) metal clusters with boron nitride nanotubes (BNNT). First-principles density-functional theory plus dispersion (DFT-D) calculations

  5. Analysis of plasma-nitrided steels

    Science.gov (United States)

    Salik, J.; Ferrante, J.; Honecy, F.; Hoffman, R., Jr.

    1986-01-01

    The analysis of plasma nitrided steels can be divided to two main categories - structural and chemical. Structural analysis can provide information not only on the hardening mechanisms but also on the fundamental processes involved. Chemical analysis can be used to study the kinetics for the nitriding process and its mechanisms. In this paper preliminary results obtained by several techniques of both categories are presented and the applicability of those techniques to the analysis of plasma-nitrided steels is discussed.

  6. Low temperature high density plasma nitriding of stainless steel molds for stamping of oxide glasses

    Directory of Open Access Journals (Sweden)

    Aizawa Tatsuhiko

    2016-01-01

    Full Text Available Various kinds of stainless steels have been widely utilized as a die for mold- and direct-stamping processes of optical oxide glasses. Since they suffered from high temperature transients and thermal cycles in practice, they must be surface-treated by dry and wet coatings, or, by plasma nitriding. Martensitic stainless steel mold was first wet plated by the nickel phosphate (NiP, which was unstable at the high temperature stamping condition; and, was easy to crystalize or to fracture by itself. This issue of nuisance significantly lowered the productivity in fabrication of optical oxide-glass elements. In the present paper, the stainless steel mold was surface-treated by the low-temperature plasma nitriding. The nitrided layer by this surface modification had higher nitrogen solute content than 4 mass%; the maximum solid-solubility of nitrogen is usually 0.1 mass% in the equilibrium phase diagram. Owing to this solid-solution with high nitrogen concentration, the nitrided layer had high hardness over 1400 HV within its thickness of 50 μm without any formation of nitrides after plasma nitriding at 693 K for 14.4 ks. This plasma-nitrided mold was utilized for mold-stamping of two colored oxide glass plates at 833 K; these plates were successfully deformed and joined into a single glass plate by this stamping without adhesion or galling of oxide glasses onto the nitrided mold surface.

  7. Properties of N-rich Silicon Nitride Film Deposited by Plasma-Enhanced Atomic Layer Deposition

    Science.gov (United States)

    Jhang, Pei-Ci; Lu, Chi-Pin; Shieh, Jung-Yu; Yang, Ling-Wu; Yang, Tahone; Chen, Kuang-Chao; Lu, Chih-Yuan

    2017-07-01

    An N-rich silicon nitride film, with a lower refractive index (RI) than the stoichiometric silicon nitride (RI = 2.01), was deposited by alternating the exposure of dichlorosilane (DCS, SiH2Cl2) and that of ammonia (NH3) in a plasma-enhanced atomic layer deposition (PEALD) process. In this process, the plasma ammonia was easily decomposed to reactive radicals by RF power activating so that the N-rich silicon nitride was easily formed by excited ammonia radicals. The growth kinetics of N-rich silicon nitride were examined at various deposition temperatures ranging from 400 °C to 630 °C; the activation energy (Ea) decreased as the deposition temperature decreased below 550 °C. N-rich silicon nitride film with a wide range of values of refractive index (RI) (RI = 1.86-2.00) was obtained by regulating the deposition temperature. At the optimal deposition temperature, the effects of RF power, NH3 flow rate and NH3 flow time were on the characteristics of the N-rich silicon nitride film were evaluated. The results thus reveal that the properties of the N-rich silicon nitride film that was formed by under plasma-enhanced atomic layer deposition (PEALD) are dominated by deposition temperature. In charge trap flash (CTF) study, an N-rich silicon nitride film was applied to MAONOS device as a charge-trapping layer. The films exhibit excellent electron trapping ability and favor a fresh cell data retention performance as the deposition temperature decreased.

  8. Tuning the optical response in carbon doped boron nitride nanodots

    KAUST Repository

    Mokkath, Junais Habeeb

    2014-09-04

    Time dependent density functional theory and the hybrid B3LYP functional are used to investigate the structural and optical properties of pristine and carbon doped hexagonal boron nitride nanodots. In agreement with recent experiments, the embedded carbon atoms are found to favor nucleation. Our results demonstrate that carbon clusters of different shapes promote an early onset of absorption by generating in-gap states. The nanodots are interesting for opto-electronics due to their tunable optical response in a wide energy window. We identify cluster sizes and shapes with optimal conversion efficiency for solar radiation and a wide absorption range form infrared to ultraviolet. This journal is

  9. Effects of Hydrogen on Acceptor Activation in Ternary Nitride Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Fioretti, Angela N. [National Renewable Energy Laboratory, Golden CO 80401 USA; Colorado School of Mines, Golden CO 80401 USA; Stokes, Adam [National Renewable Energy Laboratory, Golden CO 80401 USA; Colorado School of Mines, Golden CO 80401 USA; Young, Matthew R. [National Renewable Energy Laboratory, Golden CO 80401 USA; Gorman, Brian [Colorado School of Mines, Golden CO 80401 USA; Toberer, Eric S. [National Renewable Energy Laboratory, Golden CO 80401 USA; Colorado School of Mines, Golden CO 80401 USA; Tamboli, Adele C. [National Renewable Energy Laboratory, Golden CO 80401 USA; Colorado School of Mines, Golden CO 80401 USA; Zakutayev, Andriy [National Renewable Energy Laboratory, Golden CO 80401 USA

    2017-02-09

    Doping control is necessary to unlock the scientific and technological potential of many materials, including ternary II-IV-nitride semiconductors, which are closely related to binary GaN. In particular, ZnSnN2 has been reported to have degenerate doping density, despite bandgap energies that are well suited for solar energy conversion. Here, we show that annealing Zn-rich Zn1+xSn1-xN2 grown with added hydrogen reduces its free electron density by orders of magnitude, down to 4 x 1016 cm-3. This experimental observation can be explained by hydrogen passivation of acceptors in Zn1+xSn1-xN2 during growth, lowering the driving force for unintentional donor formation. These results indicate that the doping control principles used in GaN can be translated to ZnSnN2, suggesting that other strategies used in binary III-Vs can be applied to accelerate the technological development of ternary II-IV-N2 materials.

  10. Design and Characterization of p-i-n Devices for Betavoltaic Microbatteries on Gallium Nitride

    Science.gov (United States)

    Khan, Muhammad Raziuddin A.

    Betavoltaic microbatteries convert nuclear energy released as beta particles directly into electrical energy. These batteries are well suited for electrical applications such as micro-electro-mechanical systems (MEMS), implantable medical devices and sensors. Such devices are often located in hard to access places where long life, micro-size and lightweight are required. The working principle of a betavoltaic device is similar to a photovoltaic device; they differ only in that the electron hole pairs (EHPs) are generated in the device by electrons instead of photons. In this study, the performance of a betavoltaic device fabricated from gallium nitride (GaN) is investigated for beta particle energies equivalent to Tritium (3H) and Nickel-63 (N63) beta sources. GaN is an attractive choice for fabricating betavoltaic devices due to its wide band gap and radiation resistance. Another advantage GaN has is that it can be alloyed with aluminum (Al) to further increase the bandgap, resulting in a higher output power and increased efficiency. Betavoltaic devices were fabricated on p-i-n GaN structures grown by metalorganic chemical vapor deposition (MOCVD). The devices were characterized using current - voltage (IV) measurements without illumination (light or beta), using a laser driven light source, and under an electron beam. Dark IV measurements showed a turn on-voltage of ~ 3.4 V, specific-on-resistance of 15.1 m O-cm2, and a leakage current of 0.5 mA at -- 10 V. A clear photo-response was observed when IV curves were measured for these devices under a light source at a wavelength of 310 nm (4.0 eV). These devices were tested under an electron beam in order to evaluate their behavior as betavoltaic microbatteries without using radioactive materials. Output power of 70 nW and 640 nW with overall efficiencies of 1.2% and 4.0% were determined at the average energy emission of 3H (5.6 keV) and 63N (17 keV) respectively.

  11. Silicon nitride equation of state

    Science.gov (United States)

    Brown, Robert C.; Swaminathan, Pazhayannur K.

    2017-01-01

    This report presents the development of a global, multi-phase equation of state (EOS) for the ceramic silicon nitride (Si3N4).1 Structural forms include amorphous silicon nitride normally used as a thin film and three crystalline polymorphs. Crystalline phases include hexagonal α-Si3N4, hexagonal β-Si3N4, and the cubic spinel c-Si3N4. Decomposition at about 1900 °C results in a liquid silicon phase and gas phase products such as molecular nitrogen, atomic nitrogen, and atomic silicon. The silicon nitride EOS was developed using EOSPro which is a new and extended version of the PANDA II code. Both codes are valuable tools and have been used successfully for a variety of material classes. Both PANDA II and EOSPro can generate a tabular EOS that can be used in conjunction with hydrocodes. The paper describes the development efforts for the component solid phases and presents results obtained using the EOSPro phase transition model to investigate the solid-solid phase transitions in relation to the available shock data that have indicated a complex and slow time dependent phase change to the c-Si3N4 phase. Furthermore, the EOSPro mixture model is used to develop a model for the decomposition products; however, the need for a kinetic approach is suggested to combine with the single component solid models to simulate and further investigate the global phase coexistences.

  12. Nucleation of iron nitrides during gaseous nitriding of iron; the effect of a preoxidation treatment

    DEFF Research Database (Denmark)

    Friehling, Peter B.; Poulsen, Finn Willy; Somers, Marcel A.J.

    2001-01-01

    grains. On prolonged nitriding, immediate nucleation at the surface of iron grains becomes possible. Calculated incubation times for the nucleation of gamma'-Fe4N1-x during nitriding are generally longer than those observed experimentally in the present work. The incubation time is reduced dramatically......The nucleation of iron nitrides during gaseous nitriding has been investigated using light microscopy and X-ray diffraction. Initially, the nucleation of gamma'-Fe4N1-x on a pure iron surface starts at grain boundaries meeting the surface, from where the nitride grains grow laterally into the iron...

  13. Composition/bandgap selective dry photochemical etching of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, C.I.H.; Dishman, J.L.

    1985-10-11

    Disclosed is a method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg/sub 1/ in the presence of a second semiconductor material of a different composition and direct bandgap Eg/sub 2/, wherein Eg/sub 2/ > Eg/sub 1/, said second semiconductor material substantially not being etched during said method. The method comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg/sub 1/ but less than Eg/sub 2/, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  14. Composition/bandgap selective dry photochemical etching of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, Carol I. H. (Edgewood, NM); Dishman, James L. (Albuquerque, NM)

    1987-01-01

    A method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg.sub.1 in the presence of a second semiconductor material of a different composition and direct bandgap Eg.sub.2, wherein Eg.sub.2 >Eg.sub.1, said second semiconductor material substantially not being etched during said method, comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg.sub.1 but less than Eg.sub.2, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  15. Composition/bandgap selective dry photochemical etching of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, C.I.H.; Dishman, J.L.

    1987-03-10

    A method is described of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap E/sub g1/ in the presence of a second semiconductor material of a different composition and direct bandgap E/sub g2/, wherein E/sub g2/>E/sub g1/. The second semiconductor material is not substantially etched during the method, comprising subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where the etchant would be ineffective for chemical etching of either material where the photons are not present, the photons being of an energy greater than E/sub g1/ but less than E/sub g2/, whereby the first semiconductor material is photochemically etched and the second material is substantially not etched.

  16. High extinction ratio bandgap of photonic crystals in LNOI wafer

    Science.gov (United States)

    Zhang, Shao-Mei; Cai, Lu-Tong; Jiang, Yun-Peng; Jiao, Yang

    2017-02-01

    A high-extinction-ratio bandgap of air-bridge photonic crystal slab, in the near infrared, is reported. These structures were patterned in single-crystalline LiNbO3 film bonded to SiO2/LiNbO3 substrate by focused ion beam. To improve the vertical confinement of light, the SiO2 layer was removed by 3.6% HF acid. Compared with photonic crystals sandwiched between SiO2 and air, the structures suspending in air own a robust photonic bandgap and high transmission efficiency at valence band region. The measured results are in good agreement with numerically computed transmission spectra by finite-difference time-domain method. The air-bridge photonic crystal waveguides were formed by removing one line holes. We reveal experimentally the guiding characteristics and calculate the theoretical results for photonic crystal waveguides in LiNbO3 film.

  17. Quantum electrodynamics near a photonic band-gap

    Science.gov (United States)

    Liu, Yanbing; Houck, Andrew

    Quantum electrodynamics predicts the localization of light around an atom in photonic band-gap (PBG) medium or photonic crystal. Here we report the first experimental realization of the strong coupling between a single artificial atom and an one dimensional PBG medium using superconducting circuits. In the photonic transport measurement, we observe an anomalous Lamb shift and a large band-edge avoided crossing when the artificial atom frequency is tuned across the band-edge. The persistent peak within the band-gap indicates the single photon bound state. Furthermore, we study the resonance fluorescence of this bound state, again demonstrating the breakdown of the Born-Markov approximation near the band-edge. This novel architecture can be directly generalized to study many-body quantum electrodynamics and to construct more complicated spin chain models.

  18. Low Loss Plastic Terahertz Photonic Band-Gap Fibres

    Institute of Scientific and Technical Information of China (English)

    GENG You-Fu; TAN Xiao-Ling; ZHONG Kai; WANG Peng; YAO Jian-Quan

    2008-01-01

    We report a numerical investigation on terahertz wave propagation in plastic photonic band-gap fibres which are characterized by a 19-unit-cell air core and hexagonal air holes with rounded corners in cladding. Using the finite element method, the leakage loss and absorption loss are calculated and the transmission properties are analysed.The lowest loss of 0.268 dB/m is obtained. Numerical results show that the fibres could liberate the constraints of background materials beyond the transparency region in terahertz wave band, and efficiently minimize the effect of absorption by background materials, which present great advantage of plastic photonic band-gap fibres in long distance terahertz delivery.

  19. Experimental Methods for Implementing Graphene Contacts to Finite Bandgap Semiconductors

    DEFF Research Database (Denmark)

    Meyer-Holdt, Jakob

    for molecular electronics with parallel CVD graphene bottom electrodes with SiO2 passivation was successfully fabricated and electronically characterized. A functioning Carbon Burger was not achieved. Along the work on the Carbon Burger, the scope was broadened and focus was put on implementing graphene......Present Ph.D. thesis describes my work on implanting graphene as electrical contact to finite bandgap semiconductors. Different transistor architectures, types of graphene and finite bandgap semiconductors have been employed. The device planned from the beginning of my Ph.D. fellowship...... was a graphene-C60 monolayergraphene vertical transistor named the Carbon Burger. The fabrication of such device proved increasingly difficult to achieve and many experimental methods to handle graphene were implemented and improved in attempt to fabricate the Carbon Burger. In the end, a device platform...

  20. Omnidirectional bandgaps in Fibonacci quasicrystals containing single-negative materials.

    Science.gov (United States)

    Deng, Xin-Hua; Liu, Jiang-Tao; Huang, Jie-Hui; Zou, Liner; Liu, Nian-Hua

    2010-02-10

    The band structure and bandgaps of one-dimensional Fibonacci quasicrystals composed of epsilon-negative materials and mu-negative materials are studied. We show that an omnidirectional bandgap (OBG) exists in the Fibonacci structure. In contrast to the Bragg gaps, such an OBG is insensitive to the incident angle and the polarization of light, and the width and location of the OBG cease to change with increasing Fibonacci order, but vary with the thickness ratio of both components, and the OBG closes when the thickness ratio is equal to the golden ratio. Moreover, the general formulations of the higher and lower band edges of the OBG are obtained by the effective medium theory. These results could lead to further applications of Fibonacci structures.

  1. Bandgap narrowing in moderately to heavily doped silicon

    Science.gov (United States)

    Lanyon, H. P. D.; Tuft, R. A.

    1979-01-01

    A theoretical model of bandgap narrowing in silicon at high doping levels has been developed. The model takes into account the electrostatic energy of interaction between a minority carrier and the majority carriers surrounding it, which reduces the thermal energy necessary for creation of an electron-hole pair. A pair energy similar to the excitonic binding energy of bound electron-hole pairs in insulators is obtained. Theoretical results are in excellent agreement with experimental results in the doping range from 3 times 10 to the 17th to 1.5 times 10 to the 20th/cu cm at room temperature. These results indicate that at high injection levels such as a transistor biased into the conductivity-modulation regime or a solar cell whose surface is established by ion implantation into an oxide layer, the bandgap narrowing is determined by the injected carrier concentration rather than by the doping level.

  2. Band structure of germanium carbides for direct bandgap silicon photonics

    Science.gov (United States)

    Stephenson, C. A.; O'Brien, W. A.; Penninger, M. W.; Schneider, W. F.; Gillett-Kunnath, M.; Zajicek, J.; Yu, K. M.; Kudrawiec, R.; Stillwell, R. A.; Wistey, M. A.

    2016-08-01

    Compact optical interconnects require efficient lasers and modulators compatible with silicon. Ab initio modeling of Ge1-xCx (x = 0.78%) using density functional theory with HSE06 hybrid functionals predicts a splitting of the conduction band at Γ and a strongly direct bandgap, consistent with band anticrossing. Photoreflectance of Ge0.998C0.002 shows a bandgap reduction supporting these results. Growth of Ge0.998C0.002 using tetrakis(germyl)methane as the C source shows no signs of C-C bonds, C clusters, or extended defects, suggesting highly substitutional incorporation of C. Optical gain and modulation are predicted to rival III-V materials due to a larger electron population in the direct valley, reduced intervalley scattering, suppressed Auger recombination, and increased overlap integral for a stronger fundamental optical transition.

  3. Treating temperature effect on bandgap in polymer opal photonic crystals

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The optical reflective spectra and microstruc- tures of polystyrene opal photonic crystals treated with dif- ferent temperatures have been investigated. With tempera- ture increasing, the polystyrene spheres in opal structure transform to dodecahedrons, and the peak of reflective spec- trum moves to shorter wavelength. The experiment result testifies the effect of the effective refractive index and the filling ratio to the bandgap position, and it corresponds to the theoretical simulative result.

  4. Feasibility of detecting single atoms using photonic bandgap cavities

    OpenAIRE

    Lev, Benjamin; Srinivasan, Kartik; Barclay, Paul; Painter, Oskar; Mabuchi, Hideo

    2004-01-01

    We propose an atom-cavity chip that combines laser cooling and trapping of neutral atoms with magnetic microtraps and waveguides to deliver a cold atom to the mode of a fiber taper coupled photonic bandgap (PBG) cavity. The feasibility of this device for detecting single atoms is analyzed using both a semi-classical treatment and an unconditional master equation approach. Single-atom detection seems achievable in an initial experiment involving the non-deterministic delivery of weakly trapped...

  5. A novel electro-thermal model for wide bandgap semiconductor based devices

    DEFF Research Database (Denmark)

    Sintamarean, Nicolae Christian; Blaabjerg, Frede; Wang, Huai

    2013-01-01

    This paper propose a novel Electro-Thermal Model for the new generation of power electronics WBG-devices (by considering the SiC MOSFET-CMF20120D from CREE), which is able to estimate the device junction and case temperature. The Device-Model estimates the voltage drop and the switching energies...... by considering the device current, the off-state blocking voltage and junction temperature variation. Moreover, the proposed Thermal-Model is able to consider the thermal coupling within the MOSFET and its freewheeling diode, integrated into the same package, and the influence of the ambient temperature...... variation. The importance of temperature loop feedback in the estimation accuracy of device junction and case temperature is studied. Furthermore, the Safe Operating Area (SOA) of the SiC MOSFET is determined for 2L-VSI applications which are using sinusoidal PWM. Thus, by considering the heatsink thermal...

  6. Nanostructured and wide bandgap CdS:O thin films grown by reactive RF sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M. A.; Rahman, K. S.; Haque, F.; Rashid, M. J.; Akhtaruzzaman, M.; Sopian, K.; Sulaiman, Y. [Solar Energy Research Institute (SERI), National University of Malaysia, 43600 Bangi (Malaysia); Amin, N. [Solar Energy Research Institute (SERI), National University of Malaysia, 43600 Bangi (Malaysia); Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built Environment, National University of Malaysia, 43600 Bangi (Malaysia)

    2015-05-15

    In this study, CdS:O thin films were prepared from a 99.999% CdS target by reactive sputtering in a Ar:O{sub 2} (99:1) ambient with different RF power at room temperature. The deposited films were studied by means of XRD, SEM, EDX, Hall Effect and UV-Vis spectrometry. The incorporations of O{sub 2} into the films were observed to increase with the decrease of deposition power. The cryatallinity of the films were reduced, whereas the band gaps of the films were increased by the increase of O{sub 2} content on the films. The films were found in nano-structured grains with a compact surface. It has been seen that the highest carrier density is observed in the film with O{sub 2} at.% 21.10, while the values decreased with the further increase or decrease of O{sub 2} content on the films; indicating that specific amount of donor like O{sub 2} atoms substitute to the S atoms can improve the carrier density of the CdS:O thin film.

  7. Purification, Growth, Fabrication and Characterization of Wide Bandgap Materials for Gamma-Ray Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Arnold Burger, Ph.D.

    1999-04-30

    The objective of this project was to improve the performance and the fabrication of cadmium zinc telluride room temperature gamma ray detetors This paper outlines the necessity for controlled surface preparation and deposition of ohmic contacts.

  8. Electrochromic devices based on wide band-gap nanocrystalline semiconductors functionalized with mononuclear charge transfer compounds

    DEFF Research Database (Denmark)

    Biancardo, M.; Argazzi, R.; Bignozzi, C.A.

    2006-01-01

    A series of ruthenium and iron mononuclear complexes were prepared and their spectroeletrochemical behavior characterized oil Optically Transparent Thin Layer Electrodes (OTTLE) and on Fluorine Doped SnO2 (FTO) conductive glasses coated with Sb-doped nanocrystalline SnO2. These systems display...... a reversible electrochemical response and offer potential application in electrochromic devices. On SnO2 films distinct spectral changes are observed in a narrow potential range (-0.5/0.9 V vs SCE) with switching times of the order of 0.8 s. (c) 2005 Elsevier B.V. All rights reserved....

  9. Ultraviolet photoluminescence and Raman scattering of wide bandgap semiconductors and nanocrystallites

    Science.gov (United States)

    Chen, Xiang-Bai

    In the sports psychology literature, goal setting intervention studies have been a popular area of research the last ten years (Burton, 2001). Previous research demonstrates that goal setting is the most consistent and effective performance enhancement strategy in the behavioral sciences and seems to have a positive impact on performance (Burton et al., 2003; Locke & Latham, 1990). A "roadmap" detailing how to implement a periodized goal-setting program was developed, and its effectiveness was assessed using a quasi-experimental, multiple baseline case study design. Participants were six female members of a collegiate tennis team in the Northwest who ranged in age between 18--22 years. Several instruments were used to assess the effectiveness of the goal setting intervention, including: the Sports Motivation Scale (SMS), Task and Ego Orientation Sports Questionnaire (TEOSQ), Theories of Talent Scale (TOTS), Athletic Coping Skills Inventory (ACSI-28), Trait Sport Confidence Inventory (TSCI), and the Multidimensional Perfectionism Scale (MPS). All of these instruments have been documented to possess solid psychometric properties. Goal term length was periodized into three duration increments, including: long-term (macro), short-term (micro), and intermediate-term (meso) goals. Intervention effectiveness was assessed using both quantitative and qualitative analysis to assess self-confidence and performance. A review of qualitative data provided the strongest support for the generally large positive impact of goal-setting on athletes' self-confidence and performance. Every athlete reported that goal-setting was extremely helpful for increasing their understanding of the game, becoming more motivated to practice and compete, enhancing their self-confidence, focus and concentration, and boosting their performance. Overall, these results point out the effectiveness of goal-setting as a strategy to increase self-confidence and enhance performance, but they suggest that effective goal-setting programs nurture the process by spending significant individual time teaching athletes to set and adjust goals. (Abstract shortened by UMI.)

  10. High-Temperature Ferromagnetism in Transition Metal Implanted Wide-Bandgap Semiconductors

    Science.gov (United States)

    2005-07-01

    for which calculations were performed [100]. Uspenskii et al. also performed ab initio calculations concerning the energy-related preference of a DMS...xCrxO (x = 0.25) [100]. A-2 In the case of Cr-doped ZnO, Uspenskii et al. found the preferred mag- netic ordering to be ferromagnetic. In the case... Uspenskii et al. also reported a ground state preference for antiferro- magnetic ordering for the case of Zn0.875Mn0.125O [131]. Dietl et al. have

  11. Very-large-mode-area photonic bandgap Bragg fiber polarizing in a wide spectral range.

    Science.gov (United States)

    Aleshkina, Svetlana S; Likhachev, Mikhail E; Pryamikov, Andrey D; Gaponov, Dmitry A; Denisov, Alexandr N; Bubnov, Mikhail M; Salganskii, Mikhail Yu; Laptev, Alexandr Yu; Guryanov, Aleksei N; Uspenskii, Yurii A; Popov, Nikolay L; Février, Sébastien

    2011-09-15

    A design of a polarizing all-glass Bragg fiber with a microstructure core has been proposed for the first time. This design provides suppression of high-order modes and of one of the polarization states of the fundamental mode. The polarizing fiber was fabricated by a new, simple method based on a combination of the modified chemical vapor deposition (MCVD) process and the rod-in-tube technique. The mode field area has been found to be about 870 μm² near λ=1064 nm. The polarization extinction ratio better than 13 dB has been observed over a 33% wavelength range (from 1 to 1.4 μm) after propagation in a 1.7 m fiber piece bent to a radius of 70 cm.

  12. Tailoring the optical properties of wide-bandgap based microcavities via metal films

    Energy Technology Data Exchange (ETDEWEB)

    Sebald, K., E-mail: ksebald@ifp.uni-bremen.de; Rahman, SK. S.; Cornelius, M.; Gutowski, J. [Semiconductor Optics, Institute of Solid State Physics, University of Bremen, 28334 Bremen (Germany); Klein, T.; Klembt, S.; Kruse, C.; Hommel, D. [Semiconductor Epitaxy, Institute of Solid State Physics, University of Bremen, 28334 Bremen (Germany)

    2015-08-10

    We report on the tuning of the optical properties of II-VI-material-based microcavity samples, which is achieved by depositing Ag films on top of the structures. The micro-reflectivity spectra show a spectral shift of the sample resonance dependent on the metal layer thickness. By comparison of the experimental findings with the theoretical calculations applying the transfer matrix method on a metal-dielectric mirror structure, the influence of the metal layer particularly with regard to its partial oxidation was explored. Tamm plasmon modes are created at the interface between an open cavity with three ZnSe quantum wells and a metal layer on top. When tuning the excitonic emission relative to the mode by changing the sample temperature, an anticrossing of the resonances was observed. This is a clear indication that the strong coupling regime has been achieved in that sample configuration yielding a Rabi splitting of 18.5 meV. These results are promising for the realization of polariton-based optical devices with a rather simple sample configuration.

  13. A contribution to the development of wide band-gap nonlinear optical laser materials

    Science.gov (United States)

    Stone-Sundberg, Jennifer Leigh

    The primary focus of this work is on examining structure-property relationships of interest for high-power nonlinear optical and laser crystals. An intuitive and simply illustrated method for assessing the nonlinear optical potential of structurally characterized noncentrosymmetric materials is introduced. This method is applied to materials including common quartz and tourmaline and then extended to synthetic materials including borates, silicates, aluminates, and phosphates. Particularly, the contributions of symmetric tetrahedral and triangular anionic groups are inspected. It is shown that both types of groups significantly contribute to the optical frequency converting abilities of noncentrosymmetric crystals. In this study, several known materials are included as well as several new materials. The roles of the orientation, composition, and packing density of these anionic groups are also discussed. The structures and optical properties of the known materials BPO 4, NaAlO2, LaCa4O(BO3)3, and tourmaline; the new compounds La0.8Y0.2Sc3 (BO3)4 and Ba2B10O 17; and the laser host Sr3Y0.75Yb0.25(BO 3)3 are described.

  14. X-ray diffuse scattering for evaluation of wide bandgap semiconductor nuclear radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Goorsky, M.S. [University of Southern California, Los Angeles, CA (United States). Dept. of Mater. Sci. and Eng.; Yoon, H. [University of Southern California, Los Angeles, CA (United States). Dept. of Mater. Sci. and Eng.; Schieber, M. [Hebrew Univ., Jerusalem (Israel). Graduate Sch. of Appl. Sci.; James, R.B. [Sandia Nat. Labs., Livermore, CA (United States). Dept. 8347; McGregor, D.S. [Sandia Nat. Labs., Livermore, CA (United States). Dept. 8347; Natarajan, M. [TN Technol., Round Rock, TX (United States)

    1996-10-01

    The crystalline perfection of solid state radiation detectors was examined using triple axis x-ray diffraction. Triple axis techniques provide a means to analyze the origin of diffraction peak broadening: the effects of strain (due to deviations in alloy composition or stoichiometry) and lattice tilts (mosaic structure) can be separated. Cd{sub 1-x}Zn{sub x}Te (x{approx}0.1), HgI{sub 2}, and GaAs detector materials were studied. In the cases of Cd{sub 1-x}Zn{sub x}Te and HgI{sub 2} the crystalline properties of detectors with different spectral responses to {gamma}-radiation were determined. Increased mosaicity was universally found to be related to deteriorated detector properties. For Cd{sub 1-x}Zn{sub x}Te, detectors with poor performance possessed greater levels of diffuse scatter due to lattice tilts than did high quality detectors. For GaAs, low angle grain boundaries were attributed to impaired detector performance. Additionally, in large HgI{sub 2} detectors, deviations from stoichiometry were also related to reduced performance. Interestingly, HgI{sub 2} detectors which possessed a sharp spectral response to {gamma}-radiation but also showed polarization were of comparable crystallinity to those detectors which did not exhibit polarization effects. This initial analysis suggests that polarization is related to native point defects or chemical impurities which do not significantly alter the crystallinity of the material. Overall, within a given class of materials, improved detector performance (better spectral response) always correlated with better material quality. (orig.).

  15. High Efficiency Three-phase Power Factor Correction Rectifier using Wide Band-Gap Devices

    DEFF Research Database (Denmark)

    Kouchaki, Alireza

    2016-01-01

    . Therefore, current controllers are also important to be investigated in this project. In this PhD research work, a comprehensive design of a two-level three-phase PFC rectifier using silicon-carbide (SiC) switches to achieve high efficiency is presented. The work is divided into two main parts: 1) Optimum...

  16. Monte Carlo analysis of Gunn oscillations in narrow and wide band-gap asymmetric nanodiodes

    Science.gov (United States)

    González, T.; Iñiguez-de-la Torre, I.; Pardo, D.; Mateos, J.; Song, A. M.

    2009-11-01

    By means of Monte Carlo simulations we show the feasibility of asymmetric nonlinear planar nanodiodes for the development of Gunn oscillations. For channel lengths about 1 μm, oscillation frequencies around 100 GHz are predicted in InGaAs diodes, being significantly higher, around 400 GHz, in the case of GaN structures. The DC to AC conversion efficiency is found to be higher than 1% for the fundamental and second harmonic frequencies in GaN diodes.

  17. Overshoot mechanism in transient excitation of THz and Gunn oscillations in wide-bandgap semiconductors

    Science.gov (United States)

    Momox, Ernesto; Zakhleniuk, Nick; Balkan, Naci

    2012-11-01

    A detailed study of high-field transient and direct-current (DC) transport in GaN-based Gunn diode oscillators is carried out using the commercial simulator Sentaurus Device. Applicability of drift-diffusion (DD) and hydrodynamic (HD) models to high-speed, high-frequency devices is discussed in depth, and the results of the simulations from these models are compared. It is shown, for a highly homogeneous device based on a short (2 μm) supercritically doped (1017 cm-3) GaN specimen, that the DD model is unable to correctly take into account some essential physical effects which determine the operation mode of the device. At the same time, the HD model is ideally suited to solve such problems due to its ability to incorporate non-local effects. We show that the velocity overshoot near the device contacts and space charge injection and extraction play a crucial role in defining the operation mode of highly homogeneous short diodes in both the transient regime and the voltage-controlled oscillation regime. The transient conduction current responses are fundamentally different in the DD and HD models. The DD current simply repeats the velocity-field (v-F) characteristics, and the sample remains in a completely homogeneous state. In the HD model, the transient current pulse with a full width at half maximum of approximately 0.2 ps is increased about twofold due to the carrier injection (extraction) into (from) the active region and the velocity overshoot. The electron gas is characterized by highly inhomogeneous distributions of the carrier density, the electric field and the electron temperature. The simulation of the DC steady states of the diodes also shows very different results for the two models. The HD model shows the trapped stable anodic domain in the device, while the DD model completely retains all features of the v-F characteristics in a homogeneous gas. Simulation of the voltage-controlled oscillator shows that it operates in the accumulation layer mode generating microwave signals at 0.3 to 0.7 THz. In spite of the fact that the known criterion of a Gunn domain mode n 0 L > ( n 0 L)0 was satisfied, no Gunn domains were observed. The explanation of this phenomenon is given.

  18. ZnO - Wide Bandgap Semiconductor and Possibilities of Its Application in Optical Waveguide Structures

    Directory of Open Access Journals (Sweden)

    Struk Przemysław

    2014-08-01

    Full Text Available The paper presents the results of investigations concerning the application of zinc oxide - a wideband gap semiconductor in optical planar waveguide structures. ZnO is a promising semiconducting material thanks to its attractive optical properties. The investigations were focused on the determination of the technology of depositions and the annealing of ZnO layers concerning their optical properties. Special attention was paid to the determination of characteristics of the refractive index of ZnO layers and their coefficients of spectral transmission within the UV-VIS-NIR range. Besides that, also the mode characteristics and the attenuation coefficients of light in the obtained waveguide structures have been investigated. In the case of planar waveguides, in which the ZnO layers have not been annealed after their deposition, the values of the attenuation coefficient of light modes amount to a~ 30 dB/cm. The ZnO layers deposited on the heated substrate and annealed by rapid thermal annealing in an N2 and O2 atmosphere, are characterized by much lower values of the attenuation coefficients: a~ 3 dB/cm (TE0 and TM0 modes. The ZnO optical waveguides obtained according to our technology are characterized by the lowest values of the attenuation coefficients a encountered in world literature concerning the problem of optical waveguides based on ZnO. Studies have shown that ZnO layers elaborated by us can be used in integrated optic systems, waveguides, optical modulators and light sources.

  19. ZnO - Wide Bandgap Semiconductor and Possibilities of Its Application in Optical Waveguide Structures

    OpenAIRE

    Struk Przemysław; Pustelny Tadeusz; Gołaszewska Krystyna; A. Borysiewicz Michał; Kamińska Eliana; Wojciechowski Tomasz; Piotrowska Anna

    2014-01-01

    The paper presents the results of investigations concerning the application of zinc oxide - a wideband gap semiconductor in optical planar waveguide structures. ZnO is a promising semiconducting material thanks to its attractive optical properties. The investigations were focused on the determination of the technology of depositions and the annealing of ZnO layers concerning their optical properties. Special attention was paid to the determination of characteristics of the refractive index of...

  20. Defect-induced bandgap narrowing in low-k dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Guo, X.; Zheng, H.; Shohet, J. L. [Plasma Processing & Technology Laboratory and Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); King, S. W. [Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States); Afanas' ev, V. V. [Department of Physics, University of Leuven, B-3001 Leuven (Belgium); Baklanov, M. R.; Marneffe, J.-F. de [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Nishi, Y. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2015-08-24

    In this work, core-level X-ray photoelectron spectroscopy was utilized to determine the surface bandgap for various porous and non-porous low-k a-SiCOH dielectrics before and after ion sputtering. By examining the onset of inelastic energy loss in O 1s core-level spectra, the gap narrowing was universally found in Ar{sup +} ion sputtered low-k dielectrics. The reduction of the bandgap ranges from 1.3 to 2.2 eV depending on the film composition. We show that the bandgap narrowing in these low-k dielectrics is caused by development of the valence-band tail as evidenced by the presence of additional electronic states above the valence-band maximum. Electron-spin-resonance measurements were made on a-SiCOH films to gain atomic insight into the nature of the sputtering-induced defects and reveal formation of carbon-related defects as the most probable origin of the gap states.

  1. Hollow multilayer photonic bandgap fibers for NIR applications

    Science.gov (United States)

    Kuriki, Ken; Shapira, Ofer; Hart, Shandon D.; Benoit, Gilles; Kuriki, Yuka; Viens, Jean F.; Bayindir, Mehmet; Joannopoulos, John D.; Fink, Yoel

    2004-04-01

    Here we report the fabrication of hollow-core cylindrical photonic bandgap fibers with fundamental photonic bandgaps at near-infrared wavelengths, from 0.85 to 2.28 μm. In these fibers the photonic bandgaps are created by an all-solid multilayer composite meso-structure having a photonic crystal lattice period as small as 260 nm, individual layers below 75 nm and as many as 35 periods. These represent, to the best of our knowledge, the smallest period lengths and highest period counts reported to date for hollow PBG fibers. The fibers are drawn from a multilayer preform into extended lengths of fiber. Light is guided in the fibers through a large hollow core that is lined with an interior omnidirectional dielectric mirror. We extend the range of materials that can be used in these fibers to include poly(ether imide) (PEI) in addition to the arsenic triselenide (As2Se3) glass and poly(ether sulfone) (PES) that have been used previously. Further, we characterize the refractive indices of these materials over a broad wavelength range (0.25 - 15 μm) and incorporated the measured optical properties into calculations of the fiber photonic band structure and a preliminary loss analysis.

  2. Bandgap tunability at single-layer molybdenum disulphide grain boundaries

    KAUST Repository

    Huang, Yu Li

    2015-02-17

    Two-dimensional transition metal dichalcogenides have emerged as a new class of semiconductor materials with novel electronic and optical properties of interest to future nanoelectronics technology. Single-layer molybdenum disulphide, which represents a prototype two-dimensional transition metal dichalcogenide, has an electronic bandgap that increases with decreasing layer thickness. Using high-resolution scanning tunnelling microscopy and spectroscopy, we measure the apparent quasiparticle energy gap to be 2.40±0.05 eV for single-layer, 2.10±0.05 eV for bilayer and 1.75±0.05 eV for trilayer molybdenum disulphide, which were directly grown on a graphite substrate by chemical vapour deposition method. More interestingly, we report an unexpected bandgap tunability (as large as 0.85±0.05 eV) with distance from the grain boundary in single-layer molybdenum disulphide, which also depends on the grain misorientation angle. This work opens up new possibilities for flexible electronic and optoelectronic devices with tunable bandgaps that utilize both the control of two-dimensional layer thickness and the grain boundary engineering.

  3. Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes

    Science.gov (United States)

    Lee, Jhinhwan; Kim, H.; Kahng, S.-J.; Kim, G.; Son, Y.-W.; Ihm, J.; Kato, H.; Wang, Z. W.; Okazaki, T.; Shinohara, H.; Kuk, Young

    2002-02-01

    Motivated by the technical and economic difficulties in further miniaturizing silicon-based transistors with the present fabrication technologies, there is a strong effort to develop alternative electronic devices, based, for example, on single molecules. Recently, carbon nanotubes have been successfully used for nanometre-sized devices such as diodes, transistors, and random access memory cells. Such nanotube devices are usually very long compared to silicon-based transistors. Here we report a method for dividing a semiconductor nanotube into multiple quantum dots with lengths of about 10nm by inserting Gd@C82 endohedral fullerenes. The spatial modulation of the nanotube electronic bandgap is observed with a low-temperature scanning tunnelling microscope. We find that a bandgap of ~0.5eV is narrowed down to ~0.1eV at sites where endohedral metallofullerenes are inserted. This change in bandgap can be explained by local elastic strain and charge transfer at metallofullerene sites. This technique for fabricating an array of quantum dots could be used for nano-electronics and nano-optoelectronics.

  4. Structure and optical bandgap relationship of π-conjugated systems.

    Science.gov (United States)

    Botelho, André Leitão; Shin, Yongwoo; Liu, Jiakai; Lin, Xi

    2014-01-01

    In bulk heterojunction photovoltaic systems both the open-circuit voltage as well as the short-circuit current, and hence the power conversion efficiency, are dependent on the optical bandgap of the electron-donor material. While first-principles methods are computationally intensive, simpler model Hamiltonian approaches typically suffer from one or more flaws: inability to optimize the geometries for their own input; absence of general, transferable parameters; and poor performance for non-planar systems. We introduce a set of new and revised parameters for the adapted Su-Schrieffer-Heeger (aSSH) Hamiltonian, which is capable of optimizing geometries, along with rules for applying them to any [Formula: see text]-conjugated system containing C, N, O, or S, including non-planar systems. The predicted optical bandgaps show excellent agreement to UV-vis spectroscopy data points from literature, with a coefficient of determination [Formula: see text], a mean error of -0.05 eV, and a mean absolute deviation of 0.16 eV. We use the model to gain insights from PEDOT, fused thiophene polymers, poly-isothianaphthene, copolymers, and pentacene as sources of design rules in the search for low bandgap materials. Using the model as an in-silico design tool, a copolymer of benzodithiophenes along with a small-molecule derivative of pentacene are proposed as optimal donor materials for organic photovoltaics.

  5. Structure and optical bandgap relationship of π-conjugated systems.

    Directory of Open Access Journals (Sweden)

    André Leitão Botelho

    Full Text Available In bulk heterojunction photovoltaic systems both the open-circuit voltage as well as the short-circuit current, and hence the power conversion efficiency, are dependent on the optical bandgap of the electron-donor material. While first-principles methods are computationally intensive, simpler model Hamiltonian approaches typically suffer from one or more flaws: inability to optimize the geometries for their own input; absence of general, transferable parameters; and poor performance for non-planar systems. We introduce a set of new and revised parameters for the adapted Su-Schrieffer-Heeger (aSSH Hamiltonian, which is capable of optimizing geometries, along with rules for applying them to any [Formula: see text]-conjugated system containing C, N, O, or S, including non-planar systems. The predicted optical bandgaps show excellent agreement to UV-vis spectroscopy data points from literature, with a coefficient of determination [Formula: see text], a mean error of -0.05 eV, and a mean absolute deviation of 0.16 eV. We use the model to gain insights from PEDOT, fused thiophene polymers, poly-isothianaphthene, copolymers, and pentacene as sources of design rules in the search for low bandgap materials. Using the model as an in-silico design tool, a copolymer of benzodithiophenes along with a small-molecule derivative of pentacene are proposed as optimal donor materials for organic photovoltaics.

  6. High PSRR bandgap reference used in boost circuit

    Science.gov (United States)

    Li, Yi; Duan, Baoxing; Wang, Yong; Yang, Yintang

    2017-03-01

    Based on pre-regulated voltage structure, a voltage bandgap reference with high power supply rejection ratio (PSRR) is presented in this paper. A pre-regulated voltage structure is used in the circuit to achieve isolating the supply voltage of the bandgap core circuit from VDD to reach a high PSRR. The circuit was designed and simulated in 0.35um BCD technology. The results show the output voltage variation versus temperature (-50°C -100°C) is 8.8 ppm/°C, bandgap reference voltage is 1.236V, current consumption is 30.3 µA. Noise is 53.54 µV/Hz-1/2 at 1Hz. PSRR is -91dB at low frequency, -90.3dB at 1 kHz and -30.3dB at 1MHz. thus, the circuit maintains a good performance in PSRR through a broad frequency.

  7. Influence of transition metal doping (X  =  Mn, Fe, Co, Ni) on the structure and bandgap of ferroelectric Bi3.15Nd0.85Ti2X1O12

    Science.gov (United States)

    Chen, Xiaoqin; Huang, Feng; Lu, Zhangwu; Xue, Yun; Min, Jingjing; Li, Jihui; Xiao, Jun; Yang, Fujun; Zeng, Xiangbin

    2017-03-01

    Although the internal field can effectively maintain the separation between photo-excited charge carriers, the wide bandgap restrains ferroelectric materials from visible light absorption. This study examined the effects of transition metal (TM) Mn, Fe, Co or Ni doping on the structure and bandgap of Bi3.15Nd0.85Ti3O12 (BNdT) prepared by the molten salt synthesis method. No other non-bismuth layered structure phases were introduced. Mn, Co or Ni doping does not change the three-layered perovskite structure of BNdT while Fe doping increases the layer number from three to four. The doping of TM ions decreases the bandgap obviously. Among them, Mn-doped BNdT shows the largest bandgap reduction by ~1.6 eV. The narrowed bandgap was discussed to be attributed to the electronegativity of TM ions and the lattice distortion induced by doping together. The present work provides an available way to control the bandgap of complex oxide materials and provides a new tool for manipulating oxide optoelectronics.

  8. Superior Current Carrying Capacity of Boron Nitride Encapsulated Carbon Nanotubes with Zero-Dimensional Contacts.

    Science.gov (United States)

    Huang, Jhao-Wun; Pan, Cheng; Tran, Son; Cheng, Bin; Watanabe, Kenji; Taniguchi, Takashi; Lau, Chun Ning; Bockrath, Marc

    2015-10-14

    We report fabrication and characterization of hexagonal boron nitride (hBN)-encapsulated carbon nanotube (CNT) field effect transistors, which are coupled to electrical leads via zero-dimensional contacts. Device quality is attested by the ohmic contacts and observation of Coulomb blockade with a single periodicity in small bandgap semiconducing nanotubes. Surprisingly, hBN-encapsulated CNT devices demonstrate significantly enhanced current carrying capacity; a single-walled CNT can sustain >180 μA current or, equivalently, a current density of ∼2 × 10(10) A/cm(2), which is a factor of 6-7 higher than devices supported on SiO2 substrates. Such dramatic enhancement of current carrying capacity arises from the high thermal conductivity of hBN and lower hBN-CNT interfacial thermal resistance and has implications for carbon electronic applications.

  9. Free-Standing Self-Assemblies of Gallium Nitride Nanoparticles: A Review

    Directory of Open Access Journals (Sweden)

    Yucheng Lan

    2016-08-01

    Full Text Available Gallium nitride (GaN is an III-V semiconductor with a direct band-gap of 3 . 4 e V . GaN has important potentials in white light-emitting diodes, blue lasers, and field effect transistors because of its super thermal stability and excellent optical properties, playing main roles in future lighting to reduce energy cost and sensors to resist radiations. GaN nanomaterials inherit bulk properties of the compound while possess novel photoelectric properties of nanomaterials. The review focuses on self-assemblies of GaN nanoparticles without templates, growth mechanisms of self-assemblies, and potential applications of the assembled nanostructures on renewable energy.

  10. Optimum temperature on corrosion resistance for plasma ion nitrided 316L stainless steel in sea water solution

    Science.gov (United States)

    Chong, Sang-Ok; Kim, Seong-Jong

    2017-01-01

    The aim of this research is to investigate the optimum plasma ion nitriding temperature on corrosion resistance in natural sea water for plasma ion nitrided 316L stainless steel. Plasma ion nitriding was conducted at different temperatures of 350, 400, 450, and 500 °C with a mixture of 75% of nitrogen and 25% of hydrogen during 10 h. In conclusion of anodic polarization test, a wide passive potential region and a high corrosion potential were observed at a plasma ion nitriding temperature of 450 °C. Moreover, relatively less damage depth and clean surface micrographs were observed at 450 °C as results of observation of three-dimensional (3D) microscope and scanning electron microscope (SEM) after polarization experiments. In addition, higher corrosion potential and lower corrosion current density were indicated at plasma ion nitrided samples than the value of untreated substrate after Tafel analysis. Hence, plasma ion nitrided at 450 °C in sea water solution represented optimum corrosion resistance among the all the plasma ion nitriding temperature parameters.

  11. Low temperature anodic bonding to silicon nitride

    DEFF Research Database (Denmark)

    Weichel, Steen; Reus, Roger De; Bouaidat, Salim;

    2000-01-01

    Low-temperature anodic bonding to stoichiometric silicon nitride surfaces has been performed in the temperature range from 3508C to 4008C. It is shown that the bonding is improved considerably if the nitride surfaces are either oxidized or exposed to an oxygen plasma prior to the bonding. Both bulk...

  12. Composite Reinforcement using Boron Nitride Nanotubes

    Science.gov (United States)

    2016-11-15

    ApprovedOMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for...nitride nanotubes change with the presence of atomic oxygen were also carried out. 15.  SUBJECT TERMS Nanotubes, Boron Nitride, Composites, Theoretical

  13. PECVD silicon nitride diaphragms for condenser microphones

    NARCIS (Netherlands)

    Scheeper, P.R.; Voorthuyzen, J.A.; Bergveld, P.

    1991-01-01

    The application of plasma-enhanced chemical vapour deposited (PECVD) silicon nitride as a diaphragm material for condenser microphones has been investigated. By means of adjusting the SiH4/NH3 gas-flow composition, silicon-rich silicon nitride films have been obtained with a relatively low tensile s

  14. Method of preparation of uranium nitride

    Science.gov (United States)

    Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

    2013-07-09

    Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

  15. Thermodynamics, kinetics and process control of nitriding

    DEFF Research Database (Denmark)

    Mittemeijer, Eric J.; Somers, Marcel A. J.

    1999-01-01

    , the nitriding result is determined largely by the kinetics of the process. The nitriding kinetics have been shown to be characterised by the occurring local near-equilibria and stationary states at surfaces and interfaces, and the diffusion coefficient of nitrogen in the various phases, for which new data have...

  16. Study of sub-bandgap states in polymer-fullerene solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Presselt, Martin; Herrmann, Felix; Seeland, Marco; Baerenklau, Maik; Engmann, Sebastian; Roesch, Roland; Shokhovets, Sviatoslav; Hoppe, Harald; Gobsch, Gerhard [Experimental Physics I, Institute of Physics and Institute of Micro- und Nanotechnologies, Ilmenau University of Technology (Germany); Beenken, Wichard J.D. [Theoretical Physics I, Institute of Physics, Ilmenau University of Technology (Germany)

    2010-07-01

    At present polymer-fullerene blends are widely used to build organic solar cells. The main contribution to their photocurrent originates from optical transitions between occupied states below the HOMO level and unoccupied states above the LUMO level of the polymer. In this work, we investigated the origin of states contributing to the optical absorption in the sub-bandgap spectral range and the resulting photocurrent in P3HT-PCBM bulk heterojunction solar cells. Photothermal deflection spectroscopy, temperature dependent external quantum efficiency, photoluminescence and electroluminescence as well as spectroscopic ellipsometry measurements have been carried out. Effects due to different P3HT-PCBM blending ratios and annealing temperatures have been studied. Two models are discussed to explain the experimental observations: optical transitions involving (a) disorder and/or defect related states, and (b) charge transfer complexes.

  17. Variability of bandgap and carrier mobility caused by edge defects in ultra-narrow graphene nanoribbons

    Science.gov (United States)

    Poljak, M.; Wang, K. L.; Suligoj, T.

    2015-06-01

    We report the results of multi-scale modeling of ultra-narrow graphene nanoribbons (GNRs) that combines atomistic non-equilibrium Green's function (NEGF) approach with semiclassical mobility modeling. The variability of the transport gap and carrier mobility caused by random edge defects is analyzed. We find that the variability increases as the GNR width is downscaled and that even the minimum variation of the total mobility reaches more than 100% compared to average mobility in edge-defected nanoribbons. It is shown that scattering by optical phonons exhibits significantly more variability than the acoustic, line-edge roughness and Coulomb scattering mechanisms. The simulation results demonstrate that sub-5 nm-wide nanoribbons offer no improvement over conventional bulk semiconductors, however, GNRs are comparable with sub-7 nm-thick silicon-on-insulator devices in terms of mobility-bandgap trade-off characteristics.

  18. Design of Photonic Bandgap Fibre with Novel Air-Hole Structure

    Institute of Scientific and Technical Information of China (English)

    LI Jing; ZHANG Wei-Gang; DU Jiang-Bing; WANG Zhi; LIU Yan-Ge; DONG Xiao-Yi

    2008-01-01

    We introduce PBGFs with the cladding made of our newly designed quasi-hexagonal air holes and demonstrate how it actually operates. This cladding structure is introduced for the first time to the best of our knowledge, and is realized by making use of the hydrofluoric acid's corrosive properties. The fibre corrosion can be accurately controlled, thus opening us the gate for the design and fabrication of new PBGFs with more complex and more efficient cladding structures. Numerical results and actual simulations indicate that PBGFs built with this cladding structure have improved bandgap properties and guiding bands as wide as 500nm have been theoretically reached. Using the same method, we have also been able to design two other types of PBGFs with improved cladding structure.

  19. Excitation dynamics of a low bandgap silicon-bridged dithiophene copolymer and its composites with fullerenes

    Science.gov (United States)

    Othonos, Andreas; Itskos, Grigorios; Neophytou, Marios; Choulis, Stelios A.

    2012-04-01

    We report on excitation dynamics in pristine and bulk heterojunction films of the low bandgap silicon-bridged dithiophene copolymer poly[(4,4'-bis(2-ethylhexyl)dithieno[3,2-b:2', 3'-d]silole)-2,6-diyl-alt-(4,7-bis(2-thienyl)-2,1,3-benzothiadiazole)-5,5'-diyl] with methanofullerene derivatives. The combination of ultrafast transient transmission and photoluminescence allows us to probe the relaxation of both exciton and polaron states in a relatively wide spectral and temporal range. Measurements reveal that the majority of excitations undergo ultrashort non-radiative relaxation while a small fraction of the photoexcited species decays slowly within hundreds of ps. In the blend films, significantly longer decays are observed suggesting the presence of long lived holes and/or charged-transfer type of excitons.

  20. Combinatorial Insights into Doping Control and Transport Properties of Zinc Tin Nitride

    Energy Technology Data Exchange (ETDEWEB)

    Fioretti, Angela N. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Colorado School of Mines, Golden, CO (United States); Zakutayev, Andriy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Moutinho, Helio [National Renewable Energy Lab. (NREL), Golden, CO (United States); Melamed, Celeste [Harvey Mudd College, Claremont, CA (United States); Perkins, John D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Norman, Andrew G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Al-Jassim, Mowafak [National Renewable Energy Lab. (NREL), Golden, CO (United States); Toberer, Eric S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Colorado School of Mines, Golden, CO (United States); Tamboli, Adele C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Colorado School of Mines, Golden, CO (United States)

    2015-09-21

    ZnSnN2 is an Earth-abundant semiconductor analogous to the III–nitrides with potential as a solar absorber due to its direct bandgap, steep absorption onset, and disorder-driven bandgap tunability. Despite these desirable properties, discrepancies in the fundamental bandgap and degenerate n-type carrier density have been prevalent issues in the limited amount of literature available on this material. We we use a combinatorial RF co-sputtering approach, we explored a growth-temperature-composition space for Zn1+xSn1-xN2 over the ranges 35–340 °C and 0.30–0.75 Zn/(Zn + Sn). In this way, we identified an optimal set of deposition parameters for obtaining as-deposited films with wurtzite crystal structure and carrier density as low as 1.8 × 1018 cm-3. Films grown at 230 °C with Zn/(Zn + Sn) = 0.60 were found to have the largest grain size overall (70 nm diameter on average) while also exhibiting low carrier density (3 × 1018 cm-3) and high mobility (8.3 cm2 V-1 s-1). Using this approach, we establish the direct bandgap of cation-disordered ZnSnN2 at 1.0 eV. Moreover, we report tunable carrier density as a function of cation composition, in which lower carrier density is observed for higher Zn content. Consequently, this relationship manifests as a Burstein–Moss shift widening the apparent bandgap as cation composition moves away from Zn-rich. Collectively, these findings provide important insight into the fundamental properties of the Zn–Sn–N material system and highlight the potential to utilize ZnSnN2 for photovoltaics.

  1. Facile fabrication of ordered mesoporous graphitic carbon nitride for RhB photocatalytic degradation

    Science.gov (United States)

    Luo, Lei; Zhang, Anfeng; Janik, Michael J.; Li, Keyan; Song, Chunshan; Guo, Xinwen

    2017-02-01

    Ordered mesoporous graphitic carbon nitrides were prepared by directly condensing the uniform mixtures of melamine and KIT-6. After removal of the KIT-6 sacrificial template, the carbon nitrides were characterized with TEM, N2 physical adsorption, XRD, FT-IR, XPS, UV-vis and PL spectrometries, and tested for their RhB photocatalytic degradation activity. Together, these characterizations confirmed the as-prepared tunable mesoporous materials with enhanced charge separation efficiency and superior photocatalytic performance. Compared with a conventional bulk g-C3N4, ordered mesoporous g-C3N4 exhibits a larger specific surface area of 279.3 m2/g and a pore size distribution about 4.0 nm and 13.0 nm. Meanwhile, the reduced bandgap energy of 2.77 eV and lower photogenerated electron-hole pair recombination frequency were evidenced by UV-Vis and PL spectra. The RhB photocatalytic degradation activity maximizes with a mass ratio of KIT-6/melamine of 80% (KCN80), and the kinetic constant reaches 0.0760 min-1 which is 16 times higher than that of the bulk sample. Reusability of KCN80 was demonstrated by a lack of evident deactivation after three consecutive reaction periods. The direct condensation of the KIT-6 and melamine mixture does not require pre-casting of the precursor into the pore system of the templates. Owing to its high product yield, improved SBET, reduced bandgap energy and limited charge recombination, the facile-prepared ordered mesoporous g-C3N4 is a practical candidate for further modification.

  2. Cathodic Cage Plasma Nitriding: An Innovative Technique

    Directory of Open Access Journals (Sweden)

    R. R. M. de Sousa

    2012-01-01

    Full Text Available Cylindrical samples of AISI 1020, AISI 316, and AISI 420 steels, with different heights, were simultaneously treated by a new technique of ionic nitriding, entitled cathodic cage plasma nitriding (CCPN, in order to evaluate the efficiency of this technique to produce nitrided layers with better properties compared with those obtained using conventional ionic nitriding technique. This method is able to eliminate the edge effect in the samples, promoting a better uniformity of temperature, and consequently, a smaller variation of the thickness/height relation can be obtained. The compound layers were characterized by X-ray diffraction, optical microscopy, and microhardness test profile. The results were compared with the properties of samples obtained with the conventional nitriding, for the three steel types. It was verified that samples treated by CCPN process presented, at the same temperature, a better uniformity in the thickness and absence of the edge effect.

  3. Luminescence in Conjugated Molecular Materials under Sub-bandgap Excitation

    Energy Technology Data Exchange (ETDEWEB)

    So, Franky [University of Florida

    2014-05-08

    Light emission in semiconductors occurs when they are under optical and electrical excitation with energy larger than the bandgap energy. In some low-dimensional semiconductor heterostructure systems, this thermodynamic limit can be violated due to radiative Auger recombination (AR), a process in which the sub-bandgap energy released from a recombined electron-hole pair is transferred to a third particle leading to radiative band-to-band recombination.1 Thus far, photoluminescence up-conversion phenomenon has been observed in some low dimensional semiconductor systems, and the effect is very weak and it can only be observed at low temperatures. Recently, we discovered that efficient electroluminescence in poly[2-methoxy-5-(2’-ethylhexyloxy)-1, phenylenevinylene] (MEH-PPV) polymer light-emitting devices (PLEDs) at drive voltages below its bandgap voltage could be observed when a ZnO nanoparticles (NPs) electron injection layer was inserted between the polymer and the aluminum electrode. Specifically, emitted photons with energy of 2.13 eV can be detected at operating voltages as low as 1.2 V at room temperature. Based on these data, we propose that the sub-bandgap turn-on in the MEH-PPV device is due to an Auger-assisted energy up-conversion process. The significance of this discovery is three-fold. First, radiative recombination occurs at operating voltages below the thermodynamic bandgap voltage. This process can significantly reduce the device operating voltage. For example, the current density of the device with the ZnO NC layer is almost two orders of magnitude higher than that of the device without the NC layer. Second, a reactive metal is no longer needed for the cathode. Third, this electroluminescence up-conversion process can be applied to inorganic semiconductors systems as well and their operation voltages of inorganic LEDs can be reduced to about half of the bandgap energy. Based on our initial data, we propose that the sub-bandgap turn-on in MEH

  4. Hard carbon nitride and method for preparing same

    Science.gov (United States)

    Haller, E.E.; Cohen, M.L.; Hansen, W.L.

    1992-05-05

    Novel crystalline [alpha](silicon nitride-like)-carbon nitride and [beta](silicon nitride-like)-carbon nitride are formed by sputtering carbon in the presence of a nitrogen atmosphere onto a single crystal germanium or silicon, respectively, substrate. 1 figure.

  5. Molten-Salt-Based Growth of Group III Nitrides

    Science.gov (United States)

    Waldrip, Karen E.; Tsao, Jeffrey Y.; Kerley, Thomas M.

    2008-10-14

    A method for growing Group III nitride materials using a molten halide salt as a solvent to solubilize the Group-III ions and nitride ions that react to form the Group III nitride material. The concentration of at least one of the nitride ion or Group III cation is determined by electrochemical generation of the ions.

  6. Solvothermal synthesis: a new route for preparing nitrides

    CERN Document Server

    Demazeau, G; Denis, A; Largeteau, A

    2002-01-01

    Solvothermal synthesis appears to be an interesting route for preparing nitrides such as gallium nitride and aluminium nitride, using ammonia as solvent. A nitriding additive is used to perform the reaction and, in the case of gallium nitride, is encapsulated by melt gallium. The syntheses are performed in the temperature range 400-800 deg. C and in the pressure range 100-200 MPa. The synthesized powders are characterized by x-ray diffraction and scanning electron microscopy. Finely divided gallium nitride GaN and aluminium nitride AlN, both with wurtzite-type structure, can be obtained by this route.

  7. Growth and fabrication of gallium nitride and indium gallium nitride-based optoelectronic devices

    Science.gov (United States)

    Berkman, Erkan Acar

    In this study, heteroepitaxial growth of III-Nitrides was performed by metalorganic chemical vapor deposition (MOCVD) technique on (0001) Al 2O3 substrates to develop GaN and InxGa1-x N based optoelectronic devices. Comprehensive experimental studies on emission and relaxation mechanisms of InxGa1-xN quantum wells (QWs) and InxGa 1-xN single layers were performed. The grown films were characterized by x-ray diffraction (XRD), Hall Effect measurements, photoluminescence measurements (PL) and transmission electron microscopy (TEM). An investigation on the effect of number and width of QWs on PL emission properties of InxGa 1-xN single QWs and multi-quantum wells (MQW) was conducted. The experimental results were explained by the developed theoretical bandgap model. The study on the single layer InxGa1-xN films within and beyond critical layer thickness (CLT) demonstrated that thick InxGa 1-xN films display simultaneous presence of strained and (partially) relaxed layers. The In incorporation into the lattice was observed to be dependent on the strain state of the film. The findings on InxGa1-xN QWs and single layers were implemented in the development of InxGa1-xN based LEDs and photodiodes, respectively. The as-grown samples were fabricated using conventional lithography techniques into various optoelectronic devices including long wavelength LEDs, dichromatic monolithic white LEDs, and p-i-n photodiodes. Emission from InxGa1-xN/GaN MQW LEDs at wavelengths as long as 625nm was demonstrated. This is one of the longest peak emission wavelengths reported for MOCVD grown InxGa1-xN MQW structures. Dichromatic white emission in LEDs was realized by utilizing two InGaN MQW active regions emitting at complementary wavelengths. InGaN p-i-n photodiodes operating at various regions of the visible spectrum tailored by the i-layer properties were developed. This was achieved by the novel approach of employing InxGa1-xN in all layers of the p-i-n photodiodes, enabling nearly

  8. Silicon nitride at high growth rate using hot wire chemical vapor deposition

    NARCIS (Netherlands)

    Verlaan, V.

    2008-01-01

    Amorphous silicon nitride (SiNx) is a widely studied alloy with many commercial applications. This thesis describes the application of SiNx deposited at high deposition rate using hot wire chemical vapor deposition (HWCVD) for solar cells and thin film transistors (TFTs). The deposition process of H

  9. Modification of silicon nitride and silicon carbide surfaces for food and biosensor applications

    NARCIS (Netherlands)

    Rosso, M.

    2009-01-01

    Silicon-rich silicon nitride (SixN4, x > 3) is a robust insulating material widely used for the coating of microdevices: its high chemical and mechanical inertness make it a material of choice for the reinforcement of fragile microstructures (e.g. suspended microcantilevers, micro-fabricated memb

  10. Silicon nitride at high growth rate using hot wire chemical vapor deposition

    NARCIS (Netherlands)

    Verlaan, V.

    2008-01-01

    Amorphous silicon nitride (SiNx) is a widely studied alloy with many commercial applications. This thesis describes the application of SiNx deposited at high deposition rate using hot wire chemical vapor deposition (HWCVD) for solar cells and thin film transistors (TFTs). The deposition process of H

  11. Nano-ridge fabrication by local oxidation of silicon edges with silicon nitride as a mask

    NARCIS (Netherlands)

    Haneveld, Jeroen; Berenschot, Erwin; Maury, Pascale; Jansen, Henri

    2006-01-01

    A method to fabricate nano-ridges over a full wafer is presented. The fabrication method uses local oxidation of silicon, with silicon nitride as a mask, and wet anisotropic etching of silicon. The realized structures are 7–20 nm wide, 40–100 nm high and centimeters long. All dimensions are easily a

  12. Nano-ridge fabrication by local oxidation of silicon edges with silicon nitride as a mask

    NARCIS (Netherlands)

    Haneveld, Jeroen; Berenschot, Erwin; Maury, Pascale; Jansen, Henri

    2005-01-01

    A method to fabricate nano-ridges over a full wafer is presented. The fabrication method uses local oxidation of silicon, with silicon nitride as a mask, and wet anisotropic etching of silicon. The realized structures are 7-20 nm wide, 40-100 nm high and centimeters long. All dimensions are easily a

  13. Investigation of Ternary Transition-Metal Nitride Systems by Reactive Cosputtering

    NARCIS (Netherlands)

    Dover, R.B. Van; Hessen, B.; Werder, D.; Chen, C.-H.; Felder, R.J.

    1993-01-01

    A reactive dc cosputtering technique has been used to evaluate compound formation in bimetallic transition-metal nitride systems. A wide range in M-M’ composition can be studied in a single deposition run, and the method is applicable to nonalloying metal combinations. Using this technique, it was f

  14. Modification of silicon nitride and silicon carbide surfaces for food and biosensor applications

    NARCIS (Netherlands)

    Rosso, M.

    2009-01-01

    Silicon-rich silicon nitride (SixN4, x > 3) is a robust insulating material widely used for the coating of microdevices: its high chemical and mechanical inertness make it a material of choice for the reinforcement of fragile microstructures (e.g. suspended microcantilevers, micro-fabricated

  15. Nitride based quantum well light-emitting devices having improved current injection efficiency

    Science.gov (United States)

    Tansu, Nelson; Zhao, Hongping; Liu, Guangyu; Arif, Ronald

    2014-12-09

    A III-nitride based device provides improved current injection efficiency by reducing thermionic carrier escape at high current density. The device includes a quantum well active layer and a pair of multi-layer barrier layers arranged symmetrically about the active layer. Each multi-layer barrier layer includes an inner layer abutting the active layer; and an outer layer abutting the inner layer. The inner barrier layer has a bandgap greater than that of the outer barrier layer. Both the inner and the outer barrier layer have bandgaps greater than that of the active layer. InGaN may be employed in the active layer, AlInN, AlInGaN or AlGaN may be employed in the inner barrier layer, and GaN may be employed in the outer barrier layer. Preferably, the inner layer is thin relative to the other layers. In one embodiment the inner barrier and active layers are 15 .ANG. and 24 .ANG. thick, respectively.

  16. Gettering of interstitial iron in silicon by plasma-enhanced chemical vapour deposited silicon nitride films

    Science.gov (United States)

    Liu, A. Y.; Sun, C.; Markevich, V. P.; Peaker, A. R.; Murphy, J. D.; Macdonald, D.

    2016-11-01

    It is known that the interstitial iron concentration in silicon is reduced after annealing silicon wafers coated with plasma-enhanced chemical vapour deposited (PECVD) silicon nitride films. The underlying mechanism for the significant iron reduction has remained unclear and is investigated in this work. Secondary ion mass spectrometry (SIMS) depth profiling of iron is performed on annealed iron-contaminated single-crystalline silicon wafers passivated with PECVD silicon nitride films. SIMS measurements reveal a high concentration of iron uniformly distributed in the annealed silicon nitride films. This accumulation of iron in the silicon nitride film matches the interstitial iron loss in the silicon bulk. This finding conclusively shows that the interstitial iron is gettered by the silicon nitride films during annealing over a wide temperature range from 250 °C to 900 °C, via a segregation gettering effect. Further experimental evidence is presented to support this finding. Deep-level transient spectroscopy analysis shows that no new electrically active defects are formed in the silicon bulk after annealing iron-containing silicon with silicon nitride films, confirming that the interstitial iron loss is not due to a change in the chemical structure of iron related defects in the silicon bulk. In addition, once the annealed silicon nitride films are removed, subsequent high temperature processes do not result in any reappearance of iron. Finally, the experimentally measured iron decay kinetics are shown to agree with a model of iron diffusion to the surface gettering sites, indicating a diffusion-limited iron gettering process for temperatures below 700 °C. The gettering process is found to become reaction-limited at higher temperatures.

  17. Local resonance and Bragg bandgaps in sandwich beams containing periodically inserted resonators

    CERN Document Server

    Sharma, Bhisham

    2015-01-01

    We study the low frequency wave propagation behavior of sandwich beams containing periodically embedded internal resonators. A closed form expression for the propagation constant is obtained using a phased array approach and verified using finite element simulations. We show that local resonance and Bragg bandgaps coexist in such a system and that the width of both bandgaps is a function of resonator parameters as well as their periodicity. The interaction between the two bandgaps is studied by varying the local resonance frequency. We find that a single combined bandgap does not exist for this system and that the Bragg bandgaps transition into sub-wavelength bandgaps when the local resonance frequency is above their associated classical Bragg frequency.

  18. Bandgap renormalization and work function tuning in MoSe2/hBN/Ru(0001) heterostructures

    Science.gov (United States)

    Zhang, Qiang; Chen, Yuxuan; Zhang, Chendong; Pan, Chi-Ruei; Chou, Mei-Yin; Zeng, Changgan; Shih, Chih-Kang

    2016-12-01

    The van der Waals interaction in vertical heterostructures made of two-dimensional (2D) materials relaxes the requirement of lattice matching, therefore enabling great design flexibility to tailor novel 2D electronic systems. Here we report the successful growth of MoSe2 on single-layer hexagonal boron nitride (hBN) on the Ru(0001) substrate using molecular beam epitaxy. Using scanning tunnelling microscopy and spectroscopy, we found that the quasi-particle bandgap of MoSe2 on hBN/Ru is about 0.25 eV smaller than those on graphene or graphite substrates. We attribute this result to the strong interaction between hBN/Ru, which causes residual metallic screening from the substrate. In addition, the electronic structure and the work function of MoSe2 are modulated electrostatically with an amplitude of ~0.13 eV. Most interestingly, this electrostatic modulation is spatially in phase with the Moiré pattern of hBN on Ru(0001) whose surface also exhibits a work function modulation of the same amplitude.

  19. Quasi free-standing silicene in a superlattice with hexagonal boron nitride

    KAUST Repository

    Kaloni, T. P.

    2013-11-12

    We study a superlattice of silicene and hexagonal boron nitride by first principles calculations and demonstrate that the interaction between the layers of the superlattice is very small. As a consequence, quasi free-standing silicene is realized in this superlattice. In particular, the Dirac cone of silicene is preserved. Due to the wide band gap of hexagonal boron nitride, the superlattice realizes the characteristic physical phenomena of free-standing silicene. In particular, we address by model calculations the combined effect of the intrinsic spin-orbit coupling and an external electric field, which induces a transition from a semimetal to a topological insulator and further to a band insulator.

  20. Simulation Evidence of Hexagonal‐to‐Tetragonal ZnSe Structure Transition: A Monolayer Material with a Wide‐Range Tunable Direct Bandgap

    Science.gov (United States)

    Li, Lei; Li, Pengfei; Lu, Ning; Dai, Jun

    2015-01-01

    2D material with tunable direct bandgap in the intermediate region (i.e., ≈2–3 eV) is key to the achievement of high efficiency in visible‐light optical devices. Herein, a simulation evidence of structure transition of monolayer ZnSe from the experimental pseudohexagonal structure to the tetragonal structure (t‐ZnSe) under lateral pressure is shown, suggesting a possible fabrication route to achieve the t‐ZnSe monolayer. The as‐produced t‐ZnSe monolayer exhibits highly tunable bandgap under the biaxial strains, allowing strain engineering of t‐ZnSe's bandgap over a wide range of 2–3 eV. Importantly, even under the biaxial strain up to 7%, the t‐ZnSe monolayer still keeps its direct‐gap property in the desirable range of 2.40–3.17 eV (corresponding to wavelength of green light to ultraviolet). The wide‐range tunability of direct bandgap appears to be a unique property of the t‐ZnSe monolayer, suggesting its potential application as a light‐emitting 2D material in red–green–blue light emission diodes or as complementary light‐absorption material in the blue–yellow region for multijunction solar cells. The straddling of the band edge of the t‐ZnSe monolayer over the redox potential of water splitting reaction also points to its plausible application for visible‐light‐driven water splitting. PMID:27774379

  1. Graded-Bandgap Solar Cells Using All-Electrodeposited ZnS, CdS and CdTe Thin-Films

    Directory of Open Access Journals (Sweden)

    Obi K. Echendu

    2015-05-01

    Full Text Available A 3-layer graded-bandgap solar cell with glass/FTO/ZnS/CdS/CdTe/Au structure has been fabricated using all-electrodeposited ZnS, CdS and CdTe thin layers. The three semiconductor layers were electrodeposited using a two-electrode system for process simplification. The incorporation of a wide bandgap amorphous ZnS as a buffer/window layer to form glass/FTO/ZnS/CdS/CdTe/Au solar cell resulted in the formation of this 3-layer graded-bandgap device structure. This has yielded corresponding improvement in all the solar cell parameters resulting in a conversion efficiency >10% under AM1.5 illumination conditions at room temperature, compared to the 8.0% efficiency of a 2-layer glass/FTO/CdS/CdTe/Au reference solar cell structure. These results demonstrate the advantages of the multi-layer graded-bandgap device architecture over the conventional 2-layer structure. In addition, they demonstrate the effective application of the two-electrode system as a simplification to the conventional three-electrode system in the electrodeposition of semiconductors with the elimination of the reference electrode as a possible impurity source.

  2. Crystal structure and electronic properties of the new structure dinitride-nitride N{sub 2}MN (M: Cu, Ag)

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravlev, Yuriy [Physical Faculty, Department of General Physics, Kemerovo State University, Red st. 6, 650043 Kemerovo (Russian Federation); Lisitsyn, Viktor; Morozova, Yelena [Department of Lasers and Lighting Engineering, Institute of High Technology Physics, National Research Tomsk Polytechnic University, Lenin av. 30, 634030 Tomsk (Russian Federation)

    2012-11-15

    Copper and nitrogen compounds and silver and nitrogen compounds have been researched with the first-principle linear combination of the atomic orbitals in full-screen basis with the local gradient and hybrid potential of the density functional theory (DFT) realized in the CRYSTAL09 program code. We have found the structural N{sub 2}MN (M: Cu, Ag) dinitride-nitride phase having an orthorhombic structure, the spatial group of the Ibam symmetry and four formula units in the primitive cell that have not been reported before. The structure was found to be layered, the metal atoms are linearly circled by the nitride N atoms, whereas, the other two atoms make a molecule with a small negative charge of {proportional_to}0.02 e. The volume elastic modules in N{sub 2}CuN, N{sub 2}AgN crystals are equal to 4.3 and 6.6 GPa, respectively, and their pressure derivatives are equal to 6.7 and 5.3, respectively. The electron energy spectrum makes a superposition of weakly interacting molecular states of N{sub 2} and metal states of MN. The bandgap width equals {proportional_to}0.05 eV. The estimations of the enthalpy energies show that N{sub 2}MN possess large energy content and in its decomposition into metal and gaseous nitride the energy release can reach 8 eV cell{sup -1}, which appears to be higher than that in the known metal azides. Thus, the new structure of the dinitride-nitride N{sub 2}MN combines the properties of molecular and semiconductor crystals: high compressibility, strong mechanical anisotropy, localized vacant states in the zone spectrum, and small bandgap. The unique physical properties can ensure their application as energy materials, the source of chemically pure nitride, and in semiconductor and optical material science. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Process for the production of metal nitride sintered bodies and resultant silicon nitride and aluminum nitride sintered bodies

    Science.gov (United States)

    Yajima, S.; Omori, M.; Hayashi, J.; Kayano, H.; Hamano, M.

    1983-01-01

    A process for the manufacture of metal nitride sintered bodies, in particular, a process in which a mixture of metal nitrite powders is shaped and heated together with a binding agent is described. Of the metal nitrides Si3N4 and AIN were used especially frequently because of their excellent properties at high temperatures. The goal is to produce a process for metal nitride sintered bodies with high strength, high corrosion resistance, thermal shock resistance, thermal shock resistance, and avoidance of previously known faults.

  4. Maximizing bandgaps in two-dimensional photonic crystals a variational algorithm

    CERN Document Server

    Paul, P; Paul, Prabasaj; Ndi, Francis C.

    2002-01-01

    We present an algorithm for the maximization of photonic bandgaps in two-dimensional crystals. Once the translational symmetries of the underlying structure have been imposed, our algorithm finds a global maximal (and complete, if one exists) bandgap. Additionally, we prove two remarkable results related to maximal bandgaps: the so-called `maximum contrast' rule, and about the location in the Brillouin zone of band edges.

  5. Application of pressure to shift the bandgap in polystyrene-based photonic crystals

    Science.gov (United States)

    Johnson, Nigel P.; Khokhar, Ali Z.; McLachlan, Martyn A.; McComb, David W.; De La Rue, Richard M.

    2004-09-01

    We describe a simple technique for the selective area modification of the bandgap in planar 3-D photonic crystals (PhC). The PhCs are grown by controlled drying of monosized polystyrene spheres. Uniaxial pressure of 41 MPa can produce a shift in the bandgap of ~90 nm from 230 nm spheres. An unexpected broadening of the bandgap is attributed to the change in topology associated with large necks formed between spheres at pressures greater than 10 MPa.

  6. High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters

    Science.gov (United States)

    Wanlass, Mark W.

    2011-11-29

    A monolithic, multi-bandgap, tandem solar photovoltaic converter has at least one, and preferably at least two, subcells grown lattice-matched on a substrate with a bandgap in medium to high energy portions of the solar spectrum and at least one subcell grown lattice-mismatched to the substrate with a bandgap in the low energy portion of the solar spectrum, for example, about 1 eV.

  7. Research on the Cutting Performance of Cubic Boron Nitride Tools

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    There were only two kinds of superhard tool material at the past, i.e. diamond and cubic boron nitride (CBN). Manmade diamond and CBN are manufactured by the middle of 20th century. Various manufacturing methods and manmade superhard materials were developed later. They were widely used in different industry and science areas. Recently, a new kind of superhard tool material, C 3N 4 coating film, had been developed. American physical scientists, A. M. Liu and M. L. Cohen, designed a new kind of inorganic c...

  8. Synthesis of boron nitride nanotubes and their applications

    Directory of Open Access Journals (Sweden)

    Saban Kalay

    2015-01-01

    Full Text Available Boron nitride nanotubes (BNNTs have been increasingly investigated for use in a wide range of applications due to their unique physicochemical properties including high hydrophobicity, heat and electrical insulation, resistance to oxidation, and hydrogen storage capacity. They are also valued for their possible medical and biomedical applications including drug delivery, use in biomaterials, and neutron capture therapy. In this review, BNNT synthesis methods and the surface modification strategies are first discussed, and then their toxicity and application studies are summarized. Finally, a perspective for the future use of these novel materials is discussed.

  9. Hydrogenated dilute nitride semiconductors theory, properties, and applications

    CERN Document Server

    Ciatto, Gianluca

    2015-01-01

    ""The electrical and optical properties of the technologically and scientifically important dilute nitride semiconductors are strongly influenced by the introduction of atomic hydrogen. This volume is an excellent summary and resource for the most recent understanding of experimental results and state-of-the-art theoretical studies of the formation, reversibility, and microscopic structure of nitrogen-hydrogen complexes in these materials. The book details how a wide variety of experimental techniques have provided a detailed understanding of the role of hydrogen. It is the premier sourc

  10. Molecular dynamics of halogenated graphene - hexagonal boron nitride nanoribbons

    Science.gov (United States)

    Nemnes, G. A.; Visan, Camelia; Anghel, D. V.; Manolescu, A.

    2016-08-01

    The hybrid graphene - hexagonal boron nitride (G-hBN) systems offer new routes in the design of nanoscale electronic devices. Using ab initio density functional theory calculations we investigate the dynamics of zig-zag nanoribbons a few interatomic distances wide. Several structures are analyzed, namely pristine graphene, hBN and G-hBN systems. By passivating the nanoribbon edges with hydrogen and different halogen atoms, one may tune the electronic and mechanical properties, like the band gap energies and the natural frequencies of vibration.

  11. Method of synthesizing cubic system boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Yuzu, S.; Sumiya, H.; Degawa, J.

    1987-10-13

    A method is described for synthetically growing cubic system boron nitride crystals by using boron nitride sources, solvents for dissolving the boron nitride sources, and seed crystals under conditions of ultra-high pressure and high temperature for maintaining the cubic system boron nitride stable. The method comprises the following steps: preparing a synthesizing vessel having at least two chambers, arrayed in order in the synthesizing vessel so as to be heated according to a temperature gradient; placing the solvents having different eutectic temperatures in each chamber with respect to the boron nitride sources according to the temperature gradient; placing the boron nitride source in contact with a portion of each of the solvents heated at a relatively higher temperature and placing at least a seed crystal in a portion of each of the solvents heated at a relatively lower temperature; and growing at least one cubic system boron nitride crystal in each of the solvents in the chambers by heating the synthesizing vessel for establishing the temperature gradient while maintaining conditions of ultra-high pressure and high temperature.

  12. Exploring Direct to Indirect Bandgap Transition in Silicon Nanowires: Size Effect

    Science.gov (United States)

    Shi, Lihong; Zhang, Gang

    2016-10-01

    We have investigated the electronic band structure of [110] silicon nanowires (SiNWs) using first-principles calculations. We find that, in the ultrathin diameter regime, SiNWs have a direct bandgap, but the energy difference between the indirect and direct fundamental bandgaps decreases as the nanowire diameter increases. This indicates that larger [110] SiNWs could have an indirect bandgap. Fundamentally, a series of quantitative direct-indirect bandgap transitional diameters are obtained for different cross-sectional geometries, with the largest values for SiNWs with triangular cross section.

  13. Urbach's rule derived from thermal fluctuations in the band-gap energy

    DEFF Research Database (Denmark)

    Skettrup, Torben

    1978-01-01

    The exponential absorption edge (known as Urbach's rule) observed in most materials is interpreted in terms of thermal fluctuations in the band-gap energy. The main contribution to the temperature shift of the band-gap energy is due to the temperature-dependent self-energies of the electrons...... and holes interacting with the phonons. Since the phonon number is fluctuating in thermal equilibrium, the band-gap energy is also fluctuating resulting in an exponential absorption tail below the average band-gap energy. These simple considerations are applied to derive Urbach's rule at high temperatures...

  14. Physical and Tribological Properties of Nitrided AISI 316 Stainless Steel Balls

    Directory of Open Access Journals (Sweden)

    Yang Shicai

    2016-01-01

    Full Text Available AISI 316 austenitic stainless steel balls (diameters 5.0 and 12.0 mm, typical hardness 250 HV0.3 and flat samples (20×20×2.0 mm were nitrided by a pulsed glow discharge Ar/N2 plasma. Hardness of the ball surfaces was analysed using Vickers indentation. Thermal stability of the nitrided balls (diameter 12.0 mm was studied using a furnace to heat them in air for 8 hours at temperatures up to 700.0°C and then, after cooling to room temperature, the surface hardness of the heated balls was re-measured. Scanning electron microscopy and X-ray diffraction were used to study the microstructures, composition and phase formation of the nitrided sublayers. Unlubricated pin-on-disc wear testing was used to evaluate the wear resistance of nitrided stainless steel balls (5.0 mm diameter and the results were compared with similar testing on hardened Cr-Steel balls (5 mm diameter with hardness of about 650 HV0.3. All the test results indicated that the nitrided AISI 316 austenitic stainless steel balls have advantages over the hardened Cr-Steel balls in terms of retaining high hardness after heat treatment and high resistance to sliding wear at room temperature under higher counterpart stress. These properties are expected to be beneficial for wide range of bearing applications.

  15. Cell behavior on gallium nitride surfaces: peptide affinity attachment versus covalent functionalization.

    Science.gov (United States)

    Foster, Corey M; Collazo, Ramon; Sitar, Zlatko; Ivanisevic, Albena

    2013-07-02

    Gallium nitride is a wide band gap semiconductor that demonstrates a unique set of optical and electrical properties as well as aqueous stability and biocompatibility. This combination of properties makes gallium nitride a strong candidate for use in chemical and biological applications such as sensors and neural interfaces. Molecular modification can be used to enhance the functionality and properties of the gallium nitride surface. Here, gallium nitride surfaces were functionalized with a PC12 cell adhesion promoting peptide using covalent and affinity driven attachment methods. The covalent scheme proceeded by Grignard reaction and olefin metathesis while the affinity driven scheme utilized the recognition peptide isolated through phage display. This study shows that the method of attaching the adhesion peptide influences PC12 cell adhesion and differentiation as measured by cell density and morphological analysis. Covalent attachment promoted monolayer and dispersed cell adhesion while affinity driven attachment promoted multilayer cell agglomeration. Higher cell density was observed on surfaces modified using the recognition peptide. The results suggest that the covalent and affinity driven attachment methods are both suitable for promoting PC12 cell adhesion to the gallium nitride surface, though each method may be preferentially suited for distinct applications.

  16. High bandgap III-V alloys for high efficiency optoelectronics

    Science.gov (United States)

    Alberi, Kirstin; Mascarenhas, Angelo; Wanlass, Mark

    2017-01-10

    High bandgap alloys for high efficiency optoelectronics are disclosed. An exemplary optoelectronic device may include a substrate, at least one Al.sub.1-xIn.sub.xP layer, and a step-grade buffer between the substrate and at least one Al.sub.1-xIn.sub.xP layer. The buffer may begin with a layer that is substantially lattice matched to GaAs, and may then incrementally increase the lattice constant in each sequential layer until a predetermined lattice constant of Al.sub.1-xIn.sub.xP is reached.

  17. Soliton formation in hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2009-01-01

    of an approximate scaling relation is tested. It is concluded that compression of input pulses of several ps duration and sub-MW peak power can lead to a formation of solitons with ∼100 fs duration and multi-megawatt peak powers. The dispersion slope of realistic hollow-core fibers appears to be the main obstacle......The formation of solitons upon compression of linearly chirped pulses in hollow-core photonic bandgap fibers is investigated numerically. The dependence of soliton duration on the chirp and power of the input pulse and on the dispersion slope of the fiber is investigated, and the validity...

  18. Surface band-gap narrowing in quantized electron accumulation layers.

    Science.gov (United States)

    King, P D C; Veal, T D; McConville, C F; Zúñiga-Pérez, J; Muñoz-Sanjosé, V; Hopkinson, M; Rienks, E D L; Jensen, M Fuglsang; Hofmann, Ph

    2010-06-25

    An energy gap between the valence and the conduction band is the defining property of a semiconductor, and the gap size plays a crucial role in the design of semiconductor devices. We show that the presence of a two-dimensional electron gas near to the surface of a semiconductor can significantly alter the size of its band gap through many-body effects caused by its high electron density, resulting in a surface band gap that is much smaller than that in the bulk. Apart from reconciling a number of disparate previous experimental findings, the results suggest an entirely new route to spatially inhomogeneous band-gap engineering.

  19. Accurate modelling of fabricated hollow-core photonic bandgap fibers.

    Science.gov (United States)

    Fokoua, Eric Numkam; Sandoghchi, Seyed Reza; Chen, Yong; Jasion, Gregory T; Wheeler, Natalie V; Baddela, Naveen K; Hayes, John R; Petrovich, Marco N; Richardson, David J; Poletti, Francesco

    2015-09-07

    We report a novel approach to reconstruct the cross-sectional profile of fabricated hollow-core photonic bandgap fibers from scanning electron microscope images. Finite element simulations on the reconstructed geometries achieve a remarkable match with the measured transmission window, surface mode position and attenuation. The agreement between estimated scattering loss from surface roughness and measured loss values indicates that structural distortions, in particular the uneven distribution of glass across the thin silica struts on the core boundary, have a strong impact on the loss. This provides insight into the differences between idealized models and fabricated fibers, which could be key to further fiber loss reduction.

  20. Liquid-impermeable inverse opals with invariant photonic bandgap.

    Science.gov (United States)

    Kang, Hyelim; Lee, Joon-Seok; Chang, Won Seok; Kim, Shin-Hyun

    2015-02-18

    Omniphobic inverse opals are created by structurally and chemically modifying the surface of inverse opals through reactive ion etching. During the etching, void arrays of the inverse opal surface evolves to a triangular post array with re-entrant geometry. The elaborate structure can efficiently pin the air-liquid interface and retain air cavities against water and oil, thereby providing liquid-impermeable inverse opals with invariant photonic bandgap. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Optoelectronic devices based on graded bandgap structures utilising electroplated semiconductors

    OpenAIRE

    2016-01-01

    The main aim of the work presented in this thesis is to develop low-cost multi-junction graded bandgap solar cells using electroplated semiconductors. The semiconductor materials explored in this research are CdSe, ZnTe, CdS, CdMnTe and CdTe thin films. These layers were characterised for their structural, compositional, morphological, optical, and electrical features using XRD, Raman spectroscopy, EDX, SEM, UV-Vis spectroscopy, PEC cell, C-V, I-V and UPS measurement techniques respectively. ...

  2. High bandgap III-V alloys for high efficiency optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Alberi, Kirstin; Mascarenhas, Angelo; Wanlass, Mark

    2017-01-10

    High bandgap alloys for high efficiency optoelectronics are disclosed. An exemplary optoelectronic device may include a substrate, at least one Al.sub.1-xIn.sub.xP layer, and a step-grade buffer between the substrate and at least one Al.sub.1-xIn.sub.xP layer. The buffer may begin with a layer that is substantially lattice matched to GaAs, and may then incrementally increase the lattice constant in each sequential layer until a predetermined lattice constant of Al.sub.1-xIn.sub.xP is reached.

  3. Waveguidance by the photonic bandgap effect in optical fibres

    DEFF Research Database (Denmark)

    Broeng, Jes; Søndergaard, Thomas; Barkou, Stig Eigil;

    1999-01-01

    Photonic crystals form a new class of intriguing building blocks to be utilized in future optoelectronics and electromagnetics. One of the most exciting possiblilties offered by phtonic crystals is the realization of new types of electromagnetic waveguides. In the optical domain, the most mature...... technology for such photonic bandgap (PBG) waveguides is in optical fibre configurations. These new fibres can be classified in a fundamentally different way to all optical waveguides and possess radically different guiding properties due to PBG guidance, as opposed to guidance by total internal refelction...

  4. Friction Characteristics of Nitrided Layers on AISI 430 Ferritic Stainless Steel Obtained by Various Nitriding Processes

    Directory of Open Access Journals (Sweden)

    Hakan AYDIN

    2013-03-01

    Full Text Available The influence of plasma, gas and salt-bath nitriding techniques on the friction coefficient of AISI 430 ferritic stainless steel was studied in this paper. Samples were plasma nitrided in 80 % N2 + 20 % H2 atmosphere at 450 °C and 520 °C for 8 h at a pressure of 2 mbar, gas nitrided in NH3 and CO2 atmosphere at 570 °C for 13 h and salt-bath nitrided in a cyanide-cyanate salt-bath at 570 °C for 1.5 h. Characterisation of nitrided layers on the ferritic stainless steel was carried out by means of microstructure, microhardness, surface roughness and friction coefficient measurements. Friction characteristics of the nitrided layers on the 430 steel were investigated using a ball-on-disc friction-wear tester with a WC-Co ball as the counter-body under dry sliding conditions. Analysis of wear tracks was carried out by scanning electron microscopy. Maximum hardness and maximum case depth were achieved on the plasma nitrided sample at 520 ºC for 8 h. The plasma and salt-bath nitriding techniques significantly decreased the average surface roughness of the 430 ferritic stainless steel. The friction test results showed that the salt-bath nitrided layer had better friction-reducing ability than the other nitrided layers under dry sliding conditions. Furthermore, the friction characteristic of the plasma nitrided layer at 520 ºC was better than that of the plasma nitrided layer at 450 °C.DOI: http://dx.doi.org/10.5755/j01.ms.19.1.3819

  5. Residual Stress Induced by Nitriding and Nitrocarburizing

    DEFF Research Database (Denmark)

    Somers, Marcel A.J.

    2005-01-01

    The present chapter is devoted to the various mechanisms involved in the buildup and relief of residual stress in nitrided and nitrocarburized cases. The work presented is an overview of model studies on iron and iron-based alloys. Subdivision is made between the compound (or white) layer......, developing at the surfce and consisting of iron-based (carbo)nitrides, and the diffusion zone underneath, consisting of iron and alloying element nitrides dispersed in af ferritic matrix. Microstructural features are related directly to the origins of stress buildup and stres relief....

  6. Plasma Nitriding of Low Alloy Sintered Steels

    Institute of Scientific and Technical Information of China (English)

    Shiva Mansoorzadeh; Fakhreddin Ashrafizadeh; Xiao-Ying Li; Tom Bell

    2004-01-01

    Fe-3Cr-0.5Mo-0.3C and Fe-3Cr-1.4Mn-0.5Mo-0.367C sintered alloys were plasma nitrided at different temperatures. Characterization was performed by microhardness measurement, optical microscopy, SEM and XRD. Both materials had similar nitriding case properties. 1.4% manganese did not change the as-sintered microstructure considerably.It was observed that monophase compound layer, γ, formed with increasing temperature. Compound layer thickness increased with increasing temperature while nitriding depth increased up to a level and then decreased. Core softening was more pronounced at higher temperature owing to cementite coarsening.

  7. Residual Stress Induced by Nitriding and Nitrocarburizing

    DEFF Research Database (Denmark)

    Somers, Marcel A.J.

    2005-01-01

    The present chapter is devoted to the various mechanisms involved in the buildup and relief of residual stress in nitrided and nitrocarburized cases. The work presented is an overview of model studies on iron and iron-based alloys. Subdivision is made between the compound (or white) layer......, developing at the surfce and consisting of iron-based (carbo)nitrides, and the diffusion zone underneath, consisting of iron and alloying element nitrides dispersed in af ferritic matrix. Microstructural features are related directly to the origins of stress buildup and stres relief....

  8. Atomic Resolution Microscopy of Nitrides in Steel

    DEFF Research Database (Denmark)

    Danielsen, Hilmar Kjartansson

    2014-01-01

    MN and CrMN type nitride precipitates in 12%Cr steels have been investigated using atomic resolution microscopy. The MN type nitrides were observed to transform into CrMN both by composition and crystallography as Cr diffuses from the matrix into the MN precipitates. Thus a change from one precip...... layer between the crystalline nitride and ferrite matrix. Usually precipitates are described as having (semi) coherent or incoherent interfaces, but in this case it is more energetically favourable to create an amorphous layer instead of the incoherent interface....

  9. Synthesis of ternary nitrides by mechanochemical alloying

    DEFF Research Database (Denmark)

    Jacobsen, C.J.H.; Zhu, J.J.; Lindelov, H.;

    2002-01-01

    Ternary metal nitrides ( of general formula MxM'N-y(z)) attract considerable interest because of their special mechanical, electrical, magnetic, and catalytic properties. Usually they are prepared by ammonolysis of ternary oxides (MxM'O-y(m)) at elevated temperatures. We show that ternary...... nitrides by mechanochemical alloying of a binary transition metal nitride (MxN) with an elemental transition metal. In this way, we have been able to prepare Fe3Mo3N and Co3Mo3N by ball-milling of Mo2N with Fe and Co, respectively. The transformation sequence from the starting materials ( the binary...

  10. Time-resolved measurements of charge carrier dynamics and optical nonlinearities in narrow-bandgap semiconductors

    Science.gov (United States)

    Olson, Benjamin Varberg

    generating excess carriers near one end of a MWIR T2SL and measuring the transit time to a thin, 2 lower-bandgap superlattice placed at the other end, the time-of-flight of vertically diffusing carriers is determined. Through investigation of both unintentionally doped and p-type superlattices at 77 K, the vertical hole and electron diffusion coefficients are determined to be 0.04+/-0.03 cm2/s and 4.7+/-0.5 cm2/s, corresponding to vertical mobilities of 6+/-5 cm 2/Vs and 700+/-80 cm2/Vs, respectively. These measurements are, to my knowledge, the first direct measurements of vertical transport properties in narrow-bandgap superlattices. Lastly, the widely tunable two-color ultrafast laser system used in this research allowed for the investigation of nonlinear optical properties in narrow-bandgap semiconductors. Time-resolved measurements taken at 77 K of the nondegenerate two-photon absorption spectrum of bulk n-type GaSb have provided new information about the nonresonant change in absorption and two-photon absorption coefficients in this material. Furthermore, as the nondegenerate spectrum was measured over a wide range of optical frequencies, a Kramers-Kronig transformation allowed the dispersion of the nondegenerate nonlinear refractive index to be calculated.

  11. Polarization engineering and approaches for high-performance III-nitride light emitters

    Science.gov (United States)

    Arif, Ronald A.

    Light emitting diodes (LEDs) have been increasingly integrated into mainstream lighting. In all applications requiring single-colored light, LEDs have outperformed filtered incandescent lamps. However, there are two major challenges. First is the issue of cost. High-performance nitride-based white LEDs cost roughly two orders of magnitude more expensive than incandescent lamps. The second challenge is color rendering---quantified by Color Rendering Index (CRI). Today's nitride white light LEDs still rely on the mixing of blue light from blue InGaN LEDs and yellow phosphor, and the CRI is relatively low. The best white LEDs to date have a CRI of 70--80, in comparison to traditional lamps, which generally have a CRI close to 100, and able to represent the true color of an object. An ideal way to improve the CRI is by mixing the luminescence of primary color LEDs. However, in order to make this approach viable, all the LEDs have to be based on a single materials platform. AlInGaN is the only materials system to date with the potential to fulfill this, since the bandgap of this nitride compound (with varying amount of Al, In, and Ga) can be varied from UV to IR range. There is still a lot of room for improvement in the efficiencies of nitride blue and green LEDs, while nitride-based active region emitting in the red wavelength (lambda ˜ 650-nm) regime is not realizable yet. In this dissertation, methods to increase internal quantum efficiency by polarization field engineering have been proposed. Two novel structures based on (1) staggered InGaN QW and (2) type-II InGaN-GaNAs QW have been investigated. Staggered InGaN QWs have shown improvement in the photoluminescence, cathodoluminescence, and LED output power, which agree well with numerical model prediction. All materials and devices in this work have been designed, grown and fabricated in-house. For the LED fabrication, a method based on selective area epitaxy---which bypasses dry-etching---has been utilized. In

  12. III-Nitride Membranes for Thermal Bio-Sensing and Solar Hydrogen Generation

    KAUST Repository

    Elafandy, Rami Tarek Mahmoud

    2017-09-01

    III-nitride nanostructures have generated tremendous scientific and technological interests in studying and engineering their low dimensional physics phenomena. Among these, 2D planar, free standing III-nitride nanomembranes are unrivalled in their scalability for high yield manufacture and can be mechanically manipulated. Due to the increase in their surface to volume ratio and the manifestation of quantum phenomena, these nanomembranes acquire unique physical properties. Furthermore, III-nitride membranes are chemically stable and biocompatible. Finally, nanomembranes are highly flexible and can follow curvilinear surfaces present in biological systems. However, being free-standing, requires especially new techniques for handling nanometers or micrometers thick membrane devices. Furthermore, effectively transferring these membrane devices to other substrates is not a direct process which requires the use of photoresists, solvents and/or elastomers. Finally, as the membranes are transferred, they need to be properly attached for subsequent device fabrications, which often includes spin coating and rinsing steps. These engineering complications have impeded the development of novel devices based on III-nitride membranes. In this thesis, we demonstrate the versatility of III-nitride membranes where we develop a thermal bio-sensor nanomembrane and solar energy photo-anode membrane. First, we present a novel preparation technique of nanomembranes with new characteristics; having no threading dislocation cores. We then perform optical characterization to reveal changes in their defect densities compared to the bulk crystal. We also study their mechanical properties where we successfully modulate their bandgap emission by 55 meV through various external compressive and tensile strain fields. Furthermore, we characterize the effect of phonon-boundary scattering on their thermal properties where we report a reduction of thermal conductivity from 130 to 9 W/mK. We employ

  13. Plasma nitriding of AISI 52100 ball bearing steel and effect of heat treatment on nitrided layer

    Indian Academy of Sciences (India)

    Ravindra Kumar; J Alphonsa; Ram Prakash; K S Boob; J Ghanshyam; P A Rayjada; P M Raole; S Mukherjee

    2011-02-01

    In this paper an effort has been made to plasma nitride the ball bearing steel AISI 52100. The difficulty with this specific steel is that its tempering temperature (∼170–200°C) is much lower than the standard processing temperature (∼460–580°C) needed for the plasma nitriding treatment. To understand the mechanism, effect of heat treatment on the nitrided layer steel is investigated. Experiments are performed on three different types of ball bearing races i.e. annealed, quenched and quench-tempered samples. Different gas compositions and process temperatures are maintained while nitriding these samples. In the quenched and quench-tempered samples, the surface hardness has decreased after plasma nitriding process. Plasma nitriding of annealed sample with argon and nitrogen gas mixture gives higher hardness in comparison to the hydrogen–nitrogen gas mixture. It is reported that the later heat treatment of the plasma nitrided annealed sample has shown improvement in the hardness of this steel. X-ray diffraction analysis shows that the dominant phases in the plasma nitrided annealed sample are (Fe2−3N) and (Fe4N), whereas in the plasma nitrided annealed sample with later heat treatment only -Fe peak occurs.

  14. Electronic structure characterization and bandgap engineeringofsolar hydrogen materials

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jinghua

    2007-11-01

    Bandgap, band edge positions as well as the overall band structure of semiconductors are of crucial importance in photoelectrochemical and photocatalytic applications. The energy position of the band edge level can be controlled by the electronegativity of the dopants, the pH of the solution (flatband potential variation of 60 mV per pH unit), as well as by quantum confinement effects. Accordingly, band edges and bandgap can be tailored to achieve specific electronic, optical or photocatalytic properties. Synchrotron radiation with photon energy at or below 1 keV is giving new insight into such areas as condensed matter physics and extreme ultraviolet optics technology. In the soft x-ray region, the question tends to be, what are the electrons doing as they migrated between the atoms. In this paper, I will present a number of soft x-ray spectroscopic study of nanostructured 3d metal compounds Fe{sub 2}O{sub 3} and ZnO.

  15. Lyapunov exponents for one-dimensional aperiodic photonic bandgap structures

    Science.gov (United States)

    Kissel, Glen J.

    2011-10-01

    Existing in the "gray area" between perfectly periodic and purely randomized photonic bandgap structures are the socalled aperoidic structures whose layers are chosen according to some deterministic rule. We consider here a onedimensional photonic bandgap structure, a quarter-wave stack, with the layer thickness of one of the bilayers subject to being either thin or thick according to five deterministic sequence rules and binary random selection. To produce these aperiodic structures we examine the following sequences: Fibonacci, Thue-Morse, Period doubling, Rudin-Shapiro, as well as the triadic Cantor sequence. We model these structures numerically with a long chain (approximately 5,000,000) of transfer matrices, and then use the reliable algorithm of Wolf to calculate the (upper) Lyapunov exponent for the long product of matrices. The Lyapunov exponent is the statistically well-behaved variable used to characterize the Anderson localization effect (exponential confinement) when the layers are randomized, so its calculation allows us to more precisely compare the purely randomized structure with its aperiodic counterparts. It is found that the aperiodic photonic systems show much fine structure in their Lyapunov exponents as a function of frequency, and, in a number of cases, the exponents are quite obviously fractal.

  16. Optical bandgap of semiconductor nanostructures: Methods for experimental data analysis

    Science.gov (United States)

    Raciti, R.; Bahariqushchi, R.; Summonte, C.; Aydinli, A.; Terrasi, A.; Mirabella, S.

    2017-06-01

    Determination of the optical bandgap (Eg) in semiconductor nanostructures is a key issue in understanding the extent of quantum confinement effects (QCE) on electronic properties and it usually involves some analytical approximation in experimental data reduction and modeling of the light absorption processes. Here, we compare some of the analytical procedures frequently used to evaluate the optical bandgap from reflectance (R) and transmittance (T) spectra. Ge quantum wells and quantum dots embedded in SiO2 were produced by plasma enhanced chemical vapor deposition, and light absorption was characterized by UV-Vis/NIR spectrophotometry. R&T elaboration to extract the absorption spectra was conducted by two approximated methods (single or double pass approximation, single pass analysis, and double pass analysis, respectively) followed by Eg evaluation through linear fit of Tauc or Cody plots. Direct fitting of R&T spectra through a Tauc-Lorentz oscillator model is used as comparison. Methods and data are discussed also in terms of the light absorption process in the presence of QCE. The reported data show that, despite the approximation, the DPA approach joined with Tauc plot gives reliable results, with clear advantages in terms of computational efforts and understanding of QCE.

  17. Surface modification of titanium by plasma nitriding

    Directory of Open Access Journals (Sweden)

    Kapczinski Myriam Pereira

    2003-01-01

    Full Text Available A systematic investigation was undertaken on commercially pure titanium submitted to plasma nitriding. Thirteen different sets of operational parameters (nitriding time, sample temperature and plasma atmosphere were used. Surface analyses were performed using X-ray diffraction, nuclear reaction and scanning electron microscopy. Wear tests were done with stainless steel Gracey scaler, sonic apparatus and pin-on-disc machine. The obtained results indicate that the tribological performance can be improved for samples treated with the following conditions: nitriding time of 3 h; plasma atmosphere consisting of 80%N2+20%H2 or 20%N2+80%H2; sample temperature during nitriding of 600 or 800 degreesC.

  18. Titanium nitride nanoparticles for therapeutic applications

    DEFF Research Database (Denmark)

    Guler, Urcan; Kildishev, Alexander V.; Boltasseva, Alexandra;

    2014-01-01

    Titanium nitride nanoparticles exhibit plasmonic resonances in the biological transparency window where high absorption efficiencies can be obtained with small dimensions. Both lithographic and colloidal samples are examined from the perspective of nanoparticle thermal therapy. © 2014 OSA....

  19. Materials synthesis: Two-dimensional gallium nitride

    Science.gov (United States)

    Koratkar, Nikhil A.

    2016-11-01

    Graphene is used as a capping sheet to synthesize 2D gallium nitride by means of migration-enhanced encapsulation growth. This technique may allow the stabilization of 2D materials that are not amenable to synthesis by traditional methods.

  20. Dissolution of bulk specimens of silicon nitride

    Science.gov (United States)

    Davis, W. F.; Merkle, E. J.

    1981-01-01

    An accurate chemical characterization of silicon nitride has become important in connection with current efforts to incorporate components of this material into advanced heat engines. However, there are problems concerning a chemical analysis of bulk silicon nitride. Current analytical methods require the pulverization of bulk specimens. A pulverization procedure making use of grinding media, on the other hand, will introduce contaminants. A description is given of a dissolution procedure which overcomes these difficulties. It has been found that up to at least 0.6 g solid pieces of various samples of hot pressed and reaction bonded silicon nitride can be decomposed in a mixture of 3 mL hydrofluoric acid and 1 mL nitric acid overnight at 150 C in a Parr bomb. High-purity silicon nitride is completely soluble in nitric acid after treatment in the bomb. Following decomposition, silicon and hydrofluoric acid are volatilized and insoluble fluorides are converted to a soluble form.

  1. Pentagonal monolayer crystals of carbon, boron nitride, and silver azide

    Energy Technology Data Exchange (ETDEWEB)

    Yagmurcukardes, M., E-mail: mehmetyagmurcukardes@iyte.edu.tr; Senger, R. T., E-mail: tugrulsenger@iyte.edu.tr [Department of Physics, Izmir Institute of Technology, 35430 Urla, Izmir (Turkey); Sahin, H.; Kang, J.; Torun, E.; Peeters, F. M. [Department of Physics, University of Antwerp, Campus Groenenborgerlaan, 2020, Antwerp (Belgium)

    2015-09-14

    In this study, we present a theoretical investigation of structural, electronic, and mechanical properties of pentagonal monolayers of carbon (p-graphene), boron nitride (p-B{sub 2}N{sub 4} and p-B{sub 4}N{sub 2}), and silver azide (p-AgN{sub 3}) by performing state-of-the-art first principles calculations. Our total energy calculations suggest feasible formation of monolayer crystal structures composed entirely of pentagons. In addition, electronic band dispersion calculations indicate that while p-graphene and p-AgN{sub 3} are semiconductors with indirect bandgaps, p-BN structures display metallic behavior. We also investigate the mechanical properties (in-plane stiffness and the Poisson's ratio) of four different pentagonal structures under uniaxial strain. p-graphene is found to have the highest stiffness value and the corresponding Poisson's ratio is found to be negative. Similarly, p-B{sub 2}N{sub 4} and p-B{sub 4}N{sub 2} have negative Poisson's ratio values. On the other hand, the p-AgN{sub 3} has a large and positive Poisson's ratio. In dynamical stability tests based on calculated phonon spectra of these pentagonal monolayers, we find that only p-graphene and p-B{sub 2}N{sub 4} are stable, but p-AgN{sub 3} and p-B{sub 4}N{sub 2} are vulnerable against vibrational excitations.

  2. A simple model for approximate bandgap structure calculation of all-solid photonic bandgap fibre based on an array of rings

    Institute of Scientific and Technical Information of China (English)

    Fang Hong; Lou Shu-Qin; Guo Tie-Ying; Yao Lei; Li nong-Lei; Jian ShuiSheng

    2008-01-01

    A simple model for approximate bandgap structure caculation of all-solid photonic bandgap fibre based on an array of rings is proposed.In this model calculated are only the potential modes of a unit cell,which is a high-index ring in the low-index background for this fibre,rather than the whole cladding periodic structure based on Bloch's theorem to find the bandgap.Its accuracy is proved by comparing its results with the results obtained by using the accurate full-vector plane-wave method.High speed in computation is its great advantage over the other exact methods,because it only needs to find the roots of one-dimensional analytical expressions.And the results of this model,mode plots,offer an ideal environment to explore the basic properties of photonic bandgap clearly.

  3. Reticulated porous silicon nitride-based ceramics

    OpenAIRE

    Mazzocchi, Mauro; Medri, Valentina; Guicciardi, Stefano

    2012-01-01

    The interest towards the production of porous silicon nitride originates from the unique combination of light weight, of mechanical and physical properties typical of this class of ceramics that make them attractive for many engineering applications. Although pores are generally believed to deteriorate the mechanical properties of ceramics (the strength of porous ceramics decreases exponentially with an increase of porosity), the recent literature reports that porous silicon nitride can exhib...

  4. The Nitrogen-Nitride Anode.

    Energy Technology Data Exchange (ETDEWEB)

    Delnick, Frank M.

    2014-10-01

    Nitrogen gas N 2 can be reduced to nitride N -3 in molten LiCl-KCl eutectic salt electrolyte. However, the direct oxidation of N -3 back to N 2 is kinetically slow and only occurs at high overvoltage. The overvoltage for N -3 oxidation can be eliminated by coordinating the N -3 with BN to form the dinitridoborate (BN 2 -3 ) anion which forms a 1-D conjugated linear inorganic polymer with -Li-N-B-N- repeating units. This polymer precipitates out of solution as Li 3 BN 2 which becomes a metallic conductor upon delithiation. Li 3 BN 2 is oxidized to Li + + N 2 + BN at about the N 2 /N -3 redox potential with very little overvoltage. In this report we evaluate the N 2 /N -3 redox couple as a battery anode for energy storage.

  5. Modelling of the layer evolution during nitriding processes

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, U.; Oseguera, J.; Schabes, P. [CEM, Atizapan (Mexico)

    1995-12-31

    The evolution of concomitant layers of nitrides is presented. The layer formation is experimentally achieved through two processes: Nitriding with a weakly ionized plasma and nitrogen post-discharge nitriding. The nitriding processes were performed on samples of pure iron and carbon steel. Nitriding temperatures were close but different from the eutectoid transformation point temperature. The experimental layer growth pattern is compared with a model of mass transfer, in which interface mass balance is considered. In the model the authors have considered the formation of one and two compact nitride layers. For short time of treatment, it is shown that a parabolic profile does not satisfactorily describe the layer growth.

  6. Electrochemical Solution Growth of Magnetic Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Monson, Todd C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pearce, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    Magnetic nitrides, if manufactured in bulk form, would provide designers of transformers and inductors with a new class of better performing and affordable soft magnetic materials. According to experimental results from thin films and/or theoretical calculations, magnetic nitrides would have magnetic moments well in excess of current state of the art soft magnets. Furthermore, magnetic nitrides would have higher resistivities than current transformer core materials and therefore not require the use of laminates of inactive material to limit eddy current losses. However, almost all of the magnetic nitrides have been elusive except in difficult to reproduce thin films or as inclusions in another material. Now, through its ability to reduce atmospheric nitrogen, the electrochemical solution growth (ESG) technique can bring highly sought after (and previously inaccessible) new magnetic nitrides into existence in bulk form. This method utilizes a molten salt as a solvent to solubilize metal cations and nitrogen ions produced electrochemically and form nitrogen compounds. Unlike other growth methods, the scalable ESG process can sustain high growth rates (~mm/hr) even under reasonable operating conditions (atmospheric pressure and 500 °C). Ultimately, this translates into a high throughput, low cost, manufacturing process. The ESG process has already been used successfully to grow high quality GaN. Below, the experimental results of an exploratory express LDRD project to access the viability of the ESG technique to grow magnetic nitrides will be presented.

  7. Multi-objective optimization of steel nitriding

    Directory of Open Access Journals (Sweden)

    P. Cavaliere

    2016-03-01

    Full Text Available Steel nitriding is a thermo-chemical process largely employed in the machine components production to solve mainly wear and fatigue damage in materials. The process is strongly influenced by many different variables such as steel composition, nitrogen potential (range 0.8–35, temperature (range 350–1200 °C, time (range 2–180 hours. In the present study, the influence of such parameters affecting the nitriding layers' thickness, hardness, composition and residual stress was evaluated. The aim was to streamline the process by numerical–experimental analysis allowing to define the optimal conditions for the success of the process. The optimization software that was used is modeFRONTIER (Esteco, through which was defined a set of input parameters (steel composition, nitrogen potential, nitriding time, etc. evaluated on the basis of an optimization algorithm carefully chosen for the multi-objective analysis. The mechanical and microstructural results belonging to the nitriding process, performed with different processing conditions for various steels, are presented. The data were employed to obtain the analytical equations describing nitriding behavior as a function of nitriding parameters and steel composition. The obtained model was validated through control designs and optimized by taking into account physical and processing conditions.

  8. Power-scalable long-wavelength Yb-doped photonic bandgap fiber sources

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Shirakawa, Akira; Maurayama, Hiroki

    2010-01-01

    Ytterbium-doped photonic-bandgap fiber sources operationg at the long-wavelength edge of the ytterbium gain band are being investigated for high power amplification. Artificial shaping of the gain spectrum by the characteristic distributed filtering effect of the photonic bandgap enables...

  9. High Thermal and Electrical Tunability of Negative Dielectric Liquid Crystal Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Wei, Lei; Scolari, Lara; Weirich, Johannes;

    2008-01-01

    We infiltrate photonic crystal fibers with negative dielectric liquid crystals. 400nm bandgap shift is obtained in the range 22ºC-80ºC and 119nm shift of the long-wavelength bandgap edge is achieved by applying a voltage of 200V....

  10. True photonic band-gap mode-control in VCSEL structures

    DEFF Research Database (Denmark)

    Romstad, F.; Madsen, M.; Birkedal, Dan;

    2003-01-01

    Photonic band-gap mode confinement in novel nano-structured large area VCSEL structures is confirmed by the amplified spontaneous emission spectrum. Both guide and anti-guide VCSEL structures are experimentally characterised to verify the photonic band-gap effect....

  11. Semi-transparent polymer solar cells with excellent sub-bandgap transmission for third generation photovoltaics.

    Science.gov (United States)

    Beiley, Zach M; Christoforo, M Greyson; Gratia, Paul; Bowring, Andrea R; Eberspacher, Petra; Margulis, George Y; Cabanetos, Clément; Beaujuge, Pierre M; Salleo, Alberto; McGehee, Michael D

    2013-12-23

    Semi-transparent organic photovoltaics are of interest for a variety of photovoltaic applications, including solar windows and hybrid tandem photovoltaics. The figure shows a photograph of our semi-transparent solar cell, which has a power conversion efficiency of 5.0%, with an above bandgap transmission of 34% and a sub-bandgap transmission of 81%.

  12. Investigating Bandgap Energies, Materials, and Design of Light-Emitting Diodes

    Science.gov (United States)

    Wagner, Eugene P., II

    2016-01-01

    A student laboratory experiment to investigate the intrinsic and extrinsic bandgaps, dopant materials, and diode design in light-emitting diodes (LEDs) is presented. The LED intrinsic bandgap is determined by passing a small constant current through the diode and recording the junction voltage variation with temperature. A second visible…

  13. High performance, high bandgap, lattice-mismatched, GaInP solar cells

    Science.gov (United States)

    Wanlass, Mark W.; Carapella, Jeffrey J.; Steiner, Myles A.

    2014-07-08

    High performance, high bandgap, lattice-mismatched, photovoltaic cells (10), both transparent and non-transparent to sub-bandgap light, are provided as devices for use alone or in combination with other cells in split spectrum apparatus or other applications.

  14. High performance, high bandgap, lattice-mismatched, GaInP solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wanlass, Mark W; Carapella, Jeffrey J; Steiner, Myles A

    2016-11-01

    High performance, high bandgap, lattice-mismatched, photovoltaic cells (10), both transparent and non-transparent to sub-bandgap light, are provided as devices for use alone or in combination with other cells in split spectrum apparatus or other applications.

  15. Structural characterization of plasma nitrided interstitial-free steel at different temperatures by SEM, XRD and Rietveld method

    Directory of Open Access Journals (Sweden)

    Ana Paula de Andrade Manfridini

    2017-01-01

    Full Text Available Plasma nitriding processes are widely used to improve surface properties of several steels and alloys. In this work, the formation of nitrides in the surface of plasma nitrided IF steels as a function of the temperature was investigated. Three cold-rolled IF steel plates were nitrided for 4 h after shot peening at three different temperatures: 450 °C, 475 °C, and 500 °C. The resultant nitrided layers were then characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD, Rietveld method, and hardness measurements. Through SEM images, it was possible to visualize two main sublayers: a compound layer and a diffusion zone. Through XRD, two phases were identified in the compound layer, which were ɛ-Fe2–3N and γ′-Fe4N. The diffusion zone presented a ferritic matrix with fine precipitates, possibly α″-Fe16N2. By Rietveld, the calculated quantity of γ′-Fe4N was 68 wt.% for the sample treated at 475 °C and 58 wt.% for the one treated at 500 °C. These values were consistent with the hardness measurements. Thus, it is suggested that higher nitriding temperatures facilitate the decreasing of γ′-Fe4N and, consequently, the increasing of ɛ-Fe2–3N in the compound layer.

  16. Research of influence of gas nitriding duration on formation of diffusion layer of steel 20Kh2N4A

    Directory of Open Access Journals (Sweden)

    Kateryna O. Kostyk

    2015-06-01

    Full Text Available The research of the gas nitriding process, which allows to obtain a high surface quality of steel parts and has a wide application in mass production, is relevant. Aim of the research is to study the influence of gas nitriding modes on the structure and properties of alloy steel. The research material in this work is steel 20Kh2N4A. Nitriding of the samples is carried out in a shaft furnace at the temperature of 510…530 °C during 35, 40, 46 and 48 h. It is found that the alloy steel 20Kh2N4A preliminary heat treatment before nitriding provides the hardness of products core to 279...321 HV due to the formation of perlite-sorta structure with carbides of alloying elements. The results show that increasing the duration of nitriding from 35 to 48 hours at 510…530 °С increases the depth of nitrided layer from 0,35 to 0,55 mm with surface hardness up to 648 MPa at the maximum depth of the layer. The results of this research can be used in industry and research works.

  17. Direct access to macroporous chromium nitride and chromium titanium nitride with inverse opal structure.

    Science.gov (United States)

    Zhao, Weitian; DiSalvo, Francis J

    2015-03-21

    We report a facile synthesis of single-phase, nanocrystalline macroporous chromium nitride and chromium titanium nitride with an inverse opal morphology. The material is characterized using XRD, SEM, HR-TEM/STEM, TGA and XPS. Interconversion of macroporous CrN to Cr2O3 and back to CrN while retaining the inverse opal morphology is also demonstrated.

  18. Junctions between a boron nitride nanotube and a boron nitride sheet.

    Science.gov (United States)

    Baowan, Duangkamon; Cox, Barry J; Hill, James M

    2008-02-20

    For future nanoelectromechanical signalling devices, it is vital to understand how to connect various nanostructures. Since boron nitride nanostructures are believed to be good electronic materials, in this paper we elucidate the classification of defect geometries for combining boron nitride structures. Specifically, we determine possible joining structures between a boron nitride nanotube and a flat sheet of hexagonal boron nitride. Firstly, we determine the appropriate defect configurations on which the tube can be connected, given that the energetically favourable rings for boron nitride structures are rings with an even number of sides. A new formula E = 6+2J relating the number of edges E and the number of joining positions J is established for each defect, and the number of possible distinct defects is related to the so-called necklace and bracelet problems of combinatorial theory. Two least squares approaches, which involve variation in bond length and variation in bond angle, are employed to determine the perpendicular connection of both zigzag and armchair boron nitride nanotubes with a boron nitride sheet. Here, three boron nitride tubes, which are (3, 3), (6, 0) and (9, 0) tubes, are joined with the sheet, and Euler's theorem is used to verify geometrically that the connected structures are sound, and their relationship with the bonded potential energy function approach is discussed. For zigzag tubes (n,0), it is proved that such connections investigated here are possible only for n divisible by 3.

  19. Structural analysis of nitride layer formed on uranium metal by glow plasma surface nitriding

    Energy Technology Data Exchange (ETDEWEB)

    Liu Kezhao, E-mail: liukz@hotmail.com [State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Bin Ren [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Xiao Hong [China Academy of Engineering Physics, P.O. Box 919-71, Mianyang 621907 (China); Long Zhong [State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Hong Zhanglian, E-mail: hong_zhanglian@zju.edu.cn [State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Yang Hui [State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Wu Sheng [China Academy of Engineering Physics, P.O. Box 919-71, Mianyang 621907 (China)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer The nitride layer was formed on uranium by glow plasma surface nitriding. Black-Right-Pointing-Pointer Four zones were observed in the nitride layer. Black-Right-Pointing-Pointer The chemical states of uranium, nitrogen, and oxygen were identified by AES. - Abstract: The nitride layer was formed on uranium metal by a glow plasma surface nitriding method. The structure and composition of the layer were investigated by X-ray diffraction and Auger electron spectroscopy. The nitride layer mainly consisted of {alpha}-phase U{sub 2}N{sub 3} nanocrystals with an average grain size about 10-20 nm. Four zones were identified in the layer, which were the oxide surface zone, the nitride mainstay zone, the oxide-existence interface zone, and the nitrogen-diffusion matrix zone. The gradual decrease of binding energies of uranium revealed the transition from oxide to nitride to metal states with the layer depth, while the chemical states of nitrogen and oxygen showed small variation.

  20. Tunable bandgap in few-layer black phosphorus by electrical field

    Science.gov (United States)

    Li, Dong; Xu, Jin-Rong; Ba, Kun; Xuan, Ningning; Chen, Mingyuan; Sun, Zhengzong; Zhang, Yu-Zhong; Zhang, Zengxing

    2017-09-01

    Dynamically engineering bandgap in semiconductors may enable a flexible design and optimization of electronics and optoelectronics. Layered black phosphorus is a 2D semiconductor with a direct bandgap and promising device characteristics. Theoretical studies indicate that the bandgap in black phosphorus can be tuned by electrical field. Here, through designing a double-gated field-effect transistor device configuration, we experimentally demonstrate that the bandgap in few-layer black phosphorus can be dynamically continually tuned by perpendicular electrical field. With an electrical displacement field of 1 V nm-1, the detailed study indicates that the bandgap can reduce around 100 meV. The finding here should be helpful on the flexible design and optimization of black phosphorus electronics and optoelectronics, and may open up some other new possible applications.

  1. Compressed lead-based perovskites reaching optimal Shockley-Queisser bandgap with prolonged carrier lifetime

    CERN Document Server

    Liu, Gang; Gong, Jue; Yang, Wenge; Mao, Ho-kwang; Liu, Zhenxian; Schaller, Richard D; Zhang, Dongzhou; Xu, Tao

    2016-01-01

    Atomic structure of materials plays a decisive role in the light-matter interaction. Yet, despite its unprecedented progress, further efficiency boost of Lead-based organic-inorganic perovskite solar cells is hampered by its greater bandgap than the optimum value according to Shockley-Queisser limit. Here, we report the experimental achievement of bandgap narrowing in formamidinium lead triiodide from 1.489 to 1.337 eV by modulating the lattice constants under hydraulic compression, reaching the optimized bandgap for single-junction solar cells. Strikingly, such bandgap narrowing is accomplished with improved, instead of sacrificed carrier lifetime. More attractively, the narrowed bandgap is partially retainable after the release of pressure. This work opens a new dimension in basic science understanding of structural photonics and paves an alternative pathway towards more efficient photovoltaic materials.

  2. Bandgap Engineering of Double Perovskites for One- and Two-photon Water Splitting

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

    2013-01-01

    Computational screening is becoming increasingly useful in the search for new materials. We are interested in the design of new semiconductors to be used for light harvesting in a photoelectrochemical cell. In the present paper, we study the double perovskite structures obtained by combining 46...... stable cubic perovskites which was found to have a finite bandgap in a previous screening-study. The four-metal double perovskite space is too large to be investigated completely. For this reason we propose a method for combining different metals to obtain a desired bandgap. We derive some bandgap design...... rules on how to combine two cubic perovskites to generate a new combination with a larger or smaller bandgap compared with the constituent structures. Those rules are based on the type of orbitals involved in the conduction bands and on the size of the two cubic bandgaps. We also see that a change...

  3. On topology optimization of acoustic metamaterial lattices for locally resonant bandgaps of flexural waves

    CERN Document Server

    Hedayatrasa, Saeid; Uddin, Mohammad

    2016-01-01

    Optimized topology of bi-material acoustic metamaterial lattice plates is studied for maximized locally resonant bandgap of flexural guided waves. Optimized layout of the two relatively stiff and compliant material phases in the design domain is explored, free from any restrictions on the topology and shape of the relevant domains. Multiobjective optimization is performed through which maximized effective stiffness or minimized overall mass of the bandgap topology is additionally ensured. Extreme and selected intermediate optimized topologies of Pareto fronts are presented and their bandgap efficiencies and effective stiffness are compared. The bi-material constitution of selected topologies are further altered and modal band structure of resultant multilateral and porous designs are evaluated. Novel, core-shell like, locally resonant bandgaps are introduced. It is shown that how the bandgap efficiency and structural mass and/or stiffness can be optimized through optimized microstructural design of the matrix...

  4. Identification of nitriding mechanisms in high purity reaction bonded silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Haggerty, J.S.

    1993-03-01

    The rapid, low-temperature nitriding results from surface effects on the Si particles beginning with loss of chemisorbed H and sequential formation of thin amorphous Si nitride layers. Rapid complete conversion to Si[sub 3]N[sub 4] during the fast reaction can be inhibited when either too few or too many nuclei form on Si particels. Optimally, [approximately] 10 Si[sub 3]N[sub 4] nuclei form per Si particles under rapid, complete nitridation conditions. Nitridation during the slow reaction period appears to progress by both continued reaction of nonpreferred Si[sub 3]N[sub 4] growth interfaces and direct nitridation of the remaining Si/vapor interfaces.

  5. Identification of nitriding mechanisms in high purity reaction bonded silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Haggerty, J.S.

    1993-03-01

    The rapid, low-temperature nitriding results from surface effects on the Si particles beginning with loss of chemisorbed H and sequential formation of thin amorphous Si nitride layers. Rapid complete conversion to Si{sub 3}N{sub 4} during the fast reaction can be inhibited when either too few or too many nuclei form on Si particels. Optimally, {approximately} 10 Si{sub 3}N{sub 4} nuclei form per Si particles under rapid, complete nitridation conditions. Nitridation during the slow reaction period appears to progress by both continued reaction of nonpreferred Si{sub 3}N{sub 4} growth interfaces and direct nitridation of the remaining Si/vapor interfaces.

  6. Semiconductor Metal-Organic Frameworks: Future Low-Bandgap Materials.

    Science.gov (United States)

    Usman, Muhammad; Mendiratta, Shruti; Lu, Kuang-Lieh

    2017-02-01

    Metal-organic frameworks (MOFs) with low density, high porosity, and easy tunability of functionality and structural properties, represent potential candidates for use as semiconductor materials. The rapid development of the semiconductor industry and the continuous miniaturization of feature sizes of integrated circuits toward the nanometer (nm) scale require novel semiconductor materials instead of traditional materials like silicon, germanium, and gallium arsenide etc. MOFs with advantageous properties of both the inorganic and the organic components promise to serve as the next generation of semiconductor materials for the microelectronics industry with the potential to be extremely stable, cheap, and mechanically flexible. Here, a perspective of recent research is provided, regarding the semiconducting properties of MOFs, bandgap studies, and their potential in microelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Low voltage bandgap reference with closed loop curvature compensation

    Science.gov (United States)

    Tao, Fan; Bo, Du; Zheng, Zhang; Guoshun, Yuan

    2009-03-01

    A new low-voltage CMOS bandgap reference (BGR) that achieves high temperature stability is proposed. It feeds back the output voltage to the curvature compensation circuit that constitutes a closed loop circuit to cancel the logarithmic term of voltage VBE. Meanwhile a low voltage amplifier with the 0.5 μm low threshold technology is designed for the BGR. A high temperature stability BGR circuit is fabricated in the CSMC 0.5 μm CMOS technology. The measured result shows that the BGR can operate down to 1 V, while the temperature coefficient and line regulation are only 9 ppm/°C and 1.2 mV/V, respectively.

  8. Cavity quantum electrodynamics with three-dimensional photonic bandgap crystals

    CERN Document Server

    Vos, W L

    2015-01-01

    This paper gives an overview of recent work on three-dimensional (3D) photonic crystals with a "full and complete" 3D photonic band gap. We review five main aspects: 1) spontaneous emission inhibition, 2) spatial localization of light within a tiny nanoscale volume (aka "a nanobox for light"), 3) the introduction of a gain medium leading to thresholdless lasers, 4) breaking of the weak-coupling approximation of cavity QED, both in the frequency and in the time-domain, 5) decoherence, in particular the shielding of vacuum fluctuations by a 3D photonic bandgap. In addition, we list and evaluate all known photonic crystal structures with a demonstrated 3D band gap.

  9. Optical devices based on liquid crystal photonic bandgap fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard

    2005-01-01

    In this ph.d. work, an experimental and theoretical study on Liquid Crystal (LC) infiltrated Photonic Crystal Fibers (PCFs) has been carried out. PCFs usually, consists of an air/silica microstructure of air holes arranged in a triangular lattice surrounding a core defect defined by a missing air...... hole. The presence of a LC in the holes of the PCF transforms the fiber from a Total Internal Reflection (TIR) guiding type into a Photonic BandGap (PBG) guiding type, where light is confined to the silica core by coherent scattering from the LC-billed holes. The high dielectric and optical anisotropy...... of LCs combined with the unique waveguiding features of PBG fibers gives the LC filled PCFs unique tunable properties. PBG guidance has been demonstrated for different mesophases of LCs and various functional compact fibers has been demonstrated, which utilitzes the high thermo-optical and electro...

  10. One-dimensional photonic bandgap structure in abalone shell

    Institute of Scientific and Technical Information of China (English)

    LI Bo; ZHOU Ji; LI Longtu; LI Qi; HAN Shuo; HAO Zhibiao

    2005-01-01

    @@ Photonic bandgap (PBG) materials are periodic com- posites of dielectric materials in which electromagnetic waves of certain frequency range cannot propagate in any or a special direction. Recently, there has been great inter- est in synthetic PBG materials due to their ability in ma- nipulation of photons. Since 500 million years ago, the natural world has been exploiting photonic structures for specific biological purposes[1]. Different types of biologi- cal PBG materials have been discovered in recent years, such as the one-dimension PBG structure in the sea mouse Aphrodita[2], and the fruits Elaeocarpus[3,4]; two-dimension PBG structure in the male peacock Pavo muticus feathers[5], Indonesian male Papilio palinurus butterfly[6], Thaumantis diores butterfly[7] and the male Ancyluris meliboeus Fabricius butterflies[8]; and three-dimension PBG structure in the weevil Pachyrhynchus argus[9].

  11. Main Factors for Affecting Photonic Bandgap of Photonic Crystals

    Institute of Scientific and Technical Information of China (English)

    LI Xia; XUE Wei; JIANG Yu-rong; YU Zhi-nong; WANG Hua-qing

    2007-01-01

    The factors affecting one dimensional (1D) and two dimensional (2D) photonic crystals (PhCs) are systemically analyzed in this paper by numerical simulation.Transfer matrix method (TMM) is employed for 1D PCs, both finite difference time domain method (FDTD) and plane wave expansion method (PWE) are employed for 2D PCs.The result shows that the photonic bandgaps (PBG) are directly affected by crystal type, crystal lattice constant, modulation of refractive index and periodicity, and it is should be useful for design of different type photonic crystals with the required PBG and functional devices.Finally, as an example, a near-IR 1D PCs narrow filter was designed.

  12. MUTUAL COUPLING REDUCTION BETWEEN MICROSTRIP ANTENNAS USING ELECTROMAGNETIC BANDGAP STRUCTURE

    Directory of Open Access Journals (Sweden)

    G.N. Gaikwad

    2011-03-01

    Full Text Available When the number of antenna elements is placed in forming the arrays, mutual coupling between the antenna elements is a critical issue. This is particularly concern in phase array antennas. Mutual coupling is a potential source of performance degradation in the form of deviation of the radiation pattern from the desired one, gain reduction due to excitation of surface wave, increased side lobe levels etc. EBG (Electromagnetic Band Gap structure (also called as Photonic Bandgap Structure PBG not only enhances the performance of the patch antennas but also provides greater amount of isolation when placed between the microstrip arrays. This greatly reduces the mutual coupling between the antenna elements. The radiation efficiency, gain, antenna efficiency, VSWR, frequency, directivity etc greatly improves over the conventional patch antennas using EBG. The EBG structure and normal patch antenna is simulated using IE3D antenna simulation software.

  13. A Novel 2D Z-Shaped Electromagnetic Bandgap Structure

    Directory of Open Access Journals (Sweden)

    I. Iliev

    2015-02-01

    Full Text Available This paper researches a novel 2D Z-shaped Electromagnetic Band-Gap (EBG structure, its dispersion diagram and application field. Based on a transmission line model, the dispersion equation is derived and theoretically investigated. In order to validate theoretical results, a full wave analysis is performed and the electromagnetic properties of the structure are revealed. The theoretical results show good agreement with the full wave simulation results. The frequency response of the structure is compared to the well know structures of Jerusalem cross and patch EBG. The results show the applicability of the proposed 2D Z-shaped EBG in microstrip patch antennas, microstrip filters and high speed switching circuits, where the suppression of parasitic surface wave is required.

  14. Low voltage bandgap reference with closed loop curvature compensation

    Institute of Scientific and Technical Information of China (English)

    Fan Tao; Du Bo; Zhang Zheng; Yuan Guoshun

    2009-01-01

    A new low-voltage CMOS bandgap reference (BGR) that achieves high temperature stability is proposed. It feeds back the output voltage to the curvature compensation circuit that constitutes a closed loop circuit to cancel the logarithmic term of voltage VBE. Meanwhile a low voltage amplifier with the 0.5μm low threshold technology is designed for the BGR. A high temperature stability BGR circuit is fabricated in the CSMC 0.5μm CMOS tech-nology. The measured result shows that the BGR can operate down to 1 V, while the temperature coefficient and line regulation are only 9 ppm/℃ and 1.2 mV/V, respectively.

  15. Red-emitting manganese-doped aluminum nitride phosphor

    Science.gov (United States)

    Cherepy, Nerine J.; Payne, Stephen A.; Harvey, Nicholas M.; Åberg, Daniel; Seeley, Zachary M.; Holliday, Kiel S.; Tran, Ich C.; Zhou, Fei; Martinez, H. Paul; Demeyer, Jessica M.; Drobshoff, Alexander D.; Srivastava, Alok M.; Camardello, Samuel J.; Comanzo, Holly A.; Schlagel, Deborah L.; Lograsso, Thomas A.

    2016-04-01

    We report high efficiency luminescence with a manganese-doped aluminum nitride red-emitting phosphor under 254 nm excitation, as well as its excellent lumen maintenance in fluorescent lamp conditions, making it a candidate replacement for the widely deployed europium-doped yttria red phosphor. Solid-state reaction of aluminum nitride powders with manganese metal at 1900 °C, 10 atm N2 in a reducing environment results in nitrogen deficiency, as revealed diffuse reflectance spectra. When these powders are subsequently annealed in flowing nitrogen at 1650 °C, higher nitrogen content is recovered, resulting in white powders. Silicon was added to samples as an oxygen getter to improve emission efficiency. NEXAFS spectra and DFT calculations indicate that the Mn dopant is divalent. From DFT calculations, the UV absorption band is proposed to be due to an aluminum vacancy coupled with oxygen impurity dopants, and Mn2+ is assumed to be closely associated with this site. In contrast with some previous reports, we find that the highest quantum efficiency with 254 nm excitation (Q.E. = 0.86 ± 0.14) is obtained in aluminum nitride with a low manganese doping level of 0.06 mol.%. The principal Mn2+ decay of 1.25 ms is assigned to non-interacting Mn sites, while additional components in the microsecond range appear with higher Mn doping, consistent with Mn clustering and resultant exchange coupling. Slower components are present in samples with low Mn doping, as well as strong afterglow, assigned to trapping on shallow traps followed by detrapping and subsequent trapping on Mn.

  16. Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications

    DEFF Research Database (Denmark)

    Guler, Urcan; Suslov, Sergey; Kildishev, Alexander V.

    2015-01-01

    Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal and photocatalytic applications via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average...

  17. Method of manufacture of atomically thin boron nitride

    Science.gov (United States)

    Zettl, Alexander K

    2013-08-06

    The present invention provides a method of fabricating at least one single layer hexagonal boron nitride (h-BN). In an exemplary embodiment, the method includes (1) suspending at least one multilayer boron nitride across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure. The present invention also provides a method of fabricating single layer hexagonal boron nitride. In an exemplary embodiment, the method includes (1) providing multilayer boron nitride suspended across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure.

  18. Diffusion kinetics of nitrogen in tantalum during plasma-nitriding

    Institute of Scientific and Technical Information of China (English)

    张德元; 林勤; 曾卫军; 李放; 许兰萍; 付青峰

    2001-01-01

    The activation energies of nitrogen in tantalum on plasma nitriding conditions were calculated according to the experimental data of hardness of plasma-nitriding of tantalum vs time and temperature. The activation energy calculated is 148.873±0.390  kJ/mol. The depth increasing of nitriding layer with time follows square root relation. The nitriding process of tantalum is controlled by diffusion of nitrogen atoms in tantalum solid solution.

  19. Graphitic carbon nitride based nanocomposites: a review.

    Science.gov (United States)

    Zhao, Zaiwang; Sun, Yanjuan; Dong, Fan

    2015-01-07

    Graphitic carbon nitride (g-C(3)N(4)), as an intriguing earth-abundant visible light photocatalyst, possesses a unique two-dimensional structure, excellent chemical stability and tunable electronic structure. Pure g-C(3)N(4) suffers from rapid recombination of photo-generated electron-hole pairs resulting in low photocatalytic activity. Because of the unique electronic structure, the g-C(3)N(4) could act as an eminent candidate for coupling with various functional materials to enhance the performance. According to the discrepancies in the photocatalytic mechanism and process, six primary systems of g-C(3)N(4)-based nanocomposites can be classified and summarized: namely, the g-C(3)N(4) based metal-free heterojunction, the g-C(3)N(4)/single metal oxide (metal sulfide) heterojunction, g-C(3)N(4)/composite oxide, the g-C(3)N(4)/halide heterojunction, g-C(3)N(4)/noble metal heterostructures, and the g-C(3)N(4) based complex system. Apart from the depiction of the fabrication methods, heterojunction structure and multifunctional application of the g-C(3)N(4)-based nanocomposites, we emphasize and elaborate on the underlying mechanisms in the photocatalytic activity enhancement of g-C(3)N(4)-based nanocomposites. The unique functions of the p-n junction (semiconductor/semiconductor heterostructures), the Schottky junction (metal/semiconductor heterostructures), the surface plasmon resonance (SPR) effect, photosensitization, superconductivity, etc. are utilized in the photocatalytic processes. Furthermore, the enhanced performance of g-C(3)N(4)-based nanocomposites has been widely employed in environmental and energetic applications such as photocatalytic degradation of pollutants, photocatalytic hydrogen generation, carbon dioxide reduction, disinfection, and supercapacitors. This critical review ends with a summary and some perspectives on the challenges and new directions in exploring g-C(3)N(4)-based advanced nanomaterials.

  20. Silicon nitride ceramic having high fatigue life and high toughness

    Science.gov (United States)

    Yeckley, Russell L.

    1996-01-01

    A sintered silicon nitride ceramic comprising between about 0.6 mol % and about 3.2 mol % rare earth as rare earth oxide, and between about 85 w/o and about 95 w/o beta silicon nitride grains, wherein at least about 20% of the beta silicon nitride grains have a thickness of greater than about 1 micron.

  1. [The effect of plasma nitriding on tungsten burs].

    Science.gov (United States)

    Cicciu, D; Russo, S; Grasso, C

    1989-01-01

    The authors have experimented the nitriding's effects on some cilindrical burs carbide utilized in dentistry after disamination on the applications methodics on plasma nitriding in neurosurgery, orthopedic surgery and in odontotherapy. This reacherys point out that nitriding plasma a durings increase and cutis greater capacity establish.

  2. Innovative boron nitride-doped propellants

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2016-04-01

    Full Text Available The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P. Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  3. Nitridation of chromium powder in ammonia atmosphere

    Institute of Scientific and Technical Information of China (English)

    Ling Li; Qiang Zhen; Rong Li

    2015-01-01

    CrN powder was synthesized by nitriding Cr metal in ammonia gas flow, and its chemical reaction mechanism and nitridation process were studied. Through thermodynamic calculations, the Cr−N−O predominance diagrams were constructed for different tempera-tures. Chromium nitride formed at 700−1200°C under relatively higher nitrogen and lower oxygen partial pressures. Phases in the products were then investigated using X-ray diffraction (XRD), and the Cr2N content varied with reaction temperature and holding time. The results indicate that the Cr metal powder nitridation process can be explained by a diffusion model. Further, Cr2N formed as an intermediate product because of an incomplete reaction, which was observed by high-resolution transmission electron microscopy (HRTEM). After nitriding at 1000°C for 20 h, CrN powder with an average grain size of 63 nm was obtained, and the obtained sample was analyzed by using a scanning electron microscope (SEM).

  4. Innovative boron nitride-doped propellants

    Institute of Scientific and Technical Information of China (English)

    Thelma MANNING; Henry GRAU; Paul MATTER; Michael BEACHY; Christopher HOLT; Samuel SOPOK; Richard FIELD; Kenneth KLINGAMAN; Michael FAIR; John BOLOGNINI; Robin CROWNOVER; Carlton P. ADAM; Viral PANCHAL; Eugene ROZUMOV

    2016-01-01

    The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN) is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P). Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  5. Evaluation of silicon nitride as a substrate for culture of PC12 cells: an interfacial model for functional studies in neurons.

    Directory of Open Access Journals (Sweden)

    Johan Jaime Medina Benavente

    Full Text Available Silicon nitride is a biocompatible material that is currently used as an interfacial surface between cells and large-scale integration devices incorporating ion-sensitive field-effect transistor technology. Here, we investigated whether a poly-L-lysine coated silicon nitride surface is suitable for the culture of PC12 cells, which are widely used as a model for neural differentiation, and we characterized their interaction based on cell behavior when seeded on the tested material. The coated surface was first examined in terms of wettability and topography using contact angle measurements and atomic force microscopy and then, conditioned silicon nitride surface was used as the substrate for the study of PC12 cell culture properties. We found that coating silicon nitride with poly-L-lysine increased surface hydrophilicity and that exposing this coated surface to an extracellular aqueous environment gradually decreased its roughness. When PC12 cells were cultured on a coated silicon nitride surface, adhesion and spreading were facilitated, and the cells showed enhanced morphological differentiation compared to those cultured on a plastic culture dish. A bromodeoxyuridine assay demonstrated that, on the coated silicon nitride surface, higher proportions of cells left the cell cycle, remained in a quiescent state and had longer survival times. Therefore, our study of the interaction of the silicon nitride surface with PC12 cells provides important information for the production of devices that need to have optimal cell culture-supporting properties in order to be used in the study of neuronal functions.

  6. Bandgap Engineering of 1300 nm Quantum Dots/Quantum Well Nanostructures Based Devices

    KAUST Repository

    Alhashim, Hala H.

    2016-05-29

    The main objectives of this thesis are to develop viable process and/or device technologies for bandgap tuning of 1300-nm InGaAs/GaAs quantum-dot (QD) laser structures, and broad linewidth 1300-nm InGaAsP/InP quantum well (QW) superluminescent diode structures. The high performance bandgap-engineered QD laser structures were achieved by employing quantum-dot intermixing (QDI) based on impurity free vacancy diffusion (IFVD) technique for eventual seamless active-passive integration, and bandgap-tuned lasers. QDI using various dielectric-capping materials, such as HfO2, SrTiO3, TiO2, Al2O3 and ZnO, etc, were experimented in which the resultant emission wavelength can be blueshifted to ∼ 1100 nm ─ 1200 nm range depending on process conditions. The significant results extracted from the PL characterization were used to perform an extensive laser characterization. The InAs/GaAs quantum-dot lasers with QDs transition energies were blueshifted by ~185 nm, and lasing around ~1070 – 1190 nm was achieved. Furthermore, from the spectral analysis, a simultaneous five-state lasing in the InAs/InGaAs intermixed QD laser was experimentally demonstrated for the first time in the very important wavelength range from 1030 to 1125 nm. The QDI methodology enabled the facile formation of a plethora of devices with various emission wavelengths suitable for a wide range of applications in the infrared. In addition, the wavelength range achieved is also applicable for coherent light generation in the green – yellow – orange visible wavelength band via frequency doubling, which is a cost-effective way of producing compact devices for pico-projectors, semiconductor laser based solid state lighting, etc. [1, 2] In QW-based superluminescent diode, the problem statement lies on achieving a flat-top and ultra-wide emission bandwidth. The approach was to design an inhomogeneous active region with a comparable simultaneous emission from different transition states in the QW stacks, in

  7. Nonlinear conductivity in silicon nitride

    Science.gov (United States)

    Tuncer, Enis

    2017-08-01

    To better comprehend electrical silicon-package interaction in high voltage applications requires full characterization of the electrical properties of dielectric materials employed in wafer and package level design. Not only the packaging but wafer level dielectrics, i.e. passivation layers, would experience high electric fields generated by the voltage applied pads. In addition the interface between the passivation layer and a mold compound might develop space charge because of the mismatch in electrical properties of the materials. In this contribution electrical properties of a thin silicon nitride (Si3N4) dielectric is reported as a function of temperature and electric field. The measured values later analyzed using different temperature dependent exponential expressions and found that the Mott variable range hopping conduction model was successful to express the data. A full temperature/electric field dependency of conductivity is generated. It was found that the conduction in Si3N4 could be expressed like a field ionization or Fowler-Nordheim mechanism.

  8. Electrically tunable Yb-doped fiber laser based on a liquid crystal photonic bandgap fiber device

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei

    2010-01-01

    We demonstrate electrical tunability of a fiber laser using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a tunable liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate...... an all-spliced laser cavity based on the liquid crystal photonic bandgap fiber mounted on a silicon assembly, a pump/signal combiner with single-mode signal feed-through and an ytterbium-doped photonic crystal fiber. The laser cavity produces a single-mode output and is tuned in the range 1040-1065 nm...

  9. 167 W, power scalable ytterbium-doped photonic bandgap fiber amplifier at 1178nm

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Shirakawa, A.; Chen, M.

    2010-01-01

    An ytterbium-doped photonic bandgap fiber amplifier operating at the long wavelength edge of the ytterbium gain band is investigated for high power amplification. The spectral filtering effect of the photonic bandgap efficiently suppresses amplified spontaneous emission at the conventional...... ytterbium gain wavelengths and thus enables high power amplification at 1178 nm. A record output power of 167 W, a slope efficiency of 61% and 15 dB saturated gain at 1178 nm have been demonstrated using the ytterbium-doped photonic bandgap fiber....

  10. Band-gap narrowing in heavily doped silicon at 20 and 300 K studied by photoluminescence

    Science.gov (United States)

    Wagner, Joachim

    1985-07-01

    The band-gap shrinkage in heavily doped n- and p-type silicon is studied by photoluminescence both at low temperatures (20 K) and at room temperature (300 K). A line-shape analysis was performed to determine the indirect band-gap energy from the emission spectra. Within the experimental accuracy the same band-gap shift is observed at room temperature as at low temperature. The present results are compared with experimental data from other optical studies and with theoretical calculations.

  11. Highly tunable large core single-mode liquid crystal photonic bandgap fiber

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Lægsgaard, Jesper; Bjarklev, Anders Overgaard;

    2006-01-01

    We demonstrate a highly tunable photonic bandgap fiber, which has a large-core diameter of 25 mu m and an effective mode area of 440 mu m(2). The tunability is achieved by infiltrating the air holes of a photonic crystal fiber with an optimized liquid-crystal mixture having a large temperature...... gradient of the refractive indices at room temperature. A bandgap tuning sensitivity of 27 nm/degrees C is achieved at room temperature. The insertion loss is estimated to be less than 0.5 dB and caused mainly by coupling loss between the index-guided mode and the bandgap-guided mode. (c) 2006 Optical...

  12. Synthesis and Characterization of Small Band-gap Conjugated Polymers - Poly(pyrrolyl methines)

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A kind of small band-gap conjugated polymers-poly (pyrrolyl methines) and their precursors-(poly pyrrolyl methanes) have been synthesized by a simple method and characterized by 1HNMR, FT-IR, TGA and UV-Vis. These polymers can be dissolved in high polar solvents such as DMSO, DMF or NMP. The results reveals that the band-gap of the synthesized conjugated polymers are in the range of 0.96~1.14 eV and they all belong to the small band-gap polymers. The conductivity of doped products with iodine is in the range of semiconductor.

  13. Formation and control of stoichiometric hafnium nitride thin films by direct sputtering of hafnium nitride target

    CERN Document Server

    Gotoh, Y; Ishikawa, J; Liao, M Y

    2003-01-01

    Hafnium nitride thin films were prepared by radio-frequency sputter deposition with a hafnium nitride target. Deposition was performed with various rf powers, argon pressures, and substrate temperatures, in order to investigate the influences of these parameters on the film properties, particularly the nitrogen composition. It was found that stoichiometric hafnium nitride films were formed at an argon gas pressure of less than 2 Pa, irrespective of the other deposition parameters within the range investigated. Maintaining the nitrogen composition almost stoichiometric, orientation, stress, and electrical resistivity of the films could be controlled with deposition parameters. (author)

  14. Fracture resistance of surface-nitrided zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Feder, A.; Casellas, D.; Llanes, L.; Anglada, M. [Universidad Politecnica de Cataluna, Barcelona (Spain). Dept. of Material Science and Metallurgy

    2002-07-01

    Heat treatments have been conducted at 1650 C for 2 hours in Y-TZP stabilised with 2.5% molar of yttria in two different environments: in air and in nitrogen gas with the specimens embedded in a zirconium nitride powder bed. Relevant microstructural changes were induced by these heat treatments. It is highlighted the formation of a nitrided surface layer of about 400 {mu}m in thickness. Such layer has clear microstructural differences with respect to the bulk, and is formed by different sublayers with cubic and tetragonal phases with distinct degrees of transformability, as revealed by XRD and Raman spectroscopy. The fracture toughness and the hardness of the nitrided surface layer are higher than for the original Y-TZP. (orig.)

  15. Nitride Fuel Development at the INL

    Energy Technology Data Exchange (ETDEWEB)

    W.E. Windes

    2007-06-01

    A new method for fabricating nitride-based fuels for nuclear applications is under development at the Idaho National Laboratory (INL). A primary objective of this research is the development of a process that could be operated as an automated or semi-automated technique reducing costs, worker doses, and eventually improving the final product form. To achieve these goals the fabrication process utilizes a new cryo-forming technique to produce microspheres formed from sub-micron oxide powder to improve material handling issues, yield rapid kinetics for conversion to nitrides, and reduced material impurity levels within the nitride compounds. The microspheres are converted to a nitride form within a high temperature particle fluidizing bed using a carbothermic process that utilizes a hydrocarbon – hydrogen - nitrogen gas mixture. A new monitor and control system using differential pressure changes in the fluidizing gas allows for real-time monitoring and control of the spouted bed reactor during conversion. This monitor and control system can provide real-time data that is used to control the gas flow rates, temperatures, and gas composition to optimize the fluidization of the particle bed. The small size (0.5 µm) of the oxide powders in the microspheres dramatically increases the kinetics of the conversion process yielding reduced process times and temperatures. Initial studies using surrogate ZrO2 powder have yielded conversion efficiencies of 90 -95 % nitride formation with only small levels of oxide and carbide contaminants present. Further studies are being conducted to determine optimal gas mixture ratios, process time, and temperature range for providing complete conversion to a nitride form.

  16. Precipitate-Accommodated Plasma Nitriding for Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    Patama Visittipitukul; Tatsuhiko Aizawa; Hideyuki Kuwahara

    2004-01-01

    Reliable surface treatment has been explored to improve the strength and wear resistance of aluminum alloy parts in automotives. Long duration time as well as long pre-sputtering time are required for plasma nitriding of aluminum or its alloys only with the thickness of a few micrometers. New plasma inner nitriding is proposed to realize the fast-rate nitriding of aluminum alloys. Al-6Cu alloy is employed as a targeting material in order to demonstrate the effectiveness of this plasma nitriding. Mechanism of fast-rate nitriding process is discussed with consideration of the role of Al2Cu precipitates.

  17. Low pressure growth of cubic boron nitride films

    Science.gov (United States)

    Ong, Tiong P. (Inventor); Shing, Yuh-Han (Inventor)

    1997-01-01

    A method for forming thin films of cubic boron nitride on substrates at low pressures and temperatures. A substrate is first coated with polycrystalline diamond to provide a uniform surface upon which cubic boron nitride can be deposited by chemical vapor deposition. The cubic boron nitride film is useful as a substitute for diamond coatings for a variety of applications in which diamond is not suitable. any tetragonal or hexagonal boron nitride. The cubic boron nitride produced in accordance with the preceding example is particularly well-suited for use as a coating for ultra hard tool bits and abrasives, especially those intended to use in cutting or otherwise fabricating iron.

  18. Microbial adherence to a nonprecious alloy after plasma nitriding process.

    Science.gov (United States)

    Sonugelen, Mehmet; Destan, Uhmut Iyiyapici; Lambrecht, Fatma Yurt; Oztürk, Berran; Karadeniz, Süleyman

    2006-01-01

    To investigate the microbial adherence to the surfaces of a nonprecious metal alloy after plasma nitriding. The plasma-nitriding process was performed to the surfaces of metals prepared from a nickel-chromium alloy. The microorganisms were labeled with technetium-99m. After the labeling procedure, 60 metal disks were treated with a microorganism for each use. The results revealed that the amount of adherence of all microorganisms on surfaces was changed by plasma-nitriding process; adherence decreased substantially (P plasma nitriding time were not significant (P> .05) With the plasma-nitriding process, the surface properties of nonprecious metal alloys can be changed, leading to decreased microbial adherence.

  19. Local heating with titanium nitride nanoparticles

    DEFF Research Database (Denmark)

    Guler, Urcan; Ndukaife, Justus C.; Naik, Gururaj V.;

    2013-01-01

    We investigate the feasibility of titanium nitride (TiN) nanoparticles as local heat sources in the near infrared region, focusing on biological window. Experiments and simulations provide promising results for TiN, which is known to be bio-compatible.......We investigate the feasibility of titanium nitride (TiN) nanoparticles as local heat sources in the near infrared region, focusing on biological window. Experiments and simulations provide promising results for TiN, which is known to be bio-compatible....

  20. Alkaline Capacitors Based on Nitride Nanoparticles

    Science.gov (United States)

    Aldissi, Matt

    2003-01-01

    High-energy-density alkaline electrochemical capacitors based on electrodes made of transition-metal nitride nanoparticles are undergoing development. Transition- metal nitrides (in particular, Fe3N and TiN) offer a desirable combination of high electrical conductivity and electrochemical stability in aqueous alkaline electrolytes like KOH. The high energy densities of these capacitors are attributable mainly to their high capacitance densities, which, in turn, are attributable mainly to the large specific surface areas of the electrode nanoparticles. Capacitors of this type could be useful as energy-storage components in such diverse equipment as digital communication systems, implanted medical devices, computers, portable consumer electronic devices, and electric vehicles.